

UNIVERSITY OF OSLO
Department of informatics

Personality and Pair Programming:
How do Pair Programmers Collaborate?

Master thesis
60 credits

Thorbjørn Walle

7. May 2009

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30828764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

3

Table of Contents
PREFACE.. 7
INTRODUCTION... 11

1. PROBLEM STATEMENT / RESEARCH QUESTION ... 13
1.1 The Masters Thesis Problem ... 13
1.2. Collaboration Involved in this Thesis... 13
1.3. The Pair Programming Experiment ... 13

1.3.1. Description ... 13
2. DESCRIPTIONS OF THE CHAPTERS.. 15

2.1 Introductory Chapters ... 15
2.2 Coding Chapters.. 15
2.3 Research and Results Chapters ... 15
2.4 Ending Chapters.. 16

3. DEFINITIONS.. 17
3.1. Pair Programming.. 17

3.1.1. Claimed Advantages... 17
3.1.2. Effects... 18
3.1.3. Critiques ... 18

3.2. Big Five Personality Traits... 18
3.2.1. Extraversion.. 19
3.2.2. Agreeableness... 20
3.2.3. Conscientiousness... 20
3.2.4. Neuroticism / Emotional stability ... 20
3.2.5. Openness to experience .. 20

4. PAIR PROGRAMMING AND PERSONALITY .. 21
4.1. Previous Related Research ... 21

4.1.1. Hannay, Arisholm, Engvik and Sjøberg ... 22
4.1.2. Dick and Zarnett ... 23
4.1.3. Karn and Crowling ... 23
4.1.4. Williams, Layman, Osborne and Katira.. 24
4.1.5. Barrick, Mount and Judge... 24
4.1.6. Sfetsos, Stamelos, Angelis and Deligiannis.. 25
4.1.7. Choi, Deek and Im.. 25
4.1.8. Chao and Atli.. 25
4.1.9. Others ... 26

AUDIO FILE ANALYSIS.. 29
5. PROTOCOL ANALYSIS.. 31

5.1. How to Do It ... 32
5.1.1. Making the Protocol Analyzable .. 32

5.2. Considerations for Making the Coding Schema ... 33
5.2.1. Physical or Social?.. 33
5.2.2. Objectivity .. 33
5.2.3. Exclusivity.. 34
5.2.4. A Priori or Not? .. 34

5.3. Software.. 34
6. RELEVANT EXISTING CODING SCHEMAS... 35

6.1. The Schema of Lan Cao and Peng Xu .. 35
6.1.1 Advantages .. 36
6.1.2. Disadvantages... 37
6.1.3. Our Use of the Schema... 38

6.2. The Schema of Sallyann Bryant, Pablo Romero and Benedict du Boulay.. 38
6.2.1. Advantages ... 38
6.2.2. Disadvantages... 38
6.2.3. Our Use of the Schema... 38

6.3. The Schema of Anneliese von Mayrhauser and Stephen Lang ... 39
6.3.1. Advantages ... 39
6.3.2. Disadvantages... 39
6.3.3. Our Use of the Schema... 39

6.4. The Schema of Kai H. Lim, Lawrence M. Ward and Izak Benbassat ... 40

4

6.4.1. Advantages ... 40
6.4.2. Disadvantages... 40
6.4.3. Our Use of the Schema... 41

6.5. The Schema of Carol K. K. Chan ... 41
6.5.1. Advantages ... 41
6.5.2. Disadvantages... 41
6.5.3. Our Use of the Schema... 42

6.6. The Schema of Kathleen Hogan, Bonnie K. Nastasi and Michael Pressley ... 42
6.6.1. Advantages ... 42
6.6.2. Disadvantages... 42
6.6.3. Our Use of the Schema... 43

6.7. The Schema of Sallyann Freudenberg, Pablo Romero and Benedict du Boulay.................................. 43
6.7.1. Advantages ... 44
6.7.2. Disadvantages... 44
6.7.3. Our Use of the Schema... 44

6.8. The Schema of by Sallyann Bryant ... 44
6.8.1. Our Use of the Schema... 45

6.9. The Schema of Gary M. Olson, Judith S. Olson, Mark R. and Marianne Storrøsten 45
6.9.1. Advantages ... 45
6.9.2. Disadvantages... 46
6.9.3. Our Use of the Schema... 46

6.10 The Schema of Takeshi Okada & Herbert A. Simon.. 46
6.10.1. Our Use of the Schema... 46

7. THE DEVELOPMENT OF OUR CODING SCHEMA ... 47
7.1. Initial Category Draft. .. 48

7.1.1. My Version... 48
7.1.2. My Fellow Master Student’s Version ... 50

7.2. Combined Categories ... 51
7.2.1. Development... 51
7.2.2. Usage.. 52
7.2.3. Category Quality .. 52
7.2.4. The Removal of the Least “Polite” Categories ... 53

7.3. Improved Categories .. 53
7.3.1. Meeting... 53
7.3.2. Tweaks.. 54
7.3.3. New Ideas ... 55
7.3.4. Usage.. 56

7.4. Expanded Categories.. 56
7.4.1. The Table.. 56
7.4.2. New Suggestion.. 56
7.4.3. Individuals or Pairs? ... 58
7.4.4. Usage.. 58

7.5. New Focus Categories.. 58
7.5.1. Comparison to the Previous Ones... 58
7.5.2. Initial Decisions.. 60
7.5.3. Tests and Implications .. 60

7.6. More Development of New Categories... 61
7.6.1. Usage.. 62

7.7. The Development of the Final Schema ... 62
7.7.1. Reformatting... 63
7.7.2. Testing and Early Experiences ... 63

8. OUR FINAL CODING SCHEMA .. 64
8.1. Description ... 64
8.2. Category Definitions... 65

8.2.1. Task Focus.. 65
8.2.2. Begin Characteristics .. 66
8.2.3. Interaction Pattern... 66
8.2.4. End Characteristics ... 67
8.2.5. Result.. 67
8.2.6. Cognitive Level .. 67

9. CODING THE AUDIO FILES... 68
9.1. Sample Selection... 68
9.2. Hired Help .. 68

9.2.1 The Task 4 Finder.. 68

5

9.2.2. The Audio File Coders ... 69
9.3. The Coding Process.. 69
9.4. Parsing ... 70

10. RELIABILITY OF THE CODING SCHEMA.. 72
10.1. Calibration ... 72
10.2. Reliability Checking ... 73
10.3. Reliability Calculation Approaches.. 73

10.3.1. Initial Approach.. 74
10.3.2. Stricter and More Individualistic Version... 74
10.3.3. Subcategory Based Approach... 74

10.4. Reliability Calculation Results ... 75
PERSONALITY AND PAIR PROGRAMMING ... 79

11. ANALYSIS CONSIDERATIONS... 81
11.1. What Variables to Base Analyses On? ... 81

11.1.1. Personality .. 81
11.1.2. Collaboration .. 81
11.1.3. Performance.. 83

11.2. Relationships to be Investigated ... 84
11.2.1. How Personality Influences Collaboration ... 84
11.2.2. How Collaboration Influences Performance... 85

12. RESEARCH PROPOSITIONS ... 86
12.1. Literature Based Proposition Suggestions ... 86

12.1.1. Sfetsos et al... 87
12.1.2. Dick et al. ... 87
12.1.3. Karn et al. ... 87
12.1.4. Williams et al.. 87
12.1.5. Hannay et al. ... 88
12.1.6. Williams’ Book .. 88

12.2. Definition-Based Proposition Suggestions ... 89
13. ANALYSIS DESCRIPTION.. 90

13.1. The Partition Platform.. 90
13.1.1. Minimum Size Split.. 92
13.1.2. LogWorth and p-value.. 93
13.1.3. K-Fold Cross-Validation .. 93

13.2. Analysis Procedure... 94
14. ANALYSIS RESULTS... 96

14.1.1. P1: Does Personality Affect Collaboration?.. 96
14.1.2. P2: Will Different Personality Pairs Communicate More?.. 97
14.1.3. P3: Does Similar Levels of Extroversion Lead to Less Disruption?.. 99
14.1.4. P4: Will Two Extroverts Discuss a Lot? ... 100
14.1.5. P5: Do Two Agreeable People Small Talk Much?.. 100
14.1.6. P6: Are Metacognitive Statements Made More by Extraverts?... 100
14.1.7. P7: Does Collaboration Affect Performance? ... 101
14.1.8. P8: Is Elaborative Good for the Performance?.. 101

14.2. Other Findings.. 102
14.2.1. Complete Investigation of Personality Factors’ Influence on Collaboration .. 102
14.2.2. Alternative Formatting for the Collaboration Influence on Performance Table ... 103
14.2.3. Transitive Deductions... 104

END.. 107
15. POSSIBLE VALIDITY THREATS... 109

15.1. Categories... 110
15.1.1. Constructs ... 110
15.1.2. Content ... 110

15.2. Analysis .. 110
15.2.1. Selection ... 110
15.2.2. Confounding Variables... 110

16. POSSIBLE FUTURE DIRECTIONS ... 112
16.1. Larger Sample .. 112
16.2. Analysis with Other Personality Measures or Methods.. 112
16.3. Long-term Pairing .. 113
16.4. Individual Focus... 113

6

16.5. Distributed Pair Programming... 114
16.6. A Closer Look at the Transitive Relationships ... 114

ACKNOWLEDGEMENTS.. 117
REFERENCES.. 119
APPENDICES ... 123

X1. CODING SCHEMAS.. 123
X1.1. Combined Categories... 123
X1.2. Improved Categories.. 124

X1.2.1. Explanation for Start and Stop of Clips ... 125
X1.3. Expanded Categories ... 126

X2 RELIABILITY CHECK CALCULATION RULES .. 127
X2.1. Score Calculations for the Categories: .. 127

X3. CODING SCHEMA COMPARISON TABLE .. 128
X4. COMPLETE CODING SCHEMA COMPARISON TABLE.. 130
X5. CALCULATION FOR RESEARCH PROPOSITION P2... 131
X6. DEFINITION BASED HYPOTHESIS SUGGESTIONS ... 132

X6.1. Task Focus (TF) ... 132
X6.2. Begin Characteristics (BC) .. 133
X6.3. Interaction Pattern (IP).. 133
X6.4. End Characteristics (EC)... 134
X6.5. Result (Re).. 134
X6.6. Cognitive Level (CL) .. 134

7

Preface

Activities similar to pair programming are involved in many of my earliest memories of
computer use. When playing the computer games of the early nineties (which came in large
boxes, filled only with maybe a thin manual and several diskettes), my friends and I often
used a procedure where one person was controlling the keyboard and mouse, and the other
person suggested future moves and alerted the first of incoming enemies and such.
Periodically, the roles were switched. This technique was especially useful and interesting for
both players when we were playing adventure games (point-and-click non-text-based
adventures was the hot new thing). In these games, reasoning was more important than
reflexes and the actual controlling of the character, and there were rarely situations where
quickness mattered. Often, the person who owned the computer would yell at the other person
because the latter, the “navigator”, would point at the screen, suggesting some place to go, or
item to use. And in the days of the 15”, 30lbs CRT monitor, this was especially annoying due
to the large and visible finger smudges which would appear on the screen. “Hey, don’t touch
the screen! I thought I already told you” was a phrase often said and heard in those days.

Although possible, LAN and internet gaming was still totally unknown to most people,
including myself, so the above procedure was as collaborative as gaming could get. At least it
was a lot more collaborative than taking turns playing, as the standard was in many early
“multiplayer” games. In the case of the classic Super Mario Bros, player one would be Mario
and play first. When he “died”, player two, controlling Luigi would play until the same
happened to him. Then it was Mario’s turn again, and so on.

Another situation where computer use was often quite collaborative during my early computer
years was the making of poorly animated movies. These were made by using very basic
animation, and later; simple 3D software, such as the classic Microsoft 3D Movie Maker.
Mostly, these movies were little more than five minute remakes of movies and series famous
at the time, such as Jurassic Park, Godzilla and MacGyver. For this animation work, pair
programming-like techniques were especially suitable. One person was usually more used to
the controls of the animation software, and the actual work of doing the animation was not
much fun either. However, when deciding the plot (which we, of course did along the way,
with no script or plans ahead, since we were young and bold), both of us were equally active.
This was also the case in the voice-over work and when taking minor decisions regarding the
visual aspects of the scenes and their flow.

Later, the project assignments at grade school where we used a computer turned out similarly.
Certain people were the fastest keyboard typists or the most skilled word processors. These
were naturally often placed at the keyboard. The others looked through encyclopedias, which
we would then make poorly described references to. The non-typists also checked
continuously for typos and other problems and suggested wordings of the sentences, but the
one at the keyboard was most often the one in de facto command.

Not until I enrolled at the university did I try any actual programming, though I had tried
different types of scripting for games and such, as well as html and some custom queries in
the database platform MS Access. Remarkably, despite my good experiences with pair
programming-like work patterns from an early age, I never thought of trying pair
programming until working with a really large development project in my third year. In this,

8

we were subtly encouraged to pair program, and both XP and pair programming were topics
for the lectures in the course. In this project we were supposed to make a system based on
java code generated by high-level UML and GUI editors. None of my project members
considered themselves above average java programmers, and the task was, compared to other
assignments in University courses, very complex. Even so, we did good work on it, and were
commended for having produced one of the best systems that semester. As we learned later in
the course, the situation of being inexperienced/junior programmers combined with working
on a complex problem was actually the very same situations as was shown in a large and
recent pair programming experiment to be the situation most suitable, and beneficial, for pair
programming.

In the evaluation of factors of success and failure, we recognized pair programming as a
major success factor. From that course on, I was a pro-pair programming person, even though
I did realize the increased effort involved. I suggested using pair programming in several
projects later, and we often did.

Because of my good experiences with pair programming, and my interest for basic
psychology, I was eager to sign up for this masters assignment about pair programming,
collaboration and personality traits as soon as I heard about it. I have never had any regrets
about that decision. Pair programming can be very useful in certain situations, but it is still a
somewhat disliked practice among developers. A better understanding of in which situations
to use it, and when it is not an apt technique would not only prevent it from being used
wastefully and in vain or wrongfully discarded, but could also make people stop disliking it as
a matter of principle. Pair programming is not for everyone, and it is certainly not for all
situations. However, for some situations and some combinations of people, it is great.

9

10

11

Introduction

For investigating the collaboration involved in pair programming, we coded 44 audio
recordings of pair programming sessions. We divided the audio recordings into codeable
segments, and assigned each segment to categories that were selected from a collection of
categories we had developed specifically for use on these recordings.

After we had coded the audio files, I performed a literature review. I then formulated several
propositions for possible relationships between the personality of the pair programmers and
the collaboration during the pair programming sessions. I then did a statistical analysis in
order to investigate these propositions.

Although most of my propositions turned out to be unsupported by the analysis, my major
propositions were proven to be valid. My most important proposition investigated whether or
not personality had any impact on pair programming collaboration at all. The analysis for the
proposition showed that nearly all personality factors affect the occurrence of at least one
collaboration category.

Another important proposition, the one which was most closely related to findings from the
literature I reviewed, was also shown to be apt. Pairs consisting of two people with different
personalities will communicate more than the pairs where the two programmers were more
similar to each other. However, we saw that not all personality trait differences affected this
relationship in the same way, so a high difference in every personality factor will not
necessarily be beneficial for the collaboration.

All in all, it is clear that the personality of the two programmers will significantly affect the
collaboration during pair programming; but for now the impact that the different kinds of
collaboration has on the performance of the pair programming pairs is not as closely
investigated, and it will be subject of future research. Several of the propositions analyzed
yielded insignificant but promising results, and could be conclusively proven, or perhaps
disproved, if the analyses on them were done with a larger sample size.

12

13

1. Problem Statement / Research Question
Does personality affect the collaboration of pair programmers? is the overall research
question for this thesis is. More specific research questions can be found in Chapter 12.

Below is a brief description of the master thesis as it was proposed by the supervisor,
followed by a quick look at the experiment on which the thesis is based, and the article in
which the first results from that experiment was presented.

1.1 The Masters Thesis Problem
The problem was proposed as a long masters thesis, entitled “How do Pair Programmers
Collaborate?” It was proposed by Jo Hannay at the Department of Software Engineering at
Simula Research Laboratory, and was formally administered through IFI (Department of
informatics) at the University of Oslo. The thesis description, as stated on the IFI website, was
as follows:

“Pair programming is a way of programming within the paradigm of eXtreme Programming. Pair
programming involves two programmers collaborating over one keyboard on the same programming
task; a situation that inspires a particularly close form of collaboration. The thesis/theses will investigate
how pair programmers collaborate, and will further see if there are any links between form of
collaboration and the personality types of the two members in a pair. For example, whether extroverts
talk more, whether conscientious people have more task-focused conversation, and whether people with
low emotional stability have more conflicts in collaboration.“

”In the first step, you will analyze audio recordings of actual pair programming collaboration using
structured analysis techniques such as conversation analysis and negotiation analysis. This first step will
serve to categorize the ways the pairs collaborate into predefined categories of collaboration types. In
the second step, you will assist in investigating links to the personality types of the members of the
pairs.” [IFI 08]

1.2. Collaboration Involved in this Thesis
As well as continuous contributions from my supervisor and contributions from other people
associated with Simula, the collaboration coding schema was developed in collaboration with
one other student. This person works on a similar thesis, but the focus of her thesis is the
programmers’ expertise levels; contrasted to my focus: personality.

The work with coding of audio files, as described in Chapter 9, was also done in cooperation
with this same master student, plus additional people that were hired by Simula Research
Laboratory.

Everything else was done individually. Collaborative work directly inserted into the thesis is
Appendices X1-X4. All other parts of this written thesis were not a collaborative effort.

1.3. The Pair Programming Experiment

1.3.1. Description
The audio recordings to be analyzed in this thesis were sampled during a previously
conducted large pair programming experiment, whose main focus was to compare the
performance of pair programming to that of solo programming [Arisholm 07]. The
experiment was conducted in 2001, 2004 and 2005 and involved a total of 295 junior,
intermediate, and senior professional Java consultants (99 individuals and 98 pairs) from 29
international consultancy companies in Norway, Sweden, and the UK. The Java consultants

14

were hired at market price for one full work day and were selected to give three levels of
expertise: junior, intermediate and senior. The pair programming material, which is relevant
to this thesis, was collected in 2004 and 2005.

Statistics about the subjects’ expertise level (based on the consultancy companies rating and
their performance in a pre-test) were gathered, along with information about each person’s
experience and attitude towards pair programming. Personality information about all subjects
was also collected; each participant in the experiment completed the “big five” personality
test. The two members of each pair had a level of programmer expertise (junior, intermediate
or expert) similar to each other. Most pairs had no experience with pair programming.

During the day of the subjects’ participation in the experiment, the subjects were to perform
six tasks, four of which were meant to be analyzed by the experimenters. The two first tasks
were performed individually by all subjects. The first task was a training task to familiarize
the subjects with the experimental environment, the second task was a pre-test task used to
measure the skill level of the subjects when working alone (regardless of whether they would
pair program or not in the later tasks). The four last tasks were performed individually (solo
programmers) or in pairs (pair programmers). These four tasks were all connected, since they
all were change tasks on the same system, and the solution of one of these tasks was the basis
of the next task. Thus, it was important for the programmers to solve a task correctly, since it
could be harder later on if they did not. The very last task was a time sink task (meant to make
sure that no subjects rushed a solution in order to leave early), and the results from this task
were not used in the experimenters’ analysis.

The subjects were about equally distributed to two slightly different versions of the
experiment. One was a system with a centralized control style with a powerful central class
who did most of the system’s functionality. The other was a system with a delegated control
style where most classes had their own responsibilities [Arisholm 07]. The latter was more
similar to the object-oriented ideal that Java encourages. Otherwise, the two systems were
equal, and for users, which would only use the functionality, and not read the source code,
they would appear like the same system. This difference in control style was important for the
primary use of the experiment, but not directly relevant in the collaboration analysis for this
thesis. However, knowledge about which control style the pairs were working on was
essential for the analysis of collaboration, since the pairs working on the centralized version
talked about different things than did the pairs working on the delegated version. These
differences were especially noticeable when the pairs discussed system flow and mentioned
names of components of the system, which varied quite heavily between the two versions of
systems. It was important to understand to what they were referring from the very beginning
of the task in order to analyze the dialog correctly.

The conceptual model and hypotheses behind the experiment are described in great detail in
the article, and unusual terms used in the article are explained. The design and execution of
the experiment is also thoroughly documented. Large sections of the article are technical and
contain statistical calculations and results, and the statistical methods and packages used are
also referenced and described sufficiently. The article describes a number of threats to
validity, both internal and external threats, and how they handled them. The article is
published in the renowned “IEEE Transactions on Software Engineering”, indicating that the
experiment, and the description of it, is recognized as significant and valid in the scientific
community.

15

2. Descriptions of the Chapters

2.1 Introductory Chapters
Chapter 1 is a description of the problem statement for the thesis and the experiment on which
the thesis work is based. Following this is a review of previous related and semi-related
studies and articles.

Chapter 3 is a definitions chapter. First, we give some in-depth descriptions of major concepts
that recur in the text and that are central to the investigations. Directly after this are short and
concise definitions of other concepts and how they are to be understood when used in this
text. The available literature uses many different words for some of the same concepts.
Therefore, alternative variants of the concepts are mentioned, in order to make it easier to
relate concepts from various sources of literature to each other and to this thesis.

Chapter 4 describes the main objectives for this thesis. It also contains a presentation of
related literature.

2.2 Coding Chapters
The chapters are about the coding of the audio files. First, in Chapter 5, ideas and
considerations when making a coding schema are mentioned, as well as an introduction to
protocol analysis.

Chapter 6 is a review of some articles containing coding schemas that are of special interest.
Most of them are either about pair programming, or personality and collaboration.

The development history of our coding schema is given in Chapter 7. It is described
chronologically, so the newest version, which was the one that was actually applied to the
audio files, is the last one described, and is described in Section 7.7. The different versions of
the coding schema are described in detail, with special attention to describing differences
from one version to the next, and how well the schemas performed during their testing.
Inspirations/references and reasons for the changes are also described. The complete final
coding schema and definitions for its categories are shown in Chapter 8.

Chapter 9 describes the process of applying the codes to the audio files, and how we extracted
analyzable data from this process. Although this step was the part of the investigation that
produced most of the results, the work here was mainly repetitive and quite straightforward
once the coding schema and coding decisions were final. For this reason, the chapter is short
compared to the time spent on this step.

Even though the coding schemas were tested continuously during their development, there
was a need for a final and more thorough reliability control at the end of the coding in order to
make sure that the results was scientifically significant and not overly subjectively based. The
process of this check is described in Chapter 10.

2.3 Research and Results Chapters
Chapter 11 describes overall matters regarding the analysis.

16

Chapter 12 contains research propositions for possible relationships between personality traits
and collaboration. The first research proposition is based on findings in the reviewed
literature. The last propositions are based on the definitions of the personality traits and the
collaboration categories.

Chapter 13 describes the considerations and procedure of the statistical analysis based on the
data that we extracted during the coding of the audio files.

In the ensuing chapter, Chapter 14, the detailed results of these analyses are listed.

2.4 Ending Chapters
In Chapter 15 some possible threats to the validity are listed. Chapter 16 lists possible future
directions for continuation of this investigation and possible hints and considerations for
closely related new studies.

At the very end, a selection of appendices can be found. Most of the appendices are earlier
versions of the coding schema and descriptions of them.

17

3. Definitions

3.1. Pair Programming
Pair programming is a style of programming in which two programmers work side by side at one
computer, continually collaborating on the same design, algorithm, code or test. One of the pair, called
the driver, is typing at the computer or writing down a design. The other partner, called the navigator,
has many jobs, one of which is to observe the work of the river, looking for tactical and strategic
defects. Tactical defects are syntax errors, typos, calling the wrong method, and so on. Strategic defects
occur when the driver is headed down the wrong path–what is implemented just won’t accomplish what
needs to be accomplished. [Williams 06]

The two roles are often illustrated by using the allegory of rally racing. The driver controls the
car, while the navigator reads the map and tells the driver about upcoming turns and obstacles
and the situation regarding the opponents ahead of and behind them.

It should be noted that pair programming is a term with a slightly misleading wording:

We use the word programming to include all phases of the development process (design, debugging,
testing and so on), not just coding. So, pair programming would include pair design, pair debugging,
pair testing and so on. In fact, two studies has indicated that pairing is most important for analysis and
design […]. We believe people should pair at any time during development, in particular hen they are
working on something that is complex. The more complex the task, the greater the need for two brains.
[Williams 06]

This last statement, that complex tasks are especially suited for pair programming, is
elaborated on in Section 3.1.1 below.

Pair programming is one of the twelve practices of the agile software engineering
methodology eXtreme Programming (XP) of the late nineties and 2000s. However, pair
programming can just as well be used when using a more rigidly structured or sequentially
based development process such as the widely used waterfall model. Also, pair programming
is not a new technique invented and introduced from scratch by the agile community.
Williams [Williams 06] describes different people’s experiences with pair programming in the
seventies through nineties, and even mentions an author claiming to have used the technique
as early as in the mid-fifties.

3.1.1. Claimed Advantages
The well-known and thorough, although noticeably pro-pair programming, book by Williams
and Kessler [Williams 03] claims that pair programming leads to several benefits: The code
quality will be better, i.e. the code will have fewer defects. The time it takes to solve tasks
will be about half compared to individual programming, thus nullifying the double
development cost that will occur because of the two programmers compared to the usual one.
Pair programming is also claimed to have other advantages, such as in the areas of morale:
Pair programmers are stated to be happier programmers. Further, the authors say that pair
programming increases trust and teamwork between employees, since they get to know each
other through the activities of pair programming. Knowledge transfer will increase, especially
if people occasionally or often pair program with different people, i.e., so the pairs are not the
same all the time. Finally, pair programming increases learning since the two programmers
learn from each other about development and cooperation. [Williams 03]

18

Many of these benefits, however, are contested in articles and experiments. As both the
experiment in [Arisholm 07] and a large systematic review of pair programming effectiveness
[Dybå 07] and [Hannay 09b] reports, the benefits are more obvious in certain situations and
less so in other situations. The effectiveness is shown here to depend on factors such as the
expertise of the programmers and the system complexity. Both articles state that though the
quality/correctness is noticeably higher for pair programmers, the cost/effort is also much
higher.

3.1.2. Effects
In the large pair programming experiment [Arisholm 07], junior programmers benefited the
most from pair programming in terms of quality (+73%), but did not solve the tasks any faster
than they would have if they had worked individually. Duration is indicated as +5%, which
indicates that pairs actually used more time than individuals. Intermediates and seniors
benefited little from pair programming in terms of correctness: Intermediates scored 4%
better and seniors actually scored lower in correctness when pair programming: -8%.
However, their task duration was somewhat reduced. For intermediates, the number was -
28%, for seniors: -9%.

The authors also compared results between solving of easy and complex problems. For easy
problems the duration was reduced when using pair programming (-20%), but so was the
correctness (-16%)! For complex problems, the duration was slightly increased (+6%) for pair
programmers and the quality was moderately increased (+48). Juniors solving the complex
tasks benefited greatly in terms of correctness (+149%) when pair programming, while the
seniors benefited little from it (they actually performed worse) in terms of quality no matter
how complex the system was [Arisholm 07].

3.1.3. Critiques
Critiques of pair programming are often directed towards the effort/duration involved. Many
claim that pair programming is too expensive; since two people are doing a task that one
person could do alone just as fast and as well. They believe that pair programming is a waste
of time for all situations other than training [Williams 03].

Many have more personal arguments against pair programming, and dislike it because they
prefer to work alone. They might dislike the fact that credit (and blame) is divided, and they
think it will be hard to be maximally efficient when working with others [Williams 03].

3.2. Big Five Personality Traits
For a long time, there has been an interest among psychologists and others to define specific
personality traits and divide people into groups based on these. Not all of these trait systems,
however, have been scientifically based. Much of their contents remain un-validated and not
recognized as apt by others than the inventor of the particular classifications.

The “Big Five”-system was meant to be a contrast to those, and was an attempt to make a
personality classification system that would be scientifically sound and based on empirical
findings.

In 1981, Goldberg reviewed the work of others, as well as the results of his own research. Impressed
with the consistency of the results, he suggested that “it should be possible to argue the case that any
model for structuring individual differences will have to encompass –at some level–something like
these ‘Big Five’ dimensions” [Pervin 01].

19

The big in Big Five “was meant to refer to the finding that each factor subsumes a large
number of more specific traits” [Pervin 01]. The five indicates that there are five of these
factors: Extraversion, agreeableness, conscientiousness, neuroticism and openness (to
experience). Each trait is bipolar, for example, if you score low on extraversion, you
automatically score high on introversion, since that trait is on the other end of the same scale.
Each trait is described further in the subchapters below.

As stated in [Hannay 09a], “Big Five” and “Five Factor Model” (developed by Costa and
McCrae) are commonly used as synonyms. The factors themselves are the same five in both,
and they are similarly defined, but the two systems differ in that they have slightly different
foci. Goldberg’s “Big Five” is what was measured and used during the experiment, and what
we will be talking about in this text.

3.2.1. Extraversion
Sometimes called surgency [Raad 00] or dominance-submissiveness [Cloninger 04],
extraversion “assesses quantity and intensity of interpersonal interaction; activity level; need
for stimulation; and capacity for joy” [Pervin 01]. As stated above, the bipolar trait of
extraversion is introversion.

De Raad [Raad 00] claims, in a reference to Guilford & Braly, that “No single pair of traits of
personality has been quite so widely discussed and studied as that of extroversion and
introversion”. In De Raad’s book, extraversion is defined as

[…] the outward turning of psychic energy toward the external world, while Introversion refers to the
inward flow of psychic energy towards the depths of the psyche. Extraversion is denoted by habitual
outgoingness, venturing forth with careless confidence into the unknown, and being particularly
interested in people and events in the external world. Introversion is reflected by a keen interest in one’s
own psyche, and often by a preference to be alone.

For extraversion, a low scorer will typically lack interest and maybe ability to socialize a lot
or make large networks of acquaintances. This can lead to barriers in getting ahead in the
social and professional life, where recommendations and getting introduced to the right
people are important factors in many situations. However, the low scorers will have a lot of
time for themselves that can be used for intellectual pursuits, hobbies or work.

Both the comical “geek” stereotype and results from the experiment suggest that computer
programmers are generally low scorers in extroversion. It is not unthinkable that this is related
to their interest and ability in the technical pursuit of making or manipulating computers and
their software. Either their interest for computers is so big that they prefer this to socializing,
or they dislike socializing so much that they avoid it, and have chosen programming or other
hobbies as alternatives.

Keirsey [Keirsey 08], who operates with an extroversion scale similar to that of the big five,
mentions that several historic people have been introverts, including top scientists like Niels
Bohr, Stephen Hawking and Isaac Newton and political figures like the 19th century British
Queen Victoria and American presidents Truman and Eisenhower.

20

3.2.2. Agreeableness
Agreeableness, sometimes referred to as social adaptability or likeability [Cloninger 04]
“assesses the quality of one’s interpersonal orientation along a continuum from compassion to
antagonism in thoughts, feelings, and actions” [Pervin 01].

The bipolar trait of agreeableness is mentioned as being antagonism [Pervin 01]. People of
low agreeableness are probably those who will be most unfavorably depicted in today’s
society. However, one should not assume that people of low agreeableness are necessarily
“bad people”. Since agreeableness, as the other five factors, is a composite of several sub-
factors, low scorers might have some of these factors high, but receive a generally low score
because of a radical low score in others. The free big five test at personalitytest.net, divides
agreeableness into the following: Trust, morality, altruism, cooperation, modesty and
sympathy. If a person is very moral and modest, he will rarely do anything to harm or
diminish others, and will not act in unethical ways to increase his own status, fortune or other
factors of life quality. However, he will still score low on agreeableness in total, if he is not a
“people person”, and consequently receives low scores on trust, altruism and sympathy.

3.2.3. Conscientiousness
Sometimes referred to as dependability, impulse control and will to achieve [Cloninger 04],
Conscientiousness “assesses the individual’s degree of organization, persistence, and
motivation in goal-directed behavior. It contrasts dependable, fastidious people with those
who are lackadaisical and sloppy [Pervin 01].

The bipolar trait of conscientiousness is “lack of direction”, according to [Pervin 01].
Conscientiousness is a trait for which a low score has quite a significant impact on work
performance on nearly all kinds of work [Barrick 01].

3.2.4. Neuroticism / Emotional stability
With its bipolar opposite often referred to as emotional stability and sometimes emotional
control and ego strength, [Cloninger 04], neuroticism “assesses adjustment vs. emotional
instability. Identifies individuals prone to psychological distress, unrealistic ideas, excessive
cravings or urges, and maladaptive coping responses” [Pervin 01]. Cloninger mentions that
“people who score low on neuroticism are happier and more satisfied with life than those who
score high.”

One must keep in mind that a low score of emotional stability in relation to the Big Five is not
an indication of mental disorders or insanity. Emotional stability is simply a trait of the
personality which indicates that the person has more expressed emotions and/or urges. It does
not describe how “mentally stable” a person is.

3.2.5. Openness to experience
Called culture, intellect [Raad 00], intellectual interests, intelligence and imagination
[Cloninger 04] in alternative naming of the category, Openness (to experience) “assesses
proactive seeking and appreciation of experience for its own sake; toleration for and
exploration of the unfamiliar” [Pervin 01].

Though alternative names for the trait and certain descriptions of it might indicate that it is
related to the intelligence or mental capacity of people, it is not. Like the other traits of the
Big Five, it is merely a measure of behavior preference.

21

4. Pair Programming and Personality
Pair programming is a highly collaborative technique involving a lot of discussions, questions
and answers, advices and other types of teamwork-related conversation. The form and quality
of this collaboration will depend on many factors: How difficult the problem is and how
skilled the programmers are is important. Whether or not the two programmers have worked
together or know each other from previous tasks or personal relationships can affect it. How
the circumstances around the work are (i.e. how much time they have, how comfortable the
chairs are etc.) is also a possible influencing factor. Lastly, but certainly not least, the
personality types of the two people in the programming pair is likely a very important factor
in this.

