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"He alone stretches out the heavens,
and treads on the waves of the sea."

Job 9:8
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Preface

There are four papers making up my thesis. I am the first author of all papers, though with
substantial contributions, comments, and corrections from the co–authors.

The first paper is a technical report which describes the implementation of nonlinear ad-
vection terms in a high resolution tidal model, some sensitivity tests, and validations. The
numerical model is written in Fortran77. I have been responsible both for the implementation
and the simulations, while co–authors have guided the research work and duplicated some of
the simulations for control.

The second paper is an article submitted to Ocean Dynamics. This article is a summary of
a cooperative research project where I am mainly responsible for the first part concerning tidal
currents, and Birgit Kjoss Lynge for the second part concerning storm surges.

The third paper is a technical report which describes the derivation of current–modified
nonlinear Schrödinger equations, a corresponding numerical model, and some results. The
numerical model is written in C. I am responsible for the derivation, the numerical model, and
the simulations. An extract of this paper is submitted as a proceeding for the Rogue Wave
workshop in Brest 2008.

The fourth paper is an article submitted to Journal of Fluid Mechanics. Here specific results
concerning waves on collinear currents are presented. I am responsible for the derivation, the
numerical model, and the simulations.
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Introduction

Almost 100 ships were piloted safely through the beautiful Tjeldsund channel during June and
July 2008. The longest cruise ship was "Albatros", 205.46 meters long with a draught of 7.75
meters. Particularly the narrow sections of the Tjeldsund channel is prone to strong tidal cur-
rents, and therefore difficult to pilot large ships through. The effect of squat is large for such
long ships in shallow water. Strong currents create an area of lowered pressure under the keel
and reduces the buoyancy of the ship, particularly at the bow. The squat effect can thereby
lead to unexpected groundings and handling difficulties. The local pilots have generations of
experience starting early in the 1900s.

The surrounding mountains protect the Tjeldsund channel from strong winds producing
large waves in ocean current regions. An example of difficult sailing conditions due to wave–
current interaction is found in the strong tidal currents around the Lofoten Islands in northern
Norway (Gjevik et al., 1997). The most spectacular example is in the region close to the south–
east coast of South Africa, where waves originating from the Antarctic Ocean are trapped in the
relatively narrow and strong Aghulas current headed south–west. Many sailors taking advantage
of strong westward ocean currents were unaware that they headed for the most extreme waves
(Mallory, 1974). Further examples include the navigation in outlets from fjords or rivers, where
the combination of incoming waves and outgoing tides cause difficult sailing conditions (The
Norwegian Pilot 1, 1997; González, 1984; Bottin & Thompson, 2002). On the 13th of Febru-
ary 2000 a high–speed passenger ferry going out through the mouth of the Trondheimsfjord
suffered an accident caused by steep waves. The steepness was probably due to wave–current
interaction. The front window of the passenger salon was broken by a large wave (Verdens
Gang, 14 February 2000).

High resolution models for prediction of tidal currents have recently been developed partly
motivated by the navigational problems often experienced in Norwegian coastal waters (e.g.
Moe et al., 2002, 2003). Tidal currents can now be computed with down to 25 meter resolution,
which is comparable to wavelengths associated with a typical wind–wave spectrum.

Given the high resolution current modelling, modelling of wave–current interactions may
now enter a new era. It is meaningful to consider the deterministic nonlinear phase–resolved
evolution of wind–wave fields in coastal tidal currents. This can be realized in at least two
different manners: Predicting the deterministic phase–resolved evolution of specific realiza-
tions of a wind–wave field, or the simulation of a large ensemble of deterministic evolutions of
stochastic wind–wave fields. The latter approach may lead to a statistical description of wave
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Figure 1: The cruise ship "M/S Funchal"
passing through the Tjeldsund channel 23
June 2007.
"M/S Funchal" was built in 1961. It is
153.51 meters long and 19 meters wide.
The photo is taken southwards by the
bridge at Steinsland. Here the channel
is wide (≈ 1 km) with weak currents
(< 0.1 m/s). The channel is more narrow
(down to 0.5 km) with stronger currents
(up to 3 m/s) in other parts of the channel.

Photo: Ingrid Bakkeløkken.

conditions in coastal waters with an unprecedented level of accuracy, and can possibly lead to
the description of local wave properties beyond the capabilities of todays spectral wave models
(STWAVE, SWAN, etc.).

The work with this thesis is organised as two interconnected tasks:

• Numerical modelling of tidal currents in Norwegian coastal waters.

• Modelling of wave transformation in tidal currents due to wave–current interaction.

During the first task the nonlinear advection terms are implemented in a high resolution coastal
tidal model. The model is set up for the Tjeldsund and Ramsund channels in northern Norway.
Various methods for implementation of the nonlinear advection terms is tested and effects on
nonlinear flow features as jet and eddy formation is studied. This work is reported in a preprint
report published at Department of Mathematics, UiO, (Paper 1), and an article submitted to
Ocean Dynamics (Paper 2).

From the results of tidal modelling for the Tjeldsund and Ramsund channels, models with
idealised bottom topography and coastlines are designed in order to study special important
features of the tidal currents in coastal waters. Then idealised currents are designed and used to
model wave–current interaction in the second task.

Our starting point for modelling nonlinear phase–resolving wave–current interactions was
to use higher–order nonlinear Schrödinger equations (Dysthe, 1979; Trulsen et al., 2000) prop-
erly modified to account for space varying currents. The higher–order nonlinear Schrödinger
equation already account for wave–current interactions, although limited to currents induced by
the waves themselves. Extension to surface currents due to internal waves or other causes was
done by Dysthe & Das (1981) and Stocker & Peregrine (1999). Different configurations re-
quire different treatments: angle of incidence, shearing or potential current, include or exclude
reflection, etc. A nonlinear Schrödinger equations is derived for waves on both potential and
shearing collinear currents. This work is reported in a preprint report published at Department
of Mathematics, UiO, (Paper 3), and an article submitted to Journal of Fluid Dynamics (Paper
4).
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Figure 2: Wave breaking in the convergence zone
of a tidal front in the Fraser Estuary in British
Columbia, Canada (Baschek, 1999).

1 Tidal modelling

The first version of the tidal model used in this project, was developed in the early 1990s and
used for simulations of tides in the Norwegian and Barents Sea (Gjevik, 1990; Gjevik et al.,
1994). More recently an upgraded version of the model has been used for simulation of tides
around the Lofoten islands with a horizontal grid resolution of 500 meters (Moe et al., 2002)
and in the outer Trondheimsfjord with a horizontal grid resolution of 50–100 meters (Moe
et al., 2003; Gjevik et al., 2006). The tidal model is built on the depth–integrated shallow water
equations suitable for tidal currents in well–mixed coastal waters. The nonlinear advection
terms were neglected.

In 2004 the University of Oslo was hired by the Norwegian Defence Research Establish-
ment to set up the model for the Tjeldsund and Ramsund channels east of the Lofoten Islands
in northern Norway (Hjelmervik et al., 2006). To model the tidal currents in these narrow and
shallow channels, the nonlinear advection terms clearly had to be included. In narrow straights
and channels with strong tidal currents it is well known that nonlinear effects can lead to eddies
and nonlinear distortion of shallow water tides. The challenge was to find robust and accu-
rate numerical schemes which are stable, even with complex coastlines and bottom topography,
without introducing too strong smoothing or damping of the current fields. Due to one sided dif-
ferences the nonlinear advection terms are approximated along the coastline. Several methods
for including the nonlinear advection terms in the original tidal model have been tested.

When the nonlinear advection terms were included, the simulated current fields showed an
intricate system of intensified jets and eddies (see example in figure 3). Both propagating and
topographically trapped eddies where discovered. Some of the eddies are described in The
Norwegian Pilot 1 (1997) and observed by inspection. To validate the model, both elevation
and current measurements are carried out and analysed (Lynge, 2004; Lynge & Hareide, 2005),
and then compared with simulations.

Simulated current fields are displayed in Geographical Information System (GIS) tools and
network browsers, and thus made available for operational use by the Navy during several
military operations; Armatura Borealis 2008, Cold Respons 2006, and November 2005 (Om-
mundsen et al., 2005). As a pilot project, current fields are also implemented in electronic chart
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Figure 3: Simulated current (upper) and vorticity (lower) fields at maximum flow westward
(left) and eastward (right) near Ballstad in the Tjeldsund channel. The distance between the tick
marks correspond to 500 meters. Near Ballstad the cross section area is reduced to one fourth,
the current is doubled, and the surface elevation is reduced by about five percent over a length
scale of 1000 meters. The maximum value of the current strength lies around 1.00 ms−1 and the
maximum value of the vorticity lies around 0.30s−1. The stronger vorticity the more red. With
westward flow, a topographically trapped eddy appears southeast of the intensified current jet,
while a propagating eddy appears northwest of the jet. With eastward flow, a topographically
trapped eddy appears northwest of the intensified current jet, while a propagating eddy appears
southeast of the jet. (Further details in paper 3.)

systems (Gjevik et al., 2006).
The flow pattern in the Tjeldsund channel is quite complex. To better understand the current

fields, long idealised channels with different sills and narrow passages where designed (figure
4). Such constrictions lead to strong gradients in the current field with possible formation of
eddies and will therefore affect wind waves and swell significantly. It was found that the length
of the narrow passage was of minor importance, but steepness and height of the sill have large
impact on the current strength.

Since the current fields in idealised channels are still quite complex, an idealised current jet,
U = U(x, y)i, without eddies was designed:

U =

{
U0 sin2

(
πx
2X

)
cos2
(

πy
2Y

)
when x < X

U0 cos2
(

πy
2Y

)
when x ≥ X

(1)

U0 is the maximum current strength, Y is half the width of the jet, and X is the current build–up
length. To a certain extend (1) mimics the current jet in figure 5.

Current jets with different widths, strengths, forms, and build–up lengths are found not only
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Figure 4: Different constrictions in some idealised channels (east–west length 100 km). The
constrictions are sills and/or narrow passages. The depth is uniform (h = 100m) except for the
sills where the depth is remarkable reduced (hsill = 20m in the above examples). The space
between the tick marks represent 500 meters. The maximum strength of the current through a
narrow passage depends on the width of the passage and the steepness of the sill.

Figure 5: Example of a current field
over a sill in an idealised channel
with U–formed bottom. The cur-
rent is more uniform upstream from
the constriction. The flow separa-
tion at the constriction results in a
narrow current jet with eddies on
each side after the constriction.

in tidal flows in the coastal zone, but also in river estuaries, entrances in fjords during outgoing
tides, rip off currents, and large ocean currents like the Aghulhas and Kuroshio current. In
accordance with data the transverse profile of the velocity distribution current U = U(y)i in
the Aghulhas current can be approximated by the relation (Schumann, 1976; Lavrenov, 1998):

U =
α

1 + βy2
(2)

α = 2.2m/s and β = 6.26 · 10−10m−2 for y > 0, and β = 10−8m−2 for y < 0. (2) gives an
asymmetric jet. A symmetric jet like (1) is easier to handle.

2 Wave–current interactions

Rogue waves, also known as freak waves, monster waves or extreme waves, are relatively large
and spontaneous ocean surface waves that are a threat even to large ships, ocean liners, and
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Figure 6: The Draupner wave is the first rogue wave detected by a measuring instrument. It was
measured at Draupner oil platform in the North Sea off the coast of Norway on January 1, 1995
(Haver, 2003). The Draupner wave had a maximum wave height of 25.6 meters and occurred
in a sea state with a significant wave height of 11.9 metres. Minor damage was inflicted on
the platform during this event, confirming the validity of the reading made by a downwards–
pointing laser sensor. Prior to this measurement, freak waves were known to exist only through
anecdotal evidence provided by those who had encountered them at sea.

offshore installations. There is no unique definition of rogue waves, but it is generally agreed
that they belong to the extreme tail of the probability distribution. The most common definition
is that a wave is freak when its wave height exceeds a threshold related to the significant wave
height. Therefore rogue waves are not necessarily the biggest waves found at sea. Rogue waves
are surprisingly large waves for a given sea state. Two important reviews of rogue waves have
been published (Kharif & Pelinovsky, 2003; Dysthe et al., 2008).

There are several theories on what causes rogue waves to appear. It is well known that
wave–current interactions can provoke large waves and cause navigational problems, e.g. in
the Aghulas current, river estuaries, rip currents, entrances in fjords during outgoing tides, and
in tidal flows in the coastal zone (?Peregrine, 1976; González, 1984; Jonsson, 1990; Lavrenov,
1998; Baschek, 1999; Bottin & Thompson, 2002; Mori et al., 2002; MacMahan, Thornton &
Reniers, 2006).

Short gravity waves, when superposed on much longer waves of the same type, have a ten-
dency to become both shorter and steeper at the crests of the longer waves, and correspondingly
longer and lower in the troughs (?). Linear refraction occur when the velocity of the opposing
current equals the stopping velocity, U = − g

4ω
, (Peregrine, 1976; White & Fornberg, 1998, and

others).
Laboratory measurements of long crested waves on a transversally uniform current show

that strong opposing currents induce partial wave blocking significantly elevating the limiting
steepness and asymmetry of freak waves (Wu & Yao, 2004). Experimental studies of interac-
tions between waves and collinear current jets are difficult due to the lack of suitable facilities.
(Baschek, 1999) argued that tidal fronts are natural laboratories for studying wave–current in-
teractions. Recordings from the coast of Cornwall, England, show fluctuations of± 1 second in
wave period of swells with wave velocity of 30 m/s (Barber & Ursell, 1948; Barber, 1949). The
fluctuations are due to time changing tidal currents of ± 0.5 m/s. The wave period is longer for
waves on co-currents than on counter currents.

Several different equations are used to study wave–current interactions. Phase–resolved
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Figure 7: The significant wave
height, kurtosis, and amount
of freak waves across an ide-
alised current jet given by (1)
shortly after the build–up. In
this case, the jet is three wave
lengths wide, the build–up is 16
wave lengths long, and the max-
imum current strength is 20%
of the phase velocity of the
waves. The incoming waves
are unidirectional with random
phase and Gaussian distributed
Fourier amplitude of the enve-
lope. Monte Carlo simulations
are performed with a second or-
der scheme and 30 simulations
in each ensemble.
Kurtosis and amount of freak
waves is reduced with shorter
crest lengths, in linear simula-
tions, and when the waves are
adjusted to the current jet.

models as Schrödinger equations, are preferred when studying wave statistics. Most current
modified Schrödinger equations in literature has only one horizontal dimension, are built on
potential theory, or both (Stewartson, 1977; Turpin et al., 1983; Gerber, 1987; Stocker & Pere-
grine, 1999; Dysthe, 1979). When considering an inhomogeneous current with horizontal shear,
potential theory cannot be used since vorticity in the current field introduces vorticity in the in-
duced flow of the waves. Therefore a new current–modified cubic Schrödinger equation which
allows vorticity in the induced flow had to be derived. A split–step scheme is used in the nu-
merical simulations using both Fourier methods and finite difference methods (Lo &Mei, 1985;
Weidman & Herbst, 1986; Stocker & Peregrine, 1999). Fourier methods are used on the linear
terms with constant coefficients. Finite difference methods are used on the nonlinear term and
the linear terms with variable coefficients. A first, second, and fourth order scheme is imple-
mented and properly checked following Muslu & Erbay (2004).

Interesting properties as distributions of elevation, wave heights, and freak waves are studied
for waves encountering both a transverse uniform current, and a collinear current jet. Surface
gravity wind–waves will typically have periods 5–10 seconds, while the main period of tidal
currents is about 12 hours. The current is therefore assumed stationary in our study. The
current is also assumed negligible affected by the waves. Of primary interest are relatively
steep surface waves, such that a linear description would be insufficient. It is anticipated that
the direct influence from topography and bathymetry is much weaker than the influence from
tidal currents and nonlinear self interactions.

The statistical wave properties are calculated from averaging over ensembles of realizations.
When waves propagate on inhomogeneous currents, spatial averaging at fixed times do not
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Figure 8: “The Great Wave” by Katsushika Hokusai (1760–
1849), Japanese artist. The wood block print portrays a grand
struggle between man and nature. Earlier in situ experience was
the only weapon against the violence of nature. Now numerical
simulations contribute to the experience.

equal time averaging at fixed locations. To avoid averaging over inhomogeneous currents and
ensure that freak waves belong to the upper tail of the probability distribution, we recommend
to use time series at fixed locations with constant current as data basis for the statistical wave
properties. The current is not constant at fixed locations in tidal currents and fluttering ocean
currents such as the Aghulas current and the Gulf Stream. In such cases new ensembles of wave
realizations are needed for each realization of the current in order to calculate the statistical
wave properties for a given current case.

It is found that we are less likely to encounter freak waves in the centre of an opposing
current jet than in the ocean elsewhere (figure 7). The amount of freak waves are large at the
sides of an opposing jet and in the centre of a co–current jet. Freak waves are not high waves in
general, but surprisingly high waves for a certain sea state. The amount of freak waves is well
represented by the kurtosis. In linear simulations very few freak waves are found. Finally it is
found that the wave statistics in the centre of a current jet cannot be represented by simulations
with a transversally uniform current.

Note that we have not included wave generation by wind (e.g. SWAN). Phase–resolved
evolution takes place on much faster scales than wind–growth of waves, and standard spectral
wave models (WAM, SWAM) assume wind–growth to take place on the slow scales of spec-
trally averaged evolution.

3 Summary

A high resolution tidal model is set up and adjusted to the narrow and shallow Tjeldsund and
Ramsund channels in northern Norway. Over tides, intensified jets, and eddy structures appear
in the current fields of fully nonlinear simulations. Some comparisons with field measurements
are done.

Nonlinear Schrödinger equations are derived to include the effects of inhomogeneous cur-
rents in order to study impacts on a wave field from coastal tidal currents. Distributions of wave
heights, kurtosis, and amount of freak waves are studied. Linear refraction increase the wave
heights in opposing currents. Nonlinear effects prove to have a large effect on the amount of
freak waves. Extreme waves are normal in current jets, and therefore not freak or unexpected.

Accurate tidal current forecasting may improve the safety of sailing and reduce the risk for
ship collisions and groundings. Predictions may also prove valuable during clean–up operations
after oil–disasters, search, and surveillance operations during ship accidents. Wave–current in-
teractions introduce additional complication for safe sailing, and forces on offshore installa-
tions. Better wave and current forecasting is desired for both economical and safety reasons.
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Abstract

Various methods for approximating the nonlinear advection terms
in a high resolution tidal model with complex coastal boundaries have
been implemented and tested. The model, driven by the dominant M2

tidal component at the open boundaries, has been applied to a model
domain with 100 meter grid resolution for the Tjeldsundet channel in
northern Norway. Overtides, intensivated jets and eddy structures ap-
pear in the current fields of the full nonlinear simulations. How these
flow features depend on the way the friction terms are calculated and
the way the nonlinear advection terms are calculated in a zone near
the coastal boundaries, are discussed. Some comparison with field
measurements have also been made.

1 Introduction

In the papers by Moe et al. (2002) and Moe et al. (2003) the tides in two
regions on the western and northern coast of Norway were simulated with
a high resolution numerical model with horizontal grid size of 500 meters.
The first version of this model was developed in the early 1990s and used for
simulations of the tides in the Norwegian and Barents Seas (Gjevik (1990),
and Gjevik et al. (1994)). In this model the nonlinear advection terms were
neglected, but the nonlinear bottom friction was retained. Also a nonlinear
representation of the horizontal eddy viscosity was adapted (Smagorinsky
(1963)). For this reason we shall refer to this model as the partially linearised
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numerical model (PLN-model). More recently an upgraded version of the
model has been used for simulation of the tide in the outer Trondheimsfjord
with a horizontal grid resolution of 50 and 100 meters (Gjevik et al. (2004)).

In narrow straights and channels with strong tidal currents it is well
known that nonlinear effects can lead to significant distortion of the tides.
In these cases the nonlinear advection terms must clearly be included. This
is for example the case, among many others, in the Tjeldsund and Ramsund
channels east of The Lofoten Islands in northern Norway. These channels
connect the Vestfjord and the Ofotfjord with the V̊agsfjord in Vester̊alen
and are important sailing lanes for coastal traffic. In an attempt to model
the tidal currents in these channels, with a horizontal grid resolution of 25-
50 meters, the nonlinear terms have to be included. The challenge is to find
robust and accurate numerical schemes which are stable, even with complex
coastlines and bottom topography, without introducing too strong smoothing
or damping of the current fields.

This report discusses, in details, several methods for including the non-
linear advection terms in the original PLN-model. As an example the model
is set up for Tjeldsund and Ramsund channels and the results of these simu-
lations are used to demonstrate how the simulated tidal currents are affected
by the different implementations of the nonlinear advection terms. Martinsen
and Engedahl (1987)

2 Model equations

The depth-integrated shallow water equations in a Cartesian coordinate sys-
tem (x,y,z) with the x- and y-axis horizontal in the level of the undisturbed
surface, are given by:

∂η

∂t
= −∂U

∂x
− ∂V

∂y
(1)

∂U

∂t
+

∂

∂x

(
U2

H

)
+

∂

∂y

(
UV

H

)
− fV = −gH

∂η

∂x
+ F x + Ax (2)

∂V

∂t
+

∂

∂x

(
UV

H

)
+

∂

∂y

(
V 2

H

)
+ fU = −gH

∂η

∂y
+ F y + Ay (3)

where (U, V ) are the components of volume flux vector per unit length in the
horizontal plane, η the vertical displacement of the sea surface from the mean
sea level, H = H0 +η the total depth, H0 the mean depth, g the acceleration
of gravity, and f the Coriolis parameter.
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The bottom friction terms, F x and F y, are given by:

F x = −cD

U

H

√
U2 + V 2

H
(4)

F y = −cD

V

H

√
U2 + V 2

H
(5)

where cD is the drag coefficient of the quadratic bottom shear stress. The
horizontal eddy viscosity terms, Ax and Ay, are given by:

Ax = ν∇2U (6)

Ay = ν∇2V (7)

where ν is the eddy viscosity coefficient of the horizontal shear stress.
For the eddy viscosity coefficient the Smagorinsky model (Smagorinsky

(1963)) is adapted:

ν = ql2

⎡⎣(∂u

∂x

)2

+
1

2

(
∂u

∂y
+

∂v

∂x

)2

+

(
∂v

∂y

)2
⎤⎦ 1

2

(8)

where q is a constant, l is a length scale which is set equal to the grid size,
and (u, v) denote the components of the depth mean current velocity defined
to the first order by:

u =
U

H
, v =

V

H

With q=0.1, a grid size of 100 meters, and a current speed of the order 1
m/s, eq. (8) leads to an eddy viscosity of the order 10 m2/s. In some simula-
tions a constant horizontal eddy viscosity with ν ranging from 1 to 10 m2/s
is applied instead of the flow dependent viscosity in eq. (8).

