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Abstract
In numerical studies of the dynamics of unbound quantum mechanical systems, absorbing
boundary conditions are frequently applied. Although this certainly provides a useful tool in
facilitating the description of the system, its applications to systems consisting of more than
one particle are problematic. This is due to the fact that all information about the system is lost
upon the absorption of one particle; a formalism based solely on the Schrödinger equation is
not able to describe the remainder of the system as particles are lost. Here we demonstrate
how the dynamics of a quantum system with a given number of identical fermions may be
described in a manner which allows for particle loss. A consistent formalism which
incorporates the evolution of sub-systems with a reduced number of particles is constructed
through the Lindblad equation. Specifically, the transition from an N-particle system to an
(N − 1)-particle system due to a complex absorbing potential is achieved by relating the
Lindblad operators to annihilation operators. The method allows for a straight forward
interpretation of how many constituent particles have left the system after interaction. We
illustrate the formalism using one-dimensional two-particle model problems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and basic theory

Great effort has been invested in understanding the
quantum mechanical behaviour of dynamical unbound systems
involving several particles. Experimental advances allow us
to study processes in which internal interactions between
the constituent particles play a crucial role—in addition to
dynamics induced by external perturbations. Examples of such
processes may be photo-ionization of helium [1] and cascaded
Auger processes following ionization of inner-core electrons
in atoms [2]. Of course, in order to understand such processes,
theoretical and numerical studies are required. Furthermore,
the theoretical interest of such systems, be it within the context
of solid state, molecular, atomic or nuclear physics, is spurred
by the fact that they represent demanding tasks. One obvious
challenge in describing unbound systems is that their spatial
extension may become arbitrarily large. Moreover, even if
one is able to represent the whole system within a finite space,
extracting relevant information from the final wavefunction
may be far from trivial.

The unbound quantum systems under study may often
be thought of as having an interaction region of finite spatial

extension and an asymptotic region where the unbound part
of the system travels outwards. As this asymptotic behaviour
often is well known, it may be desirable to describe only the
dynamics of the part of the wavefunction belonging to the
interaction region. In a numerical implementation this cannot
be done simply by resorting to a representation of space that
is smaller than the extension of the wavefunction as this leads
to unphysical reflections at the boundary. However, it can
be achieved by imposing absorbing boundary conditions, i.e.
by demanding that the wavefunction vanishes as the particle
approaches the edge of the numerical grid—preferably with
as little reflection as possible, see [3, 4] or the recent review
[5]. Such absorbers are frequently referred to as perfectly
matched layers in the context of general wave equations
[6].

When propagating a wave packet on a numerical grid,
a common way to impose absorbing boundary conditions
is by adding a complex absorbing potential (CAP) to the
Hamiltonian of the system [7]. Complex absorbing potentials
are widely used e.g. within molecular dynamics [8–10] and
atomic physics [11, 12]. Alternatively, this way of absorbing
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particles may be formulated as multiplying the wavefunction
with a masking function at each time step [1].

In any case the resulting effective Hamiltonian acquires
an anti-Hermitian part

Heff ≡ H − i�, (1)

where both H and � are Hermitian and � is positive semi-
definite (� � 0).

The wavefunction |�(t)〉 of the system obeys the
Schrödinger equation

ih̄
d

dt
|�(t)〉 = Heff|�(t)〉. (2)

A density operator ρ(t) correspondingly obeys the von
Neumann equation

ih̄
d

dt
ρ(t) = Heffρ(t) − ρ(t)H

†
eff = [H, ρ(t)] − i{�, ρ(t)}.

(3)

It is easy to see that the evolution is non-unitary, namely

d

dt
Tr[ρ(t)] = −2

h̄
Tr[�ρ(t)] � 0, (4)

so that probability is ‘lost’ if the density matrix overlaps with
the anti-Hermitian part of the effective Hamiltonian.