As seen in Section 3.1.3, a recurring critique of pair programming as a development technique
is that it is a waste of time, since the navigator finds only syntax mistakes, which could be
found by compilers just as well as, or better than humans any way [Williams 06]. While this
may be true in some situations, the role of the navigator includes much more than just
checking the spelling and syntax and working on the level of the written code. He is supposed
to also think ahead and envision the system as a whole [Williams 06]. To investigate whether
or not people of a certain personality profile will focus more or less on syntactic issues, will
make us able to know for which pairs the problem of syntax-only focus of the navigator might
most often occur.

4.1. Previous Related Research
In the past, there has been some research on personality in connection with pair programming,
among others in [Hannay 09a] and [Sfetsos 06]. However, the focus of this research has
primarily been to investigate a possible direct correlation between personality and the
performance of the pair. Sometimes other factors such as nationality, gender, expertise and
task complexity has been included in an attempt to grasp the bigger picture of pair
programming and what affects it. Most of this has, however, concluded that there is just a
minor correlation between the personalities of the people in a pair and that pair’s
performance.

One of the largest and most recent studies on this [Hannay 09a] states in the section for
possible future research that to include collaboration as part of the relationship between
personality and performance could possibly lead to new and more significant findings.

Figure 1 illustrates the difference in conceptual models between the formerly conducted
studies and the indirect approach for correlation between personality and pair programming
performance. As one can see, the latter used with collaboration used as mediating factor, and
is the one which will be investigated in this thesis. It is possible that the personality of the
programmers of the pairs will influence how that pair collaborates and that collaboration in
turn will have an influence on how well the pair performs, even though personality had been
shown not to heavily influence performance directly.

Figure 1: The two conceptual models for investigating different factors’ influence on pair performance

 Task
 Complexity

 Pair Other
 Personality Performance Factors

 Expertise

 Task
 Complexity

 Other
 Personality Factors

 Pair
 Collaboration

 Pair
 Expertise Performance

Most of the previous research on pair programming and personality differ from this new one
also in the personality classification chosen. The studies that are mentioned in the review in
[Hannay 09a] used either the quite well-known Myers-Briggs Type Indicator (MBTI), a
custom generator made by the researchers themselves (sometimes based on others, that they
modified), or other lesser known classifications.

“Big Five”, (which is described in Section 3.2) is based on empirical research [Goldberg 93]
contrary to the MBTI, which is not. Because of this possible strength of “Big Five”, it is
possible that the personalities will be better described by using this, and that the correlation
between the programmers measured personality and the factor it is measured against will be
greater.

The following sections contain summaries of the related literature that was reviewed for this
thesis.

4.1.1. Hannay, Arisholm, Engvik and Sjøberg
During the big pair programming experiment described in Section 1.3 a lot of information
about the programmers, the tasks they did, and the programming results were gathered. For
this reason, the experiment could be the basis for a quite high number of different analyses
with a variety of foci.

Soon after the completion of the experiment, researchers at Simula started investigating
relationships between the different factors in order to investigate how and when pair
programming could be used for ideal results. System complexity and programmer expertise
were the first two factors to be investigated [Arisholm 07], but personality was soon to follow
[Hannay 09a].

In the latter of these two, the authors conclude that “personality traits have a modest
predictive value on pair programming performance compared to expertise and task
complexity” and that “Rather than focusing on direct effects of personality issues on
performance, [...] more effort should be spent on elaborating the nature of collaboration and
its effects on performance”. Larger differences in extraversion and agreeableness between the

22

23

two members of pairs were found to lead to worse performance scores, but in a lesser degree
than all the non-personality based variables: task complexity, programmer expertise and
programmer nationality.

The article also contains a summary of related work. Some of the articles from it, in addition
to some others, are discussed below.

4.1.2. Dick and Zarnett
To find out what personality traits an employer should look for when hiring people for pair
programming, Dick and Zarnett [Dick 02] interviewed eight developers, including
themselves, after having pair programmed with each other for a period of around three weeks.
They asked each developer to state traits they thought to be important for successful pair
programming. The traits the authors present in the article as the results of these interviews are
“Communication”, “Comfortable”, “Confidence” and “Compromise”.

One can wonder if it was a coincidence that all traits started with a “C”, or whether some of
the traits they actually found are more commonly known under another word, but changed
here to make it catchy.

The article explains what is done and concluded in an understandable way. The results are
based on discussions during interviews rather than quantitative statistical calculations. The
article and its results are not based on Big Five, MBTI or any other personality trait system
one could more or less scientifically test people on, and is dependent on a job interviewer that
manages to investigate these four areas during the discussion.

While the article cannot be said to answer exactly what we like to know, since it does not
focus on the personality traits’ influence on pair programming collaboration, the article
presents some interesting findings that will be of use for our hypothesis development later.

4.1.3. Karn and Crowling
Karn and Crowling perform [Karn 05] an ethnographic study in which they sought to find
correlations between the MBTI personality values of teams consisting of 4-6 software
engineers and how these teams collaborate and perform. The authors do a similar
investigation one year later [Karn 06]. The articles follow three groups of students working on
three different projects.

They claim in their results sections that homogeneous teams (referring to homogeneous in
personality) are not ideal and that they “run into a real danger of falling into the no debate
trap” [Karn 05]. Furthermore, they state that, contrary to their assumptions, disruptions are not
always bad for the collaboration. Disruptions are rather stated as being beneficial for
collaboration, since disruptions lead to more discussion and dialog. In their follow up of the
study [Karn 06], however they say that the revisit made it clear that disruptions were, in the
long term, damaging to the development teams.

The article’s findings on the advantages of having non-homogeneous personalities in groups,
and the effects of disruptions, will be of good use in our hypothesis construction phase. What
limits this article’s usefulness to us is that the collaboration the authors refer to in the article is
a collaboration total for all tasks. Of these tasks, management, especially group meetings,
constitute the largest part. Also, in this article, the quality of collaboration is measured by
counts and types of disruptions only.

24

4.1.4. Williams, Layman, Osborne and Katira
In an article [Williams 06], these authors present an investigation in which they try to
investigate which factors will make a pair programming pair compatible. Their definition of a
compatible pair is one where both programmers perceive the pair to be compatible. The
compatibility score is thus not measured by performance or anything else, but only a
subjective statement by the subjects.

Regarding personality, the authors test the hypothesis that “Pairs are more compatible if
students with different personality types are grouped together”. Another of the article’s
hypotheses is similar, but concerns learning styles, referring to a scale for this that contains
the sensing-intuitive-scale of MBTI as one of its factors. For one phase of their three phased
study, both these two hypotheses receive what the authors refer to as “partial support”. That
is, personality is proven to be a predictor for when pairs evaluate themselves as very
compatible.

The article is detailed and describes research with a large sample size, and in which many
interesting findings and results are presented. Although it does covers personality and
performance, it does not state any specific personality traits that are desirable for efficient pair
programming or how the collaboration will be affected. The article does, however mention
what kind of personality traits one should look for if the goal is to make the two people in the
pair pleased with the other pair member.

As stated in Hannay et al. [Hannay 09a] “[…] 93% of pairs (randomly allocated and
irrespective of personality) report compatibility”. This large number might suggest that the
measure of compatibility was imperfectly defined or measured.

A related article, written by some of the same authors was published two years before this one
[Katira 04]. Its focus is slightly different, but the results are similar (that mixed personality
types are best for compatibility). This older article will not be discussed in detail due to its
similarities with the newer one.

4.1.5. Barrick, Mount and Judge
Unlike the other articles that were reviewed for this thesis, the article of Barrick et al. [Barrick
01] actually discusses the Big Five personality classification. On the other hand, the focus is
not on pair programming. Indeed, it is not even on software development.

The article is a review and summary of 15 articles regarding personality traits and job
performance. Their findings suggest that conscientiousness and emotional stability (the
inverse of neuroticism, see Section 3.2.4) is correlated with good work performance.
Although not really that close, the work category most similar to pair programming of those
they present is “teamwork”. For this category also, a correlation with extraversion and
agreeableness is shown.

The article and the review process therein are based on statistics and quantitative facts.
Regrettably, it is of little use regarding our research questions, and our specific focus on pair
programming. The idea of pairs or teams of any kind is not discussed in the article, and the
focus is on the personality of individuals and their performance in a job only. This is not a
weakness of the article, since combinations of people and personalities are not among their
focus areas. However, it does make the article less relevant for us. The results and discussions

25

from the article will be used during our hypothesis construction, but it will hardly be the lone
source of any hypothesis we will investigate.

4.1.6. Sfetsos, Stamelos, Angelis and Deligiannis
These authors write in an article [Sfetsos 06] a description of a set of experiments where the
objective is to “compare pairs of mixed/heterogeneous developer personalities and
temperaments with pairs of the same personalities and temperament, in terms of pair
effectiveness.”

The subjects, eighty four undergraduate students, were students who were measured on their
performance on the “Cockburn’s Responsibility Drive coffee machine code”, which is not
unlike the coffee machine used in the experiment in [Arisholm 07]. They measure the
programmers’ personality by using MBTI and the “Keirsey Temperament Sorter” (KTS).

Their results indicate that pairs with mixed personalities performed better at the tasks.
Relevantly to this thesis, the authors also state that the mixed personality pairs also
“communicated better” [Sfetsos 06]. Communication is measured with a very high-level
focus, and based on the navigator keeping a log of conversation, rather than third parties
analyzing the actual conversation and collaboration.

This study is very interesting for us, since it its experiment has many similarities to the one
this thesis is based on. The article also focuses on communication and collaboration. Its
methodology, however, is not that similar to our. The findings in the article are highly
interesting, so it will be very useful to us for hypothesis construction and for getting ideas and
inspiration.

4.1.7. Choi, Deek and Im
This article [Choi 08] discusses an experiment with students as subjects where the authors
investigate whether pairs of alike, diverse or opposite personalities perform better. They focus
on the two middle factors of the MBTI system, which indicate how a person interacts with
and perceives the world. They present definitions for personality similarity and lack thereof.
An alike personality would mean that a person has those two middle letters similar to the
partner in the pair. The two could for example be INTJ and ENTP and be considered alike.
Diverse means that one of the two middle factors is dissimilar and opposite means that both
are different.

They conclude that the diverse pairs are the best performers, the opposite pairs perform
moderately well, and that the alike pairs are suboptimal. The article describes the experiment
and the statistical measures thoroughly. However, like many of the other articles; it is
concerned only with performance, and not collaboration. The findings are a little too specific
in a field not similar to ours to help us in the hypothesis making phase, but the article will
provide inspiration and ideas.

4.1.8. Chao and Atli
Their article [Chao 06] describes a survey in which the authors tried to identify the five
personality traits most commonly perceived to be beneficial for pair programming. The result
is that pair programmers should be open-minded, creative, logical, responsible and attentive.
Open minded sounds both in name and definition similar to the Big Five trait openness.
Responsible seems to be quite similar to the trait of conscientiousness. (See Section 3.2 for
definitions of the Big Five traits.)

26

In the second phase, they run an experiment in which they test how programmers of different
combinations of these five traits perform (that is; the traits they found in phase one: not the
“Big Five” personality traits). Their results are stated as being not statistically significant, but
pairs with two low scorers in either open-minded or responsible scored the lowest.

The article says little about collaboration and focuses mainly on programming performance
results, which makes it not that relevant for us. Its use of a custom classification of personality
also makes it quite incompatible to our study. However, its findings make some suggestions
about which personality traits that lead to good performance, and could be of use in other
situations.

4.1.9. Others
Lucas Layman’s article “Changing Students’ Perceptions: An Analysis of the Supplementary
Benefits of Collaborative Software Development” [Layman 06] was also reviewed, but
deemed irrelevant for our study, because of its focus only on attitudes and the change of it.
Therefore, it will not be described in detail here. Its results include that

“Personality type (MBTI) and learning style (FSLS) had little effect on attitude change. Students who
disliked collaborative experiences were predominantly reflective learners, introverts, and strong
coders.” [Hannay 09a]

Lynda Thomas et al. wrote a similar article [Thomas 03] to Layman’s, but without focus on
personality types. It concludes that confidence (i.e. self-confidence) is important both for
enjoyment and results of pair programming. Because of its lack of focus on collaboration and
other elements of personality, it will not be discussed further. An article by Brian Hanks
[Hanks 06] is similar, and focuses also on confidence. Its results are non-significant and not
really relevant to us, so it will not be described further here.

An article by Karim Visram [Visram 04] slightly touches the subject. It is a strictly theoretical
paper, which claims that “successful pair programming […] relates to Goleman’s traits of
Emotional Intelligence” [Hannay 09a]. Since this is not a focus of the research in this thesis,
however, Visram’s article will not be discussed in detail here.

Not only in recent articles is personality mentioned as an interesting focus area for research
for programming. Shneiderman mentioned in his 1980 book that “Personality variables play a
critical role in determining interaction among programmers and in the work style of individual
programmers. Unfortunately too little is known about the impact of personality factors.” He
continues by mentioning several personality factors that are considered as relevant for
programming: Assertiveness, extraversion, motivation, tolerance for ambiguity, compulsive
precision (which he defines similarly to the big five trait conscientiousness), humility,
tolerance of stress, and locus of control. The latter is a psychological term which he defines
with the following example:

Individuals with strong internal locus of control feel able to and seek to dominate situations. They feel
they have the capacity to influence their world and control events. Individuals with external locus of
control feel that they are victims of events beyond their control and are perfectly content to allow others
to dominate them. [Shneiderman 80]

However, pair programming, or even team based programming, is not the focus of his
attention, so even though these and other ideas he presents is a good inspiration for what to
look for, little of it will be of any direct value for the analysis of collaboration in pair
programming.

27

28

29

Audio File Analysis

Hughes and Parkes [Hughes 03] mention that an obvious way for collecting information about
what people are thinking during tasks is to perform interviews on the subject when they have
completed the task. However, they then quote Durkin who states that “At worst, interviews
and questionnaires can produce inaccurate reports, due to erroneous or distorted reporting: a
person's recollection of his or her thinking may be significantly different from the actual
thoughts made at the time”. It is feasible that a fair amount of people will, deliberately or not,
describe their thoughts and performance more favorably than in reality, since this distortion of
the truth would be nearly impossible to detect. If detected, it could easily be excused by
saying “I forgot” or something similar. If people did this, the material based on their accounts
would obviously not be good for analyses, since this material would not represent the truth.
Note that this is a positivist opinion. People with epistemologies more commonly associated
with the social studies might disagree.

30

31

5. Protocol Analysis
A protocol, as the concept is used in this thesis and the related literature, is a recording of
speech and/or actions done by people, where someone wants to keep this kind of record. The
recoding can be in the form of a transcription text, audio recordings or something else, such as
video recordings. An example of a protocol, based on this definition, is the permanent record
that is sometimes transcribed during proceedings and criminal cases in courts of law. In our
case, the protocol is the verbal contents of the audio recordings we did, i.e. what the
programmers said during the experiment.

Ericsson and Simon [Ericsson 93] are two of the most prominent people in protocol analysis
research, and have literally “written the book” (actually several books) about the subject.
They further emphasize the view described above, stating that:

A critical problem with […] verbal descriptions of […] cognitive processes […] and experiences is that
such reports do not relate clearly to any specific observable behaviour. Even where subjects are asked to
report in their cognitive processes used during many trials of an experiment, we cannot rule out the
possibility that the information they retrieve at the time of the verbal report is different from the
information they retrieve while actually performing the experimental task. To avoid this problem of
accessing information at two different times – first during the actual cognitive processing and then at
the time of report – we proposed that whenever possible, concurrent verbal report should be collected,
so that processing and verbal report would coincide in time.[Ericsson 93]

To think aloud during the tasks is their suggested solution to the problem.

Verbal protocol analysis has, according to Hughes and Parkes [Hughes 03] “been prominent
in cognitive research psychology for over 25 years”. Usually, this was done by analyzing
what people said to themselves when requested to, or voluntarily, “thinking aloud” and
explaining to themselves or others what they were doing when they did it. Hughes and Parkes
claim, based on a reference to Ericsson and Simon [Ericsson 93], that “thinking aloud will
directly represent the contents of the subject’s working memory”. It is also stated that “the
technique provides a bias-free method of revealing what a person is thinking when performing
a task.”

Protocol analysis is evidently useful for getting insight into thought processes and how a
programmer/developer does things, for example if the goal is to examine how they use a new
tool or a new development process. A downside, however, is that for most people, it is
unnatural to speak to themselves. If forced to, they might not say everything they are thinking,
and in the worst case scenario they could omit the very information that is most important to
the researchers. This might especially be the case if the deepest thought processes are the ones
that are investigated. It is likely that many people, if forced or asked to “think aloud”, would
say only what they were certain of, and just the concrete things they do (“Now I’m writing the
next function call”). The questions they subconsciously ask themselves, and their decision
making (“It will be easiest to use an iterative function here, since I know that I don’t
understand recursion so well”) could be what the investigators were most interested in, but a
fair share of people would probably keep this to themselves.

In pair programming, however, discussing and elaborating on nearly all programming-related
issues when they appear on the fly is the natural way to act. It is often necessary to explain
your thoughts and courses of action for others to understand them even if the task at hand is
well known for both parties. Protocol analysis is thus a very useful and applicable method for
analyzing any aspect of pair programming. It is perhaps especially good for analyzing one of

32

the most important differences between pair programming and individual programming; the
collaboration involved.

For this thesis, the medium of analysis was already defined: audio recordings from the large
pair programming experiment in [Arisholm 07], each containing one pair programming pair
and their discussions when solving the tasks. Therefore, since we had the available “think
aloud”-like verbal protocols available, protocol analysis was the way to go. But there were
still quite a few decisions to make, including what part of the dialog that would be of most
interest to focus our attention upon, and how, and what, statistical data could be gathered from
our analysis of audio files.

5.1. How to Do It
To analyze audio recordings, several methods can be used. Myers, in his overview of
qualitative research [Myers 97], mentions two modes of analysis. The first, hermeneutics is
described as being concerned with the meaning of what is said. The other, semiotics “is
primarily concerned with the meaning of signs and symbols in language” [Myers 97]. He
divides the latter further into three sub forms. Two of these are content analysis (“looking for
structures and patterned regularities in the text”) and discourse analysis.

Discourse analysis […] focuses on "language games." A language game refers to a well-defined unit of
interaction consisting of a sequence of verbal moves in which turns of phrases, the use of metaphor and
allegory all play an important part. [Myers 97]

The latter, discourse analysis, seemed like the most suitable method when evaluating
collaboration. How the pattern of the conversation is going (Who is talking when? Do they
get an answer? Do they interrupt each other?) is an interesting area of attention when
measuring collaboration. However, elements of content analysis will also be helpful to
investigate what the programmers are discussing and when, and if pairs with certain
characteristics tend to talk more about certain things than others.

5.1.1. Making the Protocol Analyzable
The verbal protocols were, in our case, lengthy and numerous. In order to be able to produce
statistics, and more importantly, sense, of the protocols, some sort of classification is needed.
We considered that what was said and/or what was done was the obvious focus of attention.
We would divide the verbal protocol into sections, and give each section a code based on
what was happening or what was said during the clip. These codes would be one or several
categories chosen from a coding schema we developed. The goal was to select the categories
that described the activities and the type of collaboration that was present during this section
of the file. We referred to these sections to be coded clips. How long the clips should be was
an important matter. In examples from the literature, the clips they coded could range from as
little as single words (in the extreme cases even parts of words if the tonality change during
long words) to as large sections as several minutes’ discussion about a topic.

Hughes and Parks [Hughes 03] summarize the process as follows: to perform verbal protocol
analysis, one must first collect raw data (verbalizations, like audio recordings), then segment
and encode it, before finally analyzing it. They also state that for the segmentation and
encoding, one should use the same categorization and rules for all subjects in the same
context. This is obviously an important rule, and one we will follow.

Regarding coding schema development, Hughes and Parks quote Chi [Chi 97]:

33

However, the process of devising a coding scheme can be quite challenging for a researcher. Although
an initial coding scheme may be constructed from the literature, published research is unlikely to
provide a perfect model which can be re-applied: the choice of codes will depend upon the subject
domain, the hypotheses being tested, the research questions being asked, and the ‘theoretical
orientation’ of the researcher (Chi 1997).

Bakeman and Gottman’s book Observing Interaction [Bakeman 97] can be considered a
manual of coding schema making. They stress that a good coding schema which is fully
compatible with the material of research is of utmost importance, and creation of it should not
be done in a rush.

The first step in observational research is developing a coding scheme. It is a step that requires a good
deal of time an attention. Put simply, the success of observational studies depends on those distinctions
that early on become enshrined in the coding scheme. [...] Yet sometimes the development of coding
schemes is approached almost casually, and so we sometimes hear people ask: Do you have a coding
scheme I can borrow? This seems to us a little like wearing someone else’s underwear. [Bakeman 97]

5.2. Considerations for Making the Coding Schema

5.2.1. Physical or Social?
In their book, Bakeman and Gottman [Bakeman 97] mention that one should be aware that
categories can be physically based or socially based. In our context, physically based
categories would be regarding what is done, i.e. programming and reading, and socially based
categories would be questions and answers and other dialog-based categories.

Bakeman discusses this further, and explains about facial expressions, body language, etc.
Since we are to analyze just audio, rather than also video, facial expressions and other body
language will not be possible for us to know anything about. Moods will for the same reason
also be omitted from our focus. While it would be possible in many situations to identify what
kind of mood people are in from their audio expressions, it is more often impossible to
determine this, and often people can show their mood visually without speaking. This will, as
stated before, be unavailable for us with our audio files only. Also, analysis of facial
expressions, body language and moods would be a very time consuming process, and it would
most likely require some psychology background or at least a lot of specific training for the
coders to be able to do correctly.

Our categories turned out to be a mix of both physical and social categories, but with most
focus on the social part.

5.2.2. Objectivity
When developing a coding schema, one must consider how objective in use one wants to
make it. A coding schema as simple as counting each time a person says yes and each time a
person says no, would be possible to use with great objectivity. On the other hand, a coding
schema where it was required of the researcher to distinguish between whether or not a given
disagreement was “solved” or not, would require more insight, and in some situations
subjective thought.

The obvious advantage of having the schema maximally objective is repeatability. Two
different coders would with a 100% objective coding schema, if assumed that they do no
errors, get the exact same result. For a heavily subjective schema, the result would depend on
the coders’ considerations, and would most likely not be completely identical.

34

Regrettably, many aspects of collaboration are hard or maybe impossible to measure
objectively without breaking collaboration down to its most atomic and crude terms and code
these. While it is possible to do it that way, for example by coding each and every word (like
it is done in the article discussed in Section 6.3) it will be extremely time-consuming, and
might in many cases lead to “robotic” results that is of little use in showing things about
human action. Bakeman mentions that physical categories are not necessarily objective, and
mentions as an example that it requires cultural knowledge in order to be able to code for
example body language.

In the end, our categories turned out acceptably objective, while also being suitable for
describing collaboration and it was not too “robotic” when applied to the protocol. A
reliability check of the categories was done in order to ensure, among other things, that the
objectivity was satisfactory. This is described in detail in Chapter 10.

5.2.3. Exclusivity
Bakeman [Bakeman 97] states that it is important for coding schemas to be mutually
exclusive and exhaustive. “This means that only one code can be associated with a particular
event (mutually exclusive) but that there is some code for every event (exhaustive).”

This was regarded as important in our category development, and new versions were often
mostly based on better category definitions (exclusiveness) and extension of the list of
categories (exhaustiveness).

5.2.4. A Priori or Not?
Hughes and Parkes [Hughes 03] review a number of research papers on the subject, and claim
that “fewer than half of the research papers reviewed here used a coding schema which
evidently had been prepared a priori”.

Bakeman [Bakeman 97] quote Rosenblum and argues that the evolution of a code schema
should be gradual and that the initial stages are best kept very simple.

It is best to begin in the most unstructured fashion possible. There is great advantage to beginning such
observations with only a pencil and blank pad for recording. [...] At the beginning, the observer must
simply watch, allowing [...] behavior patterns to emerge as figures against the background of initially
amorphous activity [Bakeman 97].

This procedure was followed in our research as well. In the beginning, the schemas were
short, with categories which were not very specific. Coding would be accompanied with a log
of events and description of why the categories were used.

5.3. Software
To help us during the coding of the file, we chose the software Transana as our tool. Transana
is a “qualitative analysis software for video and audio data” developed at the University of
Wisconsin-Madison Center for Education Research [Transana 08]. It is primarily meant for
projects where real transcription is used, rather than just direct category coding of the audio,
but it turned out to be highly was suitable for us also. Transana offers an easy way to make
time codes and manipulate the flow of time in the files, since hotkeys makes it easy to rewind
and stop when needed. One can easily export statistical data from Transana.

35

6. Relevant Existing Coding Schemas
Many schemas have been used or suggested in articles describing previously conducted
studies. However, none of the many schemas which were available through literature searches
completely fulfilled what we wanted in a schema. Therefore, we were required to develop and
test our own custom-made schema.

Although we did not include any existing schema in its entirety into our schema, inspirations
were gathered from several articles and schemas. Substantial parts of our final schema are
directly based on categories from other schemas. In the next chapters, a selection of
interesting and/or important articles is presented. After that, the chronological report of the
development of our coding schema is described.

The articles are presented with special focus on how useful the classification were for us,
when we developed our own schema, and how suitable it would be for measuring the
collaboration involved in pair programming. Thus, even though some of the schemas are
displayed in a negative light below, they are probably good when used in the situations
described in the articles they are in.

The schemas below range from the very systematical and almost machine-like syntax in von
Mayrhauser’s coding schema [Mayrhauser 99] to the very qualitative and high-level
classification used by Cao and Xu [Cao 05]. The different classification schemas all have their
advantages and their disadvantages, and there is no universally appropriate schema that one
can use for all situations.

The first two articles, discussed in sections 6.1 and 6.2 below, are about collaboration in pair
programming specifically. The articles described in 6.6 and 6.7 are about pair programming,
but they have no specific focus on collaboration. The article in section 6.3 is not about pair
programming in particular. Instead, it focuses on the general area of software development.
The “dialog” that is analyzed in the article described in Section 6.3 is meant to be “think
aloud” protocol (See Chapter 5), but their schema is just as applicable for use on dialog. The
article described in section 6.4 focuses on learning and mental models and is somewhat
similar to that in 6.3.

The articles in sections 6.5 and 6.6, as well as those in 6.9 and 6.10 are not about software
development or computer use at all. However, they do provide interesting findings regarding
collaborative work and learning and what kinds of pattern that could appear in dialogues.
How problems, arguments and problem solving are handled in groups is probably pretty much
the same regardless of the type of task that is to be solved. The dialog would likely be quite
similar in general structure for two people trying to solve a programming task and two people
trying to direct a movie, given that the relative knowledge between the two when it comes to
programming was the same as their relative knowledge of directing.

6.1. The Schema of Lan Cao and Peng Xu
This schema was presented in the article “Activity Patterns of Pair Programming” [Cao 05].
The article focuses on how collaboration will be different depending on the programming
experience of people in the pairs. They mention that the pairs consisting of two people of
similar experience levels are more successful than the pairs in which one member is a novice

and one an expert. The authors also investigate the differences in the activity patterns for the
different combinations of pairs.

The protocol coding schema in the article is stated to be based on two previously developed
schemas. One of these two is the schema in Okada, et al. (described in section 6.10 below),
which is very similar to Cao and Xu’s schema in the detailed level of focus and the concepts
used. The other one is Lim et al., which is described in more detail below, in Section 6.4.

Cao and Xu’s schema focuses on quite abstract, high-level activities and dialogue patterns.
Their main coding schema is shown in Table 1. In other parts of the text, they mention a few
additional sub-activities, like “correcting misunderstandings” in the “Explanatory Activities”
main category. As usual for this kind of schema, the categories are meant to be applied to
sections of dialogue, which we refer to as clips. Frequently the clips used in the examples in
Cao and Xu’s article were quite large. Long dialogues consisting of several statements and
responses are shown as examples of single codeable sections, as long as the subject discussed
or the goal of what is said is the same throughout the section.

The remainder of their article contains explanations of the different categories and sub-
activities, and examples of how to use them on specific sections of dialogue. Table 2 shows
the closer descriptions of the first group of categories (as seen in Table 1), the “Leader’s
activities”.

Categories Sub-activities
Leader’s
activities

Set up goal/tasks
Summarize current status
Formulating Strategy/Action
Reconcile differences

Ask for
opinions

Ask for opinion

Explanatory
activities

Request for explanation
Provide answer with
explanation or justification

Critiques

Modify solutions
Raise new problems
Explanations

Summary of
results

Goal /task refinement
Mental model extension

Leader’s Activity Example
Set up goals for
the session
Set up tasks for
next step

I think we need to do is, the way we
present: register, add, drop…right
now we got a single class and based
on that, we can send to student file.

Summarize
current status

So once you add…you are going to
add them in the database, and view
and drop them, and add others.

Formulating
strategy/Action

Now we’re going to figure out how
to pass these parameters.

Reconcile
differences

So actually we can combine these
two… so I log in to the faculty menu
and student menu, and student menu
will have these and you add these.

 Table 1: Cao and Xu’s coding schema Table 2: Leader’s activities

6.1.1 Advantages
The most apparent advantage of this quite simplistic high-level taxonomy is that it is fairly
easy to apply to the segments/clips of the verbalization data. An experienced coder will be
able to code the segments in near “real time” using this schema, since the categories are broad
enough to be used on dialogue sections of several seconds’ duration. If the coder manages to
write and listen carefully enough at the same time, he will be able to write down categories
for dialogue sections while keeping up with the pace of the dialogue. This implies that the
schema could be used for coding pair programming as it happens. An audio recording of the
pair’s discussions would in that case, not be strictly necessary.

The categories are, though wide and abstract, concrete and precise enough to be applied to the
dialog without the need for extensive amounts of subjective evaluation from the coder. The
categories are mostly well-defined and understandable, so two coders trying to code the same

36

37

section of dialogue, would most likely end up with a very similar result, given that they share
a general understanding on certain coding issues mentioned in the disadvantages section
below.

When the categorization is done, and the analysis is about to begin, this schema would
provide the analyzers with quantitative data on how often each category was used. It would
also be fairly easy to find out if certain transitions between different categories were common,
(for example whether or not a request for opinions often lead to an explanation).

If one wanted, one could use this schema for focusing on finding results that are qualitative
rather than quantitative. If the researchers did not focus only on the statistics of the category
use, they could attempt to grasp the “big picture” of the results, which could lead to findings
that one might not have found when analyzing just the category usage numbers. This would,
however, require them to have extensive knowledge of the complete coding results, and this
kind of qualitative analysis can rarely be successfully done automatically by a computer
program or by people unfamiliar with the specific dialogues.

All in all, the schema is ambitious in its simplistic nature, and it might be excellent for use in
certain situations. The authors, who possess complete understanding of the schema, were
probably able to use it very successfully.

6.1.2. Disadvantages
One downside with the article is that it is never stated how long each coded section of the
dialogue should be. Also, some of categories have slightly hazy boundaries, and might be
indistinguishable from each other in some situations. For example, it might not be clear when
the conversation should be coded as “formulating strategy/action” instead of “set up
goal/tasks”. Is it a “formulating strategy/action” at the first mentioning of the Java code itself?
Or should this category be used as soon as the specification document is no longer discussed,
or perhaps not until the actual coding has started and the first method call is done? Even the
example given in the article (Table 2 above) to point out where the borders between these two
categories go is a little unclear. A categorizer with an especially abstract mindset might code
very long segments of speech as “set up goal/task”, while a categorizer with a more
micromanaging disposition might divide the section into many parts, and code these as “ask
for opinion”, “request for explanation” and others where appropriate. None of these two
coders can be said to have done it wrong.

Certain dialogue patterns that are likely to appear in pair programming are not included in this
schema. Categories describing disagreements and off-task discussions are lacking, and where
these would be suitable categories, a category most similar to them must be used instead. This
is not a big problem for us, however, since it is easy to extend the categories here without
interfering with the others or destroying the “essence” of the schema.

Also, the categories say little about the collaboration, but rather focus on the activities. This is
understandable, since it is the activity patterns which are the focus in the article, but it means
that it is not all that relevant to us. It is limited how valuable the data we could find by using
this schema would be, since we did not plan to perform a deep and probably time-consuming
qualitative analysis.

38

6.1.3. Our Use of the Schema
The initial versions of our study’s coding schemas were heavily inspired by this schema, but
our final versions did not contain much of Cao and Xu’s schema.

6.2. The Schema of Sallyann Bryant, Pablo Romero and Benedict du Boulay
This coding schema was presented in the article “The Collaborative Nature of Pair
Programming” [Bryant 06]. The authors’ goal in this article is to find out whether or not one
of the pair programming roles (driver/navigator), or one of the people in a pair contributes
more than the other to the dialogue.

Even though the authors do not focus specifically on the collaboration involved, they make a
categorization that can be used for studying collaboration. The list of so-called “derived
generic sub tasks” presented in the article is shown below in Table 3.

A Agree strategy/conventions Including approach to take, coding standards and naming conventions
B Configure environment Setting up paths, directories, loading software etc.
C Test Writing, running and assessing the success of tests
D Comment code Writing or modifying comments in the code
E Correspond with 3rd party Extra-pair communication: person to person, telephone or email
F Build, compile, check in/out Compiling and building on own or integration machine
G Comprehend Understanding the problem or existing code
H Refactor Re-organising the code
I Write new code Creating completely new code to complete the assigned task
J Debug Diagnosing, hypothesizing and fixing bugs
K Find/check example Looking at examples in books, existing code or on-line
L Discuss the IDE Talking about the development environment
Table 3: “Derived generic sub-tasks” from Bryant et al.’s coding schema.

6.2.1. Advantages
Like Cao and Xu’s schema above, Bryant et al.’s categories focus on the high levels of
programming, and it would be quite easy to use. Bryant et al.’s schema might be even easier
to apply to the protocol than that of Cao and Xu, since the Bryant schema focuses on the
activities being done, rather than the contents of the discussion. It is feasible that a coder will
be able to code in real time when using this schema as well (as described in Section 6.1.1).
The other two major advantages with Cao and Xu’s schema also apply here; the schema is
wide and abstract, but tangible enough to be applied to the dialog by most people. Also, most
categories are well-defined

6.2.2. Disadvantages
As well as for advantages, this schema shares its disadvantages with the schema presented by
Cao and Xu. Bryant’s categories are even less suitable for describing collaboration. Also, the
categories are very few in number, and they are all quite similar to each other. By itself, it
would lack much if the goal was to describe the rich and varied area of pair programming
collaboration.

