
Adaptation and Robustness in Peer-to-Peer Streaming

Anh Tuan Nguyen
Department of Informatics
University of Oslo 1

January 25, 2011

1Copyright © 2011 by Anh Tuan Nguyen. All Rights Reserved.

© Anh Tuan Nguyen, 2011

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1075

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Unipub.
The thesis is produced by Unipub merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Abstract

The rapid development of network communication infrastructure enables networked multi-
media streaming applications ranging from on-demand video streaming to highly interactive
video conferencing. Peer-to-Peer (P2P) technologies have emerged as a powerful and popular
paradigm for bringing such emerging multimedia services to a large number of users. The es-
sential advantage of P2P systems is that the system capacity scales up when more peers join,
as peer upload capacity is utilized. However, providing satisfactory streaming services over
P2P networks is challenging because of their inherent instability and unreliability and the lim-
ited adaptability of traditional video coding techniques. On one hand, different from dedicated
servers, users may not have enough bandwidth to serve other users as most user connections
are asymmetric in their upload and download capacity, and they are heterogeneous in terms of
bandwidth and preferences. In addition, users can join and leave the system at any time as there
are no guarantees on their contribution to the system. On the other hand, although traditional
video coding techniques are efficient in terms of resource consumption, compression ratio, and
coding and decoding speed, they do not support scalable modes efficiently as such modes come
along with high computation cost. Consequently, in traditional P2P streaming systems, the bit
rate (the video quality) of media streams is determined based on the capacities of the low-end
users, i.e. the lowest common denominator, to make sure that most of their users can perceive
acceptable quality. This causes two critical limitations of the current P2P streaming systems.
First, users perceive the same quality regardless of their bandwidth capacity, i.e., no differenti-

ated QoS. Second, with the current best-effort Internet and peer dynamics, the streaming quality
at each peer is easily impaired, i.e., no continuous playback.

Recently, multiple layer codec research has become more refined, as SVC (the scalable ex-
tension of the H.264/AVC standard) has been standardized with a bit rate overhead of around
10% and an indistinguishable visual quality compared to the state of the art single layer codec.
The hypothesis of this research work is that the adaptable coding technique can bring significant
benefits to P2P streaming as it enables adaptability in P2P streaming. In addition, to improve
the robustness of the system to network fluctuations and peer dynamics, network coding and
social networking are also applied. The overall goal of this research is to achieve adaptive and
robust P2P streaming services, which are believed to be the next generation of P2P streaming on
the Internet. Several major contributions are presented in this dissertation. First, to use SVC in
P2P streaming, a segmentation method to segment SVC streams into scalable units is proposed
such that they can be delivered adaptively by the P2P paradigm. The method is demonstrated
to be able to preserve the scalability features of a stream, i.e., adaptation can be applied on

ii

segments and the re-generated stream at each peer is a valid stream. Second, a novel and com-
plete adaptive P2P streaming protocol, named Chameleon, is presented. Chameleon uses the
segmentation method to use SVC and combine it with network coding in P2P streaming to
achieve high performance streaming. The core of Chameleon is studied, including neighbor
selection, quality adaptation, receiver-driven peer coordination, and sender selection, with dif-
ferent design options. Experiments on Chameleon reveal that overlay construction is important
to system performance, and traditional gossip-based protocols are not good enough for lay-
ered P2P streaming. Therefore, third, a SCAMP-based neighbor selection protocol and a peer
sampling-based membership management protocol for layered P2P streaming are proposed.
These gossip-based protocols are quality- and context-aware as they form robust and adaptable
overlays for layered P2P streaming so that high capacity peers have a higher priority to be lo-
cated at good positions in the overlay, e.g. closer to the server, and peers with similar capacity
are connected to each other to better utilize resources. Fourth, to better deal with peer dynamics,
Stir, a social-based P2P streaming system, is suggested. In Stir, the novel idea of spontaneous
social networking is introduced. Stir users who join the same streaming session can make
friends and communicate with each other by cheap yet efficient communication means, e.g., in-
stant messaging and Twitter-like commenting. Such friendship networks are exploited directly
by the underlying social-based P2P streaming protocol. The tight integration between the high
level social networking of users and the low level overlay of peers is demonstrated to be bene-
ficial in dealing with high churn rates and providing personalized streaming services. Finally,
as the approaches are about different aspects of adaptive and robust P2P streaming, to complete
the picture, Chameleon++, which combines Chameleon and Stir, is presented. The design and
the evaluation of Chameleon++ demonstrate the feasibility and the benefits of the approaches,
and the consistency of the study.

Acknowledgements

First and foremost, I would like to deeply thank my advisor, Professor Frank Eliassen, for
his invaluable supports and encouragements thorough my research towards this thesis. He has
offered me useful and helpful advice not only on research, but also on research ethic. Academic
thinking and writing are two valuable things that I have learned a lot from him.

I would like to send my great appreciation to my supervisor, Dr. Michael Welzl, for his
patience and willingness on discussions and fixing my English. Technical discussions with him
always bring up new research ideas, better understandings, and improvement in interpersonal
skills.

I would like to specially thank Professor Baochun Li, for his research guidances and collab-
oration. The 3-month research period at iQua, his research group, is the most important period
of my research. Under his supervision during the period, I learned how to do practically exper-
imental research, how to develop research ideas, and characteristics of high quality research.
These experiences are always relevant for my research later on.

I am grateful for the supports and assistances from my colleagues and friends: Hai Ngoc
Pham, Amirhosein Taherkordi, Lucas Luiz Provensi, and Narasimha Raghavan Veeraragavan
in the Network and Distributed System research group at IFI; Di Niu, Chen Feng, Henry Hong
Xu, and Zimu Liu in iQua research group at EECG; and Khai The Vuong, Khoa Huynh Dat
Vu, and Tuan Vu Cao in VnOSLO. In addition to research discussions, pleasant and memorable
time that we have shared is of great help for my stressful and not-always-easy research life.
Thank you very much for being there when I need someone to talk to.

Last but not least, I reserve my heartfelt thanks to my family for their unconditional emo-
tional support during the past 3 years. I am grateful to my parents and my younger sister for
their encouragements; and to my wife, Nga, for her love, dedication and belief in my graduate
studies, without which all that I have achieved was not possible. I love you all!

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Limitations of Traditional P2P Streaming Systems 1

1.1.2 The Case for Scalable Video Coding 3

1.1.3 The Case for Network Coding . 4

1.1.4 The Case for Social Networking . 4

1.2 Research Questions and Problem Statement 5

1.3 Research Methodology . 7

1.3.1 Step 1: Formulating a Research Problem 8

1.3.2 Step 2: Approaching to Problems . 8

1.3.3 Step 3: Evaluating Solutions . 9

1.4 Contributions . 10

1.5 Outline of the Dissertation . 11

2 Background 13

2.1 Peer-to-Peer . 13

2.1.1 Definition . 13

2.1.2 Research Challenges in P2P Systems and Applications 15

2.2 P2P Streaming . 17

2.3 Network Coding . 18

2.4 Scalable Video Coding . 19

2.4.1 Scalability Modes . 20

2.4.2 SVC Structure . 21

vi CONTENTS

2.4.3 Decoding Dependency . 21

2.4.4 BitStream Switching . 22

2.5 Social Networking . 23

3 Literature Review 25

3.1 Taxonomy of P2P Streaming . 25

3.2 Traditional P2P Streaming Systems . 27

3.3 Adaptive P2P Streaming . 28

3.4 Overlay Construction in P2P Streaming Systems 30

3.5 Network Coding in P2P Systems . 33

3.6 Social Networking in P2P Systems . 35

4 Coding Approaches: Network Coding Meets SVC in P2P Streaming 37

4.1 Motivation for Using Network Coding . 37

4.2 Proposed Segmentation Method . 39

4.3 SVC with Random Network Coding . 40

4.4 Chameleon: Adaptive P2P Streaming with
Network Coding . 41

4.4.1 System Overview . 41

4.4.2 Design Space of Key Components . 42

4.5 Performance Evaluation . 50

4.5.1 Scalability . 51

4.5.2 Coping with Peer Dynamics . 52

4.6 Summary . 52

5 Overlay Construction Approaches 55

5.1 SCAMP-based Overlay Construction . 55

5.1.1 Problem Identification . 55

5.1.2 A Quality- and Context-Aware Neighbor Selection Method 57

5.1.3 Evaluation . 61

5.2 Peer Sampling Based Overlay Construction 63

CONTENTS vii

5.2.1 Protocol Design . 63

5.2.2 Evaluation . 65

5.3 Summary . 69

6 Social Networking Approaches 71

6.1 The Case for Spontaneous Social Networking 71

6.2 Stir: Schematic and Architectural Design . 73

6.3 A Social-based P2P Streaming Protocol . 74

6.3.1 Relying on Friendship or Bandwidth: a Tradeoff 75

6.3.2 Partner Manager . 76

6.3.3 Packet Scheduler . 76

6.4 Stir: Experimental Results . 77

6.4.1 Data Preparation and Assumptions . 79

6.4.2 Comparison with Existing Work . 81

6.4.3 Insights of Stir . 83

6.5 Social Traffic Costs . 87

6.6 Summary . 88

7 Chameleon++: Putting It All Together 89

7.1 The Design of Chameleon++ . 89

7.2 Evaluation . 91

7.2.1 Quality-aware and Social-based Partner Selection 92

7.2.2 Chameleon++ vs. Chameleon . 93

7.2.3 Skip Rate - Quality Satisfaction Tradeoff: Is it worth to combine Chameleon
and Stir? . 95

7.3 Summary . 96

8 Concluding Remarks 97

8.1 Self-Assessment . 97

8.2 Technical Contributions . 98

8.2.1 Chameleon: Adaptive P2P Streaming with NC and SVC 98

viii CONTENTS

8.2.2 Quality-aware Membership Management for Layered P2P Streaming . 99

8.2.3 Stir: Spontaneous Social P2P Streaming 99

8.3 Future Directions . 100

A The Simulator 103

A.1 Available Simulators . 103

A.2 Packet-level Discrete-event Simulator . 105

A.3 P2P Protocols . 106

A.4 Max-min Fair Rate Allocation in Simulation 108

A.4.1 Traditional Implementation . 108

A.4.2 A More Efficient and Practical Implementation 110

A.4.3 Performance Evaluation . 112

A.5 Summary . 114

List of Figures

1.1 Friendships among members of the “Macbook Pro” group. 7

2.1 Architectural Comparison among Client-Server, Hybrid, and P2P Model. . . . 14

2.2 Reasons against P2P [1]. 16

2.3 Research Focus on P2P (2003-2007) [1]. 16

2.4 Research Focus on P2P (2007-2010) [1]. 16

2.5 Video Chunk Delivery in P2P Streaming. 17

2.6 Traditional Relay Vs. Network Coding. 19

2.7 An example of the SVC structure. (a) An AU consisting of four LRs. (b) A GOP
consisting of eight pictures (AUs) and coded with hierarchical B-pictures. The
symbols Tk specify the temporal layers with k representing the corresponding
T_ID. The numbers below specify the coding order. (c) A coded video sequence. 21

2.8 The graph representation of the example social network. 24

3.1 Overlay-based taxonomy of P2P streaming systems. 26

3.2 Adaptability-based taxonomy of P2P streaming systems. 27

4.1 The store order of the entities in the video file 39

4.2 An example of the segmentation method where the stream has three quality
levels and is divided into segments of two GOPs. The symbols QL k specify
Q_ID = k. 40

4.3 An example of the combination of network coding and SVC. Packet 1, 2, and 3
are divided into n,m, and k blocks, respectively. Network coding with different
numbers of unknowns (n,m, and k) is used for different quality levels. 41

4.4 Architecture of Chameleon with key components. 42

4.5 The effect of the neighbor selection methods on Chameleon. 44

x LIST OF FIGURES

4.6 The playback buffer in Chameleon: The dark shade indicates the receiving sta-
tus of each segment. 45

4.7 The effect of the quality adaptation parameters on Chameleon. 46

4.8 An example of the playback graph of a typical peer. 47

4.9 The performance of Chameleon with different sender selection methods. 49

4.10 The performance of Chameleon and FABALAM in different network sizes. . . 51

4.11 The effects of peer dynamics on Chameleon. 52

5.1 The performance of Chameleon in the two cases. 57

5.2 The system performance with the proposed protocol in Case B 61

5.3 Performance of Chameleon with different network sizes 62

5.4 The arrangement of neighbors in the neighbor list of peer P. CP is the class
identifier of P . 65

5.5 Overlay evolves from a random topology. 67

5.6 Overlay evolves from a ring topology. 68

5.7 Overlay evolves with peers join. 68

5.8 Number of clusters generated when peers leave the system 69

6.1 Initial steps in the Stir schematic design. After a user logs in, a list of friends
may be established spontaneously. 73

6.2 The architectural design of Stir, with an emphasis on the tight integration be-
tween streaming quality and spontaneous social network relationships. 74

6.3 Friendships among peers . 80

6.4 Peer Dynamic Scenarios . 80

6.5 Stir minimizes the impact of peer churn . 82

6.6 Skip rates with different sizes of the neighbor list. The numbers in parentheses
denote the size of the neighbor list in CoolStreaming and NCStream. 83

6.7 The effect of α and β in partner selection. 84

6.8 In Stir: The more famous you are, the higher the quality you receive. 86

7.1 The architecture of Chameleon++. Components in light grey color are from
Stir. The dark grey color of Partner Manager is to mark that this component is
the integration ‘point’ of Chameleon and Stir 90

LIST OF FIGURES xi

7.2 The role of the quality-aware selection in Chameleon++ 93

7.3 Chameleon++ Vs. Chameleon on different neighbor list sizes. The numbers in
parentheses denote the size of the neighbor list in Chameleon 94

7.4 Chameleon++ Vs. Chameleon on coping with peer dynamics. 95

A.1 The components of the simulator with their main functions 105

A.2 An example of modeling the network to undirected graph. The directed edges
on the left graph represent for the connections from the upload nodes to the
download nodes. A physical node i is modeled as two distinct nodes iU and iD

for its uplinks and downlinks in the right graph. The number above a node is its
bandwidth (displayed as upload/download for the nodes in the left graph). . . . 110

A.3 An example of the computation of the proposed algorithm. Dashed links are
saturated connections. 113

A.4 The performance of the algorithms with different network sizes 114

A.5 The performance of the algorithms with different values of AC 115

xii LIST OF FIGURES

List of Tables

2.1 Differences between live P2P streaming and on-demand P2P streaming. 18

2.2 An example about the scalability structure of an SVC stream. 22

2.3 The matrix representation of the example social network. 23

4.1 Meanings of the two bits used in buffer maps. 42

4.2 Peer clustering in Chameleon. 45

4.3 Main configuration parameters used in the simulation. 50

5.1 Topology . 62

A.1 Events used in our simulation . 108

xiv LIST OF TABLES

Chapter 1

Introduction

This first chapter discusses motivations of the work: why is adaptive and robust P2P streaming

necessary to be studied and achieved? Next, technical problems to be tackled are described at
a high level. Then, the research methodology that is used is presented. This chapter also lists
main contributions and outlines the remainder of the dissertation.

1.1 Motivation

1.1.1 Limitations of Traditional P2P Streaming Systems

The rapid development of computer and network technologies has changed the way in which
people learn, communicate, and entertain themselves, as it enables a wide range of multimedia
streaming applications from video-on-demand streaming to highly interactive video conferenc-
ing. The key attractions of such emerging multimedia services are space-decoupling, and rich
and diversified services. For example, tele-education allows people to study without the need of
participating in physical classes. Thanks to video conferencing technologies, virtual classes in
which teachers and students can communicate with each other in multiple directional ways are
possible even with critical timing constraints for real time interaction. Another example is that
nowadays users can enjoy a large number of video and TV channels on the Internet using IPTV
(Internet Protocol Television) services. Compared to traditional TV, IPTV provides more in-
teractive programming, e.g., viewers can customize their channel lists. The “Semiannual IPTV
Global Forcast Report – IPTV Global Forecast – 2010-2014”, published by MRG (Multimedia
Research Group), Inc. in June 2010, indicates that the number of global IPTV subscribers will
grow from 41.2million at the end of 2010 to 101.7million in 2014, a compound annual growth
rate of 25.3% [2].

2 CHAPTER 1. INTRODUCTION

Peer-to-Peer (P2P) technologies have emerged as a powerful and popular paradigm for
bringing multimedia services to a large number of users as they overcome the scalability prob-
lem of the traditional client-server architectures. The essential advantage of P2P systems is
that the system capacity scales up when more peers join, as peer upload capacity is utilized.
There are nowadays many popular video streaming systems, e.g., PPLive [3], CoolStreaming
[4], TVAnts [5], UUSee [6]. They are serving hundred thousands of users simultaneously,
thanks to their P2P-based architecture. However, providing satisfactory streaming services over
P2P networks is challenging because of their inherent instability and unreliability and the lim-
ited adaptability of traditional video coding techniques. On one hand, different from dedicated
servers, users may not have enough bandwidth to serve other users, as most user connections
are asymmetric in their upload and download capacity, and they are heterogeneous in terms of
bandwidth and preferences. In addition, users can join and leave the system at any time, as there
are no guarantees on their contribution to the system. On the other hand, although the traditional
video coding techniques are efficient in terms of resource consumption, compression ratio, and
coding/decoding speed, they do not support scalable modes efficiently as their encoded streams
are united and only playable if the whole stream is received correctly. Consequently, in tradi-
tional P2P streaming systems, the bit rate (the video quality) of media streams is determined
based on the capacities of the low-end users, the lowest common denominator, to make sure
that most of their users can perceive acceptable quality. This causes two critical limitations of
the current P2P streaming systems:

� Users have to receive the same stream regardless of their bandwidth, i.e., high capacity
users perceive the same low quality as average users (no differentiated QoS).

� With the current best-effort Internet and the peer dynamics, the streaming quality at each
peer is easily impaired, i.e., when the available bandwidth at a peer drops below the
streaming rate, it may suffer playback skips (no continuous playback).

From the above discussion, it is very much required for a large-scale P2P streaming system to
improve user satisfaction by achieving adaptive and robust streaming services. In this context,
adaptation means twofold. First, the video quality a user receives depends on her bandwidth,
i.e., high capacity users enjoy high quality video while low capacity users watch low quality
video in the same streaming session. Second, when the available bandwidth of a user changes
her video quality may change accordingly, e.g., when the bandwidth drops the image quality can
be reduced to maintain continuous playbacks. Meanwhile, robustness is defined in this work
as the ability of maintaining the current quality under a certain level of peer dynamics, i.e., the
current video quality of peers is maintained even when a certain number of other peers join or
leave the session. In a nutshell, this research work is motivated by the fact that there currently is

1.1. MOTIVATION 3

a big gap between the streaming quality that is expected by users and the streaming quality that
is provided by existing P2P streaming systems. It investigates the feasibility of offering such
adaptive and robust streaming services with the current technologies.

1.1.2 The Case for Scalable Video Coding

There have been many video coding standards for different kinds of video transmission and stor-
age. Traditional digital video transmission and storage systems are based on H.222.0|MPGE-2
systems for broadcasting services over satellite, cable, and terrestrial transmission channels,
and for DVD storage, or on H.320 for conversational video conferencing services [7]. These
(and past) coding schemes define a fixed spatio-temporal format for the video signal (SDTV
or HDTV or CIF for H.320 video telephone). Consequently, their application behavior in such
systems typically falls into one of the two categories: it works or it does not work. If the avail-
able bandwidth is greater than the video bit rate, good quality is perceived, otherwise playback
skips (in live streaming) or playback stops (in video-on-demand streaming) occur. Such behav-
ior is very inappropriate when videos are transferred over the current best-effort Internet, as no
bandwidth guarantees can be made.

Scalable video coding (SVC) is a highly attractive solution to the adaptability problem. The
term “scalability” refers to the removal of parts of the video bit stream in order to adapt it to the
various needs or preferences of end users as well as to varying terminal capabilities or network
conditions. SVC has been an active research and standardization area for at least 20 years. The
prior international video coding standards H.262 MPEG-2 Video, H.263, and MPEG-4 Visual
already include several tools by which the most important scalability modes can be supported.
However, the scalable profiles of those standards have rarely been used because the spatial
and quality scalability features came with a significant loss in coding efficiency as well as a
large increase in decoder complexity as compared to the corresponding non-scalable profiles.
Only until the scalable extension of the H.264/AVC standard [8], different scalability modes
can be supported with high coding efficiency. It should be noted that the term SVC is used
interchangeably for both the concept of scalable video coding in general and for the particular
new extension of the H.264/AVC standard. The following advantages of the scalable extension
leads to its standardization in July 2007 [9].

� Similar coding efficiency compared to single-layer coding for each subset of the scalable
bit stream.

� Little increase in decoding complexity compared to single-layer decoding that scales with
the decoded spatio-temporal resolution and bit rate. A bit rate overhead of around 10%

4 CHAPTER 1. INTRODUCTION

and an indistinguishable visual quality, compared to the state of the art H.264/AVC, have
been demonstrated [9, 10].

� Support of different scalability modes: temporal, spatial, quality scalability, and their
combinations.

� Support of a backward compatible base layer (H.264/AVC).

� Support of simple bit stream adaptations after encoding.

There are also other alternatives to provide adaptability when videos are transferred over the In-
ternet, e.g., multiple description coding and multiple version streaming. However, experimental
studies have demonstrated that these approaches come along with the cost of a significant in-
crease in bit rate [11, 9], and references therein. Altogether, there is reason to believe that SVC
will become the dominant coding technique used for transmitting videos over the Internet in the
near future.

1.1.3 The Case for Network Coding

Network coding (NC) has been shown to be beneficial in P2P streaming as it offers better
throughput and improves system performance [12, 13]. The key feature of network coding
is that it makes all pieces of data equally important, and every coded packet is innovative to
receivers with high probability [14]. This feature maximizes the potential of peer collaboration
(referred to as perfect collaboration in [13]) as a receiver does not need to coordinate senders to
avoid duplicated packets. As long as the receiver receives enough linearly independent coded
blocks, she can decode to the original data. As being presented in the “Research Questions and
Problem Statement”, the scalability features of SVC limit the collaboration potential of peers
when it is used in P2P streaming. Therefore, the objective of using NC in the combination with
SVC is to exploit the perfect collaboration feature of NC to mitigate the limitation caused by
the layering features of SVC to make the use of SVC feasible and beneficial.

1.1.4 The Case for Social Networking

In traditional P2P systems, users are often anonymous as the systems do not keep any user
profiles for operation. On one hand, such anonymity simplifies the use of services as users only
need to run a client program and will be served. On the other hand, the anonymity causes one
of the most challenging problems in P2P systems: the free-riding problem [15]. Free-riders
are those who join a P2P session and receive services without contributing their resource to the

1.2. RESEARCH QUESTIONS AND PROBLEM STATEMENT 5

community. This selfish behavior violates the P2P principle and reduces the overall resource
which is based on the contribution of every peers.

Recently, the popularization of new social network sites that allow individuals to construct
personal profiles, connect to people, and keep up with friends has shown that users are indeed
interested in sharing their common interests on networked applications. For example, at the time
of writing, Facebook [16] is the second most-trafficked website in the world [17]. It currently
has 400 million active users who spend 500 billion minutes per month to interact with over 160

million objects (pages, groups, and events) [18].

Applications of social networking to P2P networking have emerged with the objective of im-
proving P2P system performance. The idea is that connections among friends are more reliable
than those among strangers. Some studies have shown advantages of social-based P2P systems
in file sharing in which the systems import social contacts from existing social networking sites
and establish connections among peers based on their social relationships [19, 20, 21]. Such
connections are more reliable and durable. Since users now have to be responsible for their
behavior as their identity is revealed, the above free-riding problem is minimized.

In addition to mitigating the free-riding problem, the use of social networking in P2P stream-
ing has another important and unique motivation. One very challenging and inherent problem
in P2P streaming is high churn rates, i.e., peers stay in a streaming session for a short period
of time. When a peer leaves, others who are receiving packets from it are negatively affected.
There has been a substantial amount of research on dealing with peer churn [22, 13, 23]. Al-
though the works have shown improvements in system performance, the impact of peer churn
can not be minimized as its origin has not been considered. The arrivals and departures of users
depend on their interests in the session, e.g., users leave quickly because they do not like the
content. A hypothesis here is that knowledge about user interests is critical in dealing with peer
churn, and such knowledge can be collected if users are supported with social activities, e.g.

making friends and communicating with each others, inside of a P2P streaming system. There-
fore, the use of social networking in P2P streaming, if possible, will bring significant benefits
in dealing with the free-riding and the high churn rate problems, and so improve the robustness
of the system.

1.2 Research Questions and Problem Statement

The main research question is: How to make a large-scale P2P streaming system adaptable

and robust so that it can offer the best possible experience to heterogeneous users under highly

dynamic network conditions while maintaining its efficiency and scalability? To address this
question, many problems need to be considered.

6 CHAPTER 1. INTRODUCTION

The background of the problem is in using SVC with P2P streaming due to the P2P-based
data delivery mechanism and the layering features of SVC. In P2P systems, a peer not only
receives data from other peers but also sends received data to others. Consequently, the band-
width and data availability of each receiving peer are constrained and heterogeneous, which
further limits the bandwidth and data availability of its downstream peers when it acts as a
sender. When SVC is in use, the heterogeneity among peers is even higher because peers do
not receive the same content, i.e., different peers may receive different numbers of layers based
on their bandwidth. For example, a peer which can only receive two layers due to its bandwidth
or preferences cannot provide the third (or higher) layers to others which might want and be
able to receive more than two. If with SVC, the collaboration potential of peers is so limited
that the system cannot utilize the upload bandwidth of peers, the benefit of SVC is minimal.
Therefore, it is necessary to first study: Can SVC be used with the P2P paradigm to provide

the best possible experience to heterogeneous users? If the answer is ‘Yes’, the next step is to
investigate further with the following questions:

� What is the cost of using SVC? It could be straightforward to understand that the layering
features of SVC reduces the collaboration potential among peers as explained above.
However, the cost of using SVC needs to be measured in terms of system performance to
answer if the cost is affordable.

� If the effect of using SVC on the collaboration among peers is seriously negative, Can the

perfect collaboration feature of network coding help? If ‘Yes’, How can SVC efficiently

be combined with NC? and What are benefits of the combination in terms of system per-

formance?

With respect to the application of social networking in P2P streaming, there are two prob-
lems to be considered: the formation of social networks and the exploitation of the social net-
works. In existing social-based P2P file sharing systems, the establishment of connections
among peers is based on social relationships among users, which are not formed in the context
of a peer-to-peer session but, e.g., imported from other social networks. Because friends in such
a separate social network do not always have similar interests, they may not necessarily join the
same P2P session. Consequently, a user may not acquire enough qualified connections and suf-
fers degraded quality as a result. As an example, in Flickr [24], each user has a friend (contact)
list. Some user can create a group on a particular topic, and others can join the group to share
their interests in photos of group members. Friendship among members of Flickr groups is in-
vestigated: How many friends of a member also join the group? or Are members of a group also

friends of each other? For 20 groups with different sizes and topics having been considered,
the answer is that in most of the groups, members have no, or very few, friends in their group.

1.3. RESEARCH METHODOLOGY 7

Figure 1.1 demonstrates the observation with the friendship network of members of “Macbook
Pro” group.

Figure 1.1: Friendships among members of the “Macbook Pro” group.

Therefore, the first problem to be tackled is: How to form social networks which have a very

tight integration with the P2P overlay, i.e., the social relationships should be closely related to

the context of the P2P application? If such social networks can be formed efficiently, the
next question is: How can such social networks be exploited by the underlying P2P streaming

protocol?

Once all the above questions are answered, it would be convincing that an adaptive and
robust P2P streaming system with the current cutting edge technologies is feasible. Seeking
solutions for the questions is the main task of this research work, and what has been studied is
presented in this dissertation.

1.3 Research Methodology

The research methodology that was used in this research is tailored from the general research
methodology, presented in [25]. To tackle the research questions, mentioned in Section 1.2,
different research methods for different tasks were identified and justified during the research
period. The research has been carried out with the following steps. In each step, suitable
methods were selected and justified. It should be noted that some steps were repeated, as results
were not as expected or new problems were identified.

8 CHAPTER 1. INTRODUCTION

1.3.1 Step 1: Formulating a Research Problem

The purpose of formulating a research problem is to understand it deeply: Is it worth to spend

effort on? and How can we evaluate the solutions? The following methods are applied:

� Literature study: related work in P2P streaming, layered P2P streaming, applications of
SVC, NC, and Social Network in P2P systems is studied in detail. State-of-the-art studies
are noted with their key features, both advantages and disadvantages.

� Problem Formulation: After the literature review, we know which problems have been
fully/partially tackled. We now have to define in detail technical problems for each main
research questions.

� Hypothesis construction: what are the hypotheses for the work? Identifying the hypothe-
ses helps evaluate the solutions and compare with state-of-the-art work.

1.3.2 Step 2: Approaching to Problems

For each research question, possible solutions are found and listed. Preliminary analysis and
evaluation are carried out. Since most of the problems are in the form of how to make things
work and work efficiently, approaches to the problems are about designing systems/protocols
with different design options, e.g., designing an adaptive and robust P2P streaming protocol
using SVC and NC. Following the discipline of computing [26], the main paradigm used in this
work is the design paradigm.

The design paradigm is one of the three paradigms (the other two are theory and abstrac-

tion paradigm) approved by the ACM Education Board as an intellectual framework for the
discipline of computing and a basic for computing curricula [26]. Theory is concerned with
the ability to describe and prove relationships among objects. Abstraction is concerned with
the ability to use those relationships to make predictions. Design is concerned with the ability
to implement specific instances of those relationships and use them to perform useful actions.
The design paradigm includes the four following steps in the construction of a system to solve
a given problem:

• State requirements: the required features of the system from the user perspective are
determined. Satisfying the requirements is the criteria to evaluate the system.

