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Abstract

We show that under reasonable conditions, online learning for a nonlinear
function near a local minimum is similar to a multivariate Ornstein Uhlenbeck
process. This implies that the parameter state oscillates randomly around the
minimum point, with a Gaussian limiting distribution.

1 Introduction

Our setting is this: We have a (large) set of training data (x;,y;), which we want
to approximate with a parameterized function f(w;z). We consider the algorithm
of drawing random training patterns, and performing small gradient descent steps to
minimize the error sequentially. In the neural net litterature, this algorithm is often
referred to as online learning [1].

Online learning was first proposed as a model of learning in a biological context of
neural networks [2], where the so called backpropagation of errors is the biological
mechanism believed to compute the gradient.

Online learning is often used for computation problems as well, where artificial neural
nets are used as a nonlinear regression function, without any particluar interest in
biological interpretations. Considered as a computational tool, online learning has
been critisized by some authors for introducing unnecesary random noise, and more
powerful optimization algorithms exist that use second order derivatives [3]. However,
the algorithm is still in use, as it is extremely simple to implement, scales favourably
with the size of the training set and net size, and behaves reasonably well in most
cases. The random noise of the algorithm may also have the beneficial effect of moving
the parameter state away from suboptimal local minima. A different argument for the
relevance of online learning is that many reinforcement learning algorithms rely on its
incremental mode, see e.g. the famous backgammon application by Tesauro [4].
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We do not attempt to make any strong argument in favour of online learning, but
simply point out that as long as it is considered a relevant biological model and is also
in use as a computational tool, it is important to understand its behavior.

2 Definitions

Let the error function for pattern i € {1, ..., N} and parameter state w € R" be given
by

Err(i,w) = %(f(w, ;) —yi)? + dwlw

where f is three times continuously differentiable in w and A > 0. The quadratic term
AwTw is often used in order to prevent the parameter vector from growing indefinitely,
a problem often seen with neural networks that feature close to flat error surfaces for
large parameter values. Also, a A > 0 works as a penalty for overfitting, similar to
ridge regression shrinkage used in linear regression models [5]. Note, however, that we
allow A = 0.

The total error function we define as:
XN
Err(w) = ¥ 21: Err(i,w)

For a > 0 the online learning algorithm produces a random sequence wj by
Wiy, = wy —aVErr(I, wy)
where a > 0 is the step length, I, is a sequence of independent uniform random

variables in {1,..., N}, and the gradient is taken with respect to w.

For convenience, we define ¢*(w) = VErr(I;, w), so that

wl‘:ﬂ =wy — O‘Qbk(w?)

Given w € R™, ¢*(w) is an iid sequence of discrete random variables, while for a given
k, o8 : R" — R" is twice differentiable.

Without loss of generality, we let 0 be a local minimum of Err. We assume that
Err(0) > 0 and the Hessian H of Err at 0 is positive definite.

Our goal is to characterize the paths of w close to the minimum point, and therefore
take wy = 0.

We will often be using a Taylor expansion of ¢* around 0:

¢"(w) = ¢*(0) + H*w + R (w)



where H* is the Hessian of Err(k,0) and the remainder term R*(w) is of the order w?.
Because 0 is a local minimum of Err, we have E(¢*(0)) = 0. Averaging this over k
therefore gives

E(¢*(w)) = Hw + Ri(w)

where R;(w) is of the order w?.

Let X be the covariance matrix of ¢*(0), which we assume to be invertible. The Taylor
expansion gives Var(¢F(w)) = ¥ + Var(R*(w) + H*w) — 2Cov(¢*(0), R*(w) + H*w),
which implies

Var(¢*(w)) = ¥ + Ry(w)

where the matrix Ry is of the order w.

3 The multivariate Ornstein Uhlenbeck process

The well-known onedimensional O-U process is a diffusion of this form, see [6]:

dXt = —CLXtdt + SdBt
where a > 0,5 # 0 and B; is standard Brownian motion. Its stationary distribution is
normal with mean zero and variance s%/2a.

The n-dimensional generalization of the O-U process has a,s € R". Schach [7] defines
the multivariate O-U process as a continuous Markov process with multinormal limiting
distribution. This implies that the eigenvalues of @ must have positive real parts, and
that s be nonsingular.

We are interested in the special case where a is symmetric and positive definite, so
that all eigenvalues are real and positive, and the eigenvectors {e;} form an orthogonal
basis. In this case, X can be decomposed to a sum of 1-dimensional O-U processes:

X = Z 5;
i=1
Here, & = el X; solves

for some positive constants a;, o;.

