View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by NORA - Norwegian Open Research Archives

University of Oslo
Department of Informatics

STAIRS case study:
The BuddySync
System

Ragnhild Kobro
Runde

Research Report 345
ISBN 82-7368-302-8
ISSN 0806-3036

January 2007

https://core.ac.uk/display/30828783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STAIRS case study: The BuddySync System

Ragnhild Kobro Runde

Abstract

This paper presents a case study evaluating the use of STAIRS when
specifying a system for connecting service providers and people requesting
those services. As part of the case study, we give an example of how
STAIRS may be used in combination with development methodologies
like e.g. RUP. We conclude that STAIRS seems a promising method for
working with UML 2.x interactions, and indicate some possible directions
for future research.

1 Introduction

STAIRS is a method for the compositional development of interactions in the
setting of UML 2.x [OMGO06|. The main motivation for STAIRS is

e understanding the meaning of the different advanced interaction operat-
ors in UML 2.x, and how these should be used in specifications using
interactions, and

e explaining how initial specifications in the form of interactions may be
refined into more complete descriptions of the system under development.

In order to achieve this, STAIRS provides a denotational trace semantics for
the main parts of UML 2.x interactions, as well as a set of refinement notions.

Previous papers on STAIRS ([HHRSO05a], [HHRS05b], [RHS05b], [RHS054]
and [RRS06]) have mainly been concerned with explaining STAIRS through
formal definitions. Although the papers contain various examples, these have
all been constructed for specific illustrative purposes. In [RHS06] we gave a
tutorial introduction to STAIRS, explaining the practical relevance of STAIRS
through pragmatical guidelines.

This paper presents an evaluation of STAIRS based on a thorough case
study performed by ourselves. From an informal description of a system, a
specification in the form of UML 2.x interactions is developed using our general
knowledge of STAIRS and in particular the guidelines from [RHS06]. This paper
presents mainly the resulting specifications, and should not be understood as
providing a complete documentation of the development process.

In this paper we have chosen to present only the case study, and not STAIRS
itself. For material on STAIRS we refer to the above mentioned papers, and
in particular [RHS06]. The remainder of this paper is structured as follows: In
Section 2 we present our evaluation criteria for STAIRS. In Section 3 we present
the BuddySync system, the subject of this case study. Section 4 presents the
development methodology used, and Sections 5-7 present the resulting UML
2.x interactions specifying the system. In Section 8 we evaluate STAIRS with

respect to the evaluation criteria, before giving some concluding remarks in
Section 9.

2 Evaluation criteria

In this section we list our evaluation criteria for STAIRS. The criteria are in-
spired by [KS03], a framework for understanding quality in conceptual model-
ling. For evaluating language quality, a distinction is made between criteria for
the concepts in the underlying basis, and criteria for the syntactic constructs
used to represent these concepts visually. Many of the criteria in [KS03| are
criteria that apply to UML in general, such as criteria regarding the size, solid-
ity and position of the various elements in UML 2.x interactions. These criteria
are not, relevant here, where we evaluate only what is STAIRS specific. For an
evaluation of UML in general, see e.g. [Kro05].

The criteria we have chosen for evaluating STAIRS are divided into three
categories as follows:

e Criteria for the conceptual basis of the language:

1. All relevant knowledge should be expressible.

2. The concepts should be general, limiting the total number of con-
cepts.

3. The concepts should be composable, so that related requirements
may be grouped together.

Both precise and vague knowledge should be expressible.
The concepts should be easily distinguished from each other.
A concept should mean the same thing every time it is used.

The concepts should allow flexibility in the level of detail.

®© N o oe

It should be possible to divide the models into natural parts, enabling
work division.

9. The most frequent kinds of requirements should be expressible in a
compact form.
e Criteria for the visual representation of the language:
10. The mapping from syntactic constructs to the underlying concepts
must be unambiguous.
11. The constructs should be easily distinguished from each other.
12. A construct should represent the same concept in all contexts.

13. The constructs should be composable, in order to support the group-
ing of related requirements.

14. Constructs without information should be avoided.
e Criteria with respect to refinement:

15. The refinement relations should be powerful enough to capture all
refinement steps made in practice.

16. The refinement relations should be general, limiting the total number
of relations.

17. The refinement relations should be easily distinguished from each
other.

18. It should be possible to refine the different parts of a specification
separately.

As pointed our in [KS03], deficiencies in the language may be addressed by
the methodology used. In our case, this means that we will also evaluate how the
guidelines given in [RHS06] help with e.g. distinguishing the different concepts,
constructs and refinement relations. For easy reference, these guidelines are
included in Appendix A.

3 Initial description of the BuddySync system

In this section we describe the BuddySync system, based on the text for a
mandatory assignment in the course INF-UIT at the University of Oslo autumn
2001. This has been chosen as the system for this case study for the following
reasons:

e It is a different kind of system than those used as examples in our previous
papers.

e Communication with different kinds of users is an essential part of the
system.

e The assignment was created for using sequence diagrams (i.e. interactions),
but not specifically tailored towards STAIRS (which did not exist at the
time).

e Being a course assignment, the size of the system is manageable.

The BuddySync system is a system that helps connecting people that need
a service with people that offer it. The idea is that users should be able to send
an SMS to the system, either offering a service or requesting one. The system
should then automatically match service requests and service offers. For some
services, the system may also forward requests to potential service providers.
Before requesting or offering a service, the user must be registered. Also, it
should be possible to remove service requests and offers.

An example of a BuddySync service is taking a taxi, described as follows:

e A taxi offers its service as soon as it becomes available, stating its geo-
graphical position.

e A passenger requests a taxi. Either he is automatically assigned to one
of the available taxis in his area, or he must wait for a taxi to become
available.

Some initial example scenarios for this service is described by the sequence
diagrams in Figures 1 and 2. In GetATaxi in Figure 1 the user requests a taxi (to
position upos), and the taxi offers its service (at position tpos). The use of par
indicates that either the user or taxi may initiate the interaction, or they may

sd GetATaxi J

:User :System ‘Taxi

| |

T T T
par) | requestTaxi(upos) | !
[1 \
| requestReceived | !
3 | |
} } offerTaxi(tpos) }
| I 1
! | offerReceived !
i i i
! ! fetchUser(upos) !
| I |
} serviceAgreed }
I 1
| |
| |

Figure 1: Example scenario for taxi service

sd RemoveTaxiRequesy

:User :System
I I

requestTaxi(upos)

requestReceived

removeRequest

requestRemoved

Figure 2: Example scenario for removing a taxi request

do so in parallel. After matching the request and the offer (implicitly comparing
upos and tpos), the system tells the taxi to pick up the user at upos, and the
taxi informs the user of its upcoming arrival.