• State specifications: from the requirements, more technical details about the system are
defined.

• Design and implement the system.

1.3. RESEARCH METHODOLOGY 9

• Test the system: evaluate the performance and functionality of the system. The testing
method is particularly presented in the step 3 of the methodology.

1.3.3 Step 3: Evaluating Solutions

Proposed systems need to be evaluated. A system design can be implemented and evaluated in
a simulator (simulation), in an emulator (emulation), or in a real environment (prototype). On
one hand, simulation offers simplest implementation, repeatable experiments, and quick result
collection. However, not all aspects of the system are considered, there are always assumptions
with simulation depending on what features of the system are considered. On the other hand,
building a prototype and evaluating it in a real environment requires a lot of programming
effort, and experiments may not be repeatable, especially for networked applications, as the real
network changes quickly and totally distributed, e.g., we may not have permissions to change
environment parameters. However, once the prototype is tested, its performance is guaranteed
as most of the aspects of the system are considered in the real world. The simplicity and reality
of emulation is in between those of simulation and real world testing as the system is evaluated
in a well-controlled real environment.

With the above tradeoffs of the different evaluation methods, simulation is chosen as the
main method to evaluate proposed solutions for the following reasons:

� It is highly risky and requires a lot of programming effort to implement and test a large-
scale P2P system in the real world. Even if we could develop a complete system in a short
period of time, it is impossible to attract up to thousands of users for the evaluation. In
addition, experimental results in this setting may not be analyzed and diagnosed by tuning
parameters. It is also difficult for other researchers to independently reproduce and verify
the results. Therefore, with the period of three years for one PhD student, targeting to a
real prototype is not feasible.

� One reason for using emulation is that some existing emulators and test beds allow to
evaluate system performance with taking real underlying network communication into
account. However, implementing a system in emulation is also time consuming with all
network programming problems because the emulated implementation should be very
close to the real implementation. More importantly, the focus of this work is more about
the feasibility of the design at the application levels. Taking all actual network transmis-
sions is unnecessary.

� It is firstly important to understand how a system behaves in large-scale scenarios with
its design before actual deployment. In the case of new large-scale P2P streaming proto-
cols, collective behaviors of the whole system may be more important than the network

10 CHAPTER 1. INTRODUCTION

performance of a particular peer. Therefore, with reasonable assumptions, it is believed
that simulation is convincing enough and acceptable in this work. In addition, to compare
with state-of-the-art studies, some of which are also evaluated in simulation, simulation
allows easily extracting and evaluating key features of the system.

An important issue related to simulation is the input data for experiments. While there are
reasons for avoiding real network transmission, to have more convincing simulation results,
real input data should be used whenever possible, e.g., real peer dynamic traces, actual SVC
streams, and actual social network data. This makes the study different from those which use
synthetic input data and brings it closer to the reality.

1.4 Contributions

The main technical contributions are summarized and and referred to the corresponding publi-
cations in this section.

� C1: A segmentation method to divide SVC streams into scalable units to be delivered in
P2P networks. The method is demonstrated to preserve the scalability of the stream, i.e.,
adaptation can operate on segments and the re-generated stream at each peer is a valid
stream.

� C2: A novel and complete adaptive P2P streaming protocol, named Chameleon. Chameleon
uses the segmentation method and combines SVC with network coding to achieve high
performance streaming. The core of Chameleon is studied, including neighbor selection,
quality adaptation, receiver-driven peer coordination, and sender selection with different
design options.

� C3: A SCAMP-based neighbor selection protocol for layered P2P streaming.

� C4: A peer sampling-basedmembership management protocol for layered p2P streaming.

� C5: A novel social-based P2P streaming system, named Stir. Stir introduces a novel idea
of spontaneous social networking, in which users who join the same streaming session
can make friends and communicate with each other by cheap yet efficient communica-
tion means: instant messaging and Twitter-like commenting. Such friendship networks
are exploited directly by the underlying social-based P2P streaming protocol. The tight
integration between the high level social networking of users and the low level overlay of
peers brings significant benefits in dealing with a high churn rate and providing personal-
ized streaming services.

1.5. OUTLINE OF THE DISSERTATION 11

� C6: Chameleon++. The design of Chameleon and that of Stir are combined in Chameleon++.
Although the design of Chameleon++ is mainly based on that Chameleon and Stir, it
shows that the approaches are complementary and can be combined to yield an even bet-
ter system. Chameleon++ offers very low skip rates like Stir, and high quality satisfaction
like Chameleon. SVC, NC, and social networking are all used efficiently to achieve adap-
tive and robust P2P streaming.

C1 and C2 are presented in [27], which was published in the 29th IEEE International Confer-
ence on Computer Communications (IEEE INFOCOM 2010). This piece of work was mostly
done during my tenure at the iQua research group of Prof. Baochun Li, at the Department of
Electrical and Computer Engineering, University of Toronto, Toronto, Canada. I proposed the
segmentation method and designed Chameleon, Prof. Li helped with ideas on doing simula-
tions. Both Prof. Li and Prof. Eliassen gave great help in writing up the paper. C3 and C4
were presented at the International Communications Conference (IEEE ICC 2010) [28], and
the IEEE Consumer Communications and Networking Conference (IEEE CCNC 2011) [29],
respectively. In both C3 and C4, I proposed and evaluated the protocols. The other authors
contributed in writing. The idea of using spontaneous social networking in P2P streaming was
initially proposed by Prof. Li. I designed the schematic architecture of Stir with his help. I
proposed and evaluated the P2P streaming protocol of Stir. Prof. Li and Dr. Welzl gave useful
comments on finding input data for evaluation. At the time of this writing, C5 was submitted to
the 14th IEEE Global Internet Symposium. Prof. Eliassen, Prof. Li, and Dr. Welzl helped in
writing up the submission.

1.5 Outline of the Dissertation

The remainder of this dissertation presents a thorough examination of the work. To make this
dissertation self-contained, Chapter 2 briefly introduces P2P streaming and gives an overview
and important features of SVC, NC, and social networking. Readers who already know about
these technologies can ignore this chapter, otherwise understanding the background will help
understand the proposed solutions presented later on. Chapter 3 discusses related work in-
cluding traditional P2P streaming with both mesh-based and tree-based overlays, layered P2P
streaming with different layered coding techniques, applications of SVC, NC, and social net-
working in P2P systems in general and in P2P streaming in particular. Chapter 4, 5, 6, and
7 describe in detail the proposed solutions and evaluation. They are reported in the order of
the time at which the work was done. First, Chapter 4 is about Chameleon. Second, Chapter
5 concentrates on overlay construction for layered P2P streaming with the two new overlay
construction schemes. Third, Chapter 6 presents Stir with its design and evaluation. Finally,

12 CHAPTER 1. INTRODUCTION

Chapter 7 puts it all together with the design and evaluation of Chameleon++. This disserta-
tion is concluded in Chapter 8 with revising the goals of the work and suggesting directions for
future research. Finally, Appendix A describes in detail the simulator that was used.

Chapter 2

Background

This chapter gives an overview of technologies that are used in this work. It also explains some
terminologies used through out this dissertation. Readers who are familiar with P2P streaming,
network coding, scalable video coding, and social networks can skip this chapter.

2.1 Peer-to-Peer

The following introduction to P2P is based on [1].

2.1.1 Definition

Oram [30] gives a basic definition of the term “Peer-to-Peer”:
A Peer-to-Peer system is a self-organizing system of equal, autonomous entities (peers) which

aims for the shared usage of distributed resources in a networked environment avoiding central

services.

Decentralized resource usage includes:

� Resources of interest, e.g. bandwidth, are used in a manner as equally distributed as
possible and are located at the edges of the network, close to the peers.

� Within a set of peers, each utilizes the resources provided by other peers. The most
prominent examples for such resources are storage and processing capacity.

� Peers are interconnected through a network and in most cases distributed globally.

� Peers’ Internet address typically changes because they are dynamically assigned new In-
ternet addresses every time they connect to the network (transient connectivity). Often,
they may be disconnected or shut down over longer periods of time.

14 CHAPTER 2. BACKGROUND

Decentralized self-organization includes:

� In order to utilize shared resources, peers directly interact with each other. In general, this
interaction is achieved without any central control or coordination. This represents one
of the main properties of P2P systems which is markedly different from client-server sys-
tems: while the the latter rely on centralized coordination through a server as a structural
paradigm, P2P systems establish a cooperation between equal partners. This departure
from a centralized infrastructure most importantly avoids bottlenecks but is concomitant
with the reduced availability of end-systems compared to client-server solutions.

� Peers directly access and exchange the shared resources they utilize without a centralized
service. Thus, P2P systems represent a fundamental decentralization of control mech-
anisms, i.e., peers can act both as clients and servers. This is radically different from
traditional systems with asymmetric functionality.

� Each peer is fully autonomous regarding its respective resources.

� Ideally, resources can be located without any central entity. However, performance issues
may lead to centralized elements being part of a complete P2P system, e.g. for efficiently
locating resources. Such systems are commonly called hybrid P2P systems.

Figure 2.1 shows the architecture of a client-server model, P2P, and hybrid model to point out
the key difference between them: there is one (or more) central component in the client-server
and the hybrid model, and no central services in pure P2P architecture.

User

Server

User

Server

User

(a) Client-Server (b) Hybrid (c) Pure P2P

Figure 2.1: Architectural Comparison among Client-Server, Hybrid, and P2P Model.

There are two kinds of P2P systems: structured and unstructured. Unstructured P2P systems do
not rely on a specific infrastructure offering transport services. They form unstructured overlays
focusing on content allocation and distribution based on TCP or HTTP connections. Although
unstructured overlays are flexible as peer dynamic do not affect the ‘structure’ of the overlays,
they are not efficient in locating data in the network. On the other hand, structured P2P systems

2.1. PEER-TO-PEER 15

do have well-structured overlays for efficient look-up services, e.g., DHT (Distributed Hash
Table). The main disadvantage of structured overlays is that it may be expensive to maintain
the overlay under peer dynamics, i.e., there is always an overlay manager running to keep the
overlay in form.

2.1.2 Research Challenges in P2P Systems and Applications

One of the main challenges of P2P systems lies in the decentralized self-organization of a dis-
tributed system and in achieving a high level of quality of service without the need for central-
ized services. It is central to a solution to this problem to efficiently look up and locate data items
and manage them accordingly. Many aspects of P2P systems are based on this functionality.
In contrast to centralized server applications, for which the location of data items is inherently
known, decentralized systems store content in multiple, possibly distant, locations within the
system. These distributed features lead to the followingmain reasons against P2P (more reasons
are mentioned in Figure 2.2 with the time at which they were raised and discussed1).

� Intellectual Property and Digital Right Management: since any anonymous peer can up-
load data to the network for sharing with others, it is really challenging, even impossible,
to deal with copyright issues of the shared data, e.g., videos, musics, and books.

� Still Low Bandwidth End-nodes and Best-effort Service Insufficient for Most Applica-
tions: for delay tolerant data, P2P is possibly the best approach. However, beyond file-
sharing, the suitability of the P2P paradigm to various types of applications is questioned,
especially when the bandwidth of end-nodes is still low (e.g., compared to the bandwidth
requirements for some applications, e.g., HD (High Definition) video streaming) and the
current Interest infrastructure is best-effort.

� Lack of Trust: security in a distributed system is generally challenging. In P2P, it is
even more difficult to guarantee a certain level of security due to its anonymity and high
decentralization.

The above issues have attracted a lot of attention. Different research focuses have been reported
on different aspects of P2P systems. Figure 2.3 and Figure 2.4 shows different challenges
researchers have focused on1.

1Figure 2.2, Figure 2.3, and Figure 2.4 are copied from Fig. 2.3, Fig. 2.5, and Fig. 2.4, respectively in [1] with
the permission that is specified at http://www.springerpub.com/resources/Authors/Permissions.

16 CHAPTER 2. BACKGROUND

Figure 2.2: Reasons against P2P [1].

Figure 2.3: Research Focus on P2P (2003-2007) [1].

Figure 2.4: Research Focus on P2P (2007-2010) [1].

2.2. P2P STREAMING 17

2.2 P2P Streaming

The idea of using the P2P paradigm for video streaming is very simple. The video stream
is divided into chunks (a small unit of video data), and viewers act as relays, i.e., when a peer
receives a chunk, in addition to adding it to the playback buffer, the peer also uploads that chunk
to other peers. Eventually, all peers receive enough chunks for playback. P2P streaming systems
offer the same advantages as other P2P systems, e.g., scalability and low load on servers, as
peers contribute their bandwidth to deliver video chunks in the network. However, they face
additional challenges since there is a strict timing constraint for the arrival of chunks to meet
the playback deadline. This is particularly difficult since the peers are connected to the Internet
by links which may have different capacity and reliability. Moreover, data delivery paths may
simply disappear without prior notice, e.g., when a peer leaves the system. Figure 2.5 illustrates
the chunk delivery process among peers in a P2P streaming system. There are two kinds of
video streaming applications: live P2P streaming and on-demand P2P streaming. They are
different from each other in the way video churns are delivered.

Source Source Source

(a) (b) (c)

Figure 2.5: Video Chunk Delivery in P2P Streaming.

In live P2P streaming, the content provider streams a live event to peers. Since each peer
expects to view the stream in real time, there are two critical criteria for the arrival of video
chunks. First, chunks have to arrived at each peer on time, i.e., before the playback deadline
synchronized with the source. Second, time lag among peers should be small enough so that
all peers receive the stream ‘almost’ at the same time. Owing to the synchronization with the
source, late chunks are skipped and peers always expect to receive chunks of future playback
segments (after the current playback point). This is the key different from on-demand streaming.
In on-demand P2P streaming, users can watch a video whenever they want, i.e., there is no
synchronization among peers and with the source. Consequently, large time lags among peers
are possible. Peers usually wait to receive every chunk. If the playback buffer is empty, the
player is stopped and runs again when expected chunks arrive. Table 2.1 lists main differences
between live P2P streaming and on-demand P2P streaming.

18 CHAPTER 2. BACKGROUND

Table 2.1: Differences between live P2P streaming and on-demand P2P streaming.
Live On-Demand

Content Availability Online (the source does not have the Offline (the whole content
whole content before streaming) is already there)

Playback Synchronization High No
Late Chunks Discarded Played back
Buffer Size Small (seconds) Large (minutes)

2.3 Network Coding

NC has been originally proposed in information theory [14], and has since emerged as one of
the most promising information theoretic approaches to improve performance in P2P networks.
With NC, instead of simply forwarding data, nodes may recombine several input packets into
one or several output packets. It has been demonstrated in both theory and practice that allowing
coding at intermediate nodes can effectively improve the throughput of multicast communica-
tion sessions in directed acyclic graphs. To understand the mechanism and benefits of NC, we
present a typical example of NC, the ‘butterfly’ network, described in [31].

Assume that we want to send two data bits b1 and b2 from the source S to both the nodes
E and F in the network depicted by Figure 2.6(b), and the bandwidth of each link is 1 bit/sec-
ond. The delivery process is described in Figure 2.6(a) for the traditional relay network with
the number on a link denoting the time the transmission on that link occurs. As observed in
Figure 2.6(a), it takes 5 seconds to send both b1 and b2 to E and F: in the 1st second, S sends
b1 to A, and b2 to B; in the 2nd second A sends b1 to C and E while B sends b2 to C and F;
and so on. Since the link between C and D is the bottleneck, only one bit can be sent at once
in the 3rd and 4th second. Now, with NC, instead of simply forwarding b1 and b2 outward, C
calculates b1

⊕
b2 and sends the result (only 1 bit) to the link CD. After that, D sends b1

⊕
b2 to E and F in the 4th second. When receiving b1

⊕
b2, E and F solve the linear equations to

get b1, and b2 because they already have one of the values. The delivery with NC is illustrated
in Figure 2.6(b), which demonstrates that using NC, the time is saved by 1 second, i.e., the
bandwidth on the link CD is saved. By sending coded data through communication links and
decoding them at nodes, NC transfers bandwidth consumption to CPU consumption. Since the
CPU power increases much faster than the bandwidth capacity does, NC improves performance
in terms of bandwidth utilization.

Theoretically, any coding schemes can be used by intermediate nodes to encode received data.
However, it has been shown that random linear codes, one of the simplest coding schemes, using
Galois fields of a limited size are sufficient to implement network coding in a practical network
setting [12, 32]. The idea of randomized network coding, proposed by Ho et al. [32], is that a

2.4. SCALABLE VIDEO CODING 19

S

A B

C

D

E F

b1

b1

b1

b1

b2

b2

b2 b1

b2

1

2

1

2

2 2

b2
3

4
4

5

S

A B

C

D

E F

b1

b1

b1

b2

b2

b1

1

2

1

2

2 2

b23

44

+ b2

b1 + b2

(a) Relay Network (b) Network Coding.

Figure 2.6: Traditional Relay Vs. Network Coding.

node transmits on each outgoing link a linear combination of incoming messages, with indepen-
dently and randomly chosen coding coefficients over some finite field. The practicability of the
coding scheme is demonstrated in [33]. The authors have concluded that randomized network
coding can be designed to be “robust to random packet loss, delay, as well as any changes in
network topology and capacity”. It was shown that sessions with randomized network coding
can achieve “close to the theoretically optimal performance”.

2.4 Scalable Video Coding

The term “Scalable Video Coding” (or SVC) is used for both the concept of scalable coding
schemes in general and the particular new scalable design that has been standardized as an
extension of the H.264/AVC standard. In this dissertation, SVC is mainly used for the new
standard while the general concept is referred to as layered coding or scalable video coding
(without capitalization).

The concept of layered coding is that a video is encoded into different quality layers. The
base layer (Layer 0) is the most important one as it is required to decode other layers. Other
layers are enhancement layers as they provide better quality, i.e., the more layers, the higher
quality. There is also coding dependency among enhancement layers. Usually, higher lay-
ers depends on lower ones for decoding. An alternative of scalable video coding is multiple
description coding (MDC) [34, 35]. In MDC, a video is encoded into different descriptions.
Different from layers in layered coding, descriptions in MDC are coding independent, which
means that each description can be decoded independently. The most common implementation
of MDC generates two equal rate descriptions so that each description alone provides low but
acceptable quality and both descriptions together lead to higher quality. Although MDC offers
independent descriptions, it is not efficient in coding compared to single layer coding, and does

20 CHAPTER 2. BACKGROUND

not provide different scalability modes as in layered coding. In addition, for the same video
quality, MDC often generates higher bit rate streams than SVC does.

In the following, the structure and the scalability features of SVC are presented. For more
details, interested readers are referred to [9, 36, 37, 8].

2.4.1 Scalability Modes

SVC supports three modes of scalability: temporal, spatial, and quality scalability. In spatial
scalability and temporal scalability, subsets of the bit stream represent the source content with a
reduced picture size (spatial resolution) or frame rate (temporal resolution). With quality scal-
ability, the substream provides the same spatial-temporal resolution as the complete bit stream,
but with a lower fidelity (Signal-to-Noise Ratio). The scalability structure is characterized by
three syntax elements: D_ID, T_ID, and Q_ID for spatial, temporal, and quality scalabil-
ity respectively. Different scalability dimensions can be combined in one stream. However, an
SVC bit stream does not need to provide all types of scalability. Since the support of quality and
spatial scalability usually comes with a loss in coding efficiency relative to single-layer coding,
the tradeoff between coding efficiency and the provided degree of scalability can be adjusted
according to the needs of an application.

In addition to different (combined) scalability dimensions, SVC defines coding profiles for
high level uses. Profiles and levels specify conformance points to facilitate interoperability
between applications that have similar functional requirements. A profile defines a set of coding
tools that can be used to generate a bit stream, whereas a level specifies constraints on certain
key parameters of the bit stream. The SVC Amendment of H.264/AVC specifies three profiles
for SVC [8]: Scalable Baseline, Scalable High, and Scalable High Intra. The Scalable Baseline
profile is mainly intended for conversational and surveillance applications that require a low
decoding complexity. In this profile, the support for spatial scalable coding is restricted to
resolution ratios of 1.5 and 2 between successive spatial layers in both horizontal and vertical
direction and to macroblock-aligned cropping. Furthermore, the coding tools for interlaced
sources are not included in this profile. For the Scalable High profile, which was designed
for broadcast, streaming, and storage applications, these restrictions are removed and spatial
scalable coding with arbitrary resolution ratios and cropping parameters is supported. Quality
and temporal scalable coding are supported without any restriction in both the Scalable Baseline
and the Scalable High profile. Bit streams conforming to the Scalable Baseline and Scalable
High profile contain a base layer bit stream that conforms to the restricted Baseline profile and
the High profile of H.264/AVC, respectively. Bit streams conforming to the Scalable High Intra-
profile, which was mainly designed for professional applications, contain only IDR pictures (for

2.4. SCALABLE VIDEO CODING 21

all layers). Beside that, the same set of coding tools as for the Scalable High profile is supported
[9].

2.4.2 SVC Structure

An SVC video is organized into Network Abstraction Layer (NAL) units, which are packets that
each contains an integer number of bytes. NAL units are grouped into logical entities. A layer

representation (LR) consists of all NAL units representing an original picture and pertaining
to a combination of D_ID and Q_ID. An access unit (AU) consists of all LRs that represent
an original picture. The decoding of an AU results in exactly one decoded picture. A group

of pictures (GOP) is a group of successive pictures. The GOP structure specified by picture
types (I-, B-, P- pictures) determines the temporal scalability of the stream. A coded video

sequence represents an independently decodable part of a NAL unit bit stream. It starts with an
instantaneous decoding refresh (IDR) AU, and following AUs can be decoded without decoding
any previous pictures of the bit stream. It ends before the next IDR AU or at the end of the bit
stream, whichever is earlier. Fig. 2.7 shows the structure.

��������	��
����
�	��
���

��������	��
����
�	��
���

��������	��
����
�	��
���

��������	��
����
�	��
���

���

�����������������

�� ������ ���� �� �� ��

���

	�� � !� � !�"

###

	�� � !�

###

$���%�%�&�%�����'��(��

���

$)
�
$)
�
$)
�
$)
*
$)
+
$)
,
$)
-
$)
.
$)
/

###

� * � + � - , . �

Figure 2.7: An example of the SVC structure. (a) An AU consisting of four LRs. (b) A GOP
consisting of eight pictures (AUs) and coded with hierarchical B-pictures. The symbols Tk
specify the temporal layers with k representing the corresponding T_ID. The numbers below
specify the coding order. (c) A coded video sequence.

2.4.3 Decoding Dependency

At any AU, an LR of a smaller D_ID may be used for inter-layer prediction by an LR with a
greaterD_ID, and for a particularD_ID, an LRwithQ_ID always uses the LRwithQ_ID−1

for inter-layer prediction. An LR is called an MGS (Medium Granularity Scalability) LR if its

22 CHAPTER 2. BACKGROUND

Q_ID is greater than 0. For the target dependency layer for output, the maximum value of
Q_ID may freely change across AUs without affecting the conformance of the stream. How-
ever, removal of MGS LR usually causes a drift between the decoded pictures reconstructed in
the encoder and in the decoder. Finally, a given T_ID typically depends on the lower T_ID

but never depends on any higher TID. An example of scalability features of SVC is presented
in Table 2.2.

Table 2.2: An example about the scalability structure of an SVC stream.
Scalable Layer Resolution Framerate Bitrate (D_ID,T_ID,Q_ID)

0 176x144 3.7500 106.00 (0,0,0)
1 176x144 3.7500 206.00 (0,0,1)
2 176x144 3.7500 341.00 (0,0,2)
3 176x144 7.5000 430.00 (0,1,0)
4 176x144 7.5000 454.00 (0,1,1)
5 176x144 7.5000 508.00 (0,1,2)
6 176x144 15.0000 594.00 (0,2,0)
7 176x144 15.0000 631.00 (0,2,1)
8 176x144 15.0000 721.00 (0,2,2)
9 352x288 3.7500 666.00 (1,0,0)
10 352x288 3.7500 1010.00 (1,0,1)
11 352x288 7.5000 1364.00 (1,1,0)
12 352x288 7.5000 1454.00 (1,1,1)
13 352x288 15.0000 1838.00 (1,2,0)
14 352x288 15.0000 1963.00 (1,2,1)

The stream described in Table 2.2 has 3 quality levels, 3 temporal levels, and 2 spacial
levels. With the combined scalability, it offers a wide range of scalability. The base layer
produces a video stream with a resolution of 176x144, a framerate of 3.75 frame/second, and a
bitrate of 106 Kbit/second; and the complete stream has a resolution of 352x288, a framerate of
15 frame/second, and a bitrate of 1963 Kbit/second. The scalable layer determines the coding
dependencies of the streaming. Generally, higher scalable layers depend on lower scalable
layers for decoding. Going through the table from Layer 0 to Layer 14, we can examine the
coding dependency rules defined by the SVC standard.

2.4.4 BitStream Switching

SVC allows switching between different scalable levels during streaming to provide adaptabil-
ity. However, switching operations can only occur at specific points of a stream:

� Switching between spatial layers can only occur at IDR AUs.

� Switching between quality layers within a spatial layer can occur at any AU.

2.5. SOCIAL NETWORKING 23

� Switching between temporal layers within a spatial layer can occur at any AU or only at
temporal layer switching points depending on encoding parameters.

With flexible switching capacity, SVC enables adaptation along the dimensions. However,
when using them exclusively, no conclusion can be drawn on which adaptation path along
multiple scalability dimensions is subjectively most pleasing. The encoder of the stream may
have knowledge about this property and specify a recommended adaptation path through the
Priority_ID syntax element, which is assigned per NAL unit. It should be noted that no as-
sumption on a relation between Priority_ID and the values of D_ID, Q_ID, or T_ID is
explicitly made in the SVC standard.

2.5 Social Networking

The notion of a social network and the methods of social network analysis have attracted con-
siderable interest from the social and behavioral science community in recent decades. A simple
definition of a social network is that it is a network in which social entities are considered as
nodes, and social relationships are considered as links. Social network analysis focuses on rela-
tionships among social entities, and on the patterns and implications of these relationships, not
on individuals and their attributes. Many researchers have realized that the network perspec-
tive allows new approaches to answer standard social and behavioral science research questions
by giving a precise formal definition to aspects of the political, economic, or social structural
environment. Social network data are defined by social entities and relations. They can be
represented by matrices or graphs. With the matrix representation, the value at element (i,j)
represents relationships between i and j, e.g., if M(i, j) = 1, i has a relationship with j. In
the graph representation, a vertex is an entity, and an edge represents for a relationship. Such
representations are compact, systematic, and allow applying computers to analyze data.

For example, consider a social network of a group of four people: Bob, Carol, Ted, and
Alice. Suppose that Bob likes Carol and Ted, but not Alice; Carol likes Ted, but neither Bob
nor Alice; Ted likes all three of the other members of the group; and Alice only likes Ted. This
social network can be represented by a matrix in Table 2.3 or by a graph in Figure 2.8.

Table 2.3: The matrix representation of the example social network.
Bob Carol Ted Alice

Bob — 1 1 0
Carol 0 — 1 0
Ted 1 1 — 1
Alice 0 0 1 —

24 CHAPTER 2. BACKGROUND

With the matrix representation in Table 2.3, there are many things that might be immediately
inferred when we see the arrayed data that we might not have thought of from reading the
description of the pattern of ties in words. For example, scanning across each row, we notice
that Ted likes more people than Bob, than Alice and Carol. Is it possible that there is a pattern

here? Are men more likely to report ties of liking than women are? (actually, research literature
suggests that this is not generally true). In addition, it should be noted that the values on the
main diagonal are set based on the definition of the relationship, e.g., if we need to consider
whether Bob likes himself, the value at (Bob, Bob) is set to 0 or 1, otherwise it is empty.
Such self-relationships may not be clearly revealed when we describe relationships in words or
graphs.

Graphs that represent social network data are called “sociograms” or “social graphs”. View-
ing a social network in such a graph with nodes and links allows us to apply graph theory to ex-
tract useful information, e.g., clusters, in-degree and out-degree of nodes, average path length,
diameter, etc. For example, if we change the “liking” relationship in our example to “know-
about” relationship, we will know that Ted is most famous in the network because everyone
knows about him and he knows everyone. Consequently, if Carol wants to know about Bob, she
should ask Ted.

Bob Alice

Ted Carol

Figure 2.8: The graph representation of the example social network.

Chapter 3

Literature Review

P2P streaming has been extensively studied over the last decade. P2P-based streaming software,
e.g., PPLive [3], Coolstreaming [4], UUSee [6], SopCast [38], TV Ants [5], is serving millions
of users to watch streamed media. The success of existing P2P streaming systems demon-
strates the possibility of streaming video over the Internet. However, as the number of users
significantly increases and the user expectation about streaming quality gets higher and higher,
providing satisfactory P2P streaming services becomes more and more challenging. This chap-
ter summarizes related studies and discusses differences between this research work and the
literature. The main goal is to provide a big picture of research in P2P live video streaming and
to emphasize the contributions of this work. In this chapter, first, a taxonomy of P2P streaming
systems is presented. Second, notable studies are summarized and discussed. Finally, pioneer-
ing work in applying network coding, SVC, and social networking to P2P systems in general
and to P2P streaming systems in particular is described.

3.1 Taxonomy of P2P Streaming

P2P streaming systems can be classified based on their overlay construction or on their stream-
ing behavior. Since the overlay determines the data delivery process, different overlay structures
often go with different streaming algorithms. Therefore, a P2P streaming protocol, including
overlay construction and streaming algorithm, can be classified by its overlay structure. An
overlay-based taxonomy is depicted in Figure 3.1.

