HOMOGENEITY OF THE PURE STATE SPACE OF THE CUNTZ ALGEBRA

OLA BRATTELI AND AKITAKA KISHIMOTO

Abstract

If ω_{1}, ω_{2} are two pure gauge-invariant states of the Cuntz algebra \mathcal{O}_{d}, we show that there is an automorphism α of \mathcal{O}_{d} such that $\omega_{1}=\omega_{2} \circ \alpha$. If ω is a general pure state on \mathcal{O}_{d} and φ_{0} is a given Cuntz state, we show that there exists an endomorphism α of \mathcal{O}_{d} such that $\varphi_{0}=\omega \circ \alpha$

1. Introduction

Let \mathfrak{A} be a simple separable C^{*}-algebra, and let π_{1}, π_{2} be representations of \mathfrak{A} on Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$. The representations π_{1}, π_{2} are said to be algebraically equivalent if $\pi_{1}(\mathfrak{A})^{\prime \prime}$ and $\pi_{2}(\mathfrak{A})^{\prime \prime}$ are isomorphic von Neumann algebras. If there is an automorphism α of \mathfrak{A} such that π_{1} and $\pi_{2} \circ \alpha$ are quasi-equivalent, then π_{1}, π_{2} are clearly algebraically equivalent. Powers proved in [Pow67] that if \mathfrak{A} is a UHF algebra the converse is true. His method extends readily to the case that \mathfrak{A} is an AF-algebra, [Bra72]. See also section 12.3 in [KR86]. In the special case that π_{1} (and therefore π_{2}) is irreducible, Kadison's transitivity theorem therefore implies that if \mathfrak{A} is a simple AF algebra and if ω_{1} and ω_{2} are pure states on \mathfrak{A}, there exists an automorphism α of \mathfrak{A} such that $\omega_{1}=\omega_{2} \circ \alpha$. To our knowledge, this question has only been settled in the affirmative when \mathfrak{A} is an AF-algebra. As a beginning of a possible resolution of the question for purely infinite algebras, we here prove the statements in the abstract. Recall from [Cun77] that the Cuntz algebra \mathcal{O}_{d} is the C^{*}-algebra generated by d operators s_{1}, \ldots, s_{d} satisfying

$$
\begin{aligned}
& s_{j}^{*} s_{i}=\delta_{i j} \mathbb{1} \\
& \sum_{i=1}^{d} s_{i} s_{i}^{*}=\mathbb{1}
\end{aligned}
$$

There is an action γ of the group $U(d)$ of unitary $d \times d$ matrices on \mathcal{O}_{d} given by

$$
\gamma_{g}\left(s_{i}\right)=\sum_{j=1}^{d} g_{j i} s_{j}
$$

for $g=\left[g_{i j}\right]_{i, j=1}^{d}$ in $U(d)$. In particular the gauge action $\tau=\left.\gamma\right|_{\mathbf{T}}$ is defined by

$$
\tau_{z}\left(s_{i}\right)=z s_{i}, \quad z \in \mathbf{T} \subset \mathbf{C}
$$

If UHF_{d} is the fixed point subalgebra under the gauge action, then UHF_{d} is the closure of the linear span of all Wick ordered polynomials of the form

$$
s_{i_{1}} \ldots s_{i_{k}} s_{j_{k}}^{*} \ldots s_{j_{1}}^{*}
$$

1
UHF_{d} is isomorphic to the UHF algebra of Glimm type d^{∞} :

$$
\mathrm{UHF}_{d} \cong M_{d \infty}=\bigotimes_{1}^{\infty} M_{d}
$$

in such a way that the isomorphism carries the Wick ordered polynomial above into the matrix element

$$
e_{i_{1} j_{1}}^{(1)} \otimes e_{i_{2} j_{2}}^{(2)} \otimes \cdots \otimes e_{i_{k} j_{k}}^{(k)} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \cdots .
$$

The gauge action τ is in fact characterized by the fact that its fixed point algebra is isomorphic to UHF_{d}, i.e. if α is another faithful action of \mathbf{T} on \mathcal{O}_{d} such that the fixed point algebra \mathcal{O}_{d}^{α} is isomorphic to UHF_{d}, then either $z \mapsto \alpha_{z}$ or $z \mapsto \alpha_{z}^{-1}$ is conjugate to τ. This follows from [BK99, Corollary 4.1]. (Since UHF_{d} is simple and α is faithful, the crossed product $\mathcal{O}_{d} \times{ }_{\alpha} \mathbf{T}$ is stably isomorphic to $\mathrm{UHF}_{d},[\mathrm{KT} 78]$, and in particular it is simple. Since

$$
\mathcal{O}_{d}^{\alpha} \cong P_{\alpha}(0)\left(\mathcal{O}_{d} \times_{\alpha} \mathbf{T}\right) P_{\alpha}(0)
$$

$\left[P_{\alpha}(0)\right]$ is just $[\mathbb{1}]$ when $K_{0}\left(\mathcal{O}_{d} \times{ }_{\alpha} \mathbf{T}\right)$ is identified with $K_{0}\left(\mathcal{O}_{d}^{\alpha}\right)$. By the PimsnerVoiculescu exact sequence it follows that $\widehat{\alpha}_{*}$ on $K_{0}\left(\mathcal{O}_{d} \times{ }_{\alpha} \mathbf{T}\right)=\mathbf{Z}\left[\frac{1}{d}\right]$ is multiplication by d or $1 / d$.) Because of this, our main result Theorem 5 can be given the following more universal form:

Corollary 1. Let φ_{1} and φ_{2} be pure states on \mathcal{O}_{d}, and assume that there exist actions α_{i} of \mathbf{T} on \mathcal{O}_{d} such that $\mathcal{O}_{d}^{\alpha_{i}} \cong \mathrm{UHF}_{d}$ and $\varphi_{i} \circ \alpha_{i}=\varphi_{i}$ for $i=1,2$. Then there exists an automorphism β of \mathcal{O}_{d} such that

$$
\varphi_{1}=\varphi_{2} \circ \beta
$$

The question whether any pure state on \mathcal{O}_{d} is invariant under a gauge action like this is left open.

