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ABSTRACT: This report provides a discussion about the fundamentals of the frequentist 
approach to the classical nonlinear least squares head – discharge power-law rating curve 
model, which is a vital procedure in practical hydrology. It is shown that the multivariate 
minimization problem of the classical nonlinear least squares rating curve model is 
equivalent to the maximization of a single argument function. We propose four general 
criteria which the discharge measurements should meet if a trustable frequentist least 
squares rating curve estimate should exist. The proposed criteria are applied to a large 
number of real-life discharge measurements, which suggest that the criteria are 
particularly useful in practice. We also show that the breakdown of one of the criteria 
implies an exponential law relationship between the head and the discharge. Numerical 
maximization of the single argument function and inference are discussed.  
 
 
 

1 Introduction 
 
The rating curve is very important in surface hydrology, as quality discharge data is 
highly dependent on a satisfactory head – discharge relationship at the gauging station 
(the term head is used for the water level relative to the gauging staff or another fixed 
datum). For establishing this relationship, the rating curve method is the most widespread 
technique and has been applied on thousands of gauging stations worldwide for decades. 
Amazingly, a thoroughly theoretical treatment on the most recommended rating curve 
regression model still seems to be missing.            
 
The head – discharge equation at a gauging station is invariably based on the power 
relationship  
 
 

( )bchAQ +=             (1) 
 
 
where Q is the discharge, h the relative head and (A, b, c) are parameters. Thus, assuming 
negligible velocity head, h + c is the total head. Eq.1 is recommended many places in the 
hydrometric literature (e.g. Herschy, 1999; ISO, 1998; WMO, 1994; Mosley and 
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McKerchar, 1993; Lambie, 1978). In compound rating curve problems two or more 
similar equations (often referred to as segments), each relating to a portion of the head 
range, must be applied.    
 
It is easy to see that eq.1 is based on the hydraulically motivated Manning equation which 
frequently is used as the governing equation for steady uniform flow 
problems; 2/1

0
3/23/51 sPSNQ --= , where N is the Manning’s roughness coefficient, s0 the 

slope, S the area and P the wetted perimeter. However, eq.1 is a simplification of the 
Manning equation, as eq.1 assumes that the conveyance function 3/23/5 -PS  can be 
described by a simple power function of the total head.   
 
Sometimes the parameter c is determined by considering the level on the cross section in 
relation to zero flow. Some of the above mentioned references encourage this. Obviously, 
trying to estimate c in advance will have a detrimental effect on the flexibility of eq.1, 
due to the loss of one degree of freedom. More important, as geometric idealisations 
originally have been made, it is unlikely that the point of zero flow of the natural channel 
is the same as for the idealised control. Furthermore, the point of zero flow can be 
difficult to determine in deep rivers, at controls which consist of rocky profiles and 
controls which are defined by a reach without a definite edge. Hence, the result can be an 
inflexible and biased rating curve. 
 
Standard hydrometric literature, of which the most important are mentioned above, 
recommend the method of nonlinear least squares for constructing the rating curve. The 
methods recommended are, however, often based on graphical and/or trial and error 
techniques. Firstly, such techniques can produce very inaccurate results. Secondly, it is 
impossible to estimate uncertainty in estimated discharge, due to rating curve variability, 
if the rating curve is constructed by subjective methods. Thirdly, even though the manual 
methods recommended claim to be based on formal least squares techniques, an 
analytical solution to the nonlinear least squares problem may not exist. This kind of 
hydrometric practice is unfortunate.  
 

The aim of this paper is to theoretically investigate the classical nonlinear least squares 
rating curve model. It is shown that the multivariate minimisation problem is equivalent 
to maximising a single argument function of the parameter c. Furthermore, it is proposed 
that a trustable nonlinear least squares rating curve estimate exists if the discharge 
measurements satisfy four criteria. The four criteria are validated by applying them to 
over thousand discharge measurement datasets. The study further discusses maximisation 
and confidence intervals before some practical examples are given. 

 

2 The nonlinear regression model 
2.1 Problem formulation 
Having n ≥ 3 head - discharge measurements available with dissimilar head observations, 
the rating curve regression model proposed is 
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The size of � typically is in the area of 0.03 – 0.07. However, experiences from NVE  
(Norwegian Water and Energy Directorate) suggests that a � of 0.01 is attainable, while 
unsuitable measuring conditions combined with an unwise choice of measurement 
method can produce standard deviations of up to 0.15 – 0.20.            
 
Eq.2 requires at least 3 measurements with dissimilar heads in order to avoid an ill-
defined regression. Ostensibly, an even better criterion would be to require more than 3 
measurements with dissimilar heads, and hence avoid the trivial solution where the 
variance of the residuals becomes zero. However, we shall see later in the study that this 
is not a necessary criterion in order to establish a proper theoretical assessment of the 
rating curve fitting.         
 