In general, in structured P2P streaming systems, the overlay has a rigid structure, which is
built and maintained strictly during the streaming session. Since the structure of the overlay
is fixed, the data flow is deterministic. For example, in tree-based overlays, video packets are
distributed from the root to the leaves of a tree. The most popular overlay structure in structured
P2P streaming is tree-based structure, in which, peers are organized into one tree or multiple

26 CHAPTER 3. LITERATURE REVIEW

P2P Overlay

Structured Unstructured

Tree-based DHT-based &
others

Single Tree Multi Tree

Hybrid

Tracker-based Gossip-based

Figure 3.1: Overlay-based taxonomy of P2P streaming systems.

trees to receive video packets. Besides, DHT-based (Distributed Hash Table) algorithms can be
used to construct structured overlays. On the other hand, unstructured P2P streaming systems
do not maintain fixed overlays. Peers can frequently change their connections with other peers
depending on the data availability. Each peer has a list of other peers, called neighbors. Peers
exchange data availability information with their neighbors and connect to those which have
packets that they need. To deal with peer dynamics, the neighbor list at each peer needs to be
updated frequently to find better neighbors. To know about other available peers in the system
for such updates, peers can request a tracker (tracker-based unstructured P2P streaming) or run
a gossip-based membership management protocol (gossip-based unstructured P2P streaming).

The other way to classify P2P streaming systems is based on their streaming behavior with
respect to adaptability. We consider that traditional P2P streaming systems are those which
use single-layer video coding techniques and provide the same quality to all users regardless of
their available bandwidth. On the other hand, adaptive P2P streaming systems encode a video
into different quality levels and can offer differentiated QoS in terms of video quality to their
users. Several video coding techniques can be used to create (sub-)streams with different qual-
ity levels for a video. In multiple version approaches, a raw video is encoded several times to
create different independent versions with different quality levels. Multiple Description Coding
(MDC) encodes a video into different descriptions. Each description is playable and provides
a basic quality. The overall quality at each peer increases with the number of descriptions it
receives. Scalable (layered) coding techniques encodes a video into different layers. The base
layer provides the lowest (basic) quality level. The more layers a peer receives, the better qual-
ity it perceives. However, different from MDC, there are coding dependencies among layers.
Higher layers depend on lower layers for decoding. Therefore, the base layer is the most impor-
tant one as it is required to decode other layers. The classification is summarized in Figure 3.2.

3.2. TRADITIONAL P2P STREAMING SYSTEMS 27

P2P Streaming

Unadaptive Adaptive

Multi-Versions Multi-Description Layered Coding

Figure 3.2: Adaptability-based taxonomy of P2P streaming systems.

3.2 Traditional P2P Streaming Systems

Without the P2P paradigm, a server broadcasts the content to all participating clients. However,
as the number of users increases, the server may become overloaded, resulting in high loss
rates, i.e., the client-server model is not scalable for large-scale video streaming. To alleviate
the bandwidth demand on the server, the P2P principle is exploited.

Tree-based P2P streaming systems are firstly introduced. Jannotti et. al. introduce Overcast,
a pioneering system of application-level multicast [39]. Overcast uses a single-tree overlay to
distribute the content. One disadvantage of single-tree overlays is that the leaf peers only receive
the content, i.e., the upload capacity of the leaf peers is not utilized. To better utilize peer
upload capacity, Mutualcast [40] encodes the content into multiple stripes and distributes the
stripes across separate multicast trees with disjoint interior peers. Any peer could be an interior
node in one of the multicast trees, and contribute its upload capacity. Despite the advantages
of push-based approaches in fast data delivery, constructing and maintaining a well-organized
distribution tree burdens peers and links with heavy control overhead, especially in a dynamic
environment, as demonstrated by SpreadIt [41]. To relieve the burden of control overhead in the
multicast trees to a certain degree, NICE [42] and ZIGZAG [43] manage peers as multi-layer
hierarchical clusters, i.e., a tree of clusters. These approaches show improvements in overlay
management overhead, but still the overhead is unavoidable. In a nutshell, although the push-
based approaches lead to short delays in distributing the content, it is not generally employed
in practice, mainly due to the complexity and difficulty in maintaining the structured overlay,
especially under the presence of peer dynamics.

In sharp contrast to the push-based approaches, the pull-based, also known as mesh-based,
approaches do not enforce any rigid structure among peers. Instead, connections are established
dynamically based on the content availability at each peer. The streaming content is presented
as a series of segments, each representing a short duration of playback. The content exchange
in this approach is best described as a “data-driven” or “swarming” style of multicast. In data
swarming, each peer advertises to its neighbors the segment availability in its buffer, and the
neighbors explicitly request the segments as needed. The primary advantages here are simplic-

28 CHAPTER 3. LITERATURE REVIEW

ity in maintaining peer connectivities and robustness in dynamic networks. Nonetheless, the
delay in delivering the live content to each participating peer is inevitably increased, ascribed
to the periodical exchange of segment availability among the peers. Bullet [44], for example,
constructs a mesh on top of a multicast tree to improve overall bandwidth utilization. The un-
derlying tree structure provides an environment for periodic dissemination of peer identifiers
and content availability. CoolStreaming [4] completely abandons the tree structure and em-
ploys a gossiping protocol for peer discovery. A peer in CoolStreaming maintains not only
a list of neighboring peers, but also a summary of available content on its neighbors. Based
on this information, segments are scheduled to be streamed from the appropriate neighbors,
while striving to meet the playback time. The performance of pull-based approaches highly de-
pends on the choice of peer discovery protocols and data swarming strategies. Hybrid designs
[45, 46, 47, 48, 49] are proposed to combine the better resilience to dynamics from pull-based
approaches with the better delay and stability from push-based approaches. Essentially, the
connections are initialized based on the content availability at each peer, and then portions of
the original content are pushed onto each connection.

Discussion: Among others, these notable studies have contributed to the success of working
P2P streaming systems nowadays. However, they have the common problem of unadaptability
to user heterogeneity, as presented in Chapter 1. In addition, although significant efforts have
been spent on dealing with high churn rates, it is still one of the most challenging problems
in P2P streaming. Different from those studies, this work towards adaptive and robust P2P
streaming systems, which can provide best possible streaming quality to users according to
their bandwidth under network fluctuations and high churn rates.

3.3 Adaptive P2P Streaming

Recognizing that the weaknesses of traditional P2P streaming systems is the lack of unadapt-
ability, people have turned their attention to adaptive P2P streaming.

Orchard [50], SplitStream [51], and CoopNet [52] use multiple-tree overlays and multiple
description coding (MDC) to provide robust and adaptive P2P streaming services. The general
idea is that each video description is delivered over one tree, and peers can receive more than one
description by being a node of more than one tree. With MDC, any description is decodable and
the overall quality improves with the number of descriptions received. Thanks to this feature of
MDC, these systems can better deal with peer dynamics and user heterogeneity, compared to
traditional P2P streaming systems.

In layered P2P streaming, the work of Cui et al. [53] and Rejaie et al. [54] can be considered
as the two first major efforts. In [53], Cui et al. formulate the problem of bandwidth and

3.3. ADAPTIVE P2P STREAMING 29

data availability constraints as an optimization problem to maximize the net benefit which is
defined by system benefit – the overall streaming quality of all peers – excluding system cost
and the server bandwidth consumption. They use global knowledge about participating peers
and a greedy approach, in which a receiving peer requests individual layers from supplying
peers so that it always maximally utilizes the outbound bandwidth of the peer with the smallest
number of layers. Although the algorithm is shown to be able to address the constraints of
bandwidth and data availability, this work did not take dynamics of bandwidth variations into
account. Later, Liu et al. [55] present another approach to the problem. They formulate it
as an optimization problem with the constraints of available bandwidth and layers, and use an
approximation algorithm, FABALAM, to simplify the problem. Although FABALAM has been
demonstrated to be able to achieve better performance than the approach of Cui et al., they both
rely on static layer-to-sender mapping, and a layer is provided by only one sender.

Rejaie and Ortega introduce PALS [54], a receiver-driven approach for quality adaptive
playback, which addresses the bandwidth variations in a timely manner. In PALS, a layer is
divided into packets and provided by multiple senders. Therefore, it better utilizes the available
bandwidth of senders. In addition, PALS addresses bandwidth variations and peer dynamics
in a timely manner. The receiver peer monitors the available bandwidth from its senders and
periodically requests a list of packets from each sender, and each sender delivers the requested
packets to the receiver in the given order over a congestion-controlled connection. Each peer is
able to adapt to bandwidth variations by adding another layer or dropping the current top one.
Recently, Magharei and Rejaie present an extended version of PALS with extensive simulations
in ns-2 [56]. However, although PALS is designed to P2P streaming, its performance has only
been currently evaluated for the case of streaming from multiple senders to one receiver. Its
performance in P2P scenarios has not yet been shown.

The authors of [57] propose an adaptive streaming mechanism which is based on an efficient
LC content scheduling scheme to coordinate among receiver and sender peers. Sender peers are
selected on the basis of RTT in their work. Then, all the senders are sorted by RTT. The sender
with the minimum RTT to the receiver is assigned to deliver the base layer while enhancement
layers are assigned to the sender peers in the increasing order of RTT. They also introduce buffer
management to (1) control lost packets and re-request them using ARQ (Automatic Repeat
Request); (2) drop higher layer packets when lost packets of a layer cannot arrive on time.

Discussion: Compared to the above initial work in adaptive P2P streaming, this thesis is
different in the following aspects. Some of the related work uses tree-based overlays, while
this thesis targets mesh-based systems. Existing unstructured adaptive P2P streaming studies
do not propose a complete P2P streaming protocol, while this thesis considers different aspects
of adaptive P2P streaming from overlay construction to quality adaptation. In addition, no

30 CHAPTER 3. LITERATURE REVIEW

previous studies use a specific video coding technique, while the SVC standard is considered in
this work. This does not limit the application of the proposed protocols in practice, but actually,
makes them more practical as the SVC is the only scalable video coding standard available.

3.4 Overlay Construction in P2P Streaming Systems

Overlay construction is an important component in a P2P streaming system. By summarizing
P2P streaming protocols, Sections 3.2 and 3.3 briefly describe different overlay construction
mechanisms (structured overlays including single-tree, multi-tree, and unstructured overlays),
and how they are used to distribute multimedia contents. This section goes into detail on how
such overlays are constructed in the literature.

The tree-based approaches are stemmed from the philosophy of IP multicast. In such a
paradigm, peers are organized into one or more multicast trees rooted at the source. The source
splits the original content into a set of small data pieces and “pushes” them to descendants
among the trees. Due to bandwidth limitations, usually a subset of the data pieces can be
transmitted between peers; hence, a receiver rarely receives the entire content from the same
parent. The single tree building protocol in Overcast is a basic protocol [39], and is summarized
as follows: when a new node contacts the root to join the network, the root becomes the current
node. Next, the new node begins a series of rounds to locate itself further away from the
root without sacrificing bandwidth back to the root. In each round, the new node considers its
bandwidth to the current node as well as the bandwidth to the current node through each of
the current node’s children. If the bandwidth through any of the children is about as high as
the direct bandwidth to the current node, then one of these children becomes the current node
and a new round begins. In the case of multiple suitable children, the child closest (in terms of
network hops) to the new node is chosen. If no child is suitable, the search ends with the current
node being the parent of the new node.

The construction of one tree in multiple tree overlays is similar to the above single tree
construction in the way that a new node is placed such that the bandwidth bottleneck from the
root node to leaf nodes of the tree is minimized. The main difference between constructing a
single-tree overlay and a multi-tree one is that a multi-tree construction method selects which
tree should contain the new node and creates connections between the new node and other nodes
in other trees. Magharei et. al. summarize a representative multiple tree construction algorithm
as follows [58]: each peer is an internal node in only one tree and leaf node in other participating
trees. When a peer joins the systems, it contacts a rendezvous node to identify a parent in the
desired number of trees. To keep the balance among trees, the new node is added as an internal
node to the tree that currently has the minimum number of internal nodes. To maintain short

3.4. OVERLAY CONSTRUCTION IN P2P STREAMING SYSTEMS 31

trees for faster delivery, the new internal node is placed as a child for the node with the lowest
depth that can accommodate a new child or has a child that is a leaf. In the latter case, the new
node replaces the leaf node and the partitioned leaf should rejoin the tree similar to a new leaf.
When an internal node of a tree leaves, each one of its child nodes as well as their subtree are
partitioned from the original tree, and should rejoin the tree. Nodes in such a partitioned subtree
initially wait for the root of the subtree to rejoin as an internal node. If the root is unable to join
the subtree after a certain period of time, individual peers in a partitioned subtree independently
rejoin the tree with the same position (as leaf or internal node).

Magharei et. al. [58] and Seibert et. al. [59] present comparisons of the two kinds of over-
lays and demonstrate that mesh-based approaches consistently exhibit a superior performance
over tree-based approaches in dynamic environments, while, in stable environments, tree-based
systems are better in terms of delivery time. Due to the advantages of unstructured overlays,
this thesis only considers unstructured P2P streaming protocols.

An unstructured overlay is built by a membership management method, run at each peer
independently from other peers, and peers can change their connections frequently to achieve
better quality. The main function of membership management at each peer in unstructured
overlays is to select neighbors with which that peer exchanges data. It is the membership man-
agement which sets up the local view of each peer to the system and directly affects the video
quality each peer receives. SCAMP [60] is a well-known gossip-based membership manage-
ment protocol. The mechanism of SCAMP is as follows: when a new peer P joins the network,
it sends a subscription request to an arbitrary peer. P starts its membership management pro-
tocol with the neighbor list containing only the identifier of that arbitrary peer. When a peer
receives a new subscription request, it forwards the new node identifier to all of its neighbors. It
also creates c additional copies of the new subscription and forwards them to randomly chosen
neighbors (for failure tolerance). When a peer receives a forwarded subscription, it adds the
new peer to its neighbor list with a probability p depending on the current size of the neighbor
list. If it does not add the new peer, it forwards the subscription to a randomly chosen neighbor.
Those subscriptions are only destroyed until some peers keep them. Each peer also runs a peri-
odic check to avoid being isolated. If a peer does not receive any messages for a given period,
it resubscribes through a randomly chosen neighbor or a rendezvous peer. Such membership
management offers a randomized and scalable partial view of the system at each peer, which is
robust to peer dynamics.

Jelasity et. al. [61] propose a framework to implement peer sampling services, which are
also based on gossiping. Different from SCAMP, the idea here is that a peer chooses one of
its neighbors to exchange views. After the view exchange, both peers know more peers in
the system for updating their view. The authors demonstrate that such peer sampling services

32 CHAPTER 3. LITERATURE REVIEW

construct more scalable and robust overlays than SCAMP-based protocols. In addition, since
explicit attempts are made towards the construction of an overlay in SCAMP, peer sampling
services are less expensive in terms of bandwidth cost as fewer requests are sent in the network.
However, the current peer sampling services are not quality-aware as they do not take peer
capacity into account when choosing neighbors.

As one of the first efforts on constructing mesh-based overlays for layered P2P streaming,
Zhao et al. proposed LION [62], a layered overlay multicast system. LION progressively orga-
nizes peers into layered meshes. Within each mesh, the delivery of one quality layer is carried
out. Each peer can subscribe to a proper number of meshes to maximize its throughput by fully
utilizing its available bandwidth. Although each video layer is delivered in a mesh which is
unstructured, the whole overlay structure of LION is quite well-organized and maintained by
a distributed heuristic algorithm. LION aims at supporting small-scale applications in stable
environments.

There has been work tailoring SCAMP for layered P2P streaming. Xiao et. al. propose
OCals [63], which constructs the overlay in two stages. The first stage, SCAMP-based, is to
probe existing nodes to find a certain number of logical partners, which are interested in the
same set of layers. In the second stage, it will select neighbors for each layer based on the RTT.

The authors in [64, 65] present the idea of gradient overlays, which locate higher capacity
peers closer to the source than lower capacity peers. Generally, such overlays have some similar
features with our proposed quality-aware overlays. However, there are several main differences
between them. The work of Sacha et. al. [64] is not targeted to P2P streaming applications. It
elects super-peers with highest utility to discover globally similar neighbors while lower utility
peers have mostly random neighbors. The election method is unaffordable for P2P streaming
with the strict timing requirement. Payberah et. al. present gradienTv [65] using gradient
overlays for live P2P streaming. GradienTv is a multiple tree based system for single-layer
P2P streaming as the media source splits the media into a number of stripes and constructs an
overlay tree for each stripe. The proposed protocols are designed for unstructured layered P2P
streaming. In addition, GradienTv constructs the gradient overlay by using two neighbor lists –
random view and similar view – and tries to maintain the tree structure for all peers, while, in
our protocol, peers locate themselves in different locations by exchanging their local view.

Discussion: While overlay construction in traditional P2P streaming systems has been stud-
ied extensively, constructing overlays suitable for layered P2P streaming has not been paid
much attention. Existing tree-based overlays for adaptive P2P streaming are not scalable for
large scale systems, while there is a limited number of studies on unstructured ones. Towards
high performance adaptive P2P streaming, this thesis also proposes efficient unstructured over-
lays which are specific for layered P2P streaming.

3.5. NETWORK CODING IN P2P SYSTEMS 33

3.5 Network Coding in P2P Systems

The first application of NC in P2P systems is in P2P file sharing applications. In a large P2P file
sharing system, finding an optimal packet propagation scheme that minimizes the peer down-
load time is very difficult; especially, practical systems can not rely on a central scheduler and,
instead, allow peers to make local decisions. The scheduling problem becomes increasingly
difficult as the number of peers increases, when peers are at different stages in their downloads,
or when incentive mechanisms are introduced to prevent leeching clients. One pioneering work
on applying NC in P2P systems is the Avalanche project of Microsoft Research [66, 67]. Its
authors demonstrate, in both simulation studies and realistic experiments, that randomized net-
work coding may improve the overall performance of P2P content distribution. The idea is that
every time a peer sends a packet to another peer, the source peer generates and sends a linear
combination of all the packets available to it (similarly to XORing multiple packets). After a
peer receives enough linearly independent combinations of packets, it can reconstruct the orig-
inal information. With randomized NC, when the probability of receiving innovative coded
packets is high, peers do not need to explicitly schedule when and where to receive coded pack-
ets. Whenever a peer receives enough linearly independent coded packets, it can decode and get
the original data. The NC-based P2P file sharing scheme has been compared with BitTorrent
[68], one of the most successful P2P content distribution protocols, and the claimed perfor-
mance benefits provided by network coding are: “the expected file download time improves by
more than 20 − 30% with network coding compared to coding at the server only and, by more
than 2 − 3 times compared to sending unencoded information” [66]. Other related work also
demonstrates significant benefits of NC in P2P file-sharing networks [69, 70].

Annapureddy et al. [71] show that network coding helps to provide high quality Video-on-
Demand (VoD) services. Network coding is applied over small time-windows (e.g., a segment
with a few seconds worth of video frames) of a single-layer stream. The coding prevents the
occurrence of rare blocks within a segment. In addition, it ensures that bandwidth is not wasted
in distributing the same block multiple times, i.e., it minimizes the risk of making incorrect
upload decisions.

In single layer P2P live streaming, Wang and Li present Lava [72], the first fair evaluation
on the feasibility and effectiveness of random network coding in live P2P streaming sessions,
with strict timing and bandwidth requirements. While a traditional P2P streaming protocol
sends original segments, they implement a “plug-in” to do random network coding on blocks of
each segment before sending them to other peers and to decode received coded blocks on-the-
fly. They discover that NC provides some marginal benefits when peers are volatile with their
arrivals and departures, and when the overall bandwidth supply barely exceeds the demand.
While Lava focuses on a fair comparison study without any changes of the P2P streaming pro-

34 CHAPTER 3. LITERATURE REVIEW

tocol, in their follow-up work, Wang and Li redesign the whole P2P streaming protocol to take
full advantage of NC. Their new NC-based P2P streaming protocol, R2, is considered as the
current state-of-the-art in applying NC to live P2P streaming. In R2, random network coding
is used as follows: the live stream is divided into segments. This step is similar to traditional
P2P streaming protocols. Each segment is then further divided into n blocks [b1, b2, ..., bn], each
bi has a fixed number of bytes k (referred to as the block size). When a peer needs to send
out a coded block, it applies NC on a certain number of blocks of a particular segment it has
received so far. In R2, NC is used for each segment separately, not across different segments.
For example, when a segment is selected to serve for a peer p, the sender independently and
randomly chooses a set of coding coefficients [cp

1, c
p
2, ..., c

p
m], (m ≤ n) in GF(28). It then ran-

domly chooses m blocks – [bp
1, b

p
1, ..., b

p
m] – out of all the blocks in the selected segment that it

has received so far (all the original blocks in the segment if the seed is a streaming server), and
produces one coded block x of k bytes:

x =

m∑
i=1

cp
i · b

p
i

With Gauss-Jordan elimination implemented in the decoding process, a peer starts to progres-
sively decode a packet, as soon as it receives the first coded block of the segment. When a
total of n linearly independent coded blocks X = [x1, x2, ..., xn] have been received, the orig-
inal blocks can be immediately recovered as Gauss-Jordan elimination computes b = A−1XT ,
where A is the matrix formed by coding coefficients ofX . In addition to the use of NC, another
important design point of R2 is the random push mechanism. In a traditional pull-based proto-
col, a segment is explicitly requested by a peer p. The sender then serves the request by sending
the segment. To better take advantage of random network coding, in R2, the sender randomly
chooses a segment whenever it produces one coded block, among all remaining segments that p
has not completely received. The coded block is then sent to p without the need of any requests.
Since all coded blocks are equally innovative, all senders of p cooperatively serve the missing
segments on p, without any explicit exchanges of protocol messages. This is referred to as
perfect collaboration. To meet the playback deadline, segments are chosen based on the play-
back buffer of p (available via buffer map exchanges): segments close to the playback deadline
have a higher priority in being selected. With random push and random network coding, R2 is
evaluated by experiments on an actual implementation, real network traffic, and emulated peer
upload capacities and demonstrates the feasibility and benefits of NC in live P2P streaming.

NC has also been used in adaptive P2P streaming. The general method is to use NC for
distribution of one video description or layer, e.g., in LION [62], where different coding engines
(different sets of coefficients) are used for different descriptions or layers.

Discussion: There has been work in applying NC to adaptive P2P streaming. However, the

3.6. SOCIAL NETWORKING IN P2P SYSTEMS 35

main difference between this thesis and state-of-the-art studies is that this thesis combines NC
with the particular scalability structure of the SVC standard.

3.6 Social Networking in P2P Systems

Generally, social networking can be applied to P2P systems in two ways. First, P2P systems
can mimic how people form a social network and how they query, by preference, their friends
or acquaintances to construct overlays. Such overlays achieve more efficient routing and data
locating. Following this approach, Lin et al. introduce SocioNet, a social-based multimedia ac-
cess system for unstructured P2P networks [20]. SocioNet describes objects (multimedia files)
using multiple attributes, and, in turn, characterizes peers by the objects they hold. For example,
a music file can have attributes about genre, artist, title, and language. Peers are characterized
by their profile, which is a weighted vector of preferences. Then, SocioNet clusters peers based
on their similar characteristics. The similarity estimation is calculated by the cosine similarity
measure. In addition, peers also maintain a certain number of connections to others with differ-
ent interests as “shortcuts” that connect them to other parts of the network. They show that such
social-based overlay construction creates small-world networks, and achieves a higher success
ratio than nonsocial-based overlays.

Second, P2P systems can import social graphs from other social networks, and establish
connections among peers based on their relationships within these social graphs. TRIBLER
[19] is such a system. It (1) facilitates the formation and maintenance of social networks by
importing existing user contacts from other social networks, e.g., MSN, and (2) exploits the
social networks to create connections among peers. Implemented as a set of extensions to
BitTorrent, TRIBLER has been demonstrated to be able achieve fast, trusted content discovery
and recommendation, and a significant improvement in download performance. More recently,
Liu et al. [21] present a new incentive paradigm, Networked Asynchronous Bilateral Trading
(NABT), based on social networking. The idea of NABT is that each peer has a set of friends,
which can be potentially derived from other social networks, and each pair of friends keeps track
of a credit balance between them. Credits can be used for ‘buying’ services, e.g. downloading
a file, and can be exchanged via friends-of-a-friend relations. Simulations show that NABT can
have high trading efficiency, provide service differentiation, and discourage free-riders.

Discussion: While the above social-based systems are designed for P2P file sharing, the
idea of establishing connections among peers based on social relationships can be used in other
P2P applications, including live P2P streaming. However, the existence of any existing designs
with respect to social P2P streaming has not been reported. To the best of our knowledge, Stir
(Chapter 6) is the first attempt using spontaneous social networking in P2P streaming.

36 CHAPTER 3. LITERATURE REVIEW

Chapter 4

Coding Approaches: Network Coding
Meets SVC in P2P Streaming

Convinced that SVC is the enabling coding scheme for adaptive streaming services and NC
could help exploit SVC in P2P streaming, we can begin by turning our attention to combination
of SVC and NC in P2P streaming. This chapter presents Chameleon, a novel adaptive P2P
streaming protocol with NC and SVC. The motivation of using NC with respect to technical
problems is presented in Section 4.1. In Section 4.2, a segmentation method for using SVC
with the P2P paradigm is described. The combination of NC with SVC is presented in Section
4.3. The design of Chameleon with different design options for its components is presented and
justified (with experiments) in Section 4.4. Section 4.5 analyzes simulation results to demon-
strate the feasibility and benefits of the combination in building up an adaptive P2P streaming
system.

4.1 Motivation for Using Network Coding

In addition to conventional challenges in P2P streaming, e.g., peer selection and packet schedul-
ing, layered P2P streaming poses unique and challenging problems, of which two of the most
important issues are peer coordination and quality adaptation.

With respect to peer coordination, the bandwidth and data availability of each peer are con-
strained and varied, which further limit the data availability (content bottleneck) and bandwidth
(bandwidth bottleneck) of downstream peers. Peer coordination is critical to the system perfor-
mance because it controls the collaboration of sending peers to utilize the available bandwidth
of each sender to maximize the delivered quality at the receiving peer. Two important questions
are:

38
CHAPTER 4. CODING APPROACHES: NETWORK CODINGMEETS SVC IN P2P

STREAMING

� Is a layer supplied by one or more than one sender? If a layer is delivered by only one
sender, coordination may be simpler, but the residual bandwidth of each peer may not
be fully utilized. In addition, when the sender leaves, the delivery process may have to
start from scratch. On the other hand, assigning partial layers to senders better utilizes
bandwidth but requires a proper division of a layer across multiple senders.

� How do we map packets to senders appropriately? Given an ordered list of required
packets and a list of potential senders, the problem is to determine which packets are to
be delivered from each sender. Taking bandwidth heterogeneity and different important
levels of packets into account, this problem was shown to be NP-hard [55].

The purpose of quality adaptation is to avoid playback skips and to maximize the video quality
when bandwidth variations occur. Challenges in quality adaptation are:

� How does a peer choose layers to be requested at a point of time? The selection should be
based not only on playback deadlines, but also on streaming quality (the number of layers)
the peer aims to achieve. For example, when bandwidth is available, the quality can be
increased by receiving more layers. On the other hand, when bandwidth is reduced, the
expected quality is decreased to maintain continuous playbacks.

� How and when is quality adaptation invoked? The quality adaptation process should be
invoked at reasonable moments to save resources and maintain best quality.

It is believed that NC can help to solve the above problems with ease. With NC, a peer only
needs to check if it has received a sufficient number of linearly independent coded blocks, with-
out being concerned with who has been sending them. The probability of receiving “duplicate”
blocks is so low that multiple senders can serve blocks to the same receiver without the need of
any explicit coordination. In addition, since coded blocks are equally useful to the receiver, the
responsibilities of a particular sender can be easily transferred to other senders if it leaves the
system. Even the computational complexity of network coding is no longer a concern: Wang
and Li [72] have implemented a decoding process using Gauss-Jordan elimination, such that it
can be performed while coded blocks are progressively received. Shojania et al. [73] propose
an implementation that efficiently takes advantage of multiple CPU cores and SIMD instruc-
tion sets in modern CPUs. In a nutshell, network coding can be efficiently implemented, and it
maximizes the collaboration potential among peers.

However, combining NC with SVC is not straightforward. SVC prioritizes video data to
provide different quality levels by allowing the extraction of substreams. Meanwhile, network
coding makes data packets equally important to ease the data delivery, and the original data
is only recovered when enough linearly independent blocks are received (the all-or-nothing
property). How do we combine network coding and SVC? How much can NC help?

4.2. PROPOSED SEGMENTATION METHOD 39

4.2 Proposed Segmentation Method

To be transmitted across IP networks, an SVC stream needs to be divided into segments. The
segmentation method should preserve the scalability of the stream so that (i) adaptation can
operate on segments (adaptability), and (ii) the re-generated stream is a valid stream (validity).
In an SVC video file, the video entities are arranged in the specific order: from one GOP to
another. Within a GOP, AUs are sorted on the decoding order; and within an AU, LRs are
sorted on (D_ID, Q_ID). Figure 4.1 depicts this order.

�������
���	���

�
�������
�������

���
��
���
���

�
����	��������������������

����
���

��
��

��
�

��
�

��
�

��
�

��
�

��

��
!

"#��� "#���

$$$

�

Figure 4.1: The store order of the entities in the video file

In P2P streaming, a peer does not receive a complete stream to extract valid substreams for
other peers; it, instead, receives only pieces of video data to constitute a stream according to its
download capacity. Therefore, to maintain the adaptability and validity, the video entities should
be re-arranged, and the segmentation method should be based on layer switching enabled points
to support particular scalability modes. A segmentation method is proposed to segment an SVC
stream based on the boundary of GOPs, because switching between temporal and quality levels
within a GOP is independent from other GOPs, and spatial switching is only allowed at IDR
AUs (outside of any GOP).

