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Abstract
We compare three different approaches to pars-
ing into syntactic, bi-lexical dependencies for
English: a ‘direct’ data-driven dependency
parser, a statistical phrase structure parser, and a
hybrid, ‘deep’ grammar-driven parser. The anal-
yses from the latter two are post-converted to bi-
lexical dependencies. Through this ‘reduction’
of all three approaches to syntactic dependency
parsers, we determine empirically what perfor-
mance can be obtained for a common set of de-
pendency types for English, across a broad va-
riety of domains. In doing so, we observe what
trade-offs apply along three dimensions, accu-
racy, efficiency, and resilience to domain vari-
ation. Our results suggest that the hand-built
grammar in one of our parsers helps in both ac-
curacy and cross-domain performance.

1 Motivation
Bi-lexical dependencies, i.e. binary head–argument
relations holding exclusively between lexical units,
are widely considered an attractive target representa-
tion for syntactic analysis. At the same time, Cer et
al. (2010) and Foster et al. (2011), inter alios, have
demonstrated that higher dependency accuracies can
be obtained by parsing into a phrase structure rep-
resentation first, and then reducing parse trees into
bi-lexical dependencies.1 Thus, if one is willing to
accept pure syntactic dependencies as a viable inter-
face (and evaluation) representation, an experimental
setup like the one of Cer et al. (2010) allows the ex-
act experimental comparison of quite different parsing
approaches.2 Existing such studies to date are lim-

1This conversion from one representation of syntax to an-
other is lossy, in the sense of discarding constituency information,
hence we consider it a reduction in linguistic detail.

2In contrast, much earlier work on cross-framework compari-
son involved post-processing parser outputs in form and content,
into a target representation for which gold-standard annotations
were available. In § 2 below, we argue that such conversion in-
evitably introduces blur into the comparison.

ited to purely data-driven (or statistical) parsers, i.e.
systems where linguistic knowledge is exclusively ac-
quired through supervised machine learning from an-
notated training data. For English, the venerable Wall
Street Journal (WSJ) portion of the Penn Treebank
(PTB; Marcus et al., 1993) has been the predominant
source of training data, for phrase structure and de-
pendency parsers alike.

Two recent developments make it possible to
broaden the range of parsing approaches that can be
assessed empirically on the task of deriving bi-lexical
syntactic dependencies. Flickinger et al. (2012) make
available another annotation layer over the same WSJ
text, ‘deep’ syntacto-semantic analyses in the linguis-
tic framework of Head-Driven Phrase Structure Gram-
mar (HPSG; Pollard & Sag, 1994; Flickinger, 2000).
This resource, dubbed DeepBank, is available since
late 2012. For the type of HPSG analyses recorded
in DeepBank, Zhang and Wang (2009) and Ivanova
et al. (2012) define a reduction into bi-lexical syn-
tactic dependencies, which they call Derivation Tree-
Derived Dependencies (DT). Through application of
the converter of Ivanova et al. (2012) to DeepBank,
we can thus obtain a DT-annotated version of the stan-
dard WSJ text, to train and test a data-driven depen-
dency and phrase structure parser, respectively, and to
compare parsing results to a hybrid, grammar-driven
HPSG parser. Furthermore, we can draw on a set
of additional corpora annotated in the same HPSG
format (and thus amenable to conversion for both
phrase structure and dependency parsing), instantiat-
ing a comparatively diverse range of domains and gen-
res (Oepen et al., 2004). Adding this data to our setup
for additional cross-domain testing, we seek to doc-
ument not only what trade-offs apply in terms of de-
pendency accuracy vs. parser efficiency, but also how
these trade-offs are affected by domain and genre vari-
ation, and, more generally, how resilient the different
approaches are to variation in parser inputs.
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2 Related Work