6.2.3. Our Use of the Schema
This schema was used as a basis for the initial versions of our schemas, since it has a good
mix of categories for different situations that will often happen during a pair programming
session, such as testing. This line of categories “survived”, and was included throughout each
and every coding schema. In the final version of our coding schema, the inspirations from this
article appear as many of the “task focus” categories.

39

6.3. The Schema of Anneliese von Mayrhauser and Stephen Lang
This coding schema was published in the article “A Coding Scheme to Support Systematic
Analysis of Software Comprehension” [Mayrhauser 99]. The authors take a very technical
position, and they begin the article with describing and explaining different mental models
and actions involved in software development. This leads to a very systematic and detailed
category hierarchy, where the mental model and other more abstract topics are at the top of
the hierarchy, and specific actions are at the bottom. For example, the action of reading a list
of variables is coded as SYS.act.inf.cod.rea.var, since it is program based (SYS), an action
(act), “manipulation” of information (inf), based on the code (cod), done simply by reading
(rea) and that what being read is a variable (var).

The article describes all the elements of the hierarchy in detail. Then the article goes on to
explain what types of analyses which will be suitable to perform when using this
categorization.

6.3.1. Advantages
This very technical, systematic and granular coding schema can, as mentioned in the article,
be used for many analytic purposes. Analysis of the coded dialogue could even be done
automatically by software. People who are not directly involved in the analysis and
experiment could perform these analyses just as well as people who have a full knowledge of
the experiment and the coding schema. The results of such an analysis would be a very
quantitative and statistical report.

6.3.2. Disadvantages
The most important reason why we did not use this schema is the incredible amount of work
one is required to do in order to use the schema. The amount of time required to code would
most certainly be many times the actual length of the verbalizations. Also, for a fair share of
people the coding process using this schema would probably be viewed as an exceptionally
tedious and repetitive job.
It is also a concern that even though the categories are well-explained and very precise, it
would be hard to use them in real life when coding dialogue. The example coding in the
article shows that in many occasions, the coder (which is presumably one of the authors), has
stopped progress downwards in the “code hierarchy” and just put up :MIS. This category is
not explicitly explained in the article, but is used in a matter that suggests that it is short for
miscellaneous. Also, certain sections of protocol are not given any category at all. It is
reasonable to think that two people trying to code the same recording using this schema might
end up with a noticeable difference in their coding results.

The categories focus very much on what is done, and not so much why and how it is done.
Thus, it might be less suitable to use these categories to describe dialogue from pair
programming sessions, especially when focusing on collaboration. In pair programming,
discussions are often about long term plans and the understanding of the code, and not only
discussions about code manipulation. Also, the action focus this schema has would mean that
much of the important factors in collaboration, including the flow of the dialog, would not be
covered by the categories.

6.3.3. Our Use of the Schema
The schema is very complex, and would require a lot of effort to use. For these reasons, the
schema in its unaltered form was not seriously considered as usable for our investigation,

40

other than during the very initial discussions when nothing was yet decided. However, some
of the ideas presented in the article are useful. The system of using many subcategories in
order to richly describe a segment was used in the later versions of our category development.

The mental model concept from this article was important to us, and became the basis for the
mental model categories we included in middle versions of our coding schema. These were
later renamed and altered to form the category class of “Cognitive Level” which was
introduced during the later versions of our coding schema. The “Cognitive Level” category
group remained a part of our coding schema all the way to the final version of the schema.

6.4. The Schema of Kai H. Lim, Lawrence M. Ward and Izak Benbassat
In the article “An Empirical Study of Computer System Learning: Comparison of Co-
Discovery and Self-Discovery Methods”, the authors seek to examine “two types of
exploratory computer learning methods: self-discovery vs. co-discovery, the latter of which
involves two users working together to learn a system” [Lim 97]. Accordingly, the focus of
the article is learning. The article frequently discusses the concept of “mental models” which
is described as the understanding a person has of the complete system and its details. The
authors mention that a way to test a person’s mental model is to ask them to imagine how a
system would behave, given a specific input.

The categories in the coding schema try to grasp the “mental” dimension of teamwork. They
distinguish between the two main categories: deeper level reasoning and surface level
reasoning. Subcategories for deeper level reasoning are Seeking Understanding/Clarifying,
Reasoning/Inferring, Formulating Strategy and Evaluating/Interpreting. For surface level
reasoning, the subcategories are Describing Action and Reading Screen Output. Also included
in the schema is a category for Other Mental Processes. The results presented in the article
shows that co-discovery leads to a higher inference potential (the potential of generating
proper predictions of a system’s behavior), which in turn leads to better task performance.

6.4.1. Advantages
The categories in this schema are general and are focused on a quite high-level. The high-
level focus might lead to the schema being easy to apply to the verbal protocol. The schema
focuses on an interesting aspect that is mentioned by few of the other articles reviewed in this
thesis; namely, the aspect of the understanding of the system and the development of the so-
called mental models of the persons participating in a dialogue.

6.4.2. Disadvantages
The article focuses heavily on learning, which is a weakness when considering its usefulness
for our study. While learning is the inevitable first step in order to improve a system, learning
itself was not the focus of the pair programming experiment on which this thesis is based,

The categories of this coding schema could be described as a little vague, since several of the
categories could be used in a number of quite different situations. As an example,
“formulating strategy” describes a much more collaborative dialog section if used when both
pair members contribute to the strategy and both understand it, than it does when used to
describe a situation in which one pair member says everything, and the other is silent. The
category could be used in both these situations.

41

6.4.3. Our Use of the Schema
Initially, this coding schema was considered as not so relevant for collaboration in pair
programming, and the schema was therefore not a basis for any of the initial versions of the
coding schema. However, the notion of mental models was introduced in the middle versions
of the coding schema, since it was realized that they would describe an aspect collaboration
that the other categories did not. These mental model categories remained a part of our
schema, and were included in our final coding schema as well.

6.5. The Schema of Carol K. K. Chan
In the article “Peer collaboration and discourse patterns in learning from incompatible
information”, the authors’ objective is to examine how big “the effects of peer collaboration
on knowledge processing and conceptual change” [Chan 01] are, and how disagreements are
handled. In the process of measuring this, they create a coding schema with a high-level
focus. The schema divides sections of dialog into categories based on what type of
collaboration is present. The categories are few; the schema consists of only four categories.
Three of these are described as “surface moves”. The first of these three is “Stonewalling –
differences are rejected to minimize belief change”. The other two are called “ignoring” and
“patching/compromising”. The three “surface moves” are regarded as less desirable for
collaboration than the last category: “Problem-centred inquiry – differences are viewed as
problems that need to be explained”. Problem-centred inquiry is what the article argues
should be strived for when trying to achieve successful collaborative learning. Through their
experiment, the authors also show us that there was a quite large difference in the amount of
use of the problem-centred inquiry category between groups that performed poorly and the
groups that performed well. The best performing groups were those that used problem-centred
inquiry the most.

Unlike in the other articles, the authors in this article state which of the categories that they
consider to be “good” and “bad” for the quality of collaboration. These considerations could
be useful to us in the process of making research hypotheses.

6.5.1. Advantages
This coding schema is not primarily intended for use in a pair programming setting or even
for software development at all. However, the schema has certain qualities that make it
noteworthy, and the schema is probably usable for coding nearly any kinds of collaboration-
based tasks in which dialog is a central part.

The high-level focus of the schema might make the categories fairly easy to apply to the
protocol. Also, the categories are defined in a way that makes them very separable from each
other; more so for the categories in this schema than for the categories in most of the other
schemas.

This schema seems to be quite suitable for our use if it is combined with some more specific
categories that would make the final schema more capable of describing pair programming
collaboration in its entirety.

6.5.2. Disadvantages
The schema seems a little simplistic and the categories are not very concrete. A major
problem, regarding the schema’s usefulness to us, is that the schema contains categories for
describing conflicts only. The schema lacks categories suitable for describing situations such

42

as questions being asked or explanations being made. In this article, as in the one above
(described in Section 6.4), the focus is much more on learning than it is on problem solving.

6.5.3. Our Use of the Schema
Some of the categories from this coding schema, especially stonewalling, were helpful to us
in describing the collaboration in regards to reactions to statements. The stonewalling
category was included during the latest versions of the schema and is still there in our final
version of the coding schema.

6.6. The Schema of Kathleen Hogan, Bonnie K. Nastasi and Michael
Pressley
The goal of the study presented in this particular article, is to investigate the “discourse
components, interaction patterns, and reasoning complexity” [Hogan 00] in groups of three
people. The authors analyze the discourse by using three “interaction patterns” which are the
following:

1. Consensual – Basically what is commonly known as “one-way communication”,
where one of the participants does most of the talking, and the other people merely
agree or repeat what is said, or they might even ignore it.

2. Responsive – Several people contribute to the conversation.
3. Elaborative – Several people contribute to the conversation, and they do so in a way

that elaborated on the previous contribution, so that the dialog was always evolving
towards a solution for the problem. [Hogan 00]

The authors also use a collection of so-called microcodes. The microcodes are categories that
describe actions at a different level than the “interaction patterns”, and they are meant to be
applied to single statements. The complete list of the microcodes is: Presents (idea, partial
idea, information, summary), Repeats (self, other), Elaborates (self, other), Evaluates (own,
other, task), Reflects (standards, understanding), Regulates action, Presents query, Requests
information, Reacts (agrees, neutral), Reacts (disagrees), Digressions and Uncodable.

A notable finding presented in this experiment is that during the experiment, there was a
noticeable correlation between the subjects’ achievement levels and their degree of
participation on the discussions. More participation implied greater achievements.

6.6.1. Advantages
The interaction patterns mentioned here seem suitable for collaboration coding, and it would
be possible to apply the categories in “real time” (as explained on Section 6.1 above). The
“patterns” that make up the categories would lead to analysis material that would be
interesting for us, since knowledge about the flow of the dialog seem like an important part of
classifying collaboration.

6.6.2. Disadvantages
A small downside with the interaction patterns is that it will require a highly trained person in
order to apply the categories correctly. There also seem to be some situations where the
collaboration would be in the borderline between categories.

The “microcodes” seem to be insufficient for describing the complex area of collaboration.

43

The schema also shares some of the disadvantages from the article in Section 6.4. Both
schemas focus more on learning and achieving “total agreement” than on solving a task.

Another downside is that the article discusses groups of three, and not pairs two (like in pair
programming). However, the categories themselves seem to be equally suitable for coding
discussions between only two people.

6.6.3. Our Use of the Schema
Elements of the schema were used with great success from the later versions of our coding
schema and onwards. By using the interaction patterns from this schema, one could describe a
very important part of collaboration, namely how the “pattern of interaction” was.

In situations where both programmers say about equally much during a pair programming
session, they do not necessarily collaborate very well, for example if they never answer each
other, but talk to themselves the whole time. When using the “interaction patterns” as
categories, this kind of behavior is identifiable.

6.7. The Schema of Sallyann Freudenberg, Pablo Romero and Benedict du
Boulay
This coding schema was presented in the article “’Talking the talk’: Is intermediate-level
conversation the key to the pair programming success story?” [Freudenberg 07]. The authors
try to investigate whether the navigator and the driver usually follow the prescribed behaviors
for the roles (where the two have a different level of abstraction) or if the two programmers
are focusing on the same things instead. The article lists some interesting findings based on
four one-week studies of commercial programmers. The conclusion is that the driver and the
navigator typically make the same amount of utterances in the different abstraction categories.

Not surprisingly, considering the focus of the article, the coding schema focuses on
abstraction levels. The categories are few and well-defined, and are shown in Table 4 below.

Code Explanation Examples
SY Syntax – Spelling or grammar of the program. Spelling is indicated

in the transcriptions by single letter capitals. NOT semantics.
S P E L L I N G, dot, F9, 7.

D Detailed – refers to the operations and variables in the program. A
method, attribute or object which may or may not be referred to by
name.

This condition, that return
value, the list, the counter,
what this returns or gives,
getCustomer.

PR Blocks of the program. Including tests and abstract coding concepts.
Also strategy relating to the program and its structure. General
naming standards discussions etc. This could also include cases
where the subject of the sentence refers to ‘some of them’ or ‘they
all’ – i.e. a group of conditions. Anything to do with refactoring.
Subsystems or libraries. Directories or paths, even if named.

That loop, truncation, the error
handling, Oracle, this issue.
this part of the program, mock,
Mosaic.

BR The statement bridges or jumps between the real world or problem
domain and the programming domain. This may be where a case or
condition exists in the code and the real world.

So we need to add a test
condition here, to see if the
bank account is valid for this
kind of transaction.

RW Real world or problem domain Savings account.
V Vague, including metacognitive statements and questions about

progress or understanding. References to a place on the screen.
References to the development environment and/or navigating its
menu structure.

Oh, yeah, I see, that bit at the
top.

Table 4: Freudenberg et al.’s coding schema.

44

6.7.1. Advantages
The coding schema presented in this article, focuses on mental models. This was also the case
in the articles described in Section 6.3 and 6.4 above. The categories in this schema, with
focus on the level of abstraction among the developers, might provide interesting information
about the collaboration. Even though the programmers seemingly cooperate very well, if both
contribute to the collaboration with suggestions and feedbacks, and both argue well for their
ideas, the actual cooperation might not be very beneficial if the programmers discuss things at
one end of the abstraction level range only. Constant arguments on spelling or coding
standard does not automatically lead to good software (even though the code might look nice),
and prolonged philosophical discussions about the intended goal of the software does not help
much if the code does not compile. As the article suggests, a balance between the two
extremes is best.

The categories are well defined, with understandable examples, and will be fairly easy to
apply to the verbal protocol in near real time. Because of the rather low number of categories,
the task of choosing between them on ambiguous statements (where “vague” is not an
appropriate category) will be easier than otherwise. Moreover, the schema was developed for
use in a pair programming setting.

6.7.2. Disadvantages
While the categories are few, especially compared to the coding schemas in other articles, one
might still wonder if they are few enough. When applying the categories to the protocol, there
will likely be some situations where it will be hard to choose between the D (Detailed) and the
PR (Blocks of program) categories. These categories appear as quite different when reading
their definitions and looking at the examples in the article, but how large a section of the code
must something be before it is called “a block” of the program? This is not explained in the
article, and could be interpreted as anything ranging from a line of code to everything that is
larger, even though they probably mean (since they mention a loop as the “smallest” example
of this) that the block should be at least a couple of lines.

6.7.3. Our Use of the Schema
From the middle versions of our code schema, and continuing even into the final version, the
spirit of this schema was included as an important part of our coding schema. Initially, it was
included as one of two subcategories to be applied; in later versions – it was one of six. To
remove the disadvantage described above, the “PR” category was not included in our schema,
so that it would be easier to code a low cognitive level. Also, “D” and “BR” was combined,
and “V” was renamed and redefined in order to include only Metacognitive statements. The
concept and definition of “Metacognitive” was improved and inspired in part by its
description in the article described in Section 6.6 above.

6.8. The Schema of by Sallyann Bryant
This schema appears in the article “Double trouble: Mixing qualitative and quantitative
methods in the study of eXtreme Programmers” [Bryant 04]. In this article, the author’s
objective is to study pair programming in general, and specifically look for behavior
differences in pairs depending on the pair members’ level of experience with pair
programming. Bryant presents the interesting finding that people from pairs where both have
much experience with pair programming act more similar to their partner than people in the
low experience pairs do. In these less experienced pairs, people act much more according to

45

the pair programming role they are in (driver/navigator). The highly experience pairs also
review and test the code more often, and they make explanations and suggestions less often.

The categories presented in this article are pretty straightforward, and similar to those in
previously mentioned schemas (especially the ones in Sections 6.1 and 6.2). The total list of
categories is the following: Question, Explain, Suggest/counter, Confirm/agree, Remind,
Change driver, Look up information, Review/refactor, Test, Rest and Other.

The categories are not that well explained; about half of them do not have any explanation at
all, and the explanation for the rest is only one sentence without any examples.

Its advantages and disadvantages will not be discussed further, as they will be the same as for
the two schemas this one is similar to. However, the few and loosely defined categories would
ultimately not be a substantial influence for the final versions of our coding schema.

6.8.1. Our Use of the Schema
This schema was a good basis for the very initial versions of our schema, since it was
straightforward and easy to grasp. As mentioned, the article presented some interesting
findings, which led to the hope of finding equally interesting results in our study if the same
schema was used.

6.9. The Schema of Gary M. Olson, Judith S. Olson, Mark R. and Marianne
Storrøsten
This schema is from the article “Small Group Design Meetings: An Analysis of
Collaboration” [Olson 92]. The article is based on CSCW (Computer-Supported Cooperative
Work) ideas, and the development of the coding schema in it is the goal of the study. The
authors observed a number of groups consisting of 3-7 people when they were having
meetings about design. It is stated that about 50% of the time that was spent in the design
meetings did not concern new design ideas, but consisted of the people doing administrative
duties like coordinating the work and summing up the work already done.

The coding schema itself is simple and not universally applicable. The full list of categories
is: Issue, Alternative, Criterion, Project Management, Meeting Management, Summary,
Clarification, Digression, Goal, Walkthrough and Other. As one can clearly see, the focus is
on meetings primarily, and not on pair programming at all. This is understandable, since
meetings were the focus of the study in the article.

6.9.1. Advantages
All categories are well-defined. Since they were developed based on observation of the
meetings, they are probably very good for design meeting analysis. The categories also seem
simple to apply, and the borders between them are clear. Coders would rarely need to think
long about which category to use.

Some of the categories are interesting since they focus on a slightly different area than the
other schemas do. The categories such as “issue”, “criterion” (arguments, opinions) and
“goal” makes it seem like this schema is a little more systematic and result-based than many
of the other schemas reviewed in this thesis.

46

6.9.2. Disadvantages
Many of the categories are quite irrelevant for describing pair programming; especially the
meeting-based categories (project management, meeting management). The categories are
also quite few. Additionally, the categories, while well-defined and disjoint, seem quite
vague. Another slight disadvantage for its usefulness in our study is that the groups for which
this schema is developed are 3-7 people in size, and not pairs.

6.9.3. Our Use of the Schema
Since the categories are simple and varied, inspirations were taken from them for some of the
early versions of our schema.

6.10 The Schema of Takeshi Okada & Herbert A. Simon
This article, named “Collaborative Discovery in a Scientific Domain” [Okada 97] is a mainly
psychology-based elaboration. The authors present an experiment in which the goal was to
investigate differences in performance between pairs and individuals in what they call a
“discovery problem”, which was a small theoretical biochemical assignment. They note that
the pairs performed significantly better than the individuals. They explain this finding both by
mentioning seemingly obvious facts (like that the pairs are two, and thus have a double
chance of getting the answer right), and deeper explanations: The pairs were much more
likely to change their hypotheses and justify their choices than the individuals, who were
thinking aloud, were.

To measure the behavior of the subjects, the authors use a coding schema that is made for
describing construction and adjustments of hypotheses.

The advantages and disadvantages for this schema will be the same as for the high-level
schemas discussed earlier in this chapter, and will not be discussed in detail. However, this
schema’s focus on creation and explanation of hypotheses (like “Agreement to the
hypothesis”), rather than focusing strictly on what is done (for example “answering
question”), is interesting. This schema is not only measuring what is done during the
collaboration, but also what kind of, and how big an, impact the collaboration has on the
decision making and final result.

A hypothesis agreed on might not always be correct, for example, in the case where the
contributor of an erroneous hypothesis is a good negotiator/persuader and successfully
persuades his partner into accepting his idea. However, we can be certain that the hypotheses
agreed on by two people are generally more thought through than the hypotheses individuals
make, since the individuals might base their choices on gut-feeling or similar unchecked
apparatuses of decision without upsetting a peer. If one of the two in a pair attempted
something similar, the other member would likely protest to the hypotheses or at least request
a better explanation for it.

6.10.1. Our Use of the Schema
Although not plainly visible, inspirations from this schema were of good use for the “Begin
Characteristics” group of subcategories and, to a lesser degree, “Interaction Patterns” and
“Result”, in our final schema versions.

7. The Development of Our Coding Schema
Our coding schema was revised significantly six times before it was decided that the schema
was sufficient for our needs, and the actual coding process could begin. In addition to these
seven more or less discrete coding schema versions, there were continuous minor adjustments
to the categories’ definitions throughout the process of developing and testing the schemas.
(The initial version of our schema consisted of two parallel schemas, so eight schemas
actually existed in total.)

The order of development and how the versions influenced each other is illustrated in Figure
2. The arrows indicate the directionality of development and influence, and points to the
schema version that was influenced. Bold headlines signify the major schema versions. The
major versions are regarded as “major” if they are the result of large changes to the previous
version. All iterations are described in detail in the following chapters.

Figure 2: Coding schema development

Final coding schema
Tweaks, reformatting

Tweaks, reformatting
6 categories per clip

New focus categories
5 categories per clip

Abstraction level added
2 categories per clip

1 category added, 1 removed
Improved definitions

Combined categories
1 category per clip

Other initial categories
2 categories per clip

My initial categories
2 categories per clip

Supervisor’s
revision

47

7.1. Initial Category Draft.

7.1.1. My Version
After reading through relevant literature, the other master student and I, made one individual
coding schema each, and tried to apply the categories from each of our schemas to one audio
file.

My initial schema focused mainly on what the pair programmers said, and how the
programmers reacted to statements made by the other person. The schema was mainly
influenced by the schemas of Cao and Xu (Section 6.1), Bryant (Section 6.8), Bryant et al.
(Section 6.2) and parts of the schema of Hogan et al. (Section 6.6). My first schema is shown
in Figure 3 below.

48

Figure 3: My initial category draft.

Discussion
Meta
Private discussion
Technical

Fight
"Won" by someone
Remains unsolved
Solved

Suggestion
Accepted / Discussed
Ignored

Comment
Negative
Positive
 Collaboration

Good
Bad Monologue

Ignored
Valued

Code editing
Individually
With close collaboration

Question
Answered
Ignored

Disagreement
Ignored
Solved

The category Meta described discussion related to, but not directly about the task. Technical
described discussion about solving the programming task.

At this point, we were inexperienced in use of the Transana software. In this first schema, the
categories were ordered in a hierarchical manner. The planned coding procedure would
consist of assigning the clip to an activity-describing category chosen among all the ones in
the gray box in figure 3 above. For example, if one of the programmers asked a question, and
the other one answered it, the category Question(Answered) would be chosen.

In addition to the activity category the clip was assigned to, in order to describe the activities
that were being performed by the pair, each clip was meant to be assigned to a category
describing the quality of collaboration. This qualitative characterization consisted simply of
“good” or “bad”. Accordingly, every clip would be given two categories in total; one

49

category describing the activities performed by the pair programmers, the other category
judging whether the collaboration was good or bad.

The audio file I coded with this schema had a total duration of two hours and twenty-one
minutes. I divided it into 81 clips (averaging 1 minute and 44 seconds in length). Of the total
selection of 20 subcategories, I used 15 of them, but I used only eight of them more than
twice. The clips that I coded as code editing were by far the longest in average. Sometimes
they were as long as five minutes or more.

7.1.1. The Strengths and the Weaknesses of the Schema
My categories turned out to be less than ideal. Many of them were superfluous, and the
separate rating of good/bad collaboration was not a great idea. For many of the activity
categories, a certain collaboration category always followed. For example, the activity
category editing(cooperatively) was only used for clips that I coded as collaboration(good).
For the clips I coded as monolog(ignored), I always used the collaboration quality category of
collaboration(bad).

Because of my imperfect coding schema and my low level of experience with coding at this
point, many clips were not assigned to exactly two categories (activity + collaboration
quality). Several clips were coded as both good and bad collaboration, for example, in
situations where the activity remained the same throughout the clip, but the collaboration
quality level fluctuated.

I had not included any specific guidelines for the length of the clips or for the use of the
categories, and the length of my clips turned out to vary a lot. For example, clips coded as
“programming” would sometimes last for several minutes, while clips of question(answered)
only lasted for a couple of seconds. In some situations, I used two activity categories for one
clip, since a short question inside a long programming session was considered to be too
insignificant to require a separate clip at this time. This was in retrospect not a good practice,
since the categories which only described parts of the clip would then be given “full credit”
for the clip, and the time the category was used would increase by the whole clip length. Since
these “insignificant” areas were often much shorter than the clips, the statistics generated
about time use of categories would be incorrect.

Another problem with this initial schema was the very high level of subjectivity involved in
the application of collaboration(good/bad). This problem was identified early, and there were
fears that it was tempting to be too “kind” and give the programmers more “good”
collaboration than they had deserved. At the time, it was thought that the collaboration
category could be applied with more objectivity after becoming more familiar with the
material and the categories after trying to code some more audio files.

The practice of judging manually whether the collaboration during the discussion in each clip
was good or bad was abandoned in the next schema suggestion. However, the concept of
indicating whether or not the collaboration was good or bad remained a part of our schema for
several versions, although it was from the next schema version on built into the categories,
and did not require a subjective judgment when coding. At even later schema versions, this
measure of good/bad collaboration was eventually removed altogether.

Although my first schema was imperfect, it did have its strengths. Large elements of the
schema were based heavily on previously published schemas. Also, a notable amount of my

50

initial schema has been kept through the next versions of our coding schema; some of my
categories were kept until the very end. Another advantage with this schema was that is was
easy and fast to use. When I made clips and allocated them to categories while listening
through the file, I used only 40% more time than the duration of the coded section. The
schema was based on some good ideas, but its actual usage was not sufficiently thought
through and the schema lacked a lot when it comes to grasping the “bigger picture” of
collaboration.

During my coding work on the first audio file, lessons were learned about the difficulty of
starting and ending clips at appropriate times. At this time, we had not made any specific rules
or guidelines for clip length, but clips of about one minute in length were considered
reasonable. Compared to the desired clip length associated with the more current versions of
the schema, even the short clips in this coding attempt are actually quite long, (and the long
ones here are incredibly long by our current rules.)

7.1.1.2. Extra Information added to the Coding
When coding with this schema version, I would write short comments about what happened in
the text area of Transana while making clips and applying categories. This was a good routine
when using my first schema, since the routine worked as a way of briefly describing why a
particular category was chosen. Sometimes, however, I could not write anything else than the
category name here, since it was hard to describe the contents of the clip in other words than
to use the name of the chosen category.

Additionally, at the top of the transcription text area of Transana, I wrote a really short
description of the two programmers. I gave them the names P1 and P2 and wrote just enough
about them to distinguish them from each other. For example, I would note the gender or the
dialect or accent used if the two pair members varied on one of those factors. I also attempted
to note which of the two the driver was and who the navigator was when they started the
programming tasks.

At the bottom of the transcription text area, I wrote a short and subjective text of 2-4 short
paragraphs which described my overall impression of the collaboration. I also mentioned the
development of the collaboration as time passed and how, and if, the collaboration changed
when the pair members changed pair programming roles.

7.1.2. My Fellow Master Student’s Version
The second of the two individual attempts to make an initial coding schema was done by
another master student. Her schema turned out to be quite similar to mine. Because much of
the literature I read was read by both of us, and because she and I had a number of discussions
before we started developing a schema, the similarity between our schemas was not
unexpected.

In her schema, as in mine; the notion of “good” and “bad” collaboration was used. However,
unlike in my schema, good/bad were in her schema meant to be supercategories, with all other
categories being subcategories of these.

The subcategories in her schema, which were similar to the supercategories in the schema
described in Section 7.1.1 above, were few in numbers, but they had a rather deep focus. The
concept of “solution” was used. Not only was the reaction and behavior of the two
programmers significant here, but also whether or not suggestions made by one of the pair

programmers lead to a positive result. For example, a suggestion can be accepted by the other
person, but lead to a course of action that turns out to be wrong. An other suggestion that is
controversial and disputed could turn out to lead to a correct result.

This schema, like mine, was meant to be used along with some subjective notes at the end. A
description of how the change of roles mattered, how the collaboration developed over time,
and the apparent personality of the two programmers were stated as things worth listening for.

7.2. Combined Categories

7.2.1. Development
After we had developed the initial schemas, we had a meeting with the intention of merging
our two schemas or developing a whole new schema based on them. We chose to make a new
schema, since our two individual schemas would not merge well due to the large structural
differences between them. However many elements from our initial schemas were included
into the new one. From my schema, we kept most of the actual categories. From my fellow
master student’s schema, we kept the structure, and the notion of having good and bad
collaboration as supercategories.

Inspiration was gathered from several articles as well, and we increased the amount of
categories based on new ideas that we found in the literature. In addition to the articles used
as our basis in the first phase of the schema development, ideas from Olson, et al. (Section
6.9) Lim et al. (Section 6.4) and Chan (Section 6.5) was included. Our combined schema, the
second in the line of coding schema versions, is shown in Figure 4 below. The category
definitions are listed in Appendix X1.1.

51

Figure 4: The combined category schema

Bad Collaboration Good Collaboration Other

One-sided break Discussion with agreement Ad-hoc-work
Suggestion ignored Suggestion accepted Break
”Override” Planning of future work Private discussion
Passive person Programming, duo Unsolved disagreement
Programming, solo Question answered
Question ignored Disagreement solved
Outside work

In this new schema, the structure implied that a certain collaboration rating (good or bad) was
automatically applied depending on the activity category used. For example, “Suggestion that
is ignored” would be categorized as bad collaboration and “Question which is answered”
would receive the opposite collaboration grade, namely good. In the hierarchic ordering of the
categories, four subcategories were subcategories of the collaboration-neutral supercategory
“other”. These “other” categories were meant that situations where neither a classification of
good nor bad collaboration would be fully appropriate. Pauses and off-topic conversation
were among these.

Six of the subcategories we included in our schema were placed as subcategory of “good”,
meaning that we regarded them as beneficial for the collaboration. Seven categories were

52

regarded as “bad” for the collaboration. For this schema, all categories were described and/or
exemplified.

7.2.2. Usage
After some discussion about how we would test this new schema, we decided that it would be
best if we coded the same parts of the same audio files in order to check whether or not the
categories were sufficiently objective and well-defined that we would give the same areas of
dialog the same coding. We also discussed which files and how much of them we would code
in this test. We decided that we would code parts of

• two files, in order to reduce the risk of choosing an unrepresentative file to test the
schema on.

• two different areas of the files, in order to avoid coding, for instance, the start of two
files.

The final decision ended on coding thirty minutes of two different files. For one of the files,
we began coding from the beginning of the file; for the other one, we starting at the forty
minute marker and coded thirty minutes of the file from there.

When we each had coded the agreed file sections, we had a meeting in which we checked
whether or not our agreement on the used categories was good. Agreement turned out to be
more than acceptably high when we counted our use of the supercategories, “good” or “bad”
cooperation only. However, our agreement was not good at all when taking in account also
the subcategories. If we included the start and end time marker placement of the clips as parts
of the agreement calculation, we were almost never in agreement.

Immediately thereafter, we had a discussion about the categories that were used most often on
clips where we disagreed on the coding. This discussion solved a couple of misunderstandings
and conflicting conceptions we had regarding the categories. We exchanged some experiences
and made some more specific rules about where to place the start and end marker of the clips.
Clips would start where the new activity started, and end where the next activity began. No
part of the file would be without clips and categories. At our meeting, we also made the
important and final decision to use only one category per clip. This had been the informal
consensus ever since we made this combined schema, but not until at this point did we include
the “one clip rule” explicitly in the schema description.

We agreed to code 45 minutes of another audio file, this time thinking about potentially
unneeded categories or categories that had problems with their definitions.

7.2.3. Category Quality
Thus, this second coding schema turned out to be a clear improvement from our individual
first attempts described in Section 7.1. The new and more thought-through structure of the
category hierarchy, where the collaboration quality categories of good and bad were above
the rest, was perhaps the most important improvement at this point.

Since the main thought and idea of our new coding schema was pretty much the same as in
our individual categorization attempts, the categories experienced the same advantages and
disadvantages as those (as described in Section 7.1.1). In short; the categories were easy and
quick to apply, but they suffered from being subjective, and there were still some superfluous
and poorly defined categories in the mix.

53

The decision to use only one category per clip was an important one, and it made the task of
making clips less subjective, since it forced us to make more, and therefore shorter, clips.
Regrettably, there was no noticeable increase in correspondence between the clips the two of
us made for the same time areas compared to before the “one clip” rule was introduced. Also,
the clips remained quite long, averaging about one minute, but clips lasting for up to four
minutes were not uncommon. Some categories, such as planning of future work and pair
programming were the main “culprits”; clips coded as one of these categories were often long
ones. Question answered and the other more specific categories were mostly applied to
shorter clips.

We kept the practice of writing an overall evaluation of the collaboration in the audio file at
the bottom of the transcription area, plus a short description of the two programmers at the top
of it. We understood that this was an extremely subjective practice, and that it would most
likely not be useful for our analyses. However, these notes were considered a useful tool for
checking that we, at least, had the same overall opinions of the pairs in the audio files that we
coded. To write these short descriptions took only a couple of minutes, and were thus
considered to be worth the effort.

7.2.4. The Removal of the Least “Polite” Categories
At this point, we realized that the categories describing situations in which the programmers
behaved least politely towards each other (such as “feud not resolved”, “disagreement
ignored” and “aggressive persuasion”) were those categories that we had most frequently
removed from our coding schema this far. During our coding schema revision meetings, we
observed that the least polite categories of all were never used. Obviously, that the
programming pairs were much more polite towards each other than we initially believed. The
rather impolite categories were used extremely rarely, and often when they were used, the
impolite behavior or statement was not necessarily meant to be impolite, but could just as well
have been a joke. Though not altogether absent, even mildly subconsciously impolite
situations such as those that would be coded as interruption or suggestion rejected were few
and far between. This low use of the least polite categories would prove to be observable also
for the later coding schemas.

7.3. Improved Categories

7.3.1. Meeting
Later, we had another meeting in which we compared our results when using the new code
schema described in section 7.2. When counted informally, the level of agreement was
encouragingly high; 90%. The rules for this informal counting was that it was regarded as
“agreement” on a clip if the category we had used matched the other’s on the “good”/”bad”
scale, and that the time slot of the clip was fairly similar. However, a much lower agreement
score much lower was found when considering the subcategories, and when we were stricter
in regards to the start and end time of the clips.

A couple of major decisions were made at this point. The time the programmers spent filling
out the forms at the start and end of tasks would be excluded from the analysis, and thus also
not be coded. Also, the long time sink task (task 5), which we had in previous coding tests
coded, would also be omitted. This task often took half of the total time for all tasks, so the
decision to omit this task reduced the time it took to code a file considerably.