Although methods involving non-Hermitian effective
Hamiltonians may come in very handy in reducing the
complexity in describing potentially unbound systems, there
is one major problem when the system contains more than
one particle: as one particle leaves the rest of the system
and is subsequently absorbed, the entire wavefunction is lost.
This is obvious since the wavefunction is normalized to the
probability of finding all particles within the space defined by
the numerical implementation. In other words, if an initial
N-particle system gradually ‘loses’ one particle through some
non-Hermitian ‘interaction’, the corresponding wavefunction
|�N(t)〉 gradually goes to zero—not to some wavefunction
corresponding to (N − 1) particles.

As it is desirable to be able to describe dynamics where
several particles are lost one by one, one may try and construct
a formalism where an (N−1)-particle wavefunction |�N−1(t)〉
is created as one particle is lost, and where this wavefunction
may be propagated using the corresponding Schrödinger
equation including some source term. Once able to do this,
the extension to (N − 2) particles etc follows by induction.
However, as it turns out, such a construction is not possible
due to the fact that the process of losing particles in this
way is irreversible: as a particle is absorbed, information is
irretrievably lost. Hence, a Markovian master equation should
be a more suitable starting point than a pure state approach.
One such equation is the Lindblad equation:

ih̄
d

dt
ρ = [H, ρ] − D(ρ) (5)

with the so-called Lindbladian D(ρ) given by the generic
expression [13]

D(ρ) = i
∑
m,n

γm,n

(
A†

mAnρ + ρA†
mAn − 2AnρA†

m

)
. (6)

Here, H is the Hamiltonian governing the unitary part of
the evolution. The operators An are referred to as Lindblad

operators. The matrix formed by the coefficients γm,n

is required to be positive semi-definite. In a diagonal
representation, the Lindbladian simplifies to

D(ρ) = i
∑

n

(
A†

nAnρ + ρA†
nAn − 2AnρA†

n

)
. (7)

Equation (5) is commonly used to describe energy dissipation
to the environment [14]. It is also frequently encountered in the
context of quantum optics [15]. For instance, when describing
the composite system consisting of an atom in a quantized
radiation field, the description of the reduced density matrix
obtained by fixing the number of photons to n and tracing out
the field part of the density matrix of the composite system

ρ(n) = TrF
[
P

(n)
F ρ

]
, (8)

where P
(n)
F projects onto the n-photon subspace and index F

refers to the photon field, may be described by the Lindblad
equation [16].

The Lindblad equation is often constructed from the
Born–Markov equation by insisting that the system density
matrix ρ (or ρ(n) in the above example) be positive semi-
definite at all times. However, it has been proven by Gorini,
Kossakowki and Sudarshan [17], and by Lindblad [18] that
equation (5) with the Lindbladian (6) is the most general
formulation of a Markovian process that ensures positivity
and conservation of the trace of the density matrix. As
the processes we wish to describe should fulfil precisely these
criteria, and since in the present case there is no reference
to any external system with which the particles interact, the
Lindblad equation seems to be the proper starting point for our
purpose.

It has recently been demonstrated that the spontaneous
decay of unstable particles may also be described within this
formalism [19, 20]. In [19] a master equation of Lindblad
form is obtained for a Hilbert space consisting of unstable
particle states and vacuum—however, without any dynamical
degrees of freedom. The decay rates of the unstable particles
are introduced as parameters. Similarly, in [20] decay from
one system to another one consisting of its decay products is
described by introducing a single Lindblad operator. In these
works it is demonstrated that one may describe decoherence
along with decay in this context.

In the present work these ideas have been used to
generalize the standard one-particle absorbing boundary
technique to an N-body setting, and it is demonstrated that
this is indeed the natural way to do this. Alternatively, in
a more general context, this formalism allows the study of a
system which gradually loses particles to some environment
due to the non-Hermitian part of Heff .

We comment that the absorber should not affect the
dynamics in its interior. Its overlap with any confining
potential must be very small and it should induce as little
reflection and transmission as possible. This is readily seen
to be true for any implementation of absorbing boundary
conditions. The situation is slightly more complicated for
many-particle systems, however, than for one-particle systems.
One must additionally assume that the absorber is placed
sufficiently far away from the confining potential so that the
interaction between outgoing particles and the remaining ones
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can be neglected. This may effectively force the CAP further
away from the confinement region.

