
Dept. of Math. University of Oslo

Statistical Research Report No. 9

ISSN 0806–3842 September 2008

HYDROCARBON PRODUCTION OPTIMIZATION IN

FIELDS WITH DIFFERENT OWNERSHIP AND

COMMERCIAL INTERESTS

Nils Fridthjov Haavardsson2 , Arne Bang Huseby1, Frank Børre Pedersen2

Steinar Lyngroth2, Jingzhen Xu2 and Tore I. Aasheim2 ∗

1University of Oslo, 2Det Norske Veritas

Abstract

A main field and satellite fields consist of several separate reservoirs with gas cap
and/or oil rim. A processing facility on the main field receives and processes the oil, gas
and water from all the reservoirs. This facility is typically capable of processing only a
limited amount of oil, gas and water per unit of time. In order to satisfy these processing
limitations, the production needs to be choked. The available capacity is shared among
several field owners with different commercial interests. In this paper we focus on
how total oil and gas production from all the fields could be optimized. The satellite
field owners negotiate processing capacities on the main field facility. This introduces
additional processing capacity constraints (booking constraints) for the owners of the
main field. If the total wealth created by all owners represents the economic interests of
the community, it is of interest to investigate whether the total wealth may be increased
by lifting the booking constraints. If all reservoirs may be produced more optimally by
removing the booking constraints, all owners may benefit from this when appropriate
commercial arrangements are in place. We will compare two production strategies. The
first production strategy optimizes locally, at distinct time intervals. At given intervals
the production is prioritized so that the maximum amount of oil is produced. In the
second production strategy a fixed weight is assigned to each reservoir. The reservoirs
with the highest weights receive the highest priority.

1 Introduction

Optimization is an important element in the management of multiple-field oil and gas assets,
since many investment decisions are irreversible and finance is committed for the long term.
Optimization of oil and gas recovery in petroleum engineering is a considerable research
field, see Bittencourt & Horne (1997), Horne (2002) or Merabet & Bellah (2002). Another
important research tradition focuses on the problem of modelling the entire hydrocarbon
value chain, where the purpose is to make models for scheduling and planning of hydrocarbon
field infrastructures with complex objectives, see van den Heever et al. (2001), Ivyer &
Grossmann (1998) or Neiro & Pinto (2004). Since the entire value chain is very complex,
many aspects of it needs to be simplified to be able to construct such a comprehensive model.

The purpose of the present paper is to focus on the problem of optimizing production in
an oil or gas field consisting of many reservoirs, which constitutes an important component

∗At the time employed by DNV.
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in the hydrocarbon value chain. By focusing on only one important component we are
able to develop a framework that provides insight into how an oil or gas field should be
produced. The optimization methods developed here can thus be used in the broader context
of a total value chain analysis. The present paper applies an already developed model
framework for hydrocarbon production optimization of an oil and gas field development
project. More specifically, the methodology developed in Haavardsson & Huseby (2007),
Huseby & Haavardsson (2008) and Haavardsson & Huseby (2008) will be used.

We assume that state-of-the-art production profile models based on reservoir simulation
models exist for every reservoir. Simplified production profile models can then be con-
structed, as described in Haavardsson & Huseby (2007). In the present paper we will utilize
such production profile models in production optimization where several reservoirs share the
same processing facilities. These facilities are only capable of processing limited amounts
of oil, gas and water per unit of time. In order to satisfy these processing limitations, the
production needs to be choked according to a production strategy. Each reservoir produces
a primary hydrocarbon phase - oil or gas. In addition to the primary phases, most reservoirs
also produce associated phases; gas in oil reservoirs, condensate in gas reservoirs and water.

Huseby & Haavardsson (2008) is a theoretical paper, where the problem of optimizing
production strategies with respect to various types of objective functions is considered. It
is shown that the solution to the optimization problem depends on certain key properties,
e.g., convexity or concavity, of the objective function and of the potential production rate
functions. An algorithm for finding the best production strategy and two main analytical
results are presented.

Haavardsson & Huseby (2008) focuses on applied multi-reservoir production optimiza-
tion, and an alternative approach to production optimization is proposed. By introducing a
parametric class of production strategies the best production strategy is found using stan-
dard numerical optimization techniques.

We close this section listing the main interests of the present paper:

• The main focus of the paper is the modelling approach and the basic principles for a
modelling tool for general use in examination of production strategy effects on multi-
reservoir fields, with different and varying hydrocarbon phases, with individual pro-
duction constraints and priorities, different owners and with the functionality to extend
and cover multi fields integration in a regional / processing hub evaluation.

