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Chapter 1

Introduction

The term epigenetics was coined by Conrad Waddington [1], for the pur-
pose of having a concept linking the single version of a genome shared by
all cell types of a multicellular organism to their varying phenotypes. The
epigenome refers to all the epigenetic modifications across a genome. In
Waddington’s definition lies that the epigenome, unlike the genome, has an
inherent plasticity across cell types enabling the epigenome to participate
in the enactment of cellular change and differentiation. Today, it is known
that the plasticity of the epigenome is mediated through reversible chemi-
cal modifications to DNA and histone modifications, which both alter gene
expression. It is also known that the modifications, when needed to rigidly
maintain cellular states, can be inherited across cell cycles. Many intrigu-
ing properties, like the ability to respond to environmental changes within a
generation and to facilitate trait inheritance, have been reported for subsets
of the underlying constituents of the epigenome. A molecular machinery,
epigenetic remodelers and modifiers, has also been identified as responsible
for the genomic positioning, maintenance and reading of epigenetic marks
and is being increasingly well characterized and understood [2, 3]. The def-
initions of the epigenome, given in current reviews [4—8], tend to vary in
their contents, reflecting that no universally accepted version exists, so far.
A discrepancy in the included biological entities therefore also exists. There
are a few circumstances that make it difficult to formulate a unified defini-
tion of the epigenome. First, the epigenome remains to be fully discovered
and characterized. Second, most definitions rely on the epigenome mediat-
ing inheritance. Inheritance can, though, refer to two completely different
events of the life cycle of the diploid organism, the transgenerational one and
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the mitotic one. Also, somewhat contradictory, the epigenome mediates, in
addition to phenotypic inheritance, phenotypic plasticity, depending on the
mission of the cell. Epigenomic together with genomic properties will be
put into the context of the diploid life cycle in Section 1.1. The potential
for reproducible integrative analysis to characterize these properties in de-
tail will hopefully be discerned. The terms transgenerational and mitotic
inheritance and germline as well as somatic mutation will be defined and
distinguished. In Section 1.2, five epigenomic components are described.
Definitions of chromatin states and epigenomic landscapes are given. Ex-
amples of the roles that they play in chromatin biology, differentiation and
disease are also given. DNA methylation and histone modifications, which
are the subjects of analysis in this thesis, are two undisputed constituents of
the epigenome. Together with the genome and other DNA interacting pro-
teins, depending on definition, they make up the chromatin. The studies
presented in this thesis integrate in various combinations the epigenomic
data just mentioned, together with genomic aberration data and gene ex-
pression data. Biological data, that ends with -omic, is collectively referred
to as omics data. Data where the genomic position is a central feature is
often stored as genomic tracks. The format is essential for many of the anal-
yses performed in this thesis and is described in Section 1.3.

The recently increased activity within epigenomic research has been fueled
by two waves of emerging high throughput technologies, i.e. microarray
and second generation sequencing, applied to mapping of DNA methyla-
tion and protein-DNA interactions. These technologies and some relevant
applications of them will be discussed in Section 1.11. The analytical as-
pects of high throughput genomic and epigenomic studies of today consist of
many sequential steps, referred to as pipelines or workflows. These steps in-
clude format customization, preprocessing, format transformation, normal-
ization and finally primary and downstream analysis of the data. Due to the
massive size and complexity of the input data, the results themselves, com-
monly in the form of size effects and p-values, are in such an abundance that
visualization, for instance as heatmaps or genome browser views, is needed
for comprehensibility. Thus, the intricacy of the analytic pipeline becomes
an obstruction to its reproducibility, which is a requirement for scientific
credibility. It also hampers the transparency of the analytical process. Even
if a piece of software has an interface that is easy to use, running it as a
blackbox prevents the detection of built-in errors and scrutiny of the analyt-
ical soundness. Many analyses, including some of the ones paving the way at
the forefront of omics research and making the most interesting discoveries,
suffer from the lack of such reproducibility and transparency. Simultane-



ously, at the forefront of bioinformatics software development, infrastruc-
tures/environments that facilitate development and usage of reproducible
and transparent applications are created. The software Galaxy is one well
known example based on a graphical user interphase, and R/Bioconductor
is probably the most well known example based on a command line user in-
terphase. After a description of individual components of the chromatin in
Section 1.2 and how they make up the epigenomic landscape, the biological
context in which the epigenome operates will be summarized and important
studies contributing to related insights will be referenced. In Section 1.3 it
is described how the epigenome through regulation of multiple aspects of
gene expression contributes to determine cellular morphology and function.
In Section 1.4 enzymes, that influence the epigenomic landscape and have
become important targets for medication, are discussed. In Section 1.9 the
epigenomic landscape is put into a context of circuits of gene expression and
gene regulation. The production, modification and genomic positioning, in
relation to genes, of epigenomic components regulate genes and drive cel-
lular differentiation. Recent studies of the properties of components of the
epigenome have, regardless of their reproducibility, already impacted the
understanding of the epigenome remarkably, not least by suggesting a list
of possible hypotheses to validate. The epigenome has been implicated in
disease and especially in cancer development, some of these findings are
treated in Section 1.10. As next generation sequencing technologies offer an
ever increasing scope and resolution in characterizing components of the
chromatin, one can foresee that future studies will be based on integration
of many types of data to reveal mechanisms based on complex interactions.
Given the large amount of possible integrative analyses, a given software
system cannot likely, in its first version, be expected to cover them all in
detail, but has to have the capacity to be adapted to the demand. It has to
be scalable and extensible. Available software for integrative analysis of the
epigenome are reviewed in Section 1.13. In Papers I-IV novel software tools
are introduced. They are developed and utilized for reproducible integra-
tive analysis of epigenomic, transcriptomic and genomic data using the R
and Galaxy frameworks. These frameworks are further discussed in Sec-
tions 1.13.5 and 1.13.11.

Many of the methods for integrative epigenomic analysis tend to be devel-
oped by large consortia. The consortia have been formed during the latest
ten years to collect epigenomic and other types of data. An important dif-
ference between their missions is the types of samples that they use. They
have in common the declared priority to make data available through public
databases for usage by the bioinformatics community. The data will eluci-



4 CHAPTER 1. INTRODUCTION

date processes in normal, disease and cancer development. These consortia
are discussed in Section 1.14. Ease of access to such and other types of public
data for integration with local data is an important determinant of the use-
fulness of a piece of bioinformatics software. References to data repositories
are given in Section 1.15 .

1.1 Chromatin, replication and inheritance
in the diploid life cycle

The genome and the epigenome, that together make up the chromatin, rep-
resent different capabilities of mediating inheritance in the diploid life cycle.
Figure 1.1 on page 7 shows four generations of members of a family tree.
In the figure mitotic inheritance occurs in cell lineages along the vertical
bars, indicating the life spans of individuals. Transgenerational inheritance
occurs along the horizontal colored lines indicating the conception.

The genome, despite being a rigid carrier of information, can occasionally,
through mutation, fail to mediate inheritance. Such mutations occurring
in the germ line will disrupt transgenerational inheritance and affect the
genomes of every cell in the progeny and lead to genomic polymorphisms
and disease predisposition. Mutations occurring in genomes that will not
be passed on transgenerationally, so called somatic mutations, will affect
subpopulation of cells within the bodies of organisms. When accelerated
out of control such mutations lead to cancer. The epigenome is often de-
scribed as governed by developmental programs (encoded in the genome)
and therefore to have an inherent plasticity. It does, however, also need the
capacity to be truthfully inherited as when mature fully differentiated cells
are regenerated into identical daughter cells. Detected mechanisms for the
copying of epigenomic marks in connection to DNA replication and a num-
ber of other suggested mechanisms for cellular or mitotic inheritance are
described in [9]. Examples of manifestations of mitotic inheritance of the
epigenome are imprinting and X-chromosome inactivation.

Any cell of an organism is connected to the zygote of the organism through
a sequence of ancestral cells and their divisions. That connection is called a
cell lineage. Most cells of the body of adult multicellular diploid organisms
are naturally divided into two major types of cells. One type is the germ
cell with a single, or haploid, set of genomic material. The other type is the
somatic cell encompassing all cells, but the germ cell type, with a double,
or diploid, set of genomic material. Exceptions, like multi nucleated cells
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[10], do, however, exist. The cell divisions of somatic cell lineages are ex-
clusively mitotic, which means that the mother cell splits into two daughter
cells and provides each daughter cell with two of the four genomes avail-
able after replication, making them diploid. For the germ cell lineage, the
sequence of mitotic cell divisions is ended by a meiotic one. In meiosis, the
mother cell is instead divided into four daughter cells, and one of the four
available genome copies after replication is distributed to each daughter cell,
making them haploid.

Meiosis is also accompanied by an enzymatically administered shuffling of
genomic segments between maternal and paternal homologues. This results
in a recombination of genomic segments from these, so that each of the four
haploid daughter cells carries a mix of maternal and paternal trait informa-
tion. Recombination leads to the random segregation in pedigrees of vari-
ants of loci not located close to each other on a chromosome. Sets of such
variants located close to each other on the genome, and therefore deviating
from random segregation, are called haplotypes. The mapping of disease
genes that have been performed during the last 20 years is dependent on
that variants of proximal loci do not segregate randomly.

The life of an individual begins when haploid parental genetic materials are
combined into an egg cell at conception, leaving it with two copies of the
genome, one maternal and one paternal, and making it a diploid zygote. The
prospect of epigenomic components being transferred and combined in the
same event, so called transgenerational epigenetic inheritance [4], has gen-
erated great interest [11]. A few observations have been made that could
reduce or obstruct the fulfilment of this prospect, like for example the era-
sure of methylation patterns in the germ line. An observation in support of
transgenerational epigenomic inheritance is the transmission of non-coding
RNA [4], from both sperm [12] and egg [13, 14] to zygote. Non coding RNA
is gaining recognition as an epigenetic factor due to recent reports on its in-
volvement in gene regulation and transfer across cell cycles [15]. After con-
ception, the zygote will multiply through mitosis. Each division is preceded
by the doubling of the genetic material through DNA replication, a process
fundamental to the maintenance of information across generations of cells
and organisms. Replication is an intricate activity of molecular interactions
between proteins and DNA. In DNA replication, the existing DNA molecule
is used as a template for the construction of a new one. This involves an
unwinding and enzymatic cutting of the existing antiparallel double helix,
which makes the process vulnerable to introduction of sequence errors into
the daughter DNA molecules, or mutations. Any formed mutation will be a
hazard to the fitness of the daughter cells of the division, and any of their cel-
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lular descendants inheriting the mutation. Elaborate molecular machinery
for monitoring and regulating the outcome of replication has been shown to
be present in many organisms [16]. This suggests that avoiding error intro-
duction at replication is a highly prioritized task by the cell. Still, errors set
off by replication are believed to be the major contributor to disease [17]
and genome evolution [18].

One of the most central molecular units of the replication machinery, DNA
polymerase, is also one of the most important tools applied in molecular
biotechnology. Poly Cyclic Replication or Polymerase Chain Reaction (PCR)
and DNA sequencing would not be possible without it. PCR and sequenc-
ing are fundamental to the high throughput technologies used to generate
the data integrated in this thesis. The methods are described in Section
1.11.

If genomic mutations are introduced at replication, or during recombina-
tion, in the germ line, and are passed on to the haploid germ cells, and if the
formed germ cells make it to conception, the mutations will be inherited at
the level of the organism. Such mutations are referred to as germ line muta-
tions. Mutations taking place in a somatic lineage, somatic mutations, will
be less damaging, in the sense that they will only be inherited on a cellular
level within the somatic lineage and within a single organism.

It has been shown in some cancers that homozygous disruptive mutations of
tumor suppressor genes occur stepwise with the first disrupted allele being
an inherited germ line mutation and the next one being a mutation occur-
ring in the somatic lineage from which the cancer clone expanded [19]. This
stepwise way of acquiring a homozygous gene disruption is commonly re-
ferred to as Knudson’s two hit hypothesis [20]. One hypothesis regarding
the nature of genomic and epigenomic interplay in cancer development is a
two hit hypothesis involving them both [21]. A germline genomic alteration
would thereby hit one allele of a locus and a somatic epigenetic alteration
would silence the other.
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Figure 1.1: The figure shows a family tree that allows for annotation of
events, like births and deaths, along a time axis. A number of individuals are
plotted along the x-axis. Time is represented along the y-axis with the x-axis
intercept representing current time. A conception, or the transgenerational
inheritance, is represented as a horizontal line connecting the three involved
people. Conceptions involving the same parents have the same color. Ben-
efits as compared with a regular pedigree are that individuals can be sorted
in any order, for instance according to case control status, along the x-axis
and that dates/time of birth and deaths, ages and ages at conception of in-
dividuals can be visually deduced. Interfamily generational shifts will also
be seen/appear. It allows for illustration of cell lineages and the difference
between cellular and transgenerational inheritance. Males are represented
as rectangles with sharp edges while females have round edges. Extending
this family tree to all life in the biosphere, and visualizing it in three dimen-
sions, results in the "Tree Of Life” or "Mount Improbable” shown in Figure
1.3 at page 11.

Past

—
c
——
——
[s
[s

IR

+ *
s

“~ - 4 4 4 %

Space for organsation according to gender, age, living area, diseas or genomic makeup.




8 CHAPTER 1. INTRODUCTION

1.2 Epigenomic components

Recent discoveries and more inclusive definitions of the epigenome, like
“mechanisms other than changes in DNA sequence that perpetuate altered
cellular activity states” [5], have made the epigenome to encompass:

1. Chemical modifications of the DNA

2. Histone proteins with various chemical modifications added to their
amino acid tails

3. Non-protein coding RNA
4. Chromatin accessibility
5. Spatial organization of the chromatin.

The epigenome has been implicated in almost all genomic functional pro-
cesses including transcription, recombination, DNA repair, replication, kine-
tochore and centromere formation by various studies [22]. Involvement of
the epigenome in those processes can also be expected since its components
seem to be present genome wide. Studies using the software reviewed in
Section 1.13.10 shows that the combination of epigenomic components that
occupy a given genomic region determines its current chromatin activity
or state. The varying chromatin states along the genome have been called
epigenomic landscapes. Such epigenomic landscapes should not be con-
fused with the cellular development that Waddington meant when he intro-
duced the term “epigenetic landscapes”. The technologies used for acquiring
data on the epigenomic components listed above have for decades under-
gone a constant development towards a higher genome coverage. It is only
by the latest, second generation sequencing, technologies, discussed in Sec-
tion 1.11, that it has become possible to collect genome wide data at (almost)
base pair resolution. Also assays for probing the genomic locations of his-
tones and DNA methylation on a genome wide scale are discussed. The data
has revealed that chromatin accessibility and 3D organization are influenced
by the genomic localization modifications of nucleosomes and DNA methy-
lation through alterations of non-covalent interactions within and between
nucleosomes. Most of our genome is normally packaged as transcription-
ally repressive chromatin. This type of chromatin is heavily methylated and
the DNA is packaged into compacted nucleosomes that contain deacetylated
histones, a state referred to as heterochromatin. Heterochromatin is highly
condensed, late to replicate, and contains primarily inactive genes. Another
fraction of the genome is transcriptionally competent. It is called euchro-
matin. It has a relatively open configuration and contains most of the active
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genes. The state of chromatin in these regions must be dynamic to meet the
changing transcriptional requirements of a cell [23]. Methylation of CpG
sites is the most common chemical modification of DNA. The CpG deno-
tation is used to distinguish the C followed by a G on a single strand from
the CG base pair. DNA methylation is primarily noted within centromeres,
telomeres, inactive X-chromosomes, and repeat sequences [3]. CpG sites
of eukaryotes are, with a varying frequency between cell types and stages,
chemically modified by the addition of a methyl group. Histones are pro-
teins that can interact with DNA to form the basic unit of chromatin, which
is the nucleosome as depicted in Figure 1.2 on page 9. The resulting com-
paction of DNA makes the massive amount of genetic information stored in
a genome fit into the limited space of a cell nucleus [24]. The nucleosome is
made up by 147 bp of DNA wrapped twice around a histone octamer of four
pairs of H2A, H2B, H3 and H4. The basic histone variants can be replaced
with other ones, and chemical groups can be added to their amino acid tails
changing their functional properties, see Figure 1.2 on page 9. How hi-
stone modifications are distributed across the genome varies between cell
types and states , reflecting functional differences between these. The com-
position of histone modifications in a given site of chromatin has recently
been shown to be associated with the activity of that genomic region [25,
26].

Figure 1.2: Chromatin is made up of DNA wound twice around histone oc-
tamers forming nucleosomes. Chemical modifications of the amino acid
tails of the histones change their properties. The cell is equipped with a
molecular machinery for the modification of histones.

Nucleosome Post translational

(Histone octamer)  Histone modification i.e.
methyl group

=

)

Histone tail Mono nucleosome segment

Interesting to note about non-protein coding RNA is that the majority of
the human genome has been found to be transcribed into different types of
such RNAs in at least one of the close to 200 human cell types [27]. A com-
mon definition of biological function is based on evolutionary conservation.
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Many of the transcriptionally competent regions are not evolutionary con-
served. A scientific debate has emerged about whether a transcriptionally
competent genomic region has a function just because it is transcriptionally
competent. Only a few percent of the human genome is evolutionary con-
served. The functionality of, or the lack of functionality of, transcriptionally
active non-conserved genomic regions are discussed in [28—30]. Anyhow,
at least some ncRNAs are epigenetic factors with an important role in dif-
ferentiation and disease.

1.3 Genomic tracks

An initial task of genomics research on an organism is to sequence and as-
semble a reference genome sequence from a single sample. The genome
will then be annotated with functional information. To be able to efficiently
indicate any genomic site, each reference chromosome is made into a one-
dimensional coordinate system by incremental numbering of its bases, start-
ing at the telomeric side of the short arm and ending at the telomeric side
of the long arm. The chromosomes are then annotated using sets of coordi-
nates, called genome annotation tracks or genomic tracks [31], describing
the locations of related features. Genomic tracks are commonly stored as
tab separated text files, where genomic feature locations, given as a chro-
mosome name and start and stop positions, are given row wise. The basic
genomic track format, just described, can serve as a data structure to store
more information than just genomic locations. New columns of informa-
tion are then added to the file. A frequently used genomic track is the def-
inition of genome locations for all genes of an organism. It is frequently
expanded to include more information. A simple example is the addition
of gene expression values for each gene. Genomic tracks have become cen-
tral for storing, manipulating and analyzing the reference genome alignment
information of the sequence tags generated by next generation sequencing
experiments. Genomic tracks can also be used for storing 3D interaction
data [31]. The reference genome is a consensus sequence representing an
average of a particular organism, meaning species. Figure 1.3 on page 11
shows all the biological subclasses or entities within a species, for which the
reference genome can serve as a data structure. Genomic and epigenomic
information on populations, families, individuals, cell populations and cell
types can be stored as genomic tracks, that relate to a reference genome of
the organism, from which the data is collected.
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Figure 1.3: The biosphere is connected by a large family tree that could be
called Mount Improbable in reference to the book ”"Climbing Mount Improb-
able” [32] by Richard Dawkins. The figure shows how Mount Improbable
can be divided into smaller family trees and is ultimately made up of indi-
viduals. Individuals are made up of populations of cells. Cell nuclei contain
chromatin folded in the three dimensional space. Unfolding chromosomes
into a straight line forms a one-dimensional coordinate system onto which
genomic and epigenomic features are positioned. Data on chromatin com-
ponents is frequently stored in sets of pairs of genomic coordinates called
genomic tracks. The environment space figure in the lower right corner sug-
gests that for each individual there is a specific environmental niche that it
interacts with.

Maternal and paternal chromatin components
visualized on a reference genome as genome tracks Cell nucleus with three dimensional
organisation of chromatin
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1.4 Gene expression determines cellular mor-
phology and function

A human is made up of about 200 different adult cell types, the number
varies depending on the definition. Such cell types mature step by step out
of embryonic cells by a process called differentiation by rounds of cell divi-
sions, referred to as the lineage of the adult cell. The form and function of
every cell type and state are determined by the varying presence of molecu-
lar structures and machineries. These functional units of the cell are made
of proteins and RNAs. Proteins and RNAs are, through transcription and
splicing, synthesized from templates encoded as subsequent blocks of DNA
sequences, called exons, located in genomic regions, called genes. The level
of transcriptional activity of a gene is tightly connected to the positionally re-
lated epigenome. The presence of epigenetic factors and transcription fac-
tors modulate the level of transcription of the gene. Transcription factors
are generally small proteins, which bind to a specific sequence motif of less
than ten bases, located either proximal to the gene, in the promoter or the
gene body, or at more distal recognition sites called enhancers. Histones
are larger proteins, which are less preferential in what sequences they bind
to. They occupy 147 bases long DNA segments, by interacting with them as
octamers. The chromatin composition is determined by cellular programs
of cell divisions and differentiation, signaling from other cells of the body
and environmental responses. A large scale study of the gene expression
profiles in various human and mouse tissues is presented in [33] . The data
is available from a database and web interface called BioGPS. All or a subset
of the exons of the premature RNA are, after transcription, enzymatically
cut out and pasted together. The exon cutting and pasting to form the final
RNA product can usually be executed in alternative ways, through a pro-
cess called RNA splicing. Functional RNAs are the end products of the ex-
pression of non-protein coding genes. Messenger RNAs, however, serve as
intermediate information molecules between the genetic code and the pro-
tein alphabet. The expression of a protein-coding gene includes one further
step of molecular conversion, where the messenger RNA is translated into
a protein. Due to RNA splicing, believed to be epigenetically regulated, one
gene can produce many RNA and protein products. Proteins can also be
post translationally modified, increasing the possible number of functional
products that the cell’s repertoire of genes can produce. These and other
processes make the number of protein structures that can possibly be gen-
erated out of the 25 thousand existing human genes, staggering [34]. The
measuring of the transcriptional activity of genes is in that sense not cer-
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tain to reflect the activity of its functional end product, which is usually the
sought information. This type of experiment referred to as gene expression
profiling, is, however, the most common way to analyze global gene expres-
sion, since a single experiment can capture information on the activity of all
genes in the genome at once.

1.5 The promise of therapeutics through epige-
nomic modulators

A major motivation for studying the molecular mechanics of cellular change
is to understand disease development, to be able to detect individual predis-
position to disease at an early stage and to be able to apply customized thera-
peutics. It has turned out that histone modifiers and chromatin remodelers,
enzymes responsible for shaping the epigenomic landscape are frequently
aberrant in some cancers [2]. They are further described in Section 1.9.2.
They have even been classified as driver genes in some tumors [3]. This has
lead to the screening of drugs against malfunctioning histone modifiers and
clinical trials are already on the way for some drugs. Pharmaceuticals have
already been introduced as modulators of histones and other signaling pro-
teins (oncogenes). Examples of targets for such small-molecule inhibitors
for approved medicines are DNMTs, HDACs, and JAK2. A review of which
histone modifiers have been found to be mutated and in what type of can-
cers is given in [2]. The review also covers recent findings of mutations in
non-coding RNA and in histone genes. Genes of proteins responsible for the
maintenance of DNA methylation, DNA methyl transferases (DNMTs), have
also recently been shown to be frequently implicated in some malignancies.
In [35] DNMT3A was reported deleted with a sample recurrence of up to
25% in patients with acute myeloid leukemia. Despite these therapeutic
advances in cancer treatment it remains to determine why and how phar-
maceuticals/inhibitors work. Revealing mechanisms of chromatin biology
through integrative epigenome analysis can contribute to this effort.

1.6 Mechanistic inference from association
of alterations

The overall purpose of integrating epigenomic data is pretty much summa-
rized in the mission statement of the consortium The Encyclopedia of DNA
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Elements (ENCODE). ENCODE is further discussed in Section 1.14. The
mission of the consortium is to functionally annotate all parts of the genome.
The function of a genomic region varies between cellular types and states,
though. It is heavily debated to what extent all genomic regions are func-
tional. By the current definition of biological function, a genomic region
must have been selected for by natural selection to be functional [30]. It is,
however, not trivial to establish whether a sequence has been selected by
evolution or not.

Genomic regions are involved in different cellular processes at different points
of time, just as genes are transcribed and replicated at different points of
time. For the purpose of discussing inference of casual relations between
genomic and epigenomic features, regulation of gene expression will here be
used as an example. For such an analysis a genomic track of genes and their
relative transcriptional activity in case versus control is then integrated with
other alteration data between the same case and control that could explain
the expression levels. There are many challenges to revealing any causal
relation in such an approach:

+ Genes are different in the way they are regulated.

« Due to biases it is not ideal to compare transcription levels between
genes.

« Chromatin biology within a cell nucleus, including the transcription
of genes, is enacted in three dimensions so that chromatin, distal in
one dimensional space, or from separate chromosomes, can interact
to determine the level of transcriptional activity.

« The same epigenomic component can have opposite effect on tran-
scription depending on where it is located.

» Even though the integrated data has generally been collected from a
single point of time it reflects events, that have taken place over time,
possibly in different cellular processes across cell cycles and some-
times across generations. This allows for random events like muta-
tions to have been compensated for by epigenetically mediated responses.

« Integrative analysis of genome wide data is commonly based on the se-
lection of genomic segments, in which to look for the association. The
specification of these segments must be done based on assumptions
and generalizations. The promoter region of genes is, for instance,
generally specified as 2kb upstream and 1 kb downstream of TSS.

Being familiar with the current understanding of the dynamics of chromatin



1.7. THE HISTORY OF THE HAPLOID GENOME REPRESENTATION 15

biology can, therefore, be of assistance in designing, analyzing and inter-
preting integrative analyses.

1.7 The history of the haploid genome rep-
resentation

After about twenty years of genetic research being characterized by Sanger
sequencing of human genes and small genomes as well as gene knockout and
insertion studies [36, 37], the utility of a human reference genome surfaced.
After collaborative efforts of dimensions never seen before in the field of bi-
ological research, a draft reference sequence was published in 2001 [38, 39].
Simultaneously with the ongoing projects of sequencing the human genome,
a project for mapping the genetic basis of trait variation (and disease) was
initiated. SNP discovery started when assembled genomic sequences were
annotated at base pair positions of discrepancies between aligned reads.
These heterozygous sites were reported as an SNVs (a Single Nucleotide
Variation within the sample) and as a candidate SNPs (a Single Nucleotide
Polymorphism, a variation existing with a frequency in a population).

Heterozygous sites indicated that different variants had been inherited pa-
ternally and maternally and, therefore, that the sites were polymorphic. The
importance of genome wide polymorphism data for estimating genetic dif-
ferences among humans was soon recognized. When the first human genome
was assembled it was also annotated with single nucleotide variation.

In [38] the genome was presented as a haploid genome with sites of varia-
tion, while in [39] the genome was presented as diploid. Haploid presenta-
tions of human genomes have dominated since then, partly because of the
large increase in complexity of storing and managing a diploid genome. The
aligned sequence fragments had no information on whether they belonged
to the maternal or the paternal chromosome of the homologous pair. The
SNVs detected by alignment could, therefore, not be annotated with chro-
mosome identity. Thus chromosome sharing, i.e. haplotypes, was not given
directly from the raw data. The word haplotype is yet a biological term with
dual meaning. Except for the definition used above, it can also refer to a
block of SNPs on a chromosome that is in linkage disequilibrium (LD) with
each other. Computational methods for estimating haplotype probabilities,
referring to the LD-block definition, have later been developed. Such de-
rived haplotype information does not correspond to diploid information,
due to, among other things, the lack of gametic phase information. The ini-
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tial inability to capture diploid information has likely contributed to a re-
luctance in the development of storage formats and visualization tools for
diploid genome information. At the time of the human genome project, it
was known that variation in the number of copies of large regions of the
genome could cause disease, as detected with cytogenetic methods in cases
like trisomy 21 (Down’s syndrome) [40]. Cytogenetic studies had revealed
that some cancers and congenital disorders had genomic regions that devi-
ated from having the regular one maternal and one paternal copy. This made
their maternal and paternal genomes different in terms of length as depicted
in Figure 1.4 on page 17. The chromosome pairs of genomes of healthy
individuals were, however, at the sequencing of the first human genome,
considered as being of the same length and to only vary between each other
and between individuals in terms of sequence content in the form of, for
instance, SNPs.

A large fraction of the SNPs, reported in the first large scale generation
of human SNP data [41], was a result of the sequencing effort of the hu-
man genome. Follow up studies, of which the HapMap study [42, 43] is
the most prominent, using many individuals from different populations,
were performed to verify the reported SNPs. A possibly even more impor-
tant contribution by that study was a description of genomic regions that
are generally inherited together and not separated by recombination, the
haplotypes. More recent studies, like the 1000 genomes project [44], are
revealing even more polymorphisms. The existence of polymorphic mark-
ers, and the fact that maternal and paternal chromosomes recombine in the
germline, opened up many possibilities for genome analysis. Important was
the possibility to statistically associate a polymorphism to a disease/trait
through linkage analysis, based on studying the similarity of their segrega-
tion pattern in family trees. Polymorphisms could also be associated with
diseases/traits if they were found to be overrepresented in a case population
as compared to a control population in GWAS. Haplotypes and SNPs identi-
fied in these studies, mainly those located outside genes and which remain to
be functionally annotated, are now integrated with epigenomic information,
primarily generated by the ENCODE consortium. The software HaploReg
and RegulomeDB have been developed for that purpose and are described
in Section 1.13.

It was first after the emergence of the microarray technology, that it became
evident, that even healthy people could differ in (smaller size) copy number
[45]. The use of microarrays allowed for detection of copy number variation
at a higher resolution than previous methods had done, and led to the sur-
prising discovery in 2004 that genomes, due to variation in the copy number
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of shorter sequences, vary in length also among healthy individuals [46, 47].
Such variations, that occur in more than 5% of a population, are referred to
as Copy Number Polymorphisms (CNPs). SNPs were for some time believed
to affect more bases and to be more frequent than CNPs, but according to
recent estimates of CNVs, the opposite is now known to be true [17]. Im-
mediate questions of interest concerning CNPs are how they contribute to
human phenotypic variation, where in the genome they occur, what the re-
sulting distribution of human genome lengths is, when they were formed
and how they were formed. Recent publications [48—50] have been able to
approximate an answer to some of these questions. Most CNVs are relatively
frequent in the human population and are believed to have been generated
a long time ago. Most of them seem to follow the same haplotype pattern
as SNPs and their contribution to disease would, therefore, have been re-
vealed by association studies already performed. Hence, the conclusion is
that new association studies using CNPs will lead to few new discoveries of
disease risk loci [51]. The HapMap study samples, that originally were used
for analyzing SNVs in different populations to identify SNPs and haplotypes,
have now also been used to identify CNPs using microarray technology [48].
This study reports that in the sample two genomes on average differ by 1,098
CNV with a cumulative length of 24 Mb (0.78% of the genome). All differ-
ences found between the 41 studied samples encompassed 8,599 CNVs with
a total coverage of 112,7 Mb (3.7%) of the genome. Some of these findings
are reviewed in [52].

