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ABSTRACT

The main objective of this thesis was to demonstrate properties, potential and use of

immunocapture LC-SRM-MS methods in a targeted quantitative approach for protein 

biomarker determination. SCLC-markers ProGRP and NSE were models for the approach, 

and the aim was to prove the methods superior qualities to the existing and current standard

methods for protein marker verification and clinical analyses. The end goal was a tailored 

multiplexing approach for the two markers with simultaneous differentiated determination of 

their reported isoforms and isoenzymes.

In Paper I a validated method for differentiation of ProGRP isoforms is presented. The work 

is based on research by Winther et al. which used short calibrator ProGRP(31-98) as standard,

employment of the antibody mAb E146 for immunocapture and use of the bottom up LC-MS 

to determine total ProGRP by signature peptide NLLGLIEAK1. This approach was modified 

to introduce features of quantitative differentiation of the three ProGRP variants termed 

isoform 1, 2 and 3, by employment of full length recombinant standards for ProGRP and 

assignment and addition of the following additional two signature peptides to the method:

LSAPGSQR and DLVDSLLQVLNVK for isoform 1 and 3, respectively. In addition, the

immunocapture format was altered from using 96-well plates to magnetic beads, resulting in 

reduction of LOD from 200 pg/mL1 to 8 pg/mL. The method was validated for ProGRP 

quantification through the signature peptide NLLGLIEAK (for total ProGRP), LSAPGSQR 

(for isoform 1) and DLVDSLLQVLNVK (for isoform 3) and evaluated for indirect 

determination of isoform 2. All signature peptides showed acceptable linearity (R2>0.974), 

intra-day precision (<18% RSD) and accuracy devia LOD for total 

ProGRP was lower than healthy endogenous serum levels (8 pg/mL=1 pM at S/N = 3)

enabling detection of endogenous ProGRP levels in serum from healthy donors.

In Paper II performance of the validated ProGRP method from Paper I was demonstrated 

using clinical samples. A number of sixty patient samples were analyzed with two main 

objectives; 1.) To compare conformity of the MS method with a routine assay, the automated 

TR-IFMA, for quantification of total ProGRP, and 2.) To perform novel exploration of the 

pathological isoform expression in the various cancer diseases. When comparing the absolute 

concentration values obtained by analysis of the two different methods for total ProGRP, the

determinations were found to correlate and no unsystematic differing values were identified.

The results were though shown to not be directly interchangeable as the MS method 

determined the total ProGRP concentration systematically approximately 30 % lower than the 

5



TR-IFMA. The MS method supplemented with quantitative determination of two ProGRP 

isoforms which were found to have more heterogeneous protein expression than was

previously reported for mRNA synthesis. Additionally, the expression of isoform 3 was found 

to dominate over isoform 1 which also differed from the previously reported mRNA ratios. 

The method from Paper I proved valid for a future larger patient study.

In Paper III a similar targeted approach as for ProGRP (in Paper I) was developed for NSE.

Two signature peptides, ELPLYR and TIAPALVSK - -subunit, 

respectively, were assigned to allow differentiation between these two relevant subunits for 

the NSE isoenzymes. Sample preparation using mAb E21-coated magnetic beads for selective 

immunocapture -subunit was performed, and all reported NSE isoenzymes were 

extracted: the homo-( ) and heterodimer ( ), and the -monomer. The method was validated 

for NSE quantification using the -signature peptide ELPLYR, with excellent linearity 

(R2>0.999 at range 5–500 ng/mL) and good intra-day precision (<13% RSD) and 

accuracy (>95%). The obtained sensitivity (LLOQ of 38 pg/mL at S/N = 10) was lower than 

healthy endogenous serum levels. In addition, the method allowed detection of the -

heterodimer by the -signature peptide TIAPALVSK.

In Paper IV a method for multiplexing of tumor markers was exemplified by combining the 

methods presented in Paper I and Paper III for co-determination of the two model markers 

ProGRP and NSE. These particular markers were chosen for their reported complementary 

clinical value for SCLC, as combined measurement of ProGRP and NSE then would increase 

clinical reliability. In addition, co-determination reduced both time, reagent and sample 

consumption compared to individually performed measurement. For the combination, some 

alterations were necessary for determination of NSE (compared to the method in Paper III), 

as the calibration matrix used here was ProGRP-depleted serum (5% BSA in Paper III), and 

-NSE determination. In 

addition, the calibration curve for -enolase and -enolase was here harmonized to allow use 

-calibration curve to indirectly -subunit. The immunocapture SRM 

method presented determination of the following signature peptides for the protein variants: 

LSAPGSQR (for ProGRP isoform 1), DLVDSLLQVLNVK (for ProGRP isoform 3), 

NLLGLIEAK (for total ProGRP), -subunit deriving -NSE 

in case of anti- -subunit with possible origin in the 
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In Paper V NSE and NNE were used as model compounds to investigate some aspects which 

can affect sensitivity and protein determination when using the bottom-up MS approach after 

immunocapture. The - - -enolase calibrators, and mAbs specific for each of the 

the two subunits were used. The following was concluded: Trypsin activity was not affected 

by the presence of mAb coated magnetic extraction beads. However, the binding of NSE 

markers to mAb coated magnetic beads contributed to a decrease in signature peptide yield, 

and the cause for this was assigned steric hindrance and availability of trypsin cleavage sites. 

Denaturation, reduction and alkylation as predigest treatments showed positive effect on both 

- and -signature peptide production. This was despite the absence of disulfide bridges in

NSE, which indicate partial release of marker from the magnetic beads as the assigned cause.

And, finally, the non-covalently linked - -subunits of the NSE heterodimer standard 

was proven to be partly dissociated, showing that control of standard stability is of utter 

importance.
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INTRODUCTION

1 INTRODUCTION

The subject of this thesis is included in the field termed clinical proteomics, which may be 

defined as study of proteomics activities in the field of medicine. This research also fall under 

the terms molecular diagnostics and in vitro diagnostics (IVDs), where the terms are used for 

proteomics research of marker that hold promise of being translated into clinical bioanalytical 

tests. More specifically, this thesis compromise absolute quantification of diagnostic tumor 

markers in serum samples. The introduction is therefore divided into a clinical part and an 

analytical part.

Thus, the first chapter (1.1) focus on the clinical aspect of IVDs. It begins with explaining the 

term and the features of tumor markers, and then it focuses on a few acknowledged tumor 

markers, depicts characteristics of small cell carcinomas of the lung and reviews in-depth two 

small cell lung cancer markers; progastrin releasing peptide (ProGRP) and neuron-specific 

enolase (NSE).

The subsequent chapter (1.2) clarifies the term proteomics and the analytical aspects. This 

chapter stresses the importance of reliable methods for measurement of tumor markers, 

explains features of the traditional assays used, and compares these assays with methods 

which include a targeted MS approach. Further, a typical workflow of targeted MS is 

explained, and finally the foundation of UiO-performed MS related work on ProGRP and 

NSE is explained.

1.1 CLINICAL ASPECTS 

1.1.1 Tumor markers in biological samples

The first known identified molecular tumor marker in modern medicine was a monoclonal 

globulin protein found acidified urine from a patient with multiple myeloma, described by 

Henry Bence Jones in 18482. Biomarkers may be indicators of a variety of health and disease 

characteristics, while the term tumor marker can be defined as a substance whose 

concentration or structure is altered in pre-cancerous or cancerous conditions. These 

substances may offer insight and understanding of pathological mechanisms and be clinically 

useful in diagnostic confirmation, prognosis and prediction of therapeutic response, and 

monitoring disease and recurrence, as well as screening and early cancer detection3.
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INTRODUCTION

A biomarker eligible for clinical use must be expected to enhance the ability of a clinician to 

optimally manage the patient. In this respect, important qualities for an ideal marker is to 

provide adequate diagnostic accuracy, represented by diagnostic sensitivity and specificity4.

Diagnostic sensitivity is defined as the ability to correctly classify a malignancy, and the 

diagnostic specificity as the ability to correctly classify non-malignancy. For both 100 % 

sensitivity and 100 % specificity, a so-called positive result, with the marker passing a defined 

threshold, must occur in all cases of malignant state, and never in healthy states, respectively4.

Such an ideal marker is yet to be identified, as the markers known generally are both or either 

affected by states other than that single malignancy and/or not affected at the early stages of a

disease. Characteristics such as long lead-time, level correlation with tumor burden, practical 

half-life, simple and cheap tests, and easy obtainable specimens are also important features

pertaining to an ideal marker4.

Diagnostic sensitivity and selectivity is also a challenge for diagnostic tools not concerning 

molecular marker determination. This is why, generally, several different tests are performed 

and the results considered combined to best manage the patient. Thus, despite their 

limitations, tumor markers are valuable and extensively used together with other diagnostic 

tools. Similarly combined determination of several markers adds reliance to the information

basis for clinical interventions. The rise of the term multiplexing, a modern term for combined 

investigation of two or more markers, derives from this.

Molecular markers are rarely used for early diagnosis and screening due to relatively low 

disease prevalence in combination with limited diagnostic sensitivity and specificity. The

primary uses are monitoring of therapy, prediction of therapeutic response, prognosis and help 

for diagnosis, and surveillances for recurrence of cancerous diseases4, 5. Examples of such 

markers are: -fetoprotein (AFP), human chorionic gonadotropin (hCG) and lactate 

dehydrogenase for testicular cancer, recommended used as aids in diagnosis, staging, 

prognosis determination, recurrence detection, and therapy monitoring6-9. Prostate-specific 

antigen (PSA), a sensitive, but not very specific marker for prostate cancer, is FDA-approved 

for population screening, however, not universally accepted for this use, but acknowledged 

for detection of disease recurrence and monitoring therapy5, 9, 10. Carcinoembryonic antigen 

(CEA), with low specificity in gastrointestinal and colorectal cancer, is recommended for 

prognosis indication, postoperative surveillance, and therapy monitoring in advanced disease9,

11, 12. Cancer antigene 125 (CA125) for ovarian cancer is recommended for both detection of 

cancer recurrence and early detection of women at high risk, therapy monitoring, and for 
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determination of prognosis, as well as for differential diagnosis of suspicious pelvic masses in 

postmenopausal women9. For breast cancer, CA15-3, CA27.29 or CEA may be used for 

therapy monitoring in advanced disease, while estrogen and progesterone receptors are 

mandatory for predicting response to hormone therapy, and human epidermal growth factor 

receptor-2 measurement is mandatory for predicting response to immunotherapy with

trastuzumab, while urokinase plasminogen activator/plasminogen activator inhibitor type 1

may be used for determining prognosis in lymph node–negative patients9.

1.1.2 Lung cancer, classification and tumor markers for clinical use

World wide, carcinomas that derive from epithelial cells in the lung are found with high 

incidence and poor prognosis, and it was in the year 2005 the reported leading cause of

cancer-related death13, 14. The treatment and prognosis for a lung cancer patient depends on 

the extent of tumor development at the time of diagnosis and the histological subtype of the 

carcinoma. Primary lung cancer can be divided into two histological subtypes; non-small cell 

lung carcinoma (NSCLC) and small-cell lung carcinoma (SCLC).

The NSCLCs dominate in prevalence and incidence, and consists of several subtypes, 

predominantly adenocarcinoma, squamous-cell carcinoma (SCC), and large-cell lung

carcinoma (LCLC), which generelly are treated in the same manner13. The survival rates to 

the NSCLC patients varies from 1% to 67% at 5 years depending on development and 

metastases of the tumor15, 16, with an median survival of about 2 years. The focus of this 

thesis, however, is SCLC and will therefore be discussed in more detail.

SCLC comprises approximately 15-20 % of the bronchogenic carcinomas and is associated 

with the poorest prognosis of all histological types. Despite greatly improved therapeutic 

regimes over the last decades, the 5-years survival rate of less than 10%, the median survival 

is of less than 1 year for late stage carcinoma (termed elevated disease, ED), and less than 2 

years for early stage carcinoma (termed limited disease, LD)13. This is due to early and rapid

doubling time and aggressive metastasizing of the carcinoma. Thus, most patients are 

diagnosed with ED and not responding well to therapy13.

SCLC typically display phenotypic features of neuroendocrine character which are not 

exclusively occurring in SCLC nor in the lung17. An estimate of about 30% of lung tumors are 

neuroendocrine, implying that NSCLC patients may also exhibit neuroendocrine 

differentiation, and it has been suggested that these subgroups may benefit from treatment 

regimes similar to those of SCLC18. The 2004 WHO classification recognizes four major 
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subtypes of neuroendocrine pulmonary tumors arising in the bronchial mucosa termed typical 

carcinoids (TC), atypical carcinoids, (AC), small cell lung cancers (SCLC) and large cell 

neuroendocrine carcinomas (LCNEC)17, 19, 20. This overlap of features may be considered as 

part of the histological gray zones related to disease heterogeneity in disease progression21

and the described similar patterns of differentiation of certain pulmonary carcinomas20.

Biological factors succeeding from the tumor may relate to this heterogeneity22, as suggested 

by a study of phenotypically different cells in a mouse model23. To elucidate and add these 

parameters to guide the selection of appropriate therapy may significantly improve disease 

management. Thus, differentiation of pulmonary tumors is important, and might influence 

survival24-26.

Accurate differential pathological diagnosis, staging and disease monitoring is essential for 

assigning and adjusting to the most effective treatment for a lung cancer patient. Several 

diagnostic tools are used because no single tool is fully sensitive nor specific. For lung 

carcinomas, progastrin-releasing peptide (ProGRP) and neuron-specific enolase (NSE) have

complementary clinical value for diagnosis and treatment purposes when used together26-32.

1.1.2.1 Progastrin-releasing peptide (ProGRP)

ProGRP is the precursor of the biologically active end products of gastrin releasing peptide 

(GRP) which is a member of the bombesin family. The highest concentrations of GRP in 

humans are found in fetal lung, neurons in the CNS and GI tract. These neuropeptides regulate 

several functions of the GI system and CNS, including release of GI hormones, contraction of 

smooth muscles, and proliferation of epithelial cells, and they are likely to play a role in human 

cancers such as those of the lung33-36, colon37-39, stomach40, 41, and prostate42, 43.

Variants of ProGRP proteins, termed isoforms, are expressed on mRNA level through 

alternatively spliced mRNAs from the human GRP gene44-46. Three mRNA types 1, 2 and 3 

separately encode the known ProGRP proteins coined ProGRP isoform 1, 2 and 3, 

respectively44, 47, which each have molecular weights of about 16 kDa (UniProtKB/Swiss-

Prot: P07492 for all three isoforms). The mRNA types 1, 2 and 3 are reported to appear in

approximate relative ratios of about 60:5:35, respectively, in both healthy47, 48 and neoplastic 

tissue47. All mRNA types encode precursor ProGRP, preProGRPs, which are attributed by an 

additional N-terminal signal sequence (residue -23-1), and a common GRP sequence, but

differ in the sequence encoding the C-terminal extension peptide46. Compared to ProGRP 

isoform 1, a 21-base pair deletion in mRNA type 2 results in corresponding deletion of amino 

acids 105-111 for isoform 2, and for isoform 3 a 19-base pair deletion in mRNA type 3 
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introduces a frame shift and creation of a premature stop codon which produce an unique C-

terminal heptadecapeptide starting from amino acid 9946. The common amino acid sequences 

(the N-terminal signal peptide, GRP, and the rest of the carboxyl-flanking peptide through 

residue 98), as well as the differing parts for the isoforms, are shown in Table 3.1 in 

chapter 3.1.

