
The Semantics and Complexity of

Successor-free Nondeterministic Gödel’s T

Bedeho Mesghina Wolde Mender

May 4, 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30828752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to extend my gratitude to my thesis advisor Professor Lars Kris-
tiansen for introducing me to his work and for our uncountably many talks
which I enjoyed so much. Thank you for having the wisdom to know that any-
thing worthwhile takes time, especially mathematics. Thank you to Professor
Dag Normann for his brave efforts in explaining domain theory to me, and his
never ending patience with my many inquiries. Thank you to Professor Herman
Ruge Jervell for agreeing to be my secondary adviser, and always making me
feel so welcome at the logic meetings. Thank you to my love Camilla for all her
encouragement and support, and for our lovely vacation where I discovered the
model in this thesis. But most importantly, I owe everything I have and am
to my family, especially my mother and father, of whom I am so immeasurably
proud.

I dedicate this to you Hibret and Mesghina.

1

Contents

1 Introduction 3
1.1 Introduction . 3
1.2 Overview . 4

2 Successor free Gödel’s T 5
2.1 The Calculus . 5

3 Denotational semantics of Tv 8
3.1 The domain Dσ

b . 8
3.2 Interpreting Tv

b in Dσ
b+1 . 10

3.3 Mapping Dσ
b to N σ

b . 16
3.4 Interpreting Tv

b in N σ
b+1 . 18

4 Successor free computation in T− 24
4.1 Interpreting T−b in Nσ

b+1 . 24
4.2 Computation with valAb+1 . 27

5 Computing nvalAb in T− 34
5.1 Relating |σ|b and ||σ||b . 34
5.2 Computing ||σ||b, ξb, βb, µb, θ

σ
b , λ

σ
b , ρ

σ
b , δ

σ
b ,Υ

σ
b ,Mergeσ

b 36
5.3 Modelling Ab . 42
5.4 Computing nvalAb+1 . 44

6 Complexity classes F−i and Fv
i 48

2

Chapter 1

Introduction

1.1 Introduction

L. Kristiansen, P. Voda, N. Jones and M. Barra have in several papers studied
the computational power of fragments of various successor-free computational
models, such as Gödel’s T in [1, 2], an imperative language in [1], PCF in
[4] and function algebras in [3, 5]. In these papers they have demonstrated
surprising computational power such models, and successfully captured well
known complexity classes defined by explicit time and space bounds on Turing
machines. In particular, L. Kristiansen and P. Voda showed in [1] that certain
neat successor-free fragments of Gödel’s T, perfectly match the well known
alternating space-time hierarchy 1

SPACE 2LIN
0 ⊆ TIME 2LIN

1 ⊆ SPACE 2LIN
2 ⊆ TIME 2LIN

3 ⊆ SPACE 2LIN
4 ⊆ ...

The three classes at the bottom of the hierarchy are called respectively LINSPACE,
EXP and EXPSPACE in the literature. A natural direction of continued research
is to study the nondeterminstic counterpart to this model, and that is the sub-
ject of this thesis. We develop a model for a successor-free nondeterministic
flavour of Gödel’s T, which is built with particular consideration made to keep
it as convenient to compute as possible, while still being adequate2. We desire
this convenience since we will use deterministic programs to compute the inter-
pretation of nondeterministic programs, and from this establish a relationship
between deterministic and nondeterminstic complexity classes. This was the
motivating goal for this thesis.

1Let LIN denote c|x| for some c, and let 2x
0 = x and 2x

i+1 = 22x
i . SPACE(f) and TIME(f)

denote the set of problems decidable by a Turing machine working in O(f) space and time
respectively.

2A model is adequate when the interpretation of any closed term M of base type contains
exactly those elements corresponding to canonical terms M reduces to.

3

1.2 Overview

In chapter 2 we define a deterministic and a nondeterministic successor-free
flavour of Gödel’s T, called T− and Tv respectively. We establish that Tv is
strongly normalizing, and define some concepts required later.

In chapter 3 we provide a denotational semantic for Tv and demonstrate
its adequacy. This proof also gives a reduction strategy which preserves the
interpretation of a running program3 in a desirable way. The model itself is
based on interpreting terms in domains with total functionals over power sets,
and the domains are also equipped with an order relation and a binary operator.
This operator is the key to understanding the calculus, since it precisely models
the nondeterminstic term. We also embed the model of Tv into the natural
numbers by way of a computable isomorphism, and this embedded model is
later computed in chapter 5.

In chapter 4 we quickly present L. Kristiansens model for T− embedded in
natural numbers from [1]. We dramatically extend the computing machinery he
develops, by demonstrating terms for input-bounded repetition and higher-level
arithmetic. These are used in chapter 5 to compute the interpretation of terms.

In chapter 5 we finally compute the functions defining the model in chapter
2. We decide certain type requirements for doing this by relating the sizes of
the deterministic and nondeterministic domains.

In chapter 6 we define complexity classes for T− and Tv, and use the main
result from chapter 5 to relate them by computing the interpretation of nonde-
terministic programs with deterministic programs.

3We later define a progam to be any closed term of type ι → ι, so a running program is
understood to be such a term when given a closed term of type ι as input.

4

Chapter 2

Successor free Gödel’s T

2.1 The Calculus

Definition 2.1. We define the type space as the least set T satisfying (i) ι ∈ T
(ii) σ×τ ∈ T when σ, τ ∈ T (iii) σ → τ ∈ T when σ, τ ∈ T . For convenience let
the shorthands σ1× ...×σn and σ1, ..., σn−1 → σn denote types σ1× (...(σn−1×
σn)) and σ1 → (σ2 → ...(σn−1 → σn)) respectively.

For each type σ ∈ T we have an infinite countable supply of symbols Vσ =
{xσ

0 , x
σ
1 , x

σ
2 , ...} called the variables of type σ, and the set of all variables of all

types is V =
⋃

σ∈T Vσ. Likewise we have Hσ = {[]σ0 , []σ1 , []σ2 , ...} called the holes
of type σ, and the set of all holes of all types is H =

⋃
σ∈T Hσ. We also have

an infinite countable supply of symbols K = {k0, k1, k2, ...} called numerals.
We inductively define C− as the set of all deterministic successor-free con-

texts. All contexts C ∈ C− are said to be of some type σ ∈ T , and we may
clarify the type of C by writing Cσ or C : σ.

(NUM). ki is a context of type ι for all ki ∈ K
(HOLE). []σi is a context of type σ for all []σi ∈ H
(VAR). xσ

i is a context of type σ for all xσ
i ∈ V

(APP). (Cσ→τ
1 Cσ

2) is a context of type τ for all contexts Cσ→τ
1 ,Cσ

2

(ABS). λxσ
i .Cτ is a context of type σ → τ for any xσ

i ∈ V and all contexts Cτ

(PAIR). 〈Cσ
1 , Cτ

2 〉 is a context of type σ × τ for all contexts Cσ
1 ,Cτ

2

(L-PRJ). fst.Cσ×τ is a term of type σ for all contexts Cσ×τ

(R-PRJ). snd.Cσ×τ is a term of type τ for all contexts Cσ×τ

(REC). Rσ(Cι
1, Cι,σ→σ

2 , Cσ
3) is a context of type σ for all contexts Cι

1, Cι,σ→σ
2 , Cσ

3

We define Cv as the set of nondeterministic successor-free contexts by nat-
urally extending the induction schema above with

5

(NDT). (Cσ
1 |Cσ

2) is a context of type σ for all contexts Cσ
1 , Cσ

2

We say that a context is simple when it has at most one hole in it. Let C
be a simple context, then for any simple context C∗ which has the same type as
any hole in C, let C[C∗] denote replacing C∗ with any hole in C.1

We define the set of deterministic successor-free terms, denoted T−, as all
contexts C ∈ C− which have no hole. We define Tv the same way. Let Cσ ∈ Cv

be a simple Tv context, and let s be a Tv-term of appropriate type, observe then
that C[s] is also a Tv-term. Given Tv-terms M : σ and t : τ , if there exists a
context C : σ such that M = C[t] then we say that t is a subterm of M .

For any b ≥ 0 let T−b denote the set of T−-terms such that all numerals
occurring in them are no greater then kb, and we define Tv

b the same way.
When we simply refer to something as a term, then it may be either a T−

or Tv term. For convenience we allow some syntactic sugar; for a term of the
form (M) we may write M , for a term of the form ((((M)N1)...)Nk) we may
write M(N1, ..., Nk), for a term of the form N(N(...(M)...)) where N occurs k
times we may write (Nk(M)), for a term of the form λx1.(λx2.(...λxk.M)) we
may write (λx1x2...xk.M), and in most situations concerning variables we will
drop the subscript and sometimes also type.

A variable is said to be bound in a term M if each occurrence of it in M is
within the scope of an abstraction for it, otherwise we say that each occurrence
outside of the scope of an abstraction is free in M . A term is said to be closed
when all variables are bound, otherwise it is said to be open.

For terms M and N : τ and variable x : τ , we say that N is substitutable
for x in M if substituting all free x in M with N does not result in binding free
variables in N . Let Mx

N denote such a substitution whenever N is substitutable
for x in M .

We define the one step reduction relation →1 for T−

(α). C[λx.M] →1 C[λy.Mx
y] when y is not free in M

(β). C[(λx.M)N] →1 C[Mx
N]

(LPRJ). C[fst. 〈M,N〉] →1 C[M]

(RPRJ). C[snd. 〈M,N〉] →1 C[N]

(0-REC). C[Rσ(k0,M,N)] →1 C[N]

(REC). C[Rσ(kn+1,M,N)] →1 C[M(kn, Rσ(kn,M,N))]

for any simple context and suitably typed M ,N . We define the one step
reduction relation ¤1 for Tv by naturally extending the list above with

(γ). C[(M |N)] ¤1 C[M] and C[(M |N)] ¤1 C[N]

1Notice that using [C∗] respects the inductive structure of C. By this we mean that for
example given the simple C = C1C2 we have C[C∗] = C1[C∗]C2[C∗]. This allows us to do
convenient induction on the structure of C[C∗].

6

We make the distinction between the T− and Tv reduction relation by using
the symbols →1 and ¤1 respectivley. Let the relations → and B be the symmet-
ric,transitive closures of →1 and ¤1. A term is said to be on normal form when
no non-α-reduction can be applied to it, and it is said to be on γ-normal form
when no non-α-γ-reduction is available.

Definition 2.2. We define lv(σ) as the level of σ by (i) lv(ι) = 0 (i) lv(σ×τ) =
max{lv(σ), lv(τ)} (iii) lv(σ → τ) = max{lv(σ) + 1, lv(τ)}. Let Rσ1 , ..., Rσn

be an exact list of all recursors occurring in a term M , we define the re-
cursor rank of M as Rk(M) = max {0, lv(σ1), ..., lv(σn)}. We also define
Tr(M) as the term rank of M by (i) Tr(kn) = 0 (ii) Tr(xσ) = lv(σ) (iii)
Tr(λxσ.P τ) = max{lv(σ → τ), T r(P)} (iv) Tr(PQ) = max{Tr(P), T r(Q)}
(v) Tr(P |Q) = max{Tr(P), T r(Q)} (vi) Tr(〈P,Q〉) = max{Tr(P), T r(Q)}
(vii) Tr(fst.P) = Tr(P) (viii) Tr(snd.P) = Tr(P) (viiii) Tr(Rσ(P,Q,R)) =
max{Tr(P), T r(Q), T r(R)}
Lemma 2.3. For any term M : σ we have

(i) Tr(M) ≥ lv(σ)

(ii) Tr(M) ≥ Tr(R) for any subterm R of M

(iii) Tr(M) = lv(τ) = Tr(R) for some subterm R : τ of M

Proof. All are proven by simple induction on structure of M .

Definition 2.4. We say that an infinite reduction of a term normalizes if it
ends with an infinite use of only α-reductions, and a term is said to be strongly
normalizable if all infinite reductions normalize.

Theorem 2.5. All Tv-terms are strongly normalizable

Proof. In [7] Berger U. demonstrates that natural extensions of Gödels T are
strongly normalizing by using W.W. Tait’s method of strong computability for
simply typed lambda calculus from [8]. However we cannot directly apply his
result to our calculus because of a superficial discrepancy. In Tv we do not
consider Rσ, fst., snd. and |σ as independent constants and terms on their own,
as is customary and done in [7]. To overcome this we simply construct a new
calculus TC where for all types σ and τ we have constants

Rσ : ι, (σ → σ), σ → σ, |σ : σ, σ → σ, fstσ×τ : σ × τ → σ, sndσ×τ : σ × τ → τ

and the same reduction rules as before. It is obvious that Tv ⊂ TC , and any
reduction of a Tv-term is also a reduction of the same term in TC . Therefor
since the reduction sequence is normalizing by strong normalization of TC , then
Tv is also strongly normalizing.

7

Chapter 3

Denotational semantics of
Tv

3.1 The domain Dσ
b

Definition 3.1. For any type σ and b > 0 we define Dσ
b as the domain over

type σ in base b and a binary relation vσ
b over Dσ

b

(i) Dι
b = P({0, ..., b− 1}) and d vι

b e⇔ d ⊆ e for all d, e ∈ Dσ
b

1

(ii) Dσ×τ
b = Dσ

b ×Dτ
b and d vσ×τ

b e⇔ fst(d) vσ
b fst(e) ∧ snd(d) vτ

b snd(e)
for all d ∈ Dσ

b , e ∈ Dτ
b
2

(iii) Dσ→τ
b is the set of all functions f : Dσ

b → Dτ
b and f vσ→τ

b g ⇔ f(d) vτ
b

g(d) for all d ∈ Dσ
b

These domains are simple in structure and rich in elements not corresponding
to any term, e.g. Dι

b contains the empty set. The domains also contain non-
monotonic functions which also do not correspond to any term, given certain
natural conditions on open terms. As mentioned in the introduction, the reason
no refinements have been made is because we want the domains to be of easily
computable size, namely ||σ||b as seen later.

We experience that our terms behave monotonically with respect to vσ
b ,

so one would expect that an accurate interpretation would be monotonic as
well. Also, when [[N : σ → τ]]A is given input which is monotonic,e.g the in-
terpretation of a term, we expect monotonic output. The complication is that
monotonicity is usually defined for functions over domains which are them self’s
restricted to only monotonic elements. We overcome this by introducing a suit-
able extension of the notion of monotonicity.

