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Summary

We present an approach for analysing internal dependencies in counting pro-

cesses. This covers the case with repeated events on each of a number of individu-

als, and, more generally, the situation where several processes are observed for each

individual. We define dynamic covariates, i.e. covariates depending on the past of

the processes. The statistical analysis is performed mainly by the nonparametric

additive approach. This yields a method for analysing multivariate survival data,

which is an alternative to the frailty approach. We present cumulative regression

plots, statistical tests, residual plots and a hat matrix plot for studying outliers.

A program in R and S-PLUS for analyzing survival data with the additive regres-

sion model is available on the web site www.med.uio.no/imb/stat/addreg. The

program has been developed to fit the counting process framework.
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1 Introduction

In event history analysis one is often confronted with series of events of a specific

type observed for each of a number of individuals. Such data may also be termed

multivariate failure time data. The following examples show different settings where

such data arise.

1. Movements of the small bowel Aalen & Husebye (1991) analyzed the cyclic

pattern of motility (spontaneous movements) of the small bowel in humans called the

migrating motor complex (MMC). Phase III of MMC consists of a sequence of regular

contractions migrating down the small bowel at irregular intervals; these intervals

lasting from minutes up to several hours. In an ambulatory recording system, as

used by Husebye et al (1990), several such intervals in a row are registered for each

individual during prolonged recordings, with a censored one at the end, signifying

the end of observation when the recording terminates at a predefined time.

One is interested in understanding various aspects of this process, e.g. wether

there is a variation in frequency between individuals, how the frequency changes

over time, and what governs the duration between MMC’s.

2. Duration of amalgam fillings When making a study of the duration of

amalgam fillings in teeth, one may include several patients who each have many

fillings in their teeth. A study of this kind, including 32 patients, with from 4 to 38

fillings for each patient, was analyzed by means of frailty models by Aalen, Bjertness

and Sønju (1995). One is interested in the duration of amalgam fillings, and how

this depends on patient properties.
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3. Analysis of sleep patterns Yassouridis et al (1999) study the occurrence of

various sleep patterns, including REM (Rapid Eye Movements) sleep, by means of

Cox type models with regression parameters varying over time. Sleep was monitored

continuously for a number of individuals, and events where defined as falling asleep,

waking up, going into REM sleep etc. Each individual may experience a number of

such events during a night, and event history analysis may be used to analyze the

pattern. One question asked is the relation of sleep to measurement of the stress

hormone cortisol, which was monitored every twenty minutes throughout the night.

The datasets above fall into two different categories. In the case of the amalgam

fillings, several dependent processes, namely one for each filling, is observed for each

patient. In the other cases there is only one process, or a few processes defined for

a set of specific event types, observed for each indvidual, but the event of interest

repeats itself several times over each process. The sleep example is different from

the others in that the effects of some covariates vary considerably over time. One

aim of the additive model presented here is to handle just this kind of time-varying

effects.

Data like those illustrated in these examples are typically analysed by frailty

models, which is a kind of random effect model, see e.g. Hougaard (2000). It is well

known that frailty models may alternatively be viewed in a dynamic fashion (see

e.g. Aalen, 1988). By this we mean that instead of setting up a random effects,

or frailty, model, one may alternatively condition with respect to past events to

get a counting process model with suitable intensity processes. Frailty will induce

dependence, such that, e.g., the rate of a new event is increased if many events

have been observed previously for this individual, since this would indicate a high

frailty. The aim of the present paper is to use a dynamic viewpoint for statistical
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analysis of multivariate survival data. This turns out to be fruitful with the potential

of giving more detailed information than a traditional frailty analysis. In fact, in

the dynamic approach one does not have to postulate speculative latent, or frailty,

variables, the actual existence of which is often uncertain. Furthermore, frailty

models often appear as unrealistically simple, e.g. usually not including a varying

frailty over time, and the present approach yields more flexibility.

