
Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 1 of 74

Python – Realizer

Rapid application development with Python rewritten in C++ and Qt.

http://www.python-realizer.net

Master thesis at

Simula research laboratory and University of Oslo, Norway.

2004 - 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30828754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 2 of 74

Credits

There are several people I would like
to thank for letting me finish my
master thesis and thereby finishing my
master degree in computer science.

First of all, I would like to thank my
parents for given me the environment
for studying and teaching me the
value of working hard to get what I
want, even when the odds are against
one.

I especially want to thank the
unemployment agency of Norway and
all the persons who supported me on
my quest to transfer from a job, my
health could not support in the long
run to better opportunities in
computer science.

My employer AS Oslo Sporveier has
been very helpful in the transfer
process, and made it possible for me
to take five year of my life and use it
for pursuing a higher education. It
gave me complete attention to my
school duties without going broke.

And even though my health, cut my
career short, it has been a very good
place to work for over fifteen years,
both as a part time worker in the
beginning while studying to become
an electrical engineer and later as a
full time position.

I would also take this opportunity to
thank all my good friends at the
University of Oslo, both teachers and
good student friends. They all made
me feel at home at campus from day
one. I will miss them deeply when we
all move on.

I have been so lucky to get a great
Python guru as my master-thesis

advisor. He is always positive to my
suggesting and even when he is
opposed to my ideas, he still is
positive in his response. He made me
forget my ideas gently with a smile.
His name is Kent Andre Mardal by the
way.

He still has not convinced me that
math is easy, and I still don’t
understand his math drawings on the
office walls and his fondness of the
word “the”.

I must not forget to thank Simula
research laboratory for giving me a
great working environment for
finishing my master thesis. It is a
great place to work, with great
people.

Trolltech has for the last 10 years or
so, created the best class library for
C++ programming ever, and I am very
thankful for they given me such a
great tool to work with. It really
makes C++ a great development
language.

And last I will thank all the smart
people behind creating the original
Python system, which has been and
still are a great inspiration for my own
system.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 3 of 74

Table of contents
Credits.....................................2
Table of contents........................3
Summary4
Introduction6
Development system.................. 12

General application functionality 13
Toolbars 14
Menus 15
Utility windows 16

The syntax coloring subsystem ... 18
The editor component 18
The interpreter component 18

Python parser in C++ 20
Lexical analyzing.................... 22

Reserved keywords 23
Operators.......................... 23
Delimiters 23
Special meaning tokens 24
Literals used in Python.......... 24
Implementation details 24
Data structure TOKENID......... 26
Data structure FULLTOKEN 26
Collecting text to analyze 27

Abstract syntax tree................ 28
Definition of node structure.... 28
Definition of node type 29
Statement nodes 30
Expression nodes 30
Container nodes 31
Literal nodes 31
Example node generation....... 31

Parser 32
Start from user input 32
Start from file or buffer 32
Compound statements 33
Simple statements 35
Expressions 37
Data structures in Parser 39

The Python type system 41
Abstract data type.................. 42
Boolean data type 42
Buffer data type 43
Cell data type 44
Class data type 44
Code data type...................... 44
Complex data type 45
Description data type 46

Dictionary data type................ 46
Enumeration data type............. 47
File data type........................ 47
Float data type 48
Frame data type 48
Function data type.................. 49
Generator data type................ 49
Integer data type 49
Iterator data type................... 50
List data type........................ 50
Long data type 51
Method data type 52
Module data type 52
None data type 53
Object base type.................... 53
Range data type..................... 54
Set data type 54
Slice data type 54
String data type 55
Struct data type..................... 56
Tuple data type 56
Get arguments system 57
Build data objects system 59

The error system....................... 60
Compiler system 61

Marshal system 61
Virtual executing machine 63

Operand codes....................... 63
Implementation details 64

Extensions modules in C++ 66
The road ahead 67
Appendix A.............................. 69

Full grammar of Python 2.4 69
Appendix B.............................. 72

Building of the application and
install Qt. 72

Literature reference 73
Colophon 74

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 4 of 74

Summary

Python – Realizer is basically planned
to become the original Python done in
C++ and Qt1 class library. This is to
make it a brand new implemented
Python interpreter with a new rapid
application development application
extending it, for a complete Python
system.

It is supposed to become the Visual
Basic of Python, in a matter of speak
with most ideas taken from that
environment. At least what it was in
the earlier edition, before everything
got transfer to Visual Studio.

It should not include any original C
code from the C based standard
Python system, but is based heavily on
the standard C Python language and
its library functions. Most of the
library modules written in the Python
language will later be possible to
compile and use directly in the new
C++ based system.

I am trying to be as compatible as
possible with Python version 2.4 in
language and library modules, except
for when that is unwise in regards to
making it a C++ system.

It will for one thing be based on
Unicode character strings using Qt
library’s QString class, and therefore
does not have a standard string
module and a special Unicode module.
That would not make sense in the
context of Qt framework.

Further we use C++ operator
overloading heavily for access to
Realizer built-ins data types, such

1 Qt is a class library for GUI and more, made
by Trolltech in Norway.
http://www.trolltech.com

that the built-in data type’s can be
used as standard C++ classes outside
of Python programs. And since we are
rewriting the standard C based Python
system in C++, everything is a class
and we use C++ data types like bool
instead of larger int data type like C
must do.

The application I make for
encapsulating the new Python
interpreter is of course portable and
will become a total development
system, with code editors for writing
Python scripts.

Form editors will later be used for
visually creating of dialog windows
and program the main window,
without bothering with all the small
details.

To summarize the project, we will
strive to include all the great
functions found in other environment
for software development, which we
found useful for our purpose.

The original C based Python system
was originally and still is, written by a
large group of people, who spend
several years to get the system to
where it is now. Not to mention it will
take a lot of work to get a full
development application ready for
Python.

It is of course not possible for me to
finish making Python – Realizer a
complete system during just a year
work on my master-thesis.

The purpose of my master-thesis is
however to create the foundation for
this system, such that other master
students can work to extend it, or
that this can become an open source
project.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 5 of 74

I concentrate in the beginning on the
work on the application, with an
interpreter that at least can parse the
Python code given from the user or
from a file, and check that for
syntactical errors found in conflict
with valid Python grammars. Further I
will start implementing a code editor
with syntax coloring of code as a
helper to write good Python code.

Also I will start and work as much as I
can with the very important library
containing Python built-in data type
subsystem, that in fact do a lot of
Pythons work.

I also start to work on a second
library, which will contain the
important virtual execute machine for
running Python code in a cross
platform way.

The rest of the system will be
described for other to implement at a
later time, or at least what must be
done to complete the interpreter and
the library modules.

And you will always found the updated
source code for this project at
homepage:

http://www.python-realizer.net/

Make sure you get the latest code by
checking the archive files date before
downloading. It is named in the
following template:

Realizer_MMM_DD_2005.tar.gz

Where “MMM” is month and “DD” is
the day.

The one really important goal of my
project is to make a platform
independent development system
with Python at its center. I program
mainly on the Apple’s Macintosh

computers, but will make sure it
compiles and run under Linux and to
some extend even on a Windows
based computer.

It also includes the application with
code editors and more. The easiest
way to make sure this is possible, is to
choose a class library that support
cross platform development out of the
box, without having to worry about
the difference between platforms.

I found that in Trolltech’s Qt class
library, and it is free for none
commercial use. It also has great
classes predefined for what I need to
implement in the Python interpreter
and all the supporting libraries. It
really makes the code shorter, when
the functionality you want already is
implemented in ready to use classes.

And last, C++ is a very powerful
language to write my system in, and it
creates native executable code for
each platform I want to support
without the slowdown of executing
byte code in virtual machines like
Java and C# mostly do. With Qt
library, C++ finally can compete with
the standard libraries included with
those other languages.

The first try to make PR is found in
the file old_PythonRealizer.tar.gz and
will also contain the source files, not
yet converted to the current version.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 6 of 74

Introduction

How we program computer systems,
has changed greatly through time,
from the earliest computer giants
build around the end of the Second
World War and up to these days’
powerful personal desktop computers.

I have myself, have the pleasure of
follow the gradually development of
computers from early 80’s with its
small compact home computers and
all the way to present all dominating
personal computers.

In the computers childhood, it was
basically only possible to program a
computer by switching switches on
and off, to program instructions and
possibly data into a machine.

A famous 30-year-old computer, which
was based on this principle, is the
1975 based Altair 88002 computer,
which contributed greatly to Microsoft
existents today.

I remember spending Christmas
evening in 1984, by manually type in
the small programs as simple games
found in home computer magazines,
in the form of numbers in a Basic
program. The numbers was a primitive
way to program machine code without
an assembler.

Basic-interpreters built-in in these
small home computers was not
powerful enough to run even small
games, fast enough for gamers to be
accepted.

2 Per A. Holst book in Norwegian :
”Datateknologiens utvikling”,
By Tapir akademisk forlag 2001
Page 501 – 502.

And the only way to use machine code
in your program in those days was to
manually enter them as boring lists of
numbers into a simple Basic program,
which saved them into memory as
machine codes. There was not enough
memory to run an Assembler in those
early days of home computing.

In those early years of my computer
experience, the computer of choice
was the famous Commodore Vic-20
with 5 kilobytes of memory, where 3.5
kilobytes where free to use for your
own programs. There was no storage
system available to me at this time. I
could not afford a cassette player for
storing programs, and I had to
manually write the program into the
computer every time I wanted to run
a program from paper.

At the end of the day, you turned the
computer off, and the program was
lost forever.

If you wanted to play another game,
you turned the power off and then on
again, and started to write the next
program into memory from paper line
by line.

This was not an ideal way to program
computer systems to put it mildly,
and it made sure the program was
simple and small to fit into the
computer memory. With the storage
system like paper based card and
tapes, it took forever to get a
program loaded into memory. It
limited the usefulness of computers,
and it was important to find a better
way to program computers with much
better tools.

The next step in programming the
computer in those days was to use an
Assembler program to translate from
the textual representation of machine

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 7 of 74

code to the binary numbers the
computer knew how to execute.

The assembler translates, as you know
simple verbal instructions to their
binary representation.

It was an improvement over the old
methods to get machine code into
computers, but still it was not
possible to move programs from one
computer system to another system
with a different processor. Those
days, there where lots of computer
systems with different processors,
making it very hard to write portable
code.

It also toke a lot of time to write even
simple programs, with several lines of
assembler code, just to make simple
program constructs. Even with the
later macro assemblers with a little
support for abstraction, it was very
hard to develop complex programs in
a reasonably time frame.

It would be very clear, that we
needed a computer language to
program in, that was more like a
human written language. One needs
to translate from a reasonably
understandable language to the
computer machine code for
executing.

A program to do this task is called a
compiler, and today they exist in
large numbers for different source
language and destination machine
code, but where rare earlier.

The biggest computer manufacture in
those days was IBM. They produced a
large number of different computer
systems, and often with different
instruction sets.

It was important to find a better way
to move program between those

systems without having to write a new
version for each machine type.

A group of computer scientist working
at IBM’s research center in 1954
developed a high-level computer
language called Fortran3 for use in the
technical and scientific areas.

It was short for “Formula translation”
which described the language purpose
in short terms. It is a very simple
language compared to modern
computer languages, and it is
basically for math purpose, and it
does that so well that even today, it is
widely in use.

A standard for Fortran was finished as
late as in 1995.

In the earliest day of computers, it
was often used for administrative
computer work. Fortran was not
especially good at these kinds of
tasks. So another language was
designed for this purpose.

It was the language called Cobol4.
The American department of defense
developed it. Its name is short for
“Common business oriented
language”.

This language is without a doubt, one
of the most used computer language
even to this day, and still a lot of
programs in daily use are written in
this old language.

Both these early computer language is
not of the all purpose language type,
but rather special adapted to their
intended task and nothing much else.

One just choose the language best
suited for the task one needed to do,

3 Per A. Holst – Page 361 - 373
4 Per A. Holst – Page 373 - 376

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 8 of 74

and not like today, based on other
preferences like the personal taste or
what is available from ones project
leader or what ever.
As time went by, the need for more
general programming language grew.
One serious reason for this is that one
didn’t want to learn new languages all
the time to solve different tasks.

History is full of more or less popular
computer languages. Only a few
survived into the present day, most
are dead by now or only of historical
interest.

I will only mention two important
languages from the period starting at
the end of 60’s and to the end of 70’s.

The first is the language Basic5, which
was invented at Dartmouth – college,
in its first edition in 1964.

Its main goal, was to become an easy
to learn computer language, which
especially students and later home
computer users, would find useful
when programming their computer
systems in the 70s and the 80s.

In the beginning, the Basic language
was almost always an interpreter.
Often built into the computers read
only memory, when sold as home
computers, and made an abstraction
against the computers machine
instructions.

The program was interpreted by this
command interpreter, and made it
possible to write mostly portable
programs without having to bother
with the underlined architecture used
in each computer. There where a lot
of different dialects of Basic and not
all where compatible with each other.

5 Per A. Holst – Page 383 - 388

Later, Basic language got compilers,
which translated Basic programs into
the real executable machine code.
That made them a lot faster to
execute and tailor made for each
platform. An important example of
this is the Visual Basic from Microsoft,
which is still very popular on desktop
computers, and is a very important
inspiration for my project.

Even though the language was easy to
learn and use, it was not very well
suited for the more complex software
development. Later edition of Basic is
however “made” object oriented, and
thereby a little more suited for the
more complex software development.
It also lets you make an application in
a reasonable short time, especially
when you are under a strict deadline.

The early edition of Basic often forced
the programmer to write some
function in machine code to speed up
the execution of a program to a
tolerated level.

But that made them both less
portable and less easy to understand
by reading the source code.

The other language I want to describe
from those early years of
programming, that still is heavily used
today, is the very important language
called C. The same people who
invented the operating system Unix
designed it in the early 70’s.

This language is often called a system
language, since it is used to program
operating systems, compilers and
other important programs. This is a
high level language, but can often be
mistaken for being closer to an
assembler, which often is built-in in
its compiler.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 9 of 74

The two language described are both
called procedural based language. It
uses procedures to code the
functionality it can reuse during the
executing of programs. It has no
native built-in encapsulating of data
or functionality outside its use of
procedures.

This makes it not very suited for very
complex programs, and one often get
name collisions in large programs
between variables used in different
part of the program having the same
name.

A new and better way to encapsulate
the data and the functionality in a
program was needed, and thanks to
the two Norwegian computer
scientists, we now have what we call
“Object oriented language”, which
almost every current modern
computer language is designed to be.

The first language to use this principle
was the Norwegian developed
language called Simula6.

This language was developed by the
Norwegian computer center in Oslo,
by Ole-Johan Dahl and Kirsten Nygård,
with the first edition finished in 1965.
It created the foundation for all
modern object oriented languages.

Even though this language never got
widely used, it had a very important
influence on the languages like C++,
C#, Java and others.

These languages are widely used
today for all application and system
development around the world, often
with extensively class libraries as the
standard part of the language.

6 Per A. Holst. Page 396 - 398

This makes it possible to reuse old
codes in new application, without
having to invent the wheel every time
you need one. The time and effort it
takes to make a complex program, is
drastically reduced, and even is the
reason several complex application
can be made at all.

Still, sometimes these languages are
not what one need. When time factor
is very limited and one need a
program like now and only have one
programmer or only have a little need
for this program in the long run.

Quick and dirty programs to solve
small task fast with limited recourses
like people or machines. To solve this
task, there have been developed
several small languages called script
languages.

