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ABSTRACT  

Following solid organ transplantation individualizing the immunosuppressive therapy to 

obtain an optimal balance between therapeutic efficacy and the occurrence of adverse events 

is the ultimately goal. This is complicated by the high intra- and interindividual 

pharmacokinetic variability and the narrow therapeutic index of the immunosuppressive 

drugs.  Small variations in drug exposure may result in suboptimal immunosuppression or 

drug toxicity, with potentially adverse effects on patient outcomes. Therapeutic drug 

monitoring (TDM) is therefore mandatory in order to individualize the therapy. More 

knowledge and further improvements of drug treatment strategies and monitoring techniques 

are still desirable to further improve TDM and hence potentially both short- and long term 

outcomes after transplantation. 

The primary objective of this thesis was to investigate some different pharmacological 

treatments and monitoring strategies to improve outcome in solid organ transplants. In this 

thesis results from three prospective clinical trials in solid organ transplants are presented. 

The lipid-lowering effect of rosuvastatin in comparison with fluvastatin, and the potential 

bilateral drug-drug interaction between rosuvastatin and everolimus (EVE) were assessed in 

renal transplant recipients at a stable phase following transplantation. Further, the relationship 

between both cyclosporine A (CsA) and EVE concentrations in different body compartments 

were evaluated as potential TDM tools in heart- and renal transplant recipients, respectively. 

Finally, the bioequivalence of an approved generic tacrolimus (TAC) was investigated with 

the original drug as reference in elderly stable renal transplant recipients. 

In renal transplant recipients receiving EVE based immunosuppression and treated with 

fluvastatin, a switch to rosuvastatin induced a significant additional lipid lowering effect. The 

combination of EVE and rosuvastatin appears to be safe as EVE pharmacokinetics were 

unaffected following the switch to rosuvastatin. The systemic exposure of rosuvastatin was 

less than 3-fold higher compared to non-transplants reported in the literature when combined 

with EVE, and this is comparable to what is previously shown for fluvastatin in combination 

with CsA, a combination considered to be safe in renal transplant recipients. Safely achieving 

reduction in lipids could be of great importance in reducing cardiovascular risk in this high 

risk population. 
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No correlation between CsA concentrations in whole blood, T-lymphocytes or 

endomyocardial tissue was established in heart transplant recipients, potentially challenging 

traditional TDM based on whole blood CsA concentrations in these patients. In contrast, EVE 

concentrations in whole blood and PBMC correlated well and supports that TDM of EVE in 

whole blood is an appropriate choice.   

The generic TAC formulation was not found to be bioequivalent to the original drug in 

elderly renal transplant recipients. Use of generic TAC resulted in a significantly higher 

systemic drug exposure. In the long run this may put the patients at higher risk of calcineurin 

inhibitor-related toxicity and impaired long-term outcomes. Importantly, the lack of 

bioequivalence would not have been detected by the standard monitoring parameter, TAC 

trough concentrations, as these concentrations were similar for both formulations Generic 

TAC should be used with caution in elderly renal transplant recipients and it should be 

recognized that bioequivalence studies performed in healthy volunteers do not necessarily 

reflect the average transplant recipient.  
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1 INTRODUCTION 

In 1956, just two years after the first successful renal transplantation had been performed 

between two monozygotic twins in Boston, USA, a renal transplantation from an unrelated 

donor to a patient with end stage renal disease was performed at Rikshospitalet, Oslo. The 

patient lived for 30 days with his new kidney, which is quite impressive given the insufficient 

immunosuppressive therapy available at that time.1 During the last 10 years, between 250 and 

300 renal transplantations have been performed annually in Norway, with 50% of the grafts 

functioning after about 11 years from deceased donors and 17-18 years from living donors.2 

The first heart transplantation in the Nordic countries was performed at Rikshospitalet, Oslo 

in 1983.3 Due to donor organ shortage, only 30 to 35 heart transplantations are performed in 

Norway annually and mean survival is 12.3 ± 5.3 years.4,5  

1.1 Immunosuppressive therapy 

The first attempts of inducing satisfactory immunosuppression in humans in order to make 

organ transplantation possible were the use of total body irradiation in combination with 

corticosteroids. This effort to control the immune system was proved either ineffectual or 

lethal, and it became evident that without chronic pharmacological immunosuppression, most 

grafts would be lost to acute/chronic rejection or recurrent kidney disease.6 In the early 1960s 

the first successful pharmacological immunosuppressant, azathioprine was introduced for 

human use. In combination with corticosteroids, azathioprine quickly replaced alternative 

non-pharmacological approaches and renal transplantation became a viable treatment of end-

stage renal disease, with a one-year graft survival of about 50%.6,7 However, it was the 

introduction of the calcineurin inhibitor (CNI), cyclosporine A (CsA), in the beginning of the 

1980s, which revolutionized transplant medicine, dramatically improved short-term graft 

survival for renal transplant recipients and made heart transplantation possible.8,9 In the same 

period, the first reports on the use of mouse monoclonal anti-CD3 T cell antibody (OKT3) 

was also published.10 The next advance came in the 1990s with the introduction of 

mycophenolate mofetil (MMF), tacrolimus (TAC) and sirolimus.11-13 Additionally, anti T-cell 

agents were introduced for initial induction immunosuppression (to prevent early acute 

rejections) and as rescue therapy for steroid resistant rejections. These agents included anti-

thymocytic globulins derived from horse or rabbit serum (e.g ATG® and Thymoglobulin®), 

and the anti-interleukin-2 (IL-2) receptor antibodies, daclizumab (withdrawn from the market 
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in 2009) and basiliximab.14,15 An attempt was also made to improve the pharmacokinetic 

characteristics of both CsA and the proliferation signal inhibitor (PSI), sirolimus. CsA was 

formulated as a microemulsion pre-concentrate (Neoral®) and another PSI, everolimus (EVE) 

was introduced to the market in the early 2000s.16,17 In 2011, the co-stimulation blocker 

belatacept was approved as the first biological agent for use in maintenance immunotherapy.18  

 

Immunosuppression is normally given as a combination of agents with different mechanism 

of action. By using combination regimens of the immunosuppressive drugs, the dosing and 

toxicity of each agent can be minimized without compromising the total immunosuppressive 

effect. The CNIs are still the backbone in most immunosuppressive regimens. TAC has since 

its introduction gradually replaced CsA and is now the dominant CNI in clinical 

transplantation. PSIs is used either in a combination with low dose CNI or as a substitute after 

CNI withdrawal or avoidance. In Norway, the current immunosuppressive protocol after renal 

transplantation is a quadruple regimen consisting of induction therapy with two doses of 20 

mg basiliximab and a maintenance therapy of TAC (0.04 mg/kg) in combination with MMF 

(1.5 mg/day) and corticosteroids. The use of CsA is currently limited and is only administered 

to patients already treated with CsA. In renal transplant recipients with previous malignant 

disease (transplanted at the earliest one year after remission of malignancy) conversion from 

CNI to a PSI is considered seven weeks after transplantation. For heart transplant recipients, 

the immunosuppressive strategy is based on a triple drug regimen consisting of CNI, MMF 

and corticosteroids. In patients with deteriorating renal function, conversion from CNI to EVE 

is strongly considered.  

 

Using modern powerful immunosuppressive drug combination therapy, the incidence of acute 

rejection has become low (in general <20%) and most centers have 1-year graft survival rates 

>90%. However, long term outcomes are still challenged by the adverse events of 

immunosuppressive drugs, contributing to late graft failure, cardiovascular morbidity, 

opportunistic infections and malignancies. Hence, optimization of immunosuppressive 

regimens is needed. 

1.1.1 Pharmacodynamics 

Lymphocytes play a central role in cell-mediated immune response and are the site of action 

of immunosuppressive drugs. CsA and TAC depend on different intracellular mediators 
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(immunophilins) to achieve their action, but the target for both is the protein phosphatase 

calcineurin. CsA acts by binding to cyclophilin while TAC binds to another immunophilin, 

FKBP12 (FK506 binding protein 12). Both the CsA-cyclophilin complex and the TAC-

FKBP12 complex inhibit the activity of calcineurin and thereby reduce its phosphatase 

activity in a dose proportional manner.19 By inhibiting calcineurin, CsA and TAC suppress the 

dephosphorylation of nuclear factor of activated T cells (NFAT) and hence prevent the 

translocation of NFAT into the nucleus where it acts as a transcription factor. This results in 

an impaired synthesis of IL-2 and other important cytokines.20,21 IL-2 serves as a cell cycle 

progression signal for T-cells, stimulating both their proliferation and differentiation.22  EVE 

also complex with FKBP12, but unlike TAC, does not inhibit calcineurin activity. Instead, the 

EVE-FKBP12 complex is a highly specific inhibitor of mammalian target of rapamycin 

(mTOR), which is a cell-cycle specific kinase. Inhibition of the mTOR pathway blocks 

progression of the cell cycle from G1 into the S phase, which suppresses interleukin-driven T-

cell proliferation. In contrast to the CNIs, EVE acts at a later stage in the cell cycle, not 

blocking the production of growth factors, but rather the proliferation signal that is provided 

by these factors.17,23 A schematic figure of the mechanism of action for the CNIs and the PSIs 

is shown in Figure 1.  

Figure 1. Schematic and simplified figure of the mechanism of action for the calcineurin 

inhibitors (cyclosporine A and tacrolimus) and the proliferation signal inhibitors 

(everolimus and sirolimus). IL-2, interleukin-2; MHC, major histocompatibility complex; 

mTOR, mammalian target of rapamycin; NFAT, nuclear factor of activated T cells; TCR, T-

cell receptor. 
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1.1.2 Adverse events 

Despite their clinical efficacy, both CsA and TAC are limited by toxicity due to the wide 

tissue distribution of calcineurin. Calcineurin and NFAT isoform are not T-cell specific, and 

inhibition of this pathway by the CNIs give rise to toxicity beyond immunosuppression. 

Similar, mTOR is a ubiquitous kinase and consequently, the PSIs inhibit not only T cells, but 

also B lymphocytes and other immune cells. Hence, adverse effects of the PSIs reflect their 

lack of specificity for lymphocytes.24 

Calcineurin inhibitors 

Hypertension, dyslipidemia, neurotoxicity and post-transplant diabetes mellitus (PTDM) are 

well-known adverse effects of the CNIs.25-28 CsA is more likely to cause dyslipidemia and 

hypertension, while TAC is more diabetogenic.29,30 Treatment with the CNIs is however 

especially hampered by nephrotoxicity, which contributes to the late allograft loss in a 

substantial proportion of renal transplant recipients.31 The acute nephrotoxicity may present as 

an acute oligoanuric syndrome (delayed graft function) or as a rise in serum creatinine. Acute 

nephrotoxicity usually occurs early after starting CNI treatment and in general, this acute 

CNI-induced nephrotoxicity is rapidly and completely reversible on dose reduction or CNI 

withdrawal.31,32 It is characterized by constriction of the afferent arteriole, leading to a 

decreased renal plasma flow and a reduction of the glomerular filtration rate (GFR).33 This 

reduction in GFR has been shown to be reduced following each given dose of CsA, primary 

via hemodynamic effects on the afferent arteriole.34,35 Chronic CNI-induced nephrotoxicity is 

associated with prolonged use of these agents and has also been observed after transplantation 

of an organ other than the kidney. In fact, nearly 30% of heart transplant recipients develop 

renal dysfunction as early as one year post heart transplantation, an independent risk for both 

all-cause and cardiac mortality.36,37 In contrast to the acute form, chronic CNI-induced renal 

insufficiency improves little after dose reduction or cessation of CNIs. It is associated with 

irreversible renal functional deterioration as a result of irreversible and progressive tubulo-

interstitial injury and glomerulosclerosis.31,38 Other adverse effects of the CNIs include 

increased susceptibility to infections and cancer due to the immunosuppressive effect per 

se.39-42 
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Everolimus 

The most frequent adverse effects of EVE are hypercholesterolemia and hypertriglyceridemia. 