Figure 1.4: Somatic Copy Number Aberration, SCNA, Copy Number Poly-
morphism (CNP). Gain and loss of genomic sequences usually lead to the
change in length of the maternal or paternal chromosome. Copy numbers
are generally annotated as variation against a haploid reference genome.
The location of the amplified or deleted sequence is annotated with a copy
number deviating from the normal copy number of two. Sometimes a gain
of copy is accompanied by a rearrangement so that the new copy locates to
a new genomic site. Courtesy: http://www.imgm.com/index.php?id=5109

I

ETEY

-1 normal +1




18 CHAPTER 1. INTRODUCTION

1.8 Separation of sample populations and di-
ploidy

Most high throughput data collection methodologies, including next gener-
ation sequencing, require a relatively large amount of DNA, which brings
along that the sample must be collected from a population of cells. The fact
that the sample consists of many cells is not a problem as long as the cells
homogeneously represent the feature, that is measured. A cell population
sample from a healthy individual carries genomes, which are similar enough
for sample heterogeneity not to be an issue. Regarding epigenomes, it is an
open question to what extent they vary between cells in such a population
[53]. For a cell population sample from a tumor, both genomic and epige-
nomic heterogeneity can be expected, since the sample will represent dif-
ferent stages of a clonal expansion [54]. The majority of published analyses
has been performed without attempts to resolve the issue of sample hetero-
geneity. Analytical approaches have been applied to try to resolve epigenetic
sample heterogeneity [55, 56]. Similarly, methods have been developed to
resolve heterogeneity in the numbers of genomic copies in cancer samples
[57, 58]. New methods are also developed to restrict the used sample size for
DNA extraction [59, 60]. Taking diploidy into account is becoming increas-
ingly feasible with next generation sequencing technologies, and increas-
ingly important, because of the intent of integrative studies to infer mecha-
nistic relations. For the same reason, the diploidy of the epigenome should
be taken into account. As an example, an amplification of a heterozygously
methylated locus can be considered. The amplification of an epigenetically
silenced allele will be neutral to the expression of the gene, assuming that
the epigenetic state is inherited to the gained copy. A dosage effect will oc-
cur, though, with the amplification of a transcriptionally active allele. More-
over, assuming the genome to be diploid in its entirety is generally incorrect.
Many regions of the human genome have been reported to vary in its num-
ber of copies also among healthy people [61].

1.9 Chromatin dynamics

Cellular differentiation is driven by circuits of gene expression and gene reg-
ulation. The diploidy of the genome allows for parallel versions of these
circuits, and possibly networking between the versions. Some circuit con-
nections are pathways of transcription factor based gene regulation. Other
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connections are pathways based on the production and genomic deposition
of epigenomic components. Possible connections between genes expressed
in the early embryo, the formation of epigenomic landscapes, and genes ex-
pressed in adult cells, is the subject of the following subsections. Starting
with how the asymmetric expression of master regulators and developmen-
tal genes in the embryo and fetus, respectively, enforces polarity and the
body plan. Continuing with their possible regulatory link to the expression
of histone modifiers, and proteins with related functions, which in turn will
mold the epigenomic landscape. Epigenomic occupancy in distinct genomic
regions positionally associated to the transcription start sites of genes, either
on the one dimensional DNA sequence, or through three-dimensional inter-
actions will regulate the expression of genes. Detailed knowledge of global
chromatin architecture, along with these cis-regulators, represents a crucial
step towards understanding how genetic, epigenetic, and environmental or
stochastic factors drive context-specific genome regulation [62].

1.9.1 Master regulators in the early embryo

The lives of multicellular organisms start with conception and the formation
of a single diploid zygote of two haploid germ cells. It is likely that chromatin
states inherited from the germ cells contribute to determine the initial tran-
scriptional activities of the zygote. The zygote will through asymmetric cell
division, in which the mother cell forms one differentiated and one undif-
ferentiated (stem) cell, give rise to all the cells types of the adult organisms.
How asymmetric cell division is generated is not known, but models have
been proposed [63]. Genes expressed in embryonic stem cells in the early
development of an organism are called stemness factors. Examples of such
factors are Sox2, Oct3/4 and Nanog. The expression of these is believed
to maintain the pluripotent stem cell state. In differentiating cells another
set of genes called differentiation factors, of which examples are GDF1-15
and TGF-B, contribute to cellular decisions on future differential programs
or lineage commitment. Much of the regulatory circuitry connecting differ-
entiation factors and other genes, expressed in the early embryo, through
epigenomic modifiers and remodelers, and via epigenome organization to
the expression profiles of adult cells, remains to be understood.

At later stages in the differentiation other developmental transcription fac-
tors, like the HOX gene family, become important for regulating transcrip-
tion according to the body plan.
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1.9.2 Epigenomic modifiers and remodelers

Mitotic epigenetic inheritance requires the epigenomic equivalent of genomic
replication. At the same time different cell types have different epigenomic
landscapes. Mechanisms for histone production and the deposition of his-
tones genome wide are currently being mapped [64, 65]. Epigenomic modi-
fiers and remodelers lay down, modify, reposition and remove the epigenome.

Histone modifiers are proteins that add and remove chemical groups, like
the methyl, acetyl and phosphate ones, to various sites at the amino acid
tale of histones. The modifiers recognize epigenomic signatures with pro-
tein units called chromatin readers. Many types of proteins interacting with
the chromatin have chromatin reader subunits [66]. Nucleosome remod-
elers can move/translocate nucleosomes along the genome. Here follows a
short description of the known categories of genes contributing to the main-
tenance of the epigenome. Chromatin modifiers are:

1. Enzymes adding methyl group to DNA: DNA (cytosine-5-)-methyltransferases
(DNMT1, -3A and -3B)

2. Enzyme removing methyl groups from DNA: Ten-Eleven Transloca-
tion(TET)

. Histone lysine acetyltransferases (KATS)
. Histone deacetylases (HDACs)

. Histone methylation: Histone lysine methyltransferases (KMT)

N a0 A~ W

. Histone demethylation: Jumonji demethylases
7. Histone phosphorylation: Kinases active in the nucleus
8. Histone dephosphorylation: Phosphatases active in the nucleus

Integrative analyses usually include correlating the activity of modifiers of
the epigenome with the abundance or profiles of their target components
of the epigenome. So is, for instance, the level of promoter methylation of
the samples studied in Paper I correlated with the expression of the DNA
(cytosine-5-)-methyltransferases (DNMTs). DNA methylation has a crucial
role in differentiation and cancer. DNA methyl transferases DNMT3A and
DNMT3B have been shown to add methyl groups de novo in relation to dif-
ferentiation. DNMT1 has, on the contrary, been shown to maintain methy-
lation patterns across cell divisions. An enzyme for active removal of DNA
methylation, Ten-Eleven Translocation (TET), has also been identified. It
is active in, for instance, the germline, when the methylation pattern of the
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whole genome is known to be erased. The activities of these enzymes are
reviewed in [67].

Histone lysine acetyltransferases (KATs) and Histone deacetylases (HDACs)
are responsible for histone acetylation deacetylation, respectively.

Histone lysine methyltransferases (KMT) and, for instance, Jumonji demethy-
lases are responsible for histone methylation and demethylation, respec-
tively.

Kinases are enzymes that functionally modify other proteins by phospho-
rylation and they are frequently found to be aberrant in cancers. They are
abundant in the cytoplasm of cells, but are also believed to be located in the
nucleus. Phosphorylation is a common modification of histones. It could
be that some of the kinases, that are frequently disrupted in cancers, are
responsible for histone phosphorylation.

1.9.3 Epigenome organization and regulation of gene
activity

The involvement of DNA methylation in gene and transposon silencing [68],
imprinting [69] and X chromosome inactivation suggests that it is a tool
that cells can use to regulate gene transcription. In [70] the plasticity of the
methylome of different progenitor cells and its relation to gene expression
is investigated. The relation of the epigenome to gene regulation has been
the subject of many recent studies based on ChIP-Seq technology [25, 71—
73]. These global studies validated many associations suggested from earlier
locus specific ones and demonstrated some associations for the first time.
The ChIP-Seq based studies further revealed the important functional con-
sequences of chemical modification of the tails of histones. Associations in-
dicate, but do not prove, the existence of causal relations. A few studies have
been able to capture causation [74, 75]. In one of these studies the effects on
DNA methylation and gene expression were monitored after the deletion of
methyl transferases. CpG islands were subsequently depleted of methyla-
tion and linked genes were activated. Evidence for causation in the oppo-
site direction has been demonstrated as well, proving that gene regulatory
events can modify the methylation pattern at nearby sites [76] and that chro-
matin modifiers and nucleosome remodelers can be utilized in transcrip-
tional processes [22]. Studies of gene regulation continuously reveal and
define new types of genomic segments functionally associated to genes, for
which epigenomic, together with other transacting factors like transcription
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factors, occupancy regulates the transcriptional activity. The role of these
regions, in epigenomic regulation of gene expression is reviewed in [62, 77].
A term for the collection of these regions, the Cistrome, was recently coined
[78]. The regions are: the body of the gene itself, the promoter (+/- x kb
of TSS) that can be populated by CPG islands, the transcription start site
(TSS), distal enhancer sites, distal regions containing CpG shores [79], the
genomic segments covering the whole (3D) environment of the gene. Here
follows a review of important findings on their possible occupancy profiles
of epigenetic factors and how the combination of these profiles switches the
gene between three identified transcriptional states namely silent/inactive,
poised and active.

Promoter Gene promoters are commonly divided into classes depending
on their CpG content [73]. Most promoters (65%) tend to have associ-
ated regions with higher CpG content than the genome average called
CpG islands. They are called High CpG content Promoters (HCP) and
are believed to differ in the way they are regulated from Intermediate
CpG content Promoters (ICP) and Low CpG content Promoters (L.CP)
[80, 81]. Most HCP genes are, in contrast to the other classes, occupied
by H3K4me3 and have unmethylated CpG sites, or are hypomethy-
lated, independent of their expression state. They are also believed
to acquire an active state by default, while the other classes do not.
HCP genes tend to be silenced by occupancy of H3K27me3 modifica-
tion likely to be deposited by the Polycomb repressive complex. This
is a repressive state that is easy to reverse into an active state. Pro-
moters marked by both H3K4me3 and H3K27me3 are called bivalent
indicating that the genes are poised for expression when needed. This
type of repressive state is common in embryonic stem cells, targeting
developmental genes that encode transcription factors and other reg-
ulators of cellular state, and is likely to contribute to the ability of these
cells to reprogram and differentiate. Silencing of the other classes of
genes is believed to be of the long-term kind, within heterochromatin,
and identified by occupancy of H3Kgme3 and hyper-methylation. LCP
genes are believed to be expressed mostly in terminally differentiated
cells.

CpG island It has been observed that the frequency of CpG sites in the hu-
man genome on average is less than expected from the frequencies of
C’s and T’s [82]. A reason for the genomic depletion in CpG sites is
that C in CpG tends to get methylated. Methylated Cs tend to spon-
taneously deaminate to form Ts. There are, however, regions of the
genome where the CpG frequency rises to the expected one [83]. This
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can be because CpG ’s in these regions are rarely methylated and/or
selection pressure prevents mutation in these regions. The regions are
called CpG islands. Most genes have CpG islands coinciding with their
promoter regions upstream their transcription start sites.

Transcription Start Site (TSS) The stability of the occupancy of nucle-
osomes, or how well positioned they are, varies along the gene. The
stability is often visualized with aggregation plots, described in Sec-
tion 1.13.3, using TSSs as anchor points [84]. Aggregation plots are
also frequently used to demonstrate the distribution of individual hi-
stone marks around TSSs [25, 71]. The first nucleosome downstream
of the TSS, the +1 nucleosome, is the most well positioned. In actively
transcribed genes the site upstream of the +1 nucleosome is not occu-
pied by any nucleosome and is referred to as either the nucleosome de-
pleted regions (NDR) or the nucleosome free regions (NFR) [85—88].
Much of the research on NDRs/NFRs has been performed on yeast
[89—91] although the patterns of aggregation plots are similar between
organisms [90, 91].

CpG shore Genomic locations up to 2 kb proximal to CpG islands have
been identified that vary to a large extent in their methylation states
and seem to have great influence on gene expression [79].

Gene body The level of H3K36me3 occupancy in the body of a gene is as-
sociated with the level of transcriptional activity. The modification
tends to occupy the bodies of transcribed genes [25]. H3K36me3 has
also been shown to preferentially occupy expressed exons as compared
to introns and exons not used and thereby demarcating the splicing of
the gene. Methylation of CpG sites within the body of the gene has
been demonstrated to promote transcription [92].

Enhancer Enhancers are genomic segments with regulatory influence on
distal genes and are recognized by transcription factors and chromatin
regulators [93]. Therefore, even though enhancers can be identified
using a combination of chromatin marks, it remains a challenge to
map each enhancer to the gene it regulates. Software has been de-
veloped to improve the mapping between genes and their enhancers
[78]. Active enhancers have been shown to be enriched by H3K4me1
and depleted of H3K4me3 [72]. The chromatin pattern at enhancers
is more variable across cell types than the pattern at promoters. This
suggests that enhancers are more important in cell type specific gene
regulation. How H3K4me1 is deposited at enhancers is yet not known.
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Insulator Special motifs in the genome, like CCCTC, seem to be targets
for DNA interacting proteins like CTCF. Through its ability to inter-
act with many different proteins, CTCF is believed to have multiple
diverse functions including transcription regulation and insulation of
enhancer activity by forming long-range interactions and chromatin
loops. Thus, CTCF and its binding sites contribute to the global higher
order chromatin structure and to the formation of chromatin domains

[94].

1.9.4 3D organization

The 3D conformation of chromatin is known to be dramatically different
between cell cycle phases. During mitosis, the chromatin of each chromo-
some forms distinct shapes of either X shapes or rods. In interphase, the
chromatin is known to be less dense in its structure, forming chromatin ter-
ritories. The shape and positioning of chromatin territories are believed to
vary between different cell types and, to some extent, reflect that actively
expressed genomic regions tend to be kept closer to the center of the nu-
cleus, while silent transcriptionally inactive ones are kept closer to the nu-
clear membrane. Objectives of integrative epigenome analysis are to map
how the epigenome changes, and is influenced by the three dimensional or-
ganization of chromatin in the nucleus, its genome wide localizations and
its interactions with other omics data during differentiation of healthy cells,
and during cancer progression. It has only recently become possible to study
the three dimensional organization of chromatin and epigenomic interac-
tions. So, relatively few datasets, software and studies are available. The
data requires the same considerations as other next generation sequencing
data. 3D interaction data is collected from a population of cells and it rep-
resents averages within that population. The data is also collected as a hap-
loid genome representing averages of interaction for paternal and maternal
chromosomes. Heterogeneity between the cell population and between ma-
ternal and paternal chromatin might generate significant sources of noise.
Pioneering studies have revealed a few interesting conditions. Here are some
examples:

1. The time in which genomic regions replicate can be determined us-
ing nucleotide color labeling at replication [95]. Such studies have re-
vealed that the genome can be segmented into time zones from early to
late replication. The segments generally span multiple origins of repli-
cation. Specific histone marks as well as transcribed and poised genes
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have been associated with early replication time zones, while other hi-
stone marks and long term silent genes have been associated with late
replication timing [96—98].

2. A study of the locational association in the three dimensional nuclear
space of sCNA break points and replication timing data from a tumor
sample was published in [99]. The study reports that SCNA breakpoint
locations share replication times and are close in 3D. The analysis, per-
formed within the R language environment, suggests that many of the
CNAs have arisen through interference between adjacent replication
forks.

3. It was shown that genomic regions, with a low gene density and with
little transcriptional activity in fibroblasts, are interacting with the nu-
clear lamina. Hence, they were termed Lamina Associated Domains(LADs).
This indicated that genomic regions with low expression activity are
located in the nuclear periphery [100]. In another related study the
genomic locations of the H3K9me2, a mark of long term repression,
were found to overlap significantly with LADs.

4. The polycomb group (PcG) proteins, known to be crucial to dynamic
transcription silencing of large genomic regions in cellular differentia-
tion, have been shown to form agglomerates, called polycomb bodies,
in the three dimensional nuclear space [101]. Another silencing his-
tone mark, H3K27me3, has been shown to co-locate with PcG com-
plexes [102]. Functional dependencies between H3K27me3 members
of the PcG complex have also been shown to exist [103].

5. Transcription tends to occur at discrete three dimensional sites, simi-
lar to the polycomb bodies, but are in the case of gene activation, called
transcription factories. No particular histone mark has been associ-
ated with transcription factories, however. There is no evidence of
transcription factories occuring either in center or in the periphery of
the nucleus [104, 105].

1.10 Genomic and epigenomic alterations in
disease

A genomic disorder is a disease that is caused by an inherited genomic re-
arrangement. A complex disease is caused by several genes that, together
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with environmental and life style factors, affect the risk of getting the dis-
ease. Most genomic disorders are due to rearrangements spanning several
genes, which makes it possible to classify them as complex diseases. For
many complex diseases, such as autism and schizophrenia, genomic rear-
rangements have been identified as an underlying cause only in some of the
patients. An aberrant copy number of a gene can have a disruptive effect for
different reasons. It can be due to the gene dosage effect, so that the extra
copy or the missing copy affects the expression of the gene. Not all genes
are, however, dosage sensitive. The disruptive effect can also be due to that
the added copy might be positioned in a region lacking regulatory sequences
and the right 3D environment for transcription, the so called positional ef-
fect. Yet another reason is that deletion of a healthy allele can unmask a
recessive mutation. Even though the list of reported onco and tumor sup-
pressor genes disrupted by copy number aberrations is long [106], only a
few studies have been devoted to thorough analysis of the existence of the
dosage effect [107, 108].

DNA methylation has recently been implicated in a number of complex dis-
eases that are related to loss of imprinting and to repeat instability [109].
Mutations in DNA methyl transferases have long been known to contribute
to developmental abnormalities.

Cancer has for long been characterized as a disease caused by inherited (germ
line) and sporadic (somatic) point mutations and genomic rearrangements.
More recently, the evidence, not least in the form of mutations of epigenomic
modifiers and remodelers, of epigenomic alterations being part of the cause
of cancer are accumulating [110, 111]. Cancer is, however, generally not con-
sidered a genomic disorder because (most of) its rearrangements have been
somatically acquired so that they are not germline inherited and limited to
the cells of the cancer tissue. A few types of cancers are heritable and the
primary cause is genetic. Most cancers, though, tend to occur sporadically
and be influenced by lifestyle factors. As for these types there are many rea-
sons to believe that the epigenome plays a central role in the etiology. Many
cancers likely develop as an interaction between changes in the genome and
the epigenome [3] with an accumulation of mutations and deregulations of
a smaller set of driver genes and a larger set of passenger or hitchhiker genes
[112]. Driver genes are defined as those changing the cellular phenotype and
making it acquire the “hallmarks of cancer” [113], of which examples are self
sufficiency of growth signals and insensitivity to anti growth signals. Pas-
senger genes are those that do not contribute to the tumor transformation.
The epigenome influences the integrity of the genome. The majority of the
human genome consists of repetitive sequences. In these regions most of
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the methylated CpGs of the normal genome are found. It is believed that
the methylation protects against the disruptive effect of repeat sequences.
Methylation has also been shown to protect against non allelic homologous
recombination, a frequent cause of copy number alteration [114]. Repetitive
sequences tend to get hypo methylated in cancers. Some of the sequences,
like LINEs and SINEs, are parasitic retrotransposons. It has been suggested
that DNA methylation once evolved as protection against the disruptive ef-
fects of such parasitic sequences [115]. Other known effects of hypo methy-
lation in cancer are oncogene up-regulation and loss of imprinting. Known
effects of hyper methylation in cancer are silencing of tumor suppressor
genes and non-coding RNAs by hyper methylation of CpG islands in pro-
moters and of CpG shores. Many expressed genes have high levels of DNA
methylation within the gene body, suggesting that the context and spatial
distribution of DNA methylation are vital in transcriptional regulation. Re-
cent observations might explain why and how different sets of genes tend
to get methylated in different cancers. Genes, that are expressed in a cell
type specific manner, and maintained in a poised state in the normal tissue
by polycomb repression tend to also be the ones that become methylated in
cancers of the same tissue [116, 117]. These observations have contributed to
the formulation of the tumor stem cell hypothesis [115]. Changes in the nor-
mal patterns of occupancy of histone modifications have also been observed
in cancer. Methylated repeat sequences are also occupied by H3K20me3
and H4K16Ac in normal cells. This occupancy pattern tends to vanish in
cancer cells [118].

1.11 Technologies for data collection

Micro array and next generation sequencing technologies have been funda-
mental in the transition from locus specific studies to genome wide ones.

Second generation sequencing, a group of technologies that, compared to
older technologies, allows for comparatively fast, easy and cheap retrieval
of sequence information, from very long sequences like human genomes,
without positional restrictions. They are based on simultaneous sequencing
of massive amounts of about 100 base pairs long DNA fragments. There are
many variations to constructing DNA fragment libraries for such sequenc-
ing. Some of them include steps where various technologies, like ChIP [119]
or sodium bisulphite treatment [120], are used to select only the DNA frag-
ments that are marked by, or interact with, a particular epigenetic factor or
are transcribed.
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Technologies for data collection in genomics are under constant develop-
ment towards higher coverage, resolution, speed and lower costs. While
contributing to a continuous improvement of the understanding of chro-
matin biology, this development also brings along a few challenges. Exam-
ples are the constant change in data formats so that old analytic pipelines
cannot, without modification, be applied to new data and that the appreci-
ated value of data tend to have a best before date, putting a pressure on labs
to analyze the data fast. The best before date is also a challenge for main-
tainers of data repositories. For each type of data and sample, there might
exist multiple versions acquired with technologies of different dates.

There are many variations to each of the technologies described below. This
section is intended to describe the general principles of their application.

The data analyzed in Papers I and IT in this thesis was acquired by oligo nu-
cleotide micro array technology. Oligo nucleotides are short, single-stranded
DNA. They can be computationally designed and printed onto a silicon sur-
face/bead.

Microarray technologies can be used to determine which sequences of a
DNA library that are present in a sample and to estimate their abundances
in the sample. They are constructed by deposition of oligonucleotide probes,
single stranded sequences, in a systematic and recorded pattern to a silicon
plate. The purpose of the probes is to hybridize with and thereby immobi-
lize its antisense complementary sequence if it is available in the sample.
Common to most microarray experiments is that the analyzed signal repre-
sents the intensity difference between two samples. One of the samples is
the control, normal or reference sample while the other is the case or tested
sample.

In the case of gene expression profiling, the array should contain at least
one probe for each transcript of the genes. To get a detectable signal probes
must be printed in clusters of identical sequences. To perform an exper-
iment (hybridize DNA sample to the array) the microarray is first washed
with a library of DNA synthesized from, and complementary to RNA tran-
scripts (cDNA), with each cDNA being marked by a reporter molecule. Un-
hybridized ¢cDNA is subsequently rinsed off. A photo is taken of the array.
Probe clusters, where hybridization occurs with labeled target cDNA, will
appear as stained spots in the image. The abundance of the cDNA in the
sample will affect the number of transcripts that bind to its corresponding
probe cluster, which can be estimated by the intensity of its corresponding
spot on the photo.
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Designing probes for gene expression profiling is a bioinformatics task. Im-
portant to take into consideration is that a probe should match no other gene
but the one that it is supposed to represent, and repeats and self complemen-
tarily sequences should be avoided. Finally, similar melting temperatures
for all probes should be striven for to avoid problems at the hybridization
step.

To determine the genotypes at sites of SNPs using array technology, two
array probes must be constructed for each SNP, one probe that is the re-
verse complement of the major SNP variant and another that is the reverse
complement of the minor SNP variant. The intensity of each hybridization
reflects the degree of presence of the hybridized molecule. Hence the inten-
sity can be used to assess the number of copies of the variants of a loci. For
copy number estimation the sum of the intensity of the genotype at a SNP in
the case sample is compared with the sum of the intensity of the genotype at
that SNP in the matched control sample. To probe the genome for variation
and copy number at the highest possible resolution microarrays for SNP de-
tection tend to have a relatively large number of probes. The array used for
copy number derivation in Papers I and II, Affymetrix Genome-Wide Hu-
man SNP Array 6.0 has about two million probes. About half of the probes
on the array matches SNP loci, but the rest do not match polymorphic sites,
and are only used for copy number estimation.

The principle of SNP microarrays can be used to determine the methylation
states of CpG sites. It requires a conversion of the chemical modification
of DNA that CpG methylation is into a variation in the DNA sequence [121,
122]. Methylation of C protects it from the mutating agent sodium bisul-
phite. By treating the DNA with sodium bisulphite unmethylated C will mu-
tate into T. A variation in the DNA methylation state has thereby been con-
verted into a single nucleotide variation (SNV). By designing a SNP array
that distinguishes Cs and Ts at the site of C in CpGs of bisulphite treated
DNA the methylation states of the untreated DNA can be determined. The
array used to determine CpG site methylation states in Paper I, Illumina
HumanMethylation27 BeadChip, targets 27000 CpG sites in CpG islands of
promoters of about 14000 CCDS genes. There are many different types of
pretreatment and analytical steps for determining DNA methylation. They
are reviewed in [123].

The data analyzed in Papers III and IV in this thesis was acquired by the
ChIP-seq technology, which is really a sequential application of chromatin
immuno precipitation [124] and second generation sequencing [125]. Chro-
matin immuno precipitation is accompanied by many other technologies
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that have turned high throughput when combined with sequencing. This
has allowed for genome wide characterization of new aspects of chromatin
biology. A variety of methods, DNase I-seq [126, 1277], FAIRE—-seq [128]
and Sono—seq [129], have been developed for the mapping of open chro-
matin. Another application, where nucleosome positioning, and turnover is
measured genome wide, is described in [130] .

Chromatin immuno precipitation is a method for making sections of crosslinked
and sonicated chromatin “fall out” as a solid in a solution by specific binding
of an antibody with a given DNA interacting protein of interest. The method
depends on the availability of an antibody that binds specifically to the DNA
interacting protein. Chromatin immunoprecipitation was before the avail-
ability of next generation sequencing technology combined with microarray
technology in a method called ChIP-chip. The genomic regions that can be
queried by microarray technology are limited and decided at the time of the
production of the array. This is why the transcriptional activity of many non
protein coding genes has passed by undetected by microarray experiments.
Arrays cannot be used for detection of somatic mutations in cancer since
these somatic de novo mutations which are not identified by studying the
normal variation within a human population.

By using next generation sequencing technology the activity of a component
of the chromatin will be detected wherever in the genome it occurs. This is
because next generation sequencing technology enables the mapping of the
genome wide locations of a component of the chromatin as well as provides
a measurement of the degree of activity or probability of occurrence at the
locations. DNA for ChIP-Seq experiments is collected from millions of cells
from a population that should represent a cell type and state. Genomic se-
quence fragments interacting with a given protein are mapped onto a ref-
erence genome. This determines the genomic locations of the interactions
and allows for estimating the intensity or probability for an interaction at
that locus within the population. The Illumina platform for next generation
sequencing will here be used to explain general principles. It is one of the
most, if not the most, widely used technologies and it is used for the majority
of experiments behind the data in Papers III and IV.

For Illumina sequencing, for which the technological principles are schema-
tized in Figure 1.5 on page 33, only two types of oligo nucleotide sequences
are immobilized to the silicon plate/array/flow cell. The two types of probes
are equally distributed with a fixed inter distance across the flow cell. They
are used to capture library fragments, and later to act as PCR primers. The
library of genomic fragments of interest is called a target library. A central
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feature of the technology is the ligation of a pair of adaptor sequences to the
flanks of each genomic fragment of the target library. One adaptor of the pair
is ligated to one side of each fragment and the other adaptor is ligated to the
other side of the fragment. The outermost parts of the adaptor constructs
encode flow cell binding sequences complementary to one or the other of
the oligos on the flow cell. The sequences of the adaptor constructs comple-
mentary to the array probes are called P5 and Py respectively. They both also
encode an enzyme cleavage site. A library is constructed. Single stranded
library fragments are annealed to a fraction of the two types of probes of the
flow cell. Many of the probes will remain free and will be used for hybridiza-
tion when generating clusters of the fragments for signal amplification. This
is done through an application of surface (bound) PCR amplification, called
bridge amplification. The first cycle of bridge amplification uses the probes
of the flow cell as primers and the annealed library fragments as templates.
The flow cell probes will be elongated, upwards from the flow cell surface,
to have a sequence complementary to the annealed library strand with its
adapter constructs. The originally annealed strands are washed away. The
flow cell will now consist of immobilized newly synthesized single stranded
DNA with P5 and P7 sequences swaying at their tops as well as immobi-
lized probes, still free for hybridization and complementary to P5 and P7.
This will lead to annealing of the ends of the synthesized strands and the
complementary probes. A new round of probe elongation will take place,
this time using an immobilized strand as a template. Double strands will
be denatured. Bridge amplification will in this way generate clusters of oli-
gos. Each cluster will be a library fragment with flanking adapter sequences
with either P5 or Py attached to the flow cell probes. The oligos with P5 at-
tached to the flow cell are enzymatically cut away so that all the remaining
fragments of a cluster are attached by P7 and have the same direction. The
adaptor constructs with P5 are also equipped with a primer sequence R1, for
“Read one”, next to the sequence of interest. Read one is sequencing from
the P5 side of the fragments. The fragment strands of the clusters are sub-
sequently sequenced by synthesis, from top to bottom, using primers with
complementary sequences encoded in the P5 adaptor constructs adjacent to
the fragment of interest. One by one solutions of one base are washed over
the plate. Each base is dyed with a unique color. If the base is complemen-
tary to the base in the template and at the five prime end of the primer, it will
be inserted. Incorporation of a nucleotide reversely terminates further base
incorporation. The color of the incorporated base is monitored by a camera.
The dye is removed and the replication un-terminated. A new base is incor-
porated. In each iteration laser is used to trigger fluorescence. The flow cell
is imaged after each round of base addition generating 160 millions of simul-



32 CHAPTER 1. INTRODUCTION

taneous sequencing events reading ten billion bases per instrument run. It
is possible to stop an experiment after sequencing each fragment from one
end to the other, as described so far, in which case it is referred to as Single
End Sequencing. It is also possible to perform Paired End Sequencing. In
that case, the flow cell is stripped into its original condition by removing ev-
erything but the primer sequences. The procedure of bridge amplification is
repeated, but this time sequences attached through P7 are cut away. The Py
constructs are also equipped with a primer R2, next to the sequence of inter-
est, for "Read two”. Read two is sequencing from R2 primer of the P7 side
of the fragment and is used only for paired end sequencing. It is possible
to simultaneously sequence DNA from many samples, so called multiplex-
ing. This is achieved by using sets of adapter constructs equipped with an
index code which allows for simultaneous sequencing of DNA from many
samples, so called multiplexing. The antisense sequence of the R2 primer is
then used as a primer for sequencing the index code positioned between R2
and P7.

