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Chapter 1

Introduction

Multiscale physics is currently a very active field of research, and over the last few
years, there has been a growing interest in the field at the Computational Physics
group at the University of Oslo. The field aims to bridge the gap between the physical
theories at different scales: From quantum mechanics which determines the electronic
states of atoms, to classical force fields modelling the dynamics of interacting atoms and
molecules, known as molecular dynamics, all the way up to continuum scale models. Of
course, quantum mechanics is the most fundamental of all physical theories and should
therefore be applicable to all scales. However, solving the Schrédinger equation is quite
a daunting task even for constellations of relatively few atoms, and modelling millions
of atoms quantum mechanically is therefore not doable in practice. Nevertheless, the
overall goal of the group is to develop models on all scales which are ultimately founded
on quantum mechanical first principles.

The goal of this thesis in particular has been to develop from scratch an ab initio
computer program for calculating the electronic structure and properties of molecules.
There are a variety of different methods available for this task, all with different
strengths and weaknesses. In order to obtain a good compromise between accuracy
and computational cost, we decided to create a Hartree-Fock solver using Gaussian
basis functions, as well as an implementation of Mgller-Plesset perturbation theory up
to third order. The former is one of the workhorses of quantum chemistry and is able
to produce often quite remarkable results considering its low computational cost. The
latter is one of many so-called post-Hartree-Fock methods which aim to systematically
improve the Hartree-Fock solution.

1.1 Thesis structure

The thesis consists of three main parts: Theory, Implementation, and Results and
conclusion.

Part I: Theory

Part I introduces the reader to the fundamentals of many-body theory as well as the
numerical methods which have been used.



2 Introduction Chapter 1

o Chapter 2 gives an introduction to the theory of many-body quantum mechanics.
Essential parts of this chapter are the definition of spin orbitals and the Slater
determinant, which are integral components of the methods discussed later.

o Chapter 3 deals with the Hartree-Fock method. First, the general equations are
derived. Thereafter, the restricted and unrestricted determinants are defined,
and the equations which result from them obtained. These equations are referred
to as the restricted Hartree-Fock equations (RHF) and unrestricted Hartree-Fock
equations (UHF).

e Chapter 4 presents the basis functions and integration scheme which have been
used. The choice of basis functions is of paramount importance as they determine
the accuracy of the results as well as the computational cost of the computations.
High accuracy and low computational cost are conflicting desires, and to achieve
both is therefore a great challenge. A good compromise is the choice of Gaussian
basis functions, for which a highly optimised integration scheme is available.

e Chapter 5 briefly discusses the main limitation of the Hartree-Fock method,
namely its inability to converge to the exact solution. This motivates the in-
troduction of more accurate methods. One such method is perturbation theory,
which is the topic of chapter 6.

o Chapter 6 discusses many-body perturbation theory. Equations for the second
and third order Mgller-Plesset corrections are derived.

o Chapter 7 describes the Nelder-Mead minimisation method, which is a popular
method in quantum chemistry for finding the equilibrium geometry of molecules.

Part II: Implementation

Part II describes how we implemented the methods of part I in the C4++ programming
language.

e Chapter 8 outlines the program structure and how the various routines are im-
plemented in different classes.

e Chapter 9 elaborates on some of the classes of the previous chapter.

e Chapter 10 gives a brief description of how the code was developed in the inte-
grated development environment Qt Creator. Furthermore, the code is validated
by demonstrating that it reproduces selected results from the literature.

Part III: Results and conclusion

e Chapter 11 presents results of calculations performed on various molecular sys-
tems. Both closed and open shell molecules are considered. Special attention is
payed to the correlation energy and the problem of dissociation.

e Chapter 12 summarises and concludes the thesis. Possible topics of future work
are also discussed.
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Chapter 2

Many-body theory

This chapter discusses the basic quantum mechanics of identical fermions. First the
Hamiltonian of molecular systems is presented, and the Born-Oppenheimer approxi-
mation is introduced. Therearefter the spin orbitals and spatial orbitals are discussed.
They are functions which represent the states of single particles and are used as build-
ing blocks to construct many-particle wave functions. The simplest example of such
a many-particle wave function is the Hartree function, which is the product of all the
spin orbitals of the system. However, the Hartree function does not satisfy the Pauli
principle, which says that any fermionic many-particle wave function must be anti-
symmetric with respect to particle interchange. This leads to the construction of the
Slater determinant, which is the simplest example of an antisymmetric wave function
comprised of spin orbitals. Next, the so-called reference energy is calculated. This
is the expectation value of the Hamiltonian calculated on the basis of some chosen
reference Slater determinant. It will become important later as this is a basic ansatz
in the derivation of the Hartree-Fock equations. Thereafter the second quantisation
formalism is briefly introduced. This is a very useful and effective notation when it
comes to calculating matrix elements of operators. Furthermore, it naturally leads to
a diagrammatic interpretation of the operators, which streamlines the calculation even
further. This will prove to be very useful when we discuss perturbation theory in chap-
ter 6. The chapter ends with the completeness theorem for fermionic many-particle
wave functions.

The reader who wants a more thorough review of these topics is referred to Szabo
and Ostlund [3], Gross et al [4] and Shavitt and Bartlett [5].

2.1 The Hamiltonian
Our task is to solve the time independent Schrédinger equation:
H|®;) = &), (2.1)

where H is the Hamiltonian, &; is the energy and |®;) is the state of the system. We
will primarily be interested in the ground state |®g) and ground state energy &. For
a molecular system consisting of IV electrons with positions {ri}i]\;l and K nuclei with

5



6 Many-body theory Chapter 2

posistions {R,,}X_,, the Hamiltonian is given by

ZVQ ZiVQ ZZ‘R — 1y

i=1 n=1

n=1»

(2.2)

1< 1
T LTI o
)= m,n=
i#]

m#n

where M, is the ratio of the mass of nucleus n and the mass of an electron, and Z, is
the charge of nucleus n. The first two terms are the kinetic energy of the electrons and
the nuclei, respectively. The remaining three terms represent the Coulomb potential
of the particles. The first of these is due to the attraction between the electrons and
the nuclei, the next is due to the repulsion between the electrons, and the last is due
to the repulsion between the nuclei. The Hamiltonian is given in atomic units.

Because the nuclei are much heavier than the electrons, they move more slowly.
This means that the system can be viewed as a collection of electrons moving around
in the vicinity of a number of static nuclei. Consequently, we neglect the second term
of equation (2.2) and consider the last term a constant. This is the so-called Born-
Oppenheimer approximation, first proposed by Born and Oppenheimer [6]. Adding a
constant to an operator does not change its eigenstates, but only its eigenvalues (by
the added constant). We therefore also leave out the final term and are left with

Z ZZ 1 Z" 1
,J=
i#j

zlnl

This is the Hamiltonian of the electronic system, and it is the one which we will address
in this thesis. Its eigenvalues are the energies of the electrons. If we are seeking the
total energies of the molecular system, we simply add the potential energy of the nuclei
to the eigenvalues of the Hamiltonian.

For future reference, we split the Hamiltonian into a one-body part H; and a two-
body part Hs:

H = H; + Hy (24)
where
N N 1 K 7
mo= 3re) =X [-3Vi- X g 25)
‘ ‘ 2 IR, — i
=1 i=1 n=1
N N
1 1 1
Hy, = = iTi) = = _— 2.
2 = g2 dlem) =5 ) 20
7’7]:1 ,L’]:]'
i#j i#]

As we will see, it is the two-body part which makes the Schrédinger equation difficult
to solve.

Note that |®) is the exact state of the system. However, most of this thesis deals
with approximate states. Throughout the text, |®) will be reserved for the exact state,
while |¥) will be used for approximate states such as Hartree products and Slater
determinants, which will be discussed later in this chapter.
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2.2 Spatial orbitals and spin orbitals

A spatial orbital ¢;(r) is a wave function which describes the spatial probability dis-
tribution of an electron, meaning that |¢;(r)|?dr is the probability to find the electron
in a small volume element dr centered at r. We will assume that the spatial orbitals
are orthonormal:

WMﬁZ/M@M%MZ%- (2.7)

A spatial orbital does not by itself completely determine the state of an electron; there
is also a spin degree of freedom. We can specify spin by multiplying the spatial orbital
with a spin function:

Yi(x) = ¢i(r)&(s), (2.8)
where x = (r, s). The spin function ;(s) can either be «(s), meaning spin up, or f(s),
meaning spin down. They are defined by

a)={ g 3 221 29)
and
.
B(S)—{? if Z_I : (2.10)

The inner product of two spin functions is defined as
(€ilgs) = Y &ils)&(s), (2.11)
s=T

which automatically ensures that they are orthonormal:

(ala) = > a(s)als) = a(Ma(t) +a(l)a(l) =1-140-0=1,

s=1l
(BIB) = B()B(s) = BMBM) +BL)BL) =0-0+1-1=1, (2.12)
s=1l
(@lB) =" a(s)B(s) = a(M)B(M) + a(1)B() =1-04+0-1=0.
s=1l
We define the inner product of two spin orbitals as
(Wilbs) = (Pilo;)(&l&s), (2.13)
and we will also use the notation
(iliy) = [ dxuo (x). (214)

Note that since the spatial orbitals and the spin functions are orthonormal, this defi-
nition implies that the spin orbitals are so too.

A point worth mentioning here is that the inner product of two spin orbitals 1);
and 1); is equal to zero if they have unequal spins no matter what their spatial orbitals
are. In fact, even the integral (i;|a(r)[1);) = 0 for any operator a(r) which is only a
function of r.
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2.3 The Hartree function

If the Hamiltonian did not contain the term Hs, the Schréodinger equation would be
separable and easy to solve. One possible solution is the so-called Hartree function,
W, which is defined as:

U(Xg,...,xN) =UP1(x1) - N (xN), (2.15)
where 1;(x) is the spin orbital which solves the single-particle Schrédinger equation
h(r)i(x) = eii(x), (2.16)
and h(r) is defined in equation (2.5). This is easy to verify by direct computation:
N
H\ W = h(rg)gn(x1)tha(xa) - - on (x)
i=1
N (2.17)
=( D) vabx)valxz) - v (x)
i=1
=&V,

which means that the total energy of the system is &y = Zf\il €;-

Unfortunately, the term Ho must be taken into account, and this makes the Schrodinger
equation considerably more difficult to solve. In fact, except for a few simple systems,
no analytical solution is known, and approximative methods are needed. The Hartree-
Fock method, which we discuss in the next chapter, is perhaps the most important of
such methods.

2.4 The Slater determinant

For the simple case where H = Hj, the Hartree function, ¥y, in equation (2.15)
solves the Schrodinger equation. However, it is still not a physically valid solution.
Why? Because the solution does not reflect the fact that we are dealing with identical
particles. To see what is wrong with the solution, let us consider a system of IV identical
particles in the state ®. Suppose we want to calculate the expectation value (B) of
some observable B. Since the particles are identical, (B) should not change if we were
to switch the coordinates of two particles i and j, say. If F;; is the operator which
changes the coordinates of particles ¢ and j, that is to say, if

Pii®(x1,..., X4y Xy, XN) = D(X1, .., X, ., Xy, XN, (2.18)
then we must have
(@[B|®) = (P;;®|B|P;®) = (2| P, BP;|®). (2.19)
Inserting this on the right hand side of the identity

.1 - - i ;
(B|B|®) = (2 + P|B|® + D) — (& — B B|® — @) (2.20)

—i(® +i®|B|® +i®) + i(® — i®|B|D — iD)),
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where ® and ® are two arbitrary states, yields
(| B|®) = (®|P|.BP;;|®), (2.21)

which implies that
P.BP,; =B. (2.22)

Multiplying this equation from the right by P;; gives
P.B = BPy, (2.23)

since Pg = 1. For the special case where B = I this means that PZ]; = P;;. From this
we can draw the following conclusions:

1. The permutation operator is Hermitian, i.e., P;g = P;.

2. The permutation operator is unitary, i.e., P = Pgl

3. The permutation operator commutes with any observable B,
i.e., [P;j, B] = 0. This means that B and P;; share a common set of eigenstates.

It is now possible to determine what the eigenvalue of F;; must be. Suppose that it is
some number p;;. Then the eigenvalue of Pf] is p?j. But we know that pgj = 1 (since
P% = I). This, together with the fact that P;; is Hermitian', implies that pij = E£1.
Thus @ is either symmetric or antisymmetric with respect to the interchange of particles
7 and j.

We next show that the eigenvalues of all P;; are the same. This can be done by
considering the following way of expressing F;;

Pij = Poj P1i P1o P Py;. (2.24)
The eigenvalue of P;; is then
Pyj|®) = a3;a7;a12|®) = aa|®). (2.25)

Thus all eigenvalues are the same, and the state is either symmetric or antisymmetric
with respect to the exchange of any two particle coordinates. Particles with a symmetric
state are called bosons, and particles with an antisymmetric state are called fermions.
This thesis deals with fermions only. The fact that the wave function of fermions is
antisymmetric with respect to the exchange of any two particle coordinates, is called the
Pauli principle. The so-called spin-statistics theorem, proved by Pauli [7], states that
bosons have spin s € {0, 1, 2,...} and that fermions have spin s € {1/2, 3/2,5/2...}.

It is now clear why (2.15) cannot be a physically correct solution; it is neither
symmetric nor antisymmetric. However, we can make it antisymmetric by applying
the antisymmetrisation operator A. It is defined by

A= % ;(—1)1’13, (2.26)

'Recall that the eigenvalues of a Hermitian operator are real.
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where P is a permutation operator, p is the parity of the permutation, and the sum is
over all permutations. The permutation operator P can always be written as

P=P;Py-- Py (2.27)

A solution of the Schrédinger equation, still assuming H = Hy, which also satisfies
the antisymmetry requirement can now be written as

Uo(x1,...,xn) = VNIAV g (x1,...,XN). (2.28)
Another common way of writing this is through the determinant

. Pi(x1) ... Yn(x1)
\Ifo(Xl,...,XN) = — . (229)
YV en) o o)

The wave function in (2.28) and (2.29) is called a Slater determinant. From the last
equation it is seen that if two spin orbitals are equal, the total wave function vanishes.
This means that two identical fermions cannot occupy the same single-particle state.
The total wave function also vanishes if the coordinates of two particles are the same.
Hence, two fermions with equal spins cannot be located at the same point in space.
Let us illustrate these last remarks by considering a system of two particles. Assume
that the electrons occupy the spin orbitals {1;(x) = ¢;(r)&(s)}7;, where {¢i(r)}2_,
are the spatial parts and {£(s) %:1 are the spin parts, and let us construct the Slater
determinant from these spin orbitals. Consider now the probability density p(x1,x2)
to observe one of the particles with coordinate x; and the other with coordinate xs:

p(x1,x2) = (Vo|¥o)
= S Gea)a() — ) ()
= % |1 () [P [802(x2) [ + [2(x1) |1 (x2) 2
— Y1 (x1)3 (x2) 2 (x1)h1 (x2) — ¥5(x1) 91 (x2)h1 (X1)¢2(X2)} :

(2.30)

In order to find the probability density p(ri,r2) to observe the particles at spatial
positions r1 and ro, we need to integrate with respect to the spin coordinates s; and
s2. However, the result of this integration depends upon the specific spin configuration
of the particles.

Let us first assume that the particles have the same spatial orbital, but opposite
spins, i.e., that ¢1 = ¢o = ¢ and & # &. If we now integrate over the spin coordinates
of the above equation, the last two negative terms vanish, and we are left with

p(r1,r2) = |o(r1)[*|e(r2) . (2.31)

This expression shows explicitly that the positions of the two electrons are uncorrelated,
that is to say, the probability distribution of one electron has no effect on the probability
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distribution of the other. In fact, the expression above is the statistical definition of
uncorrelated probability distributions.

Next, consider the case where the electrons have different spatial orbitals, but equal
spins, i.e., that ¢1 # ¢9 and & = &». Integrating over the spin coordinates then gives

p(ri,ra) = % |61(x1) 2 pa(r2)|* + |p2(r1) [ d1(r2)?
— ¢1(r1)93(r2)d2(r1)@1(r2) — ¢5(r1)di(re)di(r1)ga(r2)|.

(2.32)

The positions of the two electrons are now obviously correlated. Furthermore, it is seen
that the probability to find the two electrons at the same position is equal to zero. This
means that there is some kind of “force” pushing the electrons away from each other.
This “force” is often referred to as the exchange force. It is not a force in the classical
sense and has nothing to do with the Coulomb repulsion between the electrons, but it
is a statistical effect which arises due to the antisymmetry of the wave function.

This discussion illustrates a point which will become important later when we
discuss Hartree-Fock theory: The exchange force, which pushes electrons apart, is only
acting between electrons with equal spins.

We end this section by showing the following two important properties of the anti-
symmetrisation operator

A2 =A (2.33)
At = 4 (2.34)

The first can be shown as follows

N,zZ VPP (1P

? (2.35)

1 ' +pan

= W(Z(_l)p thpip g Z(_l)p erNp/pN!)7
p/ /

where P; is permutation operator number I. There are a total of N! different per-

mutation operators, since the coordinates can be placed in N! different orders. Since

Zp, (—1)7’/P/ produces all possible permutations, the multiplication of an extra permu-

tation (—1)PZ Pr does not alter the result. Hence, it follows that

4= G (S )

N! times

2.36)
1 (
= qi2(-
P
= A.
We next show the second property. Consider an arbitrary permutation operator

P=Pi;Py...P,. (2.37)
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Taking the adjoint of this gives

_ t pf
Pt =pi ... PP}
= Py...PyP; (2.38)
=pr

Thus P and P! carry out the same operations, but in inverse order. Moreover, the
parity of the two operators are the same. This means that

Al = % » (~1rpPt = % > (=nrp (2.39)
| & | &

and since the permutations in P~! are arbitrary, we may replace it with P. Ergo we
conclude that AT = A.

2.5 The reference energy

Even though the Slater determinant in (2.28) and (2.29) does not solve the Schrodinger
equation with the full Hamiltonian (2.4), it can nevertheless be used as an ansatz to
estimate the energy. We call this energy the reference energy:

Eo = (Vo|H|Vo). (2.40)

Inserting the Slater determinant (2.28) yields
Eo = N! /dX1 . dXN(.A\I/H(Xl s XN))*HA\I/H(Xl c -XN). (2.41)

By using the fact that A is Hermitian and commutes with H as well as the fact that
A? = A, this can be simplified to

E() = N! /dX1 N dXN\I/*H(Xl c -XN)HA\I/H(Xl s -XN). (242)
The contributions from H; and Hs are
N
(Wo|H1[Wo) = Z/dXUJ;‘(X) h(x)i(x) = (ilhli) (2.43)
i=1 '
and

1 N
(Wolale) = 5 Y [ dxaxui (0 05 <) glr.x) x

[1hi(x) 5 (x) = 1 (%) i (x')] (2.44)
N
(WolHolBo) = 5 S [Gslalid) — {idlglsi)], (2.45)
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where we have defined

(lhlg) = / 3 5 (%) i(x) g (%), (2.46)
(alglrs) = [ e [05.60) ;) g3 () 6, (2.47)

Equation (2.43) results from the fact that all permutations of the spin orbitals vanish.
When calculating the contribution from Hs, however, the interchange of two coor-
dinates x; and x; will give a non-zero result for the cases where r; and r; are the
arguments of g. Note that in equation (2.45) the restriction i # j has been removed
since the two terms automatically cancel in this case. The total reference energy is

thus
N

N
By = Y (ilhli) + 5 S [idlglis) — (ilolji). (2.45)

i=1 ij=1

Although we until now have discussed the case where the orbitals are eigenfunctions
of Hy (see equation (2.5)), this is not necessary; in fact, through the remainder of
the thesis we assume them to be eigenfunctions of the Hartree-Fock equations to be
discussed in chapter 3.

2.6 Second quantisation

We will now briefly discuss the so-called second quantisation. Second quantisation is
an alternative way to express quantum mechanical operators and Slater determinants.
An attractive feature of the formalism is that it makes no reference to the number of
particles of the system. Most important for us, however, is the fact that it provides a
compact notation and an efficient way of manipulating operators. It will prove to be
especially useful when we later discuss perturbation theory.

To begin, we assume that there exists a basis of orthonormal single-particle spin
orbitals {1;}7°,. As discussed above, these functions can be chosen freely, but we will
assume that they are eigefunctions of the Hartree-Fock equations. We can combine the
functions in various ways to form Slater determinants, which we will write as

(o) = lijk - 2), (2.49)

where the indices inside the ket indicate the spin orbitals that are occupied by particles.
Because (2.49) represents a Slater determinant, which is necessarily antisymmetric,
changing the order of two indices introduces a minus sign. It is customary to let the
indices be ordered lexicographically so that

i<j<k<---<z (2.50)

The physical vacuum state, in which no single-particle states are occupied, is written
10).
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Next, we define the creation and annihilation operators a;, and a,, respectively.

They are defined through the relations

ablijk---z) = (=1)"|ijk---p---2),

. .. (2.51)
ap\ij .. p .. Z> — (—1)77P|7/]k e Z>7
where 7, are the number of spin orbitals preceeding 1/, and
a;r)|\110) =0, if 1, is occupied in [Wy), (252)

ap|¥o) =0, if 4, is not occupied in |¥p).

The fact that these operators are each others adjoints is not self evident, but can be
realised by considering the quantity ( 6|a}:|\110>. Obviously, this will have the value 0
or 1. By letting the creation operator act on the ket we see that the answer can be
nonzero only if the orbital ¢, is unoccupied in |¥() and occupied in (¥(|. Also, all
other occupancies must be identical. If we let the operator act on the bra instead we
should get the same answer. This is only possible if a, removes the occupancy of 1.
Hence, the annihilation operator is the adjoint of the creation operator and vice versa.

Note that any Slater determinant |ijk - - - z) can be written as a sequence of creation
operators acting on the vacuum state:

lijk...z) = alala] - al|0) (2.53)

Fundamental to the second quantisation formalism are the anti-commuation rela-
tions of the creation and annihilation operators. By considering how they operate on
general Slater determinants, it is not difficult to derive the following relations

[a’;r;a CLJ;]+ =0
[ap, agly =0 (2.54)

where [A, B]y = AB + BA.

2.6.1 The Hamiltonian in second quantisation

The creation and annihilation operators are used to construct other operators. The
one- and two-particle operators (2.5) and (2.6) are in second quantisation written as

Hy = (plhlg)ala, (2.55)
Pq
1
Hy = 5 Z(pq|g|rs>a;f,agasar. (2.56)
pars

The sums in equations (2.55) and (2.56) are over all single-particle states. Because

alai = —aial, H> can alternatively be written as

1
Hy = Z Z(pq\|rs>a;a2asar, (2'57)

pgrs



15 Many-body theory Chapter 2

where
(pql|rs) = (palg|rs) — (pqlg|sr), (2.58)

is the antisymmetrised integral, and (pq|g|rs) is defined in equation (2.47).

2.6.2 Particle-hole formulation

Instead of referring all Slater determinants to the physical vacuum, it is more useful to
operate with a reference Slater determinant

W) = |ijk. .. z), (2.59)

which is called the Fermi vacuum. For a system of N particles, it is typically build up of
the N lowest eigenfunctions of the Hartree-Fock equations. The spin orbitals included
in the Fermi vacuum are called hole states or occupied states, and all others are called
particle states or virtual states. When using creation and annihilation operators, a;,
and ap, it is common to let indices (4, j, k, . . . ) indicate hole states, (a,b,c, ...) indicate
particle states and (p,q,r,...) indicate both hole and particle states. Thus, other
Slater determinants relative to the Fermi vacuum can be created as

109 = ala;| Vo) = alas|ijk...n) = |ajk...n) (2.60)
(0 = alafa;a;| Vo) = alajajailijk...n) = |abk...n). (2.61)

a,a

These states are often referred to as excited states. The first is a singly excited state
and the second is a doubly excited state. Note that there are many different ways to
make a singly excited state; any of the hole states can be excited to any of the particle
states. Typically the single-particle basis has infinite dimensionality which means that
there are infinitely many different singly excited states. The idea is illustrated in figure
2.1.

Recall that any annihilation operator acting to the right on the physical vacuum
gives zero. However, this is not the case when operating on the Fermi vacuum. It is
desired to retain this property also for the Fermi vacuum. In order to achieve this, we
introduce the so-called pseudo creation and pseudo annihilation operators b;, and by,
respectively. They are defined as

bl =a;,  bi=al, (2.62)
bl =al, by = aa. (2.63)

From this it is clear that any pseudo annihilation operator acting on the Fermi vacuum
gives zero.

Unless stated otherwise, we will always refer to the Fermi vacuum throughout this
thesis.

2.6.3 Normal order, contractions and Wick’s theorem

The normal ordering of a product of operators, written {AB ... Z}, is the rearrange-
ment of all operators such that all pseudo creation operators are to the left of all pseudo
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Figure 2.1: Illustration of how different Slater determinants can be created by exciting one
or more of the electrons in the reference Slater.

annihilation operators times the factor (—1)?, where o is equal to the number of in-

terchanges made in order to obtain the rearrangement. As an example, consider the
normal ordering of the product aaaiaza;:

{aaaiaZa}} = {babgb;’bj} = (-1)? bjblbabj = aiaZaaa} (2.64)
The normal ordering is not unique since the following is also correct:
{aaaia;ﬂa;} = faia;ga;aa. (2.65)

Note also that the vacuum expectation of a normal product of operators is equal to
Zero.
The contraction of two operators A and B is defined as

AB — AB — {AB}. (2.66)

It will always be equal to zero or one. This is easily seen by considering all four possible
contractions:

[
bpby = bpby — byby =0,

Tt _ ptst _ ot
%%Z%%_%%:Q 2.67)
bibg = blbg — blbg =0,

o — b bl i i

bpbl = bypbl — (=blby) = [bp, b+ = pg-

Contractions can occur between operators within a normal product:

{ABC--R---§---T} = (—1)"RS{ABC - - - T}, (2.68)
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where ¢ is the number of interchanges needed to bring the operators R and S next to
each other.

We next state Wick’s theorem [8]: A product of a string of pseudo creation and
pseudo annihilation operators is equal to their normal product plus the sum of all
possible normal products with contractions:

AB---Z:{AB..-Z}+Z{E-Z}+Z{XE-Z}+... (2.69)

The theorem is extremely useful when calculating the vacuum expectation of opera-
tors. As explained above, all expectation values of normal products are equal to zero.
Therefore, only the fully contracted terms contribute. Moreover, the vacuum expecta-
tion of a product of an odd number of creation and annihilation operators will always
be equal to zero because there can be no fully contracted terms.