1P(S) denotes the set of all subsets of S
2fst and snd refers to functions taking the first and second component of a 2-tuple respec-

tively, not to be confused with fst. and snd. which are part of the term language.

8

Definition 3.2. We define a unary relation for all domains, called deep mono-
tonicity

(i) g ∈ Dι
b is deeply monotonic

(ii) g ∈ Dσ×τ
b is deeply monotonic when fst(g) and snd(g) are deeply mono-

tonic

(iii) g ∈ Dσ→τ
b is deeply monotonic when

- g(e) is deeply monotonic for all deeply monotonic e ∈ Dσ
b

- d vσ
b e⇒ g(d) vτ

b g(e) for all deeply monotonic d, e ∈ Dσ
b

Proposition 3.3. Let M : σ be a Tv
b -term, and Ab+1 be an assignment map-

ping all free variables in M to deeply monotonic elements, then [[M]]A is deeply
monotonic.

Proof. We omit a detailed proof since this proposition si no more then an ob-
servation. We prove this by induction on the structure of M . In each induction
case we rely on the fact that the functions defining [[·]]A, such as ∨σ

b and Ψσ
b+1,

preserve deep monotonicity.

Proposition 3.4. 〈Dσ
b ,vσ

b 〉 is a partial order.

Proof. We prove this by induction on the structure of σ.

Definition 3.5. For any type σ and b > 0 we define the binary operator ∨σ
b

over Dσ
b as the merge operator for type σ in base b

(i) d ∨ι
b e = d ∪ e for all d, e ∈ Dι

b

(ii) d ∨σ×τ
b e = (fst(d) ∨σ

b fst(e), snd(e) ∨τ
b snd(e)) for all d, e ∈ Dσ×τ

b

(iii) f ∨σ→τ
b g = h for all f, g ∈ Dσ→τ

b , where h(x) = f(x) ∨τ g(x) for all
x ∈ Dσ

b

Lemma 3.6. For any d, e, f ∈ Dσ
b

(i) d ∨σ
b e ∈ Dσ

b

(ii) d ∨σ
b e = e ∨σ

b d

(iii) (d ∨σ
b e) ∨σ

b f = d ∨σ
b (e ∨σ

b f)

(iv) d vσ
b e ∨σ

b d

(v) d ∨σ
b d = d

(vi) d = e⇔ e vσ
b d and d vσ

b e

(vii) e vσ
b d and f vσ

b d⇒ (e ∨σ
b f) vσ

b d

9

Proof. All are easily proved by a standard induction on the structure σ, and
some may also be derived from the others.

For convenience we define a shorthand for merging the elements of any finite
set S ⊆ Dσ

b . Let
∨σ,b

d∈S d denote the merging of all d ∈ S in some arbitrary order.
This is well-defined, since merging is both commutative and associative by (ii)
and (iii) in Lemma 3.6 respectively. Throughout the text we may use slight
variations off this shorthand, but it will always be clear that we are merging
over some finite subset of our domains.

3.2 Interpreting Tv
b in Dσ

b+1

Definition 3.7. For any σ and b > 0 we define ψσ
b : Nb ×Dι,σ→σ

b ×Dσ
b → Dσ

b

and Ψσ
b : Dι

b\{∅} ×Dι,σ→σ
b ×Dσ

b → Dσ
b by

(i) ψσ
b (0, f, g) = g

(ii) ψσ
b (i+ 1, f, g) = f({i}, ψσ

b (i, f, g))

(iii) Ψσ
b (S, f, g) =

∨σ,b
n∈S ψ

σ
b (n, f, g)

Lemma 3.8. For any S1, S2 ∈ Dι
b,f ∈ Dι,σ→σ

b and g ∈ Dσ
b

Ψσ
b (S1 ∪ S2, f, g) = Ψσ

b (S1, f, g) ∨σ
b Ψσ

b (S1, f, g)

Proof.

Ψσ
b (S1 ∪ S2, f, g) =

σ,b∨

n∈S1∪S2

ψσ
b (n, f, g) Ψσ

b def.

=

(
σ,b∨

n∈S1

ψσ
b (n, f, g)

)
∨σ

b

(
σ,b∨

n∈S2

ψσ
b (n, f, g)

)

= Ψσ
b (S1, f, g) ∨σ

b Ψσ
b (S2, f, g) Ψσ

b def.

Definition 3.9. We define a domain assignment A in base b as a total map
from V into

⋃
σ D

σ
b such that A(xσ) ∈ Dσ

b , occasionally we may write Ab to
clarify the base, or only refer to it as an assignment if the context allows this.
Let A be a domain assignment in base b+1, then we define [[·]]A as the domain
interpretation of Tv-terms under assignment A
[[kn]]A = {n}
[[x]]A = A(x)

[[MN]]A = [[M]]A[[N]]A

10

[[λxσ.Mτ]]A = f where f(u) = [[M]]Ax
u

3 for all u ∈ Dσ
b+1

[[Mσ|Nσ]]A = [[M]]A ∨σ
b [[N]]A

[[〈M,N〉]]A = ([[M]]A, [[N]]A)

[[fst.Mσ×τ]]A = fst([[M]]A)

[[snd.Mσ×τ]]A = snd([[M]]A)

[[Rσ(N,F,G)]]A = Ψσ
b+1([[N]]A, [[F]]A, [[G]]A)

Lemma 3.10. For any Tv
b -term M : σ and assignment Ab+1

(i) [[M]]A ∈ Dσ
b+1

(ii) [[M]]U = [[M]]A for any assignment Ub+1 if M is closed

(iii) [[M]]Ax
[[R]]A

= [[Mx
R]]A for any Tv

b -term R : τ and variable x : τ such that R

is substitutable for x in M .

Proof. All are easily proved by a standard induction on structure of M .

We will for closed terms often omit the domain assignment and write [[M]]
instead of [[M]]A, this is possible since (ii) in the lemma above shows that
assignments are irrelevant for closed terms.

Lemma 3.11. For any context C : σ and terms sτ , tτ such that C[s], C[t] are
Tv

b -terms and assignment Ab+1

(i) [[s]]A vτ
b+1 [[t]]A ⇒ [[C[s]]]A vσ

b+1 [[C[t]]]A
(ii) [[s]]A = [[t]]A ⇒ [[C[s]]]A = [[C[t]]]A

Proof. (i) is easily proved by induction on the structure of C,(ii) follows imme-
diately.

Lemma 3.12. For any Tv
b -term M : σ where M ¤1 N and assignment Ab+1,

then [[N]]A vσ
b+1 [[M]]A when the γ-reduction was used, otherwise [[N]]A = [[M]]A.

Proof. Let s : τ be the subterm of M to which the reduction is directly applied,
resulting in some term t : τ , so there exists a context C : σ such that M = C[s]
and N = C[t]. We now consider each reduction rule and demonstrate that
[[s]]A vτ

b+1 [[t]]A if the γ-reduction was used, otherwise [[s]]A = [[t]]A.

3Ax
u is standard notation for the map sending x to u, and otherwise behaving like A. It is

used throughout this thesis.

11

(α). By definition of [[·]]A we have [[λyρ.Mx
y]]A = g where g(u) = [[Mx

y]]Ay
u
, and

[[λxρ.M]]A = f where f(u) = [[M]]Ax
u
. So for all u ∈ Dρ

b+1

g(u) = [[Mx
y]]Ay

u
= [[M]]Ay,x

u,Ay
u(y)

(iii) Lemma 3.10

= [[M]]Ay,x
u,u

Ay
u(y) = u

= [[M]]Ax
u

y is not free in M

= f(u)

Therefor f = g, that is [[λxρ.M]]A = [[λyρ.Mx
y]]A.

(β).
[[(λx.R)S]]A = [[λx.R]]A[[S]]A = [[R]]Ax

[[S]]A
= [[Rx

S]]A

The last equality holds by (iii) in Lemma 3.10

(γ). By definition of [[·]]A we have

[[R|S]]A = [[R]]A ∨σ
b+1 [[S]]A

and
[[R]]A vσ

b+1 [[R]]A ∨σ
b+1 [[S]]A

by (iii) in Lemma 3.6, hence

[[R]]A vσ
b+1 [[R|S]]A

The argument is symmetric in S.

(PRJ).

[[fst. 〈R,S〉]]A = fst([[〈R,S〉]]A) = fst([[R]]A, [[S]]A) = [[R]]A

snd. 〈R,S〉 is analogous.

(0-REC).

[[Rσ(k0, F,G)]]A = Ψσ
b+1([[k0]]A, [[F]]A, [[G]]A) [[·]]A def.

=
σ,b+1∨

n∈[[k0]]A

ψσ
b+1(n, [[F]]A, [[G]]A) Ψσ

b+1 def.

= ψσ
b+1(0, [[F]]A, [[G]]A) [[k0]]A = {0} def.

= [[G]]A ψσ
b+1 def.

12

(REC).

[[Rσ(kn+1, F,G)]]A
= Ψσ

b+1([[kn+1]]A, [[F]]A, [[G]]A) [[·]]A def.

=
σ,b+1∨

m∈[[kn+1]]A

ψσ
b+1(m, [[F]]A, [[G]]A) Ψσ

b+1 def.

= ψσ
b+1(n+ 1, [[F]]A, [[G]]A) [[kn+1]]A = {n+ 1}

= [[F]]A({n}, ψσ
b+1(n, [[F]]A, [[G]]A)) ψσ

b+1 def.

= [[F]]A

[[kn]]A,

σ,b+1∨

m∈[[kn]]A

ψσ
b+1(m, [[F]]A, [[G]]A)

= [[F]]A
(
[[kn]]A,Ψ

σ
b+1([[kn]]A, [[F]]A, [[G]]A)

)
Ψσ

b+1 def.

= [[F]]A([[kn]]A, [[Rσ(kn, F,G)]]A) [[·]]A def.

= [[Fkn]]A[[Rσ(kn, F,G)]]A [[·]]A def.

= [[F (kn, Rσ(kn, F,G))]]A [[·]]A def.

We see from the relations above, if a γ-reduction was applied then [[s]]A = [[t]]A,
so by (ii) in Lemma 3.11 [[M]]A = [[N]]A as desired. Otherwise [[s]]A vτ

b+1 [[t]]A,
so by (i) in Lemma 3.11 [[N]]A vσ

b [[M]]A.

Corollary 3.13. For any Tv
b -term M : σ and assignment Ab+1 where M ¤N

[[N]]A vσ
b [[M]]A

Proof. There is a sequence of Tv
b -terms R1 : σ, ..., Rk : σ where M = R1

and N = Rk and Ri ¤1 Ri+1 for all i < k. By Lemma 3.12 we know that
[[Ri]]A vσ

b+1 [[Ri+1]]A, and combined with transitivity of vσ
b+1 from Proposition

3.4 we get that [[Ri]]A vσ
b+1 [[Rj]]A for all i, j ≤ k. Hence [[R1]]A vσ

b+1 [[Rk]]A,
that is [[N]]A vσ

b+1 [[M]]A.

Lemma 3.14. Let M be a closed term on normal form of type σ

(i) σ = ι then M is a numeral

(ii) σ = τ → ρ then M is a lambda abstraction

(iii) σ = τ × ρ then M is a pair

Proof. We do a simultaneous induction proof on the structure of M for all three
claims, and keep in mind that any subterm of M must also be on normal form.
In each claim we will argue that M cannot have certain forms, and some of
these forms occur in all claims, therefor we argue these outside the claims to
avoid repetition.

Since M is closed it cannot be a variable, and since it is on normal form it

13

can obviously not be on form (A|B). It cannot be on form R(N,F,G) since
N : ι by the induction hypothesis must be a numeral, and this allows us to
apply the recursor reduction on M , contradicting it being on normal form. It
cannot be on form (Aτ→ρBτ),fst.Aτ×ρ or snd.Aτ×ρ, since either one would by
the induction hypothesis on A allow us to apply a reduction, β- and projection
respectively, on M directly. Observe now that the only remaining possible forms
are the numeral, lambda abstraction and pairing.

M : ι: Since M is of type ι it cannot be on form λx.A or 〈A,B〉, so the only
remaining form is numeral, so M is a numeral term.

M : τ → ρ: Since M is of type τ → ρ it cannot be a numeral or on form 〈A,B〉,
so the only remaining form is lambda abstraction, so M is a lambda ab-
straction term.

M : τ × ρ: Since M is of type τ × ρ it cannot be a numeral or a lambda ab-
straction , so the only remaining form is pairing, so M is a pairing term.

Lemma 3.15. A choice term is a closed Tv term where the γ-reduction is
available, but no other non-α-reduction.4 Let M : σ be a closed choice term
not of the form λx.Q and 〈P,Q〉, then there exists a context C : σ such that
M = C[p|q] and

[[C[p|q]]] = [[C[p]]] ∨σ
b+1 [[C[q]]]

Proof. We demonstrate this by induction on the structure of M .

Case M = kn, x. Neither of these cases are possible since M is a choice term.

Case M = P τ→σQτ . P is a closed term since M is closed. P must be a
choice term, otherwise it would have to be on normal form, which by (ii)
in Lemma 3.14 puts it on form λx.u, contradicting that M is a choice
term. P cannot be on form 〈u, v〉 since it is of the arrow type, and not on
form λx.u since this as mentioned contradicts that M is choice term. This
allows the induction hypothesis to be applied on P , giving us a context
C1 : σ → τ such that P = C1[p|q].
Let C = C1Q and observe that M = C[p|q] and

[[C[p|q]]] = [[C1[p|q]Q]] C[] def.

= [[C1[p|q]]][[Q]] [[·]] def.

=
{
[[C1[p]]] ∨τ→σ

b+1 [[C1[q]]]
}

[[Q]] IH.

= [[C1[p]]]([[Q]]) ∨σ
b+1 [[C1[q]]]([[Q]]) ∨τ→σ

b+1 .def

= [[C1[p]Q]] ∨σ
b+1 [[C1[q]Q]] [[·]] def.

= [[C[p]]] ∨σ
b+1 [[C[q]]] C

4Not to be confused with a term on γ-normal form, which does not guarantee having a
nondeterministic reduction available. So a choice term is on γ-normal form, but the converse
does not hold.

14

Case M = λx.P, 〈P,Q〉. These cases are not possible by assumption.