In the following, the proposed segmentation for SVC with quality scalability is described.
However, it is straightforward that the method can be applied to other scalability modes. An
SVC stream is first divided into segments, each of which consists of an integer number of
GOPs. Then, within each segment, NAL units are grouped into packets based on Q_ID from
the lowest to the highest value. Since each NAL unit header contains (D_ID,Q_ID, T_ID) of
the scalable layer it belongs to, it is always possible to recover the original order [37]. Figure 4.2
illustrates the segmentation method.

During streaming, packets are exchanged among peers. Packet 1 in each segment contains
the base layer and is necessary for every peer, while other packets can be received or not depend-
ing on available download capacity. Since each packet contains all NAL units of one quality

40
CHAPTER 4. CODING APPROACHES: NETWORK CODINGMEETS SVC IN P2P

STREAMING

����

���� ���� ���	 ���� ���� ���	

 ���� ���� ���	 ���� ���� ���	

��
��
��
��

����	�����

���� ���� ���� ����

����
������������

���� ���� ���� ����

����
��	���������

����
����������	�

���	 ���	 ���	 ���	

���� ���� ����

Figure 4.2: An example of the segmentation method where the stream has three quality levels
and is divided into segments of two GOPs. The symbols QL k specify Q_ID = k.

layer in the segment, streams that are generated by dropping one or more packets (except the
base packet) are valid streams, i.e., the segmentation method guarantees the adaptability and
validity requirement.

4.3 SVC with Random Network Coding

The approach in Chameleon is to apply random network coding to scalable layers, based on
which scalability mode the system aims to support. For example, if an SVC stream with a
certain number, Ns, of scalable layers is divided into segments as previously proposed, each
segment would now contain Ns packets for Ns layers. Each packet is further divided into N

blocks [b1, b2, ..., bN], all blocks of a packet have the same number of bytes k (referred to as the
block size of that packet). When a peer performs network coding for layer l, it randomly chooses
a set of coding coefficients [c1, c2, ..., cM] (M ≤ N) in GF(28). It then randomly chooses M

blocks of layer l— [bl
1, b

l
2, ..., b

l
M]— out of all the blocks of the layer it has received so far, and

produces the coded block x of k bytes:

x =

M∑
i=1

ci · b
l
i

With Gauss-Jordan elimination implemented in the decoding process, a peer starts to progres-
sively decode a packet, as soon as it receives the first coded block of this packet. As a total ofN
linearly independent coded blocks X = [x1, x2, ..., xN] have been received, the original blocks
can immediately be recovered as Gauss-Jordan elimination computes B = A−1XT , where A is
the matrix formed by coding coefficients of X . Figure 4.3 shows the combination of network
coding and SVC for the stream in Figure 4.3.

4.4. CHAMELEON: ADAPTIVE P2P STREAMINGWITH
NETWORK CODING 41

��� ��� ���

����������	
����� �������
��	
����� ����������	
���
�

�����������

�������� �������� ��������

���� ���
 ����

Figure 4.3: An example of the combination of network coding and SVC. Packet 1, 2, and 3
are divided into n, m, and k blocks, respectively. Network coding with different numbers of
unknowns (n,m, and k) is used for different quality levels.

4.4 Chameleon: Adaptive P2P Streaming with
Network Coding

Chameleon seamlessly integrates SVC with network coding. We consider a typical P2P stream-
ing session with a number of dedicated streaming servers, and a large number of peers. Peers
participate in and depart from a session in unpredictable ways, and they are heterogeneous with
different bandwidth capacities.

4.4.1 System Overview

The primary design goal of Chameleon is to effectively utilize available bandwidth of each
peer to maximize delivered quality under bandwidth variations. Figure 4.4 shows the internal
architecture of Chameleon with key components and their relations. When a peer joins the
system or when it needs to update the neighbor list for better quality, it creates neighboring
relationships with other peers. A list of available peers can be provided by a rendezvous peer
or by exchanging membership information, e.g., using SCAMP [60]. The neighbor selection
component chooses a number of peers to be neighbors. Information about each neighbor, e.g.,
IP address, average experienced quality, current number of neighbors, etc. is stored in the
neighbor list. During streaming, a peer needs to decide how many quality levels it aims to
receive according to its current bandwidth capacity. The quality adaptation component will
make decisions on keeping, increasing, or decreasing the current quality level, based on the
status of the playback buffer and the available download capacity. When adaptation occurs,
the sender selection component will select potential senders from the neighbor list, based on
the decision from the adaptation process. The peer coordination component will send layer
requests to the selected senders. The senders are expected to collaboratively send coded blocks
of the requested layer to the receiver. When the playback deadline is reached, one segment in

42
CHAPTER 4. CODING APPROACHES: NETWORK CODINGMEETS SVC IN P2P

STREAMING

the playback buffer is sent to the player. In addition to the above components, buffer maps are

����

����

����

����

�����	�
�

�����
�

��
���

�

�������
��	���

�

��
���
����	���

�

���	
���
�������

�

��������

�	����

�
�

��
�

��
�

��

�
	�
��
��
��
��
�

Figure 4.4: Architecture of Chameleon with key components.

used to exchange necessary information among peers. In traditional systems, only one bit is
used to represent the availability information of video data. With Chameleon, 2 bits are used
to represent the following four meanings (summarized in Table 4.1): (1) the peer has received
enough linearly independent blocks to decode the packet; (2) the peer has not received enough
linearly independent blocks; (3) the peer has not received enough linearly independent blocks
to decode but enough to serve other peers; and (4) the peer does not need to receive the packet
(quality adaptation). For a layer, a ready-to-serve peer is the peer that has received α ·N coded
blocks from other peers (0 < α ≤ 1) for that layer, in which the tunable parameter α is referred
to as aggressiveness [13]. A peer sends out its buffer map to its neighbors when the status of the
buffer map changes. Using one more bit causes slightly more overhead. However, as pointed
out for R2 [13], this overhead is still acceptable and less than traditional protocols, since much
larger segments are used with network coding.

Table 4.1: Meanings of the two bits used in buffer maps.
Value Meanings
00 Do not want this packet
01 The downloading has not completed
10 Ready to serve
11 The downloading has completed

4.4.2 Design Space of Key Components

We now turn our attention to the details of each key component. Different design options for
each component are presented and experimentally compared. For the simulation setting used in
this section, please refer to Section 4.5.

4.4. CHAMELEON: ADAPTIVE P2P STREAMINGWITH
NETWORK CODING 43

Class-based vs. Quality-based Neighbor Selection

It is likely that peers with similar capacity should be connected to each other to maximize
collaboration potential because they are supposed to receive the same quality. As in some
previous studies, a class-based selection method is tried first. Peers can be classified into classes
based on the highest quality level they can achieve. We say that a peer belongs to class C when
its best possible quality level according to its download capacity is C. A peer connects to other
peers in the following priority: peers of the same class, peers of higher classes, and peers of
lower classes. If there are more peers than needed, choose randomly. However, as we will see,
class-based selection does not work very well. In Chameleon, a quality-based selection method
is also considered. In quality-based selection, each peer calculates the average quality level it
has perceived so far. When a peer selects a neighbor, it chooses the candidate whose average
quality level is closest to its class. If there are more than one peer, it chooses a random one.

To experimentally evaluate the neighbor selection methods, a generic method is proposed as
follows. We denoteCi andAQi as the class and the average quality level of peer Pi, respectively.
When a peer Pk chooses a new neighbor from its candidate list Lk, it chooses peer Pq that
satisfies the following condition:

|Ck − AQq| − min
j∈Lk

(|Ck − AQj |) ≤ τ

If more than one peer satisfies the condition, class-based selection is applied. The above con-
dition is designed to choose peers whose average quality level is closest to the peer class of Pk

within the range τ . If τ is equal to 0, we have pure quality-based selection. If τ is equal to the
highest quality level of the stream, we have pure class-based selection because all peers in Lk

satisfy the condition. Otherwise, we have a hybrid approach. By experimenting with different
values of τ , we explore how different neighbor selection methods affect Chameleon. Figure 4.5
plots the skip rates and the average quality satisfaction with τ ranging from 0 to 2.6 (the skip
rates and the average quality satisfaction with τ ≥ 2.6 are the same). Note that the stream has
four quality layers.

Figure 4.5 shows two important insights regarding the selection methods. First, quality-
based selection is better than class-based selection, and the hybrid approach is the best. The
reason is that the quality-based method reflects the peer situation better than the class-based
method. A peer who has average quality Q likely belongs to class �Q� or above, while a peer
who belongs to class C may not perceive an average quality level up to C, due to the content
or bandwidth bottleneck of its neighbors. However, the average quality level only reflects the
quality level a peer has experienced so far, and it may be very low compared to the peer class.
Consequently, a strict quality-based selection with very small value of τ may “trap” a high ca-

44
CHAPTER 4. CODING APPROACHES: NETWORK CODINGMEETS SVC IN P2P

STREAMING

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.52.6
0

1

30

40

50

60

70

80

90

100

τ

P
er

ce
nt

 (%
)

Average Skip Rate
Average Quality Satisfaction

Class−based
Selection

Quality−based
Selection

Figure 4.5: The effect of the neighbor selection methods on Chameleon.

pacity peer within an area of low capacity peers. By using a larger τ , high capacity peers that are
currently experiencing low quality have opportunities to connect to other high capacity peers,
thanks to the class-based selection. Therefore, the hybrid approach offers better performance.
Second, there is a sweet spot for the value of τ that should be set appropriately to achieve best
performance, e.g., τ = 0.7, 0.8, or 0.9 in Figure 4.5. It should be noted that suitable values of
τ may depend on the number of layers of the stream. A hint to determine suitable values of τ

in practice, inferred from these experiments, is that the value of τ should be less than 0.3 · NL,
where NL is the number of quality layers to prefer quality-based selection.

Finally, in an unstructured overlay, the topology is formed by the neighbor selection at
each peer. There are no global mechanisms to create and maintain the overlay structure. An
interesting question here is: what does the topology look like under the neighbor selection
method? To answer the question, for every peer of class C, we calculate the percentage of its
neighbors of class Ck, k = 1, 2, 3, 4. In this experiment, the network size is 700, every peer
has an average of 50 neighbors. The hybrid neighbor selection with τ = 0.7 is used. Table 4.2
shows the neighboring relationships between peer classes in Chameleon. The value at element
(i, j), T (i, j), is the average percentage of peers of class j in the neighbor lists of peers of class
i. The value in the parentheses at (i, i) is the percentage of peers of class i in the network.
As shown in Table 4.2, the neighbor selection method creates clusters of peers that belong to
the same class: T (i, i) ≥ T (i, j), ∀i, j. This feature is desirable because bandwidth is better
utilized when peers with similar bandwidth capacity are connected. The desired feature can be
considered as an emergent property of Chameleon, because each peer selects its neighbors with
only partial knowledge about the network.

4.4. CHAMELEON: ADAPTIVE P2P STREAMINGWITH
NETWORK CODING 45

Table 4.2: Peer clustering in Chameleon.
Peer class 1 2 3 4

1 74(21) 23 2.5 0.5
2 24 31(20) 28 17
3 2 26 48(24) 24
4 0.5 10 17 72.5(35)

Quality Adaptation

In Chameleon, adaptation is mainly based on the current status of the playback buffer. In the
first design, the playback buffer is divided into two regions by a threshold drop_threshold. The
adaptation process is invoked when the status of the buffer changes, i.e., when the downloading
of one segment is finished, or when a segment is played. A peer updates the current quality level,
which is the target level for the next segment as follows. If the number of playable segments
in the playback buffer (the buffer level) is below drop_threshold, the current quality level is
decreased by one. Otherwise it is increased by one, but limited by the highest quality level for
that peer’s class. The intuition of increasing the quality level here is that it is expected a peer
will achieve its best possible quality as fast as possible. However, fluctuations of the perceived
quality have been experienced because the number of segments in the buffer may vary around
the threshold. To stabilize the perceived quality, another threshold is used, add_threshold. If
the number of segments is greater than add_threshold, the current quality level is increased
by one. Otherwise, it is unchanged. The adaptation process is shown in Algorithm 1, and the
playback buffer with the two thresholds is illustrated in Figure 4.6.

��������
�	
��
�
��������

����������	�������������	�

��������
���������������

�������	���	

� �

Figure 4.6: The playback buffer in Chameleon: The dark shade indicates the receiving status of
each segment.

To understand the effect of the two thresholds on Chameleon, two experiments are carried
out with different values of drop_threshold and add_threshold. In both cases, the buffer size
is set to 20. First, the value of drop_threshold is varied from 2 to 20, and add_threshold is
set to (drop_threshold+6). Figure 4.7(a) shows the performance of Chameleon with different
values of drop_threshold. We can observe a tradeoff between skip rates and quality satisfaction
when increasing drop_threshold: both skip rates and quality satisfaction are reduced. This
can be explained as follows. On one hand, a peer may try to maintain/increase the current
video quality by using a low drop_threshold. However, the risk is that the skip rate may

46
CHAPTER 4. CODING APPROACHES: NETWORK CODINGMEETS SVC IN P2P

STREAMING

Algorithm 1 Quality Adaptation
CL: current quality level.
plb_seg: the segment ID of the current playback segment.
rec_seg: the segment ID of the segment being downloaded.
if (rec_seg − plb_seg < drop_threshold) then
if (received(QL0, rec_seg)) then

CL ← CL − 1;
rec_seg ← rec_seg + 1;

end if
else if (rec_seg − plb_seg > add_threshold) then
if (received(CL, rec_seg) ∧ CL < QL_MAX) then

CL ← CL + 1;
rec_seg ← rec_seg + 1;

end if
end if

be increased because the playback buffer is exhausted rapidly when the buffer level reaches
the low drop_threshold. On the other hand, if the peer is more “conservative” by using a
higher drop_threshold, it is willing to drop the current layer and moves to the next segment to
minimize the skip rate. As a result, the experienced quality may be lower than expected. When
drop_threshold = 20 (the buffer size), all peers are very conservative, and they receive only
the base layer.

2 4 6 8 10 12 14 16 18 20
0

0.05
0.10
0.15
0.20
0.25

45
50
55
60
65
70
75
80
85
90
95

100

drop_threshold

P
er

ce
nt

 (%
)

Average Skip Rate
Average Quality Satisfaction

2 3 4 5 6 7 8 9 10 11 12
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35

75
80
85
90
95

100

δ

P
er

ce
nt

 (%
)

Average Skip Rate
Average Quality Satisfaction

(a) The effect of drop_threshold (b) The effect of add_threshold

Figure 4.7: The effect of the quality adaptation parameters on Chameleon.

Second, drop_threshold is set to 6, and add_threshold =drop_threshold+δ, δ = 2, ..., 12.
In Figure 4.7(b), it is also observed a tradeoff between the skip rate and the quality satisfaction
when δ is greater than 8. Intuitively, if the current buffer level is between the two thresholds,
the peer keeps its current quality level. In other words, the larger δ is, the more conservative
the peer is. Consequently, the skip rate and quality satisfaction are decreased with a large δ.
However, the relation between the two performance metrics is not very clear in the range from
2 to 8. The performance fluctuation can be explained as follows. Since high capacity peers

4.4. CHAMELEON: ADAPTIVE P2P STREAMINGWITH
NETWORK CODING 47

often fill up the buffer faster than low capacity peers, it is likely that δ should be smaller for
high capacity peers so that they can quickly achieve their best possible quality. On the other
hand, low capacity peers should use larger δ to keep the skip rate low. However, currently, the
same value of δ is used for all peers. The performance could be improved if different values of
δ are used appropriately for different peer classes. This feature is left to future work.

To observe the quality adaptation process, the download capacity of a typical peer P (not
connected to the server) is varied and its playback graph is examined. The playback graph
shows the quality level of all video segments that have been played. The download capacity
can be varied slightly (±10% of the streaming rate of the current quality level) or extremely (to
another quality level). C points of time are generated randomly for the download capacity being
varied extremely within the period of 10 minutes in the middle of the streaming session. The
playback graph of peer P for C = 15 is shown in Figure 4.8; it demonstrates that Chameleon
adapts to the bandwidth variations well. Minor variations are covered by buffering, while major
variations are adapted accordingly. There is only one playback skip, which occurred when the
download capacity drops below the streaming rate of the base layer (point 1). The figure also
shows that adaptation takes effect few seconds after a significant variation occurs (point 2), i.e.,
the perceived quality graph is a little shifted to the right of the available download capacity
graph at the changing points. This is also because of the buffering effect. When the bandwidth
capacity changes, there may be segments in the buffer which have been received before; and the
bandwidth variation only takes effect when the buffer level reaches the thresholds.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600

1

2

3

4

Time (second)

Q
ua

lit
y

Le
ve

l

Available Download Capacity
Perceived Quality

(2)

(1)

Figure 4.8: An example of the playback graph of a typical peer.

Receiver-Driven Peer Coordination

Chameleon follows a receiver-driven approach to coordinate peers. A peer actively sends re-
quests to senders. However, the requests are sent at the layer level (not at the block/packet level
as in traditional approaches). In addition, all senders receive the same requests, and serve the

48
CHAPTER 4. CODING APPROACHES: NETWORK CODINGMEETS SVC IN P2P

STREAMING

receiver collaboratively. The receiver does not need to assign packets to each sender separately.
The coordination mechanism at the receiver side and the sender side is as follows:

Each receiver:

� sends requests for the lowest unavailable layer to all senders.

� progressively decodes arrived blocks.

� when having received enough linearly independent blocks, sends a stop notification (via
buffer maps) to the senders, and finishes the decoding process.

Algorithm 2 Receiver-side
PS: list of potential senders.
N: number of NC blocks necessary for decoding.
NumberOfReceivedBlocks ← 0;
L ← getLowestUnavailableLayerID();
newPS ← chooseSenders(PS, L);
sendRequest(newPS, L);
while (NumberOfReceivedBlocks ≤ N − 1) do

receive(B);
decode(B);
if (linearlyIndependent()) then

NumberOfReceivedBlocks++;
end if

end while
sendStopNotification(newPS);

Each sender:

� on receiving a request, performs network coding on available blocks of the requested
layer, and sends newly coded blocks to the requesting peers automatically and continu-
ously as soon as possible.

� on receiving a stop notification, stops sending.

Random-based vs. Heuristic-based Sender Selection

In the above peer coordination mechanism, a peer chooses senders from its neighbors to send
layer requests. The first criterion for choosing a sender is that if it can provide coded blocks for
the requested layer. This information is available in the buffer maps. If the number of potential
peers is greater than the number of connections the peer can create, it needs to choose a subset.
The simplest way is to choose a subset randomly. However, choosing senders randomly may

4.4. CHAMELEON: ADAPTIVE P2P STREAMINGWITH
NETWORK CODING 49

Algorithm 3 Sender-side
R: buffer map message.
RL: requested layer (from R).
while (active) do

receive(R);
if (isStopNotification(R)) then

break;
else

encodedBlock ← encodeAvailableBlocks(RL);
sendToReceiver(encodedBlock);

end if
end while

not optimally utilize available bandwidth capacity and layers of the senders. For example, the
download capacity of a peer is 150 Kbps. Two potential senders S1 and S2 who are able to cre-
ate only one more connection have the upload capacity of 150Kbps and 200Kbps, respectively.
The random-based method may choose S2 and render 50 Kbps unused, while choosing S1 is
obviously a better utilization of bandwidth. A similar rationale is also applied to choose senders
based on available layers. Intuitively, the following heuristics are used to choose senders for a
peer P : (H1) prefer potential senders whose available upload capacity is closest to the currently
available download capacity of P , and (H2) prefer potential senders who have the smallest
number of layers.

28 32 36 40 44 48 52 56 60 64 68

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Average Number of Neighbors

P
er

ce
nt

 (%
)

Random
Heuristic_BW_QL
Heuristic_QL_BW

28 32 36 40 44 48 52 56 60 64 68

87
88
89
90
91
92
93
94
95
96
97
98
99

100

Average Number of Neighbors

P
er

ce
nt

 (%
)

Random
Heuristic_BW_QL
Heuristic_QL_BW

(a) Average playback skip rate (b) Average quality satisfaction

Figure 4.9: The performance of Chameleon with different sender selection methods.

To investigate benefits of the heuristics, two heuristic-based methods (Heuristic_BW_QL
andHeuristic_QL_BW) are compared with the random-basedmethod (Random). BothHeuris-
tic_BW_QL and Heuristic_QL_BW use the aforementioned heuristic rules but in different or-
der. Heuristic_BW_QL uses the priority order H1, H2, and random; while Heuristic_QL_BW
uses H2, H1 and random. We plot the playback skip rate and the average quality satisfaction of
the selection methods in Figure 4.9. The average number of neighbors (ν) each peer maintains

50
CHAPTER 4. CODING APPROACHES: NETWORK CODINGMEETS SVC IN P2P

STREAMING

is varied from 28 to 68, and the network size is set to 400. It is reasonable that the performance
gets better when ν increases because it is more likely that a peer can choose good senders in a
big neighbor list than in a small one. The performance is stable when ν is greater than a specific
value, e.g., 48. However, it is quite surprising that Chameleon achieves impressive performance
with the random-based method. There are no significant differences between the three meth-
ods, especially when ν varies from 48 to 64. Heuristic_BW_QL seems to be the best one with
respect to both the skip rate and quality satisfaction.

4.5 Performance Evaluation

In this section, the performance of Chameleon is evaluated by comparing it with FABALAM
[55], used as a benchmark. Both Chameleon and FABALAM are implemented in our own
discrete-event flow-based simulator developed from scratch. The simulator is decribed in detail
in Appendix A of this dissertation. The latest JSVM Software, Version 9.17, is used to generate
a real two-hour video sequence with four quality levels. The average bit rate of the (sub-)stream
with quality level up to 1, 2, 3, and 4 is 620, 825, 945, and 1065 Kbps, respectively.

The main configuration parameters related to the quality scalability used in this paper are
presented in Table 4.3. The download and upload capacity of each peer are determined based

Table 4.3: Main configuration parameters used in the simulation.
Configuration File Parameter Value

main.cfg
BaseLayerMode 2
MGSControl 2
NumLayers 2

layer0.cfg
MGSVectorMode 0

QP 34
MeQP0-MeQP5 32

layer1.cfg
MGSVectorMode 1
MGSVector0 4
MGSVector1 4
MGSVector2 8

QP 30
MeQP0-MeQP5 30

on the stream rate at different quality levels of the test sequence. This setting is to reveal the
benefit of SVC: different bandwidth capacities perceive different quality levels. With the test
sequence above, we use four peer classes (corresponding to the four quality levels) in which the
download and upload capacity of each peer of class Q are set to 8 − 12% and 6 − 10% higher
than the stream rate at quality level Q, respectively. Each peer is randomly assigned to a peer
class. The server upload capacity is set so that it can serve 8−10% of the total number of peers,

4.5. PERFORMANCE EVALUATION 51

and we use only one server in our experiments. There are no super peers in the system. The
following metrics are used to evaluate Chameleon:

� Average playback skip rate: the average skip rate of all peers in the system. The skip rate
of a peer is the percentage of segments the peer skips during playback. This metric is
calculated as follows:

SkipRate(%) =
No_Skipped_Segments

Total_No_Segments
· 100

� Average quality satisfaction: the average quality satisfaction of all peers in the system.
The quality satisfaction of a peer is the ratio of the average quality level of played seg-
ments to its expected quality level (corresponding to its class).

QualitySatisfaction(%) =
AverageQualityLevel

ClassIdentifier
· 100

4.5.1 Scalability

Chameleon is firstly compared with FABALAM on the system scalability in stable environ-
ments by varying the number of peers from 70 to 700. Peers join the network randomly, and
stay connected until the session ends. Figure 4.10(a) shows that Chameleon achieves very low
skip rates: 70− 80% lower compared to the benchmark and less than or about 0.5% for various
network sizes. Regarding quality satisfaction, Chameleon offers very good and stable qual-
ity satisfaction when the network size increases. In Figure 4.10(b), the quality satisfaction of
Chameleon is always greater than 90% which means that peers can enjoy 90% of the best pos-
sible quality according to their download capacity. The system scalability is demonstrated by
the stable performance when increasing the network size.

70 140 210 280 350 420 490 560 630 700
0

0.5

1

1.5

2

2.5

3

Network Size (peers)

P
er

ce
nt

 (%
)

Chameleon FABALAM

70 140 210 280 350 420 490 560 630 700
0

10

30

50

70

90

100

Network Size (peers)

P
er

ce
nt

 (%
) Chameleon

FABALAM

(a) Average playback skip rate (b) Average quality satisfaction

Figure 4.10: The performance of Chameleon and FABALAM in different network sizes.

52
CHAPTER 4. CODING APPROACHES: NETWORK CODINGMEETS SVC IN P2P

STREAMING

4.5.2 Coping with Peer Dynamics

To evaluate the performance of the protocols under peer dynamics, the Weibull distribution —
Weibull(k, 2)— is used to randomly generate the lifetime of peers because, as shown in [74],
the peer session lengths are best captured by the Weibull distribution. With a two-hour stream-
ing session, we use three different values of k = 2000, 4000, and 6000 to generate different
mean lifetimes. The lower the value of k is, the more volatile the session becomes. The plot
of each distribution is shown in Figure 4.11 for clarity, together with the skip rate and quality
satisfaction of the protocols. In this experiment, the network size is 350.

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5 x 10−4

Time Duration (seconds)

P
D

F
V

al
ue

Weibull(2000,2)
Weibull(4000,2)
Weibull(6000,2)

2000 4000 6000
0

2

4

6

8

10

12

14

k

P
er

ce
nt

 (%
)

Chameleon FABALAM

1.53
0.92

9.03
8.20

0.76

14.30

2000 4000 6000
0

10

30

50

70

90

100

k

P
er

ce
nt

 (%
)

Chameleon FABALAM

91.12

73.10

93.99

79.65

95.74

83.02

(a) Weibull distribution for peer lifetime (b) Average playback skip rate (c) Average quality satisfaction

Figure 4.11: The effects of peer dynamics on Chameleon.

Figure 4.11 shows that Chameleon can adapt to peer dynamics well to achieve stable per-
formance, whereas the performance of FABALAM is much impacted by peer dynamics. The
reason is that FABALAM suffers the “rarest piece" problem. Without network coding, when a
sending peer leaves, the receiver needs to receive exactly the blocks that were assigned to that
sender. However, with network coding, the receiver can receive any blocks as long as they are
linearly independent with those that have been received so far. In other words, thanks to net-
work coding, Chameleon is robust to peer dynamics. This is demonstrated in the case k = 2000

(highly dynamic), the skip rate of Chameleon is only 1.53%, almost ten times lower than that
of FABALAM; while the quality satisfaction is still high, up to 91.12%.

4.6 Summary

This chapter presented the design and the performance evaluation of Chameleon, a new adaptive
P2P streaming protocol that combines the advantages of network coding and SVC. The objec-
tive of this work is to design and preliminarily test a practical adaptive P2P streaming protocol,
by taking advantage of network coding and SVC to mitigate the inherent challenges in unstruc-
tured layered P2P streaming. Chameleon demonstrates that the combination of network coding
and SVC is feasible and beneficial. Network coding helps to simplify the streaming protocol

4.6. SUMMARY 53

and improve the system performance. Detailed studies in the design space of Chameleon also
bring interesting and useful results in building an adaptive P2P streaming system in practice.

54
CHAPTER 4. CODING APPROACHES: NETWORK CODINGMEETS SVC IN P2P

STREAMING

Chapter 5

Overlay Construction Approaches

In Chameleon, the neighbor list of each peer is created and maintained by a SCAMP-based pro-
tocol with enhancements for layered P2P streaming. The join time and the class of each peer are
generated randomly. Notable performance differences are observed between experiments with
significantly different patterns of peer join. The question here is: How does the join pattern
(the join order of peers) affect the system performance with the proposed neighbor selection
protocol? In practice, users can join and leave the system at any time. Therefore, the system
performance should not be affected by the join order of users. Answering this question is im-
portant to the design of neighbor selection. Experiments with Chameleon reveal that overlay
construction for layered P2P streaming should be considered carefully. This chapter’s aim is to
better understand suitable features of overlays that are specific for layered P2P streaming. Start-
ing from the above questions, experiments with the neighbor selection protocol in two extreme
join orders are carried out. Then, a new mechanism is proposed such that the neighbor selec-
tion protocol is not affected by different join orders. In addition, the literature demonstrates the
advantage of the peer sampling method over SCAMP with respect to bandwidth consumption
and robustness to peer churn. Therefore, to more completely consider overlay construction for
layered P2P streaming, the application of the peer sampling method in layered P2P streaming
is considered with a new peer sampling based membership management.

5.1 SCAMP-based Overlay Construction

5.1.1 Problem Identification

We consider a typical P2P streaming session with a number of dedicated streaming servers, and
a large number of peers. Peers participate in and depart from a session in unpredictable ways,
and they are heterogeneous with different bandwidth capacities. Peers can be classified into

56 CHAPTER 5. OVERLAY CONSTRUCTION APPROACHES

classes based on their bandwidth capacity. A layered coding technique, e.g. SVC [9], is used to
encode raw video data into quality layers. Peers are organized in an unstructured overlay, i.e.,
there are no global mechanisms to build and maintain the overlay. It is assumed that every peer
is willing to contribute its bandwidth to upload data to other peers, i.e., no selfish or fraud peers
in the system.