A corollary of Wick’s theorem, often referred to as Wick’s generalised theorem, will
also prove to be useful. It says that a general product of pseudo creation and pseudo
annihilation operators in which some strings of operators are already normal ordered,
is equal to the overall normal product plus the sum of all possible normal products
with contractions between operators which are not within the same original normal
product:

{A1Ay - HBiBy - HC1Co- -} -

! — |
:{A1A2---B1Bz~-0102---}+Z{A1A2-~-B1B2---C102~--}, (2.70)

where the sum has been labeled with a prime to indicate that contractions between
operators which belong to the same original normal product shall be omitted.

2.6.4 Normal ordered operators

As pointed out in the previous section, normal ordered operators are very useful when
calculating vacuum expectation values. We will therefore show what the normal ordered
one- and two-particle operators in (2.55) and (2.57) look like.

Let us first consider the one-particle operator. Using Wick’s theorem we find that

1
a;aq = {a;aq} + {a;aq}

(2.71)
= {a;aq} + Opger-

The subindex pg € I signifies that p and ¢ must be hole states. From this we arrive at
the operator:

Hi =Y (plhla){afag} + Z<i!h!’i>- (2.72)

Pq

Wick’s theorem applied on the two-particle operator gives:

[ 1
a;,al;asar = {a;r)a:flagar} + {aLal;asar} + {a;r,a;asar}

] [ T
+ {a;agasar} + {a;aj]asar} + {a;;a;asar}
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b {0

a;aZaSaT = {a;,ajlasaT} — {ajgar}épse] + {aZas}dpref
+ {@Lar}%se[ - {a;as}fsqrel + dprerdgser (2.73)
— Opser0grel-

Inserting this into equation (2.57) gives:

1
Hy; = i Z(pq\|7’s>{a;,a2asar}

pqrs

+ 5 30 [ = Gl + Glia) + illa) - Gillin] afat  2.7a)

Pqi

- Z [Gillig) — Gl

By using the fact that (pq||rs) = (gp||sr) and (pq||rs) = —(pq||sr) this can be written
as

1
Hy =7 > (pallrs){afalasar} + ) (pillai){afaq} + 5 Z ijlliz) (2.75)

pgrs pqi

Thus the total Hamiltonian can be expressed as

n 1
H=> [(plhlg) + > _(pillgi){aas} + i > (pallrs){ajalasar} + Eo. (2.76)
7 pqrs
H=F+W + Ey, (2.77)
where

F= Z[<prh\q> + 3 (pillai) {abas). (2.78)

W = iZ(qursHa a asar}, (2.79)

pqgars

are the normal ordered one- and two-body operators, respectively, and Ejy is the refer-
ence energy defined in equation (2.48). We will write the one-body operator F' as

F =) (p|Flg){alal}, (2.80)
where (p|F|q) are the elements of the Fock operator F.

2.6.5 Evaluation of matrix elements

Wick’s generalised theorem is an effective tool for evaluating expectation values of
operators. As a simple demonstration, let us evaluate the matrix element

(W F|TE). (2.81)
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This can be done by noting that the Slater determinants can be written as
0§ = {ala;}| Vo). (2.82)
Using this we get
(WEIFIW) = D (Yol (plFla){a]aa}{afaq} {alai} [ Vo)

rq

= (Wol(p !J’\CD{CL la,H{aja,}{af az}!%>

rq

+ > (Wol(plFla){alasHa)aq}H{ala:} W)

=> [<p|f|q>5pa5qa - <p|f|q>5pi5qi}

= (a|Fla) — (i|F|i). (2.83)

A more complicated example, which will become important for us later when we discuss
perturbation theory, is the vacuum expectation of W?2:

(To|[W2| W) = ZZ (pq||rs) tu|\vw><\I/0|{a asar}{azalawav}mfoy (2.84)

pqrs tuvw

The only surviving contractions are those where the pair a;g,ag are contracted with

Qw, Gy, in either order, and the pair ag,a, are contracted with aI ,aL, in either or-
der. Furthermore, p, ¢, w,v must be particle states and s,r,t,u must be hole states.
Explicitly we get

\l—l\ \Il—ll

{aTaba]az}{akal aqac} = {al abajaz}{akal agac} + {al abajaz}{akal aqact
=l B =y
+ {aLaZajai}{aLalTadac} + {aLaZajai}{aLazradac}
= OacObdlirdji — 0addpc0irkdji
— 0ac0bd0i10k + 0addbe0itdk -

Thus the resulting matrix element is

(WolWW216) = = 3™ [{ablli i llab) — (ablli) il lba

abij
~ {ablli)jillab) + ablli) il lba)| (2.85)
= 3 > lablig)l?
abij

More complicated matrix elements can be evaluated in the same way, but the con-
tractions quickly become rather complicated and tedious to carry out. Diagrammatic
notation, which we introduce in the next subsection, makes this process easier.
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(U§l= 4| 1ta (Wb = 4} j af v}

. I
|‘I’§L>— A a |‘I’§Lj>— Y JY akr DA

Figure 2.2: Diagrammatic representation of Slater determinants. Kets and bras have horison-
tal bottom and top lines, respectively.

2.7 Diagrammatic notation

In diagrammatic notation, Slater determinants are represented by vertical arrows, up-
ward pointing meaning particle states and downward pointing meaning hole states, as
shown in figure 2.2. The vacuum state is defined as the absence of vertical lines.

The diagrams for the one-particle operator F' defined in equation (2.78) and (2.80),
called Goldstone diagrams, are pictured in figure 2.3. The four diagrams correspond
to the sums

F =" (alF){afas} + 3 (il Flj){ala;}
ab ij (2.86)

+ Z<a|]—"]i){alai} + Z@]f\a){azaa}.

An incoming line represents a ket state and the associated annihilation operator, while
an outgoing line represents a bra state and the associated creation operator.

The contractions we performed when calculating (¥¢|F|¥¢) in the previous subsec-
tion are done diagrammatically as follows. First, each of the diagrams of F' are placed
between the Slater determinants (¥¢| and [¥¢). Thereafter, the lines are connected
in all possible ways, and the resulting diagrams are drawn. However, the lines must
be connected properly, that is to say, the arrows must point in the same direction.
Moreover, there can be no loose lines; both ends of a line must connect either to an
operator or to the bra or ket. The resulting diagrams are shown in figure 2.4. Once
these have been drawn, the matrix element is determined by reading the lines going
into and out of the operator according to the following rule

(outgoing line|F|incoming line) (2.87)

for each diagram, and the terms are summed. By comparing the diagrams of figure 2.4
with equation (2.83), we see that there should be a minus sign in front of the diagram
to the right. The sign is determined according to the following rule. A diagram with [
loops and h hole lines has the sign (—1)"~!.

The diagrams for the two-particle operator W of equation (2.79) are shown in figure
2.5. The diagrams are called antisymmetrised Goldstone diagrams. The procedure for
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Figure 2.4: Diagrammatic representation of the matrix element (V¢ |F|¥%) = (a|F|a)—(i|F|i).

g
A>\/>A\/
/\____\/ AA

Figure 2.5: Diagrammatic representation of the two-particle operator W of equation (2.79).
Diagrams which can be constructed by reflection through a vertical centerline are not shown
(although they are contributing).
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ap Yi job »Q
Figure 2.6: Antisymmetrised Goldstone diagrams representing the matrix element
(Wo W2 o).

=)

calculating matrix elements involving the two-particle operator W is the same as for
the one-particle operator F. As a useful demonstration we will calculate (Wq|W?2|¥)
diagrammatically. Whenever we have more than one operator, the diagrams of the
operators are placed on top of each other in the same order as they appear in the
formula (the one next to the ket at the bottom and the one next to the bra at the top).
Since we are calculating the expectation value of a vacuum state, the only surviving
terms will be the diagrams where the upper operator is given by the tenth diagram
and the lower operator is given by the eighth diagram of figure 2.5. There are a total
of four different ways to connect these diagrams, as shown in figure 2.6. The resulting
matrix element is given according to the following rule:

((left out)(right out)||(left in)(right in)). (2.88)

As before, the sign is given by (—1)"~!, where h is the number of hole lines and [ is the

number of loops. The first and last diagrams have h = 2 and | = 2, and the second
and third diagrams have h = 2 and [ = 1. Hence, we get

(Wl 2[o) = 1 S [(igllab) ablis) — {isllab)ab i)
ijab (2.89)

— (1j]lba)(abl|i) + (ijl[ba){abl|ji) |-

The factor of 1/16 comes from the fact that each W operator carries a factor of 1/4.
Due to the antisymmetry property of the integrals, all of the four terms are in fact
equal, and we end up with

(W2 |0) = 3 (gl ab)ad ). (290)

ijab

The evaluation of (¥o|W™| W) for integer values of n typically occurs in perturba-
tion theory, and it is therefore important to be able to evaluate such matrix elements.
However, because the number of different diagrams increases rapidly with n, it quickly
becomes difficult to list all possible diagrams. Fortunately, it is not actually necessary
to list them all; for the case of (Uo|W?| W) we would get the correct answer if we only
drew one of the four diagrams in figure 2.6 and multiplied the corresponding matrix
element with a factor of 4. Of course, we need some way to determine the weight factor.
To do this we introduce the so-called Hugenholtz diagrams. The Hugenholtz diagram
for the one-particle operator is identical to the Goldstone diagram. The two-particle di-
agram is similar, except that the horisontal dashed line corresponding to each operator
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Figure 2.7: Hugenholtz diagram of the matrix element (¥o|W?2|¥y).

is shrinked to a point. The Hugenholtz diagram for the matrix element (¥o|W?|¥y)
is shown in figure 2.7. Each vertex in a diagram must have two outgoing and two
incoming lines. The order of the lines makes no difference. Thus there can be only
one Hugenholtz diagram for (¥o|W?2|¥g). The value of the matrix element, including
the sign, is obtained by expanding the Hugenholtz diagram into one of the Goldstone
diagrams of figure 2.6. The numerical factor in front is determined by counting the
number of equivalent line pairs of the Hugenholtz diagram. Two lines are equivalent if
they connect the same two vertices in the same direction. For n equivalent line pairs,
the numerical factor is (1/2)™. In the case of figure 2.7 there are two equivalent line
pairs, which yields a numerical factor of 1/4 in agreement with equation (2.90).

The general rules for drawing and intepreting Hugenholtz diagrams are as follows
(quoted almost directly from Shavitt and Bartlett [5]):

1. Generate all distinct Hugenholtz diagrams.

2. Expand each Hugenholtz diagram into an antisymmetrised Goldstone diagram in
any of the possible equivalent ways.

3. Interpret each two-body vertex in each antisymmetrised Goldstone diagram in
terms of an antisymmetrised integral, with the usual

((left out)(right out)||(left in)(right in))
arrangement.
4. Intepret each one-body vertex with the usual
(line out|F|line in)
arrangement.

5. Assign a phase factor (—1)"~!, where h is the number of hole lines and [ is the
number of loops.

6. Assign a weight factor (1/2)", where n is the number of equivalent line pairs; two
lines are equivalent if they connect the same two verices in the same direction.

We end this section by calculating the matrix element (¥o|W3|¥g) since this will
give us the third order term of perturbation theory, which we discuss in chapter 6. The
three contributing diagrams are shown in figure 2.8. The first and second diagrams have
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Figure 2.8: Hugenholtz and corresponding antisymmetrised Goldstone diagrams for the ma-
trix element (Wo|W3|¥y).

three equivalent line pairs and thus a weight factor of 1/8, whereas the last diagram
has no such pairs and therefore a weight factor of 1. The first diagram has h = 2 and
I = 2, the second diagram has h = 4 and [ = 2, and the third diagram has h = 3 and
I = 2. Hence, the last diagram is accompanied with a minus sign.

2.8 A basis for the fermionic wave function

We end this chapter by stating an important theorem:

If the basis {1;}5°, is complete in the Hilbert space of single-particle wave functions,
then the set of all Slater determinants constructed from this basis is also complete in
the Hilbert space of antisymmetric many-particle functions.

In particular, this means that with the particle-hole formulation introduced above,
any state |®) can be written as

) = Co|To) +>_Colws) + Y oy + ... (2.91)
ia i<j,a<b
Note the restriction ¢ < j7 and a < b on the sum over the two-particle two-hole states.
This is necessary because |\IJ§’“;’) = —]\Il;% = —|\IJ§’;1> = \\IJ%)



Chapter 3

Hartree-Fock

The Hartree-Fock method, initially developed by Hartree [9] and improved by Fock
[10], is probably the most popular ab initio method of quantum chemistry. There are
mainly two reasons for this. Firstly, it provides an excellent first approximation to the
wave function and energy of the system, often accounting for about 90%-99% of the
total energy. Secondly, in cases where an even higher degree of precision is needed, the
result from a Hartree-Fock calculation is a very good starting point for other so-called
post-Hartree-Fock methods. We will look into one such method, namely perturbation
theory, in chapter 6.
The general form of the equations is

Fipr, = et (3.1)

where F is the Fock operator, defined as
K
F(x)¢r(x) —[— §V - ; m}ﬂik(x)

N
+ 30 [ a6 Pt ) (32
Py lr —r/|

N
-3 [ ) )
=1

v —r'|

These are a set of coupled one-electron eigenvalue equations for the spin orbitals ).
The equations are non-linear because the orbitals we are seeking are actually needed
in order to obtain the operator F which determine them. They are therefore often
referred to as self consistent field (SCF) equations, and they must be solved iteratively.

The term in the square brackets is the one-body operator which we have called
h(r) in equation (2.5). The two extra sums are due to the interactions between the
electrons. The first of these represent the Coulomb potential from the mean field set
up by the electrons of the system. The last is similar to the first except that the indices
of two orbitals have been switched. This is a direct consequence of the fact that in
the derivation of the equations, the state is assumed to be a Slater determinant. Note

25
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that due to the last sum, the Fock operator is non-local, that is to say, the value of
F(x)9r(x) depends on the value of ¢ (x’) at all coordinates x’ € R3 @ {1, |}.

In the following section the general Hartree-Fock equations presented above are
derived. Thereafter, we will see how to reformulate the equations to a more imple-
mentation friendly form. We do this by removing the spin part so that the resulting
equations are in terms of spatial orbitals only. However, before doing this, it is neces-
sary to decide how to relate the spin orbitals to the spatial orbitals. We discuss the two
most common ways to do this. These result in the so-called restricted and unrestricted
Slater determinants, which are discussed in section 3.2. In section 3.4 we show how the
restricted determinant leads to the restricted Hartree-Fock (RHF) equations, which is
a set of integro-differential equations for the spatial orbitals. In order to solve the equa-
tions, the spatial orbitals are expanded in a known basis, which leads to a set of self
consistent algebraic equations called the Roothaan equations. Thereafter, in section
3.5, we derive the unrestricted Hartree-Fock (UHF) equations from the unrestricted
determinant. These are also solved by introducing a set of known basis functions, lead-
ing to the so-called Pople-Nesbet equations, which is the unrestricted analogue of the
Roothaan equations.

The theory of this chapter is covered by Szabo and Ostlund [3] and Thijssen [11].

3.1 Derivation of the Hartree-Fock equations

As discussed in section 2.8, the exact ground state can be written as a linear combina-
tion of Slater determinants

|Bo) = ColWo) + Y _CHTE) + > CoNw) + ... (3.3)

ia 1<j,a<b

where |¥g) is some chosen reference determinant. In the Hartree-Fock method all
determinants except |¥g) are neglected, and the spin orbitals from which |¥() is con-
structed are chosen in such a way that the expectation value Ey = (¥o|H|¥() comes
as close to the excact energy & as possible. According to the variational principle, the
expectation value Ey is an upper bound to the exact energy &y, which means that the
optimal choice of spin orbitals are those which minimise Fy. When Fj is at its min-
imum, any infinitesimal variation of the spin orbitals will leave Fy unchanged, which
in mathematical terms means that

N

§Eo = [(0uklFlr) + (k| F|0¢bx)] = 0. (3.4)

k=1

If each variation could be chosen independently, this would immediately give us NV
equations to be solved for the NV spin orbitals. Unfortunately, the spin orbitals cannot
be varied independently, but must remain orthonormal throughout the variation. The
orthonormality condition reads

(rlthr) — 0 = 0. (3.5)
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This type of constrained optimisation problem can be solved elegantly by the method
of Lagrangian multipliers. A good review of the method is given in Boas [12]. The
method simply says that if we construct the new functional

N
L =FEo— Y Auwl[{trlbr) — 6nl, (3.6)

k=1

we can find the stationary value of Ey by solving the unconstrained variational problem
for .. By unconstrained we mean that the variation of each spin orbital can be chosen
freely. The multipliers Aj; are called Lagrange multipliers and will also be determined
as part of the solution.

Recall from equation (2.48) that the reference energy is given by

1

N N
= (WolH[Wo) =Y (thplhleby) + 3 > [bstrlglnn) — (Wrthilglbbn)]. (3.7)
h=1

k=1
Taking the variation of this yields

N

SEo =Y (0ux|hlv)

k=1

—_

N
t3 > [0kl glebrabn) + (Wrdrlglibra)

k=1

— (8rthrlglbidr) — (Vkdilglie)] + c.c.

Mz

(00 |h|tw) (3.8)

b
Il

1

N
> (0wl glbwbn) + (Stbrtdelglibrdn)

k=1

- <51/)k1/)z\9\1/1l¢k> — (k| glvrn)] + c.c.

N =

+

N

= (5¢nlhlvr) + Z (Svtilglvnn) — (Ovrnlglnn)] + c.c.
k=1

— k=1

where c.c. represents complex conjugate terms. In the expression after the second
equality sign, we have used that (Vrdv|g|vry) = (dik|g|lidr), and the last line
follows from the fact that the indices k& and I can be switched since they are dummy
indices. We next define the two operators

N
T = 3 [ [ v gte i) o), (39

=1

N
Kol = 3 [ axtur gte. o) i), (3.10)

=1
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so that the variation of the energy can be written more compactly as

N

0Eo =Y (6unlh+ T — Klihy) + c.c. (3.11)

k=1

Next we consider the variation of the constraint:

N
> Ak (Skltbn) + Auk(ebrloein)]. (3.12)
ki=1

M=

We will show that the second term of this equation is in fact the complex conjugate of
the first. To realise this, consider the functional .Z of equation (3.6). First note that
it must be real because Ej is real and the added constraints are equal to zero. Taking
the complex conjugate of .Z therefore gives

N
& =Eo— Y Nyl{uln)* — 6]
k=1
N
=FEo — Z A [(ilon) — Oue] (3.13)
k=1

N
=Fy — Z A [(Yrln) — 61l

k=1

This form of . is identical to the original of (3.6) except that Aj; has been replaced
by Aj;. Since both will yield exactly the same Lagrange multipliers (assuming that the
solution is unique), this means that

Ay = Ay, (3.14)

that is to say, Ay, are the elements of a Hermitian matrix. Thus we can write the
variation of the constraint as

N N
Z [N (Sk ) + A (rl00n)]) = >~ Mg (0ebnltn) + Y Mgy (0tuleon)®
ki1 ki1 ki=1

N N
D Al + D Aj(Srle)t (3.15)

kil k,l=1

Il
—_

E

Alk <51/Jk |’¢l> + c.c.
k,l

I
—

Putting it all together, the variation of . is now

N

0.2 =3 (0wl [(h+T = K)l) - ZAlk|¢,]+cc

k=1
=0.

(3.16)
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By defining the Fock operator
F=h+J-K (3.17)

the above equation can be written even more compactly as

N

N
0.2 =% (0vr||Flvk) — ) Aigln)| + c.c.
; k[ k zz; Ik l] (3.18)

Since the variations of the spin orbitals can be chosen freely, each term in the square
brackets must be equal to zero, which implies that

N
Fp = Z A (3.19)

=1

This equation® is not on the same form as the one introduced at the beginning of the
chapter. This reason is as follows. Given a solution {¢} of the equation above, it is
possible to obtain a new set of spin orbitals {t}} via a unitary transformation

Y=Yt Ui, (3.20)
.

which keeps the expectation value Ey = (¥(|H|¥() as well as the form of the Fock
operator unchanged, see Szabo and Ostlund [3]. Thus there is some flexibility in the
choice of spin orbitals. One particular choice of spin orbitals are the eigenfunctions of
the Fock operator

F = ety (3.21)

which are guaranteed to exist since F is Hermitian. These particular spin orbitals are
solutions of equation (3.19) for the specific case where Ay, = edjx. Equation (3.21) is
called the canonical Hartree-Fock equation.

If we are studying a molecular system, that is, if the system has more than a single
nucleus, the eigenfunctions of the Hartree-Fock equations are called molecular orbitals
(MOs). The word molecular is used to emphasise that the orbitals are characterisitic
of the molecular system. It is important to distinguish between these and the familiar
atomic orbitals because they are usually very different. This means that for molecular
systems it is no longer helpful to think of the electrons as occupying atomic orbitals;
the atomic orbitals are solutions of the Hartree-Fock equations for isolated atoms, but
the molecule is an entirely different system with often entirely different solutions.

When the Slater determinant |¥g) is composed of the N lowest eigenfunctions of
the Hartree-Fock equations we will call it the Hartree-Fock determinant, and we will
refer to Ey as the Hartree-Fock energy. This will be the case for the remainder of the
thesis unless stated otherwise.

"We are actually talking about a set of N equations for all the spin orbitals {wk}{c\’:h but since we
observe that they are all equal, we may refer to the equation.
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The Hartree-Fock energy can be written in terms of the operators J and K as

N

By = S (nlh +5(7 — K)luw), (322)

k=1
which shows that the eigenvalues of the Hartree-Fock equations (3.21) do not add up
to the ground state energy; the term (J — K) in the Fock operator is a factor of two

too large. However, the energy can be calculated via the eigenvalues in the following
two equivalent ways:

N

> lew + (rlhlvn)]

k=1

Ey =

N | —

(3.23)

I
M=

lex — %WJHJ — Kltb)]-

B
Il

1

3.2 Restricted and unrestricted determinants

In (3.21) the Hartree-Fock equations are written on their most general form. The
unknowns are the eigenvalues € and the spin orbitals ¢;. However, before solving the
equations, it is useful to rewrite them in terms of spatial orbitals ¢ instead of spin
orbtitals 1/;. This is done by integrating out the spin part, as will be shown in the next
section. But first we must decide how to construct the spin orbitals from the spatial
orbitals. There are two ways to do this: One can either form so-called restricted spin
orbitals or unrestricted spin orbitals. The two approaches will lead to two different
Hartree-Fock methods, namely the restricted Hartree-Fock method (RHF) and the
unrestricted Hartree-Fock method (UHF), respectively.

3.2.1 Restricted determinants

Recall from equation (2.8) that a spin orbital ¢y, is a spatial orbital ¢ multiplied with
a spin function which is either spin up, «, or spin down, 8. This means that we can
create spin orbitals in the following way

¢i(r)a(s)
Yr(x) = or (3.24)
Pu(r)B(s).

Spin orbitals on this form are called restricted spin orbitals, and the Slater determinants
they form are called restricted determinants. In such determinants, a spatial orbital
is either occupied by a single electron or two electrons, see figure 3.1. A determinant
which has every spatial orbital doubly occupied, is called a closed shell determinant
(left figure), whereas a determinant that has one or more partially filled spatial orbitals,
is called an open shell determinant (right figure). If the system has an odd number
of electrons, the determinant will always be open shell. However, an even number of
electrons does not imply that the determinant is closed shell; if degeneracies apart from
that due to spin are present, it can still be open shell.
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Figure 3.1: Illustration of the restricted determinant comprised of spin orbitals on the form
(3.24). The left and right figures illustrate closed and open shell determinants, respectively.

Throughout this thesis we will limit the use of restricted determinants (and re-
stricted Hartree-Fock) to closed shell systems. This means that the spin orbitals are
given by

{thar—1(%), Yar(¥)} = {¢r(r)als), or(r)B(s)},  k=1,....,N/2, (3.25)

where N is the number of electrons.

3.2.2 Unrestricted determinants

In equation (3.24) the spin-up electrons are described by the same set of spatial orbitals
as the spin-down electrons. For closed shell systems this is often a good assumption.
However, consider the open shell determinant illustrated to the right of figure 3.1.
The electron occupying the spin orbital ¢3a will have an exchange interaction with
the other spin-up electrons, but not with the spin-down electrons. Hence, it could be
energetically favourable to let the spin-up levels shift with respect to the spin-down
levels, as shown in figure 3.2. This can be accomplished by letting the spin-up and
spin-down electrons be described by different sets of spatial orbitals. Spin orbitals
formed in this way, are called unrestricted spin orbitals, and the Slater determinants
they form are called unrestricted determinants.

o7 (r)a(s)
Yr(x) = or (3.26)
87 (r)B(s).

3.3 Slater determinants and the spin operators

In this section we define the total spin operator for a system of N particles and discuss
how it acts on the restricted and unrestricted determinants. The reader is referred to
the texts by Griffiths [13] and Shankar [14] for introductory treatments of spin.
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Figure 3.2: Illustration of the unrestricted determinant comprised of spin orbitals on the form
(3.26). The left and right figures illustrate closed and open shell determinants, respectively.

3.3.1 Single-particle spin operators

The spin operator for a single particle is given by
S = 5,1+ syj + 52k, (3.27)

where s;, s, and s, are the operators for the spin components along the coordinate
axes. The latter satisfy the commutation relations

(52, 8y] = 152, [sy, 8] = isg, (52, Sz] = i8y. (3.28)

The squared magnitude of the spin operator is a scalar operator

s? =52+ 53 + 52 (3.29)
It commutes with all of the component operators, and it is therefore possible to find a
common set of eigenstates for s and one of the operators s, sy or s,. The standard
choice in the literature is s,. A particle with spin s has eigenvalues s(s + 1) and my
2
s7s,mg) = s(s+ 1)|s, ms),

82‘87m5> = ms\s, m8>7

where mg can take the values {—s, —s + 1,...,s — 1, s}. Electrons have spin 1/2,
and the Hilbert space describing the spin of electrons is therefore spanned by the two
states |1/2,1/2) and |1/2,—1/2), which we until now have simply called |a) and |3)
for convenience.

