HOMOGENEITY OF THE PURE STATE SPACE OF THE CUNTZ ALGEBRA

OLA BRATTELI AND AKITAKA KISHIMOTO

ABSTRACT. If ω_1, ω_2 are two pure gauge-invariant states of the Cuntz algebra \mathcal{O}_d , we show that there is an automorphism α of \mathcal{O}_d such that $\omega_1 = \omega_2 \circ \alpha$. If ω is a general pure state on \mathcal{O}_d and φ_0 is a given Cuntz state, we show that there exists an endomorphism α of \mathcal{O}_d such that $\varphi_0 = \omega \circ \alpha$

1. INTRODUCTION

Let \mathfrak{A} be a simple separable C*-algebra, and let π_1, π_2 be representations of \mathfrak{A} on Hilbert spaces $\mathcal{H}_1, \mathcal{H}_2$. The representations π_1, π_2 are said to be algebraically equivalent if $\pi_1(\mathfrak{A})''$ and $\pi_2(\mathfrak{A})''$ are isomorphic von Neumann algebras. If there is an automorphism α of \mathfrak{A} such that π_1 and $\pi_2 \circ \alpha$ are quasi-equivalent, then π_1, π_2 are clearly algebraically equivalent. Powers proved in [Pow67] that if \mathfrak{A} is a UHF algebra the converse is true. His method extends readily to the case that \mathfrak{A} is an AF-algebra, [Bra72]. See also section 12.3 in [KR86]. In the special case that π_1 (and therefore π_2) is irreducible, Kadison's transitivity theorem therefore implies that if \mathfrak{A} is a simple AF algebra and if ω_1 and ω_2 are pure states on \mathfrak{A} , there exists an automorphism α of \mathfrak{A} such that $\omega_1 = \omega_2 \circ \alpha$. To our knowledge, this question has only been settled in the affirmative when \mathfrak{A} is an AF-algebra. As a beginning of a possible resolution of the question for purely infinite algebras, we here prove the statements in the abstract. Recall from [Cun77] that the Cuntz algebra \mathcal{O}_d is the C*-algebra generated by d operators s_1, \ldots, s_d satisfying

$$\begin{split} s_j^* s_i &= \delta_{ij} 1 \\ \sum_{i=1}^d s_i s_i^* &= 1 \end{split}$$

There is an action γ of the group U(d) of unitary $d \times d$ matrices on \mathcal{O}_d given by

$$\gamma_g(s_i) = \sum_{j=1}^d g_{ji} s_j$$

for $g = [g_{ij}]_{i,j=1}^d$ in U(d). In particular the gauge action $\tau = \gamma|_{\mathbf{T}}$ is defined by

$$\tau_z(s_i) = zs_i , \qquad z \in \mathbf{T} \subset \mathbf{C}$$

If UHF_d is the fixed point subalgebra under the gauge action, then UHF_d is the closure of the linear span of all Wick ordered polynomials of the form

$$s_{i_1} \dots s_{i_k} s_{j_k}^* \dots s_{j_1}^*$$

UHF_d is isomorphic to the UHF algebra of Glimm type d^{∞} :

$$\mathrm{UHF}_d \cong M_{d^{\infty}} = \bigotimes_1^{\infty} M_d$$

in such a way that the isomorphism carries the Wick ordered polynomial above into the matrix element

$$e_{i_1j_1}^{(1)} \otimes e_{i_2j_2}^{(2)} \otimes \cdots \otimes e_{i_kj_k}^{(k)} \otimes \mathbb{1} \otimes \mathbb{1} \otimes \cdots$$
.

The gauge action τ is in fact characterized by the fact that its fixed point algebra is isomorphic to UHF_d, i.e. if α is another faithful action of **T** on \mathcal{O}_d such that the fixed point algebra \mathcal{O}_d^{α} is isomorphic to UHF_d, then either $z \mapsto \alpha_z$ or $z \mapsto \alpha_z^{-1}$ is conjugate to τ . This follows from [BK99, Corollary 4.1]. (Since UHF_d is simple and α is faithful, the crossed product $\mathcal{O}_d \times_{\alpha} \mathbf{T}$ is stably isomorphic to UHF_d, [KT78], and in particular it is simple. Since

$$\mathcal{O}_d^{\alpha} \cong P_{\alpha}(0)(\mathcal{O}_d \times_{\alpha} \mathbf{T})P_{\alpha}(0)$$

 $[P_{\alpha}(0)]$ is just [1] when $K_0(\mathcal{O}_d \times_{\alpha} \mathbf{T})$ is identified with $K_0(\mathcal{O}_d^{\alpha})$. By the Pimsner-Voiculescu exact sequence it follows that $\widehat{\alpha}_*$ on $K_0(\mathcal{O}_d \times_{\alpha} \mathbf{T}) = \mathbf{Z}[\frac{1}{d}]$ is multiplication by d or 1/d.) Because of this, our main result Theorem 5 can be given the following more universal form:

Corollary 1. Let φ_1 and φ_2 be pure states on \mathcal{O}_d , and assume that there exist actions α_i of \mathbf{T} on \mathcal{O}_d such that $\mathcal{O}_d^{\alpha_i} \cong \text{UHF}_d$ and $\varphi_i \circ \alpha_i = \varphi_i$ for i = 1, 2. Then there exists an automorphism β of \mathcal{O}_d such that

$$\varphi_1 = \varphi_2 \circ \beta$$

The question whether any pure state on \mathcal{O}_d is invariant under a gauge action like this is left open.