Simple version of these languages, are
shell-based systems like Bash7 and all
the other shells found today.

These languages are well suited for
the small task in system
administration of a computer with no
fuss, and don’t need to be translated
before executing on a computer. They
are interpreted by the shell system
directly on a computer.

Still, there are tasks that need to be
done quick and easy, but is too
complicated for shell systems. Maybe
the program should run on several
different computer systems or maybe
it is to be run in a web context.

A large group of scripting languages
has been developed in the last 10 to
15 years to solve such tasks.

Examples are Tcl, Ruby, Perl and my
personal favorite Python.

7 Born again shell.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 10 of 74

The programming language Python, or
if you want the scripting language,
was originally developed by a Dutch
computer scientist by the name Guido
Van Rossum. He still is the main man
behind the Python system.

Python started its development
around Christmas 1990, when Rossum
needed a project to take him through
the holydays. He stated developing
Python on his Apple Macintosh
computer, based on ideas he had
about efficient and simple way to
design and implement a computer
language.

It was important to him, to design a
system that easily could help building
small to complex programs in a
portable way, with easy to understand
syntax. Only a few lines of code
should accomplish a lot more than
usual functionality in the other
languages.

Most important of all, is that variables
should not need to be defined before
use, and that they could change
dynamically during the executing of
programs.

In addition to this dynamically type
system, he wanted a large and rich
library of functions in reusable
modules. It should be object oriented
like all the modern languages, but still
easy and fast to use for the scripting
purposes.

Later it got several GUI subsystems to
help make programs with the windows
style, and not only text based
programs. One of the most important
library for GUI in Python is borrowed
from the language Tcl, and is called
Tkinter

All the programs written in Python are
interpreted by the command
interpreter written in C for the
executing of the byte code on the
virtual executing engine.

You don’t need to modify the source
code written in Python to execute
them on different platforms.

While Python system is great and that
there are several development
environment system for it, there are
no one close to what the Visual basic
provides.

Also a lot of great C++ class libraries
exist, with GUI and other functionality
that can be interesting to use in
Python programs without having to
use utilities like the Swig8.

It can also be interesting to use
Python’s built in data types directly in
C++ programs like them where
standard C++ classes.

If we rewrite the Python system in
C++, we can easily use C++ classes
directly in Python, and if we make
Python type system a class library, it
makes it possible to let C++ programs
use the Python types directly.

So as my master thesis project, I have
decided to start on a very ambiguous
plan to develop a complete Python
system in C++ and using the Qt library
as GUI for both the system and for the
development application.

It will have its own Python interpreter
written entirely from scratch in C++
with dynamically loadable libraries for
built-ins data types and a virtual

8 SWIG is a software development tool that
connects programs written in C and C++ with
a variety of high-level programming
languages. More details at
http:/www.swig.org

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 11 of 74

machine for the executing of byte
code.

Around this interpreter I will start to
design a “rapid application
development” application for all your
Python development needs.

My goal is to build the foundation for
this system, and make it available for
others to complete or turn it into an
open source project.

One can always dream!

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 12 of 74

Development system

Python – Realizer are designed to be
based on one integrated application
for the development of the code, the
visual elements and the interpreting
of Python code entered in the
interpreter window of the application
or from the files in form of a compiled
byte code file or a source code file
written in Python.

The Python code is to be executed by
the virtual byte code machine, which
is planned to be a dynamical loadable
library written in C++ for use by the
application and maybe later by other
programs.

All the built-in data types is to be
made available for both the
interpreter and C++ programs who
want to use this functionality, by
another dynamically loadable library.

The built in modules may be
implemented as a third library at a
later time. But all the modules
written in Python will be usable
directly without any conversion with a
few exceptions described in a later
chapter.

I start by describing what I would like
to include in the main development
application, and what functionality it
should provide to the programmer. I
will then describe in details each sub
system needed to complete the
system.

The application is a program compiled
as Realizer, and should be started by
the executing of this program.

The main application is divided into
visual parts like menus, toolbars,
utilities windows and a tabulated

presentation of the interpreter
window and the code / form editor
windows for each Python script that is
open for editing.

The application is designed to be
custom configured to suite your needs
for an efficient working environment.
This means that each user can decide
which utility windows, if any, to be
present in the work environment or
where they should stay for easy access
during development.

There will always be an interpreter
window available in the application at
all times, and it will be the first
window in the tabulator.

Editor windows will open for each of
the open Python source code, and
each window will be tabulated into
one window for code editing and one
for form editing, to be used for the
visual design if needed.

Functionality wanted, but not yet
started to be implemented, is an
integrated debugger with variable
viewer for running programs and the
possibility of single stepping a
program.

There will be a need for a project
manager. This will be a subsystem,
which control each projects Python
scripts and user interface description
files.

An easy way to add class, methods
and other element of Python script by
selecting the details in the dialog
boxes, instead of writing it all
manually each time one need a new
class declared.

There will definitive be a need for an
easy to use and navigate, help or
document viewer for the online help.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 13 of 74

The code editor should remember all
the indents for easy alignment of code
blocks while you program, and each
time you access a class or modules
name in the editor, you should get a
popup list with all members available
in that class.

When you write a method or function
name and is not sure about the syntax
for its arguments, you should
automatically get syntax described to
you as small yellow utility popup
notes.

I am also thinking about a PIM9 / PSM10
modeling system for Python with SQL
support. With this, one can design
classes and database tables in a
Platform in depended models
described in UML11 and SQL for
automatically translation to the
Platform depended models in the
form of Python classes.

Let us describe the system component
that I have started to implement and
is present in the application now.

General application functionality

The Realizer application is at present
time a simple Python code editor,
with a parser, capable of syntax
checking scripts or user input in the
interpreter window.

Both the editor component and the
interpreter window have a color
syntax scheme for easy reading.

The code editor will later have a lot
more feature, given it a chance to
become a full feature editor with all

9 PIM – Platform independent models.
10 PSM – Platform depended models.
11 Universal modeling language.

the bells and whistle you want or
need to manage your Python code.

For now, it is a simple code editor
capable of loading, editing and saving
Python scripts with a simple line
number scheme and coloring of
keywords and more.
In earlier attempts to write a Qt
based application, I made the mistake
to sink into the details of Qt without
really planning ahead.

In my first attempt to write an
interpreter window for my parser, I
started to create a custom widget
from the ground up with handling of
the text writing, the scrolling of the
text in the window and the color
syntax handling.

This was a serious mistake. Writing
custom widget is fine, but the way to
do it, is to take a widget with some of
the functions you want, and extend it
yourself by sub classing it.

Then you get all the boring handling
of the text almost for free, and you
only need to override some methods
as needed. I wasted over 3 month
trying to get my own widget to work
reliable and without flickering during
the use.

My biggest problem was without a
doubt, flickering during the operation
of the widget. And it was not easy to
get the scrolling to operate correct
either.

It didn’t help, that I lost all the source
code during a transfer between
machines. Maybe it was for the best,
since I started to program from
scratch with a much better approach
to a solution.

It became clear to me after some
thinking. That it must be a much

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 14 of 74

easier and more acceptable way to
make the application without being
bog down by the details.

Qt is an extendable class framework
library, and it is designed to be sub
classed for easily add functionality
without having to reinvent the wheels
every time it is needed.

The secret is to find a standard widget
with the closest match to what one
need to implement. I therefore
choose to use QTextEdit12 as base
class for two of my most important
components.

I will describe each components
implementation later in this chapter,
but first explain the applications user
interface in details.

Toolbars
In my attempt to show you all, what
the complete development system,
may be to look at when it is more
complete, I have implemented some
functionality into my application.

There is at present time, a total of
tree separate toolbars for easy access
to the functionality in the application,
in supplement to the menu system.

The first toolbar present in the
application, and maybe a very
important one for most users, is the
standard toolbar. This is a grouping of
mainly file-oriented functionality.

Not all of the buttons are in use at the
moment, and it is missing context
based viewing of the active elements
at the present time. Later one will

12 This Widget is for basic text editing in Qt.

only see the active components, and
all the other should be grayed out.

The ones in use already are the
following:

We have first a button for creating a
new editor document in its own
window.

Then there is a button for opening pre
existing Python source files into their
own editor window, by given the user
a dialog window for entering name
and path to the file which one want to
open for editing. Then there is a
button for saving the current active
editor document to a file with already
given name and path.

The next button is not yet in use, and
is missing a good icon, but it will be
for saving all the unsaved editor
documents in one easy step.

The print subsystem is not
implemented, but its button is
showing only for demonstration
purposes at this time.

The next two buttons are in use, and
is for the undo / redo functionality in
the editor windows in active Python
scripts.

Then we have the standard buttons
for cut, copy and paste functionality
through the built-in clipboard. It is
working between the edit documents
and within it self.

The next toolbar, which is
operational, though a bit thin in the
functionality at this time, is the
execute toolbar.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 15 of 74

It has just two buttons as members
now, but these two buttons starts
executing or at least parsing of the
source code written in Python.

The first one, executes directly from
the active editor window, and takes
its buffer as input for the Parser.

The next one is for executing of
Python scripts from files and the user
gets a file dialog to choose which file
to load into the Parser buffer.

Later we will add functionality for
debugging of scripts, and running the
scripts one instruction at the time or
just to set a break point in the source
code.

To ease the navigation, both between
the edit documents and within a
document for methods and classes,
we have provided a navigator toolbar,
and a dynamic windows menu.

First the navigator toolbar provides
easy selection of scripts files opened
in an editor window and later all its
classes and of course methods of
those classes.

At the moment only the selection of
the active script file is implemented,
and those files are also available in
the windows menu.

In the windows menu, you can also
select easy access to the interpreter
window, if you need that in a hurry.

You can of course also use the tab
selecting widget on top of all the
document windows and of the
interpreter window.

Menus

The Realizer application has only
limited menus implemented at this
time, but I will explain the ones in use
at present time, but all of the
applications functionality will be
available from the menu system in the
final version.

We have most of the file menus
functions available at the standard
toolbar, but it also contains a few
menu items not duplicated on
toolbars.

First of all, we have more save
possibilities in the menu than on the
toolbar. We can save an open
document to a file with a different
name and possible new path.

We have menu selections for closing
either a single active editor
document, or all opened editor
documents. Later we will add the
functionality for checking save status,
before closing the documents.

Depending on which platform the
application is running on, we might
have exit the application on this menu
bar, but on Macintosh computers, it
will be at the application menu.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 16 of 74

We need to add checking of all the
opened and unsaved documents,
before terminating the application, so
we don’t loose data when the
application is terminated.

The next menu has also several items
shared with the standard toolbar.

This is the edit menu, with the
following functionality available at
this time:

We have selections for the undo or
redo of actions in the editor windows.
This means that one can undo an
action performed on a Python editor
document, or redo it if you change
your mind.

And we have copy, cut and paste
functionality related to the same
Python documents. It can also be used
for copy and paste between the
interpreter window and the editor
documents. You can also use cut
functionality in the interpreter
window.

Next we have a view menu bar, which
provide the user of the application
with the options to view or hide part
of the user interface. You can choose
which toolbar to view or hide, and the
same on utilities windows, which can
dock to most of the edges of the
application window.

Then we have a project menu, which
is not yet implemented. But it will
contain a subsystem for collecting the
script files and the user interface
description files into a logical unit.

Then we have the run menu, which
only have two selections at this time.
It is the same as the execute toolbar.

Then we have a dynamic menu bar
called windows. It will have a
selection for activating the
interpreter window, or select one of
the active editor windows with
opened Python documents. It has a lot
in common to the navigator toolbar. It
is somewhat in operation already, in
the form that we can select active
windows, and it updates list with all
possible editor windows available to
be selected.

At last we have the help menu on
some platforms, but not on Macintosh
since that platform use an application
menu bar for the same function.

It only has a dialog window for
information about the application,
and a dialog for information about the
version of Qt in use.

Utility windows

The Realizer application already has a
lot of utility windows for added
functionality, and will probably get
more, later as we add functionality to
the application.

 None of them do any useful work at
this time, but are present for
prototyping of the user interface and
to show you how I will the application
to be presented in later versions.

Currently there are four different
utility windows, and those are:

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 17 of 74

The utility-window, which will among
other things, contains the selection
window for widget in the user form,
dialog templates and other useful
things in the process of form
designing.

Then we have a project viewer, which
later will show all files and type of
those files in a list for easy access,
and to give the user an overview of
the whole project at all time.

This will be connected to the project
menu later.

This will be a kind of debug window,
where a user can see what currently
used variables contains during the
executing of scripts either in step by
step mode or during the standard
executing of scripts.

At last we have the property window,
which will be highly coupled to the
form designer. It will let the user
select properties for each widget
placed on a form, and to control
signal handlers for Qt’s signal / slot
mechanism.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 18 of 74

The syntax coloring subsystem

Both components described later in
this chapter, uses the same syntax
coloring system for the highlighting of
Python source code.

This coloring system makes all
reserved keywords stand out in blue
from the general text in black.

Numbers will be colored in red for
easy spotting in the text. Valid
operators in Python will be colored in
light red. All comments will be in light
gray and strings will be in light green.

Together all this coloring of the
Python source code, makes it much
easier to read a source code and
navigated to where you need to alter
or add code to your scripts.

All this functionality is implemented
by sub classing the Qt’s
QSyntaxHighlighter class, which is
then connected to the QTextEdit sub
classed class used for the editor
component. It will be described
shortly.

It is only one simple method, we need
to overload and write to get all this
functionality almost for free.

It is the “highlightParagraph-method”
which gets a single line and the
previous lines status as input
parameters, and returns this lines
status when finished coloring the
current line.

It then uses a simple lexical analyzer,
which I wrote, to collect the tokens to
be colorized by calling the
“setFormat” method for the actual
coloring.

I use a simple QMap dictionary for all
the reserved keywords, as an easy and
fast lookup table to decide if we need
a blue colored text or not.

It is that easy to use the pre designed
classes and subclass them for just a
small change, to get the result
needed.

The editor component

The editor component is simply a sub
classed QTextEdit class from the Qt
framework.

I have connected my custom color
syntax subsystem to it for the coloring
of all the text shown in text editor.

The only method necessary to
overload, is the key press event
handler, which must later handle all
kind of fancy editing functionality.
Like automatically control the
indentation levels in the source code.
Bring out the list of methods in Python
classes for easy selection and so one.

Later we will add a full form editor
sub system to the editor as a separate
tabulator. It is just a dummy form
editor for now.

The interpreter component

The interpreter component is more
complex than the editor component.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 19 of 74

It uses the same syntax color system
as the editor components do. I will
therefore not comment on that,
except for a little turn off coloring
system, the interpreter use.

When the interpreter writes output
from Python system to the user, it will
not have this output colored as the
standard user input. This is simply
implemented as a pre text to all the
output in form of a “! “ combination.
This turns off all the coloring for that
given line only, and will not be shown
on the screen.

This component also uses a QTextEdit
class from Qt framework, and sub
class it to overload all the key input
from the user. Here it is much more
important to control the user use of
keyboard, since it is going to be sent
to the parser in a timely fashion.

All communication between the
interpreter window and the
interpreter system is sent over a local
TCP/IP socket connection on socket
8101.

This socket communication is also a
communication line between the two
threads used to run the whole system.

To implement this important socket
connection I use two classes from the
Qt framework. It is the QSocket class
and the QServerSocket class.

In my design, the interpreter window
is the client part of the connections,
and it will ask for a valid connection
by calling a server socket at port
8101. It will then receive a
communication socket to use for the
rest of the applications run time.