During the initial processing of the ProGRP isoform 1, the precursor preProGRP is converted 

to ProGRP by cleavage of the N-terminal signal peptide. Further processing by 

endoproteolytic cleavage combined with carboxypeptidase B-like activity produces glycine 

extended GRP1-27 (GRP1-27 Gly), as well as the C-terminal extension peptide (residue 31-125). 

Amidation of the neuropeptide to the mature GRP1-27 -amidating 

monooxygenase (PAM), and an additional endoproteolytic cleavage forms the mature

GRP18-27, however, it is not known if the last cleavage occurs before or after amidation. 

Originally, only the mature amidated form of GRP was considered biological active, but 

recent studies have proven the nonamidated GRP18-27 Gly, as well as recombinant and 

synthetic C-terminal extension peptide (residue 31-125) and its fragments to be biologically 

active in a range of tissues and in cancer cell lines49, 50. The receptor for the latter, the C-

terminal extention peptides and its fragments, is not yet established, however, the different 

GRP neuropeptides can activate three known mammalian reseptors; the GRP preferring 

receptor (GRPR), the neuromedin B preferring receptor (NMBR), and the bombesin receptor 

subtype (BRS-3)34, 51, 52.

The discovery of production of GRP in SCLC encouraged attempts to establish methods for 

determination of GRP in blood derived samples53, 54, but rapid elimination of GRP made this 

challenging55. However, the precursor, ProGRP, proved more stable and resulted in

determining ProGRP. This was first demonstrated by Holst et al. in 1989 and used to prove 

increased ProGRP42-53 in plasma and spinal fluid from SCLC patients56, 57. The first 

radioimmunoassay (RIA) for ProGRP was developed two decades ago58, shortly followed by 

an enzyme linked immunoassay (ELISA)59.

These, and other similar assays, have demonstrated good diagnostic sensitivity and specificity 

for ProGRP in SCLC29, 58-61, especially for the limited disease stage, higher than both NSE 

and the other more commonly used lung cancer markers29, 30, 60, 62, 63. ProGRP is considered a 

good prognostic marker, and has been shown useful as an indicator for disease extent, with 

ability to discriminate between limited and extensive disease64-66, and treatment response32, 55,

60, 67, 68, and tumor regression or progression65, 67-70, though reported not to correlate well with 

13



INTRODUCTION

tumor extent. Overall, the general prognostic impact of ProGRP is better than the established 

NSE marker55, 65, 71.

As already mentioned, ProGRP is a neuroendocrine marker and a valued marker for both 

detection and monitoring of SCLC, and considered a good tool for discriminating SCLC from 

NSCLC32. However, high serum ProGRP concentrations are observed in some NSCLCs.

These NSCLCs often also express other neuroendocrine markers and show different clinical 

characteristics than typical NSCLCs, such as improved response to treatment adjusted for

lung cancers with neuroendocrine features72 similar to LCNEC73. Thus, ProGRP may be used 

to reveal neuroendocrine characteristics of histological diagnosed NSCLC74.

1.1.2.2 Neuron-specific enolase (NSE)

-isoenzymes which belong to the enzyme class of enolases (or 2-phospho-

D-glycerate hydro-lyases, EC 4.2.1.11) which are glycolytic multifunctional proteins. The 

mammalian enolases; non-neuronal enolase, muscle-specific enolase and neuron specific 

enolase (NNE, MSE, and NSE, respectively), are encoded by separate genes, and are 

composed of one or two of the three possible subunits - - -enolase also termed 

Enolase 1, Enolase 3 and Enolase 2, respectively. These combine to form the five most 

referred isoenzymes in homo- and heterodimers. -homodimer, termed non-neuronal 

enolase (NNE), is expressed in embryo and most tissues, while the hetero- and homodimers of 

- - -enolase), termed MSE, are found in striated muscle tissue75. As for the 

-enolase, the hetero-, and homodimer as wel - - -

enolase, respectively) they all comprise NSE and are produced by and located in nervous 

tissue and neuroendocrine cells, as well as found in erythrocytes and platelets76. The active 

enzymes are dimers of non-covalently linked subunits, and these two relevant subunits for 

human NSE, - -enolase, each have a molecular weight of 47 kDa77 and consist of 

434 amino acids (UniProtKB/Swiss-Prot: P06733.2 and P09104.3, respectively). These

subunits are distinguished by 72 replacements (no deletions or insertions) in the sequences of 

AA 271-285, 298-316 and 416-433 as shown by the marked green amino acids in Table 3.1 in

chapter 3.1.

The reported function of NSE is neurotrophic properties for a range of CNS neurons and cell 

survival for neocortical neurons78. The NSE concentration in serum from healthy humans is 

below 10-20 ng/mL, however, the NSE level can be influenced by a broad range of diseases 

and disorders79, 80. In addition to being a useful lung cancer marker81, 82, NSE has proven to be 

a marker for acute cell damage in human CNS83, 84, Creutzfeldt-Jakob disease85, ischemic and 
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hemorrhagic stroke86, and other brain injuries87, 88. Elevated expression of NSE is also found 

in cases of neuroendocrine tumors89, such as neuroblastoma, carcinoid tumors, malignant 

melanoma90, seminoma91, 92 and SCLC82.

NSE is considered a valuable marker for both staging and monitoring treatment response of 

SCLC patients93 and is the primary marker for SCLC with weak predicative values for 

NSCLC94. The prognostic value is demonstrated in several multivariate trials for both 

SCLC30, 95-98 and NSCLC99-101 where NSE relate well to treatment response96 and tumor mass 

extension95, and to have high specificity for ED-SCLC95. Though NSE does not have the 

sufficient specificity or sensitivity to be used in screening or as a sole marker for lung cancer 

differentiation, some utility for differential diagnosis of SCLC from NSCLC has been 

demonstrated, especially in combination with other markers32. In addition, similar to ProGRP, 

regarding both disease progression and the complex and mixed histological features of lung 

cancer102, NSE may be used for general identification of carcinomas of the lung which exhibit

neuroendocrine features103, 104, and then to discriminate these from other lung diseases.

In short, NSE is the established tumor marker for monitoring SCLC. The newer and 

promising lung cancer marker, ProGRP, has shown higher sensitivity and specificity for 

SCLC than NSE. In general, ProGRP and other SCLC and lung cancer markers such as NSE, 

CYFRA 21-1 and CEA have improved diagnostic sensitivity when combined26, 62. Excellent 

specificity for SCLC was reported when combining the markers with respective cut-off 

values; NSE (>35ng/mL), ProGRP (>100pg/mL) and SCC antigen (<2ng/mL)25. NSE and 

ProGRP have complementary clinical information and in particular high sensitivity for 

SCLC32, 69 in both limited and extensive disease status32, and the combination of the two 

further increase diagnostic sensitivity for SCLC29, 62. This increased clinical value when 

combining selected markers will be a subject of explanation under chapter 1.2.1.
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1.2 ANALYTICAL ASPECTS

1.2.1 Proteomics

The term “proteomics”, coined in early 1990s, derives from the merging of “protein” and 

“genomics”. Proteomics is a post-genomic discipline, compromising a large field of studies 

with common incentives to unravel information regarding expression, modification and 

interaction of proteins related to roles or functions in a biological system. The proteomics 

field protruded from the realization that the final product of a gene is more complex and 

closer linked to function than the gene itself, and by this, cancer markers can be used not only 

to identify the presence of a tumor, but they may also be applicable to determine stage, 

subtype and ability to respond to therapy. The aim of studies related to this area of 

proteomics, also termed clinical proteomics, usually belong to the fields termed discovery and 

quantitative targeted proteomics, with purpose to discover new targets for therapeutics, and to 

screen for and verify biomarkers for immediate assessment of "real-time" health and disease 

status.

Verification of the clinical utility value of such markers rely on sufficient test accuracy to 

elucidate and eventually also benefit from the diagnostic accuracy (mentioned in 

section 1.1.1) of a marker. The term test accuracy include both precision and trueness of the 

measurement, which is essential for reliable determination4. To illustrate the importance of

both diagnostic accuracy and test accuracy, Figure 1.1 depict a biomarker measurement 

performed with the objective to separate patients into two groups based on the presence or 

absence of a specific disease. Here the diagnostic accuracy, decision threshold and predictive 

values are linked to test accuracy showing its significance in IVD.

The field targeted quantitative proteomics is in essence the study and analysis of one or 

several preselected proteins to deliver more precise, quantitative and sensitive data, and is 

increasingly used for establishing biomarkers and for development and validation of clinical 

methods. Emerging from the introduction of the radioimmunoassay in the 1960s105, targeted 

proteomics has for a long time relied on antibodies as analytical tools for determination. 

However, the improvements of technologies for peptide/protein separation, MS analysis, 

isotope labeling for quantification, and bioinformatics data analysis has further expanded the 

possibilities within this field. Developments within and related to MS technology and 

pertaining tools within the last decades have increasingly made it become an established 

strategy, the method of choice for analysis of complex protein samples and considered a

mainstream technology. Features such as multiplexing capability, the shorter and cheaper 
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process of method development compared to other alternatives, and the ability to discriminate 

between protein variants such as isoforms and post-translational modifications (PTMs), are 

valued properties of the SRM-based proteomics106, 107 (see also Figure 1.4 under section 

1.2.3.3). Effectively, MS is widely used in academia and in pharmaceutical and biotechnology 

industries for both discovery and targeted proteomic analyses108.

Figure 1.1: Important parameters in IVD.

A hypothetical produced example of the 

dependence of the frequency of a non-diseased 

and a diseased population versus biomarker 

measurement to illustrate the relationship 

between diagnostic accuracy (sensitivity and 

specificity), decision thresholds (cutoff points), 

predictive values (PVs), and test accuracy.

Sensitivity is defined as true positive/true 

positive + false negative; TP/(TP + FN). 

Specificity is defined as true negative/(true 

negative + false positive); TN/(TN + FP). As 

shown, PVs, sensitivity and specificity is 

determined by the position of the decision thresholds (cutoff points). These will be affected by the test accuracy in 

cases of uncertainty or if compared to a pathognomonic test (gold standard). This figure is adapted with permission 

from reference 4. Copyright © 2005 American Chemical Society.

The potentials of MS based experimental research for use in routine clinical practice has been

demonstrated by many. In example, a study by Petricoin et al. in 2002 showed impressing 

findings when investigating proteomic patterns in serum in relation to early-stage ovarian 

cancer by surface-enhanced laser desorption/ionization-time-of-flight (SELDI-TOF) mass 

spectrometry. By establishing a multiplexed list of biomarker in combination together with a 

algorithm acquired by marker pattern-recognition, the study showed a positive predicative 

value (PPV) of 94 % against the comparable PPV of 34% for the widely used ovarian cancer 

marker CA125. As the PPVs of low incidence diseases, such as ovarian cancer, should be 

close to 100% for population screening to avoid high numbers of false positives, the study 

suggest to combine the MS approach with, in example, ultrasonography to reach a prospective 

population-based assessment of this technology as a screening tool for all stages of ovarian 

cancer in both high-risk and general populations109.

As this example demonstrates, several different tests are generally performed and their results 

considered combined for the clinical evaluation of pathologies. This is due to challenges of
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sensitivity and selectivity which are typical for diagnostic tools also when they not concern 

molecular marker determination. Diagnostic investigation can involve multiple tests which 

can be performed and considered combined in a series manner or in a parallel manner to 

support decisions on interventions. For a series manner, test A is applied first, and, if positive, 

re-tested with test B. While for a parallel manner, both test A and test B are applied 

simultaneously. The approaches have their strengths and weaknesses. The advantage of serial 

testing is cost-effectiveness through the typically positive impact on pre-test probability and 

PVs, with a potential disadvantage of false negative values as well as a potential of delay in 

treatment initiation. While for the parallel testing, rapid and comprehensive results are 

produced at a potential cost of resources.

However, the mutual purpose for considering multiple results for both series and parallel 

testing is to add assurance to the diagnostic evidence to improve the PVs and thus the clinical 

sensitivity and/or specificity. For this either OR rules or AND rules may be applied for the 

combined interpretation of results, which affect the PVs (the clinical sensitivity and

specificity values) differently110. Relative to considering the test results alone, the OR rule for 

considering the two or several results gives higher sensitivity and lower specificity than either

test individually, whilst for the use of the AND rule the specificity is higher and sensitivity 

lower. Consequently, when the OR rules are used the approach is very predicative in the 

confirmation or rule-in for a particular disease, whilst for the AND rules, increased sensitivity 

can be useful for ruling out a disease4. So there is a trade-off between sensitivity and 

specificity when combined evaluating different test results. However, to prevent the impact of 

this trade off, a set of results can also be considered and interpreted as one single multivariate 

observation as in the mentioned study by Petricoin et al.109, which will not be discussed here.

Equations OR-rule: SeA + SeB - SeA × SeB > SeA SeB

SpA × SpB < SpA SpB

Equations AND-rule: SpA + SpB - SpA × SpB > SpA SpB

SeA × SeB < SeA SeB
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1.2.2 Immunoassays for cancer marker measurements

Antibodies have been utilized in clinical diagnostic immunoassays for several decades. Both 

for research and clinical purposes, the need to further improve analytical specificity and 

sensitivity has driven continuous refinements of this methodology, bringing many methods 

from benchtop to bedside, and making these tests the gold standards for protein quantification 

in clinical use111.

1.2.2.1 Immunoassay principle and design

Immunoassays are biochemical tests that exploit analytical specificity of antigene-antibody 

reactions to measure presence or concentration of analyte such as a protein tumor marker. 

These methodologies can employ a variety of different labels for detection, such as enzymes 

in enzyme-linked immunosorbent assays (ELISAs) or enzyme immunoassays (EIAs), 

radioactive isotopes in radioimmunoassays (RIAs) or immunoradiometric assays (IRMAs) 

and fluorogenic reporters in various immunoassays as in immunofluorometric assays 

(IFMAs). Their different designs may roughly be categorized as either competitive binding or 

non-competitive binding immunoassays, where the common feature is that a catcher antibody 

binds to an area on the analyte termed an epitope. In a competitive design the analyte is 

measured indirectly and usually by detection of a marked analyte which competes for 

binding-sites on the limited amount of catcher antibodies. For the non-competitive design,

excess catcher antibody binds the antigen and excess of labeled antibody binds to analyte to 

determine the marker. This latter design, often called two-site or sandwich immunometric 

assays, has improved assay kinetics and enhances sensitivity through the favoring of antigen-

antibody complex formation112.

1.2.2.2 The advantages and shortcomings of immunoassays

The combined economical and analytical qualities of immunometric assays has been highly 

competitive to other methods, as shown by its great extend of use. This is because the modern 

immunometric assays generally hold high good sensitivity and specificity at high throughput

in par due to ease of automation. However, these assays also have limitations and drawbacks 

both related to development and use.

Concurrent with evolvement in “omics” technologies the introduction of thousands of 

biomarker candidates the last decades has strained a bottleneck in the biomarker pipeline. The 

need for an interface between biomarker discovery and clinical validation has increased with

increased data. Traditionally, immunobased assays have been developed for this purpose,
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however, due to high cost and time-consuming developments, production of an assay may not 

always be justified, considering the rather low success rate of biomarker candidates. The main 

factors for development are availability or cost of production of both high quality antibodies 

and assay optimization.