In RemoveTaxiRequest in Figure 2, the user first requests a taxi, but then
he withdraws the request. This may happen for instance if it takes too long
before a taxi becomes available, and the user decides to go by the bus instead.

4 Development methodology

STAIRS is not intended to be a complete methodology for system development,
but should rather be seen as a supplement to existing methodologies such as
e.g. RUP [Kru04|. The purpose of this case study is to create a specification in
the form of UML 2.x interactions, in order to perform an evaluation of STAIRS.

As this is not a real project, there are no customers and no budget involved.
Also, there will be no actual implementation of the system. Hence, many parts
of RUP are not relevant for this case study although they would have been in a
real project for the same system.

Of the four main phases of RUP, the activities performed in this case study
fit in as parts of the elaboration phase, which is the phase where the majority
of the functional and non-functional requirements are specified. Each of the
main phases of RUP counsists of a sequence of iterations. RUP also defines nine
disciplines that cut across the iterations. The disciplines relevant in the setting
of this case study is the requirements discipline, where the goal is establishing an
agreement with the customers as to what the system should do, and the analysis
and design discipline, where the requirements are translated into a specification
of how the system should be implemented.

From the informal requirements in Section 3, we plan three iterations each
adding a few more features to the system (specification):

e Iteration 1: Requesting and offering services. This is the main function-
ality of the system, and a natural starting point. For this first iteration,
we assume that all users are registered, and leave the actual checking of
this to iteration 3.

e Iteration 2: Removing service requests and offers.

e Iteration 3: Subscribing and unsubscribing. First of all, this iteration
should add (un-)subscription mechanisms to the system. Also, subscrip-
tion checking should be added to the handling of service requests/offers
from iteration 1.

Each of the above iterations should consist of the following activities:
e Specify the required functionality from the perspective of a system user.
e Specify how the system should implement the required functionality.

e Check the resulting interactions with respect to the guidelines given in
[RHS06] for creating interactions (included here in Appendix A.1).

e Whenever there is more than one interaction specifying the same func-
tionality, check that they are in a refinement relationship according to the
guidelines in [RHS06] (Appendix A.2).

In a specification process such as the one described here, there will usually
be some degree of trial and error, where e.g. alternative designs are explored
and an increased understanding of the domain and the system to built results in
modifications of diagrams made earlier in the process. These parts of the case
study are not reported here, as we are mainly interested in the diagrams that
are correct descriptions of the BuddySync system and the relationships between
these diagrams.

5 Iteration 1: RequestService and OfferService

A general overview of the behaviours of the BuddySync system is given in Fig-
ure 3. All of the referenced interactions describe functionality that is required

sd Overview J

xalt

Iréf/ RequestService ref/ OfferService ref/ SubscribeService

ref/ RemoveRequest ref/ RemoveOffer ref/ UnsubscribeService

Figure 3: Overview of the BuddySync System

of the system. The decision with respect to which of the referenced interactions
will be performed in each of the iterations depends on the given user input.
Hence, the operator xalt is used according to the guidelines in Appendix A.1.1.
For simplicity, we assume that the system handles only one user input at the
time. For handling several users at the same time, the system should be able to
perform arbitrary many instances of Figure 3 in parallel.

As described in Section 4, we start by specifying the main functionality of
the system, that is how it supports the requesting and offering of services. As
the system should support a wide range of services, and the exact selection of
services may change over time, it is important that the specifications should be
generic with respect to service. For this first iteration, we assume that all users
are registered.

5.1 User requirements: RequestService

The composite diagram in Figure 4 gives the initial context for the BuddySync
System. As illustrated, the system interacts with two different users, a requester
and a provider, but these two never interact.

Figure 5 gives the initial specification of how a user interacts with the system
when requesting a service. First, the user sends a request to the system, stating
the requested service (e.g. taking a taxi) and detailed requirements (e.g. the
time and place). These details are not important for our case study, so we have
put them together in the parameter called service. As a reply to the request,
the user should get either an agree-message indicating that a matching service
provider has been found, or a message that the request is registered (waiting
for a matching provider). Checking with the guidelines in Appendix A.1.1,
we specify these alternatives using xalt as there is obviously some underlying

BuddySyncContext v.1

requester:User :System provider:User

Figure 4: Composite structure for the BuddySync System

sd RequestService)

requester:User :System

request(service)

xalt/

agreed(service)

requestRegistered

Figure 5: Request service — user view

condition in the system directing which one of these reply messages will be sent.

In Figure 6 we have added interaction with the provider (another user) to the
specification in Figure 5. For readability and maintainability the two alternative
system responses have been separated into the diagrams in Figures 7 and 8. If a
match is found, the provider is notified via a perform-message, while in the case
where the request is simply registered, the system may optionally also notify
a potential provider of the requested service. (If the provider then chooses to
offer the service, this should be treated as an ordinary service offer according
to the specifications in Section 5.2.) The opt-construct is a shorthand for an alt
between the given operand and the empty diagram (skip). Checking again with
the guidelines in Appendix A.1.1, using alt (and not xalt) is correct here, as this
is an instance of underspecification where we do not require both alternatives
to present in an implementation.

