
UNIVERSITY OF OSLO
Department of Informatics

Interoperability in
Monitoring and
Reporting Systems

Nishes Joshi

Network and System Administration

Oslo University

May 23, 2012

1

Interoperability in Monitoring and Reporting Systems

Nishes Joshi

Network and System Administration
Oslo University

May 23, 2012

Abstract

Monitoring and Reporting are an integral part of IT infrastructure. Lack of single tool
that covers all the need for monitoring in an organization has led to uses of different
kinds of monitoring tools within an organization. Existence of diverse monitoring tools
has led to significant heterogeneity in an infrastructure between the tools and the data
they measure.The monitoring tools generally differs in the data structures and interac-
tion interfaces that they implement. One of the key issue in todays monitoring scenario
is the interoperability between several monitoring system and the heterogeneous data
they produce.

In this thesis some of the current monitoring problems that arises due to diversity in
monitoring tools are briefly discussed. It also discusses how a standard common data
model can benefit the interoperability between the tools. The implementation of simple
proof of concept integration between selected monitoring tools is also explored. The
results of implementation indicates the benefits of information interchange between
the tools for solving many problems or difficulties that are discussed. The thesis also
addresses some challenges in data integration between different tools.

Acknowledgments

Firstly I would like to thank my beloved family, without whose love, support and
sacrifices none of this would have been possible.I also want to thank my girlfriend
Namrata Pradhan, for her help and support through out the whole process.

I would specially like to thank my supervisor Ismail Hassan for his precious and
valuable support, suggestion and constructive critics in regards to this master thesis.
I am also grateful for professor Mark Burgess for his crucial guidance, support and
ideas for this master thesis.

Lastly I would like to express my sincere thanks and respect towards University
of Oslo and Oslo and Akershus University College of Applied Sciences (HiOA) for
providing me opportunity to become part of this master program.

Contents

1 Introduction 3
1.1 Monitoring and Reporting . 3

2 Background and literature 4
2.1 What is monitoring and Reporting 4
2.2 Software comparison . 5
2.3 Monitoring terminologies . 6

2.3.1 SNMP . 7
2.3.2 CIM . 8
2.3.3 RMON . 8
2.3.4 NETCONF . 9
2.3.5 RRDTool . 9

2.4 Interoperability between tools . 10
2.4.1 Syntactic interoperability . 10
2.4.2 Semantic interoperability . 10

3 Problems 11
3.1 Common interface . 11
3.2 Scalability . 11
3.3 Data Visualization . 12

4 Model and Methodology 15
4.1 Defining a common model for data representation 15

4.1.1 Global-as-view GAV . 16
4.1.2 Local-as-view LAV . 16

4.2 XML as common data model based on data to be integrated 17
4.2.1 Why XML as data source? 18
4.2.2 Definition of common model elements 18

4.3 Architecture for integration . 20

5 Implementation 23
5.1 Data wrapper layer for CFEngine . 23

5.1.1 Architecture . 24
5.1.2 Monitoring and Reporting 25
5.1.3 Data storage model . 27
5.1.4 API . 27
5.1.5 Implementation . 28

5.2 Data wrapper layer for Munin . 32

1

CONTENTS

5.2.1 Architecture . 32
5.2.2 Monitoring and Reporting 33
5.2.3 Data storage model . 33
5.2.4 API . 33
5.2.5 Implementation . 34

5.3 Data formatter for Groundworks . 35
5.3.1 Architecture . 36
5.3.2 Monitoring and Reporting 36
5.3.3 Data storage model . 37
5.3.4 API . 37
5.3.5 Implementation . 38

5.4 Data formatter for Graphite . 42
5.4.1 Architecture . 42
5.4.2 Monitoring and Reporting 42
5.4.3 Data storage model . 42
5.4.4 API . 44
5.4.5 Implementation . 45

6 Results 46
6.1 Non-privileged process . 49
6.2 Munin process threads . 51
6.3 CFEngine Root process . 53
6.4 Munin system load average . 55
6.5 Disk Free . 58
6.6 Syslog . 59

7 Discussion and future work 61
7.1 Tools selection for integration . 61
7.2 Implementation . 62
7.3 Problems . 63
7.4 Future work . 63

8 Conclusion 64

A Source code 65
A.1 CFEngine Data Wrapper . 65
A.2 Munin data formatter . 72
A.3 Data Formatter . 76

2

Chapter 1

Introduction

1.1 Monitoring and Reporting

Nowadays our system infrastructures are becoming more and more complex with very
high level of dependencies between different components. And having a successful
architecture with quick maintenance time , minimum downtime is quite essential when
it comes to business critical systems. Our systems are growing complex and large in
scale and there is a huge need to monitor those system and keep us informed about
the state of the system.This is where monitoring tools comes into picture. Monitoring
tools are one of the critical part of the whole architecture of the infrastructure that we
build. Monitoring the system and altering when something needs to be watched are
the most essential things that system administrators need to perform on daily basis.

The benefits of the monitoring and reporting systems are quite huge and cannot be
ignored. Some of the main features or benefits are

Identification of bottlenecks When services are not running according to the desired
quality level, monitoring can help trouble shoot the cause quickly. A slow sys-
tem may be due to various reasons such as slow cpu , slow I/O access , low
memory , congested network etc. If a good monitoring systems are in place
these situation can be quickly identified and resolved.

Capacity planning In a perfect world, administrators prepare in advance in order to
avoid performance bottlenecks altogether, using capacity planning tools to pre-
dict in advance how servers should be configured to adequately handle future
workloads. Monitoring networks provides very valuable information that can
help in making decision. Through data gathering and analysis of network per-
formances , history of previous data trends , high level view of the architecture
, one can answer about the performance and capacity of the infrastructure and
make informed decision when needed. The goal of capacity planning is to pro-
vide satisfactory service levels to users in a cost effective manner.

Security Monitoring is also applicable in security area. It can automate system inter-
rogation and can easily detect anomaly.It can set sensors on high risk systems
and can improve intrusion detection and incident response and can greatly im-
prove forensics.

3

Chapter 2

Background and literature

2.1 What is monitoring and Reporting

Basically in simple terms Monitoring involves periodically taking measurements and
checking some system state or variable to present or detect correctness of the state or
service that is being monitored. Some example of monitoring would be to periodically
checking the machine if its running or not or checking some service state if its actu-
ally functioning as required. While the task seems to look easy for small system to
do it manually , it becomes hugely complex and even impossible due to sheer num-
ber of monitoring that has to be done on a huge system. That is why there are lots
of monitoring tools available today to solve these problems with different solutions.
Monitoring tools are critical to quickly identify and address problems that affect an
IT organizations service. These tools scan for problems with network, systems, and
application resources that a company relies on for its business. In general goals for
these monitoring softwares can be briefly summarized as below

• monitor the system if its working as required by the specification, business goals

• monitor the system for its QoS(Quality of Service), ensure the system is per-
forming efficiently as expected.

• detect anomalies by comparing its previous state or known state

• provide real time information about the monitored system

On the other hand, Reporting goes hand-in-hand with Monitoring. Reporting term
is often referred as to present the monitored values to give it a meaningful context
generally by presenting it with some short summaries from some statical analysis or
displaying it in meaningful visualization such as graph, charts so that the it can be
analyzed and interpreted quickly to detect the state of monitored system.

Previously getting the data from the system was considered a problem , but now
collection of data has become a easier task , but managing such huge collected data
and analysis of those data’s for something meaningful has become a challenge.

In a data deluge–era sensing system, the number and resolution of the
sensors grow to the point that the performance bottleneck moves to the

4

2.2. SOFTWARE COMPARISON

sensor data processing, communication, or storage subsystem1 .

Todays modern monitoring systems can generate huge amount of data. Our infras-
tructure , business , services , resources everything is scaling out very quickly and so is
the stats or the monitored variable with them. Just storing the generated data’s for such
system has become a challenge let alone getting something comprehensible meaning
out of them. But as our business requirement highly depends on the IT infrastructure,
we cannot ignore the monitoring and reporting part but must be able to quickly analyze
, predict and be able to take action whenever necessary.

As this need has identified by many , there are numerous solution out there to
handle the situation. There are lots of tools out there to solve or tackle the mentioned
problem. As tools has emerged they have taken very diverging solution to achieve the
goals , some tools specializing in some area like collecting data , monitoring while
some tools excelling in presenting the data’s.

As we know there is no perfect solution or “one tool to rule them all”, We are
inclined to piece together many different tools to achieve our business goals. Many
tools in these area can be categorized in different parts 2 mainly

• Collect

• Transport

• Process

• Store

• Present

In current scenario tools for monitoring or reporting is either one of the part or
some mixture of the part. Some solution does the collection part quite well leaving off
other areas while other tool fits the bill in other areas. Some examples are Collectd
[1]. “collectd is a daemon which collects system performance statistics periodically
and provides mechanisms to store the values in a variety of ways, for example in RRD
files.” [1] As good as Collectd is in collecting performance data it doesn’t provide
presentation of the data in graphical way like graphs or charts. GroundWorks [2],
Graphite [3] are some tools that has been ahead in visualization and presentation part.

2.2 Software comparison

As there are so many tools to accomplish the same task, choosing or comparing them
is often not easy or straightforward. Since the quality of products varies widely, both
industry and the research community have reported several evaluation methods that are
tailored to the specific characteristics of product. However, research has shown that
practitioners rarely use formal selection procedures [4].

Probably the most typical problem in software evaluation is the selection of one
among many software products for the accomplishment of a specific task. software

1Dr. Richard G. Baraniuk Science Magazine 02/2011
2http://serialized.net/2011/02/getting-more-signal-from-your-noise/

5

2.3. MONITORING TERMINOLOGIES

evaluation may have different points of view and may concern various parts of the
software itself, its production process and its maintenance. Thus, software evaluation
is not a simple technical activity, aiming to define an ”objectively good software prod-
uct”, but a decision process where subjectivity and uncertainty are present without any
possibility of arbitrary reduction. [5]

Basically evaluating or comparing the software contains evaluating certain impor-
tant attributes of the software which includes

• functionality

• cost

• market share

• support

• maintenance

• reliability

• performance

• scalability

• usability

• security

• flexibility

• interoperability

• legal/license issues

Some of the previously invented evaluation framework which are mostly relevant
for OSS (open source softwares) are

• Comparative assessment of open source software using easy accessible data [6]

• Method for Qualification and Selection for open source software [7]

• A Quality Model for Open Source Software Selection [8]

2.3 Monitoring terminologies

Instead of a single, centrally managed system, systems have become widely distributed,
with the importance and sophistication of each component increasing. Issues such as
availability, performance, fault identification and diagnosis all became greater chal-
lenges to system administrators. In the extreme case, the exponential growth of the
Internet presented a clear need for standard management approaches. Following some
early protocols such as the Simple Gateway Monitoring Protocol (SGMP), the Simple
Network Management Protocol (SNMP) gained early acceptance as the management
protocol of choice for IP networks.

6

2.3. MONITORING TERMINOLOGIES

2.3.1 SNMP

The Simple Network Management Protocol (SNMP) has been the most widely used
method for network management on the Internet since it was introduced in the late
1980s. However, SNMP has been used mostly in monitoring for fault and performance
management,but was hardly used for configuration management due to its limitations
[9].

SNMP (Simple Network Management Protocol) is the common language of net-
work monitoring. It is integrated into most network infrastructure devices today, and
many network management tools include the ability to pull and receive SNMP infor-
mation. SNMP extends network visibility into network-attached devices by providing
data collection services useful to any administrator. These devices include switches
and routers as well as servers and printers. The structure of SNMP is governed by
Management Information Bases (MIBs)[10] which describe what each data entry rep-
resents.

A MIB is a database used to store management information in networks. They
are used by network management systems to identify network data objects that are
stored, retrieved and set by the system. A MIB uses a hierarchical tree structure to
store an extensible collection of data. A subset of Abstract Syntax Notation is used
to specify an object. The MIB used for SNMP is standardized, however, it allows
private organizations to insert custom objects into the structure. An individual orga-
nization can extend the standard MIB defined by SNMP by adding to the tree below
an assigned node under iso.org.dod.internet.private.enterprise. Cisco for example has
been assigned number 9 under enterprises. So, Cisco creates MIBs entries for its own
devices under iso.org.dod.internet.private.enterprises.cisco.

Modern computer networks require that thousands of different devices from hun-
dreds of different manufacturers successfully communicate with each other. For this
reason, standards have been developed to ensure that products from different manufac-
turers inter operate successfully. In the network monitoring world, standards such as
MIB-II have been designed to provide an easy way for network management products
to inter operate with the large amount of devices on the market. Unfortunately, tech-
nology often evolves faster than the standards that are developed to carter them. So
keeping both of them in sync is very difficult to achieve.

The SNMP MIB-II tries to tackle this problem by providing the enterprises object
identifier, where manufacturers can create their own, device specific, MIB trees. As
technology advances, the gap between the standardized MIBs and the requirements of
the technology increases. This results in more and more information about a device
being stored under the enterprises OID, to the point where, when dealing with modern
technologies, a vast majority of the management information about the device is only
available through the enterprises OID.

Network management tools using these enterprises MIBs are, in general, limited
to working with devices from one vendor. The effect of this limitation is that, in order
to fully manage a network using these tools, organizations are required to implement
a homogeneous network that is, a network where all network infrastructure and mon-
itoring tools are sourced from a single vendor.

Unfortunately this is not always desirable or possible. Networks tend to grow in
an ad-hoc fashion, depending on the demands of the users of that network. This is

7

2.3. MONITORING TERMINOLOGIES

especially true of small organizations that do not have the resources to implement long
term strategic plans. The result is usually a heterogeneous collection of devices from
different manufacturers.

Although widely used, SNMP is not without its limitations. SNMP is a polled
system. It requires that monitoring stations actively poll devices for information. This
can result in significantly increased network traffic if the polling frequency is not care-
fully monitored. That is, as the network expands, the amount of management data to
be processed and transferred between managers and agents is continuously increasing.
Therefore, SNMP is insufficient to manage these huge and continuously expanding
networks because of constraints in both scalability and efficiency. Many other disad-
vantages are also encountered on the usage of the SNMP for large scale monitoring as
mentioned on the paper [11].Some of them are

• Manager station becomes the processing bottleneck as the architecture grows.

• Manager station becomes the single point of failure , which may cause in-
availability of the monitoring services totally.

• Since SNMP is UDP based , the message exchanged between manager and agent
is limited by the size of a single UDP datagram.

• Sometimes Network distance between Manager and network elements can be
factor for reliably controlling them , due to inherent instability imposed by long
control loops

2.3.2 CIM

Common Information Model(CIM) provides a common definition of management in-
formation for systems, networks, applications and services, and allows for vendor ex-
tensions. CIM’s common definitions enable vendors to exchange semantically rich
management information between systems throughout the network.[12].

One of the goals of the CIM model is to consolidate and extend existing manage-
ment standards and instrumentation such as Simple Network Management Protocol
(SNMP), Desktop Management Interface (DMI), Common Management Information
Protocol (CMIP), and so on. It does this by using object-oriented design and con-
structs. CIM objects include computer systems, devices (like printers and batteries),
controllers (for example, PCI and USB controllers), files, software, physical elements
(like chassis and connectors), people, organizations, networks, protocol endpoints, pol-
icy, and more. CIM also is evolving its eventing object hierarchy and mechanisms.
CIM is part of the DMTF’s overall Web-based Enterprise Management (WBEM)[13]
initiative. WBEM includes CIM as the data definition, XML as the transport/encoding
method and HTTP as the access mechanism. CIM looks very promising for future in-
teroperability between different tools which depends upon different tools adaptation,
implementation and support for it as well as the demand from the users.

2.3.3 RMON

Remote network monitoring (RMON) [14] is the standard of how to monitor Internet
traffic. This is a standard that is supposedly implemented by Internet device vendors

8

2.3. MONITORING TERMINOLOGIES

so that a network using RMON-compliant devices can be monitored using RMON-
compliant software. The original version (sometimes referred to as RMON1) focused
on OSI Layer 1 and Layer 2 information in Ethernet and Token Ring networks. It has
been extended by RMON2 which adds support for Network- and Application-layer
monitoring and by SMON which adds support for switched networks. It is an industry
standard specification that provides much of the functionality offered by proprietary
network analyzers. RMON agents are built into many high-end switches and routers.

An RMON implementation typically operates in a client/server model. Monitoring
devices (commonly called ”probes” in this context) contain RMON software agents
that collect information and analyze packets. These probes act as servers and the
Network Management applications that communicate with them act as clients. While
both agent configuration and data collection use SNMP, RMON is designed to operate
differently than other SNMP-based systems:

• Probes have more responsibility for data collection and processing, which re-
duces SNMP traffic and the processing load of the clients.

• Information is only transmitted to the management application when required,
instead of continuous polling

2.3.4 NETCONF

While SNMP is still in wide use , the IETF considered it outdated. The NETCONF
working group was chartered to create a replacement protocol, based on XML. This
replacement is the NETCONF Configuration protocol [15]. It is a protocol designed
for installing, modifying and deleting the configuration of network devices. The oper-
ation carried out by NETCONF are carried on top of a Remote Procedure Call (RPC)
layer using an XML encoding.