By neglecting the nonlinear advection terms and the horizontal shear
stress, the shallow water eqs. (1) to (3), simplify to the following:

∂η

∂t
= −∂U

∂x
− ∂V

∂y
(9)

∂U

∂t
− fV = −gH0

∂η

∂x
− cD

U

H0

√
U2 + V 2

H0
(10)

∂V

∂t
+ fU = −gH0

∂η

∂y
− cD

V

H0

√
U2 + V 2

H0
(11)
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This is the same set of equations as implemented in the PLN-model. The
equations were discretized on a C-grid (Mesinger and Arakawa (1976)) shown
in figure 1, with a uniform spatial grid resolution �s and time step �t:

ηi,j(t +�t)− ηi,j(t)

�t
= −Ui+1,j(t)− Ui,j(t)

�s
− Vi,j+1(t)− Vi,j

�s
(12)

Ui,j(t +�t)− Ui,j(t)

�t
= fV i,j(t)− gH0

i

i,j

ηi,j(t +�t)− ηi−1,j(t +�t)

�s

−cD

Ui,j(t)

H0
i

i,j

√
U2

i,j(t) + V
2

i,j(t)

H0
i

i,j

(13)

Vi,j(t +�t)− Vi,j(t)

�t
= −fU i,j(t +�t)− gH0

j

i,j

ηi,j(t +�t)− ηi,j−1(t +�t)

�s

−cD

Vi,j(t)

H0
j

i,j

√
U

2

i,j(t +�t) + V 2
i,j(t)

H0
j

i,j

(14)

where

H0
i

i,j =
1

2
(H0i,j + H0i−1,j)

H0
j

i,j =
1

2
(H0i,j + H0i,j−1)

V i,j =
1

4
(Vi,j + Vi−1,j + Vi,j+1 + Vi−1,j+1)

U i,j =
1

4
(Ui,j + Ui+1,j + Ui,j−1 + Ui+1,j−1)

The simulations are started from rest (η=U=V =0) and are driven by
specified surface elevation η at the open boundaries. Boundary values are
either obtained from a model covering a larger domain or by interpolating
data from a model with coarser grid. The interior solution are adjusted to
the specified boundary conditions with the flow relaxation scheme (FRS),
Martinsen and Engedahl (1987). The FRS softens the transition from an
exterior solution to an interior solution by use of a grid zone where the
two solutions dominate at each ends respectively. How a FRS zone can be
implemented in tidal models is described by Moe et al. (2002) and Moe et al.
(2003). Further details about the PLN-model, are given in the same papers.
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Ui,j

Vi,j

Hi,j Ui+1,j

Vi+1,j

Hi+1,jUi−1,j

Vi−1,j

Hi−1,j

Ui,j+1

Vi,j+1

Hi,j+1

Ui,j−1

Vi,j−1

Hi,j−1 Ui+1,j−1

Vi+1,j−1

Hi+1,j−1Ui−1,j−1

Vi−1,j−1

Hi−1,j−1

Ui−1,j+1

Vi−1,j+1

Hi−1,j+1 Ui+1,j+1

Vi+1,j+1

Hi+1,j+1

Δ s

Δ s

Figure 1: C-grid stencil with a uniform spatial grid resolution�s. The circles
denotes grid points where both sea surface displacement, η, and depth, H, are
specified. Lines represent grid nodes for volume fluxes U and V .

3 Implementation of nonlinear terms

3.1 The total depth

The first and easiest modification of the PLN-model is to use the total depth,
H , instead of the mean depth, H0. This is done by adding η to H0 after η
is calculated in every grid node, and then using H in the calculations for U
and V .

In order to study the effect of replacing H0 by H = H0 + η in the PLN-
model, eqs. (12)-(14), some numerical tests have been made, see section
5.1.

3.2 The nonlinear advection terms

Following the same discretization as used in the linear equations, the non-
linear advection terms in eqs. (2) and (3) have been represented with the
numerical form:

Nx
i,j =

1

�s

⎛⎝U
i 2

i,j

Hi,j
− U

i 2

i−1,j

Hi−1,j

⎞⎠+
1

�s

⎛⎝U
j

i,j+1V
i

i,j+1

Hi,j+1

− U
j

i,jV
i

i,j

H i,j

⎞⎠ (15)
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A

B

C

Figure 2: Example of the grid mesh in the coastal zone. Red and yellow lines
illustrate fluxes in the coastal zone, blue in the interior domain. Blue circles
represent points for sea surface displacement. Green circles represent land
points.

Ny
i,j =

1

�s

⎛⎝U
j

i+1,jV
i

i+1,j

Hi+1,j

− U
j

i,jV
i

i,j

H i,j

) +
1

�s
(
V

j 2

i,j

Hi,j

− V
j 2

i,j−1

Hi,j−1

⎞⎠ (16)

where

U
i

i,j =
1

2
(Ui+1,j + Ui,j)

U
j

i,j =
1

2
(Ui,j + Ui,j−1)

V
i

i,j =
1

2
(Vi,j + Vi−1,j)

V
j

i,j =
1

2
(Vi,j+1 + Vi,j)

H i,j =
1

4
(Hi,j + Hi−1,j + Hi,j−1 + Hi−1,j−1)

For the nearest fluxes parallel to the coastline we have used a one-sided
difference in the nonlinear advection terms. These fluxes are said to be
located in a coastal zone as illustrated in figure 2.

To include the nonlinear advection terms also for the coastal zone, ap-
proximation methods must be used. The four approximation methods used
for a straight coastline are illustrated by figure 3:

1. The nonlinear advection terms in the coastal zone, f(0), are set to zero:

f1(0) = 0
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Number of grid cells from coastal zone
0 1 2

f1(0)

f2(0)

f3(0)

f4(0)

f(1)

f(2)

Figure 3: Four methods to approximate a nonlinear advection term in the
coastal zone, fn(0), where n=1,2,3,4 represents the method listed in the text.
f(1) is the value of the term one grid cell away from the coastal zone, and
f(2) the value two grid cells away from the coastal zone.

2. The nonlinear advection terms in the coastal zone, f(0), equal the
nonlinear advection terms in the the nearest neighbouring grid cell,
f(1):

f2(0) = f(1)

3. The nonlinear advection terms in the coastal zone, f(0), equal the mean
of the value of the terms in two grid points nearest to the coast, f(1)
and f(2):

f3(0) =
1

2
(f(1) + f(2))

4. The nonlinear advection terms in the coastal zone, f(0), is determined
by a linear extrapolation of the nonlinear advection terms from two
grid cells close to the coast, f(1) and f(2):

f4(0) = f(1) +
f(2)− f(1)

2− 1
(0− 1) = 2f(1)− f(2)

The following describe in detail how the four methods were modified in
case of more complicated coastlines:

3.2.1 Special case: channel

In a narrow channel with only one or two grid cells, the nonlinear advection
terms are set to zero as shown in figure 4.
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2 2 2 2

2 2 2 2

2

2
1 1 1 1

1 1 1
2/2

2/1

2/1

D E

F

Figure 4: Example of a narrow channel. Red and yellow lines illustrate
fluxes located in the coastal zone, blue in the interior domain. Dotted lines
illustrates fluxes where the nonlinear advection terms are set to zero. Blue
circles represent points for sea surface displacement. Green circles represent
land points.

In a channel with three grid cells, only the nonlinear advection terms in
the middle of the channel are calculated without one-sided differences. The
nonlinear advection terms in the coastal zone on each side of the channel,
may be approximated using only the nonlinear advection terms in the middle
of the channel. This is indicated with ’1’ in figure 4.

If the nonlinear advection terms in a coastal zone are approximated using
two or more nonlinear advection terms in one direction, this in indicated with
’2’ in figure 4.

3.2.2 Special case: corners

A flux is said to be in the coastal zone near a corner if the parallel neigh-
bouring fluxes in two directions is located in the water outside the coastal
zone.

The nonlinear advection term for a flux in the coastal zone near a corner
is approximated as the mean value of the approximation in these directions.

The flux marked with ’2/2’ in figure 4 and all the fluxes illustrated by yel-
low lines in figure 2 may use two nonlinear advection terms in each direction
to approximate the nonlinear advection term in the coastal zone.

The fluxes marked with ’2/1’ in figure 4 may use two nonlinear advection
terms in one direction and one term in another direction to approximate the
terms in the coastal zone.
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3.2.3 Implementation of the nonlinear advection terms

Before expressing the full equations for the nonlinear advection terms, four
new parameters are defined1. Zx

i,j and Zy
i,j denote whether the fluxes are

located in the coastal zone or in the interior domain:

Zx
i,j =

{
0, if the flux Ui,j lies in the coastal zone or next to a land node
1, if the flux Ui,j lies in the water outside the coastal zone

Zy
i,j =

{
0, if the flux Vi,j lies in the coastal zone or next to a land node
1, if the flux Vi,j lies in the water outside the coastal zone

and Cx
i,j and Cy

i,j denote the coast type for the fluxes in the coastal zone:

Cx
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if the flux Ui,j lies in the water outside the coastal zone

or next to a land node
1, if the flux Ui,j lies in a coastal zone, but not near a corner

0.5, if the flux Ui,j lies in a coastal zone near a corner

Cy
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if the flux Vi,j lies in the water outside the coastal zone

or next to a land node
1, if the flux Vi,j lies in a coastal zone, but not near a corner

0.5, if the flux Vi,j lies in a coastal zone near a corner

First the nonlinear advection terms are calculated in every grid cell, using
eq. (15) and (16). Then the terms are completed by approximation in the
coastal zone using one of the four methods:

Method 1:

Ñx
i,j (1) = Zx

i,j Nx
i,j (17)

Ñy
i,j (1) = Zy

i,j Ny
i,j (18)

Method 2:

Ñx
i,j (2) = Zx

i,j Nx
i,j + Cx

i,j (Nx
i−1,j + Nx

i+1,j + Nx
i,j−1 + Nx

i,j+1) (19)

Ñy
i,j (2) = Zy

i,j Ny
i,j + Cy

i,j (Ny
i−1,j + Ny

i+1,j + Ny
i,j−1 + Ny

i,j+1) (20)

Method 3:

Ñx
i,j (3) = Zx

i,j Nx
i,j + 1

2
Cx

i,j [ (2− Zx
i−2,j) Nx

i−1,j + Zx
i−1,j Nx

i−2,j

+(2− Zx
i+2,j) Nx

i+1,j + Zx
i+1,j Nx

i+2,j

+(2− Zx
i,j−2) Nx

i,j−1 + Zx
i,j−1 Nx

i,j−2

+(2− Zx
i,j+2) Nx

i,j+1 + Zx
i,j+1 Nx

i,j+2 ]

(21)

1Note that Zx is called uinl in the model code, Zy is called vinl, Cx is called uik, and
Cy is called vik.

9



Ñy
i,j (3) = Zy

i,j Ny
i,j + 1

2
Cy

i,j [ (2− Zy
i−2,j) Ny

i−1,j + Zy
i−1,j Ny

i−2,j

+(2− Zy
i+2,j) Ny

i+1,j + Zy
i+1,j Ny

i+2,j

+(2− Zy
i,j−2) Ny

i,j−1 + Zy
i,j−1 Ny

i,j−2

+(2− Zy
i,j+2) Ny

i,j+1 + Zy
i,j+1 Ny

i,j+2 ]

(22)

Method 4:

Ñx
i,j (4) = Zx

i,j Nx
i,j + Cx

i,j [ (1 + Zx
i−2,j) Nx

i−1,j − Zx
i−1,j Nx

i−2,j

+(1 + Zx
i+2,j) Nx

i+1,j − Zx
i+1,j Nx

i+2,j

+(1 + Zx
i,j−2) Nx

i,j−1 − Zx
i,j−1 Nx

i,j−2

+(1 + Zx
i,j+2) Nx

i,j+1 − Zx
i,j+1 Nx

i,j+2 ]

(23)

Ñy
i,j (4) = Zy

i,j Ny
i,j + Cy

i,j [ (1 + Zy
i−2,j) Ny

i−1,j − Zy
i−1,j Ny

i−2,j

+(1 + Zy
i+2,j) Ny

i+1,j − Zy
i+1,j Ny

i+2,j

+(1 + Zy
i,j−2) Ny

i,j−1 − Zy
i,j−1 Ny

i,j−2

+(1 + Zy
i,j+2) Ny

i,j+1 − Zy
i,j+1 Ny

i,j+2 ]

(24)

Note that for the fluxes in the water outside the coastal zone, eq. (17) to
(24) become:

Ñx
i,j (1)→(4) = Nx

i,j Ñy
i,j (1)→(4) = Ny

i,j

since Zx
i,j = Zy

i,j = 1 and Cx
i,j = Cy

i,j = 0 in the water outside the coastal
zone.

For our model setup the first and the last method proceed to be the most
stable. Therefore section 5 only presents results from simulations with these
two approximation methods.

Example A The flux, Vi,j, marked ’A’ in figure 2 is located in the coastal
zone, and has water outside the coastal zone, in one direction. Therefore the
nonlinear advection term is approximated in one direction. Eqs. (20), (22)
and (24) become:

Ñy
i,j (2) = Ny

i−1,j

Ñy
i,j (3) =

1

2
(Ny

i−1,j + Ny
i−2,j)

Ñy
i,j (4) = 2Ny

i−1,j −Ny
i−2,j
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Example B The flux, Ui,j , marked ’B’ in figure 2 is located in the coastal
zone near a corner. Since the flux has water outside the coastal zone in
two directions, the nonlinear advection term is approximated in these two
directions. Eqs. (19), (21) and (23) become:

Ñx
i,j (2) =

1

2
(Nx

i+1,j + Nx
i,j+1)

Ñx
i,j (3) =

1

4
(Nx

i+1,j + Nx
i+2,j + Nx

i,j+1 + Nx
i,j+2)

Ñx
i,j (4) =

1

2
(2Nx

i+1,j −Nx
i+2,j + 2Nx

i,j+1 −Nx
i,j+2)

Example C The flux, Vi,j, marked ’C’ in figure 2 is located in the coastal
zone, and has water outside the coastal zone, in one direction. The nonlinear
advection term is approximated in the same way as the flux in example A:
Eqs. (20), (22) and (24) become:

Ñy
i,j (2) = Ny

i,j+1

Ñy
i,j (3) =

1

2
(Ny

i,j+1 + Ny
i,j+2)

Ñy
i,j (4) = 2Ny

i,j+1 −Ny
i,j+2

Example D The flux, Ui,j, marked ’D’ in figure 4 is located in the coastal
zone, and has water outside the coastal zone, in one direction. Since only
one of the two nearest fluxes in that direction is located outside a coastal
zone, only one grid cell is used in all the approximation methods. Eqs. (19),
(21) and (23) become:

Ñx
i,j (2) = Ñx

i,j (3) = Ñx
i,j (4) = Nx

i+1,j

Example E The flux Ui,j , marked ’E’ in figure 4 is located in the coastal
zone, but does not have any neighbouring fluxes in water outside the coastal
zone. Therefore this non-zero advection term is set to zero in all four ap-
proximation methods. Eqs. (19), (21) and (23) become:

Ñx
i,j (2) = Ñx

i,j (3) = Ñx
i,j (4) = 0

Example F The flux, Ui,j , marked ’F’ in figure 4 is located in the coastal
zone near a corner. Since the flux has water outside the coastal zone in
two directions, the nonlinear advection term is approximated in these two
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directions. In one of these direction, the flux two grid cells from the flux
marked ’E’ is located in a coastal zone. Eqs. (19), (21) and (23) become:

Ñx
i,j (2) =

1

2
(Nx

i+1,j + Nx
i,j+1)

Ñx
i,j (3) =

1

4
(Nx

i+1,j + Nx
i+2,j + 2Nx

i,j+1)

Ñx
i,j (4) =

1

2
(2Nx

i+1,j −Nx
i+2,j + Nx

i,j+1)

3.3 Horizontal eddy viscosity

Following the same discretization as used in the original PLN-model, the
horizontal eddy viscosities in eqs. (6) and (7) have the numerical form:

Ax
i,j =

ν

(�s)2
(Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j) (25)

Ay
i,j =

ν

(�s)2
(Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 − 4Vi,j) (26)

The PLN-model used in this report is without horizontal eddy viscosity.
In order to make our nonlinear simulations stable, sufficient horizontal eddy
viscosity has to be included. This will be discussed further in section 5.1.

Since central differencing cannot be used in the coastal zone, the horizon-
tal eddy viscosity cannot be calculated to the same order of accuracy in the
coastal zone as in the interior domain. The four suggested approximation
methods used for the nonlinear advection terms, have also been evaluated for
the eddy viscosity. The most stable method was to set the horizontal eddy
viscosity to zero in the coastal zone. After calculating the various terms in-
cluded in the horizontal eddy viscosity in the interior domain, the scheme is
completed by setting these terms equal to zero in the coastal zone:

Ãx
i,j = Zx

i,j Ax
i,j

Ãy
i,j = Zy

i,j Ay
i,j

If the horizontal eddy viscosity is included closer than two grid cells from
the FRS zone, the simulations become unstable in less than 20 hours simu-
lated time. Therefore neither the horizontal eddy viscosity nor the nonlinear
advection terms are included closer than two grid cells from the FRS zone.

3.4 Bottom shear stress

According to Crean et al. (1995) the bottom shear stress dominates the
horizontal eddy viscosity near the coast. Crean et al. therefore set the

12



Colour Z C Description
Green - - land nodes where H0 = 0

0 0 fluxes next to land nodes
Blue - - water nodes where H0 > 0

1 0 fluxes in the water outside the coastal zone where
eqs. 15 and 16, 25 and 26 are all used directly

Red 0 1 fluxes in the coastal zone
Yellow 0 0.5 fluxes in the coastal zone near a corner
Dotted 0 0 fluxes in the coastal zone where all nonlinear terms

are set to zero

Table 1: Description of colour codes in figure 2 and 4. Z represent Zx and
Zy, and C represent Cx and Cy

horizontal eddy viscosity to zero, and increased the bottom shear stress near
the coast. We shall adopt a similar approach.

In order to improve the stability of the nonlinear simulations we also
found that the bottom shear stress coefficient has to be increased in the
coastal zone. One way to increase the bottom shear stress in the coastal
zone is simply to multiply the coefficient with a factor greater than unity.
Another way to increase the bottom shear stress in the coastal zone, where
the water depths usually are small, is to assume that the bottom friction
coefficient depends on the water depth:

cD = c0
D

(
1 + ae

− H2

H2
m

)
(27)

where H is the water depth, Hm is a characteristic water depth in the coastal
zone, c0

D = 0.003 is value of the coefficient in deep water (H >> Hm), and a
is a positive scaling factor greater than unity.

In our simulations a suitable value of a was found to lie around five when
the Smagorinsky formula, eq. (8) with q = 0.3, was used to calculate ν.
When ν was constant, ν = 5m2/s, a was chosen around 15.

4 Model setup and boundary conditions

First the PLN-model with a 100 meter grid resolution was set up for a domain
covering the Tjeldsund and Ramsund channels and the surrounding fjord
areas as shown in figure 5. Boundary conditions in the FRS zone, ten grid
cells wide, were obtained by interpolating surface elevation from the large-
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Hinnøya

Narvik

Evenskjær

Tysfjorden

Ofotfjorden

V̊agsfjorden

Figure 5: The model domain covering the Tjeldsund and Ramsund channels
and the surrounding fjord area. The red dots mark stations for output of time
series.

scale PLN-model for the area around the Lofoten Islands with 500 meter grid
resolution (Moe et al. (2002)).

The high resolution depth matrix based on new bathymetric surveys of
the model domain was not ready during this work. Therefore a test depth
matrix with 100 meter grid grid resolution was constructed by interpolating
from the depth matrix with 500 meter grid. Additional simulations will be
conducted when a new depth matrix with 50 and 25 meter grid resolution
becomes available.

Next the PLN-model with a 100 meter grid resolution was set up for a
sub domain covering only the Tjeldsund and Ramsund channels as shown in
figure 6. The boundary conditions in the FRS zone were obtained from the
model covering the whole domain in figure 5. The results of the simulations
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Figure 6: The model domain for the full nonlinear model. The red dots mark
the five stations for output of time series, st.1 - st.5, discussed in this report.

for the two model domains in figure 5 and 6 were compared. Only minor
differences in the current and the surface elevation were detected.

Then the full nonlinear model was set up for the domain in figure 6 with
the same boundary conditions as for the PLN-model for the same domain.
For the test depth matrix the mean water depth in the coastal zone, with
special treatment of the nonlinear advection terms, was 5.6 meters. The
maximum water depth in the coastal zone was 29.5 meters. The reference
depth Hm in eq. (27) was therefore set Hm=5.6 m.

The tidal model reported here is driven only by surface amplitude and
phase for the M2 component at the open boundaries. The boundary forc-
ing started from rest and increased in time with a ramping function, (1−
exp(−σt)). A value of σ = 4.6 × 10−5s−1 has been used which implies full
effect of boundary conditions after about 12 hours. This is similar to what
was used for the PLN-model.

For every 180 seconds, surface elevation, current amplitude and phase at
the output-stations were stored. Time series for the stations showed some
noise due to the transient start. After 50 hours, full fields for current and
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ω T M2 M4 M6 M8

M2 0.0805 cph 12.42 h - 12.42 h 6.21 h 4.11 h
M4 0.1610 cph 6.21 h 12.42 h - 12.42 h 6.21 h
M6 0.2415 cph 4.14 h 6.21 h 12.42 h - 12.42 h
M8 0.3220 cph 3.11 h 4.11 h 6.21 h 12.42 h -

Table 2: The frequents in cycles per hour (cph), the period of the tidal com-
ponents, and the length of time series needed to separate the components by
harmonic analysis.

elevation are stored every hour. A total simulation time of 100 hours seems
to be sufficient to reach an acceptable steady state.

Two stations (st3, st4) in Sandtorgstraumen are of special interest. Both
stations are marked with red dots in figure 11.

4.1 Harmonic analysis

To calculate the amplitude and phase for the tidal components the program
T TIDE (Pawlowicz et al. (2002)) was used with time series for surface eleva-
tion and depth mean current from the simulations as input. T TIDE consists
of a set of programs written in Matlab and uses classical harmonic analysis
for periods of about 1 year or shorter. In classical harmonic analysis, the
tidal signal is simulated as the sum of a finite set of sinusoidal components
with specific frequencies determined from astronomical parameters for the
orbits of the Moon and the Sun.

For the simulations reported here only the dominant M2 component is
used for boundary forcing. Due to nonlinear effects the bottom friction gen-
erates the M6 overtide with 4.1 hour period. The nonlinear advection terms
and the nonlinearity in the eddy viscosity generates the M4 and M8 overtides
with 6.2 and 3.1 hours period respectively.

The length of the time series needed to separate the component M2 from
M4 by harmonic analysis is:

1

ω4 − ω2

= 12.42 hours

where ω2 and ω4 are the frequency in cycles per hour for M2 and M4 respec-
tively.

Table 2 shows how long the time series must be, in order to separate some
of the other tidal component.
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Bottom drag coefficient, cD

depend on depths multiplied with n
eq. 27 in coastal zone

eddy viscosity coefficient, ν a = 2 a = 3 n = 4 n = 10
constant ν = 3 m2/s unstable unstable unstable unstable

ν = 4 m2/s - - - stable
ν = 5 m2/s - - unstable -
ν = 6 m2/s - - stable -
ν = 10 m2/s - unstable - -
ν = 15 m2/s unstable stable stable stable

Smagorinsky q = 0.1 unstable unstable unstable unstable
eq. 8 q = 0.2 stable stable unstable stable

q = 0.3 - - stable -
q = 5 - - stable -
q = 10 stable stable unstable stable

Table 3: The stability after 100 hours of full nonlinear simulations with dif-
ferent choices of friction coefficients, and the nonlinear advection terms ex-
trapolated in the coastal zone.

5 Results

5.1 Currents and volume fluxes

Strong currents occur in Sandtorgstraumen north-east of Tjeldøya, in Stein-
landsstraumen up north in Tjeldsundet and in Ballstadstraumen north of
Tjeldøya. In Spannbogstraumen in Ramsundet east of Tjeldøya the currents
are weaker, but since the water depths are small and the channel is narrow,
the currents is considerable even here.

Among the many difficulties with nonlinear simulations, a crucial choice
is to balance the amount of friction. With too little friction, the simula-
tions become unstable, and too much friction, leads to an unrealistic strong
damping of the current.