The requester and the provider may be seen as two different interfaces of the
system, of which Figure 5 only includes the requester while Figure 6 presents
both interfaces. Comparing these two figures, it is straightforward to see that
from the requester’s perspective, the behaviour is the same. The notion of
interfaces is not included in STAIRS. However, from the perspective of the
requester, Figure 6 may also be understood as a detailing refinement of Figure 5
as it gives more details about how the system handles the request. In the
terminology of Appendix A.2.3, this would then correspond to a decomposition
of the system, with the following lifeline mapping;:

ID[provider:User — :System)]

i.e. the identity mapping ID updated so that provider:User maps to :System.

sd RequestServicty

requester:User :System provider:User
I

request(service)

xalt/ }
\

ref

Match(service)

ref SaveRequest(service)

Figure 6: Request service — user view with provider

sd Match(service)/

requester:User :System provider:User
I

perform(service)

I I
| | |

I 1
| agreed(service) ! !
1 | |
| | |
| | |

Figure 7: Matching service requester and provider

sd SaveRequest(servicey

requester:User :System provider:User

requestRegistered

I I I
\ \ \
\ [\
| i i
} opt) } needed(service) }
| 1 1
| | |
\ \ \
1 1 1

Figure 8: Saving request

5.2 User requirement: OfferService

We now move on to specify how a user may offer his service via the BuddySync
system. The initial specification of how the user interacts with the system is
given in Figure 9. First, the user sends an offer to the system, giving the details
of the provided service as parameter. As a reply, the user should get either
a perform-message indicating that the system has found a matching service
request, or a message that the offer has been registered in the system. Again,

sd OfferService J

:System

provider:User

offer(service)

perform(service)

offerRegistered

Figure 9:

Offer service — user view

sd OfferService J

requester:User

provider:User

offer(service)

Match(service)

ref

SaveOffer(service)

Figure 10: Offer service — user view with requester

sd SaveOffer(servicey

requester:User
I

provider:User

offerRegistered

Figure 11: Saving offer

these alternatives are specified using xalt due to the underlying condition.

In Figure 10 interaction with the requester (another user) is added to the
specification in Figure 9. If a match is found, the requester is notified via an
agreed-message (in fact, here we reuse the specification of Match(service) in
Figure 7), while in the case that the offer is simply saved, no interaction with

the requester takes place as specified in Figure 11.

requester:User :Control provider:User

:MessageBoard

Figure 12: Revised composite structure diagram

Comparing Figures 10 and 9, it is again straightforward to see that from
the provider’s perspective the behaviour is the same, meaning that this may be
understood as a detailing refinement with lifeline mapping:

ID[requester:User — :System]

5.3 System specification: RequestService

After having specified the functionality from the perspective of the user(s),
we now turn to specifying how the system should implement this functionality.
The revised composite structure diagram in Figure 12 illustrates how the system
consist of two parts, a control and a messageboard. Only the control interacts
with the users of the system. The messageboard should maintain a list of
pending offers and a list of pending requests (not shown in the diagram).

In Figure 13, we take the specification of RequestService in Figure 6 and
expand the system into control and messageboard.! Similarly, Figure 16 is
an update of SaveRequest(service) in Figure 8. For the first xalt-operand in
Figure 6, however, the reference to Match(service) is in Figure 13 replaced
with a reference to MatchRequest(service) specified in Figure 14 (which again
references the updated version of Match(service) in Figure 15).

Constraints are added to the beginning of MatchRequest (Figure 14) and
SaveRequest (Figure 16), specifying the required conditions for performing each
of them. The constraint s & service takes into account that the match between
a service request and a service offer does not need to be exact, as long as it
is sufficiently similar. For instance, from its own position a taxi will usually
have to drive for a few minutes before picking up its customer. In the context
of Figure 13, the effect of the given constraints is exactly the same as if they
instead had been added in the form of guards to the xalt-construct. In general,
adding guards is a valid narrowing refinement according to Appendix A.2.2.

However, adding guards is not the only change introduced by the spe-
cifications in this section. With respect to Match(service) in Figure 7, Mat-
chRequest(service) in Figure 14 also adds an internal message between the
control and the messageboard, and an assignment on messageboard. As the

Tn UML 2.x, such a decomposition is usually given by using the ref construct in the header
of the system lifeline, and then giving the decomposition in a separate diagram. As STAIRS
do not cover extra global combined fragments, the same effect is obtained by expanding the
system lifelines directly in the diagram.

10

sd RequestServicty

requester:User :Control :MessageBoard provider:User
I I

request(service)

findOffer(service)

[
xalt/ }

ref

MatchRequest(service)

ref SaveRequest(service)

Figure 13: Request service — with control and messageboard

sd MatchRequest(servicey

requester:User :Control :MessageBoard provider:User
I I I

I
|

{ (provider,s) e ListOfOffers » s ~ service }
L

1 1 1	
} } ListOfOffers.remove(provider,s) }	
[| [

matchFound }
|
\

ref Match(service)

Figure 14: Matching service request with existing offer

communication with the users is the same, these changes constitute a detailing
refinement according to Appendix A.2.3, with the lifeline mapping:

ID[:Control — :System][:MessageBoard — :System|]

According to Appendix A.2.4, narrowing and detailing may be performed in a
single step, making Figure 14 a valid refinement of Figure 7.

Similarly, SaveRequest(service) in Figure 16 is a narrowing and detailing
refinement of Figure 8 with the same lifeline mapping. For Figure 13, we now
have that the operands of xalt are refined separately, giving a valid refinement
of the total xalt construct. As the only other change from the specification in
Figure 6 is the addition of a message between control and messageboard, we
have again a case of narrowing and detailing refinement with the same lifeline

11

sd Match(service) /

requester:User :Control :MessageBoard provider:User

perforrﬁ(service)
|

\ \ \
\ \ \
| | 1
\ [\
} agreed(service) } }
: : :
| | |

Figure 15: Matching service requester and provider — with control and mes-
sageboard

sd SaveRequest(servicey

requester:User :Control :MessageBoard provider:User
I I I I

| |
I { —((provider,s) e ListQfOffers » s ~ service) }
\

[ListOfRequests.add(requester,service)}

noMatch

opt)

|
|
|
|
|
|
|
!
requestRegistered }
|
|
;
|
:
|
|
|

i
|
|
|
|
1
needed(service)
:
|
|
|

Figure 16: Saving request — with control and messageboard

mapping as above.

5.4 System specification: OfferService

In Figure 17, the specification of OfferService in Figure 10 is changed to ac-
count for the new system structure in Figure 12. Similarly, Figure 19 is an
update of SaveOffer(service) in Figure 11. For the first xalt-operand in Fig-
ure 17, the earlier reference to Match(service) is replaced with a reference to
MatchOffer(service) specified in Figure 18.

We now see that MatchOffer(service) in Figure 18 is another narrowing and
detailing refinement of Match(service) in Figure 7 with the same lifeline mapping
as in Section 5.3. Similarly, Figure 19 is a general refinement of Figure 11, and
Figure 17 is a general refinement of Figure 10.