• The article also highlights the importance of being aware of local and global production
optimization effects and the importance booking constraints may have. To study this
two different production strategies are presented.

• As an illustration a case study based on real data1 will be presented. Thus, the case
study serves as a tool for the investigation of the general issues listed above. We seek
knowledge that is valid beyond the numerical results obtained in the case study.

1In the present paper the case study is un-named and the data are made anonymous to reduce the ability

to derive commercial values.
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2 Model framework

2.1 Production profile model framework

The reservoir simulation output available from the reservoir simulator Eclipse 2 is used to
construct simplified production profile models for each well. See Appendix A for a broad-
brush introduction to simplified production profile models, or Haavardsson & Huseby (2007)
for details.

To model multiple phases of production we assume that the production of each asso-
ciated hydrocarbon phase can be expressed as a function of the cumulative production of
the primary hydrocarbon phase. If the primary hydrocarbon phase is oil, we denote the
cumulative production Q(t), while G(t) is used analogously for gas.

A fundamental model assumption is that the potential production rate of the primary hy-
drocarbon phase from a reservoir, can be expressed as a function of the remaining producible
volume, or equivalently as a function of the volume produced. Thus, if Q(t) denotes the
cumulative production of the primary hydrocarbon phase at time t ≥ 0, and f(t) denotes
the potential production rate at the same point in time, we assume that f(t) = f(Q(t)).
This assumption implies that the total producible volume from a reservoir does not depend
on the production schedule. In particular, if we delay the production from a reservoir we
can still produce the same volume at a later time. We refer to the function f as the potential
production rate function or PPR-function of the reservoir. If a reservoir is produced without
any production constraints from time t = 0, the cumulative production function will satisfy
the following autonomous differential equation:

dQ(t)

dt
= f(Q(t)),

with the boundary condition Q(0) = 0.

2.1.1 A single production well

We assume that we are given a ratio expressing the units of the associated hydrocarbon
phase that is produced depending on the units produced of the primary hydrocarbon phase.
We refer to this function as the associated ratio and denote it ψ(Q(t)) or γ(G(t)) depending
on whether oil or gas is the primary hydrocarbon phase. Although we can handle any finite
number of associated phases we will assume in this paper that there is only one associated
phase. Thus, we are not concerned with water production in this application. If the primary
hydrocarbon phase is oil, the associated ratio expresses the Gas-Oil-Ratio (GOR). If the
primary hydrocarbon phase is gas, the associated ratio expresses the Condensate-Gas-Ratio
(CGR).

To model ψ(Q(t)) we choose to use the following representation

ψ(Q(t)) = ψ(0) + (ψ(V ) − ψ(0)) ·R(t)Pψ , (2.1)

where R(t) = Q(t)
V

denotes the fraction produced, R(t) ∈ [0, 1], where V denotes producible
volume of the primary hydrocarbon phase. The parameter Pψ is assumed to be positive. The
parameters ψ(0), ψ(V ) and Pψ are estimated using the output from the reservoir simulator.
Typically ψ(Q(t)) is increasing in Q(t), reflecting the increasing quantity of gas produced
per unit produced oil as the reservoir is produced.

2For details on Schlumberger’s Eclipse Reservoir Engineering Software, see www.slb.com.
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For γ(G(t)) we use the same representation, i.e. ,

γ(G(t)) = γ(0) + (γ(V ) − γ(0)) ·R(t)Pγ , (2.2)

where Pγ > 0. Typically γ(G(t)) is decreasing in G(t), so that typically γ(0) > γ(V ).
This reflects the decreasing quantity of condensate produced per unit produced gas as the
reservoir is produced. Furthermore, we will typically choose Pγ < 1.

2.1.2 Multiple production wells

We consider oil and gas production from N wells that share a processing facility with a
constant oil processing capacity Ko and a constant gas capacity Kg.

Let I = (I1, . . . , IN ) be the vector expressing the type of primary hydrocarbon phase of
each well, so that

Ii =

{

1 if the primary hydrocarbon phase of well i is oil,

0 if the primary hydrocarbon phase of well i is gas,
(2.3)

for i = 1, . . . , N . Let O = {i |Ii = 1} and G = {i |Ii = 0}, so that O contains the indices of
the oil wells and G contains the indices of the gas wells.