Although this chapter focuses on neighbor selection, a complete streaming protocol is nec-
essary to evaluate the proposed methods. Chameleon with its quality-based neighbor selection
is used as a baseline method, which is summarized as follows. When a peer joins the system,
or when it needs to update the neighbor list for better quality, it creates neighborships with
other peers. A list of available peers can be provided by a rendezvous peer or by exchanging
membership information, e.g. using SCAMP [60]. Each peer calculates the average quality
level it has perceived so far. When a peer selects a neighbor, it will choose the peer(s) whose
average quality level is closest to its class identifier within a range τ . If there are more peers
than needed, a subset is selected based on the peer class in the following order: peers in the
same class, peers in higher classes, and peers in lower classes.

To reveal the effect of the join order and the population percentage of each peer class to the
system performance, two extreme cases are considered in the following experiments. Without
any loss of generality, the JSVM Software [75] is used to generate a two-hour video sequence
with two quality levels, and peers are classified into two classes: high capacity (HC) and low
capacity (LC). The download and upload capacity are set so that HC peers are able to receive
two quality levels (the full quality) while LC peers are only able to receive one quality level
(the base level). In particular, the download and upload capacity of peers are set to 6 − 10%

and 4 − 8% higher than the stream rate of the quality level corresponding to each peer class.
There are no super peers in the system. Only one server is used, which can serve 8 − 10% of
the total number of peers in the system. The performance of Chameleon is evaluated with the
quality-based neighbor selection method in Case A: all HC peers join the session before LC
peers, and Case B: all HC peers join after LC peers. In each case, the number of HC peers is set
to 10, 20, ..., and 90% of the peer population.

Figure 5.1 shows the performance of Chameleon in Case A and Case B. In general, the
average skip rates are very low in both cases, but the average quality satisfaction (AQS) is very
different. In Figure 5.1(a), when HC peers join the system first, the average quality satisfaction
for both classes is very high (> 92%) regardless of the number of HC peers in the system, which
means each peer can perceive 92% of its best possible quality level according to its bandwidth
capacity. On the other hand, in Figure 5.1(b), when LC peers join first, the average quality
satisfaction of HC peers is low and increases from 50% to 70% when the percentage of HC
peers increases. The reason is that, in Case B, LC peers join first, connect and stay close to

5.1. SCAMP-BASED OVERLAY CONSTRUCTION 57

10 20 30 40 50 60 70 80 90
0.005
0.015
0.025

92
96

100

Percent of HC Peers (%)

P
er

ce
nt

 (%
)

Skip Rate of LC Peers
Skip Rate of HC Peers
AQS of LC Peers
AQS of HC Peers

(a) Case A

10 20 30 40 50 60 70 80 90
00.005

0.015
0.025

50
54
58
62
66
70

92
96

100

Percent of HC Peers (%)

P
er

ce
nt

 (%
)

Skip Rate of LC Peers
Skip Rate of HC Peers
AQS of LC Peers
AQS of HC Peers

(b) Case B

Figure 5.1: The performance of Chameleon in the two cases.

the server in terms of the number of hops from the server. Since the number of connections
the server can create is limited, when HC peers join, they may be not able to connect directly
to the server and content bottlenecks occur. For example, when there is only 10% HC peers in
the system, all HC peers receive only the base layer. Consequently, the quality satisfaction is
50% (because they are expected to be able to receive two quality levels). When the population
percentage of HC peers increases, the chance of connecting to the server increases, and the top
layer can be delivered to some HC peers. In the other case, if HC peers join the session first
and connect to the server, they can receive the top quality layer from the server and deliver it to
other HC peers. In addition, since they also have the base layer, LC peers are served well.

From the above experiment, it is observed that the join order and the percentage in popu-
lation of different peer classes may not affect the performance of single-layer P2P streaming
systems much, as the skip rates are low in the two cases, but they do impact the average quality
satisfaction of different peer classes in layered P2P streaming systems. The question here is:
How to provide high average quality satisfaction for different peer classes regardless of their
join time and population? This question is answered in the next section the proposed scalable
and effective neighbor selection method.

5.1.2 A Quality- and Context-Aware Neighbor Selection Method

The difficulty in designing a neighbor selectionmethod is that each peer only knows information
of a certain number (not all) of peers in the system. Although it is possible to update information
about the population of each peer class in the system by tracking join requests at rendezvous
peers, it causes traffic overhead to transmit the information, which changes frequently when
peers join and leave. To keep the system scalable, our proposed method is based only on local
information of candidates to choose neighbors.

58 CHAPTER 5. OVERLAY CONSTRUCTION APPROACHES

As in single-layer streaming, it is reasonable that high capacity peers should have higher
priority than low capacity peers in being located at good positions in the overlay, e.g., close to
the server or other high capacity peers because when they can receive more, they will contribute
more to other peers in terms of bandwidth and layers. Based on this fact and taking the effect
of the peer join order into account, a preemption rule is proposed as follows: when a peer P

in class Ci wants to connect to a peer Q which has reached its maximum number of neighbors
defined by the system, if one neighborK ofQ belongs to class Cj, Cj < Ci, then P can replace
K to be a neighbor of Q. However, if the rule is applied strictly everywhere in the overlay,
peers in the lowest class (the lowest bandwidth capacity) can only connect to each other and
create clusters of low quality peers, which will suffer high playback skip rates. Therefore, a
peer P in class Ci should only be able to replace another peer K in class Cj, Ci > Cj , with a
probability P_preemp, P_preemp is higher when K is closer to the server. This rule guides
high capacity peers closer to the server even if they join the system after low capacity peers,
and low capacity peers further from the server even if they join the system before high capacity
peers. The distance between a peer P and the server is calculated by the minimum number
of peers (hops) between P and the server through neighborship with the following algorithm,
whose pseudo-code is presented in Algorithm 4:

� The distance from the server to itself is 0.

� The distance from a peer P to the server is calculated by the minimum distance of its
neighbors to the server +1.

DP = min
i∈NLP

(Di) + 1

in whichDi is the distance of peer i to the server, and NLi is the neighbor list of peer i.

� The distance of a peer is updated when its neighborship changes, e.g., a neighbor is added
or deleted.

Algorithm 4 Distance Calculation
D: the distance.
NL: the neighbor list.
N: the current number of neighbors.
int_min_dist ← MAX_INT;
for i = 1 to N do
if (NL[i].distance < int_min_dist) then

int_min_dist ← NL[i].distance;
end if

end for
D ← int_min_dist +1;

5.1. SCAMP-BASED OVERLAY CONSTRUCTION 59

It is noted from Algorithm 4 that it is not required to update the distance of each peer in a
timely manner, e.g., when the distance from a peer to the server changes, the distance from
its neighbors to the server may also be changed but is not updated. The update algorithm is
only invoked at a peer when its neighborship changes. The reason for this relative calculation
is that the timely update requires message exchanges, which cause traffic overhead, between
peers to inform their distance has changed. In addition, as being demonstrated later, the relative
distance is good enough to point out the vicinity of the peer location in the overlay. When each
peer maintains its distance to the server, the preemption probability P_preemp to replace a peer
K is calculated by the following formula.

P_preemp =
1

1 + α(DK − 1)
∗ 100

in which α is a tunable parameter. From this formula, we can see that if low capacity peers
connect directly or stay close to the server (because they join the session first), they are likely
replaced by high capacity peers. For example, if a low capacity peer connects directly to the
server, i.e. its distance is 1, then the P_preemp = 100%, so it will be replaced by a high
capacity peer. However, if low capacity peers are far from the server, they can keep their
connections to high quality peers to maintain their quality, as the preemption probability is
low. The value of α determines how P_preemp reduces on the way far from the server, e.g., if
α = 1, P_preemp forD = 1, 2, 3, 4, ... is 100%, 50%, 33.33%, 25%, ... respectively. Currently,
values of α are experimentally chosen. However, how to choose a good α in general cases is an
important issue and is left for future work.

We are now ready to present the complete neighbor selection method. A peer will create
neighborships when it joins the system or when it wants to improve the video quality, e.g., a
neighbor leaves the system, or the current quality level drops below a threshold for a period of
time. When a peer P needs one or more neighbors, it:

� contacts a rendezvous peer with necessary information such as its estimated bandwidth
capacity. The rendezvous peer will return a list of available peers in the system and the
class identifier P belongs to.

� sends requests containing its class identifier to all candidates, who are selected by the
quality-based neighbor selection method in [27].

� on receiving notifications from the candidates, creates connections and stores neighbor
information to the neighbor list, or waits for a period of time and tries again.

For each candidate, on receiving a request:

60 CHAPTER 5. OVERLAY CONSTRUCTION APPROACHES

Algorithm 5 Neighbor Selection - Request
AL: the peers list returned by the rendezvous peer.
CL: the candidate list.
NL: the neighbor list.
CL ← QualityBasedSelect(AL);
SendRequest(CL);
while (active) do
if (accept(Q)) then

Insert(Q, NL);
end if

end while
if (too_few_neighbors) then

Wait();
Request();

end if

� if the current number of neighbors is below its maximum number of neighbors, accepts
the request.

� otherwise, selects the neighbor whose class identifier is lowest, calculates its P_preemp

and decides to accept the request with the probability P_preemp.

Algorithm 6 Neighbor Selection - Respond
N: the current number of neighbors.
MAX_N: the maximum number of neighbors.
NL: the neighbor list.
ReceiveRequest(P);
if (N < MAX_N) then

SendReply(P, ACCEPT);
Insert(P, NL);

else
R ← SelectLowestCapacityPeer(NL);
if (P.class > R.class) then

P_preemp ← 1/(1 + α ∗ (R.distance − 1));
if (Rand() < P_preemp) then

SendReply(P, ACCEPT);
Insert(P, NL);

else
SendReply(P, REJECT);

end if
end if

end if

5.1. SCAMP-BASED OVERLAY CONSTRUCTION 61

5.1.3 Evaluation

The proposed neighbor selection method is implemented in Chameleon and evaluated with re-
spect to the average playback skip rate and the average quality satisfaction. First, the two
extreme cases in Section 5.1.1 are revised with the proposed selection method. Second, its effi-
ciency is demonstrated in more general cases with different network sizes to check the system
scalability. Finally, features of the overlay formed by the method are examined. The bandwidth
settings are the same as mentioned in Section 5.1.1.

The proposed method offers adaptability and scalability

Figure 5.2 shows the performance of Chameleon in Case B (the graph for Case A is simi-
lar) when LC peers join the session before HC peers. It is clearly observed that the quality
satisfaction of HC peers is significantly improved compared to Figure 5.1(b). Thanks to the
preemption rule, HC peers can gradually be located in good positions. This not only enables
HC peers achieving high quality video, but also minimizes the skip rate of LC peers.

10 20 30 40 50 60 70 80 90
00.005

0.015
0.025
0.035

92
96

100

Percent of HC Peers (%)

P
er

ce
nt

 (%
)

Skip Rate of LC Peers
Skip Rate of HC Peers
AQS of LC Peers
AQS of HC Peers

Figure 5.2: The system performance with the proposed protocol in Case B

In practice, peers can join and leave the system at any time. Therefore, a more general case
should be evaluated to confirm the advantages of the proposed method. Another video sequence
is generated with four quality layers, and four classes of peers corresponding to the four quality
layers are used. The join time and the class identifier of each peer is generated randomly, and
the peer life time is generated by the Weibull distribution – Weibull(k, 2) – because, as shown in
[74], the peer session lengths are fit by the Weibull distribution. Figure 5.3 shows the average
skip rate and quality satisfaction of each peer class. It demonstrates that the neighbor selection

62 CHAPTER 5. OVERLAY CONSTRUCTION APPROACHES

method helps to achieve best possible quality for each peer class in the system, while keeping
the system scalable under peer dynamics.

100 200 300 400 500 600 700
0.02
0.06
0.10
0.14
0.18
0.22

88
92
96

100

Network Size (Peers)

P
er

ce
nt

 (%
)

Skip Rate of Class 1
Skip Rate of Class 2
Skip Rate of Class 3
Skip Rate of Class 4
AQS of Class 1
AQS of Class 2
AQS of Class 3
AQS of Class 4

Figure 5.3: Performance of Chameleon with different network sizes

Features of the topology

An interesting question is that: what does the topology actually look like under the neighbor
selection method? To answer the question, for every peer in classC, we calculate the percentage
of its neighbors which belong to class Ck, k = 1, 2, 3, 4. In this experiment, the network size
is 700, every peer has an average of 55 neighbors. The population percentage of class 1, 2, 3,
and 4 in the system is 25.71%, 24.29%, 16.99%, and 33.01%, respectively. Table 5.1 shows the
neighboring relationships between the peer classes. The value at element (i, j), T (i, j), is the
average percentage of peers of class j in the neighbor list of peers of class i.

Table 5.1: Topology
Peer class 1 2 3 4 Avg. Distance

1 73.51 22.42 3.96 0.11 4.14
2 22.22 54.25 16.99 6.54 3.47
3 7.07 29.30 42.42 21.21 2.73
4 3.29 11.93 12.35 72.43 1.92

As shown in Table 5.1, the neighbor selection method creates clusters of peers that belong
to the same class: T (i, i) ≥ T (i, j), ∀i, j, i.e., peers of the same class tend to connect to each
other. In addition, the average distance of peers of each class to the server is also calculated.
The result is presented in the right most column of Table 5.1, which shows that the higher the
class identifier is, the closer to the server the class is. In summary, with the proposed neighbor

5.2. PEER SAMPLING BASED OVERLAY CONSTRUCTION 63

selection method, peers are grouped into clusters based on their peer class, and clusters of
higher capacity peers stay closer to the server than those of lower capacity peers. This can be
considered as an emergent property of the method, because each peer selects its neighbors with
only partial knowledge about the network.

5.2 Peer Sampling Based Overlay Construction

SCAMP has been demonstrated to be scalable and robust to peer dynamics. However, to use it
in layered P2P streaming, the quality-based neighbor selection should be run on top of SCAMP.
In addition, the preemption rule is required to gear peers to suitable positions in the overlay
regardless of their join time. The distance calculation and the preemption probability cause
‘overhead’ to the system. The question here is: Is there another way to build similar overlays
with less overhead? In this section, peer sampling service, another gossip-based membership
management protocol, is considered for layered P2P streaming. Based on the peer sampling
protocol, a new membership management protocol for layered P2P streaming is proposed. This
peer sampling-based membership management protocol is demonstrated to be scalable and can
build up overlays with similar features as the overlays that are built by the SCAMP-based pro-
tocol.

5.2.1 Protocol Design

This section describes in detail the quality-aware membership management protocol for layered
P2P streaming. The protocol is initially based on a generic peer sampling service [61]. There-
fore, the first part of this section gives a brief overview of the peer sampling service, while the
second part presents the proposed protocol.

Peer Sampling Protocol: An Overview

A peer maintains a local view including up to S (the maximum view size – defined by the
system) neighbors. At the beginning, when a peer P joins the system, it contacts a rendezvous
peer (a well-known peer) to receive the IP address of a peer Q in the system to start with. Q
will send its view to P, and P will consider this view as its initial view. After the above join
process, periodically, P selects one neighbor N to exchange its view with. This selection is
called PeerSelection. After the exchange, P and N have new candidates for updating their view:
some neighbors may be removed from, or some candidates may be added to the neighbor list.
This step is called SetView. It has been demonstrated that this simple gossip-based protocol is
scalable and creates overlays with self-organizing and self-healing (self-*) properties [61].

64 CHAPTER 5. OVERLAY CONSTRUCTION APPROACHES

A Quality-aware P2P Membership Management Protocol

To inherit the advantageous features of the peer sampling protocol, the proposed protocol is
based on the view exchange mechanism, but with enhancements for quality-awareness. The
idea is to differentiate peers in the view exchange by taking peer capacity into account. In
particular, by setting different priorities for different neighbors in PeerSelection and SetView
of each peer, it is expected that the resulting overlay would have high priority peers at good
locations, while low priority peers are located in the remaining part of the overlay. To achieve
a certain level of randomness, which is important to the self-* properties [61], peers having the
same priority are chosen randomly in PeerSelection and SetView.

In layered P2P streaming, the video stream is encoded into a number of quality layers. The
number of quality layers a peer receives depends on its bandwidth. It has been shown that
(1) peers with similar capacity should connect to each other to maximize bandwidth and layer
utilization [27] (F1), and (2) high capacity peers should be closer to the streaming source than
low capacity peers to avoid layer bottlenecks [28] (F2). To achieve the two features, the new
membership management protocol works as follows:

� When a new peer P contacts a rendezvous peer R to join the system, R will send prop-
erties of the stream, e.g., number of quality layers (L) and bit rates back to P. It also
assigns a class identifier Ci (0 < i ≤ L) to P based on P’s bandwidth capacity and the
video properties. Peers of class Ci have higher bandwidth capacity and can receive more
quality layers than peers of class Cj, if i > j. The server is assigned to the class CL+1 (or
any value bigger than the highest identifier used for peers).

� Neighbors in P’s view are arranged based on their class identifier. Those who have the
same identifier as P are located at the head of the view, then those with higher identifiers
in the increasing order, finally those with lower identifiers in the decreasing order. The
arrangement is illustrated in Figure 5.4.

� PeerSelection: a peer Q will be selected from the head of the view. If more than one peer
of the same class exist, one is chosen at random.

� SetView: after a view exchange, new candidates are inserted into the current view of P
according to the above arrangement. The view is likely to have more than S peers. Then,
S peers are selected from the head of the current view to make the new view. This view
update is also carried out at Q’s side.

The arrangement of the neighbor list and the ordered selection in PeerSelection and SetView
are simple but able to achieve the two preferred features for the overlay. It can be seen from
Figure 5.4 that, starting from the head of the list:

5.2. PEER SAMPLING BASED OVERLAY CONSTRUCTION 65

�� ��� �� ���� ��� ���� ��� �� ���� ���� ��� ���� ���	 ���	��� ���

��
������
����

������������� ������������

���
��� ����
����� ���
�����

�����
�

Figure 5.4: The arrangement of neighbors in the neighbor list of peer P.CP is the class identifier
of P

� F1: P prefers neighbors who belong to the same class.

� F2: If there are not enough such neighbors, P chooses those with higher class identifiers.
Since the streaming source has the highest class identifier, the higher P’s class identifier
is, the more likely it is that the source will be added to the new view because it is closer
to the head of the list. On the other hand, the source is placed towards the tail of the list
if P’s class identifier is low. Consequently, low capacity peers do not have good chances
to connect directly to the source.

However, initial experiments have shown that, if we just take the S first neighbors from the head
of the list, peers of the same class are gradually connected to each other and do not have con-
nections with peers of other classes. Consequently, separate clusters are created in the overlay.
To keep the overlay connected, each peer should have at most K (K < S) neighbors of the same
class, and keep at least S − K connections with other classes, which are also chosen based on
priority in the list. These S − K connections are particularly helpful for lower classes as they
have links to higher classes to receive data. The ratio of K to S is called clustering ratio as it
determines how well peers of the same class connect to each other.

5.2.2 Evaluation

PeerSim [76] is chosen to implement the proposed membership management protocol because
it provides a simple network model and good support for investigation of graph properties of
the overlay in both static and dynamic scenarios. This section is started with introduction of
the metrics that are used to evaluate the protocol. Then, simulation results are presented and
analysed.

Evaluation Metrics

To separately evaluate the mechanism, no complete streaming protocol is used. Rather, it is
assumed that a good overlay leads to a high performance streaming system. The important
question is: what is a good overlay? The graph of an overlay is generated by considering peers
as nodes and neighbor relationships as edges. Analyzing the graph helps understand how the

66 CHAPTER 5. OVERLAY CONSTRUCTION APPROACHES

protocol behaves and what the overlay looks like over time. From experience with Chameleon
[27], the following metrics are particularly interesting:

� Connectivity: is the graph well connected during streaming? The most basic requirement
for the protocol is that no peers are disconnected from the system, i.e., there is always at
least one path from the source to any ‘alive’ peer at any time even with peer churn.

� Clustering: the clustering coefficient of a group of peers is defined as the ratio of links
existing among the peers of the group over the total number of links of those peers. If
we consider that peers of the same class are in one group, the clustering coefficient of
that group shows how well peers of the class are connected to each other. If the cluster
coefficient of a group is 1, the group is disconnected from the network (called separate
cluster). On one hand, a high clustering coefficient shows that peers having similar ca-
pacity are well connected to each other, which is good in terms of bandwidth utilization.
On the other hand, the higher the clustering coefficient, the higher the probability of the
class being disconnected from the network, especially under high churn rates. This is a
trade-off between connectivity and clustering.

� Average path length: is the average of the shortest path lengths (number of hops) between
any two peers. However, in this work, the average length between peers and the source is
more relevant than that between any two peers. Therefore, we will evaluate the average
path length of different peer classes to the source. In this context, we call the average
path length between peers and the source the distance to the source. It is desired that high
capacity peers have smaller distances to the source than low capacity peers.

Simulation Results

It is difficult to choose existing quality-aware membership management protocols to compare
with the proposed method because none of the previous protocols looks into the graph proper-
ties of the overlay during the streaming session to see how they affect the performance. Previous
protocols are evaluated indirectly through the overall streaming performance, which is impacted
by other components, e.g., peer coordination and streaming algorithms. Convinced that under-
standing the topology of the overlay and how it evolves over time is important to improve
the overall performance of a streaming system, in this paper, the overlay construction is sepa-
rately evaluated by concentrating on its graph properties. Rather than comparing with a related
work of constructing overlays in layered P2P streaming, CYCLON [77] is used, a traditional
membership management protocol, as a baseline. The purpose is to emphasize differences and
trade-offs (if existing) between quality-aware and non quality-aware protocols.

5.2. PEER SAMPLING BASED OVERLAY CONSTRUCTION 67

A layered stream with 5 quality layers is used. Corresponding to the stream, there are 5

peer classes in the system. The number of peers in our experiments is set to 10000 in static
scenarios. This is also the maximum number of peers in dynamic networks. Each peer is
assigned randomly to one (and only one) class. The view size S is set to 50 as in [27], and
the clustering ratio is set to 0.7, which means that each peer has at most 70% neighbors of
the same class, and the other 30% are neighbors from other classes. Different values of S and
the clustering ratio were also experimented and presented. The cycle-based engine of PeerSim
is used. In each cycle, the protocol is run at every peer. After each cycle, properties of the
graph are plotted. To evaluate the effect of randomness in our experiments, each experiment is
run several times with different random seeds in PeerSim. Since the standard deviations of the
metrics are very low, which means that the randomness does not cause instability to the overlay,
only the average values of the metrics are plotted.

Static networks

In this scenario, the overlay has a fixed number of peers (10000), and starts with a certain topol-
ogy. We would like to observe how the protocol behaves and how it constructs the overlay. Two
initial topologies used are ring and random topology. Figure 5.5 and Figure 5.6 show the clus-
tering coefficient and the distance of the peer classes for the two cases. Since CYCLON does
not take peer capacity into account when choosing neighbors, the metrics have approximate
values for different classes (not shown in the figures for clearness).

(a) Distance (b) Clustering Factor

Figure 5.5: Overlay evolves from a random topology.

First, the overlay is well connected in all cases (not shown in the figures). Second, it can be
seen from Figure 5.5 and Figure 5.6 that the overlay can converge to a stable overlay regardless
of its initial topology with desired properties: the peer classes have high clustering coefficients
(approximate to the clustering ratio), and the higher the class identifier, the smaller the distance

68 CHAPTER 5. OVERLAY CONSTRUCTION APPROACHES

(a) Distance (b) Clustering Factor

Figure 5.6: Overlay evolves from a ring topology.

to the source. In particular, at the beginning, the peer classes have similar distances and clus-
tering coefficients. However, when the quality-aware protocol is invoked, the overlay quickly
changes itself to differentiate peer classes. In Figure 5.5, it takes only about 6 cycles, which
means each peer only exchanges its view 6 times, to achieve stability from a random topology.
The ring topology requires more time (about 25 cycles) because each peer has only two neigh-
bors at the beginning (Figure 5.6). However, after converging, the overlay is still able to achieve
as good values for the metrics as in the case of the random topology.

Dynamic networks

We now turn our attention to how the protocol behaves under peer churn. In the first experiment,
a stable overlay with 200 peers is initialized until the 24th cycle. From the 25th cycle, in each
cycle, 200 peers join the system until the size of the overlay reaches 10000. Figure 5.6 shows
the clustering coefficient and the distance of the peer classes with peers join.

(a) Distance (b) Clustering Factor

Figure 5.7: Overlay evolves with peers join.

It can be seen from Figure 5.7 that, at the 25th cycle, the clustering and the distance change
rapidly. The fluctuation is because the network size is doubled from 200 to 400 peers (flash
crowd scenario). However, after that, the overlay quickly converges to a stable state (in about
25 cycles), even when new peers keep joining the system.

5.3. SUMMARY 69

Finally, to evaluate the robustness to peer leaves, peers are removed randomly, and the
number of separate clusters are calculated. 50 experiments are carried out. From a stable
overlay, 50%, 51%, ..., and 99% of the total number of peers are removed at random. Figure 5.7
shows the number of separate clusters created in the experiments, with the results obtained from
similar experiments on CYCLON, a more random-based protocol, to compare their robustness.

Figure 5.8: Number of clusters generated when peers leave the system

Figure 5.8 shows that the proposed protocol is robust to peer leaves as the first disconnection
occurs only when up to 86% of the total number of peers are removed. However, the proposed
protocol is less robust than the random-based protocol, whose first disconnection occurs only
when at least 88% of peers are removed. In addition, the number of separate clusters (discon-
nected sub-graphs) created by CYCLON is smaller than our protocol. The reason is that the
clustering coefficient of peer classes in the proposed protocol is higher than that of the peer
classes in CYCLON. This can be considered as a trade-off between bandwidth utilization and
robustness. However, with the robustness up to 86% of the number of peers left the system,
there is reason to believe that the proposed protocol is robust enough for P2P streaming.

5.3 Summary

In unstructured P2P streaming, membership management plays an important role in system
performance because good neighbors will offer good streaming quality. This chapter reported
work on membership management in layered P2P streaming. Both SCAMP-based protocols and
peer sampling based protocols were considered. Two quality-aware membership management
protocols for layered P2P streaming were proposed. Simulation results have demonstrated that

70 CHAPTER 5. OVERLAY CONSTRUCTION APPROACHES

the protocols boost the streaming protocol and can achieve high performance regardless of
peer join orders and peer dynamics. Using the SCAMP-based protocol or the peer sampling-
based one depends on particular applications and their implementation. Fair comparison of
the two protocols is only valid when they are both implemented in an actual system with real
network topology and user dynamics. Due to its simplification and efficient implementation in
the simulator, the peer sampling-based membership management protocol is used later on in
this work.

Chapter 6

Social Networking Approaches

In addition to the focus on coding techniques and on overlay construction mechanisms, pre-
sented in Chapter 4 and Chapter 5, respectively, applications of social networking to improve
the robustness of P2P streaming systems with respect to peer dynamics are considered. The in-
tuition is that social networking could help mitigate the limitations caused by the anonymity of
traditional P2P systems, e.g., free riding and high churn rates. Different from P2P file-sharing
systems, applying social networking to P2P streaming poses unique challenges, e.g., the use of
existing social graphs may not be beneficial due to the spare friendship network problem, in-
troduced in Chapter 1. This chapter presents a social-based P2P streaming system, named Stir.
First, the motivation of the idea of spontaneous social networking – forming social networks
inside a P2P system – is discussed in Section 6.1. Section 6.2 introduces a typical working
scenario of Stir and its key component via schematic and architectural design. Section 6.3 goes
into detail of the social-based P2P streaming protocol. An evaluation of Stir is described in
Section 6.4 from the phase of data collection and assumptions to the analysis of experimental
results.

6.1 The Case for Spontaneous Social Networking

In social networking, the term homophily is defined as the tendency of people with similar
characteristics to be connected [78]. This homophily principle has been studied and applied
in many areas of computer networks. In addition, it has been demonstrated that there is a
correlation from social networks to user behavior on the Web [79]. Particularly, people who
chat with each other are more likely to share interests. The more time they spend talking, the
stronger this relationship is.

What are actual benefits of forming social networks inside P2P streaming? From the above
social principles, users who join and stay in a streaming session are likely to have some similar

72 CHAPTER 6. SOCIAL NETWORKING APPROACHES

interests in the stream. Therefore, providing means of communication between users will not
only offer more entertaining services, e.g. it is more exciting to watch a football game with oth-
ers than alone, but also create social relations among them. From social communications and
activities, user behavior can be predicted, e.g., the more friends a user has in a session, the more
she is interested in and the longer she stays in the session. Therefore, if connections between
peers are established based on such social relationships, they are more reliable and durable. In
other words, reliable users should connect to each other, and as such they will not be seriously
affected by departures of those who do not have a strong interest in the session and stay for a
short period of time. This naturally minimizes the impact of churn to maintain continuous play-
back. Friendship is spontaneously formed during a session but lasts longer than one session.
Users have their profiles with a friend list. Connections among friends are immediately estab-
lished when they join another session together. It is believed that the coincidence of joining
the same session of friends has a high probability because they have similar interests. Such a
streaming system offers personalization as users can show their personality and make friends.
In addition, users that stay long in the session are rewarded with stable quality regardless of
high churn rate.

What is a suitable social communication means in the scenario? The foremost requirement
for a communication means in our system is that it does not consume much bandwidth, which
is a critical resource in streaming. Another criterion is that it is able to achieve a certain level
of synchronization because live streaming is highly synchronized among users (small time lag).
Among many means ranging from non-interactive, e.g. emailing, to real time interactive, e.g.,
voice chatting, IM is probably the most suitable one. Many studies on characteristics of IM
[80, 81, 82] have shown that (1) chat messages exchanged among users are usually very short,
but (2) they are expressive enough to support a variety of informal communication tasks in a
semi-synchronous way.