In a review of 17 randomized controlled trials, EVE showed an increase in cholesterol and 

triglycerides levels in all but one study.43 A large prospective trial found no difference in the 

occurrence of PTDM in the two EVE treatment groups compared to MMF.44 

Thrombocytopenia and anemia are frequent, though usually mild.44,45 Rash, acne and mouth 

ulcers are the most frequent early complications reported by patients receiving treatment with 

PSIs.46 Non-infectious pneumonitis is another complication associated with the PSIs.47,48 

Additionally, impaired wound healing has been described in renal transplant recipients 

receiving sirolimus.49 However, wound healing did not differ between EVE and MMF treated 

patients in a large randomized trial.44  

1.1.3 Pharmacodynamic variability 

The correlation between drug exposure and pharmacodynamics is far from close. Drug 

concentrations within the therapeutic range do not guarantee absence of rejection or 

avoidance of toxicity in all patients. Thus, interindividual pharmacodynamic differences in 

response to the immunosuppressive drugs are also important in the determination of the 

overall clinical response. However, for the immunosuppressive drugs, there is no accurate 

“immunometer” to determine whether the level of immunosuppression is adequate, 

suboptimal or excessive. Previous work has shown different approaches of measuring the 

actual pharmacodynamic effect of each single immunosuppressive drug such as calcineurin 

activity, IL-2 production, expression of genes encoding cytokines and intralymphocyte ATP 

concentrations in CD4+ cells for the CNIs.50-53 However, none of these approaches are 

currently in any broad clinical use. An even more valuable “immunometer” would be a 

method that covered the total immunosuppression in each patient, reflecting the combined 

effect of all immunosuppressive drugs used. 

1.1.4 Pharmacokinetics 

The intestinal absorption of both CsA and TAC is highly variable and the bioavailability of 

both drugs is low. The poor and unpredictable bioavailability of CsA is depending on the 

population studied (ranging from 10 to 89% for the Neoral® formulation).54 For TAC, an 

average bioavailability of about 25% (ranging from 5 to 90 %) has been reported.55,56 The 
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absolute oral bioavailability of EVE has not been assessed clinically, but based on animal 

investigations the bioavailability of EVE is considered to be low (16 %).57 The low and 

variable bioavailability of both the CNIs and EVE is believed to be largely attributable to 

variability in expression and function of the metabolizing cytochrome P450 (CYP) 3A 

isoenzymes and of the multidrug efflux transporter P-glycoprotein (P-gp) both in the intestine 

and the liver, i.e. high first-pass effect.57-64 

The human CYP3A isoform CYP3A4 is the most abundantly expressed CYP enzyme 

expressed in the liver and intestine for the majority of individuals and the main drug-

metabolizing enzyme in humans.65-67 Estimates suggest that the metabolism of approximately 

40-50% of all drugs on the market involves CYP3A-mediated oxidation.65 CYP3A4 

expression is highly variable between individuals, with 10- to 100-fold differences in the liver 

and up to 30-fold differences in small intestine expression.68 The CYP3A isoform CYP3A5 is 

closely related to CYP3A4 and shows significant overlap in substrate specificity, although the 

substrate affinity may differ.69 The efflux pump P-gp is expressed in the liver, in pancreas, on 

enterocytes in the small intestine and colon, in the blood-brain barrier and in the human 

kidney. P-gp is also found in the membrane of lymphocytes.70 The tissue distribution and the 

broad substrate specificity indicate that P-gp play a major role in protecting the body against 

xenobiotics.71 CYP3A and P-gp have overlap in their substrate specificities, which allow 

CYP3A to have repeated contact with the substrate and its metabolites after extrusion by P-gp 

and subsequent reabsorption.68 

Both CsA and TAC are extensively distributed in erythrocytes and more than 90% of CsA and 

TAC in plasma are bound to plasma proteins (lipoproteins and albumin/alpha 1-acid 

glycoprotein).72,73 Similar to the CNIs, 75% of EVE is distributed into erythrocytes and 

approximately 75% of the plasma fraction is protein bound.74 Metabolism of CsA and TAC 

occurs mainly in the liver and in the gastrointestinal epithelial cells predominantly by 

CYP3A4 and CYP3A5.75-78 EVE is also metabolized by CYP3A4 and CYP3A5 and to a 

lesser extent by CYP2C8.78 Metabolism of these drugs is virtually complete, with less than 

1% of the parent drugs appearing in urine or feces. After metabolization, metabolites of CsA, 

TAC and EVE are eliminated in the bile and less than 5% is excreted in the urine.74,79-81 

In addition to P-gp, several other drug transporters have been reported to play an important 

role in the absorption, distribution and elimination of CsA, TAC and EVE. These include 

transporters belonging to the ATP-binding cassette (ABC) transporter family such as the 
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multidrug resistance protein 2 (MRP2, also known as ABCC2) and breast cancer resistance 

protein (BCRP, also known a ABCG2) as well as transporters in the solute carrier family 

(SLC), including the organic anion-transporting polypeptides (OATPs).82-86 An illustration of 

selected drug transporters in the intestinal epithelia, hepatocytes and kidney proximale tubules 

represented in Figure 2.  

Figure 2: Illustration of selected human drug transporters in intestinal epithelia, hepatocytes 

and kidney proximale tubules. The uptake transporters, OATPs, OATs and OCTs are 

colored in green and the efflux transporters, P-gp, BCRP and MRPs are colored blue. 

Modified from Giacomini et al.87 BCRP, breast cancer resistance protein; MRPs, multidrug 

resistance proteins; OATPs, organic anion transporting polypeptides; OAT, organic anion 

transporters; OCT, organic cation transporters; P-gp, P-glycoprotein. 

1.1.5 Pharmacokinetic variability 

Both the CNIs and EVE are characterized by a high inter- and intraindividual 

pharmacokinetic variability. Interindividual variability in the expression and activity of drug 

metabolizing enzymes and drug transporters are thought to be the major factors contributing 

to this highly variable pharmacokinetics of the CNIs and EVE. Variability in protein 

expression and activity in metabolizing enzymes and drug transporters could be determined 

by genetic and/or environmental factors. Environmental factors include foods, intoxicants, 

pollutions and drugs whereas genetic variability is usually the product of single nucleotide 

polymorphism (SNP). Other factors associated with pharmacokinetic variability are for 

example age, weight, organ function, disease state and protein binding.  
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Genetic polymorphisms in cytochrome P450 enzymes and drug transporters 

The expression of CYP3A5 has been found to be largely determined by genetic 

polymorphism. A SNP in the third intron of CYP3A5 (6986G>A, rs 776746) results in an 

alternatively spliced mRNA variant, which translates to a truncated non-functional protein.88 

This variant, designated as CYP3A5*3, is the major allele among Caucasians and only 

individuals with at least one CYP3A5*1 allele are therefore classified as CYP3A5 

expressers.88 The association between CYP3A5 genotype and TAC pharmacokinetics is well 

established, with patients expressing CYP3A5 (CYP3A5*1 carriers) requiring 2-fold higher 

doses of TAC compared with CYP3A5 non-expressers (CYP3A5*3/*3) to reach similar blood 

concentrations.89-91 The impact of CYP3A5 genotype status on the pharmacokinetics of CsA is 

less clear. The in vitro intrinsic metabolic clearance of CsA calculated from total metabolite 

formation is approximately 2.3 fold higher for CYP3A4 than for CYP3A5. Thus, CYP3A4 

appears to play a more dominant role than CYP3A5 in the metabolism of CsA and the 

influence of the CYP3A5 polymorphism on the pharmacokinetics of CsA is limited.92-94 No 

significant effect of CYP3A5 genotype on the pharmacokinetics of EVE has been observed 

and similar to CsA, CYP3A4 is most likely the predominant enzyme involved in the 

metabolic clearance of EVE. 91,95-97 In contrast to CYP3A5, the genetic basis for variable 

expression and activity of CYP3A4 remains poorly understood. However, a recently 

discovered SNP in intron 6 of the CYP3A4 gene (c.522-191C>T; rs35599367; CYP3A4*22) 

has been associated with reduced CYP3A4 activity.98,99 Although the allele frequency is 

relatively low (5-7% in Caucasian population) studies show that carriers of the CYP3A4*22 

requires lower CNI doses compared to patients expressing the wild type.94,99-101 Contrary, 

CYP3A4*22 does not seem to substantially influence the pharmacokinetics of EVE.95 

Sequence variants located in the peroxisome proliferator-activated receptor-alpha (PPARA) 

and in the electron donor, cytochrome P450 oxidoreductase (POR) are other variants newly 

identified and potential contributors to the variability in CYP3A4 expression and 

activity.102,103 

P-gp is encoded by the ABCB1 gene which is polymorphically expressed with at least 50 

SNPs identified to date. The most common and extensively studied SNPs include 3435C>T in 

exon 26, 1236C>T in exon 12 and 2677G>T/A in exon 21. The functional significance of 

these SNPs is controversial.104,105 The majority of studies have focused on the ABCB1 

3435C>T SNP and several studies have associated the homozygous 3435 TT variant genotype 

with lower intestinal P-gp expression and/or activity in vivo.106-108 However, the results are 
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conflicting.109-112 Variant alleles of the ABCB1 3435C>T, 1236C>T and 2677G>T/A usually 

occur together, suggesting that they are genetically linked. The ABCB1 1236T-2677T-3435T 

(T-T-T) haplotype is present in approximately 32% of Caucasians, and has been reported to 

significantly minimize the activity of P-gp.106 The influence of this haplotype and the ABCB1 

3435C>T, 1236C>T and 2677G>T/A SNPs on the pharmacokinetics of CsA and TAC 

remains uncertain, with inconsistent results and no relevant clinical effect has been presented 

so far.93 For EVE, limited data regarding the impact of ABCB1 polymorphism exists, and to 

date, no influence on the pharmacokinetics of EVE has been demonstrated.96,113,114 

OATP pharmacogenetics may also play a role in determining interindividual variability in 

drug exposure. Several of the OATPs show polymorphism and a large number of SNPs have 

been identified in the gene encoding OATP1B1, SLCO1B1.115,116 A few relatively common 

polymorphisms in SLCO1B1 have been associated with altered transport activity of 

OATP1B1. Individuals carrying the c.521T>C allele have shown impaired hepatic uptake and 

markedly increased plasma concentrations of OATP1B1 substrates, such as the statins.116,117  

Age 

Progressive changes in body compositions and physiological processes affecting drug 

pharmacokinetics occur during aging. Declines in hepatic and renal blood flow, hepatic mass, 

and renal function are main contributors to decreased clearance of drugs in the elderly.118 

Despite extensive studies, the age-related changes in CYP3A expression and/or activity 

remain debated,119-122 and most in vitro studies have reported CYP3A liver content to remain 

stable with age.123,124 In elderly patients drug exposure is usually increased and lower doses 

are often sufficient to achieve therapeutic response compared with younger adults. In addition 

to pharmacokinetic differences, donor organ viability, multiple co-morbidities, polypharmacy, 

and immunological changes need to be considered when using immunosuppressive drugs in 

elderly transplant recipients.125-129 As a result of an aging population, the number of elderly 

patients listed in transplant waiting programs and receiving kidney, liver, heart and lung 

transplants has been increasing the recent years. This trend has been most dramatic among 

renal transplant recipients. In 2012, about one third of the Norwegian renal transplant 

recipients were 65 years or older.2 
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Drug-drug interactions 

Potential sites of pharmacokinetic drug-drug interactions include the gastrointestinal tract, 

protein- and tissue binding sites, drug metabolizing enzymes, drug transporters as well as 

biliary excretion. In general, however, inhibition and induction of the CYP3A mediated 

metabolism of the CNIs and EVE are regarded as the most common mechanism of drug-drug 

interactions. Clinically potent inhibitors, including the azole antifungals and calcium channel 

antagonists, have been demonstrated to increase the exposure of CNI and EVE significantly 

(Table 1). These drugs are also inhibitors or substrates of P-gp and the specific contribution of 

transporter and/or enzyme in the drug-drug interaction is difficult to determine.  

Table 1. Examples of relevant interactions with the calcineurin inhibitors and everolimus 

Type of concomitant drug Concomitant 
drug 

Effect on  
CNI exposure 

Effect on  
EVE exposure 

Ref. 