We assume the variance, which is due to discharge measurement uncertainty, varies as a 
linear function of the expected discharge. Furthermore, by utilising the first order Taylor 
approximation log(1 + �i) ≈ �i, assuming |�i| << 1, and easing the notation, we obtain      
 
 

iii bxaq e++=           (3) 
 
 
where ( )ii Qq log= , ( )Aa log=  and ( )chx ii += log . Note that the dependency on c 
still is assumed in the last expression. The model in eq.3 is recommended in most 
hydrometric literature that treats rating curve construction. Firstly, the model in eq.3 is a 
more suitable model than eq.2, since the model of eq.2 allows for a possibility of negative 
discharge, which is in contradiction with the definition of stream flow. Secondly, 
Petersen-Øverleir (2004) showed that the logarithmic transformation in many cases fails 
to stabilise the variance, leading to heteroscedasticity unaccounted for. However, this 
paper only treats situations where the residuals in eq.3 are homogenously distributed.         
 
Now, the residual sum of squares is given by 
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where M is the set of n log-transformed head – discharge measurements.     
 
The parameters � = (a, b c) which minimise eq.4 are the NLS estimated rating curve 
parameters. It is also worth mentioning the fact that the least squares estimator of � is 
also the maximum likelihood estimator since we have assumed the residuals to be 
normally distributed.  
 



2.2 Refinements 
 
Minimising eq.4 may seem unpleasant, since S(·) takes values in R3 which makes it 
difficult to pre-assess the parameter space. Moreover, estimating three parameters 
simultaneously requires an advanced numerical scheme. Even if an adequate numerical 
optimiser is available, one needs to get knowledge about possible local minima and 
making sure that a solution exists. Fortunately, eq.4 can be simplified so that these 
problems can be assessed more easily by considering the normal equations of S(·). 
Denoting the sample mean of any statistical function � as x  and setting the derivative of 
S(·) with respect to a and b equal to zero we obtain 
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022|

22

222

=
-

-
=

fi=-++-=++-=
∂

∂ Mè

  (5b) 

  

where )ar(v̂ ⋅ and )(ovĉ ⋅  are defined in eq.8A and eq.10A in the appendix. 
 
These results are in fact equivalent to the well known solutions for an ordinary least 
squares problem. Substituting eq.5a into eq.4 yields 
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Furthermore, by substituting eqs.5b into eq.6 the sum of squares becomes a single  
argument function:  
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which can be written as 
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2.3 Exploring the solution space of the sum of 
squares 

 

The behaviour of S(·) needs to be studied. The main theoretical problems are existence 
and uniqueness of estimates. First, we define the function 
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,ovĉ 2

=           (9) 

  

By its definition S(·) is bounded from below since S(·)  ≥ 0. We also see that S(·) is 
bounded from above, since eq.8 consists of a constant minus a positive function of c. Due 
to the existence of this finite upper limit, global criteria theorems such as found in 
Demidenko (2000) do not apply to our problem. The upper limit of S(·) can be found, 
since it is easily seen that 
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Now, the only dependency on c in S(·) is contained in the purely negative function -r(c). 
Consequently, minimising S(·) is equivalent to maximising r(c). It is also worth noting 
that this is not surprisingly equivalent to maximizing ( )xq,orĉ  when eq.17 later on is 
assumed.   
 
The c which maximises r(c) cannot be evaluated in closed form. However, a lot of 
information on the optimisation problem can be provided by investigating the normal 
equation of r(c) more closely. Firstly, we need the following results: 
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Inserting eqs.(11a) – (11c) into the expression for the derivative of r(c) yields  
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which furthermore can be written as 
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  Possible finite roots of eq.13 origins either from  
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or  
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The left hand side of eq.14 being negative or zero for some reasonable estimate of c is 
very unlikely, since that would imply serious violations of the hydraulic and hydrometric 
model assumptions on which eq.2 are based. In such a situation no trustable rating curve 
can be constructed at the gauging station. Hence, we would like to require that the right 
hand side of eq.14 is positive for all finite values of c. Therefore, the solution we seek 
implies eq.15 being zero. 
 
Maximising r(c) implies that we are looking for arguments of finite c of which ∂r(c)/∂c = 
0 and ∂2r(c)/∂c2 < 0, meaning that ∂r(c)/∂c goes from being positive to being negative. 
This may happened several times. Primarily, we want this to happen only once for a finite 
c. This is a requirement which is difficult to ensure. However, establishing requirements 
ensuring that ∂r(c)/∂c changes sign an odd number of times, where the first crossing 
produces a maximum, is easier, and hopefully sufficient.  
 