The restriction of γ_g to UHF_d is carried into the action

$$\operatorname{Ad}(g) \otimes \operatorname{Ad}(g) \otimes \cdots$$

on $\bigotimes_{1}^{\infty} M_d$. We define the canonical endomorphism λ on UHF_d (or on \mathcal{O}_d) by

$$\lambda(x) = \sum_{j=1}^d s_j x s_j^*$$

and the isomorphism carries λ over into the one-sided shift

$$x_1 \otimes x_2 \otimes x_3 \otimes \cdots \to 1 \otimes x_1 \otimes x_2 \otimes \cdots$$

on $\bigotimes_{1}^{\infty} M_d$.

If η_1, \ldots, η_d are complex scalars with $\sum_{j=1}^d |\eta_j|^2 = 1$, we can define a state on \mathcal{O}_d by

$$\varphi_{\eta}(s_{i_1} \dots s_{i_k} \ s_{j_\ell}^* \dots s_{j_1}^*) = \eta_{i_1} \dots \eta_{i_k} \ \overline{\eta_{j_\ell}} \dots \overline{\eta_{j_1}}$$

[Cun77], [Eva80], [BJP96], [BJ97], [BJKW].

This state is pure, and non-gauge invariant, and the U(d) action is transitive on these states, which are called Cuntz states. The restriction of φ_{η} to UHF_d identifies with the pure product state given by infinitely many copies of the vector state defined by the vector (η_1, \ldots, η_d) on M_d . In this paper we will also consider the one-one correspondence between the set $\mathcal{U}(\mathcal{O}_d)$ of unitaries in \mathcal{O}_d and the set $\operatorname{End}(\mathcal{O}_d)$ of unital endomorphisms of \mathcal{O}_d . If $u \in \mathcal{U}(\mathcal{O}_d)$ then $\alpha_u(s_i) = us_i$ defines an endomorphism, and if $\alpha \in \operatorname{End}(\mathcal{O}_d)$ the corresponding unitary is $u = \sum_{i=1}^d \alpha(s_i) s_i^*$. It has been proved by Rørdam that

 $\mathcal{U}_i = \{ u \in \mathcal{U}(\mathcal{O}_d) | \alpha_u \text{ is an inner automorphism} \}$

is a dense subset of $\mathcal{U}(\mathcal{O}_d)$, [Rør93]. We give a shorter proof of this, and also show that

$$\mathcal{U}_a = \{ u \in \mathcal{U}(\mathcal{O}_d) | \alpha_u \text{ is an automorphism} \}$$

is a dense G_{δ} subset of $\mathcal{U}(\mathcal{O}_d)$ such that the complement $\mathcal{U}(\mathcal{O}_d) \setminus \mathcal{U}_a$ is also dense.

By using the above correspondence between $\mathcal{U}(\mathcal{O}_d)$ and $\operatorname{End}(\mathcal{O}_d)$, it follows (see the proof of Proposition 8) that if ω is a pure state and φ_0 a Cuntz state there exists an endomorphism α of \mathcal{O}_d such that $\varphi_0 = \omega \circ \alpha$. Although the automorphism group is dense in $\operatorname{End}(\mathcal{O}_d)$ (in the topology of pointwise convergence), the question whether α can be chosen to be an automorphism is left open (in this approach).

2. Transitivity of the automorphism group on the pure gauge-invariant states

In this section we prove the first main result mentioned in the abstract.

Let UHF_d be the UHF algebra of type d^{∞} and let (A_n) be an increasing sequence of C*-subalgebras of UHF_d such that UHF_d = $\overline{\cup A_n}$ and $A_n \cong M_{d^n}$. We first use Power's transitivity on UHF_d to find an approximate factorization for any pure state on UHF_d:

Lemma 2. Let φ be a pure state of UHF_d and $\varepsilon > 0$. Then there exists a pure state φ' of UHF_d, an increasing sequence $\{B_n\}$ of finite type I subfactors of UHF_d, and an increasing subsequence $\{k_n\}$ in **N** such that $\varphi'|B_n$ is a pure state of B_n and $A_{k_n} \subset B_n \subset A_{k_{n+1}}$ for every n, and

$$\|\varphi - \varphi'\| < \varepsilon .$$

Proof. Since the automorphism group $\operatorname{Aut}(\operatorname{UHF}_d)$ of UHF_d acts transitively on the set of pure states of UHF_d , [Pow67], there exists an increasing sequence $\{D_n\}$ of finite type I subfactors of UHF_d such that $D_n \cong M_{d^n}$ and $\varphi|D_n$ is pure for every n. Then we can find sequences $\{u_n\}$ and $\{v_n\}$ of unitaries in UHF_d and increasing sequences $\{k_n\}$ and $\{\ell_n\}$ in \mathbb{N} such that

$$\begin{aligned} A_{k_1} &\subset \operatorname{Ad}(v_1 u_1)(D_{\ell_1}) \subset A_{k_2} \subset \operatorname{Ad}(v_2 u_2 v_1 u_1)(D_{\ell_2}) \subset A_{k_3} \subset \cdots \\ u_n &\in \operatorname{UHF}_d \cap \operatorname{Ad}(v_{n-1} u_{n-1} \dots v_1 u_1)(D_{\ell_{n-1}})' \\ v_n &\in \operatorname{UHF}_d \cap A'_{k_n} \\ \|u_n - 1\| &< \varepsilon/2^{n+2} \qquad \|v_n - 1\| < \varepsilon/2^{n+2} \end{aligned}$$

where $D_0 = \mathbf{C}1$. (Let $k_1 = 1$. Then we choose u_1 and ℓ_1 such that $A_{k_1} \subset \operatorname{Ad} u_1(D_{\ell_1})$ and $||u_1 - 1|| < \varepsilon/8$. Further we choose k_2 and v_1 such that $v_1 \in \operatorname{UHF}_d \cap A'_{k_1}$, $||v_1 - 1|| < \varepsilon/8$, and, $\operatorname{Ad}(v_1u_1)(D_{\ell_1}) \subset A_{k_2}$. We just repeat this process.) Then the limit $w = \lim v_n u_n \dots v_1 u_1$ exists and is a unitary such that $||w - 1|| < \varepsilon/2$ and

$$A_{k_1} \subset \operatorname{Ad} w(D_{\ell_1}) \subset A_{k_2} \subset \operatorname{Ad} w(D_{\ell_2}) \subset \cdots$$

