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Abstract

Background and motivation

The health of human tissue can be indicated by the stiffness of the tissue.
It is known that the risk of a nodule being malignant is increased with
the stiffness of the nodule. Elastography is an imaging mode capable of
displaying the stiffness of the tissue. Static elastography with ultrasound
consists of creating a pre- and post-compression ultrasound image where
the tissue being imaged has been compressed between the images. The
displacement of tissue is calculated along the axial dimension based on the
assumption that speckle pattern follows tissue movement. Tissue strain,
indicating the stiffness of tissue, can then be found from the displacement
of the tissue.

Speckle statistics and the speckle pattern are different for images
created with conventional and adaptive (Capon) beamforming. The
speckle pattern created with adaptive beamforming has a smaller and
more distinct pattern because of the improved resolution by adaptive
beamforming. Hypothetically a more distinct pattern should result in
better correlation and thus better displacement estimation.

Recently it has been shown that lateral oversampling is needed to
achieve lateral shift-invariance between image frames when using adaptive
beamforming. Shift-invariance between frames is especially important
for elastography since the displacement estimate is based on correlation
between two nearly identical frames.

Approach

To simulate static elastography two speckle images are created with Field
II simulations based on the same scatter phantom, where the scatterers
have been displaced axially to create pre- and post-compression ultrasound
images. The images are created with the conventional beamformer and
the adaptive beamformer with different parameters. In the middle of
the phantom a circular object has constant displacement to mimic a hard
malignant nodule in the tissue.

Results and conclusions

We show that lateral oversampling is necessary for single frame scenarios
when doing adaptive beamforming and to achieve shift- invariant imaging
of speckle. The speckle pattern from adaptive beamforming is more
distinct, but our research shows that adaptive beamforming with certain
parameters gave similar performance for axial correlation for displacement
estimation as conventional beamforming and thus similar accuracy when
doing static elastography.
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“The highest activity a human
being can attain is learning for
understanding, because to
understand is to be free.”

Baruch Spinoza
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Chapter 1

Introduction

The stiffness of tissue is in many cases a good indicator on the health of
human tissue. An example demonstrating this statement is cirrhosis of the
liver, where the liver tissue is replaced by much harder types of tissue like
fibrosis and scar tissue, which degrades the liver functions. Research also
reports that a harder nodules in tissue is associated with increased risk of
malignancy (Rago et al., 2007).

The traditional way of examining the tissue stiffness is palpation, where
the tissue is felt with the fingers or hand during a physical examination.
Palpation has its obvious drawbacks; it is not quantitative, and there is
large variability between examinations. Palpation also requires that the
tissue to be examined is close to the surface, because deeper tissue is hard
to access with the hands and can be hidden by more solid structures.

Elastography is a relatively new approach to measure tissue stiffness.
Ultrasound elastography creates an image of the tissue indicating stiffness
using harmless ultrasound techniques. Elastography is superior to palpa-
tion in many ways, but especially when regarding quantitative measures
and examination variability. For these reasons elastography is a significant
tool in more precise and correct diagnosis, offering possibilities to discover
potential disease at an earlier stage using noninvasive techniques (Rago
et al., 2007).

In medical ultrasound imaging adaptive beamforming has been ap-
plied resulting in increased resolution creating more detailed images. An-
other effect of the adaptive beamforming is a smaller and more distinct
speckle pattern in the ultrasound images. Hypothetically this could mean
better estimation of tissue movement and thus being beneficial when doing
elastography.

1.1 Objective of thesis

The original objective of this thesis was to investigate if we could get
quantitative results from static elastography by measuring the force
applied from the ultrasound probe when using the probe to compress
the tissue. A second objective was to investigate if the smaller and more
distinct speckle pattern created by adaptive beamforming has benefits
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when doing static elastography.
To measure the force applied from the ultrasound probe, a system

was developed as described in Chapter 4. This system turned out to
be very inaccurate. Because of this, the main objective of the thesis
shifted, and became to thoroughly investigate if adaptive beamforming
has benefits when applied to static elastography. Towards this overall
objective we introduce and describe both conventional and adaptive
beamforming. We will investigate simulation of ultrasound images, both
single point scatterers and speckle, and describe and discuss some well
known and new results. Especially the recent research result showing that
lateral oversampling is needed when doing adaptive beamforming. Two
displacement estimators will be implemented and discussed to compare
adaptive and conventional beamformed images for static elastography.

Because of the wide scope of this thesis, and the many partial results, we
have permitted a more informal structure of this thesis than the common
IMRaD. Using a more of a interweaved structure allows us to discuss some
results as they arrive, and use the partial results to make qualified choices
in the later parts of the thesis.

1.2 Key results

Adaptive (Capon) beamforming applied to ultrasound static elastography
have similar performance for axial correlation for displacement estimation
as conventional (DAS) beamforming, and thus similar accuracy when
doing static elastography.

Our hypothesis was that the more distinct speckle pattern, smaller
speckles, created by the Capon beamformer, would provide better corre-
lation between the pre- and post-compression images. However, our re-
search showed that it was in fact the Capon parameters creating similar
speckle statistics as DAS, and not the Capon parameters giving the most
distinct speckle pattern, that produced the best displacement estimation
results for the Capon beamformer.

For single frame scenarios lateral oversampling, closer beam distance,
is necessary when using Capon beamforming in ultrasound imaging.
Imaging well developed speckle needed a lower oversampling factor than
images of single point scatterers.

1.3 Thesis outline

Chapter 2 briefly introduces ultrasound imaging, elastography, conven-
tional and adaptive beamforming providing the background and some the-
ory for the rest of the thesis.

Chapter 3 describes how ultrasound images can be simulated and
provides theoretical discussions on how the ultrasound probe influence the
resolution and thus the details in the ultrasound images. We investigate
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and compare the adaptive and conventional beamforming for single point
scatterer images and speckle images and especially investigate a recent
result indicating that lateral oversampling is needed when creating images
with the adaptive beamformer.

Chapter 4 stands alone and describes the construction of a system to
measure the force applied by the ultrasound probe towards tissue.

Chapter 5 continues from Chapter 3 and investigates static elastography
and describes two estimators to find tissue displacement. A method to
calculate strain in the tissue from the estimated displacement is described.
Simulation of static elastography is described and we build the framework,
including comparison criteria for the two beamformers applied to static
elastography, needed for the next chapter.

Chapter 6 compares the performance of adaptive and conventional
beamforming applied to static elastography. Multiple parameters and
setups based on previous results from the thesis are applied and compared.
The results is discussed in detail and an explanation of the results is
suggested.

Chapter 7 concludes our most important results and suggests some
interesting future work, which sadly was beyond the scope and time
restriction of a master thesis.
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Chapter 2

Background and theory

Chapter abstract: This chapter will give a brief insight into the physics behind
an ultrasound image, and briefly explain how an ultrasound image is created.
Elstography is introduced in the second part, and both static and shear wave
ultrasound elastography are briefly described. The third part of the chapter
introduces beamforming. The theoretical background of conventional and adaptive
beamforming is presented.

2.1 Medical ultrasound imaging

Medical ultrasound imaging enables us to noninvasively create images of
the inside of the body, by transmitting high frequent sound into the body.
We will let us inspire by parts of the introduction to ultrasound by Jensen
in his book Estimation of Blood Velocities Using Ultrasound (Jensen, 1996b),
and get a brief insight into the physics behind ultrasound imaging.

Sound waves are compressional waves, compressing the medium
along the direction the wave is traveling. When we speak, our voice
cause pressure differences in the air. Ultrasound transmitted into the
body, creates small disturbances in the medium in which the wave is
propagating.

The wave will propagate in a constant manner as long as the medium
has similar acoustic properties. If the properties change, a part of the wave
will be reflected, while another part will continue to propagate through the
medium. The pressure reflection coefficients are given as

R =
Z2 − Z1

Z1 + Z2

Zn = pncn : Characteristic impedance of medium n
where pn is medium density, and cn is speed
of propagation.

The transmitted wave’s direction is given by the angle θt dependent on
the angle of incidence θi, both angles are given by the well known Snell’s
law:

c1

c2
=

sin θt

sin θi
.
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So far our arguments require a sharp boundary of change between the
acoustic properties of two different medium. This is rarely found in the
human body, and is thus a simplification. What we are actually imaging is
scattering of the ultrasound waves. Ultrasound waves are scattered into all
directions because of small changes in the impedance of the medium e.g.
small changes in density or absorption. Some parts of these scattered waves
will travel back to the transducer where they are recorded and combined
to display the ultrasound image.

Figure 2.1: A linear array and a phased array transducer. Figure from (Jensen, 1996b).

There are many types of transducers used for ultrasound imaging.
The most common are the linear array transducer and the phased array
transducer, see Figure 2.1. The difference between these two transducers is
how they scan the image area. The phased array transducer creates beams
in a fan-shaped area in front of the transducer, and creates a fan-shaped
image. The linear array transducer creates parallel beams straight in front
of the transducer only using a given number of active elements, and then
creates the next beam by moving which elements are used. The linear array
transducer will therefore create a rectangular image.
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Figure 2.2: Ultrasound image of a single point scattering the ultrasound waves.

In Figure 2.2 we have simulated a single point scattering the ultrasound
waves imaged with a linear array transducer. In plot (a) we have vertically
plotted the received signals of the 7 central beams of the image. We see that
at 60 mm depth we have gotten a backscattered signal with the most energy
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at the three central beams. The blue lines in the plot indicate the actual
RF-signal (radio frequency-signal) received, while the red is the envelope
of the signal, see Appendix B. In the image (b) we have taken the decibel
values of the envelope and displayed the decibel amplitude as different
color intensities.

A single scatterer does not occur in vivo. What we see in ultrasound im-
ages is the constructive and destructive interference of backscattered sig-
nals from many small structures of much smaller size than the ultrasound
wavelength . The resulting patterns in the image is known as speckle and
is something we will investigate in depth in Chapter 3. The speckle pat-
tern does not directly reveal the underlying structure, it is actually a ran-
dom process, but slight movements in the tissue will only create a slight
movement in the speckle pattern and thus different measurements can be
correlated to find the movement of the tissue. The fact that we can estimate
tissue movement from the movement of speckle leads us to our next topic;
elastography.

2.2 Elastography

Elastography is the technique used to measure the stiffness or elasticity
of tissue. When doing ultrasound elastography there are mainly two
techniques; static and shear wave elastography. Both techniques follow
three common steps (Bercoff, 2008);

Step 1 Generate low frequent vibration in the tissue to induce shear
stress.

Step 2 Image the tissue to analyze the resulting stress.

Step 3 Extract from movement of tissue a parameter related to the
tissue stiffness.

What differentiates the two techniques is how each step is performed.
The goal of elastography is to find the stiffness of the tissue, mathemat-

ically this is measured by Young’s modulus:

E =
stress
strain

=
σ

ε
=

F/A0

∆L/L0

F : The force applied to the tissue
A0 : The original area the force is applied
∆L : The change in length of the object
L0 : The original length of the object.

(2.1)

Verbally this means that a force applied to an area causes compression,
stress σ, which induces a deformation, strain ε, in the tissue. Young’s
modulus is measured in Pascal (Pa) and a list of typical values for tissues
in the body is listed in Table 2.1.

The main differences between the two ultrasound elastography tech-
niques are how the movement in the tissue is created. The two techniques
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Type of tissue
Young’s Modulus

(E in kPa)
Density

Breast

Normal fat 18-24

1000± 8% ≈ water

Normal glandular 28-66
Fibrous tissue 96-244
Carcinoma 22-560

Prostate

Normal anterior 55-63
Normal posterior 63-71
BPH (beningn) 36-41
Carcinoma 96-241

Liver
Normal 0.4-6
Cirrhosis 15-100

Table 2.1: Elasticity values for different tissues (Bercoff, 2008).

and their differences are briefly described in the following sections. For in
depth descriptions see the articles (Ophir et al., 1991) and (Bercoff et al.,
2004). In Chapter 5 we will examine the details of static elastography and
implement different methods to estimate the displacement of tissue.

2.2.1 Static elastography

Static elastography was the first technique suggested to do ultrasound
elastography (Ophir et al., 1991). In static elastography the movement in
the tissue is created by the ultrasound probe itself. First a pre-compression
image of the tissue with an initial force between the probe and surface is
created. Then the operator applies more force on the surface with the probe
compressing the tissue and a post-compression image is created. We then
have two images of the tissue, pre- and post-compression, and the next step
is to analyze the two images and extract how much the tissues have moved.
A tissue moving less than another tissue with the same force applied is
assumed to be stiffer. A good illustration of this technique applied to a
phantom can be seen in Figure 2.3.

Figure 2.3: Static elastography. Figure from (http://www.ultrasonix.com/wikisonix/
index.php/Elastography).
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The image in the middle in Figure 2.3 displays the displacement of
the tissue. From the displacement of tissue we can calculate the strain,
displayed in the image to the right. There are different techniques to
estimate the displacement, and we will investigate two of them in Chapter
5; the crosscorrelation technique and a pulsed-Doppler technique. For now
we will concentrate on the crosscorrelation technique introduced by Ophir
et al. (1991) and maybe better explained in (Ophir et al., 2002). The two pre-
and post-compression images consist of a number of RF-data lines. RF-data
is the raw beamformed data from the ultrasound probe, the data plotted in
blue in Figure 2.2 (a). We will introduce beamforming in the next sections.
Each set of corresponding RF-data lines are subdivided into small temporal
windows that are crosscorrelated to find the change in arrival times of the
echoes before and after compression. Since we know the approximate wave
velocity in tissue the change in arrival times gives us the displacement of
tissue. The local strain can then be computed, from (Ophir et al., 2002), as

ε =
(t1b − t1)− (t2b − t2a)

t1b − t1a

t1a : Arrival time of the pre-comp. echo
from the proximal window

t2a : Arrival time of the post-comp. echo
from the proximal window

t1b : Arrival time of the pre-comp. echo
from the distal window

t2b : Arrival time of the post-comp. echo
from the distal window.

(2.2)

Figure 2.4: “A schematic showing the process of computing the strain in a tissue segment.
Congruent windowed segments of the pre-compression and post-compression signals are
compared by crosscorrelation. While the early windowed segments exhibit virtually no
delay, a finite delay (designated del (t)) is detected between the later segments. The strain
is computed as the gradient of the time delay (or displacement), i.e. strain = del(t)/T, where
T is the initial (pre-compression) separation between the windowed segments.” Ophir et al.
(2002).

Figure 2.4 is a graphical illustration and explanation of Equation (2.2).
The windows are created in small overlapping steps along the temporal
axis and the calculation is done for all steps. This technique assumes that
the speckle pattern in the image follows the motion of the tissue.
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2.2.2 Shear wave elastography

In shear wave elastography the movement in the tissue is created by shear
waves induced by the regular compressional ultrasound waves. So, first
we need to distinguish between the different types of waves. Since we are
dealing with waves traveling inside tissue we disregard surface waves and
only look at the two types of body waves.

Compressional waves

Compressional or pressure waves is the first kind of body waves created
by deforming the material along the direction that the wave is traveling,
see Figure 2.5 a. An example of pressure waves are sound waves that
changes the pressure in the medium when they propagate. Compressional
waves travel through all types of materials including solids, liquids and
gases. Sound waves are pressure waves, so ultrasound imaging is as we
know done with compressional waves. Compressional waves propagate at
a speed given by

cp =

√
λ + 2µ

ρ
≈
√

λ

ρ

λ : The bulk modulus
µ : The shear modulus
ρ : The density of the material.

The bulk modulus, λ, measures the material’s resistance to uniform
compression measured in Pascal (Pa) usually in the order of 109 Pa. The
shear modulus, µ, measuring the ratio between shear stress and shear
strain, is also measured in Pascal. The value of µ varies between 102 and
107 Pa, so λ� µ and we can do the approximation above.

Figure 2.5: Pressure wave (p-wave) and shear wave (s-wave). Figure from (http://www.
astro.uwo.ca/~jlandstr/planets/webfigs/earth/slide1.html).
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Shear waves

Shear waves is the second kind of body waves. Shear waves create a
transverse or shear motion perpendicular to the direction the wave is
moving, see Figure 2.5b. We can imagine a wave traveling through a
rope moving the rope perpendicular to the direction the wave is moving.
While pressure waves travel through all kinds of materials shear waves
only propagate through solids, not liquids and gases. This is not the only
property differentiating the two; the speed of propagation is also very
different. Shear waves propagate at

cs =

√
µ

ρ

µ : The shear modulus
ρ : The density of the material.

If we compare the two waves’ propagation speeds, we see that the shear
wave propagate at a much slower speed than the pressure wave, allowing
us to image the traveling shear wave.

Creating and imaging shear waves

To induce the shear wave in the tissue there are mainly two different
techniques. The first was to use an external mechanical vibrator e.g.
Fibroscan® (Audiere et al., 2009). Firboscan is used clinically to measure
the stiffness of the liver. The clinical applicability of this technique is
limited because of the bulky external vibrator (Bercoff et al., 2004). Another,
and more interesting approach, is to induce the shear waves by ultrasound;
supersonic shear imaging (SSI) (Bercoff et al., 2004). This is done by sending
multiple ultrasound pushes, 400 oscillations at 4.3 MHz, giving a pushing
time of 100 µs for each push. The pushes are placed along the beam
direction causing the shear sources to interfere constructively along a Mach
cone creating two plane shear waves propagating in opposite directions,
see Figure 2.6. The shear waves are thus created by a series of high power
compressional waves and since the compressional waves move much faster
than the shear waves it is possible to create multiple shear wave sources
leading to the constructive interference. For a more in depth explanation
and description see Bercoff et al. (2004).

Even though the shear waves move slower than the compressional
waves, one of the main challenges in SSI is to have high enough ultrasound
image frame rate to be able to catch the traveling shear waves. While
conventional ultrasound typically has a frame rate of 50 Hz, the SSI system
needs a frame rate of 3000 - 6000 Hz. The ultrasound technique allowing
these frame rates is plane wave imaging (Bercoff et al., 2004) and (Austeng
et al., 2011), which is out of scope for this thesis.

Shear wave elastography provides a quantitative measure of Young’s
modulus in the tissue the shear wave is traveling. Equation (2.1) can be
rewritten by introducing the fact that shear elasticity, µ, is directly linked
to shear elasticity if the medium is purely elastic. So we can rewrite it as

µ = ρc2.
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Figure 2.6: Shear waves created by ultrasound shear sources. Figure from (Bercoff et al.,
2004).

If we also take into account that we are looking at soft tissues, so λ� µ we
end up with (from Bercoff et al. (2004))

E ≈ 3µ = 3ρc2.

Since density, ρ, in body tissue is close to water, all that is needed is to
estimate the shear wave speed to quantitatively estimate Young’s modulus.
In SSI this is done by using crosscorrelation techniques on the images of
the propagating shear wave. An example image of an elasticity map of a
phantom containing a 20-mm hard inclusion can be seen in Figure 2.7.

Figure 2.7: Elasticity map of a phantom containing a 20-mm hard inclusion (Bercoff et al.,
2004).

2.3 Beamforming

Beamforming is a variety of array signal processing algorithms that focuses
an array’s signal capturing abilities in a particular direction (Johnson
and Dudgeon, 1993, p. 111-112). In other words, while there are ways
to alter the physical antennas to achieve better signal directivity and
resolution these physical alterations of an antenna are not reversible nor
flexible. Beamforming is to alter the recorded signal data to achieve better
directivity and resolution. Beamforming is therefore a cheaper and much
more flexible alternative. The drawback of beamforming is increased
computation time and more complex signal processing algorithms. The
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best results are often obtained by a combination of good array properties
combined with a sophisticated beamforming technique.

2.3.1 Conventional beamforming

Delay-and-sum (DAS) beamforming is often thought of as the conventional
way of doing beamforming. Briefly explained DAS is delaying the signal
on each individual sensor to steer in one direction and summing the
delayed version of each sensors signal to one output signal. This gives
a resulting signal with M (the number of sensors) times better signal to
noise ratio than one sensor, e.g. SNRsensor =

σ2
s

σ2
n
, SNRarray = M σ2

s
σ2

n
. In other

words the array gain is equal to the number of sensors in the array. This
simple example assumes uncorrelated white noise. An illustration of DAS
beamforming can be seen in Figure 2.8.

Figure 2.8: Delay and sum beamforming. Figure from (Johnson and Dudgeon, 1993, p.
119).