In summary the adaptor sequences will enable the fragments to:

1. Anneal as a single strand to one of the oligos of the flow cell. This is
what the sequences P5 and P7 at the far ends of each fragment are used
for.

2. Allow for PCR enrichment of adapter ligated DNA fragments only. This
is executed through bridge amplification.

3. Allow for indexing or “barcoding” of samples so multiple DNA libraries
can be mixed together into one sequencing lane (known as multiplex-

ing)
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Figure 1.5: The Illumina sequencing platform can be used for both single
and paired end sequencing. I.) shows how library fragments are equipped
with P5 and P7 adapter constructs and hybridized to the matching probes
on the flow cell. Fragments with the P5 adapter are enzymatically removed.
Sequencing is performed using primers complementary to the P7 adaptor
construct. I1.) shows that indexes encoded in the P7 adapter construct can
be used for the simultaneous sequencing libraries form multiple samples
(multiplexing). I11.) shows how paired end sequencing is achieved by a sec-
ond round of sequencing. The procedure is the same as in 1.), but fragments
with the P7 adapter are instead removed. A detailed picture of the library
fragments with adaptor constructs are shown at the bottom. Adapted from
http://nextgen.mgh.harvard.edu/I1luminaChemistry.html

v
[}
w
W
w
w

IS

vl

w

Seq. Primer
w
Py —

|.READ 1 3"=—=": —

For Single- and Paired- Starting library
End Sequencing

Many copies
Many copies.

—
I

U1 | e — )

|
|

II.INDEX 2=, g
READ kg
For Single- and Paired- M
End Sequencing 5
3 3 3 3
g5
lIl. READ 2 6 Bl s &
For Paired-End - A/\ - E E - 4
Sequencing Only 7 = =
37
L e 5
Flowcell after Read 1/
Index Read
STRUCTURE DETAILS
Rd1 Seq Primer Index Seq Primer
— > —
mmmm e INDEX
Jsuwld bag zpy
\
Y

Sequence of Interest



34 CHAPTER 1. INTRODUCTION

Next generation sequencing experiments are dependent on good algorithms
for aligning the sequence reads. The contribution to recent advances in
epigenomic by the development of such algorithm matches that of the de-
velopment of sequencing technologies.

Second generation sequencing technologies appear likely to be replaced by
new innovations of third generation sequencing. Nanopore sequencing promises,
among other benefits, to provide personal genome information cheaper, faster
and more accurately [131]. Workable solutions are not yet on the market,
however, due to problems like the fact that several nucleotides contribute to

the recorded signal [132].

1.12 Strategies for integration

One purpose of collecting genome and epigenome data is to look for in-
dications of interactions between components of the chromatin. Despite
the fact that chromatin biology takes place in three dimensions the avail-
able data has until recently been restricted to one dimensional genomic co-
ordinates. Genomic tracks often contain information on biological states
that could have causal relations. An obvious way to indicate causality be-
tween genomic tracks is to prove that they are locationally associated along
the genome. The diploid nature of genomic information usually disappears
when represented as genomic tracks which makes the data more difficult
to analyze for true associations. Another purpose of collecting genome and
epigenome data is to functionally annotate the reference genome. One could
speculate that integrating more genomic tracks would lead to more detailed
annotations at a higher resolution. Most integrative studies and software
have up to now involved two, or at the most, three genomic tracks. The inte-
gration of histone data into chromatin states is an exception. Few guidelines
are available, however, for how to integrate multiple tracks of other types of
data. Section 1.13 describes software and divides them into categories based
on their main analytic strategies. Pairs of genomic tracks can be statistically
tested for genome wide and local positional dependency or association. This
type of strategy will be referred to as genome wide locational associa-
tion. Software, for which the main functionality is based on this strategy, is
described in Section 1.13.5. Genome wide locational association resembles
another type of statistical testing used in genomics, i.e. Genome Wide As-
sociation Studies (GWAS). GWAS establish associations between phenotype
and genotype differences between two populations. The results of GWAS are
association of variations at one or many genomic locations to a trait varia-
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tion between two populations. They can be stored as genomic tracks and are
of interest to the type of integrative analyses described here. GWAS results
can be experimentally verified with locus specific assays.

The epigenomic composition of a genomic region reveals a lot of its func-
tional activity. Multiple tracks of epigenomic data can be used for machine
learning of chromatin states revealing whether a genomic segment is func-
tionally active in a given cell type or not. This type of analysis will be referred
to as machine learning of chromatin states. Commonly it is of interest
to see how epigenomic data collected from specific cell types or states dis-
tributes in relation to genomic data. Data of higher resolution in terms of the
hierarchy of biological entities is in other words analyzed in the context of
data of lower resolution. Analyzing multiple tracks using the "genome wide
locational association” can be difficult because different similarity measures
might be needed between tracks of different types. A solution to that might
be to center the analysis to a genomic feature of particular interest. This
type of analysis is referred to as centric to genomic feature. The ac-
tivity of a gene is not only affected by the epigenetic state of its body, but
also of that of proximal and distal associated regions outside it, likely due to
their proximity and interaction in 3D. Most genome feature centric analyses
are gene centric since gene regulation is a central theme in most integra-
tive studies. Related studies defining the cistrome [78, 133] are centric to
cis-regulatory regions. It is possible to center an integrative study on sets
of genomic features as well, whether it be sets of genomic regions inter-
acting in 3D or genes connected in a regulatory pathway. The recently ar-
rived possibility to collect pairwise 3D interaction data for genomic sites
genome wide has made it possible to look for co-location in the three di-
mensional nuclear space between the analyzed tracks. Gene centric studies
generally include steps in which genes are selected based on information
derived from integrated data. Enrichment of the selected genes are then
searched for by use of pathways, functional categories and gene ontologies.
Pathway centric approaches have been developed where data have been
integrated utilizing regulatory and signaling connections between genes. In-
dependent of the chosen type of integrative analysis, it will generally be a
challenge to compare tracks in terms of all aspects of similarities between
the analyzed data. Genomic tracks with information beyond genome loca-
tion have, for instance, both locational properties and amplitudes to con-
sider. Open source software performing these types of analyses and some of
their properties are also reviewed in the following subsections.
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1.13 Software

No software available today for integrative analysis gets close to providing
all features that could be wished for from such a tool. Many tools are mainly
developed for single-track analysis and are often limited to the analysis of
two tracks. Integration of more data generally requires a lot of assumptions
and prior knowledge, and the analysis tends to be focused on individual loci
or sets of a few loci that are known to share properties from before. Tractable
features of software for integrative epigenomics:

1. Availability and ease of access of data

2. Preprocessing of microarray and next generation sequencing data
. Dataformat conversions

. Network and pathway perspective

. Gene ontology perspective

. Reproducibility

. Transparency/Tools for Documentation

. Scalability

© 0 9 o ua W

. Extendability

10. Workflows

11. Data exploration

12. Statistical testing

13. Machine learning for chromatin states
14. Peak calling

15. Motif discovery

16. Tools of analysis based on 3D interaction.

17. Secure access

1.13.1 Preprocessing

The key components of microarray analysis are study design, preprocessing,
inference, classification and validation [134]. For each type of data that can
be collected with oligonucleotides, there is significant room for variation in
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the analytical result depending on the technology used for data acquisition,
software, algorithms and parameter settings. (The room for variation in the
result of next generation sequencing data is likely to be at least as large.)
Preprocessing normally involves normalization [135-138] to remove sys-
tematic variation (bias), transformation to remove skewness of data and fil-
tering. R and Bioconductor were at an early stage of the era of micro array
analysis selected as an environment for the implementation of algorithms
for both preprocessing and analysis. R is therefore the single programming
environment offering the largest supply of tools for processing of microar-
ray data. The preprocessing of oligonucleotide arrays for different types of
data share some principles. Bioconductor has a special site for their analysis
at http://www.bioconductor.org/help/workflows/oligo-arrays/. The
analysis of copy number data requires special algorithms for inferring copy
number segments out of adjacent probes with similar distribution of copy
number signal intensity [139]. Preprocessing of next generation sequencing
data includes quality control with software like FastQC [140] and sequence
alignment with software like Tophat [141]. One analytic task is generally
to infer differential signals based on the counts of aligned reads in a given
region. R and Bioconductor continue to be a preferred environment for de-
velopment and sharing of tools also for the analysis of next generation se-
quencing data. So is, for instance DESeq [142], a popular tool for inferring
differential signals based on count data. Next generation sequencing data
makes it possible to answer new biological questions, but also demands new
algorithms [143, 144]. It can be used for understanding mechanisms un-
derlying human gene expression variation through (eQTLs) [145] or for the
characterization of alternative spicing [143]. An evaluation of methods for
the analysis of differential expression using next generation sequencing is
given in [146]. For many of the analytical procedures there are options for
parameter settings, leading to significant possibilities, in similarity with the
micro array technology, for variation in results between different analyses of
the same data. When preprocessing ChIP-Seq it has to be decided whether
to use fixed or variable read lengths and whether or not to include reads that
map to multiple sites. Further, the ChIP-method generates a library of DNA
fragments that are enriched for those bound by a given DNA interacting pro-
tein. The use of control files to remove the signals from tags not bound by
the protein [147] is also a source of variation. Methods for genome wide
profiling of copy number and structural rearrangements [148—150] and for
analysis of DNA methylation [120, 151] are changing as well with the advent
of new technologies.
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1.13.2 Visualization

Genome tracks were originally used for custom uploading and visualization
of data in genome browsers. Recently visualizing genomic tracks in circular
plots have become immensely popular. A review of tools for effective visual-
ization of multidimensional cancer omics data, including genome browser,
circular plots and heatmaps, is given in [61]. One of the more prominent
tools for circular plots is Circos [152]. An example of such a plot is shown
in Figure 1.6 on page 39. The plot that was published in [48] was used
to show some properties of copy number variations in normal healthy peo-
ple, and the distribution of likely underlying mechanistic causes. The 8599
CNVs displayed were identified in 40 HapMap samples. Many plots like this
one, but with a much higher density of data points and with a higher num-
ber of tracks displayed have been published. Spotting inter track locational
association in such plots is generally of high value. This is hard to do with
the naked eye. Multiple levels of zooms would be needed. A solution to this
is to calculate local measures of association and visualize these locus wide
summarizes in a genome wide view.

1.13.3 Aggregation plots

Different forms of aggregation plots have, under different names, been in
use for a while, but, to the best of our knowledge, the first time the term
aggregation plot was used was in [153] a paper presenting the tool aggre-
gation and correlation toolbox (ACT). To create an aggregation plot out of
a genomic track of interest a set of equally sized genomic regions and their
center points are needed. Subsets of genomic coordinates in the genomic
track of interest located in the regions are selected. Each region is divided
into bins so that the centre point of the regions separates the two central
bins. A measure of occupancy is averaged across all equally sized regions
for bins located similarly in relation to the center point. The averaged mea-
sure can be the overlap, or a feature count in the bin or feature signals. Aline
plot of the averages for each bin is called an aggregation plot. A non-uniform
distribution will suggest that the track of interest prefers specific locations
in relation to the center points. A second genomic track, like definitions of
TSSs, is often used to define the center, or anchor, points.
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Figure 1.6: In the center a plot of links is shown between origin and insertion
site of inter-chromosomal duplications, colored according to their chromo-
some of origin. The indicated translocations suggest retrotransposons as
a possible cause for these particular duplications. The first circle from the
center is a frequency plot of duplications (green), deletions (red) and mul-
tiallelic (blue) loci. The second circle shows a stacked histogram of types
of derived mechanistic causes. The third circle is a plot of individually col-
ored chromosomes. The outermost circle shows a measure of population
differentiation that indicates to what degree the variation contributes to the
separation of populations (CEU and YRI). Courtesy [61].

1.13.4 Data exploration

To cluster objects is to store and represent objects in a way that reflects their
relative similarity or dissimilarity with in respect to a set of features. The
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definition of what a cluster is varies with its application [154]. One defini-
tion given in [154] is that: ”A cluster is a set of data objects that are similar
to each other, while data objects in different clusters are different from one
another”. Clustering, also called data exploration or unsupervised learn-
ing, is automated unsupervised classification of objects into clusters (cate-
gories, groups or subsets). The clustering of objects has been a method for
learning, famously applied by Linnaeus and Darwin, for which documen-
tation exists since the time of Aristotle. Central to the degree of reality re-
flected in the clustering is that it is based on measurements or observations
of object features. The clustering procedure generally consists of four major
steps:

1. Definition of a feature vector by selecting or extracting features repre-
senting an object/sample/genome track

2. Construction of a distance matrix by applying a proximity/distance
measure to the feature vectors

3. Validation of clustering result (A clustering method will always pro-
duce a result irrespective of the nature of the data and it should, if
possible, be cross-checked.)

4. Interpretation of the result.

The field within biology, in which clustering has been most frequently ap-
plied, is that of gene expression microarray analysis. There it has contributed
to the transfer of functional knowledge between genes clustering together
based on expression profiles across conditions and to the discovery of new
disease sub types based on the expression profiles of disease samples across
all genes.

1.13.5 Association by genomic localization

Two genomic tracks can be associated in multiple ways in terms of genomic
positions. Two tracks describing genomic segments can, for instance, over-
lap with each other or just be in the proximity of each other. The number
of alternative measures of associations increases when considering different
track types. These alternatives are extensively covered in [155].
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Galaxy

The core usage of Galaxy is for the documentation and construction of work-
flows for manipulation of genomics data. It is built around a Unix-like con-
cept providing the user with a rich selection of small programs that each per-
forms limited tasks. Galaxy is a web server with a Graphical User Interface
(GUI) front end. The web server is freely available for local installation and
can be extended by programmers proficient in Python. New tools developed
can be shared through a Galaxy toolshed. The selection of tools available in
any installation of Galaxy can be customized and tools from the toolshed can
be installed. The programs or tools can be navigated through categories and
selected from the GUI of Galaxy. Each execution of a program on a dataset,
may it be the upload of one, is stored and made accessible as a history item
from the GUI. Apart from being able to upload genomic tracks and other
data formats, like formats for sequence data, from your desktop, data from
all major genomic and epigenomic data bases can rapidly be accessed from
the interface. History items can be piped into workflows that can be used for
reproducing the data manipulation or analysis or for applying it to a differ-
ent data set. Visualization of input or intermediary genome track data can
be achieved in all major genome browsers. A tool for creating web pages,
called Galaxy Pages, for documentation of, and with links to, history items
and workflows can be created. Some of the more useful categories of tools
for manipulation of genome tracks are:

Get and send data offers access to major databases and complementary
software like Genome spaces.

Lift-Over converts from one version of a reference genome or genome freeze
to another, like from hg18 to hgi9.

Text Manipulation as well as Filter and Sort performs Excel types of
operations so that for instance genomic regions with a value higher
than a threshold can be selected.

Operate on Genomic Intervals allows for selecting regions that over-
lap between two genomic tracks. Alternatives to many of these op-
erations are available as independently developed tools in BEDTools
and in The Genomic HyperBrowser. BEDTools, which is a freestand-
ing command line interface based software, is also included as a tool
category in Galaxy.

The remaining tools in Galaxy handle tasks that are not immediately rel-
evant to high-level analysis of epigenomic data, like simple plotting and
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statistics, phylogenetics, motif prediction peak calling and population ge-
netics. A few of these tools have within Galaxy been plagued with malfunc-
tion. From a perspective of integrative epigenome analysis Galaxy’s weak-
est point is the lack of high level analytic tools. Galaxy is programmed in
Python but also embeds tools written in other languages. Some tools use R
libraries for statistical calculations. Others are merely embedded software
like Plink, EMBOSS and The Genome Analysis Toolkit or GATK (from Broad
Institute). The Galaxy method and software development have been pub-
lished in [156—158]. The usage of a visualization tool in Galaxy for the anal-
ysis of Next Generation Sequencing data has been published in [159]. The
Galaxy Tool Shed is described in [160] and available at http://toolshed.
g2.bx.psu.edu/.

The Genomic HyperBrowser

The initial and core functionality of The Genomic HyperBrowser allowed
for performing statistical analysis of association between pairs of genomic
tracks and for calculating descriptive statistics, like average distance be-
tween elements, of individual tracks. Its initial development is described
in Paper III [222]. In addition to focusing on development of new analysis
methodology, a central focus was from the start that the developed func-
tionality should be possible to use by biologists. It was thus decided to use
a web-based interface. Also, it was decided that instead of requiring users
to design custom workflows that combine smaller operations and statisti-
cal computations to suit their needs, the users should be presented with a
list of possible questions that the system could answer based on the data
a user was interested in. To simplify development, the Galaxy system was
used as a web framework. The analysis functionality of the HyperBrowser
was then offered as a single tool running on a local Galaxy instance. Later,
a large number of tools were added to support a broader analysis setting,
including initial processing of data, preparation of data for analysis, as well
as several specialized forms of analysis beyond what is offered by the ini-
tial HyperBrowser tool [155]. The set includes tools for the generation of
heatmaps for visual inspection and interaction with regulomes as described
in [161]. It includes a tool for clustering of genomic tracks based on dif-
ferent distance measures as described in Paper IV [223]. Further, the tool
set includes a tool for testing of association in 3D according to the method
described in [162].
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GenometriCorr

GenometriCorr [163] is an R package and it imports the Bioconductor pack-
ages IRanges and GRanges. It is also available as a downloadable software
with a GUI or it can be integrated as a tool in Galaxy. It provides four tests
for positional association of pairs of genomic tracks. The tests are:

Relative distance test It is used if the elements of two genomic tracks are
close to each other using a normalized distance.

Absolute distance test It is also used if the elements of two genomic tracks
are close to each other, using a distance that is not normalized.

Jaccard test is used to test if the elements of two genomic tracks overlap.
The test is an equivalent to the "segment overlap” test in the Genomic
HyperBrowser.

Projection test It is used to test whether points of one track frequently
fall within segments of another track. The test is an equivalent to the
“points inside segments test” of the Genomic HyperBrowser.

It is noted in the paper that the results of the tests are dependent on which of
the two tracks is considered the reference track, which is fixed, and which is
considered the query track, which is permuted. This is also true for some of
the HyperBrowser tests but will be more evident due to the written formula-
tion of the test as a readable sentence after selections have been made.

EpiExplorer

EpiExplorer [164] is one of the few web servers for genome track analysis de-
veloped independently of the Galaxy web server. This makes the provided
solution unique and interesting but it suffers from the lack of the rich set of
basic tools and of the features for transparency and reproducibility. One ad-
vantage of EpiExplorer is the speed with which results are generated. The
speed is partly achieved by not calculating the exact measure association,
however. This makes EpiExplorer suitable for initial exploration of many
analytical alternatives and data sets. More rigorous and time-consuming
statistical testing can be performed for validation. The principle of the anal-
yses of EpiExplorer is that tracks of interest to the user, usually novel and
possibly generated by a lab associated with the user, are compared to ref-
erence tracks stored in the database of EpiExplorer. The first step of an
analysis is to upload these tracks. It is also possible to analyze any of the
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preexisting tracks, which include chromatin and transcription factor bind-
ing data from the ENCODE project or epigenome data from the Roadmap
Epigenomics Initiative or gene annotations from Gene Ontology and Online
Mendelian Inheritance in Man (OMIM) and genome annotations from the
UCSC Genome Browser. Five types of default reference genomic regions are
available in EpiExplorer. They are:

1. CpG islands

2. Gene promoters

3. Transcription start sites

4. Predicted enhancer elements
5

. 5-kb tiling regions, spanning the entire genome. Non-overlapping seg-
ments used as unbiased reference sequences in analysis.

Every EpiExplorer analysis is based on relating a genomic track, imported
by the user in one of the provided ways, to the default tracks available within
the system. For each default type of data a set of analyses deemed suitable
is presented.

Genomic neighborhood plots are equivalent to aggregation plots de-
scribed in Section 1.13.3. Any of the default tracks can be used as an-
chor points to create neighborhood plots of the track to be analyzed.
Many tracks can be plotted simultaneously and are represented with
different colors.

Bar charts visualizing the percentage of overlap of the track to be analyzed
with a default reference track and a randomized control.

Frequency of methylation plot displaying the distribution of degree of
overlap between the segments of the track to be analyzed and the seg-
ments of a default track. The distribution is compared with a random-
ized control track.

Enrichment table and word cloud illustrating the most highly enriched
Gene Ontology (GO) terms among genes whose transcribed region is
within 10 kb of a shmC hotspot.

1.13.6 Gene centric analysis

The genomic feature of main interest in most integrative studies has been,
and probably will be, the gene. The usual workflow is that each type of data
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is preprocessed separately using software designed for that particular type
of data. Many such software solutions have features summarizing the data
around genes, to make it gene centric. In Papers I and II we used such
software for gene expression, DNA methylation and copy number data. R,
Lumi and MethyLumi were used for analysis of gene expression and methy-
lation data. For the gene expression data, intensities measured on probes
representing exonic sequences were summarized into average gene intensi-
ties. For the methylation data probes representing CpG sites in promoter
regions were made gene centric. Copy number data was also projected from
genome covering segments onto regions covered by genes. Since all types
of data have been summarized based on gene IDs instead of genome co-
ordinates integration can be based on merging lists of gene IDs instead of
selecting features with overlapping or positionally associated coordinates.
Integration by merging lists of IDs is easier to accomplish, as it allows for
the use of the regular data database operation language SQL, for example
”Select gene IDs that are "hypo’, 'gain’ and ’over’ from ’sample X”.

Sigmaz2

Sigmaz2 is a stand-alone software written in Java that requires the statistical
package R and the database application MySQL. The intention of the soft-
ware is first and foremost to be a platform for preparation of gene expres-
sion, copy number and DNA methylation data acquired by oligonucleotide
micro array technology for integrative analysis. Sigma2 has a lot of func-
tionality for processing and analysis of one type of data separately. It also
has multiple tools for integrating two types of data both on the level of a
case-control sample pair and on the level of multiple sample case control
groups. For integration of more than two types of data it has a tool for ana-
lyzing case control sample pair data. In [21] the software was used to look at
the frequency across samples of the result of Sigma2 integration. The term
“multiple concerted disruption” (MCD) was defined as the multiple aberra-
tion of a gene found in different types of data. Differentially expressed genes
with MCD were selected for individual samples and then another threshold
was put on sample recurrence. Variants of this strategy have also been im-
plemented in [165] and Paper I andII.

The R script used in Papers I and I

The R script used in Papers I and IT is described in the summary of these
papers. It is used to select genes based on alterations in two types of data that
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occur frequently across samples. It also looks for association of alteration
in a gene centric way.

1.13.7 Analysis centric to cis regulator regions

The research effort invested into understanding cis-regulatory elements and
functionally associating them with genes has recently increased. The pro-
duction of ChIP-Seq data on genome wide binding sites of trans-acting fac-
tors has made this type of research possible.

Clustered AGgregation Tool

A typical application of aggregation plots (explained in 1.13.3) is to plot av-
erage histone modification occupancy around transcription start sites [25].
Nucleosome occupancy around TSSs has been shown to be asymmetric around
TSSs reflecting transcription. For genomic regions, defined by anchor points
with a sense/antisense or upstream/downstream polarity, a flipping of the
antisense regions is necessary. This way the correct matching of antisense
region bins with bins from sense regions when creating an aggregation plot.
If the genomic track of interest is asymmetric around the anchor point, but
occurs equally frequent in both genomic directions, reluctance of flipping
the antisense, or the sense, segments will create aggregation plots that are
(falsely) symmetric around the center points. This is pointed out in [166]
and the option of segment flipping based on center point strand informa-
tion is implemented in Clustered AGgregation Tool.

TFBSs and insulators like CTCF have frequently been used as anchor points
[167]. These genomic tracks are not annotated with genomic direction. For
insulators that are believed to separate active from inactive chromatin states,
it is highly likely that the surrounding pattern of nucleosome occupancy is
asymmetric when considering strand information. In [166], CTCFs used as
anchor points are first clustered using Clustered AGgregation Tool based
on the histone occupancy in flanking regions. Equally sized sub clusters
of CTCFs with histone occupancy profiles being each others mirror images
strongly indicate that strandedness is relevant. One of the sub-clusters in
each mirror image pair is therefore flipped and the pairs are merged halv-
ing the number of sub-clusters. Aggregation plots are constructed for each
sub cluster. The possible functional differences between the sub-clusters are
investigated.
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A typical application of aggregation plots is to plot average histone modi-
fication occupancy around Transcription Start Sites (TSSs) of genes, as is
done in for instance [25]. An aggregation plot will reveal any pattern of oc-
cupancy of the histone modification that frequently occurs around the TSS.
By clustering occupancy data around anchor sites subgroups of patterns will
be suggested. Genome directionality might be the reason for pairs of sub-
clusters that are mirror images. Genomic processes, like DNA synthesis,
have direction => genomic polarity. When clustering aggregation plots of
histone modifications around TSSs, utilizing the strand information using
the Clustered AGgregation Tool in [166], patterns being the mirror images
of each other were rare, indicating that the genomic events take place either
on the sense strand or on the antisense one. In some cases subgroups being
the mirror images of each other around the TSS (anchor point with strand
information) might be suggested. These would indicate that at some TSSs
the genomic activity, demarcated by the pattern of histone occupancy, oc-
curs on the sense strand and at others it occurs on the minus strand. TSSs
generally have strand information indicating the genomic directionality of
their transcription activity. Genomic tracks defining many other genomic
features, like enhancers, come without strand information. In [166] it is
suggested that clustered aggregation plots of epigenetic data can help to in-
fer the genomic direction of activity feature like cis-regulatory regions, that
lack strand information.

ChIPseeqer

ChIPseeqer [168] is a software that permits combining tools for the analysis
of ChIP-Seq data of histone modification into workflows. The used tools are
reviewed in [168].

GREAT

The purpose of Genomic Regions Enrichment of Annotations Tool (GREAT)
[133] is to enhance the functional classification of the gene targets of trans-
regulatory factors. GREAT facilitates improving definitions of cis-regulatory
regions for individual genes and the consideration of these definitions when
performing functional enrichment analysis of cis-regulatory regions. The
cis-regulatory regions are identified by localized measurements of DNA-
binding events across an entire genome. By extending gene regulatory re-
gions to not only include traditional promoter regions, but also to lots of
remaining intergenic regions, GREAT enables the performing of functional



48 CHAPTER 1. INTRODUCTION

enrichment analysis, using also gene distal binding sites of a DNA interact-
ing proteins.

Cistrome

Cistrome is an extension to Galaxy, devoted to the analysis of the chromatin
of gene regulatory regions [78]. It offers tools primarily for preprocessing,
analysis and integration (with expression data) of ChIP-Seq data. The cistrome
is also a concept describing the research area in focus of the software, namely
the "set of cis-acting targets of a trans-acting factor” [78]. The cistrome is
essentially the binding sites of transcription factors and nucleosomes (and
ncRNAs). The software Cistrome harbors tools mainly devoted to peak call-
ing of ChIP-Seq data like MAT, M2AC and MACs. Tools for standard gene
expression and gene ontology analysis are also available. Tools for integra-
tion of the data mentioned above, like sitePro, Peak2Gene, CEAS, a tool for
clustering of (aggregation heatmaps) and a binding motif discovery tool are
available as well.

HaploReg and RegulomeDB

Many haplotypes identified as associated with a disease in GWAS have proven
not to contain any functional SNPs within genes. This has puzzled researchers.
The recently generated massive amount of data pointing out cell types spe-
cific enhancer regions has opened up for testing if functional SNPs are lo-
cated within them. HaploReg [169] and RegulomeDB [170] are complemen-
tary web based tools and databases for integration of haplotypes identified
as associated to disease through GWAS studies and genomic regions proven
to have cis-regulatory activity in some cell lines. The cis-regulatory informa-
tion has mainly been generated or assembled by the ENCODE study. Hap-
loReg and RegulomeDB are both developed by the ENCODE group. The
cis-regulatory regions are used to select candidate SNPs from the Haplo-

types.

The databases contains manually curated regions, that have been experi-
mentally characterized to be involved in regulation, containing ChIP-seq in-
formation for a variety of important regulatory factors across a diverse set
of cell types, chromatin state information across over 100 cell types, and
expression quantitative trait loci (eQTL) information connecting distal ge-
nomic regions with genes. Close to a thousand experimental data sets are
included, covering over 100 tissues. Close to 400 million computational
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predictions of transcription factor-binding sites are included. RegulomeDB
contains literature-derived from information on enhancer regions as well.

1.13.8 Pathway/network centric analysis

Based on gene expression profiling studies of various designs, cellular net-
works of gene co-expression can be defined. A review of methodologies for
this is given in [171]. Cellular networks can also be defined based on the in-
teraction of proteins. These networks are generally visualized as nodes and
edges forming a spheric structure. When the understanding of (parts/some
of) these networks deepens to the degree that the chain of events of the
molecular interactions can be established, and an end product can be spec-
ified, the structure is instead called a pathway. Most defined pathways of
today describe metabolic conversion, gene regulation or signal transmis-
sion. Some of them describe processes, like cell proliferation, cell survival
(apoptosis and necrosis) and angiogenesis, that when disrupted, contribute
to cancer progression. Different cancer related pathways are reviewed in
[172]. The use of high throughput technologies to construct cellular net-
works and biological pathways to understand the relationship between an
organism’s genome and its phenotypes is what defines the field of functional
genomics. To study a cell in light of this holistic perspective is to perform
“systems biology”. Traditionally, analyses of gene expression and gene reg-
ulatory data have first been performed at the level of genes. Functional data
in the form of gene ontology and pathway information is utilized at the end
of the analytic pipeline commonly in the form of functional enrichment anal-
ysis. Some software tools of frequent usage for this type of analysis are listed
and compared in [173]. More recently, analytic approaches where systems
biology information is utilized at the outset of the analysis, have success-
fully been applied in the software Paradigm [174] and Pathifier [175]. When
the mutations of a cancer subtype can be positioned on a specific pathway,
which has been shown to be the case in many integrative studies of cancers
[176][177], the knowledge of the structure of that pathway can help to iden-
tify bottleneck steps of molecular interaction. The proteins involved in such
bottleneck steps are ideal targets for drugs. A drug can then be used for
counteracting the effects of mutations of different proteins in the pathway
[178].
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Paradigm

The activity of a gene is not always reflected in its level of transcription.
This can be due to silencing of the RNA or chemical modifications of the
translated protein product. Just as the activity of a gene with only a slight
increase in mRNA abundance, as compared to the reference, can turn out
to be much higher than the reference, the activity of a gene with a much
higher mRNA abundance can turn out to be no different from the reference
with respect to its encoded protein. The idea of PARADIGM [174] is to use
pathway information to integrate genetic and epigenetic data, and protein
transcriptomic and proteomic data for inference of the activity of the in-
volved genes and gene products in that pathway as a whole. This way, the
activity of a transcription factor can be assessed not only by its gene expres-
sion, but also by the activity of its targets. The algorithm of PARADIGM is
based on Probabilistic Graphical Models (PGMs) and factor graphs [179].
Although PARADIGM has proven to be one of the most successful software
solutions in integrating cancer data, and has been used in most of the large
scale projects by The Cancer Genome Atlas (TCGA) Research Network [180,
181], it falls short when measured in terms of reproducibility, transparency
and accessibility. The central output of PARADIGM is a heatmap plot repre-
senting genes and their associated pathways. Columns correspond to sam-
ples and rows to entities. Red color indicates high calculated/inferred activ-
ity of a pathway entity and blue denotes low activity.