How about costs of IM servers? IM needs a server to route text messages since each user
is identified by a unique screen name, not by an IP address. The place to store and update user
profiles is also important when the system has thousands, or even millions, of users. Although
IM does not consume much bandwidth of each user, the bottleneck is at the server because it
needs to handle thousands of connections, e.g., in a large P2P IPTV system. In Stir, rather than
putting the tasks to the streaming server, separation of these social services from the streaming
server is proposed. Taking advantages of cloud infrastructures (IaaS) and platforms (PaaS)
[83], large-scale services can be built and deployed without the need of caring about expensive
servers. Google have proposed a framework for Cloud-to-Device Messaging services that allow
a third-party application server to send data to its clients via the Google Cloud [84]. Such
services are already available for Google Android devices. It is believed that decoupling social
services from P2P systems will be a trend in future.

6.2. STIR: SCHEMATIC AND ARCHITECTURAL DESIGN 73

6.2 Stir: Schematic and Architectural Design

Stir is a multi-channel P2P streaming system that provides live streaming content. One example
of such a system in reality is P2P-based IPTV. Each Stir user has a profile containing a unique
identifier, a password, a friend list, and the current IP address. A user U needs to log in to the
system first before watching any channel. There are no privacy concerns in the Stir architecture,
as such login information does not have to reveal any personal information — an email address
would suffice. The authentication process is controlled by a cloud-based user manager. If U is
authenticated, the manager sends the profile back to U and a notification with U’s IP address to
the streaming server. The streaming server will send the channel list to U . When U selects a
channel, the streaming server will send an IP address list of some available peers in the system
to U . This step is similar to the joining process in traditional P2P streaming systems. Now, U
can create connections with other users to download video data. This initial phase is illustrated
in Figure 6.1.

In Stir, friendships are to be established on-the-fly and spontaneously, as a group of users
watch the same channel. While watching a channel, U can post comments to one of the Stir
online forums. This forum is only visible to those who are watching the same channel with U .
U can have a private chat (via IM) with another user V if she knows V ’s identifier, and the chat
can be entirely conducted in a web browser, as the channel is being played live. U can add V to
her friend list at any time spontaneously. The list of friends constitutes a state that carries over
from one session to the next: being in the friend list of U means that U will know the status (if
V is in the system or not, which channel V is watching) of V whenever U logs in to the system.
The friend list is updated to the user manager when it is changed.

IM Server

Streaming Server

1. Login

2. OK

3. Channel List

3. Friend List

6. Connect

6. Connect

4. Channel Selection
5. IP Address List

Cloud

Figure 6.1: Initial steps in the Stir schematic design. After a user logs in, a list of friends may
be established spontaneously.

Stir uses a pull-based streaming protocol, which means each peer will pull video data from

74 CHAPTER 6. SOCIAL NETWORKING APPROACHES

other peers based on buffer map exchanges. e.g., similar to CoolStreaming [4]. However, differ-
ent from traditional P2P streaming which has one list of anonymous peers (called neighbors),
each Stir peer has two lists for potential partners. In addition to the neighbor list, which can be
updated by a gossip-based mechanism, the friend list containing friends who are also watching
the same channel is also used. In addition to an IP address, each item in the lists may contain
some statistical data collected from the social activities of users, which are stored in the social
log. These statistical data will be used by the partner manager and the scheduler. The partner
manager selects potential partners from the lists for requesting data based on data availability
in the playback buffer, social factors and network metrics. The scheduler schedules requests of
missing data, and sends them to the selected partners. Received video packets are stored in the
playback buffer and will be sent to the player when the playback deadline is reached. Figure 6.2
shows the components and their interactions.

Friend List Peer List

Social Log

Partner Manager

Socical
Activities

Playback Buffer

Scheduler

IM

Streaming
Packets/Requests

Figure 6.2: The architectural design of Stir, with an emphasis on the tight integration between
streaming quality and spontaneous social network relationships.

As shown in Figure 6.2, a user may talk with some people, while video packets are ex-
changed with other ones. This is a key difference compared to existing studies on social-based
P2P, which assume that there are always enough friends in the system to have trusted connec-
tions and discourages connections with strangers. In Stir, both social relationships and network
metrics are taken into account to choose partners.

6.3 A Social-based P2P Streaming Protocol

With the main components being presented in the previous section, this section goes into de-
sign details of the partner manager and the scheduler to understand how the underlying P2P
overlay relates to the high level social network, and how social data can be used in streaming.
Other components can be inherited with modifications from a traditional pull-based streaming
protocol, e.g., CoolStreaming [4], or an adaptive one, e.g., Chameleon [27].

6.3. A SOCIAL-BASED P2P STREAMING PROTOCOL 75

6.3.1 Relying on Friendship or Bandwidth: a Tradeoff

The general idea of a social-based P2P streaming system is that the establishment of network
connections between peers is guided by social relationships between users. However, if a pro-
tocol design is heavily based on friendship and discounting connections with others, peers may
not acquire enough qualified connections to maintain smooth playback, because their friends
may not have sufficient bandwidth. The objective is to not only give friends some priority in re-
source allocation but also achieve smooth playback for the peer itself. Use of a utility function,
which takes both social factors and network metrics into account, is proposed as the basis for
mitigating the tradeoff.

Social Metrics and Network Metrics

The following three metrics should be considered when a peer P evaluates another peer Q:

� Network Capacity: includes ‘physical’ capacity of Q. This kind of metric can include
bandwidth capacity, RTT to P , physical distance, etc.

� Social ‘Capacity’: captures the ‘prestige’ of Q in the social network based on its social
relations and activities. This can combine several factors: number of friends, number of
social messages Q has delivered, etc.

� Friendship: represents the direct social relation between P and Q. Is Q a friend of P ?
How often do they chat with each other? How many IM are exchanged between them?

Utility Function

There could be several ways to define a utility function combining all above metrics. This work
experiments with the following simple, yet effective, weighted combination:

UQ = (1 − α − β) · B(Q) + β · S(Q) + α · F (P, Q)

where C is a capacity-related function, S is a social-related function, and F is a friendship-
related function. β is called social coefficient, as it determines how important social capacity is
in the evaluation. α is called friendship coefficient, as it determines the priority of friendship.
In traditional non-social P2P streaming, α and β are 0 as social factors do not exist. In previous
social-based P2P systems, α is close to 1 as they discourage connections with strangers. By
experimenting with wide ranges of values of α and β, we understand interactions of the social
network and the P2P network, and how benefits may be derived from these interactions.

76 CHAPTER 6. SOCIAL NETWORKING APPROACHES

In this paper, the capacity function C, the social function S, and the friendship function F

are calculated for Q in a list L as follows:

B(Q) =
BQ

maxi∈L(Bi)

S(Q) =
NQ

maxi∈L(Ni)

F (P, Q) =

⎧⎨
⎩1, if P and Q are friends

0, otherwise

where Bi is the bandwidth capacity of peer i, Ni is the number of friends of i.

6.3.2 Partner Manager

The interaction between the social network and the overlay network happens in the partner
manager, which determines a group of active peers for sending and receiving data. When a Stir
peer P selects partners, its partner manager calculates utility values of peers in the neighbor list
and the friend list based on the utility function. After that, it sends partner requests to a certain
number of peers, which has the highest utility values. If a candidate Q accepts the request, P
adds Q to its partner list, which is used for buffer map exchanges and video data requests. The
partner acceptance check is also based on the utility function. The algorithms for the selection
of partners at P and the acceptance check at Q are presented in Algorithm 7 and Algorithm 8,
respectively.

As shown in Algorithm 8, each peer has an acceptance list that contains peers whose partner
requests have been accepted. Being in the acceptance list of Q means that P can send data re-
quests toQ and will be served ifQ has sufficient resources. Different from the partner selection
process that depends fully on the utility value of candidates, the acceptance check has to give
friends higher priority than others, regardless of their social capacity or bandwidth. This is a
design principle of Stir to encourage people to make friends and share their interests.

6.3.3 Packet Scheduler

In traditional pull-based P2P streaming protocols, buffer maps are exchanged between a peer
and its partners to decide who will deliver which packets. However, in Stir, before the buffer
map exchange, the peer needs to send a confirmation request to each partner to make sure that
it is still in the acceptance list of the partner. After that, buffer maps can be exchanged, and
packets can be requested from confirmed partners.

6.4. STIR: EXPERIMENTAL RESULTS 77

Algorithm 7 Partner Selection at P
NL: neighbor list.
FL: friend list.
U: the list of utility values.
N: the maximum number of partners (system parameter).
SL: sorted list in increasing order.
utlCal(X): calculates the utility value of X.
sortOnUtl(X, Y): sorts Y on X and returns the sorted list.
isAccepted(X, Y): sends a request to Y for acceptance check on X.
addPartner(X): adds X to the partner list.
L ← NL ∪ FL;
for i = 1 to L.length do

U[i]← utlCal(L[i]);
end for
SL ← sortOnUtl(U, L);
i ← 0;
while (i < SL.length ∧ Q.no_of_partners < N) do
if (isAccepted(P, SL[i])) then

addPartner(SL[i]);
end if
i ← i + 1;

end while

The reason for this step is that the acceptance list of a peer can be changed during the
streaming session. For example, at the beginning, a peer is willing to serve non-friend peers
because its friends have not joined the session yet. However, when receiving partner requests
from friends and the acceptance list is full, it has to remove some non-friends from the list to
serve the friends better. As a result of this, the partner list of those non-friend peers is changed,
and needs to be updated by invoking the partner selection. This additional action does not cause
much overhead because the size of the partner list is small, 5 − 10 peers. In addition, only
the partner list of those who have very few friends and low social capacity may be changed
frequently due to their low utility values. Other tasks of the scheduler, e.g., sending requests
for urgent packets first, can be done in traditional ways, e.g., CoolStreaming [4]. Thanks to
knowledge from the social network, with a set of socially selected partners, it is expected that
a traditional pull-based packet scheduler, could achieve significant improvements in streaming
quality.

6.4 Stir: Experimental Results

To evaluate our design, Stir is implemented in the discrete-event flow-based simulator. Since
user behavior and the friendship establishment process can not be simulated, the focus is on

78 CHAPTER 6. SOCIAL NETWORKING APPROACHES

Algorithm 8 Acceptance Check at Q
AL: acceptance list.
AN: the maximum number of accepted peers.
addAcceptedPeer(X): adds X to the acceptance list.
isFriend(X, Y): whether X is a friend of Y.
removePeer(X): remove X from the acceptance list.
if (P ∈ AL) then
return true;

end if
if (AL.length < AN) then

addAcceptedPeer(P);
return true;

else
min_utl ←∞;
for i = 1 to AL.length do

U ← utlCal(AL[i]);
if (not isFriend(AL[i], Q) ∧ min_utl > utlCal(AL[i])) then

min_utl ← U;
r ← AL[i];

end if
end for
U ← utlCal(P);
if (isFriend(P) ∨ U > min_utl) then

removePeer(r);
addAcceptedPeer(P);
return true;

end if
end if
return false;

6.4. STIR: EXPERIMENTAL RESULTS 79

interactions between the social network and the P2P overlay, while making assumptions on the
social network formation.

6.4.1 Data Preparation and Assumptions

We need (1) a real-world social graph representing a friendship network, and (2) join and leave
times of real-world users.

Social Graph

The authors are not aware of the availability of social graphs formed spontaneously in a par-
ticular context as in the case of Stir. As an alternative, a network of people who are interested
in a particular topic is used to represent the network of users joining a streaming session. In
particular, a “graph data provider” plug-in in NodeXL [85] is developed to retrieve friend lists
of members of a group in Flickr. With the URL of any public group, the provider can collect
user IDs of members of the group and their friends1. From the dataset, a social network for
experiments is formed as follows:

� All group members are considered as users of a streaming session, i.e., a Flickr group is
considered as a streaming session.

� If a member P is in the contact list of another member Q, they are friends of each other
in the session. Since we consider relationships among users who join the same session,
non-members in the contact lists of the members are removed.

Different datasets of Flickr groups with different sizes are collected to choose one, which has
about one thousand members (a medium-large streaming session). It may seem a bit far-fetched
to assume that common interest in a topic for pictures in Flickr would correlate with common
interest in a live stream in a P2P streaming system. On the other hand, social interaction data
from people who are, e.g., watching a stream together were not available to us, and it is therefore
believed that a network of common interests and friendship (as opposed to mere friendship
connections) is as close as we can get.

The dataset from the group “Photo Computer Art” is selected. When the dataset is collected,
this group has 1280members. The CDF of the degree of the members in the friendship network
is shown in Figure 6.3, which indicates that ∼ 10% of members have no friends, ∼ 80% have
fewer than 20 friends, and the other 20% have from 20 to 54 friends.

1The graph data provider is open source and available upon request. Since the member list of a public group
and the friend list of a user are public, this does not violate any privacy rules of Flickr.

80 CHAPTER 6. SOCIAL NETWORKING APPROACHES

Peer Dynamics

From the snapshot trace of PPLive, available at [86], the join times and the leave times of users
for a period of time (2 hours) on a particular channel are extracted. Three datasets with different
levels of peer churn – low, medium, and high – are used. The CDF of the stay duration of peers
in the datasets are shown in Figure 6.4.

0 5 10 15 20 25 30 35 40 45 50 54
0

0.2

0.4

0.6

0.8

1

Degree

C
D

F

Figure 6.3: Friendships among peers

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Peer Life Time
C

D
F High

Medium
Low

Figure 6.4: Peer Dynamic Scenarios

Figure 6.4 shows that in the highly dynamic scenario, up to 60% of peers stay in the session
less than 20 minutes and about 90% stay less than one hour. On the other hand, 60% of the
peers stay longer than one hour in the case of low dynamic.

Assumptions on User Behavior

We need to combine the peer dynamic datasets and the social dataset to have a complete picture:
who are friends of whom, and when they join and leave the session. Based on the discussion
in Section 6.1 about the spontaneous social networking formation, there are reasons to believe
that the following assumptions are reasonable: (1) friendship indicates similar interests in the
content, and (2) the more friends a user has, the longer she stays in the system. With these
assumptions, the datasets can be joined as follows:

� Sort peers on their stay duration.

� Sort users on the number of friends they have.

� Assign join and leave times to users so that peers with longer stay duration have a higher
number of friends.

6.4. STIR: EXPERIMENTAL RESULTS 81

In practice, there could be other reasons for user departures, e.g., network availability prob-
lems. Therefore, the above assignment is only valid with another assumption: users are not
unexpectedly disconnected from the network, i.e., the arrivals and departures are simply from
the interest of users in the session. This helps us understand separately the role of social factors
in the system performance.

Bandwidth Settings

The streaming rate is set to 400 Kbps, and the bandwidth capacity of each peer is assigned
randomly to one of the following values (download, upload): (450, 300), (550, 450), (700, 650),
and (750, 700) Kbps. With 1280 peers, the server upload rate is set to serve 65 (∼ 5%) peers
simultaneously.

6.4.2 Comparison with Existing Work

A CoolStreaming-like protocol, described in [4], and a network coding (NC) based protocol,
called NCStream, are implemented in the simulation to evaluate their performance in terms of
playback skip rates. The packet scheduler of CoolStreaming and Stir are quite similar, except
for the change mentioned in Section 6.3.3. On the other hand, the implementation of NCStream
is based on the implementation of Chameleon (Chapter 4). The key difference between Stir and
the other protocols is the partner manager. While CoolStreaming and NCStream are based only
on network metrics to choose partners, Stir takes social relationships into account.

On Peer Dynamics

In this experiment, (α, β) in the partner selection and the acceptance check of Stir are set to
(0.2, 0.3), and (0.7, 0.2), respectively. The skip rate of the systems under different peer dynamic
scenarios is shown in Figure 6.5.

Figure 6.5 shows that the three systems can achieve similar low skip rates when the network
is quite stable (low dynamic). Actually, NCStream is the best protocol in this case because NC
helps to utilize the bandwidth better. However, the performance of them are notably different
in the medium and high dynamic scenarios. Only ∼ 0.54% of playback segments are skipped
by Stir peers in the high dynamic case, while the percentage for NCStream and CoolStreaming
is 0.71% and 4.17%, respectively. The reason for the superior performance of Stir under high
churn rate is that peers who stay longer in the session are likely to have a certain number of
friends and exchange data to each other. In addition, the social-based acceptance check gives
friends higher priority in data delivery. Consequently, even when a large number of users who

82 CHAPTER 6. SOCIAL NETWORKING APPROACHES

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

S
ki

p
R

at
e

(%
)

CoolStreaming
NCStream
Stir

Low Medium High

Figure 6.5: Stir minimizes the impact of peer churn

are not interested in the session leave, the communities of friends are not seriously affected.
For example, the traffic (number of packets exchanged) between friends and that between non-
friends in the protocols are calculated for the high dynamic case: ∼ 60.6% of traffic in Stir
is among friends, while, without social knowledge, up to ∼ 65.8% of traffic in CoolStreaming
(∼ 64.2% in NCStream) is between ‘strangers’. Although the percentages depend on how dense
the friendship network is, this experiment indicates the ability of exploiting social knowledge
in Stir.

One may be concerned that the skip rate also depends on the choice of segment sizes in
Stir and CoolStreaming, and the NC block size in NCStream. Generally, the larger the segment
size is, the higher the skip rate is for CoolStreaming and Stir. As shown in [13], there is a
tradeoff in choosing the NC block size. Small block sizes are more robust to peer churn, but
cause more overhead for coding coefficients. In the above experiments, we set the segment size
to 2 seconds of playback in CoolStreaming and Stir, and the NC block size to 1 KB. In our
experiments, with the same segment size Stir always achieves much better performance than
CoolStreaming. Since the use of social knowledge and NC can be combined, we expect that the
combination even offers better performance.

On The Size of Neighbor Lists

In CoolStreaming and NCStream, the neighbor list is the local view of peers to the network.
Therefore, the streaming quality a peer receives completely depends on its neighbors. It has
been shown that the size of the neighbor list should be from 50 to 60 regardless of the network
size. In Stir, in addition to the neighbor list, a peer has a friend list. It should be noted that
peers in the friend list can also appear in the neighbor list because the neighbor list is updated

6.4. STIR: EXPERIMENTAL RESULTS 83

by gossiping, independently from the social network. Two important questions here are: how
important is the neighbor list in Stir? and How big should it be? The skip rate of the protocols
with the size of the neighbor list ranging from 20 to 60 for Stir, and 40 to 80 for CoolStreaming
and NCStream are plotted in Figure 6.6. The reason for CoolStreaming and NCStream having
larger neighbor lists is to have a ‘fair’ comparison between them and Stir, because Stir peers
may also have a large friend list.

20 (40) 30 (50) 40 (60) 50 (70) 60 (80)
0

0.5

1.0

1.5

2.0

2.5

Neighbor List Size

S
ki

p
R

at
e

(%
)

CoolStreaming
NCStream
Stir

Figure 6.6: Skip rates with different sizes of the neighbor list. The numbers in parentheses
denote the size of the neighbor list in CoolStreaming and NCStream.

It can be concluded from Figure 6.6 that (1) using a larger neighbor list, in fact, does not
always improve the performance in CoolStreaming and NCStream, and (2) with the existence
of the friend list, the size of the neighbor list in Stir can be smaller than in traditional systems.
The counter effect of larger neighbor lists in CoolStreaming and NCStream can be explained
as follows. The larger the neighbor list is, the higher the probability of more than one peers
choosing the same set of high capacity peers, i.e., bottlenecks at high capacity peers are likely
to occurs. The problem does not occur in Stir due to the acceptance check that guarantees that
a peer ‘reserves’ resources for its friends.

6.4.3 Insights of Stir

Convinced that by exploiting social knowledge Stir deals with peer churn much better than
previous work, we now turn our attention to the insights of Stir. Experiment with different
values of α and β in the partner selection process and the acceptance check are carried out to
answer the following questions:

84 CHAPTER 6. SOCIAL NETWORKING APPROACHES

� Is the role of friendship, network capacity, and social capacity in choosing partners dif-
ferent or similar?

� Between network capacity and social factors (including friendships and social capacity),
which one is more important to the system performance?

� Between friendship and social capacity, which one is more important to the system per-
formance?

On the Partner Selection

The value of α and that of β are fixed in the acceptance check, while wide ranges of values
for the coefficients are used in the partner selection process. Figure 6.7 shows the skip rate of
Stir when (1) α + β = 0, 0.1, ..., 1 to understand the role of the network capacity and the social
factors (Figure 6.7a), and (2) α + β = 0.6 and α = 0, 0.05, ..., 0.55 to understand effects of
social capacity and friendship in choosing partners (Figure 6.7b).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

(1 − α − β)

S
ki

p
R

at
e

(%
)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

α

S
ki

p
R

at
e

(%
)

(a) Network capacity Vs. Social factors (b) Social capacity Vs. Friendship

Figure 6.7: The effect of α and β in partner selection.

Figure 6.7a indicates that network capacity is important in the partner selection process. If
a peer connects to others based heavily on social factors (high values of α + β), it may suffer
playback skips because (1) a high social capacity does not imply a high network capacity, (2)
peers with high social capacities have more friends to serve, and (3) its friends may not have
sufficient bandwidth. However, a peer should also not depend only on the network capacity
(high values of 1 − α − β) because of peer churn: peers with high network capacities may
only stay in the session for a short period of time. Very low skip rates can be achieved if peers
consider network capacity as important as, or slightly less important than, the social factors
(1 − α − β = 0.4, or 0.5).

Between social capacity and friendship, from Figure 6.7b, we can see that preferring high
social capacity peers gives better results than preferring friends for data requests, as high values

6.4. STIR: EXPERIMENTAL RESULTS 85

of α (> 0.4) increase the skip rate significantly. Although this phenomenon is somewhat contra-
dictory to the idea of connecting friends with each other, it is reasonable from the peers’ point
of view because the higher its social capacity is, the more durable a peer is. However, friendship
has a certain importance as setting α to 0 does not achieve the best performance. The reason is
that if a peer chooses its friends as partners, it will have a certain priority at the friend side in
their bandwidth allocation. Therefore, if friends of a peer have sufficient bandwidth, the peer
will receive higher quality. In addition, being a partner of a high social capacity peer does not
guarantee that it will be served. In a nutshell, network capacity, social capacity and friendship
have their own roles in the partner selection process. However, different from existing work,
when a peer chooses partners, friendship is not the only important factor, but bandwidth and
social capacity as well.

On the Acceptance Check

Since peers have the highest priority to be in the acceptance list of their friends, the role of α

no longer exists in the utility function. For non-friends, the acceptance check is based on their
social capacity and network capacity. On one hand, a peer could prefer high social capacity
peers (by setting high values for β) to reward them as they are ‘famous’ in the social network.
On the other hand, high network capacity peers could have a high priority for the reason that
when they can receive packets quickly, they can deliver them quickly to other peers. However,
our experiments with different values of β from 0, 0.1, ... to 1 show no significant differences to
the overall system performance (the graph is not shown here). The main reason is that peers that
have a certain number of friends are served well by their friends, and so they do not need to be
partners of non-friends. For those who have very few friends or no friends, their social capacity
is quite similar. Therefore, the role of β is minor. In other words, the case of high social capacity
peers compete with low social capacity ones to appear in an acceptance list seldom occurs in
our experiments. However, keeping the utility function in the acceptance check is useful in
practice, because there are still cases that a peer has a number of friends but some of them may
not join the session.

The value of being famous in Stir

It has been demonstrated so far that social knowledge helps improve the overall system perfor-
mance. However, since each peer communicates with a small number of other peers at a time
without global knowledge, one question remains: What may be the system behavior caused
by the protocol executed at each peer? Especially, it is interesting to know for the entire user
population of a session: Do high social capacity peers generally receive better quality than low

86 CHAPTER 6. SOCIAL NETWORKING APPROACHES

social capacity ones? Figure 6.8 plots the average quality of peers having the same number of
friends.

0 5 10 15 20 25 30 35 40 45 50 54
0

0.1

0.2

0.3

0.4

0.5

Number of Friends

S
ki

p
R

at
e

(%
)

Figure 6.8: In Stir: The more famous you are, the higher the quality you receive.

Figure 6.8 shows that the average skip rates reflect the design objective of Stir: the more
friends a user has, the higher the quality she is likely to receive. This encourages users to join
the system, and creates a friendly collaborative network among users. In more details, there
are two noteworthy points. First, the skip rate of those who do not have any friend is less than
0.5%, which is still acceptable in live P2P streaming. This means that Stir does not discriminate
against low social capacity peers. They still can receive benefits from the system. In other
words, new users who are interested in the session but do not yet have many friends still have
chances to enjoy quite a satisfactory level of quality. Second, for those who have fewer than
20 friends, higher social capacity does not always bring lower skip rates. When looking back
the CDF of the number of friends in Figure 6.3, we can understand the reason. There are many
users (∼ 80% of the population) having fewer than 20 friends. As a result of this, many of those
users may not receive enough packets from their friends, and have to compete with others. As
shown in the experiments of the acceptance check, the social capacity of those peers does not
have a strong effect.

One may concern that a rational peer will make a large number of cheap “spontaneous”
friends to improve its quality. As a result, all peers will have a large number of spontaneous
friends, and the proposed algorithm can no longer differentiate peers. This is a common issue
of social-based applications. For example, Facebook game users may try to make friends with
others who they do not really know about to have more friends so that they can get benefits from
some game. One possible solution is that some requirements can be used in the friendmaking

6.5. SOCIAL TRAFFIC COSTS 87

process such as friendship can only be formed after two users sometimes chat to each other.

6.5 Social Traffic Costs

In Stir, a certain amount of user bandwidth is consumed by social activities. If social traffic
costs are expensive, the overall performance of the system can be seriously affected, due to
potentially insufficient bandwidth for video data. Therefore, justification on social traffic costs
for using spontaneous social networking inside P2P streaming systems is necessary.

For a user U , social traffic includes: friend list downloading when U joins the system,
friend list updating when new friendship is made, instant messaging with friends, and Twitter-
like commenting. Important information about a friend in the list includes the user ID, the
number of friends, and the IP address. It should be noted that not all friends have their IP
address available when U downloads the list from the IM server because some friends have not
joined the session (yet). However, the IM server does not need to update the presence of U to
her friends because U will later contact them for partnership requests. This ‘embedded’ status
notification is one benefit the streaming protocol brings to the social network because it reduces
the cost of status updates for IM.

If we use 20 bytes (20 characters) for a user ID, 4 bytes for the number of friends, and 4

bytes for an IP address, a user with 50 friends that are already in the system will download a
friend list of a negligible size — 1.4 KB. When U has a new friend, she only needs to send the
user ID of the new friend to the server. During streaming, U can send Twitter-like comments
to a forum, as described in Section 6.2, to share with others. Such comments are usually very
short as those in Twitter or YouTube. So, the most expensive cost may come from IM among
friends.

Xiao et al. have shown that the overall IM traffic is about 8.9 Kbps, in which chat messages
constitute only a small percentage [80]. However, in Stir, there may be more chat messages
exchanged among users because they are watching a real time stream. Although it depends on
user characteristics and the content they are watching, let us consider the case of watching an
interesting football game to estimate how much traffic IM could cause. As shown in [87], a
football game has an average of 300 highlights, including goals, shots, etc. Assuming that a
user sends 3 IM to 5 friends at the same time about every highlight during 90 minutes of the
game, and each message has 1000 bytes in length (the biggest message length observed in MSN
by [80]), she would consume an average rate of ∼ 6.67 Kbps for chatting, which is equal to
∼ 1.67% of a 400 Kbps stream. It is believed that the consumption in practice is much smaller
than this synthetic case. Due to these reasons, it is convinced that the social traffic costs caused
by social networks in Stir are negligible.

88 CHAPTER 6. SOCIAL NETWORKING APPROACHES

6.6 Summary

This chapter presented Stir, a new framework towards tightly integrated spontaneous social
networking in P2P streaming, as well as a social-based streaming protocol exploiting social
relationships of the social network. It has been demonstrated that by offering cheap, yet efficient
communication means to users who join the same streaming session, the P2P streaming system
is not only able to provide more entertaining services from the perspective of users, but also
achieves much better performance compared to previous systems, especially when dealing with
high peer dynamics. Simulation with real social network data and real peer dynamic traces
demonstrates our approach. It indicates that forming social networks spontaneously on top of
P2P overlays would bring significant benefits for both users and the P2P systems. In other
words, there are reasons to believe that such social network formation will be a trend in the
future, and the study on Stir will shed light on how such a system could be built in practice.

Chapter 7

Chameleon++: Putting It All Together

Chameleon uses NC and SVC to achieve adaptive P2P streaming; and Stir uses social network-
ing to deal with peer dynamics. Both systems are different approaches to the overall goal of
offering the best possible video quality to heterogeneous users under network fluctuations and
peer dynamics. Now, one important question is: Can we combine the design of Chameleon
and that of Stir to achieve an even better system? The design of Chameleon focuses on the
packet delivery process, i.e., quality adaptation and peer coordination. Meanwhile, exploiting
social networking, Stir peers can recognize reliable neighbors to maintain stable quality, i.e.,
Stir focuses on neighbor management and partner management. Therefore, it is straightforward
to infer that the combination is feasible and beneficial as the two aspects are complementary. To
confirm the answer and, more importantly, understand how beneficial it is, this chapter presents
the design of Chameleon++, which combines the design of Chameleon and that of Stir, and its
evaluation by comparing its performance with that of Chameleon.

7.1 The Design of Chameleon++

Since the main components of Chameleon and Stir with their interactions were already pre-
sented in detail in Chapter 4 and Chapter 6, this section discusses directly on the architecture
of Chameleon++, depicted in Figure 7.1, with the focus on Partner Selection because it inte-
grates Stir and Chameleon. It should be noted that the peer-sampling membership management
protocol, presented in Chapter 5, is also used in Chameleon++.