If ∂r(c)/∂c crosses (not touching) the line of zero an even number of times r(c) has no 
max/min (no crossings), one maximum and one minimum (two crossings), etc. 
Obviously, these are situations we are hoping to avoid.   
 
Denoting hm = min(h1, h2, … , hn,), we see from eq.2 that c spans •Ò·- ,mh . Now, if 
∂r(c)/∂c = 0 for an odd number of finite arguments c, of which the first crossing produces 
a maximum, we must require that 
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by the Intermediate-Value Theorem of Continuous Calculus, since ∂r(c)/∂c by lemma 5 in 
the appendix is continuous for •Ò·-Œ ,mhc .  
 
If we require that  
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the criteria of eq.16 can be satisfied in only one way: 
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Eq.17 permits the limits of f(c) to be zero. However, as we have argued, f(c) > 0 for finite 
values of c is a very reasonable criterion. Moreover, we see from eq.9 and eq.14 that if 
there should exists a solution where f(c) = 0 for a finite c, this maxima must found where 
also r(c) = 0. However, we have concluded that r(c) cannot be negative, which means that 
the situation would be that r(c) is overall zero. Thus, we want to ensure that f(c) > 0 for 
finite values of c is the case.  
 
A sufficient set of requirements for ensuring that eq.16 is true can be achieved by 
introducing the following theorem: 
 

Theorem 1  
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then r(c) has an odd number of stationary points where ( ) 0/ 22 ≠∂∂ ccr , of 

which at least one is a maximum. 

 

Here Wœi  symbolises that the actual function is evaluated not using data from the 
measurements containing hm (formal definition, see eq.A3) and ( )hkewŝ  is the estimated 
third order central moment (formal definition, see eq.A9).  
 
The proof of this theorem is found in appendix. We mention that criteria i.-ii. are related 
to eq.17, while criteria iii.-iv. are related to eq.18. 
 
Note that theorem 1 excludes saddle points from the class of stationary points considered. 
On the other hand, theorem 1 does not exclude saddle points from being present in r(c). 
However, the presence of one or more saddle points for finite arguments c would indicate 
an ill-defined and oversensitive regression, where adding/removing one measurement 
could change the whole outcome of the estimation. Hence, no robust rating curve could 
then be constructed. Nevertheless, one or more saddle points in addition to a maximum 
can perhaps be the case, even though the authors have never come across such a situation.     
 

2.4 Discussion of Theorem 1 
 
The three first criteria of theorem 1 are reasonable and logical requirements, as they all 
reflect the basic hydraulic assumption behind the rating curve. If one or more of criteria 
(i. – iii.) are to be violated, and the measurement data is correctly collected and processed, 
then we have a situation where we seem to measure less discharge as the water level 
increases. This is contradictory and indicates either; (1) few and very uncertain 
measurements done at almost the same water level or; (2) extreme hydraulic conditions 
(e.g. the control is near a hydraulic jump). 
 
Criterion iv. is the less intuitive of the four criteria. Experience has shown the authors that 
this criterion can be broken even if things seem to be arranged for an easy rating curve 
construction. Firstly, note that criterion iv. can, assuming that criterion ii. is met, be 
written as 
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The right side of eq.20 is given by the way measurements are carried out, while the left 
hand side describes the natural statistical relationship between the head and the discharge. 
We can control the right hand side of eq.20 by designing the measurements. However, the 
left hand side of eq.20 cannot fully be designed due to the randomness involved with the 
discharge measurements and inaccurate model assumptions. Thus is it impossible to 
securely fulfil criterion iv. by experimental design alone. Secondly, there is strong 
indication that the ostensible mysterious criterion iv. is connected with the breakdown of 
a power-law relationship between the head and the discharge. If we assume that all 
criteria of theorem 1 are met except iv., and furthermore that r(c) is a monotonically 
increasing function with no roots (as in fig.2c), it is easy to see that the least squares 
solution of c is infinite. At first, this situation appears unfavourable. However, by lemma 
6 in the appendix, we see that accepting an infinite c as an estimate leads to an estimated 
predicted discharge given by 
 

( ) ( )   ,ˆexpˆexpˆ ++ = hQ ba
( )
( )

( )
( )h

hq
h

hqhq
arv̂
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Hence, in such a situation, the data seem to support an exponential-law relationship 
between the head and the discharge. The model of eq.21 has no point of zero flow, which 
makes it difficult to accept as a lower segment part of a rating curve. However, there 
should be no obstacle to accepting the exponential-law relationship in the upper 
segments. Recall that the power-law relationship is only motivated by idealising the 
channel geometry of the Manning equation. If the channel area and wetted perimeter is 
changing drastically as functions of the water level, which can happen when the river has 
topped the banks and spreads out over flat fields, the exponential-law is not unlikely. 