A typical ELISA development generally costs between hundred thousand and two million 

dollars per biomarker candidate (number from year 2009) and takes more than a year to 

develop113. In this context, targeted proteomics by SRM-MS is suggested as a well-suited 

preceding or complementary method in the development114, 115. In terms of pre-clinical 

biomarker testing, SRM-MS is highly specific, has short lead time, and multiplexing capacity. 

The use of such faster, less expensive and more straightforward multiplexing application can 

relieve the bottleneck of verifying putative markers and is of increasing use116, 117. The 

workflow and features of such a method will be addressed in later (see section 1.2.3 and 

1.2.4).

Despite the great analytical sensitivity of many immunoassays, cases of lack of adequate 

specificity and accuracy have led to false results by analyte-independent and analyte-

dependent interferences. These are effects on the measurement of an analyte caused by 

presence of a substance in the sample that alters the assay response. Possible interferences can 

in example derive from endogenous substances, such as heterophile antibodies or 

autoantibodies, or be caused by lipaemia, cross-reactivity and exogenous substances112, 118.

This may lead to falsely elevated119, 120 or false low 119, 121-123 response depending on the 

nature of the interfering substance and the assay design118 and may lead to misdiagnosis124.

To mention one example, the hook effect is a possible analyte-dependent interference in 

immunoassays. It involves assay saturation due to high analyte concentration where 

constituents in the sample interact with reagent antibodies. Careful assay design and 

performance may, however, minimize the probability of these effects125-127, which is the case 

for most of the modern immunometric assays. It should also be mentioned, that when other 

methods utilize antibodies as part of their method, such as in IA extraction (described under 

section 1.2.3.3), these must also be carefully designed to not give false results.

Another limitation concerning the specificity of the immunoassays is their inability to 

distinguish between different variants of a marker. However, there are exceptions where 

different epitopes allow for differentiation. For NSE isoenzymes different mAbs have shown 

to have different selectivity for the two possible subunits - -enolase128. The SRM-MS 

approach can however selectively and simultaneously determine marker isovariants not 
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possible with traditional immunoassays, and this will be addressed how the under section 

1.2.3 and 1.2.4.

However, it should be mentioned that both immunoassays and SRM-MS are unable to detect 

markers when they occur in certain unforeseen altered forms. These altered states may in 

example be polymorphisms derived from exons or post translational modifications (PTMs) 

which can affect either the accessibility of antibody epitope or the yield of recognized 

signature peptide.

1.2.2.3 Current clinical measurement of NSE and ProGRP

Most of the existing clinical methods used for cancer marker measurements are 

immunometric competitive assays, as are the ones for NSE and ProGRP. There are several

commercially available kits for serum NSE determination, while quite few companies offer

assays for ProGRP. 

The first commercialized assay for ProGRP, the manual sandwich ELISA, was developed59, 60

and patented by Yamaguchi et al. and subsequently licensed to Abbott (Abbott Diagnostics, 

Germany). Years later, the same research group developed the ARCHITECT® ProGRP129

(Abbott Diagnostics), an automated two-step multiple site quantitative chemiluminescent 

microparticle immunoassay (CMIA)130, 131. Two other immunoassays to measure total 

ProGRP are the CanAg® ProGRP EIA (Fujirebio Diagnostics, Inc., Japan), a solid-phase, one-

step, non-competitive immunoassay using the mAb E146 and the newly released Elecsys®

ProGRP (Roche, Switzerland), an automatic heterogeneous immunoassay with electro 

chemiluminescence (ECL) measurement132. These specific tests either use plasma or serum 

samples with volume between 30- and report to measure ProGRP(31-98) within an 

upper measurable concentration span in the range 1000-5000 pg/mL, with sensitivity of

4 pg/mL and with assay cut-offs for suspiciously elevated levels between 70-86 pg/mL132-134.

For NSE, the existing immunoassays are non-competitive, heterogeneous sandwich based, 

such as DELFIA (PerkinElmer, USA), Elecsys 2010 (Roche, Switzerland), Kryptor 

(BRAHMS GmbH for Thermo Fisher Scientific Inc, USA), the ELISA (DRG International 

Inc., USA) or immunoradiometric assays (IRMAs) (DiaSorin, Italy, and Immunotech 

Laboratories Inc, USA). These tests use sample sizes between 25-300 , the sensitivities are 

measurable concentration span the range 100-1000 ng/mL, and 

as of the reference cut-off limit for suspiciously elevated levels these are 12.0-16.3 ng/mL135,

136.
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There has been reported significant discrepancies in correlation between and in the 

performance characteristics of a selection of the commercially offered NSE immunoassays

(n=7)135. NSE is, as mentioned earlier, present as homodimeric, heterodimeric and monomeric 

-enolase, and the main probable reason for discrepancies are assigned the use of different 

mAbs with different affinities for the different isoenzymes135. This is of known relevance as 

studies have shown significant variation of the relative proportion of the different NSE 

isoenzymes between individual samples137, and NSE mAbs (n=12) from various companies 

and research groups have therefore thoroughly characterized in ISOBM-initiated 

workshops138.

1.2.3 Targeted MS workflow

MS is an analytical tool which utilizes ionization in gas phase to measure molecules by their 

masses and relative concentrations of atoms and molecules. However, targeted proteomics 

experiments typically consist of several stages before MS determination of a low abundant 

analyte in a biological sample. They can be divided into following stages139: 1.) Protein 

isolation/fractionation, 2.) Degradation of proteins to peptides using the bottom-up approach, 

3.) Peptide separation by on-line LC, and, finally, 4.) MS determination by selected reaction 

monitoring (SRM). The following sections will comprehend these stages in a reversed order, 

and, in addition, end with a section (1.2.4) on quantitation strategies.

1.2.3.1 LC-ESI-MS in SRM mode

The core of modern targeted quantitative MS is to use MS in an MSn mode. A powerful 

approach is to use the selected reaction monitoring (SRM) technique for sensitive and precise 

quantification of targeted proteins with complex backgrounds. The specific predetermined 

analytes with known fragmentation properties may with this technique be measured across 

multiple samples in a consistent, reproducible and quantitative manner. The most common is 

to use a QqQ instrument with an ESI ion source140 for applicability of analysis of complex 

samples. Compared to another ion source, the matrix-assisted laser desorption/ionization 

(MALDI), the MALDI is normally used to analyze relatively simple peptide mixtures, while

the ESI-MS systems allow for integrated liquid separation tools, typically LC-ESI-MS, to 

perform simplification of the sample before MS introduction. Further on, ESI is a soft 

ionization technique, leaving the peptide intact prior to entering the mass analyzer, and, as for 

the mass analyzer, the QqQ system perform very well for quantitative purposes with high 

throughput, selectivity and sensitivity. 
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The following main events occur in the QqQ in SRM mode: On the MS1-level scans, the first 

quadrupole of the QqQ transmits only targeted species by their preselected specific m/z value.

In the next step, collision induced dissociation (CID), trough ion-activation and breakage of

the weakest peptide bonds, produce reproducible fragments of the marker, which are most 

often y- and b- fragments. Subsequently, on the MS2-level scans, the last quadrupole of the 

QqQ transmits only the preselected fragments by their preselected specific m/z value to the 

detector.

The described two-stage filtering of SRM enhances selectivity, which makes it a highly

specific MS strategy, however, it is sensitive to interference from other components that have 

very similar precursor- and fragment transitions. The LC therefore performs a MS 

complementary pre-separation of peptides and interferences, which is important for the 

potential of multiplexing of complex samples by LC-MS analysis. Due to band separation of 

peptides regarding to their physiochemical properties in the LC-system, distinct peptide ions 

and their transitions can be monitored at their respective time periods of elution, termed 

segments, reducing issues of limitation of simultaneous MS capacity. The measurement of

specific peptide/fragment m/z pairs is continuously repeated over a defined time period 

(within the segment) and usually two or more peptide fragment are detected for each peptide. 

Out of these, one fragment transition is typically used for the basis of quantification, termed 

the quantifier, while the one or two other are for verification of peptide identity based on their 

relative signal intensity, and are termed qualifiers.

1.2.3.2 The bottom-up approach

When performing quantitative LC-MS analysis, it is common to produce proteolytic peptides 

of the proteins using the so-called bottom-up strategy, with top-down and middle down being 

the alternative strategies. The bottom-up approach produces peptides of marker proteins, and

it is commonly used for accurate measurement of protein concentration to circumvent 

challenges associated with intact protein separation, ionization and MS characterization.

The bottom-up process involves selective proteolysis of proteins, and detection of specific 

proteolytic peptides as surrogates for their parent protein. These are termed signature peptides

(or alternatively proteotypic peptides) when their sequence is unique to the marker protein 

and, when in addition, a method enables them to serve as a quantitative stoichiometric 

measure of marker protein concentration.
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Both chemical and enzymatic proteolysis may be used to create such peptides, however, the 

latter, for cleavage of peptide bonds between individual amino acids, is most common. The 

biochemical specificity and characteristics as well as availability of trypsin makes it the gold 

standard for proteomics. Before a tryptic digest, proteins containing cystein (C) residues are 

often unfolded by both thermal and chemical aid, because cystein residues may form inter-

covalent bonds. Trypsin specifically cleaves peptide bonds C-terminally to arginine (R) and 

lysine (K) residues, unless blocked by an adjacent proline (P) residue. The products are 

generally of moderate length, and carry two or three charges when ionized by ESI, and these 

tryptic peptides generally have better front-end separation, and are more suited for very 

sensitive and selective detection by ESI-SRM-MS than the intact proteins they derive from. 

1.2.3.3 Sample preparation: fractionation aided by immunocapture

The complexity and abundance of proteins in most clinical relevant matrixes exceed the 

capacity of the typical LC-MS systems. A method for clinical application of targeted serum 

protein analysis therefore requires an efficient sample preparation to ensure a sample of 

significantly lower complexity than that of most biological fluids to reach sufficient marker 

sensitivity. Despite high sensitivity and specificity of LC-SRM-MS, the dynamic range of 

proteins in serum can exceed 10 orders of magnitude, and highly selective sample 

purification, as well as enrichment, may in many cases be necessary to quantitatively 

determine low-abundance markers in a reproducible manner, and it may additionally decrease 

LC cycle time and allow higher throughput.

The approaches for sample preparation are diverse, and lack of quality to allow for direct 

subsequent quantitative LC-MS analysis of the very-low abundant protein markers are 

common, however, they have uses in other aspects of the proteomics field. A traditional 

sample preparation technique for proteomics is the gel electrophoresis, in either one or two 

dimensional mode where proteins are typically separated either or both by isoelectric point by 

isoelectric focusing (IEF) and by length/molecular weight by SDS-PAGE. Other basic sample 

preparation techniques are, filtration and protein precipitation, both for non-specific protein 

purification by removal of high abundant protein, and solid phase extraction (SPE) which 

fractionate proteins or peptides by adjustment of the SPE system.
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However, the need for improved sensitivity and specificity, as well as sample throughput has 

driven the sample preparation towards other more specific approaches. The advantage of 

using immunoaffinity (IA) extraction141, 142 in combination with LC-MS for analytes in 

biological samples143-145 was emphasized many years ago. However, the application 

techniques and accomplishments of use, especially that of clinical use, is still in its early 

stages. Van den Broek et al. has compiled sensitivities for methods with different sample 

preparation strategies preceding LC-MS/MS to illustrate which LLOQs these approaches 

typically can obtain and is shown in Figure 1.2.

Figure 1.2: Résumé of achieved 

sensitivities by use of different 

sample preparation strategies

in targeted MS approaches.

A number of fifty-two targeted 

quantification methods for

proteins in serum or plasma have 

various sample preparations 

combined with LC-MS 

determination. The different 

clean-up approaches are divided 

into being for either proteins, 

signature peptides or a 

combination of the two, and their 

compiled obtained LLOQs are shown. Symbol explanation; IC: immunocapture, LC: liquid chromatography, 

PP: protein precipitation, SEC: size exclusion chromatography, SPE: solid phase extraction. This figure was 

adapted with permission from reference 146. Copyright © 2013 Elsevier.

IA extraction may be used in sample preparation in different formats. Immunocapture is a

common term for extraction based upon molecular recognition of antibodies directed against 

epitopes of one selected protein or a group of proteins1, 147-149 . When the antibodies instead 

are directed against tryptic peptides, the technique is often termed stable isotope standards 

with capture by anti-peptide antibodies (SISCAPA®)150-152. As an alternatively to use for 

isolating target molecules, the immunoaffinity strategy can also be used for subtraction of the 

most abundant proteins153. The immunobased approaches as means of sample preparation 

may be used in different overlapping formats such as off-line1, 154-156, on-beads152, 157, on-

column150, on-line143, 158-161 and in-line bead trap162. A typical workflow for a bottom-up on-

beads immunocapture and SISCAPA approach is shown in Figure 1.3, in part A and B 

respectively.
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Figure 1.3: A typical workflow of A) an immunocapture part and B) a SISCAPA approach by use of 

AQUA peptides (isotope-labeled signature peptides) for SID. As the figure shows, the point in the process 

where the antibody-coated magnetic beads are added differ between the approaches. The scissors illustrate 

enzymatic digestion by trypsin, and the magnets illustrate magnetism used in the detainment of magnetic beads 

with mAb-bound target markers.

Affinity approaches and SRM assays have different performance profiles as illustrated in 

Figure 1.4. Combining the IA extraction with LC-MS detection may increase sensitivity and 

capacity. Many of the IA formats for marker fractionation allow for enrichment,

circumventing the sensitivity limitations of the MS. Another bottleneck for the LC-MS 

system is its capacity limitations, and antibody selectivity, which its orthogonality to LC, may 

allow for higher throughput by reducing the LC cycle time, and improving the detection limits 

by reduction of introduced interferences into the MS. The MS on the other hand contributes 

with superior specificity compared to the immunoassays. The setup can typically enable study 

of differences between very similar proteins, such as post-translational modifications (PTMs) 

or isoforms, in which pure antibody strategies, such as immunoassays, have limitations for.

However, if the PTMs are on the epitope or otherwise affect the immunoextraction affinity,

this will of course affect the LC-MS method similar to the immunological methods, 

(sample
clean up)
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wash

remove
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dissositate
from &
remove
beadswasww LC-SRM-MSB)
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highlighting the importance of control of antibody selectivity. It should also be mentioned that

non considered alterations pertaining to the signature peptide also may affect the SRM-MS

determination.

Figure 1.4: Performance 

profile of SRM- and affinity 

assays to target protein 

quantitation. The analytical 

variables are represented on 

axes starting from the same 

point, and the length of a 

spoke for a variable (from the 

center) is proportional to the 

magnitude the variable relative 

to the maximum magnitude 

across all the techniques 

compared. This figure was 

adapted with permission from 

reference 163. Copyright ©

2012 Nature Publishing Group

This was proven by Lund et al. in the development of a combined immunocapture SPE 

LC-SRM-MS approach to distinguish between known hCG isoforms and disease related 

enzyme-degraded (nicked) variants in which immunoassays are less able to differ between156,

164. The approach was additionally used for testing and proving difference in antibody 

reactivity with six reference regents165. The combination immunocapture SPE LC-SRM-MS 

has by Winther et al. also shown to be an unique tool in the sampling area with the marker 

ProGRP(31-98)1 as shown in section 3.2.1.1.