Antifungals Ketoconazole ↑ ↑ 130-132 
 Fluconazole ↑ ↑ 133,134 
Calcium channel antagonists Diltiazem ↑ ↑ 114,135,136 
 Verapamil ↑ ↑ 137,138 
Antibacterials Erythromycin ↑ ↑ 139-141 
 Rifampicin ↓ ↓ 142-144 
Food constituent Grapefruit juice ↑ ND 145,146 
Herbal preparation St. John’s wort ↓ ND 147,148 
ND, not determined; CNI, calcineurin inhibitors; EVE, everolimus; Ref, references 

Not all pharmacokinetic drug-drug interactions of CNIs and EVE can be attributed to CYP3A 

and P-gp. In the recent years, more focus has been given to other transporter-mediated drug-

drug interactions as well.87 For example, CsA interacts with mycophenolic acid by inhibiting 

MRP2 and thus the elimination of 7-O-mycophenolic acid glucuronide from the hepatocytes 

and into the bile.83,149 Furthermore, CsA markedly raises the plasma concentrations of most 

statins.150 Studies show that CsA raise the AUC of atorvastatin 7- to 15-fold, fluvastatin 2-

fold and that of rosuvastatin 7-fold.151-155 Since CsA is not a potent CYP3A4 inhibitor, the 

mechanism for this interaction is somewhat unclear. Although inhibition of CYP3A4 by CsA 

may partly explain the effects seen on atorvastatin, rosuvastatin and fluvastatin are not 

significantly metabolized by CYP3A4, indicating that inhibition of the uptake transporter 

OATP1B1 by CsA may be a major source of these drug-drug interactions.156,157 TAC on the 

other hand was not found to inhibit OATP1B1 and does not seem to cause this 

interaction.155,158 So far, limited data regarding the drug-drug interaction potential between 

EVE and statins exist.  
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Generic immunosuppressants 

In addition to biological variation, differences in drug formulations might also be a source of 

variability in drug exposure. The patents for several immunosuppressants, including CsA, 

TAC and MMF, have expired the last years and generic formulations are entering the market. 

Cost savings associated with generic substitution are often substantial and thus appear to be 

an attractive option to reduce the increasing costs of health care. Regulatory approval of 

generic drugs requires demonstration of bioequivalence to establish that the generic can be 

interchanged with the original drug without safety or efficacy concerns. Studies to determine 

bioequivalence are generally performed in small populations of healthy young adult 

volunteers using a single-dose crossover design. To establish bioequivalence the rate, 

determined by the maximum plasma concentration (Cmax) and extent of absorption, defined by 

area under the concentration versus time curve (AUC) of the generic drug, cannot be 

significantly different from the original drug. Specifically, the 90% confidence interval (CI) 

of the ratio of the geometric means for the generic compared with the original formulation 

should be contained within the acceptance interval of 80 to 125%.159,160 The European 

Medicine Agency (EMA) has adopted even stricter bioequivalence criteria for narrow 

therapeutic index (NTI) drugs, such as the immunosuppressive drugs, narrowing the 

acceptance limit to 90 to 111%.159 Since no worldwide list of NTI drug exists, EMA is 

deciding this on a case-by-case basis. For generic TAC formulations, EMA requires that the 

acceptance interval should be 90 to 111% for AUC, but still allow a single dose Cmax interval 

of 80 to 125 % due to its high intrapatient variability.161 Recently, the transplant community 

has expressed concern whether single dose bioequivalence studies in healthy volunteers 

predict the actual therapeutic equivalence in patients receiving maintenance TAC.162,163 So 

far, properly performed bioequivalence studies of generic TAC formulations in transplanted 

patients are limited.164,165 

1.2 Therapeutic drug monitoring  

In a clinical setting the dosing of CsA, TAC and EVE is complicated by their intra- and 

interindividual variability, as well as their narrow therapeutic index. Therapeutic drug 

monitoring (TDM) of these drugs is therefore mandatory and is routinely performed.166-169 

Target concentrations have been empirically defined and whole blood concentrations of CsA, 

TAC and EVE are measured frequently, especially in the early phase after transplantation.  
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During the clinical development of CsA, the drug was dosed using mg/kg of body weight 

without performing drug concentration measurements. The drug was first administered as 

monotherapy (25 mg/kg), resulting in effective inhibition of rejections, but there was clear 

evidence of serious adverse effects such as nephrotoxicity and hepatotoxicity.170 Thus, in the 

following trials, the CsA dose was reduced to 10 mg/kg, resulting in underexposure and an 

unacceptable rejection risk.171 The following dose recommendation of CsA was 17.5 mg/kg, 

still as the sole immunosuppressive agent. After these initial experiences, it was realized that 

fixed doses of CsA were not optimal, as no relationship was found between administered 

doses and clinical effects. Consequently, it was concluded that to avoid adverse events, 

monitoring of CsA blood levels was required to individualize the doses. Initially, TDM using 

trough whole blood concentrations obtained before the morning dose (C0) seemed to be the 

solution to minimize CsA toxicity. However, the clinical outcome was still variable. Further 

investigations identified a link between the pharmacokinetics of CsA and clinical outcomes in 

individual transplant recipients. Estimates of drug exposure using AUC0-12 provided the most 

robust pharmacokinetic measure of CsA.172 The correlation between C0 and AUC0-12 was, 

however, found to be poor,173 but the concentration two hours after drug intake (C2) was 

identified to be a consistent predictor of AUC0-12.
174,175 C2-monitoring of CsA has therefore 

become the standard monitoring procedure in many centers. However, the clinical benefit 

from C2 over C0 monitoring has still not been fully elucidated.176-178 

Only a few prospective concentration-controlled trials have been investigating the 

establishment of target TAC concentrations in relation to clinical outcome.179-183 The lack of 

prospective randomized trials has made it difficult to reach any firm conclusions regarding the 

advantage of one particular TDM strategy over another. Most centers are using C0 to adjust 

the TAC dosage regimen, even though there is some debate regarding the correlation between 

C0 and AUC0-12. Hence, other single time points have been studied. In contrast to CsA, TAC 

C2 does not seem to correlate significantly better with AUC than C0, but some studies have 

however reported a stronger correlation between TAC C3 or C4 and AUC0-12 that could be 

relevant for TDM.
184-186 In the early years, TAC target ranges were relatively broad, ranging 

between 5 and 40 ng/mL,179,181 subsequently lower trough concentrations were adopted 

varying between 10 and 20 ng/mL.180 In the recently conducted Symphony trial the 

predefined ”low dose” TAC trough concentrations targeted between 3 and 7 ng/mL were 

associated with the lowest acute rejection rate and the best allograft function after 1 year.187 In 

Norway, TAC dose is adjusted to C0 targeting concentrations in the range 3 to 7 ng/mL in 
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standard risk patients. In high-risk patients, defined by panel reactive antibody of >20% 

and/or presence of donor specific antibodies, the TAC C0 target range is 8 to 12 ng/mL during 

the first month post transplantation and subsequently 5 to 10 ng/mL. 

The pharmacokinetic data collected from the phase 3 trials of EVE in kidney transplantation 

yielded a clear exposure-response relationship between EVE trough concentrations and 

various efficacy and safety responses.188-190 Studies also demonstrated a good correlation 

between EVE trough concentrations and AUC in renal- and heart transplant recipients during 

the first year post transplantation.190,191 The recommended therapeutic range for EVE trough 

concentrations is 3 to 8 ng/mL in adult renal- and heart transplant recipients and this has been 

validated in numerous studies in both patient populations.45,189,191-193 The incidence of acute 

rejection was higher for patients with EVE trough concentrations < 3 ng/mL, and an 

association between higher trough concentrations and increasing incidence of adverse events 

such as trombocytopenia, has been shown, making TDM of EVE worthwhile.  

1.2.1 Drug concentrations at the sites of action 

Although intensive TDM in this patient population optimizes the immunosuppressive therapy 

quite significantly, patients still experience acute rejection episodes or nephrotoxicity despite 

C0/C2 whole blood concentrations within target ranges.177 Against this background, alternative 

ways, both pharmacodynamic and pharmacokinetic, to monitor the effect and toxicity of 

immunosuppressive drugs have been proposed. Since the lymphocytes are the site of action 

for the immunosuppressive drugs, it has been hypothesized that the fraction of the drug 

present within lymphocytes could be more directly related to the immunosuppressive efficacy 

than whole blood concentrations.194 Additionally, several studies have demonstrated only a 

weak relationship between whole blood and intralymphocyte concentrations of both CsA and 

TAC.195-201 A better strategy for drug optimization in transplanted patients could therefore 

include direct drug measurement at the target sites, i.e. in lymphocytes and allograft tissue. 

Indeed, previous studies have demonstrated that low immunosuppressant tissue exposure was 

significantly associated with a higher incidence of graft rejection, but not trough whole blood 

concentrations.199,202,203 Furthermore, a previous study revealed a generally lower intracellular 

exposure of CsA in renal transplant recipients experiencing an acute rejection episode and 

demonstrated that a novel TDM method of measuring intracellular CsA concentration has the 

potential to predict acute rejection episodes.198 
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P-gp expression and activity 

Since P-gp is expressed in lymphocytes and removes CsA, TAC and EVE from the 

intracellular compartment, the expression/activity of P-gp in these cells may be an important 

factor influencing the intracellular concentration of both CNIs and EVE.204 Hence, the 

interindividual variability in the activity of P-gp may explain some of the variable 

immunosuppressive effect observed for these drugs. Interestingly,  during acute rejection an 

up-regulation of P-gp mRNA expression has been shown in lymphocytes isolated from renal 

transplant recipients.205 This up-regulation in P-gp could potentially lead to a lower 

concentration of the drug within the lymphocytes. Moreover, previous studies have 

demonstrated that P-gp polymorphism might influence the concentration of CsA and TAC 

both within the lymphocytes- and in allograft tissue compartments and thus modulate the 

immunosuppressive effect.196,200,206 

The activity of P-gp and following change in local drug exposure could in addition to 

influence the efficacy of the immunosuppressive drugs, also affect the toxicity associated with 

these drugs. It has been suggested that interindividual variability in renal P-gp expression 

might contribute to the local susceptibility to CNI nephrotoxicity.31 The most plausible 

hypothesis to explain an association between P-gp expression and CNI nephrotoxicity is local 

accumulation of the CNIs when apical P-gp expression (and hence activity) is low. Naesens et 

al. did in fact observe that a lower P-gp expression in kidney transplant biopsies was a risk 

factor for chronic histologic damage in patients receiving TAC, but the literature is 

inconsistent.207-209 

1.3 Cardiovascular disease in renal transplant recipients 

Despite a significant improvement in rejection rates and short-term graft survival in renal 

transplant recipients the last decades, long-term survival has remained essentially the same. 

Cardiovascular disease continue to be a major cause of graft loss and the leading cause of 

death in this patient population.210 The incidence of cardiovascular disease in renal transplant 

recipients is 3 to 5 times that of age-matched patients in the general population. Risk factors 

for the development of cardiovascular disease following renal transplantation include PTDM, 

obesity, hypertension, dyslipidemia, smoking, treatment with immunosuppressive drugs, 

reduced GFR and proteinuria.211-218 Strategies that reduce the prevalence and impact of 

cardiovascular disease would be expected to prolong graft and patient survival. A schematic 
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figure of selected risk factors contributing to cardiovascular disease both before and after 

transplantation are shown in Figure 3.  