In the following section, section 2, the formalism will
be described for identical fermions exposed to a complex
absorbing potential. In section 3, two examples featuring
two identical fermions in one dimension are given. Finally, in
section 4, conclusions are drawn and a few future perspectives
are outlined.

2. Fock space description

The natural setting for describing a system of a variable number
of fermions is Fock space, the direct sum of all n-fermion
spaces Hn. As we wish to describe at most N particles, it
suffices to consider

H =
N⊕

n=0

Hn. (9)

An arbitrary n-fermion state |�〉 ∈ Hn can be written as

|�〉 = 1

n!

∫
dxn �(x1 · · · xn)ψ

†(x1) · · · ψ†(xn)|−〉, (10)

where the field operator ψ†(x) creates a particle at position x.
The field operators obey the usual anti-commutator relations

{ψ(x), ψ(x ′)} = 0, {ψ(x), ψ†(x ′)} = δ(x − x ′). (11)

Here, x may denote all degrees of freedom associated with a
particle, including eigenspin. Moreover, �(x1 · · · xn) is the
anti-symmetric local wavefunction of the n-particle system,
and |−〉 ∈ H0 is the vacuum state, containing zero particles.

A system of n identical fermions interacting with at most
two-body forces has the Hamiltonian

H =
n∑

i=1

h(xi) +
n∑

j<i

u(xi, xj ). (12)

Here, h(xi) (resp. u(xi, xj )) is a one-body (two-body) operator
acting on the degrees of freedom associated with particle i (and
j ). Using field operators, the Hamiltonian can be written as

H =
∫

dx ψ†(x)h(x)ψ(x)

+
1

2

∫
dx dx ′ ψ†(x)ψ†(x ′)u(x, x ′)ψ(x ′)ψ(x), (13)

the point here being that H given in this form is independent
of the number of particles in the system. The exact expression
is irrelevant at this point. The CAP, which is diagonal in x, is
conveniently introduced as

−i� = −i
∫

dx ψ†(x)�(x)ψ(x). (14)

By comparing (5), (7) and (14) with the von Neumann
equation (3), we see that the Lindblad operators, for a diagonal
representation of the Lindbladian, must fulfil

� =
∫

dx A†(x)A(x) (15)

in order to reproduce the anti-Hermitian ‘interaction’ leading
to absorption. Here we have allowed for an integral instead of
a sum in (7). Furthermore, the last term of the Lindbladian,

n,nρ n,n−1ρ

n−1,nρ

n+1,n+1ρ

n,n+1ρ

n+1,nρ

n−1,n−1
ρ

. . .

. . .

. . .
. . .

. . .
. . .

Figure 1. Illustration of how the various blocks of the density
matrix are populated via the one above to the left only. As a
consequence of this, when the density matrix is block diagonal, this
diagonal structure is maintained, and losing a particle (left figure)
corresponds to moving downwards along the block diagonal of ρ.

which is absent in the von Neumann equation, −2An ρA
†
n →

−2A(x)ρA†(x), should map an N-particle system into an
(N − 1)-particle system. Hence, A(x) should map HN into
HN−1, which means that the Lindblad operator A(x) must be
of the form

A(x) =
∫

dx a(x, x ′)ψ(x ′). (16)

The simplest choice that satisfies (15) is the diagonal form

A(x) ≡
√

�(x)ψ(x). (17)

We will return to the justification of why this is the proper way
to define the Lindblad operators shortly.

With (17), the Lindbladian (7) may immediately be
written as

D(ρ) = i�ρ + iρ� − 2i
∫

dx �(x)ψ(x)ρψ†(x), (18)

and the master equation (5) becomes

ih̄
d

dt
ρ = [H, ρ] − i{�, ρ} + 2i

∫
dx �(x)ψ(x)ρψ†(x). (19)

This is our fundamental dynamical formulation of particle loss
due to a CAP.