5.5 Finishing the iteration

Before ending the iteration, the resulting diagrams (Figures 13— 19) should be
checked against the guidelines for creating interactions given in Appendix A.1.

12

sd OfferService J

requester:User :Control :MessageBoard provider:User
I I I

offer(%ervice)

\ \
\ [
) T 1
| findRequest(service) | !
| | |
[[[[
xalt) } ! | }
ref MatchOffer(service) '
\ \ | \
1 1 1 1
ref
SaveOffer(service)

Figure 17: Offer service — with control and messageboard

sd MatchOffer(service))

requester:User :Control :MessageBoard provider:User

|
{ (requester,s) e ListOfRequests » s ~ service }
| |

\ \
\ \

\ \

| |

} } ListOfRequests.remove(requester,s)
\ \

\ \

\ \

\ \

| |

\ \

\
\

\

‘ :
matchFound } }
| |

\ |

ref Match(service)

Figure 18: Matching service offer with existing request

For the choice between alt and xalt, this has been checked each time one of
these was selected for use in the specifications. Concerning the guards (spe-
cified as constraints in Figures 14, 16, 18 and 19), the guidelines given in Ap-
pendix A.1.2 state that each guard should capture all possible situations for
which the described traces are positive. Obviously, MatchRequest and MatchOf-
fer may only be performed if there exists a corresponding offer, or request, at the
messageboard. However, a reasonable question is whether it should be possible
to do SaveRequest or SaveOffer also in the case of an existing match. After
some considerations, we conclude that it would not be directly wrong, but less
user-friendly and probably bad for business. Hence, the guards are left as they
are.

Finally, the guidelines on negation given in Appendix A.1.3 state that the

13

sd SaveOffer(servicey

requester:User :Control :MessageBoard provider:User

{{—((requester,s) ¢ ListOfRequests » s ~ service) } |
L

\
[ListOfOffers.add(provider,service) }

oﬁerRégistered
L

|
|
|
| |
| |
! ! noMatch ! !		
w		
L		
! ! !

Figure 19: Saving offer — with control and messageboard

sd Match(service) /

requester:User :Control :MessageBoard provider:User

T
par perform(service)

agreed(service)

Figure 20: Match(service) after guideline-checking

specification should include a reasonable set of negative traces. In our specifica-
tions so far, the only negative traces we have are the traces where the constraints
are false. This is clearly not sufficient. A simple way of adding negative traces
to the specification would be to use assert as the top-level operator for Request-
Service and OfferService. However, before doing so we must be certain that all
possible positive traces for these scenarios are described. We therefore consider
each (sub-)diagram separately, trying to identify more positive and negative
behaviours for that diagram.

For Match(service) in Figure 15, the order in which the system sends the
messages to the requester and the provider is not important, so we add the
par-operator as given in Figure 20. The same observation applies to Save-
Request(service) in Figure 16, where the new specification is given in Figure 21.
According to the guidelines in Appendix A.2.1, these changes are valid supple-
menting refinements as all of the original traces (positive and negative) are kept,
while new positive traces are added to the specifications.

For RequestService in Figure 13 and OfferService in Figure 17, it is quite
obvious that the two given alternatives are meant to be exclusive. For instance,
the alternative with MatchRequest should not be implemented with traces from
SaveRequest and vice versa. There are at least two ways of fixing this. One
possibility is to use assert on each operand (or on the specification as a whole).

14

sd SaveRequest(servicey

requester:User :Control :MessageBoard provider:User
I I I I

| |
| { ~((provider,s) ¢ ListOfOffers » s ~ service) }
|

[ListOfRequests.add(requester,service)}

noMatch

needed(service)

\
\
\
\
\
\
\
\
|
I
par J‘ requestRegistered }
) 1
| \
: 1
| opt)l
‘ i
| |
| T
| |
| |
| |
|

Figure 21: SaveRequest(service) after guideline-checking

However, we already know that the specifications are not complete, as we
intend to add subscription checking in a later iteration. Instead, we have chosen
to supplement the traces of one xalt operand as negative for the other operand,
as shown in Figures 22 and 23. In these specifications, alt is used in order to
specify positive traces in one operand and negative traces in another operand.
For the negation operator, refuse is used in accordance with the guidelines in
Appendix A.1.3.

To conclude this iteration, the specification now consists of the following

diagrams:
RequestService Figure 22
OfferService Figure 23

MatchRequest(service) Figure 14
MatchOffer (service) Figure 18

Match(service) Figure 20
SaveRequest(service) Figure 21
SaveOffer(service) Figure 19

6 Iteration 2: RemoveRequest and RemoveOffer

As described in Section 4, this iteration should specify support for removing
service requests and service offers.

6.1 User requirements: RemoveRequest

Figure 24 specifies how a user interacts with the system when removing a service
request. For the user, it is very important that the system really removes the
request when asked to do so, hence the guidelines in Section A.1.3 tells us to
use assert on this message.

15

sd RequestServicty
requester:User :Control :MessageBoard provider:User

I I I I
} request(service) } } }
f 1 | |
} | findOffer(service) | !
| | | |
[[[[
alt) : : :
[[[[
alt)| \ \ \
\ \ \ \

ref MatchRequest(service)
\ \ \ \
i i i i
| | |
refuse J | | |
| | |

ref SaveRequest(service)
I	[
alt)		

ref SaveRequest(service)
| | | |
refuse } } }
| | |

ref MatchRequest(service)
1 1 1 1

Figure 22: RequestService after guideline-checking

6.2 User requirements: RemoveOffer

Figure 25 specifies how a user interacts with the system when removing a service
request. The specification is symmetrical to RemoveRequest in Figure 24.

6.3 System specification: RemoveRequest

After having specified the functionality from the perspective of the user(s), we
now turn to specifying how this should be implemented by a system consisting
of a control and a messageboard as given in Figure 12.