Case M = fst.Pσ×τ , snd.P τ×σ. We only consider the first case. P is clearly a
choice term, and cannot be on form λx.u since it is of the product type,
and not of form 〈u, v〉 since this as contradicts that M is choice term. This
allows the induction hypothesis to be applied to P , giving us a context C1

such that P = C1[p|q]. Let C = fst.C1 and observe that M = C[p|q] and

[[C[p|q]]] = [[fst.C1[p|q]]] C[] def.

= fst([[C1[p|q]]]) [[·]] def.

= fst([[C1[p]]] ∨σ×τ
b+1 [[C1[q]]]) IH.

= fst([[C1[p]]]) ∨σ
b+1 fst([[C1[q]]]) ∨σ×τ

b+1 def.

= [[fst.C1[p]]] ∨σ
b+1 [[fst.C1[q]]] [[·]] def.

= [[C[p]]] ∨σ
b+1 [[C[q]]] C def.

Case M = (P |Q). Let C = [] and observe that M = C[P |Q] and the desired
result.

Case M = Rσ(N ι, F ι,σ→σ, Gσ). Terms N,F,G must all be closed. The term
N must be a choice term, otherwise it would be on normal form and
therefore by (ii) in Lemma 3.14 also on numeral form, contradicting that
M is a choice term. N cannot be on form 〈u, v〉 or λx.u since it is of the
ι type. This allows the induction hypothesis to be applied to N , giving
us a context C1 such that N = C1[p|q]. Let C = Rσ(C1, F,G) and observe
that M = C[p|q] and

[[Cσ,ρ[p|q]]] = [[Rσ(C1[p|q], F,G)]] C[] def.

= Ψσ
b+1([[C1[p|q]]], [[F]], [[G]]) [[·]] def.

= Ψσ
b+1([[C1[p]]] ∨ι

b+1 [[C1[q]]], [[F]], [[G]]) IH.

= Ψσ
b+1([[C1[p]]] ∪ [[C1[q]]], [[F]], [[G]]) ∨ι

b+1 def.

= Ψσ
b+1([[C1[p]]], [[F]], [[G]]) ∨σ

b+1 Ψσ
b+1([[C1[q]]], [[F]], [[G]]) Lemma 3.8

= [[Rσ(C1[p], F,G)]] ∨σ
b+1 [[Rσ(C1[q], F,G)]] [[·]] def.

= [[C[p]]] ∨σ
b+1 [[C[q]]] C def.

This induction reveals that if a term has a nondeterministic choice as its
only remaining non-α-reduction, then we will always find such a choice outside
the scope of a recursor, meaning F or G for any Rσ(N,F,G). We may however,
find it completely outside a recursor, or alternatively in N . For example we may
have R([A|B], F,G) or even R(...R([A|B], F0, G0)..., F1, G0), and so on. This is
a fundamental ingredient in the adequacy proof, and it actually provides us with
a guarantee of how we can suitably reduce a term to preserve its interpretation.

15

Corollary 3.16. For any closed Tv
b -term M : ι not on normal form with

n ∈ [[M]], there exists a term N : ι such that M ¤1 N by way of a non α-
reduction and n ∈ [[N]]

Proof. If M is not a choice term, then it must have a deterministic reduction
available, and applying any such reduction preserves the interpretation and thus
n ∈ [[N]]. Assume now that M is a choice term, and observe that it cannot be
on form λx.P or 〈P,Q〉 since it it of type ι.

By Lemma 3.15 M = C[p|q] where

[[C[p|q]]] = [[C[p]]] ∨ι
b+1 [[C[q]]]

alternatively
[[M]] = [[C[p]]] ∪ [[C[q]]]

which demonstrates the existence of an available nondeterministic reduction,
moreover we must have n ∈ [[C[p]]] or n ∈ [[C[q]]]. So picking the appropriate
reduction will provide the desired result.

Theorem 3.17. For any closed Tv
b -term M : ι

n ∈ [[M]] ⇔M ¤ kn

Proof. First observe that

M ¤ kn ⇒ [[kn]] vι
b+1 [[M]] corollary 3.13

⇒ {n} vι
b+1 [[M]] [[·]]A def.

⇒ {n} ⊆ [[M]] vι
b+1 def.

⇒ n ∈ [[M]]

For the converse implication let n ∈ [[M]]. By Lemma 3.16 we can do a reduction
M ¤1 M1 ¤1 M2 ¤1 ... consisting of only non α-reductions such that

[[M]] = [[M1]] = [[M2]] = ...

This reduction sequence must normalize since it otherwise would constitute a
counterexample to Theorem 2.5. So there is a termMi in the sequence on normal
form. Mi must also be closed and of type ι since reductions preserves this, and
so Mi = km for some m by Lemma 3.14. Since and n ∈ [[Mi]] = [[km]] = {m}, so
Mi = kn and thus M ¤ kn as desired.

3.3 Mapping Dσ
b to N σ

b

In this section we show how to map Dσ
b into it’s isomorphic counterpart and

subset of the natural numbers N σ
b , by way of a bijection πσ

b .

16

Definition 3.18. For any type σ and b > 0 we define ‖σ‖b as the nondeter-
ministic cardinality of σ by (i) ‖ι‖b = 2b (ii) ‖σ × τ‖b = ‖σ‖b × ‖τ‖b (iii)
‖σ → τ‖b = ‖τ‖‖σ‖b

b . For any type σ and b > 0 we define N σ
b = {0, ..., ‖σ‖b−1}

This following lemma is necessary for following functions on N σ
b to be well-

defined

Lemma 3.19. For any number a ∈ N σ
b where

(i) σ = ι there are unique numbers d0, ..., db−1 ∈ {0, 1} such that

a = d0 + d12 + ...+ db−12b−1

(ii) σ = ρ× τ there are unique numbers d0 ∈ N τ
b , d1 ∈ N ρ

b such that

a = d0 + d1||τ ||b
(iii) σ = ρ → τ there are unique numbers d0, ..., d` ∈ N τ

b where ` = ||ρ||b − 1
such that

a = d0 + d1||τ ||b + ...+ d`||τ ||b`

Proof. (i) is proven the same way as (iii), and both (ii) and (iii) are analogous
to Lemma 4.2.

Lemma 3.20. For all b > 0 we define

- ξb : N ι
b → Dι

b by ξb(d0 + ...+ db−12b−1) = {i|di = 1}
- βb : N ι

b ×Nb → {0, 1} by βb(d0 + ...+ db−12b−1, i) = di

- µb : Dι
b → N ι

b by µb(S) =
∑

i∈S

2i

Then (i) ξb is a bijection (ii) µb is the inverse of ξb (iii) µb is a bijection (iv)
β(n,m) = 1 ⇔ {m} ⊆ ξb(n) for any n ∈ N ι

b and m ∈ Nb.

Proof. For surjectivity of ξb fix S ∈ Dι
b and let

di =

{
1 i ∈ S

0 else
for all i < b

then
ξb(d0 + ...+ db−12b−1) = {i|di = 1} = S

Injectivity of ξb follows from (ii) , so or any a ∈ N ι
b

µb(ξb(a)) = µb(ξb(d∗0 + ...+ d∗b−12
b−1))

= µb({i|d∗i = 1})
=

∑

i∈{i|d∗i =1}
2i

= d∗0 + ...+ d∗b−12
b−1

= a

17

Since µb is the inverse of a bijection, it is itself a bijection, and finally (iv) holds
by straightforward computation.

Definition 3.21. For all types σ and b > 0 we define the binary relation 4σ
b

on N σ
b by

(i) n 4ι
b m⇔ ξb(n) ⊆ ξb(m)

(ii) d0 + d1 ‖τ‖b 4σ×τ
b d∗0 + d∗1 ‖τ‖b ⇔ d1 4σ

b d
∗
1 and d0 4τ

b d
∗
0

(iii) d0 + ...+ d` ‖τ‖`
b 4σ→τ

b d∗0 + ...+ d∗` ‖τ‖`
b ⇔ d0 4τ d∗0, ..., d` 4τ

b d
∗
` where

` = ‖σ‖b − 1

Definition 3.22. For any type σ and b > 0 we define πσ
b : Dσ

b → N σ
b by

(i) πι
b(S) = µb(S)

(ii) πσ×τ
b (d) = πτ

b (snd(d)) + πσ
b (fst(d)) ‖τ‖b

(iii) πσ→τ
b (d) =

∑

i<‖σ‖b

πτ
b (d(ρσ

b (i))) ‖τ‖i
b, where ρσ

b : N σ
b → Dσ

b is the inverse

of πσ
b

We see that πσ
b requires an inverse for πσ→τ

b to be well-defined, this is guar-
anteed by the bijectivity of πσ

b .

Lemma 3.23.

(i) πσ
b is a bijection

(ii) d vσ
b e⇔ πσ

b (d) 4σ
b π

σ
b (e) for any d, e ∈ Dσ

b

(iii) 〈N σ
b ,4σ

b 〉 is a partial order isomorphic with 〈Dσ
b ,vσ

b 〉
Proof. Both (i) and (ii) are proved straight forward by induction on the struc-
ture of σ. The partial ordering of 〈N σ

b ,4σ
b 〉 follows from it being isomorphic

with the partial order 〈Dσ
b ,vσ

b 〉, and the isomorphism is established by (i) and
(ii).

3.4 Interpreting Tv
b in N σ

b+1

In this section we show how to interpret Tv
b terms in N σ

b+1 and how the bijection
πσ

b+1 preserves the interpretation of terms betweene Dσ
b+1 and N σ

b+1. This shows
that Dσ

b+1 and N σ
b+1 are isomorphic models.

Definition 3.24. For all b > 0 and all types σ,τ we define

(i) θσ×τ
b : N σ

b ×N τ
b → N σ×τ

b by θσ×τ
b (d1, d0) = d1||τ ||b + d0

(ii) λσ×τ
b : N σ×τ

b → N σ
b by λσ×τ

b (d0 + d1 ‖τ‖b) = d1

18

(iii) ρσ×τ
b : N σ×τ

b → N τ
b by ρσ×τ

b (d0 + d1 ‖τ‖b) = d0

(iv) δσ→τ
b : N σ→τ

b × N σ1
b → N τ

b by δσ→τ
b (d0 + ... + dk‖τ‖b

k
, i) = di, where

k = ‖σ‖b − 1

For convenience we define a shorthand a[b] = δσ→τ
b (a, b) for any a ∈ N σ→τ

b

and b ∈ N σ
b , and let a[b1, ..., bn] = a[b1][b2, ..., bn] for appropriate a, b1, ..., bn.

Definition 3.25. For all types σ and b > 0 we define Mergeσ
b : N σ

b ×N σ
b → N σ

b

by induction on the structure of σ

(i) Mergeι
b(n,m) = µb(ξb(n) ∪ ξb(m))

(ii) Mergeσ×τ
b (d1+d0 ‖τ‖b , d

∗
1+d

∗
0 ‖τ‖b) = Mergeτ

b (d1, d
∗
1)+Mergeσ

b (d0, d
∗
0) ‖τ‖b

(iii) Mergeσ→τ
b (d0 + ...+ d` ‖τ‖`

b , d
∗
0 + ...+ d∗` ‖τ‖`

b) = Mergeτ
b (d0, d

∗
0) + ...+

Mergeτ
b (d`, d

∗
`) ‖τ‖`

b where ` = ‖σ‖b − 1

Lemma 3.26.

(i) πτ
b (f(d)) = πσ→τ

b (f)[πσ
b (d)]

(ii) πσ
b (d ∨σ

b e) = Mergeσ
b (πσ

b (d), πσ
b (e))

Proof. For (i) observe that

πσ→τ
b (f)[πσ

b (d)] =

∑

i<‖σ‖b

πτ
b (f(ρσ

b (i))) ‖τ‖i
b

 [πσ

b (d)] πσ→τ
b def.

= πτ
b (f(ρσ

b (πσ
b (d)))) δσ→τ

b def.

= πτ
b (f(d)) ρσ

b is inverse of πσ
b

and (ii) is simply proven by induction on σ.

We see that (ii) in Lemma 3.26 guarantees that Mergeσ
b is indeed also

commutative and associative by way of πσ
b , so as before we define a shorthand⊔σ,b

d∈S d to denote the merging of all d ∈ S.

Definition 3.27. For all σ and b > 0 we define υσ
b : Nb×N ι,σ→σ

b ×N σ
b → N σ

b

and Υσ
b : P(Nb) \ {∅} × N ι,σ→σ

b ×N σ
b → N σ

b by

(i) υσ
b (0, f, g) = g

(ii) υσ
b (i+ 1, f, g) = f [µb({i}), υσ

b (i, f, g)]5

(iii) Υσ
b (S, f, g) =

⊔σ,b
n∈S υ

σ
b (n, f, g)

Lemma 3.28.
5We use uncyrring for readability.

19

(i) πσ
b (ψσ

b (n, f, g)) = υσ
b (n, πι,σ→σ

b (f), πσ
b (g))

(ii) πσ
b (Ψσ

b (S, f, g)) = Υσ
b (S, πι,σ→σ

b (f), πσ
b (g))

Proof. We prove (i) by induction on n, so first

πσ
b (ψσ

b (0, f, g)) = πσ
b (g) = υσ

b (0, πι,σ→σ
b (f), πσ

b (g))

then for n = i+ 1 > 0

πσ
b (ψσ

b (n, f, g)) = πσ
b (ψσ

b (i+ 1, f, g)) n = i+ 1

= πσ
b (f({i}, ψσ

b (i, f, g))) ψσ
b def.

= πσ→σ
b (f({i}))[πσ

b (ψσ
b (i, f, g))] (i) in Lemma 3.26

= πσ→σ
b (f({i}))[υσ

b (i, πι,σ→σ
b (f), πσ

b (g))] IH.

= {πι,σ→σ
b (f)[πι

b({i})]} [υσ
b (i, πι,σ→σ

b (f), πσ
b (g))] (i) in Lemma 3.26

= {πι,σ→σ
b (f)[µb({i})]} [υσ

b (i, πι,σ→σ
b (f), πσ

b (g))] πb def.

= πι,σ→σ
b (f)[µb({i}), υσ

b (i, πι,σ→σ
b (f), πσ

b (g))] [] def.

= υσ
b (i+ 1, πι,σ→σ

b (f), πσ
b (g)) υσ

b def.

For (ii) we then have

πσ
b (Ψσ

b (S, f, g)) = πσ
b (

σ,b∨

n∈S

ψσ
b (n, f, g)) Ψσ

b def.