3.3.2 Many-particle spin operators

Analogously, the total spin operator for a system of N particles is given by

N
S =" si), (3.31)
=1
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where s(i) is the spin operator of particle i. Also, the squared magnitude of the total
spin operator is given by

2 2 2 2
S*=S5;+5,+52, (3.32)
where
N
Sr= Zsl(i), Ie{x,y,z}. (3.33)
=1

Since the Hamiltonian does not depend on any of the spin coordinates, it commutes
with 82 as well as S,

[H, S8?] = [H,S.] = 0. (3.34)

This means that the exact eigenstates of the Hamiltonian |®;) are also eigenstates of
S? and S, [3]

S2|®;) = S(S +1)|@;), (3.35)

where S and Mg are the quantum numbers for the total spin and its projection along
the z-axis, respectively. A natural question to ask at this point is whether or not the
restricted and unrestricted determinants are eigenstates of S? and S,. The answer to
this question is as follows:

1. Both restricted and unrestricted determinants are eigenstates of 5,.

2. The restricted closed shell determinant is an eigenstate of S? with eigenvalue 0,
making it a pure singlet state.

3. The unrestricted determinant is generally not an eigenstate of S2.

A consequence of point three is that unrestricted determinants can often have a total
spin which is larger than the exact value. This is often referred to as spin contamination
of the unrestricted determinant. The reader is referred to appendix A for a further
discussion of this topic.

3.4 Restricted Hartree-Fock (RHF)

The most general form of the Hartree-Fock equations is given in (3.21), where the Fock
operator F is given by (3.17) and (3.9) - (3.10). We will now derive the equations
which result from the restricted assumption in (3.24). Without loss of generality, we
may assume that the spin orbital on which the Fock operator acts is spin up:

F(x)or(r)a(s) = ergr(r)als). (3.37)



34 Hartree-Fock Chapter 3

Writing out the Fock operator explicitly:

F(x)¢r(r)a(s) = h(r) gr(r)a(s)

N
[ / a7 (<) g e, ') n ()| 6 ()as)
=1 (3.38)

N
- [ [ axui gt o))
=1
= cudr(r)als).

Our goal is to integrate out the spin of this equation. To do this, we must also express
the spin orbitals in the sums in terms of spatial orbitals. We will assume that N is
an even number of electrons and that we are dealing with a closed shell determinant.
This means that both sums, which run from 0 to N, can be split into two sums which
run from 0 to N/2:

F(x¥)Pr(r)a(s) = h(r) pr(r)als)

N/2

+[3 [ #0760 ()90, ()| n(w)as)

N/2

+[3 [ ixoi 615 (gl )08 | n(r)a(s)
=1

NJ2

- [ [ axoi)a (gter)on )| was)
=1

(3.39)

N/2

[ [ o) atr ol
=1
— suals)

We note that the first two sums are in fact equal when the spin coordinate s’ is inte-
grated out. Furthermore, the last sum is equal to zero because the integration is over
unequal spins. Thus we are left with

F(x)¢r(r)als) = h(r) gr(r)a(s)

N/2

230 [ o ()g(e ) enr)als
=1

N/2

-2 / ' 67 (¢)g 0, 7)) () (s)
=1
= exdr(r)a(s).

(3.40)



35 Hartree-Fock Chapter 3

If we now multiply both sides of the equation by a*(s) and integrate over the spin
coordinate s we finally arrive at

[ D a*(s)F(x)a(s)| dr(r) = h(r) ¢i(r)

=1
N/2
2 dr’' o7 (r)g(r, v )y (x' r
#2[3 [ /s gt o] onto )
N/2
[ [ o wsteatoe
=1
= ex¢r(r).
Defining the restricted spatial Fock operator as
F(r)= Y a*(s)F(x)a(s), (3.42)
s=1l
the equation can be written as
F(r)¢p(r) = exdr(r), (3.43)
where
N/2
F(\)6u(r) =h(x) 6u(r) + 2 3 [ dv'67 (6 gle,v)en(e') onr)
= (3.44)
N/2
- [X [ asiwgtaon)] o).
I=1
The spatial Fock operator can be written more compactly as
F(r) =h(r)+2J(r) — K(r), (3.45)
where
N/2
Twone) = 3 [ dv'o (glr)ne!) [ on), (3.46)
1=
v
Kwou) =Y [ d'si@)gtr.a)on(x)]o1(o) (3.47)
I=1

Note the factor 2 in front of the direct term, or more to the point, the absence of
the factor 2 in front of the exchange term. This is due to the fact that the exchange
interaction is only present between electrons of equal spins.
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To find the energy, consider the first line of equation (3.23):

N

Ey =3 > i+ (wnlnlin]

N

Z (k| (F + h)|v).
k:

(3.48)

If, as we did above, insert the assumption (3.24) and split the sum in two sums, one
with spin up and one with spin down, we get

N/2

By =Y ($kl(F + h)|¢x)- (3.49)

k=1

3.4.1 Introducing a basis

We have now eliminated the spin from the general Hartree-Fock equations (3.21) and
arrived at equation (3.43), which represents a set of integro-differential equations for
the spatial orbitals. There is presently no feasible way to solve these as they stand.
However, by expressing the orbitals in terms of some known basis

M
I') = Z Cuqu(r)a (3.50)

where M is the number of basis functions, the equations can be converted to a set of
algebraic equations. Inserting this expansion into equation (3.43) gives

M M
> F(r)xu(r)Cok = e Y Coxu(v). (3.51)
v=1 v=1

If we now multiply by xj,(r) and integrate with respect to r, we get the so-called
Roothaan equations [15]

M M
Z Fuucuk: =&k Z Suucuk:a (3'52)
or in matrix notation
FC]€ = ekSCk, (3.53)
where
Fu = /drxL(r)F(r)X,,(r) (3.54)
is the Fock matrix and
Sy = /er;(r)xl,(r) (3.55)

is the overlap matrix. If the basis is orthonormal, the overlap matrix is the identity
matrix. However, in molecular calculations Gaussian functions are most often used,
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and these are not orthogonal. In section 3.6 we show how equation (3.53) can be
transformed to a regular eigenvalue problem

F'C| = ¢,C}. (3.56)

Let us take a closer look at the Fock matrix:

F = / e (r) F(r) o (r)

= / dry,(r)[h(r) + 2J(r) — K(r)]x,(r) (3.57)
=(ulhlv) +2(ulJv) = (p|Kv).

To get the final expression for the matrix, we insert the expansion (3.50) into the
operators J(r) and K(r). For J(r) this gives

N/2

=[x / g1 (g e, ) on (1) | o 1)

N/2 Ny (3.58)

3> / x5 ()9 (1,2 xr (1) | C o (1)

k=1 o0,2=1

so that

N/2 M

(u|JIv) Z Z (uo|glvA)CrCog, (3.59)
k=1o,A=1

where the matrix element (uo|g|vA) is defined in equation (2.47). The expression for
(u|K|v) is similar, except that the indices v and A switch places in the integral:

N/2 M

(ulKv) =" (uolglhw)CaCo. (3.60)
k=1 o,A=1

Hence, the Fock matrix is given explicitly in terms of the basis functions by

N/2 M

(ulhlv) + 3~ D7 [2(uolglvA) = (uolglw)]CoiCa. (3.61)
k=10, =1

It is useful to define the so-called density matrix
N/2

Pry =2 CaiCiy, (3.62)
k=1

which allows us to write the Fock matrix more compactly as

Fu = (ulhl) ZPM 2(uolglvA) — (uolgl ). (3.63)
U)\ 1

The energy is found by expanding equation (3.49) in the known basis:

M
1
Eo=35 Z Pyu[(ulhlv) + Ful. (3.64)
p,r=1
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3.5 Unrestricted Hartree-Fock (UHF)

We now derive the unrestricted Hartree-Fock equations which result from the assump-
tion (3.26). The Hartree-Fock equations (3.21) are now split into two sets of equations

FUx)p% (r)a(s) = efon(r)al(s), k=1,2,..., N,, (3.65)
FAx)0} (r)B(s) = el (r)B(s),  k=1,2,...,Np, (3.66)

where N® and NP are the number of electrons with spin up and spin down, respec-
tively. Again, we want to take out the spin part of the equations. We can insert the
unrestricted spin orbitals (3.26) and do the calculations explicitly in the same way as
we did for the restricted case. However, using the insight gained during our previous
calculation, we can come up with the answer directly. Consider for example the op-
erator F%(x). It contains a kinetic term and the potential due to the atomic nuclei.
Furthermore, it contains a direct interaction term due to the mean field set up by all
electrons, both spin up and spin down. Finally it contains an exchange term due to
the mean field set up by the electrons with spin up only. Thus we can conclude that
the equations for the spatial orbitals ¢} are given by

F(r)¢p (r) = ef o (r), (3.67)
where the unrestricted spin up Fock operator is defined as
Fr) = h(r) + [J*(r) — K*(r)] + J°(r), (3.68)
with
N -
T)650) =Y [ [ ar'ep agtrr)er ()] @), (3.69)
o _
T =) | / dr' g (') g (r, ¥y ()| 6 (x), (3.70)
v _
K%(r)¢p(r) = /dr’cb?(r')g(r, )¢ ()] i’ (r)- (3.71)

=1

The equations for the spatial orbitals ng are the same, except that the indices o and
8 switch places.
3.5.1 Introducing a basis

To solve the unrestricted Hartree-Fock equations we expand the spatial orbitals in
terms of a known basis

M
Z ,ukX,u 7 (372)

M

Z kxﬂ ), (3.73)

=1
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just as we did in the restricted case. Inserting the expansion (3.72) into equation (3.67)
gives

M M
S P (00 = 5 Y Coon (). (3.74)
v=1 v=1

If we multiply this equation by x,(r) and integrate over r, we get

M M
Z Fﬁl/cgk = 5% Z S,uucgm (375)
v=1

v=1

where 5, is the overlap matrix and Fy},, is the matrix representation of the unrestricted
spatial Fock operator

Py, = /er;(r)Fa(r)X,,(r). (3.76)

The corresponding equations for the spin down particles are derived in exactly the
same way, of course. In total we have the two sets of equations

FOCf =<SCY, (3.77)
FPCy =/SCy, (3.78)

called the Pople-Nesbet equations [16], which are the unrestricted generalisation of the
Roothaan equations derived in the previous section. They are nonlinear and coupled
since the matrices F* and F? are functions of both {C{} and {C’g}

The final expression for the Fock matrix F¢ is obtained by inserting the expansion
(3.72) into equation (3.76). Recalling that the Fock operator F'*(r) is given by (3.68)
this leads to

N M N8 M
Fo = (ulblv) + 33 (ol lpA)(Co) O+ >0 Y (uolglvA)(CL ) Cl, (3.79)
k=10, =1 k=10, =1

and similarly we find

N8 M N M
Fp = (ulhlv) + > (ol A (Co) CL D" D (nolglvA)(Co) Csi (3.80)
k=10, =1 k=10, =1

where (uo|g|vA) and (uo||v\) are defined in equations (2.47) and (2.58), respectively.
If we introduce the density matrices

Na

Pg =Y Cul(Con), (3.81)
k=1
NB

Pfa = Z ka(cfk)*a (382)
k=1

Pl =Pg, + Py, (3.83)
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the Fock matrices can be written more compactly as

G+ 3 (ol X P, + (uolglo )P (3.84)
o, =1
and
M
Ep, = (ulhlv) + 7 [(uollvA) P, + (uolglvA) P, | (3.85)
o,A=1

The energy can be found from the expectation value of these matrices, keeping in
mind that the double counting of the interaction terms must be taken into account.
The expression is

N M
o= 30 3 [(lhly) + B (O C + Z > [elbl) + B} (€5°C

k=1 pr=1 k 1 =1
(3.86)
or in terms of the density matrices
| M
Eo =5 Zl | PLAulhlv) + PG, Fg, + PO.FL| - (3.87)
o v=
3.6 Solving the generalised eigenvalue problem
In this section we show how the generalised eigenvalue problem
FCj = ¢, SCy, (3.88)
can be transformed to the regular eigenvalue problem
F'C}, = ;,Cj. (3.89)
We can achieve this if there exists a matrix X such that
XTSX =1, (3.90)
because, if we then let Cx = XC|_, we get
FCj = ¢, SCy,
/ /
FXC, = ¢,SXC}, (3.01)

XIFXC, = £,XSXC;
F/C% = EkC;C,

where
F = X'FX. (3.92)
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It only remains to show that the matrix X does indeed exist and how to construct it.
First note that the overlap matrix S is Hermitian:

Sy = / dr s (r) o (r)
— / drx (0) X4 (1) (3.93)

=Sy,
This means that there exists a unitary matrix U such that
USU =5, (3.94)

where s = diag(si,s2,...,sp) is a diagonal matrix containing the eigenvalues of S,
which are all real, and the columns of U are the eigenvectors of S. Furthermore, the
eigenvalues {s;} are positive. To see this, consider the expansion of some function f(r),
not identically equal to zero, in terms of the basis functions x,(r):

Fr) =) Auxu(x). (3.95)

No matter how the coefficients are chosen, the norm of f(r) will be positive. In par-
ticular, if we choose A = [A,,] to be equal to the i’th eigenvector of S, we get

0<(fIf) =) ArSuwA, = ATSA
o (3.96)
—s;ATA = s;]|A|]%

Now, since all eigenvalues are positive, one can define the matrix

12
~1/2
s1/2 = R . (3.97)

—1/2
Sy

Multiplying equation (3.94) from the left and right by s~/ yields

s 12utsus 12 =1

(Us V2 fs(us™1/2) = 1, (3.98)

which means that
X = Us™ /2, (3.99)






Chapter 4

Basis functions and integral
evaluation

In the previous chapter the general Hartree-Fock equations, which is a set of integro-
differential equations, were converted to a set of algebraic equations (the Roothaan
equations in the restricted case and the Pople-Nesbet equations in the unrestricted
case) by expanding the unknown orbitals in a known set of basis functions. The Fock
operator was then reduced to a matrix, the elements of which are integrals involving
the chosen basis functions.

We start this chapter by discussing two popular types of basis functions, namely the
Slater-type orbtials (STOs) and the Gaussian-type orbitals (GTOs). The latter is more
suited for molecular calculations and is the one we will use in this thesis. Thereafter
we derive the integration scheme for the Gaussian type orbitals.

4.1 Basis functions

For a molecular system, the eigenfunctions of the Hartree-Fock equations are called
molecular orbitals (MOs). As discussed earlier, it is important to distinguish these
from the perhaps more familiar atomic orbitals, and it is erroneous to think that the
electrons of molecular systems are occupying atomic orbitals. Consider for example
the Ho-molecule. In the ground state the electrons are not occupying the 1s-orbitals of
atomic hydrogen. The molecular system is entirely different from the atomic one, with
an entirely different Hamiltonian, and the eigenstates of the Hartree-Fock equations
will therefore also be different.

In order to solve the Hartree-Fock equations, we need to expand the molecular
orbitals in a known set of basis functions

M
¢k(r) = ZX}Lk(r)’ (41)
pn=1

The importance of choosing suitable basis functions can hardly be overemphasised; it
completely determines the accuracy of the results as well as the computational cost of
the calculations. In choosing basis functions, the following criteria should be met:

43
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1. The functions must be physically reasonable, i.e., they should have large proba-
bility where the electrons are likely to be and small probability elsewhere.

2. It should be possible to integrate the functions efficiently.

3. The solution of the Hartree-Fock equations must converge towards the Hartree-
Fock limit (see chapter 5) as the number of basis functions increases.

The first point suggests that we choose atomic orbitals as basis functions, which is often
referred to as “linear combination of atomic orbitals” (LCAO). In this thesis we will
let the atomic orbitals be centered at the nuclei. However, this is not strictly required
since the atomic orbitals are merely being used as basis functions, and they are not to
be thought of as orbitals occupied by electrons. In the following two subsections, we
discuss two common types of atomic orbitals, namely the Slater type orbitals (STOs)
and Gaussian type orbitals (GTOs), respectively. Only the GTOs will be applied to
the calculations in this thesis.

4.1.1 Slater-type orbitals (STOs)

The Slater type orbitals are defined as [17]

(2a)n+1/2

XSTO (T7 07 ¢7 n, l7 m) = W

" Lexp(—ar)Y;™ (6, ¢), (4.2)

where n is the principal quantum number, [ and m are the angular momentum quan-
tum numbers, Y, (0, ¢) are the spherical harmonics familiar from the solution of the
Schrédinger equation for the hydrogen atom, and a is an exponent which determines
the radial decay of the function. The main attractive features of the STOs are that they
have the correct exponential decay with increasing r and that the angular components
are hydrogenic. For this reason, they are often used in atomic Hartree-Fock calcula-
tions. When doing molecular calculations, however, they have the disadvantage that
the two-particle integrals (uo|g|vA) occuring in the Fock matrix F},, have no known
analytical expression. This is because integrals of products of exponentials centered on
different nuclei are difficult to handle. They can of course be calculated numerically,
but for large molecules this is very time consuming.

4.1.2 Gaussian-type orbitals (GTOs)

A clever trick which makes multiple center integrals easier to handle is to replace
the exponential term exp(—ar) with exp(—ar?), i.e., to use Gaussian functions. This
greatly simplifies the integrals because the product of two Gaussians centered on nuclei
with positions A and B is equal to one Gaussian centered on some point P on the line
between them:

exp(—alr — A[?) -exp(~blr — B|*) = Kap exp(—plr — P[*), (4.3)
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Figure 4.1: Illustration of the Gaussian product theorem which says that the product of two
Gaussians with centers at points A and B is another Gaussian with center somewhere between
A and B.

where
ab 9
Kap = exp(—a+b\A—B|), (4.4)
aA +bB
P = — — 4.
) (45)
p = a+b. (4.6)

This is the so-called Gaussian product theorem. It is illustrated in the one-dimensional
case in figure 4.1.

The general functional form of a normalised Gaussian type orbital centered at A
is given by [17]

2a\3/4 1 (8a) itk i1 1 k!
Gijlara) = <*> [ (2i)! (2)! (2k)!

™
where r4 =r — A and the integers ¢, j, k determine the angular momentum quantum
number [ =7+ j + k.

2y gl 2K exp(—ar?), (4.7)

4.1.3 Contracted GTOs

The greatest drawback with Gaussians is that they do not have the proper exponential
radial decay. This can be remedied by forming linear combinations of GTOs to resemble
the STOs

L
XCTO(xa,i, 5. k) = dyGijr(ap, Ta). (4.8)
p=1
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Figure 4.2: The whole line shows the 1s STO basis function, while the broken line shows a
linear combination of three Gaussians.

These are called STO-LG basis functions, where L refers to the number of Gaussians
used in the linear combination. Hehre, Stewart and Pople [18] were the first to system-
atically calculate optimal coefficients d, and exponentials a,, and today the STO-LG
basis sets are available for most atoms. The individual Gaussians are called primitive
basis functions and the linear combinations are called contracted basis functions, hence
the label CGTO (Contracted Gaussian Type Orbital). In this thesis we will only con-
sider CGTOs, and whenever the symbol x appears without any label, we will always
mean CGTO.

A very common choice for the STO-LG basis sets is L = 3. Figure 4.2 shows
how the 1s STO for hydrogen is approximated by 3 GTOs. The exponents a, and
coefficients d,, have been set so that the contracted basis function lies as close to the
STO as possible, see table 4.1. It is important to note that the parameters (ay, dy,) are
static and that the linear combination of Gaussians constitute one single basis function.
Throughout this text the phrase “basis function” will always refer to a contracted basis
function.

The STO-LG basis sets belong to the family of minimal basis sets. It means that
there is one and only one basis function per atomic orbital. The STO-LG basis sets
for the hydrogen and helium atoms, for example, contain only one basis function for
the 1s atomic orbital. This basis function is, as explained above, composed of a linear
combination of L primitives. For the atoms lithium through neon the STO-LG basis
sets contain 5 basis functions; one for each of the atomic orbitals 1s, 2s, 2p;, 2p, and
2p,.

The reader might be asking herself why the coefficients d, in the linear combination
of the STO-LGs are static. Shouldn’t the accuracy of our results actually improve if
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Table 4.1: Coefficients and exponents used in the STO-3G basis shown in figure 4.2.

P 1 2 3
dp | 0.1543 | 0.5353 | 0.4446
ap | 3.4252 | 0.6239 | 0.1688

we let the coefficients vary? The answer to this is yes. However, the linear system to
be solved (the Hartree-Fock equations) will then be larger. Thus there is a trade off
between accuracy and computational efficiency which must be considered.

However, basis sets where the STO-LG sets have been “decontracted” as described
above have actually been used. They belong to the family of (-basis sets. The double-(
and triple-¢ basis sets have two and three basis functions, respectively, for each atomic
orbital. As an example, we could create a double-( basis set from the STO-3G basis set
by contracting the two first primitives and leave the third as a normalised primitive.
Similarly, we could counstruct a triple- basis set by treating each primitive as a basis
function.

Let us for a moment assume that we use a triple-( basis set constructed from the
STO-3G to do Hartree-Fock calculations on atomic oxygen. What will the resulting
orbitals look like? The lowest orbital will be very close to the definition of the 1s
orbital of the STO-3G set. This is to be expected since the STO-3G basis functions
are constructed to resemble the STO atomic orbitals.

What if we now apply the same triple- basis to calculations on the CO molecule,
say? In this case we would probably also find an orbital which resembles the 1s orbital
of the STO-3G basis for oxygen. This is because it is mostly the valence electrons
which contribute in the bonding between atoms, and the core electrons are more or
less unaffected. Thus decontracting basis functions corresponding to the core atomic
orbitals will generally not pay off, but will merely increase the computational load.
Therefore, basis sets have been constructed where only the functions corresponding
to the valence atomic orbitals are decontracted. These are the so-called split-valence
basis sets. An example of a split-valence basis set is the 3-21G. The number before
the hyphen (in this case 3) is the number of primitives per core atomic orbital. The
fact that there are two numbers after the hyphen signifies that there are two basis
functions for each valence atomic orbital. The numbers themselves (in this case 2 and
1) indicate how many primitives the first and second of these are composed of. As
an example, the 3-21G basis set for the oxygen atom has one single basis function for
the 1s orbital (since this is the core orbital), and this basis function consists of three
primitives. Furthermore, it has two basis functions for the 2s, 2p,, 2p, and 2p, atomic
orbitals (since these are the valence orbitals). The first consists of two primitives,
and the second consists of only one primitive. In sum the oxygen atom thus has 9
basis functions which are built up from a total of 15 primitives. Other examples of
split-valence basis sets are 4-31G, 6-31G and 6-311G [17].

In many molecular calculations, the split-valence basis sets mentioned thus far do
not provide enough flexibility to describe the chemistry appropriately. This is often
fixed by adding functions corresponding to atomic orbitals with angular momentum
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lmaz + 1, where [,,4, is the highest angular momentum of the atom. Such functions are
called polarisation functions. For example, the polarisation functions for the Oxygen
atom are the d-functions. Asterisks (*) are added to the name of the basis set to
indicate that polarisation functions are included. One asterisk (as in 6-31G*) indicates
that d-functions are added to polarise the p-functions of first row atoms (Li-Ne). Two
asterisks (as in 6-31G™*) mean that p-functions are added to polarise the s-functions
of hydrogen and helium as well.

It should be noted that the list of basis sets mentioned here is in no way exhaustive.
There is a flora of basis sets out there, see for example Cramer [17] or Helgaker et al
[19].

4.2 Integral evaluation

As discussed in the previous section, using Gaussian basis functions significantly im-
proves the speed of the integrations which must be done when setting up the Fock
matrix. This section discusses the details of how the integration is performed.

We start by summarising the most important properties of the Cartesian Gaus-
sians. Thereafter, we change basis to the so-called Hermite Gaussians, as proposed
by Zivkovié and Maksi¢ [20]. Then, following the work of McMurchie and Davidson
[21], we show how the one- and two-particle integrals can be expressed compactly in
terms of some auxiliary functions. The auxiliary functions are computed via a set of
recurrence relations.

A thorough review of the techniques presented can be found in Helgaker et al [19].

4.2.1 Cartesian Gaussians
The Cartesian Gaussian functions centered at A are given by

Gijrla,ra) = 2y vy 2 exp(—ar), (4.9)

where r4 = r — A. These will be our primitive basis functions. They factorise in the
Cartesian components

Gijk(a,ra) = Gi(a,24) Gj(a,ya) Gi(a, za), (4.10)

where ‘
Gila,z4) = 'y exp(—az?), (4.11)

and the other factors are defined similarly. Each of the components obey the simple
recurrence relation

TA Gl == Gi+1~ (4.12)
4.2.2 Gaussian overlap distribution
We introduce the following shorthand notation

Ga(r) = Gikm(a,Ta), (4.13)
Gy(r) = Gjin(b,TB), (4.14)
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and define the overlap distribution
Qap(r) = Ga(r) Gp(r). (4.15)

Using the Gaussian product theorem (4.3) this can be written as

Qap(r) = Kap a'y 2%y o 25 25 exp(—prd), (4.16)
where
ab
Kap = exp ( T bR%B)
Rip=A-B
p=a+b (4.17)
r'p=r— P
P aA—l—bB.
a+b

Because the Gaussians G, and G} factorise in their Cartesian components, so does the
overlap distribution

Qab(r) = Qij (l’) le(y) an(z)a (4.18)
where ‘

Qij = Kip iy o exp(—prp) (4.19)
and

ab
Kjp =exp ( - szlB)

Xap =A; — By.

(4.20)

The distributions Q;(y) and Q,,(2) are defined similarly.

4.2.3 Hermite Gaussians

Later we will expand the Cartesian Gaussians in terms of the so-called Hermite Gaus-
sians. This will simplify the integrations significantly. The Hermite Gaussians centered
at P are defined by

Atu(p, 1p) = (a?ax>t<a?3y)u(a?3z>ve’<p(_pr%>’ (4.21)

where r, = r — P. They factorise in the same way as the Cartesian Gaussians do:

Atu’u(p7 I'P) = At(pu 'CL‘P) Au(p7yp) Av(pu ZP)? (422)
where 5 \t
Ai(p,xp) = ((9P ) exp(—px%), (4.23)
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and the other factors are defined similarly. However, their recurrence relation is quite
different from that of the Cartesian Gaussians:

0 \t 0
Airi(p,zp) = (8?) 9P exp(—pap)
_ (9N 2
- (apm) 2prp exp(=prp) (4.24)

H \t—1 o \t
=2(t(55)  +ar(55 ) lexp(—pad)
= 2p[—tAi_1 + xpAy,

where we have used that
O\t 9\ t-1 O\t
(%) of(x) = t<%> Fla) + x<%> (@), (4.25)
Thus the recurrence relation reads

1
:L’pAt = %At_i,_l + tAt_l. (4.26)

4.2.4 Overlap integral S,

Our goal is to compute the overlap integral

Sup = (GalCh) = / dr Qup(r) (4.27)

between two Gaussians centered at the points A and B. Note that since the overlap
distribution €24, factorise in the Cartesian components, the integrals over x, y and z
can be calculated independently of each other:

Sab =(Gi|Gj)(Gr|G)(Gm|Gn)

(4.28)
:Sij Skl Smn
The x component of the overlap integral, for example, is given by
Sij :/dl‘ Qw(l’)
(4.29)

=Kip / dz 'y} exp(—prp).

