
UNIVERSITY OF OSLO
Department of informatics

Semantic Model
Annotation Tool

Master thesis

Odd Christer Brovig

01.08.2008

Acknowledgements

Thanks to my family and friends that have supported me through the process
of getting this thesis done.

My gratitude goes toward Ismar and Trine who has had to suffer my rants,
frustrations and outright nonsense on numerous occasions.

A special thanks to supervisor Arne-Jørgen Berre and Brian Elvesæter for
fruitful discussions, tips and help during the process.

I would also like to thank to all the other people at SINTEF that have been
helpful and accommodating.

Odd Christer Brovig
Oslo, 1. august 2008.

Abstract

Model driven interoperability is a research field that has gotten a lot of at-
tention and money. Several research projects over the past years such as
ATHENA, SWING and MODELWARE have sought to bring solutions to
this field. The latest efforts involve the use of formal semantic descriptions
to ease the interoperability task. Recent technologies on a lower level, such
as SAWSDL has also presented new opportunities in the field. This thesis
proposes to elevate the annotation to the platform independent level (PIM),
complying with the Model Driven Architecture (MDA) vision of the MDE
paradigm. Doing the annotation at this level will enable us to specify map-
pings to and from the ontology. Further this will enable us to generate
specific mappings between PIMs that are annotated by, and mapped to, the
ontology.

Benefits are many, especially in the fields of model integration, validation,
constraint checking and the creation of a common vocabulary that the an-
notated models adhere to. The latter is especially an important property
in a world that sees more distributed software development, where domain
experts and developers often find themselves at the opposite sides of the
world.

This thesis puts a focus on the integration aspect and shows how a annotated
model can be transformed to another representation using the annotations
and its definitions of the lifting and lowering operations. The thesis aim is
to show that these annotations are feasible and represents added value in
the context of MDA software development. We propose, and construct, a
specific tool to handle annotation, mapping and validation of models and
ontologies. They are annotated through a metamodel that support relations
between both. This tool is based on the Eclipse platform, and is extensible
with regard to future transformation technologies.

The proposal is evaluated in the context of a specific case that presents two
domain models rooted in a buyer/seller context. These models are expressed
as UML class diagrams. A reference ontology that is the equivalent of one of
the UML models represents the common vocabulary that we want to connect
the models to. We then evaluate the solution in the light of this and show
that semantic annotation of models is possible and could provide assistance
and concrete solutions to many problems that face developers.

CONTENTS

1 Introduction 9

1.1 Thesis background . 9

1.1.1 Model Driven Engineering 9

Model Driven Architecture 10

Architecture-Driven Modernization 13

1.1.2 The Semantic Web . 14

Ontologies . 16

Resource Description Framework 18

Ontology Web Language 20

1.1.3 MDE and ontologies 20

Ontology Driven Architecture 20

1.2 Methodology . 22

1.2.1 Literature reviews . 23

1.2.2 Implementation . 23

1.3 Thesis overview . 23

2 Problem definition 25

2.1 Interoperability and its challenges 25

2.1.1 Introduction . 25

2.1.2 Information interoperability 26

2.1.3 Interoperability between systems 28

3

2.1.4 MDA and semantics 30

2.2 Evaluation cases . 32

2.2.1 Domain model with UML class diagrams 32

Evaluation case design 32

2.3 Solution requirements . 38

2.3.1 Shared model driven vocabulary 38

2.3.2 Visual tooling for vocabulary development 38

2.3.3 Horizontal mappings between models 38

2.3.4 Vertical mappings to PSM/Code level 39

2.3.5 Open implementation environment 39

2.3.6 Extensible implementation 39

2.3.7 Requirements summarization 39

2.4 Execution of evaluation . 40

2.4.1 Annotate the class diagrams with concepts 40

2.4.2 Identify semantic mismatches 40

2.4.3 Resolve mismatches with mappings 41

2.4.4 Generate a reconciled class diagram from mappings . . 41

3 Evaluation of existing solutions 42

3.1 Existing platforms and projects 42

3.1.1 ModelCVS . 42

3.1.2 ATHENA Project . 45

3.2 Standards and solutions . 46

3.2.1 UML . 46

UML Class diagrams 46

3.2.2 ODM . 47

3.2.3 SAWSDL . 48

3.3 Discussion and Evaluation . 52

3.3.1 Discussion . 53

3.3.2 Evaluation according to solution requirements 54

4

4 SMAT proposal 55

4.1 Vision . 55

4.2 Architecture . 56

4.2.1 Eclipse Platform . 56

Eclipse and OSGi . 56

4.2.2 Architecture description 58

4.2.3 Ontology integration strategies 61

4.2.4 Annotation process . 62

Usage patterns . 62

Overall process . 63

4.3 Design . 64

4.3.1 Eclipse frameworks . 64

EMF . 64

GMF . 65

UML2 and UML2 Tools 67

4.3.2 ODM implementation 67

4.3.3 ODM editor . 68

4.3.4 Semantic Annotation Model 69

SAM metamodel . 70

Annotation Scheme . 70

Mapping operations . 72

Transformation scheme 72

Metamodel structure 73

4.3.5 SAM editor . 82

Supporting automatic detection of mappings 82

4.3.6 SAM Mapping Service 82

4.4 Realization of SMAT with EMF and GMF 83

4.4.1 SMAT and the Eclipse Modeling Framework 83

4.4.2 SMAT and the Graphical Modeling Framework 84

ODM editor realization 84

SAM editor realization 84

4.4.3 Proposal summary . 85

5

5 SMAT applied 86

5.1 Buyer/Seller evaluation case 86

5.1.1 Annotation and mapping from model A to ontology . . 86

5.1.2 Annotation and mapping from model B to ontology . . 87

5.1.3 Execution of mappings between A, B and ontology . . 88

5.2 Discussion . 89

6 Evaluation of SMAT 90

6.1 Evaluation of criterions . 90

6.1.1 Shared model driven vocabulary 90

6.1.2 Visual tool for vocabulary development 90

6.1.3 Horizontal mappings between models 91

6.1.4 Vertical mappings to PSM/Code level 91

6.1.5 Open implementation environment 91

6.1.6 Extensible implementation 91

6.2 Summary . 91

7 Conclusion and future work 93

7.1 Conclusion . 93

7.1.1 Shortcomings . 94

7.2 Future work . 95

7.2.1 Annotation and ontology repository 95

7.2.2 Automatic model matching in the repository 96

7.2.3 Extensible validation 96

7.2.4 Relations between specific regions in transformations and models 96

7.2.5 Expanding the tool to support source code 97

7.2.6 Extending the ODM editor 97

7.2.7 Extending the mapping language 97

A Retrieving SMAT Concept Models 102

6

LIST OF TABLES

1.1 MDA model levels . 10

2.1 Main requirements . 39

3.1 Evaluation of solutions . 54

4.1 Usage patterns . 62

6.1 Main requirements fulfillment score table 92

7

LIST OF FIGURES

1.1 ADM Transformation horseshoe 14

1.2 Weak to strong semantics . 16

1.3 What is an Ontology . 18

2.1 Enterprise Service Bus Integration Architecture Illustration . . 28

2.2 Buyer/Seller UML class diagram, example A 34

2.3 Buyer/Seller UML class diagram, example B 35

2.4 Buyer/Seller ontology example 36

3.1 ModelCVS Overview . 43

4.1 Overall SMAT Annotation Architecture 60

4.2 General SMAT usage process 63

4.3 GMF Dashboard . 67

4.4 Example concept map . 68

4.5 SAM core annotation structure 74

4.6 SAM core extended . 75

4.7 SAM core mapping structure 77

4.8 SAM core mapping structure with datatypes 79

4.9 SAM mapping language . 80

8

CHAPTER

ONE

INTRODUCTION

This chapter provides the background for the thesis and introduces some of
the concepts the thesis will be revolving around.

1.1 Thesis background

This thesis’ theoretical foundation is in the domain of Model Driven Engi-
neering and the Semantic Web. The subsequent sections will provide a brief
introduction to each topic.

1.1.1 Model Driven Engineering

The Model Driven Engineering paradigm is not new, and has been around
in various forms for the last 20+ years. The 80’s offered CASE, Computer-
aided Software Engineering, and over the last years, the hype has been so-
called Domain Specific Languages. Although the means and challenges have
changed, the goals are still the same:

• to provide an abstraction that allows computational independent design
and architecture of software.

• to make software development more of an engineering discipline where
finished components are assembled

• and to make the whole process of creating software more stable, precise
and measurable.

9

Model Driven Architecture

Model Driven Architecture(MDA) is the approach, and vision, from Object
Management Group(OMG) on how model driven engineering should be ex-
ecuted. MDA consists of many different standards and meta models. A
metamodel is, very simplified, a model that describes the available syntax
for models instantiating it. The core functionality of MDA is provided by
the Meta Object Facility(MOF) metamodel. This metamodel provides the
structural features and vocabulary that most other metamodels in MDA are
founded on.

The MDA approach identifies 4 model levels[23], shown in table 1.1. M0
is the instance level. The models here are instances of a model on level
M1, e.g. generated Java code that reflects the expression in the M1 model
. The M1 level contains a model, for instance a UML model that usually
tries to capture the domain and describe a software system. Level M2 has
the metamodel for the M1 level, i.e. it describes the vocabulary that can be
used in M1. At the topmost level, M3 we find the meta-metamodel. This
model describes what constructs that can be used to describe metamodels.

In MDA the MOF has been placed at the M3 level. Essentially the MOF is
a self-describing model that in theory could be used to describe meta meta
meta meta etc. models. Along with the model level separation comes the

Level Description
M0 Instance level. E.g. Java code
M1 Model level. E.g. UML diagrams
M2 metamodel level E.g. UML metamodel
M3 Meta metamodel level. E.g. MOF meta metamodel

Table 1.1: MDA model levels

ideas of different viewpoints. The MDA approach identifies three viewpoints
the models can take. The Computation Independent Model, CIM, prescribes
that the model should not show a detailed description of structural features
in the system. This level usually contains process descriptions and other
abstract artifacts such as goal models and a preliminary domain model.

Further detailing of the system happens in the Platform Independent Model,
PIM. This view describes the structural elements in greater detail, as for in-
stance UML class diagrams do. Often it also provides mechanisms to describe
behaviour in more detail (e.g. elaborating the processes from the CIM), for
instance UML interaction diagrams or state chart diagrams.

10

At the lowest level we have the Platform Specific Model. At this level the
system is described so that it can be transformed and deployed to a specific
platform. An example could be the EJB stack from Java Enterprise Edition,
where one has made e.g. a DSL to describe EJB based systems, or refined
the model using UML stereotypes.

Essentially the three viewpoints gives us a crude methodology for how we
should construct software — starting in the large with CIM and then refining
the expressions at the level in lower levers such as the PIM, PSM and finally
code.

To support automation one usually try to define clear cut mappings between
the levels. This enables developers to build transformations that automat-
ically transforms between the models. This can happened both vertically,
as well as horizontally. Ideally the transformations should go both ways,
i.e. allow round-trip engineering, but this is not always attainable, as the
transformations loose information for each transformation step.

Metamodels As metamodels are the core of the MDA vision, it deserves
some more attention. As mentioned earlier in this section, a metamodel is
essentially a model that describes the available syntax for a instance of that
model. Just like the Java language specification1 that provides the syntax
for the java language(albeit it is not like the models we deal with here).

Using UML to express a metamodel means that we also have the possibility
to express constraints on it using Object Constraint Language(OCL). This,
together with the model structure gives us the available syntax and some
simple semantics for the model. We say that the metamodel provide the
abstract syntax.

UML Profiles Having a abstract syntax in the shape of a metamodel is
not that useful unless we create a concrete syntax. Today this is most often
done either with UML Profiles or a Domain Specific Language.

A UML Profile is basically a extension of the UML metamodel. That means
that we take the structural features present in that metamodel and extend
them so that we inherit the same features, and gains the possibility to spe-
cialize these. This means that our metamodel will be tightly coupled to
the UML metamodel, meaning that it has to be present when applying the
metamodel in other environments.

1http://java.sun.com/docs/books/jls/

11

The extension makes the UML element extended upon a metaclass and the
extender a stereotype. The latter can also have attributes in the form of
tagged values. A tagged value is attribute with a name and a type, for
instance we could add a tagged value to a stereotype called logging with
boolean as a type. This would then indicate during code generation if the
code from the stereotyped class should have logging enabled.

The main reason to develop a UML Profile is reuse and rapid tool devel-
opment. Since one will extend upon the underlying UML model, there is
already some syntax and semantics in place. This speeds up development
at the cost of flexibility. It can also present a problem when the underlying
semantics of UML are not properly understood or poorly defined. A second
benefit is the ease of tool development. E.g. if one choose to build a profile
upon UML Class diagrams, one will already have the tool support needed,
with some adjustments to the visual representation. The other way of de-
veloping a concrete syntax for a metamodel is through a Domain Specific
Language(DSL) which is described in the next paragraphs.

Domain Specific Languages A Domain Specific Language is, as the
name implies, a language built for a specific domain. This domain could
be anything, from the more general cases such as business process modeling
to more specific cases where the language perhaps only will be used in one
or few projects.

The DSL is constructed upon a metamodel that provides the abstract syntax.
Using frameworks such as Eclipse GMF one can quickly build and generate
visual editors that provides a concrete, visual, language to the users.

The creation of domain specific languages is not constrained to MDE, one
can also use a language such as Ruby and do metaprogramming, essentially
redefining parts of the language to suit ones needs. This is known as an
internal DSL, where on adapts the host language to suit ones needs. The
opposite is an external DSL, essentially the creation of a completely new
language. Some of the most known projects employing (internal) DSLs in
the Ruby world is Ruby on Rails2 and RSpec3. The latter is a framework for
creating tests for behaviour in a natural language (english), enabling greater
readability and creating a environment for behaviour driven design(BDD)4.

2http://www.rubyonrails.org
3http://rspec.info
4Behaviour Driven Design is a software construction method or technique where one

focuses on the language and the interactions. It is usually used in combination with an
ubiquitous language created with Domain Driven Design, see 2.1.4. More information on

12

Another approach taken in the Java world is to create DSL within the lan-
guage with what is named as fluent interfaces.. This takes advantage of a
feature that was added in Java 5: static imports. It works by always return-
ing the modified object in a method call, effectively enabling a chaining of
method call that allows the construction of sentences that are reminiscent of
e.g. written english.

The creation of a DSL requires more work, since all the concrete syntax has to
be constructed from the bottom up. But as said, in the previous paragraph,
the use of modern framework and code generation helps reduce the time used
on this task. It also gives the developer of the concrete syntax high flexibility
on how the concrete syntax will look and behave.

Architecture-Driven Modernization

While utilization of MDA is most often synonymous with developing new
architectures and applications, Architecture-Driven Modernization takes on
the opposite challenge of modernizing existing software.

In [17] the authors define three levels that are affected by modernization:

• Business Architecture: E.g. changing processes.

• Application & Data Architecture: E.g. changes in the architecture.
Going from spaghetti code to a clean object-oriented design.

• Technical Architecture: E.g. changes in implementation language.

The former resides in the business domain, while the latter populates the IT
domain. ADM is about doing a vertical transformation from A to B, crossing
these domains. They explain the impact of this by a reverse horseshoe. the
steeper the curve, the higher impact. The steepest curve will cross both
domains and all three levels.

Modernization of existing software is often a challenging task, and ADM
prescribes how to compose a clear vision of the existing system and trans-
form it into a MDA compliant system that can be adjusted to new business
requirements. This is described in [16] and involves:

• Knowledge discovery through source code mining

BDD can be found at: http://behaviour-driven.org/

13

• Elevating knowledge and logic from knowledge discovery into abstract
descriptions utilizing e.g. Business Process Modeling Notation(BPMN)
and Semantic Business Vocabulary and Rules(SBVR)

• Specialization of the knowledge captured through UML

• Final transformation to new code

This forms the ADM Transformation horseshoe, which can be seen in figure
1.1.