54

The concept of “good” and “bad” and whether or not to have these subjective supercategories
was discussed a bit at this point, but no final decisions about it were made yet. The supervisor
suggested at this point that the coding of collaboration might be better if based on cognitive
aspects rather than a subjective measure of whether or not it was “good”. A first attempt to
cover these cognitive aspects was included in the schema at this point. This attempt proved to
miss the mark a bit, so in the next category revision, it was replaced with a new system for
assessing the cognitive aspects.

7.3.2. Tweaks
The general idea of our second category revision, producing the third version, was to make
sure that the categories were disjoint and that they had clearly defined boundaries, so that
there was no question about which one to choose in a given situation. Many of the changes
consisted of nothing more than a redefining of existing categories. Those changed were on
categories which we had previously defined rather vaguely and those where the other master
student and I had a slightly different view on when to use them. If we wrote down an exact
definition, our understanding of the category would be more similar. If we both were careful
to follow the new definitions when coding in the future, our coding results would likely be
more similar to each other’s.

The category named “break” was changed. It now indicated that both participants took a
break, and that at least one of the two was physically away from the computer. Earlier, the
“break” category had no specific definition, since we thought the meaning of it would be self-
evident. It turned out that the category was not that obvious, and it was sometimes used on
clips where “private discussion”, “off task work” or “one-sided break” would be more
suitable categories to use.

The category “Ad-hoc work” was removed, since it was a category for which there was rarely
a situation where it seemed suitable to use it. “Discussion with agreement” was another
category we considered to be superfluous at this point. Although there was nothing wrong
with the category itself, it was seldom used, and when it was used, other categories could just
as well have been chosen instead. The same applied to “disagreement ignored”, so that
category was removed as well. Its definition was blurry and the category seemed to overlap
“disagreement not resolved” and to a lesser degree; “ignored suggestion”.

The overly used category “Planning of future work” was altered in an attempt to reduce its
use, which was out of control. The initial definition of the category was broad, so it was used
a lot. In some particularly imperfectly coded areas of, the category would be used on nearly
all clips, except for those which were not comparable, such as breaks. A requirement was
added to the definition of the category: from now on, both programmers needed to contribute
substantially to the discussion; the ideal was a contribution of 50% to the discussion from
each programmer, but values as extreme as 80/20 % were tolerated.

“Private discussion” was another category that was poorly defined in our coding schema. The
new definition for this category aimed at removing the potential for misunderstandings in
situations where the discussion was not directly task-related, but where the discussion could
not be said to be of a private character either. The new definition specified that what was said
had to have absolutely no relevance to the task at hand. An utterance such as “do you have
much experience with Java?”, would be seen as “planning of future work” or something else,
since it was task relevant, since knowledge of the other person’s expertise level could
influence how the dialog would develop.

The “solo programming” category was slightly altered in definition to specify that at least one
of the two programmers were passive in clips where the category was used, and that there was
actual programming taking place during it.

One new category was introduced and named “other tasks”. This new category was meant to
be used for describing small tasks that were related to the experiment, but which did not
involve any relevant collaboration. Picking up printouts and talking to the experimenter about
the rules of the experiment or other things (which actually happened quite often in the early
parts of the audio files) would be examples of this.

The new category schema is shown in Figure 5 below. The category definitions are listed in
Appendix X1.2

55

Figure 5: The improved combined category schema

Bad Collaboration Good Collaboration Other

One-sided break Suggestion accepted Other work
Suggestion ignored Planning of future work Break
”Override” Programming, duo Private discussion
Passive person Question answered Unsolved disagreement
Programming, solo Disagreement solved
Question ignored
Outside work

7.3.3. New Ideas
As mentioned above, in order to fulfill the need for more focus on the cognitive dimensions, a
new level of categories were proposed. The categories from this new level of categories were
not meant to describe clips, which were rather described by our usual activity-based
categories. The idea was that a coder would make a group consisting of several already
categorized clips, and define a large clip based on this group, and then give this large clip a
cognitive category.

These cognitive categories were based on the evaluation questions the programmers’
themselves were meant to fill out after programming was complete. The questions included
how thoroughly the programmers read the task description and understood it before
beginning, and how easy they thought the task was to solve. For our cognitive aspect
categories, we would evaluate the programmers on these factors.

The additional set of categories was ordered like the activity-based categories, with “good
problem solving” and “bad problem solving” at the top level. Under these supercategories,
there would be a likert scale-based selection of answers to the following three questions.
Which were the three questions among those in the self-evaluation form that we thought
would best describe the collaboration.

• Did they (the programmers) have a clear understanding of how the task would be
solved before they started coding?

• Did they discuss the task thoroughly before starting to code?
• How was their strategy for solving the task?

56

The notion of “mental models” was mentioned in our meetings, but it was not included in the
coding schema at this point. It was considered to be too hard to extract from the verbal
protocol whether or not a pair or an individual had a solid mental model and how this model
evolved during the course of the discussion. The programmers were, from what we had heard
during listening through and coding the audio files, quite goal-oriented, and not as interested
in understanding the big picture of the task. Also, it was feared that some people that said
little, might have a really comprehensive mental model of the task and the problem space, but
did not talk about it. How one could know if what people said really represented their mental
models, was a question of concern at this point.

7.3.4. Usage
Our new and/or improved categories were tested on one file. When we compared our coding
of the file using the same tolerant standards as before for counting “agreement”, the
agreement was, as previously, very high.

A problem occurred when we realized that Transana’s category system does not support the
kind of ratio scale categories that we planned to use when evaluating the cognitive
dimensions. Due to this and other factors (most importantly that we realized that our
suggestion for measuring the cognitive dimensions was a little pointless and that it was not
documented in the literature,) our cognitive attempt was discarded merely days later when the
next suggestion for the schema was developed.

7.4. Expanded Categories

7.4.1. The Table
At this point, we had achieved a basic familiarity with different coding schemas and the pair
programming audio files. In order to increase the quality of the categories, a real “wash” of
them was requested, where we should try to make sure that most categories had some backing
in the literature. To help in finding similarities between our schema and those presented in the
available literature, a large table was made, consisting of the most relevant articles we had
read this far. The table was ordered so that our own coding schema could be compared to the
others easily: A category from one schema was placed on the same table row as a similar
category from another schema. Though the table showed that a majority of schemas focused
on categories similar to those we already had in our schema, a couple of very interesting
categories we found in the table had no match whatsoever with any of the categories in our
schema. Also, a few of our categories in our schema had no matches in the literature either.

7.4.2. New Suggestion
Based on what we learned when making and looking at the table described above, a range of
new categories, meant to describe the cognitive aspects of collaboration were made. (As
mentioned above, our first attempt at making cognitive categories was discarded.) Our new
cognitive categories were heavily based on the coding schema in the article by Freudenberg et
al. (Section 6.7 above.) The resulting coding schema, the fourth schema, is shown in Figure 6
below, and its categories are defined in Appendix X1.3.

57

Figure 6: The expanded category schema

Bad Collaboration Good Collaboration Other

One-sided break Suggestion accepted Other work
Suggestion ignored Planning of future work Break
”Override” Programming, duo Private discussion
Passive person Question answered Unsolved disagreement
Programming, solo Disagreement solved
Question ignored
Outside work

High Abstraction Level Low Abstraction Level

The totality of the system Syntax discussion
Real world Variables, methods, etc.

Our new categories would be ordered in two levels, since this amount of levels is what
Transana encourages. The upper level would consist of the supercategories high abstraction
level and low abstraction level, each having a couple of subcategories. To have a high
abstraction level meant to be focusing on the big picture of the system, objects and relations
and references to the real world counterpart of the system (in the case of the pair
programming experiment: a real coffee machine). A low abstraction level would imply focus
on the code itself. Syntax, loops and spelling would be obvious examples of this.
Methods/functions of the code would be the most abstract of concepts that would be suitable
to identify as belonging to the low abstraction levels.

A third top-level category was also made. It was named NA/other and it would be used when
the discussion was not about the code or programming at all, or when the discussion was all
over the place and back and forth towards the two more specific cognitive levels with very
short intervals and one could not make sense of it.

In addition to being based on the schemas in the available literature, the new cognitive
categories were inspired by Shneiderman’s book “Software Psychology” [Shneiderman 80],
where he states.

The syntactic/semantic model suggests that programming-related knowledge is split into two domains.
Semantic knowledge, the first domain, is meaningfully acquired, language independent, resistant to
forgetting and hierarchically organized from high-level problem domain related issues to lower level
functions of programming, Syntactic knowledge, the second domain, is acquired by rote, language-
dependent, easily forgotten if not used, and arbitrary.

Each clip was now meant to have two categories assigned to them. One category would be
selected from the collection of categories that we had been working on from the beginning,
i.e., the activity-based ones such as “question” or “programming”. The second category would

58

be chosen among the new categories: the cognitive ones. All clips would have exactly two
categories, and now that the NA (not applicable) category was introduced for the mental
model focus; that would always be possible, since one could choose NA if no specific
cognitive level seemed appropriate.

7.4.3. Individuals or Pairs?
At this point, it was heavily discussed whether the cognitive aspect categories should be
assessing the cognitive level of the pairs as a whole, or if they should rather be measuring the
two pair members individually. We decided that it was best that pairs were the focus, with
regards to both the cognitive- and the activity-based categories. One could ignore individual
differences between the two programmers. For example, it was not important who interrupted
the other person, but it was important that interruptions occurred.

If the opposite had been decided; that individual behavior was to be recorded, the assignment
to the categories would have taken much longer. A coder would then be forced to always
distinguish between the two people, and note for every clip who the initiator and who the
responder of the particular interaction sequence was. The individual focus would also be
awkward to perform in Transana, where this kind of focus would require a lot of repetitive
micromanagement-like actions when applying the categories.

7.4.4. Usage
The short time frame from this revision to the next one led to that the schema was not tested
on any complete files. Thus, results from using the schema were not available for evaluating
the schema. Only smaller test were made in order to gain familiarity with the new categories.

7.5. New Focus Categories

7.5.1. Comparison to the Previous Ones
Shortly after the schema version described in Section 7.4 was completed, we realized that we
were not so limited by the two-level category system of Transana that we thought. We now
had new possibilities regarding ordering and the hierarchy of the categories. As well, further
studies of the large table that compared coding schemas, made us realize that many interesting
factors of collaboration were not covered by the categories in our schema.

Based on our coding scheme from Section 7.4 and the findings in the large schema table, the
supervisor made a completely overhauled, fresh-looking schema suggestion. This new schema
had several parallel collaboration foci, which was now possible, since we had realized that
Transana did not limit the complexity of the coding schemas if we used the search
functionality of Transana as well as the regular analysis functionality when summarizing the
coding results.

The schema is shown below, in Figure 7 below.

59

Figure 7: The new focus category schema

Task

Off-task
Programming task
Task description
Other relevant tasks
Compile and test
No communication

Start Pattern Result Cognitive
Level

Question Silent work Resolved Program model
Suggestion Consensual Unresolved Situation model

Responsive Domain model Assertion NA etc.
Elaborative Metacognitive
Nonresponsive

The new schema was seemingly very different from our earlier versions, but was at its core
quite similar to them. The major difference was that the new schema version consisted of
categories that were more atomic than before. The categories described only a small part of
the contents of the clips in this new schema, for example that it contained a question. In our
earlier schemas, the categories described the full clip alone, for example that the clip
consisted of a question being asked and answered sufficiently.

We thought and hoped that the more atomic categories of the new schema would be less
subjective than our earlier categories. However, one had to assign a clip to a larger number of
categories than before in order to completely describe the activities of the clip. In the new
schema most clips were meant to be assigned to five categories (compared to the two, as it
was in the earlier schemas), in order to describe the content of the clips. These five categories
were supposed to be chosen from the following five category groups below. One subcategory
from each group:

1. Task: What the pair programmers are doing. Examples of task categories are
programming, discussing task description, testing, and off-task conversation. Only if
the task is programming, will the coder assign the clip to the remaining four category
groups. Clips consisting of dialog coded as, for example testing will be assigned to a
task category only, and nothing more.

(The three middle categories collectively describe an Interaction pattern: How the dialog
flows)
2. Start: What sort of utterance initiates the dialog? Question, suggestion or assertion?
3. Pattern: How is the reaction to the initiating statement? Is it a good and full response

that contributes substantially to the dialog (responsive), or just confirmation or an mm-
hmm (consensual). Nonresponsive, elaborative and silent work is the other choices.

60

4. Result: How is the situation at the end of the dialog pattern compared to before? Was
the problem which was brought up at the start of the interaction pattern resolved or
not?

5. Cognitive level - a renamed version of “abstraction level” that we implemented in our

fourth schema version (Section 7.4). It remained largely unchanged, but the number of
subcategories here was decreased slightly to make sure they were disjoint.

The categories of our previous schemas would fit into several of the new category groups.
Some of our old categories were kept, and placed in the task group, and most of our old
abstraction level” categories were transformed into the Cognitive Level group of the new
schema. However, most of our previous categories were less specific than the categories of
the new schema, so a clip we earlier coded with the single category “question answered”
would now require both the start category “question” and the pattern category “responsive”.
The advantage with this more atomic system was that it would be more versatile than the
more compounded categories we had in our previous schema versions.

A major difference between this new schema and our older versions, other than the structure
rethinking, was that categories similar to the macrocodes in Hogan et al. (Section 6.6) and the
categories of Chan (Section 6.5) were introduced. These categories would in our new scheme,
constitute the category group pattern. In our earlier schemas, the way we categorized
reactions and pattern of collaboration was not based on literature, and the patterns were not
given special attention either. Now, in our new schema, they would be important parts of the
collaboration assessment.

7.5.2. Initial Decisions
The new coding schema’s categories had English names and descriptions. Our previous
coding schema versions were all written in Norwegian, but translated as attachments for this
thesis. The English categories would be easier to relate directly to the literature, since the
literature was English. Also, the prospect of involving non-Norwegians into the coding work
was mentioned, so it was best to make the categories English sooner rather than later. Since
this schema revision was a large remake, it was a good idea to change the language now, since
all categories were revised during this process anyway. We would risk a decrease in clarity to
the definitions if they were translated separately.

Since the new categories required much more effort to apply to the audio files, it was decided
that we would code only task 4 of the experiment, the largest non-time-sink task. We also
decided to omit the discussions between the programmers after each task from the coding. In
these, the programmers decided how good they thought their collaboration had been during
the task, and then filled out the forms about the collaboration and how much time they had
used on the task. These sections of the dialog were not about solving the programming tasks,
and were considered as unimportant for us to focus on.

7.5.3. Tests and Implications
Our new category scheme, the fifth in line, was never used in more than very short tests, but
we discussed it a lot, and it was the first of three quite similar schemas, of which the third
would be our final version.

Initial tests our or new, fifth, schema led to a couple of additional decisions for our future
coding process. First of all, all parts of the protocol for task 4 were supposed to be part of one

61

clip – nothing more, nothing less. Previously, there had been no formal decision on this. Some
of us placed the time markers in Transana before each clip only, while others placed markers
both before and after clips, sometimes leaving tiny clipless time areas between clips. We
decided that we would make time markers in front of clips only, in order to avoid clipless
time frames. It was better to make incredibly short clips coded as silence, than to have a
“hole” in the coding.

However, a little later, we decided that periods of silence had to be long enough as to break
the flow of the dialog to count as silence. Pausing for a couple of seconds for taking a breath
or considering what word to use would therefore not be enough for us to make a “silence”
clip. We distinguished this kind of silent situations from “real silence”, where both
programmers were silent because there was nothing to say or one of the individuals in the pair
were not present at the time because they took a break, etc.

7.6. More Development of New Categories
Only a week later, further development of the categories and their structuring led to the
declaration of a new coding schema version, the sixth. While not radically different from
schema number five, number six improved on a couple of potential problem areas.

First, the number of subcategories to be applied to the protocol, (for the clips containing an
interaction sequence,) was now increased from five to six. Though this might sound like a
change making it harder to do the coding, it actually made the coding easier. The increased
number of subcategories was the result of the splitting of the result subcategory group from
schema 7.5. The first of the two groups formed by the split was named end. It described how
the interaction sequence ended. Was there a natural transition to the next topic or another
action, for example programming, or was there a disruption or perhaps a sudden change of
topic? The second of the two subcategory groups formed by the split, kept the name result,
and kept its definition as well (see section 7.5.1). The previous schema version would make it
impossible to distinguish a clip that ended with a disruption that did not solve the problem,
from a clip that ended naturally but did not solve the problem, if the coder, using the fifth
schema, chose to focus on the problem solving, and coded both sections as unresolved.

The category Stonewalling was added to the interaction pattern category group, and was
meant to be used in situations where unresponsive was not completely suitable, for instance if
there was an answer to the initial comment, but the answer disregarded the contents of what
was said. Stonewalling is arguably the only category we had left that described a behavior that
was quite “impolite” (see section 7.2.4.). The category was inspired by the coding schema of
Chan [Chan 01], and was thought to prove to be very interesting regarding personality. Many
people would probably never perform stonewalling-like actions due to their personality or
other background factors.

This schema version can be seen below, in Figure 8.

62

Figure 8: The further developed new focus category schema

Task

Off Task
Comprehension
Programming
Task Description
Other Relevant Tasks
Compile and Test
Silence

Start Pattern

7.6.1. Usage
When this schema version was declared as complete, we all coded the same fifteen minutes of
a certain audio file using the new schema. When using the earlier versions of a schema, it
would rarely be needed to rewind the playback of the audio files in order to code a clip
correctly. For our new schema, however, it was necessary to do so, often many times for a
single clip, in order to grasp and successfully code all the six areas of focus we now had, and
to get the start and end time marker placed as accurately as possible.

During the coding comparison meeting afterwards, it became apparent that the categories
themselves were sufficiently defined, since clips of similar areas were coded very similarly
also. The problem remained the positioning of the time codes making the clips, which still
deviated quite a bit when comparing our individual coding of the file.

Also, for some categories we had slightly different opinions on the definitions, since a firm
list of category definitions was not made for the new categories at this point. After discussions
and consulting the literature the categories in question were based on, agreements were made
for all the major problem categories.

7.7. The Development of the Final Schema
After tests and experiences with the 7.6 schema, we realized that we needed a category that
could describe clips where it was impossible to hear what was said, since it was unfortunate to
be forced to use some other categories when one could not know what happened. The new
category unintelligible was made. It was meant to be used when after many tries, the
statement or discussion area in a clip was still not clear enough to the coder in order be able to
categorize it correctly. There could be several reasons for unintelligible situations, including
murmuring by the programmers, background noise during the clip or simply low quality of
the recording for that particular pair.

Consensual
Stonewalling
Responsive
Elaborative
Nonresponsive

Question
Suggestion
Assertion

Result

Resolved
Unresolved
Not applicable

Cognitive
Level

Program model
Situation model
Domain model
Metacognitive

End

Disruption
Flow

63

A new category in the end subcategory group, named divergence, was added. It was meant to
be used in situation where the patterns stonewalling or nonresponsive were used, to indicate
that a new problem was introduced during the clip that was not intruded by the start statement
of the clip. It was realized a little later that this category fitted better among the interaction
patterns rather than among ends. We found it better to be able to decide whether the initial
problem was solved or not regardless of the discussion pattern, and rather make an extra clip
right afterwards that could indicate that there was a divergence. Divergence was later renamed
to cross-purpose in the dialog, but its definition remained the same.

7.7.1. Reformatting
A little later, the coding schema figure was thoroughly reformatted by the supervisor, in order
to tie the schema even more in towards the literature and the concepts used in the articles.
Minor alterations were also done to the categories. Also, all categories were given a thorough
definition.

The resulting schema and its definitions would turn out to be the final version of our coding
schema. The schema itself it described in more detail in Chapter 8.

7.7.2. Testing and Early Experiences
We decided that all people involved in the project would code parts of a certain audio file.
The correspondence between how we coded the file, when we compared our results was very
high. The categories used were usually the same or at least very similar between all of us.
Even the time of the clips’ stars and ends (which was previously thought to be very hard to
agree on when done individually) matched satisfactorily at this point.

64

8. Our final Coding Schema

8.1. Description
The final coding schema is complex and is quite time-consuming in use, but it has many foci,
which will lead to much analysis material. The schema was refined many times in order to
make it suitable to use for coding the collaboration and activities most frequently used by the
programmers in the pair programming experiment (Section 1.3). The schema is also flexible
enough to be used to describe unexpected situations.

The coding schema is thought to be both mutually exclusive (because of the categories’ non-
colliding definitions), and exhaustive (see Section 5.2.3) for each of the six category groups.
Exhaustiveness was improved when the categories Not applicable and Unintelligible were
introduced.

Since the clips are assigned to the six category groups one by one, and the groups are
independent of each other, coders are not forced to choose a certain category based on his or
her previous category choices for the clip. To exemplify; if the coder chooses Comprehension
as Task Focus, it neither forces nor restricts him from choosing System Model as Cognitive
Level. It does, however, restrict him from choosing Programming Aloud as the Task Focus,
since he has already chosen a Task Focus category. . Also, there is one exception regarding
the independence between the categories: if a Task Focus other than Programming or
Comprehension is chosen, it means that the clip should not be assigned to categories from the
remaining five category groups.

Clip lengths when using this schema are typically medium in length compared to the clips
commonly found in the available literature. The clips will not consist of just one word, (like
the schema in Section 6.3), but they would not last for several minutes either, like the clips
often did when we tested early versions of our schema. Clips coded as Programming Aloud
will sometimes be of great length compared to the length of the discussion-based clips. Since
these long clips are monotonous in content, it will not lead to any more interesting results if
one divides them up into several similar-coded clips in a row.

A possible weakness of the schema is that it demands subjective decisions by the coders in
certain situations. Result is the subcategory group for which this problem could be most
apparent; it is sometimes a little unclear whether or not the course of action is changed
because of the idea just presented or not. However, because of the coding schema will be
thoroughly reliability checked and the file coding calibrated, these subjective characteristics
of the schema are not considered as a significant problem. The calibration and reliability
calculation are described further in Chapter 10.

As described earlier, for each clip, a Task Focus will be chosen. If the Task Focus is
Comprehension or Programming, the clip is an Interaction Sequence, and the rest of the six
subcategories (Begin Characteristics, Interaction Pattern, End Characteristics, Result and
Cognitive Level), will be selected.

The figure below (Figure 9) lists all categories and the subcategory groups in which they
belong. The lines from the Task Focus box indicated which two Task Foci that will lead to the
complete Interaction Pattern coding.

Figure 9: Coding schema

8.2. Category Definitions

8.2.1. Task Focus
The Task Foci describe what is being done or discussed by the programmers.

Z – Off-task – For discussions about things completely outside the experiment, for example
discussions about current events.

D – Task Description – When the discussion is about the actual task description itself.
Reading the text out loud is an example. When it is likely that both programmers are reading
the text, but they are not discussing it, X (silence) is used, not D. Any specifics about what
should be done, other than very high-level structure decisions based directly on what is read
in the description, should be C or P.

C – Comprehension – When the programmers are discussing existing code and what elements
of it mean or do. Not to be used on discussion about what should be done next, where P is the
correct choice.

P – Programming – Used in instances where the discussion is about future directions for
solving the task. Must contain suggestions, assertions or discussions about what is to be done.
When discussing previously produced code, and how these things work, C is the correct
choice.

PA – Programming aloud – For situations where actual programming (keyboard use) is
audible, or where it is completely obvious that programming is taking place. To qualify as PA
(separating it from PS) at least one of the programmers must talk sporadically or continuously
throughout the clip, for example by saying out loud what they are writing, or commenting
and pointing out objects on the screen. Discussions with more substance than this should be
described by using P instead.

65

66

PS – Programming silently. For situations where actual programming (keyboard use) is
audible, or where it is completely obvious that programming is taking place, but there is no
talking going on.

O – Other relevant tasks – When the discussion is about solving the experiment, but not
directly about the programming tasks.

T – Compile and test – This category is used when it is clear that the programmers are
compiling or testing the program and walking through the menu selections of the running
program or tracking the lines that the compiler state as erroneous.

X – Silence – To be used when there is no dialog at all. Sighs and sounds which have no
obvious collaborative purpose can also be categorized as silence.

U – Unintelligible – Used when the dialog is unclear enough or the sound quality is so low
that it would require guesses to put categories on this section of the file.

8.2.2. Begin Characteristics
The Begin Characteristics describe how the interaction sequence was initiated.

q – Question – Used when one is requesting information without adding any new information.
The question can for example be about how a certain method works. “What do you think
about this”, and similar requests for feedback on ideas presented are not “question”, but
“suggestion”.

s – Suggestion – Presentation of an idea in the form of a question in words used and tonality.
“Should we place a new method here?” is an example.

a – Assertion – Suggestions made more directly, presented as a fact or a course of action.
“Let’s make a new method here” and “Ok, so then we need a new method” are examples.

i – Imperative – Suggestions for course of action more similar to orders than the assertions
and suggestions, but not necessarily aggressive.

8.2.3. Interaction Pattern
The Interaction Patterns describe how the dialog is after the initiation (the Begin
Characteristic). How does the non-initiator respond? And does the initiator respond to the
response?

c – Consensual – The responding part does not contribute any new information, but
acknowledges the statement just presented.

s – Stonewalling – The responding part ignores or quickly refutes the previous statement.

x – Cross purpose – If the initiating person continues to talk about his line of
action/thought/dialog, and the responder talks about his unrelated ideas, and both are talking
about their different things at the same time, the pattern is a Cross Purpose.

r – Responsive – The responding part answers by adding some new information. It could
evolve into an elaborative pattern, if the initiator responds with new information again.

67

e – Elaborative – The responder and the initiator gradually build up the understanding of a
topic by both contributing with new information.

n – Nonresponsive – A statement followed by complete silence from the other part. A
mumble or acknowledging grunt is enough to make it consensual, rather than nonresponsive.

8.2.4. End Characteristics
The End Characteristics describe how a clip ends.

f – Flow – When the discussion ends “naturally”, and without interruptions or sudden topic
changes.

d – Disruption – If someone changes the topic before the dialog naturally evolves by its own
momentum.

8.2.5. Result
The Result category describes whether or not the discussion leads to a future course of action
or consensus or not.

r – Resolved – Used when the initiating statement is sufficiently discussed and ended, or
when a course of future action is set.

u – Unresolved – The opposite case of resolved; when issues are still hanging in the air,
agreement cannot be made, or misunderstandings persist.

n - Not applicable – When none of the above are suitable, for example in situations with
cross-purpose dialog, and both are satisfied with their own ideas, but none of them have heard
the other person’s comments.

8.2.6. Cognitive Level
The Cognitive Level describes which level of abstraction the dialog is on. Since the
experiment was performed on a problem that most (perhaps all) would be familiar with (a
coffee/drinks dispending machine), and since the programming language in use was the object
oriented Java, it would be likely that the discussion would range from the very programming
specific, and all the way “up” to the conceptual level of the coffee machine.

P – Program Model – Discussions about the code itself. Formatting issues, syntax, library
uses and basic operations are examples of discussions about the program model.

S – Situation Model – Discussions about the interconnections and big picture of the system.
Talk about classes and the flow of methods and calls are examples of this.

D – Domain Model – Discussions that link the system to the real world or talk about the
physical object in which the system is supposed to function.

M – Metacognitive – Discussions about understandings of the task and how it is solved and
other situations that are neither of the above.

68

9. Coding the Audio Files

9.1. Sample Selection
The first files we coded were selected randomly. When we a little later decided that we would
not code all the audio files we had available due to time constraints, a selection of some of
them had to be done. The pairs with high or low expertise levels (not medium) were
prioritized. Also, the pairs consisting of Brits were avoided, due to language differences, and
the fact that the coders were all Norwegian of nationality, and had Norwegian as their first
language. Since we initially chose some audio files by random, two British pairs and six
intermediately skilled pairs were included in our selection. In total, we coded 47 audio files,
which mean 47 pairs. We later found out that for three of the codings, task 5 had been coded
instead of task 4. We omitted these codings, since the collaboration in the longer time sink
task, task 5, was probably not directly comparable to that in task 4, so our final sample size
became 44.

9.2. Hired Help
The process of coding the audio files was a large and repetitive job. Efforts had been made to
make the coding schema as objective as possible, meaning that anyone (assuming they had the
proper training and insight into the definitions of the codes) could do the job. For this reason,
a number of Simula people were hired by to help us in this.

9.2.1 The Task 4 Finder
One person worked exclusively on making a time marker for the audio files that marked the
point where the programmers in each file started their work on task 4 (which was the task we
coded). Finding these starting points was reported as taking 10-20 minutes for each file. The
start of task 4 was identified for many, but not all, files. When we, the coders, had to find the
starting points ourselves, it sometime took us much longer than 20 minutes. It was an
especially time-consuming job on files that were generally low on audio quality and for the
files in which the programmers followed an unconventional work pattern, and took
unexpected or long breaks.

For one audio file, I had to abandon trying to find task four, since hours were spent looking
for it, but no task four could be found. Presumably, the programmers unknowingly skipped
the task due to misunderstandings or erroneous use of the forms they were meant to fill in.
The whole time between the end of task three and the apparent start of task five, the audio file
was filled with indications of the programmers taking a break, and there was no relevant
programming discussion anywhere. It is possible that the programmers in the file could have
solved the task during the long section I thought was a break, but considering that task 4 was
the hardest of the non-time-sink tasks, it is unlikely that they felt they had no need to discuss
it at all, especially since they discussed the previous tasks (which were much easier) as
thoroughly as most other pairs did.

We, the coders, checked a random selection of the time codes while they were in the making
to confirm that they were actually indicating task four. We found that the marking of the task
was spot on for all files we checked. The work of the start 4 finder was valuable help that
saved us a lot of time.

9.2.2. The Audio File Coders
Two additional people worked as coders, and followed most parts of the procedure described
in Section 9.3 below. Reports from the two hired coders indicated that it took them roughly
between two and three hours to code the shorter files and those with the best quality, while the
longest files, and those with worst quality, took the whole workday to code.

9.3. The Coding Process
After spending one day programming the tasks in the experiment ourselves in order to get
more accustomed to the terms and concepts that were relevant for the programming tasks, and
to experience ourselves what the challenges of the tasks were, the first of many audio files
were coded using the final coding schema.

The coders made clips where appropriate and assigned these clips to the relevant categories
by writing the categories as text in Transana. Mostly, we needed to rewind and listen to the
clip several times, since in many situations it was hard to grasp the complete set of the six
category group foci when only one person was doing the job. Also, placing the start markers
of the clips often required several rewinds in order to get right.

An example of one coded minute is shown below. Most of the text is automatically generated
by Transana when making a time marker, which we did with the convenience of the CTRL-T
hotkey combination on the keyboard. The ¤ and the number following it is the desisecond of
the file this time marker is placed on. Behind the desisecond time, in parentheses, is the actual
hour:minute:second:desisecond time shown. To show both these time codes is an optional
feature of visual significance only, and the latter time code is not necessary for Transana to
function, but the time listed in the latter format is surely more understandable for most
humans).

After the clips were made, what remained to be done was to enter appropriate categories for
the clip. In the example below, the first clip (starting at 1:07:54.7) is an interaction sequence
where the topic of discussion is programming related (P). The clip is initiated by an assertion
(a), the response by the other person is merely consensual (c), the discussion flows to a
natural end (f), and the issue is resolved (r). The discussion is primarily on a low program-
level abstraction (P), and the big picture of the system is not discussed in the clip.

Further down, we see clips coded as Programming Aloud (PA) and Off-task (Z). Since only
the task foci Programming and Comprehension was regarded as relevant for analysis on
interaction sequence level, these two clips are categorized only by the first category, the task
focus.

69

Coding Example

¤<4074660>(1:07:54.7)PacfrP
¤<4083246>(1:08:03.2)PqrdrP
¤<4092154>(1:08:12.2)PqrfrP
¤<4095732>(1:08:15.7)PsrfrP
¤<4106944>(1:08:26.9)PA
¤<4119102>(1:08:39.1)Z
¤<4135375>(1:08:55.4)PanfrP

70

A couple of extra procedures, both described below, were carried out for every file that was
coded in order to increase the quality of the coding and ensure that our coding schema was of
sufficient quality.

9.4. Parsing
Originally, we planned to use Transana’s clip functionality in order to define clips and assign
these to categories, since statistics about the categories could then easily be generated by
Transana. However, it turned out that to actually define Transana clips and assigning them to
categories in Transana was so time-consuming now that each clip was meant to be assigned to
six subcategories, that the idea was abandoned. Even though Transana was still a valuable
tool for making time codes and manipulating the playback of the audio files, we wrote the
categories simply as text in the transcription area, rather than using the categorization system
in Transana.

Because of this procedure, there was need of a way to convert the text files that we made in
Transana into aggregate numbers that could be imported into the statistical software we would
use in the analyses later. Initially, our idea was to import the text files into MS Excel and
make some scripts or use the database functions of Excel (or MS Access) in order to convert
the text into category usage numbers. However the Excel idea was soon abandoned, since it
would not have been easy to do it that way. We did not think through that the time code in
front of the categories was the time marker where the clip started, not the duration of this clip
in question. One had to calculate the duration for each clip by comparing the clip marker in
front of the clip and the clip marker on the next line (in front of the next clip). It seemed that
using Excel or Access for this would be cumbersome.

To solve the problem, I programmed a parser in Java. It was a quite straightforward parsing
program, which read the Transana output files. It required no manual input, and did the work
as fast as one would expect; in a matter of seconds in total for the whole lot of files. The
program found the time codes in front of each clip and calculated, based on this time code and
the one for the next clip, the length of the clip. The program then organized the categories and
made statistics about their use in each file.

The output of the program was double. One output was made for each input Transana file.
These outputs were used for debugging and for controlling that the individual files were read
correctly. The second and most important output was a large table consisting of all categories
and all audio files, where the use of categories was columns and each input file was a row.

The program calculated, after reading through all the files, which of the possible long
categories that were used, and included only these in the outputs. Long categories are the
composite of all the six subcategories that describe an interaction pattern (See Chapter 8).
Initially, an idea of making outputs for all possible combinations of categories that formed
long categories was planned. However, it was soon realized that this would mean a table with
more than 10 000 columns, since each of the possible 5 760 long categories would have at the
very least two columns each, and preferably five. Most of these long category combinations
were never used, so to have an incredibly large file consisting of mostly empty cells was
avoided by making the parser slightly more complex instead.