2.5 Verification of the usefulness of Theorem 1 
 
If the criteria in theorem 1 are satisfied we know that one or more finite solutions to the 
problem exist. On the other hand, if theorem 1 is not satisfied, one or more global 
maxima together with at least one minimum could still exist. So how useful is really 
theorem 1 in practice? This is a question that needs answering. The theorem was applied 
to 1176 head – discharge measurement datasets of the database of NVE. The data origins 
from almost all gauging stations ever established in Norway. No assessment of 
segmentation, time dependent trend/breaks or data quality was performed in advance, and 
all 1176 datasets were directly applied to theorem 1 and subsequently to the one-
segmented rating curve model presented in this study. Hence, the intention was to 
perform a very comprehensive test of theorem 1, including everything from the most 
unsuitable to the most ideal datasets available.  
 
Table 1. Statistics from the application of theorem 1 and the classical rating curve model to 1176 discharge 
measurement datasets. 
 Number of datasets  No solution  Solution 
All criteria met 989 (84 % of total )  0  989 



One or more of criteria i. – iii. not met  58 (5 % of total)  46  12 
Only criterion iv. not met 129 (11 % of total)  129  0 

 
Table 1 shows the results from the practical study. Firstly, note that for all the 989 cases 
where all four criteria of theorem 1 were met a least squares solution existed. This is a 
powerful empirical justification for that meeting the criteria of theorem 1 implies the 
existence of a rating curve estimate. Secondly, note that of the 58 cases where one or 
more of the criteria i. – iii. (at times also with criterion iv.) were not met, only 12 still had 
a solution. These 12 cases were investigated. We found that in 7 of the 12 cases the 
estimated exponent b was negative (criterion iii. not met), which is unwanted from a 
hydraulic point of view and should lead to a rejection of the data or the gauging station. 
The other 5 cases also produced unrealistic exponents far outside the interval (1, 4). 
Erroneous data processing was the most dominant reason for being able to produce an 
unrealistic rating curve estimate despite breaking the criteria of theorem 1. Two examples 
are shown in fig.1, where; (a) a wrongly observed or punched hm resulted in criteria i. and 
iv. being broken; and (b) a small dataset of which two heads having been assigned the 
wrong sign caused criteria ii. and iii. to be broken. 3 of the 12 above mentioned cases 
were bimodal, apparently due to two different datasets having been wrongly stored on the 
database as one dataset. Also note that in the 129 cases were only criterion iv. was 
broken, no rating curve estimate existed. Once again the mysterious criterion iv. seems to 
be a key criterion, because when an ostensible adequate dataset has no solution, it is 
usually this criterion that is broken.  
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Figure 1. Examples from the 12 out of 1176 head – discharge measurement datasets which had a rating curve 
estimate despite not meeting the criteria of theorem 1.   
 
 
Based on the results of this section, we state the following proposition which is the main 
result of the present study: 
 

Proposition 1  
 



If one or more of the criteria of theorem 1 are broken, a trustable rating curve 
estimate based on frequentist estimation of a power-law relationship between the 
head and discharge, does not exist.    

 

2.6 Maximising r(c) 
 

If having concluded that r(c) is unimodal, numerical optimisation is required in order to 
obtain an estimate ĉ of c. Maximising the single argument function in eq.9 may seem 
straightforward by solving eq.15 numerically using Newton-Raphson iteration. However, 
practice has shown the authors that the Newton-Raphson iteration method can 
occasionally be unreliable when initial values must be supplied automatically, due to the 
fact that ∂2r(c)/∂c2 changes sign for a cc ˆ~ > , which is a consequence of the fact that r(c) 
has a limit as c � ∞ (given explicitly in corollary 5 in the appendix). Clearly, if a 
Newton-Raphson scheme is supplied with an initial value above c~ , the iteration will take 
ĉ  towards infinity and thus not converge. In order to avoid this runaway situation, a 
scheme based on the golden section method (see Cheney and Kincaid, 1999 for details) 
seems to work well for maximising r(c). This technique is known to be secure when r(c) 
is unimodal, although it converges relatively slowly compared to the Newton-Raphson 
iteration which converges remarkably fast. In any case, with modern computer power 
available, using the golden section method should be no problem.   
 

2.7 Inference 
 
No rating curve and discharge estimates should be presented without information about 
its uncertainty. This is something that seems to be forgotten by many hydrometric offices.  
 