Mathematically we define the DAS beamformer as

z(t) =
M−1

∑
m=0

wmym(t− ∆m,t)

M : Number of elements
m : Element number

wm : Element weight
ym : Signal from sensor m

∆m,t : Delay for sensor m at time t.

(2.3)

From this definition we see that DAS has another element not yet
mentioned; weights. These weights can simply be set to 1

M , favoring all
sensors the same, or we can apply different windows e.g. Hamming which
favors the central elements in the array.
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Delay-and-sum on vector form

The definition in Equation (2.3) can easily be extended to vector form. We
can arrange the different parts of the equation as matrices

w =


w0
w1
...

wM−1

 , Ŷ(t) =


y0(t)
y1(t)

...
yM−1(t)

 ,

Y(t) =


y0(t− ∆0)
y1(t− ∆1)

...
yM−1(t− ∆M−1)



w : Element weights

Ŷ(t) : Received signals
Y(t) : Delayed received signals.

This allows us to simplify Equation (2.3) to

z(t) =
M−1

∑
m=0

wmym(t− ∆m,t) = wHY(t).

Here wH is the Hermitian of w.
We see that the DAS beamformer allows a very simple and fast

implementation. It is also very robust, the only assumptions made is that
the speed of sound is constant. DAS is therefore on of the most used and
best known beamforming techniques.

Near field, far field

When doing array signal processing there is one important limit we need
to keep track of, the limit between near field and far field. If the source
sending (or reflecting) a signal is in the near field the signal will propagate
as a spherical wave. If the transmitting source is further away from the
array the signal propagating will seem like a plane wave propagating.
What actually happens is that the radius of the sphere is so large that the
wavefront approaches a plane wave. The limit between far field and near
field is defined as (Wright, 1997)

R =
D2

kλ
k = 1, 2, 3, 4, ...

Since k is an integer we typically choose between 1 and 4, there is no hard
limit. The limit depends on how much error we allow, and vary between
fields of study.

In Figure 2.9 we have plotted propagating waves from sources placed
at different distances from the array. The plots are created with the Field
II (Jensen, 1996a)(Jensen and Svendsen, 1992) simulation environment. It
is used an array with 10 elements of width 1 mm placed with pitch λ

2 ,
giving an aperture of D = 12.31 mm when the frequency of the signal is
3 MHz assuming speed of sound c = 1540 m/s. The softest far field limit is
R1 = D2

4λ = 73.8 mm while the strictest is R2 = D2

λ = 295.2 mm. If we look
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Figure 2.9: Source placed at 30 mm, 73.8 mm, 295.2 mm and 500 mm for a array with
aperture D = 12.31 mm. The first source is very near field, while the second is at the
softest far field near field limit R1 = D2

4λ , the third at the strictest R2 = D2

λ and the fourth
is far into far field.

at Figure 2.9 we see that a source placed at R1 is in the second plot, while
a source placed at R2 in the third plot. From these two plots we clearly see
that the wave from R1 can barely be called plane while the source at R2 is
very close to being plane.

The reason for this digression on far field and near field is because
we need to take this into account when finding the delays for the DAS
beamformer. For a far field source we can assume that the direction of
propagation ξ is equal for all sensors in the array, while for a near field
source the direction of propagation varies between the elements in the
array, giving a ξm for every element. A nice illustration of this can be seen
in Figure 2.10. The error we allow between ξ and ξm indicates where the
far field limit is.

Figure 2.10: In far field, left, all element have the same direction of propagation ξ, while in
near field, right, the ξm varies between the elements. (Johnson and Dudgeon, 1993, p.115)
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Delay-and-sum in medical ultrasound imaging

The array described in Section 2.3.1 is a typical array used for ultrasound
imaging, except that in ultrasound there are typically much more elements.
If we for example have 48 elements we get D ≈ 60 mm giving the softest
far field limit R = D2

4λ = 1757 mm, so ultrasound is definitely near field.
This means that we need to use a technique called dynamic focusing,
delaying the signals from the more central elements with respect to those
from the outer most elements, this focus is automatically and dynamically
advanced to match the depth of origin of echoes (Whittingham, 2007). This
will straighten the spherical waves recorded before summing them. A nice
intuitive illustration of this can be seen in Figure 2.11.

Figure 2.11: “Focusing in reception. (...) For a particular receive focus position, the signal
from all elements can be made to arrive at the same time at a summing amplifier by having
an appropriate electronic delay in each channel.” Whittingham (2007).

2.3.2 Adaptive beamforming

While the conventional beamforming offers fast and simple implementa-
tion with fairly good results, research in the field of array signal process-
ing has given us many new and more sophisticated adaptive beamforming
techniques (Krim and Viberg, 1996). These techniques are adaptive because
they take advantage of the characteristics of the observations, and seek to
adapt the computation of the beamformer output to these observations.
This might give much better signal processing performance than the con-
ventional techniques, but are less robust regarding e.g. coherent signals,
signals that are delayed and scaled versions of each other (Johnson and
Dudgeon, 1993, p. 349-350). In this thesis we focus on one adaptive beam-
forming technique; the Capon (minimum variance) beamformer first intro-
duced by Bryn (1962), but is better known from Capon (1969). A more in-
tuitive description of Capon’s beamformer is given in e.g. (Synnevåg et al.,
2007a) or (Johnson and Dudgeon, 1993).

The spatial covariance matrix

Central in Capon’s beamformer is the spatial covariance matrix. This is
easiest derived by examining the power of a signal. If we keep the delay-
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and-sum on vector form from 2.3.1 in mind we can find the power of the
output as

P(z(t)) = E{|z(t)|2} = E{wHY(wHY)H} = E{wHYYHw}
= wHE{YYH}w = wHRw.

From this we get the spatial covariance matrix R = E{YYH} where
Y is the delayed received signals. With the covariance matrix in hand
Capon’s method tries to minimize the variance of the power (E{|z(t)|2})
while maintaining gain equal to one in the direction we are steering. This
optimization problem can be formulated as

minimize
w

P(z(t) = E{|z(t)|2} = wHRw (2.4)

subject to wHa = 1. (2.5)

Where a is the steering vector, further explained in a later section. The
solution to the optimization problem is

w =
R−1a

aHR−1a
. (2.6)

So the result from Capon’s beamformer is weights suppressing unwanted
signals and noise while focusing in one direction.

Estimating the Spatial Covariance Matrix

An estimate of the covariance matrix R is the sample covariance matrix,
where we now assume that we have a sampled version of y and Y:

R̂ =
1
N

N−1

∑
n=0

y[n]yH [n] =
YYH

N

N : Number of samples
y[n] : Vect of sample n from M elmnts.

Y :
[
y[0] y[1] . . . y[N − 1]

]
.

(2.7)

Challenges with Capon’s Beamformer

As mentioned earlier the adaptive beamformers are often less robust
than the conventional. One particular problem is coherent signals.
Coherent signals are signals that are delayed and scaled versions of each
other. Since Capon’s beamformer tries to minimize the power, letting the
coherent signals cancel each other might seem like a good solution to the
minimization problem, but actually removing the signal is clearly not a
good idea. To cope with signal coherence it is common to average the
spatial correlation matrix in space (Tie-Jun et al., 1985). Averaging in space
is known as subarray averaging, and can be viewed as in Figure 2.12,
dividing the spatial covariance matrix into L submatrices and average the
submatrices into one smaller spatial covariance matrix. This corresponds to
dividing the array into L smaller subarrays creating one covariance matrix
for each subarray and average them into one.
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Figure 2.12: Subarray averaging with L = 6 (Johnson and Dudgeon, 1993, p. 188).

A nice mathematical description (from (Synnevåg et al., 2009)) of
subarray averaging is:

R̂ =
1

N + M− L + 1

N−1

∑
n=0

M−L

∑
l=0

yl [n]yl
H [n] yl [n] =


yl [n]

yl+1[n]
...

yl+L−1[n]

. (2.8)

As stated earlier, Capon’s beamformer places a weight of one in
the direction we are steering, while suppressing signals from other
directions. This also means that the beamformer is very sensitive to wrong
assumptions about e.q. acoustic velocity. If we steer slightly in the wrong
direction the performance of Capon’s beamformer might actually be worse
than the conventional approach (Li et al., 2003). A second technique used
to increase the robustness of Capon’s beamformer is diagonal loading. This
means adding a constant ε to the diagonal of the covariance matrix before
evaluating the weights, Equation (2.6). Mathematically R̂diagonal loaded =

R̂ + εI.
When increasing the robustness of Capon’s beamformer, what we

actually do is making it more similar to a DAS beamformer with constant
weights. We can see this by acknowledging that by choosing a large ε then
R̂diagonal loaded = R̂ + εI ≈ I. Giving us, from Equation (2.6),

w =
R̂−1

diagonal loadeda

aHR̂−1
diagonal loadeda

≈ I−1a
aHI−1a

=
a

aHa
=

a
||a||2 .

So the weights become a scaled version of the steering vector, and thus a
scaled version of DAS with constant weights.

Subarray averaging gives us a R of dimension L × L, this means that
the weights from Equation (2.6) will be of dimension L × 1. So to get the
output, ẑ, from the beamformer we can use the weights and average over
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the L subarrays of elements (Synnevåg et al., 2007a), mathematically

ẑ[n] =
1

M− L + 1

M−L

∑
l=0

wH [n]yl [n]. (2.9)

This is known as the amplitude Capon, in contrast to the so-called
power Capon where the output is found by averaging the individual
subarrays. The length of the subarrays, L, is an important factor in Capon’s
beamformer. The shorter we choose the length, the more similar Capon’s
beamformer becomes to DAS. If we choose L = 1 the weights from
Equation (2.6) will be of dimension 1× 1, thus a constant c, and Equation
(2.9) simplifies to

ẑ[n]L=1 =
1
M

c[n]
M−1

∑
l=0

yl [n],

which again is simply DAS with constant weights.
In the other end of the scale, we can increase L too much and risk

that the spatial covariance matrix becomes singular and not invertible.
Therefore we use a upper limit of L <= M/2 to be sure that R̂ has full
rank and is invertible (Synnevåg et al., 2007a). Choosing L is a tradeoff
between performance and robustness.

Capon’s beamformer in medical ultrasound imaging

As we stated in Section 2.3.1 we need to take into account that we are
operating in the near field, also when we are using Capon’s beamformer
in medical ultrasound imaging. That means that we need to do the same
dynamic focusing when receiving the signals. We have not paid much
attention to the steering vector a introduced in Equation (2.6). This is
because the steering vector in ultrasound simply becomes a vector of ones
since we already have steered in the direction we want using dynamic
focusing.

When using Capon’s beamformer in ultrasound we meet another
challenge. The central element of Capon’s beamformer is the spatial
covariance matrix R. R represents the measured field. Since ultrasound
imaging uses transmitted pulses that are short and non stationary the field
is rapidly changing with time (Synnevåg et al., 2007a). This means that
R should be calculated from a single or only a few temporal samples,
changing Equation (2.8) to

R̂[n] =
1

N + M− L + 1

K

∑
n=−K

M−L

∑
l=0

yl [n]yl
H [n] yl [n] =


yl [n]

yl+1[n]
...

yl+L−1[n]

 .

(2.10)

This changes the temporal averaging to be over 2K + 1 samples, instead
of all the samples as earlier. The temporal averaging, not just one sample,
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comes from observations in Synnevåg et al. (2007b) that K = 0 did not
capture the statistics of a speckle process. So to get the same speckle
statistics as DAS, temporal averaging was introduced. Even though we
average over 2K + 1 samples to create the R matrix, we still only apply
the weights for one time sample. This means that each sample is used
many times for different estimations of R, but in different combinations
with other time samples.

Using Capon’s beamformer is very computationally expensive since
we need to calculate a R̂[n] for every sample at every line. The heavy
computation load is the main obstacle in using Capon’s beamformer for
real time medical ultrasound imaging. A solution could be to do the
computations on a GPU as done by Åsen et al. (2014b).

The implementation of the Capon beamformer used in this thesis is
given in Appendix A.

2.4 Summary

In this chapter we have given a brief introduction to the physical
phenomena behind ultrasound imaging and also given a simple illustration
on how linear ultrasound images are created. We have also been
introduced to elastography, both static and shear wave, and seen that this is
a promising and harmless technology for more accurate medical diagnosis.
The shear wave elastography is very promising and interesting, but is
beyond the scope of this thesis. We will pick up the static elastography
in Chapter 5, where we will dig deeper into the details and also simulate
different elastography setups.
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Figure 2.13: Ultrasound images of a 12-point phantom simulated with a 57.2 mm 124
element array, using 96 active elements in Field II. The image to the left is created with
DAS beamforming using uniform weights, the image in the middle is DAS with Hamming
weights and the image to the right is created with Capon’s beamformer with K = 1 and
L = M

2 = 48.
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The fascinating technique of beamforming has been introduced and
we have looked at two different techniques of beamforming, conventional
delay-and-sum (DAS) and the adaptive Capon’s beamformer and seen how
this can be used for ultrasound imaging.

To demonstrate a comparison between the two beamformers we have
simulated ultrasound images of a 12-point phantom using Field II (Jensen,
1996a)(Jensen and Svendsen, 1992) in Figure 2.13. The images were
created with the DAS beamformer with a rectangular window, a Hamming
window and by using Capon’s beamformer. From this figure we see that
the resolution achieved with Capon’s beamformer is superior that of the
DAS beamformer. The details will be further discussed in the next chapter
together with further details and hopefully a better intuition of Capon’s
beamformer. We will also see that Capon’s beamformer creates a more
distinct and smaller speckle pattern, and in the later chapters we will
investigate if this different pattern has any benefits when we do static
elastography.

21



22



Chapter 3

Simulating ultrasound images

Chapter abstract: In the first part of this chapter we will have a thorough
theoretical investigation of the ultrasound probe we will use in the simulations.
Especially we will define the resolution in all dimensions, the resolution cell and
the two-way resolution. The spacing of the ultrasound beams in the image will
also be defined, and we will introduce a lateral oversampling factor for the beam
spacing. In the second part we simulate ultrasound images of point scatterers,
and thoroughly investigate the effect of the Capon beamformer with and without
lateral oversampling. The third part digs deeper into the details of the Capon
beamformer, by investigating two examples, to hopefully increase our intuition on
how it works. In the fourth and final part of the chapter we simulate speckle, discuss
well developed speckle, and investigate how the Capon beamformer influences the
statistics of speckle. The lateral oversampling factor for Capon beamforming is also
investigated for the speckle images. This chapter is pretty heavy, but necessary to
make sure we create correct simulations before we compare the performance of the
two beamformers applied to static elastography.

When testing different ultrasound cases and setups there is an
advantage to be able to simulate data. This allows us to easily compare
different setups and change what is being imaged but still have comparable
results. The Field II Simulation Program (Jensen, 1996a)(Jensen and
Svendsen, 1992) created by Professor Jørgen Arendt Jensen at the Technical
University of Denmark has become the de facto standard when simulating
ultrasound images. For this thesis many hours have been spent to create a
simulating environment in MATLAB using Field II. This environment has
allowed to compare different beamformers and different phantoms and has
allowed us to easily test different scenarios and setups. In this chapter we
will go through the details on how the images have been simulated while
we also describe and discuss some theoretical details and the results of our
simulations.

3.1 The ultrasound probe

In all the simulations we are simulating a 7.5 MHz 192 element linear array
transducer with 128 active elements, from now called “the probe”. The
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probe specs are similar to a commercial linear array from the mid 1990’s.
The probe has a long aperture of 40 mm (39.93 mm) and an element pitch
of d = 39.93mm

192element = 0.208 mm. The kerf, the cut between the elements,
is 50 microns (0.05 mm) giving us an element width of 0.1580 mm. The
element height is 4 mm. For simplicity the probe specs and other important
constants we will later use are summarized in Table 3.1.

Ultrasound Probe Specs
Number of elements 192
Active elements (M) 128
Aperture (D f ull) 39.93 mm
Active aperture (D) 26.62 mm
Element width (de) 0.1580 mm
Element height (h) 4 mm
Element pitch (d) 0.208 mm
Kerf 0.05 mm
Center frequency ( fc) 7.5 MHz
Speed of sound in tissue (c) 1540 m/s

Table 3.1: Simulated ultrasound probe specs and other important constants.

3.1.1 Aperture smoothing function

To investigate how the different specs influence the performance of the
probe it is nice to create the aperture smoothing function. The aperture
smoothing function is given for a linear aperture as (Johnson and Dudgeon,
1993, Chapter 3)

W(k) =
sin(kxde/2)

kx/2
k : wavenumber vector
de : element width.

(3.1)

In our case this is the beampattern for one element. The discrete
smoothing aperture function, describing an array of elements, is given as
the DFT (Discreet Fourier Transform) of the weights on the elements

W(k) =
M−1

∑
m=0

wmejkxm

M : Number of active elements
k : wavenumber vector

wm : weight for element m
xm : position for element m.

(3.2)

In the discrete smoothing aperture function we are assuming that the
elements are infinitely small only occupying a single point in space. To get
the total aperture smoothing function we need to combine the two aperture
smoothing functions, giving us Wtotal = WarrayWelement.

If we assume uniform weights and the specks from Table 3.1 the
aperture smoothing function for our probe is as plotted in Figure 3.1.

The red vertical lines in the top plot in Figure 3.1 are indicating the
visible region of the array. This region is given by ± 2π

λ . We see from the
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Figure 3.1: Aperture function of the probe we are simulating. The probe specs are in Table
3.1.

figure that the grating lobes are in fact inside the visible region. This
indicates that we could get spatial aliasing when using 7.5 MHz as central
frequency, in other words we do not fulfill the spatial Nyquist d ≤ λ

2 , our
probe actually uses d ≈ λ. However, since this probe is intended to do
linear imaging the steering angle is usually small. This is a pulsed wave
system, not continuous wave, so the pulses will only align constructively
in focus, the main lobe. The pulses originating from the grating lobes
will not align in time and thus be suppressed by the beamformer. This
aperture function assumes 7.5 MHz as frequency, so the grating lobes will
be different for different frequencies. For lower frequencies the grating
lobes will be outside the visible region, while for higher frequencies the
grating lobes will be at different angles inside the visible region. We will
also later see that ultrasound imaging is a two-way system which gives
even more suppressed sidelobes and grating lobes. We will therefore allow
the somewhat high grating lobes.
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3.1.2 Resolution 1

The resolution of an array is the ability two separate objects along the
dimension of interest. An array with good (small) resolution can resolve
two objects at a shorter distance than an array with worse resolution.
In ultrasound we have three dimensions; lateral (across beam), axial
(along beam) and elevational (into beam). There is no exact definition
of resolution, as there exist many different resolution criteria. A soft
resolution criterion is the full width of the mainlobe while a very strict is
the Sparrow resolution limit, defined as the closest separation between two
objects that can still be perceived as separate by an observer, this will be
defined in Section 3.3.2. The most common resolution criterion is defined
by Lord Rayleigh and is defined as the limit where there is a 3 dB drop
in amplitude between objects. We will look further into these different
criterions in the next sections.

Lateral resolution

The lateral resolution is given by the aperture smoothing function of the
array, see Figure 3.1. The width of the mainlobe defines how well we can
separate two objects in the lateral dimension. The resolution is given as an
angular resolution and is thus dependent on range. The relation between
the angle and the wavenumber vector, k, is given by θ = sin−1(λkx

2π ).
This follows from decomposing k and knowing that |k| = 2π

λ . From
this formula and by reading from the plot we can find the angle for the
different resolution criterion. The -3 dB (Rayleigh) and -6 dB (FWHM, full
with half maximum) resolution is at kxd = 0.0215, θ−3dB = sin−1(λkx

2π ) =

0.0068 radians , and at kxd = 0.0295, θ−6dB = sin−1(λkx
2π ) = 0.0093 radians.

This also agrees with the approximation formulas (Harris, 1978)

θ−3dB ≈
0.89λ

D
= 0.0069 = 0.3953◦ (3.3)

and

θ−6dB ≈
1.21λ

D
= 0.0093 = 0.5317◦. (3.4)

This is the angular resolution while the actual lateral resolution can be
found by tan( θ

2 ) =
x/2
R which simplifies to x = Rθ with x being the lateral

distance and R is the range, if we use small angle approximation.