 

Figure 3. A schematic figure of selected risk factors for cardiovascular disease after 

transplantation. Patients accumulate risk during the time before transplantation and after 

transplantation the immunosuppressive drugs contribute to the cardiovascular risk. eGFR, 

estimated glomerular filtration rate; HT, hypertension; LVH, left ventricular hypertrophy; 

PTDM, post transplantation diabetes mellitus. Modified from Jardine et al.210 

1.3.1 Dyslipidemia in renal transplant recipients 

Dyslipidemia is common in renal transplant recipients. Dyslipidemia is defined by elevated 

plasma total cholesterol, elevated low-density lipoprotein (LDL), elevated triglycerides and/or 

low high-density lipoprotein (HDL), all factors that may contribute to the development of 

atherosclerosis.219 Alterations in the lipid levels of renal transplant recipients typically occur 

early post-transplant, and although many factors contribute to post transplant dyslipidemia, 

the immunosuppressive drugs play a major role. Total cholesterol is typically increased by 

30%, in addition to similar increases in LDL and triglycerides as well as high levels of 

atherogenic proteins such as apolipoprotein B and lipoprotein A.220 Among the 

immunosuppressive agents, corticosteroids and CsA are especially associated with elevations 

in lipid levels and more recently, the PSIs have also been recognized as a major cause of 

dyslipidemia.221 Treatment with the PSIs significantly increases both cholesterol and 
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triglycerides in a dose-dependent pattern. The pathogenesis of PSI induced dyslipidemia is 

unclear, but could possibly be due to a decrease in the catabolism of apolipoprotein B100, 

inhibition of insulin-like growth factor signals, and/or alterations in hepatocytes synthesis of 

lipid moieties.43,221 The consequences of long-term PSI treatment is however uncertain, 

because of the potential benefits on atherosclerotic plaques.222  

1.3.2 Treatment of dyslipidemia in renal transplant recipients 

There has only been one large prospective randomized study in transplant recipients 

comparing statin treatment (fluvastatin) with placebo. In the Assessment of LEscol in Renal 

Transplantation (ALERT) study it was shown a 35% reduction in the incidence of nonfatal 

myocardial infarctions or cardiac deaths in patients treated with fluvastatin.223 Given the 

increased risk of cardiovascular disease in renal transplant recipients, treatment with lipid 

lowering agents, normally HMG-CoA reductase inhibitors (statins), is generally 

recommended.224  

Statins 

Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting step in cholesterol 

biosynthesis. By blocking HMG-CoA reductase, statins reduce intracellular cholesterol in the 

liver and stimulate the expression of LDL receptors, thereby lowering total cholesterol and 

LDL by uptake into the liver.225 Due to its low interaction potential with the 

immunosuppressive drugs and as a consequence of the ALERT study, fluvastatin is 

commonly the lipid-lowering drug of choice in renal transplant recipients. In contrast to 

several other statins, fluvastatin is primarily metabolized by CYP2C9 and to a lesser extent by 

CYP3A4 and CYP2C8.226 However, fluvastatin is a low potency statin and may not be 

adequate in patients with significant hyperlipidemia. In these patients a high potency statin 

such as atorvastatin or rosuvastatin may be necessary. Rosuvastatin, the latest member in the 

statin family, has been shown to be a more potent lipid-lowering drug compared to the other 

statins in a non-transplant population.227,228 As opposed to atorvastatin, rosuvastatin is 

minimally metabolized and similar to fluvastatin, has a low risk of metabolic pharmacokinetic 

interactions.229 Rosuvastatin has however a high affinity for several drug transporters, 

including OATP1B1 and BCRP. 85,230,231 Limited data on the use of rosuvastatin in transplant 

recipients with concomitant immunosuppressive therapy exists.   
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2 AIMS OF PRESENT STUDIES 

Overall aim was to investigate pharmacological treatments and monitoring strategies to 

improve outcome in solid organ transplants.  

Specific aims were as follows: 

- assess the lipid-lowering effect of rosuvastatin compared to fluvastatin (paper I) 

- study how whole blood concentrations of CsA and EVE is associated with 

concentrations in other body compartments (paper II and III)  

- investigate the drug-drug interaction potential of the EVE and rosuvastatin 

combination in renal transplant recipients receiving EVE (paper I) 

- investigate bioequivalence of an approved generic TAC formulation with the original 

drug as reference (paper IV) 
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3 SUMMARY OF PAPERS 

Paper I 

More potent lipid lowering effect by rosuvastatin compared to fluvastatin in everolimus 

treated renal transplant recipients 

In this study we aimed to assess the lipid-lowering effect of rosuvastatin compared to 

fluvastatin in renal transplant recipients receiving EVE. Safety was assessed as the 

pharmacokinetic (PK) interaction potential of a rosuvastatin/everolimus combination in RTR. 

A 12-hour everolimus PK-investigation was performed in twelve stable RTR receiving 

everolimus and fluvastatin (80 mg/day). Patients were then switched to rosuvastatin (20 

mg/day) and a follow-up 12/24-hour PK-investigation of everolimus/rosuvastatin was 

performed after one month. In renal transplant recipients already receiving fluvastatin, a 

switch to rosuvastatin further decreased LDL-cholesterol and total cholesterol by 30.2±12.2% 

(P<0.01) and 18.2±9.6% (P<0.01), respectively. Everolimus AUC0-12 was not affected by 

concomitant rosuvastatin treatment, 80.3±21.3 before and 78.5±21.9 μg*h/mL after, 

respectively (P=0.61). Mean rosuvastatin AUC0-24 was 157±61.7 ng*h/mL, about 3-fold 

higher than reported in the literature for non-transplants. Rosuvastatin showed a superior 

lipid-lowering effect compared to fluvastatin in stable renal transplant recipients receiving 

everolimus. The combination of everolimus/rosuvastatin appears to be as safe as the 

everolimus/fluvastatin combination. 

Paper II  

Endomyocardial, intralymphocyte and whole blood concentrations of ciclosporin A in heart 

transplant recipients 

The aims of the present study were to evaluate the relationships between CsA concentrations 

at different target sites as potential TDM tools in heart transplant recipients. Ten heart 

transplant recipients (8 men, 2 women) on CsA-based immunosuppression were enrolled in 

this prospective single center pilot study. Blood samples were obtained once to twice weekly 

up to 12 weeks posttransplant. One of the routine biopsies was allocated to this study at each 

sampling time. Three patients experienced mild rejections. In the study period, the mean 

(range) intralymphocyte CsA trough concentrations were 10.1 (1.5 to 39) and 8.1 (1.3 to 25) 

ng/106 cells in the rejection and non-rejection group, respectively (P=0.21). Corresponding 
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whole blood CsA concentrations were 316 (153 to 564) and 301 (152 to 513) ng/mL 

(P=0.33). There were no correlations between whole blood, intralymphocyte or 

endomyocardial concentrations of CsA (P>0.11). The study did not support an association 

between decreasing intralymphocyte CsA concentrations and acute rejections. Further, there 

were no association between blood concentrations and concentrations at sites of action, 

potentially challenging TDM in these patients.   

Paper III  

Closer to the site of action; everolimus concentrations in peripheral blood mononuclear cells 

correlate well with whole blood concentrations  

In this study we aimed to investigate whether there was a correlation between EVE 

concentrations in whole blood and in peripheral blood mononuclear cells (PBMC) with the 

special emphasis to investigate the potential influence of P-gp activity on this association. 

Twelve renal transplant recipients (5 men, 7 female) treated with everolimus (EVE) 

underwent a pharmacokinetic investigation where both whole blood EVE concentrations and 

EVE concentrations in PBMC were determined. In addition, the activity of P-gp in PBMC 

was determined using the Rhodamine123 efflux assay and the patients’ genotypes of ABCB1 

were determined. There was a significant correlation between EVE dose adjusted AUC0-6 in 

whole blood and in PBMC (r = 0.88, P<0.01) and no association was demonstrated between 

the P-gp activity and EVE trough concentrations in PBMC (r = -0.46, P=0.18). Furthermore, 

ABCB1 1236C>T, 3435C>T, 2677G>T/A polymorphism did not influence PBMC 

concentrations of EVE. A high degree of association between EVE whole blood and PBMC 

concentrations was demonstrated. The results may therefore indicate that P-gp efflux from 

PBMC is of minor importance for the distribution of EVE. 

Paper IV  

Use of generic tacrolimus in elderly renal transplant recipients – precaution is needed 

In this open label, single-center, prospective, randomized, crossover study we aimed to 

compare steady state pharmacokinetics of a generic tacrolimus formulation (Tacni®) with the 

original (Prograf®) in renal transplants above 60 years. Twenty-five patients, median age 69 

years, were randomized at time of transplantation to receive original or generic tacrolimus and 

provided two full 12-hr pharmacokinetic profiles. The investigations were performed in a 
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stable phase, early after transplantation; approximately 6 and 8 weeks posttransplant. 

Following the first investigation, tacrolimus formulations were switched in a 1:1 dose ratio. 

Generic tacrolimus did not meet the bioequivalence criteria; AUC0-12 was 17% (P< 0.01) and 

Cmax was 49% (P< 0.01) higher compared to the original. The generic formulation also 

showed a shorter time to reach Cmax (Tmax) (P=0.03). Importantly, the lack of bioequivalence 

was not reflected in the standard monitoring parameter, trough concentrations (P=0.80). The 

tested generic tacrolimus did not show bioequivalence in elderly renal transplant recipients. 

The significantly higher systemic exposure of tacrolimus, despite similar trough 

concentrations, may in the long-run increase the risk of adverse effects. 
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4 DISCUSSION 

Individualizing a patient’s drug therapy to obtain the optimal balance between therapeutic 

efficacy and avoidance of adverse events is the ultimately goal in immunosuppressive 

therapy. Due to the large intra- and interindividual variations and the narrow therapeutic index 

for immunosuppressive drugs, correct dosing is challenging. More knowledge and further 

improvements of dosing strategies and monitoring techniques are thus desirable to potentially 

improve both short- and long term outcomes after transplantation.  

4.1 Cardiovascular risk in renal transplant recipients  

Efforts to reduce cardiovascular risk factors and hence improve long term outcome have 

become a priority in post transplant care. In paper I the lipid lowering effect of rosuvastatin 

in comparison with fluvastatin, the current gold standard treatment, was assessed. The results 

from the study demonstrated that in renal transplant recipients receiving EVE based 

immunosuppression and treated with full dose fluvastatin (80 mg/day), a switch to 

rosuvastatin (20 mg/day) induced a significant additional lipid-lowering effect. Total 

cholesterol, LDL-cholesterol and triglycerides were significantly reduced from the fluvastatin 

treatment values by another 20 to 30% after the switch to rosuvastatin. These results (paper I) 

are in agreement with previous findings in the non-transplant population, where rosuvastatin 

has been consistently found to be the most potent statin.227,228,232  

The patients in paper I were already treated with the highest available dose of fluvastatin, and 

had probably already obtained a LDL-cholesterol reduction of about 38.6 mg/dL (1 mmol/L) 

from the early post-transplant phase before entering the study.223 Treatment with rosuvastatin 

reduced LDL-cholesterol further by a mean of 1.1±0.5 mmol/L. Results from the ALERT 

study showed that lowering LDL cholesterol by 1 mmol/L reduced cardiac death or 

myocardial infarction by approximately 30%.218,223 Implicit this suggests that renal transplant 

recipients at high risk for cardiovascular events might benefit from more intensive lipid-

lowering therapy. Safely achieving a larger LDL-cholesterol reduction could be of great 

importance in reducing the cardiovascular risk in these patients. Hence, the additional lipid-

lowering effect of rosuvastatin observed in paper I may have a potential to further improve 

long-term outcomes in renal transplant recipients. 
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4.2 Monitoring immunosuppressive drugs at their sites of action 

The pharmacokinetics of CsA, TAC and EVE are complex and unpredictable. Our increasing 

knowledge and understanding of both the pharmacokinetics and pharmacodynamics of these 

drugs emphasize the need for continuous revision of TDM strategies.  

4.2.1 Correlations at different target sites 

In paper II, no correlations between CsA concentrations in whole blood, T-lymphocytes or 

endomyocardial tissue were demonstrated in heart transplants. This pilot study was, to our 

knowledge, the first to report CsA concentrations in endomyocardial tissue and to show the 

absence of correlation with both whole blood and intralymphocyte CsA concentrations. A 

similar weak correlation between CsA whole blood and intralymphocyte concentrations was 

also evident in the CsA data presented in paper III. This weak correlation between whole 

blood and intralymphocyte CsA concentrations are in agreement with results also from other 

studies,195-197 suggesting that whole blood concentrations measured for TDM is not an optimal 

predictor of the target site concentration of CsA. A poor relationship between whole blood 

and PBMC concentrations has been demonstrated for TAC as well, both studies in liver- and 

heart transplant recipients report of weak correlations.201,233 Against this background and 

since limited data exist on monitoring of EVE within the target compartment, the correlation 

between EVE concentrations in whole blood and in PBMC was investigated (paper III). 

Surprisingly, the results showed that whole blood and PBMC EVE AUC0-6 correlated well. 