We introduce

Pi(t) =

{

Qi(t) if i ∈ O,

Gi(t) if i ∈ G.
(2.4)

and assume that the PPR-functions can be written as

fi(t) =

{

fi(Qi(t)) if i ∈ O,

fi(Gi(t)) if i ∈ G,
(2.5)

for i = 1, . . . , N . Then P (t) = (P1(t), . . . , PN (t)) represents the vector of cumulative pri-
mary hydrocarbon phase production functions for the N wells, and f(t) = (f1(t), . . . , fN (t))
the corresponding vector of PPR-functions. Thus, fi represents the PPR-function of well i.
Note that the formulation (2.5) implies that the potential production rate of one well does
not depend on the volumes produced from the other wells.

A production strategy is defined by a vector valued function b = b(t) = (b1(t), . . . , bN (t)),
defined for all t ≥ 0, where bi(t) represents the choke factor applied to the ith well at time
t, i = 1, . . . , N . We refer to the individual bi-functions as the choke factor functions of the
production strategy. The actual oil production rates from the wells, after the production is
choked is given by:

q(t) = (q1(t), . . . , qN (t)),

where

qi(t) =

{

bi(t)fi(Qi(t)) if i ∈ O,

bi(t)γi(Gi(t))fi(Gi(t)) if i ∈ G,
(2.6)

so that qi(t) either expresses the actual oil rate from an oil well or the actual condensate
rate from a gas well. The actual gas production rates from the wells are similarly denoted

g(t) = (g1(t), . . . , gN (t)),
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where

gi(t) =

{

bi(t)fi(Gi(t)) if i ∈ G,

bi(t)ψi(Qi(t))fi(Qi(t)) if i ∈ O,
(2.7)

so that gi(t) either expresses the actual gas rate from a gas well or the actual associated gas
rate from an oil well.

We also introduce the total oil production rate function q(t) =
∑N

i=1 qi(t) and the total

cumulative oil production function Q(t) =
∑N

i=1Qi(t). The total gas production rate func-

tion is analogously denoted g(t) =
∑N

i=1 gi(t), while the total cumulative gas production

function is denoted G(t) =
∑N

i=1Gi(t).
To satisfy the physical constraints of the wells and the processing facility, we require

that for a hydrocarbon phase, the actual well production rate cannot exceed its potential
production well rate. Moreover, the total well production rate cannot exceed the production
capacity. These requirements imply that

0 ≤ qi(t) ≤ fi(Qi(t)), t ≥ 0, i ∈ O,

0 ≤ qi(t) ≤ γi(Gi(t))fi(Gi(t)), t ≥ 0, i ∈ G,

0 ≤ gi(t) ≤ ψi(Qi(t))fi(Qi(t)), t ≥ 0, i ∈ O,

0 ≤ gi(t) ≤ fi(Gi(t)), t ≥ 0, i ∈ G,

(2.8)

for i = 1, . . . , N and that

q(t) =
N

∑

i=1

qi(t) ≤ Ko, t ≥ 0,

g(t) =
N

∑

i=1

gi(t) ≤ Kg, t ≥ 0. (2.9)

Expressed in terms of the production strategy b, this implies that

0 ≤ bi(t) ≤ 1, t ≥ 0, i = 1, . . . , N, (2.10)

and that
∑

i∈O

bi(t)fi(Qi(t)) +
∑

i∈G

bi(t)γi(Gi(t))fi(Gi(t)) ≤ Ko, t ≥ 0,

∑

i∈O

bi(t)ψi(Qi(t))fi(Qi(t)) +
∑

i∈G

bi(t)fi(Gi(t)) ≤ Kg, t ≥ 0. (2.11)

The constraint (2.10) implies that the actual production rate cannot be increased beyond
the potential production rate at any given point in time, while the constraint (2.11) states
that the actual, total production rates cannot exceed the capacities of the processing facility.
Let B denote the class of production strategies that satisfy the physical constraints (2.10)
and (2.11). We refer to production strategies b ∈ B as valid production strategies.

We need to specify how the choke factors are determined. In this paper we will determine
the choke factors sequentially. A sequential approach only produces one of the phases at the
plateau level. First the choke factors are determined so that the constraint of the primary
hydrocarbon phase is not exceeded. Then, if the constraint of the associated hydrocarbon
phase is exceeded the choke factors are modified accordingly.
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Definition 2.1 We say that x > y if xi ≥ yi ∀i and ∃ j ∈ {1, . . . , n} such that xj > yj.
Let b, b′ ∈ B be two production strategies. If b′(t) > b(t) implies that either

∑

i∈O

b′i(t)fi(Qi(t)) +
∑

i∈G

b′i(t)γi(Gi(t))fi(Gi(t)) > Ko

or
∑

i∈O

b′i(t)ψi(Qi(t))fi(Qi(t)) +
∑

i∈G

b′i(t)fi(Gi(t)) > Kg,

then b is an admissible production strategy. We denote the class of admissible production
strategies B′.