The Python interpreter system is
designed to be a server in this
communication link, and will only
accept one client to connect at a
time.

Later I have plans for yet another
client / server communication link for
the communicating of variable status,
and the methods of the Python classes
and so one. This is not yet planned,
and maybe there is a better way to do
this.

There still are a few bugs in the
application that needs to be
addressed before it can be found
useful. One of the small annoyances is
line numbers in the editor windows
that still doesn’t exactly cooperate at
all times.

Since I am under a strict deadline,
and since this is my second attempt to
create a useful mockup of how I want
the final application to look, I haven’t
prioritized bug killing.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 20 of 74

Python parser in C++

Computers have problems
understanding the humans and their
languages directly, both orally and in
the written form.

Humans can not easy or at all talk
computer language directly, so we
need an efficient way to translate
automatically between what the
humans understand and what the
computers can execute for us.

All human languages is very complex
and has a large number of different
words, with different meaning based
on the context of sentence or even
the tone we speak the words in.

It is most likely impossible to make a
system that can translate directly
from a human language to something
the computer can understand and
then execute directly.

To complicate the process even
further, we have several different
instructions set on different computer
system using different processors. This
makes is mostly impossible to move
programs between processors without
having to translate again.

Even the operating system may differ
so much, that a program can’t just be
moved from one system to another
without seriously reprogramming.

To solve this problem in both ends of
the translation process, it is normal to
design special computer languages.

These are much simpler in their
complexity and number of known
words to handle. This makes it
possible for smart programs like
compilers or interpreters to translate

from computer language designed for
human understanding to something
the computer can execute.

Since different computers use
different processors with different
instruction sets and architecture, we
need to create separate translators
for all the computer architectures we
want to support.

Some systems are based on a
complete different approach to solve
this problem.

They use virtual byte code executable
engines to execute a made up virtual
instruction set that is decoded into
real executable instructions.

You basically invent a virtual
processor with a simple portable
instruction set, and just write the
translator layer for each real
processor you want to execute on.

Your programs then, just need to
target this virtual processor, and will
be automatically available on all
platforms with this translator.

The Python – Realizer system will
eventually use such a system with a
virtual executing machine and
translating between Python code
written into a text file or directly
from user, and to this virtual
instruction set, before finally being
executed by translating to the native
execute instruction set.

To ease the process of designing and
understanding such a complex system
as compiler and interpreter are, we
need to divide and conquer it into
several smaller components.

Each component is responsible for a
limited part of the translation process
and does that very efficient and

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 21 of 74

makes it easier to design and
understand the whole system.

The first part of the translating
process between the Python textural
code and actual being able to
executable on a designated
destination platform is to read the
actual text and translate it to what
we call “Abstract Syntax Tree”, or
node tree which contains all necessary
information needed to translate to
the final virtual executable code.

The component responsible for this
first translating step is called a
parser. The parser is actually divided
into two parts. The first part
translates actual text word, numbers
or other symbols to something the
next step can handle.

This text is in the Unicode13 format,
and is capable of handling all the
world alphabets in 16 or 32 bits
chunks, instead of the old standard
with 8 bits chunks and only 256
different characters.

The Result of this first translating
process is a numerical representation
of the textural symbol found in the
text based source code. This is called
tokens, which are often an enum14
type with only legal symbols as
member.

The second part is really the parser. It
translates from such tokens based on
the grammar rules into an abstract
syntax tree with nodes for each of the
language construct. This part is also
responsible for reporting grammar
errors found in the text.

13 Unicode – A standard for international
character sets, supporting a larger set of
characters than standard ascii set.

http://www.unicode.org
14 Enumerating data type in C++

All the information needed for each
language construct, like the name of a
variable or the text of a string, is
stored into its corresponding node for
future handling.

This part of the compiler process is
what we call architecture in
depended, but source language based.

This means it is locked to the source
language, but can be used in several
different compilers with different
resulting executable code.

In our case, it is locked to Python 2.4
grammar, but can be used in several
different compilers without having to
modify the grammar or components
made to handle it.

This part of the translation process is
often referred to as the front-end
stage of the translation, while the
code generation phase is referred to
as the back-end stage. In this chapter
we will concentrate exclusive on the
front-end phase of the translation
process.

I will describe the design decisions
made for the parser components and
most of its details and its data
structures.

The Parser is entirely written in C++
as a class with all the needed
functions built-in as methods of that
class. It consists of less than 3000
lines of C++ code, and is quite
compact and easier to understand
than most others.

I have made at least ten different
version of this parser through the last
year for different purposes. First I
made several editions for the STL15

15 Standard Template Library.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 22 of 74

library and wchar_t16 based
characters.

When I decided to use Qt library
exclusive instead of the STL library, I
rewrote the parser for using data
structures found in Qt like QMap17 and
QValueList18 classes.

In other compiler designs and
implementations, it is normal to use
special tools to write the parser in,
for automatically generation of parser
source code. Such generators like
Bison, Yacc, javaCC and others
creates large and difficult to
understand source code for the parser
based on an input description of the
grammar of the language.

It is often not so fast in its parsing
duties either, and makes the error
reporting more difficult to make sense
of for the end user. It also means you
need more tools available on all the
platforms you want to support.

Even the all powerful gnu compiler
suite, is in the process of converting
its parser from these tools to straight
C++ based handwritten parser.

One of my inspirations for the design
of the new Python parser has been
Microsoft’s C# compiler19, which is
available in a open source edition for
your own browsing.

It is very complex, since C# grammar
is not very easy to translate directly
without needing to know your context
at all time. Python grammar is
however a very well thought through

16 Wchar_t is a unicode character in C++.
17 QMap is a dictionary type.
18 QValueList is a list type.
19 This was available on www.microsoft.com
earlier. You may try to search for it on that
web site. It is only the parser technique I used
as an inspiration for my own parser.

and excellent designed for just one
token look ahead at the time, for
finding the right grammar rule to
follow next.

We call this kind of parser, a recursive
descent parser, which uses methods
for each grammar rule it needs to
travel in the process of parsing a
source code file or user input.

You will find the latest edition of this
C++ implemented parser in just two
small files:

 pythonParser.h
 pythonParser.cpp

They are located in the following
location at this location:

 Kildekode/Realizer/Interpreter

Lexical analyzing

First step in the translation process
from textural representation to an
abstract syntax tree is to decode each
textural element into something, the
parser can understand. This is symbols
called tokens and sometime data
related to some of the tokens, like
variable names and number contents.

It is important to know that, when I
converted the parser component into
pure Qt usage, I only needed to
modify the understanding of this text
format and switch the use of two
small container classes.

The responsibility of the lexical
analyzer, is to check for correct
textural representation of variable
name, correct numbers with collected
result, legal Python operator use and
reserved keyword found in grammar
most be correctly collected.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 23 of 74

The parser part will ask for one
decoded token with collected data
attached to it at the time, in the
process of building the all important
resulting node tree based on legal
grammar rules.

The token type available to the parser
from the lexical analyzer is grouped
into three types.

The first group is the 29 different
reserved keywords defined in the
Python grammar with special
meanings. These names can not be
used as variable name, since that will
confuse the parser when doing the
translating.

Then we have a group of delimiters
and operators. They are one to three
letter long operator symbols like +, -,
* and the likes.

And finally we have the literals like
variable names, numbers and strings
which need to be collected for the
parser.

The Parser gets what it needs just by
calling the same method over and
over again until it gets an end of file
marker. This method is called:

TOKENID scanToken(FullToken *pFT)

This method is the lexical analyzer,
and returns information as a token
code (TOKENID) and collected
information in a data structure called
FullToken.

Reserved keywords

The following reserved keywords are
recognized in Python 2.4 grammar in
my parser and in the original C based
parser.

and assert break
class continue def
del elif else
except exec finally
for from global
if import in
is lambda not
or pass print
raise return try
while yield

These keywords can not be used as
variable name, since they have special
meanings in the grammar.

Operators

The following operators have special
meaning in the Python grammar, and
therefore needs to be used in the
correct context.

+ - * ** / //
% << >> & | ^
~ < > <= >= ==
!= <>

Delimiters

The following tokens are used for
separation of statements in the
Python grammar.

() [] { }
@ , : . ` =
; += -= *= /= //=
%= &= |= ^= >>= <<=
**=

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 24 of 74

Special meaning tokens

Python also have four tokens with a
very specialized meaning during
parsing of the Python source code,
they are:

<NEWLINE>
Indicates change of line in the source
code, and will have different meaning
based on its context.

<INDENT>
This is the way Python controls block
of codes, by having different
indentation levels for each unique
code block. It does not use { } to
control block structures like most
other languages.

<DEDENT>
This is the matching token to indicate
block end. A little like ‘}’ in other
languages.

<EOF>
This has two meanings in Python. In
the process of parsing a file, it
indicates that the end of file has been
reached. In interactive mode, it just
indicates that the parser may need
more input from the user, or the end
of this sentence.

Literals used in Python

Python has three literal types, which
handles all the user defined data for
the parser to generate necessary
nodes in the abstract syntax tree.

They are as follows:

<NUMBER>
All valid numbers like 1.34 , 3J , 34L
and others are decoded as token
<NUMBER> with the needed
information added as text string for
later decoding.

<STRING>
String is all textural representation,
which are started and ended with
either one or three ‘ or “ characters.
Those with three can span several
lines if needed, the one with only one
can not span more than one line.

<NAME>
This is the name of the user variables,
with collected name attached to the
token for symbol table handling in
later steps of code executing.

Implementation details

To speed up the process of checking
for reserved keywords, every time a
name token is found, we use a
dictionary class for fast lookup of
needed words.

In the Qt version of the parser, I use a
simple

QMap< QString, TOKENID>

In this Qt class we use textural strings
of the type QString20 to store the
lookup names, and the corresponding
token symbol as return values.

When you have a text you want to
check for keyword or name literal,
you look it up in the dictionary and

20 QString is Qt string class for all handling of
text with Unicode or not format.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 25 of 74

you get either the reserved token
symbol if found or name symbol if not
found.

The lexical analyzer is alone
responsible for the block control in
the parser, by giving the
corresponding special token for
indent, newline and dedent based on
its context.

It makes sure we only have valid
indents of code blocks in the whole
program, and decides how many
dedent(s) are needed when the code
blocks end.

The token <IDENT> indicates a new
code block, and the lexical analyzer
needs to remember how many white
spaces is collected before the code
block start and store this for later
check.

The Parser has no control of block
levels, and really don’t care about any
thing else than getting <INDENT>
token to indicate the new code block.

The token <DEDENT> can come in one
or more symbols to the parser. Each
token symbolize leaving one code
block at a time in the grammar
analyzing.

The lexical analyzer must make sure
indentation levels are correct, or give
error messages to the user.

The token <NEWLINE> is important to
signal to the parser when a line
breaks. Not all line breaks are given
to the parser. If we have a line with
only comments or white space, it is
simply ignored and never sent to the
parser as a token.

Example of block control and the
corresponding token codes returned to
the parser:

class test :

 # This is a test program!

def __init__ (self, name):

 self.name = name

The resulting block control tokens
returned to the parser will be:

 … <NEWLINE>
 Ignored three lines!
 <INDENT> … <NEWLINE>
 Ignored line!
 <INDENT> … <NEWLINE>
 <DEDENT> <DEDENT>

Every legal indentation levels are
stored in a QValueVector21 class
structure declared as:

 QValueVector<unsigned long>

It function as a vector for push and
pop of the indentation levels as
needed for correct issuing of the
needed tokens to the parser for block
control.

How many indentation values or levels
we have pushed is stored in a simple
variable called mIndent.

When we have a line break in the
source code, a variable with the name
mPending will control how many
<DEDENT> tokens we will need to
issue to the parser before it can
continue analyzing the grammar rules.

21 QValueVector is Qt vector class for push
and pop of indentation levels.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 26 of 74

The lexical analyzer is as we have
described above, based on one
method called scanToken.

This method returns token code to the
parser, but it also take a pointer to a
very important data structure called
fullToken, which has space to store
additional information about a token
to be returned to the parser.

We will now present those data
structures used in this method.

Data structure TOKENID

This is an enumeration type in C++
with values for all valid token a parser
can get from the lexical analyzer. It is
a numerical value for the parser, but
a textural name for us.

All valid values are defined in the C++
header file mention earlier for the
parser class, and I will not bore the
readers with repeating it here.

It basically has the describing name
for each Python token with data
structure specific prename.

Examples are given below:

PY_EOF
End of file token

PY_NEWLINE
Line break token that count for the
parser.

PY_FOR
Reserved keyword “for” token

It is a total of 80 different token
codes defined and used in this parser,

and that is describing all symbols used
by the parser in Python 2.4 grammar.

By defining all tokens as member of
an enumeration data type, we make
sure that we can’t send bogus tokens
from lexical analyzer to the parser by
mistake, and it is much easier to
understand the textural names in
stead of the plain numbers.

Data structure FULLTOKEN

All contact between the lexical
analyzer and the parser is provided
through TOKENID enumerations and if
more details about each token found
are needed, it is stored in a structure
called FULLTOKEN, which have space
for the information about line and
column of start position of the token
in text and optional collected data by
some of the tokens.

This data structure is defined as:

typedef struct {

 TOKENID iToken;

 QString id;

 unsigned long iLine, iCol;

} FULLTOKEN;

I will now explain each data field used
in this C++ structure.

The first field iToken, is just a copy of
the returned token code from the
lexical analyzer.

The second field is a QString for
storage of text or number for name,
string and number tokens.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 27 of 74

The last field contains the line
number and column index of that line,
for the start character of the current
token. This is for error reporting in
parsing and executing of Python
scripts both from file and user input.

Collecting text to analyze

The first few edition of my parser
where designed to get its input from
the standard input and report all
output to the standard output or the
standard error as needed. This made
them easy to write and impossible to
integrate in a GUI application in a
good way.

Getting input from files was
reasonably simple by using streams in
C++ for reading characters into a
buffer, containing characters in
wchar_t Unicode format.

When I decided to only have a GUI
interface to the interpreter and
thereby the parser, I needed to
rethink input / output system. Both
reading input from files and directly
from the user will be needed to be
handled differently in a GUI
environment.

As described in the application
chapter, I have designed the system
to use an internal TCP/IP
communication on local sockets for all
communication between the
interpreter and the GUI of the
application.

I use two separate threads in the
application to divide the work
between the GUI work, and the
interpreting of Python code. This is to
prevent freezing of user input in the
application, when the interpreter is
running.

I have also a locking mechanism to
prevent user input from the
interpreter window, when running
Python code from a file or from the
editor’s memory.

This means that the parser needs to
communicate both ways over a socket
based connections to the GUI
application’s interpreter window.

All network communication internal in
the application is handled by Qt’s
excellent support for Sockets. I use
two Qt classes for that purpose. They
are QSocket and QServerSocket.

I also use a class QTextStream
connected to the sockets for
streaming purposes.

When there is input from a file, I read
the whole file into a QString, and
access one character at the time from
this class. When the input is supposed
to be interactive directly from the
user input, I request data from the
socket and sleep until something
arrives for me to process.

The interpreter system will send
information to the interpreter window
with request for input by showing a
prompt.

There are two possible request
prompts, and they are either >>> or if
line continues on next line …

We also have an internal prompt
which is not seen in interpreter
window for overriding text coloring in
window of output text from the
parser. We simply use a string with “!
” at the beginning of the line for this
to work.

My parser, use some variables to
control its work. We have counters to
control the current place in buffer

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 28 of 74

and where the current line starts in
the buffer. This is for local calculation
of the line and column, and for
knowing where to start looking for the
next token.