This was in contrast to a study conducted in heart transplant recipients where a weak 

correlation between trough concentrations of EVE in whole blood and PBMC were 

observed.234 However, the patients in that study were also treated with CsA and only trough 

concentrations were measured, both factors may contribute to the observed discrepancy 

between the two studies. Interestingly and in contrast to CsA (paper II), the results (paper 

III) indicate that TDM of EVE in whole blood gives valuable information of the 

concentration at the site of action, i.e. within the lymphocytes.  

4.2.2 Influence of P-glycoprotein 

It has been suggested that the variability in expression and activity of P-gp in lymphocytes is 

a plausible explanatory factor for the weak relationship between whole blood and 

intralymphocyte concentration of immunosuppressive drugs. In paper III the potential 

influence of P-gp activity on EVE concentrations in PBMC was investigated. Even though the 
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P-gp activity showed considerable interpatient variability, no significant correlation between 

EVE dose adjusted trough concentrations in PBMC and the P-gp activity, measured by 

Rhodamine123 (Rh123) efflux method, was demonstrated. The Rh123 efflux method is a 

commonly used method to investigate the functional activity of P-gp in human lymphocytes. 

Rh123 is a cationic, fluorescent dye that is readily taken up by cells and actively pumped out 

of the cells by P-gp and other efflux transporters. The efflux of Rh123 in the presence of a 

selective P-gp inhibitor is decreased. The ratio of intracellular accumulation of Rh123 in the 

presence and absence of this inhibitor is hence a measure of P-gp activity in lymphocytes.235 

The Rh123 efflux method used in paper III has shown satisfactory intra- and interday 

variability with coefficient of variations (CV) below 20% (data not shown). In addition, 

ABCB1 polymorphism did not have any impact on EVE concentrations in PBMC (paper III). 

These findings as well as the high association between EVE AUC0-6 in whole blood and in 

PBMC might suggest that P-gp efflux is of minor importance in the distribution of EVE.  

A few previous studies have investigated the potential influence of P-gp on CsA 

concentrations in PBMC.195,196 Ansermot et al. demonstrated that CsA PBMC 

pharmacokinetics was influenced by P-gp activity in healthy volunteers, showing a significant 

negative correlation between P-gp activity and CsA concentrations in PBMC.195 However, 

ABCB1 polymorphism did not influence the pharmacokinetics of CsA in PBMC.195 The 

influence of ABCB1 polymorphism (ABCB1 1199G>A and 3435C>T) was however 

demonstrated in another study in renal, liver and lung transplant recipients.196 In addition to P-

gp, PBMC express several others efflux transporters, including MRP2 and BCRP, both of 

which CsA has been shown to be an inhibitor of.83,236 Hence, variation in expression and 

activity of these efflux transporters might also contribute to the poorly correlated 

concentrations of CsA in whole blood and lymphocytes. To our knowledge, limited data 

regarding the effect of EVE on these specific drug transporters exists.  

4.2.3 Clinical interest and limitations 

The potential clinical interest of monitoring concentrations of the immunosuppressive drugs at 

their target sites (lymphocytes and graft tissue) would significantly increase if a link to a 

clinical endpoint, such as rejection or drug toxicity, were established. The study in paper II 

failed to show correlation between intralymphocyte concentrations of CsA and acute rejection 

episodes in heart transplants, and does not support the previous findings of decreased CsA 

concentrations within lymphocytes prior to rejection episodes in renal transplant recipients.198 
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However, only three patients experienced acute rejection episodes during the study period. 

Thus, the small sample size clearly limits the conclusions that could be drawn. Additionally, 

CsA concentrations were measured at trough, not C2, which have shown to correlate better 

with acute rejections compared to trough concentrations.237 Further investigations in properly 

powered trials are needed to elucidate this relation between acute rejection episodes and drug 

concentrations at target sites in transplant recipients. 

Up until now, the main clinical evidence for the interest of monitoring immunosuppressive 

drugs in PBMC was provided in a study by Capron et al. in liver transplant recipients.233 They 

showed that although no differences in whole blood concentrations were observed, TAC 

concentrations in PBMC were lower in patients with histological rejection compared to 

patients without rejection in an early phase following transplantation. Importantly, the study 

also demonstrated that intrahepatic TAC concentrations significantly correlated with TAC 

PBMC concentrations, suggesting that TAC concentrations in PBMC might be reliable 

markers of the immunosuppressive efficacy of TAC.233 Although, this study shows 

encouraging results, monitoring of the immunosuppressive drugs in PBMC is still in its early 

stages. Further studies are warranted, especially studies relating drug concentrations of 

immunosuppressive drugs in PBMC and graft tissue with clinical endpoints, such as acute 

rejection and maybe more importantly, toxicity. Currently, there is however many analytical 

constraints that make it difficult to implement this monitoring approach in a clinical setting. 

Monitoring of immunosuppressive drug in PBMC requires isolating and purifying of PBMC 

from whole blood, a relatively time-consuming procedure. In addition, access to an analytical 

method of sufficient sensitivity, as well as a reliable cell counting system to relate the 

concentrations obtained to the number of cells, are essential. Future work should focus on 

further optimization of the complex isolation procedure. Furthermore, in addition to direct 

drug concentration measurements at target sites, i.e. graft tissue and lymphocytes, 

identification and validation of pharmacodynamic biomarkers may be other potential 

strategies for drug optimization in transplant recipients. Finally, results from the present 

studies (paper II and paper III) should be interpreted with caution; the sample size is small, 

so additional conformational large studies are required. 
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4.3 Factors contributing to interindividual pharmacokinetic variability 

An increased understanding of the processes underlying pharmacokinetic variability is of 

great interest to further optimize TDM of immunosuppressive drugs to ensure a safe and 

effective management of transplant recipients. 

4.3.1 Drug-drug interactions 

Pharmacokinetic drug-drug interactions make immunosuppressive therapy in renal transplant 

recipients a challenge. When introducing a new drug to the existing multidrug therapy of 

transplant recipients, it is always a concern whether a clinical relevant interaction may occur. 

The potential pharmacokinetic interaction between EVE and rosuvastatin was investigated in 

paper I and was, to our knowledge, the first investigation of the EVE and rosuvastatin 

combination in renal transplant recipients. The EVE pharmacokinetics was not influenced by 

concomitant rosuvastatin treatment (paper I). Previous single dose studies in healthy 

volunteers investigating the interaction between EVE and simvastatin, atorvastatin or 

pravastatin have not shown any evidence of clinically relevant interactions.238,239 Our results 

thus support the previous findings, indicating that rosuvastatin does not influence EVE 

pharmacokinetics to any relevant degree in renal transplant recipients.  

Everolimus is extensively metabolized via CYP3A and is a substrate for P-gp.78,240 

Rosuvastatin, on the other hand, is subjected to a minimal degree of metabolism, and appears 

to not be a P-gp substrate,231,241-243 although the literature is somewhat contradictory on the 

latter.244,245 Based on this, it does not seem to be a potential pharmacokinetic risk in 

combining EVE with rosuvastatin. However, the important role of hepatic transport of 

rosuvastatin is well recognized, and OATP1B1 transport is an essential mechanism mediating 

its hepatic uptake. OATP1B1 has previously been shown to be a transporter that is subjected 

to high degree of interactions between other immunosuppressive drugs and statins.150,158 In 

fact, Simonson et al. reported a 7-fold increase in the steady state AUC and an 11-fold 

increase in Cmax of rosuvastatin in heart transplant recipients on CsA based 

immunosuppression, and suggest that CsA inhibition of OATP1B1-mediated rosuvastatin 

hepatic uptake may be the mechanism of the drug-drug interaction.152 EVE has also been 

shown, in vitro, to inhibit OATP1B1. In this study, the 50% inhibitory concentration (IC50) of 

OATP1B1 was found to be 4.1 μM for EVE. This value is above EVE blood levels usually 

observed in post transplantation settings (1-10 nM), and the inhibition of OATP1B1 by EVE 
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is thus not expected to cause any clinical relevant drug-drug interactions.85 To our knowledge, 

no in vivo data regarding the influence of EVE treatment on the disposition of statins exist.   

Against this background, the influence of EVE on the pharmacokinetics of rosuvastatin was 

also investigated (paper I). In the present study, mean rosuvastatin steady state AUC0-24 and 

Cmax values were 2.8-fold and 2.5-fold higher, respectively, compared to literature data in 

non-transplant patients (paper I).246 This less than 3-fold higher systemic exposure of 

rosuvastatin when combined with EVE is comparable to what is shown for fluvastatin in 

combination with CsA, a combination that is considered safe in renal transplant recipients.150 

The use of a control group is necessary in pharmacokinetic studies where the patients cannot 

serve as their own controls. This was the case in in paper I where historical control group 

(literature data) had to be used for rosuvastatin baseline pharmacokinetics, as EVE treatment 

could not be withdrawn in these patients. Hence, the 2.8-fold higher systemic exposure of 

rosuvastatin compared to non-transplant patients observed in paper I may not necessarily be 

due to a pharmacokinetic interaction, but could be a result of different features between the 

patients and the historical control group. The historical control group was considered to be the 

most optimal comparator found in the published literature, and consisted of eighteen healthy 

men participating in a trial designed to assess the dose proportionality of rosuvastatin.246 In 

contrast to the present study where the steady state AUC0-24 was estimated, the participants in 

the historical control group was given a single dose of rosuvastatin and the AUC was 

calculated from time 0 to time of the last measureable concentration. Ideally, the steady state 

AUC0-24 obtained from the present study (paper I) should be compared to AUC from time 0 

to infinity, but this parameter was not estimated in the historical control group due to 

secondary peaks present within individual plasma concentration-time profiles. Consequently, 

the observed difference in AUC between our patients and the historical control group may be 

overestimated. Furthermore, for six of the patients in our study the AUC0-24 was estimated 

using the C0 sample as the 24-hr sample and this probably overestimate AUC. By using a 

developed pharmacokinetic population model for rosuvastatin, the AUC for these six patients 

were estimated to be lower, making the difference in AUC between our patients and the 

historical control group 20% smaller (2.2 fold increase in rosuvastatin AUC) (data not 

shown). This use of literature data for the comparison of systemic exposure of rosuvastatin is 

obviously not an optimal study design. We do, however, believe that it is an informative 

comparison considering the ethical and practical difficulties to obtain data from transplanted 

patients with and without their immunosuppressive drugs. Although a slight increase in the 
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risk of statin induced side effects cannot be ruled out, these data indicate that rosuvastatin 

treatment most probably is safe in combination with EVE in renal transplant recipients.  

4.3.2 Genetic polymorphism in drug metabolizing enzymes and drug transporters 

Interindividual differences in drug response can result from sequence variants in genes 

encoding drug-metabolizing enzymes and drug transporters. Due to the small sample size and 

the study design of the present studies the genotyping results should be carefully interpreted. 

In general however, pharmacogenetic information may identify patients with a greater chance 

of effective response or a higher susceptibility of adverse events and could therefore give 

additional value to the traditional TDM.  

Genetic polymorphism in CYP3A5 is well known to influence the pharmacokinetics of TAC 

and this was also shown in the present study (paper IV), however no effect on EVE 

disposition was observed (paper I). Results from paper IV demonstrated that patients 

without functional CYP3A5 (CYP3A5 *3/*3) had a 2-fold higher systemic exposure 

compared to CYP3A5 expressers (CYP3A5 *1/*3), confirming that CYP3A5 expressers need 

approximately double TAC doses to reach target concentration.90,247 The lack of effect of the 

presence of functional CYP3A5 enzymes on EVE disposition (paper I) was also in 

consistency with previous findings.97,113 ABCB1 TTT-haplotype has been associated with 

reduced function of P-gp.106 There was however no differences in the pharmacokinetics of 

CsA, EVE and TAC in patients with this haplotype in the present studies (paper I, II and IV 

(data not shown)). Similar, no influence of the ABCB1 3435C>T variant on either CsA, TAC 

or EVE pharmacokinetics were observed (data not shown) (paper I, II and IV), supporting 

findings from previous studies.114,248,249 Furthermore, recent clinical data has identified 

polymorphisms in PPARA (rs4253728 and rs4823613) as potential sources of variability in 

CYP3A4 activity.102 Interestingly, one patient was homozygote carrier for both PPARA 

variant alleles (rs4253728 and rs4823613) and showed higher systemic exposure of EVE 

compared to heterozygote and/or homozygote wild type genotypes (paper I).  