=
σ,b⊔

n∈S

πσ
b ψ

σ
b (n, f, g)) (ii) in Lemma 3.26

=
σ,b⊔

n∈S

υσ
b (n, πι,σ→σ

b (f), πσ
b (g)) (i)

= Υσ
b (S, πι,σ→σ

b (f), πσ
b (g)) by Υσ

b def.

Definition 3.29. We define a value assignment A in base b as a total map
from V into

⋃
σ N σ

b such that A(xσ) ∈ N σ
b , occasionally we may simply write

Ab for shorthand, or only refer to it as an assignment if the context allows this.
Furthermore, for some value assignment Ab, let the derived value assignment
of Ab be the value assignment Âb, given by Âb(xσ) = πσ

b (Ab(xσ)). Let A be
a value assignment in base b + 1, then we inductively define nvalAb+1(·) as the
value interpretation of Tv

b -terms under assignment A.

nvalAb+1(kn) = µb+1({n})

nvalAb+1(xσ) = A(x)

20

nvalAb+1(M
σ→τNσ) = nvalAb+1(M)[nvalAb+1(N)]

nvalAb+1(λx
σ.Mτ) =

∑
i<‖σ‖b+1

nval
Ax

i

b+1(M) ‖τ‖i
b+1

nvalAb+1(M
σ|Nσ) = Mergeσ

b+1(nvalAb+1(M),nvalAb+1(N))

nvalAb+1(〈Mσ, Nτ 〉) = θσ×τ
b+1 (nvalAb+1(M),nvalAb+1(N))

nvalAb+1(fst.M
σ×τ) = λσ×τ

b+1 (nvalAb+1(M))

nvalAb+1(snd.M
σ×τ) = ρσ×τ

b+1 (nvalAb+1(M))

nvalAb+1(Rσ(N ι, F ι,σ→σ, Gσ)) = Υσ
b+1(ξb+1(nvalAb+1(N)),nvalAb+1(F),nvalAb+1(G))

Lemma 3.30. For any Tv
b term Mσ and domain assignment Ab+1

πσ
b+1([[M]]A) = nval

bA
b+1(M)

Proof. We prove this by induction on the structure of M .

Case M = kn.

πι
b+1([[kn]]A) = πι

b+1({kn}) = µb+1({kn}) = nval
bA

b+1(kn)

Case M = xσ.

πι
b+1([[x]]A) = πι

b+1(A(x)) = Â(x) = nval
bA

b+1(x)

Case M = Uσ→τV σ.

πτ
b+1([[UV]]A) = πτ

b+1([[U]]A[[V]]A) = πσ→τ
b+1 ([[U]]A)[πσ

b+1([[V]]A)] (i) in Lemma 3.26

= nval
bA

b+1(U)[nval
bA

b+1(V)] = nval
bA

b+1(UV) IH.

Case M = λxσ.Nτ . Let z = ρσ
b+1 and observe first

Âx
z(i)(y) = πσ

b+1(Ax
z(i)(y)) =

{
πσ

b+1(ρ
σ
b+1(i)) if x = y

πσ
b+1(A(y)) else

=

{
i if x = y

Â(y) else
= Âx

i (†)

21

and so

πσ→τ
b+1 ([[λx.N]]A) = πσ→τ

b+1 (f) f(j) = [[M]]Ax
j

=
∑

i<‖σ‖b+1

πτ
b+1(f(ρσ

b+1(i))) ‖τ‖i
b+1 πσ

b+1 def.

=
∑

i<‖σ‖b+1

πτ
b+1([[N]]Ax

z(i)
) ‖τ‖i

b+1

=
∑

i<‖σ‖b+1

nval
Âx

z(i)

b+1 (N) ‖τ‖i
b+1 IH.

=
∑

i<‖σ‖b+1

nval
bAx

i

b+1(N) ‖τ‖i
b+1 (†)

= nval
bA

b+1(λx.N) nvalÂb+1(·) def.

Case M = (Uσ|V σ).

πσ
b+1([[U |V]]A) = πσ

b+1([[U]]A ∨σ
b+1 [[V]]A) [[·]]A def.

= Mergeσ
b+1(π

σ
b+1([[U]]A), πσ

b+1([[V]]A)) (ii) in Lemma 3.26

= Mergeσ
b+1(nval

bA
b+1(U),nval

bA
b+1(V)) IH.

= nval
bA

b+1(U |V) nval
bA

b+1(·) def.

Case M = Rσ(N ι, F ι,σ→σ, Gσ). By induction hypothesis

πι
b+1([[N]]A) = nval

bA
b+1(N)

and by πb+1 definition

µb+1([[N]]A) = nval
bA

b+1(N)

and by (ii) in Lemma 3.20

[[N]]A = ξb+1(nval
bA

b+1(N)) (‡)
so finally

πσ
b+1([[Rσ(N,F,G)]]A)
= πσ

b+1(Ψ
σ
b+1([[N]]A, [[F]]A, [[G]]A)) [[·]]A def.

= Υσ
b+1([[N]]A, π

ι,σ→σ
b+1 ([[F]]A), πσ

b+1([[G]]A)) (ii) in Lemma 3.28

= Υσ
b+1([[N]]A,nval

bA
b+1(F),nval

bA
b+1(G)) IH.

= Υσ
b+1(ξb+1(nval

bA
b+1(N)),nval

bA
b+1(F),nval

bA
b+1(G)) (‡)

= nval
bA

b+1(Rσ(N,F,G)) nval
bA

b+1(·) def.

22

Corollary 3.31. For any Tv
b -terms M : σ, N : σ and assignment Ab+1

(i) [[N]]A vσ
b+1 [[M]]A ⇔ nval

bA
b+1(N) 4σ

b+1 nval
bA

b+1(M)

(ii) [[N]]A = [[M]]A ⇔ nval
bA

b+1(N) = nval
bA

b+1(M)

(iii) M ¤N ⇒ nvalAb+1(N) 4σ
b nvalAb+1(M)

(iv) µb+1({n}) 4ι
b+1 nvalb+1(M) ⇔ M ¤ kn where M : ι is closed

Proof. (ii) follows immediately from (i). We show (i) and (iii) at once

M ¤N ⇒ [[N]]A vσ
b+1 [[M]]A (ii) in Lemma 3.12

⇔ πσ
b+1([[N]]A) 4σ

b+1 π
σ
b+1([[M]]A) (ii) in Lemma 3.23

⇔ nval
bA

b+1(N) 4σ
b+1 nval

bA
b+1(M) lemma 3.30

For (iv)

M ¤ kn ⇔ n ∈ [[M]] (ii) in Lemma 3.12

⇔ {n} ⊆ [[M]]
⇔ {n} vι

b+1 [[M]] vι
b+1 def.

⇔ πι
b+1({n}) 4ι

b+1 π
ι
b+1([[M]]) (ii) in Lemma 3.23

⇔ µb+1({n}) 4ι
b+1 π

ι
b+1([[M]]) πb+1 def.

⇔ µb+1({n}) 4ι
b+1 nvalb+1(M) Lemma 3.30

23

Chapter 4

Successor free computation
in T−

4.1 Interpreting T−
b in Nσb+1

Definition 4.1. For all types σ and b > 0 we define |σ|b as the deterministic
cardinality in base b by (i) |ι|b = b (ii) |σ×τ |b = |σ|b×|τ |b (iii) |σ → τ |b = |τ ||σ|bb .
For all types σ and b > 0 we define Nb = {0, ..., b− 1} and Nσ

b = N|σ|b .

Lemma 4.2. For any number a ∈ Nσ
b where

(i) σ = ρ× τ , there are unique numbers d1 ∈ Nρ
b , d0 ∈ Nτ

b such that

a = d0 + d1|τ |b

(ii) σ = ρ → τ , there are unique numbers d0, ..., d` ∈ Nτ
b where ` = |ρ|b − 1

such that
a = d0 + d1|τ |b + ...+ d`|τ |`b

Proof. We omit (i) since the proof is analogous to (ii).

Given any σ = ρ→ τ and b > 0, we define we define the map

φσ
b : Nτ

b × ..× Nτ
b︸ ︷︷ ︸

`+1

→ Nσ
b

such that
φσ

b (d0, ..., d`) = d0 + d1|τ |b + ...+ d`|τ |`b
If φσ

b is surjective, then there are indeed such numbers d0, ..., d` ∈ Nτ
b for any

a ∈ Nσ
b , and if it is injective then these numbers are unique for each a ∈ Nσ

b , so
demonstrating both is sufficient to prove (ii).

24

We first show injectivity, so let d0, ..., d` ∈ Nτ
b and d∗0, ..., d

∗
` ∈ Nτ

b be two
distinct sequences, and let i = max{j|dj 6= d∗j} be the greatest coordinate for
which they disagree. Assume without loss off generality that di > d∗i

1. When
i = 0

φσ
b (d0, ..., dj)− φσ

b (d∗0, ..., d
∗
j) = d0 − d∗0 > 0

so we are done in this case. When i > 0

φσ
b (d0, ..., dj)− φσ

b (d∗0, ..., d
∗
j) = (d0 − d∗0) + ...+ (di − d∗i)|τ |ib

= X + Y |τ |ib
where X = (d0 − d∗0) + ...+ (di−1 − d∗i−1) and Y = (di − d∗i). We require

|X| < |τ |ib (Claim)

and under this claim assume first that X < 0, then

|X| < |τ |ib ⇒ −X < |τ |ib ⇒ −X < Y |τ |ib ⇒ X > −Y |τ |ib ⇒ X + Y |τ |ib > 0

and whenX ≥ 0 we also obviously haveX+Y |τ |ib > 0 as well, so φσ
b (d0, ..., dj) 6=

φσ
b (d∗0, ..., d

∗
j) as desired. Finally we prove the required claim2

|X| = |(d0 − d∗0) + ...+ (di−1 − d∗i−1)|τ |i−1
b

≤ |(d0 − d∗0)|+ ...+ |(di−1 − d∗i−1)||τ |i−1
b triangle inequality

< |τ |b + ...+ |τ |ib dj , d
∗
0 < |τ |b

=
|τ |i+1

b − |τ |b
|τ |b − 1

sum of geometric series

=
|τ |ib(|τ |b − 1)
|τ |b − 1

= |τ |ib

Moving on to surjectivity. Given any a < |σ|b − 1 (†) where

φσ
b (d0, ..., d`) = a

we exhibit d∗0, ..., d
∗
` ∈ Nτ

b such that

φσ
b (d∗0, ..., d

∗
`) = a+ 1(‡)

which together with φσ
b (0, ..., 0) = 0 ∈ Nσ

b demonstrates that φσ
b is onto Nσ

b .
So let d0, ..., d` ∈ Nτ

b be such that φσ
b (d∗0, ..., d

∗
`) = a. Consider first when

d0 < |τ |b − 1. It should be easy to convince oneself that the following sequence
satisfies (‡)

d∗j =

{
d0 + 1 if j = 0
dj otherwise

1The opposite subtraction could considered if di < d∗i
2Recall that r + ...+ ri = ri+1−r

r−1

25

Suppose now d0 = |τ |b−1, and Let i = max{j|d0, ..., dj = |τ |b−1}. Notice that
i < `, otherwise a = |σ|b − 1 which contradicts (†). Observe the sequence

d∗j =

0 if j < i+ 1
dj + 1 if j = i+ 1
dj if j > i+ 1

and by sum of a geometric series

|τ |i+1
b = (|τ |b−1)(1+...+|τ |ib)+1 = (|τ |b−1)+...+(|τ |b−1)|τ |ib+1 = d0+...+di|τ |ib+1

which we use in confirming

φσ
b (d∗0, ..., d

∗
`) = φσ

b (0, ..., 0, di+1 + 1, ..., d`)

= (di+1 + 1)|τ |i+1
b + ...+ d`|τ |`b

= |τ |i+1
b + di+1|τ |i+1

b + ...+ d`|τ |`b
=

{
d0 + ...+ di|τ |ib + 1

}
+ di+1|τ |bi+1 + ...+ d`|τ |b`

=
{
d0 + ...+ di|τ |bi + di+1|τ |bi+1 + ...+ d`|τ |b`

}
+ 1

= φσ
b (d0, ..., d`) + 1

= a+ 1

For any a = d0 + d1|τ |b + ... + d`|τ |`b ∈ Nσ→τ
b and b ∈ Nσ

b , let a[b] denote
db ∈ Nτ

b as before and a[b1, ..., bn] = a[b1][b2, ..., bn] for appropriate b1, ..., bn. It
will always be clear from the context whether we are referring to T− or Tv

when using this shorthand.

Definition 4.3. We define a deterministic value assignment A in base b as a
total map from V into

⋃
σ Nσ

b such that A(xσ) ∈ Nσ
b , occasionally we may simply

write Ab for shorthand, or only refer to it as an assignment if the context allows
this. Let A be a value assignment in base b + 1, then we inductively define
valAb+1(·) as the value interpretation of Tv

b -terms under value assignment A.

valAb+1(kn) = n

valAb+1(x
σ) = A(x)

valAb+1(Mσ→τNσ) = valAb+1(M)[valAb+1(N)]

valAb+1(λx
σ.Mτ) =

∑
i<|σ|b+1

val
Ax

i

b+1(M)|τ |ib+1

valAb+1(〈Mσ, Nτ 〉) = valAb+1(M)|τ |b+1 + valAb+1(N)

valAb+1(fst.Mσ×τ) = valAb+1(M) div |τ |b+1

26

valAb+1(snd.M
σ×τ) = valAb+1(M) mod |τ |b+1

valAb+1(Rσ(N ι, F ι,σ→σ, Gσ)) = f(valAb+1(N)) where f(0) = valAb+1(G) and
f(i+ 1) = valAb+1(F)[i, f(i)]

Lemma 4.4. Let M : σ be a T−b term and Ab+1 be an assignment

(i) valAb+1(M) ∈ Nσ
b+1

(ii) M ¤N ⇒ valAb+1(M) = valAb+1(N)

(iii) valAb+1(M) = n⇔ M ¤ kn

Proof. See [1] Lemma 9.