1.13.9 Analysis of proximity in three dimensions

No tools are yet available for this type of analysis. Theoretical guidelines
on how to adjust for biases caused by structural dependencies in the 3D
data when performing statistical testing are, however, starting to emerge
[162].

1.13.10 Inference of chromatin states

One of the major contributions of ENCODE to the scientific community was
to provide genome wide histone modification data. This type of data re-
vealed the existence of chromatin states [72]. Chromatin modification data
mostly generated by the ENCODE project has been used to train machine
learning algorithms to divide the genomes into chromatin states. One of the
first software packages to do that, while ENCODE was still in it first phase
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mapping 1% of the human chromatin, was ChromaSig [182]. It uses a two-
step algorithm to call chromatin states. First, it divides the genome into
2-kb bins and selects only those bins that are enriched in chromatin mod-
ifications. The bins are then clustered based on their similarities of chro-
matin signatures. The algorithms for inference of chromatin states were
refined, resulting in new software. Two of them, ChromHMM [183] and
Segway [184] were developed by groups within ENCODE. The algorithm of
ChromHMM is based on Hidden Markov Models (HMM), while that of Seg-
way employs a dynamic Bayesian network (DBN) approach. ChromHMM
works on a resolution of 200-bp segments converting each track to Boolean
values for each segment. Segway on the other hand operates on a base pair
resolution. The algorithms also differ in how they assign labels to each chro-
matin state segment. Segway is well documented and is available at http:
//noble.gs.washington.edu/proj/segway/.

EpiGraph

EpiGRAPH [185] allows for integrating epigenomic data with genomic se-
quence information to, for instance, try to figure out whether tissue specific
activity is encoded in the DNA sequence or whether the different genomic
sequences have different probabilities of being sites for virus integration.
EpiGRAPH can also be used to learn similar genomic regions.

1.13.11 Software environments for bioinformatics re-
search

Taverna and myExperiment

Taverna [186—188] and myExperiment [189] are developed by an interna-
tional diverse research group called myGrid. Taverna is software built to be
a research environment, facilitating the collaboration within and between
teams of software developers and researchers. The scope of the research
process that Taverna is meant to be involved in is very large, and it has a
wider scope than that of all other software mentioned in this thesis. The
programming language and environment for statistical computing R, de-
scribed later, might be an exception. The software is designed to address
the complexity of bioinformatics and other modern research tasks through
grid computing. Grid computing is a type of parallel computing connect-
ing regular computers through a network interface. Grid computing is also
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based on connecting web services and client applications, which require a
piece of software, called a middle layer or middleware. Since the computers
of a grid are connected over a network, their speed of intercommunication
is at the low end. Grid computing is, therefore, most suited for parallel com-
puting, where limited communication between processes is needed. Using
grid computing for the analysis of massive amounts of data, available on
the internet, is called e-science. Taverna addresses the demand for repro-
ducibility and transparency by letting any complex analysis be composed as
a workflow. A programming language devoted to the creation of workflows,
the simple conceptual unified flow language (Scufl), is used for the purpose.
One risk of embedding web services into work flows is that if the web ser-
vice is discontinued, the work flow will not execute any longer. This type of
problem is affecting at least a few Taverna workflows. Every analytic step is
documented within the Taverna environment.

MyExperiment is an online environment developed by the same team as
Taverna for sharing and exploring Taverna and other bioinformatics work-
flows. Since its release in 2007, myExperiment currently has over 3500 reg-
istered users and contains more than 1000 workflows.

GenomeSpace

GenomeSpace is online software that integrates databases and multitool soft-
ware into one environment. The available databases and software at login
are ArrayExpress, Cistrome, Cytoscape, Galaxy, GenePattern, Genomica,
geWorkBench, GiTools, Integrative Genomics Viewer (IGV), InsilicoDB and
UCSC Table Browser. The ones relevant to genome track analysis have been
described in their separate sections in this thesis. Handling of large amounts
of data is possible through storage in the Amazon cloud. Many tools for
file format conversion are available from within GenomeSpace to facilitate
the piping of data between different software environments. GenomeSpace
is available at http://www.genomespace.org. The software integrated in
GenePattern harbors many tools and provides features for reproducibility
by themselves. GenePattern, for instance, provides access to more than 230
tools for gene expression analysis, proteomics, SNP analysis, flow cytome-
try, RNA-seq analysis, and common data processing tasks.
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Spark and Genboree

Spark [190] clusters genomic regions in a similar fashion as the Clustered
AGgregation Tool described in sub-section 1.13.7. Instead of basing the clus-
tering of regions/anchor sites on one type of data, it allows for basing it on
sets of genomic tracks. This makes it resemble the software that divides re-
gions into chromatin states based on sets of epigenomic data. In contrast to
the Clustered AGgregation Tool it does not include any option for flipping of
aligned regions based on hypothesized strandedness. A Spark analysis starts
by the user providing two types of input: 1) A genomic track specifying re-
gions that will be used as anchor point, and 2) One or many genomic tracks
whose distribution around the anchor points will be used to sort/cluster the
anchor points. Spark uses the k-means algorithm for clustering for its speed
performance. It allows for interactive manipulation of the clustering results,
where clusters can be divided into further sub-clusters. This option is rele-
vant, since the cluster solutions generated by k-means can be a non-optimal.
Spark is written in the programming language Java. It is available at http:
//www.sparkinsight.org. Itis also integrated as a service in Genboree at
http://www.genboree.org/java-bin/login. jsp, which allows for paral-
lel analyses. There is no publication about the Genboree web site. It ap-
pears from the web site, however, as if it will be used for a visualization and
analysis of all spectra of next generation sequencing data. Geneboree al-
ready offers tools for variant calling from next generation sequencing and
for ChIP-Seq analysis.

R and Bioconductor

R [191] is a programming language and an environment for statistical com-
puting and graphics. It provides a wide variety of tools for statistical model-
ing, testing and clustering. It also provides many functions for plotting and
image generation. Scripts performing useful functions that are not already
available as packages in the R library can easily be turned into a package and
added to the library with the consequence that the capabilities of R is con-
stantly growing. An early response to the need of analytic reproducibility of
high throughput data, especially microarray gene expression data about ten
years ago, was the formation of the Bioconductor [192—196] project. In the
pursuit of a suitable development and deployment environment for bioin-
formatics tasks, the team behind Bioconductor selected R as a platform. A
reason for this was that R already was a popular programming language in
the biostatistics and bioinformatics community and offered an interface to
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people proficient in statistical computing and experts in the bioinformatics
field. R and Bioconductor have been frequently used in especially gene ex-
pression analysis. It allows for easy access to annotation and experiment
data through packages like BSGenome and Genomic Features. As for the
analysis of next generation sequencing and other data in the genome track
format its usability has been lagging. Concerns have also been raised that
Bioconductor tools will not scale well with the ever-increasing data sizes.
Some of these concerns are probably not justified. Many of the tools for han-
dling next generation sequencing data like Biostrings and IRanges are writ-
ten in C and work comparatively fast also on such large data sets. A tutorial
for using these tools is available at http://www.bioconductor.org/help/
course-materials/2012/CSC2012/Bioconductor-tutorial.pdf. Both R
and Bioconductor have been used successfully for developing analytical pipelines
in many of the initial analyses of The Cancer Genome Atlas data [177, 197].
Packages like sigaR http://http://www.bioconductor.org/packages/2.
11/bioc/vignettes/sigaR/inst/doc/sigaR. pdf for integrative analysis are
starting to appear in Bioconductor. A package for pathway centric data inte-
gration Pathifier [175] is awaiting approval for upload to Bioconductor.

R package cnaMet [198] selects genes that display a significantly higher ex-
pression when they are amplified and/or hypomethylated as compared to
other copy number and methylation states and genes, that are significantly
under-expressed when they are deleted and/or hypermethylated, as com-
pared to other copy number and methylation states.

1.14 Consortia generating public data

For the purpose of promoting the understanding of chromatin biology in
normal and disease development, a number of consortia have recently been
formed. Their main missions are to collect genomic and epigenomic data
from human cell lines and tissues and to provide public databases with the
data. The consortia ENCODE, Roadmap of Epigenomics, The Cancer Genome
Atlas Network and The International Cancer Genome Consortium will be
described here. The samples from which data is collected for the respective
consortium are listed, or can be browsed, at the following sites:

ENCODE http://genome.ucsc.edu/ENCODE/cellTypes.html
Roadmap of Epigenomics http://www.roadmapepigenomics.org/data

The Cancer Genome Atlas Network https://tcga-data.nci.nih.gov/
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tcga/

The International Cancer Genome Consortium The ICGC data por-
tal: http://dcc.icgc.org/web/

A more iclusive review of large scale epigenomics projects are given in [6].

1.14.1 ENCODE

Much of the research work within genomics and epigenomics has until re-
cently been devoted to the analysis of genomic regions spanned by protein
coding genes and their promoter regions. The ENCODE project has been
performed in two phases. In the first phase, the ambition was to function-
ally annotate all elements in 1% of the genome. In the second phase, the
whole genome was the target for functional annotation. In this effort, 1640
total experiments in 147 cell types [199] have been performed, and data ac-
quisition assays, including ChIP-seq, DNase-seq, FAIRE-seq and RNA-seq
have been developed. The importance of characterizing the human genome
outside gene bodies is becoming apparent for many reasons. An important
one is the failure of GWAS studies to map disease-associated loci to genes.
Candidate regions are frequently located outside genes. The Encyclope-
dia of DNA Elements (ENCODE) project consortium [200] was launched in
September 2003 by US National Human Genome Research Institute (NHGRI)
one of the 27 Institutes and Centers of the National Institutes of Health,
U.S. Department of Health and Human Services. In September 2012, re-
sults from the second phase were published in about 30 papers, with the
main findings summarized in [200]. Its mission is to define all functional
elements of the human genome. A similar initiative, modEncode, has the
same mission, but using samples from the model organisms Caenorhabditis
elegans (a type of flatworm) and Drosophila melanogaster (a type of fruit
fly). The detection, by researchers both affiliated and not with ENCODE,
that a large fraction of the genome outside protein coding genes is transcrip-
tionally active, indicates that the human transcriptome and gene regulatory
networks are far more complicated than previously appreciated. In their
main publication on the human transcriptome [27], the consortium pre-
sented the remarkable observation that three quarters of the human genome
is being transcribed in at least one cell type, and that most of that transcrip-
tion belongs to non-protein coding genes. They also reported that the level
of splicing used by genes is higher than previously anticipated. The func-
tional annotation of intergenic regions by ENCODE data might contribute
to the resolution of resolved the enigma of the evading functional validation



56 CHAPTER 1. INTRODUCTION

of GWAS SNPs. Initial analysis of the ENCODE data has lead to the develop-
ment of data bases and web services for GWAS SNP functional annotation.
The initial analysis has also lead to the development of tools using machine-
learning algorithms to divide the genome into chromatin states based on
epigenomic data. These tools are treated in Section 1.13.10. Large-scale
applications of different mapping techniques for protein DNA interaction
have lead to the mapping of many transcription factor binding sites in var-
ious tissues. Mapping techniques for the pairwise interaction of genomic
sites in the three dimensional nuclear space have provided the infrastruc-
ture and data for analyzing genomic and epigenomic data for association in
3D.

1.14.2 Roadmap of Epigenomics

A sister project to ENCODE also launched by NIH is the Roadmap Of Epige-
nomics. The main objective of ENCODE is to map functional elements in
healthy human cells. The data generated by ENCODE is, however, expected
to assist in answering many questions related to disease. The missions of
the two projects seem to be somewhat overlapping, and they also have a
common data portal at http://www.encode-roadmap.org/. The Roadmap
Of Epigenomics projects are primarily directed at providing data for the
study of the deviation of mechanisms in disease, and how these deviations
contribute to the disease. There are four "Roadmap of Epigenome Map-
ping Centers”: BI, UCSD, UCSF, UW, and four "Data coordination and dis-
play centers”, including UCSC. A joint presentation of ENCODE and the
Roadmap Of Epigenome is available at : http://www.genome.gov/Pages/
Research/ENCODE/ASHG_2012_JStamatoyannopoulos_ENCODE_Roadmap.pdf

1.14.3 The Cancer Genome Atlas Network

The Cancer Genome Atlas (TCGA) project was launched by the National
Cancer Institute (NCI) and the National Human Genome Research Insti-
tute (NHGRI). Its objective is to characterize a selected set of tumor types in
terms of gene expression, copy number variation, SNP genotyping, genome
wide DNA methylation profiling, microRNA profiling and exome sequenc-
ing of at least 1200 genes. Integrative analysis of the data, to a large ex-
tent with a pathway centric view [176] through the usage of the software
Paradigm, has been an important part of the published studies [181]. In-
tegrative studies involving epigenomic data (DNA methylation) is hard to
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find, however, and most integrative studies, so far, involve copy number
aberrations and gene expression. These studies have revealed little about
the interplay between epigenomic and genomic aberrations and how they
interact to modify gene expression. Studies integrating the two types of data
are reviewed in [106]. Epigenomic data collected by TCGA is currently lim-
ited to DNA methylation. A number of factors contribute in determining
what tumor types get selected for analysis and which ones make it to pub-
lication first. Some of these factors are the incidence and survival statistics
from the SEER Cancer Statistic website http://seer.cancer.gov/. Other
factors are the extent to which good samples can be provided. This is de-
termined by whether resection is performed before therapy for the type of
tumor. Some of the tools used in the analysis of the Cancer Genome Atlas
Data are available from the website of The Cancer Genome Analysis (TCGA)
group at the Cancer Program of the Broad Institute of Harvard and MIT
at http://www.broadinstitute.org/cancer/cga/Home. Significant pub-
lications on studies performed by TCGA on a few cancer types are [180,
181]

1.14.4 The International Cancer Genome Consortium

Parallel to the large projects launched by NIH there is an international col-
laborative project going on, that has grown out of national collaborative ef-
forts similar to TCGA, on collecting and analyzing samples from cancer pa-
tients called The International Cancer Genome Consortium (ICGC). It was
set off by a meeting in Canada in 2007 by 122 people from 22 countries in-
volving experts in different fields of cancer research [201]. In 2008 goals
and guidelines for the project were formulated and published in the doc-
ument http://icgc.org/icgc/goals-structure-policies-guidelines.
The goals include profiling of genomic, transcriptomic, and epigenomic changes
in 50 different tumor types. Researchers from Asia, Australia, Europe, and
North America have as of yet signed up for in total 47 project teams to study
more than 21,000 tumor genomes. ICGC have in their document on goals
and guidelines declared their preferred path from data generation to publi-
cation. Data generators are in the guidelines encouraged to release the data
to a suitable public data base as soon as it has been verified and validated.
The data is not considered as published, though, until a paper by the gen-
erators has been accepted by a peer review journal. Data users are asked
not to submit any papers until the data has been published. As far as can
be ascertained, no data have yet been published by ICGC. In a paper about
the consortium [202] Mike Stratton writes, however, that: “Sequencing of
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a large number of cases for the major cancer subtypes will provide power to
identify also rare mutation contributing to cancer”.

1.15 Repositories

FactorBook A database of transcription factor binding sites: http://www.
factorbook.org

Gene expresson omnibus A gene expression database: http://www.ncbi.
nlm.nih.gov/geo/

Cosmic A database of somatic mutations in cancer: http://www.sanger.
ac.uk/genetics/CGP/cosmic/

Epigenomc atlas http://www.genboree.org/epigenomeatlas/index.rhtml

PubMeth Important alterations in methylation in cancer has been coolected
in: http://www.pubmeth.org/

The database of Genotypes and Phenotypes (dbGaP) Repository for
primary sequence files of TCGC: http://www.ncbi.nlm.nih.gov/gap

Data Coordinating Center (DCC) All other types of data for TCGC: http:

//cancergenome.nih.gov/

TCGA data matix http://tcga-data.nci.nih.gov/docs/publications/
coadread_2012/

Cancer genomic hub http://tcga-data.nci.nih.gov/docs/publications/
coadread_2012/ Database for sequences and alignments genrated by
TCGA

ISB Regulome Explorer http://explorer.cancerregulome.org/

cBio Cancer Genomics Portal Next Generation Clustered Heat Maps:
http://bioinformatics.mdanderson.org/main/TCGA/Supplements/
NGCHM-CRC

cBio Cancer Genomics Portal http://cbioportal.org

cBio Cancer Genomics Portal Descriptions of the data can be found athttps:
//wiki.nci.nih.gov/x/j5dXAg

The cancer Gene Census A list of genes an their involvement in cancer
are maintained at: http://www.sanger.ac.uk/genetics/CGP/Census/
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National Cancer Institute (NCI) Pathway Interaction Database(PID)
http://pid.nci.nih.gov/

Kegg Pathway database: http://www.genome.jp/kegg/

Reactome Pathway databse: http://www.reactome.org/ReactomeGWT/
entrypoint.html

IPA Acommersial database of pathways: http://www.ingenuity.com/products/
ipa

geneGO A commersial database of pathways: https://portal.genego.
com/






Chapter 2

Aims of the study

The recently accelerating accumulation of old and new types of genetic and
epigenetic information on a genome wide scale opens up for investigation
of their interrelations on a global level. The new layers of information also
allow for increased resolution in defining and selecting genomic features.
There is a great need for new tools. The construction of them requires spe-
cific knowledge in many fields, particularly in biology, genomics, epigenomics,
software development and statistics.

1. A main aim of the study was to provide methods for integrative analysis
of disparate data types available in genomic and epigenomic studies. We
wanted to explore avenues both to apply existing software, and to prototype
dedicated solutions for a given project.

2. Having achieved viable solutions for integrative analysis, we aimed to
apply the methods to datasets of sufficient genomic and epigenomic com-
plexity available to us, with the further aim to obtain biological insights
into the mechanistic aspects of the studies. Two such datasets consisted
of osteosarcoma-derived data. We also wanted to enrich the epigenomic
datatypes to include histone modification, as this is rapidly becoming a very
important feature within genomic studies.

3. As all integrative analyses of genomic scale involve rich and complex
data, there is a demand for ways to efficiently utilize and visualize such data.
Therefore we wanted develop and try out efficient means of data exploration
through visualization techniques.
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Chapter 3

Summary of the papers

3.1 Paperl

Gene expression deregulation in cancer is frequently caused by both ge-
nomic and epigenomic aberrations. The phenotype of any cell is also a re-
sult of genomic and epigenomic interactions. The characterization of the
nature of those interactions in cancer development is a fairly new, but very
active area of research. Osteosarcoma is a type of cancer with extensive
amounts of genomic aberrations and also of promoter hyper methylation.
A data set, collected by a variety of oligonucleotide microarray technologies
from 19 well-characterized osteosarcoma cell lines, was used in an attempt
to perform a detailed characterization of the alterations. The dataset en-
compassed gene expression, promoter methylation and copy number data.
Preprocessing of the expression and methylation data was performed in R
while the copy number data was preprocessed in the Affymetrix Genotyping
Console, and in Nexus. The data was initially clustered to identify sample
sub-groupings based on a given type of data, followed by and to comparison
of the types of data in terms of the generated cluster pattern of the samples.
The hierarchical algorithm was used for clustering. The cell lines were clus-
tered using the gene expression profiles, the methylation states of 27000
CpG sites and the copy number of about 2 million base pair locations, re-
spectively, as features. The cell lines clustered in general differently, based
on each type of data. The fact that methylation data came almost exclusively
from CpG sites within gene promoter regions, and that the gene expression
data is located to protein coding genes, and an early decision to focus on
gene regulation, resulted in the integrative study being performed in a gene
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centric way. Values of expression probes belonging to the same transcript,
and those values of methylation probes carrying information on CpG sites
from the same promoter region, were therefore averaged for their respec-
tive genes. Probe information was, however, maintained throughout the in-
tegration to enable the tracking of their individual contribution. The copy
number data set, where segments covering every base pair of the genome
were initially inferred, was projected to the bodies of genes. The three types
of data could after such preprocessing be merged based on gene identifiers
instead of using genomic coordinates. An R-script was developed for such
a merge of the types of data and for further integrative analysis. Using a
thresholding approach, it was decided whether genes were altered or not
for the three types of data, respectively. Two-way dependencies between the
types of data were estimated within each sample by calculating the odds ratio
of a gene simultaneously being altered in two types of data. By conditioning
odds ratio calculations on the state of the third type of data three-way depen-
dencies were also evaluated. For the calculation of the odds ratio, which is
a size effect statistic for the dependency, the construction of a contingency
table is required. The same table was also used to calculate a measure of
significance of dependency through a chi-square p-value.

On the genome wide level, there was a significant positive association be-
tween gain and over-expression, loss and under-expression, as well as hyper-
methylation and under-expression. No such global association existed be-
tween copy number and methylation data. A strengthening association be-
tween hyper-methylation and under-expression with increasing copy num-
ber, as revealed by the three-way analysis, suggests, however, that hyper-
methylation may oppose the effects of increased copy number for detrimen-
tal gene aberrations. The script also reports a list of genes with combinations
of alterations that are frequent across the samples. A subset of that list con-
tains genes that, frequently across samples, are over-expressed and have an
additional aberration, hypo-methylation or gain, making regulatory sense or
offering a potential regulatory explanation. Similarly, another subset would
contain genes that are under expressed and have an additional aberration,
hyper-methylation or loss. Genes in either of these two subsets were used
for functional enrichment analysis. This identified the gene ontology terms
“embryonic skeletal system development” and “morphogenesis”, as well as
“remodeling of extracellular matrix” as significantly enriched. A separate
analysis of the genomic distribution of copy number aberration profiles in
relation to gene density, performed in The Genomic HyperBrowser using
a tool developed for the purpose, concluded that deletions tend to occur at
gene poor locations, and that duplications tend to occur at gene rich loca-
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tions.

3.2 Paper Il

Clinical tumor samples and cultivated cell lines of tumors are different sources
of information for characterizing a tumor type. Both of the sources have
their analytical challenges. Cell lines tend, for instance, to accumulate ge-
nomic aberrations during cultivation, while clinical samples tend to con-
stitute a heterogeneous population of cells. In this paper, the R-script de-
veloped for Paper I was applied to copy number aberration data and gene
expression data from 29 clinical/patient samples in the analyses, referred to
as paired. Two integrative analyses, identical in all aspects but for the use
of mesenchymal stem cells (n = 12) and osteoblasts (n = 3) respectively, as
references, were run in parallel in this study. They identified 445 and 138
genes, respectively. The method for selecting genes based on the two types
of data available within the script was compared to the one available from
within the commercial software Nexus, a tool which is primarily used for
copy number derivation. That method relies on identifying genomic regions
with simultaneous frequent copy number alterations and higher than ex-
pected numbers of differentially expressed genes. The paired method from
the R-script found more than 90% of the genes that were found by the Nexus
method and also an additional set of genes, including genes involved in cell
cycle regulation. It was concluded that the paired method had higher sen-
sitivity. The global significant positive association between gain and over-
expression, loss and under-expression found using the cell line sample in
Paper I was present also in this data set. A gene list for functional enrich-
ment was assembled by merging the result of the two parallel analyses and
also by requiring the genes to be differentially expressed. 31 genes were se-
lected this way. 22 of the genes were associated to cancer. Fourteen of them
were relevant to cell cycle regulation. The genes involved in cell cycle regu-
lation could provide clues to the extensive genomic alteration characteristic
of osteosarcoma.

3.3 PaperlIll

The methylation data used in Papers I and II was assayed by microar-
ray technology. It only represents some few CpG sites from each promoter
assayed, selected for their reported tendency to be methylated in cancers.
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With next generation sequencing technology it is possible to acquire the
methylation state of every CpG site of the genome. It has also become evi-
dent that the relationship between CpG methylation and gene expression is
complex and depends on the location of the site in relation to the gene. The
relationships between the occupancy of different histone modifications and
gene expression are equally dependent on relative genomic location. Fur-
thermore, many integrative analyses of genomic and epigenomic data do not
have the gene regulatory aspect particularly in focus. Their objective might
rather be to avoid any centricity at all. Generic solutions to these types of
analyses are few. Paper III reports the construction of a web-based tool,
The Genomic HyperBrowser, for flexible definitions of rules for integrative
analysis of two types of data through statistical testing. It also defines five
generic input formats into which any type of genomic or epigenomic data can
be converted. The paper presents the set of statistical tests that was devel-
oped to be executed on these types of tracks, and on a pairwise combination
of them at the time of writing the paper. In addition to performing the tests
on a genome wide scale or globally, they can also be performed in genomic
sub-regions, or locally in what is referred to as bins. The usability of the soft-
ware is exemplified through four biological cases. One of the cases is part of
this thesis project. In that example, the dependencies of the expression of
a gene and the occupancy of different histone modifications in a regulatory
region associated to the gene are determined. The data used was first pub-
lished supporting a seminal publication on the functional organization of
histone modifications in relation to gene regulation [25]. In the original pa-
per, juxtaposed aggregation plots of histone occupancy for four expression
classes of genes (from low to high), using their transcription start sites (TSS)
as anchor points, were presented as results. The plots revealed an existing
association between the occupancy of most of the histone modifications and
the expression of the gene. For a description of aggregation plots, see [166].
The solution provided in Paper III is based on a statistical test that provides
a size effect and a p-value. The genomic positions of histone modifications
were extracted from raw data as generated from the ChIP-Seq technology,
using the peak detection algorithm of the software (Nucleosome Positioning
from Sequencing) [40]. These positions were treated as "unmarked points”,
one of the five generic formats. The gene expression values were used as in
[25] and converted to "marked segments”, another of the generic formats.
An implementation of the Kendall’s rank correlation test was used to ask
whether the number of unmarked points (histones), counted in a marked
segment (gene bodies with expression values), correlates with the mark of
the segment.
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The Kendall tau rank correlation coefficient captures the association be-
tween two measured quantities. In the particular case of this example the
test translates to the following:

1. Comparing all pairs of genes with each other in terms of their gene ex-
pression values and histone counts in specified gene associated region.

2. Counting the number of concordant pairs, that is, pairs of genes sat-
isfying that if the expression value is highest in the first gene then the
number of histones is also highest. Similarly, the number of times the
pairs are discordant is counted. If the two types of data are indepen-
dent this is expected to occur equally frequent.

3. Calculating the Kendall tau rank correlation coefficient by subtract-
ing the number of discordant from the number of concordant gene
comparisons and dividing by the number of possible gene compar-
isons. This standardization makes the coefficient always vary between
-1 and 1. The expected value assuming independence is 0, and a pos-
itive Kendall tau signifies positive association and a negative Kendall
tau signifies a negative association.

Three more examples were developed to demonstrate the types of genomic
research that can be performed with The GenomicHyperBrowser. The sys-
tem still appears to be well on par with other existing solutions for statistical
genomics, and is continuing to expand in functionality [155].

Here follows a short summary of the other three examples.

1. Finding genomic regions where the genomic location of integration
sites of different retroviruses are similar. Virus integration sites are
treated as unmarked points and promoter regions as unmarked seg-
ments. The question asked in every bin is whether viruses integrate
into promoters more than expected by chance. In the example a num-
ber of hotspot loci is identified in which viruses prefer to integrate.

2. Overlap of H3K4me3 regions with SINE repeats. Here both types of
data are treated as unmarked segments and it is tested globally and
locally whether the overlap is higher than expected by chance.

3. Exon boundaries and melting forks. The tracks used are exon bound-
aries, DNA melting forks and GC-content. This example included in
the paper is used to demonstrate a tool to find out if an association is
due to a confounding third track. Probabilities of melting fork loca-
tions are treated as a function, exon boundaries as unmarked points
and GC-content as function. It was shown that the existing correlation
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between melting forks and exon boundary location could be explained
by differences in GC content.

3.4 PaperIV

An introduction to data exploration, or clustering, was given in Section 1.13.4.
Feature selection and summary as well as calculation of object distances are
listed there as important components in the process of clustering objects.
Paper IV presents a software for specification of how to select and sum-
marize features, and how to calculate distances for genomic tracks. The dis-
tances are in the current version used for hierarchical clustering. In Pa-
per I, the osteosarcoma cell lines were clustered using the three types of
data as alternative inputs. To cluster based on copy number data the in-
tensities of the about 2 million probes were used as feature vectors. This
was computationally very demanding, and had to be performed on a super-
computer type of server. Replacing approximately 2 million probes with the
segmented and copy number assigned data as input for clustering would
imply a severe reduction of memory usage and of the scale of calculations.
Such segment location data, for which there is no match between boundary
locations across samples, is however, not trivially converted into feature vec-
tors. Paper IV offers solutions to this and other similar types of problems
by providing ways to infer primarily euclidian track distances for hierarchi-
cal clustering. Three ways to calculate inter-track distances are presented.
The difference between the first two ways of deriving inter-track distance
lies in the underlying extraction of features.

Solution 1 relies on dividing the genome into bins and determining the rel-
ative track coverage in each bin. The relative coverage, for the track to
be clustered, of a bin is used as a feature. Clustering using this first def-
inition of features is called ”Similarity of positional distribution along
the genome”.

Solution 2 relies on looking at relative overlap with other annotation tracks
in this setting, referred to as reference tracks. The relative coverage,
for the track to be clustered, of a reference track is used as a feature.
Clustering using this definition of features is called "Similarity of rela-
tions to other sets of genomic features”.