Axial resolution

The axial resolution is given by

∆r =
cτ

2
=

c
2B
≈ c

2× 0.5 fc
=

1540
2× 0.5× 7.5× 106 = 0.2053 mm. (3.5)

1The resolution discussed here is the resolution in far field, see Section 2.3.1, but it can
be shown that the resolution in focused near field is the same as the far field resolution
(Steinberg, 1976, p. 36).
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This is derived from the properties that the bandwidth of a pulse is inverse
proportional to the length of the pulse. E.g. a sinc in time domain is a
square in frequency domain and vice versa. The approximation made is
that the bandwidth is ±50 % of the center frequency, which agrees with
investigations of the frequency content in our later simulations. We can
observe that for our case the axial resolution ∆r is actually equal to λ.

Elevation resolution

The elevation resolution, the dimension perpendicular to the axial and
lateral dimension, is given by the height of the elements in the probe. Our
probe has elements with height 4 mm giving an elevation resolution of

θelevation -3dB ≈
0.89λc

h
= 0.0457 radians = 2.6177◦. (3.6)

3.1.3 Resolution cell

If we combine the resolution in all dimensions, Equations (3.3), (3.6) and
(3.5), we end up with a volume defining the so called resolution cell of the
system:

Vresolution cell = θ−3dB lateral R× θelevationR× ∆r. (3.7)

3.1.4 Two way resolution

So far we have only seen half the truth. Ultrasound imaging is a so called
two-way system meaning that it both transmits and receives signals. This
affects the effective aperture. The one-way beam pattern was as in Equation
(3.2) the DFT of the aperture function. In our system we use the same
aperture for both transmit and receive, so we have wm = wmt = wmr , thus
giving us Wt = Wr = DFT[wm]. The two-way aperture function will thus
be

Wtwo-way = WtWr = DFT[wm ⊗ wm]. (3.8)

If we also throw the element response into the mix we get the two-way
aperture function as plotted in Figure 3.2.

If we inspect the plot in Figure 3.2 we can find that the relation between
the one-way angular resolution at -3 dB, θ−3dB, and the two-way angular
resolution, α−3dB, is

θ−3dB

α−3dB
≈
√

2. (3.9)

We can also follow the more theoretical arguments from (Hergum
et al., 2007), which states that for a rectangular aperture the Nyquist
sampling requirements for beam spacing is found from the Fraunhofer
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Figure 3.2: Two way aperture smoothing function of the ultrasound probe we are
simulating.

approximation to be one beam per λ f#, the Rayleigh criterion for beam
spacing. The f-number is defined as

f# = R/D
R : Range or depth in the image
D : Size of aperture.

(3.10)

The lateral distance between the beams, if we only regard the one-way
resolution, is

∆one-way = λ f # =
λR
D

. (3.11)

Then, from the Fraunhofer approximation and the Equation (3.8) the
two-way array pattern includes a convolution of the transmit and receive
aperture, and thus gives us the approximated two-way lateral beam
distance as

∆two-way =
λR

Dtr + Drx

Dtr=Drx︷︸︸︷
=

λR
2D

. (3.12)

The factor two, instead of the
√

2 as observed, comes from the
assumption that the two-way response gives a twice as long aperture, but
this is only partially true. When we convolve two rectangles of wmt and
wmr we get a triangle, see Figure 3.3.

This is why the two-way array pattern is a sinc2, but it also means that
it’s a simplification to say that the two-way aperture is twice as long. The
two-way aperture is twice as long, but it is not rectangular. The two-way
aperture is a triangle so the weights decrease towards the sides.

However, we will stick with this simplification and use a factor 2 to find
the distance between the beams. This means that we are sampling at a bit
higher rate than the critical sampling rate.
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Figure 3.3: Convolution of two rectangles shown in the time domain (top) and in the
frequency domain (bottom).

3.1.5 Image beam spacing and simulation details

In ultrasound B-mode linear array imaging the image is created by shooting
a beam of sound into the tissue and then sweep the beam sideways creating
multiple parallel lines of recorded data. These lines are combined into the
resulting image. To be sure not to lose information in the image, we need to
sample the lines at a certain distance. The standard beam density is given
by the Rayleigh criterion for beam spacing as one beam per λ f #, as seen
in the last section. So the lateral beam displacement is ∆ = λ f # = λR

D ,
where R is the range, often the range of the transmit focus. If we take the
two-way resolution into account we get ∆ = λR

2D . If we also introduce an
oversampling factor q, as Åsen et al. (2014a), we get the expression

∆ =
λR

2qD
. (3.13)

This expression and especially the oversampling factor q will be useful in
our future discussion.

The first simulations we will create and discuss are simple point
scatterer simulations where we are transmitting beams with fixed transmit
focus at 60 mm, and use dynamic focus on reception.

For the later speckle simulation we begin our simulation at 27 mm
depth. This gives us a f # > 1 given that we use 128 active elements.
For simplicity we image a region of 13.3 mm. The motivation for this is
that the probe has 192 elements but only 128 active elements, giving us a
image width of (192− 128)× d = 13.3 mm. In real life linear probes usually
create images as wide as the probe, but then the image towards the sides
uses fewer active elements giving a worse resolution at the sides than at
the center of the image. To simplify the simulation and later theoretical
arguments we only create the part of the image which uses all the 128 active
elements giving equal resolution in the center as towards the sides in the
simulated image.
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In our speckle simulations we are simulating dynamic transmit focus.
Since the closest point of focus is at 27 mm, we use this point when
calculating the beam spacing. From Equation (3.13) we end up with a
distance between the beams when we use no lateral oversampling, q = 1
as ∆ = λ27mm

2D . If we use ∆ spacing at the 13.3 mm region we get 13.3 mm
∆ ≈

128 lines in our later images of speckle. If we use an oversampling factor
of q = 2 we will get 256 lines for the 13.3 mm regions and so on.

3.2 Point scatterer simulation

First we create a very simple simulation with 12 point scatterers placed
a 6 different depths. This simulation is intended to show the benefits of
Capon beamforming in regards to lateral resolution. This is basically a
reproduction of some of the most important results from (Synnevåg et al.,
2009) and (Synnevåg et al., 2007a).

3.2.1 Point scatterer on the scan beam

The point scatterers in the phantom are placed about 1 mm apart laterally,
at ±0.52mm, and separated by 10 mm axially. We have applied dynamic
focus on reception but a fixed transmit focus at 60 mm on transmit. The
lateral -3 dB resolution at 60 mm is

x−3db = θ−3dbR = 0.0068× 60 = 0.408mm

so the points should be well separated at focus. We have plotted four
different beamformed images of the same simulated RF-data in Figure
3.4. We have beamformed with DAS with uniform weights, DAS with
Hamming weights, Capon with L = M/2 = 64 and Capon with
L = M/4 = 32. We see that as expected all beamforming techniques
successfully separate the points in focus, but already at 70 mm, 10 mm
below focus, the DAS beamforming starts to smear the two points into one.
This is not the case for the Capon beamforming which separates the points
very well at all depths and demonstrates a lateral resolution superior to
DAS. The superior resolution is easily seen by plotting the steered response
at 60, 70, 80, and 90 mm. This is done in Figure 3.5.
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Figure 3.4: Simulation of point scatterers demonstrating the superior lateral resolution of
the Capon beamformer.
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Figure 3.5: Response at different depths for the different beamformers for the simulation of
point scatterers. Notice the superior resolution of the Capon beamformer, especially out of
focus (focus is at 60 mm), where DAS does not separate the two points.
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3.2.2 Point scatterer between the scan beams

The previous simulation of scatterer points was ideal when regarding the
position of the points. The points were placed at ±0.52mm which is
exactly where two of the ultrasound beams focus in the lateral direction.
It has recently been pointed out that the signal suppression, or cross frame
scalloping loss, is significant if the scan line miss the target (Åsen et al.,
2014a). The problem was first addressed by Cox (1973), but most of the
work in adaptive beamforming seem to ignore the problem by positioning
the scatterers exactly on the beam. Cox estimated the drop in output power
between beams, and Åsen et al. graphically showed this in their paper.
We have created the same plot for our probe in Figure 3.62. The plotted
response shows how dramatically the amplitude of single scatterers will
drop if the beam misses the scatterer when using Capon beamforming.
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Figure 3.6: The estimated drop in amplitude midway between the beams for DAS, Capon
with L = M/4 = 32 and Capon with L = M/2 = 64 for our simulated probe.

Åsen showed that Capon beamforming introduces a higher shift
variance between two image frames. We will show that this is also a
problem for single frame scenarios with two points in the same frame. We
have simulated a worst case scenario by deliberately placing one point
scatterer between two scan beams, the point scatterer is placed at 0.624
mm while the closest scan beams are at 0.520 mm and 0.728 mm laterally.
The first point scatterer is placed directly on the scan line at -0.52 mm for
reference. The same four beamforming techniques as earlier were used to
create the images, and the results are plotted in Figure 3.7 and 3.8.

We see from the plots of the response at the point positions in Figure
3.8 that for DAS we only lost a few dB, actually the Rayleigh -3 dB, in
focus when missing the point, and none when we are out of focus. For
the most aggressive Capon beamforming, L = M/2 = 64, we lost more
than 40 dB. In other words the point is lost. Åsen et al. demonstrated that
this suppression is a problem for cross frame lateral shift-invariance. This
simulation demonstrates that this is in fact also a problem for a single frame
ultrasound image. If the effect is not dealt with we might lose information.

If we study the images in Figure 3.7 and the plots in Figure 3.8 more

2Acknowledgment goes to Jon Petter Åsen for providing the script for the plot.
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closely we see that the problem is not as crucial for the less aggressive
Capon beamformer, L = M/4 = 32. If we look back at the discussion in
2.3.2 we remember that choosing a smaller subarray, L, makes the Capon
beamformer more similar to a DAS with constant weights. So trading off
performance with robustness is one way of dealing with the problem of
signal suppression. Another approach is to introduce lateral oversampling
as we will investigate in the next sections.
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Figure 3.7: The same point scatterer simulation as in Figure 3.4, but the point to the right
is placed between two scan lines. Notice how the second point almost disappear for the
most aggressive Capon beamformer.
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Figure 3.8: Response at different depths for the different beamformers for the simulation of
point scatterers. Notice how the Capon beamformer with L = M/2 = 64 loses 40 dB at
focus, 60 mm. The loss is not as large for Capon with L = M/4 = 32.
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3.2.3 Point scatterer between the scan beams: laterally oversam-
pled

The most straightforward solution to the loss of information is to oversam-
ple on transmit (Åsen et al., 2014a). For a linear array this means decreasing
the distance between each scan beam. In Figure 3.9 and 3.10 we have sim-
ulated the same sized phantom as earlier, but increased the lateral beam
sampling with a factor q = 8. This means that we have 8× 128 = 1024
beams in the image. In the same fashion as earlier we have deliberately
placed the left point scatterer exactly on a transmit beam, while the right
one is placed between two beams.

From Figure 3.9 (c) we see that an oversampling factor of 8 brings
back the second point for Capon with L = M/2 = 64. With a dynamic
range of 40 dB it is hard to tell the difference between the points. If we
look at the plots in Figure 3.10 we see that we still have about 10 dB loss
between the points at focus (a). When we are out of focus the two points
have approximately the same amplitude. For the less aggressive Capon
beamformer, L = M/4 = 32, the two points in focus are only separated by
a few dB, so the suppression is not visible in the image.
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Figure 3.9: Point scatterer simulation with an oversampling factor q = 8. This brings
back the second point for the Capon beamformer with L = M/2 = 64, but from the plots
in Figure 3.10 we see that it is still about 10 dB loss at focus.
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Figure 3.10: Response at different depths for the different beamformers for the simulation
of point scatterers with an oversampling factor q = 8. The Capon beamformer with
L = M/2 = 64 still loses some amplitude in focus, but out of focus the amplitudes of
the two points are about the same.
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3.2.4 Lateral oversampled point scatterer in focus

Since it is only at the point of focus that the suppression problem is evident
we will further investigate this part of the image. In Figure 3.12 the images
at focus, 60 mm depth, is shown for Capon with L = M/2 = 64 with
oversampling factor, q, from 1 to 25. We see that it is only visible difference
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Figure 3.11: Images of two point scatterers with different oversampling factor, q, at focus
(60 mm) where the left point is directly on the beam and the right point is placed between
two scan beams. All images created with Capon K = 0, L = 64.

between the two points until an oversampling factor, q, of 12 or maybe
16 if we give it a very close look. If we look at the plots in Figure 3.12
and especially plot (d) where the difference between the point scatterers
is plotted against the oversampling factor, we see that for Capon with
L = M/2 = 64 we need a factor q = 16 oversampling before the difference
between the points is less that 3 dB. For Capon with L = M/4 = 32 it is
enough with an oversampling factor of about q = 8.

This is different from what Åsen et al. found, and indicates that the
oversampling factor needed is dependent on the system, meaning the
probe, and what subarray length the Capon beamformer uses.
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Figure 3.12: The plotted respons for the points in focus for the Capon beamformer with
L = 64 in (a) and (b), and the Capon beamformer with L = 32 in (c). The difference
between the peaks are plotted against the oversampling factor, q, are plotted in (d).
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3.2.5 Oversampling methods

So far we have used the simple method of oversampling on transmit. Since
we are simulating data this is okay, but oversampling on transmit has
many drawbacks. Especially the frame rate will be reduced, proportional
to the oversampling factor, making real time ultrasound impossible with an
oversampling factor of 16. The computing complexity will also increase by
the same oversampling factor (Åsen et al., 2014a). As we have mentioned
earlier the computing cost of Capon beamforming is the main obstacle for
using it in real time ultrasound. By doing the computation on a GPU (Åsen
et al., 2014b) real time Capon is possible, but not with 16 times the data.

Åsen suggested a method to oversample by phase rotation (Åsen et al.,
2014a). The method exploits the fact that the steering vector a in Capon
beamforming is usually set to 1 because the data is pre-delayed on receive.
The steering vector can be varied over a set of pre-defined vectors in narrow
band applications. Åsen et al. claims that this can also be done in a broad
band application as long as the phase rotation is less than one pulse length,
so called coarse-fine beamforming. The maximum steering angle, Θmax, is
given by the pulse length of

aθ =


e−j 2π

λc x0 sin(θ)

e−j 2π
λc x1 sin(θ)

...
e−j 2π

λc xL−1 sin(θ)


xi : Element position
θ : Swept from −∆/2 to ∆/2

λc : Wavelength of center frequency
(3.14)

The problem with this approach is that it assumes that we are doing
phased imaging, meaning that the transmit beams are displaced by an
angle giving a fan shaped image. In elastography we are using linear
imaging, and as we know displacing the lines by a given distance. One
possible solution to adapt this method to linear imaging could be to create
a new steering angle for every point at every line. This is well worth to
examine, but is out of scope for this thesis.
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3.3 Understanding the Capon beamformer

3.3.1 Beampattern

We know from our background chapter, Section 2.3.2, that what Capon
does is creating different weights for the beamformer dependent on the
received data, in other words adapting the weights. If we bring back the
simple simulation of one point scatterer and investigate how Capon reacts
to this point we might get a better intuition on the magic of the Capon
beamformer.
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Figure 3.13: Images of the single point scatterer created with DAS (a) and Capon (b). The
response at 60 mm is plotted in (c).

In Figure 3.13 we have displayed the images of one single point
scatterer placed at 60 mm depth. We use a lateral oversampling factor of
q = 1, but make sure that the point is exactly on the center beam. From
the two images we see that when we use Capon beamforming the point
scatterer is only visible in one of the lines when we use 40 dB as dynamic
range. In the image with the DAS beamformer the point is spread out to
the two lines next to the central line. In Figure 3.14 we have plotted the
beampattern resulting from both the beamformers when creating the line
to the left, straight on and to the right of the point.

If we remember back to Section 2.3.2 the goal of the Capon beamformer
is to minimize the variance of the power of the signal while maintaining
gain equal to one in the direction we are steering, Equation (2.4). This
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Figure 3.14: Capon beampattern compared to the DAS beampatten when creating the line
to the left, on the point and to the right of the point at 60 mm depth.

optimization problem results in weights, Equation (2.6), on the elements
before the signals are summed. In the top plot in Figure 3.14 we have
plotted the beampattern for DAS and Capon when we create the line to
the left of the point. We see that the Capon beamformer places a zero at
lateral 0 mm and thus suppress the signal from the point scatterer, while
the DAS does not have this adaptive capability and will pick up most of the
signals reflected from the point. In the middle plot the beampattern from
the line when hitting the point is plotted. Both the beamformers get all the
signals reflected from the point and thus create the bright spot at 0 mm seen
in the image. When we once again miss the point on the line right of the
point Capon once again places a zero suppressing the point.

It is this adaptive behavior that gives the Capon beamformer better
lateral resolution than DAS. The width of the mainlobe will still be
approximately the same, but the adaptive behavior allows Capon to adjust
the weights so that the mainlobe can be placed to the side of the point.
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3.3.2 Sparrow’s resolution limit

In our discussion so far we have seen that when using the Capon
beamformer we need to oversample laterally by a fairly large factor to
avoid losing information between the beams. In real time ultrasound
the frame rate is very important, and when we have to oversample on
the number of beams the frame rate will drop accordingly. The heavy
computational cost of Capon beamforming also negatively influence the
ability to do real time imaging.

There are also benefits of doing Capon beamforming, most of them
looked at in (Synnevåg et al., 2009). The article concludes that Capon
beamforming allows the use of reduced transducer size, or increase
penetration depth without sacrificing image quality compared with DAS.

We will demonstrate how much the lateral resolution is improved by
Capon beamforming. We know from the earlier discussion on resolution
that there are many different resolution criterion. One interesting criteria is
the Sparrow resolution limit, defined as where the saddle point between
the two peaks first develops, thus where the gradient of the summed
beampatterns is zero. Usually the Sparrow limit is used in optics, where the
diameter of a circular airy disk is in interest. For an airy disk the Rayleigh
resolution criteria is given by θAiry Rayleigh = 1.22 λ

D , while the Sparrow
resolution is given by θAiry Sparrow = 0.94 λ

D (Barakat, 1962).
To find the Sparrow limit for our system we have plotted two two-

way aperture functions in Figure 3.15, the two two-way aperture functions
represents two objects separated so that the sum of the two has a gradient
of zero at the peak.
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Figure 3.15: Theoretical sparrow limit. Two aperture functions summing to a flat top.

From this plot we get that the sources should be separated by
approximately 0.38 mm if they are placed at 60 mm depth. This comes
from the fact that the angle separating the two peaks is

θsparrow two-way ≈
1.2λ√

2D
=

1.68λ

2D
. (3.15)

This limit is based on an assumption that the signals reflected are
incoherent. Two scatterers in ultrasound will not create incoherent signals,
but when we create a simulation with two scatterers at 60 mm depth
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Figure 3.16: Sparrow simulation displaying the superior lateral resolution of Capon
compared to DAS.

laterally separated by 0.38 mm they fit, as we will see, the Sparrow limit
fairly well.

In Figure 3.16 we have simulated two points placed at 60 mm depth
laterally separated by 0.38 mm. We have oversampled with a factor q = 25
and placed the points exactly on the lines to make sure that Capon ”hits“
the points. From the image of the DAS beamformer we see that we cannot
see that it is two points, instead of one wide, since the two points are
smeared together, while in the Capon image to the right, with the most
aggressive beamformer L = M/2 = 64 and K = 0, we can clearly see that
there are two points. In the bottom plot of the amplitude response at 60 mm
we see that both DAS beamformers smears the two points into each other
so it appear as one point, while the most aggressive Capon beamformer has
separated the two points by almost 20 dB.

This demonstrates the superior lateral resolution of the Capon beam-
former and encourages us to further investigate possible benefits of the
Capon beamformer. One possible benefit that we will explore in this thesis
is the fact that Capon creates a different and more distinct speckle pattern
than DAS. In the next sections we will discuss this in depth.