We also have status flag for error
situation and for controlling where we
are getting our input, file or user
input.

Abstract syntax tree

It is the parsers job to create a tree
with all the necessary nodes in correct
place and pointing to each nodes
parent node as needed. When it does
this job, it also checks for the correct
syntax and collect necessary data to
some of the nodes as needed.

Only if there is not found errors during
building of this tree, will the code
generator continue to do its work.

All the data structures that are not in
this node tree will at end of the
parsing become deleted. Only the
final node tree is used by the next
step in the translation done in a
Python compiler.

Definition of node structure

Every node used in the abstract syntax
tree is defined as a C++ structure as
follows:

typedef struct Node {

 NODETYPE mType;

 NODE *pLeft, *pRight;

 QValueVector<NODE *>
m_siblings;

 unsigned long mLine, mCol;

 QString text;

} NODE;

This node structure contains all the
information the compiler needs to
generate code in a code generator,
and all the information that will be
inserted in a symbol table at runtime.
This makes the parser a separate
component that execute in depended
of the rest of system, and it leaves it
to the next step to continue the
translation process.

It is important to notice, that the
symbol tables will be used both under
the code generation and under the
executing of compiled byte code in
the virtual machine, and not only in
the first step as in traditional
compilers.

Now I will describe each field of the
node structure:

The first field is the one describing
what kind of node we are, for the
code generator to generate correct
code for each of the construct in the
tree.

This is also an enumeration type
defined later, and does for the nodes
what TOKENID does for the lexical
analyzer.

Since we are designing a node tree,
we need a pointer to left and right
child node. This is the second field of
the node structure. We could manage
to build a tree with only this two child
node to each parent node, but that
will create larger tree than needed,
and confuse us under the code
generation phase.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 29 of 74

We want to use a more compact node
tree for easier code generation in a
later step of the compiler, and easier
understanding of Pythons construct to
code conversion. To manage to
compact the tree a lot, we collect
more child nodes and put them into a
vector. For this we have a
QValueVector class container as third
field in the node structure.

Not all the node types use more than
two child nodes. Some even use none
or just one child node to get its
business done.

Because of possible error under the
executing or code generating, we will
need to store information about
location for this node as line, column
pare of where its token where found
in the source code.

And last we store the text or the
number found as part of the name,
string or number nodes in text field.

It will be the code generator that will
handle the decoding of this
information on the construction of
necessary Python data type objects.

Definition of node type

The parser uses a total of 93 different
and unique node types to express the
Python source code as abstract syntax
tree. The code generator part of the
Python compiler will work entirely on
this tree to generate the finished code
and data objects.

We will mainly divide node types into
four groups. First we have the
statement nodes to construct
instructions for loops and jumps in the
generated code based on some value
calculated or found.

The parser also contains nodes for
importing of other modules to be used
in the context of this module.

A code example for this kind of node
is as follows:

If a == 1 : pass

This will execute the pass statement
based on whether a value ‘a’ will be
equal to 1, else it will not.

This will be generating an if-node as
the top parent with the equal-node as
left child node and the pass-node as
right child node. The equal-node will
have a name-node as its left child
node and a number-node as its left
child node.

The name of the variable ‘a’ and the
number ‘1’ will be stored as extra
information in the name and the
number nodes.

The next group of node-types is
expressions, which are calculations
and data manipulating instructions. A
lot of a programs work is done with
these nodes / instructions.

Example of an expression node:

Test = a * 4 + (b – 4) / 1.4

First node of this expression will be a
assign-node (=) with a name node as
left child node and rest of expression
as follows on right child node.

The third group of node types is the
container nodes for class, methods,
functions and more. They also collect
statements to be executed

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 30 of 74

continuously one after another as
stored in the container node.

The last group is a very important
one. It contains the literal nodes like
name, string, number or more
complex data collecting like
dictionary and lists.

Test

0.34J

“Hello strings”

{ “a” : 1, “b” : 2 }

[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]

We will now present all node types in
use by the parser in the node tree.

Statement nodes

NK_IF NK_FOR
NK_DEF NK_CONTINUE
NK_YIELD NK_GLOBAL
NK_ELIF NK_TRY
NK_CLASS NK_RAISE
NK_EXEC NK_FROM
NK_ELSE NK_EXCEPT
NK_PASS NK_BREAK
NK_PRINT NK_IMPORT
NK_WHILE NK_FINALLY
NK_DEL NK_RETURN
NK_ASSERT NK_LAMBDA

This are both complex and simple
operations, one needs to generate
code for, but often it is generated as
little as one instruction based on
those nodes.

Expression nodes

The following nodes are for expression
described in the node tree:

NK_ASSIGN
NK_MINUS_ASSIGN
NK_DIV_ASSIGN
NK_BITWISE_AND_ASSIGN
NK_BITWISE_XOR_ASSIGN
NK_SHIFT_RIGHT_ASSIGN
NK_DOUBLE_DIV_ASSIGN
NK_ANDTEST
NK_LESS
NK_EQUAL
NK_LESS_EQUAL
NK_IN
NK_IS
NK_IS_NOT
NK_BITWISE_XOR
NK_SHIFT_LEFT
NK_PLUS
NK_MUL
NK_DOUBLE_DIV
NK_PREPLUS
NK_TILDE
NK_SUBSCRIPTLIST
NK_LISTFOR
NK_GENFOR
NK_RANGE
NK_PLUS_ASSIGN
NK_MUL_ASSIGN
NK_MODULO_ASSIGN
NK_BITWISE_OR_ASSIGN
NK_SHIFT_LEFT_ASSIGN
NK_POWER_ASSIGN
NK_ORTEST
NK_NOTTEST
NK_GREATER
NK_GREATER_EQUAL
NK_NOT_EQUAL
NK_NOT
NK_NOT_IN
NK_BITWISE_OR
NK_BITWISE_AND
NK_SHIFT_RIGHT
NK_MINUS
NK_DIV
NK_MODULO
NK_PREMINUS
NK_POWER

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 31 of 74

NK_SLICEOP
NK_LISTIF
NK_GENIF

Those node type, work with the users
defined data structures and are the
foundation for most of a programs
work.

Container nodes

The following nodes are container
nodes which are collecting statement
nodes as member nodes.

NK_MODULE
NK_VARARGLIST
NK_SIMPLESTMT
NK_EXPRLIST
NK_DOTTED_AS_NAME
NK_DOTTED_NAME
NK_CONTAINER
NK_FORMALLIST
NK_TESTLIST
NK_IMPORT_AS_NAME
NK_DOTTED_AS_NAME
NK_IMPORT_AS_NAME

Literal nodes

The following nodes have always some
kind of additional information for the
code generation like name or number
details.

NK_NAME
NK_LIST
NK_DICTENTRY
NK_NUMBER
NK_LISTGEN
NK_STRING
NK_DICTIONARY

Example node generation

I will now demonstrate a node tree
building of a simple compound
statement structure, using if / elif
and else statements, and what kind of
nodes there will be generated and in
what order.

If a == 1 :
 print “Hello World!”

elif a == 2 :
 print “Bye World!”

else :
 pass

The parent node for this statement
will be an if-node with the expression
a == 1 as left child node. Every thing
after colon in the first sentence will
be placed as a right child node.

All “elif” statements and the one
optional “else” statement will be
placed in the siblings vector as they
are discovered through the parsing.

Left node will be an equal-node with
a name node on its left side and a
number node on its right side.

On the right side of the parent node
there will be a print-node with a
string node as its left child node.

The rest of the statement sequence
will be generated in much the same
way, except for being an elif-node or
else-node and put into the siblings
vector in the order found. That is
else-node will always be stored last.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 32 of 74

Parser

At last we will detail the actual parser
part of the parser. That is the
grammar rules Python is built out of.

The parser is constructed as a series
of methods, which each are handling
checking a grammar sentence, and
the necessary node generation to
represent a grammar rule in the
syntax tree.
We can delegate those methods into
three groups of grammar rules.

We have the statements rules which
represent grammar rules for the
program control and organisation.

Then we have the expression grammar
rules for the actual computation done
in a program. This is also the group
that manipulates the user data
objects.

The last group is start rules for the
grammar based on what we are
supposed to parse into an abstract
syntax tree with the corresponding
nodes.

Do we parse from the user input or
from a file are decided by choosing
the right start grammar rule.

Start from user input

When doing interactive parsing from
the user, we will let the parser ask for
user input directly from the user as
needed. The parser object must be
created and started in asking for input
mode. That means it is waiting for the
input from a user over the local
socket connections.

We will of course give the user
necessary prompt when we ask for the
input, to let him know what is
expected by the parser at all times.

The parser starts by the following
methods gets called by the interpreter
in interactive mode:

Bool pythonParseFromUser
 (QString lineText);

This provides the first line to be
analyzed by the parser. This will start
the parser by calling the following
grammar rule:

Void pythonSingleInput();

We will now parse the user input and
ask for more input as needed to
complete all the grammar rules
started by the user input or it will
generate an error messages.

The complete grammar rule set, is
provided in appendix A for
completeness.

Start from file or buffer

My last edition of parser is capable of
parsing both out of a file input and
straight out of the editor buffer of the
application.

To start parsing from a file, we start
by calling the following start method:

Bool pythonParseFromFile
 (const QString filename);

We will then try to open a file with
the give filename and read the whole
file into a QString buffer.

We start parsing of the top grammar
rule by calling the following start rule
method:

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 33 of 74

Void pythonModule();

It will then try to parse the whole file
or report error messages to the user
input window in the application.

When we want to parse the input
directly from the editor window of the
application without saving to a file
first, we send the whole buffer as a
QString buffer to the following start
method:

Bool pythonParseFromString
 (QString buff, QString name);

This will start the parsing with the
following start grammar rule in the
method:

Void pythonModule();

This method takes care of the start
grammar rule for a file and an editor
window source code with the
following grammar in EBNF22 format.

File_input: (<NEWLINE> | stmt)*
<EOF>

This mean that a file input has zero or
more stmt rules or tokens <NEWLINE>
followed by the end of file token.

Compound statements

Grammar rules of the type compound
statement, is a really important
language construct for telling the
computer how to manage the
executing of a program.

This is the way to enable part of the
program to be executed more than
once in loops, and control which

22 Extended Backus-Naur Formalism.
A language design to describe grammar of
computer languages in a formal way.

choice a program can follow to get
the result done.

This grammar rules often contain
several lines of code to manage one
grammar rule. That is, one has several
choices to where the program should
jump, based on some computation
done as part of the sentence.

I will first present a very common and
import grammar rule for executing
choices based on some expressions.

It is (if / elif / else) construct, which
follows the following grammar rule in
parser:

If_stmt:
 <IF> test <COLON> suite
 (<ELIF> test <COLON> suite)*
 [<ELSE> <COLON> suite]

This construct, have always on start
sentence with an ‘if’ clausal and an
expression test part, before one get
to the suite of statement to be
executed on a true result.

Such construct, can have none or
more ‘elif’ clausal as optional
executing path for the program to
follow based on the result of the test
expression.

There is an optional else clausal
available to get a default executing
path for the grammar rule.

All the test expression must result in a
Boolean value, so that a program can
make its decision on which path to
follow.

This grammar rule is programmed in
the method:

 NODE* pyIFstatement(void);

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 34 of 74

This rule, generate a NK_IF node with
necessary nodes attached for rest of
the grammar rule.

The next compound grammar rule to
be discussed, is loop construct with an
optional else part.

It is the (while / else) statement,
described in the following grammar
rule used by the parser:

While_stmt:
 <WHILE> test <COLON> suite
 [<ELSE> <COLON> suite]

This is handled by the following
method in the parser:

NODE* pyWHILEstatement(void);

Based on the result of a test
expression, the suite of statements
will be executed none or many time,
and finally the else part will be run
when while terminates its looping.

This rule generates a NK_WHILE node
with necessary nodes attached for the
rest of the grammar rule.

The third compound statement, is the
(for / else) construct, which
implements the following grammar
rule:

For_stmt:
 <FOR> exprlist <IN> testlist
 <COLON> suite
 [<ELSE> <COLON> suite]

This construct iterate the “exprlist”
grammar rule over a “testlist” range,
and does execute the suite of
statement each time.

The else part will be executed at the
end of ‘for’ iteration process as a way
out of the loop construct.

This is handled by the parsers method
with the following signature:

 NODE* pyFORstatement(void);

This rule, generate a NK_FOR node
with all the necessary nodes attached
for the rest of the grammar rule.

The last compound statement for
choice of executing path is the
exception handling construct with the
following two grammar rules:

Try_stmt:
(<TRY> <COLON> suite
 (except_clause <COLON>
 Suite)+
 [<ELSE> <COLON> suite]
| <TRY> <COLON> suite
 <FINALLY> <COLON> suite)

Except_clause:
 <EXCEPT> [test [<COMMA>
 Test]]

This is a bit messy grammar rule, but I
will explain. There are in reality, two
different ways to program the
exception handling in Python. The
simple one is a simple try / finally
statement, where one tries to execute
a suite of statement in a try block.

When that is finished, the code in the
finally block, will be executed.

The other exception construct
grammar-rule is more complex and
has the same suite of statements to
execute in a try block, but gives one
or more exceptions options if an error
is en counted under the executing of
try block.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 35 of 74

It also have an optional else part,
which will be executed if no
exception where catch.

The construct mention is being
handled by the parsers method:

 NODE* pyExcept(void);

This is for both grammar rules and this
produce a NK_TRY node with the
necessary child nodes attached as
needed to describe the full rule.

In addition to mention compound
statements which is for program
executing control, we have some to
collect other statements into a group
for class declaration and function
declaration both inside and outside of
the class.

The first one and a very important one
in object oriented programming is the
data type class.

It is defined by the following, very
easy at first sight, grammar rule:

Classdef:
 <CLASS> <NAME>
 [‘(‘ testlist ‘)’]
 <COLON> suite

This is a construct for construction of
a class definition, with the optional
inheritance of one or more base
classes, before it describe methods
and local variables in the class type.

This is handled mainly by the
following parser method:

NODE* pyCLASSstatement(void);

This rule generates a NK_CLASS node
with its necessary nodes attached to
describe rest of the grammar rule.

Last we have the function construct,
used both inside and outside of class
objects.

The grammar rule for them both, are
the same simple grammar rule:

Funcdef:
 [decorators] <DEF> <NAME>
 ‘(‘ vararglist ‘)’
 <COLON> suite

This is handled by a total of four
methods in parser:

NODE* pyDEFstatement(void);
NODE* pyDecorator(void);
NODE* pyParameters(void);
NODE* pyVarArgsList(void);

This rule, generate a NK_DEF node
with its necessary nodes attached for
the rest of the four grammar rules.

Decorators are a new construct
addition to a function, new in Python
2.4 grammar, and it is included in my
parser.

Simple statements
Python has a lot of different types of
so called simple statements. That is
statements which can be put on a
single line, and often share a single
line with only a ‘;’ as delimiter. List
of all the simple statements is found
in grammar file as appendix A.

My Python parser takes care of all the
simple statements in the following
methods in the parser class:

NODE* pyExprstmt(void);

NODE* pyPrintstmt(void);

NODE*pyDelstmt(void);

NODE* pyPassstmt(void);

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 36 of 74

NODE* pyBreakstmt(void);

NODE* pyContinuestmt(void);

NODE* pyReturnstmt(void);

NODE* pyRaisestmt(void);

NODE* pyYieldstmt(void);

NODE* pyGlobalstmt(void);

NODE* pyExecstmt(void);

NODE* pyAssertstmt(void);

NODE* pyImportstmt(void);

Some of the simple statements can
only be used in loops as a way out of a
loop, or to jump to the next iteration.