The restriction of γ_{g} to UHF_{d} is carried into the action

$$
\operatorname{Ad}(g) \otimes \operatorname{Ad}(g) \otimes \cdots
$$

on $\bigotimes_{1}^{\infty} M_{d}$. We define the canonical endomorphism λ on UHF_{d} (or on \mathcal{O}_{d}) by

$$
\lambda(x)=\sum_{j=1}^{d} s_{j} x s_{j}^{*}
$$

and the isomorphism carries λ over into the one-sided shift

$$
x_{1} \otimes x_{2} \otimes x_{3} \otimes \cdots \rightarrow \mathbb{1} \otimes x_{1} \otimes x_{2} \otimes \cdots
$$

on $\bigotimes_{1}^{\infty} M_{d}$.
If $\eta_{1}, \ldots, \eta_{d}$ are complex scalars with $\sum_{j=1}^{d}\left|\eta_{j}\right|^{2}=1$, we can define a state on \mathcal{O}_{d} by

$$
\varphi_{\eta}\left(s_{i_{1}} \ldots s_{i_{k}} s_{j_{\ell}}^{*} \ldots s_{j_{1}}^{*}\right)=\eta_{i_{1}} \ldots \eta_{i_{k}} \overline{\eta_{j_{\ell}}} \ldots \overline{\eta_{j_{1}}}
$$

[Cun77], [Eva80], [BJP96], [BJ97], [BJKW].
This state is pure, and non-gauge invariant, and the $U(d)$ action is transitive on these states, which are called Cuntz states. The restriction of φ_{η} to UHF_{d} identifies with the pure product state given by infinitely many copies of the vector state defined by the vector $\left(\eta_{1}, \ldots, \eta_{d}\right)$ on M_{d}.

In this paper we will also consider the one-one correspondence between the set $\mathcal{U}\left(\mathcal{O}_{d}\right)$ of unitaries in \mathcal{O}_{d} and the set $\operatorname{End}\left(\mathcal{O}_{d}\right)$ of unital endomorphisms of \mathcal{O}_{d}. If $u \in \mathcal{U}\left(\mathcal{O}_{d}\right)$ then $\alpha_{u}\left(s_{i}\right)=u s_{i}$ defines an endomorphism, and if $\alpha \in \operatorname{End}\left(\mathcal{O}_{d}\right)$ the corresponding unitary is $u=\sum_{i=1}^{d} \alpha\left(s_{i}\right) s_{i}^{*}$. It has been proved by Rørdam that

$$
\mathcal{U}_{i}=\left\{u \in \mathcal{U}\left(\mathcal{O}_{d}\right) \mid \alpha_{u} \text { is an inner automorphism }\right\}
$$

is a dense subset of $\mathcal{U}\left(\mathcal{O}_{d}\right)$, [Rør93]. We give a shorter proof of this, and also show that

$$
\mathcal{U}_{a}=\left\{u \in \mathcal{U}\left(\mathcal{O}_{d}\right) \mid \alpha_{u} \text { is an automorphism }\right\}
$$

is a dense G_{δ} subset of $\mathcal{U}\left(\mathcal{O}_{d}\right)$ such that the complement $\mathcal{U}\left(\mathcal{O}_{d}\right) \backslash \mathcal{U}_{a}$ is also dense.
By using the above correspondence between $\mathcal{U}\left(\mathcal{O}_{d}\right)$ and $\operatorname{End}\left(\mathcal{O}_{d}\right)$, it follows (see the proof of Proposition 8) that if ω is a pure state and φ_{0} a Cuntz state there exists an endomorphism α of \mathcal{O}_{d} such that $\varphi_{0}=\omega \circ \alpha$. Although the automorphism group is dense in $\operatorname{End}\left(\mathcal{O}_{d}\right)$ (in the topology of pointwise convergence), the question whether α can be chosen to be an automorphism is left open (in this approach).

2. Transitivity of the automorphism group on the pure GAUGE-INVARIANT STATES

In this section we prove the first main result mentioned in the abstract.
Let UHF_{d} be the UHF algebra of type d^{∞} and let $\left(A_{n}\right)$ be an increasing sequence of C^{*}-subalgebras of UHF_{d} such that $\mathrm{UHF}_{d}=\overline{\cup A_{n}}$ and $A_{n} \cong M_{d^{n}}$. We first use Power's transitivity on UHF_{d} to find an approximate factorization for any pure state on UHF_{d} :

Lemma 2. Let φ be a pure state of UHF_{d} and $\varepsilon>0$. Then there exists a pure state φ^{\prime} of UHF_{d}, an increasing sequence $\left\{B_{n}\right\}$ of finite type I subfactors of UHF_{d}, and an increasing subsequence $\left\{k_{n}\right\}$ in \mathbf{N} such that $\varphi^{\prime} \mid B_{n}$ is a pure state of B_{n} and $A_{k_{n}} \subset B_{n} \subset A_{k_{n+1}}$ for every n, and

$$
\left\|\varphi-\varphi^{\prime}\right\|<\varepsilon .
$$

Proof. Since the automorphism group $\operatorname{Aut}\left(\mathrm{UHF}_{d}\right)$ of UHF_{d} acts transitively on the set of pure states of UHF_{d}, [Pow67], there exists an increasing sequence $\left\{D_{n}\right\}$ of finite type I subfactors of UHF_{d} such that $D_{n} \cong M_{d^{n}}$ and $\varphi \mid D_{n}$ is pure for every n. Then we can find sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ of unitaries in UHF_{d} and increasing sequences $\left\{k_{n}\right\}$ and $\left\{\ell_{n}\right\}$ in \mathbf{N} such that

$$
\begin{aligned}
& A_{k_{1}} \subset \operatorname{Ad}\left(v_{1} u_{1}\right)\left(D_{\ell_{1}}\right) \subset A_{k_{2}} \subset \operatorname{Ad}\left(v_{2} u_{2} v_{1} u_{1}\right)\left(D_{\ell_{2}}\right) \subset A_{k_{3}} \subset \cdots \\
& u_{n} \in \mathrm{UHF}_{d} \cap \operatorname{Ad}\left(v_{n-1} u_{n-1} \ldots v_{1} u_{1}\right)\left(D_{\ell_{n-1}}\right)^{\prime} \\
& v_{n} \in \mathrm{UHF}_{d} \cap A_{k_{n}}^{\prime} \\
& \left\|u_{n}-1\right\|<\varepsilon / 2^{n+2} \quad\left\|v_{n}-1\right\|<\varepsilon / 2^{n+2}
\end{aligned}
$$

where $D_{0}=\mathbf{C} 1$. (Let $k_{1}=1$. Then we choose u_{1} and ℓ_{1} such that $A_{k_{1}} \subset$ $\operatorname{Ad} u_{1}\left(D_{\ell_{1}}\right)$ and $\left\|u_{1}-1\right\|<\varepsilon / 8$. Further we choose k_{2} and v_{1} such that $v_{1} \in$ $\mathrm{UHF}_{d} \cap A_{k_{1}}^{\prime},\left\|v_{1}-1\right\|<\varepsilon / 8$, and, $\operatorname{Ad}\left(v_{1} u_{1}\right)\left(D_{\ell_{1}}\right) \subset A_{k_{2}}$. We just repeat this process.) Then the limit $w=\lim v_{n} u_{n} \ldots v_{1} u_{1}$ exists and is a unitary such that $\|w-1\|<\varepsilon / 2$ and

$$
A_{k_{1}} \subset \operatorname{Ad} w\left(D_{\ell_{1}}\right) \subset A_{k_{2}} \subset \operatorname{Ad} w\left(D_{\ell_{2}}\right) \subset \cdots
$$

Let $\varphi^{\prime}=\varphi \circ \operatorname{Ad} w^{*}$. Then φ^{\prime} is a pure state with $\left\|\varphi-\varphi^{\prime}\right\|<\varepsilon$ and $\varphi^{\prime} \mid \operatorname{Ad} w\left(D_{\ell_{n}}\right)$ is a pure state for every n. Put $B_{n}=\operatorname{Ad} w\left(D_{\ell_{n}}\right)$.