3.3.3 Analyzing the RF-data for Capon calculation

In the Field II simulation we use a sampling frequency of 100 MHz. Our
center frequency is only 7.5 MHz, so we should be able to decimate quite a
lot and still not lose any information. The reason why we use such a high
sampling frequency in Field is to get good mathematical approximations.
Decimation of the RF-signal will give a huge speedup for Capon since we
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need to calculate the covariance matrix for every sample.
Prior to Capon beamforming we create the one sided analytic signal of

the real RF-signal. The analytic signal is defined as

xa[n] = x[n] + j(x̂[n]) x̂[n]: Hilbert transform of x[n]. (3.16)

see Appendix B for details on the analytic signal and the Hilbert transform.
We use the analytic signal since it is one sided, thus complex, and we want
a complex signal to allow Capon to calculate complex weights necessary to
have a non-symmetric beampattern as we saw in Figure 3.14

In Figure 3.17 we have plotted the power spectrum of the analytic signal
from 10 elements prior to Capon beamforming. From the plot we see that
is it safe to decimate with a factor 4 giving the new sampling frequency at
25 MHz.
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Figure 3.17: The power spectrum of the analytic signal of 10 elements prior to Capon
beamforming.

To continue the investigation of the signal from the Capon beamformer
we have plotted the power spectrum of 10 Capon beamformed lines in
Figure 3.18. Luckily the beamformer has not introduced any “negative
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Figure 3.18: The power spectrum of 10 Capon beamformed lines. We see that we can still
assume that we have a one sided analytic signal after Capon beamforming.

frequecies” and we can assume that the RF-data post Capon beamforming
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is still analytic. This has some nice aspects, like the fact that we can simply
take the absolute value of the beamformed line to get the envelope, see
Appendix B for details, and it will also be useful when we start estimating
the strain/deformation in tissue in Chapter 5.
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3.4 Speckle simulation

Homogeneous parts of an ultrasound image has a grainy appearance
known as speckle (Synnevåg et al., 2007b). Research on ultrasound speckle
is a continuation on the research on laser speckle and the first work on
ultrasound speckle was published by Burckhardt (1978). In his article
he presents speckle as the granular structure appearing when there are
many scatterers occupying the same resolution cell. The waves scattered
interfere with each other and create the speckle pattern. The appearance
of speckle seems to be random, but if an object is scanned twice under
exactly the same conditions the same identical speckle pattern will occur.
However, if the same object is scanned under different conditions e.g. a
different probe, the speckle pattern will be different. The fact that the
speckle pattern is dependent on the object or tissue being imaged is the
fundamental assumption in static elastography where we assume that the
speckle pattern will follow tissue movement.

Since the speckle pattern appears to be random, speckle is best
described in statistical terms.

3.4.1 Speckle statistics

Burckhardt stated that “If the number of scatterers within one resolution
element is large and the phases are distributed uniformly between 0 and 2π,
the amplitude A obeys a Rayleigh probability density function”. The speckle
statistics was further investigated by Wagner et al. (1983) and it is now
common agreement that fully developed speckle in ultrasound imaging is
distributed as a Rayleigh distribution which has the PDF

f (A; σ) =
A
β2 e

−A2

2β2 with x ≥ 0
A : Amplitude
β : Scaling parameter.

(3.17)

The scaling parameter, β, can be found since we know that the variance of
a Rayleigh distribution is given by σ2 = 4−π

2 β2. This gives us the scaling
parameter as β = σ√

4−π
2

.

The signal to noise ratio defined by SNR = µ
σ is 1.91 for a Rayleigh

distribution where µ is mean and σ is the standard deviation.

3.4.2 Simulated speckle

The statement fully developed speckle deserves a closer investigation. Wagner
et al. (1983) and Burckhardt (1978) stated that if the number of scatterers
within one resolution cell was large, the amplitude was distributed as
a Rayleigh distribution. This was further investigated by Wagner et al.
(1988), where they stated that the Rayleigh distribution was approached
if there were slightly fewer than 10 scatterers per resolution cell. When
the literature uses the term resolution cell they are using the one-way
resolution cell. Today it is common to state that the speckle is fully
developed if it is simulated more than 10 scatteres per resolution cell.
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We have simulated speckle by randomly distributing N point scatterers
in a 15× 18 mm phantom beginning at the depth of 25 mm and ending at
44 mm. We are actually just using the image from 27 mm to 42 mm to avoid
fuzzy edges. In the lateral dimension we are simulating a 13.5 mm wide
image, see Section 3.1.5, this way we are also avoiding the fuzzy edges on
the sides, see Figure 3.19. The fussy edges probably arise because at the
bottom there are no scattered waves interfering from beneath, and at the
top no waves are scattered to interfere from the top and thus the speckle
pattern will be different.
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Figure 3.19: We are just using the image from 27 to 42 mm to avoid the “fussy edges” seen
in the top and bottom of this image.

We have collapsed the elevation dimension, but given the scatterers
Gaussian random amplitudes to mimic different position in the elevation
dimension. Our resolution cell volume is, from Equation 3.7, 0.0554 mm3

if the cell is at depth 27mm. We use depth of 27 mm because this gives the
smallest resolution cell and thus the hardest requirements for the number
of scatterers. Since we have collapsed the elevation dimension we end up
with a two dimensional resolution cell of 0.0449 mm2. We have simulated
from 10 000 to 300 000 randomly distributed scatterers in the phantom.
This resulting SNR is given in Table 3.2 and the resulting images are given
in Figure 3.20.

From the SNR’s listed in Table 3.2 we see that when the number of
scatterers approximates 10 the SNR is ≈ 1.9, and thus the speckle is fully
developed. If we investigate the images in Figure 3.20 we see that after we
have reached 50 000 scatterers there is no visual difference in the contrast
of the speckle pattern in the images. The 10 000 scatterers has more dark
areas, while the three others seems equally distributed. This observation is
confirmed by the distribution of the dB values in Figure 3.21 (b).

In Figure 3.21 we have plotted the distribution of the amplitude values
of some of the simulations. We see that the simulation with 10 000 scatterers
is far from its theoretical Rayleigh distribution, while the simulation with
50 000 and 100 000 scatterers is approximately equal to its Rayleigh
distribution while the 300 000 scatterers simulation is very close to the
theoretical. Ideally we should have used the 300 000 scatterers simulation,
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Speckle simulations
Phantom size Scatterers ≈ Scatterers per resolution cell SNR
15x18mm 10 000 2 1.64
15x18mm 30 000 3 1.81
15x18mm 50 000 8 1.87
15x18mm 80 000 13 1.85
15x18mm 100 000 17 1.85
15x18mm 150 000 25 1.87
15x18mm 300 000 50 1.92

Table 3.2: SNR values calulated for different number of scatterers in the phantom when
the DAS beamformer is used.
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(a) 10 000 scatterers

Lateral distance [mm]

D
e

p
th

 [
m

m
]

DAS

 

 

−6 −4 −2 0 2 4 6

28

30

32

34

36

38

40

42 −50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

(b) 50 000 scatterers
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(c) 100 000 scatterers
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(d) 300 000 scatterers

Figure 3.20: Speckle simulations with different number of scatterers. We see that there is
no visible difference between 50 000 scatterers and 300 000 scatterers.

but the time to run the simulations when using 300 000 scatterers is so
high that it is much more practical to use the 100 000 scatterers - especially
since we soon will oversample the speckle. The simulation with 100 000
scatterers is also Rayleigh distributed, so the speckle we investigate further
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is well developed.
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Figure 3.21: Speckle PDF’s. We see that the 50 000, 100 000 and 300 000 scatterers
simulations are Rayleigh distributed (a). The distribution of dB values are very similar for
100 000 and 300 000 scatterers and since are both well developed.

3.4.3 Speckle with Capon beamforming

So far in the discussion on speckle we are assuming uniform DAS
beamforming. When we use Capon beamforming we apply time-varying
weights dependent on the spatial covariance matrix, see 2.3.2, thus
resulting in a varying resolution. This will affect the speckle pattern created
and give different statistics to the speckle (Synnevåg et al., 2007b).

Speckle simulations with Capon beamformer
Phantom size Scatterers ≈ Scatterers per resolution cell SNR
15x18mm 10 000 2 1.09
15x18mm 30 000 3 1.12
15x18mm 50 000 8 1.12
15x18mm 80 000 13 1.13
15x18mm 100 000 17 1.13
15x18mm 150 000 25 1.14
15x18mm 300 000 50 1.14

Table 3.3: SNR values calulated for different number of scatterers in the phantom when
the Capon K = 0, L = 64 beamformer is used.

The SNR of the most aggressive Capon beamformer L = M/2
calculated from the same simulations as in Table 3.2 is listed in Table 3.3,
and thus the statistics are different for the Capon beamformer. We see from
Table 3.3 that the SNR of Capon with L = M/2 is approximately 1.13 for
what was well developed speckle for the DAS beamformer.

In Figure 3.22 we have displayed the speckle image with 100 000
scatterers from the DAS beamformer (a), Capon L = M/2 (b) and Capon
L = M/4 (c). We immediately see that the most aggressive Capon
beamformer creates a very different speckle pattern than DAS. The less
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aggressive Capon beamformer creates a pattern very similar to DAS, which
is not too surprising since the less aggressive, and more robust, we make
the Capon beamformer the more it is equal to a DAS beamformer with
constant weights.
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(b) Capon:K = 1, L = M/2 = 64
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(c) Capon:K = 1, L = M/4 = 32

Figure 3.22: 100 000 scatterers with different beamformers.

The SNR of amplitude from the three different images is

SNRDAS = 1.85
SNRCaponK=0,L=64 = 1.13

SNRCaponK=0,L=32 = 1.83.

We see that the less aggressive Capon and DAS has approximately
the same SNR. In Figure 3.23 we have plotted the distribution of the
amplitude values, and as we would expect the distribution of both the less
aggressive Capon, L = M/4, and DAS follows approximately the Rayleigh
distribution. However, the aggressive Capon beamformer, L = M/2, has
a very different distribution. The image has a much smaller and more
distinct speckle pattern with clearer peaks and darker bottoms. This agrees
with the findings by Synnevåg et al. (2007b). Hypothetically a more distinct
pattern should result in better correlation and easier tracking of speckle
and tissue movement. This is the main motivation behind this thesis,
to investigate if adaptive, Capon, beamforming has benefits when we do
static elastography. This will be investigated in depth in Chapters 5 and
Chapter 6.

Achieving similar speckle statistics for DAS and Capon

Synnevåg et al. (2007b) introduced the time averaging parameter K, see
section 2.3.2, when estimating the spatial covariance matrix to get the same
speckle statistics as in DAS. So far we have been using K = 0, meaning that
we have calculated the spatial covariance matrix with one sample. With a
larger K we use 2K + 1 samples to create the spatial covariance matrix. In
Figure 3.23 we see that we need K = 5 to get the most aggressive Capon
beamformer to achieve the Rayleigh distributed speckle statistics. If we
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once again look at the SNR’s we see that as expected K = 5 gives the Capon
beamformer the same SNR as DAS.

SNRDAS = 1.85
SNRCaponK=5,L=64 = 1.85.
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Figure 3.23: Speckle PDF’s from DAS, Capon with K = 0, L = 32 and Capon with
L = 64 with different K′s.

When investigating the images resulting from averaging more samples,
see Figure 3.24, we see that the pattern becomes more similar to the DAS
patter. However, the Capon image still has a different and more distinct
pattern with smaller speckles, motivating us to also explore this pattern
when we estimate displacement in Chapter 5.
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(b) Capon:K = 0, L = M/2 = 64
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(c) Capon:K = 0, L = M/4 = 32

Figure 3.24: Speckle simulations with 100 000 scatterers with different beamformers.

3.4.4 Speckle with lateral oversampled beamforming

From our earlier discussion on lateral oversampling with Capon beam-
forming we saw that we needed an oversampling factor of q ≈ 16 to get
below 3 dB in difference between the peaks when imaging point scatterers.
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Point scatter images are the worst case and point scatterers seldom occur in
vivo. We start off by creating our speckle simulation with the lateral over-
sampling factor q = 16, the factor needed for not losing information in the
scatterer images. Images created with the same beamformers as earlier are
displayed in Figure 3.25. If we closely compare these images, especially im-
age (c), to the earlier images without lateral oversampling, q = 1, we will
see that the lateral oversampling reduced the sharp jumps that occurred in
Figure 3.22 (b). This is hard to see in the printed version, but a good eye
might spot it. This indicates that we might loose information with Capon
beamforming when imaging speckle and motivates us to investigate this in
detail.
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(c) Capon:K = 1, L = M/2 = 64
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(d) Capon:K = 5, L = M/2 = 64

Figure 3.25: Speckle simulations with 100 000 scatterers laterally oversampled with a
factor q = 16.

First we will investigate what parameters that gives us Rayleigh
statistics. Our earlier result that the less aggressive Capon beamformer, L =
32, already has Rayleigh statistics, while the aggressive Capon beamformer,
K = 64, needs K = 5 also for lateral oversampling with q = 16 is confirmed
by the plots in Figure 3.26.

Since single point scatterers are the worst case we should expect that
we can create the image of well developed speckle with q < 16. A lateral
line from 30 mm depth from Figure 3.25 (c) is plotted in different decimated
versions, thus the different q′s, in Figure 3.27. The first thing we see is that
the two versions of the DAS line do not differ much even though there is a
difference in q of 16. This is as expected since the lateral beam spacing with
q = 1 is according to the Nyquist sampling criteria for DAS, see Section
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Figure 3.26: Speckle PDF’s. We see that also when using oversampling factor q = 16 a
temporal averaging with K = 5 is sufficient for the Capon beamformer to have Rayleigh
distributed speckle.

3.1.5. If we further investigate the plot we see that the Capon line with
q = 1 clearly misses many of the bottoms and the peaks, so much of the
information is lost. In other words the image is laterally undersampled.
The higher value of q we use, the better the Capon lines fit the Capon line
with q = 16, but from the plot it looks like q = 4 is sufficient. It is only at
the very steep peak right before lateral position -6 mm that q = 4 doesn’t
fit very well.
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Figure 3.27: A lateral line plotted with different oversampling factors for DAS, and Capon
with K = 0, L = 64.

In Figure 3.28 (a) we have plotted the sum of the absolute error of
different oversampling factors q compared to q = 16 for all the lines of
the image in Figure 3.25 (c). The plot is a mean-variance plot and we have
plotted the difference between DAS with q = 1 and q = 16 as reference.
This plot confirms our earlier observation that q = 4 is sufficient. Actually
q = 4 has less error than the DAS reference. In the bottom plot we have
plotted different interpolation techniques to see if the result was dependent
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Figure 3.28: Speckle PDF’s

on the interpolation technique. We see that as long as we use a more
sophisticated technique than simple nearest neighbor interpolation it did
not affect the result much.
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Figure 3.29: Power frequency spectrum of a lateral line for DAS and Capon K = 0, L = 64
for q = 16 and q = 1.

To understand why q = 4 is sufficient we can investigate the power
spectrum of a lateral line, this is plotted in Figure 3.29. The black vertical
lines in the plot indicate the sampling frequency if we would have used
q = 1. The energy in the frequencies above this line will be folded back
and aliased into the signal. We see that for DAS the signals outside the
black lines are very small, actually less than -100 dB. This is of course
because q = 1 is based on the Rayleigh criteria for DAS. While the higher
frequencies from the Capon beamformer has much more power and thus
we are actually losing information if we cut off at the black lines.

The red vertical lines in the plot indicate where we will cut off if we use
q = 4. We see that when using q = 4 we get almost all the information
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from the higher frequencies for Capon, and the frequencies folded back
into our signal has very low power, less than -120 dB. We therefore expect
that by using an oversampling factor of q = 4 when imaging speckle
with Capon beamforming we do not lose much information. This is a
drastically lower oversampling factor than for point scatterers and is a
much nicer value to work with when trying to get Capon to run real time
on a ultrasound scanner. Since single point scatterers seldom occur in vivo
an oversampling factor in this range should be sufficient. However, it is
important to point out that these are results from one simulated probe.
Åsen et al. (2014a) showed that for their setup with a phased array probe,
an oversampling factor of 25 was needed when imaging point scatterers.
We needed a factor of 16, and thus the oversampling factor is system
dependent. Further research should be done to find what influence the
choice of lateral oversampling facto for Capon.

In Figure 3.30 we have plotted Capon images of speckle from our
100 000 scatterers phantom by using q = 1. In (a) we can see sharp jumps in
intensity between the lateral lines so we can actually see that we in fact lose
information. The (b) and (c) image is created with an oversampling factor
of q = 4 and q = 16 and as we can see the sharp jumps between lines is
gone and there is also no visible difference between the images supporting
our claim that q = 4 is enough for our system when imaging speckle. As
stated earlier these jumps are hard to see in the printed images, but a good
eye might spot them.
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(a) Capon:K = 0, L = M/2 = 64
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(b) Capon:K = 0, L = M/2 = 64
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(c) Capon:K = 0, L = M/2 = 64

Figure 3.30: Speckle simulations with 100 000 scatterers laterally oversampled with q = 1
(a), q = 4 (b) and q = 16 (c).

3.5 Summary

In this chapter we have described the details of the ultrasound probe
and setups we use to simulate different ultrasound images in Field II. We
have investigated resolution for all dimensions, the resolution cell and the
two-way resolution. The lateral sampling, beam spacing, have also been
discussed.

Point scatter simulations have been investigated, and especially the
lateral oversampling when doing Capon beamforming. We have seen that
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if we do not have sufficient lateral sampling a point scatter between two
beams loose 40 dB in amplitude compared to a point scatter hit by the
beam, meaning that if we do not have lateral oversampling when doing
Capon we loose information. The lateral oversampling needed to avoid
losing information is q ≈ 16 when imaging single point scatterers.

We have also looked at the beampattern created by Capon and
compared it to the DAS beampattern to increase our intuition and
understand how the Capon beamformer works, and seen the superior
lateral resolution of the Capon beamformer.

Speckle has been discussed and especially speckle statistics of both
the DAS beamformer and Capon beamformer - and we have seen that by
using temporal averaging the Capon beamformer gets the same Rayleigh
distributed amplitudes as the DAS beamformer.

Toward the end of the chapter we looked at the lateral oversampling
needed when imaging speckle, and found that for our setup when imaging
well developed speckle a lateral oversampling factor of q = 4 was
sufficient.
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Chapter 4

Measuring Force Applied From
Ultrasound Probe to Tissue

Note: This chapter breaks the flow of the thesis and can be skipped. Chapter
5 follows the results from Chapter 3. This chapter originates from the original
objective of thesis, but the negative results of this chapter redefined the thesis’
objective. This chapter is kept in this succession in the thesis because it fits with
the timeline in which the work was done.

Chapter abstract: The original objective of this thesis included to create a
system to measure the force applied from the ultrasound probe to the tissue. If
this force is measured we might get a quantitative measure on the elasticity of the
tissue. This chapter describes a system using simple force sensors applied to the
front of the probe. We will see that this turned out to be very inaccurate. This
changed the main objective of the thesis, and leaves this chapter standing alone.

In static elastography the deformation in the tissue is created by the
ultrasound probe. To be able to get a quantitative measure of tissue
elasticity, to reduce the inter operator variability, we need to know how
much force that is applied to the tissue. In this chapter we will investigate
if we are able to use fairly simple force sensors to measure the force applied
to the tissue.

4.1 Force sensor

To measure the force we have decided to use a sensor called FlexiForce®
developed by Tekscan, Boston, MA, USA. The sensor is small and thin,
so one or more sensors are easily mounted on the front of the ultrasound
probe by the help of our constructed probe collar, see Section 4.2. We
are using Tekscan’s standard A201 force sensor, constructed as in Figure
4.1. The sensor construction consist of two layers of flexible substrate
(polyester) film. To each layer a conductive silver material is applied
followed by a layer of pressure-sensitive ink. The two layers are laminated
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Figure 4.1: Illustrating the construction of the FlexiForce sensor. Figure from [http:
//www.tekscan.com/flexible-force-sensors]

together, leaving the active sensing area at the end of the sensor as a circle
with diameter of 9.53 mm.

The sensor acts as a variable resistance. When no force is applied to the
sensor, the resistance, R, is very high. When a force is applied to the sensor,
the resistance decreases. When using sensors as measurement devices the
linearity of the sensor is important. In the FlexiForce® sensors it is the
conductance (1/R) that is linear.

The FlexiForce® sensor comes in three different sensing ranges with a
maximum load of either 4.4 N , 110 N or 440 N. We are using 110 N sensors
expecting a force of 0-10 N applied to the tissue.

4.1.1 Method

To use the sensor we set it up as the top resistor, R1, in a voltage divider,
see Figure 4.2.