These statements are break or
continue. The return statement can
only be used to return with or without
values from a function or a method of
a given class.

The pass statement is just for letting
the Python interpreter a chance to
ignore this code path under the
executing, with do nothing as the
actual meaning of this statement.

To import external modules for added
functionality in the current script, we
have several possible import
statement constructs in Python.

All of the other simple statements can
be used freely in the program, even as
multiple single statements on the
same line, separated only by a ‘;’
character.

Simple statements grammar rule
follows the following grammar rules in
parser:

Expr_list:
 testlist (augassign testlist |
 (testlist ‘=’ testlist)*)

Where augassign is one of:

 += -= *= /= %=
 &= |= ^= <<= >>=
 **= //=

Print_stmt:
 <PRINT> ([test (<COMMA>
 test)* [<COMMA>]]
| ‘>>’ test [<COMMA> test)+
 [<COMMA>]])

Del_stmt:
 exprlist

Pass_stmt:
 <PASS>

Break_stmt:
 <BREAK>

Continue_stmt:
 <CONTINUE>

Return_stmt:
 <RETURN> [testlist]

Yield_stmt:
 <YIELD> testlist

Raise_stmt:
 <RAISE> [test [<COMMA> test
 [<COMMA> test]]]

Import_stmt:
 Import_name | import_from

Import_name:
 <IMPORT> dotted_as_names

Import_from:
 <FROM> dotted_name
 <IMPORT>
 (‘*’ | ‘(‘ import_as_name ‘)’
 | import_as_name)

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 37 of 74

Global_stmt:
 <GLOBAL> <NAME> [<COMMA>
 <NAME>)*

Exec_stmt:
 <EXEC> expr [<IN> test
 [<COMMA> test]]

Assert_stmt:
 <ASSERT> test [<COMMA>
 test]

A simple explanation about the
notation used in the grammar rule:

<NAME> is a token.
(|) is a two way grammar rule. Use
either the one rule before ‘|’ or the
one after.

[] is an optional part of the grammar
rule.

For zero or more occurrences of the
grammar rule, we use the ‘*’
character.

For one or more times the grammar
rule, we use the ‘+’ character.

We use ‘(‘ and ‘)’ to group the
grammar rule. This is of course much
the same as regular expression
matching.

The text before ‘:’ character, is only
the name for this particular grammar
rule. This makes it easy to call the
grammar rule from other rules.

Expressions

The last part of the set of all the
grammar rules, but the one that do all
the computation in a program, is
expression statements.

It is usually the test grammar rule
that start the decent into the

expression rules until the parser found
a legal data type or report an error
messages trying to find one, to the
user.

The way “down” in this method group
is ordered by the following needed
rules for operator precedence. I will
end the explanation of the parser,
with a guided tour down the
descending parser in the expression
statements.

All expression starts with a test rule,
or a list of such rules. The parser
starts with the following method:

NODE* pyTest(void);

In this method we take care of
checking for the operator “or” or a
lambda expression. The method will
generate a node of type NK_OR or
NK_LAMBDA if it found what it is
looking for in this method, or else just
returned the lower methods node
upwards in the call tree.

Whenever it doesn’t find the grammar
rule, it will call the next method in
descending order until it finally either
find a valid token, or report an error.

Next method called, is the following
method in the parser:

NODE* pyAndTest(void);

This method checks for operator
“and”, and generates a NK_AND node
if found, else it calls the next method
which is the following method in the
parser:

NODE* pyNotTest(void);

Here we check for the operator “not”
and we generate a NK_NOT node if
successful. It is important to notice,
that all this operators can be in series

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 38 of 74

of the same operator. Like the
following expression with and
operators:

 A and b and c and d

This just generates “and” nodes
attached to the one in front until all
are generated into the syntax tree.

After the “not” operator, we will call
a method who is handling the
comparison between things. Things
being a left and a right node
expression compared with this
operator.

This is taken care of in a single
method called:

NODE* pyComparison(void);

This can check for the following
comparison operators:

< > == >= <= <>
!= in not in is is not

This will, if found, generate a node of
one of the following types:

NK_LESS
NK_GREATER
NK_EQUAL
NK_LESS_EQUAL
NK_GREATER_EQUAL
NK_NOT_EQUAL
NK_IN
NK_NOTIN
NK_IS
NK_ISNOT

The next method to be called is the
following method in the parser:

NODE* pyExpr(void);

This method can also be called
directly from a method for a list of
expressions.

We are now into the realm of bitwise
operators. That is, operators working
on bits of data and not on logical
program jumps, as above methods
have been handling.

It is the operator ‘|’ that is being
handled by generating a
NK_BITWISE_OR node if found, or we
call the next method in the parser:

NODE* pyXorExpr(void);

This method checks for existing of
“xor” operator and generates a
NK_BITWISE_XOR if successful, or call
the next method in the parser:

NODE* pyAndExpr(void);

This checks for bitwise “and” operator
and generates a NK_BITWISE_AND
node if successful or else call the next
method in the parser:

NODE *pyShiftExpr(void);

This method checks for one of two
possible shift operators. That is,
either “<<” or “>>” operator and
generates on of NK_SHIFT_LEFT or
NK_SHIFT_RIGHT node as a result.

Then we call the next method in the
parser on our way down the
expression call tree, which is:

NODE* pyArithExpr(void);

This checks for plus or minus
operator, and will if successful return
a NK_PLUS or NK_MINUS node to its
caller.

The next method in the parser to be
called on our way downwards is:

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 39 of 74

NODE* pyTermExpr(void);

This one, checks for one of the four
possible operators, which are:

* / % //

Generated nodes can be one of the
following, if successful:

 NK_MUL
 NK_DIV
 NK_MODULO
 NK_DOUBLE_DIV

Next method to be called is:

NODE *pyFactor(void);

This method of the parser, simply
checks for possible plus, minus or the
symbol “~” tokens, as a pre operator
to the rest of the expression.

Nodes generated are of one of the
following possible node types if
successful:

 NK_PREPLUS
 NK_PREMINUS
 NK_TILDE

Next method is:

NODE* pyPower(void);

This methods just check for the ‘**’
operator, which result successfully in
a NK_POWER node.

Then finally, we get down to the
atoms in the very important method
called just:

NODE* pyAtom(void);

Here we check for the all important
“atoms” of Python and collect the
necessary information about the found
data type.

Atoms result in nodes of the type
string, name or number. It can also be
collecting more complex data
structures in Python as list, tuple and
dictionary.

To get a full overview of all the
grammar rules and their place in the
parser, please see Appendix A for full
details of the grammar of Python 2.4

Data structures in Parser

For the parser part of the parser
class, we use only a few variables to
control the executing of the parse
process. These are as following:

bool isCompound;

This indicates when the parser is
parsing a compound statement, which
needs a little more attention to the
details than simple statements.

 bool isError;

This one is simple a flag for reporting
error found during the parsing or the
tokenizing of source code, so we don’t
do unnecessary work in the translation
process.

 unsigned long m_loops;

This one simply takes care of how
many levels of loops we are currently
run into during the parsing of
statements. This is needed for
controlling ways out of a loop.

 unsigned long m_returns;

This one keeps order of how many
methods or function we have to return

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 40 of 74

from before entering the top level of
a program.

I suggest you study the parsers source
code for the full understanding of the
parser process. This is about the tenth
edition of my parser. Older version is
still available on my net site, as
python_old.tar.gz

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 41 of 74

The Python type system

I am implementing the type system
for Python – Realizer (PR) as a class
framework in a dynamic loadable
library called

 libPythonBuiltinsLibrary

This will have different endings based
on which platform it is compiled for.
It will have a “DLL” ending on the
windows platforms, “SO” ending on a
Linux platform and “dylib” on the
Macintosh platform.

This object library is designed for both
to be used directly by the PR
application and separately as a C++
class library if needed in other
applications.

It even has C++ operators built-in in
some of the data type, for more
efficient use in C++ based programs.

The class framework is based on a
base class built for garbage collecting
all memory allocated for objects in
Python. I have chosen to use a pre
existing garbage system called “gc”,
which is available as a pre build
dynamic loadable library.

It is important to now, that I have not
yet started to use this garbage
collector, and it is not implemented
as the top base class yet. This to
make sure my project builds on all
platforms without pre installing too
many depended systems.

This garbage collector is Hans
Boehm’s Garbage collector23.

23 More information and source code is
available at
www.hpl.hp.com/personal/Hans_Boehm/gc/

To start using this garbage collector,
you just need to let the PY_Object
class inherit the base class gc. After
this, every call to the “new” operator
will give you garbage collected
memory to hold the object in use.

Every data type in Python – Realizer
has PY_Object as a base class, and all
common functionality will be stored in
it. The real type system is a
enumeration called PYTHON_TYPE ,
which has member types in the form
of TYPE_xxx , where xxx is the name
of the type in capital letters.

You interrogate the object about its
type by calling the base class method
__type__() which returns its type.

 Later I will implement C++ operators
in this base class to automatically
support valid operators on all Python –
Realizer objects. For now there is
operator overloading implemented in
some of the data types, and they get
listed where needed.

All general references to Python
objects get by a pointer to its base
type. That is not the garbage collector
class.

I will now explain each data type in
details as planned to be implemented
and what is started to be
implemented already.

First I will bring to the attention of
the reader, that there is a few data
type supported in standard Python
that is not planed to be implemented
in Python – Realizer.

The first is the class for Unicode
strings and characters. Since we
always use Unicode in all the strings
and character handling, we do not
need a data type just for Unicode

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 42 of 74

added to the standard string data
type.

Later we can opt for implementing
the missing data types as needed to
support both C and C++ extensions to
our type system.

We do bring a special data type
usually buried into the compiler, out
to the standard data type library for
general purpose use if needed. That is
the code object, which is a container
for the Python’s virtual executing
engine op codes.

It is not expected that users will make
such code objects by hand, since it is
still the duties of the compiler to do
that automatically.

This library is in itself considerable
amount of work, and is by no means
finished. It is just started to be
implemented. All classes are present
for documentation purposes, but only
a few have been started implemented
and none is finished.

All source code for this data type
system is available in the following
path:

kildekode/Realizer/PythonLibrary

Both the header and the code files are
listed here.

For extensive documentation of the C
API used in standard Python and that
needs to be implemented at some
stage in the development of the C++
version, is found in api24 document as
part of Pythons online documentation
found at www.python.org

For the documentation about syntax
and meaning of Pythons special

24 API – Application program interface.

methods, you may read Python in a
nutshell page 90 – 99 for the details.

The original C edition of Python have
all its data types defined in the
include directory and in the Object
sub directory as simple *.h or *.c files.
This is where I got most of the
information needed for an
understanding of the standard C
edition of Pythons type system.

In my C++ version of Python, I have all
type related files placed in the
PythonLibrary directory. Here I place
all the header files and the source
code files for easy access during the
development phase.

Abstract data type

This is an abstract class for access to
external data types with Pythons
interface for access to those methods
being exported from such classes.

It is not started to be designed or
implemented at this time.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
abstract.h and in the source code
abstract.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_AbstractObject.h
and in the source code
PY_AbstractObject.cpp

Boolean data type

This data type is implemented as two
static objects in standard Python. One
is for true and one is for false. All use

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 43 of 74

of these two states in programs, just
point to one of these.

I have however chosen to implement
this data type as a dynamic class that
is instantiated each time it is need to
use one. This is mainly for
homogeneous implementation of all
data types and for use in C++
programs as well.

The data for this class is just a
Boolean member value in the class
called mValue, which stores true or
false states.

This class has a few C++ overloaded
operators available for use. These are
as following:

+ & / (float) (int)
(long) % * | << >>
- ^

Some of these operators are for type
conversion to float, int or long from
the Boolean format.

This data types support the following
special methods:

__abs__ __add__
__and__ __class__
__cmp__ __coerce__
__delattr__ __div__
__divmod__ __doc__
__float__ __floordiv__
__getattribute__ __getnewargs__
__hash__ __hex__
__init__ __int__
__invert__ __long__
__lshift__ __mod__
__mul__ __neg__
__new__ __nonzero__
__oct__ __or__
__pos__ __pow__
__radd__ __rand__
__rdiv__ __rdivmod__
__reduce__ __reduce_ex__

__repr__ __rfloordiv__
__rlshift__ __rmod__
__rmul__ __ror__
__rpow__ __rrshift__
__rshift__ __rsub__
__rtruediv__ __rxor__
__setattr__ __str__
__sub__ __trudiv__
__xor__

This data type is still missing a lot of
its functionality.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
boolobject.h and in the source code
boolobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_BoolObject.h and
in the source code PY_BoolObject.cpp

Buffer data type

This is a data type for access to
buffers of bytes in a standard fashion.

It is not started to be designed or
implemented yet, but it is planned to
be extended with the following C++
overloaded operators for access to
buffer data:

[]

Buffer data will be access by this
these constructs:

Item = bufferobject[index];

And set by:

Bufferobject[index] = data;

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 44 of 74

Details about the standard C edition
of the Python implementation of this
data type is available in the header
file bufferobject.h and in the source
code bufferobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_BufferObject.h and
in the source code
PY_BufferObject.cpp

Cell data type

This data type is for cell handling with
just two possible methods:

__get__ __set__

This is for accessing cell information
or for setting new data into cell.

It will most likely be extended with
the following C++ overloaded
operators.

[]

This is for the same functionality as
the methods defined in the class, but
in a C++ way for use in C++ programs
and in the Python system.

This is not started to be designed or
implemented at this time.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
cellobject.h and in the source code
cellobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_CellObject.h and in
the source code PY_CellObject.cpp

Class data type

This class is for all handling of Python
based class. It will contain some form
of list or table for the member
methods and the variables connected
to this class.
It also must contain a table of all of
its base classes, it is supposed to
inherit.

This is not yet implemented.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
classobject.h and in the source code
classobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_ClassObject.h and
in the source code
PY_ClassObject.cpp

Code data type

This is not a user specific data type at
all, and not part of the built-in library
of standard Python. It is in its
compiler.

I have chosen to implement it in the
built-in data type library for
completeness and for use by the C++
programs directly if needed.

It is mainly a container for op codes in
an array, and storage for local
variables and constants. It is also
heavily connected to the compiler and
of course the virtual machine.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 45 of 74

This data type is started, and has
support for the following C++
overloaded operators:

[]

It is meant for code access under
executing, and for code inserting by
the compiler during the translation
phase or reading in from pre compiled
files.

It still remains a lot of design and
implementation work on this data
type, as the virtual machine and
compiler gets implemented.

Instructions will be executed by
accessing the code in the following
manner:

 Codeobject[instruction_ptr++]

This will return the current instruction
to be executed and the instructions
pointer is incremented for next
access.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
compiler.h and in the source code
compiler.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_CodeObject.h and
in the source code PY_CodeObject.cpp

Complex data type

This data type is for handling so called
complex numbers. That is numbers
with both a real and an imaginary
part.

It is stored in the class as two double
variables. One is for the real part, and
the other is for storing the imaginary
part.