Similar to how MIBs define the data structures for SNMP, data structure for NET-
CONF are defined using the Document Schema Definition Language (DSDL). The
Netmod working group is chartered to draft the translation mechanism between DSDL
schema’s and NETCONF XML.

2.3.5 RRDTool

Nagios , being a framework does not try to persist the data by default but has a different
ways and API that lets other system tap into its collected data. [16, Chapter 8]. Many
tools utilizes these features and come up with their own storage solution which can be
efficiently utilized for analysis. The most popular and solution to store performance
and monitoring matrix is Round Robin database.

In a round-robin database (RRD) usually time-series data like network bandwidth,
temperatures, CPU load etc. is stored. The data is stored in the way that system
storage footprint remains constant over time. This avoids resource expensive purge
jobs and reduces complexity. CFEngine [17] , collectd, groundworks [2] all utilize
RRD storage scheme. But when extracting and utilizing the data they all represent or
model the data differently for internal purpose.

RRD is the defacto standard to store time-based data and is frequently used to
store network performance data. RRD files contain a binary format developed by Tobi

9

2.4. INTEROPERABILITY BETWEEN TOOLS

Oetiker for his Multi Router Traffic Grapher (MRTG), and is now in use by countless
other tools. The rrdtool command line tool allows easy parsing, storing and conversion
of the data. Rrdtool can import and export data from and to XML format. The main
advantage of the RRD format is its fixed database structure that doesnot grow beyond
certain size and as well as the tools that are available to manipulate the data. RRD files
only contain little meta data, such a short description what was measured, the duration
and interval. It does not provide an ontology for metadata about the measurements to
describe exactly what was measured where and how. Such meta data are required if
different RRD data source are to be merged or automatic detection of anomalies is to
be done.

2.4 Interoperability between tools

Interoperability is defined as ability of the tools to interact between different heteroge-
neous tools that are currently present or any future tools without needing to change the
architecture of tools that are interacting. In other words it can be simply described as
ability of two or more component of system to easily interchange data for consump-
tion. Interoperability leads to innovation which results in different system components
that works together to increase the efficiency of the overall operation also giving end
users lot of freedom in choosing the right tools for the job.

The tools that are currently available have inefficient interoperability between them.
Mainly there are two types of interoperability that are mainly identified. They are Syn-
tactic interoperability and Semantic interoperability.

2.4.1 Syntactic interoperability

Syntactic interoperability refers to the system where they are able to exchange data and
communicate with other systems. They are usually achieved by the means of specified
data format, protocol etc. It is usually tackled in application layer. It is one of the
primer for achieving further interoperability between systems.

2.4.2 Semantic interoperability

When the systems overcome the difference between each other at knowledge level
then it is referred as Semantic interoperability. It means that the systems will be able
to infer knowledge, automatically interpret data, context in meaningful way to provide
useful result without any ambiguity or inconsistencies between two systems. Semantic
interoperability is therefore concerned not just with the packaging of data (syntax), but
the simultaneous transmission of the meaning with the data (semantics). To achieve
semantic interoperability, systems must be able to exchange data in such a way that the
precise meaning of the data is readily accessible and the data itself can be translated by
any system into a form that it understands[18]. A major challenge in achieving seman-
tic interoperability is the lack of explicit and compatible semantics in the digital design
representations. These are hard to overcome problems but are being addressed in other
domains like knowledge management and artificial intelligence using ontologies[18].
Some projects like CIM [12], Semantic web [19] has tried to tackle this problems.

10

Chapter 3

Problems

With availability of varied solution and tools for monitoring and reporting, it becomes
increasingly difficult to manage the ecosystem and takes huge amount of resource and
time just to have the whole monitoring ecosystem in place. And with wide diversion in
tools and solution we use , we increase the cost as well as complexity of the solution.
Some of the problems these induced heterogeneity in system are described below.

3.1 Common interface

We may never achieve a tool that solves all our problems at once and its better if it does
not try to do that, else the tool will just be monolithic and too complex. Instead we
should adapt for modularization and build tools confirming to certain standards whose
solution can be reused and easily adapted to used by other tools.

Most existing monitoring tools collect resource information and try to model them
to closely integrate with their own conceptual or GUI module.The disadvantage of this
is that other subsystems or applications that may need the same data are not able to
easily utilize the monitoring informations provided by other tools.

Example we would have many different monitoring tools in our system due to tech-
nical reasons , historical decision etc. They will be using different information models
to store or process their data. Some of the well known tools among many monitoring
solutions are CFEngine [17], Nagios [20], GroundWorks [2], Cacti, Ganglia [21] etc.
They all have different application interfaces and data model. They have different data
storage model adopted to their own requirements. Exchanging information or getting
information out of these tools requires lots of effort like writing wrappers or custom
solutions interacting with their API’s etc.

If all the tools had supported standard representation of data model then the task
of exchanging information between tools would have been very efficient. If there was
some common pattern or standard , then other tools in ecosystem would easily tap into
the data to provide extra functionality not provided by the native tools.

3.2 Scalability

Our Infrastructure are very dynamic in nature. We are never for sure how much expan-
sion are we going to have in our system. So the tools we choose for our infrastructure

11

3.3. DATA VISUALIZATION

should be flexible enough to handle the current scale and also the future. The monitor-
ing tool should scale in capacity to manage a cluster composed of a large number of
computers, without consuming lots of system resources. It should provide the largest
degree of parallelism to facilitate the concurrent control and monitoring of the un-
derlying cluster resources. The monitoring tool should exploit the parallelism of the
execution of monitoring task, providing group control and inspection, and reducing
overheads in coordinating monitoring agents and server. [22]

One of the key challenges faced by distributed systems is scalable monitoring of
system state. Given a large enough collection of nodes and the associated computa-
tional, I/O, and network demands placed on them by applications, failures in large-
scale systems become commonplace.[23]. In large scale environment, interaction
between different subsystems and resources can lead upto very complex interaction.
They can generate huge amount of data which may tend to generate large network
traffic and resource consumption. Monitoring and reporting tools need to be capable
of effectively handling those situations for analyzing and diagnosing any problems
quickly and effectively. Having a single point of reference to monitor huge distributed
system would be a key factor to operate efficiently in large heterogeneous environment.

3.3 Data Visualization

Most important aspect in visualization, is that the interface, or access, between the
visualization tool and the stored captures is flexible enough to accept any format of
data, to include data from multiple sources. It must also do this without seriously
inhibiting the timeliness of the rendered output. If the tool is too cumbersome or
resource intensive then you may limit the amount of manipulation that is possible with
the rendered result. The capability of manipulating the data is the key to making a
visualization technique an integral and useful part of monitoring and reporting.[24]

The idea behind data visualization in monitoring tools analysis is that the data may
be presented to the user in a format that is optimized for ease of comprehension, and
to make data and patterns more easily recognizable. A prime benefit of being able to
visualize these captures is that the new perspective often lends itself to revealing hidden
patterns that may not be readily apparent from the context of a flat file or queried result.
Also, the efficiency with which we can perform analysis on large amounts of data can
be increased,thus maximizing those resources required when performing that analysis.
Therefore, designers constructing capture and access applications are faced with more
than just issues related to different pieces of data. Beyond data, there are still the users,
the devices, time and locations involved in the experience to take into consideration in
the design.[25]

Furthermore, a true science of visualization must incorporate both a formal theory
of computer graphics and a theory of human perception.

One of the problems that plague data exploration and analysis involves large amounts
of data that can be difficult to visualize in ways that dont overwhelm the viewer or hide
whats important behind a wall of clutter. This is a problem that has been receiving a
great deal of recent attention by the research community. Methods are being explored
and sophisticated algorithms are being developed to tame the quantity of data either
by reducing the amount in ways that avoid loss of meaning, or by reducing visual

12

3.3. DATA VISUALIZATION

Figure 3.1

clutter in the visualization itself through novel approaches to the positioning of data
objects, better uses of color, or other visual attributes such as transparency. This work
is ideal for being included in commercial visualization software that is otherwise al-
ready effective.[26]

There are mainly three important issues in data visualization.[24]

Resource

Increasing the amount if monitoring usually leads to increase in resources such as stor-
age and processing power as well. Most monitoring system generate huge amount of
data and persisting these data’s for historical analysis or pattern recognition demands
lots of storage space to persist these data which can become a huge problem with re-
spect to management of the data and scalability issues as well. The more data we have
for visualization more resource are needed for the data processing.

Integration and Interoperability

Most tool in the network system co-exist together performing similar operation and
gathering similar type of data. Besides the issue of accessing the data is that of defining
and representing the data in a meaningful structure. Many data source exist such as flat
format , database but most of them can be ported or customized to the requirements in
constraint of cost and feasibility

Human factor

How people perceive and interact with a visualization tool can strongly influence their
understanding of the data as well as the system’s usefulness. Human factors therefore
contribute significantly to the visualization process and should play an important role
in the design and evaluation of visualization tools. [27] Much of the current method-
ology for designing visualization tools and interfaces is ad hoc and informal. Only a
few visualization designs utilize perceptual and cognitive theories.

For human beings, our potential is directly constrained by our attention, mem-
ory, and processing capabilities.[28] We human suffer from difficulty dealing with and
processing information that exists visually in more than three dimensions. Thus, many

13

3.3. DATA VISUALIZATION

tools are governed by what is assumed to be the ability of the user for useful persever-
ance.

14

Chapter 4

Model and Methodology

4.1 Defining a common model for data representation

Integrating data among different tools and making it accessible for analysis and inte-
gration for another system has major benefits. The goal of integrating or extracting
information from different source is to have a uniformed, well defined global view
of the information which can be readily accessible by the user and can be uniformly
queried with a well defined interface which abstracts the underlying heterogeneous
data source.

Initial step of accessing data and integrating with another source requires defining
a common model through which every sources data can transformed with semantically
rich representation of the source data.

The use of data transformation and integration for addressing the problem of in-
teroperability between heterogeneous information systems has been studied before
[[29],[30],[31]]. But in practice most of the tools has not been updated or build to
exchange data easily for reuse.

Data Sources and Services are usually independent of each other. As a result they
have their own structures and/or schema’s which may be very different. A common
data model provides a model that spans the entirety of a target domain applications and
data sources and effectively overlays the multitude of databases which data is drawn
from by individual applications. At the core of a common data model is the need for
all the data relationships, terminology and meanings that exist within an organization
to be clearly defined, thereby enabling a carrier to map its existing applications and
data definitions to the common model.

To represent such a common model we have to know the underlying system data
between different sources and try to come up with a rich representation which encloses
all the necessary data and context.

Data integration is the problem of combining data residing at different sources, and
providing the user with a unified view of these data.[32].

In many cases of mutually inconsistent data sources, the problem is generally dealt
with by means of suitable transformation and cleaning procedures applied to data re-
trieved from the sources.

Mapping between different information sources is a key step in integration ap-
proach.

15

4.1. DEFINING A COMMON MODEL FOR DATA REPRESENTATION

Currently there are mainly two major ways to create and manage mappings

4.1.1 Global-as-view GAV

In this approach, the integration is done by creating a middle integrated schema or a
global view which encloses all the source data views into single schema where data
are integrated and queried upon. This idea is effective whenever the data integration
system is based on a set of sources that is stable. The GAV approach favors the system
in carrying out query processing , because it tells the system how to use the sources to
retrieve data. In this case users issue queries against the mediated schema. However,
GAV suffers from two some shortcomings. It is very difficult to remap or rewrite the
global schema once any new source with new information is added. So updating the
global schema becomes tedious. And is very difficult to come up with a complete data
that sources may include. 4.1 illustrates an example of GAV architecture.

Figure 4.1: Global As View example

4.1.2 Local-as-view LAV

In this approach the mediator schema is just a domain model, as an conceptual database
comprising of information on each source. A source profile describes which portion of
the worlds information the source has. A new type of query processor matches a user
request against the currently available sources, and devises a query that computes the
desired result. The approach is often called profiling or Local As View (LAV); when
we use it as a component of a larger mediation approach, we will sometimes refer to
it as downward view (from M-schema to sources). This idea is effective whenever the
data integration system is based on a global schema that is stable and well-established
in the organization. LAV approach favors the extensibility of the system: adding a
new source simply means enriching the mapping with a new assertion, without other
changes. 4.2 illustrates an example of LAV architecture.

16

4.2. XML AS COMMON DATA MODEL BASED ON DATA TO BE
INTEGRATED

Figure 4.2: Local As View example

4.2 XML as common data model based on data to be inte-
grated

For our purpose we have chosen two different application CFEngine [17] and Munin
[33] as primary client source form which data are collected and two source application
where the data’s are being integrated,Graphite [3] and Groundworks[2].

Each of these tools gather basically two categories of data

• Host specific data such as name,ip etc

• Performance data such as disk free, number of users , no of processes etc

So studying these data model that they each capture and store for their processing
and the data model that is needed for the integration to the required source i.e in our
case Groundwork and Graphite. A simple common model can be generated which
expresses the data collected by the tools that can be easily exchanged and manipulated.
Basically the tool collect discrete time-series related performance data for monitoring
purposes which can be easily represented in an XML structure having schema as in 4.1

Listing 4.1: XML schema of the common model

<xs : schema
a t t r i b u t e F o r m D e f a u l t =” u n q u a l i f i e d ”
e l e m e n t F o r m D e f a u l t =” q u a l i f i e d ”
xmlns : xs =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xs : e l e m e n t name=” h o s t ”>

<xs : complexType>
<xs : sequence>

<xs : e l e m e n t t y p e =” xs : i n t ” name=” t ime ”/>
<xs : e l e m e n t t y p e =” xs : s t r i n g ” name=” s t a t u s ”/>
<xs : e l e m e n t t y p e =” xs : s t r i n g ” name=” i p ”/>
<xs : e l e m e n t t y p e =” xs : s t r i n g ” name=”name”/>
<xs : e l e m e n t t y p e =” xs : s t r i n g ” name=” s o u r c e ”/>
<xs : e l e m e n t name=” s e r v i c e ” maxOccurs =” unbounded ” minOccurs =”0”>

17

4.2. XML AS COMMON DATA MODEL BASED ON DATA TO BE
INTEGRATED

<xs : complexType>
<xs : sequence>

<xs : e l e m e n t t y p e =” xs : b y t e ” name=”Max”/>
<xs : e l e m e n t t y p e =” xs : s t r i n g ” name=” Un i t ”/>
<xs : e l e m e n t t y p e =” xs : b y t e ” name=”Warn”/>
<xs : e l e m e n t t y p e =” xs : i n t ” name=” MeasuredTime ”/>
<xs : e l e m e n t t y p e =” xs : s t r i n g ” name=” S t a t e ”/>
<xs : e l e m e n t t y p e =” xs : s t r i n g ” name=” Message ”/>
<xs : e l e m e n t t y p e =” xs : b y t e ” name=”Min”/>
<xs : e l e m e n t t y p e =” xs : s t r i n g ” name=” Labe l ”/>
<xs : e l e m e n t t y p e =” xs : b y t e ” name=” C r i t i c a l ”/>
<xs : e l e m e n t t y p e =” xs : b y t e ” name=” MeasuredValue ”/>
<xs : e l e m e n t t y p e =” xs : s t r i n g ” name=” Type”/>

</ xs : sequence>
</ xs : complexType>

</ xs : e lement>
</ xs : sequence>

</ xs : complexType>
</ xs : e lement>

</ xs : schema>

4.2.1 Why XML as data source?

XML was introduced in the mid-1990s as a mark-up language which defines a set
of rules for representation of document in a format that is both easily readable by
humans and easily processed by machines. It gained immediate foothold as a data
interchange format. Over time, gaining from a wide variety of research, XML has
become a valuable data format within and across enterprises for representing data in
persistent and transient applications.

XML provides a quite natural way of structuring data, based on hierarchical, graph-
based representations. Such models have the advantage of being simple, standard, and
well accepted, but also powerful enough to represent structured, unstructured, and
semistructured information. Thus, XML works well as a common data model in vari-
ety of different scenarios be it for different applications or standard web. In addition,
several research efforts have investigated the use of graph-based data models for man-
aging semistructured data and for integrating heterogeneous data sources.

Standardizing the schema and the tags of XML greatly increases the portability of
the data and also help in simplifying the data integration process. Furthermore, XML
enables one to more naturally model differences between representations of data in
different sources.

Another major advantage of using XML as common format is the availability of the
tools and support for processing it. Almost every programming platform or application
has some level of XML processing capability which makes it very easy for processing
XML based data.

4.2.2 Definition of common model elements

As listed on 4.1 the schema of common model consist of the data structure that com-
prises both essential elements from the source data and the elements needed to inte-
grate the data to another system.