Let $\varphi' = \varphi \circ \operatorname{Ad} w^*$. Then φ' is a pure state with $\|\varphi - \varphi'\| < \varepsilon$ and $\varphi' | \operatorname{Ad} w(D_{\ell_n})$ is a pure state for every n. Put $B_n = \operatorname{Ad} w(D_{\ell_n})$.

We next show that for any pair of pure states φ_1, φ_2 on UHF_d, there is a tensor product decomposition of UHF_d such that φ_1, φ_2 have approximate factorizations with respect to certain sub-decompositions (necessarily different for φ_1 and φ_2):

Lemma 3. Let φ_1 and φ_2 be pure states of UHF_d and let $\varepsilon > 0$. Then there exist pure states φ'_1, φ'_2 , and ψ of UHF_d, an increasing sequence $\{k_n\}$ in **N** and an increasing sequence $\{B_n\}$ of finite type I subfactors of A such that

$$\begin{aligned} \|\varphi_{i} - \varphi_{i}'\| &< \varepsilon \\ \varphi_{1}'|B_{2n+1} \quad is \ pure \\ \varphi_{2}'|B_{2n} \quad is \ pure \\ \psi|B_{6k-1} \cap B_{6k-3}' &= \varphi_{1}'|B_{6k-1} \cap B_{6k-3}' \\ \psi|B_{6k+2} \cap B_{6k}' &= \varphi_{2}'|B_{6k+2} \cap B_{6k}' \\ \psi|B_{6k} \cap B_{6k-1}' \quad is \ pure, \\ \psi|B_{6k-3} \cap B_{6k-4}' \quad is \ pure, \\ k_{n+1} - k_{n} \to \infty \\ A_{k_{1}} \subset B_{1} \subset A_{k_{2}} \subset B_{2} \subset A_{k_{3}} \subset B_{3} \subset \cdots \end{aligned}$$

Proof. It follows from the previous lemma that there exist pure states φ'_i , increasing sequences $\{B_{in}\}$ of finite type I subfactors of A, and an increasing sequence $\{k_n\}$ in **N** such that

$$\begin{aligned} \|\varphi_i - \varphi'_i\| &< \varepsilon ,\\ \varphi_i | B_{in} \quad \text{is pure for } i = 1, 2 ,\\ A_{k_1} \subset B_{i1} \subset A_{k_2} \subset B_{i2} \subset A_{k_2} \subset \cdots \end{aligned}$$

By passing to subsequences of $\{k_n\}$ and $\{B_{in}\}$ and setting $B_n = B_{1n}$ if n is odd and $B_n = B_{2n}$ if n is even, we may assume that

$$\begin{split} \varphi_1' | B_{2n+1} & \text{is pure} \\ \varphi_2' | B_{2n} & \text{is pure} \\ k_{n+1} - k_n \to \infty \\ A_{k_1} \subset B_1 \subset A_{k_2} \subset B_2 \subset A_{k_3} \subset \cdots \end{split}$$

Then φ'_1 has a tensor product decomposition into pure states on the matrix subalgebras $B_{2n+1} \cap B'_{2n-1}$, and φ'_2 likewise on the subalgebras $B_{2n} \cap B'_{2n-2}$. Thus we can define a pure state ψ by requiring that it decomposes under the tensor product decomposition

$$\dots \otimes (B_{6k-4} \cap B'_{6k-6}) \otimes (B_{6k-3} \cap B'_{6k-4}) \otimes (B_{6k-1} \cap B'_{6k-3}) \\ \otimes (B_{6k} \cap B'_{6k-1}) \otimes (B_{6k+2} \cap B'_{6k}) \otimes \dots$$

into states given by:

$$\begin{split} \psi | B_{6k-1} \cap B'_{6k-3} &= \varphi'_1 | B_{6k-1} \cap B'_{6k-3} , \\ \psi | B_{6k+2} \cap B'_{6k} &= \varphi'_2 | B_{6k+2} \cap B'_{6k} , \\ \psi | B_{6k} \cap B'_{6k-1} & \text{is an arbitrary pure state,} \\ \psi | B_{6k-3} \cap B'_{6k-4} & \text{is an arbitrary pure state.} \end{split}$$

Recall that τ is the gauge action of **T** on \mathcal{O}_d , i.e.,

$$\tau_z(s_i) = zs_i , \qquad z \in \mathbf{T} .$$

Let ε be the conditional expectation of \mathcal{O}_d onto UHF_d defined by

$$\varepsilon(x) = \int_{\mathbf{T}} \tau_z(x) \frac{|dz|}{2\pi} , \qquad x \in \mathcal{O}_d .$$

Note that if φ is a gauge-invariant state of \mathcal{O}_d , then

$$\varphi = \varphi|_{\mathrm{UHF}_d} \circ \varepsilon$$

Recall that λ is canonical endomorphism of \mathcal{O}_d : $\lambda(x) = \sum_{i=1}^d s_i x s_i^*, x \in \mathcal{O}_d$, and that the restriction of λ to UHF_d is the one-sided shift σ .