1.2.4 Quantification strategies for SRM 

The use of SRM in the area of quantitative MS is at present an established strategy163, 166. At

the dawning of the field of proteomics, experiments mainly concerned qualitative purposes. 

The shift towards quantitative experiment may be dated to around the turn of the century and

is linked to facilitation of different techniques of stable isotope labeling to allow mass 

resolution of proteolytic peptides of identical sequences using MS163. Further on, the 

strategies for quantification are generally divided in to two; relative or absolute quantification 

strategies, with the latter gaining increasing interest and focus. While relative strategies study 
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the relation of expression of one analyte compared to another within one or between samples, 

an absolute strategy aim to determine the amount of analyte present in a sample.

The foundation for both strategies is to use quantification based on the signal intensities of 

specific SRM transitions. To singly use this signal in a so-called label-free quantification is 

considered challenging to make reproducible, as there can be many causes to fluctuations 

between analyses. These problems can be tackled by use of synthetically modified imitations 

of endogenous counterparts, such as the already mentioned stable isotope analogs. 

Determination of absolute amount of a specific protein using stable isotope dilution (SID) 

theory and MS was explored decades ago167, 168, but recent subsequent improvements in MS 

technology has advanced the implementation of such synthetic markers which is linked to the

increasing interest for absolute quantitative approaches.

There are several strategies to involve chemical derivatization of protein or peptide with a 

synthetic agent for absolute purposes. However, the earliest and perhaps most straight forward 

approach for absolute quantification is the AQUA (absolute quantification peptide) approach 
168-171, using chemically synthesized peptides. These so-called AQUA peptides contain amino 

acid residues enriched with heavy isotopes to allow mass resolution from the target unlabelled 

(light) analyte and are added either before or after the proteolytic digest. In addition to similar 

approaches to the AQUA peptides, other central stable isotope standard alternatives to the 

approach are the techniques involving introduction of heavy labeled versions of the signature 

peptides assigned the one or multiple proteins of interest incorporated in proteins. Some of 

these strategies will now be mentioned. Quantification concatemer termed QconCAT is an 

artificial protein composed of the different heavy signature peptides172, 173, while protein 

epitope signature tag termed PrEST174 are shorter fragments of the protein produced by the 

Human Protein Atlas (http://www.proteinatlas.org). Protein standard absolute quantification

termed PSAQ175-177 involves having the entire target protein in stable isotope-labeled form as 

the internal standard, which also is the design of the full-length expressed stable-isotope 

labeled proteins for quantification termed FLEXIQuant178. However, FLEXIQuant

additionally flank the protein analogues with a novel peptide (a heavy labeled FLEX 

peptideH) for internal calibration against a the non-heavy FLEX peptideL,

One of the key-differences between these mentioned SID strategies is where they allow for 

the IS to be introduced, which is illustrated in Figure 1.5. However, they all have their 

advantages and disadvantages and all are readily used. The AQUA peptides are commercially 

available and ready for use, and circumvent some potential issues of uncompleted digestion.
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However, the financial cost may limit possibilities of use in extensive multiplexing 

experiments and the AQUA peptide IS’ are generally not compatible with initial fractionation 

of the biological sample and added close to the digest step (see Figure 1.5). In comparison, 

the QconCAT obviates the need to handle multiple peptide standards, offer possibility of 

decreased costs by biosynthesis and is intended to introduce equimolar amounts of undigested 

signature peptides. As for disadvantages, these proteins can both fail to be expressed and the 

potential of uncompleted digestion of both the QconCAT IS and target marker must be 

handled with care. PSAQ is designed to handle differential digestion and may be added prior 

to even highly selective sample fractionation such as immunocapture (see Figure 1.5).

However, the PSAQ IS’ are not commercially available and the demand of recourses for 

production must be weighed against the potential gain of such standards. This because 

standard proteins usually are expressed heterologously by differing folding and PTMs which 

may compromise the anticipation of strict stoichiometry and thus limit the benefit of both 

PSAQ and FLEXIQuant.

Figure 1.5: The different SID approaches for quantification allow the internal standard to be introduced 

at different steps of the sample preparation process. The isotope-labeled target proteins (such as PSAQ and 

FLEXIQuant) are compatible with target marker selective prefractionation and may be added immediately. The 

isotope-labeled concatemers of the signature peptides (such as QconCAT or PrEST) are generally added

subsequent to prefractionation, and before enzymatic digest to pass information of trypsin activity in the 

generation of signature peptides. The isotope-labeled signature peptides (such as AQUA-peptides) are normally 

added either before the enzymatic digestion or right before LC-SRM-MS analysis.

LC-SRM-MSprefractionation

Stable isotope-labeled AA (R or K)
AAs of untargeted marker

Isotope-labeled concatamer
of the signature peptides

Isotope-labeled
signature peptides

Isotope-labeled
target protein

AAs of the signature peptides
AAs in targeted marker

d

or
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2 AIMS OF THE STUDY

In this thesis, the main objective was to demonstrate properties, potential and use of 

immunocapture LC-SRM-MS methods in a targeted quantitative approach for protein 

biomarkers. ProGRP and NSE were chosen as model markers with aim of proving usability of 

this set up as a multiplexing strategy. The goal was to design LC-SRM-MS methods with 

ability to individually and simultaneously quantify protein isovariants of these SCLC-markers

which conventional immunoassays are unable to. In this process, two methods were 

developed for the two markers and the methods were finally combined.

The following was explored:

o Differentiated quantification of isovariants through assigned signature peptides for

two out of three ProGRP isoforms, for total ProGRP and one for each of the two

possible subunit for the NSE isoenzymes (Paper I, III and IV)

o Establishment of immunocapture procedures to purify and enrich serum samples 

for the very low abundance markers (Paper I, III and IV)

o Validation of two immunocapture LC-SRM-MS methods, one for ProGRP and 

one for NSE (Paper I and III)

o Novel exploration of pathological isoform expression of serum ProGRP in 

selected neuroendocrine carcinomas (Paper II)

o Establishment of a multiplexing method for co-determination of both ProGRP and 

NSE isovariants (Paper IV)

o Comparison of ProGRP and NSE determination by immunocapture LC-SRM-MS 

against routine clinical assays (Paper II and IV)

o Exploration of mechanisms and parameters affecting signature peptide yield from 

immunocapture (Paper V)

30



RESULTS AND DISCUSSION

3 RESULTS AND DISCUSSION

3.1 IDENTIFICATION AND QUALITATIVE DIFFERENTIATION OF PROGRP 

ISOFORMS & NSE ISOENZYMES

The potentials of MS based experimental research for use in routine clinical practice has been 

demonstrated by many. To improve the value of immunocapture LC-SRM-MS for targeting 

biomarkers in clinical samples, it was preferred that the method should be able to distinguish 

between the reported variants, the isoforms and isoenzymes, of the SCLC markers ProGRP 

and NSE at clinical relevant levels. The investigation and designation of signature peptides 

was for this purpose performed through the following steps (Paper I and III):

1) in silico investigation of signature peptide candidates

2) investigation of generation and detection of signature peptide candidates

3) optimization of an LC-SRM-MS method for selecting the final signature peptides

3.1.1 Step 1: in silico investigation of signature peptide candidates

The isoforms of ProGRP have large similarities in their structure, as have the isoenzymes of 

NSE. However, the ProGRP isoforms differ in their C-terminal end, while there are 72 amino 

acid replacements - -enolase. These differences in primary structure are 

shown in Table 3.1.

To explore if a tryptic bottom up approach could generate isoform- and isoenzyme specific 

peptides of appropriate length, an in silico experiment was carried out. For this, the computer 

software ProteinProspector (5.4.2) simulated a tryptic proteolysis of the three isoforms of 

ProGRP, and the two subunits, - -enolase, for NSE. From this, a list of peptides with

characteristics of no missed tryptic cleavages and with length of at least 6 amino acids was 

produced. To investigate and identify the marker-specificity, protein BLAST searches were 

performed on the organisms; homo sapiens, mouse and bovine. The two latter organisms were

included in the search because some of the reagents used in the final method derive from

these organisms. From the BLAST search, many of the peptides were found to solely origin 

from the homo sapiens protein markers, and this verified that tryptic proteolysis could 

produce signature peptide candidates eligible for isoform and isoenzyme differentiation. The

step 1-investigated tryptic peptides are listed in Table 3.2.
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3.1.2 Step 2: generation and detection of signature peptide candidates

When signature peptide candidates eligible for differentiation were elucidated in silico, a real 

tryptic digest and LC-MS/MS analysis was performed to investigate if these were both 

generated and detected. In-solution digests of the three recombinant ProGRP standards

(isoform 1, 2 and 3) and the NSE standards - -enolase) were separately produced by 

diluting each protein standard with 50 mM ABC-buffer and adding bovine derived trypsin

before over-night incubation at 3 C. In addition, for the NSE standards, these were also 

added treated with heat, DTT and IAA prior to trypsin digestion to ensure that their cysteine 

residues did not interlink and to aid denaturation (Paper III). Due to absence of cysteine 

residues in ProGRP, and in accordance with earlier investigations179, reduction and alkylation

was avoided for ProGRP at this stage (Paper I).

peptides as possible. C, the solution was analyzed on an

LC-MS system with an LTQ or an LTQ Orbitrap MS. Separation was carried out on an

Aquasil C18 column (50 x 1mm x m). For the final methods an Aquasil C18 precolumn 

(10 x 1mm x 5um) was also included. A standard linear gradient increasing the ACN-to-20

mM formic acid-ratio from 1:99 (v/v) to 99:1 (v/v) was applied over 60 minutes to get well-

separated analytes. The MS was set to perform in a data dependant mode, consisting of two 

constantly alternating MS events. In event 1 a full scan of all values between 200-1500 m/z

was performed in MS1. In event 2, the highest m/z value in event 2 was isolated in MS1, CID 

produced fragments of selected m/z analyte, and a full scan MS2 of the analyte fragments was 

acquired. The latter spectra was used for the peptide fingerprinting performed by Proteome 

Discoverer using the IPI human as search database, as well as for manual confirmation

against fragments generated by ProteinProspector (5.4.2). The generated and identified tryptic 

peptides that coincided as passed marker specific signature peptide candidates in step 1

narrowed the selection of signature peptide candidates, as annotated in Table 3.2. In some 

cases, missed cleavages were also observed and the tryptic peptides included in these were 

also discarded as signature peptide candidates.
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3.1.3 Step 3: optimization of an LC-SRM-MS method for selecting the final signature 

peptides

In this step, the aim was to point out the signature peptides which after an in-solution digest 

allowed sensitive and reproducible detection by LC-SRM-MS analysis. Then, the LC-

program was adjusted, anticipating the increased complexity of the samples when 

immunocapture digests was analyzed and also considering the time of analysis.

Initially, the MS, in a SIM mode, was used to investigate which peptides that was readily 

produced and detected by the QqQ. This involved to alternately allowing analytes of the m/z

values pertaining to the candidates to transit the MS1. The peptides producing the highest 

signals in SIM mode were then further analyzed to elucidate the fragments suited for a final 

SRM mode. To ensure sensitivity, selectivity and reproducibility, the following preferences 

were set:

o To ensure sufficient sensitivity of marker determination the fragments showing 

the highest yield were preferred.

o To reduce background, fragments of higher m/z value than the intact parent 

signature peptide m/z were preferably chosen.

o For reliable determination the regarded most stable fragments, the y-fragments, 

were preferably chosen, and in all cases definite reproducible fragmentation was 

investigated and assured.

o To ensure peak identity, as well as to set a limit for inferring signals, two to three 

transitions were chosen for each peptide for dedicating one transition to aid as a 

quantifier and at least one other transition as a qualifier.

The further investigation involved both automatic and manual tests and adjustments to best 

meet these criteria, and to optimize the SRM-MS method. For the initial automatic test, SPE 

was performed on in-solution digests of the markers to remove salts and contaminants, to 

ensure correct pH and to individually infuse the candidates in aliquots by gradual increase of 

SPE eluate strength. Automatic compound optimization by Xcalibur adjusted multiple MS 

parameters for a stable and high signal in SRM mode. For both automatic and manual tests, 

the energy applied in CID was varied between 10-35 V to find the optimum for the

transitions. For the manual test, the in-solution samples were injected as a normal sample to 

the LC-MS system and, in both product ion mode and SRM mode, collision energy was finely 

tuned to give high stable fragment signals.
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Based on the described investigation and analyses of in-solution samples, signature peptides 

were selected and confirmed using the final immunocapture LC-SRM-MS method to test 

yield and stoichiometric relation to parent markers. The signature peptides were chosen to 

function as specific surrogates for each of the different isovariants of the markers. All the 

signature peptides are listed in Table 3.1-3.3, and in Table 3.4, with their optimal CID and 

transitions in SRM mode. 

For ProGRP isoforms, the two signature peptides LSAPGSQR and DLVDSLLQVLNVK

were assigned for isoform 1 and isoform 3, respectively (Paper I). For ProGRP isoform 2,

which is very sparsely expressed on mRNA level47, 48, no signature peptide candidate was 

considered suited, and an alternative approach for its determination is described later (in 

section 3.2.2.1). In addition to the assigned signature peptides for the isoforms, the signature 

peptide NLLGLIEAK was confirmed for total ProGRP, which used to increase sensitivity for 

ProGRP (see Table 3.5 for LLOQs) (Paper I).

For NSE isoenzymes, one signature peptide was assigned each of the two possible subunits 

for NSE (Paper III). Several candidates were eligible; however, the two which best fitted to 

the listed preferences (see previous page), were chosen. The signature peptide ELPLYR was 

-

-monomer (see NCBI-BLAST search results in Table 3.4). The signature 

-enolase was TIAPALVSK, which occur both in the NNE- and 

heterodimeric NSE- of human enolases. The immunocapture process with NSE 

specific anti-

-subunit in heterodimeric NSE. 