We next show that for any pair of pure states φ_{1}, φ_{2} on UHF_{d}, there is a tensor product decomposition of UHF_{d} such that φ_{1}, φ_{2} have approximate factorizations with respect to certain sub-decompositions (necessarily different for φ_{1} and φ_{2}):

Lemma 3. Let φ_{1} and φ_{2} be pure states of UHF_{d} and let $\varepsilon>0$. Then there exist pure states $\varphi_{1}^{\prime}, \varphi_{2}^{\prime}$, and ψ of UHF_{d}, an increasing sequence $\left\{k_{n}\right\}$ in \mathbf{N} and an increasing sequence $\left\{B_{n}\right\}$ of finite type I subfactors of A such that

$$
\begin{aligned}
& \left\|\varphi_{i}-\varphi_{i}^{\prime}\right\|<\varepsilon \\
& \varphi_{1}^{\prime} \mid B_{2 n+1} \quad \text { is pure } \\
& \varphi_{2}^{\prime} \mid B_{2 n} \quad \text { is pure } \\
& \psi\left|B_{6 k-1} \cap B_{6 k-3}^{\prime}=\varphi_{1}^{\prime}\right| B_{6 k-1} \cap B_{6 k-3}^{\prime} \\
& \psi\left|B_{6 k+2} \cap B_{6 k}^{\prime}=\varphi_{2}^{\prime}\right| B_{6 k+2} \cap B_{6 k}^{\prime} \\
& \psi \mid B_{6 k} \cap B_{6 k-1}^{\prime} \quad \text { is pure, } \\
& \psi \mid B_{6 k-3} \cap B_{6 k-4}^{\prime} \quad \text { is pure } \\
& k_{n+1}-k_{n} \rightarrow \infty \\
& A_{k_{1}} \subset B_{1} \subset A_{k_{2}} \subset B_{2} \subset A_{k_{3}} \subset B_{3} \subset \cdots
\end{aligned}
$$

Proof. It follows from the previous lemma that there exist pure states φ_{i}^{\prime}, increasing sequences $\left\{B_{i n}\right\}$ of finite type I subfactors of A, and an increasing sequence $\left\{k_{n}\right\}$ in \mathbf{N} such that

$$
\begin{aligned}
& \left\|\varphi_{i}-\varphi_{i}^{\prime}\right\|<\varepsilon \\
& \varphi_{i} \mid B_{i n} \quad \text { is pure for } i=1,2 \\
& A_{k_{1}} \subset B_{i 1} \subset A_{k_{2}} \subset B_{i 2} \subset A_{k_{3}} \subset \cdots
\end{aligned}
$$

By passing to subsequences of $\left\{k_{n}\right\}$ and $\left\{B_{i n}\right\}$ and setting $B_{n}=B_{1 n}$ if n is odd and $B_{n}=B_{2 n}$ if n is even, we may assume that

$$
\begin{aligned}
& \varphi_{1}^{\prime} \mid B_{2 n+1} \quad \text { is pure } \\
& \varphi_{2}^{\prime} \mid B_{2 n} \text { is pure } \\
& k_{n+1}-k_{n} \rightarrow \infty \\
& A_{k_{1}} \subset B_{1} \subset A_{k_{2}} \subset B_{2} \subset A_{k_{3}} \subset \ldots
\end{aligned}
$$

Then φ_{1}^{\prime} has a tensor product decomposition into pure states on the matrix subalgebras $B_{2 n+1} \cap B_{2 n-1}^{\prime}$, and φ_{2}^{\prime} likewise on the subalgebras $B_{2 n} \cap B_{2 n-2}^{\prime}$. Thus we can define a pure state ψ by requiring that it decomposes under the tensor product decomposition

$$
\begin{gathered}
\cdots \otimes\left(B_{6 k-4} \cap B_{6 k-6}^{\prime}\right) \otimes\left(B_{6 k-3} \cap B_{6 k-4}^{\prime}\right) \otimes\left(B_{6 k-1} \cap B_{6 k-3}^{\prime}\right) \\
\otimes\left(B_{6 k} \cap B_{6 k-1}^{\prime}\right) \otimes\left(B_{6 k+2} \cap B_{6 k}^{\prime}\right) \otimes \cdots
\end{gathered}
$$

into states given by:

$$
\begin{aligned}
& \psi\left|B_{6 k-1} \cap B_{6 k-3}^{\prime}=\varphi_{1}^{\prime}\right| B_{6 k-1} \cap B_{6 k-3}^{\prime}, \\
& \psi\left|B_{6 k+2} \cap B_{6 k}^{\prime}=\varphi_{2}^{\prime}\right| B_{6 k+2} \cap B_{6 k}^{\prime}, \\
& \psi \mid B_{6 k} \cap B_{6 k-1}^{\prime} \quad \text { is an arbitrary pure state, } \\
& \psi \mid B_{6 k-3} \cap B_{6 k-4}^{\prime} \quad \text { is an arbitrary pure state. }
\end{aligned}
$$

Recall that τ is the gauge action of \mathbf{T} on \mathcal{O}_{d}, i.e.,

$$
\tau_{z}\left(s_{i}\right)=z s_{i}, \quad z \in \mathbf{T}
$$

Let ε be the conditional expectation of \mathcal{O}_{d} onto UHF_{d} defined by

$$
\varepsilon(x)=\int_{\mathbf{T}} \tau_{z}(x) \frac{|d z|}{2 \pi}, \quad x \in \mathcal{O}_{d}
$$

Note that if φ is a gauge-invariant state of \mathcal{O}_{d}, then

$$
\varphi=\left.\varphi\right|_{\mathrm{UHF}_{d}} \circ \varepsilon .
$$

Recall that λ is canonical endomorphism of $\mathcal{O}_{d}: \lambda(x)=\sum_{i=1}^{d} s_{i} x s_{i}^{*}, x \in \mathcal{O}_{d}$, and that the restriction of λ to UHF_{d} is the one-sided shift σ.