After some feedback and discussion back and forth between my supervisor and me regarding
the output format and the compatibility with the potential statistical software to be used, the
parser was completed. The parser was not meant to be a robust and highly elegant piece of

71

software, but to solve a quite simple task that would be tedious and time-consuming to do
manually, as quickly as possible. Therefore, its Java code is not especially easy to grasp for
most people who was not its developer (i.e. anyone but me). Also, the program is not very
tolerant to what it sees as “errors” in the input files (the output files from Transana), and a
single space character in the wrong place could mean the difference between a successful
parsing run and not. However, the parser program had quite informative error messages and
alternative outputs, so in cases where the parsing did not work correctly, it was easy to alter
the input files in order to make them correctly formatted. About a third of all the .rtf files
turned out to have one or more such small errors, so before I could do a successful run of the
program and generate proper outputs, I had to correct them. But to correct them was necessary
only once, and it did not take more than a few hours to do so.

72

10. Reliability of the Coding Schema
Because of the inevitably subjective elements of the coding process, there was need for some
sort of control that the same categories would be used in the same situations by two different
coders. Even after all the revisions of the coding schema and the attempts to make it as un-
subjective as possible, the schema was not maximally objective. We had to keep its
objectivity within limitations so that it did not require a week of work to code one file, as
would have been the case if we had used schema more similar to that described in Section 6.3
above.

Because of the low quality of some of the audio files and differences in how the coders
interpreted situations every now and then, it was unrealistic to hope for a 100% match when
comparing two coders coding work on the same file. For example, it is not always easy to
hear who is who of the two programmers if they have similar voices. When you don’t know
who is saying what, it is hard to know if a person continues a line of thought or whether the
other person answers him in some situations. However an agreement score of at least 70%
seemed like a realistic and adequate goal.

10.1. Calibration
Bakeman and Gottman [Bakeman 97] mention calibration as a good idea when several coders
are working with the same coding schema on the same material. We used the following
calibration method: For each clip, two people coded the same pre-selected area with a
duration of five minutes. This was typically five minutes early in the task (Task 4), either the
very first five minutes of the task, or the five minutes starting at the five minute point into the
task, so that the area was from minute 5 to minute 10 of the task. After coding, the two coders
would meet and discuss the coding on these five minutes while listening through it and
comparing their individual coding of it. Through these discussions, they would modify their
coding into one coding that they agreed completely on. Later the owner of the file (the person
who was responsible for coding the complete task) would look through these five minutes
before starting to code.

The purpose of the calibration procedure was to gain two benefits. The first and most
important benefit was that it would make the owner of the file better understand the dynamics
of the pair in the file he was supposed to code later. The pairs had slightly different typical
patterns of interaction and informal rules for when to speak and whether the driver or the
navigator was the one supposed to “lead” the development. When five minutes of the file was
discussed thoroughly to make sure these minutes were coded as accurately as possible, it was
thought that it would be easier to code the rest of the file. The idea was that the file owner
would get “the gist” of how the pair behaved by listening through these five minutes and
looking at the hopefully perfect coding of them.

The second benefit was that these five minutes of calibration meant five minutes of “free”
code reliability check material (see Chapter 10), since two people would coding the same
section of the code during the calibration. For the part of the reliability checks that were not
based on the calibration, a person had to do coding work that was of no other value than to
provide comparison data for reliability testing of the coding schema. However, when two
programmers coded the same area during the calibration phase, the data was used for the
actual calibration as well. This double use of the data from the calibration made the procedure
clearly worth the effort.

73

The two hired coders did the calibration with fully individual coding on all their clips. The
other master student and I did the same with the first third of the files we coded. One could
see this as the ideal calibration method, since the first coder could not influence the other one
in any way before the meeting where they discussed and compared their coding. However, the
method proved to be less than perfect, since the discussions in the calibration meetings turned
out to be about the exact placing of the time codes rather than about the choice of categories.

For the last two thirds of the files, the other master student and I used a slightly altered
calibration procedure. In our new procedure the owner of the file first coded the five minutes
to be calibrated, then removed the categories from the text, but let the time codes remain, and
then sent this “clip skeleton” to the other person. The other person, based on these time codes,
added appropriate categories to the already existing clips.

For record keeping and code reliability check purposes, all pre-calibration files were kept, and
none of these were edited without keeping a copy of the original.

10.2. Reliability Checking
After the calibration, the file owner did the full coding of task 4. After coding the task all the
way through, the file owner sent the text file containing the coding of the file to the
community of coders, (the two hired helps and the two master students.) Then, one of the two
master students would check five randomly selected minutes of the file. (The randomization
was done by a simple program described below.) If one of the master students was the file
owner, the coding would be checked by the other master student; the one who was not the file
owner.

This reliability check would not be like the one in the calibration; where two independent
codings were made and compared. In the reliability checking, the job of the checker would be
simply to control whether or not he felt that the code applied to the five minute section to be
checked was correct. For clips where the checker disagreed with the file owner, the checker
would write his own coding suggestion behind the original code. As with the calibration, in
order to have a complete record of files and versions, no files were altered without keeping a
copy of the original.

The randomizer that selected what part of the coding that would be reliability checked was a
simple program I made, where the inputs were the start and the end times of task 4. The
randomizer then calculated, using a standard library random method and the input
timestamps, when the check was to begin. The program did take into account that the first ten
minutes were not to be checked (since parts of these minutes were already checked during the
calibration phase). The program also avoided including the last five minutes in the check area,
since these minutes most often consisted of long clips of Programming Aloud or Compile and
Test.

10.3. Reliability Calculation Approaches
Several approaches was suggested and tried in the process of making a good system for the
calculation of the reliability score. They are described in the three sections below.

74

10.3.1. Initial Approach
The first reliability calculation method we suggested was the simplest one. One person would
go through another person’s coding of a file and write down whether he agreed completely or
did not agree completely on the coding of each clip. The number of disagreements would be
divided by the number of clips checked. The checker would also check whether or not he or
she agreed with time marker placement of the first and last clip of the task.

While the method described here would be quick and simple to perform, it would lead to
results that were not as “fair” as they could have been. For example, if following this method,
a clip coded as X (silence), where the checker suggested PS (Programming Silently), two
categories both being known for their lack of conversation, the agreement would be given a
score of 0. Similarly, a clip coded as X where the checker suggested using a long interaction
sequence category, for example PaefrP would also receive the agreement score of 0. It was
not ideal that those two situations, where the first one was probably nothing more than a
misinterpretation of sounds, while the other one was a clear error in the coding, would be
regarded as equally bad.

10.3.2. Stricter and More Individualistic Version
Later, it was suggested that we should do a completely individual coding of the area to be
reliability checked, similar to what we did during parts of the calibration. This way of doing it
would be the one with less risk involved of getting sloppy reliability checks, since there
would be no information about how the other person had done it. However, as during the non-
skeleton based calibration, this double coding turned out to differ quite a bit on clip
placement. Therefore, a reliability check would require an additional cooperative walkthrough
of the checked area after coding and checking where both people involved (the coder and the
checker) discussed it and agreed, much like in the calibration phase.

It was soon realized that this procedure would not be used by us since it would be negatively
disproportionate regarding how much work is would require compared to the value of what it
lead to. For a complete check of the whole code, where the objective would be to make sure
the coding of the file was as correct as possible, this procedure would have been great, but for
our purposes; checking whether the code schema was sufficiently objective; it would be
excessive.

10.3.3. Subcategory Based Approach
Bakeman and Gottman [Bakeman 97] state that one cannot successfully calculate agreement
simply by dividing the number of agreements on the total number of units. One must define
more specifically what an agreement is, and what a unit of agreement should be.

Based on this and, as the next possible approach, we came up with something completely
different. This time, we would compare each subcategory used by the coder with the
suggestions of the checker. A fraction score would be given based on how many of the
subcategories that matched when comparing the coding to the checker’s suggestions. A clip
coded as ParfrP would lead to an agreement score of 3/6 (50%) if the checker suggested
ParduS. The ParfrP coded clip would give a score of 0 if the checker had suggested CscduS,
as none of the six subcategories matches. After comparing each clip and calculating for each
of them a fraction score, an arithmetic mean would be made for the scores of the clips
checked, and this number would be used as the measure of agreement for the coding of this
pair.

75

For clips where the coder used a long category and the checker suggested a short category
(i.e. a task focus other than P or C, where the task focus alone would be the complete coding
of the clip), the calculation would be less straightforward. Special rules were made for these
situations. These rules are listed in Appendix X2.

By using these rules, two files were compared as part of the reliability check. The first of the
two files consisted of the five minutes the file owner coded before the calibration, plus the
five minutes the coder had coded further into the file, that was selected by the randomizer as
the reliability check area. The second file involved in the comparison was the selection of the
same clips that was included in file number 1, but where the coding of the clips was as they
were after the calibration, and where the checkers’s codes had replaced the original coding for
the five randomly selected minutes.

10.4. Reliability Calculation Results
The reliability/agreement scores for each coded file were aggregated and a number of
measures for reliability were made based on them. Our primary measure of reliability is given
by the reliability check rules described above and listed in Appendix X2. By using its rules, a
score of 94.24% was found as the mean for all the pairs. The standard deviation was small:
3.92 points, so the great majority of files coded had a reliability score in the nineties.

The mean amount of clips in the ten minute areas included in the reliability check was 30.36.
The mean amount of clips per pair in which the two coders (the coder and the checker) were
not in agreement regarding the start or end time marker of the clips was 2. In percentage, this
results in an agreement score of 93.72% when measuring clip time agreement. The mean
amount of clips where there was some dissimilarity between the two codings was 4.86.
Therefore, the percentage of clips with a total coding agreement (where the categories used
matched completely) was 83.15%.

The lowest score on agreement between the coders was found when I calculated the total
coding agreement plus the total agreement regarding the starting/ending points of clips, and
compared this number to the total number of clips. This led to a score of 76.88, which was
also reasonably high. However, that number was not highly dependable as a reliability
measure, since for some of the clips for which there was a disagreement on the timing of the
clips, there was also a disagreement regarding category use. Therefore, the 76.88 score might
have been a little lower than the reality.

When using the total coding agreement and the clip time agreement scores mentioned above
together, that is, when calculating 93.72% of 83.15%, the result will be 77.93%, possibly a
better representation of the agreement than the 76.88 score above.

When I used the agreement score calculated percentage (94.24%) instead of the total coding
agreement score (83.15%), the score like that above (based on combining the percentages for
clip and category disagreement) was 88.33%.

All of these numbers are summed up in the following table, Table 5.

76

Reliability Calculation Score
1 Reliability Check Rules 94.24
2 Clip time Agreement 93.72
3 Category Total Agreement 83.15
4 Clip + Category Total Agreement 76.88
5 2 & 3 77.93
6 1 & 2 88.33
Table 5: Code schema reliability results

77

78

79

Personality and
Pair Programming

We all know the visual stereotypes of a programmer. He is a man wearing glasses and perhaps
a geeky t-shirt with the “There are 10 types of people in the world – Those who know binary
and those who don’t” joke, or a motif from a game or a cult film on them. He drinks coffee or
Coca-Cola all day, and has a dislike of sports and other physical activities. He is also a quite
obvious and outspoken fan of certain movies, and it is not unlikely that he can (and often will)
recite long sections from Star Trek, Star Wars or the Monty Python movies. Although most of
these are things that one can change quite easily, some people like to belong to this
stereotype, and would rather increase than decrease their similarity to it.

Another side of the computer geek stereotype cannot be easily altered by programmers
themselves. These are the more internal factors of a person, including the personality. As
stated in [Hannay 09a], programmers are indeed significantly more introvert, neurotic and
open to experience than reference groups.

The goal for this thesis is not to identify the personality profiles that are most common in
programmers; this has been investigated quite thoroughly already. In addition to the results
found in the pair programming experiment, [Hannay 09a] mentions four other investigations
into this. One of them is an MBTI-based paper which finds that a majority of “systems
analysts” are introvert, and a great majority of them are of the TJ (thinking and judging) type,
which the authors of the article [Smith 89] describe by making a citation:

These individuals are described by McCaulley (1978) as tough-minded people with a greater aptitude
for technical as opposed to interpersonal skills. They are also logical, analytical, responsible,
dependable, systematic, decisive and organised. They plan their lives carefully but are somewhat
inflexible.

The goal of the thesis, however, is to identify which personality traits that affect collaboration,
and in what way. It might be the case that the “stereotypical” programmer is the one also most
suited for collaboration in pair programming, or he might, due to his low extraversion, be the
worst. Would two similar people personality-wise collaborate differently than two more
different people? These questions and more will be investigated and answered in the chapters
to come.

80

81

11. Analysis Considerations

11.1. What Variables to Base Analyses On?
With 285 data columns for each and every pair gathered during the pair programming
experiment, and several hundred columns of category data generated by the coding parser
program described in Section 9.4, the decision on which of these variables to include in the
analyses was not immediately obvious. The selection process is listed in the sections below.

11.1.1. Personality
For personality, the choice was easy enough. During the pair programming experiment,
statistics were recorded about each person’s personality scores on the Big Five factors. Since
we had decided earlier that the pairs were the focus point; not the individuals, the columns
with the combined results for the pairs were used. For each of the “big five” personality traits,
each pair’s mean score was listed in a column in the data table from the experiment. These
columns were selected, and would show if a pair as an entity scored high or low on a given
trait.

Each of the five traits also had a column where the difference in score between the two pair
members on that given trait was noted. This column, titled “trait”_StdDev was also used. It
would be needed when investigating whether similarities or differences in personality traits
internally in a pair had any influence on what collaboration categories we used to describe the
collaboration of this pair.

The two personality columns we chose would inevitably have a slight correlation. Mean
scores close to zero or a hundred would mathematically mean a low StdDev, since the trait
scores for the big five traits are percentage based. If the mean is 99, the StdDev could
maximally be 1 (since the maximal score is 100, and (100+98)/2 = 99). It is likewise for the
other end of the scale: A mean of 10, would mean a maximum StdDev of 10 (since (0+20)/2 =
10). However, for medium mean scores, which will be quite common, there will be no logical
correlation like this between mean and StdDev.

11.1.2. Collaboration
The parser program generated huge amounts of data, since it was programmed to write out
five columns for every category that has been used during the audio file coding. Since each
long category describing an interaction sequence consisted of six subcategories, and there
were quite a few subcategories to choose from for each of these six, the amount of
subcategory combinations that were used was large. Luckily, the number was nowhere near
the amount it might have been if every single possible combination of subcategories into long
categories were used.

A little later, it was realized that analysis based on the combined interaction sequence
categories would not be ideal, since they were so numerous and most of them were used very
rarely; sometimes just once in one of all the coded audio files. To look at the subcategories
individually would be more manageable, and would give us just as good material to make
statements and hypotheses on collaboration with.

After that decision, there was still the issue of which of the five fields for each subcategory
that would be the focus. For example, for the Task Focus category “Programming” (TF-P),

82

the five columns were named TF__P_no_of_times_used, TF__P_time_used,
TF__P_p_of_clips, TF__P_p_of_time and TF__P_average_time. They are described and
discussed below with regards of usefulness in the analyses.

11.1.2.1. no_of_times_used, time_used
No_of_times_used, which indicates how many times the subcategory was used during task 4
of the audio file, was not suitable for our analyses. The numbers in this column would depend
heavily on how long it took the pair to complete the task. A long task 4 would typically
consist of more clips than if the pair had solved the task faster. When the clips were more
numerous, some categories were bound to be used more often than they would otherwise have
been. No_of_times_used would therefore not provide sound data to base analysis on in itself.
The same applied to the similar column time_used.

11.1.2.2. p_of_clips
p_of_clips, short for “percentage of clips”, indicates how often the category was used when
compared to the other categories. At first, it seemed to be a realistic candidate for analysis.
However, the column in its pure form was ultimately not chosen, because of its comparatively
high vulnerability to variance in how the categories were used. Inevitably, each audio file
coder would have a slightly different opinion on when it was appropriate or not to make a Z
(silence) clip. Even though we decided how long a silence would have to be in order to be
made into a clip, factors such as “how silent” it was, and whether or not the silence was
slightly longer or slightly shorter than this limit, would lead to a differences in use of the
category Z, and thus the number of clips two coders would make for the same file. The
percentage of clips column would be affected quite noticeably by this difference.

11.1.2.3. average_time
Average_time would not be affected by short clips the same way as p_of_clips, but
average_time would also not describe the collaboration in the ways we wanted to investigate.
Even though it could be interesting to see how long people stayed silent, or how long they
elaborated on each other each time it happened, it would be unsuitable to make analyses based
on this column. If a pair was silent very often, for thirty seconds every time, the pair would be
identified as just as silent as a pair who was silent only once, for thirty seconds. To classify
these two pairs as similarly silent would not be ideal.

11.1.2.4. p_of_time_used
p_of_time_used contains the percentage of time the category was used relative to the total
time of the solving of task 4. For this column, the problem with p_of_clips; that coders could
make different amounts of very short clips, would not be important. If a coder made ten extra
silence clips, but each had a duration of only one second, it would not change the percentage
of time used for the other categories much, since a single normal clip is mostly longer than ten
seconds in duration.

11.1.2.5. New Ideas
After a brief analysis run using p_of_time_used, it was realized that p_of_time_used also was
not the ideal column to use as it was, in its pure form, since the column had a couple of
imperfections. First of all, the numbers in the column was generated simply by dividing the
time use for the category on the total time used for solving task 4. While this was the most
obvious way to make a column of the percentage of time, it was not excellent since it would
include the clips labeled U for Unintelligible. For audio files of especially low quality, the

83

number of U clips was quite high, and therefore the percentage of time used on all the other
categories would be lowered because of the frequent U use.

Also, the clips consisting of interaction patterns/sequences would best be compared only to
the other interaction pattern clips. When using p_of_time a pair which programs loudly the
whole time, except for in ten clips, all of which begins with a suggestion, would receive a
very small percentage use for suggestion. It would “drown” in the heavy use of programming
aloud, even though it was used much more frequently than the other Begin Characteristics.
Since the Task Focus categories that did not imply an interaction pattern was quite frequently
used, it was more accurate to compare interaction pattern components to other interaction
pattern components only. The triggers for interaction patterns, the task foci of Comprehension
or Programming, would still be compared to the audio file as a whole, so one could easily
know how frequent interactions patterns were used.

11.1.2.5. New Columns
The parser program, described in Section 9.4 was modified to include the two new categories
described above, titled p_of_nonU_time (percentage of time this category was used compared
to the total time used on the task when the category used is not U) and p_of_ip_time
(percentage of time this category was used compared to total time for all clips coded as
interaction patterns). For the task foci, the p_of_nonU_time column was used, for every other
subcategory type; the p_of_ip_time was the appropriate column.

A new run of analysis was performed with these new columns used instead of p_of_time.
Since it was at this time that we discovered that some of the audio files has been erroneously
coded (task five instead of task four was coded), this new round of analyses was not an
addition, but a replacement of the previous runs, since the data sample was different.

11.1.2.6 The Return of p_of_clips
A little later it was realized that p_of_clips could be of use after all if one used the same line
of thought as in p_of_ip_time, and counted only the interaction pattern clips. This way, short
silence or silent programming clips, which are not interaction patterns, would not distort the
results. A new run of the interaction pattern analyses was done with this remade version of
p_of_clips. This time, the results were based on the same material as last time. Therefore, it
was appropriate to view the new results as additional material, not overwriting the findings
from the analysis runs based on the factors described above.

11.1.3. Performance
Regarding how the pairs performed when solving the tasks of the pair programming
experiment, the different columns to choose from were not as numerous as those for
collaboration or personality. One could use the data from the post-programming task parts of
the experiment, where the programmers themselves evaluated their own system in respects of
how certain they were that what they had done was a good solution to the problem, whether or
not they thought their solution was easily maintainable etc. However, we did not want to use
these highly subjective measures. It was feasible that most of the pairs, regardless of the
actual quality of the code they had made were quite pleased with their result, since they had
decided to announce the task as done before filling out this form. Few pairs would quit the
task when they felt it still needed a lot more work in order to be complete.

Since the pairs were supposed to program until they were done with the programming tasks of
the experiment, the duration of the task was the primary measurement of performance in the

experiment, and the “quality” of the solution was recorded only as a binary value of whether
or not a pair’s solution passed the test cases of the experiment. However, this binary value had
some use, so it was used as one of the quality factors, along with duration for task 4. A
combined “quality” score for all the three evaluated pair programming tasks (task 2, 3 and 4)
was also a column available for use. Even though it was somewhat unsuitable, since the task
analyzed and coded was task 4 only, this combined correctness score was included as a
quality measure that could strengthen or weaken other results.

11.2. Relationships to be Investigated
In the following subchapters, the two relationships to be analyzed will be briefly described
along with the second, part of the process of selecting suitable variables.

11.2.1. How Personality Influences Collaboration

84

Figure 11: Does personality affect collaboration?

 Pair
 Personality

 Pair

 Collaboration

 Pair

 Performance

The primary focus of this thesis is to investigate the relationship between personality and
collaboration, as shown in Figure 11. Personality factors for pairs were chosen as explanatory
variables for the analyses of this relationship. As mentioned above, the personality factors
chosen were mean and StdDev for every of the five Big Five traits. So, in total, there were ten
explanatory variables. The StdDev personality column was for the analyses referred to as diff,
short for difference, for easier readability. Thus, “Extraversion mean”, “Extraversion diff”,
“Agreeableness mean” and “Agreeableness diff” was the names of the first four of the ten
personality variables we included in our analyses.

As response variables, nearly all collaboration categories were selected, and a statistical
analysis was performed on these, one at a time.

The few collaboration categories that were not selected were those for which it would seem
meaningless to make analyses. One of the categories omitted was “Not Applicable” from the
Result category group. This category was meant to be used in normal N/A scenarios, that is,
as a “filler” when it is not suitable to use any of the more meaningful categories resolved and
unresolved.

The second category that was not included in the analyses was the Task Focus category
“Unintelligible”. Like the N/A category, “Unintelligible” is nothing more than a filler, and
describes nothing more than the quality of the sound clip and the coder’s ability to hear what
is said.

The category hardest to argue for why we kept out of the analysis was the task focus
“Compile and Test”. However, it would be unsuitable to include this category, since we had
decided to stop coding the task right before the last session of compiling and testing (not
including it). Also, the collaboration during compiling and testing sequences is not an
interesting focus for us, since it is an input/output heavy situation where the “communication”
with the computer is the mean point. “Compile and Test” was rarely occurred until long clips
of it at the very end of the task.

Propositions P1-P6 described in Chapter 12 below investigate this relationship between
personality and collaboration.

11.2.2. How Collaboration Influences Performance

85

Figure 12: Does collaboration affect performance?

 Pair
 Personality

 Pair

 Collaboration

 Pair

 Performance

Although not my primary focus, I also investigated whether certain collaboration categories
was more or less likely to lead to good performance in the pair programming experiment.
Performance was, as stated above, measured by time use and correctness. As when
investigating the relationship above, in Section 11.2.1, the three collaboration categories “Not
Applicable”, “Unintelligible” and “Test” were omitted from the analysis.

As one can see in Figure 12, the collaboration was the explanatory factor for this relationship,
as opposed to in the focus described in the previous subchapter, where it was the response.
Therefore, when investigating this relationship, the collaboration categories were all used as
explanatory variables. As response variables, the three aforementioned performance measures
were used; correctness for task 4, correctness for all tasks, and time used on the task.

Propositions P7 and P8 described in Chapter 12 below investigate this relationship between
collaboration and pair programming performance.

86

12. Research Propositions
Based on a literature review which is described in the following chapters, I made a number of
relationship propositions for personality impacts on collaboration and collaboration impact on
performance. They are listed as P1-P8 below.

Each of the “sub-hypotheses” extracted from the literature were given a score based on the
compatibility of the source to my problem statement, as well as how reasonable the sub-
hypotheses seemed. The score was given from a scale from 1 to 4, where 1 meant that the
sub-hypothesis was “very likely” to be true, and 4 meant that it was “slightly possible” that
the sub-hypothesis would be confirmed by the analyses.

The best scoring ones among these short sub-hypotheses were then combined into a handful
of well-defined propositions that could be the basis for direct analysis. These relationship
propositions are:

P1: Personality affects the use of certain collaboration categories.

P2: Difference in personality increases the number of “communication transactions”; i.e. the

collaboration categories that include high amounts of discussion will be used more
often.

P3: People with similar levels of extraversion will disrupt each other less.

P4: Pairs consisting of two extroverts will discuss a lot regardless of type of discussion.

P5: Agreeableness leads to more social/small talk.

P6: Metacognitive statements are made more often by extraverted people.

P7: The use of certain collaboration categories leads to better or worse pair programming

performance.

P8: The use of the interaction pattern elaborative, leads to better results.

12.1. Literature Based Proposition Suggestions
A lot of articles about personality and pair programming do not focus on collaboration and the
articles about personality and collaboration are not about pair programming. However, a
handful of articles were of great use to us, and they, along with the hypotheses one could
deduct from them, are presented in the sections below (12.1.1 - 12.1.6).

The propositions are numerous and would if uncompressed form quite a long list. To
compress them, I used a special format to describe them. A (-) in front of a dependent factor
in this format indicates a negative correlation. For example (-) EC-f for the personality trait
Extraversion diff, indicates that a high Extraversion diff (difference) leads to a low use of the
collaboration category of flow (EC-f, see Chapter 8). The format is as follows:

(Score). Factor
 Dependent factors. If multiple; divided by commas)

87

12.1.1. Sfetsos et al.
The article of Sfetsos et al. [Sfetsos 06] states that there is a significant correlation between
mixed personalities and high amounts of communication transactions. They compare the
mixed personality pairs to pairs with similar personalities. Based on this, we can make the
following hypothesis:

1. Openness diff, Extraversion diff, Conscientiousness diff, Agreeableness diff, Emotional
Stability diff
 (-)TF-PS, (-)TF-X, (-)IP-c, (-)IP-n, TF-D, TF-C, TF-P, IP-e, IP-r

12.1.2. Dick et al.
The article by Dick and Zarnett [Dick 02] is a primarily theoretical paper that claims that four
traits are important for successful pair programming. These four are communication,
comfortable, confidence and compromise. They explain these four traits in some detail.
Communication is defined to be the ability to elaborate on ideas, but be able also not to say
too much. The article does not mention personality types and how they might collaborate, but
the article does suggest that people who elaborate much will perform pair programming well.

1. IP-e
 Pair programming performance (increased correctness or decreased duration).

12.1.3. Karn et al.
In 2005, Karn and Crowling wrote an article about personality types and software engineering
collaboration with special focus on disruption. One of their findings, from an ethnographic
study, is that in one of the groups they studied (which consisted of four developers) none of
the members made any disruptions at all. They state that the fact that the group had one
clearly dominant member, (the group’s only extrovert), was the reason why they never
disrupted each other. Furthermore, the authors claim that “some homogenous teams
(particularly those dominated by INTs) run a real danger of falling into the no debate trap”
[Karn 05]. Their results show that disruptions were good for performance of the teams. They
do a new but similar investigation one year later [Karn 06]. In the latter, the 2006 study, the
findings from the 2005 study, that disruptions benefit the performance, are directly
contradicted. The view that disruptions are bad is also the most common view in the other
sources. Because of the contradiction, no hypothesis will be made regarding the effect of
disruption on performance.

2. Extraversion diff
 (-) EC-d

Since the article was about software engineering in general and not specifically pair
programming, the hypotheses does not receive a score of 1.

Findings in this article also contribute by strengthening the hypothesis presented in the Sfetsos
article above.

12.1.4. Williams et al.
The article by Williams, et al. [Williams 06] further suggests that different personalities were
the best. They focus on the specific MBTI range of sensing vs. intuition. McRae and Costa’s
conversion sheet between MBTI and Big Five [McRae 89] indicates that sensing vs. intuition

88

is highly correlated with the Big Five trait Openness. Since the article states that people of
mixed scores on the sensing-intuition scale claim to feel more compatible with each other
than those with more similar score on the scale, it is likely that the sensing-intuition different
people collaborated fairly well also. However, the finding in the article are based on
subjective checkboxes only where the subjects themselves stated how well they thought their
partner during the pair programming matched them. Therefore, this sub-hypothesis will not be
given a very high score.

3. Openness diff
 (-)TF-PS, (-)TF-X, (-)IP-c, (-)IP-n, TF-D, TF-C, TF-P, IP-e, IP-r.

12.1.5. Hannay et al.
In “Effects of Personality on Pair Programming” [Hannay 09a] there is a literature review that
includes, among others, the aforementioned articles. In this review, the authors state that
“None [of the articles] argued that homogeneous pairs would be better performers”. This
finding helps to strengthen the hypothesis from the Sfetsos article.

Based on the experiment described within, Hannay et al.’s article further states that certain
factors are beneficial regarding pair programming performance. While it is undesired to
translate this directly into theories about collaboration category use, one can make a weak
hypothesis based on it.

3. (-)Extraversion diff, (-)Agreeableness diff
 (-)TF-PS, (-)TF-X, (-)IP-c, (-)IP-n, TF-D, TF-C, TF-P, IP-e, IP-r

12.1.6. Williams’ Book
The book “Pair Programming Illuminated” [Williams 03] describes pairs of the three possible
combinations of extraverts and introverts. They claim that extrovert-extrovert people will talk
unnecessarily much, often about things outside the tasks, and thus spend a very long time on
the tasks. However, the double extroverts will make a high quality code, due to their thorough
discussions. Regarding extrovert-introvert, they present only hints for how pairs of these
compositions should behave. The authors make no real indication (other than a joke) of how
the collaboration might evolve. For introvert-introvert, the authors suggest that there will be
less talk than for other extraversion combinations in pairs.

The book mentions what the authors refer to as the “professional driver problem”, where one
programmer continuously, and despite the navigators expressed or implied desires, is the
driver. However, this problem will not be covered in my analyses, since in the experiment on
which this thesis is based; the pairs were forced to change the roles at least once. Also, one
would have to listen carefully for it in the audio in order to identify the problem. It might not
be possible to identify it at all without video of the pair programmers.

The book also mentions another problem, in which one person thinks he is better than the
other member of the pair, and thus treats this other member badly. This is mostly visible when
he/she ignores the other one. This problem is thought to indicate that “the ignorer” has a low
agreeableness score. Regrettably, both these interesting phenomena would be awkward to
model using our categories and the big five personality system since we also decided to focus
on the pairs as a whole, and not differentiate between the two individuals (see Section 7.4.3).
The phenomena could, however, be interesting areas to investigate in future research, as
described in Section 16.4.

89

2. Extraversion mean, (-)Extraversion diff
 -> TF-Z

2. (-)Extraversion mean, (-)Extraversion diff
 TF-PS, TF-X, IP-c, IP-n

12.2. Definition-Based Proposition Suggestions
A number of sub-hypotheses based only on the definitions of the big five traits and of our
collaboration categories were also made. Since these were weighted less heavily in the
process of generating research proposition, they are not discussed closely. The complete list
of the definition-based proposition suggestions can be found in Appendix X6.

90

13. Analysis Description
The exact focus of this study was new and not much covered in available literature. Because
of this, an exploratory analysis seemed the most appropriate. Inspired by the research on the
direct link between personality and performance in [Hannay 09a], the statistics software jmp,
version 7.0.2, by SAS was chosen as our tool for the analysis. Jmp has a mode of analysis
called “partition” that is especially suitable for exploratory analyses. This mode is described
in section 13.1 below.

Jmp also has a quite powerful support for scripts, and supports a rich scripting language that
can be used in order to automate most parts of the software functionality. The script language
is easy to use for people who are experienced with typical programming syntax such as loops
and if statements. Scripts for all the analyses were made, and they were automated as much as
possible within a reasonable time frame. I wanted to make the scripts so that they automated
the analyses as much as possible, but I did not want to use more time on script making than
the time I would save due to the automatic nature of the analyses.

The scripts would prove useful, since we changed our minds regarding what variables we
included in the analyses several times (as seen above, in Section 11.1.2). The script could also
be useful for potential future work on. For example could a future run with an extended
sample or with different split sizes or k-values than before (both these concepts are described
below) be based on these same scripts.

13.1. The Partition Platform
The Partition platform recursively partitions data according to a relationship between the X and Y
values, creating a tree of partitions. It finds a set of cuts or groupings of X values that best predict a Y
value. It does this by exhaustively searching all possible cuts or groupings. These splits (or partitions) of
the data are done recursively forming a tree of decision rules until the desired fit is reached.[JMP 07]

In jmp, a partition split analysis requires little effort by the user. One simply presses a button
titled “split", and a split is made. The first split in a tree, the split which has the complete data
sample as their basis, is referred to in this text as the top split. While splitting, a tree structure
like the one in Figure 10 is generated.

All Rows
Count
Mean
Std Dev

44
18,866729
13,129374

4,863871
LogWorth

24,1418
Difference

B5_4_StdDev>=2,6499387376
Count
Mean
Std Dev

39
16,123345
10,773756

1,1885681
LogWorth

12,2921
Difference

B5_1_Mean<41,753304891
Count
Mean
Std Dev

6
5,7223093
3,0167331

B5_1_Mean>=41,753304891
Count
Mean
Std Dev

33
18,014443
10,603944

B5_4_StdDev<2,6499387376
Count
Mean
Std Dev

5
40,26512

10,229602

Figure 10: Partition: The first two splits with the Task Focus “Programming Aloud” as response variable,
when measuring the relative amount of time the category occurs

According to convention, jmp was set up so that the significance of the split, the LogWorth
(see Section 13.1.2.) was maximal. The splits are made by jmp, and ordered so that the
rightmost of the two groups generated by the split has a higher mean value for the response
variable than the leftmost group.

In Figure 10, we see that the rightmost group in the first split has a mean value of ≈40.27 in
“Programming Aloud”. This means that for the pairs in this group, 40.27 percent of the time
they used to solve tasks, were coded as the Task Focus “Programming Aloud”, while for the
group at the left, only ≈16.12 percent of the time was coded with this category. This is quite a
noticeable difference, and one can verify that the difference is significant by looking at the
number in the LogWorth column in the “All Rows” box above the split. LogWorth is a
measure of significance of the jmp splits, and is explained in detail in Section 13.1.2 below.