Comparing between parsers from different frame-
works has long been an area of active interest, rang-
ing from the original PARSEVAL design (Black et al.,
1991), to evaluation against ‘formalism-independent’
dependency banks (King et al., 2003; Briscoe &
Carroll, 2006), to dedicated workshops (Bos et al.,
2008). Grammatical Relations (GRs; Briscoe & Car-
roll, 2006) have been the target of a number of bench-
marks, but they require a heuristic mapping from
‘native’ parser outputs to the target representations
for evaluation, which makes results hard to interpret.
Clark and Curran (2007) established an upper bound
by running the mapping process on gold-standard
data, to put into perspective the mapped results from
their CCG parser proper. When Miyao et al. (2007)
carried out the same experiment for a number of dif-
ferent parsers, they showed that the loss of accuracy
due to the mapping process can swamp any actual
parser differences. As long as heuristic conversion
is required before evaluation, cross-framework com-
parison inevitably includes a level of fuzziness. An
alternative approach is possible when there is enough
data available in a particular representation, and con-
version (if any) is deterministic. Cer et al. (2010)
used Stanford Dependencies (de Marneffe & Man-
ning, 2008) to evaluate a range of statistical parsers.
Pre- or post-converting from PTB phrase structure
trees to the Stanford dependency scheme, they were
able to evaluate a large number of different parsers.

Fowler and Penn (2010) formally proved that a
range of Combinatory Categorial Grammars (CCGs)
are context-free. They trained the PCFG Berkeley
parser on CCGBank, the CCG annotation of the PTB
WSJ text (Hockenmaier & Steedman, 2007), advanc-
ing the state of the art in terms of supertagging ac-
curacy, PARSEVAL measures, and CCG dependency
accuracy. In other words, a specialized CCG parser
is not necessarily more accurate than the general-
purpose Berkeley parser; this study, however, fails to
also take parser efficiency into account.

In related work for Dutch, Plank and van Noord
(2010) suggest that, intuitively, one should expected
that a grammar-driven system can be more resiliant
to domain shifts than a purely data-driven parser. In
a contrastive study on parsing into Dutch syntactic
dependencies, they substantiated this expectation by

showing that their HPSG-based Alpino system per-
formed better and was more resilient to domain varia-
tion than data-driven direct dependency parsers.

3 Background: Experimental Setup

In the following, we summarize data and software re-
sources used in our experiments. We also give a brief
introduction to the DT syntactic dependency scheme
and a comparison to ‘mainstream’ representations.

DeepBank HPSG analyses in DeepBank are man-
ually selected from the set of parses licensed by the
English Resource Grammar (ERG; Flickinger, 2000).
Figure 1 shows an example ERG derivation tree,
where labels of internal nodes name HPSG construc-
tions (e.g. subject–head or head–complement: sb-
hd_mc_c and hd-cmp_u_c, respectively; see below
for more details on unary rules). Preterminals are
labeled with fine-grained lexical categories, dubbed
ERG lexical types, that augment common parts of
speech with additional information, for example argu-
ment structure or the distinction between count, mass,
and proper nouns. In total, the ERG distinguishes
about 250 construction types and 1000 lexical types.

DeepBank annotations were created by combin-
ing the native ERG parser, dubbed PET (Callmeier,
2002), with a discriminant-based tree selection tool
(Carter, 1997; Oepen et al., 2004), thus making it pos-
sible for annotators to navigate the large space of pos-
sible analyses efficiently, identify and validate the in-
tended reading, and record its full HPSG analysis in
the treebank. Owing to this setup, DeepBank in its
current version 1.0 lacks analyses for some 15 percent
of the WSJ sentences, for which either the ERG parser
failed to suggest a set of candidates (within certain
bounds on time and memory usage), or the annotators
found none of the available parses acceptable.3 Fur-
thermore, DeepBank annotations to date only com-
prise the first 21 sections of the PTB WSJ corpus.
Following the splits suggested by the DeepBank de-
velopers, we train on Sections 0–19, use Section 20
for tuning, and test against Section 21 (abbreviated as
WSJ below).4

3Thus, limitations in the current ERG and PET effectively lead
to the exclusion of a tangible percentage of sentences from our
training and testing corpora. We discuss methodological ramifi-
cations of this setup to our study in § 9 below.

4To ‘protect’ Section 21 as unseen test data, also for the ERG
parser, this final section in Version 1.0 of DeepBank was not ex-
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sb-hd_mc_c

hdn_bnp-pn_c

aj-hdn_norm_c

n-nh_v-cpd_c

w_hyphen_plr

n_-_pn_le

Sun-

v_pas_odlr

v_np_noger_le

filled

n_sg_ilr

n_-_pn_le

Mountain View

hd-cmp_u_c

v_vp_did-n_le

didn’t

hd-cmp_u_c

v_n3s-bse_ilr

v_np*_le

impress

hdn_bnp-qnt_c

w_period_plr

n_-_pr-me_le

me.