Lemma 4. If φ is a gauge-invariant state on \mathcal{O}_{d} then the following conditions are equivalent:
(i) φ is pure
(ii) $\left.\varphi\right|_{\mathrm{UHF}_{d}}$ is pure and
$\left.\varphi\right|_{\mathrm{UHF}_{d}} \circ \sigma^{n}$ is disjoint from φ for $n=1,2, \ldots$
Proof. (i) \Rightarrow (ii). Since φ is pure, and gauge-invariant, it follows that $\left.\varphi\right|_{\mathrm{UHF}_{d}}$ is pure. Let p be the support projection of φ in $\mathcal{O}_{d}^{* *}$. Since p is minimal, and φ is gaugeinvariant, it follows that for any $a \in \mathrm{UHF}_{d}$ and any multi-index $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ with $|I|=n \geq 1$,

$$
\operatorname{pas}_{I} p=\varphi\left(a s_{I}\right) p=0,
$$

where $s_{I}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}}$. Thus we obtain that

$$
p\left(\mathrm{UHF}_{d}\right) \lambda^{n}(p)=0
$$

which implies that $\left.\varphi\right|_{\mathrm{UHF}_{d}} \circ \sigma^{n}$ is disjoint from φ.
(ii) $\Rightarrow(\mathrm{i})$. Let p be the support projection of $\left.\varphi\right|_{\mathrm{UHF}_{d}}$ in $\mathrm{UHF}_{d}^{* *} \subset \mathcal{O}_{d}^{* *}$. It suffices to show that for any multi-indices I, J

$$
p s_{I} s_{J}^{*} p \in \mathbf{C} p
$$

since the linear span of $s_{I} s_{J}^{*}$ is dense in \mathcal{O}_{d}. If $|I| \neq\left[J \mid\right.$, we have that $p s_{I} s_{J}^{*} p=0$ by using the fact that $\left.\varphi\right|_{\mathrm{UHF}_{d}} \circ \sigma^{n}$ is disjoint from φ for $n=||I|-|J||$. If $[I|=|J|$, we have that $p s_{I} s_{J}^{*} p=\varphi\left(s_{I} s_{J}^{*}\right) p$ since $\left.\varphi\right|_{\mathrm{UHF}_{d}}$ is pure.

Lemma 5. Let φ_{1} and φ_{2} be gauge-invariant pure states of \mathcal{O}_{d} such that all $\left.\varphi_{i}\right|_{\mathrm{UHF}_{d}} \circ \sigma^{n}, i=1,2, n=0,1,2, \ldots$ are mutually disjoint. Then there exists an automorphism α of \mathcal{O}_{d} such that $\alpha \circ \tau_{z}=\tau_{z} \circ \alpha, z \in \mathbf{T}$ and $\varphi_{1}=\varphi_{2} \circ \alpha$.

Proof. By Lemma 4, $\psi_{1}=\left.\varphi_{1}\right|_{\mathrm{UHF}_{d}}$ and $\psi_{2}=\left.\varphi_{2}\right|_{\mathrm{UHF}_{d}}$ are pure states on UHF_{d}. Applying Lemma 3 on ψ_{1}, ψ_{2} in lieu of φ_{1}, φ_{2}, with $\varepsilon=1$, we obtain pure states $\psi_{1}^{\prime}, \psi_{2}^{\prime}$ and ψ of UHF_{d} with the properties given there. Since ψ_{i} is equivalent to $\psi_{i}^{\prime}, \varphi_{i}^{\prime}=\psi_{i}^{\prime} \circ \varepsilon$ is a pure state of \mathcal{O}_{d} by Lemma 4 and this state is equivalent to $\varphi_{i}=\psi_{i} \circ \varepsilon$. By Kadison's transitivity theorem we have a unitary $u \in \mathrm{UHF}_{d}$ such that $\psi_{i}^{\prime}=\psi_{i} \circ \operatorname{Ad} u$; it follows that $\varphi_{i}^{\prime}=\varphi_{i} \circ \operatorname{Ad} u$.

It is not automatical that ψ satisfies the condition that all $\psi \circ \sigma^{n}, n=0,1,2, \ldots$ are mutually disjoint and are disjoint from $\psi_{i}^{\prime} \circ \sigma^{n}$. But using the freedom in constructing $\left.\psi\right|_{B_{6 k} \cap B_{6 k-1}^{\prime}}$ and $\left.\psi\right|_{B_{6 k-3} \cap B_{6 k-4}^{\prime}}$ successively, we can certainly impose this condition.

Thus we obtain three pure states $\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi$ of UHF_{d} such that all $\psi_{i}^{\prime} \circ \sigma^{n}, \psi \circ \sigma^{n}$ are mutually disjoint and ψ_{i}^{\prime} and ψ are spotwise asymptotically equal as specified in Lemma 3. It now suffices to prove the lemma for the pairs ($\psi_{1}^{\prime} \circ \varepsilon, \psi \circ \varepsilon$) and $\left(\psi_{2}^{\prime} \circ \varepsilon, \psi \circ \varepsilon\right)$. Thus replacing φ_{1}, φ_{2} by one of these pairs, we may assume the lemma satisfy the additional condition that there exists an increasing sequence $\left\{k_{n}\right\}$ in \mathbf{N} and an increasing sequence $\left\{B_{n}\right\}$ of finite type I subfactors of UHF_{d} such that

$$
\begin{aligned}
& A_{k_{1}} \subset B_{1} \subset A_{k_{2}} \subset B_{2} \subset A_{k_{3}} \subset B_{3} \subset \\
& \left.\varphi_{i}\right|_{B_{3 n+1}} \quad \text { is pure }, \\
& \left.\varphi_{1}\right|_{B_{3 n+3} \cap B_{3 n+1}^{\prime}}=\left.\varphi_{2}\right|_{B_{3 n+3} \cap B_{3 n+1}^{\prime}} \quad \text { is pure } \\
& k_{3 n+3}-k_{3 n+2} \rightarrow \infty
\end{aligned}
$$

We shall construct a sequence $\left\{v_{n}\right\}$ of unitaries in UHF_{d} such that
$\alpha=\lim _{n \rightarrow \infty} \operatorname{Ad}\left(v_{n} v_{n-1} \ldots v_{1}\right)$ defines an automorphism of \mathcal{O}_{d} with $\varphi_{1}=\varphi_{2} \circ \alpha$. To ensure the existence of the limit we choose the unitaries such that they mutually commute and $\sum\left\|\lambda\left(v_{n}\right)-v_{n}\right\|<\infty$. Since α commutes with the gauge action τ, this will complete the proof.