It will be extended with the following
C++ overloaded operators:

+ / == >= > (int)
<= < % * != -

It also has the following methods for
manipulating and controlling the data
type:

conjugate
imag
real

It also supports the following special
methods for this data type:

__abs__ __add__
__class__ __coerce__
__delattr__ __div__
__divmod__ __doc__
__eq__ __float__
__floordiv__ __ge__
__getattribute__ __getnewargs__
__gt__ __hash__
__init__ __int__
__le__ __long__
__lt__ __mod__
__mul__ __ne__
__neg__ __new__
__nonzero__ __pos__
__pow__ __radd__
__rdiv__ __rdivmod__
__reduce__ __reduce_ex__
__repr__ __rfloordiv__
__rmod__ __rmul__
__rpow__ __rsub__
__rtruediv__ __setattr__
__str__ __sub__
__truediv__

It is only partly implemented at this
time, and still misses a lot of
functionality.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 46 of 74

Details about the standard C edition
of Python implementation of this data
type is available in the header file
complexobject.h and in the source
code complexobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_ComplexObject.h
and in the source code
PY_ComplexObject.cpp

Description data type

This is a data type for description of
external class methods and access to
variable members in that class.

This is not yet been designed or
implemented at this time.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
descrobject.h and in the source code
descrobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_DescrObject.h and
in the source code
PY_DescrObject.cpp

Dictionary data type

This data type is for dictionary storage
of objects. You find data items stored
in dictionary by providing a key.

It will be stored internally in class in a
Qt framework dictionary:

QMap<PY_Object *, PY_Object *>

It can use general PY_Object pointer
that can return a hash value as a key,
and every kind of data objects as data
in dictionary.

It will be extended by at least these
C++ overloaded operators:

== >= > <= < !=
[]

With this you can lookup data with the
following construct:

Data = dictionary[key];

And enter new data with the following
construct:

Dictionary[key] = data;

This data types has a few methods for
manipulating and controlling the data
type:

clear
copy
fromkeys
get
items
iteritems
iterkeys
itervalues
keys
pop
popitem
setdefault
update
values

It also contains the following special
methods for dictionary operations:

__class__ __cmp__
__contains__ __delattr__
__doc__ __eq__
__ge__ __getattribute__
__getitem__ __gt__
__hash__ __init__

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 47 of 74

__iter__ __le__
__len__ __lt__
__ne__ __new__
__reduce__ __reduce_ex__
__repr__ __setattr__
__setitem__ __str__

This data type is started to be
implemented but not finished. It will
be haps be used in the symbol tables
for variable look up, and storage for
constants in the code objects and
more.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
dictobject.h and in the source code
dictobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_DictObject.h and
in the source code PY_DictObject.cpp

Enumeration data type

This is a data type for enumeration
data storage. It is not yet designed or
started implemented.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
enumobject.h and in the source code
enumobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_EnumObject.h and
in the source code
PY_EnumObject.cpp

File data type

This data type is for all reading or
writing to files on discs. It is
implemented by using a QFile as a
member of this class.

It uses a QTextStream for the actual
text management in file access.

This class has status bits for:

 Read allowed.
 Write allowed.
 File is open.
 Binary form expected.

The following methods are defined for
manipulating of files:

close
closed
fileno
flush
isatty
mode
name
newlines
next
read
readinto
readline
readlines
seek
tell
truncate
write
writelines

This data type is mostly already
implemented and ready for action. It
will be used by other library modules
with file access as a speciality.

It also uses the following special
methods functions in Python:

__class__ __delattr__
__doc__ __getattribute__
__hash__ __init__
__iter__ __new__

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 48 of 74

__reduce__ __reduce_ex__
__repr__ __setattr__
__str__

More details are found in data types
source file.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
fileobject.h and in the source code
fileobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_FileObject.h and in
the source code PY_FileObject.cpp

Float data type

This is the data type for all the
floating point number handling in
Python. It uses a simple double
variable as a storage system for
numbers.

I am extending this data type with the
following C++ overloaded operators:

+ / == (float) >=
> (int) <= < % *
!= -

This data type does not have any
methods for manipulating this data
type, except for these special
methods, which are available for the
float data type:

__abs__ __add__
__class__ __coerce__
__delattr__ __div__
__divmod__ __doc__
__eq__ __float__
__floordiv__ __ge__
__gt__ __hash__
__init__ __int__

__le__ __long__
__lt__ __mod__
__mul__ __ne__
__neg__ __new__
__nonzero__ __pos__
__pow__ __radd__
__rdiv__ __rdivmod__
__reduce__ __reduce_ex__
__repr__ __rfloordiv__
__rmod__ __rmul__
__rpow__ __rsub__
__rtruediv__ __setattr__
__str__ __sub__
__truediv__

The C++ overloaded operators is
mostly comparison related, and for
standard mathematically operations
on number or for conversion between
the number types.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
floatobject.h and in the source code
floatobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_FloatObject.h and
in the source code
PY_FloatObject.cpp

Frame data type

This is a context data type for the
Pythons virtual execute engine. It
contains context specific information
for the code object just being
executed.

It can be in executing of a function or
a code block. It is not finished at all,
and is heavily connected to the
development of the virtual machine.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 49 of 74

Users do not create this data type. It
is only useful for the compiler and the
virtual execute machine.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
frameobject.h and in the source code
frameobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_FrameObject.h and
in the source code
PY_FrameObject.cpp

Function data type

This is all procedures used outside of
class, and thus called functions
instead of methods.

This data type is not yet
implemented, but it will most likely
include these methods to operate on
this data type:

func_closeure
func_code
func_defaults
func_dict
func_doc
func_globals
func_name

It will also support the following
special methods:

__call__ __class__
__delattr__ __dict__
__doc__ __get__
__getattribute__ __hash__
__init__ __module__
__name__ __new__
__reduce__ __reduce_ex__
__repr__ __setattr__
__str__

There will most likely not be any
defined C++ overloaded operators on
this data type.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
funcobject.h and in the source code
funcobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_FuncObject.h and
in the source code PY_FuncObject.cpp

Generator data type

This data type is for supporting the
generator functionality in Python 2.4
and upwards. It is not designed or
implemented, but the grammatically
rule for this is in place already as a
part of the parser.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
genobject.h and in the source code
genobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_GenObject.h and in
the source code PY_GenObject.cpp

Integer data type

This is a very much used data type in
Python scripts. It is implemented
internally as a long variable for
storage of all normal integer numbers.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 50 of 74

We also have a data type for handling
of even bigger integer number, which
will be described later in this chapter.

I have chosen to provide the following
C++ overloaded operators for easier
programming in C++ programs:

+ & / (float) (int)
(long) << % * | >>
- ^

All of these operators are for either
mathematically operations on this
data type or conversion to other
formats.

We do not have any methods for
manipulating or operating on this data
type, except for these special
methods:

__abs__ __add__
__and__ __class__
__cmp__ __coerce__
__delattr__ __div__
__divmod__ __doc__
__float__ __floordiv__
__getattribute__ __getnewargs__
__hash__ __hex__
__init__ __int__
__invert__ __long__
__lshift__ __mod__
__mul__ __neg__
__new__ __nonzero__
__oct__ __or__
__pos__ __pow__
__radd__ __rand__
__rdiv__ __rdivmod__
__reduce__ __reduce_ex__
__repr__ __rfloordiv__
__rlshift__ __rsub__
__rtruediv__ __rxor__
__setattr__ __str__
__sub__ __truediv__
__xor__

Details about the standard C edition
of Python implementation of this data

type is available in the header file
intobject.h and in the source code
intobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_IntObject.h and in
the source code PY_IntObject.cpp

Iterator data type

This data type is simply for supporting
iteration over sequence data types
such as list, tuple or strings.

You will with the help of this data
type get members of the sequence
data type in a series of simple items,
which one then can manipulate one at
a time repeatedly.

This data type is not designed or
implemented yet, but is needed in
several other data types shortly.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
iterobject.h and in the source code
iterobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_IterObject.h and in
the source code PY_IterObject.cpp

List data type

This data type is a lot like the tuple
data type described later. It is
however not limited in size, and can
be extended freely.

I use the same Qt framework
container class for storage of list:

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 51 of 74

QValueList<PY_Object *>

I have extended the data type with
the following C++ overloaded methods
to aid usage of this class in C++
programs and in Python:

+ == >= > += *=
<= < * != []

Most of these are for comparison
related purposes, but we have two
not so common ones. These are the
incremental equation operators,
which we have two of:

 List1 += List2;

 List3 *= List1;

The list data type has a few methods
for manipulation and operation on list
objects. They are the following
methods:

append
count
extend
index
insert
pop
remove
reverse
sort

These methods are self explained, but
one can look into the source code for
implementation details.

The list data type also has the
following special methods function
available:

__add__ __class__
__contains__ __delattr__
__delitem__ __delslice__
__doc__ __eq__
__ge__ __getattribute__

__getitem__ __getslice__
__gt__ __hash__
__iadd__ __imul__
__iter__ __le__
__len__ __lt__
__mul__ __ne__
__new__ __reduce__
__reduce_ex__ __repr__
__rmul__ __setattr__
__setitem__ __setslice__
__str__

Full implementation details are
available in the source code for this
class.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
listobject.h and in the source code
listobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_ListObject.h and in
the source code PY_ListObject.cpp

Long data type

This data type is expected in Python
to manage infinite large integer
numbers in the form of strings and do
mathematically operations on these
strings when one or more of the
numbers are too big for the ordinary
variables.

This is slow, so Python tries to use the
format long long to store numbers and
do calculations on them, when they
are “small” enough to be stored in
one.

On a 32-bits computer, this data type
is normally if present, a 64 – bits
integer.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 52 of 74

In my mind, Python is slow enough, so
slowing it down with this kind of
calculation is not a good idea. I
therefore opted for just implement it
with double long integer storage, and
there by limit it to 64-bits integer.

I have extended this data type with
the following C++ overloaded
operators to simply use it in C++
programs:

+ & (int) (long) <<
% * | >> - ^

This data type doesn’t have any
methods for modifying or operations
on it, but it has support for the
following special methods:

__abs__ __add__
__and__ __class__
__cmp__ __coerce__
__delattr__ __getnewargs__
__hash__ __hex__
__init__ __int__
__invert__ __long__
__lshift__ __mod__
__mul__ __neg__
__new__ __nonzero__
__oct__ __or__
__pos__ __pow__
__radd__ __rand__
__rdiv__ __rdivmod__
__reduce__ __reduce_ex__
__repr__ __rfloordiv__
__rlshift__ __rmod__
__rmul__ __ror__
__rpow__ __rrshift__
__rshift__ __rsub__
__rtruediv__ __rxor__
__setattr__ __str__
__sub__ __truediv__
__xor__

Operators declared for use on this
data type is mostly for
mathematically operations and
conversion to other data types.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
longobject.h and in the source code
longobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_LongObject.h and
in the source code PY_LongObject.cpp

Method data type

This data type is for functions used in
classes, and is renamed “methods” for
this use.

The class data type is not yet started
to be designed or implemented, and
this data type is very connected to
that data type.

It will be designed and implemented
at the same time and in cooperation
with the development of the class
data type.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
methodobject.h and in the source
code methodobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_MethodObject.h
and in the source code
PY_MethodObject.cpp

Module data type

Modules is a group of functions,
classes and variables stored in a file
as Python source code or as a pre

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 53 of 74

compiled binary file, for import into
current scripts to use its functionality
directly.

Modules can also be C or C++
programmed groups of functionality
collected into a group for simple
access in our own programs.

Even though the parser has support
for declaring import statements for
just this kind of work, I have not
started to design or implement this
data type at this time.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
moduleobject.h and in the source
code moduleobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_ModuleObject.h
and in the source code
PY_ModuleObject.cpp

None data type

This is pretty much like a advanced
edition of the C++ NULL pointer, but it
is promoted to a separate class in PR‘s
type class framework.

It is not really designed and not
started to be implemented at this
time. I have however made a class
template for it.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
object.h and in the source code
object.c

Details about the current
implementation of the C++ version of
this Python data type is available in

the header file PY_Object.h and in
the source code PY_Object.cpp

Object base type

This is the base class for all other data
types, and will in time inherit the
garbage collector class for
automatically support for dynamically
deleting of objects.

It also controls the type system, with
its __type__() method for inquiries
about each objects type.

Later it will have some kind of support
for error states, when objects are
used solely in a C++ program without
Pythons error mechanism.

I am considering implementing a few
C++ overloaded operators at his level,
to control use of operators in sub
classes in C++ programs.

This data type is not a stand alone
one, and is only intended to be
inherited by a sub class.

It is used for general pointing to all
valid sub classes, before we have a
chance to inspect the type of the
class and then cast it to the right
pointer type.

It still needs a lot of work until it is
considered finished.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
object.h and in the source code
object.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_Object.h and in
the source code PY_Object.cpp

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 54 of 74

Range data type

This data type is used heavily in for
statements to define range of for loop
to iterate over.

This simply defines a start and end
point for looping and an optional step
values between these markers.

It then generates the needed values
for iteration in for statements.

It will be extended with the following
C++ overloaded operators:

+ == >= [] > +=
*= <= < * !=

This is mostly for mathematically
operation on this data type or for
comparing relations.

This data type has the following
methods for manipulating and
controlling of data types operations:

append
count
extend
index
insert
pop
remove
reverse
sort

And it supports the following special
methods:

__add__ __class__
__contains__ __delattr__
__deliten__ __delslice__
__doc__ __eq__
__ge__ __getattribute__
__getitem__ __getslice__
__gt__ __hash__
__iadd__ __imul__
__init__ __iter__

__le__ __len__
__lt__ __mul__
__ne__ __new__
__reduce__ __reduce_ex__
__repr__ __setslice__
__str__

I have not yet implemented this data
type as of this writing, but it will be
most likely in form of three variables
containing start, end and the optional
step value.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
rangeobject.h and in the source code
rangeobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_RangeObject.h and
in the source code
PY_RangeObject.cpp

Set data type

This is the data type for handling of
sets. It is not yet designed or
implemented at this time.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
setobject.h and in the source code
setobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_SetObject.h and in
the source code PY_SetObject.cpp

Slice data type

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 55 of 74

This data type is a bit special for
Python, which slices out data from
other data types which supports
sequence and slicing of its data.

Examples of where one would use a
slice data structure as helper is:

List1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Sliced = List1[3, 5];

Sliced is now a new list with just two
numbers:

 [4, 5]

This data type is needed, but still not
started to be designed or
implemented at this time.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
sliceobject.h and in the source code
sliceobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_SliceObject.h and
in the source code PY_SliceObject.cpp

String data type

This is a very important data type for
all handling of strings and single
characters in Python. It is
implemented as a Unicode based
container class for the storing of
strings and operating on them via
built-in methods and external API
functions.

It stores it strings locally as a QString
class, which is wrapped into this class
and added with methods for
manipulating this data structure

indirectly, since it is a private
member variable.

When possible, I will try to use
QString class own methods to do the
work needed by the Python methods
on the string type.

As a C++ extension, I have
implemented a few overloaded
operator methods. They are the
following:

+ == >= [] > <=
< % * !=

This class has a few methods to
operate directly on strings. These are
as following:

capitalize
center
count
decode
encode
endswith
expandtabs
find
index
isalnum
isalpha
isdigit
islower
isspace
istitle
isupper
join
ljust
lower
lstrip
replace
rfind
rindex
rjust
rstrip
splitlines
startswith
strip
swapcase

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 56 of 74

title
translate
upper
zfill

Most of these methods will be
implemented, but those who work
with different text encoding schemes
will most likely be dropped since we
use Unicode on all the strings.