Lemma 4. If φ is a gauge-invariant state on \mathcal{O}_d then the following conditions are equivalent:

- (i) φ is pure
- (ii) $\varphi|_{\text{UHF}_d}$ is pure and $\varphi|_{\text{UHF}_d} \circ \sigma^n$ is disjoint from φ for n = 1, 2, ...

Proof. (i) \Rightarrow (ii). Since φ is pure, and gauge-invariant, it follows that $\varphi|_{\text{UHF}_d}$ is pure. Let p be the support projection of φ in \mathcal{O}_d^{**} . Since p is minimal, and φ is gauge-invariant, it follows that for any $a \in \text{UHF}_d$ and any multi-index $I = (i_1, i_2, \ldots, i_n)$ with $|I| = n \ge 1$,

$$pas_I p = \varphi(as_I) p = 0 ,$$

where $s_I = s_{i_1} s_{i_2} \dots s_{i_n}$. Thus we obtain that

$$p(\mathrm{UHF}_d)\lambda^n(p) = 0 \; ,$$

which implies that $\varphi|_{\mathrm{UHF}_d} \circ \sigma^n$ is disjoint from φ .

(ii) \Rightarrow (i). Let p be the support projection of $\varphi|_{\mathrm{UHF}_d}$ in $\mathrm{UHF}_d^{**} \subset \mathcal{O}_d^{**}$. It suffices to show that for any multi-indices I, J

$$ps_Is_J^*p \in \mathbf{C}p$$

since the linear span of $s_I s_J^*$ is dense in \mathcal{O}_d . If $|I| \neq [J|$, we have that $ps_I s_J^* p = 0$ by using the fact that $\varphi|_{\mathrm{UHF}_d} \circ \sigma^n$ is disjoint from φ for n = ||I| - |J||. If |I| = |J|, we have that $ps_I s_J^* p = \varphi(s_I s_J^*) p$ since $\varphi|_{\mathrm{UHF}_d}$ is pure.

Lemma 5. Let φ_1 and φ_2 be gauge-invariant pure states of \mathcal{O}_d such that all $\varphi_i|_{\text{UHF}_d} \circ \sigma^n$, $i = 1, 2, n = 0, 1, 2, \ldots$ are mutually disjoint. Then there exists an automorphism α of \mathcal{O}_d such that $\alpha \circ \tau_z = \tau_z \circ \alpha$, $z \in \mathbf{T}$ and $\varphi_1 = \varphi_2 \circ \alpha$.

Proof. By Lemma 4, $\psi_1 = \varphi_1|_{\text{UHF}_d}$ and $\psi_2 = \varphi_2|_{\text{UHF}_d}$ are pure states on UHF_d. Applying Lemma 3 on ψ_1, ψ_2 in lieu of φ_1, φ_2 , with $\varepsilon = 1$, we obtain pure states ψ'_1, ψ'_2 and ψ of UHF_d with the properties given there. Since ψ_i is equivalent to $\psi'_i, \varphi'_i = \psi'_i \circ \varepsilon$ is a pure state of \mathcal{O}_d by Lemma 4 and this state is equivalent to $\varphi_i = \psi_i \circ \varepsilon$. By Kadison's transitivity theorem we have a unitary $u \in \text{UHF}_d$ such that $\psi'_i = \psi_i \circ \text{Ad } u$; it follows that $\varphi'_i = \varphi_i \circ \text{Ad } u$.

It is not automatical that ψ satisfies the condition that all $\psi \circ \sigma^n$, n = 0, 1, 2, ... are mutually disjoint and are disjoint from $\psi'_i \circ \sigma^n$. But using the freedom in constructing $\psi|_{B_{6k}\cap B'_{6k-1}}$ and $\psi|_{B_{6k-3}\cap B'_{6k-4}}$ successively, we can certainly impose this condition.

Thus we obtain three pure states ψ'_1, ψ'_2, ψ of UHF_d such that all $\psi'_i \circ \sigma^n, \psi \circ \sigma^n$ are mutually disjoint and ψ'_i and ψ are spotwise asymptotically equal as specified in Lemma 3. It now suffices to prove the lemma for the pairs $(\psi'_1 \circ \varepsilon, \psi \circ \varepsilon)$ and $(\psi'_2 \circ \varepsilon, \psi \circ \varepsilon)$. Thus replacing φ_1, φ_2 by one of these pairs, we may assume the lemma satisfy the additional condition that there exists an increasing sequence $\{k_n\}$ in **N** and an increasing sequence $\{B_n\}$ of finite type I subfactors of UHF_d such that

$$\begin{split} A_{k_1} \subset B_1 \subset A_{k_2} \subset B_2 \subset A_{k_3} \subset B_3 \subset \\ \varphi_i|_{B_{3n+1}} \quad \text{is pure }, \\ \varphi_1|_{B_{3n+3} \cap B'_{3n+1}} = \varphi_2|_{B_{3n+3} \cap B'_{3n+1}} \quad \text{is pure} \\ k_{3n+3} - k_{3n+2} \to \infty . \end{split}$$

We shall construct a sequence $\{v_n\}$ of unitaries in UHF_d such that $\alpha = \lim_{n \to \infty} \operatorname{Ad}(v_n v_{n-1} \dots v_1)$ defines an automorphism of \mathcal{O}_d with $\varphi_1 = \varphi_2 \circ \alpha$. To ensure the existence of the limit we choose the unitaries such that they mutually commute and $\sum ||\lambda(v_n) - v_n|| < \infty$. Since α commutes with the gauge action τ , this will complete the proof.