We fix a large $N \in \mathbf{N}$. We choose n_{1} so large that the support projections $e_{i}^{(1)}=\operatorname{supp}\left(\left.\varphi_{i}\right|_{B 3 n_{1}+1}\right)$ are almost orthogonal and $k_{3 n_{1}+3}-k_{3 n_{1}+2}>2^{2(N+1)}$. Let w_{1} be a partial isometry in $B_{3 n_{1}+1}$ with $w_{1}^{*} w_{1}=e_{1}^{(1)}, w_{1} w_{1}^{*}=e_{2}^{(1)}$. By the polar decomposition of the approximate unitary

$$
w_{1}+\left(1-e_{2}^{(1)}\right) w_{1}^{*}\left(1-e_{1}^{(1)}\right)+\left(1-e_{2}^{(1)}\right)\left(1-e_{1}^{(1)}\right),
$$

we obtain a unitary $v_{1} \in B_{3 n_{1}+1}$ such that

$$
v_{1} e_{1}^{(1)}=w_{1} e_{1}^{(1)}=e_{2}^{(1)} w_{1}=e_{2}^{(1)} v_{1} \in B_{3 n_{1}+1}
$$

and $v_{1}\left(1-e_{2}^{(1)}\right)\left(1-e_{1}^{(1)}\right) \approx\left(1-e_{2}^{(1)}\right)\left(1-e_{1}^{(1)}\right)$.
We next choose $n_{2}>n_{1}$ so large that

$$
\sigma^{n} \circ \operatorname{supp}\left(\left.\varphi_{i}\right|_{B_{3 n_{2}+1} \cap B_{3 n_{1}+3}^{\prime}}\right), \quad i=1,2, \quad n=-2^{N-1},-2^{-N+1}+1, \ldots, 0, \ldots, 2^{N+1}
$$

are almost orthogonal and $k_{3 n_{2}+2}-k_{3 n_{1}+1}>2^{2(N+2)}$. (Though σ is an endomorphism, σ^{-n} on $B_{3 n_{2}+1} \cap B_{3 n_{1}+3}^{\prime}$ is well defined for $n=1,2, \ldots, k_{3 n_{1}+2}$.) Let w_{2} be a partial isometry in $B_{3 n_{2}+1} \cap B_{3 n_{2}+3}^{\prime}$ such that

$$
w_{2}^{*} w_{2}=e_{1}^{(2)}=\operatorname{supp}\left(\left.\varphi_{1}\right|_{B_{3 n_{2}+1} \cap B_{3 n_{1}+3}^{\prime}}\right)
$$

and

$$
w_{2} w_{2}^{*}=e_{2}^{(2)}=\operatorname{supp}\left(\left.\varphi_{2}\right|_{B_{3 n_{2}+1} \cap B_{3 n_{1}+3}^{\prime}}\right),
$$

and let ζ be a partial isometry in $A_{k_{3 n_{2}+2}+1} \cap A_{k_{3 n_{1}+3}}^{\prime}$ such that $\zeta^{*} \zeta=e_{1}^{(2)}$ and $\zeta \zeta^{*}=\sigma\left(e_{1}^{(2)}\right)$.

Assume for the moment that $\sigma^{\ell}\left(e_{i}^{(2)}\right), i=1,2 ; \ell=-2^{N+1},-2^{N+1}+1, \ldots, 2^{N+1}$ are all orthogonal and set

$$
e_{i j}= \begin{cases}\sigma^{i-1}(\zeta) \sigma^{i-2}(\zeta) \ldots \sigma^{j}(\zeta) & i>j \\ \sigma^{i}\left(e_{1}^{(2)}\right) & i=j \\ \sigma^{i}\left(\zeta^{*}\right) \sigma^{i+1}\left(\zeta^{*}\right) \ldots \sigma^{j-1}\left(\zeta^{*}\right) & i<j\end{cases}
$$

for $i, j=-2^{-N+1}, \ldots, 2^{N+1}$. Then $\left(e_{i j}\right)$ is a family of matrix units such that $\sigma\left(e_{i j}\right)=e_{i+1, j+1}$ when $|i|,|i+1|,|j|,|j+1| \leq 2^{N+1}$. Let

$$
\begin{aligned}
E= & e_{1}^{(2)}+\sum_{\ell=1}^{2^{N+1}-1}\left(1-e_{1}^{(2)}\right)\left\{\frac{2^{N+1}-\ell}{2^{N+1}} e_{\ell, \ell}+\frac{\ell}{2^{N+1}} e_{\ell-2^{N+1}, \ell-2^{N+1}}\right. \\
& \left.+\frac{1}{2^{N+1}} \sqrt{\left(2^{N+1}-\ell\right) \ell}\left(e_{\ell, \ell-2^{-N+1}}+e_{\ell-2^{-N+1}, \ell}\right)\right\}\left(1-e_{1}^{(2)}\right)
\end{aligned}
$$

as in [Kis95]. Then E is a projection in $D_{2}=A_{\left(k_{3 n_{2}+2}+2^{N+1}\right)} \cap A_{\left(k_{3 n_{1}+3}-2^{N+1}\right)}^{\prime}$ and satisfies

$$
\|\sigma(E)-E\| \sim \frac{1}{2^{\frac{N+1}{2}}}
$$

Let $w=w_{2}+\left(1-e_{2}^{(2)}\right)\left(\sum_{\ell=1}^{2^{N+1}}\left(\sigma^{\ell}\left(w_{2}\right)+\sigma^{-\ell}\left(w_{2}\right)\right)\right)\left(1-e_{1}^{(2)}\right)$ and

$$
v=w E+(1-F) w^{*}(1-E)+(1-F)(1-E)
$$

where $F=w E w^{*}$.
By the orthogonality assumption on $\sigma^{\ell}\left(e_{i}^{(2)}\right), v$ is a unitary in D_{2} and satisfies

$$
\begin{aligned}
& \|\sigma(v)-v\| \approx\|\sigma(E)-E\| \\
& v e_{1}^{(2)}=w_{2} e_{1}^{(2)}=e_{2}^{(2)} w_{2}=e_{2}^{(2)} v .
\end{aligned}
$$