Hence, we shall demonstrate the use of dynamic covariates, that is, covariates

depending on the past of the process. The actual analysis may be carried out

by different methods. Below we shall introduce the appropriate extension of an

additive regression model, which shall be our main tool. Alternatively, one may

apply a Cox model with dynamic covariates, as will be done briefly below. In fact,

there is a paper by Cox (1972b) that extends his regression model to the case of

observing stochastic processes, including dynamic covariates. This is a companion

to his famous paper (Cox, 1972a), but has been largely ignored in the statistical

literature. Still, dynamic covariates have been used by some authors, for instance

Kalbfleisch and Prentice (2002, Chapter 9), Peña and Hollander (2003), Gandy and

Jensen (2004), and Martinussen and Scheike (2000).

A program in R and S-PLUS for analyzing survival data with the additive re-

gression model is available on the web site www.med.uio.no/imb/stat/addreg.

The program has been developed to fit the counting process framework adopted in

this paper. It can do analyses like those presented in this paper; with the limitation

that dynamic covarates involving time since last occurrence have to be categorized.
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2 A counting process formulation

We shall use the framework of counting processes, (Aalen, 1978). In the application

of counting processes in survival analysis one usually only studies cases where there

is at most one event for each individual, or maybe a few events of different types

(see e.g. the monograph by Andersen et al (1993)). The multivariate event situation

considered here is only rarely treated within the counting process framework. This

is actually a highly unnatural limitation which does not fully exploit the value of

counting processes, and we shall here show the value of considering processes with

several events for each individual.

For individual i, let Ni(t) be the process counting the number of occurrences of

the event of interest up to time t, with N(t) denoting the column vector of these

counting processes. An individual counting process will be a step function starting at

0, and then jumping up one unit whenever an event happens. The intensity process,

λi(t), describes the risk that an event occurs at time t as a function of the past, and

is therefore the natural mathematical concept to study dynamic covariates.

The existence of dynamic models follows from a general theorem for submartin-

gales, namely the Doob-Meyer decomposition which states, essentially, that any

submartingale can be decomposed into a martingale and a compensator. Note that

this requires the notion of a history of past events, defined by an increasing family

of σ-algebras. The history includes all previous occurrences in the relevant counting

processes; in addition the history may include external information. A counting

process is obviously a submartingale and, under certain regularity conditions, the

compensator is just the integrated intensity process. What the Doob-Meyer decom-

position tells us, is that there is essentially always an intensity process however the

counting processes comes about. For instance, there might be an underlying random
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effects, or frailty model, of a possibly complex and general nature, nevertheless the

whole thing can be reformulated by intensity processes depending on the past.

One way of analysing counting processes, is to use a proportional hazards model.

An appropriate extension of the Cox model to counting processes is given by An-

dersen and Gill (1982). Although, in such a formulation, the underlying hazard is

arbitrary, and in fact nonparametric, the dependence on covariates is determined

by strong parametric assumptions. This seems questionable when observing a pro-

cess over some period of time, where one could very well imagine that conditions

change. Therefore, the nonparametric additive model of Aalen (1989) represents

an alternative. Since the Doob-Meyer decomposition guarantees the existence of

an intensity process, it seems quite natural to attempt an additive model, in the

absence of specific information as to other valid models.

2.1 The additive regression model

The additive model has been thoroughly studied for the usual survival situation

where each individual experiences at most one event. We will here consider it for

the case where there are several events for each individual, and focus on dynamic

covariates.

We have to distinguish two situations: (i) Only one process is considered for

each individual, like in examples 1 and 3 of the introduction. (ii) Several possibly

dependent processes are observed for each individual, like the fate of individual

amalgam fillings in example 2. We shall first give the details of situation (i), and

then indicate necessary modications for situation (ii).

(i) One process per individual. Let λ(t) be the column vector consisting of the
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intensities λi(t) for n individuals. We shall then apply the following model:

λ(t) = Y(t)α(t) (1)

where Y(t) is a n × r matrix. If an individual i is in the risk set at time t, then

the first element of row i equals 1, while the remaining elements are covariates. If

the individual is for the moment not in the risk set, then the corresponding row

is set equal to zero. Note that the elements of Y(t) may be arbitrary (apart from

regularity conditions) predictable stochastic processes. The r × 1 vector α(t) are

abitrary regression functions, hence the term nonparametric, indicating the effects

of the various covariates. The first element of α(t) is called the baseline intensity

since it corresponds to all covariates being equal to zero.