But simply knowing that there is a significant split is not enough. Which factor is affecting
“Programming Aloud”, and in what direction? The headings of the two split groups contain
B5_4_StdDev, which is the column name in the jmp data table for “the deviation between the
two pair members in regards to emotional stability”, also known as Emotional Stability diff in
this text. Since B5_4_StdDev is larger than 2.65 in the leftmost split box, and it is smaller than
2.65 in the right one, we know that a similar level (low difference) of emotional stability in
the pairs leads to more time spent on “Programming Aloud”. We know this because the left
group is stated to be high in B5_4_StdDev, and low in “Programming Aloud”, and oppositely
for the right group, it is low in B5_4_StdDev, and high in “Programming Aloud”.

As stated earlier, the group that has the highest mean value in the response variable is always
placed at the right side of the split diagram. Therefore, it is easy to read and understand the
split diagrams quickly and accurately when one is used to them. One can simply look at the
inequality symbol (< or >), read the name of the variable that is used in the split, and control
the LogWorth, in order to know a great deal about the split.

91

92

The example in Figure 10 has a second split under the leftmost group of the first split. One
can see that the BF_1_Mean, the mean value of the two pair members’ extraversion score, is
the splitting factor. In contrast to the first split, for this second split, the group with the highest
score on the personality factor is the one on the right. This means that a high combined score
in extraversion for a pair’s two members leads to more “Programming Aloud”. However, for
this split we see that the significance, the LogWorth, is lower, only 1.18, which is slightly
below what is required based on the choices we have made. Thus, this split is not identified as
significant. These significance decisions are discussed below, in Section 13.1.2.

13.1.1. Minimum Size Split
In jmp, an important setting for the partition platform is “minimum size split”. The number
selected here decides how small a split group can be. Indirectly, the minimum split size will
thus decide the number of splits it is possible to perform.

Since the minimum size split in the example in Figure 10 above was set to 5, it would be
possible to split this tree further. The box in the middle at the bottom has a count greater or
equal to the double of the split size (5*2=10), so it could be split further. At least one of the
new groups formed by a split of this box could also be used for additional splits.

As stated in Section 9.1, the sample size in our case was 44. Thus, a minimum split size of 23
would mean that it would not be possible to make any splits regardless of the input material.
Two split groups of minimum 23 in size would require at least 46 observations. A minimum
split size of 22 would work, but it would limit the number of splits to one, as further splits of
the two partitions (which would inevitably be of size 22 exactly), would be impossible with a
split size that high.

The default value for minimum split size in jmp is 5, which is regarded as sufficient for
diminishing the effect of outliers; individual values that fall outside the overall pattern [Moore
06]. We don’t want the minimum split size so low that potential measurement errors or other
oddities would often be placed in a split group by themselves. For example, if one of the
subjects of the experiments had read the instructions for the personality test wrong, and had
answered oppositely of what he really meant for every single question, this person’s
personality profile would probably stand out as an outlier that could disturb linearity of the
sample.

In the earlier analysis based on the same experiment, the focus was to find a direct link from
personality to performance. For this, a split size of 10 was used [Hannay 09a]. The authors
quote [Briand 01] in their choice of this number and state that it is chosen to avoid outliers.
The article they quote [Briand 01] states that a split size of 10 “should be sufficiently large to
capture significant trends.”

There does not seem to be a universal consensus on a suitable split size. Few available articles
deal with the subject. A minimum split size of 10% is used in [Alkushi 05]. In the case of the
analyses presented in this thesis, where the sample size was 44, 10% would be rounded down
to 4; not that different from jmp’s default suggestion of 5.

Because of the meager amount of material one could find about split size decisions and
argumentations, it was difficult to decide on a split size. In the first two rounds of analysis,
split sizes of both 5 and 10 were used, and the results for both split sizes noted individually.

93

After noticing that the results were mostly the same when using the split size of 5 and 10, i.e.
the same variables was chosen by jmp with similar results, a split size of 5 only was used
during the last analysis rounds. It seemed more reasonable to choose this smaller split size
considering the somewhat small sample size of the material.

13.1.2. LogWorth and p-value
In jmp, LogWorth is a measurement of significance used to describe the “quality” of a split.
In [Hannay 09a], it is described like this, with a reference to a technical report made by SAS,
the jmp developers [Sall 02] at the end:

The “LogWorth” index in each parent node is a significance measure of the difference in mean values
for the observations in each child node with regards to the dependent variable. Specifically, LogWorth =
−log10(p), where p is the adjusted probability of the observed data under the hypothesis of the means
being equal. […]. The adjusted p-value takes into account the number of different ways splits can occur.
It is fair compared to the unadjusted p-value and to the Bonferroni p-value.

In statistics, the p-value is a significance measure, meaning that it shows how statistically
significant a result is. “The probability, computed assuming that H0 is true, that the test
statistic would take a value as extreme or more extreme than that actually observed is called
the P-value of the test. The smaller the P-value, the stronger the evidence against H0 provided
by the data” [Moore 06]. One can think of the p-value as the probability of a finding being a
coincidence. With a p-value of 0.05, we are 95% (1-p) sure that the result is not coincidental.

The conventional p-value of p<0.05 is a suitable value for this analysis. Since personality and
collaboration are the most important factors we measure, we should avoid the most restrictive
values commonly used, such as 0.01 and 0.005. While these lower values will be suitable for
making strong assumptions on the most tangible of things, such as production numbers in a
factory, or cyclical natural phenomena, they will probably be too restrictive for us, since
collaboration and personality are complex factors which are likely to have quite a large
variance. Also, since the sample size is rather small, the variance will be slightly high.
Therefore, we would most likely not find very many usable results if we used a very low p-
value as the significance threshold.

By choosing 0.05 as the significance level, a LogWorth of at least 1.30 was required for a
split to be noted as significant, and used to argue for or against hypotheses, since -log(0.05) ≈
1.30.

13.1.3. K-Fold Cross-Validation
Cross-validation, sometimes called rotation estimation, is the statistical practice of partitioning a sample
of data into subsets such that the analysis is initially performed on a single subset, while the other
subset(s) are retained for subsequent use in confirming and validating the initial analysis.[Wikipedia 09]

K-Fold cross-validation is a technique that is suited for smaller data sets. In this type of cross-
validation, the data are partitioned randomly into a number of groups that you specify (K) and the
following procedure is followed: […] The model is fit to the complete data set, […] after iterating
through the K starting values, the CVRsquare is set to be the average of the R2 values for the K
iterations. […] for smaller data sets the CVRsquares should be less variable and much more reliable
than they would be for the corresponding (1-1/K)*100% Holdback cross-validation fit statistics.[JMP
07]

Since the sample size was rather small, a k-fold cross-validation seemed suitable. A k of 44
(which is also the sample size) was selected. This would make the cross-validation results

94

predictable and stable and not based on random selection as the case would have been if we
had selected a smaller k for the k-fold. The jmp software is fast, so the cross-validation was
performed nearly instantaneously. To include a 44-fold-cross-validation did not lead to
noticeable increases in the time it took to open a new partition window and perform the
partitioning.

The cross-validation has an R2 score as output. This value signifies the percentage of variance
in the data that the model (the split tree) accounts for. Cross-validation scores were not used
for anything in particular during my analyses, but they are listed in the table showing the table
analysis of proposition P2 to; Table 8 in Section 14.1.2.

13.2. Analysis Procedure
As primary analysis procedure, instead of simply splitting the data and noting the significant
findings, a slightly different approach was used. Whenever a top split (first split) was
significant, the explanatory variable that the split was based on was removed and the analysis
was run again. This was done because if a split on agreeableness would lead to a 3.01
LogWorth for the split, and a split on conscientiousness would lead to a 2.84 LogWorth (this
one also very high), only the fist one, agreeableness, would appear as the first split if one was
running the analysis only once. The conscientiousness split would probably not appear further
down in this potential fully expanded tree where agreeableness was the first split either, since
the agreeableness-based first split would most likely alter the material, so that
conscientiousness was no longer a very significant split factor for any of the two groups
formed by the split.

However, if agreeableness was removed from the list of explanatory variables and the
analysis run again, conscientiousness would in fact appear as the first split. This procedure
was repeated until there was no longer a significant split in the first split of the tree. Thus, for
response variables where the first split when all explanatory variables were included was not
significant, no additional analysis runs were needed.

The procedure described above was chosen since it focuses mainly on top splits, which are the
most proper splits to consider when one is describing general trends. When considering top
splits only, the findings regard the whole data set and not only a subset of it. Also, when
focusing on significant splits only, we have a well-defined place to stop the analysis, which
would otherwise, because of its exploratory nature not “end” naturally until every single
possibility was tried.

This procedure will never block out any significant top splits due to its stop definition: The
splits are made by jmp on the basis of maximizing their significance. This means that the top
split with all independent variables included will always be more significant than the top split
of the next run, where the variable that was in the top split last time was removed. When the
top split is no longer significant, we can with confidence stop the process, since the next top
split (after removing yet one variable) will be even less significant.

On the other hand, this process will exclude potential significant splits further down the tree
than the top one, but this exclusion is a choice we made. It did not seem suitable, in this
particular setting, to compare a split based on one particular data set (that was generated by a
split above) with a split based on a completely different data set (generated by a different
split).

95

In addition to the regular analysis procedure described in this section, the complete split trees
were investigated for the variables involved in the propositions, in order to look for trends and
patterns in the trees. Often, this extra check lead to the realization that certain findings was
unsuitable to base statements on, since it was common that one or more of their split trees
were internally contradicting of themselves. For proposition P2, this additional procedure was
expanded even further. This will be explained in details in the results section for this
particular proposition, section 14.1.2.

The relevant factors only were included as variables for the investigation of most of the
specific propositions. For example, for a hypothesis like “Metacognitive statements are made
more often by extraverted people”, the category “Metacognitive” and the personality trait
“Extraversion” was the only ones included.

96

14. Analysis Results
Our analysis did not confirm most of the propositions: For all the rather specific propositions,
no evidence in support of them was found. However, all the major, broader propositions were
found to be apt.

The first one of these confirmed propositions was P1 which was a general proposition
regarding the complete set of possible relationships between personality and collaboration. If
P1 had been rejected, it would mean that there was no correlation between these two factors at
all, and to look into the other propositions would be a waste of time.

The second of the important and confirmed propositions: P2, was a broad and important
proposition, and was the one most closely based on the literature. It was primarily inspired by
the MBTI based pair programming and collaboration experiment by Sfetsos et al. [Sfetsos
06], and strengthened by statements from other research papers [Karn 05] [Hannay 09a]. The
results showed a noticeable trend in support of P2.

The third relationship proposition which turned out to be supported by the analyses was P7, a
proposition closely related to P1, but where the other relationship, namely the one between
collaboration and performance was the focus, instead of personality and collaboration as in
P1-P6. Significant results were found for this hypothesis as well.

For the other five relationship propositions, no results could confirm them, and they had to be
rejected.

From the results, we know that personality does influence collaboration, and collaboration
does influence results, but not in all the ways that were expected based on literature review
and analysis of the definitions of the categories and the personality traits. Table 6 sums up the
propositions and the reason why they were rejected or not. Below it, a closer argumentation
for each of the propositions, as well as the results regarding them is listed.

P Confirmed? Reason
P1

Yes Several collaboration categories have a highly significant correlation with
personality factors.

P2 Yes Several collaboration categories that describe the “communication transaction
heavy” situations are significantly affected by personality differences.

P3 No For both correctness and task duration, elaborative has no significant impact
P4 No No significant impact found.
P5 No Several collaboration categories with much discussion are affected by

extraversion, and mostly in one direction, but the impacts are not significant.
P6 No No significant impact found.
P7 Yes Several collaboration categories have a highly significant correlation with

performance measures.
P8 No No significant impact found.
Table 6: Summary of the main hypotheses and the analysis results

14.1.1. P1: Does Personality Affect Collaboration?

Personality affects the use of certain collaboration categories.

Table 7 lists all the significant findings when I used the procedure described in Section 13.2.
The negative column indicates whether the collaboration category is affected positively or

97

negatively by the personality factor. For example, the very first row shows a correlation
between “Extraversion mean” and “TF O” (Which is the Task Focus category “Other
Relevant Tasks”, see Chapter 8). Since we see in the third column, that it is indicated that the
correlation is negative (√), we know that if there is a high mean Extraversion score for the
pair, their collaboration will consist of less “TF O” than for the other pairs.

P1 is supported. As shown in Table 7, when running the regular analysis procedure nearly all
personality factors significantly influenced the amount of one or more of the collaboration
categories, both when measuring time use for each category, (left part of Table 7), and when
measuring the amount of times the categories occurred (the right half of Table 7).

Personality factor % time Neg-

ative
Log

Worth
p-

value
%

clips
Neg-
ative

Log
Worth

p-
value

Extraversion mean TF-O √ 1.43 0.04 EC-f √ 1.48 0.03
 CL-P 1.31 0.05 EC-d 1.48 0.03
 IP-n √ 1.37 0.04
Extraversion diff TF-Z 3.94 0.00 IP-x 2.00 0.01
 IP-x 1.51 0.03
Agreeableness mean IP-s 2.48 0.00 TF-P √ 2.07 0.01
 BC-q √ 1.87 0.01 TF-C 2.07 0.01
 IP-x 1.65 0.02 Re-r √ 2.00 0.01
 Re-r √ 1.50 0.03 IP-q √ 1.97 0.01
 CL-D √ 1.47 0.03 Re-u 1.88 0.01
 CL-M √ 1.35 0.04
Agreeableness diff TF-X 1.35 0.04 Re-r √ 1.47 0.03
Conscientiousness mean TF-D √ 2.16 0.01
Conscientiousness diff
Emotional Stability mean TF-Z √ 1.39 0.04
 CL-M 1.59 0.03
Emotional Stability diff TF-PA √ 4.86 0.00
Openness mean BC-i 3.70 0.00 BC-i 4.68 0.00
Openness diff IP-r 2.11 0.01 IP-r 1.60 0.03
Table 7: Influence of personality on time used on collaboration categories

14.1.2. P2: Will Different Personality Pairs Communicate More?
Difference in personality increases the number of “communication transactions”; i.e. the
collaboration categories that include high amounts of discussion will be used more often.

The proposition is supported. “Communication Transaction Heavy” collaboration refers to the
collaboration categories Off Task (Z), Elaborative (e), Responsive (r), Unresolved (u), Cross
Purpose (x) and Disruption (d). These are the categories for which we - for better or worse -
can expect to observe much discussion or dialog. For some of them, the large amount of
dialog is included in the clips that are coded with this category (example: elaborative). For
others, the category implies much discussion in the clip right after the occurrence of the
category (example: disruption). Several of these collaboration categories were found to be
significantly positively affected by variability in personality, which speaks in favor of P2.

Another group of categories describe situations of little communication, namely
Programming Silently (PS), Silence (X), Nonresponsive (n), Consensual (c), Stonewalling (s),
Flow (f) and Resolved (r). These categories were found to be applied less often to clips during
the coding of the personality-different pairs’ protocols compared to when coding the dialog of
the pairs with a personality more similar to each other. This too strengthens P2.

The results for some categories contradicted these findings, but mostly, the findings had non-
significant LogWorth-values. The only significant finding that spoke against P2 can be seen in
the left part of Table 7 above. For pairs with a high variability in Agreeableness
(Agreeableness diff), the programmers are silent (TF-X) for longer periods than the pairs with
two similar people in them are. A more detailed look at these primary analysis results for P2 is
shown in Appendix X5.

For P2, in addition to the regular top split analysis described in Section 13.2, I did a larger
combined analysis similar to that in [Hannay 09a]. For this, the complete split trees were
investigated, and the order of the splits as well as an indication of whether they were
significant or not was noted. A selection of categories was picked; the ones that indicated
especially much or especially little discussion, as described above. These were divided into
the two groups Communication-intensive Categories (C) and Silent Categories (S). The
categories included in C were the same as the ones selected as Communication Transaction
Heavy categories above. The categories in S were the other group mentioned above.

I then performed the complete tree analyses on these categories. This analysis can be seen in
Table 8. The numbers indicate how early the split occurred (with 1 being the first split of the
tree, 2 the second and so on). A ’*’ indicates a significant split. The +/- in front of the
numbers indicate whether the split showed a positive or a negative correlation. If -, use of the
dependent factor was decreased when scores on the independent factor (in this case:
variability between the two pair members for some personality trait) was high. At the bottom
of each column, the n-fold cross validation (explained in 13.1.3) is given, and at the very
bottom, the overall R2, which indicates the ratio of explained variance.

TF-Z TF-PS TF-X
Time Time Clips Time Clips Time Clips Time Clips Time Clips Time Time Time Clips Time Clips Time Clips Time Clips Time Clips

Extraversion diff +1* -5
+6 +4* +5 +1 -2

+4
+1 -2

+4 +1* -4 +1* -6 -3 +4 -1* -3 +6 +5 +2* +3 +2 +4 +6 +3 -4 +4 +5

Agreeableness diff -1 -3 -6 +6 +5 +5 +2 +2 +5 +2 +1* +4 -5 +2* -3
+4 +1 -4 +1 -3 -5 -1* +3 -1* +3

Conscientiousness diff +3* +4 -5 -5 +5 +6 -3 -3 +1 -4
+5 +2 +5 -6 -7 -2 -1 -2

-6 +5

Emotional Stability diff +2* -7 -3* -2* +2 +1* +3 -4 -2 -3
+4 -5* -2 +3 -3 +4

+6 +1 -2* -1 +4
+5

+2 +3
-4 +5* +2

Openness diff -2 -1 +4 +1* +3
-4

+2 -3
+4 +3 +1 +1 +6 +6 +3 -6 +5 +3 -4 -1 -1 -6 -2 -2 +4

n -Folded R 2 .36 .46 .16 .32 .24 .12 .16 -.04 .04 -.04 -.04 .28 .32 .12 .40 .16 .20 -.09 -.14 -.04 -.04 .21 .21
Overall R 2 .56 .59 .37 .50 .48 .33 .36 .21 .25 .26 .30 .49 .54 .36 .59 .40 .44 .24 .21 .26 .30 .40 .40

IP-c IP-s EC-f Re-r
Communication-intensive Categories (C) Silent Categories (S)

IP-e IP-r Re-u IP-x EC-d IP-n

Table 8: Secondary exploratory analysis for P2

To summarize the findings, the procedure from [Hannay 09a] was used:

[The summary table] ranks each independent variable according to how early associated splits occurred,
by the formula max splits + 1 - split number. In our case, max splits was seven, that is, no trees had
more than seven splits. Thus, if, say, Agreeableness assumed a significant second split in a model, then
that split would contribute 7+1-2=6 to the ranking for Agreeableness. The ’*’-columns only count
significant splits.

Coincidentally, in the split trees for my new analysis, the maximum number of splits that
occurred was 7, as in the example below. Thus, the very same formula in its original,
unaltered form could be used. My summary is shown in Table 9.

98

99

 C*-S* C-S C* C S* S
Extraversion diff 26 6 25 30 -1 24
Agreeableness diff 1 -5 0 12 -1 17
Conscientiousness diff 5 4 5 -2 0 -6
Emotional Stability diff 2 -31 -1 -8 -3 23
Openness diff 7 40 7 25 0 -15

Table 9: Secondary exploratory analysis for P2 aggregated

The first two columns are the results when summing up splits found in the split trees from the
Communication-intensive Categories (C) and then subtracting the splits from the Silent
Categories (S). This resulting number could indicate the overall influence that the personality
trait has on the amount of Communication-intensive collaboration. A near zero score here
would indicate that P2 is not appropriate, since it would mean that a high difference in
personality will not influence the amount of communication-intensive collaboration, or
equally influence both communication-intensive and silent categories. A high positive score,
would be in favor or P2, and would indicate that difference in personality traits leads to an
increase in communication-intensive Collaboration. A negative score would contradict P2.

Since there are 12 factors included in the Silent Categories, and only 11 in the
Communication-intensive Categories, the results will be slightly less positive than they could
have been if some silent factors were removed to make it equal. Since it would be hard to
argue for removal for a single category; why it was chosen instead of others, the choice was
made that it was best to keep this inequality.

The four rightmost columns list the results when measuring Communication-intensive
Categories (C) and Silent Categories (S) individually. Asterisks (*) signify that only
significant splits are included in the column.

As one sees from Table 9, there is indeed a quite high number of splits that indicates that
variability in personality has an impact on the amount of Communication Transactions /
Communication-intensive collaboration. This is most evident for extraversion, and it confirms
our findings during the regular analysis; that P2 is a valid proposition, since it seems that the
amount of communication-intensive Collaboration do increase when the pairs have different
personalities. But watch out for differences in emotional stability; it could possibly lead to a
decrease, as we see in the C-S field, where the score is -31!

14.1.3. P3: Does Similar Levels of Extroversion Lead to Less Disruption?

People with similar levels of extraversion will disrupt each other less.

We find no support for the proposition, so it must be rejected. Pairs with a similar level of
extraversion are not found to disrupt each other more, but there is not significant evidence to
support that they will disrupt each other less either. The partition trees involved in the analysis
of this proposition contradict themselves quite a lot, with signs of both positive and negative
correlations at different split levels. However the top splits of the trees are the ones that are
most significant in this case and they all point to a positive correlation between extroversion
differences and the disruption category.

As seen in Table 7, the category IP-x (Cross-purpose), which is a category not that dissimilar
to disruptions, will increase when extraversion diff increases. This finding strengthens the

100

belief that the less extraversion different people will be likely to disrupt each other more
rather than less.

Because of the contradicting nature of the split trees, and the lack of significant findings, we
must conclude that extraversion difference in the pairs will not affect the use of the disruption
category. However, further investigation of this proposition could be interesting for a different
or expanded study.

14.1.4. P4: Will Two Extroverts Discuss a Lot?

Pairs consisting of two extroverts will discuss a lot regardless of type of discussion.

The proposition is not supported. Several collaboration categories that describe situations of
much discussion are affected by extraversion, and mostly in one direction, but the impacts are
far from significant on all categories. The only significant finding was that pairs with a high
mean score on extroversion will disrupt each other more often than their introvert
counterparts. All in all, the evidence is too weak to be of any support of P4.

14.1.5. P5: Do Two Agreeable People Small Talk Much?

Agreeableness leads to more social/small talk.

Proposition rejected. When measuring time used on the categories; neither for Off-Task,
Metacognitive nor Other Relevant Tasks, the three categories deemed as the ones involving
small talk, will the agreeableness have any significant effect. Actually, for all these three
categories, the non-significant findings suggest that agreeableness would rather decrease than
increase their occurrence, which contradicts our hypothesis. All top splits indicate this
contradiction, but the trees are internally contradicting themselves at splits further down the
line, so their results should not be taken too seriously.

When measuring the amount of clips that was coded as the categories, Metacognitive is in the
top split found to be significantly less frequently seen in the collaboration of high
agreeableness pairs. Regarding amount of time the pairs used on Metacognitive discussions,
the first split indicates a similar correlation; that the highly agreeable people have less of it,
but this time; the finding is slightly insignificant.

So if anything, highly agreeable people small talk less than their not-so-agreeable counterparts
in a pair programming situation; a fact that would surprise many if it could be proven. We can
with some confidence state that agreeable people will use the cognitive level of Metacognitive
less.

14.1.6. P6: Are Metacognitive Statements Made More by Extraverts?

Metacognitive statements are made more often by extraverted people.

P6 is not supported by our evidence. The significance of the splits in the analysis of this
proposition is incredibly low, and the split trees are contradicting themselves internally. The
results show no reason to believe that extroversion has any effect on the occurrence use of the
“Cognitive Level” of Metacognitive.

101

14.1.7. P7: Does Collaboration Affect Performance?
The use of certain collaboration categories leads to better or worse pair programming
performance.

This proposition is supported. As shown in Table 10, when running the regular analysis
procedure (described in Section 13.2 above); both correctness for task 4, and the duration for
task 4 were significantly affected by one or more collaboration categories. The results when
measuring the total time of the clips that were coded as a given category is shown in the left
part of Table 10, and the results when measuring the amount of clips that were coded as the
categories is shown in the right half of Table 10.

Performance
category

% time Neg-
ative?

Log
Worth

p-
value

% clips Neg-
ative?

Log
Worth

p-
value

Correctness (o4_correct) TF-P √ 2.65 0.00
Duration (Task4_length) Re-U 5.15 0.00 Re-u 10.10., 0.00
 EC-d 4.70 0.00 EC-d 4.70 0.00
 EC-f √ 4.70 0.00 EC-f √ 4.70 0.00
 TF-PA 3.16 0.00 Re-r √ 2.85 0.00
 TF-D √ 2.93 0.00 IP-x 2.36 0.00
 IP-x 2.36 0.00
 Re-r √ 2.25 0.01
 TF-O √ 1.87 0.01
 IP-s 1.49 0.03
Table 10: Category occurrence effects

The performance measure o2o3o4_correct (the combined scores for all the three pair
programming tasks), did not yield any significant results when used as dependent variable.

14.1.8. P8: Is Elaborative Good for the Performance?
The use of the interaction pattern “elaborative”, leads to better results.

The proposition is rejected. Elaborative has a non-significant influence on both correctness
and duration. When measuring correctness, the partition trees consist of nothing but
insignificant splits which frequently contradicts themselves internally. Positive correlations
are about as frequent as negative ones. Even though the two most significant splits both point
to elaborative being beneficial for correctness, they are both far from our desired significance
level, and are medium level splits in the trees.

For duration, the situation is similar. The splits are all far from significant, and they indicate
both positive and negative correlations. However, the top splits, which are also the most
significant splits for these variables, both indicate that elaborative leads to a shorter duration.

What we know from this is that the “interaction pattern” elaborative does not increase the
task duration, even though the category is an intrinsically discussion rich “interaction
pattern”. One could think that elaborative would increase the duration, since it involves much
time spent on discussion, rather than programming actions, but this turns out not to be the
case. Thus, elaborative is definitely not “bad” for the performance.

Because of the conflicting results and non-significance of the findings here, we cannot declare
that P8 is true. However, P8 is not completely disproved, so a closer look at this hypothesis in
another setting, or with a larger sample size could be interesting at a later time.

102

14.2. Other Findings
In addition to the analyses in regards of the hypothesis, a partition tree analysis of nearly
every single category (with exceptions described in Section 11.2) was run in jmp to see what
personality factors influenced them. In all tables below, non-significant results, based on the
decision to use 0.05 as the confidence level limit, are listed in gray. A negative influence
means, as in the tables above, that there is less of the second factor if there is more of the first.

14.2.1. Complete Investigation of Personality Factors’ Influence on Collaboration
As described in Section 11.2.1, the first (and main) step was to find out whether or not the
personality profiles of the pairs had an impact on the occurrence of certain collaboration
categories in this pair’s collaboration.

Nearly every category was investigated by using the regular analysis procedure described in
Section 13.2. The results are listed in Tables 11-16 below.

Since the occurrence data was comparing interaction sequences only, most of the Task Foci
was not analyzed for occurrence. These areas are grayed out in the table below.

Time used on
Task Focus

Time use is
affected by

Neg-
ative?

Log
Worth

p-
value

Occurrence is
affected by

Rev-
erse?

Log
Worth

p-
value

X – Silence Agr diff 1.35 0.04
 Con diff 1.11 0.08
O – Other relevant Ext mean √ 1.43 0.04
 Emo diff 1.15 0.07
PS – Prog. Silently
PA – Prog. Aloud Emo diff √ 4.86 0.00
 Ext mean 1.26 0.05
P – Programming Agr mean √ 2.07 0.01
C – Comprehension Ext mean √ 1.05 0.09 Agr mean 2.07 0.01
D – Task Description Con mean √ 2.16 0.01
 Emo diff 1.24 0.06
Z – Off task Ext diff 3.94 0.00
 Emo mean √ 1.39 0.04
Table 11: Personality influences on Task Foci

Begin Characteristics Time use is

affected by
Neg-

ative?
Log

Worth
p-

value
Occurrence is

affected by
Rev-
erse?

Log
Worth

p-
value

i – Imperative Ope mean 3.70 0.00 Ope mean 4.68 0.00
s – Suggestion
a – Assertion Ext mean 1.86 0.01
q – Question Agr mean √ 1.87 0.01 Agr mean √ 1.97 0.01
Table 12: Personality influences on Begin Characteristics

103

Interaction Pattern Time use is
affected by

Neg-
ative?

Log
Worth

p-
value

Occurrence is
affected by

Rev-
erse?

Log
Worth

p-
value

n – Nonresponsive Ext mean √ 1.37 0.04
e – Elaborative Agr diff √ 1.23 0.06
r – Responsive Ope diff 2.11 0.01 Ope diff 1.60 0.03
x – Cross-purpose Agr mean 1.65 0.02 Ext diff 2.00 0.01
 Ext diff 1.51 0.03
s – Stonewalling Agr mean 2.48 0.00 Agr mean 1.25 0.06
 Agr diff 1.28 0.05
c – Consensual Emo diff √ 1.11 0.08 Con diff √ 1.11 0.08
Table 13: Personality influences on Interaction Patterns

End Characteristics Time use is

affected by
Neg-

ative?
Log

Worth
p-

value
Occurrence is

affected by
Rev-
erse?

Log
Worth

p-
value

f – Flow Ext mean √ 1.09 0.08 Ext mean √ 1.48 0.03
 Emo mean 1.11 0.08
d – Disruption Ext mean 1.09 0.08 Ext mean 1.48 0.03
 Con mean √ 1.11 0.08
Table 14: Personality influences on End Characteristics

Result Time use is
affected by

Neg-
ative?

Log
Worth

p-
value

Occurrence is
affected by

Rev-
erse?

Log
Worth

p-
value

u – Unresolved Agr mean 1.28 0.05 Agr mean 1.88 0.01
 Ext diff 1.16 0.07
r – Resolved Agr mean √ 1.50 0.03 Agr mean √ 2.00 0.01
 Agr diff √ 1.27 0.05 Agr diff √ 1.47 0.03
 Ope diff √ 1.08 0.08
Table 15: Personality influences on Results

Cognitive Level Time use is
affected by

Neg-
ative?

Log
Worth

p-
value

Occurrence is
affected by

Rev-
erse?

Log
Worth

p-
value

M – Metacognitive Emo mean 1.59 0.03 Agr mean √ 1.35 0.04
 Agr mean √ 1.01 0.10
D – Domain level Agr mean √ 1.47 0.03 Agr mean √ 1.17 0.07
 Ope mean √ 1.04 0.09
S – System level Agr mean 1.02 0.10
P – Program level Ext mean 1.31 0.05
Table 16: Personality influences on Cognitive Levels

14.2.2. Alternative Formatting for the Collaboration Influence on Performance Table
Shown below is Table 17, which is similar to Table 10 in Section 14.1.7 above, but ordered
by category instead of LogWorth/significance. Although this table provides no new
information, the alternative formatting will be more readable for people trying to find
relationships from collaboration to performance, while the table shown in 14.1.7 was better to
illustrate that there are indeed significant influences. Instead of being divided into a left and a
right part; one for time use and one for occurrence, as the earlier tables are; this table is
divided into a top and a bottom part. This was done mainly since it seemed esthetically better
for this particular table.

104

Personality factor
Time use

Affects Neg-
ative?

Log
Worth

p-
Value

TF - Program. Aloud Task duration 3.16 0.00
TF - Task Descript. Task duration √ 2.93 0.00
TF - Programming Correctness √ 2.65 0.00
TF - Other rel. tasks Task duration √ 1.87 0.01
IP - Cross-Purpose Task duration 2.36 0.00
IP - Stonewalling Task duration 1.49 0.03
EC - Disruption Task duration 4.70 0.00
EC - Flow Task duration √ 4.70 0.00
Re - Unresolved Task duration 5.15 0.00
Re - Resolved Task duration √ 2.25 0.01
Personality factor
Occurrence

IP - Cross-Purpose Task duration 2.36 0.00
EC - Disruption Task duration 4.70 0.00
EC - Flow Task duration √ 4.70 0.00
Re - Unresolved Task duration 10.10., 0.00
Re - Resolved Task duration √ 2.85 0.00
Table 17: Personality influences on Cognitive Levels

14.2.3. Transitive Deductions
By investigating the personality factors that influence category use, and the categories that
influence performance, one can make assumptions about possible relationships between
personality and performance, via collaboration. These deductions are shown in Tables 18a
and 18b below. Table 18a lists the transitive findings when measuring the duration of the clips
that were coded as the categories. Table 18b lists the results when measuring the number of
clips that was coded as the categories.

The results we see here should not be taken very seriously due to the questionable way in
which they are formed. However, it is an interesting attempt to see if it is possible to trace a
personality influence all the way “through” collaboration and that it will in turn affect
performance. If nothing else; the results here can be used as hypotheses for further
investigation.

High score on trait Leads

to
Of category Which

makes the
duration

 Hence: high score
on trait

Makes
duration

Extraversion
mean

Less Other relevant
tasks

Shorter Extraversion
mean

Longer

Extraversion
diff

More Cross-purpose Longer Extraversion
diff

Longer

Agreeableness
mean

More Cross-purpose Longer Agreeableness
mean

Longer

Agreeableness
mean

More Stonewalling Longer Agreeableness
mean

Longer

Agreeableness
mean

Less Resolved Shorter Agreeableness
mean

Longer

Conscientiousness
mean

Less Task
Description

Shorter Conscientiousness
mean

Longer

Emotional stability
diff

Less Programming
Aloud

Longer Emotional stability
diff

Shorter

Table 18a: Deductions about how personality affects performance when using time use of collaboration
categories as mediating factor

105

High score on trait Leads
to

Of category Which
makes the
duration

 Hence: high score
on trait

Makes
duration

Agreeableness
mean

More Unresolved Longer Agreeableness
mean

Longer

Extraversion
mean

More Disruption Longer Extraversion
mean

Longer

Extraversion
mean

Less Flow Shorter Extraversion
mean

Longer

Agreeableness
mean

Less Resolved Shorter Agreeableness
mean

Longer

Extraversion
diff

More Cross-purpose Longer Extraversion
diff

Longer

Table 18b: Deductions about how personality affects performance when using the frequency of use of the
collaboration categories as mediating factor

As one can see, high scores of nearly all personality traits are shown to lead to an undesired
impact on duration; i.e. it will be longer. Extraversion and agreeableness occurs in several of
the transitive relationships, and might therefore be seen as “worst”. A possible explanation for
the negative representation of extraversion and agreeableness here might be that extroverts
and agreeable people will possibly small talk a lot, which consumes time. However, we have
seen from the rejection of propositions P4 and P5, which investigated just this, that this is not
the case. Therefore, why there is possibly a longer task solving duration when the pair
members are high in extraversion or agreeableness remains unexplained.