String class also has a few special
methods available for operating on
this class type. These are as following:

__add__ __class__
__contains__ __delattr__
__doc__ __eq__
__ge__ __getattribute__
__getitem__ __getnewargs__
__getslice__ __gt__
__hash__ __init__
__le__ __len__
__lt__ __mod__
__mul__ __ne__
__new__ __reduce__
__reduce_ex__ __repr__
__rmod__ __rmul__
__setattr__ __str__

One very important C++ extension to
this data type, is the access to string
data through the [] operator. You can
set data into a string with this
statement:

 String[3] = ‘a’;

And you can get single characters out
of string by simply use the following
statement:

 Test = String[4];

Other operators on this class, is
mostly for comparison between
objects or addition or multiply of
strings.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
stringobject.h and in the source code
stringobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_StringObject.h and
in the source code
PY_StringObject.cpp

Struct data type

This is a data type for interfacing with
external code written in other
languages that uses structured data
types for its computation.

When Python needs to work with the
external functionality’s need for
structure to hold its data, this data
type comes into play.

It is not designed or implemented at
this time, and needs a little research
before it will.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
structseq.h and in the source code
structseq.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_StructObject.h and
in the source code
PY_StructObject.cpp

Tuple data type

This data type is a bit special. In
standard C edition of Python this data
type is defined with an initial size at

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 57 of 74

the creation time and can not be
resized after this. It can however
alter already allocated items in the
data structure.

I have however implemented this data
type with Qt frameworks data type
QValueList<PY_Object *> which can be
resized easily.

We have to simulate this size
restriction to be compatible with
standard Python. At construction of
this object, we set a fake size limit,
which the data type, respect by
inserting NULL pointers into list to fill
the list to expected size.

Then it is not allowed to append any
more items into the list. Just alter the
NULL pointers into valid data items.

We have extended the tuple data type
with the following C++ operator
overloading methods:

+ == >= > <= <
* != []

This class has also no methods for
manipulating this data type, expect
for the special methods defined for
this data type. They are the following:

__add__ __class__
__contains__ __delattr__
__doc__ __eq__
__ge__ __getattribute__
__getitem__ __getnewargs__
__getslice__ __gt__
__hash__ __init__
__iter__ __le__
__len__ __lt__
__mul__ __ne__
__new__ __reduce__
__reduce_ex__ __repr__
__rmul__ __setattr_
__str__

Most of the operators we have
overloaded for this data type are in
comparison related operations, and
we have added the same get / set
functionality as in string data type.

The plus operator takes two objects
and creates a new as a sum of these
two given objects.

Details about the standard C edition
of Python implementation of this data
type is available in the header file
tupleobject.h and in the source code
tupleobject.c

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file PY_TupleObject.h and
in the source code
PY_TupleObject.cpp

Get arguments system
Most methods defined in Python takes
a tuple as a parameter container
when methods get called.

All the methods needs to decode this
tuple into its simple items, and
converted to C++ data structures for
easy manipulating of the given
parameter(s).

To ease the conversion we have a few
support functions call, implemented
as static member of a class for the
whole conversion process and a built
in error reporting system.

You just give these methods a tuple as
an argument, a format string with
conversion information, and a variable
list of destination variables. The rest
of the job is automated by this
subsystem.

The format strings syntax is as
follows:

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 58 of 74

c char

A Python string of length one become
a C++ char.

d double

A Python float becomes a C++ double.

D PY_Complex

A Python complex becomes a C++
PY_Complex.

f float

A Python float becomes a C++ float.

i int

A Python int becomes a C++ int

l long

A Python int becomes a C++ long

L long long

A Python long becomes a C++ long
long or 64 bits integer.

O PY_Object

Get a reference to object in Python.

s string

Python string without embedded null
becomes a C++ string. (QString)

(…) as per …

A Python sequence is treated as one
argument per item.

|

The following arguments are optional.

:

Format finished, followed by function
name for error messages.

;

Format finished, followed by entire
error message text.

There are more defined format
characters in Python, but it is not yet
considered for inclusion in this C++
version of the Python yet. Some may
not be needed at all. For full details,
read Python in a nutshell page 522.

Example of a format string might be
as follows:

“ii|i:Testfunc”

This means simply that we have two
integer objects followed by an
optional integer object, and this is the
Testfunc function if errors are en
counted during decoding.

The four functions defined for
decoding of arguments are only
partial started to be implemented and
still needs some work before they are
useful.

They are as following:

PyArg_ParseTuple

PyArg_ParseTupleAndKeywords

PyArg_vaParseTuple

PyArg_vaParseTupleAndKeywords

Details about the current
implementation of the C++ version of
this Python data type is available in
the header file getargs.h and in the
source code getargs.cpp

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 59 of 74

Build data objects system

We also have a function for building
Python objects out of standard C++
variables and type.

The function is:

Py_BuildValue(char *format, …)

It uses a format string for creating
new Python objects out of the
variable list given C++ variables.

This function is not yet started, but is
needed in Pythons built–in types for
building new objects in a standard and
efficient way.
The syntax of the format string is as
follows:

c char

A C++ char becomes a Python string
with length one. It might be a QChar
instead at a later time.

d double

A C++ double becomes a Python real.

D PY_Complex

A C++ complex becomes a Python
complex.

i int

A C++ int becomes a Python int.

l long

A C++ long becomes a Python int.

S char* or QString later.

A C++ string becomes a Python string.

(…)

Build Python tuple from C++ values.

[…]

Build Python list from C++ values.

{ … }

Build Python dictionary from c values.
Alternating key and value as needed.

There will possible be more format
characters later as needed, but this
function is not yet started to be
implemented.

For more details about the Python
syntax for building values, you should
look at Python in a nutshell page 524 -
525.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 60 of 74

The error system

Python – Realizer (PR) needs a global
error reporting system for executing
of Python scripts and report errors as
needed.

Pythons separate type library is
supposed to be usable in plain C++
programs and also needs a way to
signal error states in the objects.

I will try to use the C++ standard
exception handling as a part of the
total error handling in PR. This will
take care of the needs of PR as well as
stand alone C++ program using PR’s
type system. Also the C++ systems
strong type system will be of great
value in making PR a safer system
than the original C based Python.

For the time being there is no error
system defined for the data types of
Python, when used as separate
component to C++ programs.

I am thinking about a system where
each objects knows its error state,
and possibly can be interrogated for
its error messages as needed.

Currently the parser reports errors it
finds in the source code directly to
the interpreter window for letting the
user know about its failure.

I have started to think about a global
error reporting system design, and
will try to make it as similar to the
standard C based Python as possible.

I will define standard error reporting
methods for the system to be
provided by the reporting method
about what went wrong during the
executing of the Python scripts.

I intend to follow the Pythons error
systems defined error types, like
value error, out of range error and
have pre made methods or functions
to be called when those states is
found during executing of the Python
scripts, and automatically generate
needed error messages to the user
through the interpreter window.

Currently there is not much of an
error system defined or implemented.
Some code has been implemented as
part of the parsing of argument
methods described earlier.

This needs to be addressed shortly,
when more of the interpreter gets
written.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 61 of 74

Compiler system

With the compiler system, I mean the
component that takes the parsers
prepared abstract syntax tree with all
the details stored in each node, and
translates it to Python code objects
with needed operands stored in
arrays, and all the needed Python
constants and local variables prepared
in the frame objects.

I haven’t started to think about how I
will implement this component,
except for two sure decisions already
made. That is it must be 100%
compatible with the standard Python
instructions, and it must be able to
create correct binary pre compiled
files out of the Python source code.

This means that my compiler should
be able to create the code objects
which can run on standard Python and
the other way around.

It is very important that the binary
format of pre compiled source files is
in exactly the same format, and
follows the guidelines of Pythons
marshal sub system.

The operands used in Python virtual
machine is described a bit in the next
chapter.

You will find more information about
the compilers implementation in the C
based python in the following two
files:

 compiler.h
 compiler.c

Marshal system

This is the name of the format used
on pre compiled files with the ending

.pyc after its name instead of .py in
the source files.

Pythons marshal system is
implemented as a standard module
and even has a few methods
available.

Those are as follows:

dump
load
dumps
loads

It contains a predefined collection of
API functions for marshal functionality
in the interpreter and elsewhere if
needed. They are as follows:

PyMarshal_WriteLongToFile
PyMarshal_WriteObjectToFile
PyMarshal_WriteObjectToString
PyMarshal_ReadLongFromFile
PyMarshal_ReadShortFromFile
PyMarshal_ReadObjectFromFile
PyMarshal_ReadLastObjectFromFile
PyMarshal_ReadObjectFromString

These are mostly for reading and
writing of objects, integer and strings
to and from the object files. It is a
little like the C++ serializing
functionality of class state to files for
later recreating of class with the same
state and data.

Marshal uses an object marker in a file
to mark what kind of object follows in
the file and thereby which method in
the marshal class needs for reading it.

Those markers are as follows:

TYPE_NULL ‘0’
TYPE_NONE ‘N’
TYPE_FALSE ‘F’
TYPE_TRUE ‘T’
TYPE_STOPITEN ‘S’

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 62 of 74

TYPE_ELLIPSIS ‘.’
TYPE_INT ‘i’
TYPE_INT64 ‘I’
TYPE_FLOAT ‘f’
TYPE_COMPLEX ‘x’
TYPE_LONG ‘l’
TYPE_STRING ‘s’
TYPE_INTERNED ‘t’
TYPE_STRINGREF ‘R’
TYPE_TUPLE ‘(‘
TYPE_LIST ‘[‘
TYPE_DICT ‘{‘
TYPE_CODE ‘c’
TYPE_UNICODE ‘u’
 Might not be used.
TYPE_UNKNOWN ‘?’

I am not sure where to place the
compiler and marshal functionality in
the interpreter system of PR at this
time. It might end up in the virtual
machine library or as part of the
application among the parser system.

Both systems will most likely be
implemented as two separate classes
with all needed functionality
integrated for a separate component
design.

Neither is started to be implemented
or for that matter designed at this
time, but will be the next logical step
after the completion of parser.

All objects saved to files need to be
edian25 neutral for portability
between the platforms with different
edian format in the processor
implementation.

More details about the standard C
based Pythons marshal sub system is
found in the following two files:

25 Different processors have different format
for the storing of data longer than 8 bits. Intel
and Amd use little edian format while others
mostly use big edian, or they can be
programmed for both.

 marshal.h
 marshal.c

I have not started to implement the
Python – Realizer (PR) edition of the
marshal sub system at this time.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 63 of 74

Virtual executing machine

I want my virtual execute machine for
Python – Realizer to execute the pre
compiled source code by the standard
C based Python, to be loaded and
executed without any need to
recompile before use.

Python uses a so called byte code26 for
identifying each operand from a
binary compiled file or straight from
the compiler in interpreter mode.

It uses a stack for pushing and popping
of pre defined Python data objects,
which it then does its business on as
pre programmed in the program.

Byte code is then executed on a
virtual execute engine that interprets
each operand and optional arguments
as needed. This engine will be
implemented entirely in C++.

Operand codes

I will use standard Python operand
codes in my engine to let it be as
compatible as possible.

Those operands of byte code are as
following:

STOP_CODE 0
POP_TOP 1
ROT_TWO 2
ROT_THREE 3
DUP_TOP 4
ROT_FOUR 5
NOP 9
UNARY_POSITIVE 10
UNARY_NEGATIVE 11
UNARY_NOT 12

26 This means op codes based on an 8 bits byte
number to numerically describe an operation
to be executed by the virtual machine.

UNARY_CONVERT 13
UNARY_INVERT 15
LIST_APPEND 18
BINARY_POWER 19
BINARY_MULTIPLY 20
BINARY_DIVIDE 21
BINARY_MODULO 22
BINARY_ADD 23
BINARY_SUBTRACT 24
BINARY_SUBSCR 25
BINARY_FLOOR_DIVIDE 26
BINARY_TRUE_DIVIDE 27
INPLACE_FLOOR_DIVIDE 28
INPLACE_TRUE_DIVIDE 29
SLICE 30 – 33
STORE_SLICE 40 – 43
DELETE_SLICE 50 – 53
INPLACE_ADD 55
INPLACE_SUBTRACT 56
INPLACE_MULTIPLY 57
INPLACE_DIVIDE 58
INPLACE_MODULO 59
STORE_SUBSCR 60
DELETE_SUBSCR 61
BINARY_LSHIFT 62
BINARY_RSHIFT 63
BINARY_AND 64
BINARY_XOR 65
BINARY_OR 66
INPLACE_POWER 67
GET_ITER 68
PRINT_EXPR 70
PRINT_ITEM 71
PRINT_NEWLINE 72
PRINT_ITEM_TO 73
PRINT_NEWLINE_TO 74
INPLACE_LSHIFT 75
INPLACE_RSHIFT 76
INPLACE_AND 77
INPLACE_XOR 78
INPLACE_OR 79
BREAK_LOOP 80
LOAD_LOCALS 82
RETURN_VALUE 83
IMPORT_STAR 84
EXEC_STMT 85
YIELD_VALUE 86
POP_BLOCK 87
END_FINALLY 88
BUILD_CLASS 89

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 64 of 74

HAVE_ARGUMENT 90 #Marker!
STORE_NAME 90
DELETE_NAME 91
UNPACK_SEQUENCE 92
FOR_ITER 93
STORE_ATTR 95
DELETE_ATTR 96
STORE_GLOBAL 97
DELETE_GLOBAL 98
DUP_TOPX 99
LOAD_CONST 100
LOAD_NAME 101
BUILD_TUPLE 102
BUILD_LIST 103
BUILD_MAP 104
LOAD_ATTR 105
COMPARE_OP 106
IMPORT_NAME 107
IMPORT_FROM 108
JUMP_FORWARD 110
JUMP_IF_FALSE 111
JUMP_IF_TRUE 112
JUMP_ABSOLUTE 113
LOAD_GLOBAL 116
CONTINUE_LOOP 119
SETUP_LOOP 120
SETUP_EXCEPT 121
SETUP_FINALLY 122
LOAD_FAST 124
STORE_FAST 125
DELETE_FAST 126
RAISE_VARARGS 130
CALL_FUNCTION 131
MAKE_FUNCTION 132
BUILD_SLICE 133
MAKE_CLOSURE 134
LOAD_CLOSURE 135
LOAD_DEREF 136
STORE_DEREF 137
CALL_FUNCTION_VAR 140
CALL_FUNCTION_KW 141
CALL_FUNCTION_VAR_KW 142
EXTENDED_ARG 143

In addition to these operands, we
have some sub operands for the
comparing instruction for defining
condition for jump in code.

Those are symbol representation for
the following compare operators:

< <= == != > >=
IN NOT IN IS IS NOT
MATCH BAD

These are defined with an
enumeration type instead of the listed
symbols.

Most of the operands in the table are
self explained by its name. A few has
more than one value for an operand.

All operands with value higher than or
equal to 90, takes arguments in
addition to just the operand code.

Most operands work with Python
objects, already pushed on the
executing stack, or operate on
references to object stored in the
symbol table for global access.

Constants are stored in the code
object for easy access just through a
simple index into the table. Local
variables might be stored in the
current frame object, which holds the
execute state for current code. Is it in
a function or is it running at top level
and so one.

All op codes in use are defined in the
following file in standard C based
Python:

 opcode.h

Implementation details

I have just started implementing this
execute engine for Python binary
code, and have concentrated on the
operand decoding and executing of
them first.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 65 of 74

The whole virtual machine is
implemented as a dynamically
loadable library, which can be used by
the Realizer application or inside of a
C++ program if needed.

It will later have a symbol table
system for the storage of symbols
used in executing of the program and
a much needed error reporting
system.

I am considering moving the parser
into this library for a complete Python
interpreter sub system. For now the
parser stays in the main application.