Let us consider the master equation (19) in some detail.
We may partition the density matrix ρ into blocks, namely

ρ =
N∑

n=0

N∑
m=0

ρn,m, (20)

where ρn,m = PnρPm, with Pn being the orthogonal projector
onto Hn. Each block evolves according to

ih̄
d

dt
ρm,n = [H, ρm,n] − i{�, ρm,n}

+ 2i
∫

dx �(x)ψ(x)ρm+1,n+1ψ
†(x) (21)

showing that the flow of ρn,m depends on that of ρn+1,m+1, but
not the other way around. This is illustrated in figure 1. Also,
note that ρN,N obeys the original von Neumann equation (3) as
there are no couplings to other blocks in this case as particles
do not enter the N-particle system.
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We now return to the question of whether definition (17)
of the Lindblad operators, which obviously is the simplest one,
is the only adequate one. Indeed, during the transition from
an N-particle system to an (N − 1)-particle system, only the
unabsorbed part of the original system should be reproduced
within the (N − 1)-particle system, and this leads to the above
choice. To see this, consider a somewhat idealized example
consisting of two non-interacting particles. Since they do not
interact, their wavefunction is given by a Slater determinant at
all times, � = [α(x1, t)β(x2, t) − β(x1, t)α(x2, t)]/

√
2. The

state α does not overlap with the absorber at any time, i.e.

�(x)α(x, t) = 0, for all x and t, (22)

and β corresponds to an unbound particle travelling outwards.
We suppose that as t approaches infinity, the particle in the state
β is completely absorbed, and our numerical representation of
the final system should converge towards the pure one-particle
state α.

Indeed, the evolution dictated by (21) follows this pattern.
The block of the density matrix corresponding to the two-
particle system, ρ2,2, remains a pure state—albeit with
decreasing norm as β is absorbed—and the evolution of the
one-particle block ρ1,1 simplifies due to (22) to

ih̄ρ̇1,1 = [h, ρ1,1] + 2i
∫

�(x)|β(x; t)|2 dx|α〉〈α|. (23)

Hence, the one-particle part of the system is always
proportional to a pure α-state, and, since the trace of the entire
system is conserved, this simply integrates to ρ1,1(t → ∞) =
|α〉〈α|, as it should.

On the other hand, with a non-diagonal form of the
Lindblad operators, cf (16), we would have contributions to
ρ̇1,1 of the form |β〉〈α| and its Hermitian adjoint in addition to
the pure state contribution. These contributions clearly cannot
be allowed, as ρ1,1 should be independent of the state β of
the outgoing particle. Hence, we find that, up to an arbitrary
phase factor, definition (17) is the proper way to define A(x).

For a non-interacting N-fermion system where Nα

particles are bound and Nβ particles are unbound, and
with an initial state given by the Slater determinant |�〉 =
|{α1, . . . , αNα

, β1, . . . , βNβ
}〉, it may be verified by inspection

that the source term for the Nαth block, ρNα,Nα
, is always

proportional to |{α1, . . . , αNα
}〉〈{α1, . . . , αNα

}| given that none
of the αi-states overlap with �. The intermediate density
matrix blocks ρN−n,N−n, where 0 < n < Nβ , will approach
zero as t → ∞, but transiently describe (mixed) states where
n particles have left.

Of course, in the more interesting context of interacting
particles, the structure of the diagonal blocks of the density
operator, ρn,n, is more complex than in the special case of
non-interacting particles.

2.1. Consequences and interpretation

Typically, our starting point is a pure N-particle state,
|�(0)〉〈�(0)|, in which case (21) reduces to the ordinary
Schrödinger equation (2), which was our original formulation.
Moreover, it is easy to see that ρ(t) will remain block
diagonal for all t in this case, i.e. ρn,m = 0 if n 
= m. But

(21) shows that ρn,n(t) in general is a mixed state, unlike
ρN,N(t) = |�(t)〉〈�(t)|. This is due to the information loss
when admitting ignorance of the whereabouts of the removed
particle.

The analogy to the situation described in relation to (8)
is quite clear. With the possibility of spontaneous decay by
emitting a photon, the equation dictating the evolution of ρ(n)

acquires a source term depending on ρ(n−1), i.e. the atomic
system with one less photon [16]. In this case, as in the
cases of [19, 20], the Lindblad operators are related to the
spontaneous decay rates.