Figure 1.1 ADM Transformation horseshoe. From[16].

As we can see from this process, the discovery of knowledge in the existing
software artifacts is vital to doing modernization of software. This implies
also that the knowledge discovered should be expressed in a formal and com-
prehensible manner in the modernization effort of an ADM project, which
again implies further that MDA systems would benefit formal semantics.
This is further addressed in section 2.1.4.

1.1.2 The Semantic Web

The semantics “movement” has also been around for some time, but got a
bootstrap when Tim Berners Lee published his now famous article The Se-
mantic Web[5]. In this article he presented his vision and idea of providing

14

content and services on the WWW with meta-data; semantic descriptions.
If implemented fully, it will allow us better and more advanced search capa-
bilities as well as enhanced computability of the web.

At the same time as the semantic movement has gained traction, the system
design paradigms also changed. It went from component-based architectures
to Service Oriented Architectures, or SOA. A SOA can be realized in a num-
ber of ways, but the most common today is to realize it with web services.
These services are usually described with a languages called Web Service
Description Language(WSDL), expressed in XML. The WSDL contains a
definition of the service. This definition covers the interfaces, data types and
so-called grounding that says where the service is located, and what technol-
ogy used to access it. The service messages are usually carried over HTTP,
encapsulated in Simple Object Access Protocol(SOAP) envelopes.

Another web services approach that has gained traction over the past years is
REpresentational State Transfer(REST). REST aims to utilize the power in
HTTP, and use its operations GET, PUT, DELETE and POST to its fullest
extent. This way of doing services is said to be resource-centered, i.e. the
domain model is exposed over HTTP, and accessed through URLs that has
namespaces that correspond with the model. An example url of a resource
could be: http://www.foo.bar/user/baz. To manipulate the model the client
would use the HTTP operations and e.g. use POST to persist changes about
user information.

As can be seen with the above paragraphs there’s a lot of syntax involved
in utilizing the services, but not so much semantics. Of course, we have the
semantics of the protocols involved in transport, data exchange and so-forth,
but we lack the semantic of the service itself—we want to know what it does,
and how it does it. Does it interact with other services? Does it guarantee a
response time? What is the precision of the response? And so forth. We also
want to know the semantics of the information it consume and/or produce.

At the same as the semantic web vision came into existence, researchers saw
the possibility to provide more metadata for services also. The idea was that
this would allow for greater automation of the services, effectively allowing
run-time mediation, composition and also greater findability.

To achieve this, the semantics has to be computational. As an effect of the
Semantic Web Initiative at W3C, several technologies were developed. The
core part of this is the Resource Description Framework[27]. This frame-
work provides mechanisms to describe web resources. Extending upon RDF
we have the Ontology Web Language(OWL), that provides the extra pieces
needed to create ontologies.

15

Ontologies

Ontologies is a knowledge representation system that allows us to express
knowledge through logical constructs. The “weaker” variant of this is taxon-
omy, a classification scheme. For instance Carl Linnaeus created a method
for classifying all living things, which is called a Linnaean taxonomy. The
word taxonomy itself stems from the greek words taxis, meaning order, and
nomos which means order and law, i.e. scientific law or order. The organized
items in a taxonomy is has a parent-child relationships. This means that all
constraints and properties of a parent is inherited in the child. Although
there is a strong semantic binding in the relationships found in the taxon-
omy, it is not sufficient. We can refer to this a as weak semantic compared
with ontologies, as we can see in 1.2. This is also evident in figure 1.3 that
shows a spectrum of knowlegde management systems, where ontologies exist
to the right of the red line, clearly distinguised from less formal systems. To
gain the extra formality we turn to ontologies.

Figure 1.2 Weak to strong semantics. From [8]

Merriam Webster states[22] that ontologies are:

16

a branch of metaphysics concerned with the nature and relations
of being

While Tom Gruber, in [14] provides a definition for domain of computer
science:

In the context of computer and information sciences, an ontology
defines a set of representational primitives with which to model
a domain of knowledge or discourse. The representational primi-
tives are typically classes (or sets), attributes (or properties), and
relationships (or relations among class members). The definitions
of the representational primitives include information about their
meaning and constraints on their logically consistent application.

From this definition we learn that ontologies are formal. This means that we
will be able to carry out computations on them. For instance Concepts 5 can
be related to each other. What separates relations in ontologies from other
ways of capturing domain knowledge, e.g. UML Class diagrams, is that the
relation also will have its own semantics. Whereas the semantic of e.g. a
UML association is defined in the UML standard, ontological relations are
defined by the ontology creator.

An example could be an relation, or association in UML class diagrams,
named parentOf. With the UML association, the semantic of the name is
implicit. Defined in a ontology the semantic would be unambiguous, the
what the relation holds for would be defined in a computable axiom.

This means that the relation can be reused so that the knowledge captured
in the relation can be used in other parts of the domain, or in other domains
and still have the same meaning. It is also possible to impose rules, called
axioms on the relations. These are truths that must be maintained for the
relation to hold, somewhat similar to the use of OCL in UML. The result is
a comprehensive representation of a domain, both its concepts, Individuals6,
relations and the rules that dictate these entities and relations.

Another distinction from UML class diagrams is that Properties are first
class citizens in ontologies. They are concepts too, in the sense that they
carry logical constructs. This makes them hard to map, since UML class
attributes/properties are “dumb”; they belong to the class itself, and have no
behaviour.

5Concept will be used instead of Class in this thesis.
6Instances of Concepts

17

Figure 1.3 What is an Ontology. From [20]

Several languages exists to represents ontologies, one of the most popular
is the Ontology Web Language, OWL[4], a recommendation from the W3C.
OWL extends the Resource Description Framework - Schema, RDFS[27], and
allows for greater expressivity.

Resource Description Framework

Resource Descriptor Framework(RDF) is a framework built towards the idea
of providing metadata for web resources. It does not only itself provide a
way to build these relations, but also a foundation that can be extended for
various needs.

The RDF relations are called triples. The triples makes statements about
relationships resources have, and contains a subject, predicate and object.
For instance, the statement: This document’ author is John Doe, would have
a subject document, predicate author is and object John Doe. Since RDF is
a abstract model there exist several serialized formats. Of these, there a two
formats in common use today: N3 and XML. An example of the same data
using N3 and RDF below7:

For N3:

7Examples from: http://www.w3.org/2000/10/swap/Examples

18

@prefix p: <http://www.example.org/personal_details#> .

@prefix m: <http://www.example.org/meeting_organization#> .

<http://www.example.org/people#fred>

p:GivenName "Fred";

p:hasEmail <mailto:fred@example.com>;

m:attending <http://meetings.example.com/cal#m1> .

<http://meetings.example.com/cal#m1>

m:homePage <http://meetings.example.com/m1/hp> .

and for RDF:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:m="http://www.example.org/meeting_organization#"

xmlns="http://www.example.org/people#"

xmlns:p="http://www.example.org/personal_details#">

<rdf:Description about="http://meetings.example.com/cal#m1">

<m:homePage resource="http://meetings.example.com/m1/hp"/>

</rdf:Description>

<rdf:Description about="http://www.example.org/people#fred">

<m:attending resource="http://meetings.example.com/cal#m1"/>

<p:GivenName>Fred</p:GivenName>

<p:hasEmail resource="mailto:fred@example.com"/>

</rdf:Description>

</rdf:RDF>

As we can see, the N3 format is easier to read, and more terse compared to
the XML representation in RDF.

Today, the most prominent uses of RDF is RSS and in the Dublin Core Meta-
data Initiative8. The latter is a ISO-standard for interoperable metadata and
specialized vocabularies for describing resources. Dublin Core uses RDF as
one of its formats.

RSS on the other hand stands for RDF Resource Summary9, and is used to
summarize updated information from resources, often blogs or news head-

8http://dublincore.org/
9Applies for RSS versions 0.9 and 1.0. Actually the acronym RSS denotes three stan-

dards for publishing updated information.

19

lines. Usually it is read in a special software called RSS reader or aggregator,
that pulls the RDF descriptions from a URI and presents the headlines and/or
the content to the user.

Ontology Web Language

Ontology Web Language[4], OWL, is a language for knowledge representation
in the form of ontologies. It is composed of three different “modules”:

• OWL Lite

• OWL DL

• OWL Full

OWL Lite and DL share the same semantic basis, they are both based on
description logics. Description logics(DL) are, as the name implies, based
on descriptions, and handles the manipulation of complex predicates. De-
scriptions in DL are composed of concepts and roles, where concepts will be
categorical nouns, such as Pilot, Adult and Teenager. These describe basic
classes of objects. Roles on the other hand are relational nouns, such as Age,
that describes objects that are parts of or properties of other objects.

The distinction between OWL Lite and DL is that Lite only uses some of the
features of that exist in DL and Full, and that these features also have usage
limitations, e.g. in the use of classes and a limited notion of cardinality. The
differences are described further in [21]. Both OWL Lite and DL can be
expressed in a restricted view of RDF.

OWL Full can, on the opposite, be expressed with all available features of
RDF. OWL Full also features the most expressivity, but this comes at a cost.
OWL Full doesn’t guarantee computationality. It is not likely that reasoning
software will support complete reasoning for all the features in OWL Full.

A more thorough look at OWL is presented in chapter 3.

1.1.3 MDE and ontologies

Ontology Driven Architecture

The W3C has looked at a combination of model driven engineering and the
use of ontologies, in their note “Ontology Driven Architectures and Potential
Uses of the Semantic Web in Systems and Software Engineering"[26](ODA).

20

They argue that

The suite of standards supporting the MDA initiative streamline
the mechanics of managing and integrating models of various as-
pects of a system’s design, but say little about the underlying
semantics of the domain being modeled.

and that:

Formal representation can help to limit ambiguity and improve
quality not only in automation of business semantics but in overall
engineering of complex systems.

The main motivation of combining MDA and The Semantic Web is stated as
that MDA provides the mechanics necessary to manage and integrate various
modeled aspects of a systems, but that is says little on the semantics of the
domain that is modeled.

They contend that formal definitions will limit ambiguity and improve the
quality of the software, ranging from automation of business semantics to the
construction of complex systems. The downside is that with higher formality,
the tool support will have a higher abstraction too. This can lead to difficulty
in constructing tools that can support the users in a good way, and limit the
freedom of expression.

On the other end of the scale is of-course the less formally defined systems
that can suffer under high ambiguity, even if the documentation is good.
This is especially true if the person reading the documentation and models
is not accustomed to the problem space.

A prime example of an area that can benefit from formal definitions if that
of matching component interfaces. This involves defining pre, post and in-
variants to specify the behaviour of the component the interfaces exposes
under various circumstances. This can be hard in the MDA vision alone,
due to the scalability issues that arise as the rules increases, also the lack
of unambiguous presentations present a problem. Integrating semantic web
technologies in this problem space would impose unambiguous representa-
tion of the domain, automate consistency checking, validation and support
mediation and transformation when composing components, based on the
domain knowledge.

The authors identifies three main applications for semantics in model driven
engineering:

• Ontologies as formal model specifications

21

• Software life cycle support

• Corpora10 of reusable contents and the use of metadata as relational
data

Some of the benefits of using ontologies as formal model specifications has
been elaborated on earlier in this section, but the paper give a few more to
ponder on. Within the area of quality, the use of formal model specifications
can, amongst others, improve consistency, better typing and categorization,
better communicate requirements between domain experts and developers
and increase the potential for reuse, substitution and extension of software
via “accurate content discovery on the Semantic Web”.

In the field of software life cycle support the integration of semantics is ex-
pected to reduce the problems of inconsistency between different artifacts
generated during the development life cycle. Inconsistencies here arise due
to the fact of different perspectives on the domain between different stake
holders in projects. Also semantics can enable better enforcement of trace-
ability of the artifacts, augment sharing and interoperation of models made
by different stake holders.

Last, the “corpora of reusable contents and the use of metadata as relational
data” is about utilizing the semantic web to describe composites based on
participating objects in runtime and artefact sharing systems. This differs
from the normal way of identification in the semantic web, that is normally
conducted through functional properties that are inverse, such as Friend of A
Friend(FOAF). The aim is to provide better findability through these special
relations. This would in turn provide for e.g.: formalization of associations
between sub-components in a system, a framework for sharing of runtime
data and

1.2 Methodology

The thesis will be carried out as a partly theoretical work and partly as a
practical work. The process will be iterative and incremental, meaning that
parts of the theoretical work and practical work will influence each other —
from start to completion. The benefit of doing the work this way is that is
allows us steer of dead ends in a better way than ditching large quantities of
work. Also, since the practical work in this thesis is software development,

10From Merriam-Webster: a collection or body of knowledge or evidence

22

it pays of to be as agile as possible with regard to what can be accomplished
within the time frame of the thesis. As Piet Hein put it:

The road to wisdom? Well, it’s plain and simple to express: Err
and err again but less and less and less.

The theoretical work will be carried out in a qualitative fashion by literature
reviews, discussions and evaluations of the literature against the arguments
and thoughts presented in the thesis. The practical work will focus on imple-
menting the ideas described in the thesis and providing a basis which upon
the problem definition and solution requirements can be tested, evaluated
and hopefully validated.

1.2.1 Literature reviews

The process of literature reviews has been iterative. Literature has been
by and large retrieved by searches on either ACM, IEEE Xplore or Google
Scholar and citations in previously found literature.

1.2.2 Implementation

The implementation work will as said earlier be carried out iterative and
incremental, both influencing and being influenced by the theoretical work.
Doing the development this way avoids a waterfall process where a large
specification is hammered out in advance without enough knowledge of the
problem domain. Prototyping is carried out, both on paper and with the use
of computer. This serves to create a quick and tangible perception on how a
idea might work out when it is (semi) formalized.

The process loosely followed in this thesis has been using the requirements
set forth in chapter 2 as kind of user stories, that has been prioritized and
edited as required to satisfy the new knowledge discover during the work.

1.3 Thesis overview

In chapter 2 we learn about the problems their associated domain that the
thesis will try to provide a solution for. Prior associated solutions and stan-
dards are discussed in chapter 3. Chapter 4 introduces a proposal that will

23

try to solve these problems. Chapter 5 describes the application of the solu-
tion to the evaluation cases, evaluating it against the requirements presented
in this chapter. These are then evaluated in chapter 6. At last a final con-
clusion and suggestions for further work is provided in chapter 7.

24

CHAPTER

TWO

PROBLEM DEFINITION

This chapter presents the problem definition and scope for this thesis. It also
presents an evaluation/use case. The use case is used in the evaluation of
the solution introduced in chapter 4.

2.1 Interoperability and its challenges

2.1.1 Introduction

What is interoperability? Tanenbaum defines[3] interoperability as:

Interoperability characterizes the extent by which two implemen-
tations of systems or components from different manufacturers
can co-exist and work together by merely relying on each other’s
services as specified by a common standard.

and IEEE states[2] that interoperability is:

the ability of two or more systems or components to exchange
information and to use the information that has been exchanged

These days integration of information systems is as big as ever. The spread
of the internet, XML as an open and extensible information exchange format,
and the introduction of web services has resulted in a ever-growing market

25

for services distributed over the internet. Companies such as Amazon.com1

and Salesforce.com2has opened up and offers interfaces for integration of,
through web services, their information and services.

This empowers developers all over the world to create new, or integrate exist-
ing solutions with these services. The openness of the technologies involved
has allowed this. W3C3 has published numerous recommendations, and OA-
SIS4 has provided us with a reference model for what SOA is and means.

As it stands, the purely technological challenge of integrating it-systems has
advanced tremendously in recent years. But challenges remain, and one
specific challenge is to increase the interoperability and integration of infor-
mation, services and processes across domains and organizations.