There are several methods available for obtaining confidence intervals about the 
estimated rating curve parameters and any predicted discharge. Resampling methods like 
the bootstrap are often useful in nonlinear regression problems (Efron and Tibshirani, 
1993; Huet et al., 1990). The method of bootstrap can handle aspects like unaccounted for 
heteroscedasticity, bias and curvature effects. However, applying bootstrap techniques to 
the maximisation of eq.9 is not straightforward. The authors have experienced that 
occasionally some resamples fail to satisfy one or more criteria of theorem 1 (especially 
criteria iv.), leading to no finite solution situations while resampling. This produces an 
unclear situation. However, if only criterion iv. is broken while resampling, the predicted 
discharge estimate will exist although the estimated c is infinite, and bootstrap methods 
are applicable for inference around predicted discharge values.          
 
Classical asymptotic nonlinear least squares results (see Seber and Wild, 1989) are 
certainly available for inference about ĉ , and subsequently the delta method can be 
applied in order to obtain approximate confidence intervals for b̂ , â and any predicted 
log-discharge +q̂ . However, typical normal assumptions can be violated by curvature 
effects. The authors experience is that some moderate curvature effects are present in r(c) 
for most real-life rating curve problems. An example is seen in fig.1a where r(c) for the 



lower segment Corrientes data is slightly unsymmetrical around its maxima. However, 
the curvature effects are mostly small and not serious, and normal approximations 
normally provide trustworthy information about the accuracy of the rating curve. Note the 
constraint that both A and Q must be greater than zero indicates that it is unwise to 
construct confidence intervals on Â  and +Q̂ itself. In addition to this, the assumptions of 

aa -ˆ and ++ - qq̂ being normally distributed will not be valid in other scales than the 
logarithmic. The appropriate thing to do is to do all the calculations on the logarithmic 
scale and transform the approximated confidence limits obtained at the end.                   
 
We also mention that maximum likelihood based methods are applicable for obtaining 
confidence intervals in rating curve estimates. Clarke (1999) applied the asymptotic 
normal results for the likelihood function for providing confidence intervals to predicted 
discharges. However, the profile likelihood approach is perhaps the most attractive 
likelihood method (Huet et al. 2004), as it handles curvature effects rather well.    
 
 
 
 
 

3 A practical example 
 
The rating curve data from Rio Paraná at Corrientes, Argentina, consists of 368 discharge 
measurements performed between 1981 and 2002. The control at Corrientes is compound, 
and consists of one main channel segment (h < 6 m) and one segment from where the 
river overtops its banks (h ≥ 6 m.) (Clarke et al. 2000). The discharge was measured 
solely by current meter from 1981 to 1996. ADCP (Acoustic Doppler Current Profiler) 
was introduced in 1996. There are 233 measurements available at the lower segment. We 
see from table 2 that these 233 discharge measurements satisfy all four criteria in theorem 
1, indicating that a least squares rating curve solution exists for the lower segment. This 
indication is confirmed in fig.2a and fig.2b, where we see that r(c) for the lower segment 
has one unique maxima and ∂r(c)/∂c has a single root at c = 5.43 m. Fig.3a shows the 
discharge measurements for the lower segment along with the estimated rating curve. 
After regression diagnostics shown in fig.3b suggests that the variance was stabilised 
rather adequately by the logarithmic transformation and that only one segment is in 
operation for h < 6 m. However, fig.3c indicates that the steady-state assumption is 
somewhat violated. The normalised residuals seem to be time dependent, suggesting that 
the hydraulic properties of the control of the lower segment have changed over time. The 
measurements of the upper segment along with an exponential-based rating curve 
estimate are shown in fig.3d. Visually, the data work satisfactory, and constructing a 
power-law based rating curve seems feasible. However, table 2 shows that criteria iv. of 
theorem 1 is not met by the data for the upper segment. Fig.2c gives us the truth of the 
matter: r(c) for the upper segment has no stationary point and consequently ∂r(c)/∂c does 
not cross the line of zero as shown in fig.2d. For that reason it is impossible to obtain a 
power-law based least squares estimated rating curve for the upper segment. However, 
the exponential model in eq.21 was satisfactory applied to the upper segment data. The 
estimated lower and upper rating curve segments merge at h = 6.1423···, which is slightly 



off the presumed phase-shift. Note the surprisingly small approximated standard 
deviation of the upper-segment exponential model parameters, which suggests that the 
exponential-law model really suits the data. Fig.2e indicates that no unaccounted for 
heteroscedasticity is present in the exponential model, while fig.2f shows evidence of 
change of hydraulic properties of the upper segment over time.       
 