4.2 Computation with valAb+1

Lemma 4.5. For all types σ there exists a closed T−-terms

(i) Condσ : ι, σ, σ → σ where

valb+1(Condσ(C1, F,G)) =

{
valb+1(F) valb+1(C1) = 0
valb+1(G) else

(ii) Orσ : ι, ι, σ, σ → σ where

valb+1(Orσ(C1, C2, F,G)) =

{
valb+1(F) valb+1(C1) = 0 or valb+1(C2) = 0
valb+1(G) else

(iii) Andσ : ι, ι, σ, σ → σ where

valb+1(Andσ(C1, C2, F,G)) =

{
valb+1(F) valb+1(C1) = 0 and valb+1(C2) = 0
valb+1(G) else

for all T−b terms F ,G,C1 and C2, more over all have have recursor rank of zero.

Proof. See [1] Lemma 7 for Condσ term. For all σ let

Or = λCι
1C

ι
2F

σGσ.Condσ(C1, F,Condσ(C2, F,G))

and
And = λCι

1C
ι
2F

σGσ.Condσ(C1,Condσ(C2, F,G), G)

which are obviously correct and of the required rank.

Lemma 4.6. For all types σ,τ there exists a T− term Itτσ : (ι, σ → σ, σ) → σ
such that

valb+1(Itτσ(kb, F,G)) = g|σ|b+1(valb+1(G))

where g(x) = valb+1(F)[x], for all appropriately typed closed T− terms F and
G, moreover Rk(Itτσ) = lv(σ) + lv(τ).

27

Proof. By [1] Lemma 8 we know that for all σ there exists a term Itτ
σ : (ι, σ →

σ, σ) → σ of the mentioned rank such that

Itτ
σ(kb, F,G) → F |σ|b+1G

this combined with (ii) in Lemma 4.4 gives that

valb+1(Itτ
σ(kb, F,G)) = valb+1(F |σ|b+1G)

which immediately give the desired result by simple iterated evaluation following
valb+1.

Lemma 4.7. For all types σ there exists T− terms

(i) 0σ : ι where valb+1(0σ) = 0

(ii) Leqσ : ι, σ, σ → ι where Leqσ(kb, F,G) ¤ k0 iff valb+1(F) ≤ valb+1(G)

(iii) Eqσ : ι, σ, σ → ι where Eqσ(kb, F,G) ¤ k0 iff valb+1(F) = valb+1(G)

(iv) Lessσ : ι, σ, σ → ι where Lessσ(kb, F,G) ¤ k0 iff valb+1(F) < valb+1(G)

(v) Succσ : ι, σ → σ where valb+1(Succσ(kb, F)) = valb+1(F)+1 mod |σ|b+1

(vi) Predσ : ι, σ → σ where valb+1(Predσ(kb, F)) = valb+1(F)−̇1

for all appropriately typed T−b terms F and G. Moreover, all terms have recursor
rank less then 2lv(σ)−̇2.

Proof. See [1] Lemma 10 for (i)-(iii) and (v). Also it is obvious that (iv) can be
implemented using the others, and (vi) has a construction completely analogous
to (v).

This next term is analogous to for-loops in imperative languages, in the sense
that the you can specify the precise number of iterations valb+1(V) you want
of a supplied procedure U , and in each iteration the procedure U will be given
an iteration number.

Lemma 4.8. For all types σ and τ there exists a closed T− term Repτ
σ :

(ι, σ × τ → τ, σ, τ) → τ where

valb+1(Repτ
σ(kb, U, V,W)) = f(valb+1(V))

for any appropriately typed closed T−b -terms U, V,W where f(0) = valb+1(W)
and f(i + 1) = valb+1(U)[i|τ |b+1 + f(i)], moreover Rk(Repτ

σ) = max(lv(τ) +
lv(σ), 2lv(σ)).

Proof. Let

Repτ
σ = λbιUσ×τ→τV σW τ .snd.Itσ×τ

σ (b,D(b, U, V), 〈0σ,W 〉)

28

where

D = λbιUσ×τ→τV σT σ×τ .Condσ×τ (Lessσ(b, fst.T, V), 〈Succσ(b, fst.T), U(T)〉 , T)

Fix closed T−b -terms U, V,W to be terms of appropriate type, and let u =
valb+1(U), v = valb+1(V) and w = valb+1(W). Then

valb+1(Repτ
σ(kb, U, V,W)) = valb+1(snd.Itσ×τ

σ (kb, D(kb, U, V), 〈0σ,W 〉))
= valb+1(Itσ×τ

σ (kb, D(kb, U, V), 〈0σ,W 〉)) mod |τ |b+1

= g|σ|b+1(valb+1(〈0σ,W 〉)) mod |τ |b+1 ([)

where g is the function from lemma 4.6, and

g(x) = valb+1(D(kb, U, V))[x]

=

{
{(x div |τ |b+1) + 1} × |τ |b+1 + u[x] if x div |τ |b+1 < v

x else

by applying the definition of valb+1. By iteration we see

gi+1(w) =

{
(i+ 1)|τ |b+1 + u[gi(w)] if i+ 1 < v

gv(w) else

By induction on i we show that

gi(w) =

{
i|τ |b+1 + f(i) if i < v

v|τ |b+1 + f(v) else
(†)

so finally

valb(Repτ
σ(kb, U, V,W)) = g|σ|b+1(valb+1(〈0σ,W 〉)) mod |τ |b+1

= g|σ|b+1(w) mod |τ |b+1

= (v|τ |b+1 + f(v)) mod |τ |b+1

= f(v)
= f(valb+1(V))

For the rank

Rk(Repτ
σ) = max(Rk(Itσ×τ

σ), Rk(Lessσ), Rk(Succσ))
≤ max(lv(σ × τ) + lv(σ), 2lv(σ)−̇2)
= max(lv(τ) + lv(σ), 2lv(σ), 2lv(σ)−̇2)
= max(lv(τ) + lv(σ), 2lv(σ))

29

This next term is used to convert quantities between different types, it can
be thought of as rewriting a number into a number system with a different base.
It is also the last proof where we compute valAb (·) and compute recursor rank
at this level of detail.

Lemma 4.9. For any σ, τ and b > 0 there exists a closed T− term Vτ
σ : ι, σ → τ

where

(i) valb+1(Vτ
σ(kb, F)) = valb+1(F) mod |τ |b

(ii) valb+1(Vτ
σ(kb, F)) = valb+1(F) when |σ|x ≤ |τ |x for all x

for all closed T−b -terms F of appropriate type, more over
Rk(Vτ

σ) ≤ max (lv(τ) + lv(σ), 2lv(σ), 2lv(τ)−̇2).

Proof. For case (i) let

Vτ
σ = λbιF σ.Repτ

σ(b, λxσ×τ .Succτ (b, snd.x), F,0τ)

Fix a closed T−b term F of appropriate type, we get

valb+1(Vτ
σ(kb, F)) = valb+1(Repτ

σ(kb, λx
σ×τ .Succτ (b, snd.x), F,0τ))

= f(valb+1(F))(♣)

where f is from lemma 4.8, so f(0) = valb+1(0τ) = 0 and

f(i+ 1) = valb+1(λxσ×τ .Succτ (kb, snd.x))[r] r = i|τ |b+1 + f(i)

=

∑

j<|σ×τ |b+1

val
Ax

j

b+1(Succτ (kb, snd.x))|τ |jb+1

 [r] valb+1(·)

= valA
x
r

b+1(Succτ (kb, snd.x)) δσ×τ→τ
b+1

=
{
valA

x
r

b+1(snd.x) + 1
}

mod |τ |b+1 (ii) in lemma 4.7

= {(r mod |τ |b+1) + 1} mod |τ |b+1

= {({i|τ |b+1 + f(i)} mod |τ |b+1) + 1} mod |τ |b+1

= {f(i) + 1} mod |τ |b+1 f(i) < |τ |b+1

We can iterate this to get f(i) = i mod |τ |b+1, so

f(valb+1(F)) = valb+1(F) mod |τ |b
which extends (♣) to give us the desired result. When |σ|b ≤ |τ |b for all b then
mod |τ |b falls away since valb+1(F) < |σ|b, giving us (ii). For the recursor rank

Rk(Vτ
σ) = max(Rk(Repτ

σ), Rk(Succτ))
≤ max(max(lv(τ) + lv(σ), 2lv(σ)), 2lv(τ)−̇2)
= max(lv(τ) + lv(σ), 2lv(σ), 2lv(τ)−̇2)

30

Lemma 4.10. For all types σ there exists closed T− terms

(i) Addσ : ι, σ, σ → (σ × σ) where valb+1(Addσ(kb, F,G)) = valb+1(F) +
valb+1(G)

(ii) Subσ : ι, σ, σ → σ where valb+1(Subσ(kb, F,G)) = valb+1(F)−̇valb+1(G)

(iii) Prodτ
σ : ι, σ, τ → (σ × τ) where valb+1(Prodσ(kb, F,G)) = valb+1(F) ×

valb+1(G)

(iv) Expσ
τ : ι, τ, σ → (σ → τ) where valb+1(Expσ(kb, F,G)) = valb+1(F)valb+1(G)

(v) Divσ : ι, σ, σ → σ where valb+1(Divσ(kb, F,G)) = valb+1(F) div valb+1(G)

(vi) Modσ : ι, σ, σ → σ where valb+1(Modσ(kb, F,G)) = valb+1(F) mod valb+1(G)

for all closed T−b -terms F and G of appropriate type, more over they are of
recursor rank no greater then 2lv(σ), except (iii) and (iv) which have recursor
rank no greater then 2lv(σ × τ) and 2lv(σ → τ) respectively.

Proof. For natural numbers we can do addition by repeated incrementing, mul-
tiplication by repeated addition, and exponentiation by repeated multiplication.

So for any σ let

Addσ = λbιF σGσ.Repσ×σ
σ (b, λxσ×(σ×σ).Succσ×σ(b, snd.x), G, 〈0σ, F 〉)

Subσ = λbιF σGσ.Repσ
σ(b, λxσ×σ.Predσ(b, snd.x), G, F)

Recognize that both Addσ,Subσ are very similar to Vτ
σ, and their correctness

can indeed be demonstrated the same way, meanwhile observe that

Rk(Addσ) = max(Rk(Repσ×σ
σ), Rk(Succσ×σ))

≤ max(max(lv(σ × σ) + lv(σ), 2lv(σ)), 2lv(σ × σ)−̇2)
= max(lv(σ × σ) + lv(σ), 2lv(σ), 2lv(σ × σ)−̇2)
= max(lv(σ) + lv(σ), 2lv(σ))
= 2lv(σ)

and a similar calculation also yields Rk(Subσ) ≤ 2lv(σ).
For any σ, τ let ρ = σ × τ and

Prodτ
σ = λbιF σGτ .Repρ

σ(b, λxσ×ρ.Vρ
ρ×ρ(b,Addρ(b, 〈0σ, G〉 , snd.x)), F,0ρ)

We omit correctness proof since Expσ
τ is similar but more complicated, and

a quick calculation shows that Rk(Prodτ
σ) ≤ 2lv(σ × τ).

For any σ, τ let ρ = σ → τ and

Expσ
τ =λbιF τGσ.

Repρ
σ(b, λxσ×ρ.Vρ

ρ×ρ(b,Prodρ
ρ(b,V

ρ
τ (F), snd.x)), G,Succρ(b,0ρ))

31

Fix closed T−b terms F and G to be terms of appropriate type, then as before
for

valb+1(Expσ
τ (kb, F,G)) = f(valb+1(G))(♣)

where f(0) = valb+1(Succρ(kb,0ρ)) = 1 and

f(i+ 1) = valb+1(F)× f(i) mod |ρ|b+1

Observe that f(i) < {|τ |b+1}i, so

f(i) < |τ ||σ|b+1
b+1 = |ρ|b+1 for all i < |σ|b+1(†)

therefore
f(i+ 1) = valb+1(F)× f(i) for all i+ 1 < |σ|b+1

iterated to
f(i) = valb+1(F)i for all i < |σ|b+1

giving f(valb+1(G)) = valb+1(F)valb+1(G) which extends (♣) as desired.
For the recursor rank

Rk(Expτ
σ) = max(Rk(Prodρ

ρ), Rk(Repρ
σ), Rk(Vρ

ρ×ρ), Rk(V
ρ
τ), Rk(Succρ))

≤ max(2lv(ρ× ρ), lv(ρ) + lv(σ), 2lv(σ),
lv(ρ) + lv(ρ× ρ), 2lv(ρ× ρ), 2lv(ρ)−̇2, lv(ρ) + lv(τ), 2lv(τ)−̇2)
= max(2lv(ρ), lv(ρ) + lv(σ), 2lv(σ), 2lv(ρ)−̇2, lv(ρ) + lv(τ), 2lv(τ)−̇2)
= 2lv(ρ)
= 2lv(σ → τ)

Integer division can be implemented as how many times the divisor can be
subtracted from the dividend. So for any σ let

Divσ = λbιFσGσ.Repσ
σ(b, λxσ×σ.

Condσ×σ(Leqσ×σ(b,Prodσ
σ(b,G,Succσ(kb, fst.x)),Vσ

σ×σ(F))), fst.x, snd.x), F,0σ)

As before valb+1(Divσ(kb, F,G)) = f(valb+1(F)) where f(0) = valb+1(0σ) = 0
and

f(i+ 1) =

{
(i+ 1) valb+1(G)× (i+ 1) ≤ valb+1(F)
f(i) else

We see that f(i+1) is the greatest j ≤ i+1 such that valb+1(G)×j ≤ valb+1(F),
and so for f(valb+1(F)) the j becomes the number of times valb+1(G) goes in
valb+1(F) which is indeed valb+1(F) div valb+1(G). We also see

Rk(Divσ) = max(Rk(Prodσ
σ), Rk(Repσ

σ), Rk(Leqσ×σ), Rk(Vσ
σ×σ), Rk(Succσ))

≤ max(2lv(σ × σ), 2lv(σ), lv(σ × σ) + lv(σ), 2lv(σ × σ)−̇2, 2lv(σ)−̇2)
= 2lv(σ)

32

From elementary number theory we know that any n ≥ m can be written as
n = q ×m+ r for some r < m, where q = n div m and r = n mod m. We use
this to construct (vi) by observing

n mod m = r = n− q ×m = n− (n div m)×m

so for any σ let

Modσ = λbιF σGσ.Subσ(b, F,Vσ
σ×σ(Prodσ

σ(b,G,Divσ(b, F,G))))

which is a direct implementation of the identity.
For the recursor rank

Rk(Modσ) = max(Rk(Subσ), Rk(Prodσ
σ), Rk(Divσ),Vσ

σ×σ)
≤ max(2lv(σ), 2lv(σ × σ), 2lv(σ), lv(σ) + lv(σ × σ), lv(σ × σ), lv(σ)−̇2)
= 2lv(σ)

33

Chapter 5

Computing nvalAb in T−

5.1 Relating |σ|b and ||σ||b
Lemma 5.1. For any polynomial p(x) let 2p(x)

0 = p(x) and 2p(x)
i+1 = 22

p(x)
i

(i) for any type σ of rank n there is a polynomial Qσ(x) > 0 such that |σ|x <
2Qσ(x)

n for all x

(ii) for any polynomial p(x) and n ≥ 0 there exists a type σn
p of rank n such

that 2p(x)
n < |σn

p |x for all x

(iii) for any n ≥ 0 and polynomials p(x), r(x) > 0 we have 2p(x)
n × 2r(x)

n ≤
2p(x)×r(x)

n

Proof. (i) and (ii) are proved in [1], and we prove (iii) by induction on n.
So first let n = 0, then 2p(x)

0 × 2r(x)
0 = p(x)× r(x) = 2p(x)×r(x)

0 .
Now let n = i+ 1, then

2p(x)
i+1 × 2r(x)

i+1 = 22
p(x)
i × 22

r(x)
i 2c

i+1 = 22c
i

= 22
p(x)
i +2

r(x)
i

≤ 22
p(x)
i ×2

r(x)
i p(x), r(x) > 0

= 22
p(x)×r(x)
i IH.