18

4.2. XML AS COMMON DATA MODEL BASED ON DATA TO BE
INTEGRATED

Basically the XML schema tries to model two types of information specifically,
one is host information and another is the service information that it is monitoring.
The illustration in 4.3 gives a overview of the data thats being modeled.

Figure 4.3: Diagram of common schema

The Host class models the attribute of the host that the data is currently being
analyzed which consist of

name A hostname is a label that is assigned to a device connected to a computer
network and that is used to identify the device.

ip This denotes the ip address of the host

status This indicated the current status of the host while reporting. Can be any string
denoting the current status as OK,DOWN,UP etc

time Timestamp of when the data is reported of the host

source The application source from where the data is generated eg cfengine,munin
etc

19

4.3. ARCHITECTURE FOR INTEGRATION

The service class models the attribute of the services or performance parameter for
which the host is currently reporting.For example it can be cpu, loadavg, no of users,
no of processes, memory etc. It consist of current attributes

min Minimum threshold value of the performance parameter

max Maximum threshold value of the performance parameter

status This indicated the current status of the service while reporting. Can be any
string denoting the current status as OK,CRITICAL,WARNING,DOWN,UP etc

measuredTime Timestamp of when the data is reported of the service

warn Value at which a warning can be generated

critical Value at which service is indicated to reach the critical level

measuredValue Current measured value of the service

unit unit of currently measured value

type unique identifier for the service

label General description of the service

Message Extra information about the service reporting

4.3 Architecture for integration

Once we have a common model defined, next step is to extract or transform the data
from the different source into the common model and then again analyzing the com-
mon model to export the data to another format for the target system integration. figure
4.4 gives a general overview of the architecture of the method for the data integration.

The architecture contains two layers of processes to transform or integrate one
source of data to another. In the following, brief description about the layers and their
services are described

1. Data wrapper layer As the source data has different structure that they are stored ,
they need to be transformed to our common XML model that has been described.
In order to achieve this goal , wrapper for different source has to be in place
which can read the data provided by the source and then transform it to our
common model. So in general every data source would have a wrapper around
it which converts the data. The wrapper can be a general script or program
which manipulates the source data and assimilates any information that needs
to be integrated to the target systems. Example of this would be a program
which collects data from CFEngine or Munin which has to be integrated to the
other system which maybe groundwork or graphite or any other system and then
formats the data collected into our common XML schema.

20

4.3. ARCHITECTURE FOR INTEGRATION

Figure 4.4: General Architecture View

21

4.3. ARCHITECTURE FOR INTEGRATION

2. Data formatter layer Once the data that has been formatted to our common schema
by the wrapper layer, It has to be integrated to other systems which expects the
data in different format. So the main function of the formatter layer is to for-
mat the common data model into the data format that the target system expects.
There would be different formatter for different target system. For example if
we are integrating data into the Groundwork then the formatter would format
the data in the format which groundwork expects. If we need to integrate to any
other system then similar formatter is created to carter the data into the expected
formated.

The benefit of having such a architecture is that each of the component remains
loosely coupled and can be developed separately and as needed. And they behave as
plug and play system. For example if any new source is added from which data has
to be integrated , a new data wrapper can be created easily to export the data into
common model and the same old formatter would suffice to integrate into the target
system. Also having a common model that is flexible enough to contain required data
makes it easier to transform it into many different target source without having to
modify the targeted applications.

22

Chapter 5

Implementation

For the implementation of our proposed architecture for data integration, we have
CFEngine and Munin as our primary data source from which the data collected are
then integrated into the target systems which are Groundwork and Graphite.

5.1 Data wrapper layer for CFEngine

The primary purpose of the data wrapper layer is to collect the data from the source
database or application and then formatting it to the common model. For this to happen
we must know the applications structure or API through which the data we need can
be extracted.

Cfengine is a policy-based configuration management system originally written by
Mark Burgess. Its licensed under the GNU General Public License (GPL) . It uses a
declarative language to define the desired end state of a system, as opposed to some
other configuration management tools that define what should be done to a system. In
CFEngine the state of the machines are managed through promises written in policy
files that get distributed to each agents running on the system.

It was first released in 1993, and it has evolved over time with evolving configura-
tion and monitoring scenarios , such as virtualization and cloud computing. CFEngine
is developed and designed to make it possible to automate very large numbers of sys-
tems in a scalable and manageable way. It uses very less resource compared to other
comparative tools, and it can run on everything from embedded devices and smart
phones to supercomputers.

New version of Cfengine i.e CFEngine 3 was released in 2008. CFEngine 3 is
different from many other automation mechanisms in that you do not need to tell it
what to do. Instead, you specify the state in which you wish the system to be, and
CFEngine will automatically and iteratively decide the actions to take to reach the de-
sired state, or as close to it as possible. Underlying this ability is a powerful theoretical
model known as Promise Theory[34], which was initially developed for CFEngine 3,
but which has also found other applications in Computer Science and in other fields
such as Economics and Organization.

Although the prime purpose of CFEngine is not monitoring, it contains one of the
most flexible and lightweight monitoring engines around. You can extract data about
system configuration, usage, resources and log data and turn this into readable reports.

23

5.1. DATA WRAPPER LAYER FOR CFENGINE

CFEngine’s has ability to monitor and extract useful monitoring performance matrices
which servers it as a very capable monitoring and reporting tool.

5.1.1 Architecture

CFEngine is an extensive framework. CFEngine runs as a client/server application.
The server provides new configurations, or policy files to the client, while the client
works to ensure the policy that has been specified. The policy is written the descriptive
language of CFEngine. This language describes the promises or state that host should
maintain. The agent makes the client conform to this policy in a convergent manner by
iterating over the policy repeatedly. CFEngine’s software agents run on each individual
computer but can communicate if they need to, as depicted the figure 5.1.

Figure 5.1: Components of CFEngine source:www.cfengine.com

The figure 5.2 shows how decisions flow through the parts of a system.
CFEngine is a pull based system. Every client on CFEngine system pulls the policy

files from the policy hub. Usually there is only one policy hub but can be replicated
to have better load balance if required. It is agent based software. It resides on and
runs processes on each individual computer under its management. So every computer
that needs to be managed must have CFEngine agent running on it and must have
one policy server through which it can connect and pull the policies to execute on the
system.

CFEngine uses a simple, private protocol that is based on (but not identical to)
that used by OpenSSH (the free version of the Secure Shel). It is based on mutual,

24

5.1. DATA WRAPPER LAYER FOR CFENGINE

Figure 5.2: decision flow of CFEngine source:www.cfengine.com

bi-directional challenge-response using an autonomous Public Key Infrastructure.In
CFEngine authentication by Public Key is mandatory and encryption of data transfer
is optional.

5.1.2 Monitoring and Reporting

In CFEngine, cf-monitord is a process which runs periodically every couple of minutes
and samples data for a number of performance matrices. The data are then stored in
an embedded database on the local host, using a algorithms that prevents the data size
from growing endlessly just like RRDtool.CFEngine learns about the systems pattern
and behavior over the period of time and reports about the measurement based on the
past behavior of the data. If something is out of the normal state that has been observed
over period of time then the alerts and reporting are done based on the classes that
CFEngine uses. CFEngine[17] is not a comprehensive monitoring tools so there are
certain goals behind the monitoring solutions of CFEngine. Some of those goals are

• To not waste users’ time with insignificant changes, but provide meaningful
updates at a rate that is defensible based on the rate of change of the system.

• provide meaningful information that is placed in the context of what is normal.

• reveal trends and patterns at a glance.

• To scale to tens of thousands of hosts without placing a significant burden on the
hosts being monitored.

• To be as hands-free in configuration as possible, but allow customization.

• To provide a feedback mechanism for system policy so that systems can respond
directly to conditions that are detected.

The list of measured attributes that is currently being monitored by CFEngine are
fixed to the following variable:

users The number of different users that appear in the process table of the system.

rootprocs The number of current processes started by root/Administrator.

userprocs The number of current processes started by non-privileged users.

25

5.1. DATA WRAPPER LAYER FOR CFENGINE

diskfree The amount of disk free on root file system.

loadavg The load average of the system (actually multiplied by 100).

Socket counts of network services distinguish between incoming and outgoing sock-
ets (to a service or from a client).

netbiosns Registers traffic to/from port 137.

netbiosdgm Registers traffic to/from port 138.

netbiosssn Registers traffic to/from port 139.

irc Registers traffic to/from port 194.

CFEngine Registers traffic to/from port 5308.

nfsd Registers traffic to/from port 2049.

smtp Registers traffic to/from port 25.

www Registers traffic to/from port 80.

ftp Registers traffic to/from port 21.

ssh Registers traffic to/from port 22.

wwws Registers traffic to/from port 443.

If tcpdump program installed in a standard location, then the monitor can be con-
figured to collect data about the network flows to your host.

icmp Traffic belonging to the ICMP protocol (ping etc).

dns Traffic to port 53, the Domain Name Service (usually a special case of UDP).

udp Miscellaneous UDP traffic that is not related to DNS.

tcpsyn Registers TCP packets with SYN flag set.

tcpack Registers TCP packets with ACK flag set.

tcpfin Registers TCP packers with FIN flag set.

misc Registers all other packets, not covered above.

The above description and variables are mentioned on [35].Reporting capabilities
in CFEngine depend on the software version include:

Community Edition Basic output to file or logs may be customized on a per-promise
basis. Users can design their own log and report formats, but data processing
and extraction from CFEngine’s embedded databases must be scripted by the
user.

26

5.1. DATA WRAPPER LAYER FOR CFENGINE

Nova In addition to community features, Nova provides automated extraction of data
from CFEngine’s self-learning agents, and the generation of a standard set of
reports in text, HTML or XML formats. Nova summarizes distributed data and
provides simple compression and aggregation of these summaries. Finally sum-
maries are tied into a knowledge map or semantic index for browsing by IT
operations. Command line tools in cf-report are also available for Nova users to
browse network-wide data.

CFEngine’s default behavior is to report to the console (known as standard output).
It’s default behavior is to report nothing except errors that are judged to be of a critical
nature. But CFEngine allows you to customize your report generation using “reports”
promises. Where we can customize the reports to any format like log, html, xml etc.
It interfaces with the system logging tools as well like Syslog for Unix-like systems,
while the event logger on Windows.

5.1.3 Data storage model

CFEngine approaches monitoring and reporting from the viewpoint of scalability so
there is no default centralization of reporting information, as this is untenable for more
than a few hundred hosts. So every host retains it own data.

In CFEngine the storage of the collected data values or monitored probes are stored
in a time series data in which an iterative algorithm is applied to analysis on the stored
periodic time to provide a smooth scroll-off in the significance of the data with time.
The Algorithm applied for the storage not only reduces the storage space for the data
by compressing it , but also decreases the computation cycle compared to traditional
time-series approach. The work is fully summarized in the paper “Two dimensional
time series for anomaly detection and regulation in adaptive systems” [36].

The data are gathered for a week at the interval of five minutes and are stored in em-
bedded database with simple key value pair of format “day:hour:Minute interval”.Currently
the supported database systems are Tokyo cabinet [37] and qdbm [38].

5.1.4 API

API stands for Application program interface. It is used for interfacing one program
with another program so that the interaction between multiple program would be eas-
ier. An API can be of many form ranging from complex library for programming
language or simple protocol for accessing certain features of the program. Some of
the example of API includes WEB API which includes set of HTTP protocol or REST
style API [39],Java APIs etc.

One of the most important factor for any program data to be manipulated or utilized
is to have access to the data it stores. This can be achieved through many different
ways. Also having a good API for accessing the underlying data means having a better
chance of integrating with other software platforms.

In CFEngine community edition the standard way of getting the data out for in-
tegrating with other tool is with cf-report utility. It can generate the monitored data
in the format that is described in the policy i.e (xml,html,csv or plain text) through
which one can collect the data’s and manipulate it. It takes data stored in CFEngine’s
embedded databases and converts them to human readable form.

27

5.1. DATA WRAPPER LAYER FOR CFENGINE

Another way of getting the performance data from cfengine is to use the inter-
nal policy variables. The variables discovered by cf-monitord are placed in ‘Variable
context “mon”. Monitoring variables are expected to be ephemeral properties, rapidly
changing.

5.1.5 Implementation

First approach

First approach of getting the data out of the cfengine was to use the cf-report utility
to generate the csv file with all the monitored data and information and then using a
Perl script to parse the generated file and model the data as we need and pass it to the
formatter for the integration with the target system. cf-report utility takes data stored
in CFEngine’s embedded databases and converts them to human readable form. cf-
report keeps the promises made in common bundles, and is affected by common and
reporter control bodies. Part of the policy where the generation of report is specified is
described in the listing 5.1

Listing 5.1: CFEngine policy for report generation

body r e p o r t e r c o n t r o l
{

any : :

r e p o r t s => {
” a l l ”
} ;

b u i l d d i r e c t o r y => ” $ (s y s . w o r k d i r) / r e p o r t s ” ;
r e p o r t o u t p u t => ” csv ” ;
s t y l e s h e e t => ” / c f e n t e r p r i s e . c s s ” ;

So whenever we run the cf-report utility in command line it will produce the csv
files of monitored data in the reports directory which has format as listing 5.2

Listing 5.2: CFEngine summary report generation file

0 , u s e r s , 4 . 2 0 0 0 0 0 , 5 . 9 9 4 1 6 8 , 0 .100000
1 , r o o t p r o c s , 47 .600000 , 1 . 0 0 0 0 0 0 , 0 .100000
2 , o t h e r p r o c s , 3 . 5 0 0 0 0 0 , 1 . 0 0 0 0 0 0 , 0 .100000
3 , d i s k f r e e , 62 .300000 , 1 . 0 0 0 0 0 0 , 0 .100000

.

Where the 2nd column denotes the service thats beings measured and 3rd column
has the value of the service determined at that time. So a simple perl script to read the
generated file and extract the service information and its measured value is developed
which after reading the values converts the data into XML format that conforms to
our common data model. The state of the services can also be deduced based on the
classes that are set during the monitoring activity. They are based on the anomaly
detection system that CFEngine uses[36]. CFEngine classifies anomalies by whether
the currently measured state of the system is higher or lower than the average for the

28

5.1. DATA WRAPPER LAYER FOR CFENGINE

current time of week. The amount of deviation is based on an estimate of the ‘standard
deviation’. When CFengine has acquired enough monitoring data, it classifies the
current state of the monitored metric into 4 levels:

normal means that the current level is less than one standard deviation above normal.

dev1 means that the current level is at least one standard deviation about the average.

dev2 means that the current level is at least two standard deviations about the average.

anomaly means that the current level is more than 3 standard deviations above aver-
age.

Each of these characterizations assumes that there are good data available. The cf-
monitord evaluates its data and decides whether or not the data are too noisy to be
really useful. If the data are too noisy but the level appears to be more than two
standard deviations above average, then the category microanomaly is used.

Some example classes that are set in the context are userprocs high dev2, user-
procs low dev1, www in high anomaly. So based on these classes we can determine
the state of the services and this class information can be read from the classes.csv file
that cf-reports produces when it runs.