Compared to the architecture of Chameleon in Figure 4.4 and that of Stir in Figure 6.2,
Figure 7.1 shows that the combination of Chameleon and Stir is feasible as their components do
not fully overlap and do not have contradictory functions. For example, Chameleon++ inherits
the neighbor selection component of Chameleon because that of Stir is not quality-aware, and
the social-based selection does not have specific requirements for neighbor selection, i.e., the

90 CHAPTER 7. CHAMELEON++: PUTTING IT ALL TOGETHER

Friend List Peer List

Social Log

Partner Manager

Socical
Activities

Playback Buffer

Peer
Coordination

IM

Streaming
Packets/Requests

Neighbor
Manager

Quality Adaptation

Chameleon++

Figure 7.1: The architecture of Chameleon++. Components in light grey color are from Stir.
The dark grey color of Partner Manager is to mark that this component is the integration ‘point’
of Chameleon and Stir

quality-aware neighbor selection does not influence the social-based partner selection. The only
interaction point is the Partner Manager, which chooses partners among neighbors to request
video packets. In addition to the quality-aware partner selection of Chameleon, Chameleon++
has the social-based selection mechanism of Stir. They need to be reasonably combined to take
advantages of both.

On the one hand, the idea of the quality-aware selection is that a peer prefers selecting
other peers whose currently perceived quality level is closest to its peer class. Chameleon
shows that such selection offers high quality satisfaction as peers receive a quality close to their
capacity. On the other hand, the social-based selection takes social factors into account when
choosing partners. A peer may prefer one peer with high social capacity over another one with
high bandwidth capacity because high social capacity peers are expected to stay longer in the
session than low social capacity ones. Maintaining connections with high social capacity peers
mitigates the impact of peer dynamic and achieves stable quality. With such features of the
two mechanisms, we can ask ourselves: How to combine them to have a new partner selection
method that can not only recognize high social capacity peers but also have connections with
peers of similar bandwidth capacity to achieve high and stable quality satisfaction?, i.e., How
to balance stable quality and high quality satisfaction? A new utility function, extended from
the one used in Stir, is proposed.

In Stir, a utility function is used to evaluate the tradeoff between social capacity and band-
width capacity. In Chameleon++, the peer class and the current quality level of a peer are added
to the utility function to measure its ‘value’. The utility function that a peer P uses to calculate

7.2. EVALUATION 91

the value of another peer Q is redefined as follows:

⎧⎨
⎩UQ = γ · B(Q) + β · S(Q) + α · F (P, Q)

γ + β + α = 1

in whichB is a bandwidth-related function, S is a social-related function, and F is a friendship-
related function. α, β, and γ are friendship, social, and bandwidth coefficient, respectively. S

and F are defined as in Stir while B is changed to take the peer class of P and the current
quality level of Q into account.

B(Q) =
CQQ

PCP

S(Q) =
NQ

maxi∈L(Ni)

F (P, Q) =

⎧⎨
⎩1, if P and Q are friends

0, otherwise

where CQi is the quality level i is currently receiving, PCi is the peer class of i, Ni is the
number of friends of i, L is the candidate list. As already noted, the only difference between
this function and the one used in Stir is the bandwidth-related function. In Stir, since the stream
has only one quality level, its bandwidth-related function is to set high priority for high capacity
peers. However, in Chameleon++, peers should have connections with others whose current
quality level is approximate to their peer class identifier so that they can receive the best possible
quality according to their bandwidth. Such quality-aware selection is sufficiently represented
by the new bandwidth-related function, which is based on the ratio between the current quality
level of Q and the class identifier of P .

With the above utility function, the role of bandwidth capacity and social capacity is identi-
fied by tuning the coefficients α, β, and γ as in Stir. The advantages of using the utility function
is as follows. Users can specify their own coefficient set for their preference: if they prefer high
quality satisfaction and accept a certain level of unstable quality (high values of γ), or if stable
quality is the most important criterion (high values of α and β).

7.2 Evaluation

The integrated architecture of Chameleon++ is evaluated by comparing it with Chameleon.
First, Chameleon++ is evaluated with different values of α, β, and γ to understand effects of
the utility function and the role of the new bandwidth-related function when taking quality-
aware features into account. Second, with suitable values of the coefficients, the performance

92 CHAPTER 7. CHAMELEON++: PUTTING IT ALL TOGETHER

of Chameleon++ is compared with that of Chameleon in terms of average playback skip rate
and quality satisfaction to demonstrate the feasibility and benefits of using social networking in
layered P2P streaming.

Generally, simulation settings are similar to those presented in Chapter 4 for peer bandwidth,
SVC streams and NC parameters, and in Chapter 6 for the social data and peer dynamics. In
particular:

� An SVC stream which has 4 quality levels is used. The average bit rate of the (sub-)stream
with the quality level up to 1, 2, 3, and 4 is 620, 825, 945, and 1065 Kbps respectively.

� Four peer classes (corresponding to the four quality levels) are used. The download and
upload capacity of each peer of classQ are set to 8-12% and 6-10% higher than the stream
rate at quality level Q, respectively. Each peer is randomly assigned to one and only one
peer class. The server upload capacity is set so that it can serve 8-10% of the total number
of peers, and only one server is used in our experiments. There are no super peers in the
system.

� The social graph of the group “Photo Computer Art” is used.

� The peer join and leave patterns, extracted from the PPLive traces, are also used.

7.2.1 Quality-aware and Social-based Partner Selection

The role of social capacity and friendship in the partner selection of Stir have been investigated
in Chapter 6. Therefore, it is only necessary to consider the role of the new bandwidth-rated
function to the system performance. In these experiments, γ is set to 0, 0.1, 0.2, ..., 1, while α is
set slightly higher than β. The system performance is evaluated with different values of γ, and
the new bandwidth-related function is compared with the old one. Figure 7.2 plots the average
skip rate and the average quality satisfaction of Chameleon++ with different values of γ and
with the two bandwidth-related functions.

Figure 7.2 shows two important points. First, generally, the bandwidth-related function
plays a similar role to the system performance in Chameleon++ as in Stir. Peers should neither
heavily depend on the social factors (γ ≤ 0.3) nor on bandwidth (γ > 0.8). The intermediate
values of γ offers high performance. However, while Stir demonstrates that bandwidth should
be equal or slightly less important than the social factors (γ = 0.4 or 0.5) to achieve best
performance; in Chameleon++, the best performance can be achieved when the bandwidth-
related coefficient is set slightly higher than the social coefficients (γ = 0.6 and 0.7). Why
should Chameleon++ slightly prefer high bandwidth capacity peers over high social capacity

7.2. EVALUATION 93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0.05
0.10
0.15
0.20
0.25
0.30
0.35

80
85
90
95

100

γ

P
er

ce
nt

 (%
) Old Function − Quality Satisfaction

New Function − Quality Satisfaction
Old Function − Skip Rate
New Function − Skip Rate

Figure 7.2: The role of the quality-aware selection in Chameleon++

peers? The reason could be the effect of NC. With the perfect collaboration feature of NC, the
responsibilities of a particular sender can be easily transferred to other senders if it leaves the
system, i.e., NC helps mitigate the impact of peer dynamics at the packet level. Therefore, in a
short term at the level of block delivery, high capacity peers can be used to fast distribute coded
blocks, while, in a longer term, social factors should still be exploited to have more durable
connections.

Second, while both functions achieve similar average skip rates, the new quality-aware func-
tion offers better quality satisfaction (∼ 5% higher). This is a reasonable result as the new func-
tion is based on the current quality level each candidate is receiving. Similar to Chameleon,
a peer looks for others whose current quality level is higher or equal to its class identifier so
that it can receive the best possible quality level according to its bandwidth. Altogether, Fig-
ure 7.2 demonstrates the important role of the new partner selection function as it can combine
Chameleon and Stir to achieve low skip rates and high quality satisfaction.

7.2.2 Chameleon++ vs. Chameleon

The above results demonstrates two things: the feasibility of the combination as Chameleon++
achieves satisfactory performance (quality satisfaction of ∼ 90%, and a skip rate of∼ 0.05% in
the best case), and the important role of the new partner selection method. Now, Chameleon++
is compared with Chameleon on different sizes of the neighbor list and on different peer dy-
namic patterns.

94 CHAPTER 7. CHAMELEON++: PUTTING IT ALL TOGETHER

On the Size of the Neighbor List

Since Chameleon peers do not have friend lists, bigger neighbor lists are used in Chameleon to
have a reasonable comparison. The reason to compare the two systems on different neighbor list
sizes is that the main difference between them is the existence of friend lists in Chameleon++,
which determines different views a peer has about the system. Experimenting on different
neighbor list sizes helps understand the impact of social networking on the system performance.
Figure 7.3 plots the performance of the systems with the neighbor list size range 20, 30, ..., 70

for Chameleon++, and 40, 50, ..., 90 for Chameleon.

20 (40) 30 (50) 40 (60) 50 (70) 60 (80) 70 (90)
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

80
85
90
95

100

Average Number of Neighbors

P
er

ce
nt

 (%
) Chameleon − Quality Satisfaction

Chameleon++ − Quality Satisfaction
Chameleon − Skip Rate
Chameleon++ − Skip Rate

Figure 7.3: Chameleon++ Vs. Chameleon on different neighbor list sizes. The numbers in
parentheses denote the size of the neighbor list in Chameleon

As shown in Figure 7.3, generally, the system performance increases when the neighbor list
size increases. This is reasonable as peers know better about the network with more neighbors to
have better quality. Particularly, the social-based system achieves stable and very low skip rates
(< 0.1%), compared to those of the non-social system (up to∼ 0.38%). This result is consistent
with the result of Stir, presented in Chapter 6, as very low skip rates can be achieved when
exploiting social networking. However, the quality satisfaction of Chameleon++ (∼ 80− 91%)
is lower than that of Chameleon (∼ 86 − 97%). The reason is that high social capacity peers
may not have high bandwidth capacity. Consequently, they offer continuous playbacks (low
skip rate) but low quality satisfaction.

On Peer Dynamics

To have different distinguishable peer dynamic patterns, theWeibull distribution—Weibull(k, 2)

— is used to randomly generate the lifetime of peers, as in Chapter 4. With a two-hour stream-
ing session, three different values of k, k = 2000, 4000, and 6000, are used to generate different

7.2. EVALUATION 95

mean lifetimes. The lower the value of k is, the more volatile the session becomes. The neigh-
bor list size in Chameleon++ and Chameleon is 70 and 90, respectively. The performance of
Chameleon and Chameleon++ is plotted in Figure 7.4. Figure 7.4 demonstrates that although

2000 4000 6000
0

0.15
0.30
0.45
0.60
0.75
0.90
1.05
1.20
1.35
1.50

k

P
er

ce
nt

 (%
)

Chameleon
Chameleon++

1.43

0.367

0.81

0.192

0.520

0.106

(a) Average Skip Rate

2000 4000 6000
0

10

30

50

70

90
100

k
P

er
ce

nt
 (%

)

Chameleon Chameleon++

85.18
90.36 92.81 90.24

95.60 92.71

(b) Quality Satisfaction

Figure 7.4: Chameleon++ Vs. Chameleon on coping with peer dynamics.

NC helps mitigate the impact of peer dynamics, the use of social networking even achieves
better skip rates. Again, the tradeoff between skip rate and quality satisfaction exists in this
experiment as Chameleon++ offers lower quality satisfaction while Chameleon achieves higher
quality satisfaction.

7.2.3 Skip Rate - Quality Satisfaction Tradeoff: Is it worth to combine
Chameleon and Stir?

To answer the question, first, between skip rate and quality satisfaction, which one is more
important? Generally, low skip rates means that users can watch the stream smoothly, while
quality satisfaction is about the quality of images. It is hard to answer this question convincingly
as the overall visual quality from the user perspective depends on the content of the video and
user preferences. For example, if a football match is streamed, users would prefer low skip
rates with acceptable quality than high image quality with stop-and-play behavior. On the other
hand, if a documentary video is streamed, high image quality could be more preferable when
the average skip rate is acceptably high. The effect of the metrics to the user experience is
not within the scope of this study. However, it is generally believed that when both systems
achieves the quality satisfaction within an adequate range, e.g. ≥ 80%, the overall performance
should be based on the skip rate as the difference in quality is not as notable as the occurrence of
playback skips. Second, Are social activities important? If Yes, then the integration of Stir and
Chameleon is necessary because Stir offers unique social features for P2P streaming services:
efficient social activities and personalization.

96 CHAPTER 7. CHAMELEON++: PUTTING IT ALL TOGETHER

7.3 Summary

This chapter presented the design and the evaluation of Chameleon++, the combination of
Chameleon and Stir. The design of Chameleon++ is mainly based on the design of Chameleon
and Stir; the evaluation has confirmed that the combination of social networking, network cod-
ing, and SVC is feasible and beneficial.

Chapter 8

Concluding Remarks

Solutions to adaptive and robust video P2P streaming systems have been presented thorough this
dissertation. This final chapter, first, self assesses the work by revising the research questions
that are raised in Chapter 1. Second, technical contributions are summarized with emphasis
on how they would affect research on P2P streaming. Finally, future research directions are
suggested.

8.1 Self-Assessment

The main research question of this work is: How to make a large-scale P2P streaming system
adaptable and robust so that it can offer best possible experience to heterogeneous users un-
der highly dynamic network conditions while maintaining its efficiency and scalability? This
question is answered with the novel adaptive P2P streaming protocol, Chameleon, and the ro-
bust social-based P2P streaming protocol, Stir. Altogether, Chameleon++ demonstrates that
the integration of SVC, NC, and social networking is the key to achieve adaptive, robust, and
personalized P2P streaming services.

In particular, Chameleon answers the questions about using SVC in P2P streaming. With
the proposed segmentation method, SVC can be used in P2P streaming. However, the layering
feature does limit the collaboration potential among peers. Thanks to NC, the use of SVC
in P2P streaming is feasible and beneficial as the combination of SVC and NC helps achieve
adaptability to user heterogeneity and network fluctuations.

In Stir, the problems of social network formation and exploitation are approached. The
social networks that are formed spontaneously during a P2P streaming session are tightly inte-
grated with the underlying P2P overlay because social relationships are based on users’ interest
in the content of the stream. In such social networks, users’ interest is revealed through their

98 CHAPTER 8. CONCLUDING REMARKS

social relations, which are exploited efficiently by the underlying P2P streaming protocol to
deal with peer dynamics.

In a nutshell, this research achieves the overall goal as solutions to the defined problems are
found. The feasibility of adaptive and robust P2P streaming is demonstrated. However, there
are always questions about limitations of a research work. While pros and cons of a particular
proposed solution were discussed in its respective chapter, one important question remains: To
what degree are the findings valid?

� Simulation results are only indicative. With the time constraint, simulation was chosen to
be the main evaluation method. No matter how realistic simulation settings are, there is
always a gap between simulation and the real world. The simulation results in this work
are useful and valid for comparing the performance of different systems with similar
settings.

� Selection of tunable parameters in the proposed protocols follows the ‘trial and error’
approach. Tunable parameters are helpful in understanding the system behavior and eval-
uating the system. However, although a wide range of values for each parameter are
tested, suitable values in simulation may need to be adjusted when the system is deployed
in the real world. With respect to this limitation, simulation is useful in the way that
heuristics for choosing suitable values are found.

� Hypotheses and assumptions can limit the application of the proposed systems in practice.
Some hypotheses and assumptions are made to simplify the problems to focus on key
features of the solutions. The system performance may be different when the assumptions
are fully relaxed or the hypotheses are not valid. For example, in Stir, it is assumed that
users who are interested much in the content of a streaming session stay longer in the
session and have more friends than those who are not interested in it. In practice, this
assumption is not always true as a user is really interested in a session but she may have
to leave the session because of unexpected reasons.

8.2 Technical Contributions

8.2.1 Chameleon: Adaptive P2P Streaming with NC and SVC

Chameleon demonstrates the feasibility of combining SVC and NC to provide adaptive P2P
streaming services. The design of Chameleon would serve as a sample design of unstructured
layered P2P streaming systems with its key components and their interactions. The adaptability
would change the behavior of P2P streaming systems. Chameleon users can receive the best

8.2. TECHNICAL CONTRIBUTIONS 99

possible video quality according to their available bandwidth capacity rather than receiving the
same quality. Rather than suffering playback skips when bandwidth drops, they can perceive
reduced quality but continuous playback. These features would improve user satisfaction in
using P2P streaming services. Other work could consider Chameleon as a baseline to investigate
more problems and bring adaptive P2P streaming to the real world.

8.2.2 Quality-aware Membership Management for Layered P2P Stream-
ing

The study on membership management for layered P2P streaming contributes to the research
area in three ways. First, it is demonstrated that traditional membership management proto-
cols are not sufficient for layered P2P streaming, e.g., high capacity peers may receive low
video quality because they are surrounded by low capacity peers. In addition to P2P stream-
ing algorithms, this study would focus more attention on overlay construction for layered P2P
streaming. Second, the proposed protocols show that by taking peer capacity into account, a
gossip-based protocol is good enough to boost an adaptive P2P streaming protocol. Third, there
is a tradeoff between the robustness to peer dynamics and the quality-awareness of the overlay
in layered P2P streaming. To be quality-aware, the peer selection should prefer neighbors with
similar or higher capacity. On the other hand, using more criteria to choose neighbors, the set of
potential peers for neighboring is smaller. Consequently, separate clusters may be created, and
the overlay is more easily disconnected when peers leave. Other work could inherit the findings
about the good features of quality-aware overlays and the current version of the protocols to
build a more practical protocol when taking other network metrics into account.

8.2.3 Stir: Spontaneous Social P2P Streaming

Stir is the first attempt to apply social networking in P2P streaming. Allowing social activi-
ties during streaming sessions, Stir offers more entertaining streaming services, e.g., users can
communicate and share opinions directly about the content they are watching together. In ad-
dition, with Stir, faithful users who have spent time in the system and have many friends are
rewarded with a high priority in receiving satisfactory streaming quality. Such personalized ser-
vices are important in attracting users and have not existed in current P2P streaming systems.
With the proposed approaches, differentiated QoS and personalized services, which have only
been available in client-server streaming systems, are now possible in P2P streaming. Others
could learn from Stir: How does the idea of spontaneous social networking work? and How
could it be exploited efficiently in P2P streaming systems?

100 CHAPTER 8. CONCLUDING REMARKS

8.3 Future Directions

For the period of 3 years, the goal was to investigate technical problems of building up adaptive
and robust P2P streaming systems. With the work that has been done, it is now clear that the use
of SVC, NC, and social networking to achieve adaptive and robust P2P streaming is feasible.
However, as new ideas are investigated and the work is simulation-based, there are still many
concerns to be studied. In the following, main future directions that could be of interest are
listed.

� With the time constraint, simulation may be the most reasonable approach to examine
the key features of the proposed systems. However, simulation results are indicative, i.e.,
valid for comparisons between systems with similar simulation settings. The practicality
of the systems can only be evaluated by real implementations. Convinced that the ap-
proaches are practical, implementing real prototypes, and deploying them on test beds,
e.g., PlanetLab [88] could be the next step. Evaluation of the real prototypes on test beds
guarantees the practicality of the systems in practice.

� Currently, the capacity of peers is defined by, and only by, bandwidth capacity. When
the proposed protocols are used in practice, the definition of peer capacity should be
extended. Some other network metrics, e.g., RTT, physical distance among peers, or
ISP domains, should also be considered to better represent peer capacity. However, the
findings about key system features of the work are still valuable. For example, in the
proposed membership management protocols, although only peer bandwidth capacity is
taken into account when selecting neighbors, the work demonstrates that peer capacity
should be considered in neighbor selection for layered P2P streaming rather than simply
selecting randomly or depending on time-to-live metrics in traditional P2P streaming.
In addition, regardless of how many metrics are added to the capacity measurement, the
principles of constructing layered P2P streaming overlays, discovered in this work, should
be kept: peers with similar capacity should connect with each other but a certain number
of connections should be reserved for connections with peers with different capacities;
and high capacity peers have a good chance to be located at good positions in the overlay.

� Similarly, the definition of social capacity, in Stir, should be extended to include practical
information when it is used in practice. Generally, the social capacity is to measure the
interest of users in the content type. Therefore, for a Stir user, the number of social
messages, including instant messages, and the communicating frequency may also be
valuable to consider. In addition, extending the definition may lead to different utility
functions. The current utility function is good enough to demonstrate that social factors
play an important role to the system performance. However, the effect of the utility

8.3. FUTURE DIRECTIONS 101

function is sensitive to the choice of its coefficients, α and β. More effort should be spent
on more efficient and practical utility functions so that the system works well under a
wide range of network and user conditions.

102 CHAPTER 8. CONCLUDING REMARKS

Appendix A

The Simulator

Discrete-event simulation is the most widely used simulationmodel in which the system is mod-
eled as a series of events, that is, instants in time when a state-change occurs [89]. In computer
network simulation, discrete-event simulators can be classified into two categories: packet-level
(packet-based) simulators and flow-level (flow-based) simulators [90]. Packet-level simulation
uses events to model the movement of each packet in the network, e.g., packet arrivals or de-
partures at network devices or buffers. Flow-based simulation considers data transmission at
the flow level, i.e., events are only generated when the rate of a flow changes. Compared to the
packet-based model, if the flow rate changes infrequently, the flow-based approach dramatically
reduces memory and computational load because the packet-based approach may issue a huge
number of events presenting traffic of all packets. In P2P systems, as connections among peers
change frequently, the packet-based model simulates the operation of the system more accu-
rately than the flow-based approach. Therefore, packet-level discrete-event simulation is used
in this work.

This appendix, first, summarizes available simulators to answer the question: Why was a
new simulator developed for this research work? Second, it presents the packet-level discrete-
event simulator that was developed from scratch for this research with the proposed and more
efficient implementation of the bandwidth allocation.

A.1 Available Simulators

The authors in [91] present a survey on currently available simulators. They compare nine sim-
ulators under the following criteria: architecture, usability, scalability, statistics and underlying
network, and show that no simulator meets all their requirements. Their quantitative survey on
the use of simulators also supports the fact that people tend to develop their own simulator to
demonstrate their work instead of using an available common purpose simulator. The reason

104 APPENDIX A. THE SIMULATOR

is that people do not find other simulators suitable for their specific requirements, and it often
consumes more time to modify an existing simulator than to build a new one as most of the
available simulators are not well-documented. Some notable simulators that the author is aware
of at the time the project was started are summarized and discussed as follows to explain why
none of them is suitable for this research.

Ns-2 [92] is a well-known packet-based discrete-event simulator, which provides a very
detailed packet-level simulation model of the underlying network. However, due to its detailed
model, only a few hundreds of nodes may be properly simulated in a reasonable period of
time. Therefore, it is not able to evaluate a large-scale systems with thousands of nodes. In
addition, building a complete streaming protocol in ns-2 is time consuming as the developing
framework of ns-2 is not well-organized. Consequently, although ns-2 is popular in general
network simulation, the author is not aware of any study using ns-2 to simulate a P2P streaming
system.

In order to simulate large scale P2P networks in a reasonable period of time, the authors in
[93] introduce Narses, a flow-based simulator. They simulate the data distribution at the flow
level, i.e., neglecting transmissions of single packets but focusing on events of the start and end
of a transmission. Since it is required to consider the delivery of each packet in our systems,
flow-based simulators in general and Narses in particular are not usable.

PeerSim is another notable P2P simulator, developed in Java language [76]. It is composed
of two simulation engines: a cycle-based one and an event-driven one. The cycle-based engine
uses some simplifying assumptions, e.g., ignoring the details of the transport layer in the com-
munication protocol stack. In each cycle, the ‘application’ at every peer is invoked. Since the
operation of each peer in a P2P streaming protocol is independent, the cycle-based engine can
not be used to simulate a complete P2P streaming protocol. The event-based engine is more
realistic as it supports transport layer simulation as well. Unfortunately, at the time this project
is started, only the cycle-based engine of PeerSim was documented. Therefore, PeerSim could
not be used as the main simulator in this project. However, since the cycle-based simulator
provides a simple network model and good support for investigation of graph properties of the
overlay in both static and dynamic scenarios, it is used to study different overlay construction
approaches.

OverSim [94] is an open-source overlay and P2P network simulation framework for OM-
NeT++ [95]. OMNeT++ in general and OverSim in particular are more and more mature with
more efficient and accurate network communication models. However, at its initial stage, Over-
Sim provides very simple models for structured overlays, e.g., Chord, Kademlia, and Pastry.
Since this work is about unstructured overlays, OverSim was not considered as a practical sim-
ulator to evaluate the proposed protocols.

A.2. PACKET-LEVEL DISCRETE-EVENT SIMULATOR 105

From the above discussion, it is clear that building a new simulator, specified for this work,
may be challenging at the beginning, but was beneficial later on as specific models and assump-
tions could be made. In the following sections, the simulator is described in detail.

A.2 Packet-level Discrete-event Simulator

Following the discrete-event simulation model, a simulator is designed with the following com-
ponents: event controller, event executor, and application. The event controller receives events
from the application and sends those events to the executor at their scheduled time. Inside the
controller, events are stored in an event queue. The controller manages the queue by inserting
events into the queue, taking events from the queue, and updating the time line of the queue.
The executor receives events from the event controller and updates the status of the application
accordingly. During the execution of an event, new events can be issued, e.g. a send event leads
to a receive event, and transferred to the controller. The architecture of the simulator is depicted
in Figure A.1. It should be noted that both the executor and the application define the function-
ality and the behavior of the simulated system. However, instead of considering them as one
big component, both components are used as the executor is responsible for event-related opera-
tions, e.g. handling packet delivery, while the application is used to handle non-event tasks, e.g.,
handling file I/O, inserting initial events, and collecting statistical data. C++ is used to imple-

Application
- Handling file I/O
- Issuing initial events
- Collecting statistical data
- etc.

Event Controller

- Inserting events to the queue
- Popping the event of the current time
and sending it to the executor
- Circling the queue to capture the time line
- Deleting a certain event in the queue

Event Queue

Events

Event Executor
- Receiving events from
the controller
- Executing received events
- Updating application variables
- Issuing new events to the controller

Events

Updates

Figure A.1: The components of the simulator with their main functions

ment the simulator. The most important data structure in the simulator is the event queue. Since
a huge number of events are inserted and popped during simulation, a suitable data structure

106 APPENDIX A. THE SIMULATOR

is critical to the performance of the simulator. A linked list is the most suitable data structure
as the number of events is unknown beforehand. However, one weakness of linked lists is the
accessing cost, i.e., the time it takes to access the ith item in the list is in the order of O(i). To
mitigate the weakness, we use a circle array of linked lists to store events as follows. A circle
array of N items is used to keep events whose scheduled time is from the current time t to t+ δ.
The period of time δ is divided into N equal slots. Events are inserted in suitable slots based on
their scheduled time. One linked list is used for one slot to store events whose scheduled time
falls into that slot. Such a data structure offers efficient event storage and access:

� To insert an event: from the scheduled time of the event, it takes (1) O(N) to identify the
time slot for the event in the array (N << the total number of events in the queue), (2)
O(k) to traverse maximum k events in the linked list of the time slot.

� To pop an event: the first event in the linked list of the slot of the current time is returned.

The values of δ and N are important to the operation and the performance of the simulator.
Since the queue only keeps events that occurred within δ time units (seconds), small values of
δ may not capture all occurred events while big values of δ increase access time and storage.
To determine suitable values for δ and N , we examine available events that are used for our
P2P systems to determine the larger time period of the occurrence of the events. For our P2P
protocols whose events will be presented later, we use δ = 600 seconds, and each time slot is
equal to 0.5 second (N = 1200). With those values, we have never received an ‘out-of-range’
exception.

A.3 P2P Protocols

To simulate a systemwith the discrete-event simulator, we need to model its operation by events.
Although a P2P streaming protocol is not described in detail in this chapter, typical events of
P2P streaming protocols are presented to illustrate how such protocols are simulated.

� Playback event: when the playback deadline is reached, each peer has to check its play-
back buffer. If the current playback segment is available in the buffer, it is played back.
Otherwise, a playback skip occurs. In live P2P streaming, all peer receive playback events
at the same time for synchronization. In VoD (Video-on-Demand) P2P streaming, each
peer may receive playback events asynchronously according to their join time. Since we
are considering live P2P streaming protocols, the first playback event is issued by the
application when the simulation starts. After that, when handling the first playback event
at the time t, the executor updates the playback status based on the playback buffer, e.g.,

A.3. P2P PROTOCOLS 107

increasing the number of playbacks by one if the segment is playable, otherwise, increas-
ing the number of skips. Finally, the executor inserts a new playback event, scheduled at
t + pb_period, to the event controller. pb_period is the playback period defined by the
system (1s is currently used). By inserting another event at the end of the execution of
one event, playback occurs periodically at every pb_period.

� Request event: this event type is issued by the executor for a peer to request packets from
other peers when the peer joins the system or when it receives a packet.

� Send event: a send event is issued when a packet is sent from one peer to another. When
handling a send event, the executor establishes a connection between the sender and the
receiver, e.g., by calculating the available bandwidth of the connection. Based on the
available bandwidth, the transmission time is calculated. Finally, a receive event whose
scheduled time is equal to the current time plus the transmission time is sent to the con-
troller.

� Receive event: when a receive event occurs, the executor updates the playback buffer of
the receiver, terminates the connection, and notifies the sender that the packet has been
received.

� Membership/partnership event: periodically, a peer needs to update its neighbor/partner
list, e.g., by gossiping. The membership/partnership management mechanism is invoked
by the executor when it receives a membership/partnership event.

� Join event: the application issues a join event for one peer when its join time is reached
(equal to the current simulation time). Peer join time is stored in an input file (trace
file) and read by the application in its initiation. The executor allocates memory for
variables used by the peer, e.g., playback buffer, and activates the peer by inserting the
first membership, partnership, request events for this peer.