2.1.2 Information interoperability

Knowledge of a certain domain, is often encapsulated in the organization that
offer the services for utilizing it. If this knowledge isn’t properly conveyed
the users of the service, it can be hard to take advantage of the service. This,
in turn, can lead to low adoption rate of the services and as a consequence
developers will leave the service for better offerings from competitors.

Most information is relayed between different systems without any associated
semantics other than what developers decide them to be—at the opposite
ends of the “pipe”. This goes for both the information being exchanged, and
the semantics of the service itself. This creates a need for manual labour,
resulting in slower development time and higher software cost. In many cases
this very problem could have been solved (partially) automatically through
the means of annotations to or embedment of the formal semantics that
define the service and information it provides/consumes.

In [12] Goh identifies three main causes leading to semantic heterogeneity:

• Context

• Scale

• Naming

1Amazon Web Services - http://aws.amazon.com
2Salesforce.com - http://www.salesforce.com/developer/
3World Wide Web Consortium
4Organization for the Advancement of Structured Information Standards.

26

http://aws.amazon.com
http://www.salesforce.com/developer/

These three causes leads to problems during interchange of information. The
first, context, tells us that information can be interpreted in various (tempo-
ral) contexts that the originator of information doesn’t have control over, e.g.
due to different cultures, laws and norms. For instance, the swastika is a sign
for good luck in asian culture. In western culture it is highly stigmatized due
to the use of the symbol in nazi-Germany. This is an example of a differing
cultural context.

Scale is the second cause of heterogeneity. For instance information does
often not contain any information about what scale a number is expressed
in relation to, or what currency it has. Different countries use different
standards on how to express different numeric values such as time and date
and currency. Exchanging information crossing these boundaries goes wrong
without the proper semantics defined and understood.

Third, naming conflicts can lead to ambiguity when interpreted by a third
party, because they will not be accustomed to or know about the meaning
and/or differences of the names. How is a third party to implicitly know what
the word accommodation means housing in british-english and way of public
transportation in american-english? Or that a brew means tea in England
and beer in the US? These are examples of naming conflicts, where the same
word means different things for different interpreters. It is also an example
of a contextual conflict.

A compound example of this can be the statement that5 “Jones’ salary is
2000”. This statement is ambiguous and has several problems. First, we
don’t know what currency, or what scale the amount is in. It could be in
yen, dollars or norwegian kroners, and the scale could possibly be 1 or a
100. Second, does it include any bonuses or benefits? We can’t possibly
know, and this is important in many countries due to taxation. And what
periodicity has the statement? Is it yearly, monthly, weekly or something
else? As we can see, this statement has a lot of room for different interpre-
tations, especially if we cross borders and languages, which is quite common
in corporations today. These problems present themselves clearly when we
are tasked with the integration of system that transcend borders, govern-
ments and corporations. Especially today when there is a heavy emphasis
on reporting, e.g. utilizing so-called Business Intelligence.

5from [12]

27

2.1.3 Interoperability between systems

Much of the integration work done today is done using a technology/pattern
called Enterprise Service Bus(ESB). ESBs are essentially the integration
point. E.g. if one has a silo application6 environment, the ESB enables
interoperability and integration by being the coordinator and transformer
of messages. These messages can be sent to and from systems using widely
different technologies, such as FTP, Message Queue, Web Services and RPC.
For all intents and purposes the ESB acts as a abstraction layer. In theory
(if the ESB is modular enough) one could completely replace a (say techno-
logical old) system with a new one on one end and the system at the other
end wouldn’t notice anything except perhaps some downtime. See figure 2.1.

Figure 2.1 Enterprise Service Bus Integration Architecture

The ESB is absolutely not a silver-bullet. Scaling will become a problem as
the number of transformations grow as we add systems to the bus.

6A silo application refers to a system doing one specific task. Since the systems often
lack horizontal integration, silo application often end up duplicating functionality.

28

Another area that has a need for interoperability is sensor networks. This is
an area that has seen a lot of attention, especially as the military is very inter-
ested in this technology. Sensor networks are networks composed of sensors
that are, most often, geographically distributed. They need to interoperate
to create networks between them, coordinate and reduce load on the network
while running applications and so forth.

At the moment, the sensors deployed are usually very specialized, and in-
teroperate in a prescribed manner. They have their protocols and message
exchange formats pre-programmed. If one takes the idea of creating ad-hoc
networks with different devices a step further one realizes that interoperabil-
ity is not just “nice to have”, it is a necessity.

For instance, most mobile phones today are sold with Bluetooth in addition
to the regular networking capabilities (GSM/EDGE/3G). These devices are
usually tightly bound to the software supplied from the vendor. One could
imagine that a common standard could be created that allowed these devices
to interoperate seamlessly. The network standards deployed is one step on
the way, but building services on top of these is a completely different matter.

With the introduction of “smarter” phones such as the Apple iPhone and
the phones, likely to be released in 2008, deploying Google Android the
opportunities for building e.g. some sort of mesh/P2P network is growing.

Another technological paradigm that would benefit from higher interoper-
ability is event driven systems. These systems consists of event producers
and consumers, where a event is a significant change in the state of an ob-
ject. A example of an event can be a change in a stock price. The event
would basically compromise the new price and ticker of the stock. It could
be published in a message queuing system such as JMS7 or in a space based
architecture. The benefits of adding some form of semantics to the events,
is that is would enable the consumers of events to reason about them before
acting. Of course there is the implicit semantics already present in the event,
in our example it is that the stock price in the event is a change from an
earlier price. This is a pretty banal example, but since the event lacks any
formal definition of what a price is, it could be misinterpreted. A slightly
more advanced example is that of for instance a scenario where nodes in a dis-
tributed systems announce capabilities. E.g. they announce that they have
1 hour of spare cpu-time to offer, and the consumers of those events would
then be able to schedule work for that time. Semantics here would allow
a formal definition of what work that could be performed, any constraints
and so forth. This could of course, perhaps more easily, be presented in a

7Java Messaging System

29

proprietary metadata format, but it would require interested consumers of
the service to implement parsing of that special metadata. Variances in the
metadata would also require re-engineering of the consumers to adapt, con-
trary to a formal definition with logics that merely should require a dynamic
re-adaption8.

From both these examples we see that there is still a need for clearly defined
semantics for both information and processes to allow for automation of
both finding services, agreeing on interaction and transforming information.
With (de-facto) standardized technologies such as RDFS/OWL from W3C9

this is also starting to be a reality. At the same time, software engineering
technologies such as MDA has made headway. The question then looms—is
there any overlap or connection between the two areas?

The answers is yes. Through the projects, standards and technologies dis-
cussed in chapter 3 we are seeing integration of semantics and model driven
engineering technologies influenced by the MDA vision.

2.1.4 MDA and semantics

This thesis will focus on a specific aspect of this interplay that has seen little
work. The use of ontologies as a shared vocabulary between several Platform
Independent Models. The importance of a shared vocabulary is discussed at
length by Eric Evans in [11], and semantic technologies (such as ontologies) is
just one, but powerful, way of capturing this vocabulary. Evans argument is
that shared vocabularies allows the domains of discourse to be properly com-
municated between the involved parties, usually comprised of non-technical
domain experts and technical experts (developers). Without a shared vocab-
ulary the definition of the domain will be biased, creating ambiguity. This
ambiguity can both present itself at the same level, e.g. using different terms
to express the same idea and therefore failing to communicate, or in different
abstraction levels. Developers can for instance be at a conceptual level that
is more entangled with the actual implementation, while the domain expert
is at the “business” level, worrying about processes and abstract relationships
in the domain.

So, in an effort to minimize the gap between the experts in both camps,
Evans suggests the development of a ubiquitous language, i.e. a shared vo-
cabulary. This is essentially a representation of the domain that both parties
agree on, and must corporate on to change. This vocabulary is not rooted in

8Provided that all providers and consumers share the same semantics
9Recommendations.

30

a certain language or visual representation, but Evans uses simplified UML
class diagrams in his book as an example. Together the two camps explore
the domain and creates diagrams and textual descriptions that capture the
concepts, behaviour and relations found in the domain. Further, the shared
vocabulary is should be rooted to the actual implementation, as early as pos-
sible. This ensures that the two representation of the domain don’t diverge
from each other.

Doing development this way, goes a long way to ensure that we end up in the
favorable situation where the development team and domain experts speak
the same ubiquitous language without ambiguities. In relation to MDA we
can see that a shared vocabulary can be very beneficial for the development
with models, some of which can be very complex. The shared vocabulary
can of course be manifested by the models themselves, but for the domain
experts this is something that also can be a bit complex. A more lightweight,
less complicated approach, would suit the communication better—with the
appropriate bindings to the implementation models.

As described in section 1.1.1 the PIM is an abstraction layer, positioned
between the CIM and PSM layer. This enables MDA practitioners to vary the
concrete implementation of a software system independently from the CIM,
and allows them to modify their concrete implementation of the software
without (in most cases) being dependent on changes in the higher (PIM and
CIM) levels. To allow for easier, and automated, interoperability between the
concrete systems at the PSM level we need to ensure that they share the same
vocabulary. This can either be done by retrofitting semantic annotations to
either the PSM model level or the generated code. Another, perhaps better,
method is to do it at the PIM level.

The inclusion of semantics at the PIM makes it easier to generate interopera-
ble systems, but it also, more importantly, allows for interoperability between
the models themselves.

A model practitioner could be faced with a integration task involving his
own model and a “foreign” model10 faces the same problems as a systems
developer trying to integrate to legacy code based systems with poor doc-
umentation. The exact semantics in the models is not defined, and as a
consequence both the practitioner and developer will use time to map be-
tween the systems/models and resolve conflicts. This hassle could have been
removed, or made less burdensome, if the semantics were defined at either
levels.

10possibly only just a skeleton with defined interfaces, generated from e.g. WSDL

31

For instance, a semantic match-maker could search for PIMs with matching
interfaces, or suggest mappings/transformations automatically when needed.
This in turn would allow for transformation to target PSMs, such as one for
an ESB that included the relevant mappings and transformations for run-
time interoperability.

The problem statements this thesis seek to answer is:

Will integration of semantics, through the means of ontologies, allow greater
interoperability?

and:

Will the integration of semantics allow easier transformation of models?

and:

Will the integration of semantics provide better validation of models?

To thoroughly answer this question this thesis evaluates different approaches,
part and whole solution in chapter 3. To vet the idea properly, a proposal for
a solution is made in chapter 4. To help verify that the proposal addresses
the said problems, and that it is done in a proper way the next sections
define:

• evaluation cases - provides scenarios where the solution will be applied
for evaluation and tested against

• solution requirements - statements about what the proposal will address
and how it should be addressed

2.2 Evaluation cases

2.2.1 Domain model with UML class diagrams

This use case is simple and serves to test the basic functionality a solution
need to deliver. The use case will test the ability of a given solution to
annotate classes with semantics and allowing the classes, and their features,
to be re-conciliated.

Evaluation case design

The evaluation case will be based upon a classic buyer/seller example case.
It has, as earlier mentioned, two different domain models created with class

32

diagrams, as well as a model expressed as an ontology. The challenge is then
to be able to transform from one of the UML models to the other, using the
ontology as a common vocabulary.

The domain model for UML model A looks like figure 2.2:

The domain model for UML model B looks like figure 2.3.

The domain model for the Ontology is presented in figure 2.4. The ontology
is very basic and just resembles the structural features present in Model A.
The different classes are related to each other using simple ObjectProperties
that have no more than the domain (source) and range (destination) in their
expression.

33

Figure 2.2 Buyer/Seller UML class, diagram example A

34

Figure 2.3 Buyer/Seller UML class diagram, example B

35

Figure 2.4 Buyer/Seller ontology example. Created in Protégé

36

A snippet from the OWL code showing an object property:

<owl:ObjectProperty rdf:ID="hasAddress">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Customer"/>

<owl:Class rdf:about="#Seller"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="#Address"/>

</owl:ObjectProperty>

and a class/concept:

<owl:Class rdf:ID="Seller"/>

As can be seen for both models, they are not complete, and perhaps not
entirely realistic. They have been derived from real examples in the ATHENA
project and the UBL standard. To test the basic scenarios, cardinality and
types has been omitted— both in the UML models, as well as in the ontology.
The most important thing is that they in fact could be encountered in similar
forms in the wild. In our case, we do not need complete or completely realistic
models. What we need is the required situations that we need to evaluate
the solutions to later in the thesis.

Model A is a somewhat more object-oriented, or normalized in relational
sense. It has somewhat separation of concerns. In model B on the other
hand, we have several cases where attributes and what would be independent
attributes or classes are mingled. To be able to do integration of information
exchange between the two models the following cases would need to be solved:

1. Concatenated string will need to be split according to a separator or by
index. Examples are: ShippingAddress and OfficeAddress in Customer
from model b

2. Classes that are in-cohesive, e.g. they model more than one concern will
need to be split up. An example is the class Transport from model b.
It contains both type information, company and address. To conform
with model a it would need to transformation to that structure.

37

3. Naming differences need to be resolved according to the references on-
tology. Example is Stock in model b and Inventory in model a. The
reference uses the word Inventory.

2.3 Solution requirements

The previous section established several concrete mapping cases that the
tool need to support. The requirements that stem from these are expanded
upon in this section. In addition some general requirements are set forth.
The requirements are both of non-functional and function character. The
requirements are summarized in table 2.1 in section 2.3.7.

2.3.1 Shared model driven vocabulary

The tool need to support a shared vocabulary. Since the tool will need to
support several different types of input models, this vocabulary needs to be
implemented in a language that supports all the formalisms in these models.

The tool shall implement an ontology infrastructure, that can support solu-
tions such as OWL for ontology development.

The tool will support this infrastructure through the use of either one or
more properly documented metamodels.

2.3.2 Visual tooling for vocabulary development

The tooling will support an easy formalism for developing and/or editing the
shared vocabulary. The tool will have emphasis on a quick process to develop
the domain model.

Some possible formalisms here are simplified class diagrams, topic maps and
concept maps.

2.3.3 Horizontal mappings between models

The tool need to support horizontal mappings between different models re-
lated to the shared vocabulary.

This involves supporting different operations so that the mapping will “raise”
and “lower” the structural features present in the model so that they fit with
the shared vocabulary concepts that they are connected to.

38

Implicit through the mapping up/down to/from the shared vocabulary one
shall be able to generate a mapping model that exist on the model level.

In this regard the shared vocabulary becomes a “hub” model.

2.3.4 Vertical mappings to PSM/Code level

The tool need to have support for transformation technologies that enable
the tool to transform the aforementioned implicit model to PSM or Code.
The technologies here should be interchangeable as long as it adheres to a
specific interface.

2.3.5 Open implementation environment

The environment for implementation shall be open, in the sense that the
platform is under a open source license that allow both for commercial as
well as private use and further development.

2.3.6 Extensible implementation

The implementation shall be extensible to cater for future work. This involves
the implementation to be extensible in a way that allows separate modules
to be added at defined interaction points.

2.3.7 Requirements summarization

The last previous sections have laid out 6 requirements for a solution to be
able to solve the problems stated in this chapter. These requirements are
summarized in table 2.1.

No. Requirement Described in
1. Support a shared, model driven, vocabulary for multiple models 2.3.1
2. Supply visual tooling to develop/edit the vocabulary 2.3.2
3. Support horizontal mapping operations between the models 2.3.3
4. Support code generation from the vertical mappings 2.3.4
5. Use an open implementation environment 2.3.5
6. The implementation has to be extensible wrt. future additions 2.3.6

Table 2.1: Main requirements

39

2.4 Execution of evaluation

To do the evaluation of the solution according to the requirements prop-
erly, a description of how the evaluation is to be executed is required. This
description is given in this section.

The evaluation will be done using a reference ontology for a domain, and two
class diagrams both depicting the same domain in a different way11.