Figure 26 gives the specification of how the system should handle request
removals. A difficult choice here, is deciding how much of the diagram should be

16

sd OfferService /
requester:User :Control :MessageBoard provider:User

I I I I
i } offer(s?rwce) }
) T 1
! | findRequest(service) | !
| | | |
[[[[
alt) | : : :
[[[[
alt)i [[\
\ \ \ \

ref MatchOffer(service)
\ \ \ \
i i i i
| | |
refuse J | | |
| | |

ref SaveOffer(service)
I	[
alt)		

ref SaveOffer(service)
| | | |
refuse } } }
| | |

ref MatchOffer(service)
1 1 1 1

Figure 23: OfferService after guideline-checking

covered by the assert operator. It is not obvious that the one message from con-
trol to messageboard together with the assignment on messageboard is the only
possible way for the system to handle the removal. For instance, an acknowledg-
ment message back from messageboard to control is now forbidden. However, it
is important for us to require that the remove-assignment is actually performed,
and the simplest way of doing that is using assert as shown.

As before, comparing the specification in Figure 26 with the original spe-
cification if Figure 24, it should be fairly straightforward to see that the user
interaction is the same. According to Appendix A.2.3, Figure 26 is then a
detailing refinement of Figure 24 with the lifeline mapping:

ID[:Control — :System][:MessageBoard +— :System|]

17

sd RemoveRequesQ

requester:User

:System

removeRequest(service)
[

assert J
I requestRemoved

Figure 24: Remove request — user view

sd RemoveOffer J

:System

provider:User

I
\
\ .
| removeOffer(service)
|

Figure 25: Remove offer — user view

sd RemoveRequesQ

requester:User

‘ N
removeRequest(service) |
[J

:Control

:MessageBoard

I

\

\

\

\

\

t t
removeReq(requester,service)
i ‘

\

requestRemoved

{ListOfRequests.remove(requester,service)}

Figure 26: Remove request — with control and messageboard

18

sd RemoveOffer J

:Control :MessageBoard provider:User

\ \
\ .
| removeoﬁfer(servme)
\ |
[

|
assert J !

|

|

|

|

|

removeOff(provider,service)

[ListOfOffers.remove(provider,service) }

offerR:emoved

Figure 27: Remove offer — with control and messageboard

6.4 System specification: RemoveOffer

Figure 27 gives the specification of how the system should handle offer removals.
Again, this is symmetrical to the specification of RemoveRequest in Figure 26.
As the user interaction is the same, Appendix A.2.3 gives that Figure 27 is a
detailing refinement of Figure 25 with the lifeline mapping:

ID[:Control — :System][:MessageBoard — :System|]

6.5 Finishing the iteration

Before ending the iteration, the resulting diagrams (Figures 26 and 27) should be
checked against the guidelines for creating interactions given in Appendix A.1.
These specifications contain no alternatives or guards, meaning that the guidelines
in Appendices A.1.1 and A.1.2 are not relevant. According to the guidelines in
Appendix A.1.3, the specification should include a reasonable set of negative
traces in order to effectively constrain an implementation of the system. In the
interactions in Figures 26 and 27 this is ensured by the use of assert. As a
conclusion, we leave these interactions as they are.

Also, no changes have been made to the system that affects the specifications
from the previous iteration.

7 Iteration 3: SubscribeService and Unsubscribe-
Service

As described in Section 4, in this final iteration we should add subscription and
unsubscription mechanisms to the system. First, we decide that the subscription

should apply to a single service only, and not to the complete system. This
facilitates the same user being subscribed as a requester of one service, and

19

sd SubscribeServicty

:User :System
I I

|
subscribe(isProvider,service) }
|
|

xalt J [isProvider]
addedAsProvider(service) }

\
|

| [—isProvider]
addedAsRequester(service) ‘
1
[
|
|

Figure 28: Subscribe service — user view

sd UnsubscribeServicQ

:User :System
I I

\
\ . .

| unsubscribe(service)
\

[

|
|

|

|

!

assert J !
unsubscribed }

\

|

|

Figure 29: Unsubscribe service — user view

as a provider of another service. Also, there are cases where the user may be
subscribed as both requester and provider of the same service.

7.1 User requirements: SubscribeService

Figure 28 specifies how subscription may look from the perspective of the user.
Here, isProvider is a boolean flag indicating whether this is a subscription as a
provider or as a requester (if the flag is false). If the subscription is as a provider,
the user should get the message addedAsProvider as a receipt, if the subscription
is as a requester the receipt message should be addedAsRequester. As these
are alternatives with conditions, xalt are used according to the guidelines in
Appendix A.1.1.

7.2 User requirements: UnsubscribeService

Figure 29 specifies unsubscription from the perspective of the user. As un-
subscription should always be possible, assert is used on the receipt message
unsubscribed back from the system to the user.

20

BuddySyncContext v.3

requester:User :Control provider:User

AN

:MessageBoard :MemberList

Figure 30: Revised composite structure diagram

7.3 System specification: SubscribeService

Again, we turn to how the system should implement the required functionality.
To handle subscriptions, we add a new component MemberList to the system
as illustrated by the composite structure diagram in Figure 30. MemberList
should maintain a list of service providers and a list of service requesters (not
shown in the diagram).

Figure 31 specifies how SubscribeService in Figure 28 should be implemented
by the system. The messageboard is not relevant for subscriptions, but the
control and memberlist are. As before, we have that the communication with
the user stays the same, meaning that Figure 31 is a detailing refinement with
the lifeline mapping:

ID[:Control + :System|[:MemberList — :System)]

7.4 System specification: UnsubscribeService

Figure 32 specifies how UnsubscribeService in Figure 29 should be implemented
by the system. Again, Appendix A.2.3 gives that this is a detailing refinement
with the same lifeline mapping as in Section 7.3.

7.5 System specification: RequestService updated

As noted in Section 4, the specification of RequestService should be updated
so that only subscribed users may request services. This is achieved by the
specification in Figure 33.

Compared to the previous specification in Figure 22, messages are added
between Control and MemberList in order to check for subscription. As a result
of this checking, the specification includes a new alternative where the mes-
sage notSubscribed is sent to the requester. This alternative is also specified
with xalt according to the guidelines in Appendix A.1.1, as it should be the
alternative when the necessary subscription is not found. Finally, the alt-+refuse
constructs used in Figure 22 are removed, and an assert is added to the complete
specification.