Figure 1: Sample HPSG derivation: construction identifiers label internal nodes, lexical types the preterminals.

Sun- filled Mountain View didn’t impress me.
n_-_pn_le v_np_noger_le n_-_pn_le v_vp_did-n_le v_np*_le n_-_pr-me_le

root

sb-hdaj-hdnn-nh hd-cmp hd-cmp

Figure 2: Sample DT bi-lexical dependencies: construction identifiers are generalized at the first underscore.

DT Dependencies As ERG derivations are
grounded in a formal theory of grammar that explic-
itly marks heads, mapping these trees onto bi-lexical
dependencies is straightforward (Zhang & Wang,
2009). Ivanova et al. (2012) coin the term DT for
ERG Derivation Tree-Derived Dependencies, where
they reduce the inventory of some 250 ERG syntactic
rules to 48 broad HPSG constructions. The DT
syntactic dependency tree for our running example is
shown in Figure 2.

To better understand the nature of the DT scheme,
Ivanova et al. (2012) offer a quantitative, structural
comparison against two pre-existing dependency stan-
dards for English, viz. those from the CoNLL de-
pendency parsing competitions (Nivre et al., 2007)
and the ‘basic’ variant of Stanford Dependencies.
They observe that the three dependency representa-
tions are broadly comparable in granularity and that
there are substantial structural correspondences be-
tween the schemes. Measured as average Jaccard sim-
ilarity over unlabeled dependencies, they observe the
strongest correspondence between DT and CoNLL (at
a Jaccard index of 0.49, compared to 0.32 for DT and
Stanford, and 0.43 between CoNLL and Stanford).

posed to its developers until the grammar and disambiguation
model were finalized and frozen for this release.

Ivanova et al. (2013) complement this comparison
of dependency schemes through an empirical asses-
ment in terms of ‘parsability’, i.e. accuracy levels
available for the different target representations when
training and testing a range of state-of-the-art parsers
on the same data sets. In their study, the dependency
parser of Bohnet and Nivre (2012), henceforth B&N,
consistently performs best for all schemes and output
configurations. Furthermore, parsability differences
between the representations are generally very small.

Based on these observations, we conjecture that DT
is as suitable a target representation for parser compar-
ison as any of the others. Furthermore, two linguistic
factors add to the attractiveness of DT for our study:
it is defined in terms of a formal (and implemented)
theory of grammar; and it makes available more fine-
grained lexical categories, ERG lexical types, than is
common in PTB-derived dependency banks.

Cross-Domain Test Data Another benefit of the
DT target representation is the availability of com-
paratively large and diverse samples of additional test
data. The ERG Redwoods Treebank (Oepen et al.,
2004) is similar in genealogy and format to Deep-
Bank, comprising corpora from various domains and
genres. Although Redwoods counts a total of some
400,000 annotated tokens, we only draw on it for addi-

65



Name Sentences Tokens Types

D
ee

pB
an

k Train 33,783 661,451 56,582
Tune 1,721 34,063 8,964
WSJ 1,414 27, 515 7,668

R
ed

w
oo

ds CB 608 11,653 3,588
SC 864 13,696 4,925
VM 993 7,281 1,007
WS 520 8,701 2,974

Table 1: Sentence, token, and type counts for data sets.

tional testing data. In other words, we do not attempt
parser re-training or adaptation against this additional
data, but rather test our WSJ-trained parsers on out-of-
domain samples from Redwoods. We report on four
such test corpora, viz. (a) a software advocacy essay,
The Cathedral and the Bazaar (CB); (b) a subset of
the SemCor portion of the Brown Corpus (SC; Francis
& Kucera, 1982); (c) a collection of transcribed, task-
oriented spoken dialogues (VM; Wahlster, 2000); and
(d) part of the Wikipedia-derived WeScience Corpus
(WS; Ytrestøl et al., 2009). Table 1 provides exact
sentence, token, and type counts for these data sets.