2.2 Production strategies and objective functions

2.2.1 Strategy for local production optimization

Consider a production strategy that optimizes production locally at predefined, discrete time
intervals. The production is prioritized so that the oil production is accelerated following an
argument that the oil has the highest value and accelerated production would be beneficial
from a net present value perspective if disregarding other potentially overriding effects as
e.g. gas capacity utilization and oil price assumptions. This is obtained by assigning the
highest priority to the well with the highest oil to gas production ratio, meaning first sorting
the oil wells after the GOR in ascending order followed by the gas wells sorted after CGR
in descending order. The production at time t is thus prioritized strictly according to
π = (π(1), . . . , π(N)). At the next decision point, i.e. , at time t + δ, the procedure is
repeated.

To be a bit more precise we start by dividing a finite time horizon [0, T ] into S intervals.
Thus we obtain a partition [0, δ, 2δ, . . . , (S − 1)δ, T ], where δ = T/S. Let φl denote the
objective function of the local production strategy. At time t = 0 φl is initialized so that
φl = 0. At time t the following algorithm is used:

Algorithm 2.2 Step 1. Sort the wells by any predefined order given by commercial agree-
ments or other priorities. Sort the remaining wells by first sorting the oil wells after GOR
in ascending order followed by the gas wells sorted after CGR in descending order. Denote
the resulting permutation vector π.

Step 2. Find the number of producing wells ic = 1 +min(iq, ig) where iq and ig are the
largest integers that fulfill

∑

j≤iq ,π(j)∈O

fπ(j)(Qπ(j)(t)) +
∑

j≤iq ,π(j)∈G

γπ(j)(Gπ(j)(t))fπ(j)(Gπ(j)(t)) ≤ Ko

∑

j≤ig,π(j)∈G

fπ(j)(Gπ(j)(t)) +
∑

j≤ig ,π(j)∈O

ψπ(j)(Qπ(j)(t))fπ(j)(Qπ(j)(t)) ≤ Kg

Note that if min(iq, ig) = N choking is not necessary. We let b = 1 in this case. If
min(iq, ig) < N the (time-dependent) choke factors are given as

bπ(i) =







1, i < ic,
bc, i = ic,
0, i > ic,

(2.12)
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where bc = min(bq, bg) and

bq =











Ko−
P

j<ic
qπ(j)(t)

fπ(ic)(Qπ(ic)(t))
, π(ic) ∈ O,

Ko−
P

j<ic
qπ(j)(t)

γπ(ic)(Gπ(ic)(t))fπ(ic)(Gπ(ic)(t))
, π(ic) ∈ G,

(2.13)

and

bg =











Kg−
P

j<ic
gπ(j)(t)

ψπ(ic)(Qπ(ic)(t))fπ(ic)(Qπ(ic)(t))
, π(ic) ∈ O,

Kg−
P

j<ic
gπ(j)(t)

fπ(ic)(Gπ(ic)(t))
, π(ic) ∈ G.

(2.14)

Step 3. Update φl, so that

φl = φl +

∫ t+δ

t

N
∑

i=1

{qi(u) + αgi(u)}e
−rudu.

Algorithm 2.2 is repeated at every grid point in the partition [0, δ, 2δ, . . . , (S − 1)δ]. The
parameter α converts a unit of gas into an oil unit equivalent. Thus, we are capable of
comparing the energy amount in gas versus oil. In this paper we use α = 0.001, as stated
by the Norwegian Petroleum Directorate 3.

Due to the nature of the local production strategy, the production rates of some of
the individual wells might fluctuate in periods. The fluctuation occurs when it is equally
beneficial to produce from two or more wells, so that when the wells compete for capacities
they will alternate between being produced in one period and choked the next. The primary
purpose of the local production strategy is to give decision support to project teams. The
focus can for example be the assessment of different infrastructure investment alternatives.
Hence, we are interested in the resulting cash flows of these different alternatives so that
we can ultimately select and recommend one of the alternatives. The purpose is not to give
the obtained production strategy as an input for long-term production planning to a field
manager. In the case of fluctuating production it would not be advisable to produce the
wells exactly as prescribed by the local production strategy.