34



R
E

SU
L

T
S 

A
N

D
 D

IS
C

U
SS

IO
N

T
ab

le
 3

.1
: T

he
 p

ri
m

ar
y 

st
ru

ct
ur

es
of

 r
ep

or
te

d 
is

ov
ar

ia
nt

s f
or

 P
ro

G
R

P 
an

d 
N

SE
. E

ac
h 

le
tte

r r
ep

re
se

nt
s o

ne
 a

m
in

o 
ac

id
 re

si
du

e.
 T

he
 d

iff
er

in
g 

A
A

-r
es

id
ue

s b
et

w
ee

n 
th

e 
tw

o 
di

ff
er

en
t s

ub
un

-
-e

no
la

se
) f

or
 N

SE
 is

oe
nz

ym
es

 a
nd

 th
e 

th
re

e 
is

of
or

m
s o

f P
ro

G
R

P 
ar

e 
m

ar
ke

d 
gr

ee
n,

 a
nd

 th
e 

ch
os

en
 si

gn
at

ur
e 

pe
pt

id
es

 a
re

 e
m

ph
as

iz
ed

 b
y 

fr
am

es
.T

he
 se

qu
en

ce
sa

re
 a

cc
or

di
ng

 to
U

ni
Pr

ot
K

B
/S

w
is

s-
-e

no
la

-e
no

la
se

).
Is

of
or

m
 1

 (-
23

-1
25

 A
A

)
-2

3
M

R
G

R
E

L
P

L
V

L
L

A
L

V
L

C
L

A
P

R
G

R
A

V
P

L
P

A
G

G
G

T
V

L
T

K
M

Y
P

R
G

N
H

W
A

V
G

H
L

M
27

28
G

K
K

S
T

G
E

S
S

S
V

S
E

R
G

S
L

K
Q

Q
L

R
E

Y
I

R
W

E
E

A
A

R
N

L
L

G
L

I
E

A
K

E
N

R
N

H
Q

P
P

Q
77

78
P

K
A

L
G

N
Q

Q
P

S
W

D
S

E
D

S
S

N
F

K
D

V
G

S
K

G
K

V
G

R
L

S
A

P
G

S
Q

R
E

G
R

N
P

Q
L

N
Q

Q
12

5

Is
of

or
m

 2
 (-

23
-1

18
 A

A
)

-2
3

M
R

G
R

E
L

P
L

V
L

L
A

L
V

L
C

L
A

P
R

G
R

A
V

P
L

P
A

G
G

G
T

V
L

T
K

M
Y

P
R

G
N

H
W

A
V

G
H

L
M

27

28
G

K
K

S
T

G
E

S
S

S
V

S
E

R
G

S
L

K
Q

Q
L

R
E

Y
I

R
W

E
E

A
A

R
N

L
L

G
L

I
E

A
K

E
N

R
N

H
Q

P
P

Q
77

78
P

K
A

L
G

N
Q

Q
P

S
W

D
S

E
D

S
S

N
F

K
D

V
G

S
K

G
K

G
S

Q
R

E
G

R
N

P
Q

L
N

Q
Q

11
8

Is
of

or
m

 3
 (-

23
-1

15
 A

A
)

-2
3

M
R

G
R

E
L

P
L

V
L

L
A

L
V

L
C

L
A

P
R

G
R

A
V

P
L

P
A

G
G

G
T

V
L

T
K

M
Y

P
R

G
N

H
W

A
V

G
H

L
M

27

28
G

K
K

S
T

G
E

S
S

S
V

S
E

R
G

S
L

K
Q

Q
L

R
E

Y
I

R
W

E
E

A
A

R
N

L
L

G
L

I
E

A
K

E
N

R
N

H
Q

P
P

Q
77

78
P

K
A

L
G

N
Q

Q
P

S
W

D
S

E
D

S
S

N
F

K
D

L
V

D
S

L
L

Q
V

L
N

V
K

E
G

T
P

S
11

5

-e
no

la
se

(1
-4

34
A

A
)

1
M

S
I

L
K

I
H

A
R

E
I

F
D

S
R

G
N

P
T

V
E

V
D

L
F

T
S

K
G

L
F

R
A

A
V

P
S

G
A

S
T

G
I

Y
E

A
L

E
L

R
50

51
D

N
D

K
T

R
Y

M
G

K
G

V
S

K
A

V
E

H
I

N
K

T
I

A
P

A
L

V
S

K
K

L
N

V
T

E
Q

E
K

I
D

K
L

M
I

E
M

D
G

T
10

0

10
1

E
N

K
S

K
F

G
A

N
A

I
L

G
V

S
L

A
V

C
K

A
G

A
V

E
K

G
V

P
L

Y
R

H
I

A
D

L
A

G
N

S
E

V
I

L
P

V
P

A
F

15
0

15
1

N
V

I
N

G
G

S
H

A
G

N
K

L
A

M
Q

E
F

M
I

L
P

V
G

A
A

N
F

R
E

A
M

R
I

G
A

E
V

Y
H

N
L

K
N

V
I

K
E

K
Y

20
0

20
1

G
K

D
A

T
N

V
G

D
E

G
G

F
A

P
N

I
L

E
N

K
E

G
L

E
L

L
K

T
A

I
G

K
A

G
Y

T
D

K
V

V
I

G
M

D
V

A
A

S
E

25
0

25
1

F
F

R
S

G
K

Y
D

L
D

F
K

S
P

D
D

P
S

R
Y

I
S

P
D

Q
L

A
D

L
Y

K
S

F
I

K
D

Y
P

V
V

S
I

E
D

P
F

D
Q

D
D

30
0

30
1

W
G

A
W

Q
K

F
T

A
S

A
G

I
Q

V
V

G
D

D
L

T
V

T
N

P
K

R
I

A
K

A
V

N
E

K
S

C
N

C
L

L
L

K
V

N
Q

I
G

S
V

35
0

35
1

T
E

S
L

Q
A

C
K

L
A

Q
A

N
G

W
G

V
M

V
S

H
R

S
G

E
T

E
D

T
F

I
A

D
L

V
V

G
L

C
T

G
Q

I
K

T
G

A
P

C
R

40
0

40
1

S
E

R
L

A
K

Y
N

Q
L

L
R

I
E

E
E

L
G

S
K

A
K

F
A

G
R

N
F

R
N

P
L

A
K

43
4

-e
no

la
se

(1
-4

34
 A

A
)

1
M

S
I

E
K

I
W

A
R

E
I

L
D

S
R

G
N

P
T

V
E

V
D

L
Y

T
A

K
G

L
F

R
A

A
V

P
S

G
A

S
T

G
I

Y
E

A
L

E
L

R
50

51
D

G
D

K
Q

R
Y

L
G

K
G

V
L

K
A

V
D

H
I

N
S

T
I

A
P

A
L

I
S

S
G

L
S

V
V

E
Q

E
K

L
D

N
L

M
L

E
L

D
G

T
10

0

10
1

E
N

K
S

K
F

G
A

N
A

I
L

G
V

S
L

A
V

C
K

A
G

A
A

E
R

E
L

P
L

Y
R

H
I

A
Q

L
A

G
N

S
D

L
I

L
P

V
P

A
F

15
0

15
1

N
V

I
N

G
G

S
H

A
G

N
K

L
A

M
Q

E
F

M
I

L
P

V
G

A
E

S
F

R
D

A
M

R
L

G
A

E
V

Y
H

T
L

K
G

V
I

K
D

K
Y

20
0

20
1

G
K

D
A

T
N

V
G

D
E

G
G

F
A

P
N

I
L

E
N

S
E

A
L

E
L

V
K

E
A

I
D

K
A

G
Y

T
E

K
I

V
I

G
M

D
V

A
A

S
E

25
0

25
1

F
Y

R
D

G
K

Y
D

L
D

F
K

S
P

T
D

P
S

R
Y

I
T

G
D

Q
L

G
A

L
Y

Q
D

F
V

R
D

Y
P

V
V

S
I

E
D

P
F

D
Q

D
D

30
0

30
1

W
A

A
W

S
K

F
T

A
N

V
G

I
Q

I
V

G
D

D
L

T
V

T
N

P
K

R
I

E
R

A
V

E
E

K
A

C
N

C
L

L
L

K
V

N
Q

I
G

S
V

35
0

35
1

T
E

A
I

Q
A

C
K

L
A

Q
E

N
G

W
G

V
M

V
S

H
R

S
G

E
T

E
D

T
F

I
A

D
L

V
V

G
L

C
T

G
Q

I
K

T
G

A
P

C
R

40
0

40
1

S
E

R
L

A
K

Y
N

Q
L

M
R

I
E

E
E

L
G

D
E

A
R

F
A

G
H

N
F

R
N

P
S

V
L

43
4

35



RESULTS AND DISCUSSION

Table 3.2: Steps in the process to identify and choose signature peptides for ProGRP. Step 1 lists all in silico 

generated tryptic peptides composed of 6 amino acid residues. Step 2 lists the variant specific sequences from Step 1 

that was detected by LC-MS analyses of tryptic digests. Step 3 lists the chosen signature peptides in bold. The 

sequences marked grey were not regarded eligible in the different steps.

Tryptic
peptide Step1 Step2 Step3

iso1T3b ELPLVLLALVLCLAPRc

iso1T5b AVPLPAGGGTVLTKc

iso1T7a,b GNHWAVGHLMGK
iso1T9b STGESSSVSER STGESSSVSER
iso1T13a,b WEEAAR
iso1T14b NLLGLIEAK NLLGLIEAK NLLGLIEAK
iso1T16b NHQPPQPKc

iso1T17b ALGNQQPSWDSEDSSNFK ALGNQQPSWDSEDSSNFKd

iso1T21 LSAPGSQR LSAPGSQR LSAPGSQR
iso1T23b NPQLNQQ NPQLNQQd

Iso2T3b ELPLVLLALVLCLAPRc

Iso2T5b AVPLPAGGGTVLTKc

Iso2T7ab GNHWAVGHLMGK
iso2T9b STGESSSVSER STGESSSVSER
iso2T13a,b WEEAAR
iso2T14b NLLGLIEAK NLLGLIEAK NLLGLIEAK
iso2T16b NHQPPQPK
iso2T17b ALGNQQPSWDSEDSSNFK ALGNQQPSWDSEDSSNFKd

iso1T23b NPQLNQQ NPQLNQQd

Iso3T3b ELPLVLLALVLCLAPRc

Iso3T5b AVPLPAGGGTVLTKc

Iso3T7a,b GNHWAVGHLMGK
iso3T9b STGESSSVSER STGESSSVSER
iso3T13b WEEAAR
iso3T14b NLLGLIEAK NLLGLIEAK NLLGLIEAK
iso3T16b NHQPPQPKc

iso3T17b ALGNQQPSWDSEDSSNFK ALGNQQPSWDSEDSSNFKd

iso3T18 DLVDSLLQVLNVK DLVDSLLQVLNVK DLVDSLLQVLNVK
Symbol description: a not found exclusively in ProGRP deriving from homo sapiens (with swissprot database), b not isoform specific,
c not detected in step 2, d detected with missed cleavage.

Table 3.3: Steps in the process to identify and choose signature peptides for NSE. Step 1 lists all in silico generated 

tryptic peptides composed of 6 amino acid residues. Step 2 lists the variant specific sequences from Step 1 that was 

detected by LC-MS analyses of tryptic digests. Step 3 lists the chosen signature peptides in bold. The sequences marked 

grey were not regarded eligible in the different steps.

Trypticpeptide Step1 Step2 Step3
a EIFDSR

GNPTVEVDLFTSK GNPTVEVDLFTSK
b AAVPSGASTGIYEALELR

AVEHINKc

TIAPALVSK TIAPALVSK TIAPALVSK
LNVTEQEKc

LMIEMDGTENKc

b FGANAILGVSLAVCK
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a AGAVEK
a GVPLYR

HIADLAGNSEVILPVPAFNVINGGSHAGNK HIADLAGNSEVILPVPAFNVINGGSHAGNK
LAMQEFMILPVGAANFR LAMQEFMILPVGAANFR
IGAEVYHNLK IGAEVYHNLK
DATNVGDEGGFAPNILENK DATNVGDEGGFAPNILENK
EGLELLK EGLELLK

a AGYTDK
VVIGMDVAASEFFR VVIGMDVAASEFFR

b YDLDFK
SPDDPSRb

YISPDQLADLYK YISPDQLADLYK
DYPVVSIEDPFDQDDWGAWQK DYPVVSIEDPFDQDDWGAWQK
FTASAGIQVVGDDLTVTNPK FTASAGIQVVGDDLTVTNPK
SCNCLLLKc

VNQIGSVTESLQACKc

LAQANGWGVMVSHR LAQANGWGVMVSHR
a SGETEDTFIADLVVGLCTGQIK

YNQLLR YNQLLR
IEEELGSK IEEELGSK

a EILDSR
GNPTVEVDLYTAK GNPTVEVDLYTAK

b AAVPSGASTGIYEALELRc

AVDHINSTIAPALISSGLSVVEQEKc

LDNLMLELDGTENKc

b FGANAILGVSLAVCK
a AGAAER

ELPLYR ELPLYR ELPLYR
HIAQLAGNSDLILPVPAFNVINGGSHAGNKc

LAMQEFMILPVGAESFR LAMQEFMILPVGAESFR
LGAEVYHTLK LGAEVYHTLK
DATNVGDEGGFAPNILENSEALELVKc

a AGYTEK
IVIGMDVAASEFYR IVIGMDVAASEFYR

b YDLDFK
SPTDPSRc

YITGDQLGALYQDFVR YITGDQLGALYQDFVR
DYPVVSIEDPFDQDDWAAWSKc

FTANVGIQIVGDDLTVTNPK FTANVGIQIVGDDLTVTNPK
a ACNCLLLK

VNQIGSVTEAIQACKc

LAQENGWGVMVSHRc

a SGETEDTFIADLVVGLCTGQIK
a TGAPCR
a YNQLMR

IEEELGDEAR IEEELGDEAR
FAGHNFR FAGHNFR

Symbol description: a not found exclusively in NSE- - -enolase (homo sapiens as only searched organism, with swissprot 

database), b not isoenzyme specific, c not detected in step 2.
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Table 3.4: Summary of the selected signature peptides and internal standards. The table includes the 

possible origins, E-values from the NCBI-BLAST search, occurrence in other proteins and the final 

MS parameters for the chosen peptides.

Symbol description: a From NCBI-BLAST search. b Collision energy, c Quantifier transition. d Qualifier transition. N.A.: Not 

applicable.

3.2 FURTHER OPTIMIZING THE LC-SRM-MS METHODS FOR BIOLOGICAL 

SAMPLES

3.2.1 Beads-aided immunocapture prior to MS analysis

Targeted sample preparation by immunoaffinity extraction (IAE), often termed 

immunocapture in some designs, was aimed to be the sample preparation of choice to use for 

clinical serum samples. This highly selective samples preparation approach can both aid 

enrichment which may be necessary for the markers occurring at very low concentration 

levels, and enable simultaneous capture of several markers (multiplexing). Former extensive 

and thorough investigation of several mAbs with different properties for ProGRP180, 181 and 

NSE138 led to the choice of two antibodies; mAb E146 for ProGRP (also termed anti-ProGRP, 

Paper I) which binds to aa 48-52 as shown by epitope study180, and mAb E21 (also termed 

anti- - Paper III) wi -enolase, with binding epitope 

Peptide Origin E-valuea
Occurs in other 

human, bovine or 
mouse proteins

CEb

(V) Fragment transitions

TIAPALVSK -enolase 
in Homo sapiens 5E-04 No 16

16
450.6 614.4 (y6)c

450.6 685.4 (y7)d

ELPLYR -enolase 
in Homo sapiens 2E-02 No 14

14
395.7 274.7 (y4+2)c

395.7 548.3 (y4)d

ELPLY[R_13C6_15N2] N.A. N.A. No 14
14

401.0 279.5 (y4+2)c

401.0 544.4 (y4) d

LSAPGSQR preProGRP isoform 1 
in Homo sapiens 6E-03 No 17

14
408.2 272.6 (y5

2+)c

408.2 544.4 (y5)d

NLLGLIEAK preProGRP isoforms 1, 2 and 3 
in Homo sapiens 4E-04 No 15

16
485.8 630.3 (y6)c

485.8 743.4 (y7)d

NLLGLIEA[K_13C6
15N2] N.A. N.A. No 15

16
489.9 638.3 (y6)c

489.9 751.4 (y7)d

DLVDSLLQVLNVK preProGRP isoform 3 
in Homo sapiens 2E-08 No

34
29
18

728.6 200.8 (a2)c

728.6 228.8 (b2)c

728.6 359.9 (y3)d
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close to aa 416-433 (see Table 3.1 for primary structure). In a few experiments mAb 

anti-ENO1 supplied by Abcam (also termed anti- - ), with selective affinity

-enolase (for which the epitope is not reported), was used (Paper V).