Tokenization Conventions A relevant peculiarity
of the DeepBank and Redwoods annotations in this
context is the ERG approach to tokenization. Three
aspects in Figure 1 deviate from the widely used PTB
conventions: (a) hyphens (and slashes) introduce to-
ken boundaries; (b) whitespace in multi-word lexical
units (like ad hoc, of course, or Mountain View) does
not force token boundaries; and (c) punctuation marks
are attached as ‘pseudo-affixes’ to adjacent words, re-
flecting the rules of standard orthography. Adolphs et
al. (2008) offer some linguistic arguments for this ap-
proach to tokenization, but for our purposes it suffices
to note that these differences to PTB tokenization may
in part counter-balance each other, but do increase the
types-per-tokens ratio somewhat. This property of the
DeepBank annotations, arguably, makes English look
somewhat similar to languages with moderate inflec-
tional morphology. To take advantage of the fine-
grained ERG lexical categories, most of our experi-
ments assume ERG tokenization. In two calibration
experiments, however, we also investigate the effects
of tokenization differences on our parser comparison.

PET: Native HPSG Parsing The parser most com-
monly used with the ERG is called PET (Callmeier,
2002), a highly engineered chart parser for unification
grammars. PET constructs a complete parse forest,

using subsumption-based ambiguity factoring (Oepen
& Carroll, 2000), and then extracts from the forest
n-best lists of complete analyses according to a dis-
criminative parse ranking model (Zhang et al., 2007).
For our experiments, we trained the parse ranker on
Sections 00–19 of DeepBank and otherwise used the
default configuration (which corresponds to the envi-
ronment used by the DeepBank and Redwoods devel-
opers), which is optimized for accuracy. This parser,
performing exact inference, we will call ERGa.

In recent work, Dridan (2013) augments ERG pars-
ing with lattice-based sequence labeling over lexi-
cal types and lexical rules. Pruning the parse chart
prior to forest construction yields greatly improved
efficiency at a moderate accuracy loss. Her lexical
pruning model is trained on DeepBank 00–19 too,
hence compatible with our setup. We include the best-
performing configuration of Dridan (2013) in our ex-
periments, a variant henceforth referred to as ERGe.
Unlike the other parsers in our study, PET internally
operates over an ambiguous token lattice, and there is
no easy interface to feed the parser pre-tokenized in-
puts. We approximate the effects of gold-standard to-
kenization by requesting from the parser a 2000-best
list, which we filter for the top-ranked analysis whose
leaves match the treebank tokenization. This approach
is imperfect, as in some cases no token-compatible
analysis may be on the n-best list, especially so in
the ERGe setup (where lexical items may have been
pruned by the sequence-labeling model). When this
happens, we fall back to the top-ranked analysis and
adjust our evaluation metrics to robustly deal with to-
kenization mismatches (see below).

B&N: Direct Dependency Parsing The parser of
Bohnet and Nivre (2012), henceforth B&N, is a
transition-based dependency parser with joint tag-
ger that implements global learning and a beam
search for non-projective labeled dependency parsing.
This parser consistently outperforms pipeline systems
(such as the Malt and MST parsers) both in terms of
tagging and parsing accuracy for typologically diverse
languages such as Chinese, English, and German. We
apply B&N mostly ‘out-of-the-box’, training on the
DT conversion of DeepBank Sections 00–19, and run-
ning the parser with an increased beam size of 80.

Berkeley: PCFG Parsing The Berkeley parser
(Petrov et al., 2006; henceforth just Berkeley) is a gen-
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Unary Rules Preserved Unary Rules Removed
Labels Long Short Mixed Long Short
Cycles 5 6 5 6 5 6 5 6 5 6
Gaps 2 5 0 0 11 19 3 3 0 0
TA 90.96 90.62 91.11 91.62 90.93 90.94 88.46 87.65 89.16 88.46
F1 76.39 75.66 79.81 80.33 76.70 76.74 74.53 73.72 75.15 73.56

LAS 86.26 85.90 82.50 83.15 86.72 86.16 83.96 83.20 80.49 79.56
UAS 89.34 88.92 89.80 90.34 89.42 88.84 87.12 86.54 87.95 87.15

Table 2: Tagging accuracy, PARSEVAL F1, and dependency accuracy for Berkeley on WSJ development data.

erative, unlexicalized phrase structure parser that au-
tomatically derives a smoothed latent-variable PCFG
from the treebank and refines the grammar by a split–
merge procedure. The parser achieves state-of-the-art
performance on various standard benchmarks. In § 4
below, we explain how we adapt ERG derivations for
training and testing with Berkeley; for comparison to
the other parsers in terms of DT dependency accu-
racy, we apply the converter of Ivanova et al. (2012)
to Berkeley outputs. For technical reasons, however,
the optional mapping from ERG to PTB tokenization
is not applicable in this setup, and hence our experi-
ments involving Berkeley are limited to ERG tokens
and fine-grained lexical categories.