The equation for a voltage divider is

Vout =
R2

R1 + R2
Vin. (4.1)

Since we are interested in the resistance value of the sensor we can
rearrange Equation (4.1) and get

R1 =
R2Vin

Vout
− R2 (4.2)

as an expression for the resistance in the sensor. Since we know the value
of Vin and R2, all we need to measure is Vout to be able to calculate R1.
Vout is measured by wiring the point between the resistors to an analog
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Vin

R1 (Sensor)

Vout

R2

Figure 4.2: Schematics of a voltage divider.

pin on an Arduino Uno microcontroller1. The Arduino has a 8 bit analog
to digital converter (ADC), so what we read is a quantized value of the
voltage between 0 and 1023. The setup with two sensors and the Arduino
can be seen in Figure 4.3.

Sensor 2

R2

Sensor 1

R2

Arduino

AnalogPin 3

Vdd = 5V

Gnd

AnalogPin 2

Figure 4.3: Schematics of the two sensors in voltage dividers connected to the Arduino.

There are several methods to measure the change of a devices resis-
tance. We could use e.g. a Wheatstone bridge, which is basically two volt-
age dividers in parallel where the voltage we are interested in is the voltage
difference in the two legs. This might be a more accurate approach, but is
also more complex. So, for simplicity we ended up using only a single
voltage divider.

4.1.2 Calibration

The manufacturer of the force sensors provides a guide to calibrate the
sensors. First of all the manufacturer recommends to ”condition“ the
sensor before every use. The conditioning is to place 110% or more of the

1 See www.arduino.cc for more information on the Arduino microcontroller.
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maximum weight onto the sensor for about 3 seconds, and repeat this 4-5
times.

The rest of the calibration procedure consists of 5 steps

Step 1 Place 1/3 of the test weight on the sensor and read the output.

Step 2 Place 2/3 of the test weight on the sensor and read the output.

Step 3 Place the full weight on the sensor and read the output.

Step 4 Plot the conductance (1/resistance) vs force and draw a line of
best fit.

Step 5 Use the equation for the line of best fit and the sensor output to
determine the force of unknown loads on the sensor.

To make sure that all the force is applied to the sensors sensing area,
the circle of diameter 9.53 mm, the manufacturer recommend to use a puck
between the weight and the sensor. For the first calibration this puck was
created by cutting out a circular shape of a hard plastic material about 3 mm
thick. This puck gave very unreliable results with high variance between
sensors and measurements.

This could mean that the sensors are bad and inaccurate, or that the
calibration is bad. The latter is most likely, and therefore, inspired by Vecchi
et al. (2000), parts for a more accurate calibration was drawn in Solidworks
2013 and printed on a 3D-printer. The 3D-model of these calibration parts
can be seen in Figure 4.4.

Figure 4.4: Calibration parts for a more accurate calibration.

The calibration parts consist of the pucks, to the right in the figure, and
a board with holes to place the pucks. The pucks had a dimension of 9 mm,
while holes in the board had a dimension of 10 mm. The hole in the board
was placed directly above the sensing area of the sensor, and the puck was
placed in the hole making sure all that the weight was placed directly on
the sensor area.
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Figure 4.5: Calibration weights

Since we read the values from a voltage divider it is important to
balance the resistance values to get the highest possible range of output
values. We therefore measured the value of the sensors resistance when
applying 0 to 900 grams of weight. The weight is applied using calibration
weights with given weight, see Figure 4.5. This resulted in the plot in
Figure 4.6 (a).

We want to have the largest possible range for the output value Vout by
choosing the best balanced value of R2 compared to the sensors resistance
in the working range. To find the middle of the working range we average
the values of resistance R1 for the different sensors and chose the average
value at 300 grams. If we then differentiate equation (4.1) with regard to R1
we get

∂Vout

∂R1
=

VinR2

(R2 + R1)2 .

This equation is plotted against values of R2 from 0 to 5 MΩ in Figure 4.6
(b). We see that we get a peak at approximately 1 MΩ so we chose this
value for R2 in our circuit giving us the largest range for the output value
Vout, for Vin = 5V and varying R1, to be read by the analog pin (ADC) in
the Arduino.
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Figure 4.6: Calibration curves for resistance value (a), and the derived Vout expression vs
value of R2 in (b).

The next step was to calibrate each individual sensor in the voltage
divider circuit using the same calibration weights as we used to find the
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resistance values, thus from 0 to 900 grams. The calibration parts were
used as described earlier and the measured result of the conductance (1/R)
is plotted in Figure 4.7. We see from the plots that the sensors are fairly
linear and there are not so much difference between each sensor except that
sensors 1 and 2 are very different from the rest. This is probably because
sensors 1 and 2 are from a different production batch than the rest of the
sensors. If the sensors are studied carefully it looks like it is an extra layer
of adhesive, see Figure 4.1, in the construction of the sensors 3-6, but the
manufacturer has not given any details on this.

From the curves in the plots we calculated the best fitting line for each
sensor with linear regression. The resulting function is used as each sensors
calibration to convert the measured voltage into force.
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Figure 4.7: Calibration curves for the 25 lb sensors.

4.1.3 Software

In the previous section we have not given any details on how we received
the values read by the Arduino. This was done using MATLAB Support
Package for Arduino (aka ArduinoIO Package) created by MathWorks Classroom
Resources Team available at www.mathworks.se/matlabcentral. This software
allows very easy communication between MATLAB and an Arduino
connected with USB. The standard Arduino commands can be run through
this MATLAB API so the resulting values are read straight to MATLAB. A
MATLAB GUI using this API was created to easily read and display the
values of the sensors. A screenshot of the GUI while measuring one sensor
is shown in Figure 4.8.

4.2 Probe collar

To be able to mount the force sensors on the front of the ultrasound probe
we needed to create a collar to fit around the ultrasound probe. This collar
was drawn in the 3D-design software Solidworks 2013 and the collar was
created in two steps. First a 3D-model based on the ultrasound probe was
created, see Figure 4.9 (a), then a second part, the actual collar Figure 4.9

62

www.mathworks.se/matlabcentral


Figure 4.8: A MATLAB GUI that reads the value of the sensors from the Arduino at real
time.

(b), was created to fit around the probe. This collar was created as two
counterparts screwed together to tightly attach around the probe. The
width of the side of the collar was 14 mm, giving enough space to mount
the force sensors on the collar and keeping the entire sensing area of the
sensor on the collar. Acknowledgement goes to associate professor Mats
Høvin at the Robotics And Intelligent Systems at UiO for creating the
original 3D-design, and to Yngve Hafting for 3D-printing the designs.

(a) 3D model of ultrasound probe (b) 3D model of probe collar

Figure 4.9

63



4.3 Results and discussion

4.3.1 Verification of calibration

To verify the calibration of each sensor we once again applied the
calibration weights from 0 to 900 grams and measured the calibrated value
of force from each sensor. The force is fund by F = ma and using
a = 9.81m/s. The result is plotted in Figure 4.10, where we see that all
the sensors except sensor 1 behave as expected. The sensors do have some
variance, but it’s not too bad regarding that these are very simple and
cheap sensors. Sensor 1 has some bad bias towards the second half of the
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Figure 4.10: Verifying the calibration of the sensors.

scale. It was only done one test and one measurement so this bias could
be inaccuracy when applying the calibration weights, that the sensor was
not ”broken in“ properly or simply that this was a bad calibration or a bad
sensor. We did not pay much attention to this since we could simply choose
to use the other sensors.

4.3.2 The system setup

When putting all the parts of this force measuring system together we
ended up with the system shown in the images in Figure 4.11. The system
consist of the Arduino microcontroller attached to the probe cable. The
two resistor divider circuits are soldered on a small prototyping board
inserted directly into the correct ports on the Arduino. The two sensors are
connected to the Arduino through cables soldered into the circuits allowing
the sensors to be attached to the front of the probe as seen in the images.

The Arduino was attached to a computer through a USB cable which
also provided the microcontroller with power. Controlling measurements
of the Vdd on the Arduino showed that the power provided through the
USB was enough to keep a steady Vdd at 5 V as long as the laptop was
connected to a wall socket or had sufficient battery power.
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(a) The entire measurement system

(b) Probe collar with force sensors
from the front

(c) Probe collar with force sensors
from the side

Figure 4.11: Images of the measurment system setup.
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4.3.3 Verification of the system setup

To verify the systems capability of accurately measuring the force applied
from the ultrasound transducer we used one half of the two collar
counterparts, and attach the two sensors to this half. Then a known force
was placed on this half and the sensors output was measured. An image of
this setup can be seen in Figure 4.12 (a).

(a) (b)

Figure 4.12: Image (a) shows the test setup and image (b) the pucks attached to the sensors.

During this test the first sign of problems arose. The assumption
underlying this whole setup was that the force the sensor measured
was proportional to the whole collar and probe front area. To simplify
calculation for gained intuition we can assume that the sensing area of the
sensor is 1 cm2 while one half of the collar counterparts has an area of 5
cm2. If the sensor senses 1 N it means that it is measuring a pressure of
1kPa since

P =
F
A

P : Pressure in Pascal
F : Force in Newton

A : Area in m2.

This means that the force applied to the probe is 5 N since the pressure
should be equal across the entire area of 5 cm2 and thus

Psensing area = 1kPA =
Ftotal

Atotal
= Ptotal area ⇒ Ftotal = Atotal1kPa = 5N

is applied to the probe.
The actual area of one half of the collar counterparts is ≈ 9 cm2 and the

sensing area of the sensor is Asensor = π( 0.953
2 cm)2 = 0.713cm2. If we apply

4.95 N (500 grams) we expect the sensors to read Fsensor = Asensor
Atotal

Ftotal =
0.39N.
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When we conducted this experiment we measured ≈ 2.5N on each
of the sensors, indicating that something in our assumption is wrong. If
we closely investigate the image in Figure 4.11 (c) we see that the sensors
build up about half a millimeter from the actual collar. This means that
the sensors are getting more pressure/force than the area around, and thus
sensing a higher force than the rest of the area of the collar. We tried two
approaches to counteract this problem. First we tried to test against a softer
background material and chose a stack of papers. The sensor readings were
then reduced to≈ 1.75N on each of the sensors. This could mean that more
of the collar is in contact with the stack of papers so it is ”unloading“ some
of the pressure from the sensors. We then tried to attach one layer of tape on
all the area of the collar except on the actual sensors. This did not influence
the measurements and we were still measuring ≈ 1.75N on each of the
sensors. This is probably because one layer of tape was still lower than the
height of the sensors so most of the pressure were still only on the sensors.
When we added another layer of tape we measured ≈ 1N on both the
sensors. From these varying measurements we see that our assumption
that the force the sensors were measuring was proportional to the whole
area of the collar was wrong. This is probably because the sensors are
higher than the rest of the area so they experience more force than the area
around. A third way to counteract this could be to cut out slits to place
the sensors in the slit giving a smooth surface. The function of the sensors
is that the two layers of conducting silver material is squeezed together in
conductive ink. So when the force increases the resistance decreases. If the
sensors were placed in a slit the layers in the sensors would not have been
squeezed correctly together and we would probably encounter other errors
in the measurements.

To further complicate things with our setup, Figure 4.11 (c) shows
another potential problem. The tip of the ultrasound probe is slightly above
the collar. This tip will therefore absorb much of the force between the
collar and the tissue adding another error to our measurements. Another
element that might complicate things is the ultrasound gel used between
the probe and the tissue.

As a final test of the setup we attached two pucks on the sensing area
of the sensors, Figure 4.12 (b). When we now added 4.95 N of force we
measured the expected ≈ 2.5 N at each sensor. The conclusion is that the
FlexiForce sensors are only accurate when all the force is applied directly
on the sensing area of the sensor. This conclusion is supported by (Vecchi
et al., 2000), where they created a dome attached to the sensing area of the
sensor. They say in the article that they did this ”To create a sensor that
responds to force rather than pressure ...“ but from our experience I doubt that
they could get the sensor to accurately respond to pressure anyway.

4.4 Summary

In this chapter we have seen an approach to create a setup to measure
the force exerted from the ultrasound probe to the tissue. The motivation
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was that if the force applied to the tissue is known, we could be able
to get a quantitative measure of the tissue elasticity when doing static
elastography. When the force applied is not known, as in conventional
static elastography, we only measure the relative tissue elasticity. The
approach chosen in this thesis was to attach simple force sensors at the
front of the probe to measure the force between the probe and the tissue.
The assumption was that the force measured by the flat sensors was
proportional to the force applied to the probe by the operator. This
assumption turned out to be an underestimation of the complexity of
measuring the force since small variations in height in the front of the probe
were shown to highly influence the measurements. The task of measuring
the force turned out to be a more complex mechanical problem then first
assumed.

An alternative approach to measure the force has been done in Gilbert-
son’s master thesis Handheld Force-Controlled Ultrasound Probe (Gilbertson,
2010) from Massachusetts Institute of Technology (MIT). His approach was
a much more complex mechanical approach containing a linear actuator
with a six axis force sensor, see Figure 4.4. A feedback controller com-

Figure 4.13: Image of Gilbertson’s Handheld Force-Controlled Ultrasound Probe
Gilbertson (2010)

mands the linear actuator to move the ultrasound probe in accordance to
the readings from the force sensor. In this way the system will control the
probe to maintain a given force independent from the force exerted by the
operator. This is a much more complex but also probably much more accu-
rate approach - and it would be very interesting to examine static elastog-
raphy where the compression force is known.
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Chapter 5

Static elastography

Chapter abstract: This chapter provides an in-depth investigation of static
elastography using two different techniques for the tissue displacement estimation;
crosscorrelation and pulsed-Doppler. The first part of the chapter introduces
a simple approach to simulate static elastography. In the second part the
crosscorrelation displacement estimation techniques is described in detail, while
the third part describes the pulsed-Doppler technique. The fourth part presents
two comparison criteria to compare the adaptive and conventional beamforming
when the outputs of the beamformers are used for displacement estimation. The
last part investigate the least square approach of estimating the strain from the
displacement, and also a optimized version of this technique.

Elastography was introduced in the second chapter, where we intro-
duced two elastography techniques; static and shear wave elastography.
In this chapter we will further investigate static elastography. Static ultra-
sound elastography uses two images, pre and post a compression, where
the compression is caused by the ultrasound probe. This chapter continues
the work done in Chapter 3 where we studied the speckle patterns that will
be used to extract the tissue movement between the two images.

5.1 Simulating tissue compression

The thyroid, situated below the Adam’s apple in the neck, is one of many
organs suitable for ultrasound investigation. Nodules in the thyroid are
very common and are easily seen in ultrasound images. The great majority
of the nodules are benign while only 5% of the nodules are malignant (Rago
et al., 2007). Malignancy can not be decided by regular ultrasound, and
biopsy is the common way to investigate suspicious nodules. In recent
years ultrasound elastography has shown very good results when used to
predict malignancy in thyroid nodules. Studies report results with positive
predictive value, the probability of being sick given positive test, of 100%
and negative predictive, the probability of being sick given negative test,
value of 98% (Rago et al., 2007).

These results motivated us to simulate conditions equal to thyroid
imaging. We are still using the same setup as in Chapter 3 with a 7.5
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MHz, 192 element linear probe using 128 active elements to image the
same phantom as used in Section 3.4. We are imaging from 27 mm to 40
mm in the axial dimension, which are reasonable depths when imaging
the thyroid. The thyroid also seem to have a very well defined and well
developed speckle pattern, based on investigation of my own and my
supervisors thyroid scanned by the VingMed Vivid FiVe system in our lab.

To simulate tissue compression we first created the pre-compression
image by simulating the same phantom as in Section 3.4. This phantom
had 100 000 scatterers randomly distributed in two dimensions, axial and
lateral, with Gaussian randomly distributed amplitude to mimic different
positions in the elevation dimension. More details are given in Section
3.4. To create the tissue compression we displaced the scatterers in the
phantom, by the amount indicated by the colors in Figure 5.1, in the axial
dimension. This is of course a very simple model for tissue displacement,
but it supports the fundamental assumption that the speckle pattern
follows the tissue movement along the axial dimension.
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Figure 5.1: Displacement used to simulate tissue compression. The colors indicates how
much each scatterer will be displaced between the pre- and post-compression image. The
black box indicates the region used to avoid fussy edges, see Section 3.4.2.

In Figure 5.1 all the scatterers in the phantom are plotted at their
position prior to compression. The colors in the image indicate how much
each scatter will be displaced before we create the post compression image.
The scatterers get gradually more displaced the deeper we get in to the
tissue. This is because the front of the probe is the reference point for the
image. This means that the tissue far from the probe will have a larger
relative displacement than the tissue close to the probe (Ophir et al., 1991).
In the middle of the phantom we have created a circular object where all
the scatterers are displaced by the same amount - this is to mimic a hard
malignant nodule in the tissue. The nodule has a diameter of 5 mm and is
placed with its center at 33.5 mm depth in the center of the image.

The resulting pre- and post-compression images are displayed for
both the Capon beamformer, K = 0, L = M/2 = 64, and the DAS
beamformer in Figure 5.2. All images in this chapter are created with a
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(d) Capon post

Figure 5.2: Pre- and post-compression images for both the DAS and Capon,K = 0, L = 64
beamformer.

lateral oversampling factor of q = 4 according to the results in Chapter 3. In
the particular example used in Figure 5.1 and Figure 5.2 we have displaced
the furthest scatterers, at 44 mm, by ∆ = λ

4 ≈ 0.05 mm, where λ is the
wavelength of the center frequency. The scatterers closest to the probe, at
27 mm, are displaced by half the amount at 44 mm, in this example ∆

2 . The
reason for this small compression is because of the fundamental limit of
the pulsed-Doppler estimation which we will discuss later. We will later
use different and larger amounts of displacement - and then relate it as a
factor of the ∆ value derived here.

5.2 Crosscorrelation displacement estimation

In their original paper Ophir et al. (1991) suggested to find the displace-
ment difference between the pre-and post-compression axial lines by the
time shift differences of the segmented lines. The straight forward way is
to divide each line into windows of a certain length. Then each window
is cross correlated against the window from the same position in the post
compression line to find the time shift between the windows. Mathemati-
cally we can express this as (Sæbø et al., 2007):

fpre(t) = s(t) + n1(t),
fpost(t) = s(t + δt) + n2(t)

s(t) : Window of the signal
n : Noise.

(5.1)

Actually, it is not just a time shift between the pre- and post-line, it is a
stretch since the two lines are compressed versions of each other. However,
for a small window of the signal the stretch will cause an apparent time
delay, but some stretch will still be present (Sæbø et al., 2007). When we
introduce a stretch factor α, the two lines can be modeled as

f̂pre(t) = s(t) + n1(t),

f̂post(t) = s
(

t + δt
α

)
+ n2(t)

s(t) : Window of the signal
n : Noise
α : Stretch factor.

To account for this stretch factor, we could use a so called cross-ambiguity
function to estimate the displacement. This was done by Sæbø et al. (2007)
to improve sidelooking sonar height estimation, which is related to the
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displacement estimation we are doing. For simplicity, and as we later will
experience, we can assume α = 1 in our displacement estimation and use
the common crosscorrelation time delay estimation. The crosscorrelation
of the two signals, from Equation (5.1), is

R fpre fpost(τ) = E{ fpre(t) f ∗post(t− τ)} = Rss(δt− τ).

The autocorrelation has its maximum for τ = 0, giving the crosscorrelation
of fpre and fpost its maximum for τ = δt. Therefore we can find the
maximum of the crosscorrelation to find the time shift between the two
windows. To increase the accuracy of the estimation, we can interpolate
the crosscorrelation result. Interpolating the signal introduce more
quantization levels, making the displacement estimation more accurate.
A derivation of the crosscorrelation time delay estimator as a maximum
likelihood estimator is given in Appendix C.