We now have to check that Figure 33 is a valid refinement of Figure 22. First
of all, we note that it will have to be a detailing refinement, with the lifeline

21

sd SubscribeServic(y

user:User :Control :MemberList
I I

subscribe(isProvider,service)

add(user,isProvider,service)

xalt J

[isPrdvider]

[ProviderList.add(user,service)}

ok

addedAsProvider(service)

[ﬂisPrﬁ‘Jvider]

[RequesterList.add(user,service)}

ok

addedAsRequester(service)

Figure 31: Subscribe service — with control and memberlist

sd UnsubscribeService)

user:User :Control :MemberList
I I

unsubscribe(service)

remove(user,service)

assert J

[ProviderList.remove(user,service)}

[RequesterList.remove(user,service)}

ok

unsubscribed

Figure 32: Unsubscribe service — with control and memberlist

22

sd RequestService J

1
|
|
< |
|
|
|

subscriptionFound

requester:User :Control ‘ ‘ :MessageBoard ‘ ‘:MemberList ‘ provider:User
T T T T T
! request(service) ! ! !
=
‘ ‘ 1 1
assert } checkSubscription(requester,service) }
— | 1 1
xalt) | | [(requester,service) ¢ RequesterList]
} } subscriptionNotFound
| r
I notSubscribed |
|
|
|
|
|
|
|
|

|
|
1
|
|
[else]
|
|
|
|
|
;
|
|
|

findOffer(service) |
_
‘ T 1
xalt J | |
| |
| | |
ref MatchRequest(service)
l l i l l
1 1 1 1 1
ref SaveRequest(service)

Figure 33: Request service — with subscription checking

mapping:
ID[:MemberList — :Control]

A standard way of checking for refinement is to separately take each xalt-
operand of the original diagram, and find a refining xalt-operand in the new
diagram.

The first xalt-operand in Figure 22 corresponds to a scenario that starts
with the messages request(service) and findOffer(service), and then performs
MatchRequest(service) and not SaveRequest(service). This scenario is found in
Figure 33 by choosing the second operand of the outer xalt, and then the first
operand of the inner xalt. Here, SaveRequest is not explicitly negative, but its
traces still become negative due to the outer assert. As all original positive and
negative traces are kept, according to the guidelines in Appendix A.2.1 this is a
valid supplementing refinement where the assert construct adds more negative
traces to the specification.

Similarly, the second xalt-operand in Figure 22 is found in Figure 33 by
choosing the second operand of both xalt’s, making this another instance of
supplementing refinement.

Finally, we notice that Figure 33 also adds a new xalt-alternative to the
specification, which is a valid refinement step.

To conclude, Figure 33 is a valid general refinement of Figure 22 combining
supplementing and detailing. This is also a limited refinement, as the first
xalt-operand in Figure 33 specifies behaviour that is inconclusive in Figure 22.

23

sd OfferService J

‘requester:User‘ ‘ :Control ‘ ‘ :MessageBoard

:MemberList ‘ provider:User
T T T T T

offer(service)

B

|
|
|
checkSubscription(provider,service)
|
xalt |

[(provider,service) ¢ ProviderList]
subscriptionNotFound

|
|
T 1
| notSubscribed |
1 1
subscriptionFound [else]
| |
| |
findRequest(service) } }
=
Il Il 1
xalt | | |
i 1 1 |
ref MatchOffer(service)
I I I I I
ref
SaveOffer(service)

Figure 34: Offer service — with subscription checking

7.6 System specification: OfferService updated

Also OfferService must be updated with subscription checking. This is done in
Figure 34. With an argument similar to the one performed for RequestService
in the previous section, we may conclude that Figure 34 is a valid general re-
finement of Figure 23 combining supplementing and detailing. It is also a valid
limited refinement.

7.7 Finishing the iteration

Before ending this iteration, the last one, we take a final check that the resulting
diagrams (Figures 31, 32, 33 and 34) are as recommended by the guidelines in
Appendix A.1.

For the choice between alt and xalt, this has been checked each time one
of these has been used in the specifications. Concerning the guards in Fig-
ure 31 these are obviously sufficiently covering as required by the guidelines in
Appendix A.1.2. Adding a user as provider should only be performed if the
isProvider flag is true, and adding him as a requester should only be performed
if the flag is false. For the guards in Figures 33 and 34, these are also correct
as the error message notSubscribed should be a result only if the user is not
subscribed to the service, and continuing to handle the request or offer should
be done only if the user is subscribed.

With respect to negation (Appendix A.1.3), Figures 32, 33 and 34 all contain
assert, meaning that the specification also includes a number of negative traces
as recommended. Figure 31 contains some negative traces (the traces with a

24

false guard), but we could consider adding an assert here as well. For simplicity,
the resulting diagram is not shown here as it is not important for the case study.

8 Discussion

8.1 Validating the specification

In this section we validate the final specification with respect to the initial
example scenarios given in Section 3. As the interactions in Figures 1 and 2
do not contain any negative behaviours, every possible interaction will be a
valid general refinement of these two. For validating that our specification is
in accordance with the intention behind Figures 1 and 2, we must instead use
informal reasoning.

In Figure 2, the user first requests a taxi, and then removes the request
again. Taking the message requestTaxi(upos) as an instance of the generic mes-
sage request(service), requestReceived as requestRegistered and removeRequest
as removeRequest(service), the given sequence may be found in the specifica-
tion by first performing RequestService as specified in Figure 33, choosing the
alternative with SaveRequest, and then performing RemoveRequest as specified
in Figure 26.

In Figure 1, a user requests a taxi in parallel (or sequence) with a taxi offering
its service, after which the system notifies both parts. Even with the natural
translation of the messages, this scenario is not found as positive (but rather
as negative due to the use of assert) in our final specification. The reason for
this is that if the user’s request comes first, this will already be registered when
the offer from the taxi arrives, meaning that according to our specification the
taxi does not need a receipt-message. Instead he is immediately notified with a
message to actually perform the service. This means that although the original
scenario is not explicitly covered, the combination of RequestService (Figure 33)
and OfferService (Figure 34) results in a scenario that fulfils the same purpose
as the one intended in Figure 1, and we may conclude that the final specification
is in accordance with the initial example scenarios.

8.2 Evaluating STAIRS

In this section we evaluate STAIRS with respect to the evaluation criteria in
Section 2, based on the specification of the BuddySync system as presented in
Sections 5-7.