We fix a large $N \in \mathbf{N}$. We choose n_1 so large that the support projections $e_i^{(1)} = \operatorname{supp}(\varphi_i|_{B_{3n_1+1}})$ are almost orthogonal and $k_{3n_1+3} - k_{3n_1+2} > 2^{2(N+1)}$. Let w_1 be a partial isometry in B_{3n_1+1} with $w_1^*w_1 = e_1^{(1)}$, $w_1w_1^* = e_2^{(1)}$. By the polar decomposition of the approximate unitary

$$w_1 + (1 - e_2^{(1)})w_1^*(1 - e_1^{(1)}) + (1 - e_2^{(1)})(1 - e_1^{(1)}),$$

we obtain a unitary $v_1 \in B_{3n_1+1}$ such that

$$v_1 e_1^{(1)} = w_1 e_1^{(1)} = e_2^{(1)} w_1 = e_2^{(1)} v_1 \in B_{3n_1+1}$$

and $v_1(1-e_2^{(1)})(1-e_1^{(1)}) \approx (1-e_2^{(1)})(1-e_1^{(1)})$. We next choose $n_2 > n_1$ so large that

$$\sigma^n \circ \operatorname{supp}(\varphi_i|_{B_{3n_2+1} \cap B'_{3n_1+3}}), \quad i = 1, 2, \ n = -2^{N-1}, -2^{-N+1} + 1, \dots, 0, \dots, 2^{N+1}$$

are almost orthogonal and $k_{3n_2+2} - k_{3n_1+1} > 2^{2(N+2)}$. (Though σ is an endomorphism, σ^{-n} on $B_{3n_2+1} \cap B'_{3n_1+3}$ is well defined for $n = 1, 2, \ldots, k_{3n_1+2}$.) Let w_2 be a partial isometry in $B_{3n_2+1} \cap B'_{3n_2+3}$ such that

$$w_2^* w_2 = e_1^{(2)} = \operatorname{supp}(\varphi_1|_{B_{3n_2+1} \cap B'_{3n_1+3}})$$

and

$$w_2 w_2^* = e_2^{(2)} = \operatorname{supp}(\varphi_2|_{B_{3n_2+1} \cap B'_{3n_1+3}}),$$

and let ζ be a partial isometry in $A_{k_{3n_2+2}+1} \cap A'_{k_{3n_1+3}}$ such that $\zeta^* \zeta = e_1^{(2)}$ and $\zeta \zeta^* = \sigma(e_1^{(2)})$.

Assume for the moment that $\sigma^{\ell}(e_i^{(2)})$, i = 1, 2; $\ell = -2^{N+1}, -2^{N+1}+1, \ldots, 2^{N+1}$ are all orthogonal and set

$$e_{ij} = \begin{cases} \sigma^{i-1}(\zeta)\sigma^{i-2}(\zeta)\dots\sigma^{j}(\zeta) & i > j\\ \sigma^{i}(e_{1}^{(2)}) & i = j\\ \sigma^{i}(\zeta^{*})\sigma^{i+1}(\zeta^{*})\dots\sigma^{j-1}(\zeta^{*}) & i < j \end{cases}$$

for $i, j = -2^{-N+1}, \ldots, 2^{N+1}$. Then (e_{ij}) is a family of matrix units such that $\sigma(e_{ij}) = e_{i+1,j+1}$ when $|i|, |i+1|, |j|, |j+1| \le 2^{N+1}$. Let

$$E = e_1^{(2)} + \sum_{\ell=1}^{2^{N+1}-1} (1-e_1^{(2)}) \left\{ \frac{2^{N+1}-\ell}{2^{N+1}} e_{\ell,\ell} + \frac{\ell}{2^{N+1}} e_{\ell-2^{N+1},\ell-2^{N+1}} + \frac{1}{2^{N+1}} \sqrt{(2^{N+1}-\ell)\ell} \left(e_{\ell,\ell-2^{-N+1}} + e_{\ell-2^{-N+1},\ell} \right) \right\} (1-e_1^{(2)})$$

as in [Kis95]. Then E is a projection in $D_2 = A_{(k_{3n_2+2}+2^{N+1})} \cap A'_{(k_{3n_1+3}-2^{N+1})}$ and satisfies

$$\|\sigma(E) - E\| \sim \frac{1}{2^{\frac{N+1}{2}}}.$$

Let $w = w_2 + (1 - e_2^{(2)}) \Big(\sum_{\ell=1}^{2^{N+1}} (\sigma^\ell(w_2) + \sigma^{-\ell}(w_2)) \Big) (1 - e_1^{(2)})$ and
 $v = wE + (1 - F)w^*(1 - E) + (1 - F)(1 - E)$

where $F = wEw^*$.

By the orthogonality assumption on $\sigma^{\ell}(e_i^{(2)})$, v is a unitary in D_2 and satisfies

$$\|\sigma(v) - v\| \approx \|\sigma(E) - E\|,$$

$$ve_1^{(2)} = w_2 e_1^{(2)} = e_2^{(2)} w_2 = e_2^{(2)} v$$

Note also that v commutes with v_1 and $e_i^{(1)}$.

....