= 2p(x)×r(x)
i+1 2c

i+1 = 22c
i

Lemma 5.2. For each type σ of rank n there is a type σ̄ of rank n + 1 such
that ||σ||b+1 < |σ̄|b+1 for all b ≥ 2. Moreover, lv(σ × τ) = lv(σ̄ × τ̄) and
lv(σ → τ) = lv(σ̄ → τ̄) for all types σ and τ

34

Proof. We prove the first part by induction on the structure of σ.

Assume σ = ι, let σ̄ = ι→ ι then

||ι||b+1 = 2b+1 ||ι||b+1 def.

< (b+ 1)(b+1)
b ≥ 2

= |ι→ ι|b+1 |ι→ ι|b+1 def.

= |ῑ|b+1 ῑ = ι→ ι

Assume σ = ρ× τ and observe that ρ and τ are of rank no greater then n, then
by the induction hypothesis ρ̄ and τ̄ are of rank no greater then n + 1. Let
z(x) = Qρ̄(x)×Qτ̄ (x) and let σ̄ = σn+1

z , then for all b ≥ 2

||ρ× τ ||b+1 = ||ρ||b+1 × ||τ ||b+1 ||ρ× τ ||b+1 def.

< |ρ̄|b+1 × |τ̄ |b+1 IH.

< 2Qρ̄(b+1)
n+1 × 2Qτ̄ (b+1)

n+1 (i) in Lemma 5.1

≤ 2Qρ̄(b+1)×Qτ̄ (b+1)
n+1 (iii) in Lemma 5.1

= 2z(b+1)
n+1 z(x) = Qρ̄(x)×Qτ̄ (x)

< |σn+1
z |b+1 (ii) in Lemma 5.1

= |σ̄|b+1 σ̄ = σn+1
z

Assume σ = ρ → τ and observe that ρ and τ are of rank no greater then
n− 1 and n respectively, then by the induction hypothesis ρ̄ and τ̄ are of rank
no greater then n and n + 1 respectively. Let z(x) = Qρ̄(x) × Qτ̄ (x) and let
σ̄ = σn+1

z , then for all b ≥ 2

||ρ→ τ ||b+1 = ||τ ||||ρ||b+1
b+1 ||ρ→ τ ||b+1 def.

< |τ̄ ||ρ̄|b+1
b+1 IH.

<
{

2Qτ̄ (b+1)
n+1

}n2
Qρ̄(b+1)
n

o

(i) in Lemma 5.1

=
{

22Qτ̄ (b+1)
n

}n2
Qρ̄(b+1)
n

o

2c
i+1 = 22c

i

= 22Qτ̄ (b+1)
n ×2

Qρ̄(b+1)
n

≤ 22
Qτ̄ (b+1)×Qρ̄(b+1)
n (iii) in Lemma 5.1

= 2Qτ̄ (b+1)×Qρ̄(b+1)
n+1 2c

i+1 = 22c
i

= 2z(b+1)
n+1 z(x) = Qρ̄(x)×Qτ̄ (x)

< |σn+1
z |b+1 (ii) in Lemma 5.1

= |σ̄|b+1 σ̄ = σn+1
z

The two identities are computed straight forward.

35

5.2 Computing ||σ||b, ξb, βb, µb, θσb , λσb , ρσb , δσb , Υσ
b ,Mergeσb

Lemma 5.3. For all types σ, τ there exists closed T− terms

(i) Cardinalityσ : ι→ σ̄ where valb+1(Cardinalityσ(kb)) = ||σ||b+1

(ii) Radixτ
σ : ι, σ → (σ → τ̄) where valb+1(Radixτ

σ(kb, F)) = ||τ ||valb+1(F)
b+1

for b ≥ 2 and appropriately typed closed T−b term F .
Moreover Rk(Cardinalityσ) ≤ 2lv(σ̄) and Rk(Radixτ

σ) ≤ 2lv(σ × τ).

Proof. We construct Cardinalityσ terms by induction on σ.

When σ = ι let

Cardinalityι = λbι.Vῑ
ι×ῑ(b,Prodῑ

ι(b, k2,Expι
ι(b, k2, b)))

observe

valb+1(Cardinalityι(kb)) = valb+1(Vῑ
ι×ῑ(b,Prodῑ

ι(kb, k2,Expι
ι(kb, k2, kb))))

= valb+1(Prodῑ
ι(kb, k2,Expι

ι(kb, k2, kb))) mod |ῑ|b+1

= 2× valb+1(Expι
ι(kb, k2, kb)) mod |ῑ|b+1

= 2× 2b mod |ῑ|b+1 = 2b+1 mod |ῑ|b+1

= ||ι||b+1 mod |ῑ|b+1 = ||ι||b+1 Lemma 5.2

also

Rk(Cardinalityι) = max(Rk(Prodῑ
ι), Rk(Expι

ι), Rk(V
ῑ
ι×ῑ)))

≤ max(2lv(ῑ× ι), 2lv(ι→ ι), 2lv(ῑ))
= 2lv(ῑ)

When σ = ρ× τ let

Cardinalityρ×τ = λbι.Vρ×τ
ρ̄×τ̄ (b,Prodτ̄

ρ̄(b,Cardinalityρ(b),Cardinalityτ (b)))

observe

valb+1(Cardinalityρ×τ (kb))

= valb+1(V
ρ×τ
ρ̄×τ̄ (b,Prodτ̄

ρ̄(kb,Cardinalityρ(kb),Cardinalityτ (kb))))

= valb+1(Prodτ̄
ρ̄(kb,Cardinalityρ(kb),Cardinalityτ (kb))) mod |ρ× τ |b+1

= valb+1(Cardinalityρ(kb))× valb+1(Cardinalityτ (kb))) mod |ρ× τ |b+1

= ||ρ||b+1 × ||τ ||b+1 mod |ρ× τ |b+1

= ||ρ× τ ||b+1 mod |ρ× τ |b+1

= ||ρ× τ ||b+1 Lemma 5.2

36

also

Rk(Cardinalityρ×τ) = max(Rk(Prodτ̄
ρ̄), Rk(Cardinalityρ), Rk(Cardinalityτ), Rk(Vρ×τ

ρ̄×τ̄))

≤ max(2lv(τ̄ × ρ̄), 2lv(ρ̄), 2lv(τ̄), 2lv(ρ× τ))
= 2lv(ρ× τ)

When σ = ρ→ τ let

Cardinalityρ→τ = λbι.Vρ→τ
ρ̄→τ̄ (b,Expτ̄

ρ̄(b,Cardinalityτ (b),Cardinalityρ(b)))

observe

valb+1(Cardinalityρ→τ (kb))

= valb+1(V
ρ→τ
ρ̄→τ̄ (b,Expτ̄

ρ̄(kb,Cardinalityτ (kb),Cardinalityρ(kb))))

= valb+1(Expτ̄
ρ̄(kb,Cardinalityτ (kb),Cardinalityρ(kb))) mod |ρ→ τ |b+1

= valb+1(Cardinalityτ (kb))valb+1(Cardinalityρ(kb)) mod |ρ→ τ |b+1

= ||τ ||||ρ||b+1
b+1 mod |ρ→ τ |b+1 = ||ρ→ τ ||b+1 mod |ρ→ τ |b+1 = ||ρ→ τ ||b+1 Lemma 5.2

also

Rk(Cardinalityρ×τ) = max(Rk(Expτ̄
ρ̄), Rk(Cardinalityρ), Rk(Cardinalityτ),Vρ→τ

ρ̄→τ̄)

≤ max(2lv(ρ̄→ τ̄), 2lv(ρ̄), 2lv(τ̄), 2lv(ρ→ τ))
= 2lv(ρ→ τ)

For all types σ, τ let

Radixτ
σ = λbιF σ.Expτ̄

σ(b,Cardinalityτ (b), F)

for any T−b term F : σ observe that

valb′ (Radixτ
σ(kb, F)) = valb+1(Expτ̄

σ(b,Cardinalityτ (kb), F))

= valb+1(Expτ̄
σ(kb,Cardinalityτ (kb), F)

= valb+1(Cardinalityτ (kb))valb+1(F)

= ||τ ||valb+1(F)
b+1

also

Rk(Radixτ
σ) = max(Rk(Expτ̄

σ), Rk(Cardinalityτ))
≤ max(2lv(σ → τ̄), 2lv(τ̄)) = 2 max(lv(σ) + 1, lv(τ̄))
= 2 max(lv(σ̄), lv(τ̄)) = 2lv(σ̄ × τ̄)
= 2lv(σ × τ)

37

Lemma 5.4. For all types σ, τ there exists closed T− terms

(i) Leftτσ : ι, σ × τ → σ̄ where valb+1(Leftτσ(kb, F)) = λσ×τ
b+1 (valb+1(F))

(ii) Rightτσ : ι, σ × τ → τ̄ where valb+1(Rightτσ(kb, F)) = ρσ×τ
b+1 (valb+1(F))

(iii) Pairτ
σ : ι, σ̄, τ̄ → σ × τ where

valb+1(Pairτ
σ(kb, G,H)) = θσ×τ

b+1 (valb+1(G), valb+1(H))

for b ≥ 2 and all appropriately typed closed T−b terms F ,G and H where
valb+1(F) < ||σ × τ ||b+1,valb+1(G) < ||σ||b+1 and valb+1(H) < ||τ ||b+1.

Moreover Rk(Leftτσ), Rk(Rightτσ),Pairτ
σ ≤ 2lv(σ × τ)

Proof. We only show (i) since the approach is completely analogous for (ii) and
(iii).

For any types σ, τ let φ = σ × τ and let

Leftτ
σ = λbιFφ.Vσ̄

φ(b,Divφ(b, F,Vφ
τ̄ (b,Cardinalityτ (b))))

Observe for any term F : φ as mentioned where valb+1(F) = f0 + f1||τ ||b+1

valb+1(Leftτ
σ(kb, F)) = {f0 + f1||τ ||b+1} div ||τ ||b+1 = f1 = λσ×τ

b+1 (valb+1(F))

also

Rk(Leftτ
σ) = max(Rk(Divφ), Rk(Vφ

τ̄), Rk(Vσ̄
φ)Rk(Cardinalityτ))

≤ max(2lv(φ), 2lv(φ), 2lv(τ̄))
= 2lv(σ × τ)

Lemma 5.5. For all types σ, τ there exists closed T− terms Digitτσ : ι, σ → τ , σ̄ →
τ̄ where

valb+1(Digitτσ(kb, F,G)) = δσ→τ
b+1 (valb+1(F), valb+1(G))

for b ≥ 2 and all appropriately typed closed T−b terms F ,G where valb+1(F) <
||σ → τ ||b+1 and valb+1(G) < ||σ||b+1.

Moreover Rk(Digitτσ) ≤ 2lv(σ → τ).

Proof. For any types σ, τ let φ = σ → τ and

Digitτ
σ = λbιFφGσ̄.Vτ̄

φ(b,Modφ(b,D(b, F,G),Vφ
τ̄ (b,Cardinalityτ (b))))

where
D = λbιFφGσ̄.Divφ(b, F,Vφ

σ̄→τ̄ (b,Radixτ
σ̄(b,G)))

For any terms F : φ and G : σ̄ as mentioned, let z = valb+1(F) and r =
valb+1(G). Since z < ||σ → τ ||b+1, then by (iii) in lemma 3.19 we write

z = d0 + d1||τ ||b+1 + ...+ dk||τ ||kb+1

38

where k = ||σ||b+1 − 1. We omit the calculation showing

valb+1(D(kb, F,G)) = dr + dr+1||τ ||b+1 + ...+ dk||τ ||k−r
b+1

which is combined to give

valb+1(Digitτ
σ(kb, F,G))

= {valb+1(D(kb, F,G)) mod valb+1(Cardinalityτ (kb))} mod |τ̄ |b+1

=
{{
dr + dr+1||τ ||b+1 + ...+ dk||τ ||k−r

b+1

}
mod ||τ ||b+1

}
mod |τ̄ |b+1

= dr mod |τ̄ |b+1

= dr

= δσ→τ
b+1 (d0 + d1||τ ||b+1 + ...+ dk||τ ||b+1, r)

= δσ→τ
b+1 (z, r) = δσ→τ

b+1 (valb+1(F),valb+1(G))

We find Rk(D) ≤ 2(φ) and also Rk(Digitτ
σ) ≤ 2(φ) = 2lv(σ → τ).

Lemma 5.6. There exists a closed T− terms

(i) IsMember : ι, ῑ, ι→ ι where

valb+1(IsMember(kb, F,H)) = βb+1(valb+1(F), valb+1(H))

(ii) Union : ι, ῑ, ῑ→ ῑ where

valb+1(Union(kb, F,G)) = µb+1(ξb+1(valb+1(F)) ∪ ξb+1(valb+1(G)))

for b ≥ 2 and appropriately typed closed T−b terms F ,G and H where valb+1(F), valb+1(G) <
||ι||b+1.