In equation (4.29) the two-center Gaussians have been reduced to a one-center Gaus-
sian. However, the integral is still not straightforward to calculate because of the
powers :I:f4 and a;%. A smart way to deal with this is to express the Cartesian Gaussian
in terms of the Hermite Gaussians. Note that (4.23) is a polynomial of order ¢ in x
multiplied by the exponential function. In equation (4.29) the polynomial is of order
i+ j. This means that we can express the overlap distribution €2;;(x) in equation (4.29)
in terms of the Hermite Gaussians in (4.23) in the following way:

i+j

Qij(x) = > E{ Ai(p, xp), (4.30)
t=0
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where Ezj are constants. Note that the sum is over ¢ only. The indices ¢ and j are static
and are determined from the powers of z in G; and G;. We use them as labels on the
coefficients E,fj because different sets of indices will lead to different sets of coefficients.

To get the overlap integral in the a-direction we integrate (4.30) over R, which now
turns out to be extremely easy; the only term that survives the integration is the term
for t = 0:

/dxAt(p,a:p) = /d:c (aix)texp(—px%g), (4.31)

= (82 )t/dx exp(—pz5), (4.32)

T

= \/Zéto' (4.33)

We have used Leibniz’ rule, which says that the differentiation of an integrand with
respect to a variable which is not an integration variable can be moved outside the
integral. Thus the integral in (4.29) is simply

Sij = EY \/Z : (4.34)

The exact same procedure can be used for the integrals with respect to y and z, which
means that the total overlap integral is

3/2

Sap = Ei EEL B (%) (4.35)

So far nothing has been said about how we actually determine the coefficients E,f]
First observe that when i = j = 0 in equation (4.30) we obtain

EyY = K%p. (4.36)

The other coefficients are found via the following recurrence relations

B = B Xpal + (DB,
R TR B G ij g o
By = %th + XppEy + (t+1)E7,.

Analogous expressions hold for the coefficients EX and E". The first equation in
(4.37) can be derived by comparing two equivalent ways of expanding the product
Gi+1G; in Hermite Gaussians. The first way is

i+j+1 ' ‘
Gi1Gj= Y EMA, (4.38)
t=0
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and the second way is

Gi+1 Gj = l’AGZ’ Gj
i+j

=[(@—Po)+ (Po — A)] Y EP A
t=0
i+7 B
= [wp+ XpalBY Ay
= (4.39)

o )
= Z[%At+1 +th1 + XpaA]EY
=0

A . .
— Z [2—EZ11 + XpaEY + (t+1)E7 Ay,
=0 P
where we have used the recurrence relation (4.26) on the fourth line and changed the
summation indices on the fifth line. Comparing the two expressions gives the desired
result.
Note that the change in summation indices in equation (4.39) implies that we must
define N
E/ =0, ift<Oort>i+j. (4.40)

4.2.5 Kinetic integral T;;

Next we turn to the evaluation of the kinetic integral:

Ty = —=(Ga|V?|Gy)

1
2
1
= _§<Gikm<av r4)|V?|Gjin(bTp)) (4.41)

1
= _i(Tij Skt Smn + Sij Trt Smn + Sij Skt Trnn)»

where )

0
Tij = /d:z Gi(a,xA)@Gj(b, xR), (4.42)
and the other factors are defined in the same way. Performing the differentiation yields
Tyj = 4b* S jo — 2b6(2 +1)S;; + 5 (5 — 1) S j—2. (4.43)

Thus we see that the kinetic integrals are calculated easily as products of the overlap
integrals.

4.2.6 Coulomb integral V,,

We now turn to the Coulomb integral due to the interaction between the electrons and
the nuclei

1
Vab = <Ga|E’Gb>v (4.44)
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where rc = |r — C|. As before, the overlap distribution is expanded in the Hermite

Gaussians:
ww:i/er““)

rc
ij Atuv(p;TP)
_ iJ 1kl tuv\PH L' P
=Y E’E} E;j””/dr T (4.45)
tuv
ZEZ?U/ Atul}(parp).
tuv rc
Here we have used the shorthand notation
Eab _ EijEklEmn 4.46
tuv — it u v ( . )

In this integral other terms besides Aggp will survive due to the factor 1/rc. Let us
nonetheless start by evaluating this term

2
Vp:/drf\m()(z%rzﬂ:/drwp(m)_ (4.47)
rc rc

We will show that this three-dimensional integral can actually be converted to a one-
dimensional one. The trick is to observe that the factor 1/rc can be replaced by the

integral
! 1/mﬁ (=12 £2) (4.48)
— = — exp(—r . :
rc \/7? —o0 ¢
Inserting this into V), and using the Gaussian product theorem gives
1 o
V, = /exp(—pr%) \f/ exp(—r% t%) dt) dr (4.49)
- NG / /exp + 2 RPC) exp|—(p + t3)r]dr dt, (4.50)

where Rpc = P — C and rg = r — S for some point S. Doing the integral over the
spatial coordinates reveals that the specific value of S is immaterial:

1 [ pt? T \3/2
oo = E ) exp (- mRPC) (m) dt (451)
> pt2 dt
= 2 - R . 4.52
71—/0 exp ( D +t2 PC> (p+ t2)3/2 ( )

Next we change integration variable from ¢ to u by defining

2
2 _ ¢

' 4.53
P + t2 ( )

This will change the range of integration from [0, co) to [0, 1]. This is beneficial because
the final integral at which we arrive will be calculated numerically. The change of
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variables leads to

o (1 9 9
V, = " exp(—p Rpcu”) du (4.54)
0
21
= Fop Rpc), (4.55)

where Fy(x) is a special instance of the Boys function F,(x) which is defined as

Fu(z) = /0 ' exp(cat?) 27 dt. (4.56)

How to actually evaluate the Boys function will be discussed in section 4.3.

We have now a tremendously simplified way of calculating the integral of Aggo/7rc-
However, we need to integrate Ay, /rc for general values of ¢, u and v. These integrals
are actually not that hard to do once the Boys function is calculated:

Atuv(p r )
V=Y E® [ gpno7p) 4.57
b ; tuv/ r ro ( )
t+u+vF 2
=2y g O FolpRie) (4.58)
p = OPLOP}OPY
Z E® Ruw(p, Rpc), (4.59)
tuv
where we have defined ko Fy(ad?)
0" UV Ep(a A
uv ,A = YT 4.
Bl A) = =5 4 5 Auo Az (4.60)
So we need to know how to calculate derivatives of the function Fj. Note first that
d
%Fn(ﬂf) = —Fpq(2). (4.61)

This means that it is possible to derive analytical expressions for the Coulomb term
Vap. However, in practice they are calculated recursively in a manner similar to the
way we calculate the coefficients E,’. Before presenting the recursion relations, we
introduce the so-called auxiliary Hermite integrals

at+u+v Fn (aA2)
OALOALOAY

tuv(a’ A) ( QU’)n (462)

By starting with the source terms RBy(a,A) = (—2a)" F,(aA?) we can reach the
targets Ry, (a, A) = Ryuy(a, A) through the following recurrence relations

?—H,u,v tRn+1 + AZERn+1

t—1,u,v tuv

st = uREEL + AYREH (4.63)

t,u—1v tuv

Fuwir = ORI + AR

tau,v—1 tuv
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The first of these are derived as follows
8t+u+v

Pt = (—20)" 5o 204, F (aA?)] (4.64)
DALOALDAY
(caaytt O |40 g1 (ad?)] (4.65)
== AL AU AL | “o :
DALOALDAY
" au+v at—l at
= (=20 [taAtfl + Aoy }Fn+1(aA2) (4.66)
Yy z x x
= tR?jll,um + AZCR?u—Zl’ (467)

where we have used equation (4.25) and the fact that F) (z) = —Fp4+1(x).

4.2.7 Coulomb integral g,.q

Finally we show how to calculate the Coulomb integral due to the interaction between
the electrons. It is given by!

1
Gachd = (GaGe|—|GpGa)
12
_ // Qab(rl)ch(I'Q)drldr2
T12

A uv 9 ATV I
:ZZE?&]—W%// uelD 110 Ao (@ 120) g g,

tuv Tvg 12 <4.68)
— Z Z Fab ped ot+utv grvte
T OPLOPLIPY 9QT0Qy0Q°

tuv Tvo
// exp(—pr?p) exp(—qr%Q)

12

dI’1 dI‘Q,

where, analogous to p and rip, we have defined

q=c+d
raQ =r2 — Q (4.69)
Q ~¢cC+dD
- c+d
Thus we need to evaluate the integral
exp(—pr?,) exp(—qra
Vo = // p(=prip) exp(~4 QQ)drldrg. (4.70)
12

By first integrating over r; and using equation (4.54) this can be written as

orr (1
Vg = / (p/o exp(—pripu?) du) exp(—qrig)dra. (4.71)

'Here G, is combined with Gp and G combined with G4 using the Gaussian product rule. In many
books on quantum chemistry this is written as
(Ga(1)Go(1) 715" |Ge(2)Ga(2)) = [ [dridraGa(r1)Gy(r1)riy Ge(ra)Ga(rs). However, since this de-
parts from the usual notation of quantum physics, it will not be used in this thesis.
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Next we change the order of integration and use the Gaussian product theorem to get

27
pq / / 2 RPQ)eXp[ (pu2+q)7“§5]dr2du
p“ +q 3/2 (4.72)
pqu 2 ™
= — e 7R o d 7
o | e n B (L)

where Rpg = P — Q and rog = ry — S for some point S. Again, the actual coordinates
of S are immaterial. If we now make the change of variable

2 2
S (4.73)
p+q put+gq
we get the result
v, 2n” ( Ly ) (4.74)
M papra \ptq T '
From this we get the final answer
2%/ +u+
— T ¢ rhab
Jacbd = - E® ped
acl pq\/m %%( tuv—Tr¢
8t+u+v+7—+u+q5 pq
Ry (-2 R3,) 4.75
OPLTaPM Pyt T\p+q 79 (4.75)
27['5/2 THv+¢
TN YY1 Ef B s Ritr v wrs(0 Rpg),
tuv T
where a = pq/(p + q). The term (—)7+"*¢ arises due to the fact that
9 P4 9 P4
F( R ):——F( R ) 4.76
0Q. \p+q "9 oP, "\p+q "9 (4.76)

4.3 The Boys function

As shown in the previous section, calculating the Coulomb integrals boils down to
evaluating the Boys function

Fu(z) = /0 ' exp(ct?) 27 dt. (4.77)

Doing this by standard numerical procedures is compuationally expensive and should
therefore be avoided. This section describes one possible way to calculate the Boys
function efficiently.

First note that if x is very large, the function value will hardly be affected by
changing the upper limit of the integral from 1 to co. Doing this is beneficial because
then the integral can be calculated exactly. Thus, we have the following approximation
for the Boys function for large x:

2n — D! T
F.(z) = ( St ”xQ”H' (x large) (4.78)
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For small values of x there seems to be no escape from numerical calculation. However,
instead of doing the integral at the time of computation, it can be tabulated once and
for all at regular values of x. For values between the tabulated ones, the function can
be calculated by a Taylor expansion centered at the nearest tabulated point x;:

Folzy + Az) = i 5 "*’f(xtk)!(_m)k. (z small) (4.79)

k=0

Computational cost can be reduced even further by calculating the Boys function ac-
cording to the description above only for the highest values of n needed; for lower
values of n the function can be found via the recursion relation

_ 2xF () e
B 2n+1

Fo(2) , (4.80)

which can be shown by integrating the function by parts.

4.4 Summary of the integration scheme

In the previous sections the integration scheme for GTOs has been derived. We sum-
marise the results in this section. Some of the results are only elaborated fully for the
x-component as the others components are defined similarly.

Gaussian functions

The Gaussian functions are given by

Ga(r) = Gigm(a,14) = 2’y y§i 2 exp(—ar),

J .lo.n 2 (481)
Go(r) = Gjin(b;TB) = v yp 2 exp(—brg),
wherery =r — A and rg = r — B. We further define
p=a+b,
__aA +bB (4.82)
a+b
Overlap integral S,
The overlap integral
Sab = (Ga|Gb> (483)
is calculated as )
_ gkl o (T2
Sap = EJ EV BT (p) , (4.84)
where
B0 _ ep(—— 2 x2 ) (4.85)
0 at+b AB)» .



58 Basis functions and integral evaluation Chapter 4

and the desired coefficients are found via
1

Efh = %Eﬁl + XpaE + (t+1)EY,
o 1 . B (4.86)
BT = %EZ]—I + XppE + (t + 1)Et+1
Kinetic integral T},
The kinetic integral is calculated as
1
Top = _g(Tz‘j Ski Smn + Sij Tkt Smn + Sij Skt Tmn), (4.87)
where
T;; = 4b% S jy2 — 2b(25 + 1)S;; + §(5 — 1)S; j—o. (4.88)
Coulomb integral V,,
The Coulomb integral
1
Vap = (Ga|—|Gp) (4.89)
rc
is calculated as 2
T
Z EtuvRtu’U b, RPC) (490)
tuv
where
B — B ER g (4.91)
and Ryyy(a, A) is found by first calculating the source term
Rlyo(a, A) = (—2a)" F,(aA?) (4.92)

and then iterating towards the target RY  (a, A) = Ry (a, A) via the recurrence rela-
tions

Rg—i—l,u v = = tR Y, + Aa:Rn+1

t—1,u,v tuv

n n+1 n+1
Rt,u+1 v uRt 2u—1wv + Athuv ’ (493)

n n+1 n+1

Rt,u,v-ﬁ-l URt u,v—1 + Athuv :

Coulomb integral g,.q

The Coulomb integral

1

Gacbd = <GaGc|a|GbGd> (4'94)

is calculated as
20272 SN -yt B R (o, Rpg) (4.95)

Gacbd = ————/—— - uv 7'1/ T,U+V,v o, hvpQ), .
qu o t (;5 t+7,ut+v,0+¢ Q
where

Pa (4.96)

T p+q



Chapter 5

Electron correlations

Even though the Hartree-Fock method often yields quite good results, it has its lim-
itations. This because it is based on the assumption that the electronic state can be
written as a single Slater determinant. However, as discussed in section 2.8, an infinite
sum of Slater determinants is generally needed. Consequently, no matter how large a
basis set we have at our disposal, the Hartree-Fock energy is bound to overestimate
the exact energy.! The exact solution of the Hartree-Fock equations, obtained in the
limit where the basis set approaches completeness, is called the Hartree-Fock limit.
The difference between the exact energy, &y, and the Hartree-Fock limit energy, Fy, is
referred to as the correlation energy

Ecorr = éDO - EO- (51)

In the author’s opinion, this name is somewhat unfortunate since it seems to suggest
that the electronic probability distribution obtained from a Hartree-Fock calculation is
uncorrelated. However, as we have seen in section 2.4, the Slater determinant, which
is the basic starting point of the Hartree-Fock method, does indeed imply a correlated
probability distribution. Hence, it is perhaps more appropriate to think of equation
(5.1) simply as the systematic error introduced by the Hartree-Fock method and not
equate “correlation” in “correlation energy” to the statistical meaning of the word.

Concerning the statistical correlations inherent in the electronic probability distri-
bution, quantum chemists often distinguish between Fermi correlations (or exchange
correlations) and Coulomb correlations [22]. The Fermi correlations are defined as
those arising purely from the fact that the wave function is antisymmetric, whereas
the Coulomb correlations are due to the Coulomb repulsion acting between the elec-
trons. The Coulomb repulsion is included in the Hartree-Fock equations only in an
averaged, mean-field sense.

The are a number of so-called post-Hartree-Fock methods designed to improve the
solution obtained from a Hartree-Fock calculation. The perhaps conceptually simplest
is the configuration interaction (CI) method. It goes as follows. Assume that we
have solved the Hartree-Fock equations for an N-electron system and obtained a set of

'In this context, exact energy means the exact solution of the Schrédinger equation defined by the
Hamiltonian in equation (2.3).

59



60 Electron correlations Chapter 5

spin orbitals {1}, ordered by increasing energy. The Slater determinant constructed
from the N lowest spin orbitals, is the familiar reference state |¥y). However, we can
construct other Slater determinants by replacing one or more of the occupied spin
orbitals with any of the virtual spin orbitals. The exact ground state |®¢) can then be
approximated by a linear combination of these Slater determinants:

|Bo) & ColWo) + D CRUS) + Y CoPlwsd) + .. (5.2)

ia 1<j,a<b

In fact, if the spin orbitals {i} constitute a complete set of functions, the linear
combination above is exact. Diagonalising the matrix representation of the Hamiltonian
in the basis of the determinants above is referred to as full CI. The lowest eigenvalue
is an upper bound for the exact energy (because the basis set must be truncated).
However, it is the best one can possibly do within the limit of the single particle basis
{¢r}. Hence, full CI is the proper benchmark against which the performance of other
post-Hartree-Fock methods should be compared.

The number of Slater determinants grows rapidly with the size of the single particle
basis set. Hence, the full CI method becomes intractable for large systems, and we
must resort to other methods. Popular candidates are coupled cluster (CC) [5, 23] and
many-body perturbation theory (MBPT), which is the method of choice in this thesis,
see the next chapter. Many-body methods like density functional theory (DFT) [11],
variational Monte Carlo (VMC) [11] and diffusion Monte Carlo (DMC) [11, 24] are
other popular methods which go beyond Hartree-Fock, although they are most often
not considered as post-Hartree-Fock methods.

For a further discussion on electron correlations, the reader is referred to the clear
and readable article by Tew et al [22].



Chapter 6

Perturbation theory

6.1 Formal perturbation theory

The basic starting point of perturbation theory is to divide the total Hamiltonian
H into two parts: One part, Hp, of which we are able to find the eigenstates and
eigenvalues and the remaining part, V', which is called the perturbation:

H=Hy+V. (6.1)
When V' = 0, the known solutions to the Schrédinger equation are given by
0 0) ., (0
Ho vy = B0, (6.2)

where the superindices indicate that the solutions are of zeroth order, that is, with
complete disregard of V. Most often we will be interested in the ground state. Of
course, ]\I/(()O)) is not the actual ground state, but merely an approximation. To obtain

the exact ground state |®p), an (unknown) correction term |y) must be added:

[®0) = [¥5") + ). (6.3)
The same is true for the energy:
& = E” + AE. (6.4)

In perturbation theory, the goal is to estimate the corrections |y) and AE order by
order in terms of the perturbation V:

[y = 1967 + W)+ (6.5)
1 2
AE=E" +EP + .. (6.6)
where, as before, the superindices indicate the order of the perturbation V. The hope
is that most of the physics is captured by the zeroth order Hamiltonian Hy so that the
two series above converge as fast as possible.

It will be assumed that <\I/[()O)]’y> = 0, i.e., that there is no overlap between the
unperturbed solution and the correction. Furthermore, we will let the unperturbed
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solution be normalised, which means that the overlap between the unperturbed and
exact solution is equal to unity:

(w5120} = (U127 + 1) = 1+0 =1, (6.7

This is often referred to as intermediate normalisation.
The general expression for the energy correction AFE can be derived from the
Schrédinger equation as follows:

(Ho +V)|®0) = &0|Po),
(W |(Ho + V)| @o) = &o(W" o).
(O Ho @) + (B |V |Dg) = &, (6.8)
(HoB(" |@0) + (U1 |V |Do) = &,
EY + (0 |V| @) = &,
so that
AE = (UV|V D). (6.9)

Here we have used equations (6.4) and (6.7) and the fact that Hy is Hermitian. Once we
have an order by order expansion of |®g), this will give us an order by order expansion
also of AF.

To make further progress, we define the projection operators P and Q:

P = o), (6.10)
Q=Y [y, (6.11)
=1

When acting on the state |®g), P picks out the part which is parallel with \\Il(()o) ). This
oo

is easily shown by expressing |®¢) in the basis {|\IIZ(-O)>}' K
1=

Pl@o) = [0 (1Y 5wl = colu ™). (6.12)
j=0

Similarly, @ picks out the part which is orthogonal to \\Il(()o)> since PQQ = QP = 0. Note
also that P? = P, Q> = Q and P + Q = I. Furthermore, P commutes with Hy:

HoP|®o) = HoP Y G ¥(") = HoCol ¥(") = CoEy ),
- . (6.13)
PHo|®o) = PHy Y Ci|0l”) = PY" GE |0 = CoE [w{).
=0 =0

Also, since Q = I — P, (Q commutes with Hy as well.
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We now have the ingredients necessary to find a perturbative expansion of |®).
The starting point is a slight rewrite of the Schrédinger equation:

(¢ = Ho)|®o) = (V = & + ()[®Po), (6.14)

where ( is a hitherto unspecified parameter. Different choices of ¢ will lead to different
perturbation schemes. Two very common choices are ( = &y and ¢ = E(()O) which
lead to Brillouin-Wigner and Rayleigh-Schrodinger perturbation theory, respectively
[5]. Acting from the left with the operator @ on both sides, and using the fact that
Q? = Q and [Q, Ho] = 0 leads to

Q(C — Ho)Q|®o) = Q(V — & + ()| ®@o). (6.15)

We now need an expression for the inverse of Q(¢ — Hyp)Q. As long as ( is not equal
to any of the eigenvalues {Ei(o)}ioil, this exists and is equal to

Ro(Q) = - = - S 1O m )@l (610)
i=1 j=1

which is called the resolvent of Hy. Writing Ry(() as the fraction above is justified by

the fact that Q@ commutes with Hj.
Acting with Ro(¢) from the left on both sides of equation (6.15) gives

Q[Yo) = Ro(¢)(V — &0 + ()| ®0), (6.17)

and using the fact that (P + Q)|®o) = |®o) leads to
[B0) = [96”) + Ro(Q)(V — & + )| o). (6.18)
Substituting the expression into itself gives

Do) =[T") + Ro(O)(V — & + O)w”)

) (6.19)
+ [Ro(O)(V = &0 + O)]7[ Do),
and repeating this process yields the expression we are seeking:
[@0) = S [Ro(Q)(V — &+ Q" w”). (6.20)
n=0

The corresponding expansion for the energy is found by inserting this into equation
(6.9):
. 0 ni, (0
AE =Y (¥ [VIR(O(V = & + O 9. (6.21)

n=0
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6.2 Rayleigh-Schrodinger perturbation theory

Rayleigh-Schrodinger perturbation theory, named after Lord Rayleigh [25] and Erwin
Scrhrodinger [26], is obtained by setting { = E(()O), which gives

AB = S (WO WVIRG(ED)(V — AR 0. (6.22)

n=0
Writing out the first three terms explicitly:
0 0
AE =(u|V]¥g”)
+ (OO WV Ry(V — AE) W) (6.23)
+ (T R(V — AE)Ry(V — AE) Wy +
where the dependence of Ry on E(()O) has been supressed. This is still not a proper

perturbative expansion since AE is present also on the right hand side of the equation.
We get the correct expansion by inserting the expression itself into every occurence of

AFE on the right hand side. Doing this, and noting that Ro\\ll(go)> =0, gives
0 0
AE =(u|V]wg”)
+ (@ RV B (6.24)
+ () [V RV — (0 V9 RoV ) + -

The three lines are the first, second and third order corrections, respectively, to the
zero order energy.

6.3 Mgller-Plesset perturbation theory

To make further progress, it is necessary to specify the zero order Hamiltonian Hy.
Setting it equal to the Hartree-Fock Hamiltonian

Hy = (p|Flg)alaq, (6.25)
Pq

yields the so-called Mgller-Plesset perturbation theory, after Mgller and Plesset [27].
If we choose the eigenfunctions of the Fock operator as our single-particle basis, then
Hj simplifies to

Hy = Z<p|€q|q>agjaq = Z sqépqa;;aq = Z 5pa;)ap. (6.26)
Pq pq P

Furthermore, the unperturbed state ]\Il(()o)> is then equal to the Hartree-Fock determi-
nant |¥g). It is per definition an eigenstate of the unperturbed Hamiltonian

N

Ho|Wo) = > epabap|123...N) =) | T), (6.27)
p =1
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Thus the zero order energy is the sum of the Hartree-Fock orbital energies

N
B =Y e (6.28)
=1

Next we show how this choice of Hy determines the perturbation V. The Hamilto-
nian can be written as
H:H0+(H1 —Ho—i-Hg), (6.29)

where H; and Hs are the one- and two-body terms defined in equations (2.55) and
(2.57), respectively. This means that

V =Hy— Hy+ Hs

= S liplhla) — lFla)aba + 3 3 tpallrsyajafasa,

pq pqrs (6.30)
1
= =20l ~ K)la)afaq + 3 > (pallrshafafasar,
Prq pqrs

where J and K are defined in equations (3.9) and (3.10), respectively. This form of V'
seems to suggest that it has a one-body as well as a two-body part. However, normal
ordering the operator with respect to |\Il(()0)> as the Fermi vacuum reveals that the one-
body part of V cancels out. Doing exactly the same calculations as in section 2.6.4
leads to

V==> (l(J - O)lafajag} — Z@'I(J = K)li)

pq

+ i Z(pq”rs}{a;a};asar} + Z Z(pi”qi){a;,aq} (6.31)

pqrs Pq i
1
+5 2 (il
ij

Noting that (p|(J — K)|q) = (pi||qi), the one-body parts now cancel, and we arrive at

1 1 e
V= 7 Z(qurs}{a;f,agasar} ~3 Z(ngzg). (6.32)
pqrs ]
This form of the perturbation makes it easier to evaluate the energy corrections.
The first order correction is:

1 e
Eg) = (o|V|%0) = =5 > (illig), (6.33)
ij

since the expectation of the normal product is equal to zero. Comparing equations
(6.28) and (6.33) with equation (3.23) shows that the first order correction is included
in the Hartree-Fock energy

By =E" + EY. (6.34)

To clearify, Fy is the Hartree-Fock energy (reference energy), and E(()i) is the i'th order
correction to the exact energy &p.
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Figure 6.1: Diagrammatic representation of the second order correction to the energy of
Mgller-Plesset perturbation theory.