The integral of α(t), denoted A(t), can easily be estimated in this case. The

estimate of the integrated regression functions is given by (Aalen (1989), Andersen

et al (1993, Section VIII.4)):

bA(t) = Z t

0

Y(s)− dN(s)

where Y(t)− denotes a generalized inverse. A common choice for the generalized

inverse is the least square (or Moore-Penrose) inverse:

Y(t)− = (Y(t)0Y(t))−1Y(t)0

In some cases Y(t)0Y(t) may be singular and the generalized inverse is not well

defined. This may, for instance, occur at early times in processes with dynamic

covariates, since the process has to run a while for the covariates to be well defined

and reasonably stable. One solution is to understand Y(t)− to be identically equal

to zero when Y(t)0Y(t) is singular. Hence, estimation takes a pause, returning zero

values, in the case of singularity. However, in singular or near-singular situations
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one may alternatively use ridge regression to avoid stopping the estimation. The

generalized inverse is then modified in the following way:

YR(t)
− = (Y(t)0Y(t) + kI)−1Y(t)0

where I is the identity matrix and k is a suitable costant. Ridge regression is

a standard tool in ordinary linear regression with well known properties in that

context. We shall find it useful here.

Often, one may want to center the covariates. That is, for all columns in Y(t),

except the first, one subtracts the mean of those individuals at risk at a given time.

Then column one of Y(t) is orthogonal with respect to the remaining columns,

implying that the first element of bA(t) is the same estimate as one would get if
the covariates where not included in the analysis. This implies that first element of

bA(t), that is the cumulative baseline intensity, is the Nelson-Aalen estimator. We
shall center all covariates below, thus ensuring the validity of this interpretation.

Testing methods, estimates of variances, asymptotic results etc may be found in

the mentioned references, particularly Andersen et al (1993) and Aalen (1993).

(ii) Several processes for each individual. The case with several units at risk for

each individual is mentioned in example 2 above where the units are fillings at risk.

One alternative is to aggregate over individuals, such that the counting process Ni

for individual i, i.e. the i-th element of N, is the sum of all counting processes for

the individual’s units at risk. The intensity may be written:

λ(t) = K(t)Y0(t)α(t)

where K(t) is a diagonal matrix with the diagonal elements containing the number

of units at risk at time t for the individuals, and Y0(t) is defined like Y(t) in case
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(i). A reasonable estimator of A(t) in this case is

bA0(t) =

Z t

0

Y0(s)
−K(s)−1dN(s)

Simple modifications of known results for bA(t) yield corresponding results for bA0(t).

It is not always natural to aggregate. Considering the amalgam fillings, it might

be the case that individual fillings for a patient had tooth-specific covariates, and

that the counting processes could thefore not be aggregated without loss of informa-

tion. In that case there would be a counting process for each filling. The dynamic

covariates would then have to contain information on the previous fates of all fillings

belonging to a specific person. This creates a dependence between groups of count-

ing processes. Such dependence might be relevant in many connections. In studies

in social science it may be that events considered are dependent on peoples atti-

tudes. The likelihood of a couple divorcing, e.g. may be dependent on the number

of divorces having occurred among their family, friends and colleagues.

2.2 Residual processes. The hat matrix

We shall look at residual processes defined by taking the difference between the

counting process and the estimated integrated intensity, i.e. a kind of "observed mi-

nus expected" difference. This can only be computed when the model is estimable,

that is Y(t)0Y(t) is non-singular (unless extended by ridge regression). More for-

mally, the vector of martingale residual processes is defined by (Aalen, 1993):

Mres(t) =

Z t

0

J(s) dN(s)−
Z t

0

J(s)Y(s) dbA(s).
where J(t) is the indicator function of the event that Y(t)0Y(t) is non-singular.

The process Mres(t) is, in fact, a martingale when the model is true (Aalen, 1993).
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It is common to talk about martingale residuals also in connection with the Cox

model. However, in that case there is no exact martingale structure, merely an

approximation.

The quadratic variation process of Mres(t) may be derived from the theory of

stochastic integrals, to yield the matrix

hMresi (t) =
Z t

0

J(s) (I−Y(s)Y(s)−)diag(λ(s) ds)(I−Y(s)Y(s)−).