To intuitively illustrate the crosscorrelation estimation we have plotted
the window from the pre-compressed line, together with the window
from the post-compressed line in Figure 5.3 (a). The result from the
crosscorrelation is in Figure 5.3 (b).
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Figure 5.3: An example of the crosscorrelation displacement estimation. One window
from the pre- and post- line is plotted in (a) where we see that the post line (bottom) is a
bit shifted compared to the pre line (top). In (b) we have plotted to real (a), imaginary (b)
and phase (c) of the crosscorrelation between the two windows. The top in the real, and the
zero crossing of the imag and phase, indicate by which lag the two windows are separated

The RF-signal from the Capon beamformer is, as we know from Section
3.3.3, the analytic version of the signal. In Figure 5.3 (b) we have plotted
the real part, the imaginary part and the phase of the crosscorrelation
of the two windows. We see that the maximum of the real part is at
approximately 1 sample, while the imaginary part and the phase cross
through zero at about 1 sample. The imaginary part of the analytic signal
is the Hilbert transform, Appendix B, and it has been shown that when the
crosscorrelation of a signal reaches a maximum its Hilbert transform passes
through zero (Loupas et al., 1995). The phase of a signal s(t) is defined as
θ = tan−1 Im[s(t)]

Re[s(t)] , and thus the phase of the crosscorrelation will also be
zero where the crosscorrelation of the Hilbert transform is zero. This allows
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an alternative, and maybe more efficient, implementation of the estimator;
to find the zero of the Hilbert or the zero of the phase. This will later be
suggested as further work. However, we have implemented finding the
maximum of the interpolated version of the real part of the crosscorrelation.

Displacement from Capon:K=5L=64
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Figure 5.4: Displacement estimated with the crosscorrelation method (a), and the value of
the maximum of the crosscorrelation (b).

When the above estimation is done for every line and every sample
on the pre and post compressed image we get the estimated displacement
displayed in Figure 5.4 (a). It has also been shown that the SNR of the
displacement estimate increase with an increasing correlation coefficient
Souchon et al. (2003). Therefore a measure of the quality of the estimate is
the value of the maximum of the crosscorrelation, this is plotted in 5.4 (b).

If we compare the estimated values to the model of estimation, Figure
5.1, we see that the estimation is fairly good. Notice that the color scale
in the two images is slightly different since the image of the estimated
displacement is just showing the region of interest, while in Figure 5.1 the
black box is indicating the region of interest.

5.2.1 Window lengths

In the later comparison between the beamformers we will use three dif-
ferent windows lengths for the crosscorrelation displacement estimation.
We will use 12, 25 and 50 samples in each window, this corresponds to
approximately 0.34, 0.74 and 1.51 mm of length. For comparison we can
remember back to the axial resolution in Equation (3.5), which we found
was 0.2053 mm - actually equal to λ.

5.3 Pulsed-Doppler displacement estimation

We will once again return to Jensen’s book (Jensen, 1996b) where we find
that the further development of ultrasound imaging introduced the so
called Doppler imaging mode. This imaging technique exploits the well
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known Doppler effect to detect moving objects that scatters ultrasound.
This is first and foremost used for the detection of the velocity of blood flow.
First it was developed a so called Continuous Wave (CW) Doppler system
by Satomura (1957). The CW system transmits a continuously sinusoid into
the tissue, and at the same time continuously records the backscattered
waves. If the tissue is moving the backscattered sinus will be slightly
shifted in frequency. This frequency shift, the Doppler frequency, is related
to the velocity of the blood by

v =
c fd

2 fc

v : Velocity of scatterer
fd : Doppler frequency
c : Wave velocity

fc : Transmitted center frequency

(5.2)

derived from the Doppler equation

fd = 2 fc
v cos(θ)

c

θ : Angle between velocity
direction and ultrasound beam.

(5.3)

The CW system has some drawbacks, especially the lack of range
resolution. This means that for example two blood veins at two different
depths can both shift the signal, so we will measure the wrong frequency.
To cope with this problem a Pulsed Wave (PW) Doppler system was
suggested by Baker (1970). This system transmits a short pulse of
ultrasound, just as regular B-mode ultrasound, this pulse is backscattered
and at least two measurments is used to find the displacement of the
backscattered signal, as a consequence of the movement of blood, between
the measurments. This means that the PW Doppler system is actually not
using the Doppler effect at all. It is just finding the displacement of the
scatterers. Finding the displacement is exactly what we want to do - so
the pulsed-Doppler methods should be able to be used when doing static
elastography. This has been done by for example Børstad (2011) in his
master’s thesis Interoperative Ultrasound Strain Imaging of Brain Tumors -
where he uses PW Doppler techniques to visualize brain tumors. The main
difference between our applications and his is that he used displacement
in the tissue caused by the pulsation of arteries, while static elastography
uses compression by the ultrasound probe.

5.3.1 Autocorrelation method

In 1985 Barber et al. published A New Time Domain Technique for Velocity
Measurements Using Doppler Ultrasound. This technique was able to estimate
the Doppler frequency using the autocorrelation function. The estimation
is done in the time domain, allowing a very fast implementation. This
technique was the basis of the first real-time blood flow imaging system
demonstrated by Kasai et al. (1985). The thoroughly mathematical analysis
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of the technique was done by Angelsen and Kristoffersen (1983). We will
not touch the details here, but the central equation is;

f̂ =
∠R(0, 1)

2πTpr

∠R(0, 1) : Phase angle of the autocorr at frame lag 1
Tpr : Time between pulse returns.

(5.4)

Where R(0, 1) is the autocorrelation function between the pre- and post-
frame, which can be defined as (Børstad (2011))

R(m̌, w̌) =
M−m̌−1

∑
m=0

N−1

∑
v=0

O−w̌−1

∑
w=0

xa(m, v, w)x∗a (m + m̌, v, w + w̌), (5.5)

where

M : Depth samples (axial direction)
m̌ : Axial lag
N : Lateral samples (lateral direction)
O : Number of frames
w̌ : frame lag
xa : Analytic signal along the axial dimension.

If Equation (5.4) is inserted into Equation (5.2) we get the estimate of
the axial velocity:

va =
c∠R(0, 1)
4π fcTpr

∠R(0, 1) : Phase angle of the autocorr at frame lag 1
Tpr : Time between pulse returns

fc : Center frequency.

(5.6)

Since we only need to estimate the displacement, the time is not
important, we can skip Tpr giving us the slightly simpler axial displacement
estimate

dauto =
c∠R(0, 1)

4π fc

∠R(0, 1) : Phase angle of the autocorr at frame lag 1
fc : Center frequency.

(5.7)

5.3.2 Modified autocorrelation method

The center frequency is attenuated proportional to the depth in ultrasound
imaging. In 1995 Loupas et al. suggested to include an estimate of the
center frequency, and called this the 2D autocorrelator. We will call it the
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modified autocorrelation method. Loupas et al. showed that the center
frequency can be estimated by

f̂c =
∠R(1, 0)

2π
fs

∠R(1, 0) : Phase angle of the autocorr at axial lag 1
Tpr : Time between pulse returns.

(5.8)

If we include this estimate in the autocorrelation method in Equation
(5.7) we get the modified autocorrelation estimation of the displacement as

dmod auto =
c∠R(0, 1)

4π f̂c

∠R(0, 1) : Phase angle of the
autocorr at frame lag 1

Tpr : Time between pulse returns.
(5.9)

Loupas et al. reported that this method outperformed the former
method, and this result was verified by Børstad (2011). However
in (Blomberg, 2005) the modified autocorrelation technique only gave
improved results on simulated data, not on experimental data.

Number of samples in the estimate

The implementation of the pulsed-Doppler estimators used in this thesis is
based on the implementation used by Børstad (2011). Børstad introduced
to include samples from N scan lines. This gives a more accurate
autocorrelation estimate at the cost of lower lateral resolution. In his
implementation he uses a filter on the calculated R(0, 1) and R(1, 0) to
include more samples in the estimate. We also use this filtering with a
estimation window were we use M = 15 samples axially, and N = 4 samples
laterally for our estimation window for all pulsed-Doppler estimates in
this thesis. This is somewhat different from the crosscorrelation method
where we only use samples from the axial lines to create the estimate
and do not share information between the lines. This gives the pulsed-
Doppler method an advantage compared to the crosscorrelation method,
but it also gives the pulsed-Doppler estimation worse lateral resolution.
An estimation window of M = 15 samples axially and N = 4 samples
laterally means that the pulsed-Doppler estimation includes information
from M× N = 60 samples, which is about the same as the 50 samples used
in the largest window of the crosscorrelation displacement estimation. In
this thesis we are only using O = 2 frames in our pulsed-Doppler estimates,
this is often referred to as a packet size of 2.

However, we are not comparing the displacement estimation methods,
we are comparing the beamforming done prior to the displacement
estimation - and thus we only need to use the same parameters in the
displacement estimation for both beamformers. The implementation of
both the autocorrelation and the modified autocorrelation is provided in
Appendix A.3.
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5.3.3 Correlation coefficients as an estimation quality indicator

Børstad (2011) suggested using the ratio of the autocorrelation at one lag
over the autocorrelation at zero lag as a estimation quality indicator.

c =
O

O− 1

∣∣∣∣R(0, 1)
R(0, 0)

∣∣∣∣ . (5.10)

The scaling factor O
O−1 , where O is number of frames, ensures that c = 1 if

the two frames compared are stationary, if it has been no compression. The
factor c will decrease towards zero with increasing signal decorrelation.
This estimation quality indicator will be useful when we in the next chapter
start to compare different parameters and beamformers.
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Figure 5.5: Displacement estimation from the pulsed-Doppler methods. The conventional
autocorrelation (a), the estimated center frequency (b), the modified autocorrelation method
(c) and the correlation coefficients (d) suggested by Børstad (2011) are plotted.

In Figure 5.5 (a) we have plotted the displacement estimation from the
autocorrelation method, in (b) Equation (5.8) the estimation of fc is plotted,
in (c) Equation (5.9) the estimation of the modified autocorrelation method
is used. In (d) we have plotted the correlation coefficients suggested by
Børstad (2011) as a quality indicator of the estimation. The data used is the
same as in Figure 5.4.
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From the plots we see that the center frequency, Figure 5.5 (b), does
not attenuate proportional to the depth. This is because Field II does not
simulate this attenuation. However, the modified autocorrelation method
is still better than the conventional. We see that the center frequency
does fluctuate a bit above and below the transmitted frequency of 7.5
MHz. This is probably because of the signal interference in the speckle
pattern, and it does mean that the apparent center frequency does fluctuate
a bit. The modified autocorrelation accounts for this fluctuation, which
will influence the displacement estimation, and it’s probably therefore this
modified estimation method outperformes the conventional, even though
the Field II simulations do not include frequency attenuation. When we
later refer to the pulsed-Doppler displacement estimation we mean the
modified autocorrelation method.

5.3.4 Limitations of Pulsed-Doppler techniques

The pulsed-Doppler techniques looked at so far uses the angle of the
autocorrelation, and is thus limited by the uniqueness of the inverse
trigonometric functions (Jensen, 1996b). The autocorrelation technique
therefor has a maximum detectable velocity

vmax =
c
4

1
fcTpr

. (5.11)

This gives us a maximum displacement of

dmax =
c
4

1
fc

=
λ

4
= ∆, (5.12)

where λ is the wavelength of the center frequency. This is what we defined
as our reference displacement ∆ in Section 5.1 and is why we later will not
use the pulsed-Doppler displacement estimation on displacements lager
than ∆.
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Figure 5.6: Pulsed doppler with 2∆ compression clearly showing that the pulsed doppler
method gets aliasing if the compression is too large. The red vertical lines in the images are
some other error artifact originating from the aliasing.

In Figure 5.6 we have plotted the modified autocorrelation displace-
ment estimation with a compression of 2∆, and as we clearly see from the
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image we have aliasing causing clearly the wrong estimation. The red ver-
tical lines in the image are some other error artifact also originating from
the aliasing.

The ∆ factor is only 0.05 mm for a 7 MHz center frequency. This is a
very small compression. However, this limit is between two frames. A
scanner usually has a frame rate of e.g. 50 Hz, and multiple frames can
easily be included in the estimation. In this thesis we will stick to two
frame scenarios since we are only interested in the comparison of the two
different beamformers.

5.4 Comparison criteria

To thoroughly investigate the difference between the beamformers, the
main goal of this thesis, we need quantitative comparison criteria. There-
fore, we will introduce and evaluate two criteria; the correlation values,
and the error between the estimated displacement result and the displace-
ment model applied in the simulations.

5.4.1 Correlation values

We have already introduced the correlation values as an estimation quality
indicator in the previous sections, but a closer investigation is favorable.

Crosscorrelation displacement estimation

For the crosscorrelation displacement estimator we use the direct correla-
tion coefficient from the maximum of the crosscorrelation - which we know
indicate the lag and thus the displacement. This value was plotted in Fig-
ure 5.4.
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Figure 5.7: Correlation values from crosscorrelation estimation for different axial window
lengths. The top plots is with the Capon beamformer with L = 64 for different K′s, while to
bottom plots is for the Capon beamformer with L = 32 with different K′s - both compared
to the same DAS beamformer.

In Figure 5.7 we have plotted the distribution of the correlation values
for the simulation with ∆ compression for three different window lengths,
12, 25 and 50 samples, and different parameters for the Capon beamformer
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and for the DAS beamformer. In the plots we see that for the Capon
beamformer with L = 64 (top plots) we get higher correlation the more
samples, higher K, we use in the estimation of the spatial correlation matrix.
When K = 5 we have approximately the same correlation as DAS, but DAS
is still slightly better. We see that this is true for all three window lenghts.
However, the longest windows give the highest correlation values. For the
Capon beamformer with L = 32 (bottom plots) we see that the correlations
are not much influenced by a larger K. This is in agreement with the Capon
parameters giving the same speckle statistics as DAS, from Section 3.4.3.
We will discuss this result in detail in the next chapter.

Pulsed-Doppler displacement estimation

For the pulsed-Doppler displacement estimator we will use the correlation
coefficient as suggested by Børstad (2011), covered in Section 5.3.3. In
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length L = 32

Figure 5.8: Correlation values from pulsed-Doppler estimation. The Capon beamformer
with L = 64 and different K′s is in the plot to the left (a), while the Capon beamformer
with L = 32 for different K′s is plotted to the right (b).

Figure 5.8 we have plotted the distribution of the correlation values for
the simulation with ∆ compression for different parameters for the Capon
beamformer and for the DAS beamformer where the displacement is
calculated with the pulsed-Doppler estimator. For the pulsed-Doppler
estimation we are not using windows in the same sense as in the
crosscorrelation estimation, see Section 5.3.2, and thus we have fever plots
for this estimator compared to the crosscorrelation estimator, Figure 5.7.

The trend is the same as for the crosscorrelation estimator, that the
Capon beamformer with L = 64 gets better correlation with higher K
- while the K does not influence much for the Capon beamformer with
L = 32.
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5.4.2 Error between simulated displacement model and esti-
mated displacement

To compare the estimated displacement to the model of the displacement
applied in the simulation we calculate the sum of squared difference

e = ∑
x

∑
y
|(model − estimated)2|. (5.13)
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(b) Estimated displacement
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(c) Error

Figure 5.9: We have displayed the displacement model used in the simulation (a), the
displacement estimated from the simulations (b) and in (c) the error between the two.

In Figure 5.9 we have plotted the model of the displacement (a), the
estimated displacement (b) and the error between the two (c). The value of
the error from Figure 5.9 (c) is e = 4.93· 10−8.
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Figure 5.10: The error from the crosscorrelation estimation (a) and the pulsed-Doppler
estimation (b).

The error values for both beamformers with different parameters for the
simulation with ∆ compression is plotted in Figure 5.10. The errors from
the crosscorrelation estimation are plotted in 5.10 (a) where we along the x-
axis plot the three different window lengths, and the different colored lines
indicate different parameters. The top plot is Capon with subarray length
L = 64, the bottom is L = 32.

The plot in Figure 5.10 (b) is for the pulsed-Doppler estimation. Where
the x-axis indicate if it is Capon with L = 32 or L = 64, and the different
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colored lines indicate what K is used. The DAS is independent from the
subarray, so the same value is plotted at both x-axis positions. These plots
display the information about the correlation in a illustrative and intuitive
manner where the lowest value is the best. Once again we see that a high K
for Capon L = 64 gives less error, while for Capon with L = 32 it is already
quite equal to DAS.
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estimation

Figure 5.11: Correlation values from the crosscorrelation estimation (a), and the pulsed-
Doppler esimtation (b). These plots are mean-variance plots of the same values plotted as
the distribution in Figure 5.8.

In the same sense we can compress the information from the correlation
values by producing mean-variance plots of the values. This is done in
Figure 5.11, where as in Figure 5.10, the crosscorrelation estimation has
window length along the x-axis, Figure 5.11 (a), while the pulsed-Doppler
estimation only have one window length so one plot with the Capon
subarray length L along the x-axis is sufficient. The plots themselves are
not the only thing similar between Figure 5.10 and Figure 5.11. If we closely
investigate and compare the information in the plots we will see that there
is a clear trend; higher correlation values results in lower error. This is as
expected, as shown in Souchon et al. (2003), and will allow us to reduce the
redundant information from each simulation and only investigate the error
of the estimation as the main comparison criteria in the next sections. This
will prove useful in the next chapter where we will investigate quite a large
number of simulations

5.5 Strain

So far we have looked at the displacement of the tissue. In elastography it
is the strain of the tissue that is displayed in the elastogram. In Section 2.2.1
we introduced the strain as the gradient of the time delay at two different
spatial locations

ε = ∆t/T. (5.14)

The displacement is proportional to the time delay and we can therefor also
use the estimated displacement.
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5.5.1 Least square strain estimation

A more robust approach is to calculate the strain as the slope of the
regression line of all displacement estimations

d[m] = am + b, (5.15)

where the strain εm will be proportional to a. Equation (5.15) can be written
on matrix form as

d[mu]
d[mu + 1]

...
d[ml ]

 =


mu 1

mu + 1 1
...

...
ml 1


[

a
b

]
⇔ d = A

[
a
b

]
(5.16)

We have the estimated displacement matrix d̂, and can create the matrix
A. So by using the well known least-square solution[

â
b̂

]
= [ATA]−1ATd̂, (5.17)

we can find the local strain of the tissue.

Optimized least square strain estimations

However, Børstad (2011) suggested a clever optimization for the least
square strain estimation. The optimization builds on the fact that we only
need the slope of the line, a, in Equation (5.15) and not the offset. Børstad
then showed that the least-squares solution can be found by convolution.
We will follow his arguments. We assume that ∆m is chosen so that all
the velocity estimates will be used in the strain estimation. This gives us
∆m = n + 1, and the matrix A from Equation (5.16) becomes

A =


1 1
2 1
...

...
n 1


giving us

[ATA]−1 =
12

n(n2 − 1)

[
1 − n+1

2
− n+1

2
(n+1)(2n+1)

6

]
.

The trick is that we only need the first row of [ATA]−1AT to calculate â.
This first row is a vector, h:

h =
12

n(n2 − 1)
[
1 − n+1

2

] [1 2 . . . n
1 1 . . . 1

]
=

12
n(n2 − 1)

([
1 2 . . . n

]
−
[ n+1

2
n+1

2 . . . n+1
2

])
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Now, we can create a flipped and transposed version of the vector h;

ĥ =
12

n(n2 − 1)
([

n n− 1 . . . 1
]
−
[ n+1

2
n+1

2 . . . n+1
2

])T .

This flipped and transposed version, ĥ, can be convolved with the
displacement matrix, d, to find the least square solution of a for a segment
of length ∆m = n − 1. Børstad reports a speedup of approximately
500 using this optimized implementation, instead of the full least square
implementation.
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(b) Ultrasound image

Figure 5.12: The strain clearly shows the hard lesion in the middle of the image not
visible in the ultrasound image. This setup is ideal, since we assume that the tissue has
homogeneous reflection coefficients while the elasticity is very different.

In Figure 5.12 (a) we have plotted the strain estimated with the
optimized least square estimation, with ∆m = 60, from the displacement
values estimated with the modified autocorrelation method, Figure 5.5 (c).
Figure 5.12 (b) displays the ultrasound B-mode image, were we see that
there are no indications of difference in the tissue, while the strain image
clearly shows a hard lesion in the middle of the image. This example is of
course ideal, since we assume that the tissue has homogeneous reflection
coefficients while the elasticity is very different. However, the example
clearly illustrates the advantages of elastography.