It shall be shown12 that the solution can fulfill the following requirements:

1. Relate the elements in the class diagram to the concepts in the ontology.

2. Identify semantic mismatches.

3. Resolve semantic mismatches through the use of mapping operations.

4. Generate a reconciled class diagram from the mappings.

2.4.1 Annotate the class diagrams with concepts

The solution shall relate the elements in the class diagram and the concepts
in the ontology. This means that the solution will need to:

1. Allow creation, editing and storage of the relations

2. Validate that the relations are live

3. Depict the relations

2.4.2 Identify semantic mismatches

Identifying semantic mismatches is vital to the effectiveness of the tool. This
requirement is not intended to measure the effectiveness of the mismatch
detection, but rather show that the tool can be enhanced to support various
schemes.

Specifically, the solution will support these requirements:

1. Automatic semantic mismatch detection.
11one of the diagrams can depict it in the same way as the ontology, as this is a base

case
12either by an implementation or a detailed description

40

2. (Semi)automatic semantic mismatch correction proposal (mapping).

3. Validate that the mappings hold.

2.4.3 Resolve mismatches with mappings

The solution will show that it can handle the following scenarios that require
mappings to. . . :

1. Split strings. E.g. addresses that are concatenated.

2. Split classes. E.g. a class that holds two attributes will be split up to
two classes containing one attribute each

3. Merge strings. Concatenate strings according to the reference.

4. Merge classes. Create a merged class containing the attributes from
the merged classes.

2.4.4 Generate a reconciled class diagram from map-
pings

The solution will need to show that it is, from the relations and mappings,
possible to generate a new UML class diagram that incorporates these—a
unified representation.

41

CHAPTER

THREE

EVALUATION OF EXISTING SOLUTIONS

The purpose of this chapter is to provide an overview of existing frameworks,
projects, solutions and standards that has relations to this thesis.

3.1 Existing platforms and projects

This sections details two research projects that encompasses some or all of
the problem defined earlier in the thesis.

A walkthrough of objectives and accomplishments is provided before the
impact and relations to the problem(s) is discussed.

3.1.1 ModelCVS

ModelCVS presents a approach where metamodels are lifted and lowered
from and to ontologies. Motivated by the need to do integrations between the
models in two other projects, Modelware and Ontoware, they have produced
a tool which translates metamodels to ontologies, creates a mapping model
an then transforms this to a integration model at the metamodel level.

The reason to lift and lower the models is stated as: [15]:

The integration can be made easier, when concentrating on the
concepts described by a language, only, without needing to worry
how the language implements these concepts

42

Figure 3.1 ModelCVS Overview

43

The concept of lifting refers to bringing concept at one level up to one or
several levels above the current one. For ModelCVS it means bringing a
metamodel up to the level of ontologies. Since metamodels don’t necessarily
contain all the needed information to be presented as full ontologies, this
is done in three steps, as can be seen in the corresponding layers of figure
3.1.11. The first step entails conversion, where the metamodel is transformed
into an intermediate ontology. This involves a mapping model from the meta-
metamodel (M3) to an ontology metamodel, holding the more or less the same
information as in the original model. This transformations is considered a
pseudo-ontology as it is not perfect with regard to how formal concepts should
be defined in ontologies. The next step is to refactor this pseudo-ontology
to make the concepts more explicit, and also to find hidden concepts in the
metamodel that should be made explicit. This is a partly manual and partly
automatic step. It entails the assistance of a ontology developer that knows
the domain(s) and its corresponding ontologies.

The third step is to enrich the newly refactored ontology with axioms, and
also relate it to other ontologies that share the same vocabulary about the
domain. This is also a manual step, requiring expert knowledge of the do-
main, and the ability to work with logic constructs (to express the axioms).
This is referred to as semantic enrichment. To be able to relate the ontology
back to the metamodel it was lifted from, the tool holds traces from the
ontology concepts to metamodel constructs. This is an important property
of the tool, as it allows the users of it to trace back to the roots of the model
on later occasions if there is seemingly anything wrong with the resulting
ontology.

When more than one metamodel is lifted to the same level as the common
ontology, i.e. the shared vocabulary, it means that the metamodels at the
ontology level, has a set of mappings to and from the common ontology. This
in turn means that executing these mappings in turn will create a bridge from
metamodel A to metamodel B through the common ontology. This achieves
a star mapping, requiring far less mappings than when mapping directly
between all the involved metamodels.

As of such ModelCVS represents a solution where the emphasis is on semantic
interoperability between models through the use of ontologies. The process
of transforming models to ontologies is a process that consists of several steps
that require manual intervention by the user.

1From: http://www.modelcvs.org/thirtyminute.html

44

3.1.2 ATHENA Project

The ATHENA, short for Advanced Technology, Interoperability, Heteroge-
neous Enterprises, project ran from 2004 to 2007. The project goals were to
enhance interoperability, through use of models and semantics.

A tool called Semaphore[19] was developed as part of ATHENA. It is de-
scribed as a:

. . . a syntactic and semantic mapping tool.

This means that is will support the mapping of differing syntax, the repre-
sentation of the data and then the semantic meaning of the data. This could
be as easy as mapping synonyms or words in different languages or harder;
e.g. mapping between concepts that share some of the same semantics. The
latter require that the tool will be able to represent operations such as split,
join, merge etc.

To achieve the mapping between different information representation and
semantics, Semaphore requires that the information format is represented in
a model at the PIM level. When the source and target models are properly
represented at this level the developer can start mapping between them.

The mappings are preserved in a mapping model. Semaphore supports a
range of different mapping and associated operations:

• Root mapping

• Simple mapping

• Concatenate mapping

• Split mapping

• Substring

Since the mapping process can be very tedious, Semaphore also includes
pluggable mapping helpers, i.e. these are plug-ins that analyze the source and
target models and suggests different mappings that can be made. Semaphore
itself only presents a simple sample implementation of this.

After the creation of the mapping model, the user is left with a populated
mapping definition model. This model can in turn be used as an input to
a transformation, either a model to model transformation or model to text
transformations. For instance it could be possible to generate e.g. code that

45

utilize a web service and saves the responses to a CSV file, or code that
reads from a SQL database and outputs xml. Another prospective use of the
transformation code is to generate mappings in ESBs.

The focus of Semaphore is to provide the mappings needed to produce code
for transformation at lower levels. The tool is agnostic regarding what it
maps, as long it is represented as a UML compliant model at the PIM level.
This allows for mapping of ontology to models and ontologies to ontologies,
but the tool isn’t really geared towards providing mappings to/from models
and ontologies and preserving the mappings up to the concept for later reuse
and in combination with other models.

3.2 Standards and solutions

This section provides an evaluation of standards that may apply fully or
partly to the problems stated earlier.

3.2.1 UML

The Unified Modeling Language, UML for short, is part of the MDA direction
in Model Driven Engineering(MDE). UML does not just provide a standard
for information modeling, but also modeling of behaviour. The most inter-
esting aspect for us though is information modeling through the use of class
diagrams.

UML Class diagrams

Most software developers have a relationship to class diagrams. The class
diagram is in many respects the de-facto way of modelling a domain, and
the most widely used diagram of the 13 available in UML 2. A class diagram
expresses classifications and relations between them, for instance inheritance
and association. There is also a possibility to express some constraints on
the model using the Object Constraint Language, or OCL for short.

Class diagrams is at the object orientation abstraction level. That means
that they will map easily to object oriented languages such as Java, Python
or Simula. Indeed there are presently many tools, for instance AndroMDA2,

2http://www.andromda.org/

46

available that allows you to build a large part of your application using class
diagrams.

Often these systems at the base level will only off CRUD functionality, Cre-
ate/Read/Update/Delete and needs more refinement to offer more complex
functionality. Nevertheless they give developers a head start in projects
where this functionality will be the base of the application.

Although UML class diagrams can be sufficient to capture the structure of a
domain, the semantics of the domain can still be ambiguous. The reason for
this is that the class diagram can be read differently by different persons in
different contexts, since the vocabulary used normally is not connected to a
more formal defined shared vocabulary. UML also comes with its own set of
predefined semantics for e.g. the relations. The semantics of some of these,
such as aggregation, is debated.

This prescription of how exactly one are supposed to model a domain is in
some ways both a necessary evil (generating code would be hard without)
and a good feature (fewer options can enable more consistency).

3.2.2 ODM

Ontology Definition Metamodel[13] is the semantic initiative from the OMG
group Ontology Working Group and provides for the semantic in MDA. The
metamodel consists of several packages:

• Common logic

• Topic maps

• RDF

• OWL

• Description logic

The main items of interest are the RDFS and OWL packages. These are a
reflection of the W3C recommendations, and provide a way to build a model
driven environment to model RDFS and OWL. A popular tool for modeling
OWL based ontologies is Protégé[24], which is a Stanford research project.
It consists of a platform supporting to ways of modeling ontologies: either
by frames or by OWL.

47

As stated ODM is modular in the respect that it is split into packages based
on the area the models in each package addresses. I.e. a separation of
concerns. This means that ODM is open to extension, for instance reusing
concepts in the RDFS model to support a ontology language other than
OWL,

The Eclipse project provides an implementation of ODM, named EODM[25],
that provides a EMF-based RDF/OWL Model3.In addition the project also
provides reasoners, transformers, parsers and simple editors for RDF/OWL.
Currently4 EODM is labeled as in incubation and the project activity is low5.

3.2.3 SAWSDL

XML is one of, if not the leading data representation format in the world
today. The format lends itself to creation of self-describing documents. But
as in the world of models, often this is not enough. The description is merely
a syntax, and can cause ambiguities and conflicts as it is interpreted by
different parsers, people and in different contexts.

One prominent use of XML is to describe web services through the use of
WSDL. As was described in section 1.1.2, a WSDL document contains a
description of the associated interfaces, data types, exchanged messages and
the so called grounding that makes up the service. An example6 WSDL
document is shown next:

<?xml version="1.0"?>

<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"

xmlns:tns="http://example.com/stockquote.wsdl"

xmlns:xsd1="http://example.com/stockquote.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<schema targetNamespace="http://example.com/stockquote.xsd"

xmlns="http://www.w3.org/2000/10/XMLSchema">

3Only in code form, no Ecore is provided
4Summer 2008
5Last release as of 9. October 2007
6From: http://www.w3.org/TR/wsdl.

48

<element name="TradePriceRequest">

<complexType>

<all>

<element name="tickerSymbol" type="string"/>

</all>

</complexType>

</element>

<element name="TradePrice">

<complexType>

<all>

<element name="price" type="float"/>

</all>

</complexType>

</element>

</schema>

</types>

<message name="GetLastTradePriceInput">

<part name="body" element="xsd1:TradePriceRequest"/>

</message>

<message name="GetLastTradePriceOutput">

<part name="body" element="xsd1:TradePrice"/>

</message>

<portType name="StockQuotePortType">

<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePriceInput"/>

<output message="tns:GetLastTradePriceOutput"/>

</operation>

</portType>

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetLastTradePrice">

<soap:operation soapAction="http://example.com/GetLastTradePrice"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

49

</output>

</operation>

</binding>

<service name="StockQuoteService">

<documentation>My first service</documentation>

<port name="StockQuotePort" binding="tns:StockQuoteBinding">

<soap:address location="http://example.com/stockquote"/>

</port>

</service>

</definitions>

As can be seen this document brings with it a lot of implicit semantics. First
of there is the data types. Except for the structure of the type, we don’t
really know what a TradePrice or TradePriceRequest is, and the computer
certainly don’t. The meaning of TracePrice could be one in one company,
and another in a different company. This pertains to what was discussed in
section 2.1.2 regarding information heterogeneity, and is clearly a case of a
contextual mismatch, and perhaps also naming.

Further, the document has elements called portType. These define the op-
erations the service has and their ins and outputs, but nothing about the
behaviour of the service or pre or post conditions that has to be satisfied for
that matter. There are more implicit semantics in this document, but with
examples provided here, the reader should have at least an idea of what chal-
lenges there are to automating consumption of such services without formal
semantics.

To alleviate this issue, a working group within W3C started working on a
set of extensions to WSDL know known as SAWSDL. SAWSDL[28] is now a
recommendation from the W3C for expressing relations to ontologies in XML
documents adhering to a schema. The original intent for the standard was
to provide a way to annotate WSDL with semantics, but it was soon realized
that this could be done as a general all purpose solution for annotations on
the XML level.

The standard is simple and does not say anything what-so-ever of which
semantic technology one is supposed to use. It adds the ability to specify a:

• Reference to a Concept through the use of a modelReference.

• A mapping from a Concept to XML through the use of a loweringSchemaMap-
ping.

50

• A mapping from XML to a Concept through the use of a liftingSchemaMap-
ping.

The reference, specifically a modelReference, can be applied for the following
elements in WSDL:

• interface

• operation

• faults

The elements for XML schema documents are:

• simpleType

• complexType

• element

• attribute

The recommendation also supports embedment of semantic models in the
WSDL documents themselves7.

An example of applying SAWSDL is in the tool hyperModel. This tool is
made to support the modeling of XML Schema Documents through UML.
The application of SAWSDL is described in [6]. The reason to integrate the
semantic annotations is to realize the following benefits:

• Semantic classification

• Message or component discovery and reuse

• Unify XML naming and design rules

• Semantic validation of messages

• Mapping between message vocabularies

7These are contained within the <WSDL:description> element.

51

To do this a prototype was built using Eclipse technologies as EMF and
EODM[25]. The implementation of the annotation mechanism was done
through a small UML profile that had one stereotype that allowed the anno-
tation to be captured. This profile was based on the SAWSDL specification.
Further work on this implementation was planned to feature realization of
some of the benefits mentioned above.

Another recent8 effort to use semantic annotations through SAWSDL was
described by Derouiche and Nicole in [9]. This effort was aimed at producing
a prototype for using semantic web services in scientific work flows. They
regard scientific work flows as data-driven work flows where the compatible
parameters of the activities they structure are connected. The reasons to
introduce semantics in these work flows is stated to be that:

. . . scientific work flows operate on large, complex and heteroge-
nous data.

This leads to resource mismatches that Derouiche et al states requires inter-
vention by the designer and is time consuming for scientists. The solution
they envisage is the incorporation of semantics through annotations.

Their prototype incorporated SAWSDL as annotations for web service op-
eration parameters. This enabled them to develop a Windows Workflow
Foundation9 custom activity for semantic web services. This activity enables
the prototype to compose semantic web services and the ability to bind the
operation parameters at execution time. Given to services, A and B, the
binding works by first translating service A’s XML data to the correspond-
ing semantic (ontological) data (lifting) and after the successful execution
this is then mapped(lowered) to XML data conforming to the XSD of service
B’s input parameter.

This prototype shows that using SAWSDL in scientific work flows is possible.

3.3 Discussion and Evaluation

This chapter has provided an overview of possible solutions for the prob-
lems outlined in chapter 2. The solutions reviewed in this chapter addresses
different aspects of the problems.

82008
9WWF is a Microsoft Technology, part of .NET 3.X, that supports definition, execution

and management of long-running work flows in a Microsoft Windows environment.

52

3.3.1 Discussion

To represent the domain of discourse the chapter has review UML class di-
agrams and a model driven approach for ontologies; ODM. These two tech-
nologies has common roots, as they both are represented using a metamodel
based upon MOF, but ODM represents a much more advanced, powerful and
versatile system for representing knowledge—ontologies.

The biggest “problem” with ODM usage would be that there are few con-
straints on how to represent the information. Luckily there are best prac-
tices to do this in the field of ontology engineering. This theme is not further
discussed here, as it out of the scope of the thesis.

The Semaphore tool and ModelCVS project both contend in the same space,
which is concerned with mapping models between each other. The approach
they take are radically different. Semaphore works more as a procedural
tool, with a input, mapping functions and output. ModelCVS has more
focus on extracting the inherit knowledge in the input models, and works by
transforming them to ontologies in two steps before the mappings are done.