Here diag(V) means the diagonal matrix with the vector V as diagonal. In order

to estimate this process, and hence the variance of the residual processes, one must

substitute the intensity vector λ(s) ds by the estimate derived from the regression

model: Y(s)Y(s)−dN(s). Hence the following estimated covariance matrix of the

martingale residual processes is suggested:

V(t) =

Z t

0

J(s) (I−Y(s)Y(s)−)diag(Y(s)Y(s)−dN(s))(I−Y(s)Y(s)−).

Standardized residual processes may simply be defined by dividing the residual pro-

cess by its estimated standard deviation at any time t. By asymptotic theory for

martingales, normal distributions will appear when a reasonable number of events

occur, that is, when t is not too small. Hence, one would expect most standardized

residuals to have values between -2 and +2 if the model is true; therefore, plotting

the standardized residual processes will give information on model fit. A more for-

mal test of the martingale property could also be constructed by the above theory,

but so far we have not gone into this. Furthermore, by applying kernel estimation

to Mres(t) and V(t), one may estimate standardized residuals with a local inter-

pretation. Note that the residuals presented here are related to a robust variance

estimator for the additive model suggested by Scheike (2002).

Also the hat matrix may be of use. This is an important quantity in ordinary
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linear regression. It is here defined as Y(s)Y(s)−, and the diagonal is of interest as

a measure of influence. It may be quite informative to plot the diagnonal elements,

hjj,cum(t), of the cumulative hat matrix:

Hcum(t) =
X
Ti≤t

Y(Ti)Y(Ti)
− (2)

where Ti are the successive times when jumps occur in any process. The idea is to

look for processes with particularly high values.

From ordinary linear regression (see e.g. Wetherill, 1986) it is well known that

the average value of the diagonal elements of a hat matrix is k/n where n is the

number of observations and k is the rank of the hat matrix. In fact, k coincides

with the sum of the diagonal elements of the hat matrix. Elements above k/n are

said to have high leverage, and it is common to select points for investigation if a

diagonal element of the hat matrix is greater than 2k/n. In our case we can apply

this theory at every jump time, and so the criterion for an outlying processes will

be when

hjj,cum(t) > 2
X
Ti≤t

rank(Y(Ti)Y(Ti)−)
ni

where ni is the number of processes at risk at time Ti.

An application of the hat matrix is presented below under the analysis of sleep

patterns.

2.3 Relationship to frailty theory

Although we shall not confine ourselves to models defined in frailty terms, it is

of interest to see that there is some connection between frailty modelling and the

additive regression model.

Assume that a simple frailty structure is valid for the individual counting pro-
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cesses, i.e. the individual intensity given the frailty variable Zi can be written:

γi(t) = Zi γ(t)

where γ(t) is a common baseline intensity and a fixed function, i.e. independent of

the past, while the Zi, i = 1, ..., n, are independent identically distributed variables

giving the multiplicative factor that determines the risk of an individual. What is the

observable intensity of an individual if the Zi are unknown (which one would usually

assume)? For the case that the Zi are gamma distributed with scale parameter η

and shape parameter ν, the answer may be found in Andersen et al (1993, p. 667):

λi(t) = (ν +Ni(t−))
γ(t)

η +G(t)
(3)

where G(t) =
R t
0
γ(s) ds. Note that the previous number of events, Ni(t−), comes

into the intensity in an additive fashion. Hence this gives some motivation for

concentrating on additive models.

The right hand side of equation (3) may be viewed as having two covariates,

namely the constant covariate 1, and the dynamic covariate Ni(t−). The regression

functions of these covariates are:

α1(t) = ν
γ(t)

η +G(t)
, α2(t) =

γ(t)

η +G(t)

Usually, one would want to include other covariates also. From equation (3) it is

clear that if an additive covariate structure is put on the shape parameter ν of the

frailty distribution, then the total model is still additive.

2.4 Why additivity?

Additivity produces exact martingale estimators and tests. Notice that additivity

as such is not essential, but rather the linear structure of the model, i.e. interac-

tion terms might be included. In the usual counting process approach to survival
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analysis the exact martingale structure plays a fundamental role in two-sample (and

k-sample) tests, but is then, surprisingly, dispensed with as soon as more than one

covariate is considered. Then common models, like proportional hazards, preserve

at most an approximate martingale structure. Testing for the effect of a covariate

within such a framework produces tests where the effect is ”smeared” out over an

interval and where changes in the effect of a covariate is not rapidly picked up. In the

present paper we argue for tests and estimators with a true martingale structure.