Table 2. Results from fitting the Corrientes data to power-law and/or exponential-law rating curve models. 
Approximated standard deviations of estimates are given in parenthesis 
 Criteria of theorem 1 

satisfied?  Estimated rating curve parameters 

 i. ii. iii. iv.  ĉ  b̂  Â  ŝ  
Lower 
segment Yes Yes Yes Yes  5.43~(0.17) 1.88~(0.03) 269~(364) 0.052~(0.002) 

Upper 
segment Yes Yes Yes No  Na Na Na Na 

      Estimated rating curve parameters, exponential-law model 
      ( )âexp  b̂   ŝ  
Upper 
segment      8.689~(0.047) 0.247~(0.007)  0.062~(0.004) 
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Figure 2. r(c) and ∂r(c)/∂c for the Corrientes data, of which (a) and (b) are related to the lower segment and 
(c) and (d) are related to the upper segment. 
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Figure 3. Head – discharge measurements and rating curve estimated by the classical power-law model (a) 
along with predictor-residual plot (b) and time-residual plot (c) for the lower segment at Corrientes. Head – 
discharge measurements and rating curve estimated by an exponential-law model (e) along with predictor-
residual plot (f) and time-residual plot (g) for the upper segment at Corrientes.   
 

 

 

 

 

Conclusions 
 

The work presented shows in detail how the original multivariate minimisation problem 
reduces to the maximisation of a single argument function. Utilizing that result and by 
reasonable mathematical approaches it is shown that the frequentist approach to the 
classical nonlinear least squares rating curve model rests upon four criteria which the 
head – discharge measurements should meet. The usefulness of the four criteria is 
supported by an application to over thousand real-life datasets. It is shown that in some 
instances an exponential-law relationship between the head and the discharge is 
motivated in conjunction with the traditional power-law relationship having no rating 
curve estimate. Maximisation of the single argument resolvent function is discussed, and 
the study arrives at a conclusion that the golden section method is trustworthy if a 
maximum exists. It is argued that the classical asymptotic nonlinear least squares methods 
provide clear and adequate confidence intervals for the estimated rating curve parameters 
and predicted discharges.    
 



The present study presents fundamental knowledge about fitting the discharge rating 
curve to a set of head – discharge measurements using the classical frequentist method of 
nonlinear least squares. However, there still remains scope for further analysis. There are 
grounds in hydraulics for providing a priori knowledge about some of the rating curve 
parameters, and a Bayesian approach may turn out to be a viable method for obtaining a 
rating curve estimate. Traditionally the power-law relationship between the head and the 
discharge is assumed for all segments of a rating curve. In contrast, the theoretically 
statistical results of the present study bring up the possibility of an exponential-law 
relationship. This matter requires further investigation.     

 

Acknowledgements 
 

The authors wish to thank Prof. I. Helland and Prof. B. Natvig at the Division of statistics 
and insurance mathematics, University of Oslo, for making helpful comments and 
validations. They would also like to thank Eng. C. Franzetti at Evaluación de Rescoursos 
S.A, Argentina, for providing the Corrientes data.  Prof. M. Burgess at the University 
College of Oslo is also gratefully acknowledged for reading through the manuscript.            

 

 

 
 
 
 
 

References 
Cheney, W., Kincaid, D. (1999). Numerical Mathematics and Computing, 4th ed. Brooks/Cole 
Publishing Company, California, USA.   
 
Clarke, R. T. (1999). Uncertainty in the estimation of mean annual flood due to rating curve 
indefinition. J. Hydrol. 222, 185 – 190.    
 
Clarke, R. T., Mendiondo, E. M., Brusa, L. C. (2000). Uncertainties in mean discharges from two 
large SouthAmerican rivers due to rating curve variability. Hydrol. Sci., 45(2), 221 – 236.  
 
Demidenko, E. (2000). Is this the least square estimate? Biometrika. 87(2), 437 – 452.  
 
Efron, B., Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall, New York, 
USA.  
 
Herschy, R. W. (1999). Flow Measurements. In: Hydrometry: Principles and Practices, second 
edition. (ed. by R. W. Herschy), John Wiley & Sons, England.  



 
Huet, S., Jolivet, E., Messéan, A. (1990). Some simulation results about confidence intervals and 
bootstrap methods in nonlinear regression. Statistics, 3, 369 – 432.  
 
Huet, S., Bouvier, A., Poursat, M. –A., Jolivet, E. (2003). Statistical Tools for Nonlinear 
Regression, second edition. Springer, New York, USA.    
 
ISO 1100/2. (1998). Stage-discharge Relation. Geneva.   
 
Lambie, R. C. (1978). Measurement of flow: velocity-area methods. In: Hydrometry: Principles 
and Practices  (ed. by R. W. Herschy), John Wiley & Sons, Chichester, West Sussex, UK.     
 
Mosley, M. P., McKerchar A. I. (1993). Chapter 8: Streamflow. In: Handbook of Hydrology (ed. 
by D. R. Maidment), McGraw Hill, New York, USA.   
 