3.2.1.1 ProGRP

The approach of using immunocapture for extraction of ProGRP from serum as sample 

preparation for the ProGRP(31-98)-standard was evaluated by Winther et al., who also 

investigated alternative sample preparations in form of using monoclonal imprinted polymers 

(MIP, unpublished data) and protein precipitation (PPT)182. The immunocapture format was 

mAb E146-coated microtiter plates with 96-wells which was used to extract ProGRP from 

serum followed by SPE and LC-MS analysis. Because the well-format limited the sample 
1, Paper I introduced a modified approach using mAb E146-coated 

magnetic beads where a higher sample volume could be used, as illustrated in Figure 3.1. This 

new approach was used to extract recombinant ProGRP standards for ProGRP isoform 1, 2 

-98)- Selected 

chromatograms obtained by use of these three methods with different sample preparations

(PPT, in-well immunocapture and on-beads immunocapture) are illustrated in Figure 3.2 

showing superiority of the use of immunocapture in a beads design for serum samples.

Figure 3.1: An illustration of the immunocapture approaches in the in-well and on-beads formats. The 

in-well format is restricted to the size of the wells, and in addition the wells are generally only coated with one 

antibody. For the magnetic beads, different aliquots can be coated separately with their different antibodies, and 

thus, without challenging the coating process, offer a more flexible format for multiplexing purposes. In

addition, this format serves flexibility in consumption of sample volume and possibilities for enrichment.

The beads compared to the wells design improved sensitivity due to higher sample volume 

and increased enrichment factor, as well as sufficient purification to circumvent the time- and 
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labor consuming SPE-step. The well immunocapture LC-MS approach reported LODs and 

LLOQs of 200 and 330 pg/mL1, respectively, for determination of ProGRP (31-98) in serum. 

This does not include the reference limit for healthy endogenous levels, which is reported to 

be 58.9 pg/mL at a 97.5 percentile, estimated using the standard ProGRP (31-98) 

corresponding to about 7.2 pM ProGRP181. While for the beads-design immunocapture 

LC-MS approach presented in this thesis, the achieved LODs and LLOQs where 1 and 10 pM

(Paper I and II), respectively, (corresponding to about 8 and 82 pg/mL of ProGRP (31-98)).

These limits are below the reported cut-off value (for positive classification of SCLC versus 

non-small cell lung cancers and benign lung diseases at >95% specificity) for the TR-IFMA

being 10.3 pM (85 pg/mL)183.

The method allowed not only determination total ProGRP, but also simultaneous 

quantification of isoform 1 and isoform 3. Paper I described this possibility to, for the first 

time, measure these isoforms. The novel ability to differentiate between these different forms 

of ProGRP now offers a tool to investigate if they hold individual clinical information (see 

section 3.4.1.1). As mentioned earlier (under chapter 3.1), no specific tryptic peptides for 

isoform 2 was found, which rendered direct determination of this isoform impossible, whilst 

an indirect determination will be described in section 3.2.2.1.

3.2.1.2 NSE

For NSE, no prior investigation of immunocapture has been performed. However, a method 

strategy for plasma samples was earlier tested in a master thesis by Lund184. In this design 

protein precipitation, tryptic digest and on-line RAM-trap with back-flushing on to a LC-MS

system showed neither reproducible nor sufficient sensitive detection. The beads-design 

immunocapture LC-MS approach for NSE (Paper III), however, passed the validation (see 

chapter 3.3) for quantification of -NSE with LOD and LLOQ of 11 and 38 pg/mL, 

-enolase with Mw of 48 kDa). These 

limits are well below the reported reference levels for NSE which varies between 7-20

ng/mL185, 186. Selected chromatograms obtained by use of these two methods with different 

sample preparations (PPT and on-beads immunocapture) are illustrated in Figure 3.3 where 

the superior serum samples clean-up by use of immunocapture is evident.

Another quality of the immunocapture MS method can be seen from Figure 3.3; in addition to 

-enolase, the method may also determ -enolase. Antibodies for 

immunometric assays for NSE may, in comparison, have different affinities for 
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NSE-isoenzymes (see 1.2.2.3); however, to the writers knowledge, no assay can simultaneous 

differentiate between them. The immunocapture MS method will also be unable to distinguish 

- - -enolase, it may give knowledge about the 

-enolase in a sample (see section 3.4.1.2 and 3.4.2.2). The determination of -

enolase was an indirect estimation which is described under section 3.2.2.2.

Figure 3.2: Chromatograms from LC-MS analysis of different sample preparations of serum samples 
being either patient serum samples or healthy donor serum which was added ProGRP-standards.

A) The analyzed sample was a 1 mL healthy serum sample with added ProGRP (31–98)-standard to give a 
concentration of 30 ng/mL. The method set up was PPT-RAM LC-MS with determination in SIM mode 
(m/z 485.8) with reported LOD of 1500 pg/mL. This chromatogram is adapted with permission from 
reference 179. Copyright © 2007 WILEY-VCH Verlag GmbH & Co.

B) The analyzed sample was patient serum with concentration of 720 pg/mL ProGRP. The method set up 
was in-well immunocapture of 0.2 mL serum sample, and LC-MS determination in SRM mode (m/z
486.01 743.74) with reported LOD of 200 pg/mL. This chromatogram is adapted with permission
from reference 1. Copyright © 2009 WILEY-VCH Verlag GmbH & Co.

C) The analyzed serum sample was from a SCLC patient with total ProGRP concentration of 2318 pg/mL
(a sample from Paper I). The method set up was on-beads immunocapture of 1 mL sample, and LC-MS 
determination in SRM mode of LSAPGSQR (m/z 408.2 544.4) at 14.9 min, DLVDSLLQVLNVK 
(m/z 728.6 359.9) at 26.8 min, NLLGLIEA[K_13C6

15N2] (m/z 489.9 751.4) at 22.3 min (top peak),
and NLLGLIEAK (m/z 485.8 743.4) at 22.3 min (bottom peak), with reported LOD of 8 pg/mL for 
the total ProGRP (Paper 1).
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Figure 3.3: Chromatograms from LC-MS analysis of two different sample preparations of serum samples 
with endogenous NSE.

A) The analyzed patient serum sample had RIA-determined NSE concentration of 2350 ng/mL. The 
method set up is PPT-RAM LC- -enolase (m/z 395.7 for ELPLYR) 
of a 1 mL serum sample with no reported LOD due to irreproducibility of the trypsin step. This
chromatogram is adapted with permission from reference 184. Copyright © 2006 Hanne Lund.

B) The analyzed serum sample was from a healthy donor with normal concentration levels of about 
14 ng/mL. The method set up (from Paper IV) was on-beads immunocapture of 1 mL sample, and 
LC-MS determination in SRM mode of TIAPALVSK (m/z 450.2 685.4) at 20.7 min,
ELPLY[R_13C6_15N2] (m/z 401.0 558.3) at 21.3 min (top peak), and ELPLYR (m/z 395.7 548.3) at 
21.3 min (bottom peak), with reported LOD of 11 pg/mL for -subunit of NSE.

To conclude; the advantage of immunocapture over protein precipitation was demonstrated 

for both markers. The benefits of using antibody based extraction by magnetic beads of these 

markers are that: 1) the selective antibodies can ensure a high degree of purification, 2) the 

flexibility in final added solution ensures downstream compatibility with trypsin digestion 

conditions, 3) use of larger sample volume and simultaneous enrichment can be arranged, 4) 

the strategy is applicable to a selection of specified markers which is favorable when aiming 

for a multiplexing method.
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3.2.2 Determining ProGRP -NSE

The methods for ProGRP and NSE as described in section 3.2.1.1 and 3.2.1.2, respectively, 

allow us to measure:

- ProGRPs isoform 1 and isoform 3 as well as the total ProGRP

- -enolase from NSE

A shortcoming was the inability to determine isoform 2 of ProGRP and the -subunit of NSE,

directly. For the determination of these two variants, modifications in modes of conduct,

compared to the other marker variants, was necessary for determination. This will now be 

described.

3.2.2.1 The isoform 2 of ProGRP

The lack of signature peptide for ProGRP isoform 2demanded an alternative approach for its

determination. For this, the feasibility of an indirect measurement was investigated through a 

blinded experiment with added standards of each of the three recombinant ProGRP isoforms 

(Paper I). This determination was based on the assumption that ProGRP only consisted of the 

three isoforms (isoform 1, 2, and 3, see section 1.1.2.1 and chapter 3.1) and that the 

contribution to the signal of signature peptide for total ProGRP (NLLGLIEAK) was equal for 

each of the ProGRP isoforms using the immunocapture SRM method. The assumptions 

founded Equation I, which show that the amount of ProGRP isoform 2 was calculated from 

subtracting the measured amount of two other ProGRP isoforms from the measured amount 

of total ProGRP.

Equation I: [ProGRP isoform 2] = [total ProGRP]  [ProGRP isoform 1]   [ProGRP isoform 3]
The indirect determination was evaluated by its ability to determine relative presence of this 

isoform in the sample compared to the other isoforms. The correlation between added and 

measured relative amounts was considered to be acceptable and to be the same for the three 

isoform determinations, though deviations was observed (Paper I). This indirect 

determination was however not used for patient samples.

3.2.2.2 -subunit of NSE 

For NSE, it was not possible to determine the amount of -enolase from its

directly due to standard instability (Paper V). This heterodimer standard, the -standard, was 

obtained from ion-exchange chromatography of human brain homogenate, as described 

elsewhere187. The heterodimer was attempted applied as a standard as it would allow 
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- -subunit in a straightforward manner by use of one single 

standard. Analyses of a single immunocapture of the heterodimer standard from an ABC-

buffer solution showed presence of both subunits (see Figure 3.4); however, the non-

covalently linked subunits of this heterodimer proved to be dissociated, and could therefore 

not be used as a standard when using the immunocapture method which relays on one of the 

subunits. This was concluded after performing extraction of the -standard added to ABC 

buffer solution using anti- coated magnetic beads and separately digesting the beads-bound

fraction and the not-extracted markers left in the ABC buffer solution shown in Figure 3.4.

The figure shows the relative yield for these two conditions in comparison to an in-solution

digest. Here, the signature peptides for the two enolases show that a large degree of -subunit 

and very little -subunit was left in the solution implying that storage had impaired the 

standard to dissociate the subunits.

Figure 3.4: Different digests of a -calibrator prove instability of the standard. In A) a solution of 

ABC-buffer added -standard was digested, in B) an identical solution was added anti- coated magnetic beads 

and the captured (beads-bound) markers were digested, and in C) the solution of remaining non-bound markers

was digested. The scale of the y-axis is similar for all the chromatograms.

A) In-solution digest

TIAPALVSK

B) Beads-bound digest C) In-solution digest of remaining
-standard after IA extraction
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As the intended standard was considered unsuited, alternative approaches were considered. 

The approach of choice was an indirect determination of heterodimer NSE, where the

calibration curve for -enolase was used to estimate -enolase (Paper IV). In this process, the 

calibration curve for -enolase and -enolase was harmonized by obtaining the average ratio 

of the calibration curves of an in-solution digest of the -standard and -standard.

This resulted in an average ratio of TIAPALVASK:ELPLYR close to 1:0.8 implying that the 

yield of both peptides, and thus a combination of both tryptic digestion completeness and 

ionization efficiency of these, were comparable (see Figure 3.4). By assuming similar 

signature peptide yield from the immunocapture process - signature peptide standard 

curve may be applied for an indirect -enolase concentration. The calibration 

-signature peptide was thus used as a surrogate by modifying the signal for 

-signature peptide by multiplying it with the ratio factor. Ultimately, this approach was used 

-enolase in patient samples as shown in section 3.3.3.1. It should be 

noted that later experiments indicated that the immunocapture process may affect production 

signature peptide (Paper V); and thus have effects for such a determination. This will briefly 

be discussed in section 3.3.3.1.

3.3 EVALUATION OF THE QUANTITATIVE METHODS

The main objective of method validation is to demonstrate the reliability of a particular 

method for the determination of an analyte concentration in a specific biological matrix. Two 

validations were performed using the ICH-guideline Validation of Analytical Procedures188

and EMA’s Guideline on bioanalytical method validation189 as guides (Paper I and III). The 

validations were carried out to evaluate the two individual method’s ability to 1.) Determine

both the concentration of ProGRP isoforms 1 and 3, and the total ProGRP concentration

(Paper I), and 2.) Determine - -subunit 

of NSE (Paper III). Ultimately, the extraction and determination was performed 

simultaneously involving a fusion of the two validated methods into one multiplexing 

method. This method was evaluated based on comparison with the two validated methods

(Paper IV).

3.3.1 Performance parameters

From EMA’s guideline189 the following main characteristics is stressed to be essential to 

ensure the acceptability of the performance and the reliability of analytical results of a 
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bioanalytical method: selectivity, lower limit of quantification (LLOQ), the response function 

and calibration range, accuracy, precision, matrix effects, and stability of the analytes. The 

tested validation parameters and obtained values are listed in Table 3.5, which show that the 

methods pass strict validation criteria. The conditions of validation and evaluation are

described in section 3.3.2 and 3.3.3.

As Table 3.5 show, LODs and LLOQs for the two isoforms did not reach the concentration 

limits for healthy serum samples, but the LOD for total ProGRP at 1 pM did. This is as also 

shown in Figure 3.5. This limit would theoretically allow a LLOQ of 3 pM, however, due to 

demand for sufficient accuracy and precision the obtained LLOQ was 13 pM in Paper I,

though revised to be 10 pM in Paper II.

Table 3.5: Validation parameters for the ProGRP- and the NSE-methods. The overview is a reproduction

of information from Paper I and III.

* LLOQ from Paper II. BSA: Bovine serum albumin 

Parameters for validation
Protein Sample 

matrix Range LOD LLOQ R2 Precision (RSD%) Accuracy 
(bias%)

Intraday Interday

ProGRP isoform 1
ProGRP-
depleted 
serum

35-3468 pM 10 pM 35 pM 0.983
LLOQ

MQ
HLOQ

10%
11%
8%

19%
20%
26%

9%
5%
1%

ProGRP isoform 3
ProGRP-
depleted 
serum

20-2048 pM 5 pM 20 pM 0.977
LLOQ

MQ
HLOQ

9%
32%
9%

10%
12%
25%

23%
13%
4%

Total ProGRP
ProGRP-
depleted 
serum

10-7631 pM 1 pM 10 pM* 0.974
LLOQ

MQ
HLOQ

6%
11%
9%

21%
14%
33%

25%
2%
7%

-subunit of NSE 5% BSA 5-500 ng/mL 11 pg/mL 38 pg/mL 0.999
LQ
MQ
HQ

10%
3%
13%

20%
20%
4%

4%
9%
1%

Protein Sample matrix Freeze-thaw stability Bench-top stability

Cycle 1 Cycle 2 Cycle 3 4 hours

ProGRP isoform 1 Healthy donor serum LQ
HQ

98%
111%

84%
97%

81%
74%

98%
86%

ProGRP isoform 3 Healthy donor serum LQ
HQ

52%
97%

66%
85%

61%
84%

52%
88%

Total ProGRP Healthy donor serum LQ
HQ

65%
91%

72%
95%

74%
103%

87%
97%

-subunit of NSE
Healthy donor serum - 102% 106% 108% 88%

5% BSA LQ
HQ

83%
88%

85%
97%

81%
90%

102%
101%

46



RESULTS AND DISCUSSION

3.3.2 Selectivity, choice of matrix & choice of internal standard

The selectivity was extensively tested and assured by the assigned signature peptides 

determined by the presented LC-MS method in SRM mode combined with the highly 

selective antibody based sample preparation approach. The LC method was adjusted to 

separate the peaks from the signature peptides to allow for MS segments, as well as to avoid 

co-elution with inferring compounds deriving from the beads-extraction of the different 

samples.