Given this, it is fair to say that Semaphore represents a simple and fast, but
probably less accurate, tool for mapping between models. ModelCVS is more
complex, slower to work with and very accurate (if enough care is taken in
the mapping process). ModelCVS also adds some more value in its process,
since the input models in fact are transformed upwards to ontologies.

Another technology that is related to the work done in Semaphore and Mod-
elCVS is SAWSDL. This technology is somewhat narrow (works for XML),
but this doesn’t exclude it from model driven development done MDA style.
This is because the models are exchanged as XMI, which is XML with a
OMG provided namespace. SAWSDL is very light, since it doesn’t embed
more information than strictly needed:

• a reference to a ontology concept

• a reference to a lowering operation

• a reference to a lifting operation

This means that is would probably be simple to incorporate some sort of
use of SAWSDL in model driven tools. For instance, if tool A allows model
elements to annotated with references to ontology concepts, these can be
embedded in the XMI documents with SAWSDL. Tool B, also supporting
references via SAWSDL, can then read the XMI file with the annotations

53

and allow the developer and or tool. to utilize the same vocabulary as was
used when creating the model in tool A.

The “problem” with SAWSDL is that it is bound to a specific technology
(XML) for its annotations. A higher abstraction level would ensure that this
specificity is a matter of translation between the higher and lower levels. The
general idea of embedding references to external resources nonetheless is a
simple and feasible idea that could be implemented at a higher level.

3.3.2 Evaluation according to solution requirements

To evaluate the two primary solutions according to the solution requirements
outlined in chapter 2 is not easy, as the solutions differ in terms of what they
want to solve and how they do it. Based on this fact, this evaluation is in no
way a score card, merely a way of summarizing the capabilities the solutions
provide in light of the solution proposed in this thesis.

The evaluation is based on the different requirements outlined in table 2.1.

#. Description ModelCVS Semaphore
1. Shared, model driven, vocabulary for multiple models 2 0
2. Visual tooling to develop/edit the vocabulary 2 0
3. Horizontal mapping operations between the models 2 2
4. Code generation from the vertical mappings 2 0
5. Open implementation environment 1 2
6. Extensible implementation wrt. to future additions 1 1

Final score 10/12 5/12

Table 3.1: Evaluation of solutions. Range from 0 to 2.
Note: Evaluation based on available information and not through actual use.

As seen in table 3.1 the evaluated tools only satisfy parts of the requirements
of the solution this thesis proposes in chapter 4. This is due to the fact that
the area is under active research, where different research projects naturally
will have different goals to accomplish. There is also a lack of commercial
solutions in this field.

54

CHAPTER

FOUR

SMAT PROPOSAL

This chapter outlines the proposal for the Semantic Model Annotation Tool(SMAT),
which will provide a proof of concept for this thesis.

4.1 Vision

The vision for SMAT is to provide a tool-set for semantic annotation of
models on the platform independent level. This will be accomplished through
a tools et that provides:

• A annotation editor

• A ODM implementation

• A component providing infrastructure for transformations, based on
the annotations

The tool will be open and flexible with regard to future improvements in
the technology stack. To achieve this openness and flexibility, the tools et
will developed on the Eclipse platform. This platform provides both the
infrastructure, tools and standard implementations that are needed for the
development of the tools et. The platform also encourages development of
plug-ins with high coherence and low coupling through the use of standard
called OSGi, discussed further in the section 4.2.1. The Eclipse platform also
has a vibrant and living ecosystem that gives a certain guarantee that the
platform will undergo further improvement for the years to come and allow
for further improvement of SMAT as new features become available.

55

4.2 Architecture

4.2.1 Eclipse Platform

The architecture will be realized with technologies that are part of the Eclipse
project. At the core of the Eclipse project is the Eclipse platform. This core
part provides the infrastructure that other projects within the Eclipse project
builds on. The project itself started out as an attempt from IBM to provide
a more open platform for development of tools and end-user features[7]. It
became open source in 2001 together with the creation of the Eclipse consor-
tium that besides IBM consisted of eight other organizations such as Borland
and Rational. Even with the consortium in place, many in the industry per-
ceived the project as a IBM controlled initiative. This resulted in that many
third party vendors, and potential contribute rs, were reluctant to devote
resources to the project. In a move to increase credibility of the project IBM
and its partners in the consortium formed the Eclipse Foundation in 2004,
which is a independent non-profit organization that employs its own staff,
supported by the organization members.

Today, the Eclipse project spans multiple subprojects, that provides func-
tionality ranging from JPA implementations (Eclipselink), Java development
to development productivity (Mylyn). The projects of interest for this thesis
are the Eclipse Modeling Framework(EMF) and Graphical Modeling Frame-
work(GMF). They provide frameworks for both metamodeling and construc-
tion of domain specific languages. These frameworks provide the needed
modeling facilities, code generation and a methodology for development of
metamodels and associated domain specific languages. This enables develop-
ers to quickly either have all their needs fulfilled with the code generated from
the frameworks, or use the code as the foundation for further development.
EMF and GMF are further discussed in sections 4.3.1 and 4.3.1.

Eclipse and OSGi

The Eclipse platform also features an Open Services Gateway Interface(OSGi)
framework and container called Equinox. OSGi is not a new technology, but
recently it has gained more and more attraction from the Java developers
community. In a nutshell, an OSGi runtime provides a Service Oriented Ar-
chitecture for Java (on the JVM level) where services can be dynamically
published, started, stopped, monitored and more at run-time. This encour-
ages, and enables, developers to create modular systems with high cohesion
and low coupling—a well known best practice from object oriented system

56

development. It also shifts the programming paradigm towards contract-
first, where the one program against the provided service interface which in
effect serves as a contract to what the service should deliver and consume,
avoiding to programming against the concrete implementation.

The use of OSGi requires that application developers program against a
OSGi API and deploy their application to a container that implements OSGi,
Eclipse Equinox1is as said one, others include Knopflerfish and Apache Felix.
To enable the services of the different modules in the application to be dy-
namically loaded, instantiated and consumed on has to adhere to the OSGi
standard format of packaging the modules. This means that they will be
packaged and organized into so-called Bundles. These bundles are nothing
more than Java Archive(JAR) files that follows a standard structure and
provides a file (manifest.mf) with metainformation . This file provides infor-
mation about the bundle, such as its name, required bundles, exposed service
interfaces and how to activate the bundle.

A manifest file could for instance look like this2:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: HelloWorld Plug-in

Bundle-SymbolicName: foo.bar.baz.HelloWorld

Bundle-Version: 1.0.0

Bundle-Activator: foo.bar.baz.helloworld.Activator

Bundle-Vendor: Foobar

Bundle-Localization: plug-in

Import-Package: org.osgi.framework;version="1.3.0"

As can be seen the manifest defines a Bundle-Activator, this is a special
purpose class that implements a BundleActivator -interface. This allows the
container to issue start and stop commands to the bundle itself and providing
the bundle with a context An example of an implementation can be seen
here:3:

package foo.bar.baz.helloworld;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {

1http://www.eclipse.org/equinox/
2Adapted from: http://www.javaworld.com/javaworld/jw-03-2008/jw-03-osgi1.html
3Adapted from the same article as the manifest

57

public void start(BundleContext context) throws Exception {

System.out.println("Hello world");

}

public void stop(BundleContext context) throws Exception {

System.out.println("Goodbye World");

}

}

The purpose of this is to allow the bundle to e.g. do resource initialization.
This could range from eager loading of data from a file or creating a pool
of database-connections to be used by the bundle. If the bundle throws a
exception during the initialization the container will not put it into service.

OSGi was adopted for the Eclipse infrastructure as of version 3.04 and the
plug-ins that are made for use on the Eclipse platform are essentially OSGi
bundles. OSGi is important in the implementation context of this thesis,
since it allow great modularity and enables dynamic behaviour. This is done
by allowing interchange of, starting of and stopping of modules at run-time.
This is an important property with regard to e.g. interchanging and/or
transformation-engines, validation frameworks and so on. It gives the user a
real possibility to extend the tool. As of such it adheres to another important
principle in software development, the Open/Closed principle: Open for ex-
tension, closed for modification. This is an important principle, as it ensures
that no modifications should be needed in the entity that is extensible. This
avoids propagating changes through several interdependent modules.

As of such the proposal contained in this chapter outlines only plug-ins that
implements the OSGi standard—in accordance with how the Eclipse plat-
forms works.

4.2.2 Architecture description

To fulfill the vision previously stated, a core architecture need to be estab-
lished. SMAT will consist of five main components:

• ODM Implementation

• ODM Editor

• Semantic Annotation Model (SAM) Implementation

4http://www.research.ibm.com/journal/sj/442/gruber.pdf

58

• SAM Editor

• SAM Mapping Service

Adding to that, SMAT will in addition take advantage of an existing, third
party, UML2 implementation. This implementation is part of the Eclipse
project, and is called UML 2 Tools. It will provide the necessary parts
to access UML 2 PIMs, validation of them and, if desired, editing. It is
implemented in the usual Eclipse APIs (EMF, GEF, GMF).

As for the five main components, the ODM Implementation component will
be a implementation of the OMG ODM metamodel for ontologies. It will
need to feature the metamodel itself and facilities for manipulation, saving
and loading of files. This component will implemented using EMF.

For the ODM implementation to be useful there will also be a need for a
simple editor. The is provided by the ODM Editor component. This editor
will be a simple editor based on the graphical formalism of Concept Maps,
described later in the design section(4.3). The implementation will be layered
on top of the ODM metamodel implementation and realized through the
means of GMF.

To relate the different PIM models and the common ontology, the Seman-
tic Annotation Model(SAM) component will be developed. This model will
also be implemented using EMF. The sole purpose of this component is to
represent the binding between ontologies and PIMs and provide facilities for
import and export of these. This is realized through EMF.

Utilizing the Semantic Annotation Model, and providing the actual annota-
tion functionality will be the responsibility of the SAM Editor component.
This editor is also developed using GMF.

At last the SAM Mapping Service component will provide the services nec-
essary to facilitate (automatic) mapping of models and ontologies. This ser-
vice is responsible for providing services for automatic mapping and export
of these mappings to target platform specific models. This component will
need to cater for different types of transformation languages and different
transformations. This component will be implemented as an OSGi module.

The previous architectural description enables us to draw figure 4.1, shown
below:

59

Figure 4.1 Overall SMAT Annotation Architecture

60

4.2.3 Ontology integration strategies

Since the tool potentially will need to handle multiple ontologies, either in-
terconnected or stand-alone there is a need for a strategy or at least view, on
how they should be integrated with both each is needed. Three strategies for
using ontologies in information integration is described in [29]. These three
are:

• Global ontology

• Multiple ontologies

• Hybrid ontology

The global ontology suggests using a lone ontology that encompassed all the
knowledge. This creates a shared vocabulary that all information is described
with. This is unfeasible since it can lead to ambiguities if several information
sources have different views of the domain, since it will lead to several levels
of granularity and added complexity.

Multiple ontologies on the other hand entails the use of several ontolo-
gies, that are related horizontally. This allow the heterogeneous information
sources to be described by a ontology that matches the domain. The problem
is that the horizontal relation between source ontologies makes it difficult to
compare them due to the differences. The ontologies would probably also be
expressed with varying degrees of granularity and aggregations. Essentially
the use of the strategy would only push the problem of heterogeneity to a
more abstract level.

The last strategy is the hybrid ontology. In this approach, one defines a
common vocabulary. This vocabulary expresses the knowledge all informa-
tion sources have in common—common constraints, concept definitions and
so forth. This becomes the base ontology that ontologies beneath specializes
on. This approach assures that the specialized ontologies will have a common
ground, making it easier to map between them, but at the same time allow-
ing heterogeneous view on the domain as the lower ontologies specializes it.
This approaches is also known as upper/lower ontology.

Essentially SMAT will resemble the last approach since the PIM models will
be, amongst other, the specialization of the domain knowledge expressed in
the core ontology. Further, one can also build layers of ontologies in the
core ontology part, but they shall also be “governed” by an upper ontology,
essentially a shared vocabulary to avoid inconsistencies and ambiguities to
propagate to lower levels.

61

4.2.4 Annotation process

Usage patterns

The tool will not feature a specific process with steps that has to be followed
to use it, but the architecture and design of the application will dictate some
usage patterns. These are briefly described in this section.

The main usage patterns of the application are summarized in table 4.1.

Name
1. Annotation
2. Mapping
3. Transformation
4. Validation

Table 4.1: Usage patterns

The patterns revolve around the use of an instance of the SAM metamodel
and the tool surrounding it. The metamodel instance is the key artifact.

The Annotation pattern concerns the primary use of the tool where the
models will be related with annotations. The primary operation is of course
annotate. This operation allows the user to select a model element and relate
it to an element in the ontology. This relationship is persisted in a instance
of the SAM metamodel (see section 4.3.4). To be able to annotate anything,
the user will have to load the model(s) and ontolog(y|ies) that he or she
wants to use in a annotation. These can either be loaded into an existing
annotation model, or in a new one. The current relations, if there are any,
are then displayed in the SAM Editor, and the user can choose to either edit,
delete or create new mappings. The editor will feature feedback for the user
with regard to validation of the relation.

The editor will also feature a possibility to explore possible annotations that
can be applied through different ways of examining the related models and
ontologies using e.g. matching words, synonyms etc.

In the Mapping and Transformation usage patterns the primary concern is
both the construction and execution of the mappings made. Hence, two
primary operations exist here: construction and execution. Construction is
about constructing mappings that can both lower and lift the model from and
to the ontology level, using the available constructs in the SAM metamodel.
The execution is concerned with making the execution options, i.e. both
the transformation of mappings and the transformation itself, available to

62

the user. This implies that the user will be able to select from different
registered mapping engines and outputs.

Last, the Validation pattern will allow the user to determine if the relation
and mappings validate—both in relation to the ontology, as well as a target
model.

Overall process

The overall usage of the process will consist of the 4 steps outlined in the
previous section. The user will develop a annotation model, mappings and
execute transformations. The validations will be done throughout the process
to ensure that the relations and mappings are correct. A depiction of the
process is seen in figure 4.2.

Figure 4.2 General SMAT usage process

63

4.3 Design

This section describes the five core components in greater detail and provides
an introduction to the frameworks used.

4.3.1 Eclipse frameworks

EMF

Eclipse Modeling Framework is an umbrella project offering several different
APIs/frameworks for use in metamodeling. The projects range from dis-
tributed models to validation. The main project is the EMF Core, which
offer us the possibility to define and use metamodels. This can be done
programmatically by annotation of Java files, by XML (using a XMI/Ecore
namespace), by XML Schema, or by using one of the provided (GUI) editors,
or a third party editor that support EMF.

XML Metadata Interchange(XMI) is a OMG technology that supports ex-
change of models in a standardized way. This enables model sharing between
different implementations of the same standard. E.g. if a UML Profile5 is
defined and provided a visual notation, serializing it as XMI will enable other
tools supporting XMI to present the profile exactly as it was conceived in
the first tool.

EMF provides its own metamodel API called Ecore. EMF started as a imple-
mentation of MOF, but evolved further based on the experiences made. This
resulted in Ecore[10], which is a core subset of MOF, and said to be MOF
compliant. In MOF 2.0, a similar subset was made, called EMOF. The dif-
ferences is mainly naming, and EMF can read and write EMOF serializations
transparently.

When a Ecore file has been produced, one has the possibility to generate
code from it. This process creates a so called genmodel file that can be
customized with regard to how the code will be generated. Instantiating the
code generation on the genmodel creates three Java projects that contain:

• Model code

• Edit code

• Editor code
5UML Profiles are user-adaptions of the UML metamodel.