The large interindividual pharmacokinetic variability observed with statin therapy has at least 

in part been associated with altered expression and/or function of OATP1B1 (SLCO1B1).116 

Two patients in paper I with SLCO1B1 c.521CC genotype had a substantially higher 

systemic exposure of rosuvastatin compared to the patients expressing the wild-type genotype 
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(SLCO1B1 c.521TT). These results mirror previous studies and support that genotyping of 

SLCO1B1 could be relevant to identify patients at risk of statin-induced side effects.250,251 

In paper II, the relation between a reduced renal function and an increased concentration of 

the secondary metabolites of CsA was evaluated. No significant relation was observed 

between a reduced renal function and an increased concentration of the secondary metabolites 

and functional CYP3A5 genotypes in the present study (paper II). This is in contrast to 

previous studies indicating that elevated blood and urine concentrations of the secondary 

metabolites AM19, AM1c and AM1c9 may be associated with renal dysfunction in CsA 

treated patients, and that CYP3A5 expressers have higher formation of the secondary 

metabolites AM19 and AM1c9. 92,252-254 

4.3.3 Drug formulation 

In paper IV we aimed to investigate the bioequivalence of an approved generic TAC 

formulation (Tacni®) in elderly renal transplant recipients at steady state, using the original 

drug (Prograf®) as reference. This was the first prospective randomized study in elderly stable 

renal transplant recipients investigating bioequivalence of a generic TAC formulation. Despite 

being an approved generic TAC formulation available in most European countries this generic 

formulation did not fulfill bioequivalence criteria when investigated in a relevant clinical 

setting of the intended patient population. Importantly, the lack of bioequivalence would not 

have been detected by the standard monitoring parameter, TAC trough concentrations, as 

these concentrations were similar for both formulations.  

The fact that the systemic drug exposure associated with the generic formulation was 

significantly higher than the original formulation, together with no differences in generic and 

original trough concentrations of TAC is especially worrisome (paper IV). This effect would 

not have been detected without a full pharmacokinetic investigation. Similar findings were 

demonstrated in a study by Min et al. where no differences in trough concentrations were 

observed despite a significantly higher exposure of the generic TAC formulation, Tacrobell® 

(Chung Kun Dang Pharmaceutical Corp., Seoul, Korea).165 Results from both this and our 

study thus emphasis that studies of generic TAC formulations drawing conclusions based 

solely on TAC trough concentrations should be interpreted with great caution. For generic 

formulations, there is no requirement to demonstrate that the relationship between trough 

concentrations and AUC is identical with the original drug, and that the same trough 
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concentration can be used as target. In our study there was as well a weaker correlation 

between C0 and AUC0-12 for the generic TAC formulation compared to the C0 and AUC0-12 

correlation for the original drug (Figure 5). Thus, in the absence of information regarding C0 

and AUC correlation it cannot be presumed that the same C0 will achieve the same AUC. The 

results of the present study strongly suggest that such data need to be provided for generic 

formulations, to allow routine TDM to be performed under valid assumptions. 

0 2 4 6 8 10 12
0

50

100

150

200

250

r = 0.74

C0 ( g/L)

AU
C

 (
g*

h/
L)

0 2 4 6 8 10 12
0

50

100

150

200

250

r = 0.54

C0 ( g/L)

AU
C

 (
g*

h/
L)

AA B

 

Figure 5: Scatter plots of trough concentrations (C0) versus AUC0-12 for original (A) and 

generic (B) tacrolimus. The correlations were estimated using a Spearman’s rank order 

correlation test. Dotted linear trend lines are added for visualization purposes. 

The reasons for the observed lack of bioequivalence between the two TAC formulations in 

paper IV are not obvious and remain to be investigated. In the before mentioned study by 

Min et al, the generic TAC formulation (Tacrobell®) failed to meet the bioequivalence criteria 

both ten days and six months after renal transplantation in patients aged between 18 and 65 

years.165 Min et al. published these results when our study was in the final stage and 

interestingly their results are similar to the findings in the present study despite being 

conducted in a considerable younger group of patients. This may indicate that age might not 

be the main parameter causing the non-bioequivalence observed in our study. Bioequivalence 

in different age groups was unfortunately not investigated in the subpopulation analysis of the 

study by Alloway et al.255  

Authorities require that generic drug manufactures meet the same batch-to-batch requirements 

for strength, purity, and quality as the original manufacturer. However, since a number of 

drugs are manufactured in foreign countries or use foreign-made ingredients, it has been 

raised question regarding the pharmaceutical quality of generic drugs. Interestingly, it was 
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recently reported that five approved generic TAC formulations did not meet the 

pharmaceutical quality criteria.256 It is assumed that drugs with marketing authorization meet 

the authorities’ strict quality standards and we can thus only speculate whether there could be 

a quality issue with the generic TAC formulation studied in paper IV.   

As mentioned earlier, EMA has adopted stricter bioequivalence criteria for NTI drugs to 

ensure that true bioequivalence is established for these drugs. In contrast, the US Food and 

Drug Administration (FDA) have not changed their policy and the 80 to 125% criteria are also 

applied to NTI drugs, including all immunosuppressants. Regardless of whether one applies 

EMA or FDA requirement in paper IV, the investigated generic TAC formulation did not 

show bioequivalence. There is an ongoing debate whether the current FDA standards 

regulating bioequivalence are restrictive enough to ensure that generic formulations of NTI 

drugs are therapeutic equivalent to the original drug. The FDA has been discussing the 

application of scaled average bioequivalence approach for TAC, in which the 90% confidence 

interval is tightened based on the CV of the original drug, with bioequivalence limits of 0.80-

1.25 for CV higher than 21.42%.257,258 Incorporation of these more restrictive limits for NTI 

drugs are steps in the right direction. However, the study in paper IV also raises an important 

discussion on a need to perform proper bioequivalence studies on the intended patient 

population of all ages in a realistic setting prior to approval. 

High within-subject variability in immunosuppressant drug exposure is known to have serious 

consequences in organ transplant recipients and could lead to increased rates of rejection and 

graft loss. With multiple generic products the potential variability in drug exposure may be 

further increased. In the largest retrospective analysis of de novo renal transplant recipients, 

patients receiving generic CsA had a higher rate of biopsy-proven acute rejection (BPAR) 

despite achieving comparable blood levels with those on the original drug (Neoral®).259 

Although mean 12-hr trough concentrations of CsA were similar with the two formulations, 

patients treated with the generic CsA formulation had significantly higher within subject 

variability for CsA trough concentrations than those treated with the original drug.259 The lack 

of interchangeability is a concern as multiple substitutions between various formulations 

could lead to considerable variability in exposure that may result in impaired long-term 

outcome.  

The approval of generic drug using bioequivalence studies is based on the fundamental 

assumption that if two formulations are shown to be bioequivalent, they will provide the same 
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therapeutic effect. In paper IV bioequivalence between the two TAC formulations were not 

established, and use of the generic was associated with a significantly higher systemic 

exposure. Long-term studies of the original TAC formulation show that increased drug 

exposure is associated with a higher risk of nephrotoxicity, neurotoxicity, hypertension, 

dyslipidemia, and diabetes.26,27,31,221,260 This emphasizes the need of properly designed 

bioequivalence studies, rather than extrapolating data from simpler designs, to assure that 

potential issues with long-term outcome are not overlooked. Our study addresses only the 

conversion between the generic TAC formulation, Tacni®
 and the original drug and we can 

only speculate whether our findings could be similar in other generic TAC formulations as 

well as in different age groups.  

The main purpose of generic drug development is to reduce the price of marketed drugs, 

ultimately to lower public health costs. However, cost savings may be outweighed by the cost 

of adverse consequences such as a more intense TDM of generic immunosuppressive drugs. 

There is invested considerable amount of time, effort and resources in tailoring 

immunosuppressive treatment to meet the individual patient’s characteristics and avoid graft 

loss. The so far unquantified risk of using generic immunosuppressive drugs and the lack of 

comprehensive information regarding their efficacy and safety seems incompatible with the 

current focus on an individualized immunosuppressive therapy and a patient centered 

medicine. 
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5 CONCLUSION 

Treatment with rosuvastatin showed a clinically relevant superior lipid-lowering effect 

compared to fluvastatin in EVE treated renal transplant recipients. The combination of EVE 

and rosuvastatin seems to be safe, but a slightly increased risk of statin-induced side effects 

cannot be ruled out. Safely achieving a larger LDL-cholesterol reduction will most probably 

be of great importance in reducing the cardiovascular risk in these patients. 

No correlation between CsA concentrations in whole blood, T-lymphocytes or 

endomyocardial tissue was established in heart transplant recipients. This might potentially 

challenge traditional TDM based on whole blood CsA concentrations in these patients. In 

contrast, EVE concentrations in whole blood and PBMC correlated well in renal transplant 

recipients and supports TDM of EVE in whole blood to be an appropriate choice.  

The generic TAC formulation was not found to be bioequivalent to the original drug in elderly 

renal transplant recipients. Importantly, the lack of bioequivalence was not detected by the 

standard monitoring parameter, TAC trough concentrations, as these concentrations were 

similar for both formulations. Generic TAC should therefore be used with caution in elderly 

renal transplant recipients and it should be recognized that bioequivalence studies performed 

in healthy volunteers do not necessarily reflect the average transplant recipient. 
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6 CLINICAL IMPLICATIONS AND FUTURE PERSPECTIVES 

Findings in paper I assured us that rosuvastatin is a safe statin to use in renal transplant 

recipients treated with EVE. Furthermore, the results showed that in EVE treated renal 

transplants where the lipid lowering effect of fluvastatin often is not sufficient, treatment with 

rosuvastatin could now be an appropriate choice to achieve an the desired lipid-lowering 

effect and thus a potentially reduce cardiovascular risk in this high risk population.   

After the completion of paper IV the generic TAC formulation (Tacni®) is no longer in use at 

Oslo University Hospital, Rikshospitalet. Additionally, the Norwegian Medicines Agency has 

showed great interest in the results, and is currently looking into this particular generic 

formulation based on the findings from our study. In the light of our results, we hope the 

discussion regarding the limitations in extrapolating results from healthy volunteers receiving 

single drug doses to a patient population on maintenance therapy continues and question 

whether the current bioequivalence criteria for immunosuppressive drugs are appropriate. 

The findings from paper II and III could potentially be used in the development of 

pharmacokinetic population models. Population approaches to pharmacokinetic modeling are 

increasingly used and could offer a more accurate TDM tool than the current strategies. In a 

population model, the pharmacokinetic parameters are calculated from both population data 

and individual information. Amongst the advantages of this methodology, is the possibility to 

include covariates that influence the pharmacokinetic parameters. Such covariates could 

include drug concentrations at different target sites, various genotypes of metabolizing 

enzymes and drug transporters as well as the activity of P-gp. This approach could allow for 

more individualized dosing recommendations based on targeting the concentration at the site 

of interest and hence a possible favorable effect on short- and long term outcome in transplant 

recipients. 
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Abstract

Background: In the early phases following heart transplantation a main challenge is to reduce the impact of acute
rejections. Previous studies indicate that intracellular ciclosporin A (CsA) concentration may be a sensitive acute rejection
marker in renal transplant recipients. The aims of this study were to evaluate the relationships between CsA
concentrations at different target sites as potential therapeutic drug monitoring (TDM) tools in heart transplant recipients.

Methods: Ten heart transplant recipients (8 men, 2 women) on CsA-based immunosuppression were enrolled in this
prospective single-center pilot study. Blood samples were obtained once to twice weekly up to 12 weeks post-transplant.
One of the routine biopsies was allocated to this study at each sampling time. Whole blood, intralymphocyte, and
endomyocardial CsA concentrations were determined with validated HPLC-MS/MS-methods. Mann–Whitney U test was
used when evaluating parameters between the two groups of patients. To correlate whole blood, intralymphocyte, and
endomyocardial CsA concentrations linear regression analysis was used.

Results: Three patients experienced mild rejections. In the study period, the mean (range) intralymphocyte CsA trough
concentrations were 10.1 (1.5 to 39) and 8.1 (1.3 to 25) ng/106 cells in the rejection and no-rejection group, respectively
(P=0.21). Corresponding whole blood CsA concentrations were 316 (153 to 564) and 301 (152 to 513) ng/mL (P=0.33).
There were no correlations between whole blood, intralymphocyte, or endomyocardial concentrations of CsA (P >0.11).