6.4 Second order perturbation theory (MP2)

The expression for the second order correction is somewhat more complicated. It is
given by

EP = (@ VR o). (6.35)
Because of the resolvent Ry, only the normal product, W, of equation (6.32) survives,
so that we get

EY = w0 wrow w(). (6.36)
We have already calculated an almost identical expression in section 2.7. The only
difference is that the resolvent

Q o W) (W Wby (Wb
Ry=—"—+=>) ——1t 6.37
*~ Ey— Ho %: € — €a * Z 5i+5]’—5a_8b+ (6.37)

1<j,a<b

is squeezed between the two W operators. This simply has the effect that each term
in equation (2.90) is divided by an energy denominator

1

6.38
€ +Ej —€qy—Ep ( )
which yields the result
1 |(ij|ab)[?
B2 _ = ) 6.39
0 4%}&4—@—%—& ( )

This can be read off directly from the diagram of figure 6.1 according to the rules
of section 2.7 and the following additional rule. Draw a horizontal line between each
operator in the diagram. Each such line, called resolvent line, will contribute with
a factor in the energy denominator. The factor is equal to the sum of all hole lines
passing through minus the sum of all particle lines passing through.

6.4.1 MP2 in the RHF-case

In the case of RHF, the spin orbitals are assumed to be on the from

{t2k(x), Yort1(x)} = {@r(r)als), ¢r(r)B(s)}. (6.40)

This means that the sum over each spin orbital in equation (6.39) can be replaced by
two sums. The sum over i, for example, is

N/2 N/2

N
S hi=d i+ > ¢i, (6.41)
=1 =1 =1
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and we get similar sums for the other indices. Inserting this yields

N/2 M

B 1Y L@l @a)r?

i,j=1a,b=N/2+1 i
+ [((618)(038)[[(2aB) (968)) 7 + [{(9ict) (95 8)]| (Pact) (5)) | (6.42)
+{(9:8)(50)[(9aB) ($p)) [* + [(($i) (08)]|($aB) (Pp))]

+ 1((¢:8)(6;0) 1(¢a) (668)) 2.

where M is the number of spatial orbitals (equal to the number of spatial basis func-
tions) and

e =g + Ej — €Ea — b (6.43)

ij

Terms which are automatically zero due to spin have not been included. Integrating
out spin now yields

N/2 M

LYY ;ab[|<¢i¢ju¢>a¢b>l2

i,j=1a,b=N/2+1 @]
+ [{Bi05]|Batr) > + [(Dih;|g|Pabr)|? (6.44)
+ [(did|gldads)|* + [(didlgldpda) |

+ [(@igslglondall?].

Note that the first two terms in the sum have both the direct term and the exchange
term, whereas in the rest of the terms only one of these (direct or exchange) survives.
Collecting equal terms finally gives

N/2 M .. .. ..
2 (ijlglab) (2(ablg|ij) — (ablg|ji)
EP=% ( - ) (6.45)
i,j=1a,b=N/2+1 ]

Note that in this expression the explicit appearance of ¢ has been supressed. To avoid
confusion as to whether the sum is over spin orbitals or spatial orbitals (in this case it
is the latter), we shall use the following convention. If the summation ranges are given
explicitly, the sum is over spatial orbitals. Otherwise, the sum is over spin orbitals.

6.4.2 MP2 in the UHF-case

In the case of UHF, the spinorbitals are assumed to be on the form

{War(%), Yor1(x)} = {ef(r)als), 6] (r)B(s)}. (6.46)
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Inserting this in equation (6.39) and integrating out spin in the same manner as above
yields

ZZ Z % (2 2|2 ) |2

—_ _ (03

i=1 j=1 a=No+1b= Vo1 G TE T8y
B B

ki M ¢%ﬁu¢%b>\

+ZZZZ 7

i=1 j=1 g=NF-41b= N/B+1E +€ a — &
B8
NoN M ¢a¢5|g|¢a¢5>|2

+ZZZ 2

B
i=1 j=1 a=No41p=NB11 i +5 a
(6.47)
Nﬁ N« M 5 a 5
ﬁ
47, 1 j=1 g=NB41b= NaJr].E +ef —€a—€y
& « ¢a¢ﬁ|g|¢§¢5>12
) Z > — 7
i1=1 j=1 q=NB+1b=N>+1 & +€ — & €a
1 8 < ¢%a|g|¢§¢g>12
Y Z > e
=1 j=1 a=N+1 p= Nﬂ.}.l6 +€ - & €a
Since the last four terms are equal, this is reduced to
ZZ Z % (¢ 51165 05)1°
i=1 j=1 a=N+1b= Na+1€l tej e
NB N# M BB 48
(67 0] | dady) |2
)Y Z > S (6.48)
P NB+1 b= Nﬁ+1E +5 —
Sl & ¢a¢5|g|¢a¢5>12
2.2 Z > o
i=1 j=1 a=No+1p=NB11 i +5 &
6.5 Third order perturbation theory (MP3)
The third order correction is given by
E® = (@O WVRy(V — ES)Rov|E)y, (6.49)
which, when using that V = W + E() and Rg|\1180)> = 0, can be written as
E® = (0| WRyW Ryw (). (6.50)

We can evaluate this expression in the same manner as the second order correction,
the only difference now being that there are two resolvent lines. The diagrams for this
term was set up and discussed in section 2.7. The result is shown in figure 6.2.
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1 (ij]|ab){abl|cd){cd]|ij)
8 - ‘ (€i+ej—€a—ep)(€i + €5 —€c—€q)
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Figure 6.2: Diagrammatic representation of the third order correction to the energy of Mgller-
Plesset perturbation theory.
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Integrating out the spin part of these equations are a little bit more involved and
tedious than for the second order case, and the derivation and results are therefore
shown in appendix B.



Chapter 7

Nelder-Mead minimisation
method

So far we have discussed how we can calculate the energy of a molecular system for a
given configuration. The set of all possible configurations is called the configuration
space. If we calculate the energy of the system for the entire configuration space, we
get the so-called potential energy surface (often abbreviated PES in the literature).
From the potential energy surface, it is possible to classically simulate the trajectories
of the atoms as a function of time. This is exactly what is done in molecular dynamics
simulations.

When the temperature of a system is very low, the atoms will vibrate in the neigh-
bourhood of their equilibrium positions. The corresponding point in configuration
space will then oscillate in the vicinity of some local minimum. Hence, searching for
an equilibrium configuration is mathematically equivalent to searching for a minimum
of the potential energy surface.

In this chapter we discuss the Nelder-Mead method [28], which is a rather simple
method for minimizing functions in many-dimensional space. The method is quite
popular in compuational chemistry, largely due to the fact that functional derivatives
are not needed, which in many cases can be difficult to calculate.

7.1 The algorithm

Assume that we are given a function f : R” — R which is to be minimised. Whereas
Newton-Raphson type methods use the function value and its derivatives in a single
point to iterate forward towards a minimum, the Nelder-Mead method uses function
values in several points in space to decide in which direction to move. The method
proceeds as follows.

1. Generate a simplex with vertices x1, X2,..., Xp+1. (The simplex is defined be-
low.)

2. Order the the points so that f(x1) < f(x2) < -+ < f(Xpt1)-
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. Calculate the center of gravity x4 of all the points excluding the worst:

1 n
Xg = szl (7.1)
i=1

. Compute the coordinates of the reflected point

Xr = Xg + 0(Xg — Xpy1), (7.2)
see figure 7.1a. We then have the following possibilities:

(a) The reflected point is better than the next worst point but not better than
the best, that is, f(x1) < f(xr) < f(xn). If so, replace x,+1 with x, and
move to step 2.

(b) The reflected point is the new best point, that is, f(x,) < f(x1). If so,
proceed to step 5.

(¢) The reflected point is not better than the next worst point, that is, f(x,) >
f(x5). If so, move to step 6.

. Compute the coordinates of the expanded point

Xe = Xg +7Y(Xg — Xn41), (7.3)
see figure 7.1b. We then have the following possibilities:

(a) The expaned point is better than the reflected point, that is, f(x.) < f(x,).
If so, replace x,+1 with x. and move to step 2.

(b) The expanded point is not better than the reflected point, that is, f(x.) >
f(x;). If so, replace x,,+1 with x,. and move to step 2.

. Compute the coordinates of the contracted point

Xe = Xg + p(Xg — Xp11), (7.4)
see figure 7.1c. Consider then the following possibilities:

(a) The contracted point is better than the worst point, that is, f(x.) <
f(Xn+t1). If so, replace x,, 41 with x. and move to step 2.

(b) The contracted point is not better than the worst point, that is, f(x.) >
f(xpn41)- If so, go to step 7.

. Reduction. For all but the best point x; replace the point with

x, = x1 + o(x; — x1), forallie{2,..., n+1}, (7.5)

see figure 7.1d, and go to step 2.
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The search is terminated after some convergence criterium is reached. In this thesis
we have chosen to stop the search when

f(XnJrl) - f(Xl) < Etoler, (76)

where eig1er 18 some predefined tolerance.

The coefficients «, v, p and o are called the reflection, expansion, contraction and
shrink coefficients, respectively. Standard values are a = 1, v = 2, p = —1/2 and
o=1/2.

The search is initiated by defining a simplex. A simplex is the generalisation of a tri-
angle to many dimensions. A triangle is a simplex in two dimensions and a tetrahedron
is a simplex in three dimensions. The general definition is as follows. If x1,...,Xp41
are points in R™ such that the vectors xo —x1,...,X,4+1 — X1 are linearly independent,
the simplex C' is the set

n+1 n+1

C—{;aixiyaizow, 291:1} (7.7)

i=1

The various operations of the method can heuristically be explained as follows.
Since x,41 is the point with the largest function value, one can expect the minimum
to be located somewhere on the line between x,1 and the center of gravity of the
other points. The default guess is to try the reflected point x, (figure 7.1a). If this
point is the lowest point so far, the search should be extended further in the same
direction (figure 7.1b). On the other hand, if the reflected point is not better than any
of the points {x1,..., X, }, it seems that we have moved past the minimum. Thus it is
reasonable to try the contracted point (figure 7.1c). If this is not better than the worst
point x,41, we are not sufficiently close to a local minimum, and the simplex size is
therefore shrinked towards the best point x; (figure 7.1d).

7.2 Removing rigid body motions
Consider a system of K atoms, where the nucleus of atom number ¢ is centered at
R; = [Riz, Riy, Riz). (7.8)
The vector x considered in the previous section will then be the 3K -dimensional vector
x = [R1,Ra,...,Rk]. (7.9)

However, since rigid body motions do not change the energy of the system, we should
remove translational and rotational degrees of freedom associated with rigid body mo-
tions before searching for an energy minimum. For a system of two atoms, there is
only one degree of freedom to vary during minimisation, namely the distance between
them. For systems of K > 2 atoms, there are 3K — 6 degrees of freedom after the
removal of three translations and three rotations. In the code, the degrees of freedom
associated with rigid body motions are eliminated in the following way.
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(a) Reflection
(b) Expansion

(d) Reduction

(c) Contraction

Figure 7.1: Illustration of the various operations in the Nelder-Mead algorithm in the two-

dimensional case.
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. The system is translated so that the first atom is located at the origin.

. The system is rotated so that the second atom is located at the z-axis. (Two

rotations: One around the z-axis and one around the y-axis.)

. If there are more than two atoms, the system is rotated so that the third atom

is placed on the zy-plane. (One rotation around the z-axis.)

. During minimisation, the following coordinates, which are now equal to zero, are

removed from the vector x: Ry, Riy, Ri., Ray, Ro., R3.. The last coordinate is
of course only removed if there are three atoms or more.






Part 11
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Chapter 8

Program structure and classes

8.1 Introduction

The Hartree-Fock method and Mgller-Plesset perturbation theory are coded in the
C++ programming language. The program is written in an object oriented fashion,
making it relatively easy to extend with new features. This chapter describes the
structure of the program and how various routines have been implemented in different
classes. The entire program is available at https://github.com/henrikei/HartreeFock.

The various classes and their relations are shown in figure 8.1. Vertical arrows in-
dicate a “member of” relation, while horizontal lines indicate a “parent-child” relation.
As the dotted lines in the figure indicate, we have tried to distinguish between the
system and the methods. However, what do we define as being part of the system
and part of the methods? Variables such as the positions and charges of the nuclei
and the number of electrons are obviously system variables. But what about the basis
functions? One might intuitively define them as part of the methods as they are purely
man made objects. However, recall that we are using basis functions which mimic the
atomic orbitals. For this reason, we have chosen to let class System hold all informa-
tion about the basis functions. Furthermore, since we are using only one type of basis
functions, namely Gaussians, class System has a method for performing the integration
as well.

The code makes extensive use of the linear algebra library Armadillo [29], which
greatly simplifies the mathematics. Not only does it have standard objects such as
vectors and matrices, but it also offers higher dimensional objects such as cubes and
fields. A cube is the same as a matrix except that it has three indices instead of two. A
field object is similar to a vector, matrix or cube except that, instead of each element
being a scalar, each element can be a vector, matrix or cube.

8.2 Class HartreeFock

The central piece of the program is the rather short and simple virtual class HartreeFock.
The main tasks of this class are to:

o Obtain and store the overlap integrals (u|v), one-particle integrals (u|h|u) and
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Minimizer MethOdS
1
parent  child
Func MollerPlessetFunc
1
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$ ﬁ RMP

parent

1
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e UMP
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o RHF
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Integrator BasisFunctions
1 1
BoysFunction Contracted
1
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Figure 8.1: Diagram of the various classes of the program. Vertical arrows indicate a “member
of” relation, while horizontal lines signify a “parent-child” relation.
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two-particle integrals (uo|g|vA).
e Solve a single iteration of the self-consistent field equations.

The overlap and one-particle integrals are stored in Armadillo matrices m_S and m_h,
respectively, and the two-particle integrals are stored in a two-dimensional field m_Q
with each element m_Q(i,j) beging a matrix.

The HartreeFock class obtains these integrals by calling the System class, which
is responsible for storing and providing all the information about the system. For
example, the overlap and one-particle integrals are obtained in the following way:

rowvec oneElectronIntegrals;
for (int i = 0; i < m_matDim; i++){
for (int j = 1; j < m_matDim; j++){

oneElectronIntegrals = m_system—>getOneElectronIntegrals(i,j);
m_S(i,j) = oneElectronIntegrals(0);
m_S(j,i) = m_S(i,3);
m_h(i,j) = oneElectronIntegrals(1);
m_h(j,i) = m_h(i,j);

Here, m_system is an instance of the System class. Note that the HartreeFock class
need not know anything about the details of the system under consideration. It simply
passes the indices (i,7) to the System class, which processes this and returns the
integrals of interest.

The function

void solveSingle(const mat &Fock, mat &Coeffs, mat &P, colvec &fockEnergy, int
nElectrons);

of the HartreeFock class solves the set of equations defined by the matrix Fock and
stores the resulting eigenvalues and eigenvectors in the matrices fockEnergy and
Coeffs, respectively. It also returns the corresponding density matrix P. When solving
the self-consistent field equations, this function is called iteratively until convergence
is obtained.

The HartreeFock class has two subclasses RHF and UHF in which the specifics of
the restricted and unrestricted Hartree-Fock methods are implemented, respectively.
The difference between these two methods lies mainly in the way the Fock matrices are
constructed. In the RHF class, the Fock matrix is constructed according to equation
(3.63), whereas in class UHF the spin-up and spin-down Fock matrices are constructed
according to equations (3.84) and (3.85). When solving the self-consistent field equa-
tions, both subclasses call the function solveSingle of parent class HartreeFock. The
only difference lies in the arguments being passed to the function. For example, in the
RHF class, the self-consistent field equations are solved as follows:

double fockEnergy0ld;
double energyDiff = 1.0;
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while (energyDiff > m_toler){
fockEnergy0ld = m_fockEnergy(0);
buildFockMatrix();
solveSingle(m_F, m_C, m_P, m_fockEnergy, m_nElectrons);
energyDiff = fabs(fockEnergy0ld — m_fockEnergy(0));

where m_toler is the tolerance, which is set equal to 1.0 - 10712,
Before moving on to describe how the System class works, we need to discuss the
classes holding information about the basis functions.

8.3 Class Primitive

The Primitive class is a small class which simply stores the exponent, coefficient, powers
(2%y72*) and center of a Gaussian primitive function.

8.4 Class Contracted

The Contracted class, also quite short, holds an std vector of pointers to one or more
Primitives:

vector<Primitive*> m_primitives;

8.5 Class BasisFunctions

The BasisFunctions class holds an std vector of pointers to all the contracted objects
of the system under consideration:

vector<Contracted*> m_contracteds;

The class has a parser which reads input files on the TurboMole format. Contracted
basis functions are added by calling the function addContracteds:

p_basisFunctions—>addContracteds("../../HartreeFock/
inFiles/basisSets/0_431G.dat", 0);

The first argument is the path to the input file, and the second argument is an integer
which identifies the nucleus at which the basis set is to be centered.! In the above
example, the 4-31G basis set for oxygen is specified for the first nucleus (the position

itself is specified in the System class, which we describe below). The input file is given
by

'Each basis function is always centered at one of the nuclei in this thesis.
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# 4-31G EMSL Basis Set Exchange Library 4/16/14 1:15 PM

# Elements References

# __________________

# H, C - F: R. Ditchfield, W.J. Hehre and J.A. Pople, J. Chem. Phys. 54, 724
# (1971).

# He, Ne: Gaussian 90

# Li, Be: These are actually 5-21G basis sets.

# Na - Ar: M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro and W.J. Hehre,
# J. Am. Chem. Soc. 104, 2797 (1983).

#

$basis
*
o 4-31G
*
4 s
883.2728600 0.0175506
133.1292800 0.1228292
29.9064080 0.4348836
7.9786772 0.5600108
3 s
16.1944470 -0.1134010
3.7800860 -0.1772865
1.0709836 1.1504079
1 s
0.2838798 1.0000000
3 p
16.1944470 0.0685453
3.7800860 0.3312254
1.0709836 0.7346079
1 p
0.2838798 1.0000000
*
$end

The first and second column contain the exponents and coefficients of the primitives,
respectively. In this example, a total of 9 contracted objects are specified for the
first oxygen atom (with index 0): Three s-, two p,-, two p,- and two p,-functions.
The contracted objects are simply appended to the std vector m_contracteds. Thus
every contracted basis function is automatically assigned a unique number, namely its
position in the vector m_contracteds. All the input files have been taken from the
EMSL Basis Set Library [30].

There are two potential pitfalls regarding these input files which should be noted.
First, the coefficients are to be used with normalised Gaussian primitives. When
discussing the integration scheme in chapter 4, the normalisation coefficient was left
out for notational convenience. The normalised Gaussian function is given in equation
(4.7).

Second, there is an ambiguity concerning the atomic orbitals with [ > 1. For
example, when [ = 2, there are a total of six possible combinations of index values
(i,4, k) which sum to two. This leads to the possible prefactors 22, y2, 2%, xy, yz
and xz. These functions are called Cartesian d functions. However, the solution of
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the Schrédinger equation for the hydrogen atom has only five d functions. Many
program packages therefore also choose to use five d functions, referred to as canonical
d functions. These are often taken to be zy, zz, yz, ? —y? and 322 — r? [17]. The
same ambiguity presents itself for higher values of I. We will use Cartesian atomic
orbitals throughout this thesis.

8.6 Class System

The system to be analysed is defined in an instance of the System class. The most
important member variables of this class are:

e mat m_nucleiPositions which contains the positions of the nuclei.
e rowvec m_charges which contains the nuclei charges.

e int m_nElectronsUp, int m_nElectronsDown and int m_nElectrons storing
the number of spin-up and spin-down electrons as well as the total number of
electrons.

e BasisFunctions *m_basisFunctions holding all information about the basis
functions.

e Integrator *m_integrator which performs the integrations.

The main task of the class is to pass computed integrals to the HartreeFock class upon
request. In the previous section we saw how the HartreeFock class calls the function
getOneElectronlntegrals of the System class. This function then returns the integral
in question in the following manner:

rowvec2 System::getOneElectronIntegrals(int p, int q)

{

Contracted* contractedA = m_basisFunctions—>getContracted(p);
Contracted* contractedB = m_basisFunctions—>getContracted(q);

int nPrimitivesA = contractedA—>getNumOfPrimitives();
int nPrimitivesB = contractedB—>getNumOfPrimitives();

double overlap = 0;
double energy = 0;

Primitive* primitiveA;
Primitive* primitiveB;
for (int v = 0; v < nPrimitivesA ; v++){
primitiveA = contractedA—>getPrimitive(v);
m_integrator—>setPrimitiveA(primitiveA);
for (int w = 0; w < nPrimitivesB; w++){
primitiveB = contractedB—>getPrimitive(w);
m_integrator—>setPrimitiveB(primitiveB);
m_integrator—>setE_AB("oneParticle");

energy += m_integrator—>kinetic()*primitiveA—>getCoeff()*primitiveB—>
getCoeff();
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for (int x = 0; x < m_nNuclei; x++){
m_integrator—>setNucleusPosition(m_nucleiPositions.row(x));
energy += —m_integrator—>coulomb1()*m_charges(x)*primitiveA—>getCoeff
()*primitiveB—>getCoeff();
}

overlap += m_integrator—overlap()*primitiveA—>getCoeff()*primitiveB—
getCoeff();

}

rowvec2 oneElectronIntegrals = {overlap, energy};
return oneElectronIntegrals;

}

For a given combination of indices (p, ¢), this functions fetches the overlap and one-
particle integrals between contracted basis number p and contracted basis number g. It
does this by looping through all combinations of primitives in these contracted objects
and passing them to the Integrator class, which performs the integration. The function
getTwoParticleIntegrals works similarly.

8.7 Class Integrator

The main task of the Integrator class is to return the overlap and one-particle integrals
between two primitives, as well as the two-particle integrals between four primitives.
This is were the integration scheme of chapter 4 is implemented. The overlap integral is
calculated from equation (4.84). The one-particle integrals are the sum of the kinetic in-
tegrals (4.87) and the Coulomb interaction between the electrons and the nuclei (4.90).
Finally, the two-particle integrals are computed by equation (4.95). As the expressions
show, in order to compute these quantities, the coefficients F® = E’ EXE™" and
Ry are needed. We will postpone the description of how to calculate these until the
next chapter. For now we will simply assume that they are readily available.

As an example, we illustrate how the Coulomb interaction between the electrons
and the nuclei is calculated. Continuing the discussion in the previous section, first
the two primitives in question are passed to the integrator object. Thereafter, when
the funtion m_integrator->coulombi () is called, the Coulomb integral is calculated
according to equation (4.90) as follows:

double Integrator::coulomb1()
{

int 1 = m_primitiveA—>getPow()(0);
int j = m_primitiveB—>getPow()(0);
int k = m_primitiveA—>getPow()(1);
int 1 = m_primitiveB—>getPow()(1);
int m = m_primitiveA—>getPow()(2);
int n = m_primitiveB—>getPow()(2);

return coulomb1(i, j, k, 1, m, n);
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double Integrator::coulomb1(int i, int j, int k, int 1, int m, int n)

{

int tMax i+ 3;
int uMax = k + 1;
int vMax = m +

rowvec3 A = m_primitiveA—>getPos();
rowvec3 B = m_primitiveB—>getPos();

double alpha = m_primitiveA—>getExp();
double beta = m_primitiveB—>getExp();
double p = alpha + beta;

rowvec3 P = (alpha*A + beta*B)/p;
rowvec3 PC = P — m_nucleusPosition;

setR(p, PC, tMax, uMax, vMax);

double value = 0;
for (int t = 0; t < tMax + 1; t++){
for (int u = 0; u < uMax + 1; u++){
for (int v = 0; v < vMax + 1; v++){
value += m_E_AB[O0](i,j,t)*m_E_AB[1]1(k,1,u)
*m_E_AB[2](m,n,v)*m_R.at(0)(t,u,v);

}

}
value *= 2*M_PI/p;
return value;

The integers 1, j, k, I, m,n are the powers of the two primitives in question:

Ga(r) = Gikm(aa I‘A) = 1:34 yxlfl Z;ln eXP(—aTEx)a (81)
Gy(r) = Gjim(b,rB) = 2l Yl 215 exp(—brp), (8.2)

and tymae = T+ J, Umar = k + 1 and vmee = m + m are the upper limits of the
loop in equation (4.90). Before entering the loop, the coefficients Ry, are calculated
in the function setR (the coefficients E = E EFME™ are set before the function
m_integrator->coulombl () is called, see the code snippet in the previous section).

8.8 Class MollerPlesset

The Mgller-Plesset perturbation theory is implemented in the MollerPlesset class. This
class uses the eigenvalues and eigenvectors, as well as the integrals (uo|g|v\), obtained
from a Hartree-Fock calculation to compute the Mgller-Plesset perturbative terms.
The integrals (uo|g|lv\) are so-called atomic orbital integrals (AOIs) since they are
calculated with the atomic orbitals (basis functions) X, Xo, X, and x,. However, the
integrals needed in the perturbation sums are molecular orbital integrals (MOIs). The
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molecular orbitals are simply

M
r) =Y Curxu(r), (83)
pn=1

in the restricted case and

Z qu (8.4)
Z e (8.5)

in the unrestricted case, where {Cy}, {C%} and {CB } are the eigenvectors obtained
from the Hartree-Fock calculations. Thus, before calculating the perturbation sums,
the following transformation must be performed for every combination of p,q,r, s:

M

(palglrs) = Z (1o |glvA)ClupCoqCurCis. (8.6)
w,o,v,A=1

The most economical way of doing this is to perform the transformation for each index
p,q,r and s one at a time. That is, first do the transformation

M

(uolglvd) = (polglvd) = (uolglvA)Cup, (8.7)
pn=1

for every combination of p,o,v and A. Thereafter, do the same by summing over the

index o:
M

(polglvA) — (palglvA) = (po|glvA)Coq, (8.8)
o=1
for every combination of p, ¢, A and v. Continuing in this manner, we obtain the desired
MOIs. This transformation is the most costly part of the Mgller-Plesset scheme, scaling
as O(M?®), where M is the number of basis functions.