Now, the projections $\sigma^{\ell}(e_i^{(2)})$, $i = 1, 2, \ell = -2^{N+1}, \ldots, 2^{N+1}$ are not actually orthogonal but choosing n_2 so large that they are very close to being orthogonal, we may obtain a unitary v_2 in D_2 by polar decomposition of v such that v_2 satisfies the same conditions as above, i.e.,

$$\begin{split} v_2 e_1^{(2)} &= w_2 e_1^{(2)} = e_2^{(2)} w_2 = e_2^{(2)} v_2 \in B_{3n_2+1} \cap B'_{3n_1+3} , \\ \|\lambda(v_2) - v_2\| &\sim 2^{-\frac{N+1}{2}} \end{split}$$

and $v_2 \in D_2$. Since

$$\begin{split} \sup(\varphi_1|_{B_{3n_2+1}}) \\ &= \sup(\varphi_1|_{B_{3n_1+1}}) \operatorname{supp}(\varphi_1|_{B_{3n_1+3}\cap B'_{3n_1+1}}) \operatorname{supp}(\varphi_1|_{B_{3n_2+1}\cap B'_{3n_1+3}}) \\ &= e_1^{(1)} p e_1^{(2)} \end{split}$$

 $\overline{7}$

with $p = \operatorname{supp}(\varphi_1|_{B_{3n_1+3}\cap B'_{3n_1+1}}) = \operatorname{supp}(\varphi_2|_{B_{3n_1+3}\cap B'_{3n_1+1}})$, and since the operators $v_1e_1^{(1)} = e_2^{(1)}v_1, p$, and $v_2e_1^{(2)} = e_2^{(2)}v_2$ commute, we obtain that

$$v_1v_2 \cdot \operatorname{supp}(\varphi_1|_{B_{3n_2+1}}) = v_1v_2e_1^{(1)}pe_1^{(2)}$$

= $v_1e_1^{(1)}v_2e_1^{(2)}p$
= $e_2^{(1)}v_1e_2^{(2)}v_2p$
= $pe_2^{(1)}e_2^{(2)}v_1v_2 = \operatorname{supp}(\varphi_2|_{B_{3n_2+1}})v_1v_2$

Here we have also used the fact that v_1 commutes with $e_2^{(2)}$. We repeat this procedure. Thus we obtain an increasing sequence $\{n_k\}$ in **N** and a sequence $\{v_k\}$ of mutually commuting unitaries such that

$$\|\lambda(v_k) - v_k\| \sim 2^{-\frac{N+k}{2}},$$

$$v_k e_1^{(k)} = e_2^{(k)} v_k \in \mathcal{B}_{3n_k+1} \cap \mathcal{B}'_{3n_{k-1}+3}$$

where

$$e_i^{(k)} = \operatorname{supp}(\varphi_i|_{\mathcal{B}_{3n_k+1} \cap \mathcal{B}'_{3n_{k-1}+3}}),$$

and such that $\operatorname{Ad}(v_k \dots v_1)$ maps $\operatorname{supp}(\varphi_1|_{\mathcal{B}_{3n_k+1}})$ into $\operatorname{supp}(\varphi_2|_{\mathcal{B}_{3n_k+1}})$. Then the limit $\alpha = \lim_{k \to \infty} \operatorname{Ad}(v_k \dots v_1)$ defines the desired automorphism.

Theorem 6. Let φ_1 and φ_2 be gauge-invariant pure states of \mathcal{O}_d . Then there exists an automorphism α of \mathcal{O}_d such that $\varphi_1 = \varphi_2 \circ \alpha$.

Proof. If φ_1 is disjoint from φ_2 , then it follows that $(\varphi_i|_{\text{UHF}_d}) \circ \sigma^n = \varphi_i \circ \lambda^n|_{\text{UHF}_d}$, $i = 1, 2, n = 0, 1, 2, \ldots$ are mutually disjoint (by Lemma 4); thus the assertion follows from Lemma 5. If φ_1 is equivalent to φ_2 , there is a unitary $u \in \mathcal{O}_d$ such that $\varphi_1 = \varphi_2 \operatorname{Ad} u$ (by Kadison's transitivity).

3. Pure states mapped into Cuntz states by endomorphisms

There is a one-to-one correspondence between the set $\mathcal{U}(\mathcal{O}_d)$ of unitaries of \mathcal{O}_d and the set $\operatorname{End}(\mathcal{O}_d)$ of unital endomorphisms of \mathcal{O}_d ; if $u \in \mathcal{U}(\mathcal{O}_d)$, the endomorphism α_u is defined by $\alpha_u(s_i) = us_i$ and if $\alpha \in \operatorname{End}(\mathcal{O}_d)$, α corresponds to the unitary u defined by $u = \sum_{i=1}^d \alpha(s_i) s_i^*$. Define

$$\begin{split} \mathcal{U}_i &= \{ u \in \mathcal{U}(\mathcal{O}_d) | \quad \alpha_u \text{ is an inner automorphism} \} \\ \mathcal{U}_a &= \{ u \in \mathcal{U}(\mathcal{O}_d) | \quad \alpha_u \text{ is an automorphism} \} \\ \mathcal{U}_s &= \mathcal{U}(\mathcal{O}_d) \setminus \mathcal{U}_a \;. \end{split}$$

Proposition 7. Let U_i, U_a, U_s be as above.

- (i) \mathcal{U}_i is a dense subset of $\mathcal{U}(\mathcal{O}_d)$.
- (ii) \mathcal{U}_a is a dense G_{δ} subset of $\mathcal{U}(\mathcal{O}_d)$.
- (iii) \mathcal{U}_s is a dense F_{σ} subset of $\mathcal{U}(\mathcal{O}_d)$.

Proof. M. Rørdam proved (i) in [Rør93] and the other statements are more or less known.