2.2.2 Strategy for fixed-weight production optimization

The following production strategy is introduced in Haavardsson & Huseby (2008). Consider
the set

Q = [0, V1] × · · · × [0, VN ], (2.15)

where V1, . . . , VN are the recoverable volumes of the primary hydrocarbon phase from the
N reservoirs. We then introduce the subset Mo ⊆ Q given by:

Mo = {Q ∈ Q :
∑

i∈O

fi(Qi(t)) +
∑

i∈G

γi(Gi(t))fi(Gi(t)) ≥ Ko}, (2.16)

so that Mo the points in Q where the oil production rate can be sustained at its plateau
level. Furthermore we introduce the oil plateau length defined as

TK,o = TK,o(b) = sup{t ≥ 0 :
∑

i∈O

fi(Qi(t)) +
∑

i∈G

γi(Gi(t))fi(Gi(t)) ≥ Ko}. (2.17)

3http://www.npd.no/English/Om+OD/Nyttig/Olje-ABC/maaleenheter_oljeoggass.htm
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First we explain intuitively how the fixed-weight strategy was constructed in single-phase
production, for the moment neglecting the gas constraint expressed in (2.11). Then we will
explain how the fixed-weight strategy can be modified to handle two-phase production.

A simple production strategy can always be constructed using the same choke factor for
all the reservoirs. That is, we let bi(t) = c(t), i = 1, . . . , N . For such a production strategy
to be admissible c(t) must satisfy the following:
∑

i∈O

c(t)fi(Qi(t))+
∑

i∈G

c(t)ai(Gi(t))fi(Gi(t)) = min{Ko,
∑

i∈O

fi(Qi(t))+
∑

i∈G

ai(Gi(t))fi(Gi(t))}.

(2.18)
Thus, for 0 ≤ t ≤ TK,o, we have:

c(t) =
K

∑

i∈O fi(Qi(t)) +
∑

i∈G γi(Gi(t))fi(Gi(t))
, (2.19)

while c(t) = 1 for all t > TK,o, neglecting for the moment the gas constraint expressed in
(2.11). Note that since

∑

i∈O c(t)fi(Qi(t)) +
∑

i∈G c(t)ai(Gi(t))fi(Gi(t)) ≥ Ko for 0 ≤ t ≤
TK,o, the common choke factor, c(t) will always be less than or equal to 1. A production
strategy defined in this way, will be referred to as a symmetry strategy. We observe that
when a symmetry strategy is used, the available production capacity is shared proportionally
among the reservoirs such that none of the reservoirs are given any kind of priority. The
idea now is to expand this class so that some reservoirs can be prioritized before others. To
facilitate this we start out by considering production strategies where for 0 ≤ t ≤ TK,o the
choke factors are given by:

bi(t) = wic(t), i = 1, . . . , N, (2.20)

where w1, . . . , wN are positive real numbers representing the relative priorities assigned to
the N reservoirs, and where c(t) is chosen so that the strategy is admissible. For t > TK,o,
we define bi(t) = 1, i = 1, . . . , N . Note that if w1 = · · · = wN we get a symmetry strategy.

In order to ensure admissibility, c(t) must be chosen so that:
∑

i∈O

wic(t)fi(Qi(t)) +
∑

i∈G

wic(t)γi(Gi(t))fi(Gi(t))

= min{K,
∑

i∈O

fi(Qi(t)) +
∑

i∈G

γi(Gi(t))fi(Gi(t))}.

Thus, for 0 ≤ t ≤ TK,o the choke factors are given by:

bi(t) = wic(t) =
wiK

∑

j∈O wjfj(Qj(t)) +
∑

j∈G wjγj(Gj(t))fj(Gj(t))
, i = 1, . . . , N.

(2.21)
Unfortunately, this definition does not guarantee that the choke factors are less than or
equal to 1. To fix this problem, we instead let:

bi(t) = min{1, wic(t)}, i = 1, . . . , N. (2.22)

While this ensures that the resulting production strategy is valid, it makes the calculation
of c(t) slightly more complicated. To ensure admissibility, c(t) must now be chosen so that:

∑

i∈O

min{1, wic(t)}fi(Qi(t)) +
∑

i∈G

min{1, wic(t)}γi(Gi(t))fi(Gi(t))

= min{K,
∑

i∈O

fi(Qi(t)) +
∑

i∈G

γi(Gi(t))fi(Gi(t))},
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see Haavardsson & Huseby (2008) for details on how c(t) is calculated in single-phase pro-
duction. Then, if the gas constraint Kg is exceeded with this choice of c(t), the choke vector
b(t) is modified so that

∑

i∈O

min{1, wic(t)}ψi(Qi(t))fi(Qi(t)) +
∑

i∈G

min{1, wic(t)}fi(Gi(t)) = Kg. (2.23)

By varying the weights w1, . . . , wN in R
N
+ a whole range of admissible production strate-

gies is obtained. We will refer to such production strategies as fixed-weight strategies. It is
straight-forward to show that

b(w) = b(λw) (2.24)

for any λ > 0. Thus, to avoid over-parametrization, the dimension of the search space is
reduced by fixing the value of one of the weights, e.g., by letting wN = 1, see Haavardsson
& Huseby (2008) for details.