64

The model code is a reflection of the domain that was modeled in the Ecore
step. The code is standard Java, with generated interfaces implemented
by generated classes. The edit code represents the API for serializing and
manipulating the model. Other facilities include code for building editors.
The editor code provides editor code that conforms to the proper style for a
EMF model editor and serves as a starting point for further customization.

GMF

GMF extends upon Graphical Editor Framework(GEF), and provides a model
driven design of these, allowing generation of code for diagramming tools.

The architecture of GMF is compromised of several metamodels that provides
the necessary infrastructure and information needed to define the components
in a Domain Specific Language. The instances of the metamodels convey the
graphical definition, tooling definition and the mapping between the source
metamodel, graphical definition and tooling to create the diagramming tool.
The metamodels are:

• Notation model

• Graphical definition model

• Tooling definition model

• Mapping model

• Generator model

Of these metamodels one will be instantiated at runtime while other will be
used in the work of creating the diagramming tool. The notation model is
instantiated at runtime and stores the visual information of the diagram—
where the nodes are positioned, their size, where links bend and so forth.
Each instance of a diagram tool developed with GMF has a notation model
instance attached. To actually generate the code necessary to get to the stage
with the notation model in use, we need to execute three main activities6:

1. Defining a graphical definition

2. Defining a tooling

6The definition of the abstract syntax with EMF is a dependency before carrying out
further work with GMF

65

3. Defining the mapping between the metamodel, graphical definition and
tooling.

The graphical definition is the activity that determines how the visual lan-
guage of the diagramming tool will look like. For instance one can define how
the canvas(drawing area), nodes and associations will look. The definition is
expressed in a model, using a tree view editor. This definition is not tied up
against the metamodel. To separate common graphical definitions from the
more specific parts of the language, it is possible to make several graphical
definition files to enable easier reuse.

To instantiate nodes, associations and in general do anything worthwhile
with the tool we need tooling. The tooling model will specifies what tools
we’ll have, where they will be placed (palette) and how they will look (colors,
icons etc.). The tooling definition model cannot be used directly to generate
any code, and is utilized in the mapping model.

After these to preliminary activities it is time to sew together these models.
To do this we create a mapping model. In this model we define relations
between the metamodel elements, graphical definition and tooling definition.
To allow a tooling element to create a node with a certain look, we need
to create a definition in the mapping model that states that a node in the
diagram can be created with so-and-so tool, and that the node will look like
the definition in the graphical definition model.

With these three activities done we can move on to the code generation. On
the way to this there is a intermediate step that generates a so-called genera-
tive model, as in EMF. This model is in some respects the PSM of GMF, and
allows us to do further configuration with regard to the diagramming appli-
cation itself. Customizations are not necessary, and often not needed. Some
examples are the possibility to change the plug-in name, ID and package
statements.

The process is summoned in figure 4.37. Some

When the generative model is ready, we can proceed to generate java code
for the diagram tool. This code is produced, as in the case of EMF, as a
separate plug-in project in Eclipse. After generation, it can be launched
as an Eclipse application or optionally packaged as a standalone rich client
application(RCP).

7From GMF itself

66

Figure 4.3 GMF Dashboard. Actual process outline in GMF

UML2 and UML2 Tools

UML2 and UML2 Tools is Eclipse subprojects that provides plug-ins for
working with UML 2. This includes both editors, metamodels, persistence
and other necessities for working with UML 2. Since SMAT have to be able
to read UML 2 models, from XMI, it makes the project ideal for inclusion
in SMAT. UML2 and UML2 Tools is plug-in based, and SMAT will have a
dependency to these projects.

Depending on the distribution of Eclipse that the user has acquired, the
UML2 and UML2 Tools might either be downloaded via an update site in
the Eclipse update manager by the user or be required as an dependency
when installing SMAT via the Eclipse update manager.

The update manager is component in Eclipse that allows seamless installa-
tions via so-called update sites. These sites are published web resources with
special index files that tell which plug-ins are available on the server.

4.3.2 ODM implementation

ODM consist of 5 packages. The implementation used in this thesis will only
feature the two most important packages: RDFS and OWL. The implemen-
tation is done a straightforward Ecore model using EMF. Constraints are
expressed using OCL, and utilizing the OCL plug-in8 for Eclipse the result-

8http://www.eclipse.org/modeling/mdt/?project=ocl

67

ing EMF code will adhere to these. Code generation is performed to produce
both the model domain code and the model manipulation and I/O packages.

4.3.3 ODM editor

The ODM editor is built using GMF and feature the simple graphical nota-
tion Concept Maps. This notation is used for instance in a tool called IHMC
CmapTools9. The notation itself was developed in the 70’s at Cornell Uni-
versity, and has been in use for capturing the relationships between concepts
since then.

A concept maps is simply a diagram with concepts that are related through
linking phrases and connections, resembling named associations in UML.
This makes the diagrams easy to grasp for non-technical people and fast
to produce for everyone. An example diagram made with the tool IHMC
CmapTools is shown in figure 4.4.

Figure 4.4 Example concept map

The mentioned tool is a good example on how quick the maps can be de-
veloped, since it requires so little interaction, other than a some quick clicks
with a mouse and some typing to name the relationships and concepts. Other
tools that e.g. use UML as a formalism are often harder to work with, they
also has a greater level of detail such as explicit inheritance, composition and

9http://cmap.ihmc.us

68

so on. On the other hand one can argue that this level of detail is required
to make a decent and useful, especially in a MDE setting. Evans[11] argues
that:

A project faces serious problems when its language is fractured.
Domain experts use their jargon while technical teams members
have their own language tuned for discussing the domain in terms
of design

The language Evans talks about here doesn’t necessarily have anything to
do with what graphical notation one uses to express ideas, but that domain
experts and technical experts speak about the domain in different terms. He
encourages a binding between the domain model and implementation. In
a MDE setting, this binding could be between a ontology and a PIM. The
Semantic Annotation Model described in the next section would then provide
the necessary glue to relate these models. Since both the domain experts and
implementers need to speak about the same domain it makes sense to choose
visual notation that is as simple as can be with regard to the constructs used.
Concept Maps is a good fit in this sense, since it essentially just features
concepts and their relations. Adding to that, it could also be possible, and
easy, to make a gradual expansion of this notation to support some more
detailed statements, such as e.g. cardinality, which is also available in OWL
and implicitly in ODM.

Another question with regard to the editor is to show the relations between
the ontology and target models. It is of course a possibility, but could very
well create a lot of visual “pollution”. The realization could e.g. be done
on the concepts in the map itself, or on a separate pane that listed the
relations in for instance a table. In SMAT the ODM Editor will not show
any relations, to keep things as simple as possible. Further extensions of the
editor is discussed in chapter 7 under “further work”.

Since the editor and metamodel infrastructure are separate projects, the edi-
tor can later be expanded or replaced with relative ease if deemed necessary.
It also allows us for instance to replicate the current editor, enhance and
expand it while still supporting the original editor without worrying about
legacy issues that can arise in projects where modules are tightly coupled.

4.3.4 Semantic Annotation Model

The Semantic Annotation Model is also built using EMF.

69

SAM metamodel

The Semantic Annotation Model, SAM for short, is a lightweight metamodel
that stems from the arguments in 4.3.4.

Annotation Scheme

The architecture provides annotation of target information models through
a simple and flexible mechanism: a third model. This model will allow us
to relate concept from an ontology model based off ODM to the information
model (usually UML Class Diagrams). This is also one of the approaches in
the field of traceability, and the main feature of this thesis, annotations is a
form of traceability

Basically there are two approaches to relate models to each other. Either one
can extend the target models themselves and annotate them directly. This
can either be done in a light way with only references to the related model,
or more heavily with full embedment. The other option is to use a third part
model that contains the relations between the source and target model, as
described in the paragraph above. Kolov et al. discusses both approaches in
[18] and their pros and cons.

In favor of an embedded annotation technique is that it allows for tooling
that easily and instantly can show the annotations on the model, this is of
value to the user. The con is that it will also contribute to the pollution of
the model. For instance the environment can easily be so “crowded” by both
annotations and their targets so that the user eventually will have a hard
time separating the two and/or figuring out the model.

Therefore Kolov et al[18] states that an external model is often preferred(in
the traceability context). It allows the target and source models to be de-
coupled and it doesn’t have the problem with pollution of the target model.
Though, this approach comes with it own set of problems too. The models,
since they are decoupled by the external, will be allowed to vary indepen-
dently, reminiscent of the structural bridge pattern where an abstraction
(ontology) is decoupled from the implementation (e.g. UML Class diagram).
This gives flexibility at the expense of less control, e.g. changes in either mod-
els will have to be carefully monitored to detect inconsistencies and broken
constraints in either models.

Implementing a tool that can support this is not necessarily straight forward,
but can be accomplished in a least two ways:

70

• Monitoring the model for changes and checking for consistency after
updates. Post validation scheme.

• Monitoring the model for changes as they happened, and check for
consistency before the change is allowed to happen. Pre validation
scheme.

The first approach is the most lightweight, as it can be implemented indepen-
dently of the information model tool, it only needs to monitor for changes in
the model file(s). The second approach is harder, as it needs to be integrated
directly into the information modeling tool, and more resource intensive as
it has to determine if the changes conflict while the user is interacting with
the model(s).

Another advantage of the external model is that it will be simpler to introduce
new functionality without the need to do another modification in the target
model. An example could be to define mappings, e.g. how a concept in an
ontology maps to entities in a class diagram.

Other more easily achieved functionality could be the introduction of ver-
sioning and other meta data. Round-trip engineering would probably be
easier to. One special case also presents itself: for instance if one already has
a large information model contained in one or more class diagrams, it/they
could be converted to an ontology and in this same process the annotations
could be made with the annotation model to support the relation between
the ontology model which would now probably be the authoritative model
and the class model that would be dictated by the conditions imposed by the
ontology model. Also, another problem presents itself during the annotation
itself—in what way shall we represent this to the user? There’s no given
answer here, but the most likely answer is to show the relations themselves
in a simplified view that contains only the annotated elements and their
relationship.

On the other hand it gives us the possibility to annotate models without
the need to modify their metamodels to accommodate the annotation. This
is also a challenge. When we can annotate “anything”, then what will we
annotate? This is a valid question, but outside the scope of the thesis, as it
relates to which methodology one uses when working with the technologies
and tools in the this domain.

At the other end of the spectrum is a model that is not annotated “enough”.
E.g. it does not provide any substantial value, and incentive, to annotate a
information model when you don’t add more information through the anno-
tation, other than the possibility of transformation to semantic technologies

71

later on(although this can be argued to be a substantial contribution to a
model, this could also be partly achieved through suitable transformations
from the information model).

Mapping operations

The metamodel must support different mapping schemes for the description
of mappings to and from the ontology. These mappings will also need to be
described in an abstract enough manner to allow for different technologies to
execute the mappings. The basic operations that will need support are:

• Split (String)

• Join (String)

• Substring (String)

• Replace (String)

The string operations work on character streams, such as splitting a field
based on a delimiter or joining one to adhere to the ontology definition.
The substring operation will allow the transformation language to extract
the portions of knowledge, and the replace operation will allow complete
replacement of values.

These operations will contained within the SAM metamodel, and be con-
structed in a way that allow the specific units of mappings to be reused in
other model-ontology relations. Since the operations in some cases need to be
applied procedurally to reach the required result, the metamodel will support
a sequenced composition of the operations.

The service providing the execution of the transformation operations is dis-
cussed in 4.3.6.

Transformation scheme

A central aspect of SMAT is the transformation scheme—how do we trans-
form from one model to the other? The transformation operations were
outlined in the previous section, this section will take a look at how we can
execute these mappings in a sensible manner.

As we saw in chapter 3, there was two tools that supported the transformation
between models utilizing ontologies: Semaphore and ModelCVS. These two

72

tools represent two approaches to the transformation problem. ModelCVS
takes the “hard” approach by lifting the input model to the ontology level in
three consecutive steps. All of these steps will require human intervention
to achieve the intended result. In Semaphore, the focus is a bit different—
ontologies or UML models are used as a means to describe the reference
model, and with that reduce the number of mappings needed to go from one
model to another.

This presents to possibilities for the transformation scheme in SMAT:

• Lifting the source model up to the ontology and lowering it on the
target side. E.g. ModelCSV.

• Generating transformation rules that can be used at the PIM or PSM
level. E.g. Semaphore.

SMAT will use a combination of both approaches. The mapping operations
will lift the source model to an intermediate format and then lower the model
to the target using the latter’ lowering operations. The transformation will
preserve the annotations to the ontology elements for the whole duration of
the process, enabling us to do a simple traceability on the mediated models.

This mapping approach ensures that we avoid the n
2
− 1 situation where all

models must features mappings between each other, lending us instead to
the scenario of describing 2n−1 mappings. This is much more feasible when
working with a large number of models, and reduces redundancy and lowers
coupling between the models.

Metamodel structure

The metamodel will use the structure of SAWSDL as its starting point.
SAWSDL provides a modelReference, lifting and lowering references that
point towards some resource that can do the mappings. The core concern
of the functionality that needs to be supported is obviously the annotations
themselves. Since SAWSDL has the annotation embedded in the source it-
self and SMAT will have it externally we need to add another reference. To
achieve this, and avoid confusion, the SAWSDL modelReference is named
ModelReferenceSource—meaning it is referring an element of a model in-
stance. The opposite, the target of the annotation, is named OntologyRefer-
enceTarget. This reference points to the ontology concept that the annotation
targets.

73

Metamodel core annotation structure This core is depicted in figure
4.5. The source and target are two distinct classes that both inherits from
IdentifiableElement. It is a abstract class that makes subclasses identifiable
via a id property. The relationship between the source and target that make
up one annotation is that of a normal association. One could make the case
that the proper relationship here would be a composition, but that would im-
ply that the source and target only could be part of one annotation. It is not
entirely obvious that they should be allowed to be part of more annotations
than one, but it could be the case that a domain model contained several
model elements that mapped to the same concept in the target ontology.

Figure 4.5 SAM core annotation structure

Another way to approach that is to allow annotations to have multiple
sources, something that would make working with the model hard, since it
lower the distinctiveness of each annotation—rendering it ambiguous. There-
fore, a Annotation is related to exactly 1 ModelReferenceSource and exactly
1 OntologyReferenceTarget, but both of these (their respective sources) are
allowed to be related to several annotations. Further, the Annotation inherits
from NamedElement, allowing it to have a distinct name. The NamedEle-
ment itself inherits from IdentifiableElement, so it can contain an unique id.

74

After these additions, the metamodel looks like figure 4.6.

Figure 4.6 SAM core extended

Metamodel core mapping structure The second concern that needs to
be addressed is that of lowering and lifting mapping. These are connected to
the annotations, but should be as decoupled as possible from the annotation
to allow for:

• interchangeability

• reusing similar mappings several places

• modify the mapping without affecting the rest of the annotation

• support of different mapping strategies

This leads us to a design where the Annotation element of the metamodel
has an association to a Mapping. This Mapping is composed of a Lower-
ing mapping construct and/or Lifting a lifting mapping construct. This is

75

an abstract enough design that allows us to cater for several ways of doing
the mappings. One problem that arises is that there i seemingly no direct
association between the source and target the mappings are done for. This
is intentional, since the source, target and the two transformations are im-
plicitly highly couple, i.e. a change in either source or target will break the
corresponding transformation(s). Because of this, the metamodel need to
handle this implicit coupling in a way. The most straightforward way is to
incorporate a simple versioning strategy, where the tool checks for changes
in source and target since the last time the annotation was created or edited
and warns the user that the transformation has changes, either in a general
manner or by high detail. This is out of scope for the thesis, but a implemen-
tation suggestion is taken into the structure of the metamodel nonetheless.
It is handled later in this section.

Thus the basic annotations with mapping structure looks like figure 4.7.