Evaluation Standard evaluation metrics in depen-
dency parsing are labeled and unlabeled attachment
scores (LAS, UAS; implemented by the CoNLL
eval.pl scorer). These measure the percentage of to-
kens which are correctly attached to their head token
and, for LAS, have the right dependency label. As as-
signment of lexical categories is a core part of syntac-
tic analysis, we complement LAS and UAS with tag-
ging accuracy scores (TA), where appropriate. How-
ever, in our work there are two complications to con-
sider when using eval.pl. First, some of our parsers oc-
casionally fail to return any analysis, notably Berkeley
and ERGe. For these inputs, our evaluation re-inserts
the missing tokens in the parser output, padding with
dummy ‘placeholder’ heads and dependency labels.

Second, a more difficult issue is caused by occas-
sional tokenization mismatches in ERG parses, as dis-
cussed above. Since eval.pl identifies tokens by their
position in the sentence, any difference of tokeniza-
tion will lead to invalid results. One option would be
to treat all system outputs with token mismatches as
parse failures, but this over-penalizes, as potentially
correct dependencies among corresponding tokens are
also removed from the parser output. For this reason,
we modify the evaluation of dependency accuracy to

use sub-string character ranges, instead of consecutive
identifiers, to encode token identities. This way, tok-
enization mismatches local to some sub-segment of
the input will not ‘throw off’ token correspondences
in other parts of the string.5 We will refer to this
character-based variant of the standard CoNLL met-
rics as LASc and UASc.

4 PCFG Parsing of HPSG Derivations

Formally, the HPSG analyses in the DeepBank and
Redwoods treebanks transcend the class of context-
free grammars, of course. Nevertheless, one can prag-
matically look at an ERG derivation as if it were a
context-free phrase structure tree. On this view, stan-
dard, off-the-shelf PCFG parsing techniques are ap-
plicable to the ERG treebanks. Zhang and Krieger
(2011) explore this space experimentally, combining
the ERG, Redwoods (but not DeepBank), and massive
collections of automatically parsed text. Their study,
however, does not consider parser efficiency.6.

In contrast, our goal is to reflect on practical trade-
offs along multiple dimensions. We therefore focus
on Berkeley, as one of the currently best-performing
(and relatively efficient) PCFG engines. Due to its
ability to internally rewrite node labels, this parser
should be expected to adapt well also to ERG deriva-
tions. Compared to the phrase structure annotations
in the PTB, there are two structural differences evi-
dent in Figure 1. First, the inventories of phrasal and
lexical labels are larger, at around 250 and 1000, re-
spectively, compared to only about two dozen phrasal
categories and 45 parts of speech in the PTB. Second,
ERG derivations contain more unary (non-branching)

5Where tokenization is identical for the gold and system out-
puts, the score given by this generalized metric is exactly the same
as that of eval.pl. Unless indicated otherwise, punctuation marks
are included in scoring.

6Their best PCFG results are only a few points F1 below the
full HPSG parser, using massive PCFGs and exact inference;
parsing times in fact exceed those of the native HPSG parser
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Gaps Time TAc LASc UASc
Berkeley 1+0 1.0 92.9 86.65 89.86

B&N 0+0 1.7 92.9 86.76 89.65
ERGa 0+0 10 97.8 92.87 93.95
ERGe 13+44 1.8 96.4 91.60 92.72

Table 3: Parse failures and token mismatches (‘gaps’), effi-
ciency, and tagging and dependency accuracy on WSJ.

rules, recording for example morphological variation
or syntacto-semantic category changes.7