1. All relevant knowledge should be expressible.

For the BuddySync system, we have encountered no problems expressing
the desired functional requirements. In Section 3, it is suggested that the
communication between the system and its users is performed via SMS.
This is not described in the interactions, but could have been included by
e.g. using the name UserMobile instead of User for the requester and the
provider lifelines.

2. The concepts should be general.

25

All concepts used are general in the sense that they are not tailored to-
wards this particular application, but may be used to capture a number
of different requirements.

. The concepts should be composable.

Using the various compositions operators (in particular opt (alt), xalt,
refuse and assert), it has been easy to group alternative positive behaviours
for the same system functionality, and also to specify the related negative
behaviours together with the positive behaviours.

. Both precise and vague knowledge should be expressible.

In this case study, vague knowledge has primarily been expressed using
abstraction, i.e. by not describing system details that are irrelevant or
not known. For instance, it is not described how the messageboard and
memberlist maintain their lists or the exact nature of these lists (sets,
unordered/ordered sequences, ...).

Another way to describe vague knowledge in STAIRS is using underspe-
cification (i.e. alt), describing possible alternative behaviours for the sys-
tem.

. The concepts should be easily distinguished from each other.

STAIRS includes two operators, alt and xalt, for describing alternative
behaviours. Using the guidelines in Appendix A.1.1, it has been easy to
decide which one of these to use in each particular situation.

We also have three operators, assert, refuse and veto, for describing negat-
ive behaviours. The difference between assert and the two others are obvi-
ous, but there is only a small difference between refuse and veto. However,
using the guidelines in Appendix A.1.3, it has been easy to select between
them.

In the specification of e.g. RequestService in Figure 13, the constraints in
the referenced interactions MatchRequest(service) (Figure 14) and Save-
Request(service) (Figure 16) are interpreted as guards. From this, it fol-
lows that the distinction between constraints and guards is not obvious.
Also, the similarities and differences between these two concepts are not
covered by any of the guidelines in Appendix A.

. A concept should mean the same thing every time it is used.

The meaning of each concept is independent of the context in which it is
used. As can be seen from the guidelines in Section A.1.1, xalt may be
used in different situations, but the underlying semantics is always that
all alternatives must be reflected in the final implementation.

. The concepts should allow flexibility in the level of detail.

Our different specifications of the same functionality (e.g. Figures 5, 6,
13, 22 and 33 of RequestService) demonstrates that the constructs are
suitable for creating interactions with a varying degree of detail.

. It should be possible to divide the models into natural parts.

26

10.

11.

12.

13.

14.

15.

In the specification of the BuddySync system, one interaction was created
for each main part of the functionality. In addition, sub-interactions were
created wherever natural in order to increase readability and the possib-
ility of reuse.

. The most frequent kinds of requirements should be expressible

in a compact form.

The use of xalt-alt-refuse together with ref as illustrated in Figures 22
and 23, is a common pattern in STAIRS specifications, specifying that
the positive behaviours of the first xalt-operand should be negative for the
second xalt-operand and vice versa. This combination of operators is not
at all compact, and adding a new high-level operator for this use should
be considered in future work on STAIRS.

Apart from this, we find that all requirements are expressed fairly com-
pact.

The mapping from syntactic constructs to the underlying con-
cepts must be unambiguous.

In STAIRS, there is a one-to-one mapping between the main concepts and
the syntactic constructs used to express these.

The constructs should be easily distinguished from each other.

STAIRS does mainly use the syntax of UML 2.x interactions, which are
not part of what is being evaluated here. The STAIRS operators refuse
and veto are easily distinguished syntactically. The STAIRS operators alt
and xalt are more similar, but we have never experienced any problems
with these either. The ’'x’ in xalt makes the difference between xalt and
alt clearly visible.

A construct should represent the same concept in all contexts.
This follows from the one-to-one mapping between constructs and con-
cepts.

The constructs should be composable.

All of the advanced interaction operators of UML 2.x are composable in
the sense that they may be nested to an arbitrary depth. The same applies
to the specific STAIRS operators.

Constructs without any information should be avoided.

In the specification of the BuddySync system, none of the interactions
contain any informationless construct.

In general, it would probably be easy to make constructs without any
information if that was the aim. However, using common UML techniques
and the guidelines in Appendix A, we believe that all resulting constructs
will provide meaningful information.

The refinement relations should be powerful enough to capture
all refinement steps made in practice.

For the BuddySync system, all interactions specifying the same function-
ality could be related using the notion of refinement. With respect to

27

16.

17.

18.

the relation between e.g. Figures 5 and 6, this may be seen as a detailing
refinement. However, the guidelines in Appendix A.2.3 associate detailing
with decomposition, which is a term that intuitively does not fit very well
with respect to these two figures. A possible solution to this could be to
extend the guidelines in order to capture that detailing may mean more
than just decomposition.

The refinement relations should be general.

All refinement relations used are general in the sense that they are not
defined for this particular application, but may be used for a number of
different specifications.

The refinement relations should be easily distinguished from
each other.

Using the guidelines in Appendix A.2; it is easy to distinguish between
supplementing, narrowing and detailing. As demonstrated by the Buddy-
Sync specifications, most refinement are a combination of these, and it is
easy to find out which of the refinement relations that explains each of the
changes in the interactions.

However, the distinction between general and limited refinement is not
clear from the guidelines, which gives no help for e.g. finding out whether
OfferService in Figure 34 is a limited refinement of OfferService in Fig-
ure 23 or not.

It should be possible to refine the different parts of a specification
separately.

Separate refinement is possible due to the monotonicity results in previous
papers on STAIRS, and we have used this for refining the different system
functionality separately, and also for performing separate refinement of
sub-interactions such as e.g. SaveRequest(service) (Figures 8, 16 and 21)
and SaveOffer(service) (Figures 11 and 19).

However, this is not explicitly covered by the guidelines in Appendix A.2.
For relating the specifications of RequestService in Figures 22 and 33, we
used that for general refinement we may take each xalt-operand of the
original diagram and find a refining xalt-operand in the second diagram.
This is also not covered by the guidelines. Implicitly, we also used the fact
that with general refinement, new xalt-operands may be added freely to
the specifications.

The main difficulty we encountered during the specification of the Buddy-
Sync system, was how and when to use assert. For instance, it was not clear if
it could be used in the specifications of RequestService and OfferService in Fig-
ures 22 and 23. Also, it was difficult to decide on how much should be covered
by assert in Figures 26, 27 and 32.