Table 3 shows which choices of ν and cD that are suitable when the
nonlinear advection terms are extrapolated in the coastal zone. Note that
when the Smagorinsky formula, eq. (8), is used to calculate the eddy viscosity
coefficient, the simulations are stable only for an interval of q.

This section presents results from the five full nonlinear simulations listed
in table 4. For each of these simulations, the coefficients cD and ν are chosen
as small as possible for maintaining stable solutions for 100 hours simulation
time. If the coefficients are chosen smaller, the simulations become unstable.
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Horizontal eddy Bottom drag nonlinear advection
Run viscosity coefficient coefficient terms in coastal zone

1 q = 0.3 in eq. (8) a = 3 in eq. (27) extrapolated
2 ν = 6 m2/s, constant x4 in coastal zone extrapolated
3 q = 0.3 in eq. (8) x4 in coastal zone extrapolated
4 ν = 4 m2/s, constant x4 in coastal zone set to zero
5 q = 0.1 in eq. (8) set to zero

Table 4: The five full nonlinear simulations.

These limits depend on the topography, the grid length, location, initial
conditions, boundary conditions, and current magnitude.

Figure 11 to 18 show plots which are generated from PLN-simulations
and the five full nonlinear simulations listed in table 4.

Figure 11 and 12 show the northern part of Sandtorgstraumen at the time
of maximum flow northwards. Figure 11 shows results from one PLN model
simulation and the three full nonlinear simulation where the nonlinear advec-
tion terms are extrapolated in the coastal zone. Figure 12 shows results from
the two full nonlinear simulation where the nonlinear advection terms are set
to zero in the coastal zone. Plots from the same simulations are shown for
maximum flow southwards in Sandtorgstraumen, and for Steinlandsstraumen
in figure 13 to 18.

The most important differences between the simulations with the PLN-
model and with the full nonlinear model are the formation of intensified
jets and eddies on various scales as shown in figure 11 to 18. Of course
this is not unexpected, but we have been able to demonstrate how sensitive
these current features are to various methods of implementing the nonlinear
advection terms.

All the simulations with the full nonlinear model show an intensified jet
flow and eddy structures on each side of the jet north-east of Sandtorgstrau-
men. The eddy structures have slightly different forms. A closer look at
the plots from the full nonlinear simulations reveals currents in the opposite
direction close to land in some places. This effect is probably due to the
increased bottom friction applied in the coastal zone. This effect is stronger
when the nonlinear advection terms are extrapolated in the coastal zone,
compared to when the nonlinear advection terms are set to zero.

When the nonlinear advection terms are extrapolated in the coastal zone,
and the horizontal friction coefficient, ν, is calculated using Smagorinsky
formula, eq. (8), very strong currents occur close to land on the east side
of the channel in the northern part of the domain as shown in figure 15b.
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Figure 7: Total volume flux through a cross-section in Sandtorgstraumen.
The black line shows the result of the PLN-model. The other lines show
results from the full nonlinear simulations listed in table 4: Red line (run 1),
blue line (run 2), green line (run 3), brown line (run 4), and orange line (run
5).

These strong currents follow the coastal zone and are reflected at the northern
boundary. These currents are most likely a result of the extrapolation since
the magnitude is decreased when the nonlinear advection terms are set to
zero in the coastal zone.

Figure 7 displays the total volume flux through a cross-section in the
middle of Sandtorgstraumen. The total volume flux at peak is up to 30%
smaller in full nonlinear simulations compared to the PLN-model simulation.
Since more friction is added in run 1-4 than in run 5, the total volume flux
at peak in run 5 differ from the PLN-model simulation with less than 20%.

Figure 8 illustrates the impact of replacing H0 with H0 + η in the PLN-
model, compared with adding more friction in the PLN-model. The total
volume flux at peak is decreased with up to 9% when H0 + η was used
instead of H0 in the PLN-model, and with up to 17 % when the friction of
run 1 was added to the PLN-model.

5.2 Harmonic components

Figure 9 visualises the currents at station 4. The currents vector calculated
by the PLN-model follow a typical tide ellipse, but the variability calculated
by the full nonlinear model are more complicated. When T TIDE is used
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Figure 8: Total volume flux through a cross-section in Sandtorgstraumen.
The black line shows results of the PLN-model, and the red line shows results
from the PLN-model modified with H = H0 + η instead of H0. Both with
constant bottom friction coefficient and no horizontal eddy viscosity.
The blue line shows results from run 1 in table 4. The green line shows results
from the PLN-model with the same friction choices as in the full nonlinear
simulation.

to analyse the currents at station 4, it leads to a rather large rest current
i.e. the difference between simulated currents and the currents T TIDE
recognises as tidal currents. This is clearly seen from figure 10. The rest
current is stable and periodic. The period of the rest current is from 1-4
hours and the amplitude is about 40 percent of the M2 tidal component.
The magnitude of the rest current vary much from one station to another.

Table 5 and 6 show the calculated harmonic constants for the tidal com-
ponents, sea level and current, for station 3 and 4. As the tables show, the
amplitudes for M4 and M6 are, as expected, significantly larger in the full
nonlinear simulation compared to the PLN-simulation.

The observed sea level amplitude and phase for the actual tidal compo-
nents (Lynge, 2004) are shown in table 7. Table 7 also shows results from
the PLN-model, and table 8 shows results from the full nonlinear model for
the stations closest to the observed stations.

The simulated sea level amplitude for M2 agrees well with the observed
amplitude. The observed sea level amplitude for M4 is somewhat larger than
the simulated amplitudes. As expected the full nonlinear model leads to
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Figure 9: Currents at station 4 in a) a PLN-simulation, and b) the full non-
linear simulation with run 5. The blue curve represents the simulated current,
green the current that T Tide recognised as tide-currents, red represents the
rest, and the dotted curve represents the tidal ellipse for M2.

larger amplitudes for M4 than the PLN-model. The highest simulated sea
level amplitude for M4 is found when Smagorinsky formula is used instead
of a constant eddy viscosity coefficient, and when the nonlinear advection
terms are extrapolated in the coastal zone, instead of setting these terms to
zero in the coastal zone. The sea level amplitude for M6 is larger for the full
nonlinear model than observed. This indicate that to much bottom friction
is included.
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st 3 PLN-model Full nonlinear (run 5)
const. hη [cm] gη [deg] hη [cm] gη [deg]
M2 83.94 ± 0.001 339.68 ± 0.05 84.94 ± 0.000 4.43 ± 0.03
M4 1.60 ± 0.000 205.42 ± 1.24
M6 0.64 ± 0.001 49.77 ± 7.32 0.85 ± 0.000 109.56 ± 2.41

st 4 PLN-model Full nonlinear (run 5)
const. hη [cm] gη [deg] hη [cm] gη [deg]
M2 74.20 ± 0.000 340.27 ± 0.04 75.11 ± 0.000 5.79 ± 0.01
M4 0.50 ± 0.000 347.40 ± 1.85
M6 0.67 ± 0.000 122.80 ± 3.82 1.04 ± 0.000 160.95 ± 0.99

Table 5: The calculated harmonic constants for see level amplitude, hη, and
phase relative Greenwich, gη, at station 3 and 4.

6 Concluding remarks

Different strategies for including the nonlinear advection terms in tidal sim-
ulations are tested and results of simulations are presented. Near the coast
the nonlinear advection terms can not be calculated with central differencing
in the same manner as in the interior water. We have found that by extrap-
olating the nonlinear advection terms into a narrow zone near the coast the
simulations are less stable than when the nonlinear advection terms are set to
zero in this zone. Extrapolation leads however to stronger nonlinear effects
in the interior domain manifested by higher amplitudes of the overtides.

To make our full nonlinear tidal simulations stable, sufficient horizontal
eddy viscosity and bottom shear stress had to be included. If the nonlin-
ear advection terms are extrapolated in the coastal zone, a constant hori-
zontal eddy viscosity coefficient of 6 m2/s is proved to be sufficient if the
bottom shear stress is increased by a factor of 4 near the coast. When the
Smagorinsky formula is used for the horizontal eddy viscosity coefficient, a
value of q = 0.3 is sufficient if the bottom stress coefficient either is increased
four times near the coast or exponentially increased with depth with a factor
a = 3, (eq. 27). If the nonlinear advection terms are set to zero in the coastal
zone, less friction need to be included. A constant horizontal eddy viscosity
coefficient of 4 m2/s is proved to be sufficient if the bottom stress coefficient
is increased by a factor of 4 near the coast. And when the Smagorinsky for-
mula is used for the horizontal eddy viscosity coefficient, a value of q = 0.1
is sufficient without increasing the bottom stress coefficients.

We advice to set the nonlinear advection terms to zero in a narrow zone
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st 3 PLN-model Full nonlinear (run 5)
A B θ gc A B θ gc

const. [cm/s] [cm/s] [deg] [deg] [cm/s] [cm/s] [deg] [deg]
M2 118.8 -3.9 27.1 28.4 115.3 -0.5 28.3 18.3
M4 6.6 -0.3 21.1 16.3
M6 6.0 -1.0 20.4 339.6 8.0 -0.6 18.2 305.2
M8 0.7 -0.4 32.7 307.4

st 4 PLN-model Full nonlinear (run 5)
A B θ gc A B θ gc

const. [cm/s] [cm/s] [deg] [deg] [cm/s] [cm/s] [deg] [deg]
M2 32.1 -3.4 93.5 46.7 35.3 3.0 76.5 29.0
M4 9.0 2.5 46.9 43.1
M6 0.13 -0.1 94.0 335.6 7.0 -0.1 27.3 34.3
M8 3.9 0.9 24.1 23.8

Table 6: The calculated parameters of current ellipse at station 3 and 4.
Major and minor half axis denoted A and B respectively. Orientation, θ,
of major axis relative east, and phase, gc, degrees relative Greenwich, (east:
gc = 0o, south: gc = 0o, etc.).

near the coast, use Smagorinsky formula to calculate the horizontal eddy
viscosity coefficient, and, if necessary, increase the bottom stress coefficient
exponentially with depth (eq. 27). Note that when the Smagorinsky formula
is used for the horizontal eddy viscosity coefficient, and sufficient bottom
shear stress is included, the simulations are stable only for an interval of q.

For the 100 meter grid used here depth is interpolated from a depth
matrix with 500 meter grid. More simulation tests will be conducted when
a new depth matrix with grid resolution of 25 and 50 meter is constructed
from new bathymetric data.

When a full nonlinear simulation is run with a new depth matrix we
expect that the coefficients of both the bottom friction and the horizontal
eddy viscosity have to be modified in order to make the simulations stable
with a realistic amount of damping. The results presented in this report
provide a guidance for how friction has to be adjusted.
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OBSERVED M2 M4 M6

h g [deg] h [cm] g [deg] h [cm] g [deg]
[cm] g [deg] h [cm] g [deg] h [cm] g [deg]

Lødingen 96.3 334.1 4.8 276.2 0.9 341.9
Ramsund 97.9 334.3 5.2 276.4 1.0 346.7
Fjelldal 87.5 340.0 2.5 285.1 0.7 4.1
Evenskjær 73.7 341.2 1.2 251.1 0.3 36.3
PLN-MODEL with cD = 0.03, ν = 0
station 1 95.8 335.4 - - - -
station 2 97.6 335.6 - - - -
station 3 83.9 339.7 - - 0.6 49.8
station 4 74.2 340.3 - - 0.7 122.8
station 5 73.8 340.6 - - 0.7 118.9

Table 7: Observed and simulated amplitude and phase for sea level (PLN-
model). Lødingen is located near station 1, Ramsund is located near station
2, Fjelldal near station 3, and Evenskjær is located between station 4 and 5.
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SIMULATED M2 M4 M6

full nonlinear h [cm] g [deg] h [cm] g [deg] h [cm] g [deg]
Run 1
station 1 96.2 335.4 - - - -
station 2 83.0 341.7 4.3 157.1 1.4 16.7
station 3 86.9 340.6 2.5 160.7 1.3 9.7
station 4 76.9 342.5 1.6 216.8 1.7 63.3
station 5 76.8 342.5 1.6 212.8 1.7 64.5
Run 2
station 1 96.1 335.4 - - 0.1 311.4
station 2 97.5 335.7 - - 0.1 270.2
station 3 85.1 340.5 1.9 156.0 1.1 30.6
station 4 76.2 342.2 0.6 247.9 1.4 67.1
station 5 76.0 342.3 0.6 253.2 1.3 65.2
Run 3
station 1 96.2 335.4 - - - -
station 2 97.8 335.5 - - - -
station 3 85.5 340.5 2.1 157.4 1.1 29.5
station 4 76.4 342.2 1.0 219.9 1.4 69.2
station 5 76.2 342.2 0.9 229.5 1.4 65.7
Run 4
station 1 96.1 335.4 - - - -
station 2 97.5 335.7 - - - -
station 3 84.8 340.4 1.7 151.8 1.0 36.9
station 4 76.2 342.1 0.4 257.4 1.2 69.4
station 5 76.1 342.3 0.3 286.1 1.3 98.0
Run 5
station 1 96.1 359.8 0.1 111.4 1.3 25.3
station 2 75.4 5.8 0.4 359.9 1.3 157.1
station 3 84.9 4.4 1.6 205.4 0.8 109.6
station 4 75.1 5.8 0.5 347.4 1.0 160.1
station 5 75.1 5.7 0.5 342.1 1.1 164.0

Table 8: Simulated amplitude and phase for sea level from the full nonlinear
model. For further explanations see legend table 7
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Figure 10: Harmonic analysis of the current at station 4. The blue curve
represents the simulated current, green the current that T Tide recognized as
tide-currents and red the rest current.
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Figure 11: Maximum flood currents northwards in Sandtorgstraumen when
the nonlinear advection terms are extrapolated in the coastal zone .
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Figure 12: Maximum flood currents northwards in Sandtorgstraumen when
the nonlinear advection terms are set to zero in the coastal zone.
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Figure 13: Maximum ebb currents southwards in Sandtorgstraumen when the
nonlinear advection terms are extrapolated in the coastal zone.
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Figure 14: Maximum ebb currents southwards in Sandtorgstraumen when the
nonlinear advection terms are set to zero in the coastal zone.
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Figure 15: Maximum flood currents northwards in Steinlandstraumen when
the nonlinear advection terms are extrapolated in the coastal zone.
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Figure 16: Maximum flood currents northwards in Steinlandstraumen when
the nonlinear advection terms are set to zero in the coastal zone.
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Figure 17: Maximum ebb currents southwards in Steinlandstraumen when
the nonlinear advection terms are extrapolated in the coastal zone.

34



24 25 26 27
km

24.5

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

0.5 m/s

24 25 26 27
km

24.5

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

0.5 m/sa) full nonlinear b) full nonlinear
run 4 run 5

Figure 18: Maximum ebb currents southwards in Steinlandstraumen when
the nonlinear advection terms are set to zero in the coastal zone.
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Abstract

New current modified Schrödinger equations are derived suited to
study waves on both potential and non–potential inhomogeneous cur-
rents. Split–step schemes of first, second, and fourth order are dis-
cussed. Different results are presented regarding the current terms
and the model setup.

This paper mainly serve as background information for Hjelmervik
& Trulsen (2009), but the current modified Schrödinger equations and
model setup presented here are expected to have an even larger range
of application possibilities.

1 Introduction

Studies of nonlinear wave–current interactions are of academic interest and
important in order to reduce safety hazards in ocean currents.

Even linear interaction of waves and currents is still an active field of
research. It is well known that linear refraction due to currents can provoke
large waves. Waves encountering an opposing current may obtain reduced
wave length and increased wave height and steepness. When waves encounter
an opposing current jet, focusing can further enhance the wave intensity near
the centre of the jet. Linear refraction of waves by currents is known to cause
navigational problems, e.g. in the Agulhas current, river estuaries, rip cur-
rents, entrances in fjords during outgoing tides, and in tidal flows in the
coastal zone, (Longuet-Higgins & Stewart, 1961; Peregrine, 1976; González,
1984; Jonsson, 1990; Lavrenov, 1998; Bottin & Thompson, 2002; Mori, Liu
& Yasuda, 2002; MacIver, Simons & Thomas, 2006; MacMahan, Thornton
& Reniers, 2006). When the steepness thus increases, enhanced nonlinear
modulations is anticipated (Stocker & Peregrine, 1999; Lavrenov & Porubov,
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2006). However, it is not well known how the enhanced effect of nonlinearity
modify the wave height. Our goal is to investigate how current and nonlin-
earity modifies the wave heights for waves propagating on inhomogeneous
stationary currents. In this paper we will derive equations and construct a
numerical setup for this purpose. We will also study some results regarding
the model setup, the current terms, and different current configurations.

Several different equations are used to study wave–current interactions.
Our need to resolve wave phases on non–potential currents restricts us from
employing several obvious candidates. White (1999) allowed a prescribed
current with vorticity, and derived a wave action equation which is a phase
averaged model. Ray theory (White & Fornberg, 1998) is used for track-
ing wave packets. Peregrine & Smith (1979) derived a nonlinear Schrödinger
equation useful for caustics where ray theory breaks down. Schrödinger equa-
tions have bandwidth constraints which may be problematic. The Zakharov
(1968) equation does not have bandwidth constraints, but makes it hard to
include a prescribed current, and is limited to potential flows.

Here we derive a current modified cubic Schrödinger equation suited for
waves on prescribed, stationary collinear currents. Some related models have
already been published. Stewartson (1977) considered the effects of slowly
varying depth and current, and derived a cubic Schrödinger equation lim-
iting to potential theory. Turpin, Benmoussa & Mei (1983) considered the
effects of slowly varying depth and current, and derived a cubic Schrödinger
equation limiting to one horizontal dimension. Gerber (1987) used the vari-
ational principle to derive a cubic Schrödinger equation for a non–uniform
medium, limiting to potential theory in one horizontal dimension. Stocker
& Peregrine (1999) extended the modified nonlinear Schrödinger equation of
Dysthe (1979) to include a slowly varying, periodic current and derived a
current modified Schrödinger equation. As an application example of their
theory, they studied the effect on a wave field from a potential surface current
induced by an internal wave. Their dominant current term, UB, is of cubic
order. We want to study stronger currents. Our equation will be taken up
to cubic nonlinearity, and will include waves and currents in two horizontal
dimensions allowing horizontal shear.

Several methods may be used to derive nonlinear Schrödinger equations
for deep water waves: an averaged Lagrangian method (Yuen & Lake, 1982),
a spectral method (Zakharov, 1968), and a multiple scales method (Hasimoto
& Ono, 1972; Davey & Stewartson, 1974; Dysthe, 1979; Stocker & Peregrine,
1999). We have used a multiple scale expansion similar to Mei (1989).

Several numerical methods may be used to solve nonlinear Schrödinger
equations. We employ a split–step method using both Fourier methods and
finite difference methods (Lo & Mei, 1985; Weidman & Herbst, 1986; Stocker
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& Peregrine, 1999). The Fourier methods are used on the linear terms with
constant coefficients. The finite difference methods are used on the nonlinear
terms and the linear terms with variable coefficients. Lo & Mei (1985) used a
split–step scheme to solve the modified Schrödinger equation by Dysthe and
compared their results with experiments.

2 Wave paths on prescribed currents

The linear dispersion relation for gravity waves on deep water is given by:

(ω − k ·U)2 = gk (1)

ω = ω(kx, ky, x, y, t) is the angular frequency. g = 9.81m/s2 is the accel-
eration of gravity. k = kxi + kyj is the wave vector with wave number

k =
√

k2
x + k2

y. And U = U(x, y)i+ V (x, y)j is the horizontal surface current

which is assumed stationary and slowly varying spatially. Since U is the
horizontal surface current, it does not have to be divergence free. The full
current field has a vertical component which does not appear in the dispersion
relation (1).

(1) may be made dimensionless using the characteristic length and time
scales of the wave field in the absence of current:

(ω − k ·U)2 = k (2)

√
k|ω− kxU | U = −0.2

U = 0.2

U = 0

kx

Figure 1: The dimensionless linear dispersion relation (2) for long crested
gravity waves, k = kxi, on a collinear current, U = U(x)i. Here ω = 1.
Solutions for selected currents are marked with disks.

There are up to four solutions of (2) for long crested waves, k = kxi,
on a collinear current, U = U(x)i, (figure 1 and 2). There exist only two
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ωU

kx/ω2

Figure 2: The linear dis-
persion relation (2) for
long crested gravity waves,
k = kxi, on a collinear
current, U = U(x)i.
Both coordinate axes are
asymptotes for all curves.
ω2 = ±kx when U = 0. A
local minimum is found in
(kx/ω

2, ωU) = (4,−0.25).

solutions when U = 0 or |U | > 1
4ω

, three solutions when |U | = 1
4ω

, and four
solutions when |U | < 1

4ω
.

Without any current the solutions are ω = ±√k, depending on the di-
rection of the waves. If the waves encounter a co–current (kxU > 0), the
wavelength increases. If the waves encounter a counter current (kxU < 0),
the wavelength decreases. In both cases the phase velocity of the waves is
stronger than the group velocity of the waves.

When U = − 1
4ω

kx

k
, the group velocity of the waves has the same strength

as the velocity of the counter current. If the counter current increases fur-
ther in strength, there does not exist any solution of the dispersion relation
because the energy of the waves cannot propagate on such strong counter
currents. If the counter current decreases in strength, the wave train may
split in two parts with decreasing and increasing wave number respectively.
With decreasing wave number the phase velocity of the waves is stronger
than the group velocity of the waves, and as the strength of the counter cur-
rent approaches zero, the wave number approaches ω2. With increasing wave
number the group velocity follows the counter current. As the strength of
the counter current approaches zero, the wave number approaches infinity.

On a co–current there exist solutions with high wave numbers which
increase when the strength of the co–current decrease. The group velocity
is larger than the phase velocity. This situation cannot be provoked by the
current, but if provoked it can exist on a current. When the wave number
exceeds a certain threshold, the capillary waves are more dominant than the
gravity waves, see Trulsen & Mei (1993)
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2.1 Wave path equations

The wave paths are tangential with the group velocity, cg, while the rays are
tangential with the wave number vector, k. Since the dispersion relation (2)
is not isotropic, the wave paths and the rays do not coincide. The wave path
equations may be written by:

dω

dt
=

∂ω

∂t
= 0 (3)

dk

dt
= −∂ω

∂x
= −kx

(
∂U

∂x
i +

∂U

∂y
j

)
(4)

dx

dt
=

∂ω

∂k
= U± 1

2
√

k

k

k
(5)

Here the x-axis is aligned along the current so that U = U(x, y)i.
According to (3) the angular frequency, ω, is constant for each wave path.

Suppose that U = U0 and k = (kx0, ky0) at x = x0. The conserved frequency
will then be:

ω = kx0U0 ±
(√

k2
x0 + k2

y0

)1/2

(6)

The wave paths are longitudinally reflected when U ± 1
2
√

k

kx

k
= 0 and

transversally reflected when ky = 0 according to (5). Suppose that U = URl

when the wave paths are longitudinally reflected, and U = URt when the
wave paths are transversally reflected. If ky0 = 0, URl and URt are given by:

URl = − 1

4ω
(7)

URt = U0 (8)

The stopping velocity in (7) is in agreement with Peregrine (1976), White &
Fornberg (1998), and others.