Note also that v commutes with v_{1} and $e_{i}^{(1)}$.
Now, the projections $\sigma^{\ell}\left(e_{i}^{(2)}\right), i=1,2, \ell=-2^{N+1}, \ldots, 2^{N+1}$ are not actually orthogonal but choosing n_{2} so large that they are very close to being orthogonal, we may obtain a unitary v_{2} in D_{2} by polar decomposition of v such that v_{2} satisfies the same conditions as above, i.e.,

$$
\begin{aligned}
& v_{2} e_{1}^{(2)}=w_{2} e_{1}^{(2)}=e_{2}^{(2)} w_{2}=e_{2}^{(2)} v_{2} \in B_{3 n_{2}+1} \cap B_{3 n_{1}+3}^{\prime} \\
& \left\|\lambda\left(v_{2}\right)-v_{2}\right\| \sim 2^{-\frac{N+1}{2}}
\end{aligned}
$$

and $v_{2} \in D_{2}$.
Since

$$
\begin{aligned}
& \operatorname{supp}\left(\left.\varphi_{1}\right|_{B_{3 n_{2}+1}}\right) \\
& \quad=\operatorname{supp}\left(\left.\varphi_{1}\right|_{B_{3 n_{1}+1}}\right) \operatorname{supp}\left(\left.\varphi_{1}\right|_{B_{3 n_{1}+3} \cap B_{3 n_{1}+1}^{\prime}}\right) \operatorname{supp}\left(\left.\varphi_{1}\right|_{B_{3 n_{2}+1} \cap B_{3 n_{1}+3}^{\prime}}\right) \\
& \quad=e_{1}^{(1)} p e_{1}^{(2)}
\end{aligned}
$$

with $p=\operatorname{supp}\left(\left.\varphi_{1}\right|_{B_{3 n_{1}+3} \cap B_{3 n_{1}+1}^{\prime}}\right)=\operatorname{supp}\left(\left.\varphi_{2}\right|_{B_{3 n_{1}+3} \cap B_{3 n_{1}+1}^{\prime}}\right)$, and since the operators $v_{1} e_{1}^{(1)}=e_{2}^{(1)} v_{1}, p$, and $v_{2} e_{1}^{(2)}=e_{2}^{(2)} v_{2}$ commute, we obtain that

$$
\begin{aligned}
v_{1} v_{2} & \cdot \operatorname{supp}\left(\left.\varphi_{1}\right|_{B_{3 n_{2}+1}}\right)=v_{1} v_{2} e_{1}^{(1)} p e_{1}^{(2)} \\
& =v_{1} e_{1}^{(1)} v_{2} e_{1}^{(2)} p \\
& =e_{2}^{(1)} v_{1} e_{2}^{(2)} v_{2} p \\
& =p e_{2}^{(1)} e_{2}^{(2)} v_{1} v_{2}=\operatorname{supp}\left(\left.\varphi_{2}\right|_{B_{3 n_{2}+1}}\right) v_{1} v_{2}
\end{aligned}
$$

Here we have also used the fact that v_{1} commutes with $e_{2}^{(2)}$. We repeat this procedure. Thus we obtain an increasing sequence $\left\{n_{k}\right\}$ in \mathbf{N} and a sequence $\left\{v_{k}\right\}$ of mutually commuting unitaries such that

$$
\begin{aligned}
& \left\|\lambda\left(v_{k}\right)-v_{k}\right\| \sim 2^{-\frac{N+k}{2}} \\
& v_{k} e_{1}^{(k)}=e_{2}^{(k)} v_{k} \in \mathcal{B}_{3 n_{k}+1} \cap \mathcal{B}_{3 n_{k-1}+3}^{\prime}
\end{aligned}
$$

where

$$
e_{i}^{(k)}=\operatorname{supp}\left(\left.\varphi_{i}\right|_{\mathcal{B}_{3 n_{k}+1} \cap \mathcal{B}_{3 n_{k-1}+3}^{\prime}}\right),
$$

and such that $\operatorname{Ad}\left(v_{k} \ldots v_{1}\right)$ maps $\operatorname{supp}\left(\left.\varphi_{1}\right|_{\mathcal{B}_{3 n_{k}+1}}\right)$ into $\operatorname{supp}\left(\left.\varphi_{2}\right|_{\mathcal{B}_{3 n_{k}+1}}\right)$. Then the limit $\alpha=\lim _{k} \operatorname{Ad}\left(v_{k} \ldots v_{1}\right)$ defines the desired automorphism.

Theorem 6. Let φ_{1} and φ_{2} be gauge-invariant pure states of \mathcal{O}_{d}. Then there exists an automorphism α of \mathcal{O}_{d} such that $\varphi_{1}=\varphi_{2} \circ \alpha$.

Proof. If φ_{1} is disjoint from φ_{2}, then it follows that $\left(\left.\varphi_{i}\right|_{\mathrm{UHF}_{d}}\right) \circ \sigma^{n}=\left.\varphi_{i} \circ \lambda^{n}\right|_{\mathrm{UHF}_{d}}$, $i=1,2, n=0,1,2, \ldots$ are mutually disjoint (by Lemma 4); thus the assertion follows from Lemma 5 . If φ_{1} is equivalent to φ_{2}, there is a unitary $u \in \mathcal{O}_{d}$ such that $\varphi_{1}=\varphi_{2} \operatorname{Ad} u$ (by Kadison's transitivity).

3. Pure states mapped into Cuntz states by endomorphisms

There is a one-to-one correspondence between the set $\mathcal{U}\left(\mathcal{O}_{d}\right)$ of unitaries of \mathcal{O}_{d} and the set $\operatorname{End}\left(\mathcal{O}_{d}\right)$ of unital endomorphisms of \mathcal{O}_{d}; if $u \in \mathcal{U}\left(\mathcal{O}_{d}\right)$, the endomorphism α_{u} is defined by $\alpha_{u}\left(s_{i}\right)=u s_{i}$ and if $\alpha \in \operatorname{End}\left(\mathcal{O}_{d}\right), \alpha$ corresponds to the unitary u defined by $u=\sum_{i=1}^{d} \alpha\left(s_{i}\right) s_{i}^{*}$. Define

$$
\begin{aligned}
& \mathcal{U}_{i}=\left\{u \in \mathcal{U}\left(\mathcal{O}_{d}\right) \mid \quad \alpha_{u} \text { is an inner automorphism }\right\} \\
& \mathcal{U}_{a}=\left\{u \in \mathcal{U}\left(\mathcal{O}_{d}\right) \mid \quad \alpha_{u} \text { is an automorphism }\right\} \\
& \mathcal{U}_{s}=\mathcal{U}\left(\mathcal{O}_{d}\right) \backslash \mathcal{U}_{a} .
\end{aligned}
$$

Proposition 7. Let $\mathcal{U}_{i}, \mathcal{U}_{a}, \mathcal{U}_{s}$ be as above.
(i) \mathcal{U}_{i} is a dense subset of $\mathcal{U}\left(\mathcal{O}_{d}\right)$.
(ii) \mathcal{U}_{a} is a dense G_{δ} subset of $\mathcal{U}\left(\mathcal{O}_{d}\right)$.
(iii) \mathcal{U}_{s} is a dense F_{σ} subset of $\mathcal{U}\left(\mathcal{O}_{d}\right)$.