We stress that by construction, Tr[ρ(t)] = 1 for all t.
Probability flows monotonically from HN into Hn, and the
particle absorbed from ρN,N is not present in ρn,n, but is erased,
and ρn,n is a proper description of an n-fermion system. In
this way, we see that the above construction is a natural
generalization of the original non-Hermitian dynamics, which
describes the classical removal of a particle, into one that
also describes the remaining system in a consistent way. It
is striking to note that the CAP, −i�(x), is already given as
one of the terms in the Lindbladian, so that the Fock space
formulation follows almost immediately.

It is worthwhile to mention that the traces of the blocks
ρn,n along the diagonal of ρ have very simple interpretations
as the probability P(n) of having n particles in the system
upon a measurement, i.e.

P(n) ≡ Trn[ρ(t)] ≡ Tr[ρn,n(t)]. (24)

In particular, P(N) = 〈�|�〉 � 1, and P(0) = 1 −∑N
n=1 P(n). Hence, within this formalism, distinguishing

between single, double, etc ionization of atoms and molecules
is straightforward.

For any observable A the expectation value is given by
〈A〉 ≡ Tr[Aρ] = ∑

n Tr[Aρn]. For example, the expected
number of particles in the system is given by

〈N 〉 =
∫

dx Tr[ψ†(x)ψ(x)ρ] =
N∑

n=1

nP (n). (25)

It may also be useful to consider conditional expectation
values:

〈A〉n ≡ Trn(Aρ)

Trn(ρ)
, (26)

i.e. the expectation value of A given that the system is found
in an n-particle state.

Obviously, as particles are ‘removed’ by the absorber,
information is lost. This information loss may be quantified
by the von Neumann entropy, S ≡ − Tr[ρ log ρ], or the closely
related notion of purity, defined by [13]

ς ≡ Tr(ρ2) � 1. (27)

Unity minus this quantity, 1 − ς , is a measure of the
amount of mixedness, and the purity ς is 1 for pure states
only. Similar to conditional expectation values, cf (26), one
may define conditional purity and von Neumann entropy as
the corresponding quantity of the re-normalized block, i.e.
ρn,n/ Tr[ρn,n].

Of course, for a full quantum mechanical description in
terms of the complete (unabsorbed) N-particle wavefunction,
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no information is lost. Indeed, the absorption of particles
is a semi-classical concept. In the full N-fermion quantum
system no such separation is possible. On the other hand,
as the Schrödinger equation for the N particles is separable
in the non-interacting αi and βi states discussed above,
giving a Slater determinant of the time evolved one-particle
states as the full solution, the Lindblad equation is seen to
correctly construct the Nα-particle Slater determinant resulting
from the removal of the Nβ outgoing particles from this
Slater determinant. Thus, the Lindblad equation exactly
encapsulates the approximate separation of non-interacting
quantum systems far apart.

3. Example: two identical spin- 1
2 particles in one

dimension

In the following we consider two fermions in one dimension
with the one-body Hamiltonian h given by

h = − h̄2

2m

∂2

∂x2
+ V (x, t), (28)

where V(x, t) is some external, possibly time-dependent,
potential. The fermions interact via a potential U(x1 −x2) and
the extension of the system is effectively reduced by imposing a
CAP. With two interacting identical fermions, we are confined
to the Hilbert space

H = H2 ⊕ H1 ⊕ H0. (29)

We discretize this system using a uniform grid in the
interval [0, xmax) containing N points {xj }N−1

j=0 , xj = jh, with
h = xmax/N . The field operators ψ†(x) can be replaced by
a finite number of creation operators c

†
j , creating a particle at

grid point xj . These operators, which obey the usual fermion
anti-commutator rules

{cj , ck} = 0,
{
cj , c

†
k

} = δj,k, (30)

map discrete anti-symmetrized δ-function bases for Hn into
bases for Hn±1.

The Hamiltonian takes the form

H =
∑
i,j

hij c
†
i cj +

1

2

∑
i,j

U(xi − xj )c
†
i c

†
j cj ci, (31)

where hij are the matrix elements of the one-body Hamiltonian,
which depend on the chosen discretization of the second
derivative. We choose a typical spectral approximation using
the discrete Fourier transform, which also imposes periodic
boundary conditions. The CAP is similarly discretized as

−i� = −i
∑

j

�(xj )c
†
j cj , (32)

where �(x) is a non-negative function which increases as one
approaches the boundary of the interval [0, xmax) and is zero
in most of the interior.