A numerical algorithm is used to maximize the following objective function

φC,r(b) =

∫ ∞

0
I{q(u) ≥ C}{q(u) + αg(u)}e−rudu, r ≥ 0 (2.25)

with respect to the vector of weights w = (w1, . . . , wN ), see Haavardsson & Huseby (2008) for
details. We denote the vector of weights that maximizes φC,r in (2.25) w∗. The parameter
r may be interpreted as a discount factor, while the parameter C represents a threshold
value for total production, i.e. , all wells are shut down when the total production is below
this total field production rate. As in Section 2.2.1, the parameter α converts one unit of
gas into one oil unit equivalent and is set equal to 0.001. φC,r in (2.25) expresses discounted
total production.

The fixed-weight production strategy can be used in decision support, as the local pro-
duction strategy defined in Section 2.2.1. Using the fixed-weight strategy for production
planning and forecasting we avoid the fluctuations we might experience using the local
strategy as discussed in Section 2.2.1, which is clearly an advantage. However, the weights
assigned to each reservoir are fixed over the life of the field, which is clearly a disadvan-
tage if the chosen fixed-weight production strategy is not optimal. If it can be proved that
an optimal production strategy can always be found within the parametric class of fixed-
weight strategies, this does not represent a problem. In Haavardsson & Huseby (2008) it is
explained that in single-phase production optimization an optimal production strategy can
always be found within the parametric class of fixed-weight strategies. A forth-coming paper
will extend the framework to two-phase production and examine the optimality properties
of the parametric class in two-phase production.

3 Description of the case study

In the case considered two parties referred to as the main field and the satellite field are
involved in offshore4 oil and gas production. The main field consists of separate reservoirs
containing gas or gas cap with oil rim, as illustrated in Figure 1. In reservoirs with gas
cap and oil rim, the oil must be produced before the gas cap to avoid significant loss in oil

4In principle the problems considered also apply to onshore fields; however in this specific case offshore

fields are considered.
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recovery due to pressure depletion. The oil and gas are processed to export specification on
a central production facility.

The satellite field consists of one gas reservoir and one oil reservoir, with associated
condensate and gas, respectively. The satellite field is developed with two gas production
wells and one oil production well. The oil and gas of the satellite field are sent to the main
field in pipelines, where it is being processed at the processing facility of the main field.
The main field and the satellite field have different owners and hence different commercial
interests regarding production optimization.

Relating the case study to the notation and model framework of Section 2 the number
of wells is 16. Thus, N = 16 and the vector I expressing the type of hydrocarbon phase of
each well is I = (I1, . . . , IN ) = (I1, . . . , I16) = (1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0).

Figure 1: An overview of the seven reservoirs of the main field. Oil is proven in the reservoirs
A, B and E, while gas is proven in the reservoirs A, B, C and E. There are oil prospects in
the reservoirs A, C, D, F and G. There are gas prospects in the reservoirs D, F and G.

4 Optimization of total production under booking constraints

The satellite field and the main field have agreed to allocate a share of the main field
processing capacities to the satellite field. The allocated capacities are in the following
called booking constraints. Table 1 lists the booking constraints of the satellite field in
percent of the processing capacities of the main field. The main field will thus use the
remaining capacities for its own production, as long as its processing capacities are not
exceeded. 5 Note that these booking constraints necessitate modification in the capacity
constraints introduced in (2.9), yielding different capacity constraints for each year the
booking constraints apply.

Since the satellite field has booked the capacities specified in Table 1 it is in its self-
interest to exploit this capacity. We are interested in analyzing the effect of lifting the
booking constraints, since different owners with potentially conflicting commercial interests

5In the implementation the main field uses the total capacity minus booked capacity. In reality one would

expect that the total field would use total capacity minus the capacity actually used by the satellite field.
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Year

1 2 3 4 5 6 7 8 9 10 11 12 13

Gas 21.5 23.2 21.5 21.5 21.5 19.8 18.5 14.9 11.6 9.9 8.9 7.3 6.6

Oil 19.2 14.8 12.2 10.6 8.8 6.3 5.6 3.7 3.4 2.8 3.0 2.3 1.5

Table 1: Booking constraints of the satellite field stated in percent of the processing capaci-
ties at the main platform. The main field uses the remaining capacities to process its own
hydrocarbons.