Solution 3 differs in that it does not use feature vectors but derives in-
ter track distance directly from the pairwise track overlap relative to
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genome coverage. Clustering using this definition of features is called
"Direct sequence-level similarity”

The three clustering methods were, together with methods for dendrogram
and heat map plotting, implemented as a tool in The Genomic HyperBrowser.
The tool was used for hierarchical clustering of cell types and states on the
basis of histone modification data. More specifically, the data described
genome wide occupancy of H3K4me1. In the example used in Paper IV,
tracks of genes associated with GO terms, with one track per GO-term, were
used as reference tracks. For validation of the clustering result, existing
knowledge of the type and the differentiation stage of the clustered cells was
used. Cells of similar types clustered together in all but one case. In that
case, brain cells formed two separated sub clusters, which proved to repre-
sent fetal and adult brain cells.

In an attempt to find biological motivation for the large relative dissimilarity
between fetal and adult brain cells, the genes that had a different occupancy
between fetal and adult cells were extracted and used for functional enrich-
ment analysis. Terms related to neuron development came up as the most
significant, indicating that the signal is of biological nature.






Chapter 4

Discussion

In Paper I, two-way and three-way association between copy number, pro-
moter methylation and gene expression data within a sample was estab-
lished and quantified. The purpose of the three-way association was to iden-
tify any interactive influence of gene copy number and promoter methyla-
tion state on gene expression. The associations were investigated within
each of the multiple samples. Associations across samples were used to se-
lect frequently deregulated genes. The analysis presented in Paper II was
similar, but with input data restricted to copy number and gene expression
data. In Paper III associations between histone modifications and gene ex-
pression were established and quantified within a sample from one cell type.
In Paper IV data on genome wide occupancy of one histone mark acquired
from multiple cell types was used to group the cell types based on similar-
ities of occupancy of the mark. They were grouped based on measures of
genome wide association.

4.1 Backtracking alterations in DNA methy-
lation

The lack of association between the DNA copy number, DNA methylation
and mRNA expression levels of the methyltransferases in Paper I indicates
the existence of other mechanisms for genome wide change of methylation
patterns. It is known that polycomb-mediated DNA methylation guided
by silencing patterns of histone modifications is active in cancer [102, 103,
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203]. Integrating such data as well could possibly have provided clues to the
change of methylation patterns.

4.2 Establishing and quantifying association

A major objective of the study presented in Paper I was to look into the
relationship between copy number and DNA methylation and their possible
interactive influence on the gene expression. Reports on the nature of this
relationship suggest that different mechanisms are active genome wide, and
that the direction of influence goes two ways between the two types of data.
Hypomethylation (outside genes) increases for instance genomic instability,
and hypermethylation increases the base mutation rate [23]. A possible case
of the opposite direction of influence is the co-occurance of hyper methyla-
tion of tumor suppressor genes with genomic deletions [23], suggesting the
presence of a two-hit mechanism, where one allele is silenced by deletion
and the other by promoter methylation. The relationship between gene ex-
pression and DNA methylation states seems to be equally complex. Methy-
lation is known to promote gene silencing in, for instance, X-chromosome
inactivation and imprinting [83], while gene regulation has also been re-
ported to influence the methylation pattern [22]. Even though methyla-
tion and gene copy number alteration events across the whole genome, also
outside genes, probably are involved in cancer progression, the promoter
centricity of the methylation array, and the primary intent to integrate it
with gene expression data, contributed to limiting the study to the promoter
methylation states and gene copy number states. In any case where multiple
probes were spanned by a gene promoter their values were averaged. As im-
pressive as it is of the methylation array to measure the methylation states
of 27 000 genomic sites it only reflects a small fraction of the genome wide
CpG methylation states. The methylation array only represents selected
CpG sites in gene promoters, known from previous studies to be methy-
lated in cancer. Further, it has been suggested that the methylation status of
CpG island shores, not represented on the used methylation array, is more
relevant to gene regulation than to methylation of CpG islands [110]. Fi-
nally, the methylation status of the gene body is important to the expression
of the gene as well. Hence, an analysis using DNA methylation data from
next generation sequencing technologies, like whole genome [204] or Re-
duced Representation Bisulphite Sequencing (RRBS) [205], or even with
the methylation status of every CpG site in the genome, has the potential to
more meaningfully investigate its relation to gene expression. These larger
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and more complex sets of data would, however, require extensions of exist-
ing software to handle, for instance in terms of opposite location dependent
regulatory effects.

For the correct prediction of an association, given a certain mechanistic model,
a number of considerations or assumptions have to be made. It is, as far as
can be ascertained, not yet known whether methylation states are ”inher-
ited” with copy number amplification. If such inheritance is a fact, the am-
plification of the methylated variant in a heterozygously methylated gene
could automatically lead to the detection of hyper-methylation, since the
ratio of methylated to unmethylated is shifted towards methylated. The
diploidy of the genome, and heterozygous states, disregarded by most anal-
yses, complicates many predictions based on any mechanism. As an exam-
ple, predictions based on promoter methylation compensating a dosage ef-
fect, are not straight-forward. The gain of a methylated variant of a het-
erozygously methylated gene would, for instance, automatically due to "in-
heritance” not lead to an increased expression. The gain of the other allele
would, however, lead to an increased expression in the absence of a com-
pensatory mechanism. In the study of Paper I, the pairwise relationships
between the three types of data were initially measured by correlation within
samples. They were similarly also estimated by odds ratios of having simul-
taneous alterations in the two types of data. Using the same contingency
table as for the odds ratio, chi-square p-values were also calculated. The
results suggest that gene expression sometimes, but surely not always, is af-
fected by both copy number and methylation change. An explanation of the
incomplete association between gene expression and the two other types of
data could be that promoter methylation of genes can be used to maintain
normal expression of a gene with an altered copy number. Many genes are
also expressed in a tissue specific manner and those genes not being tran-
scriptionally active in the investigated tissue will therefore not be affected by
copy number changes. Possibly, the most interesting result of the two-way
analysis was the lack of dependency between copy number and methylation
data, suggesting that no such promoter methylation based mechanism for
compensating for copy number aberration is in place. Another explanation
of the lack of dependency on the genome wide level could be the drowning
of the signal in the multitude of other signals from various active mecha-
nisms. By conditioning on the expression state of the gene, mechanisms,
not related to gene regulation, would be filtered out. Since the contingency
table-based measure of association was easy to extend to look into three way
interdependency of the data, that method, instead of the correlation-based
one, was presented in the paper. An alternative analysis could have been
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to perform linear regression with expression as the dependent variable and
copy number and promoter methylation as fixed variables. The coefficient
of the interaction term would have revealed any genome wide cooperativ-
ity, and competition for that matter, of influence of copy number and pro-
moter methylation on gene expression. Instead, odds ratios and chi-square
calculations were used. Odds ratios for expression and methylation levels
calculated for only amplified genes showed that amplified genes tend to be
normally-expressed or under-expressed when hyper methylated. The hy-
pothesis that hyper-methylation adjusts the gene regulatory effects of copy
number change is therefore not rejected by the results displayed in Figure
10.

The copy number and the methylation state data from the tumors are snap-
shots of the evolution of the tumor. Both states have likely been reached
by multiple events spread out in time, where acquired methylation states
may have triggered copy number events and copy number events may have
triggered methylation of CpGs. The mapping of events of clonal expansion,
at that level of detail, would benefit from the development of proper study
designs, technology with higher genomic coverage and resolution. Also, an-
alytical pipelines harboring the expertise of the field of statistics, computer
science and molecular biology would contribute. Currently, no goldstan-
dard software is available for this type of analysis, but ideas on how to find
associations in these types of data have been put forth [206].

Paper I, also presents a separate study that was performed in The Genomic
HyperBrowser, searching for association of frequency of copy number aber-
ration and gene density. In that analysis chromosome arm level and focal
copy number aberrations were not treated separately. It is reported that in
tumors in general, such aberrations are either focal or span (close to) an en-
tire chromosome arm [207]. The underlying mechanisms generating these
types of aberrations are likely not the same, and the analysis using The Ge-
nomic HyperBrowser would have benefited from such a separation. The
correlation of these subtypes of genomic aberrations to the other types of
data might vary as well. A similar analysis could have been performed with
the copy number data presented in Paper II, but it was not considered be-
fore the publication of that paper.

The study presented in Paper II only integrated copy number and gene
expression data. Investigation into three-way dependencies was therefore
not possible.

As stated in the summary, the contribution to Paper III is limited to the
biological case example, which correlates histone occupancy and gene ex-
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pression. More specifically the objective of the example case was to investi-
gate how the occupancy of nucleosomes with various histone modifications
in a region in proximity to the genes correlated with the expression of the
gene. The used measure for correlation was the Kendall tau correlation and
the significance was calculated with Kendall tau correlation test. The gene
proximal region is defined to maximize the encompassed cis-acting regula-
tory factors. The positions of the nucleosomes with different histone modi-
fication were derived from ChIP-Seq data using the software NPS (Nucleo-
some Positioning from Sequencing) [208], which was not the same as the
one used in the original publication of the data. A different algorithm was
used partly because of a published comment pointing out weaknesses with
the original one [209]. Another reason was that NPS did not, like other sim-
ilar algorithms at that time, use sequence alignment data for individual hi-
stone modification separately to call peaks and infer nucleosome positions.
Instead, it analyzed many histone modifications jointly utilizing the knowl-
edge that they all should be positioned on shared nucleosomes, thereby in-
creasing the positional resolution. Almost all peak calling algorithms are
developed for, and applied with the best results to, small motif-specific DNA
interacting proteins like transcription factors. Many of them are reviewed
in [147]. The lack of similarity of the resulting peak calls between the dif-
ferent software solutions, especially when applied to histone data, remains
unresolved. New software, like that published in [210] implementing many
of the individual benefits of previous software, are still being developed and
will hopefully resolve discrepancies. Peak calling algorithms work well for
small motif-specific DNA interacting proteins that generally have distinct lo-
cations and are sparsely distributed across the genome. In contrast, larger
non motif-specific DNA interacting proteins like nucleosomes are generally
spanning larger genomic regions and can be densely populated. Some his-
tone modifications are best identified by looking for patterns that span re-
gions in the kilo base pair size range. In addition, histone modifications ex-
ert their functional impact in cooperation with other modifications shared
by its nucleosome and by neighboring nucleosomes. Finally, the orientation
of asymmetric histone patterns is believed to be functionally revealing [166].
The preprocessing and analysis of histone modification data have therefore
departed from the traditional peak calling methodologies. An early attempt
to capture wide distributions is the Sicer software and later examples in-
clude Chromasig, ChromHMM and Segway [182-184]. ChromHMM and
Segway are tested and reviewed in [199]. These algorithms for extracting
chromatin states do not necessarily make algorithms to exact histone po-
sitioning obsolete. Characterizing the genome distribution and the relative
contribution to regulatory processes of individual histones will certainly still
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be of interest. The challenges of analyzing histone positioning data properly
is, however, not limited to the preprocessing step. It is commonly of inter-
est to compare the regulatory influence of different histone modifications.
To do that it is tempting to try to define gene-associated regions, that are
commonly occupied by all histone modifications, and to use the frequency
of occurrence in that region as a measure of involvement of the histone. This
was done in Paper III and variations of this approach have been utilized in
other important publications, for instance the ones using aggregation plots
[25, 71, 211—214]. This way of defining the degree of involvement of histone
neglects a few aspects of histone occupancy. It should be stated in this con-
text that no analytical method as of today manages to capture all of these as-
pects. Different histones influence gene expression by occupying different
regions associated to the gene. H3K4me3 tends to be highly concentrated in
a focal region surrounding the transcription start sites of highly expressed
genes, while H3K4me1 tends to occupy distal enhancers of such genes. The
sparse occupancy of H3K27me3 in wide areas of silenced genes not only sup-
ports the idea that histones operate with different positional distributions
but also suggests that they are detected with different signal amplitudes.
Further, classes of genes vary in how they are regulated. In [215] it is re-
ported that expressed housekeeping and cell-type specific genes have differ-
ent H3K4me2 profiles in their promoter regions. It is also known that genes
with a high promoter CpG content are regulated differently to those promot-
ers having a low such content of CpG. Before any mechanistic model has
been suggested for a functional interaction, the boundaries, within which a
histone modification influences the expression of a gene, can only be roughly
estimated. A possible improvement to the analytic strategy used in the his-
tone example of Paper III would be to first determine where different types
of histone modifications tend to occur and then to see if there are subclasses
within histone modifications depending on gene class, and finally to corre-
late occupancy with gene expression. Future studies, in which it will be pos-
sible to define gene-associated regions with support from three-dimensional
interaction data, will likely increase the resolution of these types of studies.
In the histone example in Paper III two different pairs of boundaries are
used for all genes and histones (flanking 2kb an 20kb of TSS). Also the gene
expression data is afflicted with analytic challenges. Due to intensity biases
between probes on the microarray chip, it is not recommended to infer rel-
ative transcriptional activity by comparing intensities between genes. This
is why the change of expression within genes and between conditions con-
stitutes the traditional output of gene expression analyses. It is believed,
however, that the global nature of a correlation test will have an averaging
effect on the biases.
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In Paper IV, different ways of calculating distances/similarities between
tracks are used for clustering tracks. These distances are similar to forms of
measures of association.

4.2.1 The mutual exclusiveness of two-way aberrations

In the analysis of Paper I, we have shown that it is not common for different
osteosarcoma cell lines to use copy number aberration and promoter methy-
lation as alternative mechanisms between samples to deregulate a gene. No
support is in other words found for a two-hit hypothesis of a combination
of a genetic and epigenetic alteration leading to gene silencing. Integrat-
ing more omics data, like point mutations, genomic translocations, LOH,
nucleosome occupancy, microRNAs or transcription factor regulation could
possibly reveal other mechanisms working in parallel to silence both gene
copies.

4.3 Finding genes with alterations in multi-
ple types of data

The second major objective of Paper I was to use the three types of data to
identify interesting genes and pathways. Two recurrence criteria were used
to select genes:

Across data types meaning simultaneous different gene expression and
at least an “explaining” alteration in another data-type.

Across samples , meaning that to be selected, a two-way alteration has to
recur in a minimum number of samples.

Integrative analysis performed this way not only selects deregulated genes
but also annotates them with a possible cause of the deregulation. This type
of information is valuable for many reasons. For example, tumor suppres-
sor genes, that are silenced by promoter hyper-methylation, should, unlike
those silenced by deletion, have the potential to be reactivated, making them
potential targets for therapeutic drugs. A challenge in setting the cutoff limit
for sample recurrence is to strike a balance between the high limit that filters
out passenger genes, and the more forgiving one that allows for a degree of
spread of alterations between the genes within a frequently altered pathway.
Applying tests for significant differences on the gene level would exclude al-
terations, which are frequent on the pathway level, but not on the gene level.
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Examples of pathways frequently altered in cancer are those regulating cell
cycle progression and DNA repair.

The integrative study of Paper II is limited to datasets of copy number and
gene expression. The lists of selected genes would probably have been twice
as long, judging from transferring the size relations between lists from Pa-
per L if methylation data had been included. A few analytical choices were
also made differently in Paper II. One of the more important ones was the
decision to filter the gene list obtained from the paired (two way recurrence
R-script) algorithm by requiring the genes also to be significantly differen-
tially expressed. This implied a severe filtering of the original list and would
not pick up genes sharing the mutation burden of a frequently altered path-
way. In the paper, it is suggested that the sample recurrence threshold at
35% might have been too high, since important cancer genes, like CDKN2A
and MDM2, would have been picked up with a slightly lower threshold. This
emphasizes the importance of the pathway paradigm. This study comple-
ments that of Paper I, in that the data has been acquired from clinical
samples instead of cell lines. The genomic and epigenomic states of nei-
ther clinical samples nor cell lines will truthfully represent the tumor state
of interest. One of the advantages of using clinical samples is that the tu-
mor cells within it are a better source of information on the clinical setting
than the cell lines, since they have had no opportunity to accumulate further
alterations during cultivation. One of the drawbacks of using clinical sam-
ples is that the pool of cells, used for extraction of the DNA, is commonly
a mixture of normal stromal cells and tumor cells from different stages of
the clonal expansion. It can be expected that the copy number data is less
affected by the contamination than the gene expression, and that integrat-
ing the two datasets might filter out many non-cancer signals in the data.
In this study a second integrative approach offered by the software Nexus
was used to select genes as a comparison. The method was found to be less
sensitive. It filters out genomic regions with a high frequency of gains or
losses. Then a second filter is applied on the selected regions. Those, that
contain either over-expressed or under-expressed genes exceeding the ex-
pected number, are selected. There is no obvious motivation for applying
this filter. Whether a gene is a driver gene or not is not affected by whether
its genomic neighbor genes are frequently deregulated or not. This method
would also be blind to genes picked up by the pairwise method, developed
in Paper I, that are located in genomic regions dominated by tissue specific
genes not expressed in the analyzed cell types.

A number of approaches for integrating different types of microarray data
from cancer have been published during the course of this study [180, 181,
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216, 217] and a few software for integrateive analysis like PARADIGM [174],
CNAmet [198] and Sigma2 [218]. Some of the principles behind these ana-
lytic tools have been reviewed elsewere [219].

4.4 Clustering of genomic tracks

In Paper IV three ways are suggested for calculating distance measures for
clustering data in the simplest form of genome track format, which describes
genomic locations of a set of segments. Solution 1, “Similarity of positional
distribution along the genome”, divides the genome into bins and uses the
relative coverage in the bins as a feature vector. Epigenomic components are
involved in multiple genomic activities dependent on the genomic location
of their occupancy. In the example of Paper IVgenomic tracks describing
H3K4me1 occupancy were used. H3K4me1 is known to be involved in gene
regulation through enhancer occupancy. Definitions of cis-regulatory re-
gions, like enhancers, are now beginning to be available as genomic tracks.
A modified version of the application of Solution 1, where distinct genomic
regions, like enhancer regions were used as bins instead of binning the whole
genome would have been an asset.

Most available genomic and epigenomic data, like nucleosome and histone
modification data, is stored in the genome track format describing genomic
location of sets of segments. There are, however, exemptions for which tools
for clustering is needed. Point mutation spectra are stored in genome track
format describing genomic location of sets of points. Solutions 1 to 3 in Pa-
per IV could easily be applied to such tracks, but has not yet been imple-
mented.

Some genomic tacks are annotated with more than just positional informa-
tion. DNA methylation states are, for instance, stored in the genome track
format describing the genomic location and the value of sets of points and
copy number aberration profiles are stored in the format describing genomic
location and the value of sets of segments. Distance calculations for such
tracks becomes more complicated than for the unmarked types of tracks,
since it has to reflect both positional and amplitude differences between
two tracks. Clustering is a large field of research [154] and the opportuni-
ties for implementing more efficient and sensitive tools for data exploration,
more variations of methods for feature extraction and summary and differ-
ent proximity measures are plentiful and should be further explored.

Hierarchical clustering, along with K-means clustering, are the most fre-



80 CHAPTER 4. DISCUSSION

quently applied clustering algorithms in medical biology. Contrary to hier-
archical clustering, the K-means clustering algorithm partitions the objects
into a defined set of clusters. K-means is more scalable than hierarchical
clustering [154] and should be considered for tracks with many features that
cannot be summarized in a justifiable way. In hierarchical clustering the ob-
ject distances are generally visualized as dendrograms or binary trees. The
reordering of the feature matrices is generally represented as sorted heat
maps where the range and the intensity of the color represent the magni-
tude of the feature value.

These heat maps are especially useful in binary clustering where both the
objects and the features are clustered, because they pinpoint the features
that contribute to cluster separation. This is how the heat map of Additional
file 2B in Paper IV reveals that the H3K4me1 level of occupancy in genes
associated with ”glycerol metabolism” and those associated with ”xenobiotic
metabolic process” or drug metabolism co vary across the analyzed cell lines
and that the two genes sets are important in separating liver cells from other
types of cells. This fits well with the knowledge that important parts of both
glycerol and drug metabolism occur in the liver.

In the example case for Solution 3, the ”Similarity of relations to other sets
of genomic features”, H3K4me1 tracks are clustered based on the occupancy
within reference genome tracks defining GO term associated genes. An ex-
pected result is that reference tracks representing an ontology terms that
are specific to given cells, like “immune response”, will only be occupied
by H3K4mes3 tracks collected from that cell type. In fact many examples for
this are found in the heat map of Additional file 2B in Paper IV. The used GO
term tracks is based on gene body coordinates. H3K4me3’s proven tendency
to regulate gene expression through enhancer occupancy suggests that GO
term tracks using gene related enhancer region coordinates. Such tracks has
, however not yet been defined.



Chapter 5

Conclusions

Integrative analysis of next generation sequencing data will contribute to
the curation of many diseases and offers promises towards the revelation
of laws of chromatin dynamics. The current investment into such analy-
sis, with no match in history, manifested by the formation of consortia for
assaying various omics disciplines, will increase the resolution of current bi-
ological understanding. The contribution from smaller labs, although not as
visible, is probably at least as important. Many hurdles, exemplified by the
point list below stands in the way, making it difficult to predict the path of
discovery.

1. Efficient handling of massive and complex data sets

2. Generating data that is free of noise

3. Reducing false discoveries of non existing relationships
4. Reducing false rejections of existing relationships

5. Providing credibility to true findings.

The opportunities for software development are vast and environments like
R/Bioconductor, Galaxy and The Genomic HyperBrowser constitute a promis-
ing foundation to further research and development within the field of In-
tegrative Epigenomic Analysis.
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Abstract

Background: Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all
conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-
wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray
technologies.

Principal Findings: The cell lines showed complex patterns of DNA copy number changes, where genomic copy number
gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets,
350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression,
loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The
genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and
across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as
well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated
in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed
compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2'-deoxycytidine
treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive
association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-
expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation
may oppose the effects of increased copy number for detrimental genes.

Conclusions: Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and
relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better
understanding of osteosarcoma biology.
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Introduction has improved considerably after the introduction of neoadjuvant
. . . chemotherapy, the need for advances in treatment regimens is still
Osteosarcoma is the most common non-haematological prima- high

ry malignant tumour of bone, occurring most commonly in the Most conventional osteosarcomas have complex karyotypes

with numerous and highly variable genomic aberrations. A vast
number of DNA copy number changes have been identified using
chromosome- and microarray-based comparative genomic hybri-
disation (CGH and array CGH), more recently also utilizing high-
density single nucleotide polymorphism (SNP) microarrays
[8,9,10]. Few, if any, consistent chromosomal aberrations have
been recognized in osteosarcoma, mainly consisting of recurrent
alterations in 6p, 8q, 13q and 17p [9,10,11,12]. Many genes

metaphyseal regions of long bones in adolescents and young
adults, but also in patients over 40 years of age [1]. Almost all
conventional osteosarcomas are high-grade malignant tumours
with poor prognosis, and 20-25% of the patients have detectable
metastases at diagnosis [2,3]. The 5-year survival rate for patients
diagnosed with osteosarcoma without presence of metastasis is 60—
65% [3,4,5], whereas it is only 20-28% for osteosarcoma patients
with metastases at diagnosis [3,6,7]. Even though the survival rate
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become deregulated due to genomic aberrations, and DNA copy
number and gene expression data have been combined to identify
oncogenes and tumour suppressor genes in osteosarcomas
[10,11,13,14]. Another important mechanism for down-regulation
of gene expression is DNA methylation, more specifically at CpG
sites in the promoter region of genes. It has been speculated that
epigenetic mechanisms may be more prevalent than mutation in
childhood cancers like retinoblastoma [15]. Although a number of
research groups have reported comparisons of alterations in DNA
copy number, DNA methylation and mRNA expression for other
types of cancers [16,17,18], only a few studies have examined the
interdependence of these types of mechanisms in osteosarcoma
[19,20]. The benefits of an integrative approach are that driver
genes and their regulatory mechanisms may be identified, as well
as relationships between mechanisms. The identification of
molecular markers and pathways contributing to osteosarcoma
development and progression may facilitate better diagnosis and
prognostication, as well as the development of new treatment
strategies.

As part of EuroBoNeT, a European Network of Excellence on
bone tumours (http://www.eurobonet.eu), we have access to
a large collection of clinical samples and resources for pre-clinical
studies. One such resource is a collection of 19 osteosarcoma cell
lines, which have been previously characterised in detail, including
DNA fingerprinting to guarantee their identity [21]. Genetic,
phenotypic and functional characterisation have shown that these
cell lines robustly represent osteosarcoma clinical samples
[21,22,23]. The EuroBoNeT osteosarcoma cell line panel will
serve as a highly valuable, well-characterised model system for
basic and pre-clinical studies.

By using various microarray technologies, genome-wide genetic
and epigenetic changes were analysed in the EuroBoNeT
osteosarcoma cell line panel. DNA copy number changes have
been mapped at high resolution using the Affymetrix Genome-
Wide Human SNP Array 6.0, DNA methylation status of
approximately 27,000 CpG sites have been identified using the
IMlumina HumanMethylation27 BeadChip and global mRNA
expression data have been obtained using the Illumina Hu-
manWG-6 v2 Expression BeadChip. The different levels of
genome-wide information have been analysed separately and
integrated in order to identify recurrently altered genes showing
more than one type of aberration, as well as the dependencies of
the different types of aberrations in osteosarcomas.

Results

Genetic and Epigenetic Alterations in Osteosarcoma Cell
Lines

DNA copy number changes in the EuroBoNeT panel of 19
human osteosarcoma cell lines [21] were mapped at high
resolution using the Affymetrix Genome-Wide Human SNP Array
6.0, DNA methylation status of approximately 27,000 CpG sites
was identified using the Illumina HumanMethylation27 BeadChip
and global mRNA expression data were obtained using the
IMlumina HumanWG-6 v2 Expression BeadChip. For the two
latter types of data, two normal osteoblast and four normal bone
samples were included as controls. Clinical data for the
osteosarcoma cell lines and normal samples are given in Table S1.

Unsupervised hierarchical clustering of the 19 cell lines and 6
normal samples was performed in R v.2.13.0 using the three types
of microarray data, and the resulting cluster dendrograms are
shown in Figure 1. The clustering was performed using the
genome-wide probe intensities for the DNA copy number data,
avgBeta (average ratio of signal from probe detecting methylation
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relative to the sum of both probes) probe values for the DNA
methylation data and variance-stabilizing transformation (vst) and
quantile normalised probe intensities for the mRNA expression
data. Based on the distance of the dendrograms, the cell lines
appeared more similar based on overall gene expression than copy
number, with methylation in between. The cell lines clustered in
general differently based on each type of data, although some
similarities were seen, such as the co-clustering of IOR/OS9 and
IOR/OS18 for all data types. The HOS cell line and its
derivatives 143B and MNNG/HOS clustered together for all
data types, with HOS and MNNG/HOS being more similar in
terms of gene expression and methylation, and 143B and HOS in
terms of copy number. The clustering patterns did not correlate
with the clinical information associated with the sample of origin
(Table SI1), the cell line phenotypes, including the status of
CDEN24, MDM? and TP53, nor with the differentiation capacity
or i vivo tumour formation capacity [21,22].

Furthermore, all the normal samples clustered together in one
branch based on the methylation data, whereas the osteoblasts
clustered together with the osteosarcoma cell lines for the
expression data. Based on the distance of the dendrograms, the
normal samples were more similar to each other than the
osteosarcoma cell lines were, especially for the methylation data.
Since the clustering pattern of osteoblasts and bone samples was
markedly different for the expression data, the further comparisons
of methylation and expression levels in the osteosarcoma cell lines
were performed against only the osteoblasts. The osteosarcoma
cell lines and osteoblasts are both in vitro grown samples, and
would be expected to better separate cancer-associated properties.

For each cell line, genes with DNA copy number aberrations
(gain and loss) were identified using the SNP rank segmentation
algorithm in Nexus. Probes detecting variation in DNA methyl-
ation (hyper- and hypo-methylation) compared to the normal
osteoblasts were identified using a cut-off of deltaBeta >0.4 and <
—0.4, whereas probes detecting variation in mRNA expression
(over- and under-expression) compared to the normal osteoblasts
were identified using a cut-off of vst transformed and quantile
normalised ratio >1 and < —1. The probes were collapsed to
gene level for the analyses, keeping the probe level information.
The number of genes with each type of aberration for all the cell
lines are plotted in Figure 2 and listed in Table S2.

For the copy number changes, most cell lines showed more
genes with gains than with losses (Figure 2A). The cell lines U-
2 OS and MNNG/HOS had a different pattern, with almost
similar numbers of genes gained and lost, whereas KPD diverged
from all the other cell lines having a higher number of genes lost
than gained. Excluding these three outliers, there was a correlation
between the number of genes with gain or loss (R?=0.56). The
distribution of number of genes gained and lost did not correlate
with the clustering pattern based on the copy number changes
(Figure 1).

As expected, most cell lines showed more hyper-methylation
than hypo-methylation, and there was an inverse correlation
between the number of genes hyper- and hypo-methylated
(Figure 2B, R?=0.35). The cell line 143B had almost 20 times
more genes hyper-methylated than hypo-methylated, whereas
IOR/0OS14 had slightly more genes hypo-methylated than
hyper-methylated. The distribution of number of genes hyper-
and hypo-methylated showed a trend to correlate with the
clustering pattern (Figure 1). The two main subclusters showed
different distributions with respect to the number of genes hyper-
and hypo-methylated, with the exception of the cell lines IOR/
OS15 and IOR/OSI18. The DNA copy number, DNA
methylation and mRNA expression levels of the methyltransfer-

November 2012 | Volume 7 | Issue 11 | e48262



Genetic and Epigenetic Alterations in Osteosarcoma

A B C

MRNA expression DNA methylation DNA copy number
IOR/OS14 IOR/SARG IOR/0S18
MG-63 I0R/0S515
IOR/059 IOR/OS18 IOR/@59
IOR/0S18 IOR/OS9 IOR/0514
IOR/MOS I0R/0S10 oHS
MHM IOR/MOS
MNNG/HOS HOS Ll
HOS —‘ E MNNG/HOS MG-63
1438 1438 ZK-58
0SA 7K-58 »
IOR/0510 MHM o2
U-20s MG-63 U205
082 0SA MNNG/HOS
0B1 U208 i
Saos-2 KPD 95
7K-58 HAL 1438
OHS OHS KPD
IOR/OS15 L RS IOR/SARG
KPD Saos-2
IOR/SARG BOIN IOR/MOS
HAL HAL

i IOR/0S10
: v IOR/0S15
INEZ \_: 082
SONE 081 0SA
0.20 015 O.i 0 0.;)5 0.00 0:35 0.50 0:25 0:20 0:1 5 0:]0 0.’05 0.00 0.60 0.50 0.40 0,50 020 0.0 0:00

Figure 1. Hierarchical clustering of osteosarcoma cell lines and normal samples. Dendrograms from unsupervised hierarchical clustering of
the osteosarcoma cell lines, normal bone and normal osteoblast samples based on genome-wide (A) mRNA expression (vst transformed and quantile
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samples in blue. The clusters were made using Spearman correlation as distance measure and complete linkage.

doi:10.1371/journal.pone.0048262.9001

ase genes DNA (cytosine-5-)-methyltransferase 1, -3A and -3B
(DNMTI, -34 and -3B) are shown in Figure S1. The genes were
gained in several cell lines and hyper-methylated in some, but all
cell lines except HAL showed similar mRNA expression levels as
the normal osteoblasts. No correlations were found between the
DNA copy number, DNA methylation and mRNA expression
levels of DNMTI, -34 and -3B, and the number of hyper- and
hypo-methylated genes.