Petersen-Øverleir, A. (2004). Accounting for heteroscedasticity in rating curve estimates. J. 
Hydrol., 292, 173 – 181. 
 
Seber, G. A. F., Wild, C. J. (1989). Nonlinear regression. Wiley, New York, USA. 
 
World Meteorological Organization. (1994). Guide to Hydrological Practices, second ed. WMO-
No.168, Geneva. 
 
 
 
 
 
 
 

Appendix 
 

A1 Definitions 
 

Let Mi be the ith log-transformed rating curve regression pair such that 

 

( ) ( )( ) ( )iiiii xqchQM ,log,log ≡+=        (A1) 

 

 The set of all n ≥ 3 log-transformed rating curve regression pairs is thus defined as  

 

{ }nMMM ,,, 21 L=M            (A2) 

 



Let � be any statistical function of qi and/or xi. Then  

 

Wœi
x               (A3) 

 

is evaluated using all h and/or q in M except the k pairs containing hm, which is defined as 

 

( )nm hhhh ,,,min 21 L=           (A4) 

 

so that 

 

WŒ¤= jhh mj           (A5) 

 

On the other hand 

 

WŒi
x              (A6) 

 

means an evaluation of � using only the h and/or q of the k pairs in M containing hm. 

Let the estimated expectation value be defined as 

 

Â
=

=
n

i
in 1

1
xx            (A7) 

 

We then define the estimated variance( )2xx - as 

 

( ) ( )22arv̂ xxx -≡           (A8) 

 

and the estimated third order central moment ( )3xx - as 

 

( ) ( )323 23kewŝ xxxxx +-≡          (A9) 

 



Furthermore, let � be any statistical function of qi and/or xi. We then define the estimated 

covariance ( )( )ggxx --  as 

 

( ) gxxggx  ,ovĉ -≡           (A10) 

 

We also define  
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i
ix

y i
i    ,0

  ,
           (A11) 

 

and 
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i
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           (A12) 

 

and 

 

( )
Ó
Ì
Ï

WŒ

Wœ-
≡

i
ix

z i
i    ,0

  ,exp
          (A13) 

 

Note that ( ) ( )chx ii +=- /1exp .  

We also define two requirements on the set of predictors h: 

 

jhhjkn ≠Wœ$≥- |   and  2        (A14) 

 

Eq.A14 ensures that there are at least two dissimilar values of h in M greater than hm.   

We also state here the presently important function A(c) 

 

( ) ( )( ) ( ) ( ) ( )( )xxxqxxqcA ---= exp,ovĉ,ovĉarv̂exp,ovĉ    (A15) 

 

A2 Lemmas  
 
Lemma 1 
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x
mhc

arv̂lim           (A16) 

 

Proof 

 

Let chd m += . Then we can write 

 

( ) ( )Â
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+-+=
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mi dhhd
n
kx loglog          (A17) 

 

Using Taylor expansion on the last expression in eq.A17 yields 
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By the definition of d, we have that  lim  lim
0+Æ-Æ

¤
dhc m

, thus, for a very small and positive d, 

we obtain the first order Taylor approximation  

 

( ) yd
n
kx +ª log            (A19) 

 

Furthermore, for a very small positive d, we obtain 
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and 

 

( ) 222 log yd
n
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which gives us 
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From the definition/requirement in eq.A14 we know that ( )yarv̂  is finite. Thus, by 

eq.A22 we arrive at  
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Lemma 2  
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Proof 

 

For a very small positive d we have that 
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and 
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 This gives us 
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Since ( ) 0log <d  and ( ) ( )yqd ,ovĉ|log| >> , it follows that  
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and we reach the equation    
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Lemma 3  
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Proof 

 

By using the definition of z in eq.A12 and d very small and positive we obtain 
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Hence, we get 
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Furthermore, since 
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for d very small and positive, it follows that 
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   Thus, we obtain 
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Recalling the definition of A(c) in eq.A15, the results of eq.A34 and A.35 enables us to 

obtain 
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,ovĉ1loglim    (A36) 

 

Since ( ) •Æ-
-Æ

dd
mhc

/loglim , ( ) 0lim >
-Æ

cA
mhc

will require that the parentheses in eq.A36 

is greater than zero. This implies 

     

  

( ) 01 >-˜
¯

ˆ
Á
Ë

Ê -+˜
¯
ˆ

Á
Ë
Ê -

WŒ
yqqy

n
kyqq

n
k

i
      (A37) 



 

 

Using w defined in eq.A12, eq.A37 can be rewritten as 
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Thus is it easy to see, since Wœ"= iwq ii and ( )miihc
hhy

m

-=
-Æ

loglim , that the last 

expression of eq.A38 is identical to 
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Corollary 1 
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Proof 