Proof. M. Rørdam proved (i) in [Rør93] and the other statements are more or less known.

We shall give a proof of (i). We again denote by λ the canonical endomorphism of $\mathcal{O}_{d}: \lambda(x)=\sum_{i=1}^{d} s_{i} x s_{i}^{*}, x \in \mathcal{O}_{d}$. Since the unitary corresponding to $\operatorname{Ad} v$ is $v \lambda\left(v^{*}\right)$,
it suffices to show that $v \lambda\left(v^{*}\right), v \in \mathcal{U}\left(\mathcal{O}_{d}\right)$, is dense in $\mathcal{U}\left(\mathcal{O}_{d}\right)$. If UHF_{d} denotes the C^{*}-subalgebra generated by $s_{i_{1}} s_{i_{2}} \ldots s_{i_{n}} s_{j_{n}}^{*} \ldots s_{j_{1}}^{*}$, then we mentioned in the introduction that UHF_{d} is isomorphic to the UHF algebra $\bigotimes_{\mathbf{N}} M_{d}$ and $\lambda \mid \mathrm{UHF}_{d}$ corresponds to the one-sided shift on $\bigotimes_{\mathbf{N}} M_{d}$. Thus $\lambda \mid \mathrm{UHF}_{d}$ satisfies the Rohlin property, [BKRS93], [Kis95]. In particular for any n and $\varepsilon>0$ there is an orthogonal family $e_{0}, e_{1}, \ldots, e_{n-1}$ of projections in UHF_{d} such that

$$
\begin{aligned}
& \sum_{i=0}^{d^{n}-1} e_{i}=1 \\
& \left\|\lambda\left(e_{i}\right)-e_{i+1}\right\|<\varepsilon
\end{aligned}
$$

with $e_{d^{n}}=e_{0}$. The similar properties hold for $\operatorname{Ad} u \circ \lambda$, i.e., if UHF_{d}^{u} denotes the C^{*}-subalgebra generated by $u s_{i_{1}} u s_{i_{2}} \ldots u s_{i_{n}} s_{j_{n}}^{*} u^{*} \ldots s_{j_{1}}^{*} u^{*}$, then $\operatorname{Ad} u \circ \lambda \mid \mathrm{UHF}_{d}^{u}$ corresponds to the one-sided shift on $\bigotimes_{\mathbf{N}} M_{d}$. Hence for any n and $\varepsilon>0$ there is an orthogonal family $f_{0}, f_{1}, \ldots, f_{d^{n}-1}$ of projections in UHF_{d}^{u} such that

$$
\begin{aligned}
& \sum_{i=0}^{d^{n}-1} f_{i}=1 \\
& \left\|\operatorname{Ad} u \circ \lambda\left(f_{i}\right)-f_{i+1}\right\|<\varepsilon
\end{aligned}
$$

with $f_{d^{n}}=f_{0}$. Suppose we have chosen such projections e_{i}, f_{i} for the same n. Since $K_{0}\left(\mathcal{O}_{d}\right)=\mathbf{Z} /(d-1) \mathbf{Z}$, we have that $\left[e_{0}\right]=1=\left[f_{0}\right]$ in $K_{0}\left(\mathcal{O}_{d}\right)$ and so obtain a partial isometry $w \in \mathcal{O}_{d}$ such that $w^{*} w=e_{0}$, ww $w^{*}=f_{0}$. We find unitaries $v_{1}, v_{2} \in \mathcal{O}_{d}$ such that $\operatorname{Ad} v_{1} \lambda\left(e_{i}\right)=e_{i+1}, \operatorname{Ad} v_{2} \operatorname{Ad} u \lambda\left(f_{i}\right)=f_{i+1}$, and $\left\|v_{1}-1\right\| \approx 0$, $\left\|v_{2}-1\right\| \approx 0$ (depending on ε). Let

$$
z=w^{*}\left(L_{v_{2} u} R_{v_{1}^{*}} \lambda\right)^{d^{n}}(w)
$$

where $R_{v_{1}^{*}}$ is the right multiplication by v_{1}^{*} and $L_{v_{2} u}$ is the left multiplication by $v_{2} u$. Since $\left(L_{v_{2} u} R_{v_{i}^{*}} \lambda\right)^{i}(w)$ is a partial isometry with initial projection e_{i} and final projection f_{i}, z is a unitary in $e_{0} \mathcal{O}_{d} e_{0}$. Since $K_{1}\left(\mathcal{O}_{d}\right)=0$ and \mathcal{O}_{d} has real rank zero, we find a sequence $z_{0}, z_{1}, \ldots, z_{d^{n}-1}$ of unitaries in $e_{0} \mathcal{O}_{d} e_{0}$ such that $z_{0}=z$, $z_{d^{n}-1}=1$,

$$
\left\|z_{i}-z_{i+1}\right\|<4 / d^{n}
$$

Define a unitary v by

$$
v=\sum_{i=0}^{d^{n}-1}\left(L_{v_{2} u} R_{v_{1}^{*}} \lambda\right)^{i}\left(w z_{i}\right)
$$

Then since

$$
\begin{aligned}
v- & \left(L_{v_{2} u} R_{v_{1}^{*}} \lambda\right)(v) \\
& =\sum_{i=1}^{d^{n}-1}\left(L_{v_{2} u} R_{v_{1}^{*}} \lambda\right)^{i}\left(w z_{i}-w z_{i-1}\right)+w z_{0}-\left(L_{v_{2} u} R_{v_{1}^{*}} \lambda\right)^{d^{n}}(w),
\end{aligned}
$$

it follows that

$$
\left\|v-L_{v_{2} u} R_{v_{1}^{*}} \lambda(v)\right\|<4 / d^{n}
$$

or

$$
\|v-u \lambda(v)\| .4 / d^{n}
$$

This completes the proof of (i).