5.6 Summary

In this chapter we have investigated the details of static elastography. We
have seen how we can easily simulate static elastography by moving the
scatterers in our simulation phantom to simulate compression. We have
seen two different displacement estimation techniques, the crosscorrelation
technique and the pulsed-Doppler technique. We have seen that the
pulsed-Doppler can be done more sophisticated by also estimating the
center frequency and called this the modified autocorrelation method and
seen how the correlation values can be used as a quality indicator of the
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estimation. We have investigated two comparison criteria to compare
the two beamformers; correlation values, and error between simulated
displacement model and estimated displacement. We also saw that the
correlation and error seemed to be displaying the same information, so
we have chosen to use the error to compare the two beamformers in the
next chapter. In the last section the least square strain estimation was
introduced, and also a optimized version of the least square estimation,
and we saw how elastography can display tissue characteristics not visible
in regular ultrasound images.
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Chapter 6

Results

Chapter abstract: This chapter uses the comparison criteria defined in the pre-
vious chapter to evaluate adaptive beamforming compared to conventional beam-
forming when applied to displacement estimation, and thus static elastography.
The two beamformers are compared and evaluated before we discuss the result and
suggest an explanation for the results.

In this chapter we will reap the results from all our previous discussions
and results and finally investigate our overall goal; does adaptive beamform-
ing have benefits when applied to static elastography.

6.1 Summary of the simulations executed

In Chapter 3 we went through all the details of how we executed the
simulation of ultrasound images. In Chapter 5 we presented the estimation
methods and details on how we simulated the compression of tissue,
and defined comparison criteria to compare the two beamformers. We
saw that the correlation values and the error are highly correlated, so
we will only use the error between the displacement estimation and the
model of the displacement in our final evaluation. To thoroughly test our
research question on whether adaptive beamforming has benefits when
doing static elastography, we need to simulate as many setups and different
displacements as possible. In this section we will go through all the
different simulation setups we have used to tested our hypothesis.

We concluded in Chapter 3 that 100 000 scatterers in the phantom was
enough to simulate well developed speckle, and that a lateral oversampling
factor of q = 4 was sufficient for our setup when imaging well developed
speckle. In Chapter 5 we introduced the ∆ = λ

4 amount of compression.
Each separate simulation consists of creating two images, pre- and

post-compression, of the same phantom where the phantom has been
compressed by an amount ( 1

2 , 1, 2 or 4 times ∆). Each image is created
with both the DAS beamformer and the Capon beamformer. For the Capon
beamformer we have created separate images from both L = 32 and L = 64
with K = 0, 1, 3, 5. In total that gives us 18 ultrasound images from each
phantom, and thus 9 different static elastography calculations from each
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simulated compression. On these data we have used the crosscorrelation
displacement estimator on all simulated compressions, while we have only
used the pulsed-Doppler estimator for ∆ and ∆

2 compression, because
of the aliasing problem discussed in Section 5.3.4. The crosscorrelation
displacement estimation is ran with three different window lengths 12, 25
and 50 samples.

6.1.1 Dynamic transmit focus

In Chapter 3 we used dynamic transmit focusing when creating the speckle
images. This is of course very ideal, and is hard and time consuming to do
in real time. However, it is interesting to see how the beamformers compare
in an ideal setting so we have used dynamic transmit focus when creating
the image.

6.1.2 Fixed transmit focus

To also create images as they are generally created in the scanners, we have
also made the same simulated compression and beamformers where we
have used a fixed transmit focus at the middle of the inclusion at 33.5 mm
depth.

6.1.3 Noise

The simulated data are ideal and noise free. This is not the case in real life,
so we have also executed all the simulations where we have added noise
to the signals from the elements before beamforming. The noise added
was white filtered noise, where we filtered the noise with a bandpass filter
approximately equal to the bandwidth of the signal. The white noise was
generated with the function randn in MATLAB, and the filter was created as
a 10’th order Butterworth filter, with lower cutoff frequency at 5 MHz and
higher cutoff frequency at 10 MHz. The frequency spectrum of the signal
from one element, the frequency spectrum of the noise and the frequency
spectrum of the signal with added noise is in to top plot in Figure 6.1. The
middle plot in the figure displays the signal and the signal with added
noise. The signal to noise ratio was ≈ 0.5dB before beamforming. In the
bottom plot we have plotted one RF-line after DAS beamforming and we
see that the signal gain of the beamformer suppresses most of the noise.

6.1.4 Example images of displacement

Many simulations have been created, we cannot display all estimations by
images, so we have chosen to display a few examples to show how the
added noise and fixed transmit focus influence the estimations.

In Figure 6.2 we show an example of the crosscorrelation displacement
estimation both with (b) and without (a) noise added to the element data.
If we compare the two images we see that the estimation is still fairly good
with added noise. The noise has influenced the estimation, it is more noisy
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Figure 6.1: Top: frequency spectrum of the noise, signal from one element and signal from
one element with added noise. Middle: Signal from one element and signal plus noise.
Bottom: One beamformed line.
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(b) With noise

Figure 6.2: Crosscorrelation displacement estimation from dynamic focus, Capon
beamforming with K = 0 and L = 32 with ∆ compression simulated. To the left (a)
is the estimation with no noise, and to the right (b) is the simulation with added noise.

and thus more error has been added, but we still see the contours of a
lesion in the middle with constant displacement. We will compare these
differences more quantitatively in the later sections.

In Figure 6.3 we have plotted another example of the crosscorrelation
displacement estimation, but now with 2∆ simulated compression. We
have displayed both the estimation from the ultrasound images with fixed
transmit focus and the ideal dynamic transmit focus. From these images
we see that the dynamic transmit focus does perform better than the
fixed transmit. This is reasonable since the fixed transmit gives a better
resolution throughout the whole image instead of just good resolution at
one small portion of the image as fixed transmit does. However, the fixed
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(a) Crosscorrelation displacement esti-
mation from fixed transmit focus with
2∆ compression
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(b) Crosscorrelation displacement es-
timation from dynamic transmit focus
with 2∆ compression

Figure 6.3: Crosscorrelation displacement estimation from fixed transmit focus (a) and
dynamic transmit focus (b) - both with Capon beamforming with K = 0, L = 64 and 2∆
as simulated compression.

transmit does show the inclusion in the middle with constant displacement
- so arguably the displacement estimation is still fairly good.

6.2 Evaluation

With all the simulations described in the previous section the amount of
information created is overwhelming. A major challenge is to compress
the information to easily evaluate our hypothesis. The plots, of the
type in Figure 5.11 and 5.10, from each simulation displaying the mean
and variance of the correlation values and the error values are placed in
Appendix D. If we investigate the plots of the correlation and the error we
see the trend that we pointed out in Section 5.4.1; that higher correlation
gives less error. The parameters giving both the highest correlation and
the lowest error for the Capon beamformer are L = 32 with K = 0 and
L = 64 with K = 5. If we remember back to Section 3.4.3 this is actually the
parameters that gives the Capon beamformer approximately equal speckle
statistics as the DAS beamformer. We will discuss this result in detail in the
next section.

The fact that these parameters generally seems to be the best for Capon,
allows us to only choose these parameters for Capon when we do the
final evaluation of the beamformers. In the later analysis we will find
that Capon gets similar performance as DAS only with the parameters
giving the best results for Capon, the analysis is therefore simpler if we
only use the parameters giving the best performance for Capon. If we
further investigate the plots in the appendix we will see that the longest
window used for correlation, 50 samples, gives the best result. Based on
these observations we can extract only these data and compare them for
different compression simulations both with and without noise.
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(a) Crosscorrelation: Top: dynamic
transmit, bottom: fixed transmit.
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(b) Pulsed-Doppler: Top: dynamic
transmit, bottom: fixed transmit.

Figure 6.4: The error from the crosscorrelation displacement estimation (a) with 50
samples window length, and the pulsed-Doppler displacement estimation in (b). The top
plots are from dynamic transmit focus, the bottom plots from fixed transmit focus. These
plots are from simulations without noise.

In Figure 6.4 (a) we have plotted the error from the crosscorrelation
estimation with 50 sample window length, and in (b) the error from the
pulsed-Doppler estimation. The top plots are for the images created with
dynamic transmit, and the bottom plots are from the images created with
fixed transmit. We see that the errors are close to equal for both the
beamformers, but for ∆ compression the Capon L = 32, K = 0 beamformer
is slightly better than DAS for crosscorrelation estimation when dynamic
focus is used, while DAS is slight better for the crosscorrelation estimation
for fixed focus. For the pulsed-Doppler estimation the results are very
similar.
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(a) Crosscorrelation: Top: dynamic
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(b) Pulsed-Doppler: Top: dynamic
transmit, bottom: fixed transmit

Figure 6.5: The error from the crosscorrelation displacement estimation (a) with 50
samples window length, and the pulsed-Doppler displacement estimation in (b). The top
plots are from dynamic transmit focus, the bottom plots from fixed transmit focus. These
plots are from simulations with noise as described in Section 6.1.3

In Figure 6.5 we have plotted the same simulations as in Figure 6.4, but
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now we have plotted the error values from the calculations where noise has
been added to the data. From the plots we see that the noise has created
higher error in the estimations, but it has not influenced one beamformer
more than the other - the performance of the two beamformers are still very
similar.

If we continue our investigation of the plots in the appendix, one
thing we will notice is that the Capon beamformer seems to perform
relatively best, compared to the DAS beamformer, for the crosscorrelation
displacement estimation at the shortest window length, 12 samples, when
noise has been added to the simulations.
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Figure 6.6: Error from crosscorrelation estimation with noise for 12 samples
windowlength. Top: dynamic transmit, bottom: fixed transmit.

In Figure 6.6 we have plotted the error from the different compression
simulations for precisely this observation. From the plot we see that
indeed, the Capon beamformer gets less error than DAS - but it is just
slightly and the error is, for most of the simulations, very similar.

To make sure our previous assumptions that the lateral oversampling
factor of q = 4 is sufficient to not lose information when imaging speckle
with Capon beamforming, Section 3.4.3, and that decimating the signal by
a factor 4, Section 3.3.3, did not interfere with the result we did a final
simulation. In this simulation we used a lateral oversampling factor of
q = 16 and did not decimate the signal, meaning that we had 4 times
the amount of data both in axial and lateral dimension. However, this
information should not interfere with the results - and it did not.

In Figure 6.7 we see that this simulation follows the previous pattern
of Capon with L = 32 and Capon with L = 64, K = 5 giving
similar results as DAS, and actually slightly better for the crosscorrelation
displacement estimation with L = 32. The reason for not using more and
different parameters for the Capon beamformer in this simulation is the
overwhelming simulation time, approximately 56 hours (see Appendix A),
we get with 2048 lines in one ultrasound image.
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Figure 6.7: The error from the crosscorrelation estimation (a) and the pulsed-Doppler
estimation (b). This if from a simulation with no decimation and with lateral oversampling
factor q = 16.

6.3 Discussion

The first result we will discuss is the interesting fact that the Capon
parameters producing similar Rayleigh distributed speckle statistics as
DAS, also produces the best estimation results for the Capon beamformer.
This is true for both displacement estimation methods. This is interesting
because our former intuition was that the more peaky and distinct speckle
pattern from the Capon beamformer, should result in easier correlation and
better estimation. However, our results show that it is the more smooth
Rayleigh distribution speckle pattern that gives the best results.

One possible explanation can be derived from our previous detailed
discussion of the Capon beamformer. In Section 3.3.1 we saw that the
Capon beamformer adapts the beampattern to the received signal. The
adaptation means that it suppresses some unwanted signals, and favors
other signals - as we saw in the example with Sparrow’s resolution limit.
This also means that the Capon beamformer results in variable resolution.
This could mean than when the Capon beamformer creates the image
of one part of the tissue before and after compression, the same speckle
might be imaged with two slightly different beampatterns. Then the same
speckle, or part of tissue, will be imaged differently in the post-compression
than in the pre-compression image, leading to less correlation and thus
worse estimation. The adaptive behavior might give the result that peaks in
the pre-compression image do not occur as peaks in the post compression
image, because the adaptive behavior will favor a peak at a different
position.

When we restrict the adaptive behavior of the Capon beamformer
by using a smaller subarray, shorter L, or adding more samples in the
estimation of the spatial covariance matrix, larger K, we probably get a
more similar beampattern for the pre- and post-compression image when
imaging the same speckle in the image.

To test this explanation we have plotted the beampattern for the Capon
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Figure 6.8: Pre- and post-compression beampatterns for the Capon beamformer. Top:
L = 32, K = 0, middle L = 64, K = 5, and bottom: L = 64, K = 0.

beamformer with L = 32, K = 0 (top), L = 64, K = 5 (middle) and
L = 64, K = 0 (bottom) in Figure 6.8. We have done this by taking the
Fourier transform of the weights resulting from a given sample at a given
depth in the pre-compression image and found how much that particular
speckle has moved in the post-compression image by the crosscorrelation
displacement estimation, and then plotted the beampattern from the
same speckle after compression. From the plots we see that it is not
much difference between the beampatterns. However, when we calculate
the sum of squared difference between the pre- and post-compression
beampatterns, we see a difference than can support our hypothetical
explanation. The sum of squared difference is

di f fbeampattern L=32,K=0 = 34.28

di f fbeampattern L=64,K=5 = 30.07

di f fbeampattern L=64,K=0 = 41.43.

So, Capon with L = 32, K = 0 and L = 64, K = 5 has more similar pre- and
post-compression beampatterns than Capon with L = 64, K = 0.

In Figure 6.9 we have plotted the dB of the envelope of the whole
lateral line created pre- and post-compression of the same speckle, or at least
corresponding depth, in the tissue. From the Figure we see, maybe more
clearly than in the beampatterns, that the pre- and post-compression lateral
lines are more similar for the Capon beamformer with L = 32, K = 0 (top)
and L = 64, K = 5 (middle) than Capon with L = 64, K = 0 (bottom).
When we calculate the sum of squared differences for the three Capon
beampatterns we get numbers supporting our visual impression:
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Figure 6.9: Pre- and post-compression lateral lines for the Capon beamformer. Top:
L = 32, K = 0, middle L = 64, K = 5, and bottom: L = 64, K = 0.

di f flat. lineL=32,K=0 = 621.90
di f flat. lineL=64,K=5 = 752.23
di f flat. lineL=64,K=0 = 1589.50,

where L = 64, K = 0 by far has the largest difference. This result further
supports our hypothetical explanation of the results.

Our observation motivates an iterative approach when using the Capon
beamformer. One approach could be to first save the weights used to create
the beampattern for the pre-compression image. Secondly we estimate
the displacement of the tissue as usual, but after this first iteration of
finding the displacement we can apply the same weights used to create
the beampattern for the pre-compression image when we create the post-
compression image for the second time. Then we rerun the displacement
estimation where we now use the same Capon beampattern for the same
tissue both pre- and post- compression. This will potentially give a better
displacement estimation by exploiting the superior resolution of Capon,
but with no added adaptation differences between the images.

6.4 Summary

In this chapter we have summarized all the simulations executed to test
our hypothesis, and have seen that the information created in all these
simulations were overwhelming - so to do our final evaluation we extracted
the most crucial information. From the evaluation and the discussion
we saw that Capon beamforming gave similar performance for axial
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correlation for displacement estimation as conventional DAS beamforming
and thus similar accuracy when doing static elastography. It was in fact
the parameters producing similar Rayleigh distributed speckle statistics as
DAS, that produced the best estimation results for the Capon beamformer.
In the discussion we suggested one possible explanation for this result;
that the adaptive behavior of the Capon beamformer slightly changes
the image of the same tissue, same speckle, between the pre- and post-
compression images and thus making it harder to correlate the images.
When we restrict the adaptability of the Capon beamformer by using a
smaller subarray, shorter L, or add more samples to the estimation of the
covariance matrix, larger K, we get a more similar beampattern for the
pre- and post-compression images of the same speckle - giving us the
same estimation performance as the DAS beamformer. This explanation
was supported by investigating both the lateral lines and the beampattern
created pre- and post-compression.
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Chapter 7

Conclusion and further work

7.1 Conclusion

Adaptive beamforming (Capon) does create a more distinct speckle
pattern, smaller speckles, than the conventional (DAS) beamformer. The
statistical distribution of the speckle created with the Capon beamformer
follows a different distribution than the Rayleigh distributed speckle
statistics of the DAS beamformer when we are imaging well developed
speckle. However, the speckle statistics of the Capon beamformer do get
the same Rayleigh distribution as the DAS beamformer if we use a smaller
subarray, L, or use more axial samples, larger K, when we estimate the
spatial covariance matrix used in the Capon beamforming calculations.

Lateral oversampling, denser spacing of the transmit beams, is neces-
sary for single frame scenarios when using Capon beamforming. For sin-
gle scatterers we needed an oversampling factor of q ≈ 16, while when
imaging well developed speckle a lateral oversampling factor of q = 4 was
sufficient for our particular setup.

Our main research question was to investigate if the more distinct
speckle pattern of the Capon beamformer has benefits when applied to
static elastography. To test this hypothesis we thoroughly compared the
conventional DAS beamformer to the adaptive Capon beamformer when
they were applied to simulated static elastography. We used two different
displacement estimations; a crosscorrelation method and a pulsed-Doppler
method. Both the error between the estimate and the simulated model
of the displacement, and the correlation coefficients resulting from the
estimations was used to investigate the hypothesis. Multiple rates of
compression and many different parameters for the Capon beamformer
and the displacement estimation methods were simulated.

The final conclusion based on the research and results in this thesis is;
the adaptive beamformer have similar performance for axial correlation for
displacement estimation as conventional beamforming, and thus similar
accuracy when doing static elastography. It was in fact the Capon param-
eters producing similar Rayleigh distributed speckle statistics as DAS, and
not the Capon parameters creating the most distinct speckle pattern, that
produced the best estimation results for the Capon beamformer. We pre-
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sented an explanation for our results by arguing that the adaptability of the
Capon beamformer resulted in slightly different pre- and post-compression
images of the same part of the tissue. Since the displacment estimation is
estimating the shift between the pre- and post-compression images, dif-
ferences between the two images is disadvantageous. Therefore, restrict-
ing the adaptability of the Capon beamformer by increasing the number of
samples, higher K, in the estimation of the spatial covariance matrix, or by
using smaller subarrays, lower L, in the calculations for the Capon beam-
former, gave the best performance for the Capon beamformer.

7.2 Future work

This section will suggest some interesting topics for further work, found
during the work of this thesis.

Lateral correlation

We have seen that the axial correlation is similar for the Capon and DAS
beamformers. However, it is first and formost in the lateral direction
the adaptive beamformer produces better resolution. It is therefore very
interesting to investigate if the lateral correlation is improved by the
Capon beamformer. If the lateral correlation is improved this possibly also
means that block matching speckle tracking is also improved by Capon
beamforming.

Åsen’s phase rotation method for linear array imaging

In section 3.2.5 we mentioned the phase rotation method for linear array
imaging suggested by Åsen et al. (2014b). However this was used for
phased array imaging, where the ultrasound beams are moved by an angle.
To use the same approach for linear imaging we probably need to create a
new steering angle for every sample at every line. This approach should
be investigated to create a simple way of providing lateral oversampling
for linear array imaging, which we have shown is necessary when using
Capon beamforming for ultrasound imaging.

Åsen’s phase rotation method is an approximation to the true beams, so
the effect of this method needs to be investigated and compared to actually
creating the beams. When his approach is used for linear array imaging we
probably also use larger steering angles for the closer parts of the image,
this might give worse approximations than what Åsen found for his very
small angular shifts.

It is also interesting to see if the lateral oversampling factor of q = 4 for
speckle imaging is sufficient with this method.

Larger amounts of displacement

Simulating larger amounts of displacement could be interesting. We have
only simulated two frames with a relatively small compression between
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the images. The effect of using larger displacement, and for example find
where the crosscorrelation displacement estimation method breaks down.

Displacement estimation with the cross-ambiguity function

Sæbø et al. (2007) showed that the cross-ambiguity function gave a
significant improvement compared to the conventional crosscorrelation
function when doing sidelooking sonar height estimation. This is a
similar problem to the displacement estimation done in this thesis. It
would be interesting to investigate if the cross-ambiguity function gives
similar improvements for displacement estimation, and investigate if the
performance of the two beamformers are still similar.

The cross-ambiguity function should also allow larger amounts of
displacement, and since it finds the actual stretch it introduces a new
approach to find the strain.

Iterative displacement estimation with the Capon beamformer

In Section 6.3 we suggested to try an iterative displacement estimation
when using the Capon beamformer. If we use an iterative approach we
can use the same beampattern for the pre- and post-compression images
and possibly exploit the superior resolution of the Capon beamformer, but
with no added adaptation difference between the images.