Moreover Rk(IsMember) = Rk(Union) = 2.

Proof. Let

IsMember = λbιF ῑGι.Vι
ῑ(b,Modῑ(b,Divῑ(b, F,Expι

ι(b, k2, G)),Vῑ
ι(b, k2)))

and
Union = λbιF ῑGῑ.Repῑ

ι(b, λx
ι×ῑ.D(b, F,G), b,0ῑ)

where
D = λbιF ῑGῑ.Orι(IsMember(b, F, fst.x), IsMember(b,G, fst.x),

Vῑ
ῑ×ῑ(b,Addῑ(b, snd.x,Expι

ι(b, k2, fst.x))), snd.x)

We omit correctness and rank calculation for IsMember since it is very
similar to Digitτ

σ.
Moving on to (ii), for any terms F : ῑ and G : ῑ, we can by (iii) in lemma

3.19 write

valb+1(F) = f0 + ...+ fk2b

valb+1(G) = g0 + ...+ gk2b

39

Observe that

µb+1(ξb+1(valb+1(F)) ∪ ξb+1(valb+1(G))) = z0 + ...+ zb2b

where zi = 1 when fi = 1 or gi = 1, otherwise zi = 0. We then compute

valb+1(Union(kb, F,G)) = valb+1(b,Repῑ
ι(kb, λx

ι×ῑ.D(kb, F,G), kb,0ῑ))
= f(valb+1(kb))(♣)

where f(0) = z0 and f(i + 1) = f(i) + zi+12i+1. We iterate this and get
f(i) = z0 + ... + zi2i, so we have that f(valb+1(kb)) = z0 + ... + zb2b, which
extends (♣) to give us the desired result. We also see Rk(D) = 2, which finally
gives Rk(Unionσ) = 2 as well.

Lemma 5.7. For all types σ, τ there exists a T− term Tableτ
σ : (ι, σ̄ → τ̄) →

σ → τ where

valb+1(Tableτ
σ(kb, F)) =

∑

i<‖σ‖b+1

δσ̄→τ̄
b+1 (valb+1(F), i)× ‖τ‖i

b+1

for b ≥ 2 and all appropriately typed closed T−b terms F .
Moreover Rk(Tableτ

σ) ≤ 2lv(σ → τ).

Proof. For any types σ, τ let φ = σ̄ → τ̄ and let

Tableτ
σ = λbιFφ.Repφ

σ̄(b, λxσ̄×φ.D(b, F, x),Cardinalityσ(b),0φ)

where

D = λbιFφxσ̄×φ.Vσ→τ
φ×φ (Addφ(b,snd.x,

Vφ
τ̄×σ̄→τ̄ (Prodσ̄→τ̄

τ̄ (b, F (fst.x),Radixτ
σ̄(b, fst.x)))))

Observe for any term F : σ̄ → τ̄

valb+1(Tableτ
σ(kb, F)) = valb+1(Repφ

σ̄(kb, λx
σ̄×φ.D(kb, F, x),Cardinalityσ(kb),0φ))

= f(valb+1(Cardinalityσ(kb)))
= f(||σ||b+1)(♣)

where f(0) = valb+1(0σ) = 0 and

f(i+ 1) = f(i) + δσ̄→τ̄
b+1 (valb+1(F), i)× ‖τ‖i

b+1

which is iterated to

f(j) =
∑

i<j

δσ̄→τ̄
b+1 (valb+1(F), i)× ‖τ‖i

b+1

for all ||σ||b+1 ≥ j > 0, which extends (♣) to give us the desired result.
We also find that Rk(D) ≤ 2lv(φ) and Rk(Tableτ

σ) ≤ 2lv(φ) = 2lv(σ → τ)

40

Lemma 5.8. For all types σ there exists a closed T− term Mergeσ : ι, σ̄, σ̄ → σ̄
where

valb+1(Mergeσ(kb, F,G)) = Mergeσ
b+1(valb+1(F), valb+1(G))

for b ≥ 2 and all appropriately typed closed T−b terms F and G where valb+1(F),
valb+1(G) < ||σ||b+1.

Moreover Rk(Mergeσ
τ) ≤ 2lv(σ̄).

Proof. We construct Mergeσ terms by induction on σ, but omit the lengthy
recursor rank and value computation.

In each case, let φ = σ̄.When σ = ι let

Mergeι = λbιFφGφ.Union(b, F,G)

When σ = ρ× π let

Mergeρ×π = λbιFφGφ.Pairπ
ρ (b,Mergeρ(b,Leftπ

ρ (F, b),Leftπ
ρ (G, b)),

Mergeπ(b,Rightπ
ρ (F, b),Rightπ

ρ (G, b)))

When σ = ρ→ π let

Mergeρ→π = λbιFφGφ.Tableπ
ρ (b, λxρ̄.Mergeπ(b,Digitπ

ρ (F, x),Digitπ
ρ (G, x)))

Lemma 5.9. For all types there exists a closed T− term Recσ : ι, ῑ, ι, σ → σ, σ̄ →
σ̄ where

valb+1(Recσ(kb, N, F,G)) = Υσ
b+1(ξb+1(valb+1(N)), valb+1(F), valb+1(G))

for b ≥ 2 and all appropriately typed closed T−b terms N ,F ,G where valb+1(N) <
||ι||b+1,valb+1(F) < ||ι, σ → σ||b+1 and valb+1(G) < ||σ||b+1.

Moreover Rk(Recσ) ≤ 2lv(σ̄).

Proof. For any σ let φ = ι, σ → σ and let

Recσ = λbιN ῑFφGσ̄.Repσ̄
ι (b, λxι×σ̄.D(b,N, F,G), b,0σ̄)

where

D = λbιN ῑFφGσ̄.Condσ̄(IsMember(b,N, fst.x),

Mergeσ(b,Rσ̄(fst.x,Vι,σ̄→σ̄
φ (F), G), snd.x),

snd.x)

For any terms N,F,G as mentioned, we can by (iii) in lemma 3.19 write

valb+1(F) = n0 + ...+ nb2b

41

Let
X = ξb+1(valb+1(F)) = {i|ni = 1}

and let Xj = {i ∈ X|i ≤ j} so Xb = X. As before we find

valb+1(Recσ(kb, N, F,G)) = f(valb+1(kb))(♣)

where f(0) = 0 and

f(i+ 1) =

{
Mergeσ

b+1(f(i), υσ
b+1(i+ 1,valb+1(F),valb+1(G))) if ni+1 = 1

f(i) else

which is iterated to yield

f(i+ 1) = Υσ
b+1(Xi+1,valb+1(F),valb+1(G))

giving

f(valb+1(kb)) = f(b) = Υσ
b+1(Xb,valb+1(F),valb+1(G))

= Υσ
b+1(X,valb+1(F),valb+1(G))

= Υσ
b+1(ξb+1(valb+1(F)),valb+1(F),valb+1(G))

which extends (♣) to give us the desired result.

5.3 Modelling Ab

Definition 5.10. Given a term Tv
b -term M , let vars(M) denote the set of

distinct variables in M , also counting variables which only occur as λx.P . A
map f : V → N is called a variable listing for M when it is injective on vars(M).
Let Mf = {f(x) | x ∈ vars(M)}, and we call max(Mf ∪ {0})1 the length of f
on M . Given a variable listing f for M , then any type of the form π0× ...×π`

is called an assignment type of M given f when

- ` is no smaller then the length of f on M

- πi is the type of the variable f−1(i) for all i ∈Mf

When ω is an assignment type, let ω[i] denote πi. Given some variable listing f
for M , let ω be an assignment type for M given f . Any closed T−b -term V : ω
is called a term assignment for M . Let Ab+1 be a value assignment, then V is
also a derived term assignment of A for M when

valb+1(fst.sndi.V) = A(x) where x = f−1(i)

for all i ∈Mf .

1The set {0} is added to make length of f well defined on variable free terms, i.e Mf = ∅

42

The following lemma is necessary to apply the induction hypothesis to sub-
terms in in Theorem 5.13 by claim (i), and allows the theorem to initially be
applied to any term by claim (ii).

Lemma 5.11. For any Tv-term M

(i) given a variable listing f for M with corresponding assignment type ω and
term assignment V : ω, then they all apply to any subterm of M .

(ii) there exists variable listings, and corresponding assignment types and term
assignments for M

Proof. For (i) consider a subtermN ofM , and observe that vars(N) ⊆ vars(M).
Obviously f is still injective on vars(N), even if vars(N) = ∅, so f is a variable
listing for N . Mf and the length of f on N is also well defined, since even
if vars(N) = ∅, then the length is zero. Let ω = π0 × ... × π`. Since ` is
no smaller then the length f on M by definition, and since the length of f on
M is no smaller then the length of f on N , ` is of adequate length. Moreover
Nf ⊆Mf , so the condition on πi still holds for Nf , hence ω is also an assignment
type for N . For the same reason V is also a term assignment for N .

For (ii), simply let M be the subterm of some term P , then by (i) applied
to P we are done.

Lemma 5.12. Let Ab be a value assignment. Let f be a variable listing for
Tv

b -term M : σ with V : ω as a corresponding derived term assignment of A for
M . Then for each i ∈Mf there exists closed T− terms

GetVari
ω : ω → ω[i],SetVari

ω : ω, ω[i] → ω

of recursor rank zero, such that when f−1(i) = x

(i) valb+1(GetVari
ω(V)) = A(x)

(ii) SetVari
ω(V, t) is a derived term assignment of Ax

v for M , for any closed
T−b -term t : ω[i] with v = valb+1(t)

Proof. For (i) let
GetVari

ω = λV ω.fst.sndi.V

and observe

valb+1(GetVari
ω(V)) = valb+1(fst.sndi.V) GetVari

ω def.

= A(f−1(i)) V def.

= A(x) f−1(i) = x

For (ii) let

SetVari
ω = λV ω.

〈
GetVar0

ω(V), ..., t, ...,GetVar`
ω(V)

〉

43

where t is in the i’th position and ` is the length of f on M . We show that
SetVari

ω is a derived term assignment of A for M by first letting j ∈ Mf be
such that j 6= i. Let y = f−1(j) and observe that x 6= y since i 6= j and f is
injective. We see

valb+1(fst.sndj .SetVari
ω(V, t)) = valb+1(GetVarj

ω(V)) j 6= i

= A(y) (i)

= Ax
v(y) x 6= y

Now let i = j, and so

valb+1(fst.sndj .SetVari
ω(V, t)) = valb+1(t) j = i

= v

= Ax
v(x) Ax

v def.

and so SetVari
ω(V, t) fulfills the requirements of Definition 5.10 and is indeed

a derived term assignment of A for M .
Lastly it should be clear that GetVari

ω and SetVari
ω both are recursor free,

and hence of recursor rank zero.

5.4 Computing nvalAb+1

Theorem 5.13. Let Ab+1 be a value assignment. Let M : σ be a Tv
b -term with

variable listing f and a corresponding derived term assignment V : ω of A with
recursor rank zero. Then there exists a closed T− term M : ι, ω → σ̄ such that

valb+1(M(kb, V)) = nvalAb+1(M)

for all b ≥ 2.
Moreover Rk(M) ≤ 2(Tr(M) + 1).

Proof. We prove this by induction on the structure of M . Observe that lemma
5.11 guarantees that V is also a term assignments for subterms in the induction,
so we can apply the induction hypothesis.

Case M = kn. Let
M = λbιV ω.Expι

ι(b, k2, kn)

and observe

valb+1(M(kb, V)) = valb+1(Expι
ι(kb, k2, kn)) = valb+1(k2)

valb+1(kn)

= 2n = µb+1(n) = nvalAb+1(kn)

also

Rk(M) = Rk(Expι
ι) = 1 < 2 = 2(Tr(kn) + 1)

44

Case M = xσ. Let f(x) = j and let

M = λbιV ω.GetVarj
ω(V)

and observe

valb+1(M(kb, V)) = valb+1(GetVarj
ω(V))

= A(x) (i) in Lemma 5.12

= nvalAb+1(x)

also

Rk(M) = Rk(GetVarj
ω) = 0 < 2(Tr(x) + 1)

Case M = Pσ→τQσ. Let

M = λbιV ω.Digitτ
σ(b,P(b, V),Q(b, V))

and observe

valb+1(M(kb, V)) = valb+1(Digitτ
σ(kb,P(kb, V),Q(kb, V)))

= δσ→τ
b+1 (valb+1(P(kb, V)),valb+1(Q(kb, V)))

= δσ→τ
b+1 (nvalAb+1(P),nvalAb+1(Q)) IH

= nvalAb+1(PQ)

also

Rk(M) = max{Rk(Digitτ
σ), Rk(P), Rk(Q)}

≤ max{2(lv(σ → τ) + 1), 2(Tr(P) + 1), 2(Tr(Q) + 1)} IH

= 2(max{lv(σ → τ), T r(P), T r(Q)}+ 1)
= 2(max{Tr(P), T r(Q)}+ 1) Lemma 2.3

= 2(Tr(PQ) + 1)

Case M = λxσ.P τ . Let f(x) = j and let

M = λbιV ω.Tableτ
σ(b, λxσ̄.P(b,SetVarj

ω(V, x)))

45

and observe

valb+1(M(kb, V))
= valb+1(Tableτ

σ(kb, λx
σ̄.P(kb,SetVarj

ω(V, x))))

=
∑

i<‖σ‖b+1

δσ̄→τ̄
b+1 (valb+1(λxσ̄.P(kb,SetVarj

ω(V, x))), i)× ‖τ‖i
b+1 Lemma 5.7

=
∑

i<‖σ‖b+1

δσ̄→τ̄
b+1

 ∑

z<|σ̄|b+1

valA
x
z

b+1(P(kb,SetVarj
ω(V, x)))× |τ̄ |zb+1, i

× ‖τ‖i

b+1 val(·)

=
∑

i<‖σ‖b+1

valA
x
i

b+1(P(kb,SetVarj
ω(V, x)))× ‖τ‖i

b+1 δσ̄→τ̄
b+1

=
∑

i<‖σ‖b+1

nval
Ax
Ax

i
(i)

b+1 (P)× ‖τ‖i
b+1 IH

=
∑

i<‖σ‖b+1

nvalA
x
i

b+1(P)× ‖τ‖i
b+1

= nvalAb+1(λx.P)

also

Rk(M) = max{Rk(Tableτ
σ), Rk(P)}

≤ max{2(lv(σ → τ) + 1), 2(Tr(P) + 1))} IH

= 2(max{lv(σ → τ), T r(P)}+ 1)
= 2(Tr(λxσ.P τ) + 1)