Conclusions: The study did not support an association between decreasing intralymphocyte CsA concentrations and
acute rejections. Further, there were no association between blood concentrations and concentrations at sites of action,
potentially challenging TDM in these patients.

Keywords: Ciclosporin A, Endomyocardial biopsies, Heart transplantation, Acute rejection, T-lymphocytes

Background
Heart transplantation is the final treatment option in end-
stage heart failure and even though the procedure shows
good results there is still room for improvement. In the
early post-transplant phase a main challenge is to reduce
the impact of acute rejections. The negative effects of the
immunosuppressive therapy used to avoid acute rejection
is however also a challenge in these patients. Hence, in the
early phases following transplantation a combination of
therapeutic drug monitoring (TDM) of immunosuppressive

drugs and weekly endomyocardial biopsies are used to
optimize the treatment for heart transplant recipients. A
method with high specificity and accuracy to prevent graft
rejection is an unmet clinical need.
Ciclosporin A (CsA) has been a cornerstone in the im-

munosuppressive therapy since its introduction in the mid
1980s. CsA is metabolized by the cytochrome P-450 3A
(CYP3A) subfamily to >30 more or less pharmacologically
active metabolites [1]. In addition, CsA is both a substrate
and an inhibitor of the efflux transporter P-glycoprotein
(P-gp) [2]. P-gp, coded by the ABCB1 gene, is expressed in
T-lymphocytes and transports CsA out of the cell [2-4]. A
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previous study has shown that polymorphism in the
ABCB1 gene may influence the intralymphocyte CsA con-
centration [5]. These pharmacokinetic properties are the
basis for the substantial intra- and interindividual variation
in CsA concentration. CsA is associated with a numerous
of severe side effects, resulting in a narrow therapeutic
range which makes the TDM of the drug extra demanding.
The current routine TDM of CsA is performed by measur-
ing whole blood concentrations, either in trough samples
or lately also in C2 samples. However, since CsA exerts its
immunosuppressive effect within T-lymphocytes [6], meas-
urement of CsA within these cells may provide more rele-
vant information regarding the immunosuppressive effect
of CsA than whole blood concentrations. Several groups
have shown data that support this hypothesis in transplant
recipients [5,7-10]. We have recently shown that intracellu-
lar CsA concentration in T-lymphocytes decreased several
days before an acute rejection was possible to diagnose in
renal transplants by current standard clinical methods [7].
Intracellular CsA concentration monitoring therefore
seems to have a potential as a semi-invasive method for
prediction of acute rejection episodes. The purpose of the
study was to evaluate the relationships between CsA con-
centrations at different target sites, that is whole blood,
lymphocytes, and endomyocardial tissue, and to investigate
CsA concentrations in isolated T-lymphocytes from heart
transplant recipients in order to further examine intracellu-
lar monitoring as a potential TDM tool. In addition, the
patients’ genotype of P-gp was determined to investigate if
genetic polymorphism in the ABCB1 gene could explain
differences in the intralymphocyte concentration of CsA.

Patients and methods
Patients and study design
Ten heart transplant recipients (8 men and 2 women) with
a mean age of 52 ± 12 years were enrolled in this single-
center prospective pilot study. The patients were included
17 ± 6 days after transplantation and followed for a period
of 70 ± 8 days. They all applied to standard post-transplant
procedures at Oslo University Hospital, Rikshospitalet. All
the patients were treated with C0-monitored CsA, my-
cophenolate mofetil (MMF), and steroids according to the
center immunosuppressive protocol at that time. The CsA
treatment was initiated with 10 mg/kg orally on the day of
transplantation followed by C0 monitoring with target con-
centrations of 250 to 350 ng/mL after 1 month and further
tapered to 60 to 120 mg/mL after 1 year of treatment. All
patients received 1.5 g MMF twice daily from the day of
transplantation, the doses was further adjusted according
to side effects. The patients received 0.2 mg/kg/day oral
prednisolone from the second postoperative day and were
further tapered to 0.1 mg/kg/day within the following
months. None of the patients were given induction

therapy. Patients were not allowed to use concomitant
drugs that could interact with CsA pharmacokinetics.
Study specific whole blood samples (EDTA vacutainer

tubes) for CsA analyses and T-lymphocyte isolation were
taken in association with routine blood samples for stand-
ard clinical follow-up; twice weekly during the first weeks
and thereafter weekly samples for the rest of the inves-
tigation period. Whole blood samples and isolated T-
lymphocytes were frozen and stored at −20°C until analysis.
Routine monitoring of these patients include series of six
endomyocardial biopsies at post-transplant week 1, 2, 5, 7,
10, and 12. One of the six biopsies taken at each time-point
was allocated for CsA analysis in this study. The biopsy was
wrapped in a piece of aluminum foil and stored at −20°C
until analysis. In addition, EDTA whole blood was drawn
once during the study for determination of the recipients
ABCB1 (1199G>A, 1236C>T, 2677G>A, 2677G>G, and
3435C>T) and CYP3A5 (*3 (6986A>G, splicing defect))
genotypes. All acute rejections were verified with a biopsy
and classified according to the International Society for
Heart and Lung Transplantation (ISHLT) standardized car-
diac biopsy grading [11,12].
The study was performed in accordance with the Dec-

laration of Helsinki, local laws, and other regulations,
and all patients signed a written informed consent before
study start. The study was evaluated by the Regional
Committee for Medical Research Ethics and approved
by the Norwegian Medicines Agency. The study is regis-
tered on ClinicalTrials.gov (NCT00139009).

T-lymphocyte isolation
T-lymphocytes were isolated from freshly drawn heparin
whole blood using PrepacyteW (BioE, St Paul, MN, USA)
[13]. An aliquot of 100 μM of verapamil was pre-added to
the heparin vacutainers to inhibit P-gp from pumping CsA
out of the cells [14]. PrepacyteW uses a negative selection
process and facilitates the agglutination and precipitation of
erythrocytes, B-lymphocytes, and mature myeloid cells like
granulocytes, monocytes, and platelets, producing a super-
natant of lymphocytes, highly enriched for T-cells. The ex-
cess of erythrocytes in the supernatant was removed by
lysis using Vitalyse™. After centrifugation (400 g) and wash-
ing, the remaining supernatant contains >97% lymphocytes
comprising 88% to 96% of the resultant cell population
[15]. To relate the intracellular concentration to a physio-
logical parameter, cell count using a Bürker Chamber was
performed. The cells were isolated within 4 h post sam-
pling. The isolating method starts with 7 mL of whole
blood and produces a T-lymphocyte isolate pellet to which
was finally added 1 mL methanol:ACN:water (1:1:3) for cell
lysis and protein precipitation. The mixture was stored
at −20°C until solid phase extraction and subsequent ana-
lysis of CsA concentrations.
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CsA and metabolite concentrations
Concentrations of CsA and six of its main metabolites
were determined in whole blood, intracellularly in isolated
T-lymphocytes, and in endomyocardial biopsies. The whole
blood and intracellular CsA and metabolite concentrations
were determined with a validated high-performance liquid
chromatography-tandem mass spectrometry (HPLC-MS/
MS) method previously described [16]. In brief, the
analytes were extracted and purified by protein precipita-
tion with methanol and centrifugation before the superna-
tants were subjected to solid phase extraction using Oasis
hydrophilic-lipophilic balance cartridges. CsA and metabo-
lites were separated chromatographically on a C8-colum
before MS/MS detection. The intracellular concentration
of CsA was related to the number of T-lymphocytes in the
sample (ng/106 cells).
The concentration of CsA and two metabolites, AM1

and AM9, were determined in endomyocardial biopsies by
using a modification of the method described above [16].
After moistening the biopsy with 20 μL water for 5 min,
the biopsy was weighed before homogenized in 150 μL de-
ionized water with an automated tissue homogenizer;
PrecellysW 24 (Bertin Technologies, France), programmed
to 2×50 s cycles with a 20-s pause. Fifty μL of the internal
standard (0.5 μg/mL ciclosporin C (CsC) in methanol:
acetonitrile (ACN): water (1:1:3)) was added to 100 μL
homogenate and this mixture was protein precipitated
with 100 μL ACN. Particulate matter was removed by cen-
trifugation (30 min, 12,000 g, 4°C) and the supernatant
was evaporated to dryness under a stream of nitrogen gas.
The eluate was reconstituted in 50 μL of 65% mobile
phase A consisting of ACN/20 mM ammonium formate
buffer (NH4

+COO-) pH 3.6 (20:80 v/v), and 35% mobile
phase B, consisting of ACN/ NH4

+COO- (80:20 v/v), before
injecting 20 μL on the LC-MS/MS system. The analytical
system consisted of Aquity ultra performance liquid chro-
matography™ (UPLC) connected to a Micromass Quattro
micro™ triple quadrupole mass spectrometry (MS) de-
tector (Waters Corporation, USA) using electrospray
ionization (ESI) interface. The detector was operated in a
positive ion mode. Separation of the analytes was carried
out on a reversed phase UPLC C18 column (100 × 2.1
mm, 1.7 μm) (Acquity UPLC BEH Shield C18, Waters,
USA) and the column was heated to 70°C. The analytes
were eluated using a stepwise gradient at the flow rate of
0.6 mL/min. The gradient program was as follows: 62%
mobile phase A for 14 min followed by a gradually in-
crease of mobile phase B to 100% for 7 min. One hundred
per cent mobile phase B was held constant for 10 min and
the system was finally re-equilibrated at start conditions
for 5 min. Analysis run time per sample was 36 min. Cali-
bration curves were produced from stock solutions of
CsA, AM1, and AM9, which were mixed with the internal
standard (CsC), evaporated to dryness under a stream of

nitrogen gas and reconstituted in 65% mobile phase A and
35% mobile phase B. All standard curves comprised of at
least eight concentration levels, including a blank sample
(0.0 to 80 ng/mL). The regression coefficients (r2) of the
linear standard curves were >0.998 and for both CsA and
the metabolites the validation parameters for precision
and accuracy (intra- and inter-run) were <9%.

Genotyping
Genotyping was performed as previously described,
using a polymerase chain reaction (PCR) - restriction
fragment length polymorphism assay [17]. Restriction
enzyme digestion generated DNA fragments that were
separated by electrophorese on 3% agarose gels. All the
patients were screened for relevant polymorphism in
CYP3A5 (*3 (6986A>G, splicing defect)) and ABCB1
(1199G>A, 1236C>T, 2677G>T, 2677G>A, 2677G>G,
and 3435C>T). Dr D Katz (Abbott Laboratories, Abbot
Park, IL (MDR1)) and Dr R van Schaik (Department of
Clinical Chemistry Erasmus MC, The Netherlands
(CYP3A5)) kindly supplied positive controls.

Statistics and calculations
Mann–Whitney U test was used when evaluating pa-
rameters between the two groups of patients. To correl-
ate whole blood, intralymphocyte, and endomyocardial
CsA concentrations linear regression analysis was used.
Statistical significant differences were considered for
P values <0.05. All statistical analyses were performed
using SPSS version 19. The renal function was estimated
using the Modification of Diet in Renal Disease (MDRD)
formula [18,19].

Results
Patients
All 10 heart transplant recipients completed this 3-month-
long pilot study. Three patients experienced biopsy-proven
acute rejection episodes during the study at an average of
58 ± 16 days after transplantation, and one of these patients
experienced in total three rejection episodes during the
study period. One of the patients in the no-rejection group
developed renal failure during the study. Demographic data
at inclusion are summarized in Table 1. No significant dif-
ferences were observed between the rejecting and the no-
rejection patients.