Since the restricted Hartree-Fock equations are different from the unrestricted ones,
the expressions for the Mgller-Plesset corrections naturally reflect this. The MollerP-
lesset class is therefore subclassed into the classes RMP (restricted Mgller-Plesset) and
UMP (unrestricted Mgller-Plesset). Each of these subclasses holds an instance of class
RHF and UHF, respectively.

The second order corrections are calculated according to equations (6.45) and (6.48)
for the restricted and unrestricted cases, respectively. These terms scale as O(0?V?2),
where O and V' are the numbers of occupied and virtual spatial orbitals, respectively.
The third order corrections are calculated as the sum of equations (B.8), (B.9) and
(B.11) in the restricted case and as the sum of equations (B.13), (B.14) and (B.15) in
the unrestricted case. The third order terms scale as O(03V?3) + O(0?V*).
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8.9 C(Class Minimizer

The Nelder-Mead minimisation method, described in detail in chapter 7, is imple-
mented in the Minimizer class. The method’s greatest asset is that it only needs to
evaluate the function value at various points in space (no derivatives needed) to per-
form the minimisation. It is quite general and can minimise any many-dimensional
scalar function. In order to achieve this, it holds an object of a purely virtual class
named Func. The latter class contains no more than two purely virtual functions:

class Func

{
public:

Func();

~Func();

virtual rowvec getx()=0;

virtual double getValue(rowvec x)=0;
I

As their names suggest, these functions are supposed to return the coordinate and
function value, respectively. The specific function which is to be minimised, must
be be implemented as a subclass of parent class Func. Of interest in this thesis, of
course, is the minimisation of the energy of molecules as calculated at the Hartree-
Fock or Mgller-Plesset level of theory. To achieve this, we have created the subclass
MollerPlessetFunc, which returns the energy of the molecule under consideration at
the desired level of theory (first, second or third order Mgller-Plesset theory?).

2Recall that the first order Mgller-Plesset energy is the same as the Hartree-Fock energy.
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Computational details

The previous chapter described the program structure and the tasks assigned to the
various classes. However, many details were left out so not to smokescreen the outline
of the program. Nevertheless, many of the left out details deserve further discussion.
We address some of these details in this chapter.

9.1 Solving the SFC equations

As described in chapter 3, solving the Hartree-Fock equations boils down to solving the
set of algebraic equations (3.53) or (3.77) and (3.78) in the restricted and unrestricted
case, respectively. In the following, we focus on the restricted set of equations (the
unrestricted equations are solved analogously). The equations are often referred to
as self consistent field (SCF) equations because they must be solved in an iterative
manner until there is consistency between the solution {Cj} and the Fock matrix F.
In the code, this is done as shown schematically in figure 9.1. First the system is
defined in the System class as described in the previous chapter. Thereafter, the one-
particle integrals (u|h|v), two-particle integrals (uo|g|vA) and overlap integrals (u|v)
are computed. Then, the transformation matrix X is calculated. It is constructed so
that

X'SX =1. (9.1)

Recall from section 3.6 that this is needed in order to transform the generalized eigen-
value problem

FCk = EkSCk, (92)
to an ordinary eigenvalue problem
F'C, = £,C,, 9.3)
where
F' = X'FX (9.4)
and
I =X"1C,. (9.5)

89
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Details concerning how to construct the transformation matrix X is discussed in section
3.6. Finally, before entering the SCF-loop, an initial guess is made for the density

matrix!
N/2

Pyy =2 Z CokChris (9.6)
k=1
which is neeeded in order to computed the first Fock matrix F. In this code it is
simply set equal to the zero matrix, which corresponds to a system of non-interacting
electrons.
After entering the SCF-loop, the Fock matrix of the current eigenvalue problem
is calculated based on the solution of the previous eigenvalue problem. The loop is
continued until

cur prev

‘51 —& | < €toler (97)

where e{"™ and "' are the lowest eigenvalues of the current and previous iteration,

respectively, and €l is the tolerance. In the code the tolerance is set equal to €igler =
1,0-107® by default.

9.1.1 Symmetries of the two-particle integrals

The two-particle integrals (uo|g|vA) have symmetries which imply that not all elements
need to be calculated. Firstly, since we are using real basis functions, the swapping
u < v and o < A of indices do not change the value of the integral. And secondly,
since the two-particle operator is symmetric with respect to particle one and particle
two, the switching (u,v) <> (o, ) also keeps the integral unchanged. Hence, we can
save time by truncating the limits of the looping indices as follows:

for (int i1 = 0; i < m_matDim; i++){
for (int j = 0; j < i+1; j++){
for (int k = 0; k < i+1; k++){
for (int 1 = 0; 1 < j+1; 1++){
m_Q(i,j)(k,1) =m_system—>getTwoElectronIntegral(i,j,k,1);
m_Q(k,j)(i,1) = m_Q(i,j)(k,1);
m_Q(i,1)(k,j) = m_Q(i,j)(k,1);
m_Q(k,1)(i,j) = m_Q(i,j)(k,1);

m_Q(j,i)(1,k) = m_Q(i,j)(k,1);
m_Q(j,k)(1,1) = m_Q(i,j)(k,1);
m_Q(Ll,1)(j.k) = m_Q(i,j)(k,1);
m_Q(Ll,k)(j,1) = m_Q(i,j)(k,1);

The two-particle integrals (uo|g|lv\) are stored in member variable m_Q. The variable
m_Q is an Armadillo object of type field. A field object is similar to a vector, matrix or
cube except that, instead of each element being a scalar, each element can be a vector,

!We have here simply written Cyy, instead of C, since we are using real basis functions.
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( Define system: h

e Nuclei positions
e Nuclei charges

e Number of electrons

e Basis set type
N P Y,

Calculate integrals:
e One-particle Hamiltonian: (u|h|v)
o Two-particle Hamiltonian: (uo|g|v\)

e Overlap matrix: (u|v)

Y

Diagonalise the overlap matrix and obtain a
transformation matrix X such that XTSX =1

CMake a guess for the initial density matrix P)

(Calculate the Fock matrix F\

J

(Calculate the transformed Fock matrix F/ = XTFX)

Diagonalise F/ to obtain
eigenvectors C), and eigenvalues e,

(Calculate C. = XCD

Y

(Obtain a new density matrix P)

( Converged? )} No

Y Yes

[ Use F, P, C; and ¢ to calculate j
e t

nergy and other quantities of interes

Chapter 9

Figure 9.1: Diagram of the self consistency solver in the RHF class. The solver in the UHF
class is similar except that, instead of a single Fock matrix, there are two matrices F® and F?

which are diagonalised simultaneously.
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matrix or cube. In the snippet above, m_Q is a two-dimensional field with each element
m_Q(i,j) being a matrix.

9.2 Calculating the Hermite coefficients £}’

The Hermite coefficients are computed in the Integrator class. They are necessary
for the computation of the overlap integrals (equation (4.84)), single-particle integrals
(equations (4.87) and (4.90)) and the two-particle integrals (equation (4.95)). There
are three distinct sets of coefficients which need to be computed, namely {E,’}, { EF'}
and {E}"™}, which are related to the overlap distributions in the x, y and z directions,
respectively. They are all determined exactly the same way, and in the following we
will therefore only discuss {E}” }.

Before continuing, recall that ¢ and j are the exponents of the two primitives in
question:

(9.8)

where x4 = x— A, and g = x — B, as usual. The starting point is the zeroth element

ab
Eg’o = exp (a n XAB), (9.9)

and all other coefficients are found via the recurrence relations

BN = %ng_l + XpaE? + (t+ 1)E7,, (9.10)
EZ,J-H - %Eﬁl + XppEY + (t+ 1)]5];117 (9.11)

where Xpy = P, — Ay, Xpp = P, — B, and P is defined in equation (4.17). By
definition, E;Y = 0if ¢ < 0 or t > i+ j. First note that if E;’ |, F}’ and E;’ | are
known, the coefficient E,f“’j can be calculated from the first of the above relations.
If we draw a grid with ¢ as horizontal axis and ¢ as vertical axis, and also assume j
to be constant, the calculation of EZH’] can be viewed geometrically as in figure 9.2a.
Next, note that Et0 ¥ is zero for all values of ¢ except ¢t = 0. Hence, E? ' is known for
all values of ¢, and from figure 9.2a it is then clear that we can calculate Et1 0 for all
values of ¢. Thereafter, once these have been determined, we can calculate Et2 0 for all
values of ¢. In this manner we are able to compute EZ’O for all values of 7 and t.

We can of course determine EE 7 for all values of j and t in exactly the same way
using the second of the above recurrence relations, which is shown graphically in figure
9.2b. However, we can now do more than this. Since we know EZ’O for all ¢ and ¢, we
can use Etl’O to compute Etl’j for all j and ¢, and we can use Ef’O to compute Etz’j for
all j and ¢, and so forth. Hence, in this manner we are able to compute E,’ for all 4, j
and t. The algorithm is implemented in the code as follows:

// First loop over t and i with j =0
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> 1 > ]
ij 1j
By By
ij i+1,5 1j i,j+1
Etj Et+ 2J Et Et )+
ij (%]
By By
(a) Equation (9.10): Forward calcu- (b) Equation (9.11): Forward calcu-
lation with respect to ¢ (j held con- lation with respect to j (i held con-
stant). stant).

Figure 9.2: Graphical illustration of the recurrence relations in equations (9.10) and (9.11).

E[dir](0,0,0) = exp(—alpha*beta*AB(dir)*AB(dir)/p);
for (int i = 0; i < iMax; i++){
// Treat the case t=0 separately due to (t—1) term
E[dir](i+1,0,0) = PA(dir)*E[dir](i,0,0) + E[dir](i,0,1);
for (int t = 1; t <=1+ 0+ 1; t++){
E[dir](i+1,0,t) = E[dir](i,0,t—1)/(2*p) + PA(dir)*E[dir](i,0,t) + (t+1)*E
[dir](i,0,t+1);

}

// Second loop over t and j and i

// Must here let i <= 1 because the forward loop is on index j
for (int i = 0; i <= iMax; i++){
for (int j = 0; j < iMax; j++){
E[dir](i,j+1,0) = PB(dir)*E[dir](i,j,0) + E[dir](i,j,1);
for (int t =1; t <=1+ j + 1; t++){
E[dir](i,j+1,t) = E[dir](i,j,t—=1)/(2*p) + PB(dir)*E[dir](i,j,t) + (t
+1)*E[dir](i,j,t+1);

9.3 Calculating the Hermite integrals R;,,

The Hermite integrals Ry, are calculated in class Integrator. They are needed in or-
der to calculate the one-particle Coulomb integrals in equation (4.90) and two-particle
Coulomb integrals in equation (4.95). The algorithm for determining them is reminis-
cent of the one described in the previous section.

The starting point is the auxiliary Hermite integrals

RgOO(“) A) = Fn(aAz)v (9.12)
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Figure 9.3: Equation (9.13): Forward calculation with respect to ¢ (u and v held constant).

where a = p and A = Rp¢ when calculating the one-particle Coulomb integral, a = «
and A = Rpg when calculating the two-particle Coulomb integral, and F;, is the Boys
function defined in equation (4.77). The reader is referred to sections 4.2.6 and 4.2.7
to refresh her memory on these quantities.

In the following discussion we will for simplicity assume that we are seeking the
coefficients needed for the one-particle Coulomb interaction between the electrons and
a nucleus, so that a = p and A = Rpc. We start by calculating R{j,, for all n €
{0,1,...,nmax} where npax is some maximum value. The value of nyax will become
clear at the end of the discussion. Our target values are R, = Ryy,. These coefficients
are computed via the recurrence relations

Ry = LRI, 4+ AcREL, (9.13)

RZu—l—l,v = “R?,ﬁm + AyR?utilﬂ (914)
1 1

Zu,v-{-l = UR;L,Z_,U—l + AZR?u—; : (915)

It is useful to visualize the above relations graphically as we did in the previous section.
The computational molecule of equation (9.13) is shown in figure 9.3. The other
relations have similar molecules. From the figure it is clear that starting with the
coefficients Rfj, we can calculate R for all n € {0,1,...,nmax — 1}. [Note that
R 5 is not needed since it is multiplied by 0.] Thereafter, using the latter coefficients
we can calculate Ry for all n € {0,1,...,nmax — 2}. We can continue this process
as illustrated in the left diagram of figure 9.4. Note that on every row we have the
restriction n 4+t < nyax. This is due to the structure of the computational molecule of
figure 9.3. We can thus compute coefficients for increasing values of ¢ until we reach ¢t =
tmax. Recall that ¢, = 7+ j, where 7 and j are the powers of the primitive Gaussians
Gi(a,z4) and G(b, z), respectively. Similarly umax = k+1 and vmax = m +n, where
k,l and m,n are the powers of the y and z factors of the Gaussians, respectively. We
have then obtained the target values R?,o,o fort € {0,1,...,tmax}-

Each row in the left diagram of figure 9.4 will serve as a starting row for similar
diagrams with axes (u,n) in which equation (9.14) is used for the forward iteration.
For example, the third row, i.e. the row with ¢ = 2, will provide the initial values from
which one can compute RQ’MO for all n and w such that © < upax and n+2+u < Nmax.
Similarly, the fourth row will give Rgf,u’[) for all n and u such that v < wupmax and
n+3+u < npax. This is illustrated in the right diagrams of figure 9.4. In this way one
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Figure 9.4: The left diagram illustrates how the target values R?,o,o are calculated starting
with the auxiliary values R{y,. The right diagrams show how the third and fourth rows of the
left diagram are used as initial values of new diagrams from which the target values RS, ; and
Rg,u,O are computed.

can calculate Rgu,o for all n, t and u such that t < tnax, 4 < Umax and n+t+u < Npax.

Finally, the coefficients R}, ; will serve as initial values for the computation of Ry,
for all n, t, u and v such that ¢ < tyax, U < Umax, UV < Umax and n+ ¢ +u + v < Npax.
We have then found the target values R,?w = Ry for all ¢ < thax, v < Umax and
v < Upax-

From the discussion above it is now clear that we must set Nmax = tmax +Umax+Vmax -
However, so far we have had the one-particle Coulomb integral of equation (4.90) in
mind. When calculating the two-particle Coulomb integral of equation (4.95) we must
replace tmax by tmax + Tmax, Umax DY Umax + Vmax and Umax BY Umax + @Pmax-

9.4 Calculating the Boys function

The Hermite integrals Ry,, discussed in the previous section are all obtained from an
initial calculation of the Boys function

1
Fy(z) = / exp(—t?) 21 dt. (9.16)
0

Throughout the thesis, the Boys function has been calculated as follows.
First, the largest value of n is determined. When calculating the Coulomb interac-
tion between the electrons and a nucleus, as in equation (4.90), we set

Nmax = tmax T Umax T VUmax, (917)
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where tpax =1+ 7, Umax = k + 1 and vyax = m + n. The integers i, j, k, [, m,n are the
powers of the Gaussian funtions G, and Gy, see equations (4.13) and (4.14). When
calculating the Coulomb interaction between the electrons, as in equation (4.95), we
set

Nmax = tmax + Umax + Umax + Tmax + Vmax + @max, (9.18)

where tmax, Umax and vmax are sums of powers of the Gaussians G, and Gy, and Tpax,
Vmax and ¢max are sums of powers of the Gaussians G, and Gy.
Second, the Boys function is evaluated for n = nyax by

(2n — 1! ™ .
F.(z) = ol —an 1 if x > 50, (9.19)

6

Fu(z) =Y i "*k(ii‘(_A””)k. if 2 < 50, (9.20)
k=0 ’

and by

where the functions F,(z;) are tabulated at z; and Az = x — ;. The Boys function
is tabulated at 1000 equispaced points x; on the interval [0,50]. The tabulated values
have been calculated by the trapeziodal rule with 1.0 - 10® points.

Third, the Boys function for all n < npax is calculated by the recursion formula

20F,1(x) e
Fy(x) = ;n ) : (9.21)

9.5 Parallelization

In the Hartree-Fock solver, the biggest computational load is by far undertaken by the
Integrator class when calulating the two-particle integrals (uo|g|vA) and the Minimizer
class when transforming the AOIs to MOIs. These particular parts of the program have
therefore been coded to run in parallel using the library Open MPI.
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Code development and validation

10.1 Code development in Qt Creator

The code has been written using the Qt Creator integrated development environment
(IDE). The IDE uses the tool qmake which automates the generation of Makefiles and
greatly simplifies the build process. The Makefile is generated based on the information
in one or more project files. For example, if a project consists of the files

/
tmain. cpp
myclass/
tmyclass.h
myclass.cpp
the project file (.pro) should be placed in the same directory as main.cpp and should
look something like

TEMPLATE = app

TARGET = myapp

CONFIG —= qt

SOURCES += main.cpp \
myclass/myclass.cpp

HEADERS += myclass/myclass.h

INCLUDEPATH += myclass

The TEMPLATE variable is set to app, which means that the Makefile builds an applica-
tion (executable). The TARGET variable specifies the name of the executable. Since it is
not a Qt application, qt is subtracted from the CONFIG variable. The variables SOURCES
and HEADERS specifies the source and header files which are used in the project. Di-
rectories in which gqmake searches for header files can be added to the INCLUDEPATH
variable. This is not essential, but has the effect that include directives can be changed
from

#include "myclass/myclass.h"

to

#include "myclass.h"

97
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With qmake one also has the option to create subprojects. For example, it is
possible to have one subproject which creates a library from the source files, and one
or more other subprojects which use this library. This is especially useful during code
development, since one can then have one subproject which is the main application and
another subproject which tests the various classes of the source code. This approach
has been used in this thesis. The file structure of the project is as follows

| _mainproject.pro

| defaults.pri

, _src/

| _src.pro

| _myclassl/
myclassl.h
myclassl.cpp

. _myclass2/

tmyclasslh
myclass2.cpp

, _app/
app.pro
main.cpp

| tests/

ttests.pro

main.cpp

With such a setup, the main project as well as each subproject must have its own
project file. The mainproject.pro files should look something like

TEMPLATE = subdirs
SUBDIRS = \
src \

app \
tests
CONFIG += ordered

where TEMPLATE is now set to subdirs, which signifies that each subdirectory, specified
in the SUBDIRS variable, will be a subproject. The variable CONFIG is set equal to
ordered so that each subproject is built in the order indicated. This is important, since
the file src.pro will have TEMPLATE set equal to lib, telling qmake to create a library,
and the other subprojects app and tests will use this library. The file src.pro looks
something like:

include(../defaults.pri)

CONFIG —= qt

TARGET = myapp

TEMPLATE = lib

SOURCES += myclass1/myclasst.cpp \
myclass2/myclass2.cpp \

HEADERS += myclass1/myclass1.h \
myclass2/myclass2.h \

The first line includes the file defaults.pri in which default settings shared by all sub-
projects are set. This can for example be the inclusion of libraries such as Armadillo,
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Lapack, Blas etc. The project file for the application, which uses the library, should
look something like:

include(../defaults.pri)
TEMPLATE = app

CONFIG —= qt

SOURCES += main.cpp

LIBS += —L../src —lmyapp

Here the library created in subproject src is included in the LIBS variable. The project
file of the tests project is essentially the same.

10.2 Testing the classes

Throughout the code development, many of the classes and routines of the project have
been tested and validated in the tests subproject. The tests have been implemented
using the library UnitTest++, which is very easy to use. All the tests are written in
the file main.cpp. For example, the Boys function can be tested by defining the test

TEST(BoysIntegrals){
BoysFunction boys(3);
boys.setx(2.3252);
CHECK_CLOSE(boys.returnValue(1), 1.0007267355e—01, 1.0E—10);
CHECK_CLOSE(boys.returnValue(3), 2.5784878802e—02, 1.0E—10);
CHECK_CLOSE(boys.returnValue(6), 1.0688807154e—02, 1.0E—10);
CHECK_CLOSE(boys.returnValue(10), 5.8076406817e—03, 1.0E—10);

before int main(). The function CHECK_CLOSE checks the value returned by the
function boys.returnValue() against a precalculated value up to a presicion of 1.0 -
10710, Tests for other classes and routines have been defined similarly. The tests are
run simply by calling the function RunAl1Tests ():

int main()

{
return UnitTest::RunAllTests();

}

10.3 Code validation

It is important to confirm that the code is able to reproduce results published in the
literature. Table 10.1 shows calculated energies for the closed shell molecule NH; and
open shell molecule CN together with values given by Gill et al [31] and Boldyrev et
al [32]. The NH; molecule has been analysed with a restricted determinant and the
6-314++G** basis set (46 basis functions), whereas the CN molecule has been analysed
with an unrestricted determinant and the STO-3G basis set (10 basis functions). All
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Table 10.1: Total energies for the CN and NHJ molecules validated against Gill et al [31]
and Boldyrev et al [32], respectively. The STO-3G basis set (10 basis functions) and unre-
stricted determinant was used for the CN molecule, whereas the 6-31++G** basis set (46 basis
functions) and restricted determinant was used for the NH;} molecule. The frozen core approx-
imation was used in both cases, freezing the two and one lowest orbitals of the CN and NHI
molecules, respectively.

Mol. Det. Bond length (A) Work Energy (a.u.)

HF MP2 MP3
This —91.02639 —91.10287  —91.11262
ON - Restr. 1.235 [31]  —91.02639 —91.10287  —91.11262
This —56.545683 —b6.734616 —56.749123

_l’_
NH; Unrestr. 1.022 32] N.A. N.A. —56.749124

energies have been calculated up to the level of third order Mgller-Plesset perturbation
theory. The frozen core approximation was used in both cases. This means that
the core molecular orbitals have been left out of the perturbation sum. The core
molecular orbitals are defined as the n molecular orbitals of lowest energy, where n is
the number of core atomic orbitals of the system. This definition might sound rather
unsophisticated. Nonetheless, it is the definition used in most quantum chemistry
program packages, see for example the documentation for NWCHem [33]. Note that
we are talking about spatial orbitals here; freezing n molecular orbitals corresponds to
freezing 2n electrons.

The nitrogen atom, being the only atom of NHJ with core atomic orbitals, have
one core atomic orbital, namely the 1s orbital. This means that the molecular orbital
of lowest energy is left out of the perturbation sums of this molecule. On the other
hand, both atoms of the CN molecule have core atomic orbitals, namely the 1s orbital.
Hence, the two molecular orbitals of lowest energy are ignored in the perturbation sums
for this molecule.

As the numbers show, the code reproduces the results from the literature. The only
discrepancy is at the eighth significant digit of the MP3 energy for the N HI. However,
this discrepancy is extremely small, and should cause no worry.



Part 111

Results and conclusion

101






Chapter 11

Results

In this chapter we present results from calculations on various molecular systems. We
first discuss the hydrogen molecule which, although a simple system, serves to illus-
trate some interesting aspects of the various methods. Thereafter, we move on to larger
systems, both closed shell and open shell molecules. The chapter ends with an investi-
gation of the C-C dissociation energy of the CoHg molecule (ethane). Throughout the
chapter, we try to discuss the computational methods as well as the physics involved.

11.1 The hydrogen molecule

The hydrogen molecule is the simplest molecule one can think of. Nevertheless, it is an
interesting case to study using the methods discussed in the previous chapters. There
are mainly two reasons for this. First, it has been studied thoroughly by chemists by
a vast number of different methods, and it therefore serves as a means to validate the
code. Second, although a simple system, it illuminates some interesting aspects of the
methods.

Table 11.1: Restricted Hartree-Fock energies in a.u. for Hy for a selection of basis sets. The
internuclear distance has been set to d = 1.4 a.u. The results are in perfect agreement with
Szabo et al [3].

2 Schulman et al [34]

b Moskowitz et al [35]

Basis set Eur
STO-3G —1.116714
4-31G —1.126743
6-31G** —1.131284
HF-limit? —1.134

Experimental energy®: —1.1746
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Figure 11.1: The energy of the Hys molecule as a function of the internuclear distance d. The
6-31G** basis set was used in the calculations.

11.1.1 Hartree-Fock energies

Table 11.1 shows the energies from a restricted Hartree-Fock calculation with the inter-
nuclear distance set equal to 1.4 a.u., which is close to the experimental bond length.
All results are in perfect agreement with those of Szabo et al [3]. The STO-3G, 4-31G
and 6-31G** basis sets have a total of 2, 4 and 10 basis functions, respectively. It is
clear that the results improve as we increase the size of the basis set. However, there
is a threshold, the Hartree-Fock limit, beyond which the Hartree-Fock method cannot
take us. With the 6-31G** basis set, the energy nearly reaches this limit and accounts
for 96.3% of the total energy.

Figure 11.1 shows the energy as a function of the internuclear distance d obtained
from restricted and unrestricted Hartree-Fock calculations with the 6-31G** basis set.
For distances not far from the equilibrium bond length, both curves have the shape
we expect. However, they exhibit radically different behaviour when the distance is
large. Clearly, the restricted calculation gives unsatisfactory results in this case. We
know this since the energy of the system should approach that of two single hydrogen
atoms, which is -1.0 a.u., as d — co. Thus, even though we have a closed shell system
near the equilibrium bond length, it is apparently not well described by a closed shell
determinant as the molecule dissociates. The reason for this is as follows.

Recall that a restricted determinant is characterised by requiring two and two spin
orbitals to have identical spatial parts. When the internuclear distance is close to
equilibrium, this is a feasable assumption; the nuclei “share” electrons, and a single
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Figure 11.2: Comparison of the spatial orbitals resulting from restricted and unrestricted
Hartree-Fock calculations of the hydrogen molecule. The curves represent the squared magni-
tude of the orbtitals projected onto the z-axis. The nuclei are located at = —3 and x = 3. In
the RHF calculations, both electrons are confined to occupy the same spatial orbital, as shown
in the uppermost plot, whereas in the UHF calculations, the electrons can occupy distinct
spatial orbitals, as shown in the two lowermost plots.
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electron is equally likely to be located near one as the other. However, as the distance
increases, the molecule dissociates into two single hydrogen atoms. Hence, it no longer
makes physical sense to force both electrons to occupy the same spatial orbital; the
two electrons are now located at different nuclei. This can only be accomplished by
the unrestricted determinant. Figure 11.2 illustrates this point. It shows the spatial
orbitals obtained from restricted and unrestricted calculations with an internuclear
distance of 6.0 a.u. The restricted spin orbitals are given by

P1(x, 8) = g1(x)a(s)

Po(x, s) = ¢1(x)B(s), (11.1)

where ¢1(z) is the spatial orbital in the uppermost diagram of figure 11.2, and the
unrestricted spin orbitals are given by

(11.2)

where ¢ (x) and qb’f (z) are the spatial orbitals of the two lowermost diagrams. Clearly,
the restricted spin orbitals are unfeasable for large bond lengths.