Table 2 summarizes a first series of experiments,
seeking to tune the Berkeley parser for maximum ac-
curacy on our development set, DeepBank Section 20.
We experimented with preserving unary rules in ERG
derivations or removing them (as they make no dif-
ference to the final DT analysis); we further ran ex-
periments using the native (‘long’) ERG construction
identifiers, their generalizations to ‘short’ labels as
used in DT, and a variant with long labels for unary
and short ones for branching rules (‘mixed’). We re-
port results for training with five or six split–merge
cycles, where fewer iterations generally showed infe-
rior accuracy, and larger values led to more parse fail-
ures (‘gaps’ in Table 2). There are some noticeable
trade-offs across tagging accuracy, dependency accu-
racy, and coverage, without a single best performer
along all three dimensions. As our primary interest
across parsers is dependency accuracy, we select the
configuration with unary rules and long labels, trained
with five split–merge cycles, which seems to afford
near-premium LAS at near-perfect coverage.8

5 In-Domain Results

Our first cross-paradigm comparison of the three
parsers is against the WSJ in-domain test data, as
summarized in Table 3. There are substantive dif-
ferences between parsers both in terms of coverage,
speed, and accuracy. Berkeley fails to return an analy-
sis for one input, whereas ERGe cannot parse 13 sen-
tences (close to one percent of the test set); just as the
44 inputs where parser output deviates in tokenization
from the treebank, this is likely an effect of the lexi-
cal pruning applied in this setup. At an average of one

7Examples of morphological rules in Figure 1 include
v_pas_odlr and v_n3s-bse_ilr, for past-participle and non-third
person singular or base inflection, respectively. Also, there are
two instances of bare noun phrase formation: hdn_bnp-pn_c and
hdn_bnp-qnt_c.

8A welcome side-effect of this choice is that we end up using
native ERG derivations without modifications.

second per input, Berkeley is the fastest of our parsers;
ERGa is exactly one order of magnitude slower. How-
ever, the lexical pruning of Dridan (2013) in ERGe

leads to a speed-up of almost a factor of six, mak-
ing this variant of PET perform comparable to B&N.
Maybe the strongest differences, however, we observe
in tagging and dependency accuracies: The two data-
driven parsers perform very similarly (at close to 93%
TA and around 86.7% LAS); the two ERG parsers are
comparable too, but at accuracy levels that are four to
six points higher in both TA and LAS. Compared to
ERGa, the faster ERGe variant performs very slightly
worse—which likely reflects penalization for missing
coverage and token mismatches—but it nevertheless
delivers much higher accuracy than the data-driven
parsers. In subsequent experiments, we will thus fo-
cus only on ERGe.

6 Error Analysis
The ERG parsers outperform the two data-driven
parsers on the WSJ data. Through in-depth error anal-
ysis, we seek to identify parser-specific properties that
can explain the observed differences. In the following,
we look at (a) the accuracy of individual dependency
types, (b) dependency accuracy relative to (predicted
and gold) dependency length, and (c) the distribution
of LAS over different lexical categories.

Among the different dependency types, we observe
that the notion of an adjunct is difficult for all three
parsers. One of the hardest dependency labels is
hdn-aj (post-adjunction to a nominal head), the rela-
tion employed for relative clauses and prepositional
phrases attaching to a nominal head. The most com-
mon error for this relation is verbal attachment.

It has been noted that dependency parsers may ex-
hibit systematic performance differences with respect
to dependency length (i.e. the distance between a head
and its argument; McDonald & Nivre, 2007). In our
experiments, we find that the parsers perform compa-
rably on longer dependency arcs (upwards of fifteen
words), with ERGa constantly showing the highest ac-
curacy, and Berkeley holding a slight edge over B&N
as dependency length increases.

In Figure 3, one can eyeball accuracy levels per
lexical category, where conjunctions (c) and various
types of prepositions (p and pp) are the most difficult
for all three parsers. That the DT analysis of coordi-
nation is challenging is unsurprising. Schwartz et al.
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Figure 3: WSJ per-category dependency accuracies on
coarse lexical head categories: adjective, adverb, conjunc-
tion, complementizer, determiner, noun, preposition, lexi-
cal prepositional phrase, punctuation, verb, and others.