Following Mei (1989) it can be shown that B satisfies the following con-
servation law:

∂

∂t

(
B2

σ

)
+∇h ·

(
cg

B2

σ

)
= 0 (9)

B is the amplitude of the waves. σ and cg are given by:

σ = ω −U · k
cg = U± 1

2
√

k

k

k
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Figure 3: Wave paths with corresponding wave number, |k|, and amplitude,
|B|, as a function of x according to (3)–(5) and (9). The short lines across
the wave paths are normal to the wave vector k. Here ω = 1.
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(9) may also be written on the same form as the wave path equations, in
order to calculate the amplitude while tracing a path:

d

dt

(
B2

σ

)
=

∂

∂t

(
B2

σ

)
+ cg · ∇h

(
cg

B2

σ

)
= −

(
B2

σ

)
∇ · cg (10)

2.1.1 An example

Suppose that the waves ride a collinear current jet where U = U(y)i:

U(y) = U0 cos2
(

πy

Y

)
(11)

The rays diverge on co–currents (figure 3a–b) and converge on counter
currents (figure 3c–d). The rays are transversally reflected at the same veloc-
ity as the initial velocity in agreement with (8). Since the dispersion relation
(2) is not isotropic, the wave vector, k, is not tangential with the wave paths
except when the wave vector is parallel to the current, U .

On co–current jets the amplitude and wave number increase towards the
channel walls and decrease towards the centre of the jet. On counter current
jets the amplitude and wave number increase towards the centre of the jet.
When the counter current is stronger than the stopping velocity, (7), the rays
are reflected longitudinally (figure 3d).

2.2 Exact dispersion for constant current

Suppose that only the positive root is applied in (2):

ω = kxU + kyV +
(
k2

x + k2
y

) 1
4 (12)

Let ω = 1 + �ω and k = (kx, ky) = (1 + �kx,�ky) where �ω is the
modulation frequency and (�kx,�ky) is the modulation wave vector:

1 +�ω = (1 +�kx)U +�kyV +
(
1 + 2�kx + (�kx)

2 + (�ky)
2
) 1

4 (13)

Taylor expansion of the last term gives:

�ω − U −�kxU −�kyV − 1

2
�kx +

1

8
(�kx)

2 − 1

4
(�ky)

2

− 1

16
(�kx)

3 +
3

8
�kx(�ky)

2 = O
(
(�k)4

)
(14)
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Following the method of Yuen & Lake (1982) and Trulsen et al. (2000), (14)
may then be transformed using the following direct correspondences:

�ω → i
∂

∂t
, �kx → −i

∂

∂x
, �ky → −i

∂

∂y
(15)

For a linear, homogeneous wave system of uniform properties these corre-
spondences can be made rigorous. When including inhomogeneous currents,
the two last relationships in (15) are not accurate unless the ∇U–terms can
be neglected (Stocker & Peregrine, 1999).

Suppose that the current is slowly varying so that the waves do not feel
the changes locally. Then the relations in (15) used on (14) give:

i
∂

∂t
− U + iU

∂

∂x
+ iV

∂

∂y
+

i

2

∂

∂x
− 1

8

∂2

∂x2
+

1

4

∂2

∂y2

− i

16

∂3

∂x3
+

3i

8

∂3

∂x∂y2
= O

(
(�k)4

)
(16)

If multiplied with −iB, the linear terms in a time evolution of a current
modified Scrödinger equation appear:

∂B

∂t
+

1

2

∂B

∂x
+ iUB + U

∂B

∂x
+ V

∂B

∂y
+

i

8

∂2B

∂x2
− i

4

∂2B

∂y2

− 1

16

∂3B

∂x3
+

3

8

∂3B

∂x∂y2
= O

(
(�k)4

)
(17)

In the next section, current modified nonlinear Schrödinger equations will
be derived using multiple scales. These equations will allow inhomogeneous
currents.

3 Evolution of current modified nonlinear

Schrödinger equations

Assume that the total velocity field, vtot = v + V , is a superposition of the
velocity of a wave field, v = (u, v, w), and a prescribed stationary current
field, V = (U, V, W ), in a Cartesian coordinate system, (x, y, z). The x–axis
is aligned with the principal propagation direction of the waves. The z–axis
is vertical with unit vector k pointing upwards. z = 0 corresponds to the
undisturbed free water surface. The water is assumed inviscid, incompress-
ible, and deep with respect to the characteristic wavelength. The current
field is assumed unaffected by waves. η and ζ are the surface displacements
associated with the wave field and the current field respectively.
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Potential Vorticity Stocker & Hjelmervik
Stewartson

current allowed Peregrine & Trulsen
(1977)

(sec. 3.1) (sec. 3.2) (1999) (2009)
akc ε ε 0 ε ε

(U, V )kc/ωc ε ε 1 ε2 ε
Wkc/ωc ε5 ε4 ε2 ε2 ε2

Akc ε2 ε2 0 ε2 ε2

1/kcX ε2 ε ε ε ε
1/kcY ε2 1 ε ε ε
1/ωcT 0 0 ε2 ε 0

Nonlinear yes yes no yes yes
Horizontal

2 2 2 2 2dimensions
Potential

yes no yes yes notheory

Table 1: Current modified Schrödinger equations. kc and ωc are the charac-
teristic wave number and frequency for the undisturbed wave field, ω2

c = gkc.
a and A are the amplitudes associated with the wave field and the surface
current field respectively. (U, V, W ) is the characteristic current with a char-
acteristic length scale (X, Y, Z) and time scale T .

The Euler equation for the combined wave and current field can be written
as:

∂v

∂t
+ vtot · ∇vtot = −1

ρ
∇ptot − gk (18)

The total pressure, ptot = p+P +ps, is a combination of the dynamic pressure
due to the wave field, p, the dynamic pressure due to the current field, P ,
and the static pressure, ps = pa− ρgz, where pa is the atmospheric pressure,
ρ is the density, and g is the acceleration of gravity.

The vorticity of the waves, γ =∇× v, obeys the equation:

∂γ

∂t
+ vtot · ∇γ − γ · ∇vtot = −v · ∇Γ + Γ · ∇v (19)

If the vorticity of the current, Γ =∇×V , equals zero, (19) is homogeneous
with respect to γ, and if the wave field starts out irrotational, it will remain
irrotational. For waves riding a current field with vorticity, vorticity will
develop in the wave field as well.

Traditional Schrödinger equations are built on potential theory (Davey
& Stewartson, 1974; Stewartson, 1977; Dysthe, 1979; Dysthe & Das, 1981;
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Gerber, 1987; Stocker & Peregrine, 1999; Trulsen et al., 2000). Here we will
derive two current modified nonlinear Schrödinger equations. The first is
built on potential theory (sec. 3.1), and the second allows horizontal shear
and includes all the terms from the first (sec. 3.2). In table 1 the character-
istic sizes of these derivations are compared to some of the derivations found
in literature.

Let a, kc and ωc be the characteristic amplitude, wavenumber and angular
frequency of the surface waves. We employ the steepness of the waves as a
small ordering parameter in the following, ε = akc 	 1, thus kcη = O(ε) and
v kc

ωc
= O(ε). The horizontal current velocities are assumed just small enough

to avoid collinear reflection of the waves, (U, V ) kc

ωc
= O(ε) . The vertical

surface current velocity is assumed negligible, W kc

ωc
= O(ε5) when potential

theory is used, and W kc

ωc
= O(ε4) when vorticity is allowed. It follows from

the Bernoulli equation that the surface displacement induced by the current
is small, Akc = O(ε2).

3.1 Potential current field

If the current field is a potential field, V = ∇Φ, the velocity of the wave
field can be represented by a potential, v =∇φ, according to (19).

The continuity equation for the wave field, may be written as:

∇2φ = 0 (20)

The waves are assumed on deep water, that is ∇φ → 0 as z → −∞. The
surface equations for the combined field at the free surface z = η + ζ , can be
written as:

∂η

∂t
+∇(φ + Φ) · ∇(η + ζ) =

∂

∂z
(φ + Φ) (21)

∂φ

∂t
+

1

2
(∇(φ + Φ))2 + g(η + ζ) = 0 (22)

Taylor expansions around z = 0 gives (21–22) on the form:

∂η

∂t
+∇φ · ∇(η + ζ) +∇Φ · ∇η + ζ∇ ∂

∂z
(φ + Φ) · ∇η + ζ∇∂φ

∂z
· ∇ζ

+η∇ ∂

∂z
(φ + Φ) · ∇(η + ζ) +

1

2
η(η + 2ζ)∇ ∂

∂z
(φ + Φ) · ∇(η + ζ)

+
1

2
ζ2∇ ∂

∂z
(φ + Φ) · ∇η +

1

2
ζ2∇∂φ

∂z
· ∇ζ +

1

6
η3∇∂2φ

∂z
· ∇η

=
∂φ

∂z
+ η

∂2

∂z2
(φ + Φ) + ζ

∂2φ

∂z2
+

1

2
η(η + 2ζ)

∂3

∂z3
(φ + Φ) +

1

2
ζ2∂3φ

∂z3
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+
1

6
η3∂4φ

∂z4
+ · · · (23)

∂φ

∂t
+ (η + ζ)

∂2φ

∂t∂z
+

1

2
(η + ζ)2 ∂3φ

∂t∂z2
+

1

6
(η + ζ)3 ∂4φ

∂t∂z3

+
1

2
∇φ · ∇(φ + 2Φ) + η∇(φ + Φ) · ∇ ∂

∂z
(φ + Φ) + ζ∇(φ + Φ) · ∇∂φ

∂z

+ζ∇φ · ∇∂Φ

∂z
+

1

2
η2

(
∇∂φ

∂z

)2

+
1

2
η2∇φ · ∇∂2φ

∂z2
+ gη + · · · = 0 (24)

Let the horizontal length scales, L, of the current be longer than a charac-
teristic wavelength so that 1/(kcL) = O(ε2). In accordance with the scaling
assumptions, all equations, variables, and sizes in the following are made di-
mensionless using the characteristic length and time scales of the wave field,
so that kcx → x, εkcx → x̄, ωct → t, kcη → εη, kcζ → ε2ζ , 1

ωc
φ → εφ,

kc

ωc
(U, V ) → ε(U, V ), and kc

ωc
W → ε5W ,

The wave field is represented by perturbation series for the surface dis-
placement, η, and the velocity potential, φ:

η = εη̄ + 1
2

(
B1e

i(x−t) + εB2e
2i(x−t) + ε2B3e

3i(x−t) + · · ·+ c.c.
)

φ = εφ̄ + 1
2

(
A′1e

i(x−t) + εA′2e
2i(x−t) + ε2A′3e

3i(x−t) + · · ·+ c.c.
) (25)

η̄ = η̄(x̄, ȳ, t̄) and φ̄ = φ̄(x̄, ȳ, z, t̄) are the mean surface displacement and
mean induced velocity potential respectively. Bn = Bn(x̄, ȳ, t̄) and A′n =
A′n(x̄, ȳ, z, t̄) are the n’th harmonics of the surface displacement and the in-
duced current potential respectively. The characteristic wavenumber is fixed
appropriate for waves undisturbed by current, therefore the entire effect of
refraction is represented by modulations of B1.

Both the mean functions and the harmonics, are perturbed:

η̄ = η̄1 + εη̄2 + · · · , Bn = Bn0 + εBn1 + ε2Bn2 + · · ·
φ̄ = φ̄1 + εφ̄2 + · · · , A′n = A′n0 + εA′n1 + ε2A′n2 + · · · (26)

3.1.1 Vertical dependence

The n’th harmonic terms of the scaled continuity equation, (20) is given by:

∂2A′n
∂z2

− n2A′n + 2εin
∂2A′n
∂x̄

+ ε2

(
∂2A′n
∂x̄2

+
∂2A′n
∂ȳ2

)
= 0 (27)

where ∂A′
n

∂z
→ 0 as z → −∞.

11



First order To first order the continuity equation for A′n (27) is:

∂2A′n0

∂z2
− n2A′n0 = 0 (28)

which has the solution:

A′n0 = An0(x̄, ȳ, t̄)enz (29)

since
∂A′

n0

∂z
→ 0 as z → −∞.

Second order To second order the continuity equation for A′n (27) is:

∂2A′n1

∂z2
− n2A′n1 + 2in

∂A′n0

∂x̄
= 0 (30)

where
∂A′

n1

∂z
→ 0 as z → −∞.

Using the result from first order (29), gives:

∂2A′n1

∂z2
− n2A′n1 + 2in

∂An0

∂x̄
enz = 0 (31)

which has the solution:

A′n1 = An1(x̄, ȳ, t̄)enz − i
∂An0

∂x̄
zenz (32)

Third order To third order the continuity equation for A′n (27) is:

∂2A′n2

∂z2
− n2A′n2 + 2in

∂A′n1

∂x̄
+

∂2A′n0

∂x̄2
+

∂2A′n0

∂ȳ2
= 0 (33)

where
∂A′

n2

∂z
→ 0 as z → −∞.

Using the results from first and second order (29, 32) gives:

∂2A′n2

∂z2
− n2A′n2 + 2in

∂An1

∂x̄
+

∂2An0

∂x̄2
(1 + 2nz)enz +

∂2An0

∂ȳ2
enz = 0 (34)

which has the solution:

A′n2 = An2(x̄, ȳ, t̄)enz − i
∂An1

∂x̄
zenz − 1

2n

∂2An0

∂ȳ2
zenz − 1

2

∂2An0

∂x̄2
z2enz (35)

12



Fourth order To fourth order the continuity equation for A′n (27) is:

∂2A′n3

∂z2
− n2A′n3 + 2in

∂A′n2

∂x̄
+

∂2A′n1

∂x̄2
+

∂2A′n1

∂ȳ2
= 0 (36)

where
∂A′

n3

∂z
→ 0 as z → −∞.

Using the result from first, second, and third order (29, 32, 35) gives:

∂2A′n3

∂z2
− n2A′n3 + 2in

∂An2

∂x̄
+

∂2An1

∂x̄2
(1 + 2nz)enz +

∂2An1

∂ȳ2
enz

−2i
∂3An0

∂x̄∂ȳ2
zenz − i

∂3An1

∂x̄3
z(1 + nz)enz = 0 (37)

which has the solution:

A′n3 = An3(x̄, ȳ, t̄)enz − i
∂An2

∂x̄
zenz − 1

2n

∂2An1

∂ȳ2
zenz − 1

2

∂2An1

∂x̄2
z2enz

− i

2n2

∂3An0

∂x̄∂ȳ2
z(1− nz)enz +

i

6

∂3An0

∂x̄3
z3enz (38)

Defines An = An0 + εAn1 + ε2An2 + · · · which gives:

A′n = Anenz − iε
∂An

∂x̄
zenz − ε2

(
1

2n

∂2An

∂ȳ2
z +

1

2

∂2An

∂x̄2
z2

)
enz

+ε3

(
i

2n2

∂3An

∂x̄∂ȳ2
z(nz − 1) +

i

6

∂3An

∂x̄3
z3

)
enz + O(ε4) (39)

3.1.2 Surface equations

The scaled surface equations (23–24) to the fourth order of ε are given by:

∂η

∂t
+ ε

∂φ

∂x

∂η

∂x
+ εU

∂η

∂x
+ ε2η

∂2φ

∂x∂z

∂η

∂x
+

1

2
ε3η2 ∂3φ

∂x∂z2

∂η

∂x
+ ε3η

∂U

∂z

∂η

∂x

+ε3ζ
∂2φ

∂x∂z

∂η

∂x
+ ε

∂φ

∂y

∂η

∂y
+ εV

∂η

∂y
+ ε2η

∂2φ

∂y∂z

∂η

∂y
+

1

2
ε3η2 ∂3φ

∂y∂z2

∂η

∂y

+ε3η
∂V

∂z

∂η

∂y
+ ε3ζ

∂2φ

∂y∂z

∂η

∂y

=
∂φ

∂z
+ εη

∂2φ

∂z2
+ ε2ζ

∂2φ

∂z2
+

1

2
ε2η2∂3φ

∂z3
+ ε3ηζ

∂3φ

∂z3
+

1

6
ε3η3∂4φ

∂z4

+O(ε4) (40)

∂φ

∂t
+ εη

∂2φ

∂t∂z
+ ε2ζ

∂2φ

∂t∂z
+

1

2
ε2η2 ∂3φ

∂t∂z2
+ ε3ηζ

∂3φ

∂t∂z2
+

1

6
ε3η3 ∂4φ

∂t∂z3
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+
1

2
ε

(
∂φ

∂x

)2

+ εU
∂φ

∂x
+ ε2η

∂φ

∂x

∂2φ

∂x∂z
+ ε2ηU

∂2φ

∂x∂z
+

1

2
ε3η2

(
∂2φ

∂x∂z

)2

+
1

2
ε3η2∂φ

∂x

∂3φ

∂x∂z2
+

1

2
ε3η2U

∂3φ

∂x∂z2
+ ε3η

∂φ

∂x

∂U

∂z
+ ε3ζ

∂φ

∂x

∂2φ

∂x∂z

+ε3ζU
∂2φ

∂x∂z
+ ε3ηU

∂U

∂z
+

1

2
ε

(
∂φ

∂y

)2

+ εV
∂φ

∂y
+ ε2η

∂φ

∂y

∂2φ

∂y∂z

+ε2ηV
∂2φ

∂y∂z
+

1

2
ε3η2

(
∂2φ

∂y∂z

)2

+
1

2
ε3η2∂φ

∂y

∂3φ

∂y∂z2
+

1

2
ε3η2V

∂3φ

∂y∂z2

+ε3η
∂φ

∂y

∂V

∂z
+ ε3ζ

∂φ

∂y

∂2φ

∂y∂z
+ ε3ζV

∂2φ

∂y∂z
+ ε3ηV

∂V

∂z
+

1

2
ε

(
∂φ

∂z

)2

+ε2η
∂φ

∂z

∂2φ

∂z2
+ ε3ζ

∂φ

∂z

∂2φ

∂z2
+

1

2
ε3η2

(
∂2φ

∂z2

)2

+
1

2
ε3η2∂φ

∂z

∂3φ

∂z3
+ η

= O(ε4) (41)

First order To first order of ε the surface equations (40–41) give:

B10 = iA10 (42)

Second order The zeroth harmonic terms of second order of ε in the dy-
namic surface equation (41) are:

i

4
B10A

∗
10 −

i

4
A10B

∗
10 +

1

2
|A10|2 + η̄1 = 0 (43)

Using the results from first order (42) gives:

η̄1 = 0 (44)

The first harmonic terms of second order of ε in the surface equations
(40–41) are:

− i

2
B11 +

1

2

∂B10

∂t̄
+

i

2
B10U =

1

2
A11 − i

2

∂A10

∂x̄
(45)

− i

2
A11 +

1

2

∂A10

∂t̄
+

i

2
A10U +

1

2
B11 = 0 (46)

Using the result from first order (42) gives the Schrödinger equation to linear
order:

∂A10

∂x̄
+ 2

∂A10

∂t̄
+ 2iUA10 = 0 (47)
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and

B11 = iA11 − ∂A10

∂t̄
− iUA10 (48)

The second harmonic terms to second order of ε of the surface equations
(40–41) are:

−iB20 − 1

2
A10B10 = A20 (49)

−iA20 − i

4
A10B10 +

1

2
B20 = 0 (50)

Using the result from first order (42) gives:

A20 = 0 (51)

B20 = −1

2
A2

10 (52)

Third order The zeroth harmonic terms to third order of ε in the surface
equations (40–41) are:

∂η̄1

∂t̄
+

i

4
A10

∂B∗
10

∂x̄
− i

4
B10

∂A∗10
∂x̄

+
i

4

∂A10

∂x̄
B∗

10 −
i

4

∂B10

∂x̄
A∗10 =

∂φ̄1

∂z
(53)

∂φ̄1

∂t̄
+

1

4
B10

∂A∗10
∂t̄

+
i

4
B10A

∗
11 −

1

4
B10

∂A∗10
∂x̄

+
1

4

∂A10

∂t̄
B∗

10 −
i

4
A11B

∗
10

−1

4

∂A10

∂x̄
B∗

10 +
i

4
B11A

∗
10 −

i

4
A10B

∗
11 +

1

2
A11A

∗
10 −

i

2

∂A10

∂x̄
A∗10

+
1

2
A10A

∗
11 +

i

2
A10

∂A∗10
∂x̄

− i

4
UB10A

∗
10 +

i

4
UA10B

∗
10 + η̄2 = 0 (54)

Using the results from first and second order (42, 44, 48) gives:

∂φ̄1

∂z
= −∂|A10|2

∂t̄
(55)

η̄2 = −∂φ̄1

∂t̄
(56)

The first harmonic terms of third order of ε in the surface equations (40–
41) are:

− i

2
B12 +

1

2

∂B11

∂t̄
− 1

2
A20B

∗
10 +

1

4
B20A

∗
10 +

i

2
UB11

+
1

2
U

∂B10

∂x̄
+

1

2
V

∂B10

∂ȳ
− 1

8
|B10|2A10 +

1

16
B2

10A
∗
10
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=
1

2
A12 − i

2

∂A11

∂x̄
− 1

4

∂2A10

∂ȳ2
+

1

2
η̄1A10 +

1

2
ζA10 (57)

− i

2
A12 +

1

2

∂A11

∂t̄
− i

2
η̄1A10 +

i

4
B20A

∗
10 − iA20B

∗
10 −

i

2
ζA10

+
i

16
B2

10A
∗
10 −

i

8
|B10|2A10 + A20A

∗
10 +

i

2
UA11

+
1

2
U

∂A10

∂x̄
+

1

2
V

∂A10

∂ȳ
+

1

2
|A10|2B10 +

1

2
B12 = 0 (58)

Using the results from first and second order (42, 44, 47–48, 51–52) gives the
current modified cubic nonlinear Schrödinger equation:

∂A11

∂x̄
+ 2

∂A11

∂t̄
+ 2iUA11 + i

∂2A10

∂t̄2
− 6U

∂A10

∂t̄

+i|A10|2A10 − 5iU2A10 + 2V
∂A10

∂ȳ
− i

2

∂2A10

∂ȳ2
= 0 (59)

and

B12 = iA12 − ∂A11

∂t̄
+ iζA10 − 3i

8
|A10|2A10 − iUA11

+2U
∂A10

∂t̄
+ 2iU2A10 − V

∂A10

∂ȳ
(60)

The second harmonic terms of third order of ε in the surface equations
(40–41) are:

−iB21 +
1

2

∂B20

∂t̄
− 1

2
A10B11 +

i

4
A10

∂B10

∂x̄
− 1

2
B10A11 +

3i

4

∂A10

∂x̄
B10

+iUB20 = A21 − i

2

∂A20

∂x̄
(61)

−iA21 +
1

2

∂A20

∂t̄
− i

4
B10A11 − 1

4
B10

∂A10

∂x̄
+

1

4
B10

∂A10

∂t̄
− i

4
A10B11

+iUA20 +
i

4
UA10B10 +

1

2
B21 = 0 (62)

Using the results from first and second order (42, 47–48, 51–52) gives:

A21 = 0 (63)

B21 = −2iA10
∂A10

∂t̄
− A10A11 + 2UA2

10 (64)

The third harmonic terms of third order of ε in the surface equations
(40–41) are:

−3i

2
B30 − 3

4
A10B20 − 3

2
A20B10 − 3

16
B2

10A10 =
3

2
A30 (65)

−3i

2
A30 − iB10A20 − i

4
B20A10 − i

16
B2

10A10 +
1

2
B30 = 0 (66)
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Using the results from first and second order (42, 51–52) gives:

A30 = 0 (67)

B30 = −3i

8
A3

10 (68)

Fourth order The first harmonic terms of fourth order of ε in the surface
equations (40–41) are:

− i

2
B13 +

1

2

∂B12

∂t̄
+

i

2

∂φ̄1

∂x̄
B10 +

i

2

∂η̄1

∂x̄
A10 + iη̄1

∂A10

∂x̄
− 1

2
η̄1A11 − 1

2
η̄2A10

−1

2
A20B

∗
11 −

1

2
A21B

∗
10 +

1

4
B20A

∗
11 +

1

4
B21A

∗
10 −

1

8
A10B11B

∗
10

−1

8
A10B10B

∗
11 +

1

8
B10B11A

∗
10 +

1

16
B2

10A
∗
11 −

1

8
|B10|2A11

+
i

2
A20

∂B∗
10

∂x̄
+

i

8
A10B10

∂B∗
10

∂x̄
+

i

16
B2

10

∂A∗10
∂x̄

+
3i

8
|B10|2∂A10

∂x̄

+
3i

4

∂A20

∂x̄
B∗

10 −
i

4

∂B20

∂x̄
A∗10 +

i

8
A10

∂B10

∂x̄
B∗

10 −
i

8
B10

∂B10

∂x̄
A∗10

+
i

2
UB12 +

1

2
U

∂B11

∂x̄
+

1

2
V

∂B11

∂ȳ
− 1

2
ζA11 + iζ

∂A10

∂x̄

=
1

2
A13 − i

2

∂A12

∂x̄
− 1

4

∂2A11

∂ȳ2
− i

4

∂3A10

∂x̄∂ȳ2
(69)

− i

2
A13 +

1

2
B13 +

1

2

∂A12

∂t̄
+

i

2

∂φ̄1

∂x̄
A10 +

1

2

∂φ̄1

∂z
A10 − i

2
η̄1A11 − 1

2
η̄1

∂A10

∂x̄

+
1

2
η̄1

∂A10

∂t̄
− i

2
η̄2A10 − iA20B

∗
11 + 2A20A

∗
11 + 2A21A

∗
10 − iA21B

∗
10

+
i

4
B20A

∗
11 +

i

4
B21A

∗
10 +

1

2
A10B11A

∗
10 −

i

8
A10B11B

∗
10

+
1

2
A10B10A

∗
11 −

i

8
A10B10B

∗
11 +

1

2
A11B10A

∗
10 −

i

8
B10A11B

∗
10

+
i

8
B10B11A

∗
10 +

i

16
B2

10A
∗
11 + 2iA20

∂A∗10
∂x̄

− 1

4
B20

∂A∗10
∂x̄

+
1

4
B20

∂A∗10
∂t̄

+
3i

4
A10B10

∂A∗10
∂x̄

− 1

8
B2

10

∂A∗10
∂x̄

+
1

16
B2

10

∂A∗10
∂t̄

− i
∂A20

∂x̄
A∗10

−1

2

∂A20

∂x̄
B∗

10 +
1

2

∂A20

∂t̄
B∗

10 −
3i

4
B10

∂A10

∂x̄
A∗10 −

1

4
B10

∂A10

∂x̄
B∗

10

+
1

8
B10

∂A10

∂t̄
B∗

10 +
i

2
UA12 + iUA20B

∗
10 −

i

4
UB20A

∗
10 −

i

16
UB2

10A
∗
10

+
i

8
U |B10|2A10 +

1

2
U

∂A11

∂x̄
+

1

2
V

∂A11

∂ȳ
+

1

2
U

∂U

∂z
B10 +

1

2
V

∂V

∂z
B10
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− i

2
ζA11 − 1

2
ζ
∂A10

∂x
+

1

2
ζ
∂A10

∂t
+

i

2
ζUA10

= 0 (70)

Using the results from first, second and third order (42, 44, 47–48, 51–52,
55–56, 59–60, 63–64, 67–68) gives the current modified nonlinear Schrödinger
equation built on potential theory to Dysthe level, MNLSC:

∂A12

∂x
+ 2

∂A12

∂t
+ i

∂2A11

∂t
2 + 2i

∂φ1

∂x
A10 − i

2

∂2A11

∂y2
− ∂3A10

∂t∂y2

−8A10
∂A10

∂t
A∗10 + iA2

10A
∗
11 + 2iA10A11A

∗
10 + 2iUA12 − 6U

∂A11

∂t

−6iU
∂2A10

∂t
2 − 10iUA2

10A
∗
10 + 2V

∂A11

∂y
+ 2iV

∂2A10

∂t∂y
− 5iU2A11

+20U2 ∂A10

∂t
+ iU

∂U

∂z
A10 − 6UV

∂A10

∂y
+ iV

∂V

∂z
A10 + 14iU3A10

= 0 (71)

3.1.3 Summary

In the following A = A1, B = B1, and (x̄, ȳ, t̄) = (x, y, t) to simplify the
notation.

Space evolution of A The space evolution of the MNLSC equation (71)
expressed by modulation of A is:

∂A

∂x
+ 2

∂A

∂t
+ 2iUA

+i
∂2A

∂t2
− i

2

∂2A

∂y2
+ iA|A|2 − 6U

∂A

∂t
− 5iU2A + 2V

∂A

∂y

+2i
∂φ

∂x
A− ∂3A

∂t∂y2
− 8|A|2∂A

∂t
− 6iU

∂2A

∂t2
− 10iUA|A|2 + 2iV

∂2A

∂t∂y

+20U2 ∂A

∂t
+ iU

∂U

∂z
A− 6UV

∂A

∂y
+ iV

∂V

∂z
A + 14iU3A = 0 (72)

and

∂φ

∂z
= −∂|A|2

∂t
when z = 0 (73)

4
∂2φ

∂t2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 when z < 0 (74)

∂φ

∂z
= 0 when z → −∞ (75)
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with the following reconstruction formulas:

η = −∂φ

∂t
A2, A3 = 0

B = iA− ∂A

∂t
− iUA + iζA− 3i

8
A|A|2 + 2U

∂A

∂t
+ 2iU2A− V

∂A

∂y

B2 = −1

2
A2 − 2iA

∂A

∂t
+ 2UA2

B3 = −3i

8
A3

Space evolution of B The space evolution of the MNLSC equation (71)
expressed by modulation of B is:

∂B

∂x
+ 2

∂B

∂t
+ 2iUB

+i
∂2B

∂t2
− i

2

∂2B

∂y2
+ iB|B|2 − 6U

∂B

∂t
− 5iU2B + 2V

∂B

∂y
− 4i

∂φ1

∂t
B

− ∂3B

∂t∂y2
− 8|B|2∂B

∂t
− 2B2∂B∗

∂t
− 6iU

∂2B

∂t2
− 8iU |B|2B + 2iV

∂2B

∂t∂y

+20U2 ∂B

∂t
+ iU

∂U

∂z
B − 6UV

∂B

∂y
+ iV

∂V

∂z
B + 14iU3B = 0 (76)

and

∂φ

∂z
= −∂|B|2

∂t
when z = 0 (77)

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 when z < 0 (78)

∂φ

∂z
= 0 when z → −∞ (79)

with the following reconstruction formulas:

η = −∂φ

∂t

A = −iB − ∂B

∂t
− iUB + i

∂2B

∂t2
+ iζB − 3i

8
|B|2B + iU2B − V

∂B

∂y
A2, A3 = 0

B2 =
1

2
B2 + iB

∂B

∂t
− UB2

B3 =
3

8
B3
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Time evolution of A The time evolution of the MNLSC equation (71)
expressed by modulation of A is:

∂A

∂t
+

1

2

∂A

∂x
+ iUA

+
i

8

∂2A

∂x2
− i

4

∂2A

∂y2
+

i

2
A|A|2 + U

∂A

∂x
+ V

∂A

∂y

+i
∂φ

∂x
A− 1

16

∂3A

∂x3
+

3

8

∂3A

∂x∂y2
+

3

2
|A|2∂A

∂x
− 1

4
A2∂A∗

∂x

+
i

2
U

∂U

∂z
A +

i

2
V

∂V

∂z
A = 0 (80)

and

∂φ

∂z
=

1

2

∂|A|2
∂x

when z = 0 (81)

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 when z < 0 (82)

∂φ

∂z
= 0 when z → −∞ (83)

with the following reconstruction formulas:

η =
1

2

∂φ

∂x
A2, A3 = 0

B = iA +
1

2

∂A

∂x
+ iζA +

i

8
A|A|2 +

i

8

∂2A

∂x2
− i

4

∂2A

∂y2

B2 = −1

2
A2 + iA

∂A

∂x

B3 = −3i

8
A3

Time evolution of B The time evolution of the MNLSC equation (71)
expressed by modulation of B is:

∂B

∂t
+

1

2

∂B

∂x
+ iUB

+
i

8

∂2B

∂x2
− i

4

∂2B

∂y2
+

i

2
|B|2B + U

∂B

∂x
+ V

∂B

∂y

− 1

16

∂3B

∂x3
+

3

8

∂3B

∂x∂y2
+

3

2
B

∂B

∂x
B∗ +

1

4
B2∂B∗

∂x
+ i

∂φ1

∂x
B

+
i

2
U

∂U

∂z
B +

i

2
V

∂V

∂z
B − i

2
U |B|2B = 0 (84)
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and

∂φ

∂z
=

1

2

∂|B|2
∂x

when z = 0 (85)

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 when z < 0 (86)

∂φ

∂z
= 0 when z → −∞ (87)

with the following reconstruction formulas:

η =
1

2

∂φ

∂x

A = −iB +
1

2

∂B

∂x
+

3i

8

∂2B

∂x2
− i

4

∂2B

∂y2
+

i

8
|B|2B + iζB

A2, A3 = 0

B2 =
1

2
B2 − i

2
B

∂B

∂x

B3 =
3

8
B3

The CNLS4 equation by Stocker & Peregrine (1999) may be derived from
(84) by rescaling.

3.2 Current field with horizontal shear

If the current field is rotational, vorticity develops in the wave field according
to (19).

The divergence of the Euler equation for the waves (18) is:

∇ · (v ·∇v + v ·∇V + V ·∇v) = −1

ρ
∇2p (88)

The surface equations for the combined field at z = η + ζ can be written
as:

∂η

∂t
+ vtot · ∇(η + ζ) = w + W (89)

ptot = p (90)

Taylor expansions around z = 0 gives (89–90) on the form:

∂η

∂t
+ vtot · ∇(η + ζ) + (η + ζ)

∂vtot

∂z
· ∇(η + ζ) +

1

2
(η + ζ)2∂2vtot

∂z2
· ∇(η + ζ)
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= w + W + (η + ζ)
∂

∂z
(w + W ) +

1

2
(η + ζ)

∂2

∂z2
(w + W ) + · · · (91)

ptot + (η + ζ)
∂ptot

∂z
+

1

2
(η + ζ)2∂2ptot

∂z2
+ · · · = pa (92)

The waves are assumed on deep water, thus v, p→ 0 as z → −∞.
Let the current vary more slowly on a length scale along the x–axis, X,

than along the y–axis, Y , so that 1/(kcX) = O(ε) and 1/(kcY ) = O(1). In
accordance with the scaling assumptions, all equations, variables, and sizes
in the following are made dimensionless using the characteristic length and
time scales of the wave field, so that kcx → x, εkcx → x̄, ωct → t, kcη → εη,
kcζ → ε2ζ , kc

ωc
v → εv, kc

ωc
(U, V ) → ε(U, V ), kc

ωc
W → ε4W , kc

ρg
p → εp, and

kc

ρg
P → ε3P .

Note that in Hjelmervik & Trulsen (2009) the scaling is slightly changed.
Since the waves are modulated on a length scale of order ε, the transversal
length scale of the current is also assumed of order ε. And the vertical surface
velocity of the current is assumed of one order lower.

The scaled equation for the divergence of the Euler equation for the waves
(88) to the fourth order of ε is:

ε

⎛⎝(∂u

∂x

)2

+

(
∂v

∂u

)2

+

(
∂w

∂z

)2

+2
∂u

∂y

∂v

∂x
+2

∂u

∂z

∂w

∂x
+2

∂v

∂z

∂w

∂y
+2

∂v

∂x

∂U

∂y
+2

∂v

∂y

∂V

∂y

⎞⎠
+ε2

(
2
∂u

∂x

∂U

∂x
+ 2

∂u

∂y

∂V

∂x

)
= −∂2p

∂x2
− ∂2p

∂y2
− ∂2p

∂z2
(93)

The scaled Euler equation for the waves (18) to the fourth order of ε is:

∂u

∂t
+ ε

(
U

∂u

∂x
+ V

∂u

∂y
+ v

∂U

∂y
+ v · ∇u

)
+ ε2u

∂U

∂x
= −∂p

∂x
(94)

∂v

∂t
+ ε

(
U

∂v

∂x
+ V

∂v

∂y
+ v

∂V

∂y
+ v · ∇v

)
+ ε2u

∂V

∂x
= −∂p

∂y
(95)

∂w

∂t
+ ε

(
U

∂w

∂x
+ V

∂w

∂y
+ v · ∇w

)
= −∂p

∂z
(96)

The scaled surface equations for the waves (91–92) to the fourth order of
ε is:

∂η

∂t
+ ε(v + V ) · ∇η + ε2

(
v
∂ζ

∂y
+ η

∂v

∂z
· ∇η

)

+ε3

(
u

∂ζ

∂x
+ η

∂v

∂z

∂ζ

∂y
+ ζ

∂v

∂z
· ∇η +

1

2
η2∂2v

∂z2
· ∇η

)
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= w + εη
∂w

∂z
+ ε2

(
ζ
∂w

∂z
+

1

2
η2∂2w

∂z2

)
+ ε3

(
ηζ

∂2w

∂z2
+

1

6
η3∂3w

∂z3

)
+ O(ε4)(97)

p− η + εη
∂p

∂z
+ ε2

(
ζ
∂p

∂z
+

1

2
η2 ∂2p

∂z2

)
+ ε3

(
ηζ

∂2p

∂z2
+

1

6
η3 ∂3p

∂z3

)
= O(ε4) (98)

The wave field is represented by perturbation series for the surface dis-
placement, η, the velocity, v, and the dynamic pressure, p:

η = εη̄ + 1
2

(
B1e

i(x−t) + εB2e
2i(x−t) + ε2B3e

3i(x−t) + · · ·+ c.c.
)

v = εv̄ + 1
2

(
v1ei(x−t) + εv2 e2i(x−t) + ε2v3e3i(x−t) + · · ·+ c.c.

)
p = εp̄ + 1

2

(
p1 ei(x−t) + εp2 e2i(x−t) + ε2 p3 e3i(x−t) + · · ·+ c.c.

) (99)

We shall assume that the waves are modulated on the slow spatial scales x̄
and ȳ, and a correspondingly slow time scale εt = t̄. Thus η̄ = η̄(x̄, ȳ, t̄),
v = v̄(x̄, ȳ, z, t̄), and p = p̄(x̄, ȳ, z, t̄) are the mean surface displacement,
mean induced velocity, and mean dynamic pressure respectively, while Bn =
Bn(x̄, ȳ, t̄), vn = vn(x̄, ȳ, z, t̄), and pn = pn(x̄, ȳ, z, t̄) are the n’th harmonics
of the surface displacement, induced current, and dynamic pressure respec-
tively. The characteristic wavenumber is fixed appropriate for waves undis-
turbed by current, therefore the entire effect of refraction is represented by
the modulation of B1.

Both the mean functions and the harmonics, are perturbed:

η̄ = η̄1 + εη̄2 + · · · , Bn = Bn0 + εBn1 + ε2Bn2 + · · ·
v̄ = v̄1 + εv̄2 + · · · , vn = vn0 + εvn1 + ε2vn2 + · · ·
p̄ = p̄1 + εp̄2 + · · · , pn = pn0 + εpn1 + ε2 pn2 + · · ·

(100)

3.2.1 First order terms

First harmonic The first harmonic terms of first order of ε for the diver-
gence of the Euler equation (93) are:

p10 − ∂2p10

∂z2
= 0 (101)

which has the general solution:

p10 = A10(x̄, ȳ, t̄)ez (102)

The first harmonic terms of first order of ε in the surface equations (97–98)
give:

A10 = B10 (103)
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The first harmonic terms of first order of ε in the Euler equation (94–96)
then give respectively:

u10 = B10e
z (104)

v10 = 0 (105)

w10 = −iB10e
z (106)

3.2.2 Second order terms

Zeroth harmonic The zeroth harmonic terms of second order of ε for the
z–component of the Euler equation (96) are:

i

4
u10w

∗
10 +

i

4
u∗10w10 +

1

4
w10

∂w∗10
∂z

+
1

4
w∗10

∂w10

∂z
= −∂p̄1

∂z
(107)

Using the results from first order (104, 106) gives:

|B10|2e2z = −∂p̄1

∂z
(108)

which has the solution:

p̄1 = Ā1(x̄, ȳ, t̄)ez − 1

2
|B10|2e2z (109)

The zeroth harmonic terms of second order of ε in the dynamic surface
equation (98) are:

p̄1

∣∣∣
z=0
− η̄1 +

1

4
B10

∂p∗10
∂z

∣∣∣
z=0

+
1

4
B∗

10

∂p10

∂z

∣∣∣
z=0

= 0 (110)

Using the results from first order (102–103) and the solution for p̄1 (109)
gives Ā1 = η̄1.

The zeroth harmonic terms of second order of ε in the kinematic surface
equation (97) are:

− i

4
u10

∣∣∣
z=0

B∗
10 +

i

4
u∗10
∣∣∣
z=0

B10

= w̄1

∣∣∣
z=0

+
1

4
B10

∂w∗10
∂z

∣∣∣
z=0

+
1

4
B∗

10

∂w10

∂z

∣∣∣
z=0

(111)

Using the results from first order (104, 106) gives:

w̄1

∣∣∣
z=0

= 0 (112)

Since no surface elevation or induced current is provoked to first order of ε,
η̄1 = ū1 = v̄1 = w̄1 = 0 without lack of information.
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First harmonic The first harmonic terms of second order of ε for the
divergence of the Euler equation (93) are:

2iv10
∂U

∂y
+ 2i

∂p10

∂x̄
= p11 − ∂2p11

∂z2
(113)

Using the results from first order (102–103, 105) gives:

2i
∂B10

∂x̄
ez = p11 − ∂2p11

∂z2
(114)

which has the solution:

p11 = A11(x̄, ȳ, t̄)ez − i
∂B10

∂x̄
zez (115)

The first harmonic terms of second order of ε in the dynamic surface
equation (98) give:

A11 = B11 (116)

The first harmonic terms of second order of ε in the Euler equation and
the kinematic surface equation (94–97) are respectively:

∂u10

∂t̄
− iu11 + iu10U + v10

∂U

∂ȳ
= −∂p10

∂x̄
− ip11 (117)

∂v10

∂t̄
− iv11 + iv10U + v10

∂V

∂ȳ
= −∂p10

∂ȳ
(118)

∂w10

∂t̄
− iw11 + iw10U = −∂p11

∂z̄
(119)

∂B10

∂t̄
− iB11 + iUB10 = w11

∣∣∣
z=0

(120)

Using the results from first order (102–106) and the solution for p11 (115),
leads to the current modified Schrödinger equation to linear order:

∂B10

∂x̄
+ 2

∂B10

∂t̄
+ 2iUB10 = 0 (121)

and the following reconstruction formulas:

u11 = B11e
z + i

(
∂B10

∂t̄
+ iUB10

)
(1 + 2z)ez (122)

v11 = −i
∂B10

∂ȳ
ez (123)

w11 = −iB11e
z +

(
∂B10

∂t̄
+ iUB10

)
(1 + 2z)ez (124)
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Second harmonic The second harmonic terms of second order of ε for the
divergence of the Euler equation (93) are:

−1

2
u2

10 +
1

2

(
∂w10

∂z

)2

+ i
∂u10

∂z
w10 = 4p20 − ∂2p20

∂z2
(125)

Using the results from first order (104, 106) gives:

0 = 4p20 − ∂2p20

∂z2
(126)

which has the solution:

p20 = A20e
2z (127)

The second harmonic terms of second order of ε in the dynamic surface
equation (98) are:

p20

∣∣∣
z=0
−B20 +

1

2
B10

∂p10

∂z

∣∣∣
z=0

= 0 (128)

Using the results from first order (102–103) and the solution for p20 (127)
gives:

A20 = B20 − 1

2
B2

10 (129)

The second harmonic terms of second order of ε in the Euler equation
and the kinematic surface equation (94–97) are respectively:

−iu20 +
i

4
u2

10 +
1

4
w10

∂u10

∂z
= −ip20 (130)

−iv20 +
i

4
u10v10 +

1

4
w10

∂v10

∂z
= 0 (131)

−iw20 +
i

4
u10w10 +

1

4
w10

∂w10

∂z
= −1

2

∂p20

∂z
(132)

−iB20 +
i

4
u10

∣∣∣
z=0

B10 =
1

2
w20

∣∣∣
z=0

+
1

4
B10

∂w10

∂z

∣∣∣
z=0

(133)

Using the results from first order (104–106) and the solution for p20 (127–129)
gives:

u20 = v20 = w20 = p20 = 0 (134)

B20 =
1

2
B2

10 (135)
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3.2.3 Third order terms

First harmonic The first harmonic terms of third order of ε for the diver-
gence of the Euler equation (93) are:

u20u
∗
10 +

1

2

∂w20

∂z

∂w∗10
∂z

− i

2

∂u20

∂z
w∗10 + i

∂u∗10
∂z

w20

+iv11
∂U

∂y
+

∂v10

∂x̄

∂U

∂y
+

∂v10

∂x̄

∂V

∂y
+ iu10

∂U

∂x

= −1

2

∂2p10

∂x̄2
− i

∂p11

∂x̄
+

1

2
p12 − 1

2

∂2p10

∂ȳ2
− 1

2

∂2p12

∂z2
(136)

Using the results from first and second order (102–106, 115–116, 123, 134)
gives:

∂2p12

∂z2
− p12 = −2i

∂B11

∂x̄
ez − ∂2B10

∂x̄2
ez − ∂2B10

∂ȳ2
ez

−2
∂2B10

∂x̄2
zez − 2iB10

∂U

∂x
ez − 2

∂B10

∂ȳ

∂U

∂y
ez (137)

which has the solution:

p12 = A12(x̄, ȳ, z̄, t̄)ez + α(x̄, ȳ, z̄, t̄)zez + β(x̄, ȳ, t̄)z2ez (138)

where

α = −i
∂B11

∂x̄
− 1

2

∂2B10

∂ȳ2
− iB10

∂U

∂x
− ∂B10

∂ȳ

∂U

∂y

β = −1

2

∂2B10

∂x̄2

The first harmonic terms of third order of ε in the dynamic surface equa-
tion (98) are:

1

2
p12

∣∣∣
z=0
− 1

2
B12 +

1

4
B20

∂p∗10
∂z

∣∣∣
z=0

+
1

4
B∗

10

∂p20

∂z

∣∣∣
z=0

+
1

2
B10

∂p̄1

∂z

∣∣∣
z=0

+
1

2
ζ
∂p10

∂z

∣∣∣
z=0

+
1

16
B2

10

∂2p∗10
∂z2

∣∣∣
z=0

+
1

8
|B10|2 ∂2p10

∂z2

∣∣∣
z=0

= 0 (139)

Using the results from the first and second order (102–103, 109, 134–135)
and the solution for p12 (138), gives:

A12 = B12 +
3

8
B2

10B
∗
10 − B10ζ at z = 0 (140)
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The first harmonic terms of third order of ε in the Euler equation and the
kinematic surface equation (94–97) are respectively:

1

2

∂u11

∂t̄
− i

2
u12 +

1

2

∂u10

∂x̄
U +

i

2
u11U +

1

2

∂u10

∂ȳ
V +

1

2
v11

∂U

∂y
− i

4
u20u

∗
10

+
i

2
u∗10u20 +

1

4
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∂u∗10
∂z

+
1

4
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∂u20

∂z
+

1

2
u10

∂U

∂x
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2

∂p11

∂x̄
− i

2
p12 (141)

1

2

∂v11

∂t̄
− i

2
v12 +

1

2

∂v10

∂x̄
U +

i

2
v11U +

1

2

∂v10

∂ȳ
V +

1

2
v11

∂V

∂y
+

1

2
u10

∂V

∂x

− i

4
u20v

∗
10 +

i

2
u∗10v20 +

1

4
w20

∂v∗10
∂z

+
1

4
w∗10

∂v20

∂z
= −1

2

∂p11

∂ȳ
(142)

1

2

∂w11

∂t̄
− i

2
w12 +

1

2

∂w10

∂x̄
U +

i

2
w11U +

1

2

∂w10

∂ȳ
V − i

4
u20w

∗
10

+
i

2
u∗10w20 +

1

4
w20

∂w∗10
∂z

+
1

4
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∂w20

∂z
= −1

2

∂p12

∂z
(143)
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2
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∂t̄
− i

2
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4
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z=0

B∗
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i

2
u∗10
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∂x̄
U +
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2
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2
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∂ȳ
V +

1

2
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∂ζ
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8
|B10|2 ∂u10

∂z

∣∣∣
z=0

+
i

8
B2
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∂u∗10
∂z

∣∣∣
z=0

+
i

8
|B10|2∂u10

∂z
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z=0

=
1

2
w12

∣∣∣
z=0

+
1

4
B20

∂w∗10
∂z

∣∣∣
z=0

+
1

2
B∗

10

∂w20

∂z

∣∣∣
z=0

+
1

2
ζ
∂w10

∂z

∣∣∣
z=0

+
1

16
B2

10

∂w∗10
∂z

∣∣∣
z=0

+
1

8
|B10|2∂2w10

∂z2

∣∣∣
z=0

(144)

Combining these equations with the results from first and second order (104–
106, 115–116, 122–124, 134–135) and the solution for p12 (138, 140) gives the
space evolution of the current modified cubic Schrödinger equation, NLSC:

0 =
∂B11

∂x̄
+ 2

∂B11

∂t̄
+ i

∂2B10

∂t̄2
− i

2

∂2B10

∂ȳ2
+ iB2

10B
∗
10 + 2iB11U

−6
∂B10

∂t̄
U − 5iB10U

2 + 2
∂B10

∂ȳ
V + B10

∂U

∂x
− i

∂B10

∂ȳ

∂U

∂y
(145)

And the time evolution:

0 =
∂B11

∂t̄
+

1

2

∂B11

∂x̄
+

i

8

∂2B10

∂x̄2
− i

4

∂2B10

∂ȳ2
+

i

2
B2

10B
∗
10

+iB11U +
∂B10

∂x̄
U − ∂B10

∂ȳ
V +

1

2
B10

∂U

∂x
− i

2

∂B10

∂ȳ

∂U

∂y
(146)
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3.2.4 Summary

In the following B = B1 to simplify the notation.