Sample of generated class file is given at listing 5.3

Listing 5.3: CFEngine class file

1 . 0 0 0 0 , 0 . 0 0 0 0 , 1 0 0 0 6 , Tue May 1 17 :4
1 . 0 0 0 0 , 0 . 0 0 0 0 , u s e r s h i g h , Tue May 1 17 :4
0 . 0 1 5 6 , 0 . 1 7 5 4 , c f e n g i n e o u t h i g h , Tue May 1 17 :3
0 . 0 1 5 6 , 0 . 1 7 5 4 , o t h e r p r o c s h i g h , Tue May 1 17 :3
1 . 0 0 0 0 , 0 . 0 0 0 0 , e n t r o p y m i s c o u t l o w , Tue May 1 17 :4
1 . 0 0 0 0 , 0 . 0 0 0 0 , e n t r o p y m i s c i n l o w , Tue May 1 17 :4
1 . 0 0 0 0 , 0 . 0 0 0 0 , d i s k f r e e h i g h n o r m a l , Tue May 1 17 :4
0 . 9 9 8 8 , 0 . 0 4 4 9 , cpu0 low , Tue May 1 17 :4
0 . 9 9 8 8 , 0 . 0 4 4 9 , cpu low , Tue May 1 17 :4

The perl script generates the desired XML format and then send it to the Formatter
through socket which then is further processed. The script can be run as a cron job
with specified interval suitable for reporting the data. The data format generated by the
script is shown below(truncated for display). Full source code of the implementation
is shown at listing A.1

Listing 5.4: cfengine-data-collector.pl

<Host>
<ip >10 .0 .0 .6 < / ip>
<name>c f e n g i n e </name>
<sou rce>CFEngine </ sou rce>
<s t a t u s >OK</ s t a t u s >
<t ime >1336086854</ t ime>
<s e r v i c e >

<C r i t i c a l ></ C r i t i c a l >
<Label>u s e r s i n f o </ Label>
<Max></Max>
<MeasuredTime >1336086936</ MeasuredTime>

29

5.1. DATA WRAPPER LAYER FOR CFENGINE

<MeasuredValue >4.200000</ MeasuredValue>
<Message>
u s e r s checked , max−v a l : : 5 .994168 and min−v a l : : 4 . 2 0 0 0 0 0 | u s e r s = 4 . 2 0 0 0 0 0 ; 0 ; 0 ; 0
</Message>
<Min></Min>
<S t a t e>OK</ S t a t e>
<Type>u s e r s </Type>
<Unit>f l o a t </ Uni t>
<Warn></Warn>

</ s e r v i c e >
<s e r v i c e >

<C r i t i c a l ></ C r i t i c a l >
<Label>r o o t p r o c s i n f o </ Label>
<Max></Max>
<MeasuredTime >1336086936</ MeasuredTime>
<MeasuredValue >47.600000</ MeasuredValue>
<Message>
r o o t p r o c s checked , max−v a l : : 1 .000000 and min−v a l : : 4 7 . 6 0 0 0 0 0 | r o o t p r o c s = 4 7 . 6 0 0 0 0 0 ; 0 ; 0 ; 0
</Message>
<Min></Min>
<S t a t e>OK</ S t a t e>
<Type>r o o t p r o c s </Type>
<Unit>f l o a t </ Uni t>
<Warn></Warn>

</ s e r v i c e >
<s e r v i c e >

<C r i t i c a l ></ C r i t i c a l >
<Label>o t h e r p r o c s i n f o </ Label>
<Max></Max>
<MeasuredTime >1336086936</ MeasuredTime>
<MeasuredValue >3.500000</ MeasuredValue>
<Message>
o t h e r p r o c s checked , max−v a l : : 1 .000000 and min−v a l : : 3 . 5 0 0 0 0 0 | o t h e r p r o c s = 3 . 5 0 0 0 0 0 ; 0 ; 0 ; 0
</Message>
<Min></Min>
<S t a t e>OK</ S t a t e>
<Type>o t h e r p r o c s </Type>
<Unit>f l o a t </ Uni t>
<Warn></Warn>

</ s e r v i c e >
<s e r v i c e >

<C r i t i c a l ></ C r i t i c a l >
<Label> i r c i n i n f o </ Label>
<Max></Max>
<MeasuredTime >1336086854</ MeasuredTime>
<MeasuredValue >0.000000</ MeasuredValue>
<Message>
i r c i n checked , max−v a l : : 1 .000000 and min−v a l : : 0 . 0 0 0 0 0 0 | i r c i n = 0 . 0 0 0 0 0 0 ; 0 ; 0 ; 0
</Message>
<Min></Min>
<S t a t e>OK</ S t a t e>
<Type>i r c i n </Type>
<Unit>f l o a t </ Uni t>
<Warn></Warn>

</ s e r v i c e >
</Host>

30

5.1. DATA WRAPPER LAYER FOR CFENGINE

Second approach

Another method of getting the monitoring value out of the CFEngine is to use its
internal policy and access the variable defined during the agent run. CFEngine stores
the monitoring data in the context of mon and can be accessed any where in the promise
which can be then utilized for different purpose. This method is more reliable and
conforms more with CFEngine way than the first approach that is defined. For this
implementation a CEEngine policy is written to report any needed performance metric
through command promise to execute our custom perl script with the performance
value and other information as a parameter which then is analyzed and then modeled
into XML format and then sent to the formatter.

Below is the policy written in CFEngine where it reports the performance data to
external script.

Listing 5.5: cfengine policy to report performance data

bu nd l e a g e n t m o n i t o r
{

v a r s :
” c f e n g i n e o b s e r v a b l e s ” s l i s t => {

” d i s k f r e e ” ,
” u s e r s ” ,
” r o o t p r o c s ” ,
” o t h e r p r o c s ” ,
” l o a d a v g ” ,
” c f e n g i n e i n ” ,
” c f e n g i n e o u t ” ,
” s s h i n ” ,
” s s h o u t ” ,
” cpu ” ,
” s y s l o g ”} ;

commands :

” / u s r / b i n / p e r l / r o o t / da t a−c o l l e c t o r . p l −s OK
−m $ (c f e n g i n e o b s e r v a b l e s) −c $ (mon . v a l u e $ (c f e n g i n e o b s e r v a b l e s))
−n $ (s y s . h o s t) − i $ (s y s . i pv4) ”
i f v a r c l a s s => n o t (c a n o n i f y (” $ (c f e n g i n e o b s e r v a b l e s) h i g h d e v 2) ”)) ;

” / u s r / b i n / p e r l / r o o t / da t a−c o l l e c t o r . p l −s Warning
−m $ (c f e n g i n e o b s e r v a b l e s)
−c $ (mon . v a l u e $ (c f e n g i n e o b s e r v a b l e s))
−n $ (s y s . h o s t) − i $ (s y s . i pv4) ”
i f v a r c l a s s => c a n o n i f y (” $ (c f e n g i n e o b s e r v a b l e s) h i g h d e v 2 ”) ;

” / u s r / b i n / p e r l / r o o t / da t a−c o l l e c t o r . p l −s C r i t i c a l
−m $ (c f e n g i n e o b s e r v a b l e s) −c $ (mon . v a l u e $ (c f e n g i n e o b s e r v a b l e s))
−n $ (s y s . h o s t) − i $ (s y s . i pv4) ”
i f v a r c l a s s => c a n o n i f y (” $ (c f e n g i n e o b s e r v a b l e s) h i g h a n o m a l y ”) ;

31

5.2. DATA WRAPPER LAYER FOR MUNIN

}

In above policy “cfengine observables” is the list of observables or services to
report data on. And the command promise executes a perl script which takes the
parameter with service status, service name, service value, host and ip. Service status
are differentiated with the class context. eg if users high dev2 class is set for the users
service then service status is set as warning where as if users high anomaly is set then
critical status is sent as service status. The external perl script when executed with
the defined parameter generate the same XML structure as in listing 5.4 and send the
xml file to formatter for further processing. Full source code of the implementation is
shown at listing A.2.

5.2 Data wrapper layer for Munin

Munin is a networked resource monitoring tool that can help analyze resource trends
and detect performance problems.It collects different matrices form different config-
ured nodes or hosts and then persists it on central server for analyzing and viewing
graphs.Its emphasis is on plug and play capabilities. Using Munin you can efficiently
and easily monitor the performance of your computers, networks, applications and
whatever comes to mind. Munin uses the RRDTool (written by Tobi Oetiker) and the
framework is written in Perl, while plugins may be written in any language.

5.2.1 Architecture

Munin has a master/node architecture in which the master connects to all the nodes
at regular intervals and asks them for data. It then stores the data in RRD files, and
(if needed) updates the graphs. One of the main goals has been ease of creating new
plugins (graphs). Munin is run by a cron job every five minutes. So, every five minutes,
it connects to all the servers via a very simple protocol and plain TCP that it has to
monitor, fetches all the data, writes the data in RRD files, and recreates all the HTML
files and hundreds of PNG files.

Figure 5.3: Munin Architecture

32

5.2. DATA WRAPPER LAYER FOR MUNIN

5.2.2 Monitoring and Reporting

Munin collects all the monitoring data with its plugin system. Munin plugins run on
all the nodes that Munin monitors and report back all kinds of different statistics that
Munin can graph later. Plugin are generic and can be added to measure whatever one
wishes. Each munin-node installation brings an initial set of plugins. Depending on
the purpose and equipment of the node, we can add further plugins to monitor special
services or hardware. It updates the data at an interval of every five minutes by default.

Munin reports all the collected data by generating graphs and showing it on a
graphical web interface written in PHP.

5.2.3 Data storage model

Munin uses RRDTool [40] for both data logging and graphing system.Every things
that munin-master collects through the plugin is stored in rrdtool and then graphs are
generated in regular interval which are accessible from the web interface.

5.2.4 API

Munin does not have any official API to get the required data out. But as all data are
stored in RRDtool,we can manipulate the database and get the data out for manipulat-
ing. Another way to get the data out is to use the protocol used by the munin daemon
which it uses to talk to its nodes. Protocol for data exchange between daemon and
client is very simple and is described below

help Show available commands

list (node) Asks client to list all query-items available for query for this host. If no
host is given, default to host that runs the munin. Example load, cpu, memory,
disk etc

node nodes List hosts

config (query-item) Asks the client for configuration items

Listing 5.6: Example of munin config command

> c o n f i g l o a d
< g r a p h a r g s −− t i t l e ” Load a v e r a g e ”
< l o a d . l a b e l Load
< .
> c o n f i g memory
< g r a p h a r g s −− t i t l e ”Memory usage ” −−base 1024
< used . l a b e l Used
< used . draw AREA
< s h a r e d . l a b e l Shared
< s h a r e d . draw STACK
< b u f f e r s . l a b e l B u f f e r s
< b u f f e r s . draw STACK
< cache . l a b e l Cache
< cache . draw STACK
< f r e e . l a b e l F ree

33

5.2. DATA WRAPPER LAYER FOR MUNIN

< f r e e . draw STACK
< swap . l a b e l Swap
< swap . draw STACK

fetch (query-item) Fetches actual values.

Listing 5.7: Example of munin fetch command

> f e t c h l o a d
< l o a d . v a l u e 0 . 4 2
< .
> f e t c h memory
< used . v a l u e 98422784
< s h a r e d . v a l u e 1058086912
< b u f f e r s . v a l u e 2912256
< cache . v a l u e 8593408
< f r e e . v a l u e 235753472
< swap . v a l u e 85053440

version Print version string

5.2.5 Implementation

Mapping of Munin data to common model

A data wrapper for Munin was implemented using a perl script which would utilize the
munin’s protocol to talk with munin nodes using sockets and then fetch all the param-
eters that are measured and their value and then transform those collected parameters
into our common data model i.e the XML format and send it to the formatter for fur-
ther processing. The script can be scheduled with a cron job or invoked by any other
tools as required. Usually by default the munin nodes listen to the commands at port
4949. So if we send the above listed protocol command to munin nodes then we are
able to collect the data and other required parameters for our processing. Full source
code of the implementation is shown at listing A.3. Sample truncated output of the
data this wrapper generates is listed at 5.8.

Listing 5.8: data output of munin wrapper

<Host>
<ip >10 .0 .0 .5 < / ip>
<name>munin</name>
<s e r v i c e >

<C r i t i c a l ></ C r i t i c a l >
<Label ></Label>
<Max></Max>
<MeasuredTime >1336230485</ MeasuredTime>
<MeasuredValue >313065</ MeasuredValue>
<Message>OK sys tem u s e r c u r r e n t v a l u e 313065</ Message>
<Min></Min>
<S t a t e>OK</ S t a t e>
<Type>sys tem . use r </Type>

34

5.3. DATA FORMATTER FOR GROUNDWORKS

<Unit>f l o a t </ Uni t>
<Warn></Warn>

</ s e r v i c e >
<s e r v i c e >

<C r i t i c a l ></ C r i t i c a l >
<Label ></Label>
<Max></Max>
<MeasuredTime >1336230485</ MeasuredTime>
<MeasuredValue >812179</ MeasuredValue>
<Message>OK sys tem n i c e c u r r e n t v a l u e 812179</ Message>
<Min></Min>
<S t a t e>OK</ S t a t e>
<Type>sys tem . n i ce </Type>
<Unit>f l o a t </ Uni t>
<Warn></Warn>

</ s e r v i c e >
<s e r v i c e >

<C r i t i c a l ></ C r i t i c a l >
<Label ></Label>
<Max></Max>
<MeasuredTime >1336230485</ MeasuredTime>
<MeasuredValue >445589</ MeasuredValue>
<Message>OK sys tem sys tem c u r r e n t v a l u e 445589</ Message>
<Min></Min>
<S t a t e>OK</ S t a t e>
<Type>sys tem . system </Type>
<Unit>f l o a t </ Uni t>
<Warn></Warn>

</ s e r v i c e >
.

5.3 Data formatter for Groundworks

Next phase after the modeling of the source data into common data schema , it is to
transform it to the format that the target system expects it to be. Here we take two
software as our target system where the collected data will be integrated , they are i)
GroundWork and ii) Graphite.

The implemented data formatter runs as a daemon listening to any incoming mes-
sage and when upon receiving the message from the wrappers, tries to covert it to the
targeted system format for integration.

Groundworks (GWOS) is an unified monitoring and network management tool
which is built upon existing tools such as Nagios, NMap , RRDTools etc to give a
integrated one system administration tool to monitor anything. Its basically a sys-
tem to integrate multiple tools that can gather data and assimilate those data into one
common domain and present it in one place. GroundWork gives you availability and
performance information, with visualization tools and graphing. The included portal
makes it easy to integrate existing IT operations tools, like inventory, ticketing, asset
and configuration management systems. The GWOS integrates Nagios, SNMP proto-
cols, RRDtool, JBoss Portal, ICEfaces, MySQL, BIRT, Ganglia and Cacti which are
mature open source tools and widely deployed in various installation.

35

5.3. DATA FORMATTER FOR GROUNDWORKS

5.3.1 Architecture

GWOS is mostly built upon existing open source technologies. These technologies
includes JBOSS, Apache, Nagios, Cacti, and MySQL etc.

Figure 5.4: GWOS Architecture source:http://www.gwos.com/technology/

Tier 1: Instrumentation This is the layer that utilizes the most varied components.
Data gathering is performed by Nagios, by Cacti, and by other optional components
that use a standard, well documented data feeder for their output. Data is captured as
state changes, events, and performance measures.

Tier 2: Normalization Essentially, this layer stores the data in a normalized form,
and presents it on demand through web services or database queries. Think of it as the
data foundation of the next tier.

Tier 3: Portal This is the UI part of the system where users can see most of the
reports, status , graph and different system configuration of the system.

5.3.2 Monitoring and Reporting

GroundWork(GWOS) is equipped to monitor dozens of common infrastructure ele-
ments, primarily Nagios. Anything that can be monitored by Nagios is available in
GWOS. But it is not limited to Nagios, any other tool can be integrated for monitor-
ing.

36

5.3. DATA FORMATTER FOR GROUNDWORKS

The configuration of this part of GroundWork is done by collecting commonly
checked metrics into Profiles, which can then be applied to hosts. A profile can define
the monitoring of anything, leveraging the open nature of the system. The target can be
a server, a network device, an application, database or web server, or even an abstract
collection of other objects.

Groundwork has rich web portal through which various information and reports
can be accessed. Logs of events, performance graphs and many other information are
available through the web portal.

Figure 5.5: Groundwork web interface

5.3.3 Data storage model

All the data that are collected by groundwork are stored in the rational database system.
Current version of groundworks support PostgreSQL [41] database and MySQL [42]
database as their storage system.

In GroundWork storage of performance data is stored and manipulated by open
source RRD toolkit. The per script that comes with Groundwork periodically scans
Nagios logs file for performance data and populates the RRD database as configured
on the system. Any performance data that are submitted to Nagios can be graphed as
well as non Nagios specific data can be configured for storing and graphing as well.

To created RRD database for reporting, it provides a separate ”Performance Con-
figuration” section where many parameters for creating,updating graphs can be ad-
justed. This part of application allows the administrator to configure the services that
they want to have the graph from RRD database.

5.3.4 API

The model of GroundWork Foundation is closely related to the Nagios objects. This
includes:

Host Groups This includes Hosts as members.

Hosts This typically represents physical devices, and includes Services.

Service This typically represents a Nagios plugin executing on a specific host. A
Host-Service combination is unique in the monitoring system.

37

5.3. DATA FORMATTER FOR GROUNDWORKS

The following type of information can be retrieved through the standard API sup-
plied by the system.

Host Status This represents the current status and attributes of Host objects.

Service Status This represents the current status and attributes of Service objects.

Events These are typically time stamped messages that are generated by a monitoring
system or managed device.

Host Alerts Generated when a host changes state.

Host Notifications Generated when a notification occurs based on a Host Alert event.

Service Alerts Generated when a service changes state.

Service Notifications Generated when a notification occurs based on a Service Alert
event.

The above description is taken from [43].Currently it has PHP, Perl and Java API’s
for retrieving its underling data. It has it own framework for receiving data as well.
The foundation framework has flexible architecture to integrate data within its system
as well as to retrieve form it. It will normalize the data so it can be retrieved in a con-
sistent manner. The Foundation package includes Nagios, as the main monitoring sys-
tem. The Web Service interface is a new addition to Foundation Framework.Following
diagram 5.6 shows the different Foundation components and their interaction Ground-
Work Open Source, Inc.

Figure 5.6: GWOS API architecture source:http://gwfoundation.sourceforge.net/Foundation-
bookshelf-2.0.1.pdf

5.3.5 Implementation

Getting the data into the groundwork system to be integrated with its structure is quite
flexible. One of the common method is to use their Groundwork Foundation platform.
Another approach is to use their Nagios integration as a gateway to pass the data to its
system. As groundwork uses Nagios as their core monitoring system , any information

38

5.3. DATA FORMATTER FOR GROUNDWORKS

gathered by a Nagios plugin can be integrated into the system. Nagios Feeders or the
Event Broker in Groundworks take the information from the Nagios system and inserts
it into its foundation database.