The number of genes over- and under-expressed was more
even, and there was a correlation between the number of genes
over- and under-expressed (Figure 2C, R?=0.40). The distribu-
tion of the number of over- and under-expressed genes reflected
also partly the clustering pattern (Figure 1). The cell lines in one of
the two main subclusters showed in general higher numbers of
under-expressed genes.

A genome-wide frequency plot of alterations in DNA copy
number is given in Figure S2. The cell lines showed more gains
than losses, and an increased copy number of regions in almost
every chromosome was present in more than 50% of the
samples. The most frequent gains were regions in 2p, 14q, 20q
and 8q, whereas the most frequent losses were regions in 13q, 3p
and 6q. A genome-wide analysis using The Genomic Hyper-
Browser (http://hyperbrowser.uio.no/hb/) [24] identified an
over-representation of gene-rich areas among frequently gained
regions and gene-poor areas among frequently lost regions. The
analysis was performed as two separate Monte Carlo-based
hypothesis tests, for gain and loss respectively, giving p-value
<0.001 in both cases. Tests were also performed separately for
each chromosome arm (except the sex chromosomes), resulting
in 27/39 significant arms for gain and all 39 arms significant for
loss. Figure S3 shows the frequency plot of copy number
aberrations and gene density for chromosome arms 2q, 8p, 19p
and 19q, all with significant results for both gain and loss tests.

PLOS ONE | www.plosone.org

The chromosome arms that were not significant for gain were
3p, 4p, 4q, 6q, 10p, 11p, 12p, 13q, 14q, 17q, 18p and 18q, and
the frequency plot of copy number aberrations and gene density
for these chromosome arms is shown in Figure S4.

The methylation data were analysed with the Bioconductor
packages Limma and MethyLumi to identify differentially
methylated genes compared to the normal osteoblasts. Using
a cut-off of M-value (log, ratio of intensity of probes detecting
methylation and no methylation) >6, 328 significantly differen-
tially methylated genes were identified, listed in Table S3. The
gene list was analysed for functional enrichment in DAVID
(Database for Annotation, Visualization and Integrated Discov-
ery), and the top five terms in the top three clusters are listed in
Table 1. The first cluster contained terms involving embryonic
organ development and morphogenesis, as well as homeobox
proteins and DNA binding, the second cluster contained terms
involving thyroglobulin, whereas the third cluster contained terms
involving potassium channel and ion transport. The top 10 clusters
with all terms are listed in Table S4.

The expression data were analysed with the Bioconductor
packages Limma and Lumi to identify differentially expressed
genes compared to the normal osteoblasts. Using a cut-off of vst
ratio >0.5, 283 significantly differentially expressed genes were
identified, listed in Table S5. The gene list was analysed for
functional enrichment in DAVID, and the top five terms in the
top three clusters are listed in Table 2. The first cluster contained
terms involving ribosome and translation, the second cluster
terms involving fibrinogen, whereas the third cluster contained
terms involving embryonic skeletal system and organ develop-
ment and morphogenesis, as well as homeobox proteins and
DNA binding. The top 10 clusters with all terms are listed in
Table S6.
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over- and under-expression for all the cell lines. The linear regression
line is indicated in black. For the copy number (A), the linear regression
line omitting the outlier samples U-2 OS, MNNG/HOS and KPD is
indicated with a dashed line. The cell lines are colour-coded in gray and
black according to the separation into two main subclusters from the
respective unsupervised hierarchical clustering (Figure 1).
doi:10.1371/journal.pone.0048262.9002

Identification of Recurrently Altered Genes Using Genetic
and Epigenetic Information

The lists of genes with alterations in DNA copy number, DNA
methylation or mRNA expression level were combined for each
cell line in order to identify genes showing more than one type of
aberration. The 11,843 genes from chromosome 1-22 common to
the three microarray platforms were included in the analyses. With
two types of changes for cach of the three data sets (gain and loss,
hyper- and hypo-methylation, over- and under-expression), 12
two-way and 8 three-way combinations are possible. The
combined lists with genes showing more than one type of
aberration for the individual cell lines were subsequently
compared in order to identify recurrently altered genes.

The number of genes showing more than one type of aberration
is plotted as a function of number of samples with this occurrence
for all two-way combinations in Figure 3. As can be seen, the
combination gain and hyper-methylation had the highest
frequency of occurrence, followed by gain and over-expression.
In 6/19 cell lines (>30%), 546 genes were both gained and hyper-
methylated, followed by 159 genes showing both gain and over-
expression and 158 genes showing both hyper-methylation and
under-expression.

The number of genes showing more than one type of aberration
is plotted as a function of number of samples with this occurrence
for all three-way combinations in Figure S5. In this case, 16 genes
were gained, hyper-methylated and under-expressed in 6/19 cell
lines (>30%), followed by 12 genes showing gain, hyper-
methylation and over-expression. A recurrence plot for each data
type is also given in Figure S5, showing that most genes with
recurrent alterations were gained, followed by hyper-methylation.

To identify genes with altered expression level correlating with
aberrations in DNA copy number or DNA methylation, the four
two-way combinations gain/over-expression, hypo-methylation/
over-expression, loss/under-expression and hyper-methylation/
under-expression were considered. Using the sample recurrence
threshold of six or more cell lines (>30%), these four combinations
made up a total of 335 genes. The combinations gain/over-
expression and hyper-methylation/under-expression gave the
highest number of genes, 159 and 158, respectively. Of the 335
genes, only 11 showed simultaneous aberrations in both DNA
copy number and DNA methylation. For genes with multiple
probes, usually the same probes showed recurrent alterations.

Since changes in DNA copy number and DNA methylation
may be alternative mechanisms for altering mRNA expression
levels in the same direction, it was also investigated if genes with
recurrent over-expression were either gained or hypo-methylated
and if genes with recurrent under-expression were either lost or
hyper-methylated in a total of six or more cell lines. However, only
15 additional genes were identified in this way, giving a total
number of 350 recurrently altered genes. Thus, the majority of
these genes showed alterations in either DNA copy number or
DNA methylation, both within individual samples and across the
sample panel.

This list of 350 genes, annotated with type of deviation and
recurrence count, is given in Table S7.

The genomic locations of these 350 genes are visualised using
Circos v0.52 in Figure 4. The genes were distributed rather evenly
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over all chromosomes, but clusters of hyper-methylated and
under-expressed genes were present in 3p, 11p and 19q. Clusters
of gained and over-expressed genes were also present in 1q, 6p, 8q,
20q and 21q, whereas a cluster of lost and under-expressed genes
was present in 9p. The homeobox genes were grouped in three
gene clusters, located in 7p, 12q and 17q.

The gene list contained, among others, well-known oncogenes
like cyclin-dependent kinase 4 (CDA4) and v-myc myelocytoma-
tosis viral oncogene homolog (avian) (M1C), both gained and over-
expressed, as well as transcription factors involved in normal bone

Table 1. Enrichment analysis of differentially methylated genes using DAVID.

Cluster

number Enrichment score Term Counts Population hits FDR

1 5.13 Embryonic morphogenesis 25 307 4.7E-06
Sequence-specific DNA binding 35 607 1.2E-05
DNA-binding region:Homeobox 17 190 1.1E-04
Embryonic organ development 17 172 2.2E-04
Chordate embryonic development 22 331 1.6E-03

2* 3.47 Thyroglobulin type-1 5 17 0.24
TY 5 17 0.27
Thyroglobulin type-1 4 13 1.58

3 334 Voltage-dependent potassium channel 8 33 1.6E-03
lon transport 27 578 2.5E-03
Potassium channel 10 78 5.3E-03
Voltage-gated channel 12 150 0.04
Potassium voltage-gated channel, alpha subunit, subfamilies A/C/D/F/G/S 6 20 0.03

The first five terms in the first three clusters are shown, with enrichment score. The counts and population hits are the number of genes in the gene list and background

gene list, respectively, mapping to a specific term. FDR, false discovery rate.

*This cluster contained only three terms.

doi:10.1371/journal.pone.0048262.t001

development, like runt-related transcription factor 2 (RUNX2) and
twist homolog 1 (Drosophila) (TWISTI). RUNX2 was frequently
gained and over-expressed, whereas TWISTI was frequently
hyper-methylated and under-expressed in the cell lines compared
to the osteoblasts. The list also contained a number of homeobox
genes, 11 HOX family genes (HOXA4, -45, -A9, -B2, -B5, -B7, -
B8, -BY, -C4, -C6 and -C9) and three other genes; distal-less
homeobox 5 (DLX5), msh homeobox 1 (MSXI) and zinc fingers
and homeoboxes 1 (HXI). All homeobox genes were frequently
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Table 2. Enrichment analysis of differentially expressed genes using DAVID.

Cluster

number Enrichment score Term Counts Population hits FDR

1 3.28 Translational elongation 10 101 0.01
Ribosome 10 87 0.01
Ribosome 8 73 0.04
Cytosolic ribosome 8 81 0.10
Ribosomal protein 1 188 0.13

2 238 Fibrinogen, alpha/beta/gamma chain, C-terminal globular, subdomain 2 3 4 135
Fibrinogen, alpha/beta/gamma chain, C-terminal globular, subdomain 1 4 23 4.19
Fibrinogen C-terminal 4 32 9.72
Fibrinogen, alpha/beta/gamma chain, C-terminal globular 4 32 10.5
FBG 4 32 9.21

3 2.28 Embryonic skeletal system development 9 77 0.01
Embryonic skeletal system morphogenesis 8 57 0.01
Embryonic organ morphogenesis 10 133 0.09
Skeletal system development 15 319 0.11
Embryonic organ development 1 172 0.13

The first five terms in the first three clusters are shown, with enrichment score. The counts and population hits are the number of genes in the gene list and background

gene list, respectively, mapping to a specific term. FDR, false discovery rate.

doi:10.1371/journal.pone.0048262.t002

November 2012 | Volume 7 | Issue 11 | e48262



Genetic and Epigenetic Alterations in Osteosarcoma

Two-way comparisons

(=]
2
0 3 e Hyper/Over
. = = Hypo/Over
8 2 * « + Hyper/Under
2 | t + = Hypo/Under
. Gain/Over
o » = == Loss/Over
3 - 2 Gain/Under
s 5 Loss/Under
n " + « « Gain/Hyper
% S . + = Loss/Hyper
o & | . 2 - Gain/Hypo
© \ 7 = == Loss/Hypo
2 o p s
e 3 1 ! .
5 = :
z \ %
g |\
-— \ ‘ ..
R W NN
B T \W W 7
DR =
S \_\\ WS .
- P, o L PN SO
S ay o S SPrmy = LT R
[ I I I I I [ I I I I I I I I I [ I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of cell lines
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doi:10.1371/journal.pone.0048262.9g003

gained and over-expressed, except MSXI that was hyper-
methylated and under-expressed.

DLX5 and RUNX2 were gained and over-expressed in 6 and 7
of the 19 cell lines, respectively. The aberrations of these genes
were validated in five of the cell lines and five osteosarcoma
tumour samples using quantitative real-time PCR and RT-PCR,
respectively. Clinical data for the tumour samples are given in
Table SI. Figure 5 shows the DNA copy number and mRNA
expression levels of DLX5 and RUNX2. For the cell lines, the PCR
and microarray data correlated well, except for the DNA copy
number of RUNX2 in IOR/OS14 and DLX5 in KPD, where the
PCR data showed normal copy number and not gain. All the
tumour samples showed normal copy number of the genes, but

PLOS ONE | www.plosone.org

showed increased expression of both DLX5 and RUNX2, at similar
levels as the cell lines showing over-expression.

The gene list was analysed for functional enrichment in
DAVID, and the top five terms in the top three clusters are listed
in Table 3. The first and third clusters both contained terms
involving extracellular matrix, and terms involving signal peptide
and collagen, respectively, whereas the second cluster contained
terms involving embryonic skeletal system development and
morphogenesis, as well as homeobox protein. The top 10 clusters
with all terms are listed in Table S8.

Hierarchical clustering of the cell lines based on the expression
level of these 350 genes is shown in Figure 6. Again, the clustering
patterns correlated neither with the clinical information (Table S1)
nor the known properties of the cell lines [21,22], but the cell lines
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the 350 genes that recurrently showed two types of aberrations. The locations are colour-coded according to the type of aberrations; orange, hypo-
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doi:10.1371/journal.pone.0048262.g004

separated in two main subgroups identical to the cluster based on
the global gene expression data. The main terms from functional
enrichment analysis using DAVID is indicated for each main
subcluster of genes, showing mainly over-expression of genes
associated with the terms skeletal development and homeodomain,
whereas genes associated with the terms extracellular matrix,
oxidative stress and collagen were mainly under-expressed. The
same figure with all gene names shown is given in Figure S6.

A functional enrichment analysis was also performed for the 159
genes with gain and over-expression separately, generating a first
cluster with terms involving embryonic skeletal system develop-
ment and homeodomain. The top 10 clusters with all terms are
listed in Table S9. A similar analysis of the 158 genes with hyper-
methylation and under-expression generated a first cluster with the
term extracellular matrix organisation. The top 10 clusters with all
terms are listed in Table S10. The other two-way combinations
hypo-methylation/over-expression and loss/under-expression did

PLOS ONE | www.plosone.org

not generate any significant functional terms due to the low
number of altered genes.

Relationships between Different Mechanisms for
Alteration of Gene Regulation

The effects of alterations in DNA copy number and DNA
methylation on mRINA expression were examined globally, as well
as how the different types of aberrations (gain and loss, hyper- and
hypo-methylation, over- and under-expression) related to each
other. Heat maps visualising the odds ratios and significance of
data dependencies for the 12 two-way combinations are shown in
Figure 7. The odds ratio is a measure of effect size, describing the
strength of association or non-independence between two binary
data values. The significance was determined using Bonferroni-
corrected chi-square p-values (p-value <0.05). The cell lines were
clustered based on the odds ratios for the different categories of
two-way combinations. No clear pattern between the clustering for
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Figure 5. DNA copy number and mRNA expression of DLX5 and RUNX2. Plot of (A) DNA copy number levels of DLX5 and RUNX2 based on
quantitative real-time PCR and (B) mRNA expression levels of DLX5 and RUNX2 based on quantitative real-time RT-PCR, in five cell lines and five
tumour samples. The DNA copy number levels have been normalised to the average copy number of two control genes, EEF1G and FBXO11, whereas
the mRNA expression levels have been normalised to the expression of the house-keeping gene GAPDH and then to the average expression level of
the two normal osteoblast samples. The DNA copy number and mRNA expression levels based on the microarray data are indicated for the cell lines;

N, normal copy number/expression; G, gain; O, over-expression.
doi:10.1371/journal.pone.0048262.9g005

the different categories was identified. Here, the related cell lines
HOS, 143B and MNNG/HOS did not cluster together. Again,
the clustering patterns correlated neither with the clinical in-
formation (Table S1) nor the known properties of the cell lines
[21,22].

The dependencies between DNA copy number and mRNA
expression were comparatively strong and significant for all cell
lines. There was a positive association of gain/over-expression and
loss/under-expression, and conversely gain/under-expression and
loss/ over-expression showed a negative association. For the DNA
copy number and DNA methylation, there was in general either
no association or a negative association for the different
combinations, and only a few cell lines showed significant
dependencies of some of the combinations.

The dependencies of DNA methylation and mRNA expression
were significant in some of the cell lines, particularly for the
combination hyper-methylation and under-expression that showed
a positive association. The three other two-way combinations had
in general a negative association. The two cell lines 143B and
IOR/MOS differed from the other cell lines by having a positive
association between hypo-methylation and over-expression.

Methylation of CpG islands in promoter regions may silence
gene expression, and is one mechanism for inactivating genes. Of
the 350 genes that showed two types of aberrations in at least 6/19
cell lines, 158 genes were hyper-methylated and under-expressed.
One of the most frequently hyper-methylated and under-expressed
genes was chemokine (C-X-C motif) ligand 5 (CXCLY), altered in
18/19 cell lines. Methylation-specific PCR and quantitative real-
time RT-PCR were used to validate the promoter methylation

status and the expression level of CXCLJ, respectively, in five of the
cell lines and five osteosarcoma tumour samples. Figure 8 shows
the DNA methylation and mRNA expression levels of CXCL), and
gel pictures of the methylation-specific PCR products are shown in
Figure S7. For the cell lines, the PCR and microarray data
correlated well. The microarray data indicated that IOR/OS14
was the only cell line not hyper-methylated compared to the
osteoblasts, but the PCR data showed that CXCL5 was partially
methylated also in this cell line, as well as in the osteoblasts (Figure
S7). Partial or full methylation of the investigated CpG island in
the promoter region was identified in all cell lines and tumour
samples, and all samples except OS94 showed under-expression.

To validate a causal association between hyper-methylation and
under-expression, DNA methylation was removed by culturing the
cells in a medium containing 5-Aza-2'-deoxycytidine and the
effect on gene expression levels investigated. Four genes being
frequently hyper-methylated and under-expressed were selected;
CXCL5 (18/19 cell lines), A kinase (PRKA) anchor protein 12
(ARAPI2) (14/19 cell lines), EGF containing fibulin-like extracel-
lular matrix protein 1 (EFEMPI) (10/19 cell lines) and interleukin
11 receptor, alpha (IL11RA) (10/19 cell lines). Twelve of the cell
lines were treated with 5-Aza-2'-deoxycytidine, and the gene
expression level of these four genes with and without treatment
was determined by quantitative real-time RT-PCR, as shown in
Figure 9.

The extent of reactivation of gene expression varied between
the cell lines. CXCL5, which showed most frequent hyper-
methylation and under-expression (18/19 cell lines), was reacti-
vated in all of the tested cell lines, with two cell lines showing

PLOS ONE | www.plosone.org

Table 3. Enrichment analysis of 350 genes that recurrently showed two types of aberrations using DAVID.

Cluster

number Enrichment score Term Counts Population hits FDR

1 4.14 Extracellular matrix 28 269 1.5E-04
Secreted 66 1247 0.005
Signal 105 2333 0.005
Signal peptide 105 2333 0.006
Extracellular region part 48 811 0.047

2 4.08 Skeletal system development 34 281 1.2E-07
Embryonic morphogenesis 27 255 2.6E-04
Embryonic skeletal system development 14 69 3.7E-04
Short sequence motif:Antp-type hexapeptide 8 22 0.004
Homeobox protein, antennapedia type, conserved site 8 23 0.005

3 345 Extracellular matrix 28 269 1.5E-04
Trimer 9 23 2.6E-04
Extracellular matrix 21 192 0.001
Proteinaceous extracellular matrix 25 247 0.001
Collagen 9 31 0.005

The first five terms in the first three clusters are shown, with enrichment score. The counts and population hits are the number of genes in the gene list and background

gene list, respectively, mapping to a specific term. FDR, false discovery rate.

doi:10.1371/journal.pone.0048262.t003
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Figure 6. Hierarchical clustering based on 350 genes that recurrently showed two types of aberrations. Hierarchical clustering of the
osteosarcoma cell lines based on the expression level of the 350 genes that recurrently showed two types of aberrations. The main terms from
functional enrichment analysis using DAVID is indicated for each main subcluster of genes. The cell lines are colour-coded in gray and black according
to the separation into two main subclusters from the unsupervised hierarchical clustering based on the global mRNA expression (Figure 1A). The
cluster was made using Euclidian as distance measure and complete linkage. Green, increased gene expression; red, decreased gene expression.

doi:10.1371/journal.pone.0048262.9006

>100-fold increased expression level. The only cell line that was
not hyper-methylated and under-expressed, IOR/OS14, showed
the lowest level of increased expression (2-3 fold). For the genes
EFEMPI and AKAPI2, five and two cell lines showed >2-fold
increased expression level, respectively, while only a low effect was
observed for ILI1RA. The genes that showed reactivation of
expression were initially hyper-methylated in the affected cell lines,
thus the demethylation treatment did not seem to affect the
expression levels in general.

A heat map visualising the odds ratios and significance of data
dependencies for different combinations of hyper-methylation and
expression conditioning on the copy number state is shown in
Figure 10. The significance was determined using Bonferroni-
corrected chi-square p-values (p-value <0.05). The alterations
were divided into three states for the DNA copy number (gain,
normal and loss) and mRNA expression data (over-expression,
normal and under-expression). Regardless of the DNA copy
number state, no significant dependency was found, except for
a few samples that showed dependencies between hyper-methyl-
ation and either normal or over-expression. However, there was
a positive association of hyper-methylation and under-expression
for genes with gain, and all cell lines, except two, showed
significant dependencies of this combination. For some samples,
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there was also a positive association and significant dependency
between hyper-methylation and under-expression for genes with
normal copy number, but not for genes with loss.

Plots combining DNA copy number, DNA methylation and
mRNA expression levels for the 16 genes that showed gain, hyper-
methylation and under-expression in at least 6/19 cell lines are
shown in Figure S8. The levels of methylation and expression anti-
correlated in general quite well, but there were no clear differences
in the pattern of methylation and expression levels between the cell
lines with gain or normal copy number/loss for these genes.

Discussion

Cell lines are valuable model systems when studying cancer
biology, especially for rare tumours like osteosarcomas, where
material from clinical samples is scarce. The EuroBoNeT panel of
19 osteosarcoma cell lines used here has previously been
characterised by many means, including genetic, phenotypic and
functional characterisation, and the cell lines reflect well many
properties of osteosarcoma tumours [21,22,23]. Thus, the cell line
panel constitutes a highly valuable model system for analyses of
genetic and epigenetic aberrations in osteosarcomas.

IOR/0518
MNNG/HOS
HAL

0SA
IOR/0S15
IOR/0S9

OHS
IOR/0S14

IOR/0510

1438
IOR/MOS

i = s W B B
g @ g 5 @ 7
g E S =2 £ 3
S~
g S € 25 37
S T & 8 3
L == g W g
£
Odds ratio
01234

Figure 7. Data dependencies for two-way combinations. Heat map plots visualising the odds ratio and significance of data dependencies,
with unsupervised hierarchical clustering of the cell lines, for two-way combinations of (A) DNA copy number and gene expression, (B) DNA
methylation and mRNA expression and (C) DNA copy number and DNA methylation. The colours of the heat map plot represent the odds ratio for
a gene of having one type of aberration given that it has another type of aberration. Green, positive association (odds ratio >1); black, no association
(odds ratio=1) and red, negative association (odds ratio <1). A white circle indicates significance (Benjamini & Hochberg-corrected chi-square p-
value <0.05).

doi:10.1371/journal.pone.0048262.g007
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DNA methylation and mRNA expression of CXCL5
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Figure 8. DNA methylation and mRNA expression of CXCL5. Plot of the DNA methylation status and mRNA expression level of CXCL5 based on
methylation-specific PCR and quantitative real-time RT-PCR, respectively, in five cell lines and five tumour samples. The mRNA expression levels have
been normalised to the expression of the house-keeping gene GAPDH and then to the average expression level of the two normal osteoblast
samples. The DNA methylation status is indicated with coloured circles; black, full methylation, grey, partial methylation. The DNA methylation and
mRNA expression levels based on the microarray data are indicated for the cell lines; N, normal methylation; H, hyper-methylation; U, under-

expression.
doi:10.1371/journal.pone.0048262.g008

In line with most conventional osteosarcomas, the cell lines
showed a vast number of DNA copy number changes, reflecting
the extreme genetic instability hallmarking high-grade osteosar-
coma. Although recurrent alterations have been reported for
almost every chromosome in osteosarcoma, gain of regions in 6p,
8q and 17p and loss of regions in 13q are most frequently reported
[9,10,11,12]. These regions were recurrently altered in more than
50% of the cell lines (Figure S2). High-level amplification was
found in 6p and 8q, as well as in 1q, which has also been
previously reported [11,12,25,26]. When performing an un-
supervised hierarchical clustering based on the DNA copy number
profiles of the 19 cell lines and 32 osteosarcoma clinical samples
[27], the cell lines were not systematically different from the
clinical samples and all samples clustered intermingled (data not
shown). All together, the results suggest that these cell lines are
representative for osteosarcoma clinical samples in terms of DNA
copy number changes.

PLOS ONE | www.plosone.org

Although the cell lines showed slightly more frequent regions of
gain than loss, the number of genes with gain was far higher than
the number of genes with loss for most cell lines (Figure 2A and
Table S2). Genome-wide analysis using The Genomic Hyper-
Browser showed that regions with high frequencies of gain were
significantly associated with gene-rich regions of the genome and
conversely regions with high frequencies of loss with gene-poor
regions. There was a significant association both at the genome-
wide level and for most individual chromosome arms (Figure S3
and S4). A similar analysis of 3,131 cancer specimens belonging to
several histological types demonstrated that deletions showed a bias
towards regions of low gene density, whereas no association was
observed for amplifications [28]. This indicates that the association
of gain and gene-rich areas observed here is special for
osteosarcoma, or perhaps detectable because of the unusually
high number of amplified regions. Since gaining one copy gives
less relative change of gene dosage than losing one, and also does
not remove functional germ-line or somatic gene variation, it
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Figure 9. Gene expression after demethylation treatment.
Relative gene expression levels of the frequently hyper-methylated
and under-expressed genes CXCL5, AKAP12, EFEMP1 and ILT1RA after
treatment with the demethylating agent 5-Aza-2'-deoxycytidine in 12
of the cell lines. The cell lines with hyper-methylation and under-
expression of the genes are colour-coded in black, whereas gray colour
indicates no aberrations in DNA methylation. The expression level
without treatment has been set to 1 for each cell line.
doi:10.1371/journal.pone.0048262.g009
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seems likely that initial loss of regions is on average more
detrimental than gain. A general advantage of gains is that parts of
an originally gained region that is disadvantageous may sub-
sequently be lost, in this way generating the smaller, more focussed
amplicons observed around some typical oncogenes, or the
expression of passenger genes may be down-regulated by other
mechanisms. For losses, on the other hand, regaining lost
sequences is more complicated, as it requires additional rearrange-
ment of the intact chromosome copy, and loss of heterozygosity
would be maintained.

Since osteosarcomas have so many aberrations, a majority of
these are most likely due to general instability of the genome.
Recently, a new mechanism for genetic instability in cancer cells
has been described, termed chromothripsis, in which a single
chromosome is fragmented and then reassembled [29]. Chromo-
thripsis has been suggested to occur in 2-3% of cancers, but the
phenomenon has been observed in 25% of osteosarcoma and
chordoma samples, affecting several chromosomes [29]. However,
it seems likely that many of the genomic aberrations do not
provide any advantage and may represent just genomic ‘“noise”.
Such noise would be expected to be better tolerated in gene-poor
regions, but cannot explain the enrichment of gains in gene-rich
regions, which appears to be oncogenically more relevant.

In contrast to DNA copy number profiles, mRNA expression
profiles are more dynamic and may be more influenced by cell
culturing and growth conditions. However, the comparison with
normal osteoblast cultures rather than bone tissue should cancel
most of the effects of i vitro growth. In previous work, it was
shown that mRNA expression profiles characteristic of the
histological subtypes of primary high-grade osteosarcoma clinical
samples are preserved in these cell lines [23], indicating that they
are representative of the primary tumour from which they are
derived.

Although the understanding of epigenetic regulation of specific
genes in osteosarcomas is increasing [30,31], little is so far known
about the global DNA methylation patterns. The cell lines showed
in general more genes with hyper-methylation than hypo-
methylation. Previous studies have shown that promoter-associat-
ed CpG islands are frequently hyper-methylated in cancer,
whereas global hypo-methylation is often seen in gene-poor areas
of the genome (reviewed in [32]). In line with the results here,
previous investigations using Me-DIP-chips showed more hyper-
methylation than hypo-methylation events in osteosarcoma
tumours and cell lines compared to normal osteoblasts [19,20].
Interestingly, there was in general an inverse relationship between
the number of genes with hyper- and hypo-methylation, as
opposed to the DNA copy number and mRNA expression
(Figure 2). In contrast to the DNA copy number, there seemed
to be a relationship between the number of genes with hyper- and
hypo-methylation and the clustering pattern. However, no
associations were found between the DNA copy number, DNA
methylation and mRNA expression levels of the methyltrans-
ferases DNMT1, -34 and -3B (Figure S1) and the number of hyper-
and hypo-methylated genes for the individual cell lines (Figure 2
and Table S2).

Functional enrichment analyses of the differentially methylated
and expressed genes, respectively (Table 1, 2, S5 and S6), showed
common terms like embryonic organ development and morpho-
genesis. However, the overlap between the lists was limited,
supporting the notion that DNA methylation is only one among
several mechanisms influencing gene expression.

Although the genetic and epigenetic profiling data provide
valuable information on their own, an integrative approach may
facilitate the identification of key genes and regulatory mechan-
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doi:10.1371/journal.pone.0048262.g010

isms involved in tumour development. A method originally used
for the same type of data and for osteosarcoma cell lines [19] was
adopted and further developed. In that study [19], cut-offs of
intensity ratios were used to identify genes with aberrations in
DNA copy number, DNA methylation and mRNA expression for
individual samples, and Venn (two-way/three-way) analysis was
used to select genes that showed alterations in more than one type
of data. This approach was further improved by using the greater
number of cell lines analysed here to filter the gene list obtained by
Venn analysis based on recurrence. In this way, only genes that
have the same two-way alteration in at least a certain number of
the samples were identified. In addition, statistical tests for
individual samples and heatmap visualisations were used to
evaluate dependencies of types of data.

To examine how the different types of aberrations relate to each
other, the odds ratios and significance of data dependencies for the
12 two-way combinations were identified for each cell line
(Figure 7). There was a significant dependency between DNA
copy number and mRNA expression, and to some extent between
DNA methylation and mRNA expression, particularly for the
combination hyper-methylation and under-expression. However,
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there was no dependency between the DNA copy number and
DNA methylation, although the combination showing the highest
number of recurrently altered genes was gain and hyper-
methylation (Figure 3). Similar studies investigating five ostcosar-
coma tumours and two cell lines, respectively, showed strong
correlation between gain and over-expression, loss and under-
expression as well as gain and hypo-methylation [19,20]. In
contrast to the results presented here, few genes showed gain and
hyper-methylation. A reason why no dependency between gain
and hypo-methylation was observed in this study may be the low
number of hypo-methylated genes detected.