11.1.2 Mgller-Plesset energies

Table 11.2 shows results obtained from second and third order perturbation theory
at an internuclear distance of 1.4 a.u. It is clear that the perturbative contribution
increases with the size of the basis set, as expected. With the 6-31G* basis set, the
third order perturbation theory accounts for 99.0% of the exact energy. We mention
that all the results listed are in perfect agreement with those of Szabo et al [3].

Table 11.2: Restricted Mgller-Plesset energies in a.u. for a selection of basis sets. The
internuclear distance has been set to d = 1.4 a.u. The results are in perfect agreement with
Szabo et al [3].

& Schulman et al [34]

b Moskowitz et al [35]

Basis set ERrur Ernvp2 Ervps
STO-3G —1.116714 —1.129872 —1.134718
4-31G —1.126743 —1.144133 —1.149342
6-31G** —1.131284 —1.157626 —1.163142
HF-limit? —1.134

Experiment”: —1.1746

Figure 11.3 shows potential energy curves obtained from calculations at different
levels of theory. Near the equilibrium bond length, the RMP2 and RMP3 curves have
the shape we expect them to have. And for larger bond lengths, they behave somewhat
better than the RHF curve. However, the RMP2 and RMP3 energies diverge towards
negative infinity as d — oo.
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(b) Unrestricted calculation.

Figure 11.3: The energy of the Hy molecule as a function of the internuclear distance d
obtained from calculations at different levels of theory. The 6-31G** basis set was used in the
calculations.
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The unrestricted curves behave more realistically, converging towards approxi-
mately —1 as d — oo. It is evident that correlations play an important role for small
bond lengths. However, as the bond length increases, the correlation energy gradu-
ally decreases towards zero, as it should; two independent hydrogen atoms have no
correlations.

11.1.3 Equilibrium bond length

One of the most common uses of Hartree-Fock and Mgller-Plesset perturbation theory,
is the calculation of equilibrium geometries of molecules. This is a rather easy task for
the Hs molecule since the potential energy surface has only one variable. Nevertheless,
it serves as a good first test for the minimiser. The computed bond lengths are shown
in table 11.3. All but one value underestimates the bond length. However, larger basis
sets and the inclusion perturbative corrections brings us closer to the experimental
value.

Table 11.3: Equilibrium bond lengths of the Hy molecule calculated with different levels of
theory.
& Szabo et al [3]

Basis set RHF RMP2 RMP3
STO-3G 1.346 1.368 1.380
4-31G 1.379 1.394 1.402
6-31G** 1.384 1.387 1.390

Experimental bond length #: 1.401

11.2 Closed shell molecules: H,O, CH;, NH3; and FH

11.2.1 Energies

The energies for the so-called ten-electron series are listed in table 11.4. Consider first
the Hartree-Fock energies. Even for the minimal basis set STO-3G, the calculated
energy is not too far from the Hartree-Fock limit, merely 1.4% above in average. The
largest basis set 6-31G** reduces the deviation to 0.1% in average. Within the Hartree-
Fock approximation, there is little to be gained from increasing the size of the basis
set further; the difference between the exact energy and the calculated Hartree-Fock
energy is almost entirely due to correlations at this point.

For the specific atoms considered here, the contribution from second order Mgller-
Plesset perturbation theory typically affects the third significant digit, whereas the
third order contrubution affects the fourth digit. This indicates that most of the
correlation energy is accounted for by the second order term.

The STO-3G basis set for HoO has a total of 7 basis functions, and the system
itself is composed of 10 electrons. Thus, within this basis set, there are only 2 virtual
spatial orbitals to which the 5 occupied orbitals may be excited, and the perturbative
terms cannot be expected to improve the energies significantly. On the other hand, the
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Table 11.4: Energies in a.u. of the ten electron series.
@ Hariharan et al [306]

Mol. Basisset Bond Bond RHF RMP2 RMP3
length  angle

H,O STO-3G  1.809 104.52° —74.962940 —74.998439 —75.008031

4-31G —75.907391 —176.036868 —76.038497
6-31G* —76.010527 —176.199006 —76.204711
6-31G** —176.023159 —176.222419 —76.228538
HF-lim?®: —76.065

CHy STO-3G  2.050  109.47° —39.726853 —39.782880 —39.797785

4-31G —40.139728 —40.240297 —40.253737
6-31G* —40.195168 —40.336980 —40.352991
6-31G** —40.201700 —40.369855 —40.388048
HF-lim?: —40.225

NH3; STO-3G  1.913 106.67° —55.454079 —55.501291 —55.513485
4-31G —56.102428 —56.219981 —56.227471
6-31G* —56.184112 —56.357331 —56.368890
6-31G** —56.195205 —56.386897 —56.399477
HF-lim?: —56.225

FH STO-3G  1.733 —98.570787 —98.588134 —98.593660
4-31G —99.887258 —100.016682  —100.015452
6-31G* —100.002862  —100.183850  —100.185387
6-31G** —100.011348 —100.196683 —100.198231
HF-lim?: —100.071

6-31G** basis set contains 25 basis functions, meaning that each occupied orbital may
be excited to 20 different virtual orbitals. Clearly, we should expect this basis set to
give a more substantial correction to the Hartree-Fock energies. The tabulated results
confirm this.

How many basis functions should be included in order to obtain good results from
perturbation theory? To answer this, we have investigated how the perturbative correc-
tions from MP2 and MP3 depend on the choice of basis set for the HoO molecule. Cal-
culations were performed in the configuration given in table 11.4 for the following basis
sets: STO-3G, 4-31G, 6-31G*, 6-31G**, 6-311G™*, 6-311++G**, 6-311++G(3df,3pd).
They have a total of 7, 13, 19, 25, 31, 37 and 83 basis functions, respectively. The
corrections are plotted as a function of the ratio Ny yirt./Npoce. in figure 11.4. Here
Ny, virt. and Ny oce. are the numbers of virtual and occupied spatial orbitals, respec-
tively. The plot suggests that it is optimal to include approximately 5 times as many
virtual states as occupied states or more.
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Figure 11.4: Plot of energy corrections for the HoO molecule obtained from second and third
order Mgller-Plesset perturbation theory as a function of Ny virt./Nb occ., Where Ny, yiye. and
Np,occ. are the numbers of virtual and occupied spatial orbitals, respectively.

11.2.2 Potential energy curves

As explained in chapter 5, the proper way to judge the quality of results obtained
from perturbation theory, is to compare them to full configuration interaction results.
Figures 11.5 and 11.6 do this for the CH4 and FH molecules. The plots show the energy
as a function of bond length. In the calculations for the CHy molecule, the length of a
single CH bond is varied while all others are kept at a constant length of 1.086 A. The
calculations have been performed with the 6-31G* and 6-31G** basis sets, respectively.
The full CI results are taken from Dutta et al [37]. The frozen-core approximation has
been used throughout (see section 10.3).

Before discussing the results in detail, it is worth mentioning that Dutta et al [37]
also performed calculations at the RHF, UHF, RMP2 and UMP2 levels (as well as
coupled cluster and DFT, but not RMP3 or UMP3), and that our results match theirs
perfectly, thus validating large portions of the code. They tabulated values with a
precision of 8-9 significant digits.

From figure 11.5 and 11.6 we see that, for bond lengths near the equilibrium value,
most of the correlation energy is indeed taken care of by the second order term. This
is particularly the case for the FH molecule. The inclusion of the third order term
brings the energy almost all the way down to the full CI energy. This is is the case
for the restricted as well as the unrestricted results. For large bond lengths, however,
the RHF curve overshoots the energy drastically, just as we saw for the hydrogen
molecule. The perturbation theory corrects for some of this error, but the RMP2 and
RMP3 curves are still far from the full CI curve. Furthermore, they diverge to negative
infinity as the bond length increases. Thus, the restricted calculations are not suitable
when studying bond dissociation. On the other hand, the unrestricted results behave
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Figure 11.5: Potential energy curves of the CH4; molecule as a function of the distance d
between one of the hydrogen atoms and the carbon atom. All other hydrogen atoms are kept
at a distance of 1.086 A. The calculations were performed with the 6-31G* basis set, and the
frozen core approximation was used (see main text). The FCI results are taken from Dutta et
al [37].
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Figure 11.6: Potential energy curve of the FH molecule as a function of the internuclear
distance d. The calculations were performed with the 6-31G** basis set, and the frozen core
approximation was used (see main text). The FCI results are taken from Dutta et al [37].
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correctly for large bond lengths.

However, it is clear that also the unrestricted results are flawed: For intermediate
bond lengths, approximately 3 — 5 a.u. for the CH4 molecule and 2.5 — 4 a.u. for the
FH molecule, the unrestricted energies behave rather strangely. Evidently, the Mgller-
Plesset perturbation theory converges poorly in this range. This type of behaviour has
also been observed and discussed by other authors, and it is hypothesised [31, 38, 39]
that it is due to spin contamination of the unrestricted determinant. We will investigate
this in the following.

An exact state of a system composed of N® spin-up electrons and N? spin-down
electrons, is an eigenstate of S? and S, with eigenvalues S(S + 1) and Mg = (N® —
NP /2, respectively, where S can take the values

[n® —nf| |n® —nP| n® 4 nf
..., ——— 11.
se gl ML e (113

and where n® and n? are the numbers of unpaired spin-up and spin-down electrons,
respectively [17]. In most cases S = (N® — N®)/2. However, the unrestricted deter-
minant is not an eigenstate of S2. Rather, the expectation value of S? calculated with
the unrestricted determinant is given by (see appendix A)

No NB

a_ NB a_ NB
= T (M ) M- N e 1)

i=1 j=1

Assume for simplicitly that N® > NA. The equation above then reveals that the
expectation value is correct only if the two last terms cancel. This can for example
happen if every spin-down orbital is 'paired’ with a spin-up orbital, meaning that their
spatial parts are identical. If this is the case, then ¢§ = ¢f for i < NP. Further-
more, <¢f‘]¢]ﬁ ) = 0 for i # j since the set of functions {¢?} is orthonormal. Thus

|<¢f‘|¢f )|? = 6, the sum reduces to N”, and the last two terms cancel.

What we have just described is a restricted determinant. However, the whole point
of introducing unrestricted determinants is to relax the constraint of pairing every
spin-down orbital with a spin-up orbital. A consequence of this relaxation is that the
spin-up electrons may occupy regions of space which to a less extent are occupied by
the spin-down electrons. If this is the case, the last term of the above equation will not
sum up to NP, and (SQ> will be too large. We say that the determinant is contaminated
with higher multiplets of spin.

The ground states of FH and CH4 have N® = N, and the correct value of S
is therefore S = 0. We can test the degree of spin contamination by calculating the
expectation value in equation (11.4) and comparing it with the correct value (S?) = 0.
This has been done in figure 11.7, which shows (S?) as a function of bond length for
(a) CH4 and (b) FH. From the figure it is clear that (S?) = 0 for small values of
d. In fact, for these values, the unrestricted Hartree-Fock solution collapses to the
restricted solution and is therefore an eigenstate of S2. However, at d ~ 3.2 a.u. for
CHy4 and d ~ 2.5 a.u. for FH, the value of (S?) diverges rather abruptly away from
zero. Seen in relation to figure 11.5b and 11.6b, this supports the hypothesis that spin
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Figure 11.7: Plots of (S?) (equation (11.4)) as a function of bond length.

contamination plays a role in the poor convergence of the Mgller-Plesset perturbation
theory at intermediate bond lengths.

We end the discussion of spin contamination by mentioning that there exist meth-
ods which aim to remedy this issue. One such method is to use so-called projection
operators which are designed to annihilate the higher multiplets of spin. This method
have been applied by Schlegel [40] and Knowles et al [41].

11.2.3 Orbital energies and ionisation potentials

The orbital energies can be written as

ei = (Vil Flvi)
= (Wil Bl + > (il |andy). (11.5)
J

From this we see that ¢; is equal to the energy of the electron in spin orbital v;: It has
a kinetic energy term, a Coloumb term due to the interaction with the nuclei, and a
Coulomb term due to the interaction with all other electrons of the system. One can
therefore think of —¢; as the energy needed to remove said electron from the molecule
(ionisation potential), where the minus sign is placed in front because the energy must
be negative in order to describe a bound state. Although this is not strictly correct,
there is a theorem due to Koopmans [42] which says that —e; can nevertheless be a
good approzrimation for the ionisation potential.

Koopmans’ theorem states: Given an N -electron Hartree-Fock single determinant
|NUo) with occupied spin orbital energies e;, then the ionisation potential to produce
an (N — 1)-electron single determinant |N~1W,) with identical spin orbitals, obtained
by removing an electron from spin orbital 1;, is —&;.

The orbital energies of the HoO, CH4, NH3 and FH molecules are shown in figure
11.8. The dashed line in the diagrams marks the separation between the occupied
and virtual states. According to Koopmans’ theorem, the highest occupied molecular
orbital (often abbreviated HOMO) is approximately equal to the ionisation potential.
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(a) HyO (b) CH, (c) NHs (d) FH

Figure 11.8: Orbital energies (a.u.) obtained from restricted Hartree-Fock calculations with
the 6-31G** basis set.
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11.2.4 Equilibrium geometries

One of the most useful applications of Hartree-Fock and Mgller-Plesset perturbation
theory is the calculation of equilibrium geometries of molecules. Results for the ten
electron series are shown in tables 11.5 and 11.6. The initial geometries given to the
Nelder-Mead minimiser as well as the resulting geometries are shown in figure 11.9.
The inital geometry was set rather unrealistically to test the minimiser. It should be
noted, however, that for larger molecules it is important to make an intelligent first
guess. Otherwise, convergence can be very slow, or in the worst case, the nuclei can
get stuck in the wrong configuration.

From table 11.5, we see that Hartree-Fock theory usually underestimates bond
lengths. One might guess that increasing the size of the basis set would increase the
bond length towards the correct value. Suprisingly, however, there is no such trend.
The MP2 and MP3 results predict longer bond lengths in better agreement with the
experimental values. In general, the use of MP3 with the basis set 6-31G** seems to
give best results, deviating from the exact bond lengths by no more than 0.02 a.u. in
the results presented here.

The calculated bond angles are shown in table 11.6. It is seen that the angles have
a greater spread than the bond lengths. Some of the numbers stand out. First of all,
we notice the poor performance of the STO-3G basis set. In the RHF calculations,
it estimates a bond angle of 100.0° for HoO, undershooting the exact value by 4.5°.
Surprisingly, the RMP2 and RMP3 calculations actually worsen the results. However,
as discussed in the previous subsection, it does not make much sense to use perturbation
theory with a minimal basis set.

However, perhaps even more suprising is the fact that increasing the basis set to
4-31G worsens the RHF results, although this time in the opposite direction. For
example, the RHF method overestimates the bond angle of the NH3 molecule by as
much as 9.1°. However, as soon as we use the 6-31G* basis sets, the angles are in quite
good agreement with the experimental values. This could indicate that polarising
functions (see subsection 4.1.3) play an important role when estimating bond angles.

The MP3 level of theory combined with the 6-31G* or 6-31G** basis sets gives
the best estimates for the bond angles, resulting in a maximum error of 0.6° for the
molecules considered.

11.2.5 Electron density

The solution of the Hartree-Fock equations gives direct access to the electron density
p(x) = N/dx2 dxsz - - dxpy |¥o(x, X2, X3, ..., xn)[% (11.6)

Note that p(x) depends upon the spatial coordiantes r as well as spin s. It is common
practice to integrate over the spin coordinate and define the electron density as

pr) = 37 flr,s), (11.7)
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Table 11.5: Equilibrium bond lengths in a.u. of the ten electron series.
@ Rosenberg et al [43]

b Meyer et al [44]

¢ Rauk et al [45]

4 Cade et al [46]

© Szabo et al [3]

Mol. Basis set RHF RMP2 RMP3

H->O STO-3G 1.870 1.915 1.932
4-31G 1.796 1.842 1.838
6-31G* 1.790 1.830 1.827
6-31G** 1.782 1.816 1.810
Near-HF-lim.?: 1.776
Experiment®: 1.809

CH,4 STO-3G 2.047 2.077 2.086
4-31G 2.043 2.066 2.069
6-31G* 2.048 2.059 2.061
6-31G** 2.048 2.049 2.049
Near-HF-lim.P: 2.048
Experiment®: 2.050

NH; STO-3G 1.951 1.998 2.012
4-31G 1.873 1.907 1.908
6-31G* 1.894 1.921 1.921
6-31G** 1.891 1.912 1.910
Near-HF-lim.¢: 1.890
Experiment®: 1.912

FH STO-3G 1.806 1.843 1.863
4-31G 1.743 1.791 1.786
6-31G* 1.721 1.765 1.761
6-31G** 1.702 1.740 1.735
Near-HF-lim.4: 1.696

Experiment®: 1.733
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(a) Initial geometry of HO.

(c) Initial geometry of CHy.

(e) Initial geometry of NHsj.

Figure 11.9: Initial and equilibrium geometries obtained from calculations with the STO-3G

basis set.

Chapter 11

(b) Equilibrium geometry of H5O.

N

(

4

(d) Equilibrium geometry of CHy.

"\. _—

(f) Equilibrium geometry of NHs.
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Table 11.6: Equilibrium bond angles in degrees of the ten electron series.
® Rosenberg et et al [43]

b Rauk et al [45]

¢ Szabo et al [3]

Mol. Basis set RHF RMP2 RMP3

H>O STO-3G 100.0 97.3 96.8
4-31G 111.2 108.9 109.2
6-31G* 105.5 104.0 104.2
6-31G** 106.0 103.9 104.3
Near-HF-limit®  106.1
Experiment®: 104.5

NHj STO-3G 104.2 100.9 100.4
4-31G 115.8 113.9 113.5
6-31G* 107.2 106.4 106.3
6-31G** 107.6 106.1 106.1
Near-HF-limit®  107.2
Experiment®: 106.7

which is the definition we will use throughout this thesis. For a restricted determinant,
equation (11.7) simplifies to

N/2
(r) =2 |gr(r)], (11.8)
k=1
which, when inserting the solution obtained from the Hartree-Fock equations
M
r) =Y Cuxu(r), (11.9)
pn=1
can be written as
M
= D Buxu(t)x;(r), (11.10)
pr=1

where P, is the density matrix defined in equation (3.62). Similarly, the electron
density for the unrestricted determinant reads

p(r) = p(x) + pP(r), (11.11)
where
Z X (T) X0 (T), (11.12)
=1
Z X (1) X5 (), (11.13)

=1
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(a) CH4 (b) NHS

(C) HQO

Figure 11.10: Charge density calculated on the RHF level of theory using the 6-31G** basis
set.

are the spin-up and spin-down densities, respectively, and Pj, and Pfy are defined in
equations (3.81) and (3.82). Plots of the electron densities for HoO, CH4 and NHjz are
shown in figure 11.10.

The quantity p(r)dr is the probability of finding an electron in the volume dr at r.
Molecules which do not bond will tend to have non-overlapping electron densities (due
to the Pauli principle). Hence, the electron density tells us something about the size of
a molecule. Furthermore, since covalent bonds between atoms are due to overlapping
orbitals, the electron density gives information about how the atoms are bonded within
a molecule.

11.3 Open shell molecules: CH3; and O,

In the previous section we studied mulecules which were all in a singlet spin state.
This means that, when placed in or near their equilibrium configurations, they are
well described by restricted closed shell determinants. In fact, we could equally well
have analysed the molecules with unrestricted determinants, but these would then



121 Results Chapter 11

automatically reduce to the corresponding restricted determinants.
However, molecules which are not singlets cannot be analysed by restricted closed
shell determinants. We will study two such examples in this section.

11.3.1 The CHj; radical

The CHj radical has 9 electrons, and the quantum number for the z-component of spin
must therefore be nonzero. If we think in terms of molecular orbitals, we can picture
placing the first electron in the lowest molecular orbital with spin up, then placing the
second electron in the same orbital, but with spin down (due to the Pauli principle).
The first orbital is then filled, and the third electron must be placed in the second
orbital. Continuing like this, we end up with 5 spin-up electrons and 4 spin-down
electrons, and thus Mg = 1/2. It is possible to have Mg > 1/2, but such states will
be excited states. Since there is one unpaired spin-up electron, the quantum number
related to the total spin is S = 1/2, and the system is a doublet.

The equilibrium geometry was first calculated using the the unrestricted Hartree-
Fock method with the 6-31G** basis set. The molecule was found to be planar with the
hydrogen atoms placed at the corners of an equilateral triangle and the carbon atom
placed in the center of the triangle. The bond length between the carbon atom and each
hydrogen atom was calculated to be d = 2.027. With this bond length, the energy and
squared magnitude of the total spin was calculated with the 6311++G(3df,3pd) basis
set. The parenthesis indicate that first row atoms are polarised with three d-functions
and one f-function' and that the hydrogen atom is polarised with three p-functions
and one d-function. This is a rather large basis set with a total of 102 basis functions
for the CH3 molecule. The results are listed in table 11.7.

The squared magnitude of the total spin was calculated to be (S?) = 0.7620, which
is close to the exact value S(S + 1) = 3/4. Thus we can conclude that the spin
contamination is relatively modest in this case.

The so-called spin density

p5(x) = p°(r) - PP (1), (11.14)

where p®(r) and p®(r) are defined in equations (11.12) - (11.13), gives information
about the location of the unpaired electrons of the system. Figure 11.11 shows a plot
of the spin density for the CHs molecule calculated with the 6-31G** basis set. All
isosurfaces have the same absolute value, the one centered on the carbon atom being
positive, and the others being negative.

11.3.2 The O, molecule

In the previous subsection we made a short reasoning regarding the electrons and which
molecular orbitals they occupy in the ground state of the CH3 molecule. This led us
to conclude that there should be 5 electrons with spin up and 4 with spin down. The
same reasoning for the Oo molecule might suggest that there should be 8 electrons with

!Note, however, that each d function has six components duy, dyz, dez, doz, dyy and d.,. Similarly,
the f-function has 10 components.
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Figure 11.11: Contour plot of the spin density of the CH3 radical computed with the 6-31G**
basis set. All isosurfaces have the same absolute value, the one centered on the carbon atom
being positive, and the others being negative.

Table 11.7: Calculated energies (a.u.) and spin for the CHs radical. The bond length
d = 2.027 a.u. was calculated using the UHF-method with the 6-31G** basis set. The energies
were computed with this bond length and the larger 63114++4G(3df,3pd) basis set (102 basis
functions).

UHF UMP2 UMP3
Energy —39.577217 —39.766506 —39.785292
(S?) 0.7620 - -
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Table 11.8: Energies (a.u.) and spin for the Oz molecule calculated with the
6-3114++G(3df,3pd) basis set (90 basis functions). The bond length has been set equal to the
experimental value® 2.282 (a.u.)

2 Filippa et al [47]

(S?) Energy
Determinant M, HF HF MP2 MP3
Restricted 0 0 -149.588566 -150.142272 -150.130182

0 1.0232 -149.648202 -150.152525 -150.152971
1 2.0487 -149.674954 -150.189863 -150.184227

Experimental energy®: -150.3268

Unrestricted

spin up as well as 8 electrons with spin down so that Mg = 0. However, calculations
reveal that this is not the case. Table 11.8 shows the results from calculations performed
with restricted as well as unrestricted determinants. The unrestricted calculations were
carried out with two different spin configurations: Mg = 0 (8 spin-up and 8 spin-down
electrons) and Mg = 1 (9 spin-up and 7 spin-down electrons). We make the following
observations.

Firstly, we note that the lowest Hartree-Fock energy is obtained when Mg = 1.
In this electron configuration, there are two unpaired spin-up particles, and the exact
state is therefore an eigenstate of the total spin operator S? with S = 1. Thus the
results predict that the ground state of Os is a triplet. The calculated total spin is
(S?) = 2.0487 which is not far from the exact value of 2. Hence, the determinant is
only mildly contaminated with higher spin states.

Secondly, the unrestricted determinant with Mg = 0 yields a lower and therefore
also more accurate Hartree-Fock energy than the restricted determinant. However, this
determinant does a poor job in describing a singlet state due to severe spin contami-
nation.

Thirdly, the third order Mgller-Plesset corrections increase the energy for two of
the determinants, which is somewhat unexpected. However, this type of oscillatory
behaviour has also been observed by other authors, see for example Cremer and He
[48].

The squared magnitude of the molecular orbitals occupied by the nine spin-up
electrons in triplet Oy are shown in figure 11.12. They are ordered by increasing
energy. The spin-down orbitals are similar to the first seven spin-up orbitals.

According to Atkins [49], one can to a first approximation think of the MOs as
being formed by AOs in a rather simple way. In this picture, the first MO is thought
to be simply the sum of the atomic 1s orbitals. It is labeled 1o, where the subscript
g stands for gerade, which is the german word for even. It indicates that the orbital is
even under inversion of coordinates, r — —r. The second MO is the difference between
the the two 1s AOs and is therefore named 1o, where u stands for ungerade, meaning
odd. Thus the 1o, MO is odd under the inversion of coordiantes. Since the two 1s
AOQs are core, they are considered to be unimportant when forming bonds with other
atoms. The two first MOs of figure 11.12 support this; there is no overlap between the
AOs which form them. The third and fourth MOs are named 20, and 20, and are
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(a) 1oy (doubly occupied)  (b) 1o, (doubly occupied)  (c) 20, (doubly occupied)

(d) 20, (doubly occupied) (e) 1m, (doubly occupied)  (f) 1m, (doubly occupied)

(8) 304 (doubly occupied) (h) 17, (singly occupied) (i) 1m, (singly occupied)

Figure 11.12: The molecular orbitals |q5‘,;f|2 occupied by the nine spin-up electrons in triplet
O5. The orbitals are ordered by increasing energy. The spin-down orbitals are similar to the
first seven spin-up orbitals. The calculations were performed with the 6-31G* basis set. See
the main text for an explaination of the names of the molecular orbitals.
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1z, Lz, | 17, 17z,
—06 B 36g 7 36g
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(a) Spin-up orbital energies (b) Spin-down orbital energies

Figure 11.13: Orbital energies (a.u.) of triplet Oy obtained from unrestricted Hartree-Fock
calculations with the 6-31G* basis set.
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formed from the 2s AOs in the same way as the first two MOs were formed from the
1s AOs. Since the 2s orbitals are valence orbitals, they are important when creating
bonds. This agrees with the figure; the AOs which form the third and fourth MOs are
clearly overlapping, and they do indeed look like something we would get when adding
and subtracting two atomic 2s orbitals. The remaining MOs are constructed from 2p
AOs. In particular, the fifth MO is a sum of 2p, AOs, where the z-axis is directed
along the line passing through both nuclei. It is therefore named 1m,, and it is odd
since each of the 2p, AOs are odd. Similarly, the sixth MO is a sum of 2p, AOs and
is also named 1m,. Although different in appereance, the seventh MO is actually a
sum of 2p, AOs. Its different shape is due to the fact that the AOs from which it is
formed meet “head on” in between the nuclei. Since it looks somewhat like an atomic
s orbtitial, it has been given the name 30,. Finally, the last two MOs are the even
versions of the two 17, MOs mentioned previously.