For this method, we have to create first the Host records and the services record
for Nagios through groundwork. Services in Nagios falls into two categories

1. Active checks

2. Passive checks

Active checks in Nagios are scheduled in the Nagios schedule daemon where as
passive checks are checks initiated by external process. Active checks are be used
to poll a device or service for status information periodically. But there are cases
when this scenario is not applicable such as when there are firewall involved or any
other factors. Passive checks are useful for monitoring services that are asynchronous
in nature and cannot be monitored effectively by polling their status on a regularly
scheduled basis or services that cannot be effectively polled due to many restriction or
in feasibility such as firewall restrictions.

All the service checks are performed by the plugins in Nagios. Plugins are com-
piled executables or scripts that can run from command line and report back the status
of host or services. Nagios will process the results that it receives from the plugins
and perform any necessary actions as configured for the service such as running event
handlers, sending out notifications, etc.

For our implementation we will be using passive service check of Nagios to send
data. Some details of how passive check works is described in coming section.

In passive service checks, external application or script checks the status of the
host or the services records their data and status and writes the results of the check
in Nagios external command file. Then Nagios reads this external command file and
places the result of all passive checks into queue for later processing. Same queue are
used for both active and passive checks so there are no differences between results of
active and passive checks. This allows for seamless integration of status information
from external applications with Nagios.

Figure below describes the general architecture of Nagios.

Submitting Passive Service Check Results External applications can submit pas-
sive service check results to Nagios by writing a PROCESS SERVICE CHECK RESULT
external command to the external command file. The format of the command is as fol-
lows:
[<timestamp>] PROCESS_SERVICE_CHECK_RESULT;<host_name>;<svc_description>;<return_code>;<plugin_output>

timestamp is the time in time t format (seconds since the UNIX epoch) that the ser-
vice check was performed (or submitted)

host name is the short name of the host associated with the service in the service
definition

svc description is the description of the service as specified in the service definition

return code is the return code of the check (0=OK, 1=WARNING, 2=CRITICAL,
3=UNKNOWN)

plugin output is the text output of the service check (i.e. the plugin output)

39

5.3. DATA FORMATTER FOR GROUNDWORKS

Figure 5.7: Nagios architecture source:http://nagios.sourceforge.net/docs/3 0/plugins.html

Submitting Passive Host Check Results External applications can submit passive
service check results to Nagios by writing a PROCESS HOST CHECK RESULT ex-
ternal command to the external command file. The format of the command is as fol-
lows:
[<timestamp>] PROCESS_HOST_CHECK_RESULT;<host_name>;<host_status>;<plugin_output>

timestamp is the time in time t format (seconds since the UNIX epoch) that the ser-
vice check was performed (or submitted)

host name is the short name of the host associated with the service in the service
definition

host status is the status of the host (0=UP, 1=DOWN, 2=UNREACHABLE)

plugin output is the text output of the host check

Submitting Passive Check Results From Remote Hosts If both nagios and the
host are on same host then sending passive checks are easy by just writing the results
in external command.But if the applications resides on different host than the nagios
server then sending the checks results is a bit difficult. This is where a addon called
NSCA comes into picture. The NSCA addon consists of a daemon that runs on the
Nagios hosts and a client that is executed from remote hosts. The daemon will listen
for connections from remote clients,as soon as it receives some check results it will
validate it with the format described above and then write the check results into the
external command file (as described above).

In groundworks NSCA daemon is already configured and listens on port 5667.
So our implemented message formatter listen for any incoming messages either from
CFEngine wrapper or Munin Wrapper, and as soon as it receives the message it con-
verts the XML message to the format that NSCA addon expects and sends it. To send
the message to NSCA in the remote host , a perl module called Net::NSCA::Client
is used which can be found at http://search.cpan.org/˜dougdude/Net-

40

http://search.cpan.org/~dougdude/Net-NSCA-Client-0.009002/lib/Net/NSCA/Client.pm
http://search.cpan.org/~dougdude/Net-NSCA-Client-0.009002/lib/Net/NSCA/Client.pm

5.3. DATA FORMATTER FOR GROUNDWORKS

Figure 5.8: NSCA addon source:http://nagios.sourceforge.net/docs/3 0/passivechecks.html

NSCA-Client-0.009002/lib/Net/NSCA/Client.pm. Full implementation
of the code is listed at A.4. Sample output of the message from the formatter is shown
in listing 5.9

Listing 5.9: Formatter sending data to target system

At your s e r v i c e . Wai t i ng . . .
s e n d i n g t o g r a p h i t e

CFEngine−c f e n g i n e−node −1. c f e n g i n e o u t 0 1336260301

s e n d i n g t o n a g i o s
c f e n g i n e−node−1 CFEngine−c f e n g i n e o u t 0 OK OK, c f e n g i n e o u t checked

v a l u e i s 0 . | c f e n g i n e o u t = 0 ; 0 ; 0 ; 0

At your s e r v i c e . Wai t i ng . . .
s e n d i n g t o g r a p h i t e

CFEngine−c f e n g i n e−node −1. s s h i n 0 1336260301

s e n d i n g t o n a g i o s
c f e n g i n e−node−1 CFEngine−s s h i n 0 OK OK, s s h i n checked v a l u e i s 0 . |

s s h i n = 0 ; 0 ; 0 ; 0

At your s e r v i c e . Wai t i ng . . .
s e n d i n g t o g r a p h i t e

CFEngine−c f e n g i n e−node −1. s s h o u t 0 1336260301

s e n d i n g t o n a g i o s
c f e n g i n e−node−1 CFEngine−s s h o u t 0 OK OK, s s h o u t checked v a l u e i s

0 . | s s h o u t = 0 ; 0 ; 0 ; 0

At your s e r v i c e . Wai t i ng . . .
s e n d i n g t o g r a p h i t e

CFEngine−c f e n g i n e−node −1. cpu 0 1336260301

s e n d i n g t o n a g i o s
c f e n g i n e−node−1 CFEngine−cpu 0 OK OK, cpu checked v a l u e i s 0 . | cpu

= 0 ; 0 ; 0 ; 0

At your s e r v i c e . Wai t i ng . . .

41

http://search.cpan.org/~dougdude/Net-NSCA-Client-0.009002/lib/Net/NSCA/Client.pm
http://search.cpan.org/~dougdude/Net-NSCA-Client-0.009002/lib/Net/NSCA/Client.pm

5.4. DATA FORMATTER FOR GRAPHITE

s e n d i n g t o g r a p h i t e

CFEngine−c f e n g i n e−node −1. s y s l o g 0 1336260301

5.4 Data formatter for Graphite

Graphite is a scalable monitoring tool designed and written by Chris Davis at 2006.
At 2008 it became a open source project under Apache 2.0 license. Graphites primary
function is to store the time series data and then provides a interface where it render
the data in flexible and scalable way. Graphite itself doesn’t do any collection of data
but utilizes other tools and depends on them to send data to it. So for this reason it
has a very simple API to send data to it. Most common use case for using Graphite is
to have a web based monitoring dash board for monitoring and analyzing the system
state.

5.4.1 Architecture

Graphite is written entirely on python and consist of 3 software components

carbon a Twisted daemon that listens for time-series data

whisper - a simple database library for storing time-series data (similar in design to
RRD)

graphite webapp - A Django webapp that renders graphs on-demand using Cairo

Fig 5.9 shows the general overview of the architecture of the Graphite.

5.4.2 Monitoring and Reporting

As graphite depends on external tools that collects and measures the performances , its
up to users what they want to monitor and generate the graph for analyzing.

The Graphite has a simple URL-based API which can create custom graphs upon
users request.A graphical interface built with javascript is also available for making
this easy and simple.Figure 5.10 shows the graphing UI of the Graphite. Graphing
of the matrices parameters are specified in the query-string of an HTTP GET re-
quest, the outcome of the processed query is returned in term of PNG image. For
example, the URL: http://graphiteserver/render?target=servers.
www.cpuUsage&width=500&height=300 will requests a 500 x 300 graph for
the metric servers.www.cpuUsage which is stored in the graphite system. There are
extensive options available for manipulating the graphs. Graphite also has variety of
available analytical functions that can be applied to the data once it is in the system.

5.4.3 Data storage model

Graphite uses whisper as the storage mechanism which is quite similar to round robin
database used by rrdtool in design. It only store numeric time series data. whisper is a
database library used by applications to manipulate and retrieve data stored in specially

42

http://graphiteserver/render?target=servers.www.cpuUsage&width=500&height=300
http://graphiteserver/render?target=servers.www.cpuUsage&width=500&height=300

5.4. DATA FORMATTER FOR GRAPHITE

Figure 5.9: Grahite architecture

Figure 5.10: Graphite graph composer

43

5.4. DATA FORMATTER FOR GRAPHITE

formatted files. The most basic whisper operations are create to make a new whisper
file, update to write new data points into a file, and fetch to retrieve data points.

Whisper files consist of a header section containing various metadata, followed by
one or more archive sections . Each archive is a sequence of consecutive data points
which are (timestamp, value) pairs. When an update or fetch operation is performed,
whisper determines the offset in the file where data should be written to or read from,
based on the timestamp and the archive configuration. Figure 5.11 shows general
structure of the whisper storage model.

Figure 5.11: Whisper format

5.4.4 API

Graphite provides very easy API to get the measured matrices into the system. The
most common use case in graphite is that there involves some monitoring agent which
monitors the performance metrics and then sends it to graphite system through carbon.
Metrics in Graphite have simple hierarchical names, similar to file system paths except
that a dot is used to delimit the hierarchy rather than a slash or backslash. There are
mainly two methods to get the data into graphite.

The plain text protocol The plain text protocol is the most straightforward protocol
supported by Carbon. In this protocol when the monitoring agent sends data points to
Graphite, First it must establish a TCP connection to carbon,default on port 2003. The
client sends the metrics in a simple plain-text format. The format is one line of text per
data point where each line contains the dotted metric name, value, and a Unix epoch
timestamp separated by spaces. The data sent are in the format: ¡metric path¿ ¡metric
value¿ ¡metric timestamp¿. Carbon will then transform the received message of text
into a metric that the web interface and Whisper understand. Example munin.cpu.idle
88 123453234 can be sent through network socket where carbon is listening, by default
the plain text protocol listen on port 2003. It generally works quite well if we want to
send small amount of data quickly to graphite.

The pickle protocol The pickle protocol is a much more efficient take on the plain
text protocol, and supports sending batches of metrics to Carbon in one go. The gen-
eral idea is that the pickled data forms a list of multi-level tuples:[(path, (timestamp,
value)), ...]

44

5.4. DATA FORMATTER FOR GRAPHITE

5.4.5 Implementation

The formatter was implemented using a perl script which would send graphite daemon
a plain text message to port 2003.Its similar to the groundworks formatter but only the
final format is changed to fit the graphite format.The detail implementation is listed at
A.4 with similar output to 5.9.

45

Chapter 6

Results

Figure 6.1: Test system architecture

The implementation was carried out in a small virtual infrastructure consisting of
total of six machines of which two were running Munin instances and four of them
were running CFEngine instances, one was groundwork server and one was graphite
server. The Data Formatter daemon was kept running on one of the machine on port
8888, which would dispatch any incoming data that was sent from Munin data wrapper
or CFEngine data wrapper.

For CFEngine, the DataWrapper is invoked by cfengine agents when they run in
the machine. so data are reported by the agents and sent to data formatter through a
perl script.

For Munin the Data Wrapper is invoked through a cron job setup to run the perl
script every 5 minutes.

For CFengine only limited set of variables or metrics were measured which were
important and was quite meaningful to measure. The metrics were

diskfree Free disk on / partition.

users Users with active processes.

rootprocs Sum of privileged system processes.

46

otherprocs Sum of non-privileged process.

loadavg Kernel load average utilization (sum over cores).

cfengine in cfengine connections (in).

cfengine out cfengine connections (out).

ssh in ssh connections (in).

ssh out ssh connections (out).

cpu %CPU utilization (all).

syslog New log entries (Syslog).

For Munin all the default plugins monitored value were integrated. The following
metrics were defined

disk – Disk IOs per device

– Disk latency per device

– Disk throughput per device

– Disk usage in percent

– Disk utilization per device

– Inode usage in percent

– IO Service time

– IOstat

munin – Munin processing time

network – eth0 errors

– eth0 traffic

– Firewall Throughput

– HTTP loadtime of a page

processes – Fork rate

– Number of threads

– Processes

– Processes priority

– VMstat

system – Available entropy

– CPU usage

– File table usage

– Individual interrupts

– Inode table usage

47

– Interrupts and context switches

– Load average

– Swap in/out

– Uptime

Both groundwork and graphite was setup and configured to receive the incoming
data as described in implementation details.

Figure 6.2: Graphite integration of machines

The figure 6.2 shows the integration of the results of the monitored machine in to
the graphite web interface. The tree structure in the figure left shows the nodes that
are being sending data to the graphite system. There are total 6 nodes that are shown
in the figure of which four nodes are the the nodes that the CFEngine is monitoring.
The nodes with the prefix “CFEngine“ are the nodes that are being monitored by the
CFEngine agent and sending the data to graphite where as the nodes with the prefix
“Munin” are referring to the nodes that are being monitored by Munin which in this
case are two machines munin and munin-node-1.

Figure 6.3: Groundwork integration result

48

6.1. NON-PRIVILEGED PROCESS

The figure 6.3 shows the integration result in the groundwork web interface where
the measured services and host are shown. The left side of the figure shows the nodes
and the expanded nodes shows the services being monitored in that host. In this figure
4 nodes are shown grouped in two categories cfengine-host-group and munin-host-
group which includes the host monitored by CFEngine and munin respectively. The
expanded nodes shows the services that are being setup to collect data from monitored
CFEngine services.

The next section presents some of the results that were obtained in the integration
process. Although many of the services for both the CFEngine and Munin system
were integrated, only some meaningful and interesting services are shown in this sec-
tion. Some of the result of the matrices integrated into the system running on the
implemented infrastructure are shown below.

6.1 Non-privileged process

The table 6.1 shows the data being collected by the CFEngine and then being reported
over the period of three hours. The non-privileged process are the process stared by
non-privileged users. The data in table are measured by cf-engine agent and in being
reported to the data formatter in the interval of 5 minutes , i.e when the cf-agent runs
on the system.

Table 6.1: Non privileged process measured by CFEngine over period of 3 hours

Time cfengine cfengine-node-1 munin munin-node-1
5/11/12 1:00 PM 5 5 16 5
5/11/12 1:05 PM 5 5 17 5
5/11/12 1:10 PM 5 5 16 5
5/11/12 1:15 PM 5 5 17 5
5/11/12 1:20 PM 5 5 16 5
5/11/12 1:25 PM 5 5 17 5
5/11/12 1:30 PM 5 5 16 5
5/11/12 1:35 PM 5 5 16 5
5/11/12 1:40 PM 5 5 16 5
5/11/12 1:45 PM 5 5 16 5
5/11/12 1:50 PM 5 5 16 5
5/11/12 1:55 PM 5 5 16 5
5/11/12 2:00 PM 5 5 16 5
5/11/12 2:05 PM 5 5 16 5
5/11/12 2:10 PM 5 5 16 5
5/11/12 2:15 PM 5 5 16 5
5/11/12 2:20 PM 5 5 16 5
5/11/12 2:25 PM 5 5 16 5
5/11/12 2:30 PM 5 5 15 5
5/11/12 2:35 PM 5 5 15 5
5/11/12 2:41 PM 5 5 15 5
5/11/12 2:45 PM 5 5 15 5

Continued on next page

49

6.1. NON-PRIVILEGED PROCESS

Table 6.1 – Continued from previous page
Time cfengine cfengine-node-1 munin munin-node-1

5/11/12 2:50 PM 5 5 15 5
5/11/12 2:55 PM 5 5 15 5
5/11/12 3:00 PM 5 5 15 5
5/11/12 3:05 PM 5 5 15 5
5/11/12 3:10 PM 5 5 15 5
5/11/12 3:15 PM 5 5 15 5
5/11/12 3:20 PM 5 5 15 5
5/11/12 3:25 PM 5 5 15 5
5/11/12 3:30 PM 5 5 15 5
5/11/12 3:35 PM 5 5 16 5
5/11/12 3:40 PM 5 5 16 5
5/11/12 3:45 PM 5 5 16 5
5/11/12 3:50 PM 5 5 16 5
5/11/12 3:55 PM 5 5 16 6
5/11/12 4:00 PM 5 5 16 5

The information integrated into Graphite is shown as graph in 6.4.In this graph
the monitored value of non-authorized users process is shown for all the four host that
has been reporting the data over the time period of 5 hours. The x-axis defines the
time and y-axis defines the value. The label are shown as the host names for where the
“CFEngine” prefix is applied to the host that are monitored by the CFEngine indicating
that these values are being integrated from CFEngine source.