Let Y, = b X,, for some constant vector b. Then Y solves
dY; = a(w,t)Y,dt + 6dB;

where a(w, t) is continuous in ¢ almost surely, and takes values in the range [min(a;), max(a;)].
The process a(w,t) is adapted to the filtration of X;, but not necessarily to that of
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Y}, so the latter will typically be non-Markov. However, for a large ¢, Fla(w,t)] will
approach a constant a, regardless of the initial state Xj.

By the general theory of O-U processes, the limiting distribution of X is multinormal,
so the limiting distribution of Y is also normal.

It should be noted that some authors [8] refer to the diffusion X; defined above as the
time derivative of the Ornstein Uhlenbeck process, while other authors refer to X; as
the O-U process itself [7]. This, of course, is only a matter of definition, and we choose
to follow the latter tradition.

4 Transformation

We tranform the w® process, depending on the step length a.
{w}i, — {v*}s, where v is defined for real times.
Let

v = Pwy

where || rounds downward to the closest integer.

This implies vf,, = o "wf, = ()Fl/Qwﬁt/aJ — Jaglt/el (W )): giVing

Vo = 0 = Vol (Vauy)

with vy = 0.
Let X; solve:

dX, = —HX,dt + 2Y%dB,

with Xy = 0. The process X is the multivariate Ornstein Uhlenbeck (O-U) process.

If we fix the value of vy and let « fall toward zero, then by a Taylor approximation,
Eg., —v2ve] = —E[\/agl(\/av®)| approaches —aHvg. Also, Var[ve,, — v|vg]
approaches aX. If we regard « as an infinitesimal, then these properties are equivalent
to those of the O-U process. We formalize this idea in the following section.

5 Main result

We will prove that the transformed process v converges weakly toward a multivariate
Ornstein Uhlenbeck process, when « falls toward zero.

In order to prove the main result below, we first give a lemma stating ”non-explosion
in probability” of v®.



LEMMA 1 For e > 0 there exist M,0 > 0 such that P(sup,eoq |[vf|| > M) < € when
a < 9.

Proof:

Let o5 be the drift compensated process:
T)ta—&—oc = ,Dta + (U?—f—a - U?) - E[U?—l—a - U?|U?]

Now fix an M > 0.

For each point v € R", we have
lima—oEvf, — vi|vf =v] = —Hv

This linear Taylor approximation converges uniformly on the compact set {v : ||v]| <
M}, This, combined with the fact that H is positive definite, implies the existence of
an e > 0 such that a < e implies

P([[of|] = [[of'll |supsep.a{l|05]] < M}) =1
for each ¢ € [0,1]. Less formally, for small a, the correction term Evf, , —vg*|vf'] pushes
v® away from 0. Therefore, it suffices to show the lemma statement for v®.
Define the stopping time 7 = inf{t : ¢ > 1 or ||o3|| > M}, and let 9* be v* stopped at
time 7:

@ta = 1—)?/\7
By construction v* and v are (non-Markov) martingales with respect to the filtration
generated by v®.

The event supicjoq1||v5|| > M is identical to the event [|0f'|| > M. We procede to show
that the probability of this event can be made arbitrarily small, by choosing M large
and letting a tend to zero.

When « falls toward 0, the covariance matrices of (05, — 05*)/+/a converge uniformly
toward X when ||9%|| < M. Therefore, limsup, ||Var(of)|| < ||3]].

This bound does not depend on M. The result follows from the Markov inequality.

THEOREM 1 Let T'> 0. Then lim, o vy = X; fort € [0,T] (weak convergence).

Proof:

It suffices to show convergence for T' = 1.

For M > 0 define the process v by:

Vipa = 0, = aglled (Vo) for ([0} < M

M,ao M« .
Vi =V~ + & otherwise,

where & ~ N(—aHv"* a¥).



Let f(z) = E[upt® — 0o = 2]/a and C%(x) = Cov[v)1 — v v = 2]/a
and

We will prove that v converges to X (for a fixed M) through a theorem given in

[9]. This result was originally stated for one-dimensional processes, but easily extends
to multidimensional processes, as pointed out by [10].

Let f(z) = —aHz and C(x) = aX, which are Lipschitz continuous. In order to use
the theorem, we must show:

1/a—1

ZHf“vka FOMY2 + (|07 (0 — O] Pla — 0

The terms of this sum with [[vpo®|| > M are zero by construction. From a Taylor
approximation argument, it follows that f® converges toward f, uniformly on the
compact set where ||z|| < M, which implies the desired convergence.

From our lemma we know that for e > 0 there are M,§ > 0 so that
P(’Uﬁia = UI(:OU k= Oa "'70171 - ]-) <€

It follows that v converges weakly toward X.
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