� Leave event: when a peer leaves the network, a leave event is issued. It should be noted
that issuing a leave event for a peer does not mean that the peer sends a leave notification
to the system – in practice, a peer can leave at any time without any notification. There-
fore, in simulation, handling a leave event includes deleting related variables and events,
e.g., active send/receive events of the peer, while other peers can only detect the dis-
connection by sending requests or executing their membership/partnership management
mechanism. It is not expected that peers send a leave notification.

� Bandwidth variation event: the available bandwidth of a peer may be changed. Bandwidth
variations can be simulated by allowing the application issuing bandwidth variation events
to the system. To handle such an event, the executor has to reallocate bandwidth for

108 APPENDIX A. THE SIMULATOR

all connections affected by the bandwidth variation of one connection, and update the
scheduled time of the corresponding receive events of those connection.

The complete list of events with their name (in the simulator), type, source, and the streaming
protocols is presented in Table A.1.

Table A.1: Events used in our simulation
Name Type Source Protocol

e_playback Periodic Application and Executor Common
e_join Non-periodic Application Common
e_leave Non-periodic Application Common
e_send Non-periodic Executor Common

e_receive Non-periodic Executor Common
e_member Periodic Application and Executor Common
e_partner Periodic Application and Executor Common

e_bwvariation Non-periodic Application Chameleon
e_request Non-periodic Application and Executor Common

A.4 Max-min Fair Rate Allocation in Simulation

When a network node has more than one connection with other nodes, it needs to allocate its
available bandwidth ‘fairly’ among the connections. In practice, the rate allocation mechanism
is defined by the IP protocol, e.g., TCP and UDP. In simulation, allocating node bandwidth to
each connection is approximated by a max-min fair rate allocation algorithm, firstly described
in [96]. Piccolo et. al. [97] present an efficient implementation of the algorithm, summarized
in Section A.4.1.

A.4.1 Traditional Implementation

They depict a generic node by explicitly indicating its bandwidth capacity, and the generic
connection between nodes by means of a single edge linking them. The network is modeled as
an undirected graph. If we denote:

• N : the number of nodes in the network. For each node i ∈ {1, 2, ..., N}, Ci is its band-
width capacity (the bandwidth assigned to its access link).

• A(i, j): the adjacency matrix, which expresses connectivity between nodes in the net-
work.

A(i, j) =

{
1 if i is connected to j

0 otherwise

A.4. MAX-MIN FAIR RATE ALLOCATION IN SIMULATION 109

• Fi: the allocated capacity of node i.

• U : the set of nodes with capacity still to be allocated.

• Vi: the set of connections of node i that still require to be allocated.

• ni: the number of connections of node i still to be considered (ni =| Vi |).

• rij : the allocated bandwidth of connection (i, j).

The algorithm computes the rate of each connection through at most N iterations as shown in
Algorithm 9.

Algorithm 9 Traditional Algorithm
while (U �= ∅) do
% Find the set B of bottleneck nodes

B = {b |
Cb − Fb

nb

= min
i∈U

Ci − Fi

ni

}

% Update capacity

U = U − B

Vi = Vi −
⋃
b∈B

Vb

rij = rij +
Cb − Fb

nb

∀(i, j) ∈
⋃
b∈B

Vb

Fb = Cb ∀b ∈ B

Fi = Fi +
∑
b∈B

A(i, b)
Cb − Fb

nb

i ∈ U

end while

Summarizing, in every iteration, the algorithm identifies the bottleneck nodes, which pro-
vide the most restrictive rate allocation because these nodes are required to allocate fairly all
their capacity to their connections. Then, those bottleneck nodes and their connections are re-
moved from the graph. The bandwidth of other nodes is updated, and the next iteration is carried
on (until all nodes are considered).

During simulation, when the rate of a connection is changed, the above algorithm is invoked
to re-compute the allocated rate for all connections in the network. However, such changing
events, e.g. when a new connection is established or an old connection is ended, may affect
only a subset of the existing connections. Therefore, the re-computation should be done on the
subset only. In the optimized version [97], first, related connections/nodes whose bandwidth
will be changed after the creation or the end of a connection are identified; then, Algorithm 9 is
applied to re-computes the allocated bandwidth for the subgraph only.

110 APPENDIX A. THE SIMULATOR

A.4.2 A More Efficient and Practical Implementation

The traditional implementation (including its optimized version) of the max-min fair rate al-
location algorithm can not be applied directly to simulate a P2P system because it models the
network as an undirected graph, while a physical network is naturally modeled by a directed
graph in which directed edges show the direction of data transmission from senders to receivers.
In other words, the network needs to be ‘re-modeled’ before using the algorithm, e.g., convert-
ing from the directed graph to the undirected graph. Figure A.2 shows an example of the
conversion.

1 2

3

45

300/400 150/200

200/220

350/400 150/200

2U

3U

4D

300

150

200

400 150

1U

1D

400

200

200

2D

4U

220

3D

350

5U
5D

Figure A.2: An example of modeling the network to undirected graph. The directed edges on
the left graph represent for the connections from the upload nodes to the download nodes. A
physical node i is modeled as two distinct nodes iU and iD for its uplinks and downlinks in the
right graph. The number above a node is its bandwidth (displayed as upload/download for the
nodes in the left graph).

As observed in Figure A.2, the number of nodes is doubled in the traditional computation.
This increases the CPU consumption in browsing nodes and memory to store the network topol-
ogy. In the proposed approach, the allocated rates on directed graphs are computed by browsing
every directed link. By considering every connection, it is not necessary to split a node into two
distinct nodes. Since the number of nodes is kept the same as the network size, the CPU and
memory are saved. To present the proposed algorithm, the following notations are used:

• UBi, DBi: the upload and download capacity of node i.

• AUBi, ADBi: the allocated upload and download capacity of node i.

• NULi,NDLi: the number of unallocated uplinks and downlinks of node i.

• rij : the allocated rate of the connection from i to j, i.e., i is the upload node, and j is the
download node.

• A(i, j): the adjacency matrix. However, in this case, A(i, j) = 1 means that i is the
upload node and j is the download node in the connection.

A.4. MAX-MIN FAIR RATE ALLOCATION IN SIMULATION 111

Algorithm 10 Proposed Algorithm
1: n_l ← 0: number of allocated links
2: NL: the total number of links
3: while (n_l < NL) do
4: % Computes the rate of each connection
5: for i = 1, N do
6: for j = 1, N do
7: if (A(i, j) = 1) then
8: rij ← Min(UBi/NULi, DBj/NDLj);
9: AUBi ← AUBi + rij ;
10: ADBj ← ADBj + rij

11: end if
12: end for
13: end for
14: % Removes allocated connections and updates bandwidth of other nodes/connections
15: for i = 1, N do
16: % bottleneck at the upload of node i
17: if (AUBi = UBi) then
18: for j = 1, N do
19: if (A(i, j) = 1) then
20: A(i, j) ← 0;
21: DBj ← DBj − rij; UBi ← UBi − rij;
22: NULi ← NULi − 1; NDLj ← NDLi − 1;
23: nl ← nl + 1;
24: end if
25: end for
26: end if
27: % bottleneck at the download of node i
28: if (ADBi = DBi) then
29: for j = 1, N do
30: if (A(j, i) = 1) then
31: A(j, i) ← 0;
32: DBi ← DBi − rji; UBj ← UBj − rji;
33: NULj ← NULj − 1; NDLi ← NULj − 1;
34: nl ← nl + 1;
35: end if
36: end for
37: end if
38: end for
39: end while

112 APPENDIX A. THE SIMULATOR

The pseudo code of the algorithm is presented in Algorithm 10. It includes iterations, in each
of which three steps are carried out:

• Step 1: Computes the rate of each connection as follows (line 5-13):

rij = Min(
UBi

NULi

,
DBj

NDLj

)

• Step 2: Since there is always a bottleneck at one extreme of any connection, we can
identify connections from or to bottleneck nodes by checking if a node allocates all its
bandwidth to its connections, i.e. the aggregate allocated rate of its connections is equal to
its bandwidth capacity (line 17, 28). Those connections are called saturated connections.
Saturated connections are marked and removed from the graph (line 20, 31).

• Step 3: The other algorithm parameters are updated.

The key difference between our approach and the traditional one is that, in each iteration, we
identify saturated connections, while the traditional algorithm identifies bottleneck nodes. An
example of the proposed computation for the network in Figure A.2 is depicted in Figure A.3.
In the first iteration, step 1 computes the rate of every connection (Figure A.3(b)). Then, step 2
identifies saturated connections by comparing the rates calculated in step 1 with the bandwidth
capacity of each node, e.g. the connections (2,1) and (2,3) are saturated because the sum of
their rate is equal to the upload capacity of node 2. The saturated connections are marked, and
the bandwidth of every node is updated (Figure A.3(c)). After the first iteration, six – out of
eight – connections are marked. The second iteration is carried out, and the result is shown in
Figure A.3(d). Since, all connections are saturated, the computation ends.

A.4.3 Performance Evaluation

The proposed solution and the traditional one are implemented in C++. To compare their per-
formance, the clock() function of the ctime library is used to calculate the relevant CPU con-
sumption time. In the experiments, we consider a P2P network with a number of peers N . The
upload and download capacity of each node is generated randomly within the range of [300,
1200] Kbps and [360, 2500] Kbps, respectively. Links are generated randomly among those
peers but it is required that peers maintain an average number of connectionsAC to other peers.
Experiments are run on a desktop PC with 1.0 GHz AMD Athlon 64 X2 Dual Core Processor
4800+ with 2 GB RAM, and running GNOME 2.16.0. For each experiment, the algorithms are
run 10 times, and the average outcome is recorded.

A.4. MAX-MIN FAIR RATE ALLOCATION IN SIMULATION 113

1 2

3

45

300/400 150/200

200/220

350/400 150/200

(a)

1 2

3

45

300/400 150/200

200/220

350/400 150/200

75

75

150

100

100

100

150

110

(b)

1 2

3

45

300/325 0/50

0/145

250/300 0/0

75

75

150

100

100

100

(c)

1 2

3

45

5/325 0/50

0/0

250/150 0/0

75

75

150

100

100

100

145

150

(d)

Figure A.3: An example of the computation of the proposed algorithm. Dashed links are satu-
rated connections.

114 APPENDIX A. THE SIMULATOR

In the first experiment, the algorithms are compared on different network sizes ranging from
2000 to 10, 000 peers. The average number of per-peer connections is set to 10. We calculate
the CPU consumption time each algorithm uses to allocate bandwidth for all connections in the
network and plot the results in Figure A.4. As shown in Figure A.4, the proposed computation
outperforms the traditional approach. In all cases, the proposed algorithm consumes only 18 −

22% of the CPU time that is spent for the traditional algorithm. The correctness of the proposed
algorithm is easily assessed by verifying that it always yields the same results as the traditional
implementation. The method proposed in [97] is also applied to only re-compute the rate of
related links when a connection is established or terminated, or when a bandwidth variation
occurs. This further optimizes the proposed algorithm in terms of computational cost as it can
be observed from Figure A.4 that the CPU consumption time is increased almost linearly in our
solution with the network size.

2000 4000 6000 8000 10000

5
10
15
20
25
30
35
40
45
50

Network Size (Peers)

P
ro

ce
ss

in
g

Ti
m

e
(S

ec
on

ds
) Traditional Solution

Our Solution

Figure A.4: The performance of the algorithms with different network sizes

In the next experiment, we would like to see how the algorithms perform when the average
number of connections AC changes. The value of AC is varied from 5 to 20. The network
size is fixed to 5000 peers. The results are plotted in Figure A.5. When AC increases, the
CPU consumption time also increases because there are more connections to be computed in
the network. However, the proposed approach still consumes less CPU time than the traditional
computation.

A.5 Summary

This chapter presents the packet-level discrete-event simulator in detail. In addition to a more
efficient and realistic bandwidth allocation model, the simulator considers both peer dynamic
and bandwidth variations. It is believed that such a model is sufficient to evaluate important

A.5. SUMMARY 115

5 10 15 20

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Average Number of Connections

P
ro

ce
ss

in
g

Ti
m

e
(S

ec
on

ds
)

Traditional Solution
Our Solution

Figure A.5: The performance of the algorithms with different values of AC

features of a P2P streaming system. The simulator was used to evaluate the proposed P2P
streaming protocols: Chameleon, Stir, and Chameleon++.

116 APPENDIX A. THE SIMULATOR

Bibliography

[1] R. Steinmetz and K. Wehrle, Peer-to-Peer Systems and Applications (Lecture Notes in
Computer Science). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[2] I. Multimedia Research Group. (2010) IPTV Global Forecast. [Online]. Available:
http://www.mrgco.com/iptv/gf0610.html

[3] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measurement Study of a Large-
Scale P2P IPTV System,” IEEE Trans. on Multimedia, vol. 9, no. 8, Dec. 2007.

[4] X. Zhang, J. Liu, B. Li, and T.-S. Yum, “CoolStreaming/DONet: a Data-Driven Overlay
Network for Peer-to-Peer Live Media Streaming,” in Proc. of IEEE INFOCOM, vol. 3,
March 2005, pp. 2102–2111.

[5] TVAnts. [Online]. Available: http://tvants.en.softonic.com/

[6] U. Inc. UUSee. [Online]. Available: http://www.uusee.com/

[7] R. Schafer and T. Sikora, “Digital Video Coding Standards and Their Role in Video Com-
munications,” Proceedings of the IEEE, vol. 83, no. 6, pp. 907–924, June 1995.

[8] I.-T. R. H.264, I.-T. ISO/IEC 14496-10 (MPEG-4 AVC), and V. . ISO/IEC JTC. (2007,
July) Advanced Video Coding for Generic Audiovisual Services.

[9] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video Coding Exten-
sion of the H.264/AVC Standard,” IEEE Trans. on Circuits and Systems for Video Tech-
nology, vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[10] M. Wien, H. Schwarz, and T. Oelbaum, “Performance Analysis of SVC,” IEEE Trans. on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1194–1203, Sep. 2007.

[11] J. Chakareski, S. Han, and B. Girod, “Layered Coding vs. Multiple Descriptions for Video
Streaming Over Multiple Paths,” in Proc. of ACM Multimedia, 2003, pp. 422–431.

[12] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” IEEE Trans. Info. Theory,
vol. 49, no. 2, pp. 371–381, Feb. 2003.

118 BIBLIOGRAPHY

[13] M. Wang and B. Li, “R2: Random Push with Random Network Coding in Live Peer-to-
Peer Streaming,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 9, pp.
1655–1666, Dec. 2007.

[14] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network Information Flow,” IEEE
Trans. Info. Theory, vol. 46, no. 4, pp. 1204–1216, Jul 2000.

[15] L. Ramaswamy and L. Liu, “Free Riding: A New Challenge to Peer-to-Peer File Sharing
Systems, year=2003, month=Jan, volume=, number=, pages=,.”

[16] Facebook. [Online]. Available: http://www.facebook.com/

[17] Alexa Top 500 Global Sites. [Online]. Available: http://www.alexa.com/topsites

[18] Facebook Statistics. [Online]. Available: http://www.facebook.com/press/info.php?
statistics

[19] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J. Epema,
M. Reinders, M. R. van Steen, and H. J. Sips, “TRIBLER: a Social-based Peer-to-Peer
System,” Concurrency and Computation: Practice and Experience, vol. 20, no. 2, 2008.

[20] K.-J. Lin, C.-P. Wang, C.-F. Chou, and L. Golubchik, “SocioNet: A Social-Based Mul-
timedia Access System for Unstructured P2P Networks,” IEEE Trans. on Parallel and
Distributed Systems, vol. 21, no. 7, Jul 2010.

[21] Z. Liu, H. Hu, Y. Liu, K. Ross, Y. Wang, and M. Mobius, “P2P Trading in Social Net-
works: The Value of Staying Connected,” in Proc. of IEEE INFOCOM, 2010.

[22] R. Kumar, Y. Liu, and K. Ross, “Stochastic Fluid Theory for P2P Streaming Systems,” in
Proc. of IEEE INFOCOM, 2007.

[23] L. Vu, I. Gupta, K. Nahrstedt, and J. Liang, “Understanding the Overlay Characteristics of
a Large-scale Peer-to-Peer IPTV System,” ACM Trans. on Multimedia Computing, Com-
munications and Applications, Feb 2011.

[24] Flickr. [Online]. Available: http://www.flickr.com/

[25] C. R. Kothari, Research Methodology: Method and Techniques, 2nd ed. New Delhi,
India: New Age International (P) Ltd., 1990.

[26] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young, “Comput-
ing as a Discipline,” Communications of the ACM, vol. 32, pp. 9–23, January 1989.

BIBLIOGRAPHY 119

[27] A. T. Nguyen, B. Li, and F. Eliassen, “Chameleon: Adaptive Peer-to-Peer Streaming with
Network Coding,” in Proc. of IEEE INFOCOM, March 2010.

[28] ——, “Quality- and Conext-aware Neighbor Selection for Layered Peer-to-Peer Stream-
ing,” in Proc. of IEEE ICC, May 2010.

[29] A. T. Nguyen, F. Eliassen, and M. Welzl, “Quality-aware Membership Management for
Layered Peer-to-Peer Streaming,” in Proc. of IEEE CCNC, Jan 2011.

[30] A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Sebastopol,
CA, USA: O’Reilly & Associates, Inc., 2001.

[31] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang. (2008) Network Coding Theory.
[Online]. Available: http://iest2.ie.cuhk.edu.hk/~whyeung/publications/tutorial.pdf

[32] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits of Coding over
Routing in a Randomized Setting,” in Proc. of International Symposium on Information
Theory (ISIT 2003), 2003.

[33] P. Chou, Y. Wu, and K. Jain, “Practical Network Coding,” in Proc. of the 41st Allerton
Conference on Communication, Control, and Computing, Oct 2003.

[34] Y. Wang, A. R. Reibman, and S. Lin, “Multiple Description Coding for Video Delivery,”
Proceedings of the IEEE, vol. 93, no. 1, pp. 57–70, Jan 2005.

[35] K. Joohee, R. Mersereau, and Y. Altunbasak, “Distributed Video Streaming Using Multi-
ple Description Coding and Unequal Error Protection,” Image Processing, IEEE Transac-
tions on, vol. 14, no. 7, pp. 849–861, July 2005.

[36] S. Wenger, Y.-K. Wang, and T. Schierl, “Transport and Signaling of SVC in IP Networks,”
IEEE Trans. on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1164–1173,
Sep. 2007.

[37] Y. Wang, M. Hannuksela, S. Pateux, A. Eleftheriadis, and S. Wenger, “System and Trans-
port Interface of SVC,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 17,
no. 9, pp. 1149–1163, Sep. 2007.

[38] SopCast. (2010) SopCast - Free P2P Internet TV. [Online]. Available: http:
//www.sopcast.org/

[39] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. K., J. W. O’Toole, Jr., M. Frans, and
K. James, “Overcast: Reliable Multicasting with an Overlay Network,” in Usenix OSDI
Symposium, 2000, pp. 197–212.

120 BIBLIOGRAPHY

[40] P. C. J. Li and C. Zhang, “Mutualcast: An Efficient Mechanism for One-to-Many Con-
tent Distribution,” in Proc. of the 1st ACM SIGCOMM Asia Workshop (SIGCOMM ASIA
2005), 2005.

[41] M. B. H. Deshpande and H. Garcia-Molina, “Streaming Live Media Over Peer-to-Peer
Network,” Standford University, Tech. Rep., 2001.

[42] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Application Layer Multi-
cast,” in Proc. of ACM SIGCOMM 2002, 2002.

[43] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: An Efficient Peer-to-Peer Scheme for Media
Streaming,” in Proc. of IEEE INFOCOM 2003, 2003.

[44] J. A. D. Kostic, A. Rodriguez and A. Vahdat, “Bullet: High Bandwidth Data Dissemina-
tion Using an Overlay Mesh,” in Proc. of the 19th ACM Symposium on Operating Systems
Principles (SOSP 2003), 2003.

[45] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Heterogeneous Unstruc-
tured Tree-based Peer to Peer Multicast,” in Proc. of the 14th IEEE International Confer-
ence on Network Protocols (ICNP 2006), 2006.

[46] V. Venkataraman, P. Francis, and J. Calandrino, “Chunkyspread: Multitree Unstructured
Peer-to-Peer Multicast,” in Proc. of the 5th International Workshop on Peer-to-Peer Sys-
tems (IPTPS 2006), 2006.

[47] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drIven MEsh-Based Stream-
ing,” in Proc. of IEEE INFOCOM, May 2007, pp. 1415–1423.

[48] M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, “A Peer-to-Peer Network for Live Media
Streaming: Using a Push-Pull Approach,” in Proc. of ACM Multimedia 2005, 2005.

[49] F. Wang, Y. Xiong, and J. Liu, “mTreebone: A Hybrid Tree/Mesh Overlay for Application-
Layer Live Video Multicast,” in Proc. of IEEE ICDCS 2007, June 2007.

[50] J. D. Mol, D. H. P. Epema, and H. J. Sips, “The Orchard Algorithm: Building Multi-
cast Trees for P2P Video Multicasting Without Free-Riding,” IEEE Trans. on Multimedia,
vol. 9, no. 8, pp. 1593–1604, Dec. 2007.

[51] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Split-
Stream: High-Bandwidth Multicast in Cooperative Environments,” in Proc. of the 19th
ACM Symposium on Operating Systems Principles (SOSP 2003), 2003.

BIBLIOGRAPHY 121

[52] V. Padmanabhan, H.Wang, P. Chou, and K. Sripanidkulchai, “Distributing Streaming Me-
dia Content Using Cooperative Networking,” in Proc. of the 12th International Work-
shop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV
2002), 2002.

[53] Y. Cui and K. Nahrstedt, “Layered Peer-to-Peer Streaming,” in Proc. of NOSSDAV, Jun.
2003, pp. 162–171.

[54] R. Rejaie and A. Ortega, “PALS: Peer-to-Peer Adaptive Layered Streaming,” in Proc. of
NOSSDAV, Jun. 2003, pp. 153–161.

[55] Y. Liu, W. Dou, and Z. Liu, “Layer AllocationAlgorithms in Layered Peer-to-Peer Stream-
ing,” in Proc. of IFIP international conference on network and parallel computing (NPC),
Oct. 2004, pp. 167–174.

[56] N. Magharei and R. Rejaie, “Adaptive Receiver-Driven Streaming fromMultiple Senders,”
Multimedia Systems, vol. 11, no. 6, pp. 550–567, Jun. 2006.

[57] M. Mushtaq and T. Ahmed, “Smooth Video Delivery for SVC Based Media Streaming
Over P2P Networks,” Jan 2008, pp. 447–451.

[58] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or Multiple-Tree: A Comparative Study of
Live P2P Streaming Approaches,” pp. 1424–1432, May 2007.

[59] J. Seibert, D. Zage, S. Fahmy, and C. Nita-Rotaru, “Experimental Comparison of Peer-
to-Peer Streaming Overlays: An Application Perspective,” in LCN 2008, Oct. 2008, pp.
20–27.

[60] A. Ganesh, A.-M. Kermarrec, and L. Massoulie, “Peer-to-Peer Membership Management
for Gossip-Based Protocols,” IEEE Trans. on Computers, vol. 52, no. 2, pp. 139–149, Feb.
2003.

[61] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen, “The Peer Sampling Ser-
vice: Experimental Evaluation of Unstructured Gossip-based Implementations,” in Proc.
of the 5th ACM/IFIP/USENIX International Conference on Middleware. New York, NY,
USA: Springer-Verlag New York, Inc., 2004, pp. 79–98.

[62] J. Zhao, F. Yang, Q. Zhang, Z. Zhang, and F. Zhang, “LION: Layered Overlay Multicast
With Network Coding,” IEEE Trans. on Multimedia, vol. 8, no. 5, pp. 1021–1032, Oct.
2006.

[63] X. Xiao, Y. Shi, B. Zhang, and Y. Gao, “OCals: A Novel Overlay Construction Approach
for Layered Streaming,” May 2008, pp. 1807–1812.

122 BIBLIOGRAPHY

[64] J. Sacha, B. Biskupski, D. Dahlem, R. Cunningham, R. Meier, J. Dowling, and M. Haahr,
“Decentralising a Service-Oriented Architecture,” Peer-to-Peer Networking and Applica-
tions, vol. 3, pp. 323–350, 2010.

[65] A. Payberah, J. Dowling, F. Rahimian, and S. Haridi, “gradienTv: Market-Based P2P Live
Media Streaming on the Gradient Overlay,” in Distributed Applications and Interoperable
Systems, ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2010,
vol. 6115, pp. 212–225.

[66] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale Content Distribution,”
in Proc. of IEEE INFOCOM 2005, 2005.

[67] C. Gkantsidis, J. Miller, and P. Rodriguez, “Anatomy of a P2P Content Distribution Sys-
tem with Network Coding,” in Proc. of the 5th International Workshop on Peer-to-Peer
Systems (IPTPS 2006), 2006.

[68] BitTorrent. [Online]. Available: http://www.bittorrent.com/

[69] D. Qiu and R. Srikant, “Modeling and Performance Analysis of Bittorrent-Like Peer-to-
Peer Networks,” in Proc. of ACM SIGCOMM, 2004.

[70] D. W. Y. Tian and K. W. Ng, “Modeling, Analysis and Improvement for Bittorrent-Like
File Sharing Networks,” in Proc. of IEEE INFOCOM 2006, 2006.

[71] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. R. Rodriguez, “Is High-
Quality VoD Feasible using P2P Swarming?” in Proc. of the 16th international Confer-
ence on World Wide Web (WWW), Aug. 2007, pp. 903–912.

[72] M. Wang and B. Li, “Lava: A Reality Check of Network Coding in Peer-to-Peer Live
Streaming,” in Proc. of IEEE INFOCOM, May 2007, pp. 1082–1090.

[73] H. Shojania and B. Li, “Parallelized Progressive Network Coding With Hardware Accel-
eration,” in Proc. of Fifteenth IEEE International Workshop on Quality of Service, June
2007, pp. 47–55.

[74] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer Networks,” in Proc. of
the 6th ACM SIGCOMM conference on Internet measurement (IMC). New York, NY,
USA: ACM, 2006, pp. 189–202.

[75] ITU-T and I. JTC1. (2008) JSVM Software version JSVM 9.17. [Online]. Available:
http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-Reference-Software.htm

[76] PeerSim: A Peer-to-Peer Simulator. [Online]. Available: http://peersim.sourceforge.net/

BIBLIOGRAPHY 123

[77] S. Voulgaris, D. Gavidia, and M. V. Steen, “CYCLON: Inexpensive Membership Man-
agement for Unstructured P2P Overlays,” Journal of Network and Systems Management,
vol. 13, 2005.

[78] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a Feather: Homophily in Social
Networks,” Annual Review of Sociology, vol. 27, no. 1, pp. 415–444, 2001.

[79] P. Singla and M. Richardson, “Yes, There is a Correlation - From Social Networks to
Personal Behavior on the Web,” in Proc. of ACM WWW, 2008, pp. 655–664.

[80] Z. Xiao, L. Guo, and J. Tracey, “Understanding Instant Messaging Traffic Characteristics,”
in Proc. of IEEE ICDCS, 2007.

[81] J. Leskovec and E. Horvitz, “Planetary-Scale Views on a Large Instant-Messaging Net-
work,” in Proc. of ACM WWW, 2008, pp. 915–924.

[82] B. A. Nardi, S. Whittaker, and E. Bradner, “Interaction and Outeraction: Instant Messag-
ing in Action,” in Proc. of ACM CSCW, 2000.

[83] I. Menken, Cloud Computing - The Complete Cornerstone Guide to Cloud Computing
Best Practices. London, UK, UK: Emereo Pty Ltd, 2008.

[84] Android Cloud to Device Messaging Framework. [Online]. Available: http://code.google.
com/android/c2dm/index.html

[85] NodeXL. [Online]. Available: http://nodexl.codeplex.com/

[86] PPLive Traces. [Online]. Available: http://dprg.cs.uiuc.edu/downloads/

[87] E. Sgarbi and D. L. Borges, “Structure in Soccer Videos: Detecting and Classifying High-
lights for Automatic Summarization,” Lecture Notes in Computer Science, vol. 3773/2005,
pp. 691–700, 2005.

[88] PlanetLab: An open platform for developing, deploying, and accessing planetary-scale
services. [Online]. Available: http://www.planet-lab.org/

[89] S. Robinson, Simulation : The Practice of Model Development and Use. John Wiley &
Sons, 2004.

[90] C. Kiddle, R. Simmonds, C. Williamson, and B. Unger, “Hybrid Packet/Fluid Flow Net-
work Simulation,” in Proc. of the seventeenth workshop on Parallel and distributed simu-
lation. PADS 2003, June 2003, pp. 143–152.

124 BIBLIOGRAPHY

[91] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers, “The
state of peer-to-peer simulators and simulation,” in Proc. of ACM SIGCOMM, vol. 37,
no. 2, New York, NY, USA, 2007, pp. 95–98.

[92] The Network Simulator ns-2. [Online]. Available: http://www.isi.edu/nsnam/ns/

[93] M. Baker and T. Guili, “Narses: A scalable flow-based network simulator,” in Technical
report, Stanford University, 2002. [Online]. Available: http://arxiv.org/abs/cs/0211024v1

[94] The Overlay Simulation Framework. [Online]. Available: http://www.oversim.org/

[95] OMNeT++ – Network Simulation Framework. [Online]. Available: http://www.omnetpp.
org/

[96] Y. Bertsekas and R. Gallager, Data Networks. New York: Prentic Hall, Englewood Cliffs,
1987.

[97] F. L. Piccolo, G. Bianchi, and S. Cassella, “QRP03-4: Efficient Simulation of Bandwidth
Allocation Dynamics in P2P Networks,” in Proc. of IEEE GLOBECOM 2006, 1 December
2006, pp. 1–6.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