Figure 6.4: Graph in graphite for non previlaged process measured by cfengine

The same information integrated into Groundworks is shown as graph in 6.5. Here
one of the features in groundwork to combine multiple performance view into one
graph is being utilized to generate the graph. The data are integrated into groundwork
system and stored which can be manipulated to have different graphs and reports about

50

6.2. MUNIN PROCESS THREADS

the data. In current figure it shows the consolidated view of the four hosts measuring
the non-privileged process reported by CFEngine. The four host are labeled in the
legend with their respective name along with the service name being reported. Here
also the x-axis shows the time interval and the y-axis shows the value of the measured
service.

Figure 6.5: Graph in graphite for non privileged process measured by cfengine

6.2 Munin process threads

Table 6.2 shows the process threads value collected by munin on two munin node over
the period of time. Generally threads are light weight process, which generally share
resource while being contained inside a specific process. The table shows the measured
value as reported by the munin system running on two nodes. The values shown were
reported by munin system on over interval of 3 hours which was integrated in both
graphite and groundwork system.

Table 6.2: Process threads measured by Munin on two machines

Time munin munin-node-1
5/11/12 12:02 PM 86 81
5/11/12 12:07 PM 90 84
5/11/12 12:07 PM 93 84
5/11/12 12:12 PM 93 77
5/11/12 12:17 PM 86 77
5/11/12 12:22 PM 86 77
5/11/12 12:27 PM 86 77
5/11/12 12:32 PM 86 77
5/11/12 12:37 PM 86 77

Continued on next page

51

6.2. MUNIN PROCESS THREADS

Table 6.2 – Continued from previous page
Time munin munin-node-1

5/11/12 12:42 PM 86 77
5/11/12 12:47 PM 86 77
5/11/12 12:52 PM 86 77
5/11/12 12:57 PM 86 77
5/11/12 1:02 PM 86 81
5/11/12 1:07 PM 90 81
5/11/12 1:07 PM 93 81
5/11/12 1:12 PM 93 77
5/11/12 1:17 PM 86 77
5/11/12 1:22 PM 86 77
5/11/12 1:27 PM 86 77
5/11/12 1:32 PM 86 77
5/11/12 1:37 PM 86 77
5/11/12 1:42 PM 86 77
5/11/12 1:47 PM 86 77
5/11/12 1:52 PM 86 77
5/11/12 1:57 PM 86 77
5/11/12 2:02 PM 86 81
5/11/12 2:07 PM 90 80
5/11/12 2:07 PM 93 81
5/11/12 2:12 PM 93 77
5/11/12 2:17 PM 86 77
5/11/12 2:22 PM 86 77
5/11/12 2:27 PM 86 77
5/11/12 2:32 PM 86 77
5/11/12 2:37 PM 86 77
5/11/12 2:42 PM 86 77
5/11/12 2:47 PM 86 77
5/11/12 2:52 PM 86 77
5/11/12 2:57 PM 86 77
5/11/12 3:02 PM 86 81
5/11/12 3:07 PM 90 84

Graphite integration The graph 6.6 shows the munin data integrated into the graphite
system and then represented in graphite web interface. As in above examples the data’s
are shown in a single graph for both the munin-node. The graphs shows two munin
host as labeled munin and munin-node-1 along with the prefix “Munin” to indicate the
data source as Munin and also the metric category process separated by “.” symbol.
The x-axis shows the time period of the measured value and y-axis shows the values
being measured by the munin.

52

6.3. CFENGINE ROOT PROCESS

Figure 6.6: Graphite graph of process threads measured by munin

Groundwork integration The graph 6.7 shows the same information integrated in
the groundwork and then represented in groundwork web portal information. The
graph is generated by consolidating the two host and the process threads data reported
by munin into the groundwork system. The graph here indicates the two hosts in the
label and with the service description. The x-axis indicates the graphs time periods
and y-value indicates the process threads number.

Figure 6.7: Groundworks graphs of the thread process information

6.3 CFEngine Root process

Table 6.3 shows the values reported by CFEngine for the four machines which was
integrated with groundworks and graphite. The root process is the measure of sum of
privileged process running on the system. The table shows the value being measured
by CFEngine for the root process running on the system in the interval of 5 min and
then reporting it for the integration.

53

6.3. CFENGINE ROOT PROCESS

Table 6.3: CFEngine root process measurement on 4 machine

Time CFEngine CFEngine-node-1 munin munin-node-1
5/12/12 12:00 AM 68 58 61 63
5/12/12 12:05 AM 68 58 65 67
5/12/12 12:10 AM 68 58 61 63
5/12/12 12:15 AM 68 58 61 63
5/12/12 12:20 AM 68 58 61 63
5/12/12 12:25 AM 68 58 61 63
5/12/12 12:30 AM 68 58 61 63
5/12/12 12:35 AM 68 58 61 63
5/12/12 12:40 AM 68 58 61 63
5/12/12 12:45 AM 68 58 61 63
5/12/12 12:50 AM 68 58 61 63
5/12/12 12:55 AM 68 58 61 63
5/12/12 1:00 AM 68 58 61 63
5/12/12 1:05 AM 68 58 65 67
5/12/12 1:10 AM 68 58 62 63
5/12/12 1:15 AM 68 58 62 63
5/12/12 1:20 AM 68 58 62 63
5/12/12 1:25 AM 68 58 62 63
5/12/12 1:30 AM 68 58 62 63
5/12/12 1:35 AM 68 58 62 63
5/12/12 1:40 AM 68 58 62 63
5/12/12 1:45 AM 68 58 62 63
5/12/12 1:50 AM 68 58 62 63
5/12/12 1:55 AM 68 58 62 63
5/12/12 2:00 AM 68 58 62 63
5/12/12 2:05 AM 68 58 66 67
5/12/12 2:10 AM 68 58 62 63
5/12/12 2:15 AM 68 58 62 63
5/12/12 2:20 AM 68 58 62 63
5/12/12 2:25 AM 68 58 62 63
5/12/12 2:30 AM 68 58 62 63
5/12/12 2:35 AM 68 58 62 63
5/12/12 2:40 AM 68 58 62 63
5/12/12 2:45 AM 68 58 62 63
5/12/12 2:50 AM 68 58 61 63
5/12/12 2:55 AM 68 58 62 63
5/12/12 3:00 AM 68 58 61 63
5/12/12 3:05 AM 68 58 65 67
5/12/12 3:10 AM 68 58 61 63
5/12/12 3:15 AM 68 58 61 63
5/12/12 3:20 AM 68 58 61 63
5/12/12 3:25 AM 68 58 61 63
5/12/12 3:30 AM 68 58 61 63

Continued on next page

54

6.4. MUNIN SYSTEM LOAD AVERAGE

Table 6.3 – Continued from previous page
Time CFEngine CFEngine-node-1 munin munin-node-1

5/12/12 3:35 AM 68 58 61 63
5/12/12 3:40 AM 68 58 61 63
5/12/12 3:45 AM 68 58 61 63
5/12/12 3:50 AM 68 58 61 63
5/12/12 3:55 AM 68 58 61 63
5/12/12 4:00 AM 68 58 61 63

Figure 6.8 shows the graphical representation of the above information in graphite
web interface. The graph is generated in graphite interface with composite informa-
tion from all the four host to show the root process running in different nodes running
CFEngine. As seen on the graph the nodes are labeled with CFEngine as prefix to
indicate the source of this data is coming from CFEngine agent.And the label is ap-
pended with rootprocs which is the service name measuring the root process in the
system. The x-axis here denotes the time periods of the measured value where the
y-axis denotes the value of the root processes running in different nodes.

Figure 6.8: Graphite representation of root process

6.4 Munin system load average

The load average of the machine describes how many processes are in the run-queue
(scheduled to run ”immediately”).This metric is measured by munin on the two nodes
that are running munin system , munin and munin-node-1. The data is shown on the
table 6.4 which shows the munin measurement of the system load average value over
the period of time. The information is then dispatched to the groundwork and graphite
system for integration.

55

6.4. MUNIN SYSTEM LOAD AVERAGE

Table 6.4: Munin load

Time munin munin-node-1
5/12/12 12:00 AM 0.24 0.06
5/12/12 12:05 AM 0.22 0.04
5/12/12 12:10 AM 0.22 0.04
5/12/12 12:15 AM 0.25 0.06
5/12/12 12:20 AM 0.22 0.06
5/12/12 12:25 AM 0.21 0.07
5/12/12 12:30 AM 0.15 0.04
5/12/12 12:35 AM 0.13 0.04
5/12/12 12:40 AM 0.11 0.05
5/12/12 12:45 AM 0.1 0.22
5/12/12 12:50 AM 0.17 0.15
5/12/12 12:55 AM 0.2 0.23
5/12/12 1:00 AM 0.24 0.18
5/12/12 1:05 AM 0.22 0.3
5/12/12 1:05 AM 0.28 0.3
5/12/12 1:10 AM 0.28 0.2
5/12/12 1:15 AM 0.26 0.18
5/12/12 1:20 AM 0.22 0.15
5/12/12 1:25 AM 0.28 0.06
5/12/12 1:30 AM 0.29 0.14
5/12/12 1:35 AM 0.29 0.07
5/12/12 1:40 AM 0.23 0.07
5/12/12 1:45 AM 0.29 0.08
5/12/12 1:50 AM 0.26 0.06
5/12/12 1:55 AM 0.24 0.03
5/12/12 2:00 AM 0.23 0.02
5/12/12 2:05 AM 0.23 0.05
5/12/12 2:05 AM 0.15 0.05
5/12/12 2:10 AM 0.15 0.03
5/12/12 2:15 AM 0.27 0.01
5/12/12 2:20 AM 0.38 0.13
5/12/12 2:25 AM 0.21 0.16
5/12/12 2:30 AM 0.27 0.19
5/12/12 2:35 AM 0.15 0.27
5/12/12 2:40 AM 0.18 0.26
5/12/12 2:45 AM 0.25 0.11
5/12/12 2:50 AM 0.3 0.24
5/12/12 2:55 AM 0.31 0.11
5/12/12 3:00 AM 0.19 0.2
5/12/12 3:05 AM 0.27 0.26
5/12/12 3:05 AM 0.37 0.26
5/12/12 3:10 AM 0.37 0.11
5/12/12 3:15 AM 0.23 0.05

Continued on next page

56

6.4. MUNIN SYSTEM LOAD AVERAGE

Table 6.4 – Continued from previous page
Time munin munin-node-1

5/12/12 3:20 AM 0.28 0.09
5/12/12 3:25 AM 0.35 0.06
5/12/12 3:30 AM 0.26 0.04
5/12/12 3:35 AM 0.3 0.02
5/12/12 3:40 AM 0.24 0.01
5/12/12 3:45 AM 0.19 0.01
5/12/12 3:50 AM 0.25 0.05
5/12/12 3:55 AM 0.32 0.03
5/12/12 4:00 AM 0.18 0.04
5/12/12 4:05 AM 0.12 0.02

The figure 6.9 shows how the information integrated on the graphite system is
being displayed and analyzed. The graph shows the data from munin source for system
load average values reported by munin on two nodes running munin. The graph is
consolidated by host show that the values can be seen on one graph. The labels shows
the name of the host with the prefix “Munin” to indicated the data source along with
the name of the service i.e “system.load”. The x-axis is the time period of the measured
value and y axis indicates the system load values measured.

Figure 6.9: Munin sytem load of two machines

The figure 6.10 indicates the same information represented by the groundwork web
interface for generating reports. The graphs shows the consolidate view of two munin
hosts showing the system load average values over the period of 5 hours. The graph
indicates the values measured for system load average for host called munin on top and
then at the bottom then graph is for system load average for the host “munin-node-1”.

57

6.5. DISK FREE

Figure 6.10: Munin system load from groundworks

6.5 Disk Free

Disk free service is the measurement of the free disk space in “/” partition calculated
in percentage value by CFEngine. For the disk free service, testing for the warning in
disk free service was tested by filling up one of the node machine (cfeninge-node-1)
with huge 13GB file on total of 15GB of hard disk by running the following command

dd if=/dev/zero of=filename bs=$((1024*1024)) count=$((13*1024))

The following figure 6.11 shows the warning in groundwork web interface where the
diskfree service is labeled as critical. As seen in the figure in the left region, the
highlighted service has been marked as critical by groundworks by having a red icon
of exclamation on the side of the service instead of the green circle status indicating
the OK status of the service. Also the right side of the figure shows the value as 5%
that is measured by the CFEngine agent running on the node. The picture also shows
how the host icon is also labeled critical as one of the services go critical on the nodes.

Figure 6.11: Diskfree service critical in groundworks

58

6.6. SYSLOG

The same information can also be seen on graphite in the following graph 6.12
showing the critical change in the disk free service. The graph below shows the in-
formation of the disk free values measured by the CFEngine agent over the period
of the time. we can see how the disk percent of the system is constant over the pe-
riod of time then suddenly drops to below 5% as indicated by the greeen line. The
lengend indicates that the green line is for the host cfengine-node-1 which is prefixed
by “CFEngine” to indicate the source of the data.The x axis defines the percentage of
disk free on the system and the y-axis indicates the time period over which the values
are measured.

Figure 6.12: Graphite diskfree service

6.6 Syslog

The syslog is the measure of new system log over the interval of time on any given
system. This section shows the warning generated by CFEngine agents when the high
number of syslog is detected than usual trend which is then reflected in the groundwork
web interface as well as in graphite system. The values and state of the syslog service
is constantly updated by CFEngine agent and then reported for data integration.

Figure 6.13: Groundwork syslog

The figure 6.13 showing the data reported by CFEngine agents about the warning
state of the syslog entries. Here in the figure the highlighted area by red triangle shows
the warning state of the syslog service in the host named cfengine-node-I. The warning
state is indicated by yellow round circle along side of the service.

59

6.6. SYSLOG

Figure 6.14: Graphite syslog graph measured by CFEngine

The figure 6.14 shows the graphite representation of the syslog values reported
by the CFEngine agents for four host that has been monitored by CFEngine and has
been reporting the data for integration. As seen in the figure the syslog entries are
dramatically increased between the period of around 15.00 which clearly shows the
break in trend form the past values reported. The graph shows the nodes name in the
label with “CFEngine” as prefix to indicate the cfengine source. The x-axis shows the
time period of the reported value and the y-axis indicated the value of new entries in
syslog. Here the green line shows the generated warning syslog.

60

Chapter 7

Discussion and future work

In todays monitoring scenario the widely used tools are available with different fea-
tures and capabilities. The infrastructures are growing complex and heterogeneous
both in terms of platforms and machines used, and also in the tools that are being used
to manage and monitor those platforms. The data these monitoring tools measures are
stored in different systems, differ in formats and has different semantics. Having di-
verse tools gives rise to some problems that are described in the chapter 3. One of the
way to tackle or handle those problems is through data integration of these different
heterogeneous system.

Basically when dealing with data integration problem, heterogeneity of the data
sources needs to be tackled. Each of the data sources may be implemented on differ-
ent platforms such as OS, database, file systems etc. Also the sources are based on
different conceptual models which leads to semantic heterogeneity between different
sources. Semantic heterogeneity refers as modeling of same data information with
different names or can be referred as difference in conceptual representation of data.
The system level heterogeneity is nowadays quite easy to overcome with the availabil-
ity of many tools and technologies but to overcome the semantic difference between
different source is not an easy task. The resolution of the semantic differences in data
integration has been researched [44] ,[45],[46] for quite some time, which would be a
key step in defining a common data model for the data integration.

7.1 Tools selection for integration

The monitoring tools in this thesis that were chosen for the prototype implementation
was because of their wide usage and popularity on current monitoring scenario. As
there were many other tools than the ones used in this prototype, they were not in-
cluded due to the limited time that was available to study the internals and the specifi-
cation of the tools. Also the selected tools chosen were highly different in architecture,
philosophy , features and inner workings. Those tools represented most of the varied
solution deployed on the monitoring scenario nowadays.

61

7.2. IMPLEMENTATION

7.2 Implementation

The proof of concept implementation of the common data model in this thesis only
covers the domain for small numbers of tools that was selected for the implementation.
It does not tries to come up with the complete full featured common model, but rather
tries to prove that having a common model similar to the one implemented and having
a full standardized schema for the common model to be implemented by different tools
can help mitigate some complexities managing those tools. This approach of solving
the problem requires the overhead of coming up with suitable ontologies for covering
up each data source.An ontology is an explicit specification of a conceptualization[47].

Existing approaches on data sharing and tools integration that relies on imple-
menting wrapper libraries for directly converting data between different formats, such
as seen on the implementation, have several limitations. Implementing and maintain-
ing wrapper layer for different sources requires high implementation and maintenance
costs. And as the sources of data increases or changes the maintainability of those
thing also becomes problematic.

Also the semantic of data is not always maintained while converting data’s be-
tween the sources through the wrappers. Although simple XML schema’s such as the
prototype implemented can be useful in certain scenarios they must be sharable and
must establish a common understanding about the data, which would maintain seman-
tic interoperability between various parties which is an important issue that monitoring
and measurement tools have to support.