(2012) show that choosing conjunctions as heads in
coordinate structures is harder to parse for direct de-
pendency parsers (while this analysis also is linguisti-
cally more expressive). Our results confirm this effect
also for the PCFG and (though to a lesser degree) for
ERGa. At the same time, conjunctions are among the
lexical categories for which ERGa most clearly out-
performs the other parsers. Berkeley and B&N exhibit
LAS error rates of around 35–41% for conjunctions,
whereas the ERGa error rate is below 20%. For many
of the coordinate structures parsed correctly by ERGa

but not the other two, we found that attachment to root
constitutes the most frequent error type—indicating
that clausal coordination is particularly difficult for
the data-driven parsers.

The attachment of prepositions constitutes a noto-
rious difficulty in syntactic analysis. Unlike ‘stan-
dard’ PoS tag sets, ERG lexical types provide a more
fine-grained analysis of prepositions, for example rec-
ognizing a lexicalized PP like in full, or making ex-
plicit the distinction between semantically contenful
vs. vacuous prepositions. In our error analysis, we
find that parser performance across the various prepo-
sitional sub-types varies a lot. For some preposi-
tions, all parsers perform comparatively well; e.g.
p_np_ptcl-of_le, for semantically vacuous of, ranks
among the twenty most accurate lexical categories
across the board. Other types of prepositions are
among the categories exhibiting the highest error
rates, e.g. p_np_i_le for ‘common’ prepositions, tak-
ing an NP argument and projecting intersective mod-
ifier semantics. Even so, Figure 3 shows that the at-
tachment of prepositions (p and pp) is an area where
ERGa excels most markedly. Three frequent prepo-

Gaps TAc LASc UASc

C
B

Berkeley 1+0 87.1 78.13 83.14
B&N 0+0 87.7 77.70 82.96

ERGe 8+8 95.3 90.02 91.58

S
C

Berkeley 1+0 87.2 79.81 85.10
B&N 0+0 85.9 78.08 83.21

ERGe 11+7 94.9 89.94 91.26

V
M

Berkeley 7+0 84.0 74.40 83.38
B&N 0+0 83.1 75.28 82.86

ERGe 11+42 94.4 90.18 91.75

W
S

Berkeley 7+0 87.7 80.31 85.09
B&N 0+0 88.4 80.63 85.24

ERGe 4+12 96.9 90.64 91.76

Table 4: Cross-domain coverage (parse failures and token
mismatches) and tagging and dependency accuracies.

sitional lexical types that show the largest ERGa

advantages are p_np_ptcl-of_le (history of Linux),
p_np_ptcl_le (look for peace), and p_np_i_le (talk
about friends). Looking more closely at inputs where
the parsers disagree, they largely involve (usages of)
prepositions which are lexically selected for by their
head. In other words, most prepositions in isolation
are ambiguous lexical items. However, it appears that
lexical information about the argument structure of
heads encoded in the grammar allows ERGa to anal-
yse these prepositions (in context) much more accu-
rately.

7 Cross-Domain Results
To gauge the resilience of the different systems to do-
main and genre variation, we applied the same set of
parsers—without re-training or other adaptation—to
the additional Redwoods test data. Table 4 summa-
rizes coverage and accuracy results across the four
diverse samples. Again, Berkeley and B&N pattern
alike, with Berkeley maybe slightly ahead in terms
of dependency accuracy, but penalized on two of the
test sets for parse failures. LAS for the two data-
driven parsers ranges between 74% and 81%, up to
12 points below their WSJ performance. Though
large, accuracy drops on a similar scale have been ob-
served repeatedly for purely statistical systems when
moving out of the WSJ domain without adaptation
(Gildea, 2001; Nivre et al., 2007). In contrast, ERGe

performance is more similar to WSJ results, with a
maximum LAS drop of less than two points.9 For

9It must be noted that, unlike the WSJ test data, some of
these cross-domain data sets have been used in ERG development
throughout the years, notably VM and CB, and thus the grammar
is likely to have particularly good linguistic coverage of this data.
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Lexical Types PTB PoS Tags
Gaps LASc UASc LASc UASc

W
S

J B&N 0+0 88.78 91.52 91.56 93.63
ERGe 13+9 92.38 93.53 92.38 93.53

C
B B&N 0+0 81.56 86.18 84.54 88.53

ERGe 8+4 90.77 92.21 90.77 92.21

S
C B&N 0+0 81.69 86.11 85.17 88.85

ERGe 11+0 90.13 91.86 90.13 91.86

V
M B&N 0+0 77.00 83.73 82.76 88.11

ERGe 10+0 91.55 93.08 91.55 93.08

W
S B&N 0+0 82.09 86.17 84.59 88.41

ERGe 4+0 91.61 92.62 91.61 92.62

Table 5: Coverage and dependency accuracies with PTB
tokenization and either detailed or coarse lexical categories.