Genes for which an altered expression level was consistent with
aberrations in DNA copy number or DNA methylation (gain/
over-expression, hypo-methylation/over-expression, loss/under-
expression and hyper-methylation/under-expression) were identi-
fied for each cell line. Since different mechanisms for alteration of
a certain pathway may be involved in each cell line, a test looking
for genes significantly altered in all cell lines might not detect
samples with defects in the same pathway, because the specific
genes affected may vary. On the other hand, a recurrence
threshold is needed to filter out noise or sample-specific events and
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to identify pathogenic alterations of general importance. A gene
aberration frequency threshold of six or more cell lines (>30%)
was chosen, giving a total of 335 recurrently altered genes.
Interestingly, only 11 of these 335 genes showed simultaneous
aberrations in both DNA copy number and DNA methylation. In
addition, only 15 additional genes were identified when allowing
genes with over-expression to be either gained or hypo-methylated
and genes with under-expression to be either lost or hyper-
methylated in a total of six or more cell lines, increasing the total
number to 350 genes (Figure 6 and Table S7). This suggests that
the expression levels of most genes with two types of aberrations,
including aberrant mRINA expression, are regulated by alterations
in either DNA copy number or DNA methylation, or conversely,
that these mechanisms alter the activity of different subsets of
genes. However, there will be other mechanisms like point
mutations, loss of heterozygosity, nucleosome occupancy, micro-
RNA (miRNA) or transcription factor regulation that also
influence the mRNA expression levels.

By selecting genes with recurrent alterations in at least two of
the three types of data, a list of genes involved in important
biological functions and in a limited number of critical pathways
was identified. Based on functional enrichment analysis, the most
striking biological processes were development of the embryonic
skeletal system and remodelling of the extracellular matrix
(Table 3). A similar study of osteosarcoma showed that the most
significant gene network, based on cumulative changes in DNA
copy number, DNA methylation and mRNA expression, con-
tained genes involved in organ and cellular development [20].
Although terms involving embryonic skeletal system were also
identified using the list of differentially expressed genes from the
comparison of the cell lines and the normal osteoblasts, the top
cluster from that comparison contained general terms like
translational elongation and ribosome (Table 2). The terms
associated with the list of 350 genes that recurrently showed two
types of aberrations seem highly relevant for osteosarcoma
tumourigenesis, highlighting the significance of combining differ-
ent types of data to identify important molecular markers and
pathways involved.

Among the 159 recurrently gained and over-expressed genes,
the most frequent were eukaryotic translation elongation factor 1
alpha 2 (EEFIA2, 13/19 cell lines), NADH dehydrogenase
(ubiquinone) 1 beta subcomplex, 9, 22 kDa (NDUFBY, 13/19),
ribophorin I (RPN2, 12/19) and cystathionine-beta-synthase
(GBS, 12/19). Fifty-one of these 159 genes were also gained and
over-expressed in >6/29 osteosarcoma clinical samples based on
identical types of microarray data [27]. Among these was
NDUFBY, gained and over-expressed in 13 of the 29 clinical
samples. NDUFBY is located in 8q24.13 and is an accessory
subunit of the mitochondrial membrane respiratory chain NADH
dehydrogenase (Complex I), whereas CBS is a folate-metabolising
gene located in 21g22.3. So far, little is known about a possible
role for these genes in cancer development. EEFIA2 and RPN2 are
both located in 20q, and EEFIA2 has been suggested to be an
oncogene and a diagnostic marker in various cancers [33], but has
to our knowledge not previously been linked to sarcomas, whereas
RPN2 has been shown to confer drug resistance in breast cancer
[34].

Another frequently gained and over-expressed gene was RUNX2
(6/19 cell lines), which is a transcription factor essential for
osteoblast maturation and bone development [35]. The aberra-
tions of RUNX2 were validated in five of the cell lines and five
osteosarcoma tumour samples using quantitative real-time PCR
and RT-PCR (Figure 5). None of the tumour samples showed gain
of RUNX2, in contrast to the cell lines, but all showed increased
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expression at similar levels as the cell lines showing over-
expression. RUNX2 was also shown to be recurrently gained and
over-expressed in 12/29 osteosarcoma clinical samples based on
identical types of microarray data [27]. RUNX2 is frequently
amplified and over-expressed in osteosarcomas, and may play an
important role in osteosarcoma tumourigenesis (reviewed in [35]).

Functional enrichment analysis of the 159 recurrently gained
and over-expressed genes identified terms like embryonic skeletal
system development and homeodomain in the first clusters (Table
S9). HOX and other homeobox genes have crucial roles in
development, and a number of these were gained and over-
expressed, as has been frequently reported for other cancers
(reviewed in [36]). Some of the gained HOX genes were also
hyper-methylated, and did not show increased expression, whereas
several others were hyper-methylated, but only one recurrently
under-expressed (MSX7) (Table S3).

The homeobox gene DLX5 was recurrently gained and over-
expressed (7/19 cell lines), and this transcription factor interacts
with bone morphogenetic protein (BMP) signalling and is involved
in bone and cartilage development (reviewed in [37]). The
aberrations of DLX5 were validated in five of the cell lines and
five osteosarcoma tumour samples using quantitative real-time
PCR and RT-PCR (Figure 5). As for RUNX2, none of the tumour
samples showed gain of DLX5, but all showed increased expression
at similar levels as the cell lines showing over-expression. DLX5
was also shown to be recurrently gained and over-expressed in 7/
29 osteosarcoma clinical samples based on identical types of
microarray data [27], and DLX5 was part of a gene expression
prediction profile that could distinguish different histological
subtypes of osteosarcoma, being down-regulated in fibroblastic
osteosarcoma [23]. DLX) has also been shown to be differentially
methylated and under-expressed in enchondromas from patients
with Ollier disease, which is a non-hereditary skeletal disorder
[38].

Among the nine recurrently hypo-methylated and over-
expressed genes was the gene “preferentially expressed antigen
in melanoma” (PRAME, 11/19 cell lines), which is over-expressed
and a prognostic marker for clinical outcome in various types of
cancers [39]. Four of the cell lines showed simultaneously gain and
two additional cell lines showed gain and over-expression. PRAME
was also over-expressed in 12/29 osteosarcoma clinical samples
based on identical types of microarray data (no methylation data
was available) [27], and has also recently been shown by others to
be over-expressed in osteosarcomas [40,41]. Hypo-methylation of
PRAME has been demonstrated to be responsible for the increased
expression in various types of cancer [42].

Among the 158 recurrently hyper-methylated and under-
expressed genes, the most frequent were “mesoderm specific
transcript homolog (mouse)” (MEST), neuronatin (MNVAT) and
CXCLS5, all altered in 18/19 cell lines. MEST and CXCL5 were also
shown to be under-expressed in 29/29 osteosarcoma clinical
samples, respectively, whereas NNAT was under-expressed in 27/
29 samples, based on identical types of microarray data (no
methylation data was available) [27]. Both MEST and NNAT are
imprinted genes, and MEST has been shown to be down-regulated
in a model of human osteosarcoma, suggesting a role in
tumourigenesis [43]. Consistent with the results here, loss of
expression of NNAT has been associated with promoter hyper-
methylation in pituitary adenoma [44].

The frequent hyper-methylation and under-expression of
CXCL5 were validated in five of the cell lines and five
osteosarcoma tumour samples using methylation-specific PCR
and quantitative real-time RT-PCR, respectively (Figure 8 and
S7). Partial or full methylation of the investigated CpG island in
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the promoter region was identified in all cell lines, and partial
methylation was also identified in all tumour samples and the
normal osteoblasts. Although methylation-specific PCR is not
a quantitatively accurate method, the amount of PCR products
indicated a higher degree of methylation of CXCL5 in all cell lines
and two of the tumour samples compared to the normal
osteoblasts (Figure S7). Furthermore, all samples except one
tumour sample showed under-expression. For CXCL), previous
reports are more equivocal, showing up-regulation correlated to
poor survival in colorectal and pancreatic cancer [45,46], whereas
another study showed correlation with under-expression of CXCLS
and poor survival for colorectal cancer [47]. Demethylation using
5-Aza-2'-deoxycytidine showed that CXCL5 was reactivated in all
cell lines tested, with two cell lines showing more than 100-fold
increased expression level (Figure 9). Tumour-specific methylation
of CXCL5 has also been observed in 80% of primary lung
adenocarcinomas and 65% of lung adenocarcinoma cell lines [48],
and demethylation using 5-Aza-2'-deoxycytidine also restored the
expression of CXCL5 [48]. Similar results were observed here for
the other genes tested, supporting that the low expression levels of
these genes are indeed caused by promoter hyper-methylation.

The significantly differentially methylated genes between the
cell lines and the normal osteoblasts, which were all hyper-
methylated, were enriched for terms like skeletal system de-
velopment and homeodomain (Table 1), similar to the genes
showing gain and over-expression (Table S9). Based on this, it
seems like the methylation pattern reflects turning off a tissue-
specific epigenetic program. However, the 158 genes that were
both hyper-methylated and under-expressed were enriched for
more general terms like signal peptide and extracellular matrix in
the first clusters from the functional enrichment analysis (Table
S10).

Genes with gain showed a positive association between hyper-
methylation and under-expression (Figure 10), and the most
common three-way combination was gain, hyper-methylation and
under-expression (16 recurrently altered genes in >6/19 cell lines).
This suggests that hyper-methylation of passenger genes in gained
regions may be advantageous, conceivably because it counteracts
the effect of over-expression of detrimental genes. Two of these 16
genes, S100 calcium binding protein Al6 (§700416) and
maternally expressed 3 (non-protein coding) (MEG3), were also
gained and under-expressed in 7 and 6 of 29 osteosarcoma clinical
samples, respectively, based on identical types of microarray data
(no methylation data was available) [27]. An integrative genomic
analysis of familial breast tumours has also revealed frequent
hyper-methylation of genes that showed copy number gain [49],
and genes with copy number gains, low expression and high
methylation levels have been identified in urothelial carcinomas by
integrative analysis [50]. However, no consistent differences in the
pattern of methylation and expression for the 16 recurrently
altered genes were found when cell lines with gain were compared
with those with normal copy number or loss (Figure S8). This
suggests that methylation is not directly related to the amplification
or deletion processes. In another study of osteosarcoma, gained
and hyper-methylated genes showed far more over- than under-
expression [20]. However, although a comparable number of
genes showed recurrent gain, hyper-methylation and over-
expression (12 recurrently altered genes in >6/19 cell lines),
there was no significant dependency of this combination in these
cell lines.

In summary, integrative analysis of genome-wide genetic and
epigenetic alterations identified dependencies and relationships
between DNA copy number, DNA methylation and mRNA
expression in osteosarcomas. For the samples investigated, novel
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correlations between DNA copy number alterations and gene
density were identified. The recurrently altered genes with two
types of aberrations, including aberrant mRNA levels, showed in
general alterations in either DNA copy number or DNA
methylation, both within individual samples and across the sample
panel. On the other hand, a positive association of gain with
hyper-methylation and under-expression was observed, suggesting
that hyper-methylation may oppose the effects of increased copy
number for detrimental genes. This is especially an issue in
osteosarcomas, which is highly genetically unstable, thereby
suffering from many disadvantageous genomic aberrations that
may be compensated for by other mechanisms. The analyses
revealed a number of genes regulated by alterations in DNA copy
number and DNA methylation, and additional experiments are
needed to investigate their potential role in osteosarcoma de-
velopment. The results show the importance of combining
different types of molecular data to better comprehend the biology
of osteosarcoma.

Materials and Methods

Osteosarcoma Cell Lines

Nineteen osteosarcoma cell lines collected within EuroBoNeT
(http://www.eurobonet.eu) [21] were analysed. Four cell lines
were established at the Norwegian Radium Hospital (HAL, KPD,
MHM and OHS) and seven were established at the Istituto
Ortopedico Rizzoli (IOR/0S9, IOR/0S10, IOR/OS14, IOR/
OS15, IOR/0S18, IOR/MOS and IOR/SARG). The cell line
7ZK-58 [51] was kindly provided by Dr. Karl-Ludwig Schifer,
Diisseldorf, Germany. The cell lines 143B, HOS, MNNG/HOS,
MG-63, OSA (SJSA-1), Saos-2 and U-2 OS were obtained from
ATCC (http://www.lgcestandards-atcc.org). The cell lines 143B
and MNNG/HOS are derived from the HOS cell line. Cell line
authentication was performed by DNA profiling using short
tandem repeats (STR) using Powerplex 16 (Promega, Madison,
USA), and the data was validated using the profiles of the
EuroBoNeT cell line bank [21] and ATCC. Data for all cell lines
are given in Table S1.

The cells were grown in RPMI1640 (Lonza, Basel, Switzerland)
or DMEM (Lonza) supplemented with 10% foetal calf serum (PAA
Laboratories GmbH, Pasching, Austria), GlutaMAX (Life Tech-
nologies, California, USA) and penicillin/streptomycin (Lonza), at
37°C with 5% CO,. All cells were split when reaching 80%

confluency.

Osteosarcoma Tumour Samples

Five human sarcomas classified as conventional osteosarcomas
were selected from a tumour collection at the Department of
Tumor Biology at the Norwegian Radium Hospital. All tumors
were diagnosed according to the World Health
Organization classification [1]. Tumour samples were collected
immediately after surgery, cut into small pieces, frozen in liquid
nitrogen and stored at —70°C until use. The clinical information
was retrieved from the MEDinsight database at the Norwegian
Radium Hospital. Data for all tumour samples are given in
Table SI1.

current

Normal Samples

Four normal bone samples and two osteoblast cultures were
used as normal controls. Two normal bone samples were obtained
from cancer patients (one with osteosarcoma and one with renal
cell carcinoma) at the Norwegian Radium Hospital. The normal
bone was collected as distant as possible from the tumour site, and
SNP arrays confirmed that these samples had normal DNA copy
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number. Two additional normal bone samples from different
donors were purchased from Capital Biosciences (Maryland,
USA). Two primary osteoblast cultures isolated from human
calvaria of different donors were purchased from ScienCell
Research Laboratories (California, USA). Data for all normal
samples are given in Table S1.

The osteoblast cells were maintained in medium provided by
the manufacturer, split when reaching 80% confluency, and
harvested when enough cells for DNA and RNA isolation were
obtained.

Ethics Statement

The information given to the patients, the written consent used,
the collection of samples and the research project were approved
by the ethical committee of Southern Norway (Project S-06133).

Array CGH

DNA was isolated using the Wizard Genomic DNA Purification
Kit (Promega). High-resolution array CGH was performed using
the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix,
California, USA), containing more than 1.8 million SNPs,
according to the manufacturer’s protocol. Quality control was
performed using the Genotyping Console v3.0.1 software
(Affymetrix), applying the contrast quality control (CQC) algo-
rithm with a minimal call rate of >86%. DNA copy number
analysis was performed using the Nexus software (BioDiscovery,
California, USA), with the SNPRank segmentation algorithm
using default settings (threshold of 0.6 for high copy gain, 0.2 for
gain, —0.2 for loss and —1.0 for homozygous loss). The categories
high copy gain and gain were combined, as well as the categories
loss and homozygous loss. For each cell line, tab separated text
files with probe intensities, as well as copy number states for each
gene, were exported for further analysis. The frequency plot of
DNA copy number changes was made using Nexus. The SNP
array dataset has been deposited in the Gene Expression Omnibus
(GEO) data repository (www.ncbi.nlm.nih.gov/geo/, accession
number GSE36003, SuperSeries number GSE36004).

DNA Methylation Profiling

DNA methylation profiling of approximately 27,000 CpG sites
across the genome was performed using the Illumina Human-
Methylation27 BeadChip (Illumina Inc., California, USA) accord-
ing to the manufacturer’s protocol. The array is used to estimate
the level of methylation of the CpG sites. Data extraction and
initial quality control of the bead summary raw data were
performed using BeadStudio v3.1.0.0 and the Methylation module
v1.9, both provided by Illumina. For each cell line and normal
sample, tab separated text files with avgBeta (average ratio of
signal from methylated probe relative to the sum of both
methylated and unmethylated probes) values for each probe was
exported for further analysis. The DNA methylation dataset has
been deposited in the GEO data repository (www.ncbi.nlm.nih.
gov/geo/, accession number GSE36002, SuperSeries number
GSE36004).

mRNA Expression Profiling

RNA was isolated using the standard TRIzol procedure (Life
Technologies), and further purified with an RNeasy mini column
(QIAGEN GmbH, Hilden, Germany), according to the manu-
facturers’ instructions. The purity and quantity of the extracted
RNA were measured using the NanoDrop ND1000 spectropho-
tometer (Nanodrop Technologies, Delaware, USA), and the RNA
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integrity was evaluated using the Agilent 2100 Bioanalyzer and the
RNA nano 6000 kit (Agilent Technologies Inc., California, USA).

mRNA expression profiling was performed using the Illumina
HumanWG-6 v2 Expression BeadChip according to the manu-
facturer’s protocol as previously described [52]. Data extraction
and initial quality control of the bead summary raw data were
performed using BeadStudio v3.1.0.0 from Illumina and the Gene
Expression module v3.1.7. Variance-stabilizing transformation
(vst) [53] and quantile normalisation were performed using the R
package lumi, which is part of the Bioconductor project (http://
www.R-project.org) [54]. The vst is almost identical to a logy
transformation, only differing at the lower end of intensities where
the vst transformed values are slightly higher than the logy
transformed values. The data were annotated using the
HumanWG-6_V2_R4_11223189_A annotation file from Illu-
mina. For each cell line and normal sample, tab separated text
files with vst transformed and quantile normalised intensities for
each probe were exported for further analysis. The mRNA
expression dataset has been deposited in the GEO data repository
(www.ncbinlm.nih.gov/geo/, accession number GSE36001,
SuperSeries number GSE36004).

Hierarchical Clustering

Unsupervised hierarchical clustering of all three data types was
performed in R v.2.13.0, using the method complete linkage and
Spearman correlation as distance measure. For the DNA copy
number, the DNA methylation and the mRNA expression data,
the probe intensities, avgBeta probe values and vst transformed
and quantile normalised probe intensities, respectively, were used
to calculate distances.

Identification of Alterations within Each Sample

The copy number, methylation and expression data were
exported as tab separated text files from their respective native
software. DNA copy number changes were identified using Nexus
as previously described, assigning each gene with a copy number
event (gain, normal or loss). Alterations in DNA methylation were
identified by calculating the ratio between avgBeta probe values of
the individual cell lines and the average of the controls (normal
osteoblasts), deltaBeta. The thresholds used to define probes
showing hyper-methylation and hypo-methylation were deltaBeta
>0.4 and < —0.4, respectively. Alterations in mRNA expression
were identified by calculating the ratio between vst transformed
and quantile normalised probe intensities of the individual cell
lines and the average of the controls (normal osteoblasts). The
thresholds used to define probes showing over-expression and
under-expression were vst ratio >1 and < —1, respectively. The
probes were collapsed to gene level for the analyses, keeping the
probe level information.

Six tab separated text files in total with binary scores (0 for no
alteration and 1 for alteration) for the copy number (gain and loss),
methylation (hyper-methylation and hypo-methylation) and ex-
pression (over-expression and under-expression) data for all genes
were generated for each cell line using R scripts (available upon
request). In cases where the probes for a gene showed different
values and subsequently were assigned to different categories, the
gene name was included in all the corresponding lists.

Comparison of Copy Number Frequency and Gene
Distribution

A “.bgr” (bedgraph) file was exported from Nexus for use in
genome browsers. DNA copy number gain frequency data were
imported as a “marked.bed” data type into the The Genomic
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Hyperbrowser (http://hyperbrowser.uio.no/hb/) [24], and ana-
lysed against UCSC known genes. Using these two tracks as input,
the test “Higher values in segments” was used, testing whether
gain frequency data (number of copy number gains for a given
region) are higher in regions of genes than expected by chance. p-
values were computed by Monte Carlo, using 1,000 MC samples.
The underlying null hypothesis was that the gain value of a region,
and the overlap with genes falling within the region, are
uncorrelated. The test statistics used was the mean gain value
inside regions covered by genes, and Monte Carlo estimates were
computed by randomly permuting gain values (keeping the same
segments as in the original gain track, but shuffling the gain values
associated to these segments). The same analysis was performed on
copy number loss frequency, except that the alternative hypothesis
was that copy number values were lower instead of higher than
expected.

Identification of Differentially Methylated and Expressed
Genes

The Bioconductor packages Lumi, Limma and MethyLumi
were used to perform t-tests between the osteosarcoma cell lines
and normal osteoblasts to identify significantly differentially
methylated and expressed genes, respectively. In MethyLumi,
M-values (logy ratio of methylated probe intensity and unmethy-
lated probe intensity) were calculated and used to perform the t-
tests. Separate lists with differentially methylated and expressed
genes, with a Benjamini & Hochberg-corrected p-value <0.05 and
absolute value of fold change >6 for the methylation data and
>0.5 for the expression data, were used for functional enrichment
analysis.

Functional Enrichment Analysis

The functional annotation tool of DAVID (Database for
Annotation, Visualization and Integrated Discovery, developed
by NIAID/NIH, http://david.abcc.nciferf.gov/home.jsp) [55,56]
was used for functional enrichment analysis, with the DAVID
default population background for Homo sapiens (for the gene lists
from the integration analyses, the 11,843 genes from chromosome
1-22 common to the three microarray platforms were used as
background). Genes were uploaded as Illumina probe IDs to avoid
using official gene symbols that may be mapped ambiguously, as
recommended by DAVID. For the methylation data, genes had to
be uploaded using official gene symbols since DAVID does not
permit Illumina methylation probe IDs for mapping. Default
settings were used for the analyses.

Integration of All Data Types and Identification of
Recurrently Altered Genes

The 11,843 genes from chromosome 1-22 common to the three
microarray platforms were used for the integration of the data.
The six text files with binary scores were combined in order to
identify genes with alterations in two types of data and to create
contingency tables for each cell line using R scripts (available upon
request). With two types of changes for each of the three data sets
(gain and loss, hyper- and hypo-methylation, over- and under-
expression), 12 two-way combinations were possible, whereas 8
three-way combinations were possible. A recurrence threshold of
6/19 cell lines (>30%) was used to identify recurrently altered
genes with two types of aberrations, considering the combinations
gain/over-expression, hypo-methylation/over-expression, loss/un-
der-expression and hyper-methylation/under-expression.
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Data Type Dependencies

The contingency tables were used to evaluate data dependencies
within each sample by calculating the odds ratio for the different
two-way combinations of data, as well as the three-way
combinations conditioning on the copy number state. The
Bonferroni-corrected chi-square p-values of the combinations
were also determined.

Quantitative Real-time PCR and RT-PCR

Quantitative real-time PCR was performed using the 7900HT
Fast Real-Time PCR System (Life Technologies). The copy
numbers of the genes distal-less homeobox 5 (DLX5) and runt-
related transcription factor 2 (RUNXZ2) were determined using
TagMan Copy Number Assays (assay ID Hs01209848_cn and
Hs00753612_cn, respectively). The genes eukaryotic translation
clongation factor 1 gamma (EEFIG) and F-box protein 11
(FBXOI11) (assay ID Hs03771595_cn and Hs02528370_cn, re-
spectively) were used as endogenous controls for normalisation.
These two genes are located in 11q12.3 and 2p16.3, respectively,
and showed low level of DNA copy number changes in a large
panel of osteosarcoma samples ([27] and Kresse et al, unpub-
lished). The copy number levels were determined using the
CopyCaller Software v2.0 program (Life Technologies) as de-
scribed by the manufacturer, and the average copy number of
EEFIG and FBXO11 was used for normalisation.

The High Capacity RNA-to-cDNA Master Mix (Life Technol-
ogies) was used for cDNA synthesis, and quantitative real-time
reverse-transcription PCR (qQRT-PCR) was performed using the
7900HT Fast Real-Time PCR System (Life Technologies). The
expression levels of the genes distal-less homeobox 5 (DLX5), runt-
related transcription factor 2 (RUNX2), chemokine (C-X-C motif)
ligand 5 (CXCL)), A kinase (PRKA) anchor protein 12 (AKAPI2),
EGF containing fibulin-like extracellular matrix protein 1
(EFEMPI) and interleukin 11 receptor, alpha (ILI1RA) were
determined using TagMan Gene Expression Assays (assay ID
Hs00193291_m1, Hs01047976_m1, Hs00171085_m1,
Hs00374507_m1, Hs00244575_m1 and Hs00234415_ml, re-
spectively). The gene glyceraldehyde 3-phosphate dehydrogenase
(GAPDH, assay ID Hs99999905_m1) was used as an endogenous
control for normalisation. The relative expression levels were
determined using the comparative C-p method as described by the
manufacturer.

Methylation-specific PCR

Genomic DNA was sodium bisulphite-treated as previously
described [57]. Twenty-two ng of converted DNA was used to
assess the methylation status of the CXCL)5 promoter by
methylation-specific PCR. The primers were designed using
Methyl Primer Express v1.0 (Life Technologies). Each bisul-
phite-treated DNA was amplified in a 50 pl reaction volume using
the following primer sets; CXCL5_M_F (5’-TTAGGAATTCGC-
GATCGTTC-3') and CXCL5_M_R (5'-CACCGCTAACGA-
TAAACCCT-3"), as well as CXCL5_U_F (5'-AGTTTAG-
GAATTTGTGATTGTTT-3') and CXCL5_U_R  (5'-
CACCACTAACAATAAACCCTAAC-3"). The forward primer
covers four CpGs and overlaps with one of the two probes for
CXCL5 on the Illumina HumanMethylation27 BeadChip (probe
ID ¢g10088985). The primers cover a total of six CpGs located in
the first exon of CXCLS.

PCR was carried out using the EpiTect MSP kit (QIAGEN)
with the following PCR conditions; 95°C for 10 min, followed by
94°C for 15 s, 53°C for 15 s and 72°C for 30s, for 40 cycles and
a final extension step at 72°C for 10 min. The PCR products were
separated by electrophoresis using a 2% agarose gel. Each sample
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was scored for the presence of PCR product for the methylated
(M_F/M_R) and unmethylated (U_F/U_R) primer sets. The
EpiTect PCR Control DNA Set (QIAGEN) was used for
optimization and to confirm the specificity of the primers. DNase-
and RNase-free water was used as a negative control.

Demethylation Treatment

Twelve of the osteosarcoma cell lines were seeded at a density of
5,000-7,500 cells/cm?. The following day, the medium was
replaced with a medium containing 1 UM of 5-Aza-2-deoxycyti-
dine (Sigma Aldrich, Montana, USA), which again was replen-
ished every 24 hours. After three days, total RNA was isolated
using the QIAGEN miRNeasy Mini Kit (QIAGEN) according to
the manufacturer’s protocol, prior to treatment with amplification-
grade DNase I (Life Technologies) to avoid amplification of
contaminating genomic DNA.
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Abstract

The immense increase in the generation of genomic scale data poses an unmet analytical challenge, due to a lack
of established methodology with the required flexibility and power. We propose a first principled approach to
statistical analysis of sequence-level genomic information. We provide a growing collection of generic biological
investigations that query pairwise relations between tracks, represented as mathematical objects, along the
genome. The Genomic HyperBrowser implements the approach and is available at http://hyperbrowser.uio.no.

Rationale

The combination of high-throughput molecular techni-
ques and deep DNA sequencing is now generating
detailed genome-wide information at an unprecedented
scale. As complete human genomic information at the
detail of the ENCODE project [1] is being made avail-
able for the full genome, it is becoming possible to
query relations between many organizational and infor-
mational elements embedded in the DNA code. These
elements can often best be understood as acting in con-
cert in a complex genomic setting, and research into
functional information typically involves integrational
aspects. The knowledge that may be derived from such
analyses is, however, presently only harvested to a small
degree. As is typical in the early phase of a new field,
research is performed using a multitude of techniques
and assumptions, without adhering to any established
principled approaches. This makes it more difficult to
compare, reproduce and realize the full implications of
the various findings.

The available toolbox for generic genome scale anno-
tation comparison is presently relatively small. Among
the more prominent tools are those embedded within
the genome browsers, or associated with them, such as
Galaxy [2], BioMart [3], EpiGRAPH [4] and UCSC Can-
cer Genomics Browser [5]. BioMart at this point mostly

* Correspondence: ehovig@ifi.uio.no
1Department of Informatics, University of Oslo, Blindern, 0316 Oslo, Norway
Full list of author information is available at the end of the article

( BiolMed Central

offers flexible export of user-defined tracks and regions.
Galaxy provides a richer, text-centric suite of operations.
EpiGraph presents a solid set of statistical routines focused
on analysis of user-defined case-control regions. The
recently introduced UCSC Cancer Genomics Browser
visualizes clinical omics data, as well as providing patient-
centric statistical analyses.

We have developed novel statistical methodology and
a robust software system for comparative analysis of
sequence-level genomic data, enabling integrative sys-
tems biology, at the intersection of genomics, computa-
tional science and statistics. We focus on inferential
investigations, where two genomic annotations, or
tracks, are compared in order to find significant devia-
tion from null-model behavior. Tracks may be defined
by the researcher or extracted from the sizable library
provided with the system. The system is open-ended,
facilitating extensions by the user community.

Results

Overview

Our system is based on an abstract representation of gen-
eric genomic elements as mathematical objects. Hypoth-
eses of interest are translated into mathematical relations.
Concepts of randomization and track structure preserva-
tion are used to build complex problem-specific null mod-
els of the relation between two tracks. Formal inference is
performed at a global or local scale, taking confounder
tracks into account when necessary (Figure 1).

© 2010 Sandve et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Figure 1 Flow diagram of the mathematics of genomic tracks. Genomic tracks are represented as geometric objects on the line defined by
the base pairs of the genome sequence: (unmarked (UP) or marked (MP)) points, (unmarked (US) or marked (MS)) segments, and functions (F).
The biologist identifies the two tracks to be compared, and the Genomic HyperBrowser detects their type. The biological question of interest is
stated in terms of mathematical relations between the types of the two tracks. The relevant questions are proposed by the system. The biologist
then selects the question and needs to specify the null hypothesis. For this purpose she is called to decide about what structures are preserved
in each track, and how to randomize the rest. Thereafter, the Genomic HyperBrowser identifies the relevant test statistics, and computes actual
P-values, either exactly or by Monte Carlo testing. Results are then reported, both for a global analysis, answering the question on the whole
genome (or area of study), and for a local analysis. Here, the area is divided into bins, and the answer is given per bin. P-values, test-statistic, and
effect sizes are reported, as tables and graphics. Significance is reported when found, after correction for multiple testing.