Concerning the density operator ρ, we write ρ = |�〉〈�|+
ρ1 + ρ0, with ρn = PnρPn. Initially the system is prepared in
a two-particle pure state localized inside the absorption-free
part of the grid. The master equation for ρ2(t) is equivalent to

the usual Schrödinger equation (2) for |�(t)〉, while the master
equation for ρ1(t) acquires a source term, i.e.

ih̄
d

dt
ρ1(t) = [H, ρ1(t)] − i{�, ρ1(t)}
+ 2i

∑
j

�(xj )cj |�(t)〉〈�(t)|c†j . (33)

It is natural to view the discrete one-particle wavefunction
as a vector ψ1(xj ) of length equal to the number of discrete
degrees of freedom. Similarly, it is natural to view two-
particle wavefunctions as anti-symmetric matrices ψ2(xj , xk).
Moreover, a one-particle density matrix becomes a Hermitian
matrix ρ1(x, x ′). Using these notions, the master equation (33)
can be compactly written as

ih̄
d

dt
ρ1(t) = [H, ρ1(t)] − {�, ρ1(t)} + 2iρS

with ρS ≡ 2hψ
†
2�ψ2, (34)

where the last term contains matrix–matrix products. The
extra factor 2 in ρS originates from the fact that the matrix ψ2

relates to a (redundant) ‘basis’ of direct product states.
If the initial two-particle state is an eigenstate of the total

spin and its projection, the source term is always proportional
to a single one-particle spin state. Hence, the spin does not
introduce any complication in the notation in this case. For
parallel spins, the one-particle spin has the same direction as
the two-particle spins, and for spin projection MS = 0 the
one-particle density operator has its spinor component given
by (| ↑〉+ (−1)S | ↓〉)/√2, where S is the total spin eigenvalue.

The equation for ρ0 = p0(t)|−〉〈−| becomes

d

dt
p0(t) = 2

h̄

∑
j

�(xj )cjρ1c
†
j . (35)

In principle, it is not necessary to include this equation in our
calculations, as p0(t) can be calculated from the constraint
Tr[ρ(t)] = 1.

3.1. Collision in a Gaussian well

We will now focus on an example in which we set h̄ = m = 1
and place the electrons in a potential of Gaussian form:

V (x) = −V0 exp

(
− (x − x0)

2

2σ 2

)
. (36)

The particles interact via a regularized Coulomb interaction

U(|x1 − x2|) = λ√
(x1 − x2)2 + δ2

C

. (37)

For this problem we choose a CAP of power form:

�(x) = C

(
ξ

xT

)n

,

ξ ≡ max{0, xT − x, x − (xmax − xT )}, (38)

where n � 1 and xT is the distance from the edges at which
the CAP is ‘turned on’, see figure 2.

The system may for instance serve as a model for a
quantum dot which couples to the conduction band and has
narrow confinement in two dimensions.

5
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Figure 2. The Gaussian well V (x), cf (36), and the absorber �(x),
cf (38). The well has a depth of 4 and a width of 0.75, and the
absorber has a third-order power form for distances less than 5 from
the edges at x = 0 and x = 40.

Equation (34) is integrated using a scheme of second order
in the time step based on a standard split-step operator scheme
[21]. It is instructive to consider a more general setting in
order to introduce the time-stepping scheme for the density
matrix. Given a differential equation for an entity y(t) in a
linear space of the form

ẏ(t) = Lty(t) + f (t), (39)

where Lt is a linear operator dependent on t and f (t) is a
source term independent of y(t), we may integrate formally
using standard time-ordering techniques to obtain

y(t) = T e
∫ t

0 Lsdsy(0) + F(t)

+
∞∑

n=1

∫ t

0
· · ·

∫ sn−1

0︸ ︷︷ ︸
n-fold

Ls1 · · ·Lsn
F (sn) dsn · · · ds1, (40)

with F(t) = ∫ t

0 f (s) ds. The source terms are not easily
transformed using the time-ordering operator T . Assuming
that the case f (t) = 0 can be integrated to pth order in
the time t using y(t) = Ut y(0), a pth order method for
the general case can be obtained by keeping p source terms
and evaluating these with sufficiently high-order quadrature.
For example, using standard Strang splitting which gives a
scheme of local error O(t3), or other schemes based on the
Magnus expansion [22], we may approximate the term F(t) as
F(t) ≈ t[f (0) + f (t)]/2 (using trapezoidal quadrature) and
the n = 1 term as