The martingale structure is not only important for technical reasons, but is also

intimately connected to measuring local effects of covariates. For instance, changes

in effects of the covariates may be seen immediately. The weakness of additivity is

that the hazard should be nonnegative, and this is not guaranteed by an additive

model. However, in our opinion this is weighed up by the advantages of our model,

especially for more complex datasets like the ones considered here. As we present

it here the additive model is a pragmatic tool without deep theoretical justification,

which in fact is the case for most models in statistics.

3 Dynamic covariates

An example of a dynamic covariate is theNi(t−) in Section 2.3, which is continuously

updated as time goes by. Dynamic covariates should sum up important aspects of

the previous development of the process that may contain prognostic information.

Examples of such covariates can be

• time since last event. This could be a check of the Markov property. If the

process is a Markov chain there should be no dependence on time since last

event.
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• number of previous events in the process. This could be seen as a check of

frailty. In case of frailty effects one should expect that an excessive number of

previous events would predict a greater intensity of events also in the future

• estimated cumulative hazard. If in the individual counting process there are

several units at risk (like in the amalgam filling data referred to above), then

the number of previous events is not appropriate. One has to consider also the

number of units at risk at any time in a given counting process. A reasonable

dynamic covariate in this case would be the estimated cumulative hazard of the

event, estimated by a Nelson-Aalen estimator for each individual process. For

instance, in the amalgam filling data, one could for each patient compute the

Nelson-Aalen estimate of failure of amalgam fillings and use this as a dynamic

covariate.

Of course, there are numerous other ways of constructing dynamic covariates,

and it must be evaluated in any given case what are the most reasonable choices.

One problem with dynamic covariates, is that they are not of any use before some

occurrences have taken place, hence they cannot be used from the very beginning.

Practically, the problemmay be handled either by ridge regression, or by not starting

estimations before a few events have occurred. There is nothing incorrect in this as

long as one starts at an optional stopping time.

The martingale structure underlying the theory of the additive model implies,

just as for the Cox model, that dynamic covariates do not have to be treated any

differently than other covariates with regard to estimation procedures. The covariate

functions can be arbitrary predictable processes (apart from regularity conditions,

of course). The usefulness of the present approach can only be demonstrated by

means of examples, as will be done in Section 4 to 7.
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Dynamic covariates have been used by previous authors, see Kalbfleisch and

Prentice (2002, Chapter 9) for references. Dynamic covariates are time-dependent

covariates, and it is well known that one has to be careful with the handling of such

covariates jointly with fixed covariates, see Kalbfleisch and Prentice (2002, p. 199).

Dynamic covariates are "responsive" in the terminology of Kalbfleisch and Prentice.

Their values may, for instance, be influenced by treatment assignment, and in the

statistical analysis dynamic covariates may "steal" from the effect of treatment and

other fixed covariates and weaken their effect. A solution for handling this treated in

detail in Fosen et al (2003). The following solution appears to work in many cases:

First one should carry out a marginal analysis with only the fixed effects included

as covariates. The estimation goes as usual, but since important dynamic covariates

are excluded, the martingale properties of the counting process theory are not valid.

However, we have a rate model in the sense of Scheike (2002), and he gives a correct

variance estimate for the marginal model. In the next step one should carry out a

full analysis with all fixed and dynamic covariates. This will give correct estimates

for the dynamic covariates and the martingale properties are valid if the residuals

indicate a good fit as discussed above.

4 Simulation

4.1 Illustrating the connection to frailty models

We shall start by presenting a simulated example. This may serve the purpose of

showing that the analysis gives sensible answers for a known model. We simulate

a number, k, of independent Poisson processes where the rate in each process is

simulated from an exponential distribution with expectation 2. Hence the rates
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differ between processes, and so the rate serves as a frailty variable. For each of the

k counting processes we define a covariate to be the number of previous events in the

process divided by time elapsed, hence the covariate is dynamic, that is changing

over time as a function of the past. The mean has been subtracted from the covariate

at every time. This means that the cumulative baseline intensity is an estimate of

the cumulative rate of the ”average” process.