Case M = P σ|Qσ, 〈P σ, Qτ 〉. We only consider the first case,since the second
is completely analogous. Let

M = λbιV ω.Mergeσ(P(b, V),Q(b, V))

and observe

valb+1(M(kb, V)) = valb+1(Mergeσ
σ(P(kb, V),Q(kb, V)))

= Mergeσ
b+1(valb+1(P(kb, V)),valb+1(Q(kb, V)))

= Mergeσ
b+1(nvalAb+1(P),nvalAb+1(Q)) IH

= nvalb+1(P |Q)

also

Rk(M) = max{Rk(Mergeσ), Rk(P), Rk(Q)}
≤ max{2(lv(σ) + 1), 2(Tr(P) + 1), 2(Tr(Q) + 1)} IH

= max{2(Tr(P) + 1), 2(Tr(Q) + 1)} 2.3

= 2(max{Tr(P), T r(Q)}+ 1)
= 2(Tr(P |Q) + 1)

46

Case M = fst.Pσ×τ , snd.P σ×τ . We only consider the first case,since the sec-
ondly is completly analogus. Let

M = λbιV ω.Leftτ
σ(b,P(b, V))

and observe

valb+1(M(kb, V)) = valb+1(Leftτ
σ(kb,P(kb, V)))

= λσ×τ
b+1 (valb+1(P(b, V)))

= λσ×τ
b+1 (nvalAb+1(P)) IH

= nvalAb+1(fst.P)

also

Rk(M) = max{Rk(Leftτ
σ), Rk(P)}

≤ max{2(lv(σ × τ) + 1), 2(Tr(P) + 1))} IH

= 2(max{lv(σ × τ), T r(P)}+ 1)
= 2(Tr(P) + 1) 2.3

= 2(Tr(fst.P) + 1)

Case M = Rσ(N ι, F ι,σ→σ, Gσ). Let

M = λbιV ω.Recσ(b,N(b, V),F(b, V),G(b, V))

and observe

valb+1(M(kb, V))
= valb+1(Recσ(kb,N(kb, V),F(kb, V),G(kb, V)))
= Υσ

b+1(ξb+1(valb+1(N(kb, V))),valb+1(F(kb, V)),valb+1(G(kb, V))))

= Υσ
b+1(ξb+1(nvalAb+1(N)),nvalAb+1(F),nvalAb+1(G))) IH

= nvalAb+1(Rσ(N,F,G))

also

Rk(M) = max{Rk(Recσ), Rk(N), Rk(F), Rk(G)}
≤ max{2(lv(σ) + 1), 2(Tr(N) + 1), 2(Tr(F) + 1), 2(Tr(G) + 1)} IH

= 2(max{lv(σ), T r(N), T r(F), T r(G)}+ 1)
= 2(max{Tr(N), T r(F), T r(G)}+ 1) 2.3

= 2(Tr(Rσ(N,F,G)) + 1)

47

Chapter 6

Complexity classes F−i and
Fv

i

Definition 6.1. We define a problem as any S ⊆ N. We say that a closed T−

term N : ι → ι is a T− program, and likewise for Tv. Let N be a T− or Tv

program, we say that N decides a problem S if N(kn) ¤ k1 ⇔ n ∈ S. Two
programs are said to be equivalent when they decide the same problem. Let F−i
be the family of all problems decided by a T− program with recursor rank no
greater then i, and likewise for Fv

i .

Definition 6.2. We define the desirable terms, denoted D, as all Tv-terms
on γ-normal form and have no subterm of the forms fst.(P |Q), snd.(P |Q) or
(P |Q)R.

Lemma 6.3. For any Tv
b -term M : σ there is a desirable term N : σ such that

Rk(N) ≤ Rk(M) and N and for any assignment Ab+1

[[M]]A = [[N]]A

Proof. Consider the following procedure.

REDUCE(Tv-term X)

1. Let X1 be the result of reducing X to γ-normal form using no γ reduction.

2. Let X2 be the result of replacing any fst.(P |Q) with (fst.P |fst.Q), any
snd.(P |Q) with (snd.P |snd.Q) and any (P |Q)R with (PR|QR) in X1.

3. No replacements where made in 2. then return X2, otherwise return
REDUCE(X2)

First observe that the procedure terminates for any Tv-term as input,the
reason is that we could extend our calculus to have the reduction rules;

48

(i) fst.(P |Q) ¤1 (fst.P |fst.Q)

(ii) snd.(P |Q) ¤1 (snd.P |snd.Q)

(iii) (P |Q)R¤1 (PR|QR)

and that calculus would be strongly normalizing as well. Also observe that

[[REDUCE(M)]]A = [[M]]A

since we only use non γ-reductions and (i),(ii),(iii) which all preserve [[·]]A.
REDUCE(M) will also be desirable because of the halting condition, and
since no new recursors are introduced

Rk(REDUCE(M)) ≤ Rk(M)

Lemma 6.4. Let N be a Tv-program, there exist a Tv-program M such that

[[M]] = [[N]]

and Tr(N) ≤ Rk(M) + 1.

Proof. Let N be the desirable program from Lemma 6.3 when given M , such
that [[M]] = [[N]] and Rk(N) ≤ Rk(M). By (iii) in Lemma 2.3 we can select a
subterm R : φ of N such that Tr(N) = lv(φ) = Tr(R), and which is not of the
form (PQ), 〈P,Q〉,(P |Q),fst.P or snd.P . The latter requirement will always be
satisfied since either P or Q will qualify in all of the above cases.

Lets consider the remaining possible forms of R. It cannot be a numeral or
variable because of the type of N , and N being closed respectively. It cannot be
of the form Rφ(A,B,C) since then Tr(B) ≥ lv(ι, φ→ φ) = lv(φ) + 1 > lv(φ) =
Tr(N) contradicting (ii) in Lemma 2.3. Therefor it must be that

R = λxσ.Xτ and φ = σ → τ

Now we define W1 as the least set such that

(i) R ∈ W
(ii) λxπ.Q ∈ W where Q ∈ W and lv(π) < lv(φ)

(iii) (Q|P), (P |Q) ∈ W where Q ∈ W and Tr(P) ≤ lv(φ)

(iv) 〈Q|P 〉 , 〈P |Q〉 ∈ W where Q ∈ W and Tr(P) ≤ lv(φ)

1W is meant to capture a substructure of N .

49

and we can by induction on the structure of W-terms easily show that for any
term U : ρ ∈ W we have

Tr(U) = lv(ρ) = lv(φ) (♣)

Let U be the longest subterm of N which is also in W, this will always be
possible since at least R ∈ W.

Assume first that U = N , then by (♣) we have Tr(N) = lv(ι → ι) = 1.
For any recursor Rπ(A,B,C) in N we see that lv(π) = 0, otherwise Tr(B) ≥
lv(ι, π → π) = lv(π) + 1 ≥ 2 > Tr(N) contradicting (ii) in Lemma 2.3. So we
have Tr(N) = Rk(N) + 1

Assume now that U is not N itself. We examine in what context U must
occur in N . We can conclude that U cannot occur in an abstraction, a pair
or a nondeterministic choice since no longer term then N is in W. It cannot
occur on the right hand side of an application, that is as (V U) since then
Tr(V) > lv(φ) = Tr(N) contradicting (ii) in Lemma 2.3. It cannot occur
on the left hand side of the application either, since N is desirable. It cannot
occur in a projection since N is desirable. The only remaining case is in a
recursor Rπ(A,B,C). Obviously U cannot be A because it is a program. It
cannot be C either, since then Tr(B) ≥ lv(φ) + 1 > Tr(N) contradicting (ii)
in Lemma 2.3. So B = U and Rπ(A,U,C) must be a subterm of N , and ρ is
of the form ι, π → π. We now see lv(π) + 1 = lv(ρ) = lv(φ), and there can
be no greater recursor type by the same argument applied several times before,
so Rk(N) = lv(π) = lv(ρ) − 1, that is Rk(N) + 1 = lv(ρ) = lv(φ) = Tr(N)
as desired. So under both assumptions Tr(N) = Rk(N) + 1 ≤ Rk(M) + 1 as
desired.

Theorem 6.5. For any nondeterministic program with recursor rank i there is
an equivalent deterministic program with recursor rank no more then 2(i + 2),
and therefore Fv

i ⊆ F−2(i+2).

Proof. Let Z be a Tv program such that Rk(Z) ≤ i and Z decides the prob-
lem L. By lemma 6.4 there is a Tv-program N such that [[N]] = [[Z]] and
Tr(N) ≤ Rk(Z)+ 1. By lemma 5.11 there exists a variable listing f for N , and
corresponding assignment type ω for N . Let r0 = 1 if N(k0) ¤ k1, otherwise
let r0 = 0. Likewise let r1 = 1 if N(k1) ¤ k1, otherwise r1 = 0. We define the
following program

M = λxι.Condι(Eqι(x, k0), kr1 ,

Condι(Eqι(x, k1), kr2 ,

IsMember(x,Digitι
ι(x,N(x,0ω),Expι

ι(x, k2, x)), k1)))

where N : ι, ω,→ ι→ ι is the term guaranteed by Theorem 5.13. Now if b = 0
or b = 1, then M will decide kb correctly with respect to L, since it has been
statically programmed to do so.

Assume now that b ≥ 2 for the rest of the proof. Let A be the value
assignment that maps all variables to 0, and recognize that 0ω is indeed a

50

derived value assignment of A for M , we then see

valb+1(M(kb)) = βb+1(δι→ι
b+1(valb+1(N(kb,0ω)), 2b), 1)

= βb+1(δι→ι
b+1(valb+1(N(kb,0ω)), 2b), 1)

= βb+1(δι→ι
b+1(nvalAb+1(N), 2b), 1) Theorem 5.13

= βb+1(δι→ι
b+1(nvalb+1(N), 2b), 1) N is closed

= βb+1(δι→ι
b+1(nvalb+1(N), µb+1(b)), 1)

= βb+1(δι→ι
b+1(nvalb+1(N),nvalb+1(kb), 1))

= βb+1(nvalb+1(N(kb)), 1)

and so

b ∈ L ⇔ Z(kb) ¤ k1 Z decides L
⇔ 1 ∈ [[Z(kb)]] Theorem 3.17

⇔ 1 ∈ [[Z]][[kb]] ⇔ 1 ∈ [[N]][[kb]] [[N]] = [[Z]]

⇔ 1 ∈ [[N(kb)]] ⇔ N(kb) ¤ k1 Theorem 3.17

⇔ µb+1({1}) 4ι
b+1 nvalb+1(N(kb)) Corollary 3.31

⇔ {1} ⊆ ξb+1(nvalb+1(N(kb))) 4ι
b+1 def.

⇔ βb+1(nvalb+1(N(kb)), 1) = 1 βb+1(n, 1) = 1 iif {1} ⊆ ξb+1(n)

⇔ valb+1(M(kb)) = 1 above

⇔M(kb) ¤ k1 Lemma 4.4

and so M decides L as well, so M is equivalent to Z, moreover

Rk(M) = max{Rk(N), Rk(Digitι
ι), Rk(Expι

ι)}
= max{2(Tr(N) + 1), 4, 4)}
≤ max{2((Rk(Z) + 1) + 1), 4)}
= max{2(i+ 2), 4}
= 2(i+ 2)

We may supplement our result in Theorem 6.5 and say that the equivalent
deterministic term not only exists, but it is computable from the nondetermin-
istic term itself. The computation is simply to take the initial nondeterministic
term M , apply the procedure in Lemma 6.3, then take the result and build a
new term N as in Theorem 5.13, which then computes the interpretation of M .

Based on the proof of
F−2i = SPACE 2LIN

i (♣)

in [1] we have reason to conjecture

Conjecture 6.6. Fv
2i = NSPACE 2LIN

i

51

The proof of this would be completely analogous to (♣). We would first de-
velop terms analogous to Succσ and Leqσ for nval(·), and then use them to sim-
ulate a nondeterministic space bound Turing machine, proving NSPACE 2LIN

i ⊆
Fv

2i . Then we would use a nondeterministic space bound Turing machine to
rewrite the running program with recursor rank 2i into a term with recursor rank
i, and then compute nval(·) for this term, thereby proving Fv

2i ⊆ NSPACE 2LIN
i .

This conjecture combined with the wellknown result from complexity theory
that SPACE 2LIN

i = NSPACE 2LIN
i for i > 0 would give us

Conjecture 6.7. Fv
2i = F−2i for i > 0

52

Bibliography

[1] Kristiansen, L. and Voda, P.J. Programming languages capturing complexity
classes. Nordic Journal of Computing 12 (2005), 89-115.

[2] Kristiansen, L. Complexity-theoretic hierarchies induced by fragments of Gödel’s
T. Theory of Computing Systems 43 (2008), 516-541

[3] Kristiansen, L. Neat function algebraic characterizations of LOGSPACE and
LINSPACE. Computational Complexity 14 (2005), 72-88.

[4] Kristiansen, L. Recursion in Higher Types and Resource Bounded Turing Ma-
chines. CiE’08:Logic and Theory of Algorithms, Springer LNCS 5028, pp. 336-
348, Springer-Verlag 2008.

[5] Kristiansen, L. and Barra, G.M. The small Grzegorczyk classes and the typed
lambda-calculus. Cooper, Lwe, Torenvliet (eds.), CiE’05:New Computational
Paradigms, Springer LNCS 3526, pp. 252-262, Springer-Verlag 2005.

[6] Avigad, J., Feferman, S.: Gödel‘s functional interpretation. In: Buss, S. (ed.)
Handbook of Proof Theory. Elsevier (1998)

[7] Berger, U., Continuous Semantics for Strong Normalization, Lecture Notes in
Computer Science,3526,23-34

[8] W.W. Tait. Normal form theorem for barrecursive functions of finite type. In
J.E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium,
pages 353-367. North-Holland, 1971.

[9] Prakash Panangaden, The Strong Normalization Theorem for the Simply-Typed
Lambda Calculus. WWW link:
http://www.cs.mcgill.ca/ prakash/Courses/comp524/Notes/new-tlc-mc.pdf

53