 

Using Taylor expansion we obtain 
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   Hence, for c very large, we have the third order Taylor approximations 
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   Thus, we obtain 
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   Furthermore, for very large c, we have 
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   We then have 
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Furthermore, for c very large, we obtain 
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Furthermore, for very large c, we have 
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Using eq.A42 and eq.A46 we get 
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Combining eq.A52 and eq.A53 yields 
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2
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Using eq.49 and eq.55 results in  
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cA ,ovĉkewŝ,covarv̂,covarv̂2
2
1 2

5 -+-ª   (A56) 

 

which enables us to see that a negative parenthesis in eq.A56 is equivalent to   
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which, if valid, is equivalent to 
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Corollary 2 
 From eq.A45 we see that  
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which implies that  
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since we from the definition/requirement in eq.A14 have that ( )harv̂ must be greater than 

zero. 

 

 

Corollary 3 
 

From eq.A51 we, for a large c, see that  

 

( ) ( )
˜
¯

ˆ
Á
Ë

Ê+ª
•Æ c

o
c

hqxq
c
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which implies that  
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if and only if 
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Lemma 5 
 

 r(c) and ∂r(c)/∂c are continuous for •Ò·-Œ ,mhc   

 

Proof 

 

   We have that 
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Firstly, we know that ( )xarv̂ , ( )xq,ovĉ , ( )( )xq -exp,ovĉ  and ( )( )xx -exp,ovĉ are 

nothing more than functions that consist of sums or sums of squares 

of ( )chx j += log and/or( ) 1-+ ch j , of which ( )xq,ovĉ  and ( )( )xq -exp,ovĉ in addition 

are scaled by scalars which are functions of jq . Since both ( )ch j +log  and 

( ) 1-+ ch j are continuous for all mhc -> , the numerators of eq.A64 and eq.A65 are 

continuous for •Ò·-Œ ,mhc , since any function consisting of products or sums of 

continuous functions is continuous. We also know that the denominators of eq.A64 and 

eq.A65 are continuous and different from zero, since ( )xarv̂ by the definition/requirement 

in eq.A14 is strictly positive. Hence, are r(c) and ∂r(c)/∂c continuous for •Ò·-Œ ,mhc .     
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Proof of theorem 1 
 

We have that  
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Since the argument c spans the interval •Ò·-Œ ,mhI and ∂r(c)/∂c by lemma 5 is 

continuous on I, there must exist an odd number of finite arguments c inside I so that 

∂r(c)/∂c = 0 for each of these arguments, of which ∂2r(c)/∂c2 < 0 for at least one of these 

arguments, if  
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Eq.A68 is a consequence of the well known Intermediate-Value Theorem of Continuous 

Calculus.       

We see that if criterion i. and criterion iii. of theorem 1 are met, then, by Lemma 1, 

Lemma 2 and Lemma 3, we have that 
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which proves that the first requirement of eq.A67 is met. Not necessary to prove but 

worth noting, is that the limit of eq.A68 in fact is ∞, which is easily seen by considering 

eq.A22, eq.A26 and eq.A36.                   

Furthermore, we see that if criterion ii. and criterion iv. of theorem 1 are met, then, by 

lemma 4, corollary 3 and corollary 4, it follows that 
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which proves that the last requirement of eq.A67 is met (note that the limit of eq.A69 in 

fact is -0 , which is a consequence of r(c) having an upper limit).  

Thus, if criteria (i. – iv.) of theorem 1 are all met, then eq.A67 is true and r(c) has an odd 

number of stationary maximum/minimum points of which at least one is a maxima.  
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Remark 1 

 

The requirement ( ) 0/ 22 ≠∂∂ ccr  will exclude any saddle points from being counted as 

one of the odd stationary points in theorem 1.       

 

 



Corollary 4 

 
From eq.A22 and eq.A26, d very small and positive, we obtain 
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Applying L’Hospital’s rule twice on eq.A71 we obtain that 
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which is the left hand limit for r(c). 

� 

 

 

Corollary 5 

 

Using the expressions of eq.A45 and eq.A51, c very large, we get 
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implying 
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which is the right hand limit for r(c). 
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Lemma 6 
 

Let ( )chbaq ˆlogˆˆˆ ++= ++  be a predicted log-discharge. We then have 
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Proof 

 

Recalling that ( ) ( )
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xqcb
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= , we get, for a very large c, using Taylor approximation  
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arv̂
kewŝ11
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,ovĉ1
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We define the constants 
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Thus, for a very large c, we obtain 
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and by the definition of a from eq.5a 
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which, for c very large, gives the estimations 
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which implies 
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