As seen from the results in the previous chapter, we can see that a simple common
data model with a common global semantic can be a very useful and efficient factor for
building a co-operative environment between heterogeneous tools where different tools
specialize in their own domain like data collection, data analysis, visualization etc. By
introducing a standard common model which is both rich in context and representation
can help solve difficulties in data exchange between different sources which in turn can
help solve different problems that the current monitoring scenarios is facing ,such as
the common interface system where we can see the aggregated data in one single place
instead of having to look for the information in different places. It can also solve the
visualization problem that are inefficient or limited in capabilities by exchanging the
data with more specialized tool that has been designed specially for the visualization
purpose.

As the results show that the data monitored from CFEngine and Munin are inte-
grated in the Graphite system, it allows enhanced graphing capability of the same in-
formation along with high degree of other other data manipulating functionality such
as combining, comparing, manipulating, exporting etc which are lacking or very lim-
ited in both of the tools. The integration helps the users better understand the data and
have better visualization of the data leading in more efficient and useful monitoring
experience.

Similarly the integration into the groundwork system of the monitoring data’s of
CFEngine and Munin provides a single interface to monitor the different heteroge-
neous system, such as systems monitored by CFEngine as well as systems that are
monitored by Munin. The benefit of having a single interface for these different sys-
tem is that the time needed for looking up the information or monitoring is vastly
reduced because the user doesn’t have to shuffle between different interfaces to get

62

7.3. PROBLEMS

the information.The consolidation of information in one place with consistent inter-
face also resolves the ambiguity or confusion that otherwise two different interface
may create. As research has stated that Inconsistent interface terminology slowed user
performance by 10 to 25 percent[48]. It is also proved that the interface consistency
shortens the learning process , reduced working memory demand and increased effi-
ciency. [49]. The consolidation of data also helps the users to tackle the monitoring
administration of maintaining large system treating different part of infrastructure as a
single unit.

7.3 Problems

Some of the problems encountered while implementing the prototype was the lack of
proper documents for the working of the tools and its API’s. There were documents
available but not always updated or without the sufficient information from the per-
spective of data integration .The wrapper and formatter layer could have been more
robust and fault tolerance, the current implementation doesn’t have robust error and
validation in them. The lack of adequate hardware for testing also limited the scale of
infrastructure to test upon. Also one of the hard part of coming up with the prototype
model was the common XML format due to the previously discussed semantic het-
erogeneity between the selected tools. Example CFEngine, Munin, Groundworks all
have different concept of service states. In CFEngine it treats the service state in terms
of anomalies and deviations while munin does not have concrete definition of service
states where as in Groundwork it follows the Nagios convention of critical, Warning,
OK etc.

7.4 Future work

Many things on this implementation can be implemented and tested more robustly,
but for future the most important thing would be to have a standardized ontologies
implemented between the tools which would be a core basis for data exchange and
integration between heterogeneous tools. A more concrete way would be to adopt
already researched and existing prototype or schema to use instead of coming up with
custom solution, such as use a unified information model like CIM. Another thing that
can be done is to modify the open source tools to natively support these common model
processing instead of creating a wrapper around them.Also it would be interesting to
study about the implementation of transforming the tools to adopt the common model.

63

Chapter 8

Conclusion

Network monitoring tools are a vital part of network operation these days.With avail-
ability of wide ranges of choices of such tools,it increase the heterogeneity in the in-
frastructure that arises many problems. The data exchange between the different tools
becomes much more complex with the increasing heterogeneity between the tools.
This report and implementation describes the benefits of having a standardized data
format between the tools. New open standards and the adoption of common data
model to formally define and represent data knowledge, are the main features of these
architectures that enable the definition of cooperative environments. The implementa-
tion also shows that if all tools agrees on a standard common information model and
expose their software to be able to process the model, then managing the heteroge-
neous environment of tools would be less cumbersome and more efficient. Designing
a standard data integration framework or system is a complex task which requires great
deal of expertise and resources , but has its benefits and certainly the need is also there.
Fortunately, a lot of research are being carried out in this topic which are mentioned
on the discussion and background chapters.Lots of standard formats are also being
purposed which are evolving and may be in near future all the tools will support one
common data model to have a manageable heterogeneous environment.

64

Appendix A

Source code

A.1 CFEngine Data Wrapper

Listing A.1: CFEngine data wrapper perl script

! / u s r / b i n / p e r l

Needed packages
use Ge to p t : : S td ;
use s t r i c t ” v a r s ” ; # d e c l a r e v a r i a b l e
use Data : : Dumper ;
use IO : : S ock e t ;
use XML: : Simple ;

Globa l v a r i a b l e
my $VERBOSE = 0 ;
my $DEBUG = 0 ;

Handle f l a g s and arguments

Example : : c == ”−c ” , c : == ”−c argument ”
my $ o p t S t r i n g = ’ vdh1 : 2 : c : ’ ;
g e t o p t s ($ o p t S t r i n g ,\my %o p t) o r usage () and e x i t 1 ;

P r i n t h e l p message i n −h i s i n v o k e d

i f ($op t { ’ h ’}) {
usage () ;
e x i t 0 ;

}

$VERBOSE = 1 i f $op t { ’ v ’ } ;
$DEBUG = 1 i f $op t { ’ d ’ } ;

65

A.1. CFENGINE DATA WRAPPER

v e r b o s e (” Verbose i s e n a b l e d ”) ;
debug (” Debug i s e n a b l e d ”) ;

Main

my $FORMATTER IP = ” 1 0 . 0 . 0 . 6 ” ;
my $FORMATTER PORT = ” 8888 ” ;

run t h e program and c a p t u r e t h e o u t p u t
debug (” Running command : : / v a r / c f e n g i n e / b i n / cf−r e p o r t −vI ”) ;
my $ o u t p u t = qx (/ v a r / c f e n g i n e / b i n / cf−r e p o r t −vI) ;
p r i n t $ o u t p u t ;
g e t h o s t name from t h e o u t p u t
my $hostname = ” ” ;
i f ($ o u t p u t =˜ m/ Host name i s :\ s + (. *) /) {

$hostname = $1 ;
}

g e t i p

my $ I P e t h 0 = qx (/ s b i n / i f c o n f i g e t h 0) ;
$ I P e t h 0 =˜ s / . * i n e t add r : (. *) B c a s t : / 1 / ;
my $ i p = $1 ;
p r i n t ” IP e t h 0 => ” . $ i p . ”\n ” ;

p r i n t $hostName ;

my $FILEPATH = ” / v a r / c f e n g i n e / r e p o r t s / moni tor summary . csv ” ;
my $CLASSPATH = ” / v a r / c f e n g i n e / r e p o r t s / c l a s s e s . c sv ” ;
my $xml = new XML: : Simple () ;

my @serv iceAr ray ;

my $da taHash = (
’ Host ’ => {

’ t ime ’ => time ,
’ s t a t u s ’ => ’OK’ ,
’ i p ’ => $ip ,
’ name ’ => $hostname ,
’ s o u r c e ’ => ’ CFEngine ’ ,
’ s e r v i c e ’ =>\@serv i ceAr ray

}
) ;

open (CSV, $FILEPATH) ;
whi le (my $ l i n e = <CSV>) {

my @metr ics = s p l i t (/ , / , $ l i n e) ;

66

A.1. CFENGINE DATA WRAPPER

my $ m e t r i c = t r i m ($ m e t r i c s [1]) ;
my $minValue = t r i m ($ m e t r i c s [2]) ;
my $maxValue = t r i m ($ m e t r i c s [3]) ;
my $sigma = t r i m ($ m e t r i c s [4]) ;

my $now = t ime ;

my $ s t a t e = c h e c k F o r W a r n i n g C l a s s e s ($ m e t r i c) ;
my $message = ” $ m e t r i c checked , max−v a l : : $maxValue and min−v a l : : $minValue ” ;
my %s e r v i c e = (

’Max ’ , ’ ’ ,
’ Un i t ’ , ’ f l o a t ’ ,
’Warn ’ , ’ ’ ,
’ MeasuredTime ’ , $now ,
’ S t a t e ’ , $ s t a t e ,
’ Message ’ , $message ,
’Min ’ , ’ ’ ,
’ Labe l ’ , ’ ’ ,
’ C r i t i c a l ’ , ’ ’ ,
’ MeasuredValue ’ , $minValue ,
’ Type ’ , $ m e t r i c
) ;

push @serv iceArray ,\% s e r v i c e ;

}

c l o s e (CSV) ;

my $xmlmessage = c r e a t e S e r v i c e X m l () ;
debug (”XML Format c r e a t e d : : ”) ;
debug ($xmlmessage) ;

s e n d T o F o r m a t t e r ($xmlmessage) ;

e x i t (0) ;

sub s e n d T o F o r m a t t e r () {

debug (” s e n d i n g message t o f o r m a t t e r ”) ;
my $message = $ [0] ;

my $gSocke t = new IO : : So ck e t : : INET (PeerAddr => $FORMATTER IP ,
P e e r P o r t => $FORMATTER PORT,
P r o t o => ’ t c p ’ ,) ;

d i e ” Could n o t c r e a t e f o r m a t t e r s o c k e t : $!\ n ” u n l e s s $gSocke t ;
$gSocket−>a u t o f l u s h (1) ;
debug ($message) ;
p r i n t $gSocke t $message ;
c l o s e ($gSocke t) ;

67

A.1. CFENGINE DATA WRAPPER

}

r e t u r n s xml from t h e hash
sub c r e a t e S e r v i c e X m l () {

re turn $xml−>XMLout ($dataHash , RootName=> ’ Host ’ , NoAt t r =>1, KeyAt t r => []) ;

}

sub c h e c k F o r W a r n i n g C l a s s e s () {

my $ c l a s s = $ [0] ;
my $ s t a t e = ’OK’ ; # d e f a u l t s t a t e
l o o k f o r warning c l a s s e s w i t h de v2 c l a s s e s s e t
open (CLASSES , $CLASSPATH) ;
whi le (my $ c l a s s L i n e = <CLASSES>) {

my $warningRegex = $ c l a s s . ” (. *) dev2 ” ;
my $ c r i t i c a l R e g e x = $ c l a s s . ” (. *) anomaly ” ;
i f ($ c l a s s L i n e =˜ m/ $warningRegex /) {

$ s t a t e = ” warn ing ” ;
} e l s i f ($ c l a s s L i n e =˜ m/ $ c r i t i c a l R e g e x /) {

$ s t a t e = ” c r i t i c a l ” ;
}

}

re turn $ s t a t e ;

}

P e r l t r i m f u n c t i o n t o remove w h i t e s p a c e from t h e s t a r t and end o f t h e s t r i n g
sub t r i m ($)
{

my $ s t r i n g = s h i f t ;
$ s t r i n g =˜ s / ˆ \ s + / / ;
$ s t r i n g =˜ s /\ s+$ / / ;
re turn $ s t r i n g ;

}

sub usage {
p r i n t ” Usage : \n ” ;
p r i n t ”−h Usage \n ” ;
p r i n t ”−v Verbose \n ” ;
p r i n t ”−d Debug \n ” ;
p r i n t ”−1 i n p u t f i l e one \n ” ;
p r i n t ”−2 i n p u t f i l e two \n ” ;
p r i n t ”−c column number \n ” ;
p r i n t ” . / s c r i p t [−d] [−v] [−h] −1 < f i l e 1 > −2< f i l e 2 > −c<columnNumber> \n ” ;

}

68

A.1. CFENGINE DATA WRAPPER

sub v e r b o s e {
p r i n t $ [0] . ”\n ” i f $VERBOSE ;

}

sub debug {
p r i n t $ [0] . ”\n ” i f $DEBUG;

}

Listing A.2: CFEngine data wrapper for second approach perl script

! / u s r / b i n / p e r l

Needed packages
use Ge to p t : : S td ;
use s t r i c t ” v a r s ” ; # d e c l a r e v a r i a b l e
use Data : : Dumper ;
use IO : : S ock e t ;
use XML: : Simple ;

Globa l v a r i a b l e
my $VERBOSE = 0 ;
my $DEBUG = 0 ;

Handle f l a g s and arguments

Example : : c == ”−c ” , c : == ”−c argument ”
my $ o p t S t r i n g = ’ vdh i : n : s : c :m: ’ ;
g e t o p t s ($ o p t S t r i n g ,\my %o p t) o r usage () and e x i t 1 ;

P r i n t h e l p message i n −h i s i n v o k e d

i f ($op t { ’ h ’}) {
usage () ;
e x i t 0 ;

}

$VERBOSE = 1 i f $op t { ’ v ’ } ;
$DEBUG = 1 i f $op t { ’ d ’ } ;

v e r b o s e (” Verbose i s e n a b l e d ”) ;
debug (” Debug i s e n a b l e d ”) ;

Main

my $FORMATTER IP = ” 1 0 . 0 . 0 . 6 ” ;
my $FORMATTER PORT = ” 8888 ” ;

69

A.1. CFENGINE DATA WRAPPER

my $ i p = $op t { ’ i ’ } ;
my $hostname = $op t { ’ n ’ } ;
my $ s t a t e = $op t { ’ s ’ } ;
my $ m e t r i c = $op t { ’m’ } ;
my $ v a l u e = $op t { ’ c ’ } ;
my $ d a t e = t ime ;

my $FILEPATH = ” / v a r / c f e n g i n e / r e p o r t s / moni tor summary . csv ” ;
my $CLASSPATH = ” / v a r / c f e n g i n e / r e p o r t s / c l a s s e s . c sv ” ;
my $xml = new XML: : Simple () ;

my @serv iceAr ray ;

my $da taHash = (
’ Host ’ => {

’ t ime ’ => time ,
’ s t a t u s ’ => ’OK’ ,
’ i p ’ => $ip ,
’ name ’ => $hostname ,
’ s o u r c e ’ => ’ CFEngine ’ ,
’ s e r v i c e ’ =>\@serv i ceAr ray

}
) ;

my $message = ” $ s t a t e , $ m e t r i c checked v a l u e i s $ v a l u e . | $ m e t r i c = $ v a l u e ; 0 ; 0 ; 0 ” ;
my %s e r v i c e = (

’Max ’ , ’ ’ ,
’ Un i t ’ , ’ f l o a t ’ ,
’Warn ’ , ’ ’ ,
’ MeasuredTime ’ , $da te ,
’ S t a t e ’ , $ s t a t e ,
’ Message ’ , $message ,
’Min ’ , ’ ’ ,
’ Labe l ’ , ’ ’ ,
’ C r i t i c a l ’ , ’ ’ ,
’ MeasuredValue ’ , $va lue ,
’ Type ’ , $ m e t r i c
) ;

push @serv iceArray ,\% s e r v i c e ;

my $xmlmessage = c r e a t e S e r v i c e X m l () ;
debug (”XML Format c r e a t e d : : ”) ;
debug ($xmlmessage) ;

s e n d T o F o r m a t t e r ($xmlmessage) ;

e x i t (0) ;

70

A.1. CFENGINE DATA WRAPPER

sub s e n d T o F o r m a t t e r () {

debug (” s e n d i n g message t o f o r m a t t e r ”) ;
my $message = $ [0] ;

my $gSocke t = new IO : : So ck e t : : INET (PeerAddr => $FORMATTER IP ,
P e e r P o r t => $FORMATTER PORT,
P r o t o => ’ t c p ’ ,) ;

d i e ” Could n o t c r e a t e f o r m a t t e r s o c k e t : $!\ n ” u n l e s s $gSocke t ;
$gSocket−>a u t o f l u s h (1) ;
debug ($message) ;
p r i n t $gSocke t $message ;
c l o s e ($gSocke t) ;

}

r e t u r n s xml from t h e hash
sub c r e a t e S e r v i c e X m l () {

re turn $xml−>XMLout ($dataHash , RootName=> ’ Host ’ , NoAt t r =>1, KeyAt t r => []) ;

}

P e r l t r i m f u n c t i o n t o remove w h i t e s p a c e from t h e s t a r t and end o f t h e s t r i n g
sub t r i m ($)
{

my $ s t r i n g = s h i f t ;
$ s t r i n g =˜ s / ˆ \ s + / / ;
$ s t r i n g =˜ s /\ s+$ / / ;
re turn $ s t r i n g ;

}

sub usage {
p r i n t ” Usage : \n ” ;
p r i n t ”−h Usage \n ” ;
p r i n t ”−v Verbose \n ” ;
p r i n t ”−d Debug \n ” ;
p r i n t ”−1 i n p u t f i l e one \n ” ;
p r i n t ”−2 i n p u t f i l e two \n ” ;
p r i n t ”−c column number \n ” ;
p r i n t ” . / s c r i p t [−d] [−v] [−h] − i i p −h hostname −m m e t r i c −v v a l u e −s s t a t u s \n ” ;

}

sub v e r b o s e {
p r i n t $ [0] . ”\n ” i f $VERBOSE ;