The calibration standards were created by adding standard solutions of the markers to the 

chosen matrixes. See Table 3.6 for the relevant matrixes for the different methods. Both

validation guides188, 189 recommend to aspire use of a identical or similar blank matrix as the 

biological matrix spiked with the reference standards for preparation of calibration standards, 

quality control samples and stability samples, and to investigate for matrix effects.

For ProGRP, healthy donor serum was attempted as a blank matrix, but as endogenous 

ProGRP could be detected in these samples, the serum needed to be depleted for ProGRP to 

serve as a blank matrix, as can be seen in Figure 3.5. The depletion was performed by 

performing an extraction of endogenous ProGRP with immunocapture using the E146 mAb

coated beads. This resulting ProGRP-depleted serum was ultimately was used as calibration 

matrix for the validated method (Paper I).

Figure 3.5: ProGRP detected in 

serum from healthy donor.

The immunocapture MS method 

for ProGRP performed on: 

A) ProGRP added to healthy serum 

(500 pM), B) healthy donor serum, 

and C) ProGRP-depleted serum.

The signature peptide for total

ProGRP was detected in the 

healthy sample (B), but not in the

ProGRP-depleted sample (C).

Endogenous NSE was also present in serum from healthy donors. However, as several cycles 

to attempt to deplete entirely for the marker did not create a blank matrix (performed as for 

ProGRP-depletion of healthy serum), a 5 % bovine serum albumin (BSA) solution was

chosen as calibration matrix (Paper III).

B)

A)

C)

A)

B)

C)
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Firstly, it was assured that no inferring peaks were found in LC-MS methods. For this, 

immunocapture of “blank samples” of the relevant calibration matrixes (samples not added 

standards) was performed to investigate ProGRP-depleted serum for ProGRP signature 

peptides and 5 % BSA for NSE signature peptides. For the test of matrix effects, post-column 

infusion of the heavy internal standards was performed for analyses of serum samples from 

healthy donors. The AQUA peptides NLLGLIEA[K_13C6
15N2] (Paper I) and 

ELPLY[R_13C6_15N2] (Paper III) as surrogates for their light variant as it was assumed that 

the heavy version of a signature peptide would have the same ionization properties as its light 

signature peptide. Both methods passed this test as the signal did not change around their 

respective retention time. Matrix effects for the other signature peptides were not directly 

evaluated; however, they were indirectly evaluated by testing of linearity and accuracy, as 

well as by monitoring of agreement of parallel.

For the absolute quantification methods, the AQUA peptides were chosen as internal 

standard due to commercially availability and the possibility of quick and easy

implementation. It is commented that incomplete digestion of the target protein190, 191, partial 

modification of the target peptide or partial loss of the synthetic peptide before addition can 

affect the accuracy of such an approach. However, for these method designs this is not a 

relevant weakness, as the internal standards are merely used to correct for variance caused by 

the auto injector or the MS and not for direct quantification purposes.

3.3.3 The merging of two methods to demonstrate multiplexing potential

One of the aims of this thesis was to merge the ProGRP method and NSE method. The 

purpose was to exemplify the strength of the combination of immunocapture LC-MS by 

establishment of one single multiplexing method. The aim was both to improve throughput 

and utilization of the available sample without compromising on the separate methods 

performance. Such a method should have higher diagnostic accuracy (see section 1.2.1) than 

the individual methods due to simultaneous measurement of ProGRP and NSE, and thus be a

more valuable diagnostic tool for SCLC-marker determination. 

The method for co-determining ProGRP isoforms & NSE isoenzymes was not validated itself,

however evaluated based on the full validations of the two individual methods (Paper I and 

III). In the merging process, some alterations were necessary as a few conditions differed 

between the methods (see Table 3.6). The effects of these modifications were evaluated

(Paper IV and V) and will be addressed in these subsequent sections.
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Table 3.6: Key parameters form the immunocapture MS methods. Three methods were developed for 

determination of each or both ProGRP and NSE. The main differing parameters between them are in italic and 

underlined.

ProGRP-method
(Paper I)

NSE-method
(Paper IV)

Combined NSE 
and ProGRP method

(Paper IV)

Quantifiable 
markers

ProGRP:
isoform 1, isoform 3, & total 

ProGRP

NSE: 
-subunit

ProGRP: 
isoform 1, isoform 3,

& total ProGRP
NSE:

- -subunit

Sample matrix ProGRP-depleted serum 5% BSA ProGRP-depleted serum

Immunocapture mAbE146-coated 
magnetic beads

mAbE21-coated 
magnetic beads

mAbE146-coated magnetic 
beads plus mAbE21-coated 

magnetic beads

Post-immunocapture 
treatment Trypsin digest Reduction heat & alkylation,

trypsin digest
Reduction, heat & alkylation,

trypsin digest

LC-MS/MS

Aquasil C18 column, 
standard gradient elution 

with 40 L/min flow 
ESI-SRM-MS

in positive mode

Aquasil C18 column, 
standard gradient elution 

with 40 L/min flow 
ESI-SRM-MS

in positive mode

Aquasil C18 column, 
2-step gradient elution

with 45 L/min flow ,
ESI-SRM-MS 

in positive mode

3.3.3.1 Choice of extraction matrix and its implications for NSE determination

As NSE and ProGRP were to be extracted from the same sample, the intended approach was 

to add both anti-NSE and anti-ProGRP beads to the patient sample. It was also found 

convenient to use the same calibration sample and thus identical calibration matrix for both 

markers. ProGRP-depleted serum was chosen as sample matrix to produce the calibration 

curves. This had no implications for the initial calibration approach for ProGRP; however, for 

-NSE a standard addition variant of the calibration became necessary (Paper IV).

For the determination of the patient samples, the determination involved a calibration 

regression where the contribution of endogenous -NSE in the calibration matrix had to be 

considered. From the standard linear regression (see Equation II and Figure 3.6 A), where x is 

set as the concentration of added -NSE standard, this endogenous -NSE contribution is 

found by extrapolating the produced regression and setting the y-value to zero (given by the 

symbol d in Equation III). For the patient samples, the endogenous contribution needed to be 

added to the estimated concentration from the standard linear regression. In the case of the 
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calibration matrix in Figure 3.6, this endogenous contribution was: .. = 13.4 ng/mL. The 

linear equation can in principle thus be shifted to go through origo to be used for patient 

samples. This involve using the same slope, a, and setting the constant term, b, to zero for 

Equation II .

In addition, as introduced in section 3.2.2.2, -subunit from heterodimer NSE 

was included by adjusting and using the calibration curve for -enolase based on an 

in-solution digest of NSE standards giving the approximately ratio of 1:0.8 between the 

signature peptides TIAPALVASK and ELPLYR, respectively. By making assumptions of 

similar signature peptide production under immunocapture conditions of the different

isoenzymes of NSE, the calibration curve for -NSE could be used for estimation of 

concentration -NSE. Equation IV shows the calculated adjustment of the signal for the 

-signature peptide, given by the symbol w, with the ratio factor. This y-value could then be 

used for the calibration curve for -enolase where the regression must be shifted to go through 

origo as described above.

Equation II: = +
Equation III: =
Equation IV: = × 0.8
This indirect estimation of -enolase may be a valuable, though the assumption of similar 

signature peptide production under immunocapture conditions of the different isoenzymes of 

NSE may be incorrect. In addition, though it is also is a necessary assumption of similar 

-signature peptide production from monomeric, homodimeric and heterodimeric NSE, this 

may also not be the case. In Paper V -standard gave 

lower measurements of ELPLYR compared to non-captured. The assumed reason was steric 

hindrance of the mAb-bound -homodimer caused antibody-hampered trypsin availability. 

Different measures to reduce this steric hindrance of trypsin, was tested for the -standard of 

- -subunit, indicating that that 

signa -subunit may be hampered by the trypsin 

availability to larger degree than the unbound. Different signature peptide contribution from 

the two subunits of the homodimeric and the monomeric form of NSE will have implications

in terms of uncertainty for both the - -signature peptide, 

as well as to -NSE which relies on a set 

ratio between the signature peptides of the two subunits.
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Figure 3.6: Calibration regressions A) immunocapture MS method performed on ProGRP-depleted which 

was added - standard, and B) in-solution digestions of - - standards. The x-axis annotates the 

added amount of standard. The y-axis annotates the measured signature peptide to internal standard-ratio.

3.3.3.2 Presence of two different mAb beads and varying levels of individual markers

Addition of differing mAb coated beads, as well as differing levels of the other marker, could 

theoretically have an effect on both or either the immunocapture extraction and the tryptic 

yield. Three experiments were performed to investigate these matters (Paper IV).

Firstly, the effect of introducing different mAb coated beads than used for the target marker

was tested for both immunocapture extraction from human serum and 5% BSA. The relative 

yields obtained from the simultaneous extraction and LC-MC determination against the yields 

from use of the separate methods are shown in Figure 3.7. This indicates minimal effect of 

co-extraction and trypsin activity in the presence of magnetic extraction beads for the other 

marker, as well as implies non-altered MS signal and no matrix effects when introducing IA 

extraction beads for the other marker.s
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Figure 3.7: Yield after immunocapture with varying -NSE as well as 

varying presence of anti-ProGRP coated magnetic beads and anti-NSE coated magnetic beads. ProGRP 

and NSE were individually and simultaneously extracted from both 5% BSA or ProGRP depleted serum and 

digested with different anti-marker coated magnetic beads. The bars show the signature peptide yield relative to 

the extraction yield from a sample added only the single marker and extracted with its respective antibody (see 

supplementary data for Paper IV)

Secondly, to further test the effect of co-extraction on signature peptide yield, the level of the 

other marker was varied and an unpaired t-test was performed on the results. The H0

hypothesis was no effect on yield of signature peptide signal by varying the concentration of 

the other marker. Two stagnant concentration levels (for the values see Paper IV) of each 

marker were tested against two different concentrations of the other marker. The H0

hypothesis was not rejected (P>0.064, =0.05) which indicated that immunocapture of each 

marker is unaffected by various levels of the other marker.

As a final test, the linearity for each signature peptide measurement, in cases of both constant 

and varying levels of the other marker were produced, as shown in Figure 3.8. These had 

comparable calibration regressions, and good values for linearity (r2>0.970). Together, the 

experiments proved that neither introduction of the others markers IA extraction beads nor 

high amounts of the other marker affected their determination. These results also imply no

matrix effects.
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Figure 3.8: The markers are extracted and measured both at stagnant levels of the other marker and co-

varying levels in serum. The stagnant levels were 30 pM for ProGRP and 20 ng/mL for NSE. The co-varying 

values can be found in Supplementary data in Paper IV.

3.3.3.3 Reduction and alkylation

As NSE contains several cystein residues the assumed need for reduction, heat and alkylation

(Paper III) was the reason for this applied pre-digest treatment in the combined method 

(Paper IV). The effects of two pre-digest treatments were evaluated; either only heat

treatment or both heat, reduction and alkylation (Paper V). In earlier work by Winther et al. it

was shown that both reduction, heat and alkylation had limited or no effect on the yield of the 

signature peptide NLLGLIEAK (for total ProGRP) from the in-solution digest of

ProGRP(31-98) standard179, and similar results was also obtained for the recombinant full-

length ProGRP standards for in-solution digest. 

However, to test this effect for immunocapture digestions the following experiment was 

carried out: SCLC standards were added 5% BSA samples and performed immunocapture on. 

The IA beads then underwent different pre-treatments before digested. One parallel 

underwent reduction, heat and alkylation, a second parallel underwent only heat, and the third 

parallel underwent no pre-digest treatment. Before initiating tryptic digest, the supernatants

were was in all cases separated from the beads, thus separating unbound and bound markers. 

A

B

C
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Figure 3.9 shows the effect of these pre-treatments on the yield of signature peptide 

TIAPALVSK and ELPLYR for the determination of the two subunits of NSE (Figure 3.9 and 

Paper V). The trends of increased yield when using pre-treatment conditions compared to 

direct tryptic digest after immunocapture (no pre-digest treatment) were even larger for

signature peptides for total ProGRP and it isoform 1 and 3 (data not shown). This was, 

according to the initial hypothesis, unexpected, as NSE is the marker to contain cystein 

residues. As ProGRP does not contain cystein residues, the increase in yield had to be caused 

by another mechanism than the direct reduction and alkylation of the marker. This supports

that signal increase for on-beads digests was related to reduction of external steric hindrance 

and not the markers cystein residues.

Figure 3.9: Effect of pre-digest treatments - -signature peptide (B). -standard 

was from a 5% BSA solution extracted by use of anti- and either given no pre-digest treatment,

heated, or reduced, heated and alkylated. The magnetic beads and the supernatant were subsequently separated to

allow separate digestion of the beads-bound and post-treatment beads-released NSE. The bars show the yield of 

signature peptides representing t -subunit in A) an -subunit is shown in B) (n=4).The white bars

represents the relative yield of signature peptides from the unbound markers and the other bar represents the 

same from the beads-bound markers. Adapted from Paper V (manuscript submitted to a journal in American 

Chemical Society).
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3.3.3.4 Adjustment of the LC-MS method

Another adaption to be made for co-determination of ProGRP and NSE was adjustment of the

LC-MS program. The LC programs for the two separate validated methods were identical (see 

Table 3.6 and Paper I and III); however, for the combined methods, the LC program had to 

be further optimized due to increased complexity of the sample to be analyzed. Figure 3.10

shows a chromatogram of combined immunocapture using the same LC program as used for 

the two separate methods and a corresponding chromatogram with the adjusted and final LC 

program (see Table 3.6). These alterations in the LC-method was done to avoid co-elution of 

the signature peptide LSAPGSQR (for ProGRP isoform 1) and a possible inference, as well as 

to better separate the signature peptides in MS segments.
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Figure 3.10: Chromatograms obtained using two different LC-MS methods to analyze immunocapture of 

two different patient serum samples. The chromatogram to the left shows the use of the LC-MS method for 

the two individual validated methods (Paper I and III), while the chromatogram to the right was used for the

combined marker determination (Paper IV). The differences between the LC programs are displayed in the top 

graph; a slight alteration in the gradient (straight line belongs to the graph to the left, and dashed line to the graph 

on the right), and an increase in both the temperature of the column and the flow rate (the highest values belong

to the graph on the right).
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3.4 APPLICATION OF SRM MS METHODOLOGY ON CLINICAL SAMPLES:

THE PROOF OF PRINCIPLE

ProGRP and NSE were analysed in patient samples to investigate and demonstrate the clinical 

applicability, value and implication of absolute quantitative proteomics with SRM MS 

methodology. Serum samples from patients with carcinomas with neuroendocrine character

were analyzed with both the ProGRP method (Paper I and II) and the final method for 

combined ProGRP and NSE determination (Paper IV) with aim to display both variant-

differentiating and multiplexing features of SRM MS methodology. These isovariants are not 

individually quantified with immunoassays; however, total ProGRP and -NSE were 

measured with the clinical established immunometric assays and compared with the 

immunocapture MS methods (Paper II and IV).