In the simulation we use k = 40. The results of the analysis is shown in Figure 1.

The cumulative baseline intensity is close to a straight line, which would be expected

since the underlying processes are homogeneous Poisson processes. The figure show

a very clearly significant effect of the dynamic covariate, and hence demonstrates

the frailty effect. Standardized residual processes are also shown in Figure 1. When

the dynamic covariate is incorporated, the residuals are mostly confined between

-2 and +2, which indicates a good model fit. Without the dynamic covariate the

residuals are spread much more out.

4.2 Validity of asymptotic theory

In the cumulative regression plots we present pointwise confidence intervals for the

curves. These intervals are based on asymptotic theory, and since the numbers of

individual processes in the examples are not very large, one may wonder about the

validity of the asymptotic results. A simulation has been carried out to illuminate

this issue. The intensity is defined as follows:

λi(t) = α0 + α1
Ni(t−)

t
(4)

The integrated regression functions bA0(t) and bA1(t) have been estimated in each
simulation, and it has been evaluated every time whether the 95% confidence inter-

vals cover the true function at three specific time points. The percentage of intervals
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covering is denoted the coverage. Ideally it should be 95%. Four different numbers

of processes have been studied, i.e. 10, 25, 50 and 100 individual processes, and in

each case 10 000 simulations have been carried out. The results are shown in Table

1. One sees that the coverage is good except for the early times when the number

of events are small. Even with as small a number as 10 individual processes, the

coverage becomes good when time is not too small.

5 Small bowel motility

Data The details, together with a statistical analysis differing from the present

one, are given in Aalen and Husebye (1991). We here study a more extensive dataset,

with data from 34 individuals. Pressures in the small bowel were recorded contin-

uously from 5.45 pm to 7.25 am the following day. At 6 pm, a standardized mixed

meal of 1700 kJ was given to each individual. This induced what is termed post-

prandial state, characterised by irregular contractions, lasting from 2 to 8 hours.

The postprandial state is followed by a fasting state, during which a cyclic motility

pattern occurs. Three phases of this may be defined (phases I-III); however, only

the activity front (phase III), which is easy to distinguish, is needed for its recogni-

tion. Phase III therefore defines the fasting cycle, also called the migrating motor

complex (MMC). The time interval between two phase IIIs is termed a MMC pe-

riod. The start of fasting motility was defined by the first phase III occuring after

the evening meal. Several MMC periods occurred in each individual (mean number

4.2) with a censored MMC period terminating the records. Censoring was due to

the termination of measurement at 7.25 am. An example of data for an individual

is given as follows: 112, 145, 39, 52, 21, 34, 33, 51, 54*. This means that the first
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MMC period lasted 112 minutes, the second 145 minutes and so forth. The last

period of 54 minutes is censored since observation is terminated as described above.

The great majority of MMC periods occurred after midnight, because the dura-

tion of the postprandial period was usually 4-6 hours. Therefore, we will here only

consider the time period from midnight until 6.30.

Statistical analysis For each individual there is a counting process running in

clock time starting with the first phase III and counting the later phase IIIs occuring.

The intensity of the occurrence of a phase III shall be analysed, with covariates as

follows.

• Covariate 1: This is a time-dependent covariate counting the number of pre-

vious phase IIIs for the individual. The intention is to decide whether there is

dependence between the interevent times for an individual.

• Covariate 2: This is another time-dependent covariate measuring time since

the last occurrence of a phase III. The object is to check whether the process

is Markovian. The covariate is dichotomised to be smaller (or equal to) or

larger than 50 minutes.

To estimate the influence of the covariates in a meaningful way, it is clear that

some events must already have occurred since the covariates are defined relative to

previous events. Here we decided to start estimation at midnight when already a

few events had occurred.