Space evolution The space evolution of the current modified nonlinear
Schrödinger equation which allows vorticity to the first order of ε, NLSC is:

∂B

∂x̄
= (L+ C +N )B (147)

L contains the linear terms with constant coefficients. C contains the linear
terms with variable coefficients. And N is the nonlinear term:

L = −2
∂

∂t̄
− i

∂2

∂t̄2
+

i

2

∂2

∂ȳ2

C = −2iU + 6U
∂

∂t̄
+ 5iU2 − 2V

∂

∂ȳ
− ∂U

∂x
+ i

∂U

∂y

∂

∂ȳ

N = −i|B|2

The vertical current component, W , the vertical derivatives of the current,
∂V
∂z

, and the surface displacement, ζ , associated with the current, appear to
the next order of the equation.

The reconstruction formulas are:

η̄, ū, v̄, w̄ = 0

p̄ = −1

2
|B|2e2z

B2 =
1

2
B2

u1 = Bez + i
∂B

∂t̄
ez −BUez + 2i

∂B

∂t̄
zez − 2BUzez

v1 = −i
∂B

∂ȳ
ez

w1 = −iBez +
∂B

∂t̄
ez + iBUez + 2

∂B

∂t̄
zez + 2iBUzez

p1 = Bez + 2i
∂B

∂t̄
zez − 2BUzez

u2, v2, w2, p2 = 0

Time evolution The time evolution of the current modified nonlinear
Schrödinger equation which allows vorticity to the first order of ε, NLSC
is:

∂B

∂t̄
= (L+ C +N )B (148)
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where

L = −1

2

∂

∂x̄
− i

8

∂2

∂x̄2
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i

4
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∂ȳ2

C = −iU − U
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∂ȳ
− 1

2
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∂
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N = − i

2
|B|2

The reconstruction formulas are:

η̄, ū, v̄, w̄ = 0

p̄ = −1

2
|B|2e2z

B2 =
1

2
B2

u1 = Bez − i

2

∂B

∂x̄
ez − i

∂B

∂x̄
zez

v1 = −i
∂B

∂ȳ
ez

w1 = −iBez − 1

2

∂B

∂x̄
ez − ∂B

∂x̄
zez

p1 = Bez − i
∂B

∂x̄
zez

u2, v2, w2, p2 = 0

4 Numerical implementation

4.1 Numerical scheme

Space evolutions of current modified nonlinear Schrödinger equations, (76)
and (147), may be written on the form:

∂B

∂x
= (L+ V)B (149)

L = L( ∂
∂t

, ∂
∂y

) contains the linear terms with constant coefficients. V = N+C
contains the nonlinear term, N = N (|B|2), and the linear terms with variable
coefficients, C = C(U, V, ∂

∂t
, ∂

∂y
).

4.1.1 Splitting scheme

The formal solution of (149) is:

B = eF (x,y,t)B0 (150)
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where B0 = B|x=0 and ∂F (x,y,t)
∂x

= L+V. If F = F (x, y, t) is weakly depending
on x, (150) may be approximated by:

B ≈ e(L+V)xB0 (151)

The exponential function may be expanded:

e(L+V)x = 1 + (L+ V)x +
1

2
(L+ V)2x2 +

1

6
(L+ V)3x3 + · · · (152)

In numerical simulations LB and VB may be solved separately. The
accuracy of the result depends on the splitting scheme. Note that it is not
necessary with a more accurate splitting scheme than the accuracy of the
separate solutions.

LV–split With LV–split, e(L+V)x ≈ eLxeVx which may be expanded to:

eLxeVx = 1 + (L+ V)x +
1

2

(
L2 + 2LV + V2

)
x2 + O(x3) (153)

The accuracy is of first order:

e(L+V)x − eLxeVx =
1

2
(VL − LV)x2 + O(x3) (154)

Note that VL do not equal LV in all cases. An an appropriate commutator
is defined by:

[V,L] ≡ VL − LV (155)

so that (154) may be written on the form:

e(L+V)x − eLxeVx =
1

2
[V,L]x2 + O(x3) (156)

VLLV–split With VLLV–split, e(L+V)x ≈ e
1
2
VxeLxe

1
2
Vx which may be ex-

panded to:

e
1
2
VxeLxe

1
2
Vx = 1 + (L+ V)x +

1

2

(
L2 + LV + VL+ V2

)
x2

+
(

1

6
L3 +

1

4
L2V +

1

8
LV2 +

1

4
VL2 +

1

4
VLV +

1

8
V2L+

1

6
V3
)
x3

+O(x4) (157)

This gives an accuracy of second order if [V,L] �= 0:

e(L+V)x − e
1
2
VxeLxe

1
2
Vx =

1

24

(
2
[
L, [V,L]

]
+
[
[V,L],V

])
x3 + O(x4) (158)
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(VLLV)3–split With (VLLV)3–splits, a fourth order scheme from Muslu
& Erbay (2004) following McLachlan (1994) is used:

e(L+V)x ≈ φ(αx)φ
(
(1− 2α)x

)
φ(αx) (159)

where φ(χ) = e
1
2
VχeLχe

1
2
Vχ and α = (2+2

1
3 +2−

1
3 )/3. This gives an accuracy

of fourth order.

4.1.2 Fourier transform

Fourier transform is used to solved the linear part of (149) with constant
coefficients:

∂B

∂x
= LB (160)

The Fourier transform of (160) with respect to y and t is:

∂B̂

∂x
= L̂B̂ (161)

where L̂ is a complex polynomial of ky and ω. Note that ∂̂B
∂y

= ikyB̂ and

∂̂B
∂t

= −iωB̂. The exact solution of (160) is:

B̂ = eL̂xB̂0 (162)

where B̂0 = B̂|x=0.
The Fourier transform with respect to y and t is given by:

B̂ij =
1

MN

M−1∑
m=0

N−1∑
n=0

Bmnei(Ωjtn−kyiym) (163)

where ym = mΔy, tn = nΔt, kyi = iΔky, and Ωj = jΔω.

4.1.3 Finite Difference

Runge–Kutta schemes are used to solve the nonlinear part and the linear
part with variable coefficients in (149):

∂B

∂x
= VB (164)

The Runge–Kutta scheme used ought to be of the same order as the splitting
scheme.
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Alternative: a b α β
A 0 1 1/2 1/2
B 1/2 1/2 1 1
C 2/3 1/3 3/2 3/2
D 1/3 2/3 3/4 3/4

Table 2: The four alternative choices for the variables in the second order
Runge–Kutta scheme.

First order A first order Euler scheme is used for the first order splitting
scheme:

Bx+�x = Bx +�xVxBx (165)

Second order A second order Runge–Kutta scheme is used for the second
order splitting scheme:

Bx+�x = Bx +�x(ak1 + bk2) (166)

where

k1 = VxBx

k2 = Vx+αx(Bx + β�xk1)

The four coefficients, a, b, α, and β, have to satisfy the following three
equations:

a + b = 1, αb =
1

2
, βb =

1

2
(167)

The four alternatives in table 2 is studied. Lo & Mei (1985) used alternative
A. Alternative B gives the modified Euler scheme.

Fourth order The most used set of variables on the fourth order Runge–
Kutta (Gerald & Wheatley, 1994) is used with the fourth order splitting
scheme:

Bx+�x = Bx +
1

6
�x (k1 + 2k2 + 2k3 + k4) (168)

where

k1 = VxBx
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k2 = Vx+ 1
2
�x

(
Bx +

1

2
�xk1

)
k3 = Vx+ 1

2
�x

(
Bx +

1

2
�xk2

)
k4 = Vx+�x (Bx +�xk3)

4.2 Model setup

The space evolution of the current modified nonlinear cubic Schrödinger
equation which allows vorticity, NLSC, (147), is simulated. Test simula-
tions are performed in order to study the effect of the different terms (see
section 5.3).

The length of the time series are T = 2000. Using N = 1024 nodes,
the time step is Δt = T

N
≈ 1.95 and �ω = 2π

T
≈ 0.0031. The width

of the simulation area, y = [−20, 20], with 16 nodes, gives �y = 2.5 and
�ky ≈ 0.079. Test simulations are performed with different widths (see
section 5.2).

4.2.1 Incoming waves

Unidirectional incoming waves with initial Gaussian spectrum have been
studied. The Fourier amplitudes at x = 0 are given by:

B̂j = ε

√ �ω√
2πσω

e
− Ω2

j

4σ2
ω

+iψj
(169)

The frequency is given by ωj = 1 + Ωj . The phases, ψi,j , are statistically in-
dependent and uniformly distributed on the interval [0, 2π). We have chosen
ε = 0.1. σω = 0.1 is the bandwidth in Fourier space.

Test simulations with an incoming Stokes wave are also performed (see
sections 5.2 and 5.4).

4.2.2 Current field

The NLSC equation may be used for a large range of prescribed currents.
Here we have chosen two types; a surface current jet given by:

U =

⎧⎪⎪⎨⎪⎪⎩
0 when x ≤ X and/or |y| ≥ Y

U0 sin2
(

π
2�X

(x−X)
)

cos2
(

πy
2Y

)
when x > X and x < X +�X

U0 cos2
(

πy
2Y

)
when x ≥ X +�X

(170)
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and a transversally uniform current given by:

U =

⎧⎪⎪⎨⎪⎪⎩
0 when x ≤ X

U0 sin2
(

π
2�X

(x−X)
)

when x > X and x < X +�X

U0 when x ≥ X +�X

(171)

The wave field is allowed about 32 wavelengths, x = [0, X) where X = 200,
to develop before the waves encounter a current. Y = 10 is half the width of
the jet. And�X = 100 is the current build–up length. Test simulations with
different build–up lengths and widths of the jet are performed (see sections
5.7 and 5.6).

We have studied three current cases: no current, co–current with U0 =
0.05, and opposing current with U0 = −0.05 which is not enough to reflect the
waves, but sufficient to study the characteristic features of opposing currents.
Test simulations are performed with other current strengths (see section 5.5).

Simulations and observations of tidal currents suggest that establishing
current jets are more fanned in than terminating current jets are fanned out
(Hjelmervik et al., 2005, 2008). Test simulations show that the current across
the jet, V , needed to satisfy the continuity equation, has negligible impact
on the results and may thus be set to zero in the NLSC equation (see section
5.4). Alternatively, the continuity equation can be satisfied by a vertical
current, W , which does not appear within the truncation level of the NLSC
equation.

4.3 Numerical order

Here the order of different schemes with and without currents is studied.

4.3.1 Transversally uniform currents

The transversally uniform current is given by (171) with U0 = 0, 0.05, and
-0.05. The incoming waves are unidirectional and given by (169). The incom-
ing phase is randomised in the same way in all simulations. The distributions
of η and |B| at x = 0 are shown in figure 4.

Time series of the envelope, B, at x = 900 from simulation j is used to
calculate the error:

Ej = |B|j − |B|ref (172)

The results with the smallest step, �x = 0.001, is used as the reference solu-
tion. Simulations which broke down earlier than x = 900, are not considered.
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Figure 4: The distributions of surface elevation, η, (left) and envelope, |B|,
(right) at x = 0 compared to a Gaussian and a Rayleigh distribution (smooth
line) respectively.

The errors, L1 and L2, are calculated from the following formulas:

L1 = ||Ej ||1 =
∫ ∞
−∞
|Ej|dt (173)

L2 = ||Ej ||2 = 2

√∫ ∞
−∞

E 2
j dt (174)

The simulations are of the expected order both with and without currents
(figure 5). The four alternatives in table 2 give slightly different convergence
rate (figure 6a).

4.3.2 Current jets

The current jet is given by (170) with U0 = 0, 0.05, and -0.05. The incoming
waves are unidirectional and given by (169). The incoming phase is ran-
domised in the same way in all simulations. The distributions of η and |B|
at x = 0 are shown in figure 4.

Time series of the envelope, B, for all values of y at x = 400 from simu-
lation j is used to calculate the error:

Ej = |B|j − |B|ref (175)

The results with the smallest step, �x = 0.001, used as a reference solution.
Simulations which broke down earlier than x = 400, are not considered.

L1 and L2 are calculated from the following formulas:

L1 = ||Ej||1 =
∫ ∞
−∞

∫ ∞
−∞
|Ej|dy dt (176)

L2 = ||Ej||2 = 2

√∫ ∞
−∞

∫ ∞
−∞

E 2
j dy dt (177)

The simulations are of the expected order both with and without current
for first and second order schemes (figure 7a). The four alternatives in table
2 give slightly different convergence rate (figure 6b).
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Without any current, the simulations are of fourth order when the fourth
order scheme is used (figure 7b). The current depends on x and this is
probably the reason why the simulations with current diverge from fourth
order when the fourth order scheme is used. The function, F = F (x, y, t) in
(150) might therefore be better approximated by:

F (x, y, t) = (L+ V)0x +
1

2

(
∂V
∂U

∂U

∂x
+

∂V
∂V

∂V

∂x

)
0

x2 + · · · (178)

New splitting schemes have to be constructed in order to improve the fourth
order scheme.

In the following, the second order scheme with alternative A and an
integrating step of �x = 0.2 is used.
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Figure 5: The L1 (left) and L2 (middle) errors as a function of integrating
step, �x, and the L2 errors as a function of cpu–time (right) for simulations
with unidirectional incoming waves on transversally uniform currents. The
dotted lines represent 1st, 2nd, and 4th order respectively.
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Figure 6: The L2 errors for the four alternative second order schemes. The
dotted lines represent 2nd order.
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Figure 7: The L1 (left) and L2 (middle) errors as a function of integrating
step, �x, and the L2 errors as a function of cpu–time (right) for simulations
with unidirectional incoming waves on current jets. The dotted lines represent
1st, 2nd, and 4th order respectively.
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5 Numerical results

A few results from simulations with the space evolution of the NLSC equation
which allows vorticity, (147), will be presented. More results are published
in Hjelmervik & Trulsen (2009).

The reconstruction of the surface elevation according to section 3.2, is
given by:

η =
1

2

(
Bei(x−t) +

1

2
εB2e2i(x−t) + c.c.

)
+ O(ε2) (179)

As pointed out by Tayfun (1980) and others the second harmonic terms
introduce a vertical asymmetry to the profile caused by the first harmonic
terms. The crest become narrower and sharper and throughs become longer
and shallower as illustrated in figure 8. Since both the envelope of the crest
and the envelope of the through are displaced upward by the second harmonic
terms, the distribution of wave heights remain the same. The mean value of
the highest third of the wave heights – traditionally used as the significant
wave height – also remains the same. The more modern definition of the
significant wave height – four times the standard deviation of the surface
elevation – is affected, but the change is negligible.

Figure 8: An illustrative reconstruction of the surface elevation and the corre-
sponding envelopes for fixed x or t. The dotted lines represent the first order
reconstruction of (179) with B = 0.5. The solid lines represent the second
order reconstruction which causes the crests to become narrower and sharper
and the throughs to become longer and shallower. The wave heights remain
unchanged.

The first order reconstruction of the surface displacement is used to cal-
culate both the significant wave height, Hs, and the kurtosis, κ, of the surface
displacement:

Hs(x, y) = 4
√

η2 = 4

√
1

2
|B|2 (180)
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κ(x, y) =
η4

η2
2 =

3

2

|B|4
|B|22 (181)

The bar represents combined time and ensemble averaging. The kurtosis
equals three when the surface elevation is Gaussian distributed.

When the waves meet an opposing current, the wave height increases
in the centre of the jet, and decreases at the sides of the jet. When the
waves meet an co–current, the wave height decreases in the centre of the jet,
and increases at the sides of the jet. The following sections show how these
changes depend on the number of simulations in an ensemble (sec. 5.1), the
width of the simulation area (sec. 5.2), the different terms in the NLSC
equation (sec. 5.3), the transversal current (sec. 5.4), the current strength
(sec. 5.5), the width of the jet (sec: 5.6), and the current build–up length
(sec. 5.7).

Figure 9: The significant wave height (upper) and kurtosis (lower) from
30 single simulations (dots) and from ensembles consisting of 5 (green), 10
(black), 20 (red), and 30 (blue) simulations.
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5.1 Number of simulations in an ensemble

In order to assure statistical and numerical convergence a sufficient num-
ber of simulations should be included. Test simulations are performed with
incoming unidirectional waves (169), and opposing current jet (170) with
U0 = −0.05.

More simulations are needed in order to calculate the kurtosis than the
significant wave height (figure 9). If only the significant wave height and
similar qualities are wanted, 10 simulations are sufficient. In the following
we have used 30 simulations in each ensemble in order to get a more reliable
result also for properties as the kurtosis.

5.2 Width of the simulation area

Test simulations are performed with different widths of the simulation area.
The current jet is kept narrow (|y| < 10). The incoming wave is a Stokes
wave. Simulations are performed with both a co–current with U0 = 0.05 and
an opposing current jet with U0 = −0.05.

When the waves encounter a co–current jet, the amplitudes decrease in
the centre of the jet and increase at the sides of the jet. The high amplitudes
created at the sides of the jet, propagate away from the jet towards the
simulation borders and seem to be reflected there (figure 10). When the
width of the simulation area is |y| < 40, the high amplitudes are not reflected
before x = 375. The amplitude in the centre of the jet seems to be periodic
with a length that depends on the width of the simulation area.

When the waves encounter an opposing current jet, the amplitudes in-
crease in the centre of the jet and decrease at the sides of the jet. The
amplitude of the waves are affected only in a narrow area limited by the
current jet (figure 11). The amplitude in the centre of the jet seems to be
periodic with a length that does not depend on the width of the simulation
area as long as the simulation area is wider than the width of the jet.

The fact that the waves converge and diverge when encountering currents,
makes it possible to create very beautiful plots of the surface elevation. Heller
(2005) published an art plot in an electronic art and animation catalog.
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Figure 10: |B| on a co–current when y < 10 (upper), |y| < 20, |y| < 40, and
|y| < 80 (lower). Nonlinear. Red is high values, blue small. The dotted lines
mark the region of the jet.
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Figure 11: |B| on a counter current when y < 10 (upper), |y| < 20, |y| < 40,
and |y| < 80 (lower). Nonlinear. Red is high values, blue small. The dotted
lines mark the region of the jet.
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5.3 Current terms

To study the effect of the different current terms, the NLSC equation which
allows vorticity (147) is simulated without one term at the time. For com-
parison, also the nonlinear term is left out. The simulations are performed
both with a co–current and a counter current jet (170). The simulation area
is given by |y| < 20. The incoming waves are unidirectional (169). The result
for significant wave height and kurtosis is shown in figure 12 and 13.

Figure 12: The significant wave height in the centre of the jet (upper) and
across the jet at x = 300 (lower) for unidirectional incoming waves when one
term at the time is left out in the simulations.

In linear simulations the variation in significant wave height is larger
than in nonlinear simulations, and the kurtosis is close to three. Among the
current terms, the UB–term has the largest impact on the results. This is
not surprising since it is of lower order than the rest of the current terms.
The UB–term is responsible for most of the refraction. The U ∂B

∂t
has small

impact on the significant wave height, but decreases the variation in kurtosis.
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Figure 13: The kurtosis across a co–current (upper) and counter current
(lower) jet at x = 300 for unidirectional incoming waves when one term at
the time is left out in the simulations.

Note that the terms that do not appear in the current modified nonlin-
ear Schrödinger equation built on potential theory, the ∂U

∂y
∂B
∂y

–term and the
∂U
∂x

B–term, have small impact on the results. The U2B–term also has minor
impact. With a stronger current, these terms may have a stronger effect.

In this case, a good approximation for the NLSC equation is the simplified
NLSC equation given by:

∂B

∂x
+ 2

∂B

∂t
+ i

∂2B

∂t2
− i

2

∂2B

∂y2
+ 2iUB − 6U

∂B

∂t
+ i|B|2B = 0 (182)

Note that in Hjelmervik & Trulsen (2009) we used a different scaling of
the modulation of the current normal to the principal propagation direction
of the waves. This causes the ∂U

∂y
∂B
∂y

–term to be left out to the truncation
level of the NLSC equation.