9 Conclusions

The presented case study has demonstrated the usefulness of the STAIRS method.
As argued in Section 8.2, most of the evaluation criteria from Section 8.2 have

28

been met. In particular, the guidelines given in [RHS06| proved to be very use-
ful, but they did not cover everything needed for the specifications in this case
study. In particular, the following guidelines would have been useful:

e General refinement: Except from the operands of assert, all operands in
an interaction may be refined separately.

e General refinement: With general refinement, all xalt-operands of the ori-
ginal interaction must be reflected in the refinement, but new xalt-operands
may be added freely.

e Limited refinement: With limited refinement, new xalt-operands may be
added to the interaction only if the specified behaviour is a refinement
of some behaviour specified in the original interaction. In particular, be-
haviour that is not described by the original interaction (i.e. inconclusive
behaviour) may be added in the new xalt-operands.

We have also identified the need for more guidelines with respect to con-
straints and guards, and the use of assert. As it is not obvious what the neces-
sary guidelines are, we leave the formulation of these to future work. Also, a
natural next step for future research on STAIRS would be to use it in a real
world project where an actual implementation is created.

Acknowledgements

We thank Oystein Haugen and Ketil Stglen for useful feedback on previous
versions of this paper.

References

[HHRS05a]

[HHRSO05b)

[Kro05]

[Kru04]

[KS03]

[OMGO6]

Oystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and
Ketil Stglen. STAIRS towards formal design with sequence dia-
grams. Journal of Software and Systems Modeling, 22(4):349-458,
2005.

Oystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and
Ketil Stglen. Why timed sequence diagrams require three-event se-
mantics. In Scenarios: Models, Transformations and Tools, volume
3466 of LNCS, pages 1-25. Springer, 2005.

John Krogstie. Quality of UML. In Encyclopedia of Information
Science and Technology (IV), pages 2387-2391. Idea Group, 2005.

Philippe Kruchten. The Rational Unified Process: An Introduction.
Addison-Wesley, third edition, 2004.

John Krogstie and Arne Sglvberg. Information Systems Engineer-
ing: Conceptual Modeling in a Quality Perspective. Kompendiefor-
laget, Trondheim, Norway, 2003.

Object Management Group. UML 2.1 Superstructure Specification,
document: ptc/06-04-02 edition, 2006.

29

[RHS05a]

[RHS05b)|

[RES06]

[RRS06]

Ragnhild Kobro Runde, Qystein Haugen, and Ketil Stglen. How
to transform UML neg into a useful construct. In Norsk Inform-
atikkonferanse NIK’2005, pages 55-66. Tapir, 2005.

Ragnhild Kobro Runde, @ystein Haugen, and Ketil Stglen. Refin-
ing UML interactions with underspecification and nondeterminism.
Nordic Journal of Computing, 12(2):157-188, 2005.

Ragnhild Kobro Runde, @Qystein Haugen, and Ketil Stglen. The
pragmatics of STAIRS. In Proc. 4th Int. Symposium on Formal
Methods for Components and Objects (FMCO’05), volume 4111 of
LNCS, pages 88-114. Springer, 2006.

Atle Refsdal, Ragnhild Kobro Runde, and Ketil Stglen. Under-
specification, inherent nondeterminism and probability in sequence
diagrams. In Proc. Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS 2006), volume 4037 of LNCS, pages
138-155. Springer, 2006.

30

A Guidelines from “The Pragmatics of STAIRS”

For easy reference, this appendix includes the guidelines given in [RHS06].

A.1 The pragmatics of creating interations
A.1.1 The pragmatics of alt vs xalt
e Use alt to specify alternatives that represent similar traces, i.e. to model
— underspecification.

e Use xalt to specify alternatives that must all be present in an implement-
ation, i.e. to model

— inherent nondeterminism, as in the specification of a coin toss.

— alternative traces due to different inputs that the system must be
able to handle;

— alternative traces where the conditions for these being positive are
abstracted away.
A.1.2 The pragmatics of guards

e Use guards in an alt/xalt-construct to constrain the situations in which
the different alternatives are positive.

e Always make sure that for each alternative, the guard is sufficiently general
to capture all possible situations in which the described traces are positive.

e In an alt-construct, make sure that the guards are exhaustive. If doing
nothing is valid, specify this by using the empty diagram, skip.
A.1.3 The pragmatics of negation

e To effectively constrain the implementation, the specification should in-
clude a reasonable set of negative traces.

e Use refuse when specifying that one of the alternatives in an alt-construct
represents negative traces.

e Use veto when the empty trace (i.e. doing nothing) should be positive, as
when specifying a negative message in an otherwise positive scenario.

e Use assert on an interaction fragment when all possible positive traces for
that fragment have been described.

A.2 The pragmatics of refining interaction
A.2.1 The pragmatics of supplementing
e Use supplementing to add positive or negative traces to the specification.

e When supplementing, all of the original positive traces must remain pos-
itive and all of the original negative traces must remain negative.

e Do not use supplementing on the operand of an assert.

31

A.2.2 The pragmatics of narrowing

e Use narrowing to remove underspecification by redefining positive traces
as negative.

e In cases of narrowing, all of the original negative traces must remain neg-
ative.

e Guards may be added to an alt-construct as a legal narrowing step.
e Guards may be added to an xalt-construct as a legal narrowing step.
e Guards may be narrowed, i.e. the refined condition must imply the original
one.
A.2.3 The pragmatics of detailing

e Use detailing to increase the level of granularity of the specification by
decomposing lifelines.

e When detailing, document the decomposition by creating a mapping L from
the concrete to the abstract lifelines.

e When detailing, make sure that the refined traces are equal to the original
ones when abstracting away internal communication and taking the lifeline
mapping into account.

A.2.4 The pragmatics of general refinement

e Use general refinement to perform a combination of supplementing, nar-
rowing and detailing in a single step.

e To define that a particular trace must be present in an implementation
use xalt and assert to characterize an obligation with this trace as the only
positive one and all other traces as negative.

A.2.5 The pragmatics of limited refinement

e Use assert and switch to limited refinement in order to avoid fundamentally
new traces being added to the specification.

e To specify globally negative traces, define these as negative in all operands
of xalt, and switch to limited refinement.

32