Alternatively we could save the data used for calculating the spatial
covariance matrix for the pre-compression image, and use this data
combined with the data for the post-compression image to use the
information from both images when creating the covariance matrix and
thus the weights used for the second iteration and the final pre- and post-
compression images.
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Appendix A

Code

In this appendix we will display the most important MATLAB code used
in this thesis. For this thesis is has been written 6844 lines of code, most
of which is for the simulation of ultrasound images in Field II. As much as
possible of the code has been parallelized with the parallelized for-loops
parfor in MATLAB. The simulation of one line in one ultrasound image
took about 20 minutes when running on the oskikkanlegur server at the
University of Oslo. Meaning that the images with 512 lines took about

512 lines
12 workers ×

20 minutes
60 minutes/ hour ≈ 14 hours, and thus 28 hours for both the pre-

and post-compression images, since MATLAB generously (ironic) gives us
only 12 parallelization workers, while oskikkanlegur actually had 48 cores.
The largest images created, with oversampling factor q = 16, had 2048
lines and thus took about 56 hours to complete. Finding a bug after the
simulation had completed was therefore very frustrating.
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A.1 Implementation of the Capon beamformer

The implementation of the Capon beamformer is written with emphasis on
intuition - not speed. The code can be written much more efficient. When
we call this function we call it from a parfor loop in MATLAB, this allows
us to calculate each line in parallel giving quite a speedup.

function [ z ,w] = myCaponCubeByLine ( r f_data , regCoef , . . .
L , K, doForwardBackward )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Beamform one a x i a l l i n e from M e l e m e n t s us ing
%% t h e Capon beamformer
%%
%% This i m p l e m e n t a t i o n i s w r i t t e n with f o c u s o f
%% i n t u i t i o n , not s p e e d .
%%
%%@Input :
%% r f _ d a t a : RF−d a t a from t h e e l e m e n t s
%% r e g C o e f : Diagona l l o a d i n g c o n s t a n t
%% L : Subarray s i z e
%% K : Temporal a v e r a g i n g f a c t o r
%% doForwardBackward : Forward backward a v e r a g i n g
%% ( Th i s i s n e v e r used in t h i s t h e s i s )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[N M] = s ize ( r f _ d a t a ) ;
z = zeros ( 1 ,N) ; %Beamformed ou tp ut
w = zeros ( L ,N) ; %Weights c a l c u l a t e d
I = eye ( L ) ; %I d e n t i t y ma t r ix

%For e v e r y sample
for k = 1 :N

i f sum( r f _ d a t a ( k , : ) == 0) %I g n o r e d a t a wi th z e r o s
z ( k ) = 0 ;

e lse
%E s t i m a t e s p a t i a l c o v a r i a n c e m at r ix
R_sub = zeros ( L , L ) ;
for l = 1 :M−L+1

i f k−K < 1
R_sub = . . .

R_sub+ r f _ d a t a ( 1 : k+K, l : l +L− 1 ) ’ . . .
* r f _ d a t a ( 1 : k+K, l : l +L−1);

e l s e i f k+K > N
R_sub = . . .

R_sub+ r f _ d a t a ( k−K: end , l : l +L− 1 ) ’ . . .
* r f _ d a t a ( k−K: end , l : l +L−1);

e lse
R_sub . . .

=R_sub+ r f _ d a t a ( k−K: k+K, l : l +L− 1 ) ’ . . .
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* r f _ d a t a ( k−K: k+K, l : l +L−1);
end

end
%Average t h e s u b a r r a y s
R_sub = R_sub /(M−L + 1 ) ;

%Forward backward a v e r a g i n g
i f ( doForwardBackward )

R_sub = 0 . 5 * ( R_sub+ ro t90 ( conj ( R_sub ) , 2 ) ) ;
end

%I n v e r t ma t r ix wi th added d i a g o n a l l o a d i n g
Ri = inv ( R_sub + I * ( regCoef/L ) * t r a c e ( R_sub ) ) ;

%C r e a t e w e i g h t s
a = ones ( L , 1 ) ; %S t e e r i n g v e c t o r
w_mv = ( Ri * a ) / ( a ’ * Ri * a ) ;

%M u l t i p l y w e i g h t s wi th sub p a r t s o f d a t a
%We a r e us ing a m p l i t u d e Capon
z ( k ) = 0 ;
for j = 1 :M−L+1

z ( k ) = z ( k ) + w_mv’ * r f _ d a t a ( k , j : L+ j −1) ’ ;
end
%Average ou tp ut
z ( k ) = z ( k ) / (M−L + 1 ) ;
%Return w e i g h t s
w( : , k ) = w_mv;

end
end ; end

A.2 Crosscorrelation displacement estimation

The central parts of the implementation of the crosscorrelation displace-
ment estimation.

%P a r a l l e l i z e e a c h l i n e
parfor l ine = 1 :M

disp ( [ ’ Line ’ , num2str ( l ine ) ] ) ;
for i = 1 :N−window_length

%Divind ing RF−d a t a i n t o windows
pre_window = p r e _ r f ( i : i +window_length , l ine ) ;
post_window = p o s t _ r f ( i : i +window_length , l ine ) ;

%C r o s s c o r r e l a t e t h e windows
[ c , l a g s ] = xcorr ( pre_window , post_window , . . .

max_lags , ’ c o e f f ’ ) ;
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%I n t e r p o l a t e t h e r e s u l t
l a g s _ i n t e r p = i n t e r p ( lags , i n t e r p o l a t i n g _ f a c t o r ) ;
c _ i n t e r p = i n t e r p ( c , i n t e r p o l a t i n g _ f a c t o r ) ;

%Find t h e maximum peak o f t h e r e a l p a r t
[ C_real ( i , l ine ) , I _ r e a l ] = max ( r e a l ( c _ i n t e r p ) ) ;

%C a l c u l a t e t h e d i s p l a c e m e n t
displacement_rea l ( i , l ine ) = . . .

p . c * l a g s _ i n t e r p ( I _ r e a l ) / ( p . f s * 2 ) ;

A.3 Pulsed-Doppler displacement estimation

The implementation used for the pulsed-Doppler displacement estimation
is based on the implementation presented by Børstad (2011).

function [ d_2 , d_1 , f_hat , fc_hat ,C] = . . .
pulsedDopplerDisplacementEstimation (X , P ,PARAMETERS)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% p u l s e d D o p p l e r D i s p l a c e m e n t E s t i m a t i o n
%
% This f u n c t i o n c a l c u l a t e s t h e pu l s ed−d o p p l e r
% d i s p l a c e m e n t e s t i m a t i o n . I t c a l u l c a t e s b o t h
% t h e a t o c o r r e l a t i o n and t h e m o d i f i e d
% a u t o c o r r e l a t i o n method . The i m p l e m e n t a t i o n i s
% h i g h l y i n f l u e n c e d by B o r s t a d s i m p l e m e n t a t i o n
% from h i s master ’ s t h e s i s a t NTNU.
%
%@input
% X : RF−d a t a from m u l t i p l e f r a m e s . Here two f r a m e s
% P : D i f f e r e n t c o n s t a n t s
% PARAMETERES : P a r a m e t e r s f o r t h i s e s t i m a t i o n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c = P . c ; %Wave v e l o c i t y
f s = P . f s ; %Sampling f r e q u e n c y
f c = P . f0 ; %C e n t r a l f r e q u e n c y
U = PARAMETERS. rangeGate ; %A x i a l g a t e : 15
V = PARAMETERS. l a t e r a l G a t e ; %L a t e r a l g a t e : 4
O = PARAMETERS. numberOfFrames ;%Number o f f r a m e s used

X_conj = conj (X ) ; %Complex c o n j u g a t e o f X

%A u t o c o r r e l a t i o n be tween f r a m e s l a g
R_0_1 = sum(X ( 1 : end−1 , : , 1 : end− 1 ) . * . . .

X_conj ( 1 : end−1 , : , 2 : end ) , 3 ) ;
%E s t i m a t i o n window f i l t e r i n g
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R_0_1 = conv2 ( R_0_1 , ones (U, 1 ) , ’ va l id ’ ) ;
R_0_1 = conv2 ( R_0_1 , ones ( 1 ,V) , ’ va l id ’ ) ;

%A u t o c o r r e l a t i o n t ime l a g
R_1_0 = sum(X ( 1 : end− 1 , : , : ) . * X_conj ( 2 : end , : , : ) , 3 ) ;
%E s t i m a t i o n window f i l t e r i n g
R_1_0 = conv2 ( R_1_0 , ones (U, 1 ) , ’ va l id ’ ) ;
R_1_0 = conv2 ( R_1_0 , ones ( 1 ,V) , ’ va l id ’ ) ;

%E s t i m a t e d d o p p l e r f r e q u e n c y
f _ h a t = abs ( unwrap ( angle ( R_0_1 ) ) / ( 2 * pi ) ) ;

%E s t i m a t e d c e n t e r a l f r e q u e n c y
f c _ h a t = abs ( unwrap ( angle ( R_1_0 ) ) / ( 2 * pi *1/ f s ) ) ;

%C o r r e l a t i o n c o e f f i c i e n t e s t i m a t i o n q u a l i t y i n d i c a t o r .
C = sum(X ( 1 : end− 1 , : , : ) . * X_conj ( 1 : end− 1 , : , : ) , 3 ) ;
C = conv2 (C, ones (U, 1 ) , ’ va l id ’ ) ;
C = conv2 (C, ones ( 1 ,V) , ’ va l id ’ ) ;
C = (O/(O−1))* abs ( R_0_1 ) . /C;

%A u t o c o r r e l a t i o n method
d_1 = abs ( c * f _ h a t /(2* f c ) ) ;
%M o d i f i e d a u t o c o r r e l a t i o n method
d_2 = abs ( c * f _ h a t . / ( 2 * f c _ h a t ) ) ;
end
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Appendix B

The Hilbert Transform

The Hilbert transform is used excessively through this thesis, and therefore
deserves a closer description. The Hilbert transform is an operation that
shifts the phase of a signal x(t) by −π

2 . In time domain the phase shifted
signal x̂(t) is given by the convolution

x̂(t) =
1

πt
∗ x(t). (B.1)

In frequency domain the Hilbert transform acts as a filter with transfer
function

H( f ) =


−i = e+

iπ
2 , f > 0

0 , f = 0
i = e−

iπ
2 , f < 0

(B.2)

And this is where the interesting stuff happens. This means that the
negative frequencies will be shifted by a phase of −π

2 and the positive
frequencies with +π

2 .
In this thesis we are using the Hilbert transform for two reasons. To

create the analytic signal, and to find the envelope of a signal.

B.1 Analytic signal

The analytic signal

xa[n] = x[n] + j(x̂[n]) x̂[n]: Hilbert transform of x[n]. (B.3)

is the one-sided representation of a real-valued signal. The idea is that the
negative frequency components in the Fourier spectrum of a real-valued
signal is redundant and can be discarded without any loss of information.
This gives us a complex signal, which in many cases is beneficial as
it facilitates many signal processing techniques. In this thesis it allows
us to have complex weights for the Capon beamformer 2.3.2 allowing a
non-symmetric beampattern, and allows the pulsed-Doppler techniques.
As long as the signal processing techniques does not introduce negative
frequencies we can convert back to a real signal by just discarding the
imaginary part.

In Figure B.1 we demonstrate what we just discussed.
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Figure B.1: The top is the Fourier spectrum of a signal consisting of two sinuses with
frequency 5 and 10. The signal is real so the first spectrum is two-sided. The middle plot
is the spectrum of the analytic signal as defined above, and the bottom plot is the Fourier
spectrum of just the real part of the analytic signal. We see that as expected no information
is lost in the signal.

B.2 Envelope of signal

The envelope of the signal can easily be found by taking the magnitude of
the analytic signal A[n] = |xa[n]| =

√
x[n]2 + x̂[n]2 this follows from the

fact that the Hilbert transform is a π
2 phase shift of the signal, see Figure B.2

where signal is x[n] and Hilbert(s) is x̂[n], so the square root of the sum of
squares of the two signals will intuitively be the envelope.
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Figure B.2: The top is displaying the signal, the Hilbert transform of the signal and the
envelope of the signal. The bottom shows the signal and the envelope of the signal.
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Appendix C

Crosscorrelation time delay
estimator

To derive the cross correlation time delay estimator we can follow the
arguments in the lecture notes, lecture #14, in the course EECE 522
Estimation Theory at Binghamton University.

The time delay problem can be described by a transmitted signal s(t)
and the received signal s(t − τ0) where τ0 is the time delay we want to
find. This received signal is often buried in noise, so we receive x(t) =
s(t− τ0) + w(t) where we will assume that w(t) is Gaussian noise.

The sampled version of the signal can be expressed as

x[n] =


w[n] 0 ≤ n ≤ n0 − 1
s[n− n0] + w[n] no ≤ n ≤ n0 + M− 1
w[n] no + M ≤ n ≤ N − 1

To estimate the τ0, or its sampled version n0, we can do a Maximum
likelihood estimation (MLE). To do this we need the probability density
function (PDF) of the signal. Since all the three subintervals has Gaussian
distribution, and because they are independent, we can write the PDF as a
product of three different PDFs. One for each subinterval:

p(x; no) =

n0−1

∏
n=0

1√
2πσ2

e−
x2 [n]
2σ2 ·

n0+M−1

∏
n=no

1√
2πσ2

e−
(x[n]−s[n−n0 ])

2

2σ2 ·
N−1

∏
n=n0+M

1√
2πσ2

e−
x2 [n]
2σ2 .

Now, since (x[n] − s[n − n0])2 = x2[n] − 2x[n]s[n − n0] + s2[n − n0] - the
last part cancel. The products can also be moved inside the exponent, since
that is the only part dependent on n, leaving us with

p(x; no) =

= (
1√

2πσ2
)Ne

(
−

∑N−1
n0

x2 [n]

2σ2

)
· e
(
− 1

2πσ2 ∑
n0+M−1
n=n0 (−2x[n]s[n−n0]+s2[n−n0])

)
.
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Our goal was to estimate N0, so since the first part does not depend on
n0 we only need to maximize the negative of

2
n0+M−1

∑
n=n0

(x[n]s[n− n0] + s2[n− n0])

= 2
n0+M−1

∑
n=n0

(x[n]s[n− n0]) +
n0+M−1

∑
n=n0

s2[n− n0].

The second part does not depend on n0 since the summand moves with the
limits as n0 changes. So we only need to maximize

N−1

∑
n=0

x[n]s[n− n0].

This is a familiar expression - the crosscorrelation. This means that the MLE
can be implemented as finding the maximum of a crosscorrelation between
the received signal x[n] and the transmitted signal s[n].
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Appendix D

Plots from all simulations

D.1 Simulations with dynamic transmit focus
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Pulsed-Doppler estimation
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D.1.3 Compression = 2∆

Cross correlation estimation
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D.1.4 Compression = 4∆

Cross correlation estimation
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(u) Without noise
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Figure D.1

115



D.2 Simulations with fixed focus transmit

D.2.1 Compression = ∆
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(b) Noise
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Pulsed-Doppler estimation
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(h) Noise

D.2.2 Compression = ∆

Cross correlation estimation
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(i) Without noise
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(j) Noise
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(k) Without noise
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D.2.3 Compression = 2∆

Cross correlation estimation
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(t) Noise

119



D.2.4 Compression = 4∆

Cross correlation estimation
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(v) Noise
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Appendix E

Abstracts submitted to the 2014
IEEE International Ultrasonics
Symposium

Understanding Contrast Improvements from Capon
Beamforming

Ole Marius Hoel Rindal1, Jon Petter Åsen2, Andreas Austeng1 and Sverre
Holm1

Background, Motivation and Objective

It is common to state that Capon beamforming applied to ultrasound
images increases both contrast and resolution. However, the increased
contrast is mainly a result of the increased resolution giving sharper edges
in e.g. a cyst. Recently it has also been shown that lateral oversampling
is needed to achieve lateral shift-invariance between image frames when
using Capon beamforming (Åsen et al IEEE UFFC 2014). This is also
essential for single frame scenarios, and especially when considering
contrast. This work aims at understanding the contrast improvements
obtained with Capon beamforming, and how to image point scatterers and
speckle without loss of information.

Statement of Contribution/Method

We have simulated a 196 element linear probe with center frequency
at 7.5 MHz in Field II. Speckle statistics from conventional and Capon
beamforming are investigated with emphasis on the lateral oversampling
factor needed to avoid loss in information when imaging speckle with
Capon beamforming. Cylindrical cysts with different radii were included
in the simulations and the contrast was investigated by calculating the CNR

1University of Oslo
2Squarehead Technology AS
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(contrast-to-noise ratio) between regions of different sizes inside the cyst
and a region of speckle.

We have also simulated brighter inclusions together with dark cysts
and discussed how this influence the dynamic range and how the different
beamformers influence the visibility of the inclusions. We demonstrate that
Capon beamforming gives sharper edges and examine the beampatterns
for the different beamformers at the edge of the cyst to explain why Capon
beamforming produces sharper edges

Results, Discussion and Conclusions

We show that lateral oversampling is needed when using the Capon
beamformer, but the factor of oversampling is smaller when imaging
speckle than point scatterers. If the Nyquist requirement for beam spacing
is used for Capon beamforming a point scatterer placed between two
beams has a 40 dB lower amplitude than a point scatterer directly on
the beam. We demonstrate that Capon beamforming does not increase
the contrast in general. The same contrast as Capon is achieved with
DAS with Hamming apodization, but Capon improves the edges and
thus gives better contrast for smaller cysts. Compared to non-weighted
DAS, a cyst with 2.5 mm radius has 33 % better CNR for the Capon
beamformer with K = 5 temporal averaging and L = 32 subarray
averaging, when the CNR calculation is based on a circular region with
radius of 1.25 mm in the center of the cyst. The CNR for DAS with
Hamming apodization is actually 1 % better for the same region compared
to the Capon beamformer. When the radius of the area from which the CNR
is calculated is increased and approaches the radius of the cyst, the Capon
beamformer gives higher CNR compared to the DAS beamformers i.e.
Capon beamforming provides contrast improvements near edges because
of the improved lateral resolution.

122



Comparing Conventional and Adaptive Beamforming
for Static Elastography

Ole Marius Hoel Rindal1, Andreas Austeng1 and Sverre Holm1

Background, Motivation and Objective

Static elastography consists of creating a pre- and post-compression
ultrasound image where the tissue being imaged has been compressed
between the images. The displacement of tissue is calculated along the
axial dimension based on the assumption that speckle pattern follows
tissue movement. Tissue strain, indicating the stiffness of tissue, can
then be found from the displacement of the tissue. Speckle statistics and
the speckle pattern are different for images created with conventional
and adaptive (Capon) beamforming. The speckle pattern created with
adaptive beamforming has a smaller and more distinct pattern because
of the improved resolution by adaptive beamforming. Hypothetically a
more distinct pattern should result in better correlation and thus better
displacement estimation.

Recently it has been shown that lateral oversampling is needed to
achieve lateral shift-invariance between image frames when using adaptive
beamforming (Åsen et al IEEE UFFC 2014). Shift-invariance between
frames is especially important for elastography since the displacement
estimate is based on correlation between two nearly identical frames. We
analyze the lateral oversampling needed when imaging point scatterers
and well developed speckle before we investigate if the difference in
speckle statistics and pattern of adaptive beamforming has benefits when
doing static elastography.

Statement of Contribution/Method

Two speckle images are created from Field II simulations based on the same
scatter phantom where the scatterers have been displaced axially to create
pre- and post-compression ultrasound images. The images are created with
the conventional beamformer and the adaptive beamformer with different
parameters. In the middle of the phantom a circular object has constant
displacement to mimic a hard malignant nodule in the tissue.

Two methods to estimate the displacement of tissue are implemented
and investigated, the crosscorrelation method and a pulsed- doppler
method. Multiple parameters for the two methods are tested on different
rates of displacement both with and without added noise.

Results, Discussion and Conclusions

We show that lateral oversampling is necessary for single frame scenarios
when doing adaptive beamforming and to achieve shift- invariant imaging

1University of Oslo
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of speckle. We have measured and compared the correlation values and
the sum of squared error between the displacement estimate and the
displacement model. The speckle pattern from adaptive beamforming
is more distinct and does have a wider frequency spectrum, but our
research shows that this gave similar performance for axial correlation for
displacement estimation as conventional beamforming and thus similar
accuracy when doing static elastography.
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