46



5.4 Transversal current, V

The continuity equation for the current has to be satisfied:

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0 (183)

During the build–up of the longitudinal current given by (170) or (171), the
first term in (183) is not zero. If both the transversal current, V , and the
vertical current, W , is set to zero, (183) is therefore not satisfied. Here
two alternatives for the current jet is discussed. The transversally uniform
current is not considered.

x<X X < x < X +�X x > X +�X
U=0 U=0 U=0

y>Y
W=0W=0 W=0

U=0 U=U0 sin2
(

π
2�X

(x−X)
)

cos2
(

πy
2Y

)
e−απz U=U0 cos2

(
πy
2Y

)
|y|<Y

W=0W=−U0
1

2α�X
sin
(

π
�X

(x−X)
)

cos2
(

πy
2Y

)
e−απzW=0

U=0 U=0 U=0
y<−Y

W=0W=0 W=0

Table 3: A possible current jet when V = 0.

x<X X < x < X +�X x > X +�X
U=0 U=0 U=0

y>Y
V =0 V =−U0

πY
4�X

sin
(

π
�X

(x−X)
)

V =0

U=0 U=U0 sin2
(

π
2�X

(x−X)
)

cos2
(

πy
2Y

)
U=U0 cos2

(
πy
2Y

)
|y|<Y

V =0 V =−U0
Y

4�X
sin
(

π
�X

(x−X)
) (

cos
(

πy
Y

)
+ πy

Y

)
V =0

U=0 U=0 U=0
y<−Y

V =0 V =U0
πY

4�X
sin
(

π
�X

(x−X)
)

V =0

Table 4: A possible current jet when W = 0.

At one extreme, the transversal current is set to zero. A possible current
jet is then given in table 3. The parameter α tells how quickly the current
decrease towards the bottom. If the scaling in section 3.1 or 3.2 is applied,
α has to be less than 0.05. The vertical current first appears in the current
modified Schrödinger equation to Dysthe level, and is not implemented in
numerical models for cubic Schrödinger equations.

At the other extreme, the vertical current is set to zero. A possible current
jet is then given in table 4. A few simulations are performed with the current
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jet given in table 4. The incoming wave is a Stokes wave. Both linear and
nonlinear simulations are performed with both a co–current with U0 = 0.05
and an opposing current with U0 = −0.05. The results are compared with
results from simulations with V = 0. The transversal current has little effect
in all simulations. The effect on the envelope is shown in figures 14–15.

To assume that both the vertical and the transversal currents equal zero,
seems to be a good approximation in this case.
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Figure 14: |B| on a co–current with V = 0 (upper) and V �= 0 (lower). High
values are red, small values are blue.
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Figure 15: |B| on a counter current with V = 0 (upper) and V �= 0 (lower).
High values are red, small values are blue.
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5.5 Current strength

Test simulations are performed with different strengths of the current jet,
(170). The simulation area is given by |y| < 20 The incoming waves are
unidirectional (169).

The significant wave height in the centre of the jet increases with in-
creasing strength of the opposing current jet, and decreases with increasing
strength of the co-current (figure 16). The significant wave height seems to
oscillate with a period depending on the strength of the current jet.

Note that in the derivation of the Schrödinger equations, U0 is assumed
of order ε. The spectrum is not narrow banded when |U0| = 0.25, and the
simulations seem to break down when |U0| > 0.25. On counter currents this
may be due to longitudinal refraction. When U = U(x)i the dimensionless
stopping velocity is U = −1

4
according to (7) and linear ray theory (Peregrine

& Smith, 1979).

Figure 16: The significant wave height of waves in the centre of current jets
with different strengths: |U0| = 0 (square, dotted), 0.01 (square, solid), 0.05
(triangle, dotted), 0.10 (triangle, solid), 0.25 (disk, dotted), and 0.50 (disk,
solid).

5.6 Width of the jet

Test simulations are performed with different widths, Y , of the current jet
(170). The simulation area is given by |y| < 40 The incoming waves are
unidirectional (169). Simulations are performed with both a co–current and
an opposing current jet.

The significant wave height along the centre of the jet and across the jet
changes more slowly the wider the jet is (figure 17). On an opposing current
jet, the significant wave height does not depend on the width of the jet when
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the waves are adjusted to the current jet. When the width of the jet equals
the width of the simulation area, oscillations occur due to channel effects.

Figure 17: The significant wave height in the centre of a co–current and a
counter current jet (upper) and across a counter current jet at x=300 (lower)
with different widths of the jet.

5.7 Build–up length

Test simulations are performed with different build–up lengths, �X, of the
current jet, (170). The simulation area is given by |y| < 40 The incoming
waves are unidirectional (169).

Both the significant wave height and the kurtosis in the centre of the
jet change quicker with shorter build–up lengths (figure 18). On opposing
current jets the significant wave height seems to oscillate more with shorter
build–up lengths, but stabilises around the same value after the build–up
independent of the build–up length. The kurtosis decreases more quickly
with shorter build–up lengths of opposing jets. On co–current jets channel
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effects are more pronounced for shorter build–up lengths due to a stronger
divergence during the build–up. The kurtosis increases quicker and reaches
a larger maximum with shorter build–up lengths of the co–current.

Figure 18: The significant wave height (upper) and kurtosis (lower) of waves
in the centre of current jets with different build–up lengths.
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6 Conclusion

Two new current modified Schrödinger equations have been derived; one
using potential theory, and one allowing vorticity (NLSC). The splitting
schemes are described and the corresponding numerical orders tested. Since
the current is inhomogeneous, new fourth order splitting schemes should be
constructed.

Monte–Carlo simulations are performed to estimate statistical wave prop-
erties. 30 simulations in each ensemble is found to be sufficient to assure
statistical and numerical convergence for higher order properties as the kur-
tosis. Different model setups are studied. When waves encounter a counter
current, the simulation area should be wider than twice the width of the jet.

To study the effect of each current term in the NLSC equation, simulations
are performed without one term at the time. It is found that the current
term to linear order contains most of the refraction. The nonlinear term has
larger impact than the rest of the current terms. The contribution from the
transversal current required to satisfy the continuity equation for the current,
is shown to be negligible for waves on collinear jets.

The statistical wave properties are also used to illustrate different current
jet configurations. If the strength of the counter current jet is increased, the
wave height increases and seems to oscillate with a period depending on the
strength of the jet. After the waves are adjusted to a counter current, the
significant wave height does not seem to depend on neither the width nor the
build–up length of the jet.

The current modified Schrödinger equation and model setup presented
here are expected to have a large range of application possibilities. The
occurrence of freak waves on collinear currents is discussed in Hjelmervik &
Trulsen (2009).

Here only collinear currents are studied. The transversal current is as-
sumed at the same strength as the longitudinal current in the derivation of
the current modified nonlinear Schrödinger equation which allows vorticity.
Thereby the equation may be used for oblique waves on current jets.

The current modified nonlinear Schrödinger equation for potential cur-
rents is derived to Dysthe level. It can easily be implemented in the numerical
model. And the results are expected to be interesting. Schrödinger equations
to Dysthe level are known to lower the kurtosis.
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Linear refraction of waves on inhomogeneous current is known to provoke extreme
waves. We investigate the effect of nonlinearity on this phenomenon, with respect to
the variation of significant wave height, kurtosis and occurrence of freak waves. Monte–
Carlo simulations are performed employing a modified nonlinear Schrödinger equation
that includes the effects of a prescribed non–potential current. We recommend that freak
waves should be defined by a local criterion according to the wave distribution at each
location of constant current, not by a global criterion that is either averaged over, or
insensitive to, inhomogeneities of the current. Nonlinearity can reduce the modulation
of significant wave height. Depending on the configuration of current and waves, the
kurtosis and probability of freak waves can either grow or decrease when the wave height
increases due to linear refraction. At the centre of an opposing current jet where waves
are known to become large, we find that freak waves should be more rare than in the open
ocean away from currents. The largest amount of freak waves on an opposing current jet
is found at the jet sides where the significant wave height is small.

1. Introduction
It is well known that linear refraction due to currents can provoke large waves. When

waves encounter an opposing current, the wave length can be reduced and both the wave
height and steepness can be enhanced. When waves encounter an opposing current jet, fo-
cusing can further enhance the wave intensity near the centre of the jet. Linear refraction
of waves by currents is known to cause navigational problems, e.g. in the Agulhas current,
river estuaries, rip currents, entrances in fjords during outgoing tides, and in tidal flows in
the coastal zone, (Longuet–Higgins & Stewart 1961; Peregrine 1976; González 1984; Jon-
sson 1990; Lavrenov 1998; Mori, Liu & Yasuda 2002; Bottin & Thompson 2002; MacIver,
Simons & Thomas 2006; MacMahan, Thornton & Reniers 2006). When the steepness thus
increases, enhanced nonlinear modulations should be anticipated (Stocker & Peregrine
1999; Lavrenov & Porubov 2006). However, it is not well known how the enhanced effect
of nonlinearity will modify the wave height.

Our goal is to investigate how nonlinearity modifies both the significant wave height
and the occurrence of freak waves, for waves propagating on inhomogeneous stationary
currents. Two important reviews of freak waves, (Kharif & Pelinovsky 2003; Dysthe,
Krogstad & Müller 2008), argue that there is no unique definition of freak waves, but it is
generally agreed that they belong to the extreme tail of the probability distribution. The
most common definition is that a wave is freak when the wave height exceeds a threshold
related to the significant wave height. However, due to the inhomogeneity of the current,
it becomes necessary to distinguish two different types of statistical distributions for the
surface waves. In the first case, the distribution is given as a function of location, each
location being associated with a constant current, such that the threshold for freak waves
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will depend on the location. In the second case, a common threshold is defined for the
entire domain, either based on an averaging over the entire inhomogeneous domain or
based on a reference sea state unaffected by currents and bottom topography.

We argue that, at least when the current is known and stationary, the optimal choice
is to use distributions specific to each location, and a freak wave criterion that depends
on location. The reason is that freak waves should be surprising, also after the knowledge
of the current has been taken into account. Some authors have made the other choice
(Lavrenov 1998, and references therein), thus identifying numerous freak waves where
large waves should be anticipated in any case.

Laboratory measurements of longcrested waves on a transversally uniform current,
show that strong opposing currents induce partial wave blocking significantly elevating
the limiting steepness and asymmetry of freak waves (Wu & Yao 2004). MacIver, Simons
& Thomas (2006) studied waves propagating across a shore-parallel current jet at oblique
incidence. They found that a following wave is refracted to a more current-parallel di-
rection with reduced wave height, while an opposing wave becomes more current normal
with increased wave height.

Our need to resolve wave phases on non–potential currents restricts us from employing
several obvious candidates. White (1999) allowed a prescribed current with vorticity, and
derived a wave action equation. Ray theory (White & Fornberg 1998) is used for tracking
wave packets. Peregrine & Smith (1979) derived a nonlinear Schrödinger equation useful
for caustics where ray theory breaks down. The Zakharov equation (Zakharov 1968) is
limited to potential flows.

We shall derive a nonlinear Schrödinger equation that includes an inhomogeneous cur-
rent with horizontal shear. Some related models have already been published. Stewartson
(1977) derived a linear current modified Schrödinger equation to Dysthe level limiting to
potential theory. Turpin, Benmoussa & Mei (1983) considered the effects of slowly varying
depth and current, and derived a cubic Schrödinger equation limiting to one horizontal
dimension. Gerber (1987) used the variational principle to derive a cubic Schrödinger
equation for a non–uniform medium, limiting to potential theory in one horizontal di-
mension. Mei (1989) allowed horizontal shear, and derived the Schrödinger equation to
linear order. Stocker & Peregrine (1999) extended the modified nonlinear Schrödinger
equation of Dysthe (1979) to include a prescribed potential current induced by for ex-
ample an internal wave. Our equation will be taken up to cubic nonlinearity, and will
include waves and currents in two horizontal dimensions allowing weak horizontal shear.

2. The current modified nonlinear Schrödinger equation
Assume that the total velocity field, vtot = v + V , is a superposition of the velocity of

a wave field, v = (u, v, w), and a prescribed stationary current field, V = (U, V, W ), in a
Cartesian coordinate system, (x, y, z). The x–axis is aligned with the principal propaga-
tion direction of the waves. The z–axis is vertical with unit vector k pointing upwards.
z = 0 corresponds to the undisturbed free water surface. The water is assumed inviscid,
incompressible and deep with respect to the characteristic wavelength.

The Euler equation for the combined wave and current field can be written as:

∂v

∂t
+ vtot · ∇vtot = −1

ρ
∇ptot − gk (2.1)

The total pressure, ptot = ps +p+P , is a combination of the dynamic pressure due to the
wave field, p, the dynamic pressure due to the current field, P , and the static pressure,
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ps = −ρgz + pa, where ρ is the density, g is the acceleration of gravity, and pa is the
atmospheric pressure.

The surface boundary equations for the combined field at z = η+ζ can then be written
as:

∂η

∂t
+ vtot · ∇(η + ζ) = w + W (2.2a)

ptot = pa (2.2b)

η and ζ are the surface displacements associated with the wave field and the current field
respectively.

The vorticity of the waves, γ =∇× v, obeys the equation:

∂γ

∂t
+ vtot · ∇γ − γ · ∇vtot = −v · ∇Γ + Γ · ∇v (2.3)

If the vorticity of the current, Γ = (Γx, Γy, Γz) =∇×V , equals zero, (2.3) is homogeneous
with respect to γ, and if the wave field starts out irrotational, it will remain irrotational.
For waves riding a current field with vorticity, vorticity will develop in the wave field as
well. We therefore derive a current modified nonlinear Schrödinger equation that allows
a small amount of vorticity.

Let a, kc and ωc be the characteristic amplitude, wavenumber and angular frequency
of the surface waves. We employ the steepness of the waves as a small ordering parameter
in the following, ε = kca 	 1, thus kcη = O(ε) and v kc

ωc
= O(ε). The horizontal cur-

rent velocities are assumed just small enough to avoid collinear reflection of the waves,
(U, V ) kc

ωc
= O(ε). The vertical current velocity is assumed negligible W kc

ωc
= O(ε2). It

follows from the Bernoulli equation that the surface displacement induced by the current
is small, kcζ = O(ε2). Let the horizontal and vertical length scales, L, of the current be
longer than a characteristic wavelength so that 1/(kcL) = O(ε). The horizontal vortici-
ties, (Γx, Γy)/ωc = O(ε3), and the vertical vorticity, Γz/ωc = O(ε2), are one order smaller
than the vorticities assumed by Mei (1989). In the following all equations, variables and
sizes are scaled according to the above assumptions, and made dimensionless using the
characteristic length and time scales of the wave field.

The wave field is represented by perturbation series for the surface displacement, η, the
velocity, v, and the pressure, p, (see appendix). The perturbation series for the surface
displacement is given by:

η = ε2η̄ +
1
2

(
Bei(x−t) + εB2e2i(x−t) + ε2B3e3i(x−t) + · · ·+ c.c.

)
(2.4)

η̄ is the mean surface displacement. x is the principal propagation direction. B, B2 and
B3 are the first, second and third harmonics of the surface displacement. We have fixed
the characteristic wavenumber appropriate for waves undisturbed by current, therefore
the entire effect of refraction is represented by the modulation of B. The perturbation
series for the velocity and the pressure are similar.

Through Taylor expansion around z = 0 and perturbation expansion (see appendix)
we get the following dimensionless Schrödinger equation with current terms, NLSC, for
the first harmonic of the surface elevation of the waves:

∂B

∂x
= (L+C+N)B (2.5)

L contains the linear terms with constant coefficients, C contains the linear terms with
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variable coefficients, and N is the nonlinear term:

L = −2
∂

∂t
− i

∂2

∂t2
+

i
2

∂2

∂y2

C = −2iU + 6U
∂

∂t
+ 5iU2 − 2V

∂

∂y
− ∂U

∂x

N = −i|B|2

Equation (2.5) should be valid for evolution over a distance x = O(ε−2) and for modu-
lations of spectral width O(ε) in y and t.

All the terms in (2.5) may be derived from Stocker & Peregrine (1999) by rescaling
their current even though they used potential theory. Our horizontal current is one order
stronger, but their equation is of Dysthe order. When vorticity is allowed, new terms
will appear if (2.5) is taken to the next order. To obtain (2.5) from (20) in Stocker &
Peregrine (1999) one has to recall that the first is written in terms of the free-surface
envelope, where as the latter is written in terms of the envelope of the potential.

3. Model setup
Simulations are performed with a second order split–step scheme based on Lo & Mei

(1985) and Muslu & Erbay (2004). A Fourier method is used on the linear terms with
constant coefficients, LB. And a second order Runge–Kutta scheme is used on the non-
linear term and the linear terms with variable coefficients, (C+N)B. The wave field is
assumed periodic with respect to y and t. The integrating step used is Δx = 0.2. Each
ensemble consists of 30 simulations.

The Fourier transform with respect to y and t is given by:

B̂ij =
1

MN

M−1∑
m=0

N−1∑
n=0

Bmnei(Ωjtn−kyiym) (3.1)

where ym = mΔy, tn = nΔt, kyi = iΔky, and Ωj = jΔω. The length of each time series is
T = 2000. Using N = 1024 times, the time step is Δt = T

N ≈ 1.95 and Δω = 2π
T ≈ 0.0031.

The width of the simulation area, y = [−40, 40], with M = 32 points, gives Δy = 2.5
and Δky ≈ 0.079.

Both unidirectional and shortcrested incoming waves with Gaussian spectrum have
been studied. The Fourier amplitudes at x = 0 are given respectively by:

B̂j = ε

√
Δω√
2πσω

e
− Ω2

j

4σ2
ω

+iψj (3.2)

B̂ij = ε

√
ΔkyΔω

2πσyσω
e
− Ω2

j

4σ2
ω
− k2

y,i

4σ2
y

+iψij

(3.3)

The frequency is given by ωj = 1 + Ωj . The phases, ψij , are statistically independent
and uniformly distributed on the interval [0, 2π). We have chosen ε = 0.1. σω and σy are
bandwidths in Fourier room. We have studied σω = 0.05, 0.1 and 0.2. For the shortcrested
cases we have chosen σy = 0.05 and 0.2 to study different crest lengths.

The NLSC equation, (2.5), may be used for a large range of prescribed currents. Here
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we have chosen two types; a narrow surface current jet (sec. 4.1) given by:

U =

⎧⎨⎩
0 when x � X, and/or |y| � Y
U0 sin2

(
π

2ΔX (x−X)
)
cos2
(

πy
2Y

)
when x > X, and x < X + ΔX

U0 cos2
(

πy
2Y

)
when x � X + ΔX

(3.4)

and a transversally uniform current (sec. 4.3) given by:

U =

⎧⎨⎩
0 when x � X
U0 sin2

(
π

2ΔX (x−X)
)

when x > X, and x < X + ΔX
U0 when x � X + ΔX

(3.5)

The wave field is allowed about 32 wavelengths, x = [0, X) where X = 200, to develop
before it encounters a current. Y = 10 is half the width of the jet. And ΔX = 100 is
the current build–up length. In this paper we compare three cases for the current: no
current, co–current with U0 = 0.05, and opposing current with U0 = −0.05 which is not
enough to reflect the waves, but sufficient to study the characteristic features of opposing
currents. More current cases are studied in Hjelmervik & Trulsen (2009).

Simulations and observations of tidal currents suggest that establishing current jets are
more fanned in than terminating current jets are fanned out (Hjelmervik, Ommundsen
& Gjevik 2005; Hjelmervik et al. 2008). Test simulations show that the current across
the jet, V , needed to satisfy the continuity equation, has negligible impact on the results
and may thus be set to zero in the NLSC equation. Alternatively, the continuity equation
can be satisfied by a vertical current, W , which does not appear within the truncation
level of the NLSC equation at the surface.

4. Results
For each of the simulated ensembles we compute the significant wave height, Hs, the

kurtosis, κ, of the surface displacement, and the amount of freak waves from time series
at fixed locations. Statistical features are calculated using the envelope to first order. The
free surface may be reconstructed to second order by (2.4), using the first harmonic term
proportional to B and the second harmonic term proportional to B2. Since the second
harmonic complex envelope, B2, is not an explicit function of the current field according
to (A 28b), the contribution from bound waves are not expected to modify wave statistics
of the free waves differently from the case of no current within the truncation level of
(2.5). Second order harmonic bound contributions without currents are well known from
the litterature (Longuet–Higgins & Stewart 1961; Tayfun 1980; Socquet–Juglard et al.
2005, and others). We shall limit our consideration of wave statistics to contributions
from free waves only.

Hs(x, y) = 4
√

η2 = 4

√
1
2
|B|2 (4.1)

κ(x, y) =
η4

η2
2 =

3
2
|B|4

|B|2
2 (4.2)

The overbar represents combined time and ensemble averaging. The significant wave
height equals four times the standard deviation of the surface elevation. The kurtosis
equals three when the surface displacement is Gaussian distributed. We define a wave as
freak when its wave height exceeds 2.2 times the significant wave height, Hs:

H = 2|B| > 2.2Hs (4.3)
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Figure 1. The significant wave height (upper) and kurtosis (lower) with no current (— —),
and in the centre of current jets with U0 = −0.05 (——) and 0.05 (- - -) for unidirectional and
shortcrested (σy = 0.05) incoming waves with σω = 0.1. For the case of no current, there are
three curves on top of each other in the upper panel.

According to the Rayleigh distribution for wave height, 0.006% of the waves should be
freak.

4.1. Current jet

Suppose that the waves meet a collinear surface current jet given by (3.4).
The significant wave height increases for waves encountering an opposing current and

decreases for waves encountering a co–current (figure 1, upper panel). The significant
wave height oscillates before stabilising. Test simulations with wider simulation areas,
show that the oscillations appearing on the opposing current jet do not depend on the
width of the simulation area, but on the width and form of the current jet, while the
oscillations after 64 wavelengths (x ≈ 400) on the co–current may be due to restrictions
on the simulation area.

The significant wave height is larger in the centre and smaller at the sides of an opposing
current jet, while it is smaller in the centre and larger at the sides of a co–current jet
(figure 2). These results are very similar for different values of σω , and qualitatively
equal for any cross section after the current jet is introduced. When waves encounter an
opposing current jet, energy is transfered from the sides of the jet into the centre of the
jet resulting in larger significant wave height in the centre of the jet and smaller at the jet
sides. More energy is transfered in linear than in nonlinear simulations, and the longer
the incoming crest lengths are. When waves encounter a co–current jet, the energy is
transfered in the opposite direction, resulting in larger significant wave height at the jet
sides and smaller in the centre of the jet. Again more energy is transfered in linear than
in nonlinear simulations, and the longer the incoming crest lengths are.
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Figure 2. The significant wave height at x=300 across current jets with U0 = −0.05 (left)
and 0.05 (right). Unidirectional incoming waves with linear simulations (circle) and nonlinear
simulations (cross). Shortcrested incoming waves with σy = 0.05 (square) and σy = 0.2 (plus)
with nonlinear simulations. Incoming σω = 0.1.

The kurtosis deviates little from three in linear simulations and in nonlinear simulations
with shortcrested incoming waves (figure 1, lower panel). In nonlinear simulations with
unidirectional incoming waves, the kurtosis increases to a maximum before decreasing to
a stable level. The stable level is reached before the current jet is introduced, and increases
with decreasing incoming bandwidth in frequency (figure 3, left panels). Simulations with
different incoming crest lengths show that larger crest lengths result in larger deviations
in the kurtosis both before and shortly after the build–up of the current jet.

When unidirectional waves meet an opposing current jet, the kurtosis decreases in the
centre of the jet where the significant wave height grows. The largest kurtosis across
the jet is at the sides of the jet where the significant wave height is smallest. When
unidirectional waves meet a co–current jet, the kurtosis decreases at the sides of the jet
where the significant wave height grows. In this case the largest kurtosis is in the centre
of the jet where the significant wave height is smallest. Test simulations with different
build–up lengths, ΔX = 50, 100, 200, and 300, show that smaller current gradients along
the waves, ∂U/∂x, results in smaller changes in the kurtosis along the jet, |∂κ/∂x|, and
smaller maximums of the kurtosis across the jet.