are excepted to have different preferences. If total discounted production increases when the
booking constraints are lifted, both owners may benefit from this. If both owners benefit
when the booking constraints are lifted, it is sensible to do so. If one owner benefits and
the other suffers, it may still be beneficial to lift the constraints, if the gain of the profiting
owner exceeds the loss of the suffering owner. In this case the profiting owner may buy
out the suffering owner, compensating him for his loss. This way all owners benefit if total
production increases. If both owners suffer when the booking constraints are lifted, or the
gain of the beneficiary owner does not exceed the loss of the losing owner, it is not sensible to
lift the booking constraints. However, if this is the case, there may exist booking constraints
that increase total production. Hence, a new optimization problem arises, where the total
discounted production of the owners is maximized. The booking constraints are the free
parameters in this optimization problem. We leave this optimization problem for future
research.

Lifting the booking constraints may result in a radical change in the production rates
of each party. Reservoir and production engineering considerations often play an impor-
tant role in production optimization. High production rates may have negative effect on
reservoir behaviour. Such effects are not addressed in this paper. In real life such reservoir
considerations need to be taken into account.

The local and fixed-weight production strategy described in the sections 2.2.1 and 2.2.2
will be compared. Since we are interested in the effect of lifting the booking constraints,
we calculate the production for the satellite field and the main field with and without
booking constraints. The satellite field production with booking constraints is calculated
optimizing the production strategies as described in the sections 2.2.1 and 2.2.2. The booking
constraints specified in Table 1 are used. The production for the main field with booking
constraints is calculated analogously. In the local optimization calculations, two gas wells,
i.e. , well 4 and 5, have received fixed priority in the production phasing. This is done as there
is an underlying assumption in the applied reservoir simulation results that there will be
early gas production from the respective two reservoirs. If this assumption is not accounted
for, the results will not reflect the expected physical performance of the reservoirs.

The satellite and main field production without booking constraints is calculated opti-
mizing the production strategies as described in the sections 2.2.1 and 2.2.2. In the local
optimization calculations, the two gas wells still received fixed priority in the production
phasing. The production rates of the remaining wells are found using Algorithm 2.2. For
the fixed-weight production strategy we use φC,r(b) specified in (2.25) as an objective func-
tion. We denote this production strategy b∗C , where the subscript C denotes Combined. The
satellite and main field production without constraints is then found by aggregating the oil
and gas production from all the satellite and main wells, respectively, using strategy b∗C .
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Having inspected individual gas well rates, the fixed-weight production strategy assigns a
fair amount of gas production from day one from well 4 and 5 which is in accordance with
some of the main assumptions in and results from the reservoir simulation.

Figure 2: In every row the satellite field, the main field and the total are displayed in the left,
middle and right panel, respectively. The red and green graph display the production rates
without and with booking constraints, respectively. The upper two rows show the production
rates for the local strategy, while the lower two rows show the production rates for the fixed-
weight strategy. The first and third rows display oil rates, while the second and fourth rows
display gas rates. A coarser and standardized scale is used in the plots.

Table 2 summarizes the results of the calculations. The results indicate that it is beneficial
to lift the constraints with both strategies. With the local strategy the discounted production
increases with 1.5% when the booking constraints are lifted, while the corresponding increase
with the fixed-weight strategy is 1.7%. However, with the local strategy the satellite field
benefits far more than the main field from lifting the constraint, while it is the other way
around with the fixed-weight strategy. To understand this we take a look at the actual
production rates. Figure 2 shows the resulting total production rates of oil and gas with
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Main field

Production Total with Total without
strategy Oil Gas booking Oil Gas booking

Local 22.6 58.0 80.6 22.7 58.0 80.7

Fixed-weight 21.3 58.5 79.8 22.5 59.1 81.7

Satellite field

Production Total with Total without
strategy Oil Gas booking Oil Gas booking

Local 4.9 11.8 16.8 5.2 13.1 18.3

Fixed-weight 5.2 13.2 18.5 5.1 13.2 18.3

Main field and satellite field combined

Production Total with Total without
strategy Oil Gas booking Oil Gas booking

Local 27.5 69.9 97.4 27.8 71.1 98.9

Fixed-weight 26.6 71.8 98.3 27.6 72.4 100.0

Table 2: Results with and without booking constraints. All numbers are discounted production
of oil equivalents, stated in kSm3, as measured in percent using total discounted production
of main field and satellite field combined without booking constraints with the fixed-weight
strategy as a base case. α = 0.001 has been used to convert gas into oil equivalents.