The results of the analysis are shown in Figure 2. The cumulative baseline

intensity appears to be approximately a straight line, indicating a constant intensity

of new phase IIIs. The influence of the number of previous events is seen to be

virtually nil (using the test of Aalen (1989) yields the normalized test statistic -0.33
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based on observations from midnight to 6.30). This fits with a frailty analysis in

Aalen and Husebye (1991) which indicates that there is very little variation between

individuals as regards the occurrence of phase IIIs. In practice this means that the

intraindividual variation dominates. The advantage of the present analysis is that

one may get a picture of whether this is a constant phenomenon over time, as it

appears to be. Finally, one sees from the figure that time since the last previous

event for the individual in question has a strong effect on the intensity of a new event,

the longer the time the more likely is a new event (normalized test statistic is 6.15,

p<0.001, from midnight to 6.30). This shows that the process is non-Markovian,

a conclusion that again fits well with results of Aalen and Husebye (1991) where

the interevent time for each individual is estimated to have an increasing Weibull

hazard. Again, an advantage of the present procedure is that one can see whether

this changes with time, which does not appear to be the case here. Compared with

the frailty analysis of Aalen and Husebye (1991), we find that this further analysis

gives additional information, especially on whether effects change over time.

A Cox analysis with the same covariates has been carried out, giving for covariate

1 the coefficient 0.00 (s.e. 0.11) and for covariate 2 the coefficient 1.77 (s.e. 0.29,

hazard ratio 5.88). The results are seen to be closely compatible with those of the

additive analysis.

6 Analysis of sleep patterns

Yassouridis et. al (1999) describe an experiment where a number of people have been

observed during one night. Every 30 seconds their sleep status have been registered.

In addition the cortisol level was measured every 20 minutes. We have analysed a

19



set consisting of 27 individuals. Following Yassouridis et. al, we define the time for

each individual as time since first time asleep.

An analysis of the data using a multiplicative hazards model is described by

Yassouridis et. al (1999) and by Fahrmeir and Klinger (1998). Here, we do not

perform an extensive analysis of the data, but just use them for illustrative purposes

to indicate the potential of our approach.

In our analysis we have confined ourselves to the transitions from the state

”asleep” to the state ”awake”. Our counting process of interest is thus the process

which counts the cumulative number of transitions of this kind after the first time

the individual falls asleep. The number at risk at each time point is the number of

persons being asleep just prior to this time. We here estimate the regression func-

tions by kernel smoothing techniques. For this purpose we have used the methods

suggested in Aalen (1993) and Keiding & Andersen (1989). We have used ridge

regression with parameter 0.001, and smoothing bandwidth of 1.67 hours.

The following time-varying covariates have been used:

• covariate 1: logarithm of cortisol level

• covariate 2: cumulative number of times awake, divided by elapsed time

• covariate 3: logarithm of time since last awake

The two latter covariates are dynamic covariates. The smoothed regression func-

tions (not cumulative functions) are shown in Figure 3. The figure shows that cortisol

has a positive effect (i.e. increasing the likelihood of waking up) during the later

part of the night. The number of previous times awake also has a positive effect

on the hazard of waking up during most of the night. The length of the current

sleeping period has a negative effect, the longer it has lasted, the less likely is it for
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the individual to wake up. This effect seems to be most pronounced early in the

night.

To see whether any individual has a large influence on the results we plot the

diagonal elements of the cumulative hat matrix in equation (2). In Figure 4, we see

that one of the 27 individual cumulative hat processes exceeds the outlying process

criterion, meaning that this observation is the one having the highest influence on

the analysis. When looking more closely at the individual data, one sees that the

person has unusually many awakenings early in the night.

7 Discussion: Interpretation of a dynamic model.

Causality?

When finding dynamic effects in a data set, one may ask what is the natural in-

terpretation of such effects. As pointed out above, the dynamic effects may simply

reflect unobserved underlying variables, expressed for instance in a frailty model.

Alternatively, they might represent real causal effects of past events.

This dilemma has been recognized for a long time. For instance, Feller (1971,

p. 57-58), discusses the phenomenon of spurious contagion, pointing out that the

Polya process may either be defined as a process of contagion, or as a mixture of

non-contagious Poisson processes. He states: ”We have thus the curious fact that

a good fit of the same distribution may be interpreted in two ways diametrically

opposite in their nature as well as in their practical implications.”

Let us consider the possible interpretations of a dynamic intensity like that in

equation (3). This may be a mechanistic model for individuals if it is actually the

case that the number of previous occurrences through some mechanism influences
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the likelihood of new occurrences. If, on the other hand, frailty is the true model,

then (3) does not give a mechanistic explanation, but is nevertheless useful for

individual prediction. Prediction may be carried out, as is often done in statistics,

without necessarily knowing the underlying mechanisms.