At this abstraction level there is of course not enough detail to support any
mapping at all. To support a set of diverse mapping strategies the lowering
and lifting mapping needs association to these concrete mappings. Since
a complete mapping (both lifting and lowering) will map between model,
ontology and model again we need to support some form of language to
properly do this. The language can either be native of the SAM or be brought
in from a part of the rest of the platform. One example of the former is to
create a built-in language in the metamodel, with an associated DSL, and
then transform its instances at compile time, meaning that the usage will
be evaluated and transformed to a concrete mapping technology when the
user desires to execute the mappings. This could be achievable with, for
instance Atlas Transformation Language (ATL), which is a model to model
language—primarily declarative in its form. The complexity of this solution
really revolves around how complex the native language ends up being, but
the upside is that creating it and the rules to compile it to a suitable execution
format is done once per support transformation language.

The other alternative is to “out source” the transformation. This means that
the lowering and lifting mappings only will hold enough information to be
able to execute mappings that are non-native when they are executed. This
solution adds complexity in the form of possibly many external dependencies,
but this is also the strength of the approach; it is very flexible. Recogniz-
ing the benefits of both of these approaches, the design chosen is that of a
small native transformation language, but with accommodations for future
extensions of both approaches.

76

Figure 4.7 SAM core mapping structure

77

In the case where a custom transformation file is preferred, e.g. an ATL trans-
formation, the metamodel will need to contain both a reference to the file
as well as a notion of which transformation engine that will execute it. This
is known as the TransformationFile and TransformationExecutionEngine in
the metamodel. Since mapping files themselves are applied to one specific
mapping it limits what languages can be used. The most likely uses are to-
gether with XSLT or MOFScript modules. A possible expansion would to
support some form of relation to specific regions of code in transformation
code, this is further discussed in chapter 7.

Metamodel details To be useful, the metamodel requires some more de-
tails. Especially we need an abstract way of relating supporting the refer-
ence of models in the metamodel. To do this two datatypes are added to
the metamodel. These are specific of EMF, and are an indirection to the
abstract class AbstractReference that will hold the specific reference, using
either EMFs API or some other API of choice.

The references for the Annotation is typed with the datatype Reference, while
the mapping references are typed with MappingReference. This results in the
updated metamodel structure shown in figure 4.8.

4.7.

SMAT mapping language The mapping language will be concise and
support a set of operations that can be run procedurally to support most
mapping scenarios. The operations needed was determined in section 4.3.4
and are:

• Split (String)

• Join (String)

• Substring (String)

• Replace (String)

The premise of these operations are that they operate on the presumption
that we are dealing with string values in the class and attribute instances
we transform. With this presumption we give up type safety, this can be
remedied either by inferring the type from the ontology, or by expansion of
the metamodel to support desired types. This is deferred to future work.

The simple metamodel for the mapping language will look like figure 4.9.

78

Figure 4.8 SAM core mapping structure with datatypes

79

Figure 4.9 SAM mapping language

80

The usage of the language is to build directed graphs of operations that
are executed in a serial manner, in effect a ordered list of operations. This
is done by composition of Type, with ordering persisted in sequenceID, by
MappingDSL. The sequenceID has to be assigned programmatically at ini-
tialization. The metamodel is not sufficient detailed to be implemented as
is, but it can be reasoned about on a conceptual level. The detailing and
implementation is deferred to future work.

Handling differences between source, target and their mappings

As previously stated there is an implicit coupling between the lowering and
lifting mappings and their source and target references that is part of the
annotation that is mapped. The suggestion solution to this was to incorpo-
rate some form of versioning. This if course a broad topic that have many
solutions, but the metamodel will cater for one of the simpler:

• The ModelReferenceSource and OntologyReferenceTarget will contain
a timestamp that is set on creation and subsequent updates (if any).

• The Annotation holds the timestamp of the latest update to these two
for easy comparison with

• A timestamp held in the Mapping that also is a result of updates to
timestamps in the Lowering and Lifting mappings.

This solves the part of the problem when updates happened within the tool,
e.g. the user edits a annotation or mapping. It allows the tool to issue
warnings where the may be changes that do not correspond. Another part
of the problem is when the model or ontology changes. This is a more
complicated problem to solve, since it is unlikely that metainformation about
these changes will be persisted anywhere. It is also on the edge of what the
tool should be responsible for. One way of solving it could be to store a hash
of the source and target that the annotation relate, e.g. a MD5 hash10 of
text values within these elements.

Combined with also making a MD5 hash of the file itself, stored at the
root element of the metamodel it would allow the tool to detect if the
model/ontology file(s) has changed since the last time the model (SAM)
was opened and if so use the md5 sums in the annotations to check the if
the annotations has been affected by the changes. If there is any changes

10A 128 bit hash using the Message-Digest algorithm 5 (MD5). Often used to check
integrity of files or other information. See: http://tools.ietf.org/html/rfc1321

81

the affected annotations are flagged in the editor and/or the problems view
(part of the Eclipse platform).

Summarized the basic change support is accomplished by:

1. incorporating the additional model/ontology change support constructs
in the metamodel. Namely:

• a file hash stored in the root of the SAM.

• hashes of the contents references the annotation has.

2. Implementing algorithms that can walk the changed models and/or
ontologies and check if the annotations in SAM are affected.

3. Implementing timestamping of references and mappings to detect possi-
ble problems with mappings after updates to the annotations are done.

4.3.5 SAM editor

The SAM Editor is built as a tree view editor, providing the user with the
constructs needed to do both mapping and relations of models and ontologies.

Supporting automatic detection of mappings

4.3.6 SAM Mapping Service

The mapping service will in principle be open for use with any transforma-
tion language, provided that they can be plugged into the extension point
provided by the mapping service. In other words this is the service that
allows SMAT to function with external transformation languages.

The goal of the mapping service is provide a abstraction between the actual
transformations and the abstract mappings done in the SAM Editor. This
is realized in a component called the SAMMS, SAM Mapping Service. It is
a common service that provides the necessary interfaces needed to provide
provided transformation or plug-ins with the infrastructure needed to execute
mapping rules on the mappings associated with the SAM.

The SAMMS will feature service interfaces that provide the following public
functionality:

• Transformation directory service interface

82

• Transformation of SAM and source/target models interface

• Transformation registration (extension point) interface

The transformation directory service provides a means to access all available
transformations in SAMMS that the developer wants to make use of, allowing
the SAM Editor to provide easy means of accessing these transformations
through the transformation model interface. The service offers basic query
functionality. The transformations registration extension point interface is a
Eclipse construct that allow the user to register other transformation services
than those provided with the transformation engine.

4.4 Realization of SMAT with EMF and GMF

SMAT is realized through the use of the Eclipse projects EMF and GMF.
EMF is the Eclipse Modeling Framework and provides facilities for meta-
modeling, generating code for model interaction and simple GUI editors.

Graphical Modeling Framework is at the other end of the spectrum and
provides facilities for a descriptive way of building graphical notations for
metamodel instances. GMF also relies on and provides an abstraction to the
lower level library GEF, Graphical Editing Framework.

These two frameworks in combination give the possibility to quickly model
the target domain and define a tailor-made domain specific language of
choice.

4.4.1 SMAT and the Eclipse Modeling Framework

SMAT is realized at the meta level using EMF. This involves activities with
metamodeling using a 3. party plug-in called Topcased[1] that provides a
somewhat better graphical metamodel editor than the default included in
the current release of EMF (at the time this thesis was written that was
version 2.3).

Using EMF ODM is implemented with basis in the OMG document[13] that
details this metamodel. OCL constraints are implemented using the subpro-
ject of EMF that provides an OCL framework.

The SAM metamodel is implemented in EMF using this thesis as specifica-
tion. The code is generated without any customization of the genmodel that
EMF generates.

83

4.4.2 SMAT and the Graphical Modeling Framework

ODM editor realization

As just the implementation of models is of little value in the context of this
thesis there is a need to develop further means of interacting with the model.
As stated in 2.3.2 the tool is required to support a graphical notation that
is the same as the one found in Concept Maps. This forms the base of the
domain specific language, DSL, in SMAT. This DSL is used in the ODM
editor, and provides a simple editor supporting modelling concepts and their
relations.

The concrete implementation needed here is by unifying the ODM metamodel
and the GMF constructs. Specifically a GMF node in a ODM editor diagram
refers to a class in ODM. To model the relationship, a link in GMF, one has
to instantiate a ObjectProperty. This ObjectProperty holds a Domain, that
is the allowed classes on the left-hand-side (lhs) and a range, the allowed
classes on the right-hand-side(rhs).

SAM editor realization

SMAT itself involves two metamodels, and subsequently two DSLs has to be
developed. The first will need to support the mapping operations outlined in
the mapping language outlined in 4.3.4. The resulting DSL will be an editor
that provides easy construction of the mapping language graphs.

The core metamodel will require an editor that is easy to use and provides
the easy access and a clear visualization of the populated model instance.
Since a tree view editor is simple, easy to comprehend and navigate, the
proposal chooses this method of visualizing the model.

The tree view editor need to display:

• The annotations of ontology and models

• The mappings between the ontology and a model element

We propose the following hierarchical structure to present the information in
the metamodel instance:

• Root element

– A ontology Concept

∗ Some element from a model

84

∗ Some other element from a model

– Another ontology Concept

∗ Some element from a model

· Lowering mapping

· Lifting Mapping

∗ Some other element from a model

In the case of classes, these should be represented with Classname:class,
e.g.: ShippingCompany:class. In the case of class attributes, these should
be represented with:attributeName:ClassName, where attributeName is the
name of the attribute, and ClassName the name of the class it belongs to.
Additionally, an icon should be put before all the nodes in the tree view,
to make distinction between different types easier. These icons should have
contrasting colors for easy identification.

In addition, we need to present some more information about each unit in the
hierarchy. This is done with a properties view that present e.g. a button to
edit the mapping definition for a mapping, metainformation about a model
element and more information about a concept.

4.4.3 Proposal summary

This proposal has set out to provide a tools et that will include the neces-
sary parts to annotations, and inherit mappings, of models and ontologies
together. To accomplish this there has been developed two metamodels:

• the SAM metamodel

• the Mapping metamodel

These two metamodels are suggested implemented with the Eclipse tech-
nologies EMF and GMF. Subsequently their conceptual implementations has
been described in the latter part of the thesis.

85

CHAPTER

FIVE

SMAT APPLIED

This chapter apply the SMAT solution to the problem definitions from chap-
ter 2. The goal is to show how the solution proposal would act when tasked
with a scenario mimicking a real world problem, albeit our test case is a
bit limited. The application will also serve to reveal any shortcomings and
specifically if the solution doesn’t’ pass the requirements stated in the prob-
lem definition chapter. These requirements were stated in table 2.1.

Since the proposal isn’t fully implemented, the evaluation is done with the
metamodel constructs and the conceptual solution in mind.

5.1 Buyer/Seller evaluation case

As described in the problem definition chapter the evaluation case consists
of two domain models described with UML class diagrams and a reference
ontology. The ontology reference uses the same language as model A, to
show that we can do 1-1 mappings between the model and ontology. Model
B on the other hand expresses the domain in different terms with differences
in the model structure compared to the ontology and model A.

5.1.1 Annotation and mapping from model A to ontol-
ogy

Model A and the ontology have the same structural features. The evaluation
in this case is therefore to asses if the metamodel will support the annotation

86

from model A to the ontology. First, we observe that our metamodel has the
capability to annotate different resources through its Reference attribute in
the respective classes ModelReferenceSource and OntologyReferenceTarget.
This allows to connect the classes in model A with its counterpart in the
ontology. In the proposed tree view this will equate to presenting the user
with the following hierarchy (excerpt) in the proposed tree view editor from
4.4.2:

• root

– Order

∗ Order:class

– ShippingCompany

∗ ShippingCompany:class

∗ Customer:class

∗ name:Customer

This shows us that the metamodel can cater to annotation of concepts in the
ontology and of model elements. There’s an ambiguity in this application
though. A small ambiguity in this example is that of the name property of
Customer. Since ODM is a representation of OWL the name property can
both be a concept related to ShippingCompany through an objectProperty,
or it can be a value property that is contained with the concept itself. This
distinction should be made explicit in the properties of the part of the an-
notation concerning name:Customer where we are dealing with equivalent
information. In the case where we are mapping between the ontology and
model, this distinction will be inherit in the mappings.

5.1.2 Annotation and mapping from model B to ontol-
ogy

The annotation and mapping between model B and the ontology is a harder
task. To recapitulate from chapter 2, we have the following problems at
hand:

1. Concatenated information in strings. will need to be split according to
a separator or by index. Examples are: ShippingAddress and OfficeAd-
dress in Customer from model b

87

2. Classes that are in-cohesive, e.g. they model more than one concern will
need to be split up. An example is the class Transport from model b.
It contains both type information, company and address. To conform
with model a it would need to transformation to that structure.

3. Naming differences need to be resolved according to the references on-
tology. Example is Stock in model b and Inventory in model a. The
reference uses the word Inventory.

Our conceptual mapping language supports the mapping of all of these op-
erations. A possible annotation structure would look like this:

• root

– Inventory

∗ Stock:class

· Lowering mapping

· Lifting mapping

– ShippingCompany

∗ company:Transport

· Lowering mapping

· Lifting mapping

The mappings in this example for the Inventory would be that the replace
operation is run at the ontology name when we lower from the ontology, and
vice versa replaced with inventory when we lift to ontology level.

The operations from the lowering of company:Transport uses the split oper-
ation to attain the name of the company and instantiate as the company of
a Transport instance class. Lifting also uses split to extract the company
name into a instance of the separate concept ShippingCompany.

5.1.3 Execution of mappings between A, B and ontology

When executed the mapping graphs will be transformed to a transforma-
tion language and executed, leaving the user with the desired output (A
transformed to B or vice versa.). Other possible uses of the tool includes
generating mappings for e.g. ESBs.

88

5.2 Discussion

This chapter has shown a rough outline how of the tool would be applied to
a problem. This conceptual application is not elaborate, but it serves to tell
that it is indeed possible to construct this tool in a viable manner with the
proposed conceptual solutions from chapter 4. There exists some problematic
aspects regarding the mappings that the proposal has not addressed properly,
the most prominent is that of how to performed mappings between properties
in ontologies and classes/attributes in models.

89

CHAPTER

SIX

EVALUATION OF SMAT

This chapter does an evaluation of SMAT in light of the proposal, the previ-
ous chapter with application of the proposal and the solution requirements.
Each requirement is gone through and a grade ranging from 0 to 2 is assigned
based on tool fulfillment of the requirement. A table with the aggregated
scores is presented in the final section of this chapter.

6.1 Evaluation of criterions

In chapter 2 we listed 6 requirements that the solution should achieve. The
subsections here are the same as in that chapter for easier reference.

6.1.1 Shared model driven vocabulary

This requirement prescribed the support of different types of input models,
ontology infrastructure and the use of a properly documented metamodel to
achieve this.

The conceptual solution support different types of input models, it uses
ODM/OWL as infrastructure and metamodel. The score here is 2.

6.1.2 Visual tool for vocabulary development

The second requirement was: Supply visual tooling to develop/edit the vocab-
ulary, from section2.3.1. The proposed solution fulfill the requirements by

90

proposing an ODM backed editor that uses concept maps as the graphical
formalism. The score here is 2.

6.1.3 Horizontal mappings between models

This requirement described the need to be able to lower and lift model
elements to ontology concepts they were related to. This was prescribed to
be done with mapping operations.

The conceptual solution achieves this. The score here is 2.

6.1.4 Vertical mappings to PSM/Code level

This requirement described the need to be able to map the SAM model down
to PSM/Code. The conceptual solution can be extended in this direction,
but doesn’t provide all the necessary parts. Score 1.

6.1.5 Open implementation environment

The use of an open environment is fulfilled. The Eclipse platform uses an
open source licence. Score 2.