Since the current jet is narrower than ten wavelengths, the unidirectional incoming
waves behave as shortcrested waves (Gramstad & Trulsen 2007) and the kurtosis de-
creases as the wave field is adjusted to the current jet (figure 1, lower panel). After the
wave field is adjusted to the current jet, the kurtosis is close to three. The significant
wave height in the centre of the jet is still large in the opposing current jet and small
in the co–current jet. The adjustment length of waves without current is well known
(Onorato et al. 2002; Socquet–Juglard et al. 2005; Gramstad & Trulsen 2007). Our nu-
merical results suggest that the adjustment length for waves on collinear current jets can
be considerably longer than for waves without currents.

The amount of freak waves is represented well by the kurtosis in our study (figure 3).
The largest amount of freak waves is at the sides of the opposing current jet, and in
the centre of the co–current jet (figure 3, right panels). Small incoming bandwidths in
frequency results in larger maximum of the kurtosis and amount of freak waves, while
the significant wave height seems nearly independent of initial bandwidth (Hjelmervik
& Trulsen 2009). The waves are large in the centre of an opposing current jet, but the
proportion that is freak, is smaller than away from the current. In linear simulations the
amount of freak waves is less than 0.04% at all locations both along and across the jet,
but our data material seems to be insufficient to calculate a more exact percentage. In
nonlinear simulations with shortcrested incoming waves (σy = 0.05) the amount of freak
waves is less than 0.15% (figure 4, right panels). The longer the incoming crest lengths
the larger kurtosis and amount of freak waves. Gramstad & Trulsen (2007) performed a
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Figure 3. The kurtosis (left) and amount of local freak waves (right) for unidirectional incom-
ing waves at x=300 across current jets with U0 = −0.05 (upper) and 0.05 (lower). Incoming
σω = 0.05 (circle), 0.1 (cross) and 0.2 (square). Nonlinear simulations.

Figure 4. The kurtosis (left) and amount of local freak waves (right) for incoming shortcrested
waves (σy = 0.05) at x=300 across current jets with U0 = −0.05 (upper) and 0.05 (lower).
Incoming σω = 0.05 (circle), 0.1 (cross) and 0.2 (square). Nonlinear simulations.

large number of simulations with a modified nonlinear Schrödinger equation in order to
reveal how the occurrence of freak waves on deep water depends on crest lengths. They
found a clear difference between shortcrested and longcrested waves, distinguished by a
limiting crest length of approximately ten wavelengths (σy ≈ 0.1). Our results indicate
that a similar qualitative difference exists when a current jet is introduced. The longer
the crest lengths, the stronger the variations in significant wave height, kurtosis and
amount of freak waves across the jet.

4.2. Space or time averaged significant wave height
Our definition of freak waves by (4.3) requires knowledge of the significant wave height
Hs. Since the waves propagate in an inhomogeneous medium, there are at least three
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Figure 5. The amount of freak waves at x=300 for unidirectional incoming waves across
current jets with U0 = −0.05 (left) and 0.05 (right). Incoming σω = 0.1. Nonlinear simulations.

Figure 6. The amount of freak waves for unidirectional incoming waves with no current (—
—), and in the centre of current jets with U0 = −0.05 (——) and 0.05 (- - -). Incoming σω = 0.1.
Nonlinear simulations.

different strategies for determining Hs. The strategy which we recommend and have
adopted here, is to determine Hs at fixed locations of constant current, i.e. a local sig-
nificant wave height. This method corresponds to classical field measurements taken at
fixed locations. A second strategy would be to determine a global significant wave height
by spatial averaging over the inhomogeneous medium. This method likely corresponds
to analysis based on satellite imaging of the ocean surface. A third strategy would be to
define an undisturbed significant wave height for a wave field unaffected by the inhomo-
geneities. This method corresponds to the work done by e.g. Lavrenov (1998).

Lavrenov (1998) considered the propagation of swell from the southern latitudes into
the opposing Agulhas current. He found that the mean wave height is larger in the centre
of the jet than at the jet sides. Our simulations show that this applies for both linear
and nonlinear simulations, and both unidirectional and shortcrested incoming waves. He
suggested that the amount of freak waves is large in the centre of the jet since the mean
wave height is large there.

Figures 5 and 6 show that the amount of “freak” waves strongly depends on the
strategy used to define them. The kurtosis is a good indicator for freak waves only if
the local significant wave height is used to define them. Then the freak wave amount is
large at locations with a large amount of unexpectedly high waves compared to what is
expected at the same locations, and when the waves are adjusted to the current jet, the
freak wave amount is small. If the undisturbed significant wave height is used to define
the freak waves, the local significant wave height is a good indicator for the freak wave
amount. Then the freak wave amount is large at locations with large waves compared to
wave heights elsewhere, and when the waves are adjusted to the current jet, the freak
wave amount is still large. We believe it is preferrable to reserve the term “freak” waves
only to those waves that are surprising even after knowledge of inhomogeneities are taken



10 K. B. Hjelmervik and K. Trulsen

Figure 7. The significant wave height (upper) and kurtosis (lower) for unidirectional and short-
crested (σy = 0.05) incoming waves with no current (— —), and on transversally uniform
currents with U0 = −0.05 (——) and 0.05 (- - -). Incoming σω = 0.1. Nonlinear simulations.

Figure 8. The amount of freak waves for unidirectional incoming waves with no current (— —),
and on transversally uniform currents with U0 = −0.05 (——) and 0.05 (- - -). Incoming
σω = 0.1. Nonlinear simulations.

into account. To ensure that a freak wave belongs to the upper tail of the probability
distribution, we thus recommend the local significant wave height for application to the
criterion (4.3).

4.3. Transversally uniform current

Suppose that the waves meet a transversally uniform current given by (3.5).
The significant wave height (figure 7, upper panel) increases when the waves meet

an increasing opposing current and decreases when the waves meet an increasing co–
current. Since the current does not cause any energy transfer transversally, the changes
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are smaller than when the waves meet a current jet (figure 1, upper panel). The significant
wave height is near constant after the build–up of the current.

The kurtosis (figure 7, lower panel) for longcrested waves increases slightly when the
significant wave height increases, and decreases slightly when the significant wave height
decreases. This effect can hardly be seen for short crested waves. After the current build–
up the unidirectional incoming waves are still unidirectional and the kurtosis stays at the
same level. This is in contradiction to the case where unidirectional incoming waves meet
a current jet (figure 1, lower panel). Then the kurtosis decreases with increasing signif-
icant wave height, increases with decreasing significant wave height, and decreases after
the build–up. The kurtosis for unidirectional incoming waves with no current (figures 1
and 7, lower panels) stays at a high level, indicating that the cubic nonlinear Schrödinger
equation produces larger kurtosis than the modified Schrödinger equation by Trulsen &
Dysthe (1996) derived to next order (see Gramstad & Trulsen 2007, figure 2).

On a transversally uniform current the amount of freak waves (figure 8) is well indicated
by the kurtosis also when the undisturbed significant wave height is used to calculate
the amount of freak waves. If the undisturbed significant wave height is used, there are
slightly more freak waves in an opposing current and less in a co–current, than if the
local significant wave height is used. Since the current does not introduce transversal
energy transfer, the freak wave amounts are smaller than if the waves meet a current jet
(figure 5).

5. Conclusion
We have derived a nonlinear Schrödinger equation suitable for spatial wave propagation

on inhomogeneous currents. We have used this equation for Monte–Carlo simulations to
investigate wave statistics on inhomogeneous currents, in particular on narrow current
jets. Several surprising features of nonlinear wave evolution on nonuniform current were
revealed. Wave statistics has been derived based on the envelope to the first order, which
was used to estimate the wave height correct to second order.

The evolution and statistics of both short– and longcrested waves on transversally
uniform currents is found to be qualitatively different from waves on current jets.

Considering waves that approach an opposing current jet, we find that the amount of
freak waves is minimum in the centre of the jet where the wave heights are largest, while
the amount of freak waves is maximum at the sides of the jet where the wave heights are
smallest.

The definition of both significant wave height and of freak waves can be ambiguous in
inhomogeneous media. We recommend that local definitions are used to ensure that freak
waves remain surprising even after classical knowledge of the inhomogeneous medium has
been taken into account.

We see evidence that the distances over which a wave field has to propagate in order
to be adjusted to the medium can become much longer in the presence of inhomogeneous
currents than in the absence of currents. This may be an important consideration for the
appropriate choice of wave models in coastal waters.

We thank professors Kristian B. Dysthe and Bjørn Gjevik for fruitful discussions.
Several referees provided useful comments on preliminary versions of the manuscript.

K.T. is grateful for the hospitality of the Department of Signal Theory and Commu-
nications at the Polytechnic School at the University of Alcalá, Spain, for hosting him
during a sabbatical year during the development of this paper.
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Appendix. Derivation of the NLSC equation
Taylor expansions around z = 0 gives the surface boundary equations, (2.2a–b), on

the form:

∂η

∂t
+ vtot · ∇(η + ζ) + (η + ζ)

∂vtot

∂z
· ∇(η + ζ) +

1
2
(η + ζ)2

∂2vtot

∂z2
· ∇(η + ζ)

= w + W + (η + ζ)
∂

∂z
(w + W ) +

1
2
(η + ζ)

∂2

∂z2
(w + W ) + · · · (A 1a)

ptot + (η + ζ)
∂ptot

∂z
+

1
2
(η + ζ)2

∂2ptot

∂z2
+ · · · = pa (A 1b)

The waves are assumed on deep water, that is v, p → 0 as z → −∞.
In accordance with the scaling assumptions from section 2, all equations, variables and

sizes in the following are made dimensionless using the characteristic length and time
scales of the wave field, so that kcx → x, εkcx → x̄, ωct → t, kcη → εη, kcζ → ε2ζ,
kc

ωc
u → εu, kc

ωc
(U, V ) → ε(U, V ), kc

ωc
W → ε2W , kc

ρg p → εp, and kc

ρg P → ε2P .
The scaled Euler equation for the waves (2.1) to the third order of ε is:

∂u

∂t
+ ε

(
U

∂u

∂x
+ V

∂u

∂y
+ v · ∇u

)
+ ε2

(
u

∂U

∂x̄
+ v

∂U

∂ȳ
+ W

∂u

∂z

)
= − ∂p

∂x
(A 2a)

∂v

∂t
+ ε

(
U

∂v

∂x
+ V

∂v

∂y
+ v · ∇v

)
+ ε2

(
u

∂V

∂x̄
+ v

∂V

∂ȳ
+ W

∂v

∂z

)
= −∂p

∂y
(A 2b)

∂w

∂t
+ ε

(
U

∂w

∂x
+ V

∂w

∂y
+ v · ∇w

)
+ ε2W

∂w

∂z
= −∂p

∂z
(A 2c)

The scaled equation for the divergence of the Euler equation for the waves (2.1) to the
third order of ε is:

ε

((
∂u

∂x

)2

+
(

∂v

∂u

)2

+
(

∂w

∂z

)2

+ 2
∂u

∂y

∂v

∂x
+ 2

∂u

∂z

∂w

∂x
+ 2

∂v

∂z

∂w

∂y

)

+2ε2
(

∂u

∂x

∂U

∂x̄
+

∂u

∂y

∂V

∂x̄
+

∂v

∂x

∂U

∂ȳ
+

∂v

∂y

∂V

∂ȳ

)
= − ∂2p

∂x2
− ∂2p

∂y2
− ∂2p

∂z2
(A 3)

The scaled surface equations for the waves (A 1a–b) to the third order of ε are:

∂η

∂t
+ ε(v + V ) · ∇η + ε2η

∂v

∂z
· ∇η = w + εη

∂w

∂z
+ ε2

(
ζ
∂w

∂z
+

1
2
η2 ∂2w

∂z2

)
(A 4a)

p− η + εη
∂p

∂z
+ ε2

(
ζ
∂p

∂z
+

1
2
η2 ∂2p

∂z2

)
= 0 (A4b)

The wave field is represented by perturbation series for the surface displacement, η,
the velocity, v, and the dynamic pressure, p:

η = ε2η̄ + 1
2

(
B1ei(x−t) + εB2e2i(x−t) + · · ·+ c.c.

)
v = ε2v̄ + 1

2

(
v1 ei(x−t) + εv2 e2i(x−t) + · · ·+ c.c.

)
p = εp̄ + 1

2

(
p1 ei(x−t) + εp2 e2i(x−t) + · · ·+ c.c.

) (A 5)

We shall assume that the waves are modulated on the slow spatial scales x̄ and ȳ and
a correspondingly slow time scale εt = t̄. Thus η̄ = η̄(x̄, ȳ, t̄), v̄ = v̄(x̄, ȳ, z, t̄), and
p̄ = p̄(x̄, ȳ, z, t̄) are the mean surface displacement, mean induced velocity, and mean
dynamic pressure respectively, while Bn = Bn(x̄, ȳ, t̄), vn = vn(x̄, ȳ, z, t̄), and pn =



Extreme waves on collinear currents 13

pn(x̄, ȳ, z, t̄) are the n’th harmonics of the surface displacement, induced current, and
dynamic pressure respectively. The characteristic wavenumber is fixed appropriate for
waves undisturbed by current, therefore the entire effect of refraction is represented by
the modulation of B1.

The horizontal vorticities and the vertical vorticity are all one order higher than the
vorticities used by Mei (1989), that is (Γx, Γy) = O(ε3) and Γz = O(ε2). Since the
vorticity is assumed to be small, the chosen order of the mean functions are supported
by Dysthe (1979). Both the mean functions and the harmonics, are perturbed:

η̄ = η̄2 + · · · , Bn = Bn0 + εBn1 + ε2Bn2 + · · ·
v̄ = v̄2 + · · · , vn = vn0 + εvn1 + ε2vn2 + · · ·
p̄ = p̄1 + εp̄2 + · · · , pn = pn0 + εpn1 + ε2 pn2 + · · ·

(A 6)

A.1. First order terms
The first harmonic terms of first order of ε for the divergence of the Euler equation (A 3)
are:

p10 − ∂2p10

∂z2
= 0 (A 7)

which has the general solution:

p10 = A10(x̄, ȳ, t̄)ez (A 8)

The first harmonic terms of first order of ε in the surface equations (A 4a–b) give:

A10 = B10 (A 9)

The first harmonic terms of first order of ε in the Euler equation (A 2a–c) then give
respectively:

u10 = B10ez (A 10a)
v10 = 0 (A 10b)
w10 = −iB10ez (A 10c)

A.2. Second order terms
A.2.1. Zeroth harmonic

The zeroth harmonic terms of second order of ε for the z–component of the Euler
equation (A 2c) are:

i
4
u10w

∗
10 +

i
4
u∗10w10 +

1
4
w10

∂w∗10
∂z

+
1
4
w∗10

∂w10

∂z
= −∂p̄1

∂z
(A 11)

Using the results (A 10) from first order, gives:

|B10|2e2z = −∂p̄1

∂z
(A 12)

which has the solution:

p̄1 = Ā1(x̄, ȳ, t̄)− 1
2
|B10|2e2z (A 13)

The zeroth harmonic terms of second order of ε in the dynamic surface equation (A 4b)
are:

p̄1 +
1
4
B10

∂p∗10
∂z

+
1
4
B∗10

∂p10

∂z
= 0 at z = 0 (A14)

Using the results (A 8–A9) from first order and the solution for p̄1 (A 13), gives Ā1 = 0.
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A.2.2. First harmonic

The first harmonic terms of second order of ε for the divergence of the Euler equation
(A 3) are:

2i
∂p10

∂x̄
= p11 − ∂2p11

∂z2
(A 15)

Using the results (A 8–A9) from leading order, gives:

2i
∂B10

∂x̄
ez = p11 − ∂2p11

∂z2
(A 16)

which has the solution:

p11 = A11(x̄, ȳ, t̄)ez − i
∂B10

∂x̄
zez (A 17)

The first harmonic terms of second order of ε in the dynamic surface equation (A 4b)
give:

A11 = B11 (A 18)

The first harmonic terms of second order of ε in the Euler equation and the kinematic
surface equation (A 2a–c, A 4a) are respectively:

∂u10

∂t̄
− iu11 + iu10U = −∂p10

∂x̄
− ip11 (A 19a)

∂v10

∂t̄
− iv11 + iv10U = −∂p10

∂ȳ
(A 19b)

∂w10

∂t̄
− iw11 + iw10U = −∂p11

∂z
(A 19c)

∂B10

∂t̄
− iB11 + iUB10 = w11 at z = 0 (A 19d)

Using the results (A 8–A10) from first order and the solution for p11 (A 17–A18), leads
to the current modified Schrödinger equation to second order:

∂B10

∂x̄
+ 2

∂B1,0

∂t̄
+ 2iUB10 = 0 (A20)

and the reconstruction formulas:

u11 = B11ez + i
(

∂B10

∂t̄
+ iUB10

)
(1 + 2z)ez (A 21a)

v11 = −i
∂B10

∂ȳ
ez (A 21b)

w11 = −iB11ez +
(

∂B10

∂t̄
+ iUB10

)
(1 + 2z)ez (A 21c)

A.2.3. Second harmonic

The second harmonic terms of second order of ε for the divergence of the Euler equation
(A 3) are:

−1
2
u2

10 +
1
2

(
∂w10

∂z

)2

+ i
∂u10

∂z
w10 = 4p20 − ∂2p20

∂z2
(A 22)
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Using the results (A 10) from leading order, gives:

0 = 4p20 − ∂2p20

∂z2
(A 23)

which has the solution:

p20 = A20e2z (A 24)

The second harmonic terms of second order of ε in the dynamic surface equation (A 4b)
are:

p20 −B20 +
1
2
B10

∂p10

∂z
= 0 at z = 0 (A25)

Using the results (A 8–A9) from leading order and the solution for p20 (A 24), gives:

A20 = B20 − 1
2
B2

10 (A 26)

The second harmonic terms of second order of ε in the Euler equation and the kinematic
surface equation (A 2a–c, A 4) are respectively:

−iu20 +
i
4
u2

10 +
1
4
w10

∂u10

∂z
= −ip20 (A 27a)

−iv20 +
i
4
u10v10 +

1
4
w10

∂v10

∂z
= 0 (A 27b)

−iw20 +
i
4
u10w10 +

1
4
w10

∂w10

∂z
= −1

2
∂p20

∂z
(A 27c)

−iB20 +
i
4
u10 =

1
2
w20 +

1
4
B10

∂w10

∂z
at z = 0 (A 27d)

Using the results (A 10) from first order and the solution for p20 (A 24, A 26), gives:

u20 = v20 = w20 = p20 = 0 (A 28a)

B20 =
1
2
B2

10 (A 28b)

Note that the second order contributions is not explicit functions of the current field.

A.3. Third order terms
The first harmonic terms of third order of ε for the divergence of the Euler equation (A 3)
are:

u20u
∗
10 +

1
2

∂w20

∂z

∂w∗10
∂z

− i
2

∂u20

∂z
w∗10 + i

∂u∗10
∂z

w20 + iu10
∂U

∂x̄
+ iv10

∂U

∂ȳ

= −1
2

∂2p10

∂x̄2
− i

∂p11

∂x̄
+

1
2
p12 − 1

2
∂2p10

∂ȳ2
− 1

2
∂2p12

∂z2
(A 29)

Using the results (A 8–A10, A 17–A18, A 28) from first and second order, gives:

∂2p12

∂z2
− p12 = −2i

∂B11

∂x̄
ez − ∂2B10

∂x̄2
ez − ∂2B10

∂ȳ2
ez − 2

∂2B10

∂x̄2
zez − 2iB10

∂U

∂x̄
ez

(A 30)

which has the solution:

p1,2 = A12(x̄, ȳ, z̄, t̄)ez + α(x̄, ȳ, z̄, t̄)zez + β(x̄, ȳ, t̄)z2ez (A 31)
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where

α = −i
∂B11

∂x̄
− 1

2
∂2B10

∂ȳ2
− iB10

∂U

∂x̄

β = −1
2

∂2B10

∂x̄2

The first harmonic terms of third order of ε in the dynamic surface equation (A 4b)
are:

1
2
p12 − 1

2
B12 +

1
4
B20

∂p∗10
∂z

+
1
4
B∗10

∂p20

∂z
+

1
2
B10

∂p̄1

∂z

+
1
2
ζ
∂p10

∂z
+

1
16

B2
10

∂2p∗10
∂z2

+
1
8
|B10|2 ∂2p10

∂z2
= 0 at z = 0 (A32)

Using the results (A 8–A9, A 13, A 28–A28) from first and second order, and the solution
for p12 (A 31), gives:

A12 = B12 +
3
8
B2

10B
∗
10 −B10ζ at z = 0 (A33)

The first harmonic terms of third order of ε in the Euler equation and the kinematic
surface equation (A 2a–c, A 4a) are respectively:

1
2

∂u11

∂t̄
− i

2
u12 +

1
2

∂u10

∂x̄
U +

i
2
u11U +

1
2

∂u10

∂ȳ
V +

1
2
u10W +

1
2
u10

∂U

∂x̄
+

1
2
v10

∂U

∂ȳ

− i
4
u20u

∗
1,0 +

i
2
u∗10u20 +

1
4
w20

∂u∗10
∂z

+
1
4
w∗10

∂u20

∂z
= −1

2
∂p11

∂x̄
− i

2
p12 (A 34a)

1
2

∂v11

∂t̄
− i

2
v12 +

1
2

∂v10

∂x̄
U +

i
2
v11U +

1
2

∂v10

∂ȳ
V +

1
2
v10W +

1
2
u10

∂V

∂x̄
+

1
2
v10

∂V

∂ȳ

− i
4
u20v

∗
10 +

i
2
u∗10v20 +

1
4
w20

∂v∗10
∂z

+
1
4
w∗10

∂v20

∂z
= −1

2
∂p11

∂ȳ
(A 34b)

1
2

∂w11

∂t̄
− i

2
w12 +

1
2

∂w10

∂x̄
U +

i
2
w11U +

1
2

∂w10

∂ȳ
V +

1
2
w10W

− i
4
u20w

∗
10 +

i
2
u∗10w20 +

1
4
w20

∂w∗10
∂z

+
1
4
w∗10

∂w20

∂z
= −1

2
∂p12

∂z
(A 34c)

1
2

∂B11

∂t̄
− i

2
B12 − i

4
u20B

∗
10 +

i
2
u∗10B20 +

i
2
B11U

+
1
2

∂B10

∂x̄
U +

1
2

∂B10

∂ȳ
V +

i
8
B2

10

∂u∗10
∂z

=
1
2
w12 +

1
4
B20

∂w∗10
∂z

+
1
2
B∗10

∂w20

∂z
+

1
2
ζ
∂w10

∂z

+
1
16

B2
10

∂w∗10
∂z

+
1
8
|B10|2 ∂2w10

∂z2
at z = 0 (A 34d)

Combining these equations with the results (A 10, A 17–A18, A 21, A 28) from first and
second order, and the solution for p12 (A 31, A 33), gives:

0 =
∂B11

∂x̄
+ 2

∂B11

∂t̄
+ i

∂2B10

∂t̄2
− i

2
∂2B10

∂ȳ2
+ iB2

10B
∗
10

+2iB11U − 6
∂B10

∂t̄
U − 5iB10U

2 + 2
∂B10

∂ȳ
V + B10

∂U

∂x̄
(A 35)

which combined with (A 20) leads to the space evolution of the current modified cubic
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nonlinear Schrödinger equation, NLSC, (2.5) where B = B1 and the bars are dropped to
simplify the notation.

More on the derivation of the NLSC equation can be found in Hjelmervik & Trulsen
(2009).
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