Wikipedia text (WS; previously unseen data for the
ERG, just as for the other two), for example, both tag-
ging and dependency accuracies are around ten points
higher, an error reduction of more than 50%. From
these results, it is evident that the general linguistic
knowledge available in ERG parsing makes it far more
resilient to variation in domain and text type.

8 Sanity: PTB Tokenization and PoS Tags

Up to this point, we have applied the two data-driven
parsers in a setup that one might consider somewhat
‘off-road’; although our experiments are on English,
they involve unusual tokenization and lexical cate-
gories. For example, the ERG treatment of punc-
tuation as ‘pseudo-affixes’ increases vocabulary size,
which PET may be better equipped to handle due to
its integrated treatment of morphological variation. In
two concluding experiments, we seek to isolate the ef-
fects of tokenization conventions and granularity of
lexical categories, taking advantage of optional out-
put flexibility in the DT converter of Ivanova et al.
(2012).10 Table 5 confirms that tokenization does
make a difference. In combination with fine-grained
lexical categories still, B&N obtains LAS gains of two
to three points, compared to smaller gains (around or
below one point) for ERGe.11 However, in this setup

Conversely, SC has hardly had a role in grammar engineering so
far, and WS is genuinely unseen (for the current ERG and Red-
woods release), i.e. treebankers were first exposed to it once the
grammar and parser were frozen.

10As mapping from ERG derivations into PTB-style tokens and
PoS tags is applied when converting to bi-lexical dependencies,
we cannot easily include Berkeley in these final experiments.

11When converting to PTB-style tokenization, punctuation
marks are always attached low in the DT scheme, to the imme-
diately preceding or following token, effectively adding a large
group of ‘easy’ dependencies.

our two earlier observations still hold true: ERGe is
substantially more accurate within the WSJ domain
and far more resilient to domain and genre variation.
When we simplify the syntactic analysis task and train
and test B&N on coarse-grained PTB PoS tags only,
in-domain differences between the two parsers are fur-
ther reduced (to 0.8 points), but ERGe still delivers an
error reduction of ten percent compared to B&N. The
picture in the cross-domain comparison is not qual-
itatively different, also in this simpler parsing task,
with ERGe maintaining accuracy levels comparable
to WSJ, while B&N accuracies degrade markedly.

9 Discussion and Conclusion
Our experiments sought to contrast state-of-the-art
representatives from three parsing paradigms on the
task of producing bi-lexical syntactic dependencies
for English. For the HPSG-derived DT scheme, we
find that hybrid, grammar-driven parsing yields supe-
rior accuracy, both in- and in particular cross-domain,
at processing times comparable to the currently best
direct dependency parser. These results corroborate
the Dutch findings of Plank and van Noord (2010) for
English, where more training data is available and in
comparison to more advanced data-driven parsers. In
most of this work, we have focussed exclusively on
parser inputs represented in the DeepBank and Red-
woods treebanks, ignoring 15 percent of the original
running text, for which the ERG and PET do not make
available a gold-standard analysis. While a parser
with partial coverage can be useful in some contexts,
obviously the data-driven parsers must be credited for
providing a syntactic analysis of (almost) all inputs.
However, the ERG coverage gap can be straighfor-
wardly addressed by falling back to another parser
when necessary. Such a system combination would
undoubtedly yield better tagging and dependency ac-
curacies than the data-driven parsers by themselves,
especially so in an open-domain setup. A secondary
finding from our experiments is that PCFG parsing
with Berkeley and conversion to DT dependencies
yields equivalent or mildly more accurate analyses, at
much greater efficiency. In future work, it would be
interesting to include in this comparison other PCFG
parsers and linear-time, transition-based dependency
parsers, but a tentative generalization over our find-
ings to date is that linguistically richer representations
enable more accurate parsing.
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