For conscientiousness, one could assume that their focus on “getting it right” and attention to
details might lead to a lengthier pair programming session, with more use of the “Task Foci”
Programming Aloud and Programming, disruptions, unresolved interaction patterns and
Program Level thinking. However, there is no evidence of any of this in the analysis, where
conscientiousness was found to have nothing else than a negative impact on the use of the
“Task Focus” of Task Description.

The only personality factor that is shown here to be beneficial if quick programming is the
goal is the deviation in the pairs’ emotional stability score. This finding is more likely than
not coincidental. However, a very high difference in it would mean that one of the pair
members has a quite high score on the trait. It has been shown, among other places in [Barrick
01], that emotional stability is beneficial for all kinds of work. For this reason, it is not totally
unthinkable that a difference in this personality trait will be good for pair programming
performance, but the difference between them would in such a case be a confounding factor,
lurking behind the fact that the pair has one very emotional stable member, which might be
the main contributor, and the reason for the good performance.

106

107

End

After having analyzed the collaboration involved in pair programming, we can answer the
overall research question ”Does personality affect the collaboration of pair programmers?”
It is clear from the analysis results that personality does affect collaboration, and in some
aspects; in a much larger degree than personality will affect the performance of pair
programming. A brief summary of the thesis can be found in the beginning, in the
introduction text on page 11.

In the following chapters, some of the possible threats to validity in this thesis work are
described, as well as proposals for future direction of work on the same subject.

108

109

15. Possible Validity Threats
There are two areas that could cause potential validity threats in the work described in this
text. They are investigated in a section each below.

One should also mention the validity threats of the actual pair programming experiment
[Arisholm 07]. Since I was no part of it myself, I obviously had no influence in either the
design or execution of it. The pair programming experiment is referred to as the authors as a
quasi-experiment. It has a number of potential validity threats. However, the article describing
the experiment has a very thorough description of the threats and the measures the authors did
in order to avoid problems caused by the validity threats.

The main threat, and the reason why the study is referred to as a quasi-experiment, is the
selection issue for people that were selected to be in the control group consisting of individual
programmers. All data about the individual programmers were gathered in 2001, while for the
pair programmers, the data were gathered in 2004-2005. A number of factors could cause the
latter group to perform better, and it is stated in the text that they did indeed perform better. A
possible reason is that newer and better tools and versions of software were used by the latter
group.

The authors adjust the results of the control group by using complex models, which the
authors demonstrate will diminish the problem of this performance gap. In any case, since
these differences are between the groups of “individual programmers” and “pair
programmers” only, it will not be relevant for this thesis, since my analyses include the pair
programmers only.

The other notable validity threat is that it was the project leaders in the companies that
contributed subjects to the experiment who chose which of their fellow employees that would
attend the experiment. The project leaders were also the ones who assigned the subjects into
expertise groups (junior, intermediate, senior).

One might speculate that some companies did not enforce a random selection of people, but
chose those people that the company, rather than the experiment, would benefit the most out
of sending, since the companies got the same compensation regardless on outcome of the
experiment. Some companies might have chosen their very best developers, in order to try to
make their company look better. Others might have chosen among the developers which were
least essential to the company’s daily development, since these programmers were the ones
they could do without with the least amount of programming power loss for the company.
However, this turned out not to be the case, however. The amounts of juniors, intermediates
and seniors were fairy similar.

Since the subjects were assigned to expertise groups in a rather subjective way, one could
suspect that some people did not really belong to the expertise group in which they were
placed. However, the authors of the article that describes the experiment have made sure that
the expertise groups are apt:

Nevertheless, as is evident from [tables in the article], seniors worked faster (with more correct task
solutions) than did intermediates, who, in turn, worked faster (with more correct task solutions) than did
juniors. [Arisholm 07]

110

Also, since this thesis does not focus on programmer expertise, but personality, even if there
had been problems with the programmer expertise concept, it would not have influenced the
results herein.

15.1. Categories

15.1.1. Constructs
Regarding construct validity, since the coding schema is an abstract system, it is possible that
the categories are “wrong” or overly subjective, and that they do not represent what they
should, or that they will not be understood similarly by different people.

The coding schema reliability check, which turned out to lead to satisfactory results, is a way
to argue that our constructs was not a substantial threat to the validity of the study. Also, the
categories were, with only a few exceptions, based closely on previous schemas and literature
and thus tested and described, sometimes quite thoroughly, even before we included them into
our coding schema.

15.1.2. Content
Regarding content validity, it is possible that there are some flaws. The categories were made
after listening through audio files. We then tested each version of the schema and refined it
until we were satisfied. The categories were, as mentioned, heavily based on the related
literature that we found when we searched the literature databases. Never during my audio file
coding sessions did I think a category was “missing” in the final schema, and only rarely was
I in doubt on which category to choose. None of the other coders complained about lacking
categories in the final schema either.

If we wanted to extend the focus to additional factors of collaboration, those new category
dimensions could easily have been added to the schema, but for the six dimensions in our
final schema, the collection of categories appear as complete. The category definitions are
meant to make the borders between the different categories as apparent as possible.

15.2. Analysis

15.2.1. Selection
As seen in section 9.1, most British and medium-expertise expertise pairs were excluded from
the analyses. This might have influenced the results in some degree. Since a coding of the
remaining material could be done at a later time, a new analysis based on the complete data
set coded would avoid this risk.

15.2.2. Confounding Variables
Since we involve only the personality traits as the explanatory factors in the analyses on
influences on collaboration, there is a risk that one or more factors might be additional
influencing variables. Since “Task Complexity” and “Programmer Expertise” were found to
be two quite important predictors in the previous research based on the experiment [Hannay
09a], these two factors are especially likely candidates as possible confounds in the analyses
in this thesis.

However, the focus of this thesis was to investigate the possible relationships between
personality and collaboration. A separate investigation is being done into the relationship

111

between programmer expertise and collaboration, and it is likely that an investigation will be
done some time in the future about task complexity and collaboration. When all these three,
(plus maybe some additional factors) are ready, one can attempt to make a combined analysis
on all these factors to see how they influence collaboration as a whole, and how much each
factor influences it.

112

16. Possible Future Directions
Even though the results I found confirmed the main research propositions and were
statistically significant, collaboration and pair programming is (as shown in earlier chapters)
an area of research that is open for exploration, and very little research similar to this exists.
By using one or several of the suggestions listed below, one could likely discover more about
the relationship.

16.1. Larger Sample
Because of time constraints, we did not code and analyze the complete set of the 98
programming pairs’ sound recordings. As stated in Section 9.1, a total of 47 audio files were
coded, but three of these turned out to erroneous and were discarded. Thus, the final sample
size for my analyses was 44, which was somewhat less than half of the total audio files
available.

Variation typically decreases when the sample size is increased. With a decreased variation,
many findings would likely be shown as more significant. Also, other findings that were not
found at all in my analyses might emerge, since the measures of significance depend on,
among other things, the variation of the data material.

The protocol coding parser (described in Section 9.4) is compatible for any number of pairs,
the personality data for the rest of the pairs are already gathered (they were gathered during
the experiment), and the analysis procedures are saved in scripts. Therefore, an expansion of
this research would consist simply of coding more audio files, and running and summarizing
the analyses.

16.2. Analysis with Other Personality Measures or Methods
The analyses both in this thesis and in [Hannay 09a] were done with each personality factor as
separate variables. Some kind of combination of factors could lead to interesting findings. Or
one could select only the people with a high or a low difference in each trait and do the
analyses on these similar or dissimilar minded pairs only.

One could also try to look into the individual personality trait scores of the people in the pairs.
However, since the focus was on collaboration in this case, it might (as discussed earlier) not
be apt to have this kind of individualistic focus.

To use another analysis method than exploratory split tree analysis is also possible, even
though our method was argued to be the most suitable for this particular setting. One could try
a more “powerful” automatic analysis, like the one in the confirmatory analysis of [Hannay
09a] or something completely different. A lot of possibilities exist.

Another interesting area of research would be to investigate whether pairs that were more
likely to collaborate in a certain way would be more or less likely to like pair programming
and feel that it was a comfortable and effective technique. Because of the results from
[Arisholm 07] and other literature, we know that pair programming is rarely positive for
employers in terms of cost, but many could choose to encourage its use regardless of this, due
to other benefits of pair programming. Among these are the social factors of collaborating
closely, which could make some employees happier and more relaxed and better performers
overall. If we find out more about which people are more likely to like pair programming

113

best, one could know for whom it could be an appreciated break from their individual
programming routines, and for whom it would only be an annoying chore that would “break
their flow”.

16.3. Long-term Pairing
If two people work together for a long time, will they get better? In the first analyses done on
the pair programming experiment [Arisholm 07] they state the following:

A majority of the subjects had little or no experience with PP before the experiment and, in most cases,
had not pair programmed with their assigned partners before. Consequently, the results of this study
might be a quite conservative measure of the effects of PP, since the pairs had probably not reached
their maximum level of combined efficiency during the experiment: Anecdotal evidence suggests that it
takes developers from a few hours to a few days to make the transition from individual programming to
efficient pair programming. […] Future experiments should thus include a mix of pairs with different
degrees of pair cohesiveness.

It is very likely that the collaboration would be quite different as well in pairs with more pair
programming experience. But will personality matter more or less in such a case? One could
guess at both. Introverts and other people who might initially be uncomfortable with the
collaborative nature of pair programming, might “ease into it” after a while and learn to like
it. On the other hand, dominant people might get even more dominant over time. A third
possibility is that different-minded pairs (as seen in proposition P2 in the analyses) over time
will learn to utilize their differences to a maximum effect over time, and that they will be even
better collaborators, and maybe performers, after having pair programmed a while.

Many new interesting findings could emerge if one looked at more long-term pair
programming effects. However, a new experiment would have to be performed in order to
investigate this, and a very costly one at that, since the experiment would need to be
conducted over a period of at least several days. One could suggest to include only highly
experienced pair programmers in this potential new experiment, and to compare the results
from it to those from the experiment we already have. However, this would reintroduce the
validity threat from the experiment (that the groups were investigated at different times), and
it might not be ideal. It would undoubtedly be the quickest and less expensive way to
investigate this effect, though.

16.4. Individual Focus
In our coding and analysis process, we focused on pairs as a whole, as described in Section
7.4.3.

Data about who of the two pair members the initiator of the dialog in each clip was, and who
of the two that was the driver and navigator could be interesting for analyses later. It might be
especially interesting in relation to my focus area, personality. Maybe the more extroverted
people are more likely to initiate a discussion? Will an individual with a high score on
agreeableness be more likely to answer fully and not ignore the other person? If employing an
individual focus, one could also investigate the two additional phenomena described by
Williams (discussed in section 12.1.6).

However, focusing on individuals during protocol coding and analysis would be very time
consuming, compared to when treating the pairs as single entities.

114

16.5. Distributed Pair Programming
Pair programming is called remote or distributed pair programming when the two pair
members are collaborating similarly to when doing regular pair programming but when the
two are separated geographically. They must still work at the same time, and communicate
continuously by some means. Often, voice communication and some shared environment is
used, as seen in [Natsu 03], but distributed pair programming systems can also attempt to
simulate regular pair programming more accurately, by including some sort of video
conferencing. This last idea could for example be a semi-transparent view of the other pair
member, like in the suggestion presented in [Stotts 04].

Since distributed pair programming is, as the name suggests; distributed, it is more flexible;
people will not have to meet physically in order to pair program. Distributed pair
programming could be used for tasks not directly related to programming, but where pair
programming-like techniques are suitable. For example a design or requirement meeting,
could be done by a representative of the customer of a system, and a representative from the
software firm, without the need of what might be a long and/or time-consuming distance to
travel. If they used a distributed pair programming setup, they could suggest things and
discuss, and come up with a version they both were comfortable with in collaboration.

This distributed variant of pair programming is not included as in any of the experiments
reviewed here that investigate personality and pair programming. It is feasible that the
personality impacts on distributed pair programming are quite different from those that appear
when performing regular pair programming, since the distributed pair programming is less
personal, and more computer based. It is also highly likely that the nature of the collaboration
is quite different when performing distributed pair programming compared to when pair
programming on the same physical machine.

16.6. A Closer Look at the Transitive Relationships
If the analyses are run again, for example with a larger sample, one should take a more serious
look into the possible transitive relationships between personality and performance, with
collaboration as mediating factor. Possible relationships are illustrated by using an informal
deduction using the logic rule of transitivity in Section 14.2.3, but it could be done more
scientifically by using different methods. A suggestion from the supervisor is to model it by
using a mediator variable in a path analysis instead.

This transitive relationship is not the focus of this thesis. However, it would be among the
things that employers and process improvers would be most interested in, since they could
look for the “good” personality traits in their employees and combine them into pairs
“correctly” for ideal effect. For this reason, the personality-collaboration-performance
transitivity is an important area of further investigation.

115

116

117

Acknowledgements

I wish to thank the following people for their help:

Jo Hannay – my supervisor on the masters thesis. A better supervisor would be hard to
imagine. He consistently went above and beyond “the calls of duty”, and for any kind of
question, any day of the week, he would help. I thank you for all the guidance, help,
contributions and support throughout my thesis work.

Vigdis By Kampenes. Thanks for the help with, among other things, coding schema
development.

Bente Nordbø. Thanks for your efforts in the collaboration on making the coding schemas and
your contributions during the audio file coding. Thanks also for driving me to Simula each
time we went there.

Stian Friberg and Alexander Ottesen. Thanks for your great work with coding the audio files.

Martha Kutscha. Thanks for finding the start times for task 4 in the audio files. It saved us
quite some time and prevented mistakes.

Jo Hannay again, and Erik Arisholm, Tore Dybå, Hans Gallis, Dag Sjøberg, Harald Engvik
and the other people who administered, executed, documented and performed the first rounds
of analyses on the large pair programming experiment. Without your efforts and ideas, this
master thesis would not have existed.

The 196 it consultants that were subjects in the experiment. Thanks for participating. Your
occasional jokes while you solved the tasks made the coding process more interesting and less
monotonous.

118

119

References

[Alkushi 05] A. Alkushi, Z.H. Abdul-Rahman, P. Lim, M. Schulzer, A. Coldman, S. E.
Kalloger, D. Miller, C. B. Gilks, “Description Of A Novel System For Grading Of
Endometrial Carcinoma And Comparison With Existing Grading Systems,“ American
Journal Of Surgical Pathology, vol. 29, no. 3, pp. 295-304, Mar 2005

[Arisholm 07] E. Arisholm, H. Gallis, T. Dybå, D.I.K Sjøberg, ”Evaluating Pair Programming
With Respect To System Complexity And Programmer Expertise”, IEEE Transactions On
Software Engineering, vol. 33, no. 2, pp. 65-86, Feb 2007

[Bakeman 97] R. Bakeman, J. M. Gottman, Observing Interaction, Second Edition.
Cambridge University Press. Cambridge, MA, USA, 1997

[Barrick 01] M. R. Barrick, M. K Mount, T. A. Judge, “Personality And Performance At The
Beginning Of The New Millennium: What Do We Know And Where Do We Go Next?”
International Journal Of Selection And Assessment, vol. 9, no. 1-2, pp. 9-30, Mar-Jun 2001

[Briand 01] L. C. Briand, J. Wüst, “Modeling Development Effort In Object-Oriented
Systems Using Design Properties,” IEEE Transactions On Software Engineering, vol. 27, no.
11, pp. 963-986, 2001

[Bryant 06] S. Bryant, P. Romero, B. Du Boulay, “The Collaborative Nature Of Pair
Programming,” Extreme Programming And Agile Processes In Software Engineering,
Proceedings, vol. 4044, pp. 53-64, 2006

[Bryant 04] S. Bryant, “Double Trouble: Mixing Qualitative And Quantitative Methods In
The Study Of Extreme Programmers,” Proceedings Of The 2004 Ieee Symposium On Visual
Languages - Human Centric Computing, pp: 55–61, 2004

[Cao 05] L. Cao And P. Xu, “Activity Patterns Of Pair Programming”, Proceedings Of The
Proceedings Of The 38th Annual Hawaii International Conference On System Sciences
(Hicss'05) Track 3, vol. 3, pp. 88 Published: 2005

[Chan 01] C. K. K. Chan, “Peer Collaboration And Discourse Patterns In Learning From
Incompatible Information,” Instructional Science, vol. 29, no. 6, pp. 443-479, 2001

[Chao 06] J. Chao, G. Atli, “Critical Personality Traits In Successful Pair Programming,”
Agile 2006, Proceedings, pp. 89-93, 2006

[Chi 97] M. T. H. Chi, “Quantifying Qualitative Analyses Of Verbal Data: A Practical
Guide,” Journal Of The Learning Sciences, vol. 6, no. 3, pp. 271-315, 1997

[Choi 08] K. S. Choi, F. P. Deek, I. Im, “Exploring The Underlying Aspects Of Pair
Programming: The Impact Of Personality,” Information And Software Technology, vol. 50,
no. 11, pp. 1114-1126, Oct 2008

120

[Cloninger 04] S.C. Cloninger, Theories Of Personality : Understanding Persons, 4th Ed.
Pearson/Prentice Hall. Upper Saddle River, NJ, USA, 2004

[Dick 02] A. J. Dick, B. Zarnett, “Paired Programming And Personality Traits,” Third
International Conference On Extreme Programming And Agile Processes In Software
Engineering, pp. 82-85, 2002

[Dybå 07] T. Dybå, E. Arisholm, D. I. K. Sjøberg, J. E. Hannay, F. Shull, ”Are Two Heads
Better Than One? On The Effectives Of Pair Programming,” Ieee Software, vol. 24, pp. 12-
15, 2007

[Ericsson 93] K. A. Ericsson, H. A. Simon, Protocol Analysis: Verbal Reports As Data
Revised Edition. The MIT Press. Cambridge, MA, USA, 1993

[Freudenberg 07] S. Freudenberg, P. Romero, B. Du Boulay, “'Talking The Talk': Is
Intermediate-Level Conversation The Key To The Pair Programming Success Story?” Agile
2007, Proceedings, pp. 84-91, 2007

[Goldberg 93] L. R. Goldberg, “The Structure Of Phenotypic Personality-Traits”, American
Psychologist, vol. 48, no. 1, pp. 26-34, Jan 1993

[Hanks 06] B. Hanks, “Student Attitudes Toward Pair Programming,” Iticse '06: Proceedings
Of The 11th Annual Sigcse Conference On Innovation And Technology In Computer Science
Education, pp. 113-117, 2006

[Hannay 09a] J. E. Hannay, E. Arisholm, H. Engvik, D. I. K. Sjøberg, “Personality and Pair
programming,” to appear in IEEE Transactions on Software Engineering. 2009

[Hannay 09b] J. E. Hannay, T. Dybå, E. Arisholm, D. I. K. Sjøberg, “The Effectiveness of
Pair Programming: A Meta-Analysis,” to appear in Information & Software Technology, 2009

[Hogan 00] K. Hogan, B. K. Nastasi, M. Pressley, “Discourse Patterns And Collaborative
Scientific Reasoning In Peer And Teacher-Guided Discussions,” Cognition And Instruction,
vol. 17, no. 4, pp. 379-432, 1999

[Hughes 03] J. Hughes, S. Parkes, “Trends In The Use Of Verbal Protocol Analysis In
Software Engineering Research,” Behaviour & Information Technology, vol. 22, no. 2, pp.
127-140, Mar-Apr 2003

[Jmp 07] JMP Statistics And Graphics Guide, Release 7,: Sas Institute Inc., Cary, NC, USA,
2007

[Karn 05] J. S. Karn, A. J. Cowling, “A Study Of The Effect Of Disruptions On The
Performance Of Software Engineering Teams,” 2005 International Symposium On Empirical
Software Engineering (Isese), Proceedings, pp. 403-411, 2005

[Karn 06] J. S. Karn, A. J. Cowling, “A Follow Up Study Of The Effect Of Personality On
The Performance Of Software Engineering Teams,” Proceedings Of The 2006 Acm/Ieee
International Symposium On Empirical Software Engineering, pp. 232-241, 2006

121

[Katira 04] N. Katira, L. Williams, E. Wiebe, C. Miller, S. Balik, E. Gehringer, “On
Understanding Compatibility Of Student Pair Programmers,” Technical Symposium On
Computer Science Education, pp. 7-11, 2004

[Keirsey 08] Keirsey.com, About 4 Temperaments. Available at
http://keirsey.com/handler.aspx?s=keirsey&f=fourtemps&tab=2&c=inspector,
http://keirsey.com/handler.aspx?s=keirsey&f=fourtemps&tab=5&c=mastermind
(Retrieved January 1st, 2008)

[Layman 06] L. Layman, “Changing Students, Perceptions: An Analysis Of The
Supplementary Benefits Of Collaborative Software Development,“ 19th Conference On
Software Engineering Education & Training, Proceedings, pp. 159-166, 2006

[Lim 97] K. H. Lim, L. M. Ward, I. Benbasat, “An Empirical Study Of Computer System
Learning: Comparison Of Co-Discovery And Self-Discovery Methods,” Information Systems
Research, vol. 8, no. 3, pp. 254-272, Sep 1997

[Mayrhauser 99] A. Von Mayrhauser, S. Lang, “A Coding Scheme To Support Systematic
Analysis Of Software Comprehension,” IEEE Transactions On Software Engineering, vol.
25, no. 4, pp. 526-540, Jul-Aug 1999

[Mcrae 89] R. R. Mcrae, P. T. Costa, “Reinterpreting The Myers-Briggs Type Indicator From
The Perspective Of The 5-Factor Model Of Personality,” Journal Of Personality, vol. 57, no.
1, pp. 17-40, Mar 1989

[Moore 06] D. S. Moore, G. P. McCabe, Introduction To The Practice Of Statistics, 5th Ed.
W. H. Freeman And Company. New York, NY, USA, 2006

[Myers 97] M. D. Myers, Qualitative Research In Information Systems, The University Of
Auckland, New Zealand. Available at http://www.qual.auckland.ac.nz (Retrieved
January 15th, 2008)

[Natsu 03] H. Natsu, J. Favela, A. L. Moran, D. Decouchant, A. M. Martinez-Enriquez,
“Distributed Pair Programming On The Web,” Proceedings Of The Fourth Mexican
International Conference On Computer Science (Enc 2003), pp. 81-88, 2003

[Okada 97] T. Okada, H. A. Simon, “Collaborative Discovery In A Scientific Domain,“
Cognitive Science, vol. 21, no. 2, pp. 109-146, Apr-Jun 1997

[Olson 92] G. M. Olson, J. S. Olson, M. R. Carter, M. Storrosten, “Small Group Design
Meetings: An Analysis Of Collaboration,” Human-Computer Interaction, vol. 7, no 4, pp
347-374, 1992

[IFI 08] IFI, How Do Pair Programmers Collaborate? Available at
http://www.ifi.uio.no/forskning/grupper/isu/php/masters/m23.php (Retrieved
June 6 Th, 2008)

[Pervin 01] L. A. Pervin, O. P. John, Personality: Theory And Research, 8th Ed. Wiley. NY,
USA, 2001

122

[Raad 00] B. De Raad, The Big Five Personality Factors : The Psycholexical Approach To
Personality. Hogrefe & Huber. Seattle, WA, USA, 2000

[Sall 02] J. Sall, Monte Carlo Calibration Of Distributions Of Partition Statistics Available at
http://www.jmp.com/software/whitepapers/pdfs/montecarlocal.pdf, Nov 2002

[Sfetsos 06] P. Sfetsos, I. Stamelos, L. Angelis, I. Deligiannis, “Investigating The Impact Of
Personality Types On Communication And Collaboration-Viability In Pair Programming - An
Empirical Study,” Extreme Programming And Agile Processes In Software Engineering, pp.
43-52, 2006

[Shneiderman 80] B. Shneiderman, Software Psychology: Human Factors In Computer And
Information Systems. Winthrop Publishers, Inc. Cambridge, MA, USA, 1980

[Smith 89] D. C. Smith, “The Personality Of The Systems Analyst: An Investigation,” ACM
SIGCPR Computer Personnel, vol. 12, pp. 12-144, 1989

[Stotts 04] D. Stotts, J. M. Smith, K. Gyllstrom, “Support For Distributed Pair Programming
In The Transparent Video Facetop,” Extreme Programming And Agile Methods - Xp/ Agile
Universe 2004, Proceedings, vol. 3134, pp. 92-104, 2004

[Thomas 03] L. Thomas, M. Ratcliffe, A. Robertson, “Code Warriors And Code-A-Phobes: A
Study In Attitude And Pair Programming,” SIGCSE Bull, vol. 35, no. 1, pp. 363-367, 2003

[Transana 08] Transana Website, Wisconsin Center For Education Research, University Of
Wisconsin-Madison, Madison, WI, USA. Available at http://www.transana.org/
(Retrieved November 13th, 2008)

[Visram 04] K. Visram, “Extreme Programming: Pair-Programmers, Team Players Or Future
Leaders?” IASTED Conf. On Software Engineering And Applications, pp. 659-664, 2004

[Wikipedia 09] Wikipedia Contributors, Cross-Validation, Wikipedia, The Free
Encyclopedia. Available at http://en.wikipedia.org/w/index.php?title=Cross-
validation&oldid=251150112 (Retrieved February 15th, 2009).

[Williams 06] L. Williams, L. Layman, J. Osborne, N. Katira, “Examining The Compatibility
Of Student Pair Programmers,” Agile 2006, Proceedings, pp. 411-420, 2006

[Williams 03] L. Williams, R. Kessler, Pair Programming Illuminated. Addison-Wesley.
Boston, MA, USA, 2003

123

Appendices

X1. Coding Schemas

X1.1. Combined Categories
Other

• Ad-hoc-work - Working without discussing the long-term solution
• Break
• Private discussion - Things outside of the experiment are discussed.
• Disagreement that remains unsolved - A disagreement that ends with silence or

inconclusive answer, or the actual statement ”let’s move on” or similar, when it is
clear that there is not an agreement.

Good
• Discussion with agreement - An open discussion that is non-hostile where they reach

an agreement (compromise, fair persuasion etc.). It can evolve into a ”disagreement”.
• Suggestion accepted - A suggestion receives a positive feedback.
• Planning of future work - Long-term discussion about long-term plans for the solution.
• Programming, duo - Both participants collaborate closely about code extension and

are continuously discussing what should be done next and what is done now.
• Question answered - A question is answered, and the reply is understood/appreciated

by the question asker.
• Disagreement solved - It is a disagreement from the beginning, but they agree after

discussing it.

Bad
• One-sided break - One participant takes a break.
• Suggestion ignored - A suggestion from one is ignored by the other in some way.
• ”Override” - One person forces his opinion through.
• Passive person - One of the two is not involved in the development/discussion, due to

lack of knowledge, energy or other reasons
• Programming, solo - One person is writing code, while the other is either silent or

unenthusiastically consensual
• Question ignored - One person asks a question, but it is not answered, or answered so

poorly that is does not benefit the questioner.
• Outside work - One of the people does private tasks during the pair programming

session.

124

X1.2. Improved Categories
Other

• Other work - Small tasks relating to the experiment, but with no relevance to
cooperation. Picking up printouts, asking the experimenter about the rules of the
experiment etc.

• Break - Both participants taking a break. Physically absent from the workspace. No
work-related activities in this period

• Private discussion - Things outside of the experiment are discussed. Not a break. Used
only when what is discussed has no relevance at all to the work. For example, the
phrase “Do you have much experience with Java?” must be coded as “planning of
future work”.

• Disagreement that remains unsolved - A disagreement that ends with silence or
inconclusive answer, or the actual statement: “let’s move on” or similar, when it is
clear that there is not an agreement.

Good
• Suggestion accepted - A suggestion received a positive feedback.
• Planning of future work - Long-term discussion about long-term plans for the solution.

Preferably with a 50-50 contribution rate to the discussion by the two participants, but
a ratio as uneven as 80-20 is acceptable.

• Programming, duo - Both participants collaborate closely about code extension and
are continuously discussing what should be done next and what is done now. Actual
programming (keyboard use directed towards the code) must be happening.

• Question answered - A question is answered, and the reply is understood/appreciated
by the question asker.

• Disagreement solved - It is a disagreement from the beginning, but they agree after
discussing it.

Bad
• One-sided break - One participant takes a break, while the other continues the work,

either by programming a bit alone or studying the problem (reading the code, the task
description) or does other assignment related small tasks.

• Suggestion ignored - A suggestion from one is ignored by the other in some way.
• ”Override” - One person forces his opinion through.
• Passive person - One of the two is not involved in the development/discussion, due to

lack of knowledge, energy or other reasons
• Programming, solo - One person uses the keyboard and edits the code. At least one

participant is silent. A possibility is that both are silent, and all one can hear is an
occasional ”mm-hmm”. It could also be that one person comments what is being done,
while the other is silent or ignores what is being said.

• Question ignored - One person asks a question, but it is not answered, or answered so
poorly that is does not benefit the questioner.

• Outside work - One of the people does private tasks during the pair programming
session.

125

X1.2.1. Explanation for Start and Stop of Clips

Other
• Other work - Starts when it is obvious that the work is not about programming. Stops

when new clip begins.
• Break - Starts when it is clear that both members are taking a break. Stops when they

resume work.
• Private discussion - Starts when the discussion is not about the task. Stops when new

clip begins.
• Disagreement that remains unsolved - Starts when the disagreement begins. Ends

when the “agree to disagree” or similar, or when a new clip begins.

Good
• Suggestion accepted - Starts when a new suggestion is made. Ends when the

discussion of the suggestion is done.
• Planning of future work - Starts when the discussion is obviously about planning off

future work. Stops when this planning is done.
• Programming, duo - Starts when programming (keyboard use) is initiated and both

people contribute to the discussion. Ends when no keyboard use is longer audible and
the discussion is no longer about the previous programming. The usage of the category
implies that there is audible keyboard use.

• Question answered - Starts when a new question is asked. Ends when the discussion
about the question is done.

• Disagreement solved - Starts when a conflict appears. Ends when it is clear that the
disagreement is resolved. There is now a common understanding of the subject in
which there was earlier a disagreement.

Bad
• One-sided break - Starts when it is obvious that one person is taking a break. Stops

either when also the other person takes a break (pause), or when both are back to
work.

• Suggestion ignored - Starts when a suggestion is made. Stops when new clip starts
• Question ignored - Starts when a question is asked Stops when new clip starts
• ”Override” - Starts at first sign of dominant behavior (ignoring the other’s comments

or suggestions, aggressive persuasion attempts, often initiated by an interruption. Ends
when new clip starts.

• Passive person - Start right before a significant period where at least one person does
not contribute actively to the collaboration. Ends when collaboration resumes as two-
sided dialog.

• Programming, solo - Starts when programming (working on the keyboard) starts (but
the other person is not contributing to the collaboration). Ends when programming is
obviously over (more than 10 seconds (starts a clip of ”passive person” etc.) or when
the other person starts contributing actively. The usage of the category implies that
there is audible keyboard use.

• Outside work; Starts when it is obvious that one person does private tasks. Stops when
a new clip begins.

126

X1.3. Expanded Categories
Choose one category of the ones in X1.3, plus one of the following four categories (which are
divided into two groups):

Abstraction level - High

• The totality of the system – “What happens if I do this?" Connections between
components; methods and classes. Discussions about a high-level ”snapshot” of the
program.

• Real world - Link between the real world and the task. "OK. I’m going to buy coffee.

Then I’ll usually put on the money first, and then select the type of coffee I want. We
should have it like that in our solution too.”

Abstraction level - Low

• Syntax discussion - "No, you have to use long there, not int.", "I spot a typo over
here”.

• Variables, methods, etc. - The most abstract of the low abstraction level discussions.

Here, the dialog is at method level, but still code focused and does not require a good
mental mode. “I guess it’s getSugar we have to use here”.

127

X2 Reliability Check Calculation Rules
We will count every clip in the file, and then do an arithmetic mean of the scores of them all.

Examples:
* ParfrP -> PacfrP = 5/6
* CarfrS -> PaefrP = 3/6
* ParfrP -> CqnduS = 0
Total: 8/18 = 4/9

X2.1. Score Calculations for the Categories:
• U is not counted.

• T is not counted. (Since one was supposed to stop coding before the last test).

• Silence vs. everything else is 0 score. It is considered to be impossible to

misunderstand X. There must have been a mistake if x is used erroneously.

• O vs. Z -> 3/6 score. Since the border between them is sometimes somewhat thin. At

their max, however, these categories are quite different (discussion about yesterday’s
party vs. problems with Eclipse).

• PA vs. PS -> 2/6 score. Programming is going on, but the dialog form in these two is

totally dissimilar.

• PA vs. long interaction sequence categories

o P(rogramming) gives 1/6, C(comprehension) gives 0
o a(ssertion), q(uestion) and s(uggestion) all give 1/6
o n(onresponsive) and c(onsensual) give 1/6, the rest: 0.
o f(low) gives 1/6, the rest: 0.
o resolved / unresolved is irrelevant, and give 0
o P(rogram level) gives 1/6

Example1: PanfrP / PA -> 5/6
Example2: CqedrS / PA ->0

• PS vs. long categories: 0. PS is silent, so it must be 0. (Except vs. X: 4/6)

• D vs. long interaction sequence categories:

o P(rogramming) gives 0, C(comprehension) gives 1/6
o All begin characteristics give 1/6
o All interaction patterns give 0.
o f(low) gives 1/6, others 0.
o Resolved / unresolved is irrelevant, and give 0
o P(rogram level) gives 0/6, S(ystem) gives 1/6.

• All other categories in Task Focus vs. long interaction sequence, lead to a score of 0.

X3. Coding Schema Comparison Table

128

Other work Project Management
Other
Goal

Break
Private discussion Digression Digressions
Disagreement that remains
unsolved

(Disagreement) to a
hypothesis.

Disagreement solved Suspending conclusion.
Argument about
justification.

Suggestion ignored Alternative
Agreement to the
hypothesis. Presents query

Suggestion accepted Criterion Hypothesis Reacts (agrees, neutral)
Alternative hypothesis Reacts (disagrees)

Extension of the
hypothesis.

Presents (idea, partial idea,
information, summary)

Justification through
experimental results.
Justification using several
experimental results.