6.1.6 Extensible implementation

This requirement described the necessity of providing an implementation
that is extensible. The conceptual solution outlines the use of OSGi for
modularization. The solution does not address the use of extension points,
but this is certainly possible to include. Score 1.

6.2 Summary

As we see from the previous sections the conceptual solution fared quite good.
Table 6.1 summarizes the results.

Compared to table 3.1 in section 3.3.2 we see that SMAT scores equal to
ModelCVS and 5 points higher than Semaphore. ModelCVS has currently
better support for code generation from the vertical mappings, while SMAT
has the advantage of an open implementation environment.

91

No. Requirement Score
1. Support a shared, model driven, vocabulary for multiple models 2
2. Supply visual tooling to develop/edit the vocabulary 2
3. Support horizontal mapping operations between the models 2
4. Support code generation from the vertical mappings 1
5. Use an open implementation environment 2
6. The implementation has to be extensible wrt. future additions 1

Final score: 10 out of 12

Table 6.1: Main requirements fulfillment score table

92

CHAPTER

SEVEN

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis we have explored the area of MDA and semantics, by doing so
we have also approached areas that are related, either directly or indirectly.
We have seen that there can be substantial benefits gained from combining
semantics and a tool that conform to the MDA idea. Requirements for a
tool supporting annotations of models, with the intent to relate them to
ontologies, was presented in chapter 2. This chapter also introduced to an
imaginary, although realistic enough, test case to evaluate such a tool.

Chapter 3 introduced us for several solutions that exist in the same problem
domain that this thesis have. Neither of the two tools evaluated solved what
we posed as requirements, and the other solutions in the technical space
could not provide more than parts of the solution. This obviously created a
need to pose a solution that would solve the requirements. This was done in
chapter 4. The rest of this section is devoted to an evaluation of this tool in
the light of the results from the previous chapters and will also present the
answers to the three questions posed in chapter 2:

Will integration of semantics, through the means of ontologies, allow greater
interoperability?

and:

Will the integration of semantics allow easier transformation of models?

and:

93

Will the integration of semantics provide better validation of models?

It is the conclusion of this thesis that the integration of semantics will allow
for greater interoperability. This statement is in the light of the discussion
in chapter 2 and especially in the light of the proposal and application of
the conceptual solution that have been done. It shows that it is possible to
create reference models using ontologies and annotate UML models with the
concepts contained within the ontologies. Also it has been shown that with a
mapping operation scheme it is possible to lift and lower the representation
to the ontology level and thereby creating a “bridge” between two models.

With regards to allowing easier transformation of models, the answers is yes.
This is due to the fact that the involved models will be described according
to a reference ontology and their mapping operations will be transformed to
a common transformation language. The transformation of the operations
can be interchanged, creating a versatile tool.

The validation aspect has not been addressed to the fullest extent, but it is
clear that the definition of formal semantics and the connection to models
that doesn’t have the possibility to define so rigid formal descriptions will
allow for greater validation of these models. Of course, a chain is not stronger
than the weakest link; in all cases we are dependent on developer defining
these semantics in the correct way and annotating the models correctly.

Summing up we see that the construction of a tool like the proposed SMAT
is:

1. doable

2. adding value to the annotated models

3. making more extensive validation possible

4. making interoperability between models better

The ending conclusion is that SMAT as a conceptual solution should be
further refined and implemented.

7.1.1 Shortcomings

An obvious shortcoming is of course lack of a proper implementation. Besides
this there are shortcomings regarding the annotation themselves. One special
one is that there is no distinction on what one annotates. Potentially one
could create an annotation that related a class in a model and a relation

94

between concepts in the ontology. While this is not entirely wrong, as the
model class could be an association class, it doesn’t provide the distinction
needed to see that this is what is meant.

The tool as of now doesn’t have proper support for relating associations to
concepts or relations in the ontology either. This is left for future work.

7.2 Future work

There are several areas to enhance or extend within this thesis. These are:

1. Annotation and ontology repository

2. Automatic model matching in the repository

3. Extensible validation

4. Relations between specific regions in transformations and models

5. Expanding the tool to support source code

6. Extending the ODM editor

7. Detailing the mapping language

These areas are further discussed in the forthcoming subsections.

7.2.1 Annotation and ontology repository

The most interesting is possibly the development of a repository for ontologies
and the annotation models that can be distributed over a network using web
services or similar technologies.

This repository would enable server-side reasoning and querying of both the
annotation models and ontologies. This would make the process of annotat-
ing models more open and accessible, and would also allow greater findability
within the models. The repository would also enable the users to collaborate
on the development of ontologies, and make it possible to search for models
matching ones own, perhaps most specifically service interfaces.

The repository would, or should, also enable for:

• versioning of ontologies

• cross validation of models and ontologies

95

7.2.2 Automatic model matching in the repository

Another area to further explore is one of those that would also be contained
within a repository—automatic model matching. Some schemes have been
outlined in this thesis, but several more ways of doing this should be possible.
Since models have annotations to respective ontologies, it would be possible
to match with other models in the repository when they annotate the same
thing in the ontology. If enough models is contributed to this “annotation
space”, it would create possibilities of easier reuse and ease the integration
effort. One

7.2.3 Extensible validation

The validation as described in this thesis is done passive, e.g. it has to be
invoked by the user. SMAT should support both live validation of local
models and also the models in the repository. The validation should in all
instances be plug-in-based so that is would be possible to add new validators
as need. For instance one could imagine a validator that checked the meaning
and relations of nouns in a domain model against the data in WordNet 1.

7.2.4 Relations between specific regions in transforma-

tions and models

A smaller, area mentioned in the proposal chapter(4) is the relation between
transformation files and mappings in the model. The suggestion is to allow
specific regions of code to be related to specific mappings. This can again
be utilized to provide the developer with support when changes occur in
the associated model, prompting him or her to check if the mappings still
hold. This feature would require special adaptions to the languages that
would be supported. One would require specific parsers that can identify
and present viable code regions, e.g. functions, to the developer for relation
to the mapping. At the execution of the mapping, depending on support,
the transformation service could choose to only execute certain mappings or
execute all.

1http://wordnet.princeton.edu/

96

7.2.5 Expanding the tool to support source code

A last area that could be investigated as part of future work is to include
source code in the model part of the tool, meaning that the tool would treat
source code as PIMs.

7.2.6 Extending the ODM editor

The ODM editor should be extended to support more advanced uses. The
thesis only proposes a simple editor that handles concepts/classes and their
relations, to support quickly building a domain language. An extension of
the editor should allow a second mode of operation that support the more
advanced parts of ODM/OWL. This includes creation of logical expressions,
defining cardinality and the addition of value properties.

7.2.7 Extending the mapping language

The mapping language model in the model needs to be further detailed to
support the operations needed. Specifically there will be a need to include
index positions for string operations, references for split and join operations
(both String and class references).

97

BIBLIOGRAPHY

[1] Topcased [online]. Available from: http://www.topcased.org/ [cited
15-01-2008].

[2] Ieee standard computer dictionary: A compilation of ieee standard com-
puter glossaries., 1990.

[3] Maarten Van Steen Andrew S. Tanenbaum. Distributed Systems - Prin-
ciples and Paradigms. Pearson Education, 2006. 2. edition.

[4] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.
Owl web ontology language reference [online]. W3C Recommendation
10 February 2004. Available from: http://www.w3.org/TR/owl-ref/

[cited 06-12-2008].

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scien-
tific American, 284(5):34–43, May 2001.

[6] David A Carlson. Semantic models for xml schema with uml tooling,
2006.

[7] Gary Cernosek. A brief history of eclipse [online]. Available from:
http://www.ibm.com/developerworks/rational/library/nov05/cernosek/

[cited 07-16-2008].

[8] Michael C. Daconta, Leo J. Obrst, and Kevin T. Smith. The Semantic
Web: A Guide to the Future of XML, Web Services, and Knowlegde
Management. Wiley Publishing, 2003.

[9] Kheiredine Derouiche and Denis A. Nicole. On the Move to Meaningful
Internet Systems 2007: OTM 2007 Workshops, chapter Semantically

99

http://www.topcased.org/
http://www.w3.org/TR/owl-ref/
http://www.ibm.com/developerworks/rational/library/nov05/cernosek/

Resolving Type Mismatches in Scientific Workflows. Springer Berlin /
Heidelberg, 2007.

[10] Eclipse.org. The eclipse modeling framework (emf) overview [online].
This paper presents a basic overview of EMF and its code generator
patterns. Available from: http://tinyurl.com/5vx8fv [cited 06-12-
2008].

[11] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart
of Software. Addison-Wesley Professional, August 2003.

[12] Cheng Hian Goh, Stuart E. Madnick, and Michael D. Siegel. Se-
mantic interoperability through context interchange: Representing and
reasoning about data conflicts in heterogeneous and autonomous sys-
tems. Available from: http://citeseer.ist.psu.edu/191060.html

[cited 06-10-2008].

[13] Object Management Group. Ontology definition metamodel - omg
adopted specification, 2007. OMG document number: ptc/2007-09-09.

[14] Tom Gruber. Ontology [online]. "to appear in the En-
cyclopedia of Database Systems, Ling Liu and M. Tamer
Özsu (Eds.), Springer-Verlag, 2008.". Available from:
http://tomgruber.org/writing/ontology-definition-2007.htm

[cited 03-19-2008].

[15] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler,
Thomas Reiter, Werner Retschitzegger, Wieland Schwinger, and Manuel
Wimmer. MoDELS 2006, chapter Lifting Metamodels to Ontologies: A
Step to the Semantic Integration of Modeling Languages. Springer-Verlig
Berlin Heidelberg, 2006.

[16] Vitaly Khusidman. Adm transformation. Technical report, Object Man-
agement Group, 2008. Draft 1 - Transformation Whitepaper. 17-Jun-08.

[17] Vitaly Khusidman and William Ulrich. Architecture-driven modern-
ization: Transforming the enterprise [online]. Whitepaper. Draft v0.5.
Available from: http://www.omg.org/docs/admtf/07-12-01.pdf

[cited 05-12-2008].

[18] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. On-
demand merging of traceability links with models. In 3rd ECMDA-
Traceability Workshop, 2006.

100

http://tinyurl.com/5vx8fv
http://citeseer.ist.psu.edu/191060.html
http://tomgruber.org/writing/ontology-definition-2007.htm
http://www.omg.org/docs/admtf/07-12-01.pdf

[19] Andreas Limyr, Tor Neple, Arne-Jørgen Berre, and Brian Elvesæter.
Semaphore - a model-based semantic mapping framework, 2006.

[20] Deborah L. McGuinness. Ontologies come of age. In Spin-
ning the Semantic Web: Bringing the World Wide Web to Its
Full Potential. MIT Press, 2003. From pre-print version found
at: http://www-ksl.stanford.edu/people/dlm/papers/ontologies-come-
of-age-abstract.html.

[21] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology
language overview [online]. W3C Recommendation 10 February 2004.
Available from: http://www.w3.org/TR/owl-features/ [cited 06-12-
2008].

[22] Merriam-Webster. Ontology [online]. Available from:
http://www.merriam-webster.com/dictionary/ontology [cited
03-24-2008].

[23] Jishnu Mukerji and Joaquin Miller. Mda guide v1.0.1, 2003.

[24] Protégé project. What is protégé? [online]. Available from:
http://protege.stanford.edu/overview/ [cited 05-28-2008].

[25] Eclipse Model Development Tools. Eodm [online]. Available
from: http://www.eclipse.org/modeling/mdt/?project=eodm [cited
03-24-2008].

[26] W3C. Ontology driven architectures and potential uses of the se-
mantic web in systems and software engineering [online]. Available
from: http://www.w3.org/2001/sw/BestPractices/SE/ODA/ [cited
03-21-2008].

[27] W3C. Rdf vocabulary description language 1.0: Rdf schema.
W3C Recommendation 10 February 2004. Available from:
http://www.w3.org/TR/rdf-schema/ [cited 04-21-2008].

[28] W3C. Semantic annotations for wsdl and xml schema [on-
line]. W3C Recommendation 28 August 2007. Available from:
http://www.w3.org/TR/sawsdl/ [cited 05-23-2008].

[29] H. Wache, V. ogele, T. Visser, U. Stuckenschmidt, H. Schuster,
G. Neumann, and H. ubner. Ontology-based integration of informa-
tion - a survey of existing approaches [online]. 2001. Available from:
http://citeseer.ist.psu.edu/article/wache01ontologybased.html

[cited 05-14-2008].

101

http://www.w3.org/TR/owl-features/
http://www.merriam-webster.com/dictionary/ontology
http://protege.stanford.edu/overview/
http://www.eclipse.org/modeling/mdt/?project=eodm
http://www.w3.org/2001/sw/BestPractices/SE/ODA/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/sawsdl/
http://citeseer.ist.psu.edu/article/wache01ontologybased.html

APPENDIX

A

RETRIEVING SMAT CONCEPT MODELS

The conceptual models can be download from:

http://www.brovig.org/smat/smat.zip

The models were built using Eclipse Ganymede.

The zip file is a Eclipse project. You can either unzip the file as is, or import
it as a project in Eclipse itself using the Eclipse import dialog under file.

102

	masterforside.pdf
	restart.pdf
	Introduction
	Thesis background
	Model Driven Engineering
	Model Driven Architecture
	Architecture-Driven Modernization

	The Semantic Web
	Ontologies
	Resource Description Framework
	Ontology Web Language

	MDE and ontologies
	Ontology Driven Architecture

	Methodology
	Literature reviews
	Implementation

	Thesis overview

	Problem definition
	Interoperability and its challenges
	Introduction
	Information interoperability
	Interoperability between systems
	MDA and semantics

	Evaluation cases
	Domain model with UML class diagrams
	Evaluation case design

	Solution requirements
	Shared model driven vocabulary
	Visual tooling for vocabulary development
	Horizontal mappings between models
	Vertical mappings to PSM/Code level
	Open implementation environment
	Extensible implementation
	Requirements summarization

	Execution of evaluation
	Annotate the class diagrams with concepts
	Identify semantic mismatches
	Resolve mismatches with mappings
	Generate a reconciled class diagram from mappings

	Evaluation of existing solutions
	Existing platforms and projects
	ModelCVS
	ATHENA Project

	Standards and solutions
	UML
	UML Class diagrams

	ODM
	SAWSDL

	Discussion and Evaluation
	Discussion
	Evaluation according to solution requirements

	SMAT proposal
	Vision
	Architecture
	Eclipse Platform
	Eclipse and OSGi

	Architecture description
	Ontology integration strategies
	Annotation process
	Usage patterns
	Overall process

	Design
	Eclipse frameworks
	EMF
	GMF
	UML2 and UML2 Tools

	ODM implementation
	ODM editor
	Semantic Annotation Model
	SAM metamodel
	Annotation Scheme
	Mapping operations
	Transformation scheme
	Metamodel structure

	SAM editor
	Supporting automatic detection of mappings

	SAM Mapping Service

	Realization of SMAT with EMF and GMF
	SMAT and the Eclipse Modeling Framework
	SMAT and the Graphical Modeling Framework
	ODM editor realization
	SAM editor realization

	Proposal summary

	SMAT applied
	Buyer/Seller evaluation case
	Annotation and mapping from model A to ontology
	Annotation and mapping from model B to ontology
	Execution of mappings between A, B and ontology

	Discussion

	Evaluation of SMAT
	Evaluation of criterions
	Shared model driven vocabulary
	Visual tool for vocabulary development
	Horizontal mappings between models
	Vertical mappings to PSM/Code level
	Open implementation environment
	Extensible implementation

	Summary

	Conclusion and future work
	Conclusion
	Shortcomings

	
	Annotation and ontology repository
	Automatic model matching in the repository
	Extensible validation
	Relations between specific regions in transformations and models
	Expanding the tool to support source code
	Extending the ODM editor
	Extending the mapping language

	Retrieving SMAT Concept Models