Since $\mathcal{U}_{a} \supset \mathcal{U}_{i}, \mathcal{U}_{a}$ is dense. That \mathcal{U}_{a} is a G_{δ} set follows from

$$
\mathcal{U}_{a}=\bigcap_{n} \bigcap_{j} \bigcup_{i}\left\{u \in \mathcal{U}\left(\mathcal{O}_{d}\right) ;\left\|\alpha_{u}\left(x_{i}\right)-x_{j}\right\|<\frac{1}{n}\right\}
$$

where $\left\{x_{i}\right\}$ is a dense sequence in \mathcal{O}_{d}.
If \mathcal{U}_{a} contains a non-empty open set, then it follows that $\mathcal{U}_{a}=\mathcal{U}\left(\mathcal{O}_{d}\right)$ or $\mathcal{U}_{s}=\emptyset$. Because for any unitaries u, w of \mathcal{O}_{d} we find a unitary v such that $w \lambda(v) \approx v u$. (Apply the previous argument for the endomorphism $\operatorname{Ad} u \circ \lambda$ instead of λ and the unitary $w u^{*}$.) Since $v \mathcal{U}_{a} \lambda\left(v^{*}\right)=\mathcal{U}_{a}$ for any unitary $v \in \mathcal{O}_{d}$, the above fact implies that \mathcal{U}_{a} contains an arbitrary unitary. But we know that $\mathcal{U}_{s} \neq \emptyset$. For example if $u=\sum s_{i} s_{j} s_{i}^{*} s_{j}^{*}$, then $\alpha_{u}=\lambda$ and $\lambda\left(\mathcal{O}_{d}\right)^{\prime} \simeq M_{d}$. Thus we obtain that \mathcal{U}_{s} is dense.

For a unit vector $\xi \in \mathbf{C}^{d}$ we have defined the Cuntz state f_{ξ} of \mathcal{O}_{d} by

$$
f_{\xi}\left(s_{i_{1}} \ldots s_{i_{m}} s_{j_{n}}^{*} \ldots s_{j_{1}}^{*}\right)=\xi_{i_{1}} \ldots \xi_{i_{m}} \overline{\xi_{j_{n}}} \ldots \overline{\xi_{j_{1}}}
$$

It follows that f_{ξ} is a unique pure state of \mathcal{O}_{d} satisfying

$$
f_{\xi}\left(\sum_{i=1}^{d} \overline{\xi_{i}} s_{i}\right)=1
$$

Let F be the linear span of $s_{i} s_{j}^{*}, i, j=1, \ldots, d$. Then F is isomorphic to M_{d} and each unitary u in F defines an automorphism α_{u} of \mathcal{O}_{d}. This group of automorphisms acts transitively on the compact set of Cuntz states.

We denote by f_{0} the Cuntz state f_{ξ} with $\xi=(1,0, \ldots, 0)$.
Proposition 8. If φ is a pure state of \mathcal{O}_{d}, there is a unital endomorphism α of \mathcal{O}_{d} such that $\varphi \circ \alpha=f_{0}$, where f_{0} is the Cuntz state defined above. Furthermore α may be chosen so that $\pi_{\varphi} \circ \alpha\left(\mathcal{O}_{d}\right)^{\prime \prime}$ contains the one-dimensional projection onto $\mathrm{C} \Omega_{\varphi}$.
Proof. It suffices to show that if φ is a pure state there is a unitary $u \in \mathcal{O}_{d}$ such that

$$
\varphi\left(u s_{1}\right)=1
$$

Since \mathcal{O}_{d} has real rank zero, there is a decreasing sequence $\left(e_{n}\right)$ of projections in \mathcal{O}_{d} such that φ is the unique state satisfying $\varphi\left(e_{n}\right)=1$ for $n=1,2, \ldots$, i.e., $\left(e_{n}\right)$ converges to the support projection of φ in $\mathcal{O}_{d}^{* *}$. We may further assume that $\left[e_{n}\right]=0$ in $K_{0}\left(\mathcal{O}_{d}\right)$.

Pick up a projection $e=e_{n}$ such that $\varphi(e)=1$ and $e<1$. Then $e s_{1}^{*}$ is a partial isometry with initial projection $s_{1} e s_{1}^{*}$ and final projection e. Let w be a partial isometry such that $w^{*} w=1-s_{1} e s_{1}^{*}$ and $w w^{*}=1-e$. Then $u=e s_{1}^{*}+w$ is a unitary in \mathcal{O}_{d} such that

$$
u s_{1} e=\left(e s_{1}^{*}+w\right) s_{1} e=e
$$

Thus we have that $\varphi\left(u s_{1}\right)=1$.
To prove the last statement we shall modify u so that φ is the unique state satisfying

$$
\varphi\left(u s_{1}\right)=1
$$

We have chosen $e=e_{n}$. We let

$$
h=\sum_{k=1}^{\infty} 2^{-k} e_{n+k}
$$

Then h is self-adjoint with $0 \leq h \leq 1$ and φ is the only state satisfying $\varphi(h)=1$.
Let

$$
u_{1}=e^{2 \pi i h} u .
$$

Then $u_{1} s_{1} e=e^{2 \pi i h} e$ and the assertion follows.

References

[BJ97] O. Bratteli and P.E.T. Jorgensen, Endomorphisms of $\mathcal{B}(\mathcal{H})$, II, J. Funct. Anal. 145 (1997), 323-373.
[BJP96] O. Bratteli, P.E.T. Jorgensen and G. Price, Endomorphisms of $\mathcal{B}(\mathcal{H})$, in W. Arveson et al., eds., "Quantization of Nonlinear Partial Differential Equations", Amer. Math. Soc. 1996.
[BJKW] O. Bratteli, P.E.T. Jorgensen, A. Kishimoto and R.F. Werner, Pure states on \mathcal{O}_{d}, J. Operator Theory, to appear.
[BK99] O. Bratteli and A. Kishimoto, Trace scaling automorphisms of certain stable AF algebras II, preprint 1999.
[BKRS93] O. Bratteli, A.K. Kishimoto, M. Rørdam and E. Størmer, The crossed product of a UHF algebra by a shift, Ergodic Theory and Dyn. Sys. 13 (1993), 615-626.
[Bra72] O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans, Amer. Math. Soc. 171 (1972), 195-234.
[Cun77] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.
[Eva80] D.E. Evans, On \mathcal{O}_{n}, Publ. RIMS. Kyoto Univ. 16 (1980), 915-927.
[Kis95] A. Kishimoto, The Rohlin property for automorphisms of UHF algebras, J. reine argew. Math. 465 (1995), 183-196.
[KR86] R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras, Volume II, Academic Press 1986.
[KT78] A. Kishimoto and H. Takai, Some remarks on C*-dynamical systems with a compact abelian group, Publ. Res. Inst. Math. Sci. 14 (1978), 388-397.
[Pow67] R.T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. 86 (1967), 138-171.
[Rør93] M. Rørdam, Classification of inductive limits of Cuntz algebras, J. reine angew. Math. 440 (1993), 175-200.

Mathematics Institute, University of Oslo, PB 1053 Blindern, N-0316 Oslo, Norway Department of Mathematics, Hokkaido University, Sapporo, 060 Japan