The orbital energies are shown in figure 11.13. Interestingly, although the seven
lowest spin-up MOs are similar to the spin-down MOs, their energy levels are different.
This is because the two extra spin-up electrons have an exchange interaction with the
other spin-up electrons, but not with the spin-down electrons.

The degeneracy of the two highest spin-up MOs (17,) gives a heuristic explaination
for the fact that the ground state of Og is a triplet. The two electrons with highest
energy can be placed in separate 1w, orbitals and with parallell spins, which is ener-
getically favourable compared to placing them in the same orbital and with opposite
spins.

11.4 Dissociation energy of CoHy to 2CHj

In this section we study the C-C bond dissociation energy of CoHg (ethane). This is a
rather interesting case since experimental values are available, that is, values actually
obtained in the lab. In the previous sections, however, experimental values referred to
the exact or the most accurate eigenvalues of the Hamiltonian (2.3) which the author
could find in the literature.

The C-C bond dissociation energy was calculated simply by subtracting the energy
of one CoHg molecule from the energy of two CH3 molecules:

Eqiss = 2E(CH;) — E(C,Hg). (11.15)

The energies of the CoHg and CHg molecules were calculated with the restricted and
unrestricted methods, respectively, and with the 6-31++G** basis set. For the geom-
etry of the CHs molecule, we used the bond length found in the previous section, that
is d = 2.027 a.u. The geometry of CoHg was found by minimising the energy with
the STO-3G basis set. The result of the minimisation is summarised in table 11.9 and
figure 11.14. As the numbers show, one of the carbon-hydrogen bonds is slightly longer
than the others. Also, two of the angles are slightly larger. These variations give an
indication of the precision of the minimisation algorithm on this particular molecule.
The slight variation of values is due to the fact that the energy is rather insensitive to
small perturbations of the geometry near equilibrium.
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Table 11.9: Bond lengths (a.u.) and bond angles calculated for the C3Hg molecule using
the STO-3G basis set. The positions of all atoms were varied freely during minimisation (no
symmetries exploited). The atom numbering is defined in figure 11.14.

Bond length Bond angle
d(C1-C1) 2.906
d(C1-H1) 2.502 C2-C1-H1) 110.8°

0

2.502 0
2.502 0
0

0

0

)
) C2-C1-H2) 110.5°
)
d(C2-H4) 2.502
)
)

( )
( )
(C2-C1-H3) 110.8°
(C1-C2-H4) 110.8°
2.502 ( )
2.503 ( )

C1-C2-H5) 110.5°

C1-C2-H6) 110.8°

‘H3

Figure 11.14: Equilibrium geometry of the CoHg molecule calculated with the STO-3G basis
set. Bond lengths and angles are listed in table 11.9.

Table 11.10: C-C bond dissociation energy for the CoHg molecule calcultated with the 6-
31++G** basis set. The energies of the CoHg and CH3 molecules were calculated with the
restricted and unrestricted methods, respectively. The dissociation energy was calculated ac-
cording to equation (11.15) without correcting for the motions of the nuclei (see main text).
For the CH3 molecule, the bond length was set equal to d = 2.027 a.u., as calculated in the
previous section. The geometry of the CoHg molecule is summarised in table 11.9 and figure
11.14. All values below are in a.u., except those in paranthesis, which are in kcal/mol. The
experimental bond enthalpy is reported at 90.1 kcal/mol by Blanksby et al [50].

Energy
Method —- s Chfie = 2Ci;
HF —79.238754 —39.566788 0.105178 (66.0)

MP2 —79.556482 —39.701444 0.153594 (96.4)
MP3 —79.585725 —39.718857 0.148011 (92.9)
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The results of the energy calculations are shown in table 11.10. Although the
perturbative terms only give modest corrections to the energy of the molecules, they
clearly have a profound impact on the energy difference. Furthermore, compared to the
experimental bond enthalpy reported at 90.1 kcal /mol by Blanksby et al [50], the MP2-
and MP3-energies come out quite good, overestimating by 7.0% ad 3.1 %, respectively.
The Hartree-Fock energy, however, underestimates the experimental value by 26.7%.
This indicates that the correlation energy plays an important role when calculating
bond dissociation and reaction energies.

In situations where the correlation energy is the same before and after the reaction
taking place, we would expect the Hartree-Fock approximation to yield reasonable
results, because then the errors introduced by neglecting the correlation energy would
cancel. On the other hand, whenever the correlation energy changes as a result of the
reaction, there will be no such cancellation. Since the correlation energy is likely to be
larger for the CoHg molecule (greater number of interacting electrons), this can explain
the poor performance of the Hartree-Fock method.

It should be noted, though, that the calculations above are not entirely realistic
since they do not include the energy due to the vibrations of the nuclei. Such vibrations
are present even at absolute zero temperature. This is perhaps most easily realised by
considering the fact that, when in the equilibrium configuration, the nuclei are (ap-
proximately) trapped in a harmonic oscillator potential, and the lowest energy level of
the harmonic oscillator is a positive quantity. The sum of the lowest energies associ-
ated with all the vibrational modes of a molecule is called the zero-point vibrational
energy (ZPVE) [17]. To some extent, these energies can cancel when calculating disso-
ciation/reaction energies. Nevertheless, they must be included when accurate results
are desired.

11.5 Conclusions

In this chapter we have presented and discussed results obtained from calculations on
various molecules. The results show that both the restricted and unrestricted meth-
ods produce reasonable energies for geometries close to equilibrium. Moreover, the
unrestricted solution reduces to the restricted solution for closed shell molecules at
equilibrium. However, during bond stretching, the two methods give diverging results;
the unrestricted energies behave physically, but the restricted energies do not. Hence,
unrestricted methods should be used when studying molecules far from equilibrium.

However, we have seen that also the unrestricted results are flawed; for intermedi-
ate bond lengths, the unrestricted Mgller-Plesset perturbation theory converges very
slowly, giving the potential energy curve a rather strange behaviour in this range.
Other authors have attributed this to spin contamination of the unrestricted determi-
nant [31, 38, 39], and our results support this.

Regarding the prediction of equilibrium geometries, the Mgller-Plesset results gen-
erally bring us closest to the experimental values. However, the results are rather good
already at the Hartree-Fock level.

We observed that the correlation energy plays a very important role when comput-
ing dissociation/reaction energies; although it gives relatively modest adjustments for
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each individual molecule, it has a major impact when calculating energy differences.






Chapter 12

Conclusion and future prospects

12.1 Conclusion

The aim of this thesis was to write from scratch an ab initio program able to calcu-
late the electronic structure and properties of molecules. To this end, I decided to
implement the Hartree-Fock method, both the restricted and the unrestricted version.
The main reason for this choice, was the fact that it has the ability to produce quite
reasonable results for medium to large sized molecules with moderate computing ef-
fort. However, the method is by construction limited in accuracy; when the basis set
approaches completeness, the Hartree-Fock energy is bound to overestimate the exact
energy. To remedy this, I chose to implement the Mgller-Plesset perturbation theory
up to third order, based on the restricted as well as the unrestricted Hartree-Fock
reference determinants.

The thesis consists of three parts. Part I first reviewed the basics of many-body
quantum mechanics necessary for the development of the methods of choice. Therafter,
the Hartree-Fock method was derived and discussed in detail. The restricted and unre-
stricted determinants were defined, and the self-consistent field equations which follow,
the Roothan and Pople-Nesbet equations, respectively, were derived. Solving these
equations necessitates the computation of the expectation value of the one- as well
as two-particle parts of the Hamiltonian with respect to the chosen set of basis func-
tions. For this purpose, the efficient integration scheme due to Boys and McMurchie
and Davidson was reviewied. Thereafter, the Mgller-Plesset perturbation theory was
discussed.

Part II described how the methods of choice was implemented in the C++ pro-
gramming language. The various classes and their relations were discussed, and some
of the more intricate parts of the implementation was described in detail. Further-
more, the code was validated by demonstrating that it reproduces results published by
other authors. The program is available in its entirety at https://github.com/henrikei/
HartreeFock.

Part IIT presented and discussed results produced by the program. The strengths
as well as weaknesses of the methods were debated. The results show that both the
restricted and unrestricted methods produce reasonable energies for geometries close
to equilibrium. Moreover, the unrestricted solution reduces to the restricted solution
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for closed shell molecules at equilibrium. However, during bond stretching, the two
methods give diverging results; the unrestricted energies behave physically, but the
restricted energies do not. Hence, unrestricted methods should be used when studying
molecules far from equilibrium.

However, the results show that also the unrestricted results are flawed; for inter-
mediate bond lengths, the unrestricted Mgller-Plesset perturbation theory converges
very slowly, giving the potential energy curve a rather strange behaviour in this range.
Other authors have attributed this to spin contamination of the unrestricted determi-
nant [31, 38, 39], and our results support this. Regarding the prediction of equilibrium
geometries, the restricted Mgller-Plesset methods yield the best results. However, the
results are quite good already at the Hartree-Fock level.

We observed that the correlation energy plays a very important role when comput-
ing dissociation/reaction energies; although it gives relatively modest adjustments for
each individual molecule, it has a major impact when calculating energy differences.

12.2 Future prospects

There are several possibilities for future work:

o Presently, the two-particle integrals used in the Hartree-Fock and Mgller-Plesset
calculations are stored in a four dimensional array (field<mat> in Armadillo).
Although this makes the code run fast, it puts a limit on the number of basis func-
tions due to high memory requirements. To be able to analyse large molecules,
it is necesseray to calculate the two-particle integrals “on the fly”.

e During bond breaking, the unrestricted Mgller-Plesset calculations exhibit slow
convergence due to spin contamination. To some extent, this can be fixed by
implementing Mgller-Plesset perturbation theory with spin annihilation [40, 41].

o It is of great interest to implement first and second derivatives of the energy.
There are at least three reasons for this:

1. The second derivatives can be used to calculate the vibrational modes and
frequencies [51] needed in order to obtain the zero order vibrational energy
(ZPVE), see section 11.4.

2. The first and second order derivatives make it possible to implement more
efficient minimisation algorithms such as for example the Newton-Raphson
method.

3. The first derivatives yield the forces acting on the nuclei, thereby making it

possible to study quantum molecular dynamics.

e The code can be used as a first principle source for the parametrisation of molec-
ular dynamics potentials.
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Appendix A

Spin contamination of the
unrestricted determinant

In this appendix we continue the discussion of section 3.3 on how the operators S? and
S, act on the restricted and unrestricted determinants. We first show that any Slater
determinant is an eigenstate of S,. Thereafter we show that the restricted closed shell
determinant is an eigenstate of S2. Finally, we argue why the unrestricted determinant
is generally not an eigenstate of S2.

Before continuing, we introduce the so-called raising and lowering operators. For
single-particle states, they are defined by

5S4 = Sz + 18y,

. (A1)
S5_ = 85 — 18y.
They have the effect of raising and lowering the spin-down and spin-up states
stla) =0, s+18) = la), (A.2)
s_la) = |8), s_18) = 0. (A.3)
Using the commutation relations of equation (3.28), one can show that
s? = 515+ F s, + 5% (A.4)
The many-particle raising and lowering operators are defined by
N
Sy =Y s, (A.5)
i=1
N
S_=> s(i), (A.6)
i=1
and they satisfy the similar relation
S?=5.5-F8S, + 52 (A7)
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We now show that any Slater determinant is an eigenstate of S,. Explicitly

SZ|7/}1¢2'--7/)N> :%(Na*NB)|7/)1¢2~-¢N> (A~8)

where N, and Ng are the numbers of spin-up and spin-down electrons, respectively,
and N = N, + Ng. This is easily demonstrated by writing the determinant in terms of
the antisymmetrization operator A of equation (2.26) and using the fact that S, and
A commutes.

Next, we consider the action of S? on the restricted and closed shell determinant

[URPB) = 102 .. dn /212 .. B j2) (A.9)

of N particles. Here, we have let the overbar and lack of overbar indicate that the spa-
tial orbitals are accompanied by a |3) and |a) spin state, respectively. The superscript
RCS has been added to indicate that we are dealing with a restricted closed shell deter-
minant. We want to show that the determinant is an eigenstate of S? with eigenvalue
0. We evaluate the action of S? on this determinant with the aid of equation (A.7).
Note that from equation (A.8) it follows that we need only consider the term S_Sy
since N® = N8, Writing the Slater determinant in terms of the antisymmetrisation
operator A and the Hartree product, and using the fact that [Sy, A] = 0, we can let
S act directly on the Hartree product. The action of s (i) on ¢;(r;) gives zero, and
51 (i)¢i(r;) = ¢i(r;). However, the last action produces a Slater determinant with two
equal columns and therefore also gives zero. We therefore conclude that the restricted
closed shell determinant is a pure singlet state.
Finally, consider the unrestricted determinant

(OVP) = |6805 ... ¢%adi Dy ... 5 ,), (A.10)

for a system with N® particles with spin up and N? particles with spin down. We now
calculate the expectation value (S?) resulting from this determinant using equation

(A7)
(%) = (WYP[(S_54 + 5. + S7)[w"P) (A.11)
N® - NB (N> _ NB )
- (T ).

Focusing now on the first term after the last equality sign

= (5-54) +

(A.12)

(S_Sy) = (TP|S_S. VNIAGIHS ... 6%addh ... 00, (A.13)
= (UUPIVNIAS Sy 6905 ... oXadi ) ... Dy (A.14)

= (WP|VNTAS_ 6705 ... e (6765 - Oo (A.15)
+3068 ... 30, + -~-+¢3f¢3§...¢fw) (A.16)

o
= =" [Ho2 18D + BRI 2 + - + (02 lomn 2] + N° (A7)
=1

Ne NP

= =SS ls1E) P + NP (A.18)

i=1 j=1
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In equation (A.14) we have used the fact that S} and S_ commute with A. Equations
(A.15) - (A.16) result from the fact that s (i)$$ (r;) = 0 and s+(z)<ﬁf(rl) = <Z>5(ri), and
equation (A.17) is a result of the action of S_. The final expression for the expectation
value is

(8%) = — 5 + NP =YD eI (A-19)

N® — N® [N — N¥ N N7
(=)
i=1 j=1
Consider now the eigenvalues of S2. For a system of N spin-up particles and
N? spin-down particles, the exact state is an eigenstate of S, and S? with eigenvales
(N® — N#)/2 and S(S + 1), respectively, where S can take the values [17]

a_ 8 a _ B e B
Se{‘n 2n\,!n 2n !+1’m’";”}’ (A.20)

where n® and n? are the numbers of unpaired spin-up and spin-down electrons, respec-
tively. Usually S = (N®— N¥®)/2 [17]. In the following we assume for convenience that
N® > NP. We see from equation (A.19) that the correct expection value is obtained
if the two last terms of the equation cancel. One way this can happen is if all the
spin-down orbitals are paired with spin-up orbitals with identical spatial distributions,
because in that case <¢Z°‘|¢>J'B ) = &, and the sum is reduced to N®. What we have
described is a restricted determinant which is open shell if N® # N? and closed shell
otherwise. Such determinants are eigenstates of S2.

However, often the two last terms do not cancel, and (S?) is larger than the often
desired value

a_ NB a _ NB
NT-N (N N +1), (A.21)

2 2

and we say that the determinant is contaminated with higher spin.






Appendix B

Third order perturbation terms

We need to integrate out the spin of the equations in figure 6.2. The diagrams in the
figure are often referred to as the particle ladder diagram, hole ladder diagram and
loop diagram, respectively. Their contributions are

17]|ab){abl|cd){cd||ij
g = 3 )l B
ijabed €ij €ij
ij||ab){(abl||kl){kl||ij
g = 3 (Ul b)) B2)
ijklab 821 €k
(ij]|ab) (kb |ic){ac||kj)
IlOOp - Z 6abgac (B?))
ijkabc 1j ~kj
where
5%’ =¢€;+&j — € — €, (B.4)

and the other denominators are defined similarly. In the following two sections we show
how the spin is integrated out in the restricted and unrestricted case, respectively.

B.1 The restricted case (RHF)

B.1.1 Particle ladder diagram

We want to simplify the sum in equation (B.1). As for the second order case (MP2),
we split each sum into two: one over spin-up orbitals and one over spin-down orbitals.
For example, the sum over hole states is modified in the following way

N/2 N/2

N
ST =Y g+ b (B.5)
=1 =1 i=1

Doing this blindly will result in a total of 2'2 = 4096 sums. However, most of them
will vanish since integrals over unequal spin functions are equal to zero. The list of
spin combinations which contribute is shown in table B.1. Actually, only half the list is
given; the other half is obtained by replacing a by 8 and vice versa. The contributions
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Table B.1: Spin combinations which contribute in the sum (B.1) in the restricted case. The
list does not include combinations that can be obtained by replacing a with 8 and vice versa;
this is accounted for by a multiplicative factor of 2 in the sum.

Combination | ¢ | 7 | a | b | ¢ | d | mult. factor
1 alala|la|a|a 2
2 al|Blalflal|p 2
3 al|pflal|b|B|a 2
4 al|B|Blalal|p 2
5 a|B|Blalpf|a 2

from the two halfs are identical, which means that we only need to calculate the first
one and multiply by a factor of 2. Adding the five contributions listed, multiplying by
2, and integrating out the spin gives (in the same order as in the table)

N/2 M

Iondder = 3 3 1 Cd[w|rab><abr|cd><cd|w>

i,j=1 a,b,c,d ZJ ZJ
=N/2+1 (B.6)

+ (ij|glab)(ablg|cd)(cd|g|ij) + (ij|glab)(ab|g|dc)(cd]|g|ji)
+ (ij|g|ba)(ablg|dec)(cd|g|ij) + (ij|g|ba)(ab|g|cd) (cd]|g|ji)

where, as before, N is the number of particles, M is the number of basis functions and
the explicit summation indices indicate that we are summing over spatial orbitals ¢
instead of spin orbitals ¥. Multiplying out the antisymmetric integrals and collecting
equal terms yields

N/2 M

1
Iotdger = Y D |2(0dlglab) (ablgled) (cdlglid)

i,j=1 a,b,c,d v ZJ
—N/2+1

+ 2(ijglab)( (cdlglji) + 2(ij|g|ba){ablg|dc)(cd]g|ij) (B.7)
+ 2(ij|glba)( (cdlglji) — (ijlg|ba){ablglcd) cd|glij)

— (ijlglab)(ablg|dc)(cdlglij) — (ijlglab)(ablg|cd)(cd|g|ji)
— (ijlglba) (ablgldc)

ablg|dc)
ablg|cd)
{
{

cd|glji) |-
From the fact that the summation indices are dummy and that (pq|g|rs) = (gp|g|sr),

it follows that the first four terms are equal and that the last four terms are so as well.
Thus the sum can be written as

N/2 . .
3 Z (jg|ab) (ablgled) (2{cd|g|ij) — (cd|glji)
p-ladder - (ab od ) . (B8)
EES
1,j=1 a,b,c,d 1 ~ig

=N/2+1
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Table B.2: Spin combinations which contribute in the sum (B.3) in the restricted case. The
list does not include combinations that can be obtained by exchanging o with 8 and vice versa;
this is accounted for by a multiplicative factor of 2 in the sum.

Combination

it | j]la|b| k]| c| mult factor
1 alala|la|a|a 2
2 al|B|Blala|a 2
3 Blalal|f|ala 2
4 BB |B|B|a|a 2
5 al|BlalB|lal|p 2

B.1.2 Hole ladder diagram

The procedure for integrating out the spin of Iy jadder mirrors that of Ijjadder- The
result is

N/2

(ij]glab)(ablg|kl) (2(kl|glij) — (Kkl|g|ji)
R S o L )
i,j,kl=1 ab 1j “kl

=N/2+1

B.1.3 Loop diagram

The five possible combinations of spin functions, excluding the ones obtainable by
replacing o with 8 and vice versa, are shown in table B.2. Adding the five contributions
listed and integrating out spin gives (in the same order as in the table)

N/2

Toop =—2 ) Z g ac[m|ab><kb|rz'c><acukj>+<z'j|g|ba><kb\|z'c><ac|g|jk>
i,j,k=1 ab,c €ij Skj
=N/2+1

+ {ijlglba) kblglei) (acl k) + (i7]|ab) (kblglei) (aclg| k)
+ (ij]glab) (kblglic) (aclglkj)|.

(B.10)
If we multiply out the antisymmetric integrals, this can be written as
N/2
Toop =—2 ) Z g [ ijlglab) (kblglic) (2 aclglkj) — a6|gljk>>
i,7,k=1 a,b,c Z] k]
=N/2+1
+ (ijlglab) (kblglei) (2(aclglik) — (aclglk) (B.11)

)
+ (ijlglba) (kblglic) (2(aclglk) — (aclglks) )

+ {ijlglba) (kblglei) (2{aclglki) — 4(aclglik) ) |
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Table B.3: Spin combinations which contribute in the sum (B.1) in the unrestricted case.
The list does not include combinations that can be obtained by permuting the indices ¢ <> j,
a <> b and ¢ < d; this is accounted for by a multiplicative factor of 2 in the sum.

Combination | ¢ | 7 | a | b | ¢ | d | mult. factor
1 alala|la|a|a 1
2 al|Blalflal|p 2
3 al|pflal|b|B|a 2
4 al|B|Blalal|p 2
5 a|B|Blalpf|a 2
6 BB BB BB 1

B.2 The unrestricted case

In the unrestricted case we must distinguish between sums over spin-up orbitals and
sums over spin-down orbitals. This means that most of the simplifications which ex-
ploited the symmetry between spin-up and spin-down orbitals are no longer applicable,
and the resulting expressions are quite a bit more involved.

B.2.1 Particle ladder diagram

We need to integrate out the spin of equation (B.1). The different spin combinations
which must be considered are given in table B.3. As stated above, there is no longer
a symmetry between the spin-up and spin-down orbitals, which means that they must
be handled separately. However, the list of spin combinations is still reduced, but in
this case due to the symmetry (pq||rs) = (gp||sr). The list does therefore not include
contributions which can be obtained by permuting the indices ¢ <> j, a <> b and ¢ < d.
In the following we will use the notation

|95) = i) (B.12)

for brevity. Adding all contributions and collecting equal terms gives

I S 3t _Eleraried)ed]ig
p-ladder —

iJ=1 abed 8(ef +eff —ey —ep)(eff +ef —ed —eg)
:N04+1

7N ) P e )
53>

i,j=1 abﬁcd 5 +5 B Ebﬂ)(é‘zﬂ +E? —E’g —gg) (B.13)
=NF+41
N® NP M M ey -
+ZZ Z Z (i®5°|gla“b?) (a abﬂ\g\cadﬁﬂ *d|gli®j7)
i=1j=1 _ax b,d (g8 + 5]@ — &9 B)(s + 5 —e% — 5’3)
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Table B.4: Spin combinations which contribute in the sum (B.3) in the unrestricted case.

Combination | ¢ | j | a | b | k| ¢ | mult. factor
1 alala|lala|« 1
2 Blalal|f|la|a 1
3 al|f|Bla|lala 1
4 BlB|B|B|a|a 1
5 al|lBlalf|lal|p 1
6 BB |B|B|B|B 1
7 a|B|Bla|B|p 1
8 Bla|lal B |68 1
9 alalalal|p|p 1

10 Bla|Blal|lf|a 1

B.2.2 Hole ladder diagram

The contribution from the hole ladder diagram is derived in the same way as the
contribution from the particle ladder diagram. The result is

Na M ) ] . .
Ipladder = > (157 [|ab™) (ab*[[k1°) (k1 [i%*)
p-ladder — a « a @ o o = 5
=N*+1
(iP3B|aPbP) (aPbB||KB18) (kP18 |i# )
DD

8(€f+€f —sg—ef)(ef—i—slﬁ—eg — &by

o~ (99°19]a"b?) (ab|g | k17 (k1 gl i)

N

ihm1 ol a=TiNe pone (EF T €5 — €5 —&))(ef +& —ed — &)
(B.14)

B.2.3 Loop diagram

In this case there are a total of ten different spin combinations to consider (the
symmtries from the ladder diagrams are no longer valid here), see table B.4. These
result in a total of ten sums. Writing out the sums explicitly:
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S Z (125 lab) (k0 i7c) 0" £5)

(eff +ef —eq —ep)(en +ef —eg —e2)

Iloop

i,7,k=1 a,b,c
—N"‘Jrl

Ne NB M . . .
Yy Z > Zﬁjalglbﬁaa><k“bﬁlglc%ﬂ>(a”‘callkaﬂ)
jk=1i= I,ﬁac+lb:NB+1 8 +€?—68‘—65)(6g+€?—63‘—88‘)

N M (i Blg|b®aP) (kb ||i aPc®|gliP ke
_ZZZ 3 J!g! ;( 1is ><ﬁ Iglj ;

_ _ _ _ s
i,k=1j=1 bc a=NB+1 8 +€ €a gb)(gk_‘_gj €a €

_NQ+1
N B
Z NZ Z i zﬂjﬂuaﬂb@ (kb8 |3 (aB | g| 57 ko)
k=lij=lc=No+1 ab 5 +5 6—55)(%4“5?—5&8—5?)

=NPA41

bl (i B1gla®bP) (k68| gli%cP) (acP k™j
_ZZ Z Z *3719la”b”) (k" |g|i%c”) {a®c"|g| B)>

B B
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(B.15)

i,75,k=1 a,b,c
N1
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