Planning of future work Issue
Plan for new experiments
to test hypotheses. Formulating strategy/action

Meeting Management Summory of data
Summary Description of results
Walkthrough Testability.

Programming, duo Describing physical action Responsive
Programming, solo Reading screen output Elaborative

Question answered Clarification Requests for explanation.
Seeking Understanding
Clarifying Requests information

Question ignored Interpreting output Elaborates (self, other)
”Override”
One-sided break
Passive person Consensual
Outside work
The totality of the system Prediction of result Evaluating against goal

Real world Reasoning/ Inferring

Syntax discussion
Reflects (standards,
understanding)

Variables, methods, etc.

Other mental processes Uncodable
Evaluates (own, other,
task)
Regulates action
Repeats (self, other)

Kai H. Lim, Lawrence M.
Ward, Izak Benbasat

Discourse Patterns and
Collaborative Scientific
Reasoning in Peer and

Teacher-Guided
Discussions

An Empirical Study of
Computer System

Learning: Comparison of
Co-Discovery and Self-

Discovery Methods

Kathleen Hogan, Bonnie
K. Nastasi, Michael

Pressley
Nordbø, Walle

Collaboration in Pair
Programming

Gary M. Olson, Judith S.
Olson, Mark R. Carter,

and Marianne Storrbsten

Takeshi Okada & Herbert
A. Simon

Collaborative Discovery
Scientific Domain

Small Group Design
Meetings: An Analysis of

Collaboration

Table 19: Coding schema literature summary table

129

Configure environment
Correspond with 3rd party
Find/ check example

Critiques Patching

Suggest/ counter. Stonewalling
Confirm/ agree. Surface assimilation

Agree strategy/conventions Leader’s activities

Discuss the IDE
Summary of
results

Test Comment code
 Reminding Test

Build, compile, check in/out
Refactor
Write new code
Debug

Question. Ask for opinions
Explain: Explanatory activities

Real world or problem
domain

Comprehend Syntax
Detailed
Blocks of the program.

Other

Vague, including
metacognitive statements
and questions about
progress or understanding.

Sub-assimilation
Direct assimilation
Surface-constructive

Implicit knowledge-building

Explicit knowledge building

Carol K.K. Chan

Peer collaboration and
discourse patterns in

learning from incompatible
information

S. Freudenberg (née
Bryant), P. Romero, B. du

Boulay

Talking the talk: Is
intermediate-level

conversation the key to the
pair

programming success
story?

Peng Xu Lan Cao
Sallyann Bryant, Pablo

Romero, and Benedict du
Boulay

Activity Patterns of Pair
Programming

The Collaborative Nature
of Pair Programming

Sallyann Bryant

Double trouble: Mixing
qualitative and quantitative

methods in the study of
extreme programming

130

X4. Complete Coding Schema Comparison Table

Nordbø, Walle Gary M. Olson, Judith S. Olson, Mark R. Carter, and Marianne Storrbsten Takeshi Okada & Herbert A. Simon Kai H. Lim, Lawrence M. Ward, Izak Benbasat Kathleen Hogan, Bonnie K. Nastasi, Michael Pressley Sallyann Bryant Sallyann Bryant, Pablo Romero, and Benedict du Boulay Peng Xu Lan Cao Carol K.K. Chan S. Freudenberg (née Bryant), P. Romero, B. du Boulay

Collaboration in Pair Programming Small Group Design Meetings: An Analysis of Collaboration Collaborative Discovery Scientific Domain
An Empirical Study of Computer System Learning: Comparison of Co-

Discovery and Self-Discovery Methods
Discourse Patterns and Collaborative Scientific Reasoning in Peer and

Teacher-Guided Discussions

Double trouble: Mixing qualitative and
quantitative methods in the study of

extreme programming The Collaborative Nature of Pair Programming Activity Patterns of Pair Programming
Peer collaboration and discourse patterns in learning from incompatible

information
Talking the talk: Is intermediate-level conversation the key to the pair

programming success story?

Category Description Example Category Description Example Category Description Example Category Description Example Category Description Example Category Description Category Example Category Example Category Description Example Category Description Example

Other work

Small tasks relating to the
experiment, but with no
relevance to cooperation.
Picking up printouts, asking
the experimenter about the
rules of the experiment etc.

Project
Management

Statements having to
do with activity not
directly related to the
content of the design,
in which people are
assigned to perform
certain activities,
decide when to meet
again, report on the
activity (free of design
content) from
previous times and

Look up
information.
Either on-line
or manually. Configure environment

Setting up paths,
directories,
loading software
etc.

 Other

Time not
categorizable in any
of the previous
categories. For
example, in one
meeting they
discussed how their
coordination
procedures having to
do with
documentation were
insufficient in the
past; in another the

Change
driver.

Correspond with 3rd
party

Extra-pair
communication:
person to person,
telephone or
email

 Goal

Statement of the
purpose of the
group's meeting and
some of the
constraints to work
under, such as time
to finish or motivating
statements about
how important this is. Find/ check example

Looking at
examples in
books, existing
code or on-line

Break

Both participants taking a
break. Physically absent
from the workspace. No
work-related activities in this
period Rest

Private
discussion

Things outside of the
experiment are discussed.
Not a break. Used only when
what is discussed has no
relevance at all to the work.
For example must the
phrase “Do you have much
experience with Java?” be
coded as “planning of future
work”. Digression

Members joking,
discussion of side
topics, or
interruptions having
to do with things
outside the content of
the meeting. When
the person running
the video camera
speaks or changes
tape, it is considered
a digression.

"How to get
the
computer to
make
dotted
lines" "why
the plant
was moved
over by the
window", "it
is beginning
to snow, we Digressions

Disagreement
that remains
unsolved

A disagreement that ends
with silence or inconclusive
answer, or the actual
statement: “let’s move on” or
similar, when it is clear that
there is not an agreement.

(Disagreement)
to a hypothesis.

When subjects
expressed
disagreement
to the
hypothesis or
mentioned on
alternative
hypothesis in a
unit When
subjects
expressed
agreement to I don’t think so. Critiques

Modify solutions. Raise new
problems. Explanations. Patching

Differences are
compromised
through using
context-
dependent
examples.

Disagreement
solved

It is a disagreement from the
beginning, but they agree
after discussing it.

Suspending
conclusion.

 When subjects
mentioned
suspending
conclusion in o
unit.

Let’s not
conclude now.
We need more
experiments.

Argument about
justification.

If subjects
argued against
their
justification, the
unit is coded as
having
argument about
justification.

Suggestion
ignored

A suggestion from one is
ignored by the other in some
way. Alternative

Solutions or
proposals about
aspects of the
designed object.
These are typically
either features to
offer the user or ways
to implement the
features decided on
so far. This includes
the elaboration of the
idea, description not

Agreement to the
hypothesis.

 When subjects
expressed
agreement to
the hypothesis
in a unit. Yeah, right. Presents query

Suggest/
counter.

Suggesting a
theory or
approac or
suggesting an
alternative to
an existing
suggestion or
explanation. Stonewalling

Differences are
rejected to
minimize belief
change

Suggestion
accepted

A suggestion received a
positive feedback. Criterion

The reasons,
arguments, or
opinions that evaluate
an alternative solution
or proposal.
Occasionally these
appear in the form of
analogous systems,
with the implication
that if it worked in this
other system, it will
be good for this
system

 Hypothesis

Hypothesis is a
statement
about effects of
variables.
When subjects
mentioned a
hypothesis in a
unit, the unit is
coded as
having
hypothesis.

The I gene
chemically
inhibits enzyme
production.

Reacts (agrees,
neutral)

Confirm/
agree.

Confirm or
agree with a
previous
suggestion or
explaination

Surface
assimilation

Differences are
ignored or
conflated.

Alternative
hypothesis

When subjects
mentioned two
different
hypotheses
about a variable
in a unit.

Reacts
(disagrees)

Extension of the
hypothesis.

When subjects
added a new
element to the
hypothesis in a
unit.

(original
hypothesis:
The I is
chemical.) And,
the 0 is
physical.

Presents (idea,
partial idea,
information,
summary)

Justification
through
experimental
results.

When a
hypothesis is
accompanied
by summary of
results to justify
in a unit.
Justification
with several
results (next
category) is
included in this
cotegory.

The I is an
inhibitor, since
when the I is
missing it
produced a lot.

Justification using
several
experimental
results.

 When a
hypothesis is
accompanied
by summary of
results of more
than one
experiment in a
unit.

The I is an
inhibitor, since
when the I is
missing it
produced D lot,
while when I is
there product
was normal.

Planning of
future work

Long-term discussion about
long-term plans for the
solution. Preferably with a
50-50 contribution rate to the
discussion by the two
participants, but a ratio as
uneven as 80-20 is
acceptable. Issue

The major questions,
problems, or aspects
of the designed
object itself that need
to be addressed. This
includes the
elaboration of the
idea, description not
in answer to a group
member's question.
Occasionally, the
issues are not stated

They
typically
focus on
the major
topics of
"Shall we
offer this
capability to
the user?"
and "How
can we
implement

Plan for new
experiments to
test hypotheses.

When subjects
planned to
conduct an
experiment to
test o
hypothesis in a
unit.

Let’s test if the I
is really an
inhibitor.

Formulating
strategy/action

When the
subject was
developing a
strategy or
action plan to
accomplish the
goal:

1. We need
to put the
key to
something
else...
maybe
combining
the key and
the folder.
2. I think we
better make
a copy of

Agree
strategy/conventions

Including
approach to take,
coding standards
and naming
conventions

Leader’s
activities

Set up goal/tasks.Summarize
current status.Formulating
Strategy/Action.Reconcile
differences.

Meeting
Management

Statements having to
do with orchestrating
the meeting time's
activity, indicating
that the group
members are to
brainstorm, decide
(and vote), hold off on
discussions, and SO
on. Summory of data

Description of
data connected
with condition.
When subjects
mentioned a
summary of
data in a unit.

When the I is
missing, they
produce 876. Discuss the IDE

Talking about the
development
environment

Summary of
results

Goal /task refinement. Mental
model extension.

 Summary

Reviews of the state
of the design or
implementation to
date, restating issues,
alternatives, and
criteria. It is a
summary if it is a
simple list-like
restatement. If it is
ordered by steps, it is
a walkthrough,
defined later.

Description of
results

Description of
result which is
not connected
with its
condition.
When subjects
mentioned o
description of
result in a unit.

It’s producing a
lot. It produced
before the
lactose arrived
at the
chromosome.

 Walkthrough

A gathering of the
design so far or the
sequence of steps
the user will engage
in when using the
design so far, used to
either review or clarify
a situation. It usually
follows the user's
task or the flow of
data or messages
inside a system
architecture

 Testability.

If subjects
talked about
whether a
hypothesis can
be tested or
how it can be
tested in a unit.

How can we
test which of
those two
hypotheses is
right?

Programming,
duo

Both participants collaborate
closely about code extension
and are continuously
discussion what should be
done next and what is done.
Actual programming
(keyboard use directed
towards the code) must be
happening.

Describing
physical action

When the
subject was
simply stating
his/her physical
movement

1. I am
clicking on
the button
next to
"Helen". 2. I
am
dragging
the pen
icon to the
memo pad
icon. Responsive

Both questions
and responses of
at least two
speakers
contributed
substantive
statements to the
discussion.
Although the
roles of the
questioner and
responder

Student 1:
The hotter
a
substance
gets, the
lighter it is.
You know
that, it has
to, ya.
Doesn’t it
go into the
gas? Test Comment code

Writing or
modifying
comments in the
code

Programming,
solo

One person uses the
keyboard and edits the code.
At least one participant is
silent. A possibility is that
both are silent, and all one
can hear is an occasional
”mm-hmm”. It could also be
that one person comments
what is being done, while the
other is silent or ignores
what is being said.

Reading screen
output

When the
subject was
simply reading
out the
insructions or the
output messages
appeared on the
computer
screen.

1. Retrieve
incoming
memo. 2.
This is not
a required
action. Elaborative

All speakers
contributed
substantive
statements to the
discussion, as in
the responsive
sequences.
However, the
speakers in
elaborative
sequences made
multiple
contributions that

Student 1:
So in other
words they
look the
same. Is
that a gas,
a liquid
heated?
Student 2:
That’s what
I was
talking
about

 Reminding

 Reminding
other partner
to do
something,
e.g Dont
forget to fill in
that stub
function or to
consider
something e.g
Dont forget
that we or to
consider

 Test

Writing, running
and assessing the
success of tests

Build, compile, check
in/out

Compiling and
building on own or
integration
machine

 Refactor
Re-organising the
code

 Write new code

Creating
completely new
code to complete
the assigned task

 Debug

Diagnosing,
hypothesizing and
fixing bugs

Question
answered

A question is answered, and
the reply is
understood/appreciated by
the question asker. Clarification

Questions and
answers that
someone either
asked or seemed to
misunderstand. This
includes repetitions
for clarification,
associations, and
explanations.
Clarifications serve to
clear up
misunderstandings

Requests for
explanation.

When subjects
mentioned
questions or
metocognitive
statement
which request
or imply people
to genemte
further
explanations in
o unit.

I don’t
understand
what this result
means. How do
you interpret
these doto? 50,
what con we
conclude now?

Seeking
Understanding
Clarifying

When subjects
attempt to seek
understanding
what needs to be
done, or to
clarify
amboguous
points.

1. Am I
gouing to
be out of
town in the
14th or the
15th? 2. I
forget what
this icon is
for.

Requests
information Question.

Direct
Question e.g.
What
arguments
does this
function take?
Or indirect
question e.g.
Could you
give me a
hand with
this?

Ask for
opinions Ask for opinions

Question
ignored

One person asks a question,
but it is not answered, or
answered so poorly that is
does not benefit the
questioner.

Interpreting
output

When a subject's
statement was
related to
understanding
the feedback
appeared on the
computer screen
as a result of the
subject's action.

1. Um, what
does that
mean. 2.
O.K., I see

Elaborates (self,
other) Explain:

Explaination
of an
approach or
piece of
existing code

Explanatory
activities

Request for explanation-
Provide answer with
explanation or justification-

”Override”
One person forces his
opinion through.

One-sided
break

One participant takes a
break, while the other
continues the work, either by
programming a bit alone or
studying the problem
(reading the code, the task
description) or does other
assignment related small
tasks.

Passive person

One of the two is not
involved in the
development/discussion,
due to lack of knowledge,
energy or other reasons Consensual

When only one
speaker
contributed
substantive
statements to the
discussion.
Another speaker
responded to the
initiating speaker
by (a) simply
agreeing with the
statement, (b)

Student 1:
Alright,
when a
liquid is
heated it
turns into a
gas, and
then when
a liquid is
like frozen it
gets cold
and stuff, it

Outside work

One of the people does
private tasks during the pair
programming session.

The totality of
the system

Connections between
components; methods and
classes. Discussions about a
high-level ”snapshot” of the
program.

“What
happens if
I do this?"

Prediction of
result

 When subjects
predicted the
results of the
next experiment
in a unit.

It must produce
876.

Evaluating
against goal

When a subject
tried to compare
the screen
output against
his/her intention
to see if the goal
had been
achieved.

1. Good, I
got it!. 2.
Oh, this is
not what I
want.

Savings
account.

Real world
Link between the real world
and the task.

"OK. I’m
going to
buy
coffee.
Then I’ll
usually
put on the
money
first, and
then
select the
type of

Reasoning/
Inferring

When the
subject made an
inference, such
as using an
analogy based
on his/her
experiences, or
expalining a
logical and
sensible
plan/statement

1. Pencil is
for writing
something
or drawing
picture. 2. It
can't be this
icon
because we
tried that
earlier and
it was for
mailing.

Real world or
problem
domain

The
statement
bridges or
jumps
between the
real world or
problem
domain and
the
programming
domain. This
may be

So we need
to add a test
condition
here, to see
if the bank
account is
valid for this
kind of
transaction.

Syntax
discussion

"No, you
have to
use long
there, not
int.", "I
spot a
typo over
here”.

Reflects
(standards,
understanding) Comprehend

Understanding
the problem or
existing code Syntax

Spelling or
grammar of
the program.
Spelling is
indicated in
the
transcriptions
by single
letter
capitals.
NOT
semantics.

S P E L L I N
G, dot, F9, 7.

Variables,
methods, etc.

The most abstract of the low
abstraction level
discussions. Here, the dialog
is at method level, but still
code focused and does not
require a good mental mode.

“I guess
it’s
getSugar
we have
to use
here”. Detailed

Refers to the
operations
and variables
in the
program. A
method,
attribute or
object which
may or may
not be
referred to by
name.and

This
condition,
that return
value, the
list, the
counter, what
this returns
or gives,
getCustomer.

Blocks of the
program.

Including
tests and
abstract
coding
concepts.
Also strategy
relating to
the program
and its
structure.
General
naming
standards

That loop,
truncation,
the error
handling,
Oracle, this
issue. this
part of the
program,
mock,
Mosaic.

Other mental
processes

If it did not fit into
any one of the
above
categories, and
the subject was
clearly engaged
in thinking about
the task at the
time the
statement was
made. Usually a
general

1. I am
totally
confused.
2. I think I
ha made a
mistake
along the
line. Uncodable Other

Vague,
including
metacognitive
statements
and questions
about
progress or
understanding.

References
to a place on
the screen.
References
to the
development
environment
and/or
navigating
it’s menu
structure.

Oh, yeah, I
see, that bit
at the top.

Evaluates (own,
other, task)

Sub-
assimilation

New information
is reacted to at an
associative level

I think the
smaller you
are, the
faster you
can go, like
your strides
are smaller .
. . Giraffes
have long
legs and
they have
take bigger
strides to

 Regulates action
Direct
assimilation

New information
is assimilated as
if it were
something
already known.

Well, [the
statement]
is basically
the same as
what I
thought. I
know
animals
need to
change with
the
environment
so they can

Repeats (self,
other)

Surface-
constructive

New information
is comprehended,
but its
implications for
one’s beliefs are
not considered.

I guess long
legs helps
reproduction
because
they run
faster, they
survive, and
leave more
offspring. It
is not the
deer’s
choice
whether it

Implicit
knowledge-
building

New information
is treated as
something
problematic that
needs explaining.

This card
seems out
of place
from the
others. I’m
trying to
piece things
together into
one whole,
to find a
connection.
Right now,
I’m trying to

Explicit
knowledge
building

New information
is accumulated
for constructing a
coherent domain
undertanding.

This card
seems out
of place
from the
others. I’m
trying to
piece things
together into
one whole,
to find a
connection.
Right now,
I’m trying to

Table 20: Complete coding schema literature summary table

131

X5. Calculation for Research Proposition P2
Results from the regular analysis described in Section 13.2, including several insignificant
findings, are summed up in Tables 21 and 22 below. Both of these tables are divided into two
Tables a and b, below. Tables 21a and b contains the results indicating more dialog for
different personality pairs, and Tables 22a and b lists indications that pairs of different
personality discusses less. In both a tables are time used on the categories the measure, while
in tables b; the number of times the category was used is analyzed. Non-significant results,
based on the decision to use 0.05 as the confidence level limit, are listed in gray. A negative
influence means that there is less of the second if there is more of the first. For example in the
case of the fourth row of Table 21a, not counting the headline, a high difference in
agreeableness indicates a reduced (not increased, because the row is marked as reverse) use of
the category resolved.

R.1.2.1. Findings in favor of P2
Difference in… Influences

time used on
Neg-

ative?
Log

Worth
P-

value
Extraversion Off-task 3.94 0.00
Openness to exp. Responsive 2.10 0.01
Extraversion Cross-purpose 1.51 0.03
Agreeableness Resolved √ 1.28 0.05
Emotional stab. Consensual √ 1.11 0.08
Extraversion Unresolved 0.92 0.12
Openness to exp. Flow √ 0.89 0.13
Openness to exp. Disruption 0.89 0.13
Table 21a: Evidence of variable personality leading to more communication time

Difference in… Influences
occurrence of

Neg-
ative?

Log
Worth

P-
value

Extraversion Cross-purpose 2.00 0.01
Emotional stab. Responsive 1.60 0.03
Agreeableness Resolved √ 1.47 0.03
Extraversion Nonresponsive √ 1.37 0.04
Extraversion Unresolved 1.16 0.07
Conscientiousness Consensual √ 1.11 0.08
Openness to exp. Resolved √ 1.08 0.08
Openness to exp. Flow √ 1.00 0.10
Openness to exp. Disruption 1.00 0.10
Table 21b: Evidence of variable personality leading to more communication

R.1.2.1. Findings opposing P2
Difference in… Influences

time used on
Neg-

ative?
Log

Worth
P-

value
Agreeableness Silence 1.35 0.04
Agreeableness Stonewalling 1.27 0.05
Agreeableness Elaborative √ 1.22 0.06
Conscientiousness Prog. Silently 0.57 0.27
Emotional stab. Nonresponsive 0.41 0.39
Table 22a: Evidence of variable personality leading to less communication time

Difference in… Influences

occurrence of
Neg-

ative?
Log

Worth
P-

value
Openness to exp. Elaborative √ 0.93 0.12
Agreeableness Stonewalling 0.50 0.32
Table 22b: Evidence of variable personality leading to less communication

132

X6. Definition Based Hypothesis Suggestions
These definitions were made simply by making assumptions about the correlation between the
definitions of the five personality traits and the collaboration categories. They are not based
on any literature other than descriptions of the personality traits and the category definition
list. Thus, they all receive low scores as sub hypotheses. Most proved to be wrong, but not all.
Since these definition based sub hypotheses will not be discussed further, those marked with
an asterisk are those which were significantly confirmed in the analysis. Those without an
asterisk, the great majority of these sub-hypotheses, were not.

Each collaboration category is listed, and the personality traits that are likely to influence
them are listed, one per line, with a score in front of them. A (-) denotes a negative
correlation.

Not all categories from the schema are listed. Those not listed were viewed as most likely not
affected by personality.

X6.1. Task Focus (TF)

X6.1.1. Off Task (Z)
The category is not really relevant for collaboration, but personality might influence it
nonetheless. To make small-talk is elements of being extrovert, as stated in the literature and
probably also agreeable, since it displays an interest for the other person. Conscientious
people might se it as a waste of time, and people of high neuroticism might be uncomfortable
with it.
3. Extraversion mean
3. Agreeableness mean

(-) 4. Neuroticism mean
(-) 4. Conscientiousness mean

X6.1.2. Task Description (D), Comprehension (C)
This category is about understanding the problem thoroughly and preparing to solve it
correctly. It is feasible that conscientious people will feel that this is more important.
3. Conscientiousness mean

X6.1.3. Programming (P)
This category is mostly about ideas for what to do. To be full of ideas is one of the elements
of openness.
3. Openness mean

X6.1.4. Programming Silently (PS), Silence (X)
Silent programming, compared to aloud programming, is a bit exclusive towards the other
person. This would therefore perhaps be used more often by introverts and the not so
agreeable. For silence, the same might apply.
(-) 2. Extraversion mean
(-) 3. Agreeableness mean

133

X6.2. Begin Characteristics (BC)

X6.2.1. Question (q)
The conscientious like structure and order, and will probably be interested in information just
as much as suggestions for solution. Therefore, they might ask more passive questions.
3. Conscientiousness mean

X6.2.2. Assertion (a)
Suggestions and assertions imply that the person both actually has in idea, as well as the
willingness to share it. People high on Openness or Extraversion might use this category
more.
3. Openness mean
3. Extraversion mean

X6.2.3. Suggestion (s),
Same as for assertion, but for suggestion, the more diplomatic way of presenting it might be
something that highly agreeable people would prefer.
3. Agreeableness mean

X6.2.4. Imperative (i)
The order-like tendency of imperatives might suggest that agreeable people would use it
more, but like assertion, also openness and extraversion could influence it.
3. Openness mean *
3. Extraversion mean
(-) 3. Agreeableness mean

X6.3. Interaction Pattern (IP)

X6.3.1. Consensual (c)
Consensual answers are both those where it is an expressed agreement, as well as where the
response is less enthusiastic, but there is at least some response. It will be hard to say anything
about this category, but people of slightly low openness or extraversion might use it more.
(-) 4. Openness mean
(-) 4. Extraversion mean

X6.3.2. Stonewalling (s)
Probably the most common users of this category have a slightly low score on the trait
agreeableness.
(-) 3. Agreeableness mean

X6.3.3. Cross Purpose (x)
It is likely that the people somewhat similar in personality and who have high values of
certain traits and not so high on others, will cross-purpose discuss more often.
3. Extraversion mean
(-) 3. Extraversion diff
(-) 3. Agreeableness mean
(-) 3. Agreeableness diff
(-) 3. Openness diff

X6.3.4. Elaborative (e)

134

Like in the cross-purpose, the continuing discussion of an “e” might be preferred by people
with somewhat similar personalities.
3. Extraversion mean
(-) 3. Extraversion diff
(-) 3. Agreeableness diff
(-) 3. Openness mean
(-) 3. Openness diff

X6.3.5. Nonresponsive (n)
Nonresponders might use this collaboration-less response since they are introverts and/or non-
agreeable or they might lack understanding of what id discussed.
(-) 3. Agreeableness mean
(-) 3. Extraversion mean * (when measuring % of clips, not when measuring % of time)
(-) 3. Openness mean

X6.4. End Characteristics (EC)

X6.4.1. Disruption (d)
Similar to the cross-purposers, the disrupters might be very extrovert and not so agreeable, but
the category will probably be found most frequently among those with a high openness score,
since they have many ideas.
3. Extraversion mean * (when measuring % of clips, not when measuring % of time)
(-) 3. Agreeableness mean
(-) 3. Openness mean

X6.5. Result (Re)

X6.5.1. Unresolved (u)
Unresolved will perhaps happen very slightly more often when the programmers are very
unlike each other, or when they have a low conscientiousness, openness or extraversion.
(-) 4. Conscientiousness mean
(-) 4. Openness mean
(-) 4. Extraversion mean

X6.6. Cognitive Level (CL)

X6.6.1. Program Model (P)
Conscientiousness people might be paying more attention to the program model, since they
like details and order.
3. Conscientiousness mean

X6.6.2. Situation Model (S), Domain Model (D)
Openness might influence these, since it has to do with big ideas and abstraction.
3. Openness mean

X6.6.3. Metacognitive (M)
Metacognitive statements are probably made more often by extraverted people
2. Extraversion mean

	Table of Contents
	Preface
	Introduction
	1. Problem Statement / Research Question
	1.1 The Masters Thesis Problem
	1.2. Collaboration Involved in this Thesis
	1.3. The Pair Programming Experiment
	1.3.1. Description

	2. Descriptions of the Chapters
	2.1 Introductory Chapters
	2.2 Coding Chapters
	2.3 Research and Results Chapters
	2.4 Ending Chapters

	3. Definitions
	3.1. Pair Programming
	3.1.1. Claimed Advantages
	3.1.2. Effects
	3.1.3. Critiques

	3.2. Big Five Personality Traits
	3.2.1. Extraversion
	3.2.2. Agreeableness
	3.2.3. Conscientiousness
	3.2.4. Neuroticism / Emotional stability
	3.2.5. Openness to experience

	4. Pair Programming and Personality
	4.1. Previous Related Research
	4.1.1. Hannay, Arisholm, Engvik and Sjøberg
	4.1.2. Dick and Zarnett
	4.1.3. Karn and Crowling
	4.1.4. Williams, Layman, Osborne and Katira
	4.1.5. Barrick, Mount and Judge
	4.1.6. Sfetsos, Stamelos, Angelis and Deligiannis
	4.1.7. Choi, Deek and Im
	4.1.8. Chao and Atli
	4.1.9. Others

	Audio File Analysis
	5. Protocol Analysis
	5.1. How to Do It
	5.1.1. Making the Protocol Analyzable

	5.2. Considerations for Making the Coding Schema
	5.2.1. Physical or Social?
	5.2.2. Objectivity
	5.2.3. Exclusivity
	5.2.4. A Priori or Not?

	5.3. Software

	6. Relevant Existing Coding Schemas
	6.1. The Schema of Lan Cao and Peng Xu
	6.1.1 Advantages
	6.1.2. Disadvantages
	6.1.3. Our Use of the Schema

	6.2. The Schema of Sallyann Bryant, Pablo Romero and Benedict du Boulay
	6.2.1. Advantages
	6.2.2. Disadvantages
	6.2.3. Our Use of the Schema

	6.3. The Schema of Anneliese von Mayrhauser and Stephen Lang
	6.3.1. Advantages
	6.3.2. Disadvantages
	6.3.3. Our Use of the Schema

	6.4. The Schema of Kai H. Lim, Lawrence M. Ward and Izak Benbassat
	6.4.1. Advantages
	6.4.2. Disadvantages
	6.4.3. Our Use of the Schema

	6.5. The Schema of Carol K. K. Chan
	6.5.1. Advantages
	6.5.2. Disadvantages
	6.5.3. Our Use of the Schema

	6.6. The Schema of Kathleen Hogan, Bonnie K. Nastasi and Michael Pressley
	6.6.1. Advantages
	6.6.2. Disadvantages
	6.6.3. Our Use of the Schema

	6.7. The Schema of Sallyann Freudenberg, Pablo Romero and Benedict du Boulay
	6.7.1. Advantages
	6.7.2. Disadvantages
	6.7.3. Our Use of the Schema

	6.8. The Schema of by Sallyann Bryant
	6.8.1. Our Use of the Schema

	6.9. The Schema of Gary M. Olson, Judith S. Olson, Mark R. and Marianne Storrøsten
	6.9.1. Advantages
	6.9.2. Disadvantages
	6.9.3. Our Use of the Schema

	6.10 The Schema of Takeshi Okada & Herbert A. Simon
	6.10.1. Our Use of the Schema

	7. The Development of Our Coding Schema
	7.1. Initial Category Draft.
	7.1.1. My Version
	7.1.2. My Fellow Master Student’s Version

	7.2. Combined Categories
	7.2.1. Development
	7.2.2. Usage
	7.2.3. Category Quality
	7.2.4. The Removal of the Least “Polite” Categories

	7.3. Improved Categories
	7.3.1. Meeting
	7.3.2. Tweaks
	7.3.3. New Ideas
	7.3.4. Usage

	7.4. Expanded Categories
	7.4.1. The Table
	7.4.2. New Suggestion
	7.4.3. Individuals or Pairs?
	7.4.4. Usage

	7.5. New Focus Categories
	7.5.1. Comparison to the Previous Ones
	7.5.2. Initial Decisions
	7.5.3. Tests and Implications

	7.6. More Development of New Categories
	7.6.1. Usage

	7.7. The Development of the Final Schema
	7.7.1. Reformatting
	7.7.2. Testing and Early Experiences

	8. Our final Coding Schema
	8.1. Description
	8.2. Category Definitions
	8.2.1. Task Focus
	8.2.2. Begin Characteristics
	8.2.3. Interaction Pattern
	8.2.4. End Characteristics
	8.2.5. Result
	8.2.6. Cognitive Level

	9. Coding the Audio Files
	9.1. Sample Selection
	9.2. Hired Help
	9.2.1 The Task 4 Finder
	9.2.2. The Audio File Coders

	9.3. The Coding Process
	9.4. Parsing

	10. Reliability of the Coding Schema
	10.1. Calibration
	10.2. Reliability Checking
	10.3. Reliability Calculation Approaches
	10.3.1. Initial Approach
	10.3.2. Stricter and More Individualistic Version
	10.3.3. Subcategory Based Approach

	10.4. Reliability Calculation Results

	Personality and Pair Programming
	11. Analysis Considerations
	11.1. What Variables to Base Analyses On?
	11.1.1. Personality
	11.1.2. Collaboration
	11.1.3. Performance

	11.2. Relationships to be Investigated
	11.2.1. How Personality Influences Collaboration
	11.2.2. How Collaboration Influences Performance

	12. Research Propositions
	12.1. Literature Based Proposition Suggestions
	12.1.1. Sfetsos et al.
	12.1.2. Dick et al.
	12.1.3. Karn et al.
	12.1.4. Williams et al.
	12.1.5. Hannay et al.
	12.1.6. Williams’ Book

	12.2. Definition-Based Proposition Suggestions

	13. Analysis Description
	13.1. The Partition Platform
	13.1.1. Minimum Size Split
	13.1.2. LogWorth and p-value
	13.1.3. K-Fold Cross-Validation

	13.2. Analysis Procedure

	14. Analysis Results
	14.1.1. P1: Does Personality Affect Collaboration?
	14.1.2. P2: Will Different Personality Pairs Communicate More?
	14.1.3. P3: Does Similar Levels of Extroversion Lead to Less Disruption?
	14.1.4. P4: Will Two Extroverts Discuss a Lot?
	14.1.5. P5: Do Two Agreeable People Small Talk Much?
	14.1.6. P6: Are Metacognitive Statements Made More by Extraverts?
	14.1.7. P7: Does Collaboration Affect Performance?
	14.1.8. P8: Is Elaborative Good for the Performance?
	14.2. Other Findings
	14.2.1. Complete Investigation of Personality Factors’ Influence on Collaboration
	14.2.2. Alternative Formatting for the Collaboration Influence on Performance Table
	14.2.3. Transitive Deductions

	End
	15. Possible Validity Threats
	15.1. Categories
	15.1.1. Constructs
	15.1.2. Content

	15.2. Analysis
	15.2.1. Selection
	15.2.2. Confounding Variables

	16. Possible Future Directions
	16.1. Larger Sample
	16.2. Analysis with Other Personality Measures or Methods
	16.3. Long-term Pairing
	16.4. Individual Focus
	16.5. Distributed Pair Programming
	16.6. A Closer Look at the Transitive Relationships

	Acknowledgements
	References
	Appendices
	X1. Coding Schemas
	X1.1. Combined Categories
	X1.2. Improved Categories
	X1.2.1. Explanation for Start and Stop of Clips

	X1.3. Expanded Categories

	X2 Reliability Check Calculation Rules
	X2.1. Score Calculations for the Categories:

	X3. Coding Schema Comparison Table
	X4. Complete Coding Schema Comparison Table
	X5. Calculation for Research Proposition P2
	X6. Definition Based Hypothesis Suggestions
	X6.1. Task Focus (TF)
	X6.2. Begin Characteristics (BC)
	X6.3. Interaction Pattern (IP)
	X6.4. End Characteristics (EC)
	X6.5. Result (Re)
	X6.6. Cognitive Level (CL)