Abstract representation of genomic elements

A genome annotation track is a collection of objects of a
specific genomic feature, such as genes, with base-pair-
specific locations from the start of chromosome 1 to the
end of chromosome Y. Tracks vary in biological content,
but also in the form of the information they contain. A
track representing genes contains positional information
that can be reduced to ‘segments’ (intervals of base
pairs) along the genome. A track of SNPs can be

reduced to points (single base pairs) on the genome.
The expression values of a gene, or the alleles of a SNP,
are non-positional information parts and are attributed
as ‘marks’ (numerical or categorical) to the correspond-
ing positional objects, that is, segments or points.
Finally, a track of DNA melting assigns a temperature
to each base pair, describing a ‘function’ on the genome.
We thus define five genomic types: unmarked points
(UP), marked points (MP), unmarked segments (US),
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marked segments (MS) and functions (F). These five
types completely represent every one-dimensional
geometry with marks.

Catalogue of investigations

We translate biological hypotheses of interest into a
study of mathematical relations between genomic tracks,
leading to a large collection of possible generic
investigations.

Consider the relation between histone modifications

and gene expression, as investigated by visual inspection
in [6] (Figure S1 in Additional file 1). The question is
whether the number of nucleosomes with a given his-
tone modification (represented as type UP), counted in
a region around the transcription start site (TSS) of a
gene, correlates with the expression of the gene. The
second track is represented as marked segments (MS).
This study of histone modifications and gene expres-
sions can then be phrased as a generic investigation
between a pair of tracks (T1, T2) of type UP and MS:
are the number of T1 points inside T2 segments corre-
lated with T2 marks? Figure 2 shows the results when
repeating this analysis for all histone modifications
studied in [6], and different regions around the TSS. See
Section 1 in Additional file 1 for a more detailed exam-
ple investigation, analyzing the genome coverage by
different gene definitions.
In the context of the catalogue of investigations, the
genomic types are minimal models of information con-
tent. In the above example, nucleosome modifications
are only used for counting, and thus considered
unmarked points (UP), even though they are typically
represented in the file system as marked or unmarked
segments. As the gene-related properties of interest are
the genome segments in which the nucleosomes are
counted, as well as the corresponding gene expression
values (marks), T2 is of the type marked segments (MS).
The choice of genomic type clarifies the content of a
track, and also restricts which analyses are appropriate.
Investigations regarding the length of the elements of a
track are, for instance, relevant for genes, but not for
SNPs and DNA melting temperatures.

The five genomic types lead to 15 unordered pairs (T1,
T2) of track type combinations, with each combination
defining a specific set of relevant analyses. For instance,
the UP-US combination defines several investigations of
potential interest: are the T1 points falling inside the T2
segments more than expected by chance? Do the points
accumulate more at the borders of the segments, instead
of being spread evenly within? Do the points fall closer to
the segments than expected? A growing collection of
abstract mathematical versions of biological questions is
provided. We have currently implemented 13 different
analyses, filling 8 of the 15 possible combinations of track

Page 4 of 13

types (see Additional file 2 for mathematical details).
Note that information reduction of a track to a simpler
type (for example, segments to points) may open up addi-
tional analytical opportunities, and are handled dynami-
cally by the system - for example, by treating segments as
their middle points.

Global and local inference

A global analysis investigates if a certain relation between
two tracks is found in a domain as a whole. A local analy-
sis is based on partitioning the domain into smaller units,
called bins, and performing the analysis in each unit
separately. Local analysis can be used to investigate if and
where two tracks display significant concordant or dis-
cordant behavior, and thus be used to generate hypoth-
eses on the existence of biological mechanisms
explaining such perturbations. Local investigations may
also be used to examine global results in more detail.
The length of each bin defines the scale of the analysis.
Inference is then based on the computation of P-values,
locally in each bin, or globally, under the null model.

To illustrate the value of local analysis, we consider
viral integration events in the human genome. These
may result in disease and may also be a consequence of
retroviral gene therapy. Derse et al. [7] examined inte-
gration for six types of retroviruses, with different viral
integrases, thus having different integration sites (type
UP). Using these data, we asked whether there are hot-
spots of integration inside 2-kb flanking regions of pre-
dicted promoters (type US), that is, whether and where
the points are falling inside the segments more than
expected by chance. Figure 3 displays the hotspots as
calculated P-values in bins across the genome, using the
subset of murine leukemia virus (MLV) sites. We find
locations of increased integration, thus generating
hypotheses on the role of integration site sequences and
their context.

Local analysis may be used to avoid drawing incorrect
conclusions from global investigations. Consider the
repressive histone modification H3K27me3 as studied in
[8]. Data from ChIP-chip experiments on mouse chro-
mosome 17 were analyzed, finding that H3K27me3 falls
in domains that are enriched in short interspersed
nuclear element (SINE) and depleted in long interspersed
nuclear element (LINE) repeats. Using the line of enquiry
raised in [8], we asked whether H3K27me3 regions (type
US) significantly overlap with SINE repeats (type US),
but here using formal statistical testing at the base pair
level. The chosen null model only allows local rearrange-
ments of genomic elements (for more detail, see next sec-
tion). This preserves local biological structure, but allows
for some controlled level of randomness.

Performing this test globally on the whole chromosome
17 leads to rejection of the null hypothesis (P = 10™),
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Figure 2 Gene regulation by histone modifications. The correlation between occupancy of 21 different histone modifications and gene
expression within 4 different regions around the TSS (up- and downstream, 1 and 20 kb), sorted by correlation in 1-kb upstream regions. Sixteen
of 21 histone modifications show significant correlation in 1-kb upstream regions, while inspection of the actual value of Kendall’s tau (Table S1
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in line with [8]. However, a local analysis leads to a dee-
per understanding. At a 5-Mbp scale, no significant find-
ings were obtained in any of the 19 bins (10% false
discovery rate (FDR)-corrected). The frequency of
H3K27me3 segments varies considerably along chromo-
some 17 (Figure S2 in Additional file 1), which may cause
the observed discrepancy between local and global
results.

Precise specification of null models

A crucial aspect of an investigation is the precise forma-
lization of the null model, which should reflect the com-
bination of stochastic and selective events that
constitutes the evolution behind the observed genomic
feature.

Consider again the example of H3K27me3 versus
repeating elements. In the chosen null model, we pre-
served the repeat segments exactly, but permuted the
positions of the H3K27me3 segments, while preserving
segment and intersegment lengths. We then computed
the total overlap between the segments, and used a
Monte Carlo test to quantify the departure from the
null model. The effect of using alternative null models is

shown in Table 1. The null model examined in the first
column, which does not preserve the dependency
between neighboring base pairs, produces lower
P-values. Unrealistically simple null models may thus
lead to false positives. In fact, two simulated indepen-
dent tracks may appear to have a significant association
if their individual characteristics are not appropriately
modeled (Section 2 in Additional file 1). In this example,
the choice between the biologically more reasonable null
models is difficult. The two other columns of Table 1
include models that preserve more of the biological
structure. The fact that these models do not lead to
clear rejection of the null hypotheses suggests that we in
this case lack strong evidence against the null hypoth-
esis. Thus, examining the results obtained for a set of
different null models may often contribute important
information. The null model should reflect biological
realism, but also allow sufficient variation to permit the
construction of tests. A set of simulated synthetic tracks
is provided as an aid for assessing appropriate null mod-
els (Additional file 3).

The Genomic HyperBrowser allows the user to define
an appropriate null model by specifying (a) a preservation
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Figure 3 Viral integration sites. Plot of false discovery rate (FDR)-adjusted P-values along the genome, in 30-Mbp bins. Small P-values indicate
regions where murine leukemia virus (MLV) integrates inside 2-kb regions around FirstEF promoters more frequently than by chance. The FDR
cutoff at 10% is shown as a dashed line. The inset of a local area (chromosome 1:153,250,001-153,450,000) indicates FirstEF promoters expanded
by 2 kb in both directions, MLV integration sites, RefSeq genes, and unflanked FirstEF sites.

example, these preservation options for unmarked seg-
ments can be assumed: (i) preserve all, as in data; (ii)
preserve segments and intervals between segments, in
number and length, but not their ordering; (iii) preserve
only the segments, in number and length, but not their
position; (iv) preserve only the number of base pairs in
segments, not segment position or number. Depending

rule for each track, and (b) a stochastic process, describ-
ing how the non-preserved elements should be rando-
mized. Preservation fixes elements or characteristics of
a track as present in the data. For each genomic type,
we have developed a hierarchy of less and less strict
preservation rules, starting from preserving the entire
track exactly (Section 3 in Additional file 1). For
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Table 1 Significant bins of the overlap test between H3K27me3 segments and SINE repeats under various null models

Tracks to Preserve total number of base Preserve segment lengths, but Preserve segment and intersegment lengths, but
randomize pairs covered randomize position randomize positions

H3K27me3 10/19 1/19 0/19

SINE 10/19 5/19 4/19

H3K27me3 and 10/19 5/19 4/19

SINE

The number of significant bins of the overlap test between H3K27me3 segments and SINE repeats under different preservation and randomization rules for the
null model. The test was performed in 19 bins on mouse chromosome 17, with the MEFB1 cell line. (Use of the MEFF cell line gave similar results; Table S2 in
Additional file 1). In this case, less preservation of biological structure leads to smaller P-values. Also, randomizing the SINE track gave smaller P-values than

randomizing the H3K27me3 track (or both).

on the test statistic T, the level of preservation and the
chosen randomization, P-values are computed exactly,
asymptotically or by standard or sequential Monte
Carlo [9,10].

Confounder tracks

The relation between two tracks of interest may often
be modulated by a third track. Such a third track may
act as a confounder, leading, if ignored, to dubious con-
clusions on the relation between the two tracks of
interest.

Consider the relation of coding regions to the melting
stability of the DNA double helix. Melting forks have
been found to coincide with exon boundaries [11-15].
Although few studies have reported statistical measures
of such correlation [11], the correlation is confirmed by
a straightforward investigation. Tracks (type F) repre-
senting the probabilities of melting fork locations [16] in
Saccharomyces cerevisiae, were compared to tracks con-
taining all exon boundaries (Figure 4). We asked if the
melting fork probabilities (P) were higher than expected
at the exon boundaries (E) than elsewhere. In the null
model, the function was conserved, while points were
uniformly randomized in each chromosome. Monte
Carlo testing was carried out on the chromosomes sepa-
rately, giving P-values <0.0005 (Table S3 in Additional
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Figure 4 Comparison of exon boundary locations and melting
fork probability peaks. Independent analyses were carried out on
left and right exon boundaries as compared to left- and right-facing
melting forks, respectively. In the upper part, dashed vertical lines
indicate left (L, red) and right (R, blue) exon boundaries. In the
lower part, probabilities of left- and right-facing melting forks
appear as red and blue peaks, respectively. The black curve shows
the GC content in a 100-bp sliding window (values on right axis).

file 1). In the absence of a confounder, it is thus tempt-
ing to conclude that there is an interesting relation
between DNA melting and coding regions, for which
functional implications have been previously discussed
[15,17,18].

An alternative view is that the GC content, being
higher inside exons than outside, contains information
about exon location that is simply carried over, or
decoded, by a melting analysis, thus acting as a confoun-
der. We have developed a methodology to investigate
such situations further. Non-preserved elements of a
null model can be randomized according to a non-
homogeneous Poisson process with a base-pair-varying
intensity, which can depend on a third (or several) mod-
ulating genomic tracks [19,20]. We have defined an
algebra for the construction of intensities, where tracks
are combined, to allow rich and flexible constructions of
randomness (see Materials and methods).

To investigate the influence of GC content on the
exon-melting relation, we first generated a pair of
custom tracks (type F), assigning to each base the value
given by the GC content in the 100-bp left and right
flanking regions, respectively, weighted by a linearly
decreasing function. These two functions were used,
together with the exon boundary track, to create an
intensity curve proportional to the probability of exon
points, given GC content (see Materials and methods).
When performing the same analysis as before, but now
using the null model based on this intensity curve (rather
than assuming uniformity), a significant relationship
was found in only one yeast chromosome (Table S3 in
Additional file 1). In conclusion, there is a melting-exon
relationship in yeast, but it may simply be a conse-
quence of differences in GC content at the exon bound-
aries (high GC inside, low GC outside), which may exist
for biological reasons not involving melting fork
locations.

Resolving complexity: system architecture

The Genomic HyperBrowser is an integrated, open-
source system for genome analysis. It is continually
evolving, supporting 28 different analyses for signifi-
cance testing, as well as 62 different descriptive
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statistics. The system currently hosts 184,500 tracks.
Most of these represent literature-based information,
previously mostly utilized in network-based approaches
[21]. As natural language based text mining allows for
the identification of a wide variety of biological entities,
we have generated tracks representing genomic locations
associated with terms for the complete gene ontology
tree, all Medical Subject Heading (MeSH) terms, chemi-
cals, and anatomy.

The system is implemented in Python [22], a high-
level programming language that allows fast and robust
software development. A main weakness of Python com-
pared to languages like C++ is its slower performance.
Thus, a two-level architecture has been designed. At the
highest level, Python objects and logic have been used
extensively to provide the required flexibility. At the
base-pair level, data are handled as low-level vectors,
combining near-optimal storage with efficient indexing,
allowing the use of vector operations to ensure speed.
Interoperability with standard file formats in the field
[23] is provided by parallel storage of original file for-
mats and preprocessed vector representations. To
reduce the memory footprint of analyses on genome-
wide data, an iterative divide-and-conquer algorithm is
automatically carried out when applicable. A further
speedup is achieved by memoizing intermediate results
to disk, automatically retrieving them when needed for
the same or different analyses on the same track(s) at
any subsequent time, by any user.

The system provides a web-based user interface with a
low entry point. However, the complex interdependen-
cies between the large body of available tracks, a num-
ber of syntactically different analyses, and a range of
choices for constructing null models, all pose challenges
to the concepts of simplicity and ease of use. In order to
simplify the task of making choices, a step-wise
approach has been implemented, displaying only the
relevant options at each stage. This guided approach
hides unnecessary complexities from the researcher,
while confronting her with important design choices as
needed. We rely on a dynamic system to infer appropri-
ate options, aiding maintenance. The list of selectable
tracks is based on scans of available files on disk. The
list of relevant questions is based on short runs of all
implemented analyses, using a minimal part of the
actual data from the selected tracks. For each analysis, a
set of relevant options is defined. The dynamics of the
system also provides automatic removal of analyses that
fail to run, enhancing system robustness.

Allowing extensibility along with efficiency and system
dynamics is a challenge. The complexities of the soft-
ware solutions are hidden in the backbone of the
system, simplifying coding of statistical modules. Each
module declares the data types it supports and which
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results are needed from other modules. The backbone
automatically checks whether the selected tracks meet
the requirements, and if so, makes sure the intermediate
computations are carried out in correct order. Redun-
dant computations are avoided through the use of a
RAM-based memoization scheme. The system also pro-
vides a component-based framework for Monte Carlo
tests, where any test statistic can be combined with any
relevant randomization algorithm, simplifying develop-
ment. In addition, a framework for writing unit and
integration tests [24] is included. Further details on the
system architecture are provided in Section 4 in Addi-
tional file 1.

Step-by-step guide to HyperBrowser analysis

One of the main goals of the Genomic HyperBrowser is
to facilitate sophisticated statistical analyses. A range of
textual guides and screencasts are available in the help
section at the web page, demonstrating execution of var-
ious analyses, how to work with private data, and more.
To give an impression of the user experience, we here
provide a step-by-step guide to the analysis of broad
local enrichment (BLOC) segments versus SINE repeats,
as discussed in the section on ‘Precise specification of
null models’.

First, we open ‘hyperbrowser.uio.no’ in a web browser
and we select the ‘Perform analysis’ tool under ‘“The
Genomic HyperBrowser’ in the left-hand menu. We
select the mouse genome (mm8) and continue to select
tracks of interest. As the first track, we select ‘Chroma-
tin’-’"Histone modifications’-’BLOC segments’-’"MEFB1'.
These are the BLOC segments according to the algo-
rithm of Pauler et al. [8] for the MEFBI1 cell line. As the
second track, we select ‘Sequence’-'Repeating elements’-
"SINE’. Now that both tracks have been selected, a list
of relevant investigations is presented in the interface
(that is, investigations that are compatible with the
genomic types of the two tracks: US versus US). We
select the question of ‘Overlap?” in the ‘Hypothesis test-
ing’ category, and the options relevant for this analysis
are subsequently displayed in the interface. The different
choices for ‘Null model’ will produce the various num-
bers in Table 1 (six different choices are directly avail-
able from the list. The other variants can be achieved by
reversing the selection order of the tracks). The original
BLOC paper [8] focused on chromosome 17. We want
to perform a local analysis along this chromosome,
avoiding the first three megabases that are centromeric.
Under ‘Region and scale’ we thus choose to ‘Compare in’
a custom specified region, writing ‘chr17:3m-" as ‘Region
of the genome” and writing ‘5 m’ (5 megabases) as ‘Bin
size’. Clicking the ‘Start analysis’ button will then perform
an appropriate statistical test according to the selected
null model assumption, and output textual and graphical
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Figure 5 Screenshots of the Genomic HyperBrowser. (a)
Screenshot of the main interface for selecting analysis options. The
selections for the example relating H3K27me3 BLOCs to SINE
repeats have been pre-selected. In the interface, the user selects a
genome build followed by two tracks. A list of relevant
investigations is then presented, based on the genomic types of the
two tracks. After selecting an investigation, the interface presents
the user with a choice of null models, alternative hypotheses and
other relevant options. (b) Screenshot of the results of the analysis.
The question asked by the user is presented at the top, in this case:
‘Are ‘MEFB1 (BLOC segments)’ overlapping ‘SINE (Repeating
elements)’ more than expected by chance? A first, simplistic answer
is then presented: ‘No support from data for this conclusion in any
bin". A more precise answer follows, detailing any global P-values, a
summary of local FDR-corrected P-values, the particular set of null
and alternative hypotheses tested, in addition to a legend of the
test statistic that has been used. Further links to a PDF file
containing the statistical details of the test, and to more detailed
tables of relevant statistics for both the global and the local analysis
are also included. The global result table also includes links to plots

and export opportunities for the individual statistics.

results to a new Galaxy history element. Figure 5a
shows the user interface covering all selections above and
Figure 5b shows the answer page that results from this
analysis.

This example assumed the BLOC segments were
already in the system. If not, they could simply be
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uploaded to the Galaxy history and then selected in the
first track menu as ‘— From history (bed, wig) —’-'[your
BLOC history element]’. For information on how to use
the Galaxy system, we refer to the Galaxy web site [25].

Discussion

The current leap in high-throughput sequencing tech-
nology is opening the way for a range of genome-wide
annotations beyond the presently abundant gene-centric
data. Not least, chromatin-related data are becoming
increasingly important for understanding higher-level
organization and regulation of the genome [26].

As is typical for a subfield that has not reached
maturation, analysis of new massive sequence-level data
is performed on a per-project basis. For instance, a
paper on the ENCODE project describes how inference
can be done by Monte Carlo testing, sampling bins for
one of the real tracks at random genome locations
under the null hypothesis [1]. Independently, a newer
study of histone modifications instead permuted bins of
data for one of the tracks [27]. Although genomic visua-
lization tools have been available for several years, few
generic tools exist for inference at the sequence level.

The following aspects distinguish our work from
currently available systems. First, we focus on genomic
information of a sequential nature, that is, with specific
base-pair locations on a genome, and thus not restricted
to only genes. Second, it focuses on the comparison of
pairs of genomic tracks, possibly taking others into
account through the concept of intensity tracks. Third,
all comparisons are performed using formal statistical
testing. Fourth, we provide analyses on any scale, from
genome-wide studies to miniature investigations on par-
ticular loci. Fifth, we offer flexible choices of null models
for exploration and choice where relevant. Finally, we
provide a user interface where the user describes the
data and the null models, while the system based on
this chooses the appropriate statistical test. Comparing
this to the EpiGRAPH and Galaxy frameworks, which
we believe are the closest existing systems, we find that
both require substantial technical expertise when choos-
ing the correct analysis and options. EpiGRAPH is
focused on a specific type of scenario that, according to
our cataloguing, amounts to the comparison of
unmarked points or segments versus categorically
marked segments (with mark being case or control).
Galaxy provides a simple user interface, is rich in tools
for manipulating and analyzing datasets of diverse for-
mats, but has little support for formal statistical testing.
Note also that our system is tightly connected to Galaxy
and can make use of all the tools provided within
Galaxy.

We provide tools for abstraction and cataloguing of
what we believe are typical questions of broad interest.
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The abstractions of genomic data, the proposing of pro-
totype investigations, and the careful attention given to
null models simplifies statistical inference for a range of
possible research topics. Our approach invites research-
ers to build relevant null models in a controlled manner,
so that specific biological assumptions can be realisti-
cally represented by preservation, randomness and
intensity based confounders. In addition, time used for
repetitive tasks like file parsing and calculation of
descriptive statistics may be significantly reduced.

Our system is highly extensible. The software is open
source, inviting the community to add new investiga-
tions and tools. Attention has been given to compo-
nent-based coding and simple interfaces, facilitating
extensions of the system.

The highly specialized nature of many research inves-
tigations poses a major challenge for a generic system
such as the one presented here. Even though a range of
analyses and options are provided, chances are that at a
given level of complexity, functionality beyond what is
provided by a generic system will be needed. Still, the
time and effort used to reach such a point may be shor-
tened considerably, and it should in many cases be pos-
sible to meet demands through custom extensions.

Genomic mechanisms commonly involve more than
two tracks, and the current focus on pair-wise interroga-
tions is limiting. Our methodology allows the incorpora-
tion of additional tracks through the concept of an
intensity track that modulates the null hypothesis, acting
as a confounder. However, the investigation of genuine
multi-track interactions is not yet possible within the
system, as complex modeling and testing of multiple
dependencies will be required.

Attention should be given to the trade-off between
fine resolution and lack of precision. When large bins
are considered, there may be too little homogeneity,
while small bins may contain too little data. There is
also an unresolved trade-off relating to preservation of
tracks in null-hypotheses construction: too little preser-
vation may give unrealistically small P-values, while too
strong preservation may give too limited randomness.

On a more specific note, a set of tissue-specific analy-
tical options would be beneficial with respect to many
types of experimental data - for example, chromatin,
expression and also gene subset tracks. Such options are
now under development.

Novel sequencing technologies are instrumental in
realizing the personalized genomes [28], and with them
the task of identifying phenotype-associated information
contained in each genome. An imminent challenge in
understanding cellular organization is that of the three
dimensions of the genome. While a number of genomes
have been sequenced, and a number of important cellu-
lar elements have been mapped on a linear scale, the
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mapping of the three-dimensional organization of the
DNA and chromatin in the nucleus is still only in its
beginnings. Consequently, the impact of this organiza-
tion on cell regulation is still largely unresolved. How-
ever, the advent of methods like Hi-C [29] permits
detailed maps of three-dimensional DNA interactions to
be combined with coarser methods of mapping of other
elements. It appears that looking simultaneously at mul-
tiple scales seems important for understanding the
dynamics of different functional aspects, from chromo-
somal domains down to the nucleosome scale. The need
for taking multiple scales into account has recently been
emphasized in both theoretical and analytical settings
[30,31]. Consequently, statistical genomics needs to con-
sider several scales when proper analytical routines are
developed. Our approach is open to three-dimensional
extensions, where the bins, which are flexibly selected in
the system, will become three-dimensional volumes, and
local comparison will be within each volume. What
appears much more complex is the level of dependence
of such volumes. But as the three-dimensional organiza-
tion of the genome will become increasingly known,
appropriate volume topologies will be possible, so that
neighboring volumes representing three-dimensional
contiguity may be used as a basis for statistical tests.

Conclusions

By introducing a generic methodology to genome analy-
sis, we find that a range of genomic data sets can be
represented by the same mathematical objects, and that
a small set of such objects suffice to describe the bulk
of current data sets. Similarly, a range of biological
investigations can be reduced to similar statistical ana-
lyses. The need for precise control of assumptions and
other parameters can furthermore be met by generic
concepts such as preservation and randomization, local
analysis (binning) and confounder tracks.

Applying these ideas on a sample set of genomic
investigations underlines that the generic concepts fit
naturally to concrete analyses, and that such a generic
treatment may expose vagueness of biological conclu-
sions or expose unforeseen issues. A re-analysis of the
relation between BLOC segments of histone modifica-
tion and SINE repeats shows that conclusions regarding
direct overlap at the base-pair level depends on the ran-
domizations used in the significance analysis. Using bio-
logically reasonable null models, the correspondence
between BLOC segments and SINE repeats appears not
to be due to overlap at the base-pair level, but rather
seems to be due to local variation in intensities of both
tracks. This does not directly oppose the original con-
clusions, but brings further insight into the nature of
the relation. Similarly, an analysis of the relation
between DNA melting and exon location confirms the
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conclusion from previous studies that exon boundaries
coincide with gradients of melting temperature. How-
ever, taking GC content into account as a possible con-
founder, the analysis does not suggest a direct
functional relation between melting and exons. Instead,
it suggests that the association is due to the relationship
of both exons and melting tracks to GC content.

We believe the generic concepts and challenges identi-
fied by our work will trigger community efforts to
improve genome analysis methodology. The Genomic
HyperBrowser demonstrates the feasibility of applying
our approach to large-scale genomic datasets, providing
a concrete basis for further research and development in
inferential genomics. We thus consider the solutions
presented here more like a start than an end of this
important endeavor.

Materials and methods

Statistical methods

A track is defined over the whole genome or only in parts
of it, masking away the rest. In a local analysis, statistical
tests are performed in each bin with sufficient sample
size. Resizing of bins allows for localization of events
(similarities, differences, and so on, between the two
tracks) with flexible precision. Preservation rules leads to
conditional P-values that are not necessarily ordered,
even if the preservation mechanism is incremental. Sta-
tistical tests have been tried on simulated data, also when
model assumptions are not completely fulfilled. Standard
Monte Carlo requires deciding on the number of Monte
Carlo samples. We suggest at least two to five times the
number of tests, in order to allow for FDR adjustment.
Additionally, we adopt sequential Monte Carlo, where
the algorithm continues sampling until the observed
statistic has been exceeded a given number of times (say
20) [9]. This gives better estimates of small P-values with
overall reduced computations. Intensity tracks are used
to define non-standard null hypothesis. Several strategies
for building intensity curves are described in Section 3 in
Additional file 1. Intensity curves allow performing ran-
domizations that mimic another track (or a combination
of tracks), useful to account for confounding effects. For
unmarked points, the intensity curve can be any regular
function Ag(b) where b is the position along, say, a chro-
mosome. If Lo(b) = ¢ (constant), points are uniformly dis-
tributed. As another example, Ao(b) can be a kernel
density estimate based on the track of observed points. In
general, the intensity Ao(b) may depend on several differ-
ent tracks gj, g, ..., 8, through a function s, so that Ay(b)
= s(g1(b), g2(b), ..., gi(b)), for example, Ag(b) = ¢ + XP;g;
(b). An important case that requires a special choice of
intensity track is when the comparison between two tracks
T; and T, might be confounded by a third, confounder,
track T3. This is discussed in further detail in Section 5
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in Additional file 1 for the melting-exon example,
where each track depends on a function of the GC
content.

Software system

The Genomic HyperBrowser [30] is implemented in
Python [22], version 2.7. It runs as a stand-alone applica-
tion tightly connected to the Galaxy framework [2], using
the version dated 2010-10-04. The user interface is based
on Mako templates for Python [32], version 0.2.5, and
Javascript library Jquery [33], version 1.4.2. The software
uses NumPy [34], version 1.5.1rcl, for disk based vector
mapping and fast vector operations. R [35], version
2.10.1, is used for plotting and basic statistical routines,
using the RPy API [36], version 1.0.3. The software is
open source and freely available, using GPL [37] version
3, and can be downloaded from [30]. The Genomic
HyperBrowser runs on a dedicated Linux server, with
large computations offloaded to the Titan cluster [38].

Biological example: histone modifications versus gene
expression

Raw histone modification data [39] were preprocessed
using the NPS (Nucleosome Positioning from Sequen-
cing) software [40], using peak detection, leading to
nucleosome positioning information as short segments,
treated as unmarked points (UP). Raw microarray
expression values [41] were used to represent gene
expression, in line with [6]. Direct comparison of the
expression levels of individual probes is not generally
justified. As Barski et al. [6] compares sets of 1,000
genes each, the direct comparison of values between
groups may be justified by noise averaging (although not
discussed in [6]). Using Kendall’s rank correlation test, a
similar reduction of error is obtained. Detailed correla-
tion values for the different histone modifications are
given in Table S1 in Additional file 1. The distribution
of histone modifications relative to TSS is given for two
different modifications in Figure S4 in Additional file 1.

Biological example: histone modifications versus
repeating elements

ChIP-seq data on histone modification [39,42] were pre-
processed using the SICER software [43], which returns
clusters of neighboring nucleosomes as islands unlikely
to have appeared by chance, using an appropriate ran-
dom background model. These clusters are treated as
unmarked segments (US). The ChIP-chip data of
H3K27me3 positions were obtained directly from Pauler
et al. [8], and were preprocessed by them using their
BLOC:s software, which returns broad local enrichments,
also treated as unmarked segments (US). Detailed overlap
results between repeats and different histone modifica-
tion sources are given in Table S2 in Additional file 1.
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Biological example: exons versus DNA melting

The melting fork probability tracks Py (x) and Pr(x) used
in this study were obtained using the Poland-Scheraga
model [44]. To make the correction for GC content, a
pair of GC-based function tracks, L(x) and R(x), were
created using a moving window approach. Let E; (Eg)
be the left (right) exon boundaries. For testing the melt-
ing-exon relation in tracks (Er, Pr), an intensity track
was created based on L(x), R(x) and E; (and similarly for
tracks (Egr, Pr)). See Section 5 in Additional file 1 for
more details.

Additional material

Additional file 1: Supplementary material. Miscellaneous
supplementary material: gene coverage example. On the importance of
realistic null models. On mathematics of genomic tracks. On system
architecture. On Exon DNA melting example. Supplementary figures and
tables.

Additional file 2: Statistical tests. Detailed description of the statistical
tests implemented in the software system.
Additional file 3: Supplementary note on simulation. Description of

basic algorithms for simulating synthetic tracks, used to assess statistical
tests.

Abbreviations

BLOC: broad local enrichment; bp: base pair; F: function; FDR: false discovery
rate; kb: kilo base pairs; LINE: long interspersed nuclear element; Mbp: mega
base pairs; MP: marked point; MS: marked segment; SINE: short interspersed
nuclear element; SNP: single-nucleotide polymorphism; TSS: transcription
start site; UP: unmarked point; US: unmarked segment.
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