∫ t

0 LsF (s) ds ≈ t2Lt/2[f (0) + t ḟ (0)/2].
Specifically, in our implementation we have used a second-
order scheme given by

ρ1(t) = e−i(V +U−i�)t/2 e−iT t e−i(V +U−i�)t/2ρ1(0)

× e+i(V +U+i�)t/2 e−iT t e+i(V +U+i�)t/2 + 2tρS(0)

+ t2[ρ̇S(0) − i(HρS(0) − ρS(0)H †)] + O(t3)

where ρ̇S = 2h
(
ψ̇2�ψ

†
2 + ψ2�ψ̇

†
2

)
. (41)

Here, T is the kinetic energy. As this scheme is trace
preserving to second order only, we have also solved (35)

in order to check that our numerical time step is small enough
to preserve the total trace.

Figure 3 shows the evolution of the particle density for
a system in which a fermion collides with another one. In
this case the potential depth V0 = 4 and the width σ = 0.75,
the interaction strength λ = 5 and the ‘softening’ δC = 0.1.
The CAP has the power n = 3, the strength C = 4 and
xT = 5. The starting point is a spatially anti-symmetrized
state (spin triplet) consisting of a particle trapped in the well
and an incoming wave packet of Gaussian shape. The trapped
part corresponds to a superposition of the ground and the
first excited one-particle states in the well, and the incoming
wavefunction has mean momentum k0 = 2. It is seen that
as absorption, both due to transmission and back-scattering,
takes place, the two-particle density vanishes and a one-
particle density emerges. It is also seen that, apart from in the
absorption region, the total particle density, obtained by adding
the two- and one-particle densities, compares well to the
‘true’ particle density obtained from solving the Schrödinger
equation without absorber on a larger grid.

Due to the collision, there is a finite probability that both
particles are absorbed. This is clearly seen in figure 4, which
shows how the total trace is distributed between the sub-spaces
H2, H1 and H0 as a function of time. In this particular case
we have P(1; t → ∞) = 0.92 and P(0; t → ∞) = 0.077.
Also, shown are the expectation value of the particle number
and the purity of the system. Purity is reduced in two ways.
Firstly, it is reduced as the trace becomes distributed between
the three sub-systems, and secondly because ρ1 is not a pure
state within H1. This is seen from the fact that conditional
purity, ς1, converges towards 0.6, i.e. less than unity (not
shown explicitly in the figure).

3.2. Laser ionization of a one-dimensional helium atom

In the next example we expose our system to an electric pulse
of type

E(t) = E0 sin2

(
πt

T

)
cos(ωt). (42)

With this time-dependent perturbation, the one-particle
Hamiltonian (28) acquires a time-dependent term, which in
the length gauge representation reads

xE(t). (43)

We have here set the charge of the particles (the electrons) to
be −1. The static potential VN felt by the particles is chosen
to be a regularized Coulomb potential:

VN(x) = − 2√
x2 + δ2

N

, (44)

whereas the interaction between them is still described by (37).
By choosing δ2

N = 1
2 au and δC = 0.5735 au, the ground state

energy and the first ionization threshold coincide with those
of a true three-dimensional atom, i.e. the ground state energy
is −2.904 au and the ground state energy of ‘He+’ is −2 au.
By ‘au’ we mean atomic units, defined by choosing the Bohr
radius, the electron mass, the elementary charge and h̄ as units
for their respective quantities. The ground state of the system,

6
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Figure 3. The evolution of the particle density. Panel (a) is the particle density within the two-particle system, panel (b) is obtained from the
one-particle density operator and panel (c) is the total particle density. Also shown, panel (d), is the particle density in the same region
obtained from a solution of the full two-particle problem on a larger grid without absorber. The initial state is an anti-symmetrized state
consisting of a Gaussian wave travelling towards the right with mean momentum k0 = 2 and a state corresponding to a particle initially
trapped in the well.
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Figure 4. The trace and the expectation value of the number
operator (upper panel) and the purity of the system (lower panel). In
both cases the separate contributions from the two, one and zero part
of the total density operator have been shown.

which is a spin singlet state, is easily obtained by propagation
in imaginary time.