3.4.1 Variant differentiation: proof of principle

Three immunocapture MS methods, which allowed for differential determination of defined 

marker variants termed isoforms and isoenzymes, were developed. Two of these, the 

individual ProGRP method and the multiplexing MS method for both ProGRP and NSE, were 

used on patient samples.

3.4.1.1 ProGRP isoforms

The ProGRP proteins are expressed as three isoforms determined by the isoform encoding 

mRNAs44, 48. The mRNA expressions have been investigated in tissue by others47, 48, only 

total ProGRP previously been had determined on protein level. To explore if the 

immunocapture MS method for ProGRP was able to detect the isoforms, six patient serum 

samples were analyzed (Paper I). All signature peptides for the isoforms were found in the 

four samples from SCLC patients, and total ProGRP was found in all six samples, including 

the two samples from NSCLC patients. Thus, the presence of ProGRP isoforms on protein

level had been revealed for the very first time. The analyses indicated higher relative levels of 

isoform 3 compared to isoform 1 in all six samples, and in addition, the concentrations of one 

isoform relative to the other and to total ProGRP, differed substantially between the patients

indicating possible difference in isoform expression between patients.

This differences in isoform expression provoked curiosity to explore this further. Thus,

60 samples from patients with different neuroendocrine carcinomas were collected and 

analyzed (Paper II). These results confirmed the trend from Paper I; the concentrations were 

relatively higher for isoform 3 than isoform 1 for 27 out of 29 samples which had quantifiable 
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levels of both isoform 1 and isoform 3. This is the opposite trend for protein ratio expression 

of isoform 1 and 3, compared to that reported earlier on mRNA level41, 45, as also shown in 

Table 3.7. In addition to different ratios from mRNA expressions, the protein isoform

heterogeneity was higher than previously shown for mRNA41, 45 (see Table 3.7). One of the 

plausible explanations for both of these findings is different ProGRP protein isoform stability. 

The displayed heterogeneity imply that differing assay affinities for isoforms can be a 

potential source for between-assay discrepancies, and should be revised for clinically used 

assays as specificity is essential for interpretation and true absolute quantification, especially

if ProGRP values are compared. To examine if this heterogeneity can be linked to differences 

in pathology, a much larger study population is needed.

Table 3.7: ProGRP isoform expression measured on mRNA level (studied by others47, 48), and protein 

levels (from Paper II). 

A) The listed mRNA expressions (in % relative to total expression) are in this table reproduced and summarized 

based on the report from the two referred studies by Spindel et al. and Uchida et al. 

B) The listed ratios on protein level are based on the quantifiable isoform levels found by the MS analysis of the 

sixty patient samples. The top row for protein level shows the results from all the quantifiable samples, and the 

bottom three rows are values sub-grouped to some of the respective pathologies.

A)

Specimen mRNA type 1 
to total ± RSD (%)

mRNA type 3 
to total ± RSD (%) Reference

Neoplastic tissue from 
various pathologies 
(MCT, SCLC, & 
a pulmonary carcinoid 
tumor)

63.1±3.2% 28.6±2.1% Spindel et al.47

Neoplastic tissue 
(only SCLC) 55.4±7.6% (n=5) 42.8±4.3% (n=5) Uchida et al.48

B)

Serum samples Protein isoform 1 
to total-ratio ±SD

Protein isoform 3 
to total-ratio ±SD

Protein isoform 1 
to isoform 3-ratio ±SD Reference

All patient samples 0.24±0.24 (n=29) 0.65±0.29 (n=53) 0.44±0.40 (n=29) Paper II

SCLC 0.21±0.14 (n=10) 0.56±0.15 (n=15) 0.38±0.23 (n=10) Paper II

Adenocarcinoma 0.47±0.61 (n=3) 0.53±0.43 (n=4) 0.79±0.35 (n=3) Paper II

MTC 0.16±0.09 (n=8) 0.74±0.31 (n=19) 0.25±0.10 (n=8) Paper II
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3.4.1.2 NSE isoenzymes

NSE consists of the hetero-, - -enolase) and the monomer 

( -enolase). Two-site immunoradiometric assays (NSE IRMAs) has been reported to different

affinity for the hetero- and homodimeric form of NSE, as shown in ISOBM TD-7 workshop 

epitope characterization of NSE mAbs138, 185. However, to the authors’ knowledge, no existing

assays fully differ between the NSE isoenzymes. In comparison, the two developed 

immunocapture MS methods for NSE has shown to differ between the two possible subunits 

of NSE more directly in its -enolase in the individual NSE method

(validated in Paper III) and indirect -enolase from NSE in the multiplexing 

method (evaluated in Paper IV) performed as described in detail in section 3.3.3.1.

With determination limits well below the defined - and 

-enolase are detected in serum samples from healthy subjects with both the individual NSE 

method (Paper III) and the multiplexing method (Paper IV and Table 3.8). Quantitative 

- -enolase in serum was performed (Paper IV and Table 3.8), but the 

samples are too few to investigate or relate the levels of the enolases to each other. This may 

be interesting to investigate on protein level in a larger study, similar to the study for ProGRP 

(see 3.4.1.1 and Paper II). Alteration of enolase expression has earlier been a subject of study 

on gene level, where transitions in gene expression between isoform enolases in rat heart were

different between normal and pathological growth192.

3.4.2 Comparison with established assays: proof of principle

The validity of the immunocapture MS approach was confirmed by comparing the developed

methods to two clinically used conventional immunometric assays; the ProGRP TR-IFMA

and the NSE IRMA. These assays were thus also used to analyze patient serum samples in 

Paper II and IV.

3.4.2.1 ProGRP

First, the individual ProGRP method as well as the automated TR-IFMA was used for 

60 patient samples (Paper II). This established immunoassay for ProGRP which measures the 

total ProGRP in serum samples, and the test was used as a reference to evaluate the 

performance of the immunocapture MS method. The total ProGRP values from the MS 

method compared to those obtained from the automated TR-IFMA were systematically 

determined approximately 30 % lower than the reference method restricting possibilities for 

interchangeability. The can be many reasons for differences between methods, as listed by the 
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National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines193.

Different method designs and different calibrators are two probable explanations for the 

systematic deviations in this comparison. The results individual method and TR-IFMA

showed good correlation (R2=0.887) and in the Bland-Altman plot for method agreement only 

four out of the sixty samples (< 7%) fell outside the 95% CI. It was suggested from these 

corresponding results that comparable ProGRP values are obtain which imply applicability of 

the individual ProGRP method.

Secondly, both the multiplexing method and the ProGRP TR-IFMA were used for six patient 

samples (Paper IV). However, the multiplexing method, one of the samples fell below the

LLOQ of the MS method, and the other was above the calibrated range (see the values 

emphasized by boxes in Table 3.8). However, if these are excluded from a brief comparison 

the methods, there was a similar tendency of higher estimated absolute concentrations of 

ProGRP using the assay than the MS method for these very few samples concurrent with the

findings in the larger study (n=60) in Paper III. (see Table 3.8)

The two out of the six patients showed as mentioned considerable deviating values between 

the multiplexing MS method and the TR-IFMA (Table 3.8). No similar deviating results were 

observed in the larger comparison study (n=60) were the individual ProGRP method was 

compared to the TR-IMFA (see 3.4.1.1 and Paper III), which encouraged to considered the 

most possible reason for a potential erroneous measurement Data investigations to reveal 

matrix effects for the multiplexing method was thus performed, though the number of samples

were too few to draw any definite conclusion of error. Indications for this was revised for 

within the results and imply that this is unlikely due to the following: 1.) Determination of 

isoforms were also of high concentrations indicating high concentration of total ProGRP, and, 

2.) The IS NLLGLIEA[K_13C6
15N2] is assumed to have the same ionization properties as 

NLLGLIEAK, and this had normal signal (no suspicious signal deviations) from the rest of 

the samples. This will not be discussed further as a study with a larger number of samples 

needs to be conducted to investigate if these differences are significant of just an artifact. 

3.4.2.2 NSE

Both the multiplexing method and the NSE IRMA were used for six patient samples (the 

same samples as in section 3.4.2.1, Paper IV) and they both determined -enolase from NSE

which can be compared (see Table 3.8). The results show that the MS method systematically 

gave absolute values of approximately two folds of that from the IRMA, and the correlation
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between the very few samples was very good (R2=0.997, calculated from the patient values 

in Table 3.8). Again, systematic differences in the measured absolute values between MS 

method and assay are observed (as for ProGRP in section 3.4.2.1), and different calibrators 

and different method designs may be the cause for this. The difference in values does,

however, not imply a difference in clinical specificity, and systematical differences may also 

lead to comparable results when taken into account193.

3.4.3 Establishment of simultaneous measurement: proof of principle

The ultimate goal was to measure both markers; ProGRP and NSE, and their isovariants in 

patient samples to demonstrate the combination of immunocapture and SRM as a suited 

approach for clinical relevant multiplexing. The combined method was used to quantify the 

levels of the SCLC markers, where concentrations of the selected variants of ProGRP and 

NSE was simultaneously determined, as shown by the Table 3.8 and illustrated by the 

chromatogram to the right in Figure 3.10. The table and figure depict the success of the 

tailoring of an immunocapture MS method for quantification of two valuable SCLC markers, 

with the feature of simultaneous determination of the different isoforms and isoenzymes of 

both markers.

Table 3.8: Results from analyses by conventional assays and the combined immunocapture MS method.

A number of six patient serum samples and four serum samples from healthy donors were analysed with the 

combined immunocapture methods, and the ProGRP TR-IFMA and the NSE IRMA. The two boxed ProGRP 

values are considerably different, which deviate from what was the trend of deviation between the two methods. 

TR-IFMA Immunocapture LC-MS IRMA

Serum 
sample

Total 
ProGRP

Total 
ProGRP

ProGRP 
isoform 1

ProGRP 
isoform 3

NSE 
-subunit

NSE 
-subunit

NSE 
-subunit

Identity (pM) (pM) (pM) (pM) (ng/mL) (ng/mL) (ng/mL)

Patient A 173 156 13 89 131 161 79

Patient B 7 NF NF NF 39 56 25

Patient C 5 116 19 66 123 160 66

Patient D 1810 872 481 578 74 101 43

Patient E 699 344 174 133 32 41 24

Patient F 1767 15893a 1618 4881 458 742 451

Donor 1 NF NF NF NF 17 20 NA

Donor 2 NF NF NF NF 10 12 NA

Donor 3 NF NF NF NF 15 19 NA

Donor 4 NF NF NF NF 11 16 NA

Symbol explanation: NF: peak not found, NA: not analyzed, a outside the calibrated range.
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3.5 FUTURE PERSPECTIVES

The use of LC-MS has so far mainly been applied for smaller molecules than peptides and 

proteins, however, in the last decades clinical laboratories has expanded greatly into targeted 

peptide and protein detection and clinical proteomics194. This involves shift towards interest 

in absolute quantification strategies for proteomics which has both been linked to and further 

stimulated to advances in LC-MS. Specificity is one of these methods greatest strengths,

which is superior to the widely used immunometric assays. Throughput can often be a 

limitation caused by manual workflows and complexity of operation, but may be relieved by 

the multiplexing potential which is derived from both the MS, SID and the dimension(s) of 

LC separation. Regarding sensitivity and capacity limitations the system generally relies on 

extensive sample preparation due to restricted compatibility with matrixes.

The presented immunocapture MS methods for targeted quantitative determination of 

ProGRP and NSE have demonstrated success. However, this specific analytical approach

does have room for improvements related to recent advances that requires resources in terms 

of new equipment and chemicals. More specifically; the methods would benefit from 

lowering the quantification limits (LLOQs) for the isoforms of ProGRP, and from reduction 

of both operation time and resource use by both automation of the immunocapture process 

and by speeding up the LC-MS analysis.

As the methods are now, they enable measurements of total ProGRP and NSE at reference 

levels. However, to fulfill their potentials, the sensitivity for ProGRP isoforms should be

improved to also enable determination at their low levels. Additionally, sensitivity 

improvement will be a further necessity if use of lower sample volumes should be strived.

This measure would improve the use of the method due to the often limited patient samples.

Both sensitivity and time of analysis are features that can be affected by upgrading and 

modifying the LC-MS system. Miniaturization, from microflow to nanoflow LC-ESI-MS, is 

one possible adjustment to improve the MS sensitivity. The chromatography can also be 

improved, to achieve more narrow and well-separated peaks, by reducing band broadening 

and plate height, and by increasing column efficiency, which could affect both sensitivity and 

LC-MS analysis time. A disadvantage of such hyphenated LC-MS set-ups may be an

increased demand for advanced operator skills and decreased robustness of the system which 

could limit applicability and use of the method.
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Further sample clean up may be of necessity if miniaturized LC-MS systems are to be used. 

This part of the method is perhaps already the most labour and time consuming part of the 

approach, but the sample preparation could be automated to a much larger extent to reduce 

resource use.

Multiplexing by simultaneous extraction and quantification two markers and different

isovariants has been demonstrated to reduce the total time of analysis, reduce the analytical 

variance, and better utilize the sample. The two chosen markers, ProGRP and NSE, are

clinical complementary SCLC markers used to exemplify and demonstrate the multiplexing 

properties of this approach. This multiplexing method can be used to build a larger diagnostic 

panel by adding more markers for neuroendocrine tumours or, for differentiation purposes; to 

add markers to differentiate between diseases such as SCLC and NSCLC without 

neuroendocrine characteristics. CEA, SCC, CA-125 and CYFRA-21 are such highly relevant 

lung cancer markers that are possible candidates for this purpose27, 32, 99, 101, 195-197.

Alternatively, markers for other carcinomas or diseases could be added to broaden the clinical 

usefulness of such an IA extraction MS tool. 

The clinical value of combining ProGRP and NSE measurement is already been reported by 

others, however, the additional clinical value of differentiation between variations of the 

markers is still unknown, and with this tool it should be further explored in a larger patient 

study.
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4 CONCLUDING REMARKS

This thesis has elucidated potentials of immunocapture MS method design for protein 

biomarker measurement. The chosen model markers were SCLC-markers ProGRP and NSE,

which are clinically complementary markers occurring in various isoforms and isoenzymes in 

serum. Novel information on their endogenous expression was assessed by a targeted 

bottom-up SID approach, through selective purification and enrichment by immunocapture 

and in combination with MS detection of signature peptides. This was performed by use of 

external standards for calibration, AQUA peptides for SID and specific and sensitive 

SRM-MS determination of the proteotypic surrogates in place of their macromolecules. 

The quantification of pico- and femtomol levels of model marker isovariants in patient serum

was performed by using two validated methods to individually determine ProGRP (ProGRP 

isoform 1, ProGRP isoform 3, total ProGRP) and NSE ( - and -enolase from NSE). Finally, 

simultaneous extraction and quantification of both markers’ isovariants was enabled in a 

multiplexing method to reduce the total time of analysis, reduce the analytical variance, and 

better utilize the sample. 

The feasibility of these immunocapture MS methods was proven through determination and 

variant differentiation of these markers in serum samples from healthy subjects and SCLC 

suffering patients, and all methods provided additional qualitative and quantitative 

information on the selected low abundant markers compared to that from the conventional 

clinical assays. The potential of implementing this technology in biomarker monitoring has 

thus been demonstrated for SCLC, and may in its flexibility also be suited for other 

biomarkers and biomarker combinations.
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