We shall give a proof of (i). We again denote by λ the canonical endomorphism of $\mathcal{O}_d : \lambda(x) = \sum_{i=1}^d s_i x s_i^*, x \in \mathcal{O}_d$. Since the unitary corresponding to $\operatorname{Ad} v$ is $v\lambda(v^*)$, it suffices to show that $v\lambda(v^*)$, $v \in \mathcal{U}(\mathcal{O}_d)$, is dense in $\mathcal{U}(\mathcal{O}_d)$. If UHF_d denotes the C*-subalgebra generated by $s_{i_1}s_{i_2}\ldots s_{i_n}s_{j_n}^*\ldots s_{j_1}^*$, then we mentioned in the introduction that UHF_d is isomorphic to the UHF algebra $\bigotimes_{\mathbf{N}} M_d$ and $\lambda|\text{UHF}_d$ corresponds to the one-sided shift on $\bigotimes_{\mathbf{N}} M_d$. Thus $\lambda|\text{UHF}_d$ satisfies the Rohlin property, [BKRS93], [Kis95]. In particular for any n and $\varepsilon > 0$ there is an orthogonal family $e_0, e_1, \ldots, e_{n-1}$ of projections in UHF_d such that

$$\sum_{i=0}^{d^n-1} e_i = 1$$
$$\|\lambda(e_i) - e_{i+1}\| < \varepsilon$$

with $e_{d^n} = e_0$. The similar properties hold for $\operatorname{Ad} u \circ \lambda$, i.e., if UHF_d^u denotes the C*-subalgebra generated by $us_{i_1}us_{i_2}\ldots us_{i_n}s_{j_n}^*u^*\ldots s_{j_1}^*u^*$, then $\operatorname{Ad} u \circ \lambda | \operatorname{UHF}_d^u$ corresponds to the one-sided shift on $\bigotimes_{\mathbf{N}} M_d$. Hence for any n and $\varepsilon > 0$ there is an

orthogonal family $f_0, f_1, \ldots, f_{d^n-1}$ of projections in UHF^{*u*}_{*d*} such that

$$\sum_{i=0}^{d^n-1} f_i = 1$$

$$\|\operatorname{Ad} u \circ \lambda(f_i) - f_{i+1}\| <$$

with $f_{d^n} = f_0$. Suppose we have chosen such projections e_i, f_i for the same n. Since $K_0(\mathcal{O}_d) = \mathbf{Z}/(d-1)\mathbf{Z}$, we have that $[e_0] = 1 = [f_0]$ in $K_0(\mathcal{O}_d)$ and so obtain a partial isometry $w \in \mathcal{O}_d$ such that $w^*w = e_0, ww^* = f_0$. We find unitaries $v_1, v_2 \in \mathcal{O}_d$ such that $\operatorname{Ad} v_1\lambda(e_i) = e_{i+1}$, $\operatorname{Ad} v_2 \operatorname{Ad} u\lambda(f_i) = f_{i+1}$, and $||v_1 - 1|| \approx 0$, $||v_2 - 1|| \approx 0$ (depending on ε). Let

$$z = w^* (L_{v_2 u} R_{v_1^*} \lambda)^{d^n} (w)$$

where $R_{v_1^*}$ is the right multiplication by v_1^* and L_{v_2u} is the left multiplication by v_2u . Since $(L_{v_2u}R_{v_i^*}\lambda)^i(w)$ is a partial isometry with initial projection e_i and final projection f_i , z is a unitary in $e_0\mathcal{O}_d e_0$. Since $K_1(\mathcal{O}_d) = 0$ and \mathcal{O}_d has real rank zero, we find a sequence $z_0, z_1, \ldots, z_{d^n-1}$ of unitaries in $e_0\mathcal{O}_d e_0$ such that $z_0 = z$, $z_{d^n-1} = 1$,

$$||z_i - z_{i+1}|| < 4/d^n$$

Define a unitary v by

$$v = \sum_{i=0}^{d^n - 1} (L_{v_2 u} R_{v_1^*} \lambda)^i (w z_i)$$

Then since

$$v - (L_{v_2u}R_{v_1^*}\lambda)(v)$$

= $\sum_{i=1}^{d^n-1} (L_{v_2u}R_{v_1^*}\lambda)^i (wz_i - wz_{i-1}) + wz_0 - (L_{v_2u}R_{v_1^*}\lambda)^{d^n}(w)$,

it follows that

$$\|v - L_{v_2 u} R_{v_1^*} \lambda(v)\| < 4/d^n$$

or

$$\|v - u\lambda(v)\|$$
. $4/d^n$.

This completes the proof of (i).

Since $\mathcal{U}_a \supset \mathcal{U}_i, \mathcal{U}_a$ is dense. That \mathcal{U}_a is a G_δ set follows from

$$\mathcal{U}_a = \bigcap_n \bigcap_j \bigcup_i \left\{ u \in \mathcal{U}(\mathcal{O}_d); \|\alpha_u(x_i) - x_j\| < \frac{1}{n} \right\}$$

where $\{x_i\}$ is a dense sequence in \mathcal{O}_d .