It is of interest to note that in economics one has considered a similar problem.

For instance, the year 2000 Nobel prize winner James J. Heckman, in his Nobel lec-

ture (Heckman, 2000, p.287) discusses the problem of distuingishing "heterogeneity

and state dependence", which is similar to what we have discussed above. Inter-

estingly, Heckman asserts that it is possible in certain situations to make such a

distinction statistically. However, this needs certain assumptions, otherwise one

cannot know whether what one observes is due to individual heterogeneity or causal

dynamic effects.

One should also note that in some situations one may have natural replications

which could help the situation considerably. In the sleep example, one could make

observations over several nights, and this would clearly give a better possibility of

estimating the natural sleep pattern of each individual, and hence of distinguishing

heterogeneity from state-dependent effects.

The type of causality which is discussed here is related to what is often termed

"predictive causality". In fact, our approach constitutes one way of analyzing so-

called "local dependence", which is again closely related to causality, see Pötter and

Blossfeld (2001).

In spite of the mentioned difficulties in interpretation, a dynamic analysis along

the lines suggested here may yield considerable insight into the nature of the data.

The additive analysis is simple to carry out in practice. Since no likelihood is needed,

the analysis does not require a particularly structured setting. Whenever a number
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of events are observed over time one may introduce various information about the

past. The method is a pragmatic way of using the information available at any given

time. It is easier to carry out than alternatives, like frailty models, which may be

difficult to fit.

In conclusion, we believe that the set of methods hitherto available to analyze

complex event history data is far too limited, and that there is certainly a need of

new methodology. The present approach is intended as a contribution to this.
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Table caption

Table 1: Coverage of simulated confidence intervals. 10 000 simulations in each line.

Figure captions

Figure 1: Simulated example: Upper panels show cumulative baseline intensity

(left) and cumulative regression function (right). Outer curves give pointwise 95%

confidence intervals. Lower panels show cumulative residual processes for simulated

example. Left panel: No covariate. Right panel: Dynamic covariate.

Figure 2: Occurrence of phase III events in small bowel motility: Cumulative

baseline intensity (upper panel), cumulative regression function of covariate measur-

ing previous number of phase III events (lower left panel) and cumulative regression

function of covariate measuring time since last phase III event (lower right panel).

Pointwise 95% confidence limits. The time axis goes from midnight until 6.30.

Figure 3: Sleep data: Smoothed baseline hazard function and regression func-

tions together with pointwise 95% confidence limits. Bandwidth: 1.67 hour.

Figure 4: Sleep data: The 27 individual cumulative hat processes (diagonal hat

matrices) as a function of the time intervals where the events happen, together with

the expected cumulative hat matrix (the lower thick solid line) and the outlying

process criterion (the upper thick solid line).
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Time (t)

Number of individual processes t = 0.25 t = 0.50 t = 1.00

n=10 0.85 0.94 0.96

n=25 0.92 0.95 0.96

n=50 0.93 0.95 0.95

n=100 0.94 0.95 0.95

Table 1: Coverage of simulated confidence intervals for A1(t); 10000 simulations in each line.
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Figure 1: Simulated example: Upper panels show cumulative baseline intensity (left)

and cumulative regression function (right). Outer curves give pointwise 95% con-

fidence intervals. Lower panels show cumulative residual processes for simulated

example. Left panel: No covariate. Right panel: Dynamic covariate.
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Figure 2: Occurrence of phase III events in small bowel motility: Cumulative base-

line intensity (upper panel), cumulative regression function of covariate measuring

previous number of phase III events (lower left panel) and cumulative regression

function of covariate measuring time since last phase III event (lower right panel).

Pointwise 95% confidence limits. The time axis goes from midnight until 6.30.
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Figure 3: Sleep data: Smoothed baseline hazard function and smoothed regres-

sion functions together with pointwise 95% confidence limits. Smoothing parameter

(bandwidth) is 1.67 hour.
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Figure 4: Sleep data: The 27 individual cumulative hat processes (diagonal elements of (2))

as a function of the number of half minute intervals with events, together with their average

value (the lower thick solid line) and the outlying process criterion (the upper thick solid line).
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