Intracellular T-lymphocyte and whole blood
concentrations of CsA
An average of 12.3 (range, 7 to 20) samples per patient
was analyzed for both intracellular and whole blood con-
centration of CsA. In total, 139 whole blood samples and
121 intralymphocyte samples was analyzed during the
study period. Both intracellular and whole blood concen-
trations of CsA showed large intra- and interindividual
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variations in both groups, and there were no correlation
between whole blood and intracellular CsA concentration
throughout the study (r2=0.012, P=0.11; Figure 1). In the
study period, the mean (range) intracellular CsA trough
concentrations were 10.1 (1.5 to 39) and 8.1 (1.3 to 25)
ng/106 cells in the rejection and no-rejection groups, re-
spectively (P=0.21). The corresponding mean (range)
whole blood CsA concentrations were 316 (153 to 564)
and 301 (152 to 513) ng/mL, respectively (P=0.33).
Figure 2 shows the individual ratio of whole blood to

intralymphocytic CsA concentration for the three patients
experiencing rejection and for the mean ratios for the no-
rejection patients during the study period. One of the re-
jection patients (patient 21) showed an increase in the
whole blood/intracellular ratio at time of rejection, due to
a combination of declined intracellular concentration and
a slight increase in the whole blood concentration. In the
two other rejection patients (patients 25 and 29) no change

was observed in the whole blood/intracellular ratio in con-
junction to the rejection episode, but interestingly patient
25 showed substantially increased ratio on several occa-
sions prior to the rejection episode as compared to the
mean ratio for the no-rejection group (Figure 2A). In the
no-rejection group the mean individual whole blood/intra-
cellular ratio ranged from 33.6 to 86.4 with a correspond-
ing standard deviation range of 17.8 to 46.7. The absolute
average intracellular CsA concentration to the time of re-
jection was 10.4 (1.5 to 39) ng/106 cells in the rejection
group and the corresponding average CsA concentration
to the mean time of rejection (day 58) was 8.2 (1.3 to 25)
ng/106 the no-rejection group (P=0.38). At the rejection
day the absolute intracellular CsA concentration for the
three rejecting patients were 9.4, 7.2, and 18. 4 ng/106 cells.

CsA metabolites, genotypes, and renal function
Genotyping results for both ABCB1 (1199G>A, 1236C>T,
2677G>T, 2677G>A, 2677G>G, and 3435G>T) and
CYP3A5 (*3) are presented in Table 2. Two out of three
patients in the rejection group were homozygote ABCB1
TTTcarriers, but all patients were potential carriers of this
reduced P-gp function haplotype. Three of the 10 patients
expressed functional CYP3A5 enzymes (CYP3A5*1), one
in the rejection group. It was observed that the patients
expressing functional CYP3A5 enzymes tended to have
higher concentrations of the metabolites AM19 (P=0.21),
AM1c9 (P=0.57), AM1c (P=0.73), AM4N (P=0.27), similar
concentration of AM9 (P=0.43), and a decreased concen-
tration of AM1 (P=0.57) compared to the patients without
functional CYP3A5 (Figure 3). We did not observe a sig-
nificant difference in renal function between patients ex-
pressing functional CYP3A5 (eGFR of 51 ±23 mL/min)
and patients not expressing functional CYP3A5 (eGFR of
66 ±19 mL/min, P=0.38). One of the three patients

Table 1 Demographic data at time of inclusion

All No-rejection group Rejection group P value

Gender (male/female) 8/2 2/5 3/0 -

Weight (kg) 76.7 ± 18.0 73.9 ± 19.5 83.3 ± 15.0 0.517

Age (years) 51.9 ± 11.9 51.0 ± 12.9 54.0 ± 11.5 0.833

CsA dose (mg/day) 330 ± 115 293 ± 116 417 ± 57.7 0.183

CsA C0 (ng/mL) 245 ± 59.3 239 ± 71.7 257 ± 10.4 0.383

Plasma creatinine (μmol/L) 131 ± 55 146 ± 59.8 96.5 ± 16.5 0.117

Creatinine clearance (mL/min) 58.0 ± 21.4 50.3 ± 18.9 77.6 ± 14.7 0.067

Serum urea (mmol/L) 10.5 ± 5.3 10.8 ± 6.0 9.8 ± 3.8 1.000

Hematocrit (%) 32.3 ± 4.2 32.3 ± 4.9 32.5 ± 0.7 0.500

Steroid dose (mg/day) 14.8 ± 3.8 13.6 ± 3.7 17.5 ± 2.5 0.137

Treated with MMF 10/10 7/7 3/3 -

Data are means ± SD. All variables were analyzed with a Mann–Whitney U test.
CsA, cyclosporine A; MMF, mycophenolate mofetil.

Figure 1 Correlation between whole blood and intracellular
CsA concentration in individual patients. The figure shows all the
whole blood and intracellular samples (n = 120) obtained during
the study.
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expressing functional CYP3A5 experienced renal failure
during the study period.

Concentration of CsA and metabolites in endomyocardial
biopsies
Nineteen biopsies, from seven out of the 10 patients, were
obtained for the current study. Only one out of these seven
patients was in the rejection group. In these patients an
average of 2.7 (range, 1 to 6) biopsies per patient were ana-
lyzed for concentrations of CsA and two metabolites, AM1
and AM9. CsA concentration varied from 216 to 833 pg/
mg heart tissue. No correlations were found between
endomyocardial CsA concentrations and whole blood
(r2=0.029, P=0.48) or intralymphocyte concentrations

(r2=0.055, P=0.35). There was no obvious association be-
tween the endomyocardial concentration of CsA and rejec-
tion episodes.

Discussion
The present pilot study does not support the hypothesis of
decreased intracellular T-lymphocyte concentration of
CsA prior to rejection episodes. The main finding, how-
ever, was that there were no correlations between CsA

Figure 2 The ratio (± SEM) of whole blood to intralymphocytic CsA trough concentration days after transplantation. (A) The CsA whole
blood/intracellular ratio (± SEM) for the three rejection patients. The arrows mark the point where the patients experienced an acute rejection
episode. High levels of the ratio represent a drop in intracellular CsA concentration compared to whole blood concentration. (B) The mean whole
blood/intracellular ratio (± SEM) for the patients with no rejection.

Table 2 Patient’s genotyping of ABCB1 and CYP3A5

Patient ABCB1 CYP3A5

2677G>A/T 1236C>T 3435C>T *3

21 T/T T/T T/T *3/*3

22 G/T C/T C/T *1/*3

23 G/T C/T C/T *3/*3

24 G/T C/T C/T *3/*3

25 G/T C/T C/T *3/*3

26 T/T T/T T/T *3/*3

27 G/T C/T T/T *1/*3

28 G/T C/T T/T *3/*3

29 T/T T/T T/T *1/*3

30 G/T C/T T/T *3/*3

Figure 3 Ratio between the mean concentration of the
metabolites AM19, AM1c9, AM1, AM9, AM1c, and AM4N in
patients with CYP3A5*1/3 and in patients with CYP3A5*3/*3.
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concentrations in whole blood, T-lymphocytes, or endo-
myocardial tissue.
Gustafsson and colleagues are, to our knowledge, the

only group who previously has measured intralymphocyte
CsA concentration in heart transplant recipients [10]. The
study discovered a close association between whole blood
CsA C2 concentrations and lymphocyte CsA AUC0-12 in
MMF treated patients. This is contradictory to our find-
ings where no correlation between CsA in whole blood
and T-lymphocytes was found. A possible explanation to
this discrepancy could be the fact that Gustafsson et al.
performed measurement of whole blood CsA concentra-
tion in C2 samples and determined lymphocyte CsA
AUC0-12, while in the present study CsA concentration
were measured in C0 samples. C2 monitoring leads to an
improvement in the clinical outcomes in heart transplant
recipients [20,21] and measuring whole blood C2 concen-
trations could perhaps more precisely predict the CsA
concentration and, in turn AUC, within lymphocytes.
Nevertheless, our results are in agreement with previous
studies reporting of no correlation between CsA concen-
tration in whole blood and lymphocytes [22,23]. Although
these studies were performed in different patient popula-
tions (renal transplant recipients and healthy volunteers),
the findings demonstrate that whole blood CsA concen-
trations may not be a good predictor of the target site con-
centration of CsA. To the best of our knowledge, the
present pilot study is the first to report of CsA concentra-
tion in endomyocardial tissue and to show the absence of
correlation with both whole blood and intralymphocyte
CsA concentrations in heart transplant recipients. In a
recent study, Capron et al. evaluated the correlation
of intrahepatic, peripheral mononuclear cells (PBMC)
and blood concentrations of tacrolimus (Tac), another
calcineurin inhibitor, in liver transplant recipients. In this
study, no correlation was found between mean Tac blood
concentration and PBMC or intrahepatic concentration of
Tac. However, it was discovered that intrahepatic Tac con-
centration significantly correlated with Tac PBMC concen-
trations [24]. Capron et al. have earlier showed that
hepatic tissue concentrations of Tac correlated with early
acute rejection after liver transplantation, this in contrast
to blood concentrations [25]. These findings also suggest
that direct drug measurement at the target sites (lympho-
cytes and graft tissue) could be a better approach than
measuring whole blood concentration to predict the effi-
cacy of immunosuppressive drugs.
The present pilot study failed to show correlation be-

tween intracellular CsA concentration in T-lymphocytes
and acute rejection episodes. Several other groups have
however shown a possible correlation between low intra-
cellular CsA concentration and rejection episodes in renal
transplant recipients. A study conducted by Barbari et al.
demonstrated that rejecting patients exhibited a low CsA

lymphocyte content despite a higher or similar CsA blood
concentration [8]. Similarly, we have shown that renal
transplant recipients experiencing a rejection episode had
a lower intracellular exposure of CsA several days before
clinical diagnosis of acute rejection episodes [7]. The dif-
ference observed between renal and heart transplant re-
cipients in this respect have no obvious explanation.
However, as mentioned before C2 concentrations are
known to correlate better with acute rejections compared
to trough concentrations [20] and it was C2 concentra-
tions that were used in our previous study [7]. Further, it
cannot be ruled out that the renal transplant recipients ex-
periencing an acute rejection episode had a stronger im-
mune response compared to rejecting patients in the
present study.
Since CsA is both a substrate and an inhibitor of P-gp,

the patients’ genotype for this efflux pump was deter-
mined as it is expressed in T-lymphocytes. The ABCB1
haplotype TTT (1236T, 2677T and 3435T) has previ-
ously been associated with impaired functional transport
activity [26]. In the present study only three patients ex-
perienced an acute rejection episode. Two of the three
rejection patients were homozygote ABCB1 TTT haplo-
types, but all patients included in the study were poten-
tial TTT haplotypes. This makes the interpretation of
the data difficult, but if the hypothesis that acute rejec-
tion episode are associated with lower intracellular CsA
concentrations should hold true, it would be expected
that rejection patients have high transport activity of P-gp,
contradictory to our findings [7,27].
Renal failure is a frequent and recognized complica-

tion following heart transplantation and CsA has been
implicated as a potential risk factor [28-31]. Previous
studies indicate that elevated blood and urine concentra-
tions of the secondary metabolites AM19, AM1c, and
AM1c9 may be associated with renal dysfunction in CsA
treated patients [31-35], and that CYP3A5 expressers
have higher formation of the secondary metabolites
AM19 and AM1c9 [36]. Contrary, in renal transplant re-
cipients on Tac-based immunosuppression, a protective
role of CYP3A5 expression in the kidney has been ob-
served [37]. By contrast to previous findings [31-35,38],
the present study did not show any tendencies of a re-
duced renal function by an increased concentration of
the secondary metabolites or functional CYP3A5 geno-
types. This should however be carefully interpreted as
the power is relatively low as outlined below.

Study limitations
The main limitation of this pilot study is the low sample
size and only three patients experienced acute rejection
episodes. This clearly limits the conclusion that could
be drawn. In addition, CsA concentrations were mea-
sured in trough samples and not in C2 samples. The
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intralymphocyte CsA concentration displayed a high
intra- and interindividual variation, and this could
partly be explained by the complex isolation procedure
and the low level of automatization of the T-lymphocyte
isolation method.

Conclusions
The main finding of the present pilot study was that no
correlation between CsA concentrations in whole blood,
T-lymphocytes or endomyocardial tissue was present in
heart transplant recipients. In addition, results from the
present study do not support previous findings that CsA
concentrations within T-lymphocytes decrease days be-
fore acute rejection episodes are diagnosed. The small
sample size clearly limits the extent to which any defini-
tive conclusion could be drawn. However, both findings
are relevant with regards to TDM of CsA in this popula-
tion and should be further investigated in properly
powered clinical trials.
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