Figure 5 shows the evolution of the system exposed to a
pulse of maximum field strength E0 = 5 au, central frequency

ω = 3.2 au and a duration corresponding to three optical
cycles. This central frequency corresponds to a photon energy
which energetically allows for one-photon double ionization.
Along with a figure showing how the partial traces, given
by (24), evolve in time, and another one showing the time
dependence of the electric field, given by (42), we have
included snapshots of the absolute values of the two-particle
wavefunction ψ2(x1, x2) and the one-particle density matrix
ρ1(x, x ′). It is clearly seen that as absorption takes place
in the two-particle sub-system, a one-particle density matrix
emerges. Note that the lobes following the axes of the (x, x ′)-
coordinate system do not correspond to absorption of the
second electron but rather to loss of coherence within the
one-particle sub-system. However, from the lower panel of
figure 5, which clearly demonstrates how single ionization
may be distinguished from double ionization, we see that there
is a finite probability of absorbing both particles. In this case,
specifically, the probability of ionizing only one electron is
P(1; t → ∞) = 0.31, and the probability of double ionization
is P(0; t → ∞) = 0.034.

In both the examples we see that the systems, with a certain
probability, undergo incoherent transitions from a two-particle
system (He) to a one-particle system (He+) and a zero-particle
system (He2+). A similar mechanism is seen in the work by
H Leth et al [23], which describes double photo-ionization of
the hydrogen molecule using the Monte Carlo wave packet
method [24]. Here transitions from the H2 system to H+

2 and
H2+

2 are imposed by continuous gedanken measurements on
the photo-electrons. Their results compare very well with
experiment.

7
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Figure 5. The panels show the evolution of a model one-dimensional helium atom exposed to a five-cycle sine-squared electromagnetic
pulse of strength E0 = 5 au and central frequency ω = 3.2 au (panel (a)). Panel (b) shows the probability of finding two (dashed curve), one
(full curve) and zero particles (dash-dotted curve) in the system in the same manner as in the upper panel of figure 4. The dotted curve
shows the probability of the system being in the initial state, |〈ψ2(t = 0)|ψ2(t)〉|2. The middle row, panels (c)–(g), shows the absolute value
of the wavefunction of the two-particle part ψ2(x1, x2) at various instances during the evolution. The instances of each ‘snapshot’ is
indicated by diamonds in panel (a). The lower row, panels (h)–(k), shows the absolute value of the one-particle part of the density matrix
ρ1(x, x ′) at the same instances (except at t = 0). The same colour scaling has been used in all panels ((c)–(k)).

4. Conclusion

In conclusion, we have demonstrated how the Lindblad
equation in Fock space can be used to generalize the notion
of absorbing boundary conditions for N-particle systems.
Specifically, the remainder of the system is preserved as a
particle is absorbed. With this formalism it may be possible to
describe the dynamics of unbound systems which otherwise
would require an unrealistically large numerical grid.

As a consequence of this being a Markovian process, some
coherence is lost, and the state after absorption is in general
given by a mixed state rather than a wavefunction. Within
Lindblad theory, the identification between the Lindblad
operators and the creation and annihilation operators comes
quite natural for complex absorbing potentials. It should be
possible to extend the theory outlined here also to other kinds
of formalisms involving non-Hermitian Hamiltonians, such as
complex scaling. This may necessitate a modification of the
underlying inner product.

Since it is considerably more involved to solve a master
equation rather than a Schrödinger equation, cf [23, 24], future
work will aim to find lower rank methods for solving (21).
Also, more sophisticated spatial approximations like sparse
grids [22] may be utilized to simplify the treatment of more
particles.
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