We will use a Python compatible
marshalling system for reading in or
writing out Python objects and codes
into a binary format to be stored in
files.

All codes to be executed are stored in
a code object, where we use an
instruction pointer to get the current
operand code out of data storage in
object. We will use C++ operators like
[] to access this easily, and add some
boundary check on this pointer to
keep code in valid memory area of the
object in case of malfunction in the
compiler phase.

Such a code object will always be part
of a frame object, which stores the
current running status and context for
the engine to work under.

I have only started to implement the
operand decoding and executing of
them at this time, and of course it is
not ready to run programs for quite
some time.

Details about the implementation of
the standard C based Python is found
in the following two files:

 ceval.h
 ceval.c

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 66 of 74

Extensions modules in C++

Most of Pythons library modules with
useful functions to be reused as
needed are written in Python, but
quite a few of them are written in C
for speed or functionality not possible
directly in Python code.

You may also creates your own
extensions module and add it to this
module library.

All extension modules not written in
Python, in the standard C based
Python interpreter is of course written
in C and not exactly what I want to
use in a C++ interpreter.

I have therefore been thinking about
writing a C++ edition of most of these
modules and put them into yet
another dynamical loadable library for
easy access also from C++ programs.

I haven’t started to design or
implement this part of the system,
and think it might be the last sub
system to be implemented.

Since this is going to be a complete
C++ implemented interpreter system
with Unicode as standard for all the
text handling, not all of the extension
modules make sense to be ported.

Some of the extension modules are for
interfacing with other GUI systems,
like the Tkinter27 system. We are
going to be using the Qt framework
exclusively for all the GUI work, and
therefore we need to design the
interface between Qt and Python and
maybe simplify this to suite our needs
for a fast and easy form designs.

27 This GUI system was designed for use by the
TCL language, but is now used as well as the
standard GUI in standard C edition of Python.

Other GUI sub system is not really
needed, and might be dropped all
together from the module library.

I am not going to mention or describe
all modules needed to be
implemented as we are finishing the
C++ interpreter edition of Python, but
I will mention some of them for a
little preview of the work needed.

We have modules for among other
things, zip and bzip handling of text
and binary data in files. We have a
module for interfacing with the Unix
operating systems posix sub system,
which is Unix’s interchangeable
interface to operating system calls
across all the dialects of Unix and also
supported in Windows.

We have modules for cryptographic
handling of files, handling of graphics
files and support for the GL graphic
library for 3D graphic.

We have modules for signal handling
in C, thread management in own
programs, and a very useful module
for socket communication over
networks or locally on a computer.

For a full overview of all the modules,
you can download the Python source
code from www.python.org and look
into the directory “Modules” for a full
listing of modules and all the details
therein in the C source files or in the
Python documentation found on the
same site.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 67 of 74

The road ahead

This year worth of work on my master
thesis has just scratched the surface
on this big project.

I have made a skeleton application
with some of the needed functionality
included, and a mock up of what I
want the application to look like when
eventually finished.

I have mostly finished the parser and
have an interpreter component, which
will check the users test scripts or
directly input statements, for the
correct grammar in accordance with
the Python languages grammar rules.

It is also possible to create and edit
python scripts in the editor system,
but it still has its quirks.

I have started on Pythons built in type
library, and coded some of the
functionality into it. I also made a
template for how all the data types
should be integrated in a type system.
Still, a lot is missing and I suggest that
this is the first component to be
finished in further development of
this project.

This library is also possible to use as a
standalone library for C++ programs
that want to have some Python
functionality easily built in.

The compiler component is not
started and is together with the
virtual executing engine, the next
logical step to finish. I have a
complete abstract syntax tree
generated by the finished parser to
start working with, and the finished
product for the compilers part is the
code object.

The virtual executing engine is started
to be implemented and only the op
code execute method is partly
finished as a template for the
complete runtime system. Subsystems
like marshalling of the data and the
code to and from library modules is
not started. This should be developed
and designed for 100% compatibility
with the standard C based Python for
easy exchange of pre compiled
modules.

All of the C coded extensions modules
is missing, and is planned to be
recoded as a C++ library instead. I
suggest this is done last, since it is not
that important in the beginning.

All Python coded library modules is
supposed to just recompile on Python
– Realizer, and be useful without any
modifications when the compiler is
finished. Logically this is to be done
after the compiler is finished.

Finally I think the rest of applications
form design, and other functionality
should be implemented. And of
course we need to document it all in
the end to make it useful for most
users of the system.

This project should make the base for
several full year master students until
it is close to be finished, or it could
become an open source project
instead.

During this year long project, I made a
few detours into dead end design
decisions. The parser is for one thing,
rewritten about ten times, before I
got something that I found useful.
Even the built in data types have been
implemented in two different test
system, and the first was not
something I was happy with. A lot of
time was wasted in the pursuit of a

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 68 of 74

custom widget for the interpreter
written from the ground and up.

To bad one doesn’t have the
knowledge of the end of the year in
the beginning of the project.
My goal for my master thesis was to
make the foundation for the whole
system with most of its sub systems
started.

With this is mind I have tried to
implement something in most
subsystems to have that foundation.

I suggest that future master thesis
students on this project should
possibly try to concentrate on
finishing one subsystem at the time
instead of spreading the resources all
over. I think the built in data type
library, and the virtual machine with
the rest of the compiler should take
precedence over the application
development and library modules in
both C++ and Python.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 69 of 74

Appendix A

Full grammar of Python 2.4

Grammar:

Single_input: <NEWLINE> | simple_stmt | compound_stmt <NEWLINE>
File_input: (<NEWLINE> | stmt)* <EOF>
Eval_input: testlist (<NEWLINE>)* <EOF>

Decorator: ‘@’ dotted_name [‘(arglist ‘)’] <NEWLINE>
Decorators: (Decorator)+
Funcdef: [Decorators] <DEF> <NAME> Parameters ‘:’ Suite
Parameters: ‘(‘ [Vararglist] ‘)’
Vararglist: (Fpdef [‘=’ Test ‘,’])* (‘*’ <NAME> [‘,’ ‘**’ <NAME>] |
 ‘**’ <NAME>) | Fpdef [‘=’ Test] (‘,’ Fpdef [‘=’ Test])* [‘,’]

Fpdef: <NAME> | ‘(‘ Fplist ‘)’
Fplist: Fpdef (‘,’ Fpdef)* [‘,’]

Stmt: Simple_stmt | Compound_stmt
Simple_stmt: Small_stmt (‘;’ Small_stmt)* [‘;’] <NEWLINE>
Small_stmt: Expr_stmt | Print_stmt | Del_stmt | Pass_stmt | Flow_stmt |
 Import_stmt | Global_stmt | Exec_stmt | Assert_stmt

Expr_stmt: Testlist (Augassign Testlist | (‘=’ Testlist)*)
Augassign: ‘+=’ | ‘-=’ | ‘*=’ | ‘/=’ | ‘%=’ | ‘&=’ | ‘|=’ | ‘^=’ | ‘<<=’ |
 ‘>>=’ | ‘**=’ | ‘//=’
Print_stmt: <PRINT> ([Test (’,’ Test)* [’,’] |
 ‘>>’ Test [(‘,’ Test)+ [‘,’]])
Del_stmt: Exprlist
Pass_stmt: <PASS>
Flow_stmt: Break_stmt | Continue_stmt | Return_stmt | Raise_stmt |
 Yield_stmt
Break_stmt: <BREAK>
Continue_stmt: <CONTINUE>
Return_stmt: <RETURN> [Testlist]
Yield_stmt: <YIELD> Testlist
Raise_stmt: <RAISE> [Test [‘,’ Test [‘,’ Test]]]
Import_stmt: Import_name | Import_from
Import_name: <IMPORT> Dotted_as_names
Import_from: <FROM> Dotted_name <IMPORT> (‘*’ | ‘(‘ Import_as_names ‘)’
 | Import_as_names
Import_as_name: <NAME> [<NAME> <NAME>]
Dotted_as_name: Dotted_name [<NAME> <NAME>]
Import_as_names: Import_as_name (‘,’ Import_as_name)* [‘,’]

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 70 of 74

Dotted_as_names: Dotted_as_name (‘,’ Dotted_as_name)*
Dotted_name: <NAME> (<NAME>)*
Global_stmt: <GLOBAL> <NAME> (‘,’ <NAME>)*
Exec_stmt: <EXEC> Expr [<IN> Test [‘,’ Test]]
Assert_stmt: <ASSERT> Test [‘,’ Test]

Compound_stmt: If_stmt | While_stmt | For_stmt | Try_stmt | Funcdef |
 Classdef
If_stmt: <IF> Test ‘:’ Suite (<ELIF> Test ‘:’ Suite)* [<ELSE> ‘:’ Suite]
While_stmt: <WHILE> Test ‘:’ Suite [<ELSE> ‘:’ Suite]
For_stmt: <FOR> Exprlist <IN> Testlist ‘:’ Suite [<ELSE> ‘:’ Suite]
Try_stmt: (<TRY> ‘:’ Suite (Except_clause ‘:’ Suite)+ [<ELSE> ‘:’ Suite]
 | <TRY> ‘:’ Suite <FINALLY> ‘:’ Suite)
Except_clause: <EXCEPT> [Test [‘,’ Test]]
Suite: Simple_stmt | <NEWLINE> <INDENT> (stmt)+ <DEDENT>

Test: And_test (<OR> And_test)* | Lambdef
And_test: Not_test (<AND> Not_test)*
Not_test: <NOT> Not_test | Comparison
Comparison: Expr (Comp_op Expr)*
Comp_op: ‘<’ | ’>’ | ‘==’ | ‘>=’ | ‘<=’ | ‘<>’ | ‘!=’ | <IN> | <NOT> <IN> |
 <IS> | <IS> <NOT>
Expr: Xor_expr (‘|’ Xor_expr)*
Xor_expr: And_expr (‘^’ And_expr)*
And_expr: Shift_expr (‘&’ Shift_expr)*
Shift_expr: Arith_expr ((‘<<’ | ‘>>’) Arith_expr)*
Arith_expr: Term ((‘+’ | ‘-‘) Term)*
Term: Factor ((‘*’ | ‘/’ | ‘%’ | ‘//’) Factor)*
Factor: (‘+’ | ‘-‘ | ‘~’) Factor | Power
Power: Atom (Trailer)* [‘**’ Factor]
Atom: ‘(‘ [Testlist_gexp] ‘)’ | ‘[‘ [Listmaker] ‘]’ |
 ‘{‘ [Dictmaker] ‘} | ‘`’ Testlist1 ‘`’ | <NAME> | <NUMBER> |
 (<STRING>)+

Listmaker: Test (List_for | (‘,’ Test)* [‘,’])
Testlist_gexp: Test (Gen_for | (‘,’ Test)* [‘,’])
Lambdef: <LAMBDA> [Vararglist] ‘:’ Test
Trailer: ‘(‘ Arglist ‘)’ | ‘[‘ Subscriptlist ‘]’ | ‘.’ <NAME>
Subscriptlist: Subscript (‘,’ Subscript)* [‘,’]
Subscript: ‘.’ ‘.’ ‘.’ | Test | [Test] ‘:’ [Test] [Sliceop]
Sliceop: ‘:’ [Test]
Exprlist: Expr (‘,’ Expr)* [‘,’]
Testlist: Test (‘,’ Test)* [‘,’]
Testlist_safe: Test [(‘,’ Test)+ [‘,’]]
Dictmaker: Test ‘:’ Test (‘,’ Test ‘:’ Test)* [‘,’]

Classdef: <CLASS> <NAME> [‘(Testlist ‘)’] ‘:’ Suite

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 71 of 74

Arglist: (Argument ‘,’)* (Argument ‘,’ | ‘*’ Test [‘,’ ‘**’ Test]
 | ‘**’ Test)
Argument: [Test ‘=’] Test [Gen_for]

List_iter: List_for | List_if
List_for: <FOR> Exprlist <IN> Testlist_safe [List_iter]
List_if: <IF> Test [List_iter]

Gen_iter: Gen_for | Gen_if
Gen_for: <FOR> Exprlist <IN> Test [Gen_iter]
Gen_if: <IF> Test [Gen_iter]

Testlist1: Test (‘,’ Test)*

Notation for the grammar language:

< … > is Token, () is a grammar rule grouping, [] is the optional grammar rule.
* means none to many, + means one to many, ‘ .. ‘ means the character between
quotes.
…. : is the name of grammar rule.

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 72 of 74

Appendix B.

Building of the application and install Qt.

You will need to download, build and
install the Qt library from Trolltech, if
your computer doesn’t have it already
installed as most Linux distribution
does.

My project have been tested against
Qt version 3.2.1 and 3.3.4 and found
to work with both.

It has been build and tested on
Windows XP, Linux Fedora core 3 and
Macintosh OSX 10.3 and found to
work.

If you don’t have Qt installed with
thread support, you must download Qt
source code from www.trolltech.com
and build it yourself.

Instructions for building Qt:

Download archive file:

 qt-x11-free-3.3.4.tar.gz

Unpack it to your home path:

tar –xvzf qt-x11-free-3.3.4.tar.gz

cd qt-3.3.4

export QTDIR=$PWD

./configure –thread –fast –shared

make

make install (as root)

You will of course need a C++
compiler suite for your platform to let
Qt be build and installed at all.
To build my application, download the
newest archive from www.python-
realizer.net and select the download
menu at the index page to get the
newest archive of the source code.

Look for something like:

realizer_mmm_dd_2005.tar.gz

Where mmm is month and dd is day.
Download the latest edition and
follow the build instructions below:

tar –xvzf realizer_xxx_dd_2005.tar.gz

cd kildekode

qmake

make

On a Linux machine you will start
application by:

Cd Realizer

./Realizer

You will find the dynamic loadable
library in the same directory.

To check the status of all the source
files in project, and you will need a
Python interpreter installed on your
machine to run it.

Just type ./status.py

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 73 of 74

Literature reference

All the Python source code was found
at www.python.org and I used the
version 2.4.0 as a reference system.

All the documentation for Qt classes
and methods was found in the
document in html format included
with source code downloaded from
Trolltech’s web at www.trolltech.com

Books used under development of
project:

Python in a nutshell –
Covers Python 2.2
O’Reilly & Associates, 2003

C++ in a nutshell
Covers ISO/IEC 14882 Std.
O’Reilly & Associates, 2003

C++ GUI programming with Qt 3.
By Jasmin Blanchette and Mark
Summerfiled.
Prentice Hall, 2004

Programming with Qt, 2nd edition.
Matthias Kalle Dalheimer.
O’Reilly & Associates, 2002

Datateknologiens utvikling.
Per A. Holst.
Tapir Akademisk Forlag

The C++ Programming language.
3. Edition
Bjarne Stroustrup
Addison – Wesley, 1997

Python – Realizer Python done in C++ and Qt

By Richard Magnor Stenbro Page 74 of 74

Colophon

This master thesis report was written
on a Portable Windows XP based
computer with Office 2003 as the
word processor.

I use the font “Trebucket” for all my
writing, and the harmony template for
document writing.

All images of screen dump was
grabbed on a dual Power Macintosh
machine with Mac OSX 10.3.9 and the
utility “grab” which takes snapshots
of the screen.

Final conversion to Acrobat reader
format was done by Microsoft Office
for Macintosh’s word 2004.

All development of the software for
use in this project was done on the
same Macintosh, with GNU software’s
C++ compiler version 3.4.3 and
utilities.

It was also tested on the Qt 3.2.3
under Windows XP with the Borland
C++ compiler suite.