and without booking constraints for the two production strategies.
For the local strategy we observe that lifting the booking constraints has a large impact

on the discounted gas production of the satellite field. The gas can be produced far more
efficiently when the constraints are lifted for this field. Without the constraints the main
field manages to maintain its gas plateau level for approximately 3.5 years, i.e. ,from approx-
imately 600 days until 1,800 days. Then the gas plateau level cannot be sustained anymore
and the satellite field is given an increasing share of the production capacity. In fact, for a
long period from approximately 1,800 days until 2,700 days, the local production strategy
without constraints assigns far less gas production to the main field than it obtained with
the quotas. As a result, the satellite field can now produce far more than it could with the
booking constraints in place. This advantage is held for several years. This positive effect
on the discounted production is reduced by heavier discounting due to the delay in time, but
the advantage of the increased production by far outweighs the disadvantage represented by
the delay.

With the fixed-weight strategy it is the main field that benefits from lifting the con-
straints. The main field is able to sustain a very high gas production for a very long time,
almost 3,000 days. The satellite field suffers from this and is allocated a relatively low gas
production in this period. For the main field the oil is produced far more efficiently with
the fixed-weight strategy when the booking constraints are lifted. Again, this efficient oil
recovery is at the expense of the resulting lower share the satellite field receives. The satellite
field can produce more when the main field goes into decline, as we observed with the local
strategy. However, since the main field is able to maintain a high gas production rate for
a very long time, the heavy discounting reduces the advantage of this unrestricted produc-
tion. Furthermore, the efficient main field oil and gas production the first 3,000 days leads
to relatively low satellite field production in this period. The satellite field needs a large
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increase in later production to balance out the loss earlier on. From Table 2 we see that the
satellite field experiences a loss of 1% when the constraints are lifted with the fixed-weight
strategy, i.e. , the reduction in total discounted production from 18.5 % to 18.3 % relative
to the base case.

Comparing the local strategy and the fixed-weight strategy without booking constraints,
the total discounted production of the fixed-weight strategy is 1.1% larger than total dis-
counted production of the local strategy.

5 Conclusions

This paper has analyzed production of oil and gas fields with different ownership and com-
mercial interests. Satellite field booking constraints are negotiated due to different owner-
ships in field and an important issue is to assess the effects imposed by these constraints. Two
different production strategies have been compared, with respect to performance measured
in discounted production of oil equivalents.

The modelling results highlight the importance of the booking constraints. In particular
the results obtained in the case study indicate that the total wealth expressed in discounted
production of oil equivalents created from the satellite field and main field combined can
increase when the booking constraints are lifted using both production strategies. The
gain for the society as a whole thus increases. Using terminology from game theory, see
Myerson (1991), both production strategies mimic the behaviour of a positive sum game
since total discounted production increases in both cases when the booking constraints are
lifted. Producing with the local strategy the satellite field receives the lion’s share of the
gain. Since the main field does not sustain gas plateau level for a very long time when the
constraints are lifted, and the main field subsequently for a long period receives a lower share
of the production capacity than it received with the booking constraints in place, the gas of
the satellite field can be produced far more efficiently. Selecting the fixed-weight strategy the
main field is able to sustain a high gas plateau level for a substantial amount of time. When
the gas production of the satellite field is let in, it happens so late that the discounting effect
outweighs the advantage of being able to produce unrestrictedly. Furthermore, the satellite
field has to produce effectively and fast later in the production period to offset the loss in
discounted production it suffered early in the production period. This loss is caused by the
high proportion of the production capacity the main field received in this period. Thus,
with the fixed-weight strategy it is the main field that benefits from lifting the constraints.

A A brief introduction to multi-segmented production profiles

using ordinary differential equations

Single Arps curves, introduced by Arps (1945) model the production rate function and
the cumulative production function mathematically through a one-way, causal relation. In
Haavardsson & Huseby (2007) this approach is extended to multiple segments so that a
combination of Arps curves may be used to get a satisfactory fit to a specific set of production
data.

To also take into account various production delays, the dynamic two-way relation be-
tween the production rate function and the cumulative production is modelled in terms
of a differential equation. The relation between the production rate function, q, and the
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cumulative production function, Q, should be of the following form:

q(t) = f(Q(t)), for all t ≥ 0, (A.1)

with Q(t0) = 0 as a boundary condition.
The differential equation approach can also be extended to the more general situation

where the production rate function consists of s segments. For each segment we assume
that we have fitted a model in terms of a differential equation on the form given in (A.1).
In order to connect these segment models, we need to specify a switching rule describing
when to switch from one segment model to the next one. We define a switching rule based
on the produced volume. By using this switching rule, we obtain a model for the combined
differential equation.
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