If \mathcal{U}_a contains a non-empty open set, then it follows that $\mathcal{U}_a = \mathcal{U}(\mathcal{O}_d)$ or $\mathcal{U}_s = \emptyset$. Because for any unitaries u, w of \mathcal{O}_d we find a unitary v such that $w\lambda(v) \approx vu$. (Apply the previous argument for the endomorphism $\operatorname{Ad} u \circ \lambda$ instead of λ and the unitary wu^* .) Since $v\mathcal{U}_a\lambda(v^*) = \mathcal{U}_a$ for any unitary $v \in \mathcal{O}_d$, the above fact implies that \mathcal{U}_a contains an arbitrary unitary. But we know that $\mathcal{U}_s \neq \emptyset$. For example if $u = \sum s_i s_j s_i^* s_j^*$, then $\alpha_u = \lambda$ and $\lambda(\mathcal{O}_d)' \simeq M_d$. Thus we obtain that \mathcal{U}_s is dense.

For a unit vector $\xi \in \mathbf{C}^d$ we have defined the Cuntz state f_{ξ} of \mathcal{O}_d by

$$f_{\xi}(s_{i_1}\dots s_{i_m}s_{j_n}^*\dots s_{j_1}^*) = \xi_{i_1}\dots \xi_{i_m}\overline{\xi_{j_n}}\dots \overline{\xi_{j_1}}$$

It follows that f_{ξ} is a unique pure state of \mathcal{O}_d satisfying

$$f_{\xi}\left(\sum_{i=1}^{d} \overline{\xi_i} s_i\right) = 1$$

Let F be the linear span of $s_i s_j^*$, i, j = 1, ..., d. Then F is isomorphic to M_d and each unitary u in F defines an automorphism α_u of \mathcal{O}_d . This group of automorphisms acts transitively on the compact set of Cuntz states.

We denote by f_0 the Cuntz state f_{ξ} with $\xi = (1, 0, \dots, 0)$.

Proposition 8. If φ is a pure state of \mathcal{O}_d , there is a unital endomorphism α of \mathcal{O}_d such that $\varphi \circ \alpha = f_0$, where f_0 is the Cuntz state defined above. Furthermore α may be chosen so that $\pi_{\varphi} \circ \alpha(\mathcal{O}_d)''$ contains the one-dimensional projection onto $\mathbf{C}\Omega_{\varphi}$.

Proof. It suffices to show that if φ is a pure state there is a unitary $u \in \mathcal{O}_d$ such that

$$\varphi(us_1) = 1 \; .$$

Since \mathcal{O}_d has real rank zero, there is a decreasing sequence (e_n) of projections in \mathcal{O}_d such that φ is the unique state satisfying $\varphi(e_n) = 1$ for $n = 1, 2, \ldots$, i.e., (e_n) converges to the support projection of φ in \mathcal{O}_d^{**} . We may further assume that $[e_n] = 0$ in $K_0(\mathcal{O}_d)$.

Pick up a projection $e = e_n$ such that $\varphi(e) = 1$ and e < 1. Then es_1^* is a partial isometry with initial projection $s_1 es_1^*$ and final projection e. Let w be a partial isometry such that $w^*w = 1 - s_1 es_1^*$ and $ww^* = 1 - e$. Then $u = es_1^* + w$ is a unitary in \mathcal{O}_d such that

$$us_1e = (es_1^* + w)s_1e = e$$
.

Thus we have that $\varphi(us_1) = 1$.

To prove the last statement we shall modify u so that φ is the unique state satisfying

$$\varphi(us_1)=1\;.$$

We have chosen $e = e_n$. We let

$$h = \sum_{k=1}^{\infty} 2^{-k} e_{n+k} \; .$$

Then h is self-adjoint with $0 \le h \le 1$ and φ is the only state satisfying $\varphi(h) = 1$. Let

$$u_1 = e^{2\pi i h} u \; .$$

Then $u_1s_1e = e^{2\pi i h}e$ and the assertion follows.

References

- [BJ97] O. Bratteli and P.E.T. Jorgensen, Endomorphisms of B(H), II, J. Funct. Anal. 145 (1997), 323–373.
- [BJP96] O. Bratteli, P.E.T. Jorgensen and G. Price, Endomorphisms of B(H), in W. Arveson et al., eds., "Quantization of Nonlinear Partial Differential Equations", Amer. Math. Soc. 1996.
- [BJKW] O. Bratteli, P.E.T. Jorgensen, A. Kishimoto and R.F. Werner, Pure states on \mathcal{O}_d , J. Operator Theory, to appear.
- [BK99] O. Bratteli and A. Kishimoto, Trace scaling automorphisms of certain stable AF algebras II, preprint 1999.
- [BKRS93] O. Bratteli, A.K. Kishimoto, M. Rørdam and E. Størmer, The crossed product of a UHF algebra by a shift, *Ergodic Theory and Dyn. Sys.* 13 (1993), 615–626.
- [Bra72] O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans, Amer. Math. Soc. 171 (1972), 195–234.
- [Cun77] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185.
- [Eva80] D.E. Evans, On \mathcal{O}_n , Publ. RIMS. Kyoto Univ. 16 (1980), 915–927.
- [Kis95] A. Kishimoto, The Rohlin property for automorphisms of UHF algebras, J. reine argew. Math. 465 (1995), 183–196.
- [KR86] R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras, Volume II, Academic Press 1986.
- [KT78] A. Kishimoto and H. Takai, Some remarks on C*-dynamical systems with a compact abelian group, Publ. Res. Inst. Math. Sci. 14 (1978), 388–397.
- [Pow67] R.T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. 86 (1967), 138–171.
- [Rør93] M. Rørdam, Classification of inductive limits of Cuntz algebras, J. reine angew. Math. 440 (1993), 175–200.

MATHEMATICS INSTITUTE, UNIVERSITY OF OSLO, PB 1053 BLINDERN, N-0316 OSLO, NORWAY

Department of Mathematics, Hokkaido University, Sapporo, 060 Japan