}

sub debug {

71

A.2. MUNIN DATA FORMATTER

p r i n t $ [0] . ”\n ” i f $DEBUG;
}

A.2 Munin data formatter

Listing A.3: Data wrapper script for munin

! / u s r / b i n / p e r l

Needed packages
use Ge to p t : : S td ;
use s t r i c t ” v a r s ” ; # d e c l a r e v a r i a b l e
use Data : : Dumper ;
use IO : : S ock e t ;
use XML: : Simple ;

Globa l v a r i a b l e
my $VERBOSE = 0 ;
my $DEBUG = 0 ;

Handle f l a g s and arguments

Example : : c == ”−c ” , c : == ”−c argument ”
my $ o p t S t r i n g = ’ vdh1 : 2 : c : ’ ;
g e t o p t s ($ o p t S t r i n g ,\my %o p t) o r usage () and e x i t 1 ;

P r i n t h e l p message i n −h i s i n v o k e d

i f ($op t { ’ h ’}) {
usage () ;
e x i t 0 ;

}

$VERBOSE = 1 i f $op t { ’ v ’ } ;
$DEBUG = 1 i f $op t { ’ d ’ } ;

v e r b o s e (” Verbose i s e n a b l e d ”) ;
debug (” Debug i s e n a b l e d ”) ;

Main

my $muninSocket ;
my $xml = new XML: : Simple () ;

my @serv iceAr ray ;

my $ I P e t h 0 = qx (i f c o n f i g e t h 0) ;
$ I P e t h 0 =˜ s / . * i n e t add r : (. *) B c a s t : / 1 / ;

72

A.2. MUNIN DATA FORMATTER

my $ i p = $1 ;
p r i n t ” IP e t h 0 => ” . $ i p . ”\n ” ;

my $ h o s t =(grep {chomp ;} system (’ hos tname −s ’)) [0] ;

my $FORMATTER IP = ” 1 0 . 0 . 0 . 6 ” ;
my $FORMATTER PORT = ” 8888 ” ;

my $da taHash = {
’ Host ’ => {

’ t ime ’ => time ,
’ s t a t u s ’ => ’OK’ ,
’ i p ’ => $ip ,
’ name ’ => $hos t ,
’ s o u r c e ’ => ’ Munin ’ ,
’ s e r v i c e ’ =>\@serv iceAr ray

}
} ;

my $met r icname = ” ” ;
my @nodes = sendToMunin (” nodes ”) ;
foreach my $node (@nodes) {

g e t t h e m e t i c s
debug (” node i s : : ” . $node) ;
$dataHash−>{Host }{name} = $node ;
my @data = sendToMunin (” l i s t $node ”) ;
my @metr ics = s p l i t (/ \ s + / , $ d a t a [0]) ;
v e r b o s e (” g e t t i n g t h e m a t r i c e s ”) ;
foreach my $ m e t r i c (@metr ics) {

my @conf igLines = sendToMunin (” c o n f i g $ m e t r i c ”) ;
my $ h a s C a t e g o r y = 0 ;
my $base = 0 ;
foreach my $ c o n f i g L i n e (@conf igLines) {

p r i n t ” c o n f i g l i n e f o r m e t r i c $ m e t r i c : : $ c o n f i g L i n e \n ” ;
i f ($ c o n f i g L i n e =˜ m/ g r a p h c a t e g o r y (. +) /) {

$metr icname = ”$node−$1 ”;
$met r icname = ” $1 ” ;
$ h a s C a t e g o r y = 1 ;

}
i f ($ c o n f i g L i n e =˜ m/ g r a p h a r g s .+−−base (\ d +) /) {

$base = $1
}

}
i f (! $ h a s C a t e g o r y) { $met r icname = ” o t h e r s ” ; }

p r i n t ” m e t r i c name : : $met r i cname \n ” ;
p r i n t ” base : : $base \n ” ;

my @metr icLines = sendToMunin (” f e t c h $ m e t r i c ”) ;
foreach my $ l i n e (@met r icLines) {

my $message = ”OK” ;

73

A.2. MUNIN DATA FORMATTER

my $ f i e l d = ” ” ;
my $ v a l u e = ” ” ;
my $now = t ime ;

i f ($ l i n e =˜ m / ˆ (. +) \ . v a l u e \ s + (. +) $ /) {
$ f i e l d = $1 ;
$ v a l u e = $2 ;
$message = ”OK $met r icname $ f i e l d c u r r e n t v a l u e $ v a l u e ” ;
my %s e r v i c e = (

’Max ’ , ’ ’ ,
’ Un i t ’ , ’ f l o a t ’ ,
’Warn ’ , ’ ’ ,
’ MeasuredTime ’ , $now ,
’ S t a t e ’ , ’OK’ ,
’ Message ’ , $message ,
’Min ’ , ’ ’ ,
’ Labe l ’ , ’ ’ ,
’ C r i t i c a l ’ , ’ ’ ,
’ MeasuredValue ’ , $va lue ,
’ Type ’ , $met r i cname . ” . ” . $ f i e l d

) ;
push @serv iceArray ,\% s e r v i c e ;

}

}

}

my $xmlmessage = c r e a t e S e r v i c e X m l () ;
debug (”XML Format c r e a t e d : : ”) ;
debug ($xmlmessage) ;

s e n d T o F o r m a t t e r ($xmlmessage) ;

}

e x i t (0) ;

sub i n i t i a l i z e M u n i n {

$muninSocket = new IO : : S ock e t : : INET (PeerAddr => ’ l o c a l h o s t ’ ,
P e e r P o r t => ’ 4949 ’ ,
P r o t o => ’ t c p ’ ,) ;

d i e ” Could n o t c r e a t e s o c k e t : $!\ n ” u n l e s s $muninSocket ;
$muninSocket−>a u t o f l u s h (1) ;
sendToMunin (” nodes ”) ;
my $welcome = <$muninSocket >;
v e r b o s e (” welcome : : $welcome ”) ;

74

A.2. MUNIN DATA FORMATTER

}

send commands t o munin
sub sendToMunin {

i n i t i a l i z e M u n i n () ;
my $cmd = $ [0] . ”\n ” ;
my @response ;
v e r b o s e (” s e n d i n g command t o munin : : $cmd”) ;
p r i n t $muninSocket $cmd ;
d i e ” s o c k e t i s dead” u n l e s s $muninSocke t−>c o n n e c t e d () ;

my $ f i n i s h e d = 0 ;
whi le (my $ l i n e = <$muninSocket >) {

chomp ($ l i n e) ;
v e r b o s e (” g e t t i n g d a t a : : $ l i n e ”) ;
i f ($ l i n e eq ” . ”) { b r e a k ; }
e l s e {

push (@response , $ l i n e) ;
v e r b o s e (” r e a d : : $ l i n e ”) ;
i f ($cmd =˜ m / ˆ l i s t . * /) { $ f i n i s h e d = 1 } ;

}
}

c l o s e ($muninSocket) ;
re turn @response ;

}

sub s e n d T o F o r m a t t e r () {

debug (” s e n d i n g message t o f o r m a t t e r ”) ;
my $message = $ [0] ;

my $gSocke t = new IO : : So cke t : : INET (PeerAddr => $FORMATTER IP ,
P e e r P o r t => $FORMATTER PORT,

P r o t o => ’ t c p ’ ,) ;
d i e ” Could n o t c r e a t e f o r m a t t e r s o c k e t : $!\ n ” u n l e s s $gSocke t ;
$gSocket−>a u t o f l u s h (1) ;
debug ($message) ;
p r i n t $gSocke t $message ;
c l o s e ($gSocke t) ;

}

r e t u r n s xml from t h e hash
sub c r e a t e S e r v i c e X m l () {

re turn $xml−>XMLout ($dataHash , RootName=> ’ ’ , NoAt t r =>1, KeyAt t r => []) ;

}

75

A.3. DATA FORMATTER

P e r l t r i m f u n c t i o n t o remove w h i t e s p a c e from t h e s t a r t and end o f t h e s t r i n g
sub t r i m ($)

{
my $ s t r i n g = s h i f t ;
$ s t r i n g =˜ s / ˆ \ s + / / ;
$ s t r i n g =˜ s /\ s+$ / / ;
re turn $ s t r i n g ;

}

sub usage {
p r i n t ” Usage : \n ” ;
p r i n t ”−h Usage \n ” ;
p r i n t ”−v Verbose \n ” ;
p r i n t ”−d Debug \n ” ;
p r i n t ”−1 i n p u t f i l e one \n ” ;
p r i n t ”−2 i n p u t f i l e two \n ” ;
p r i n t ”−c column number \n ” ;
p r i n t ” . / s c r i p t [−d] [−v] [−h] −1 < f i l e 1 > −2< f i l e 2 > −c<columnNumber> \n ” ;

}

sub v e r b o s e {
p r i n t $ [0] . ”\n ” i f $VERBOSE ;

}

sub debug {
p r i n t $ [0] . ”\n ” i f $DEBUG;

}

A.3 Data Formatter

Listing A.4: Message formatter script for groundworks and graphite

! / u s r / b i n / p e r l

Needed packages
use Ge to p t : : S td ;
use s t r i c t ” v a r s ” ; # d e c l a r e v a r i a b l e
use Data : : Dumper ;
use IO : : S ock e t ;
use XML: : Simple ;
use Net : : NSCA : : C l i e n t ;

Globa l v a r i a b l e
my $VERBOSE = 0 ;
my $DEBUG = 0 ;

Handle f l a g s and arguments

Example : : c == ”−c ” , c : == ”−c argument ”
my $ o p t S t r i n g = ’ vdh1 : 2 : c : ’ ;

76

A.3. DATA FORMATTER

g e t o p t s ($ o p t S t r i n g ,\my %o p t) o r usage () and e x i t 1 ;

P r i n t h e l p message i n −h i s i n v o k e d

i f ($op t { ’ h ’}) {
usage () ;
e x i t 0 ;

}

$VERBOSE = 1 i f $op t { ’ v ’ } ;
$DEBUG = 1 i f $op t { ’ d ’ } ;

v e r b o s e (” Verbose i s e n a b l e d ”) ;
debug (” Debug i s e n a b l e d ”) ;

Main

Read t h e xml f i l e

my $xml = new XML: : Simple ;
my $PORT = 8888 ;
my $HOST = ’ 1 0 . 0 . 0 . 6 ’ ;

my $NAGIOS LISTNER = ” 1 0 . 0 . 0 . 3 ” ;
my $GRAPHITE LISTENER = ” 1 0 . 0 . 0 . 2 ” ;
my $GRAPHITE PORT = ” 2003 ” ;

my $LISTNER SOCKET ;
c r e a t e l i s t e n e r () ;

my $ c l i e n t s o c k ;
whi le ($ c l i e n t s o c k = $LISTNER SOCKET−>a cc ep t ()) {

my $ c l i e n t M e s s a g e = ” ” ;
whi le (< $ c l i e n t s o c k >) {

$ c l i e n t M e s s a g e . = $;
}

c l o s e $ c l i e n t s o c k ;

p r o c e s s C l i e n t M e s s a g e ($ c l i e n t M e s s a g e) ;

p r i n t ”\nAt your s e r v i c e . Wai t i ng . . . \ n ” ;
}
c l o s e ($LISTNER SOCKET) ;

77

A.3. DATA FORMATTER

p r o c e s s t h e c l i e n t XML and f o r m a t i t i n t h e hash
sub p r o c e s s C l i e n t M e s s a g e () {

my $ c l i e n t M e s s a g e = $ [0] ;
p r i n t $ c l i e n t M e s s a g e ;
my $ d a t a = $xml−>XMLin ($ c l i e n t M e s s a g e , F o r c e A r r a y => qr { s e r v i c e }x) ;
r e l a y D a t a ($ d a t a) ;

}

sub r e l a y D a t a {

my $ d a t a = $ [0] ;
s e n d T o G r a p h i t e ($ d a t a) ;
sendToNagios ($ d a t a) ;

}

sub sendToNagios {

debug (” s e n d i n g t o n a g i o s ”) ;

my $nsca = Net : : NSCA : : C l i e n t−>new (
r e m o t e h o s t => $NAGIOS LISTNER ,
e n c r y p t i o n t y p e => ’ xor ’ ,

) ;

my $ d a t a = $ [0] ;

my $hostname = $da ta−>{name } ;
my $ s e r v e r B a s e = $da ta−>{s o u r c e } . ”−” . $hos tname ;
my $message = ” ” ;
foreach my $e (@{ $da ta−>{s e r v i c e }})
{

my $ m e t r i c = $da ta−>{s o u r c e } . ”−” . $e−>{Type } ;
my $min = $e−>{Min } ;
my $max = $e−>{Max} ;
my $ t = $e−>{MeasuredTime } ;
my $ v a l = $e−>{MeasuredValue } ;
my $ s e r v i c e S t a t e = $e−>{S t a t e } ;
my $ s e r v i c e M e s s a g e = $e−>{Message } ;
debug (” $hostname $ m e t r i c $ v a l $ s e r v i c e S t a t e $ s e r v i c e M e s s a g e ”) ;

$nsca−>s e n d r e p o r t (
hos tname => $hostname ,
s e r v i c e => $ m e t r i c ,
message => $ s e r v i c e M e s s a g e ,

78

A.3. DATA FORMATTER

s t a t u s => $Net : : NSCA : : C l i e n t : : STATUS OK ,
) ;

}

re turn $message ;

}

sub f o r m a t D a t a F o r G r a p h i t e {

my $ d a t a = $ [0] ;

my $hostname = $da ta−>{name } ;
my $ s e r v e r B a s e = $da ta−>{s o u r c e } . ”−” . $hos tname ;
my $message = ” ” ;
foreach my $e (@{ $da ta−>{s e r v i c e }})
{

my $ m e t r i c = $e−>{Type } ;
my $min = $e−>{Min } ;
my $max = $e−>{Max} ;
my $ t = $e−>{MeasuredTime } ;
my $ v a l = $e−>{MeasuredValue } ;
$message . = ”\ n $ s e r v e r B a s e . $ m e t r i c $ v a l $ t \n ” ;

}

re turn $message ;

}

sub s e n d T o G r a p h i t e {

f o r m a t f o r g r a p h i t e
my $ d a t a = $ [0] ;
my $message = f o r m a t D a t a F o r G r a p h i t e ($ d a t a) ;

my $gSocke t = new IO : : So cke t : : INET (PeerAddr =>$GRAPHITE LISTENER ,
P e e r P o r t =>$GRAPHITE PORT ,
P r o t o => ’ t c p ’ ,) ;

d i e ” Could n o t c r e a t e c a r bo n : $!\ n ” u n l e s s $gSocke t ;
$gSocket−>a u t o f l u s h (1) ;
debug (” s e n d i n g t o g r a p h i t e ”) ;
debug ($message) ;

79

A.3. DATA FORMATTER

p r i n t $gSocke t $message ;
c l o s e ($gSocke t) ;

}

sub c r e a t e l i s t e n e r {

$LISTNER SOCKET = new IO : : So ck e t : : INET (
Loca lHos t => $HOST ,
L o c a l P o r t => $PORT ,
P r o t o => ’ t c p ’ ,
L i s t e n => 1 ,
Reuse => 1 ,

) ;
d i e ” Could n o t c r e a t e s o c k e t : $!\ n ” u n l e s s $LISTNER SOCKET ;

p r i n t ” At your s e r v i c e . Wai t i ng . . . \ n ” ;

}

P e r l t r i m f u n c t i o n t o remove w h i t e s p a c e from t h e s t a r t and end o f t h e s t r i n g
sub t r i m ($)
{

my $ s t r i n g = s h i f t ;
$ s t r i n g =˜ s / ˆ \ s + / / ;
$ s t r i n g =˜ s /\ s+$ / / ;
re turn $ s t r i n g ;

}

sub usage {
p r i n t ” Usage : \n ” ;
p r i n t ”−h Usage \n ” ;
p r i n t ”−v Verbose \n ” ;
p r i n t ”−d Debug \n ” ;
p r i n t ”−1 i n p u t f i l e one \n ” ;
p r i n t ”−2 i n p u t f i l e two \n ” ;
p r i n t ”−c column number \n ” ;
p r i n t ” . / s c r i p t [−d] [−v] [−h] −1 < f i l e 1 > −2< f i l e 2 > −c<columnNumber> \n ” ;

}

sub v e r b o s e {
p r i n t $ [0] . ”\n ” i f $VERBOSE ;

}

80

A.3. DATA FORMATTER

sub debug {
p r i n t $ [0] . ”\n ” i f $DEBUG;

}

81

Bibliography

[1] collectd The system statistics collection daemon. http://collectd.org/.

[2] open platform for network, application, and cloud monitoring. http://www.
gwos.com/.

[3] Graphite - Scalable Realtime Graphing. http://graphite.wikidot.
com/.

[4] Jingyue Li, Reidar Conradi, Christian Bunse, Marco Torchiano, Odd Petter N.
Slyngstad, and Maurizio Morisio. Development with Off-the-Shelf Components:
10 Facts. IEEE Software, 26(2):80–87, March 2009.

[5] I Vlahavas, I Stamelos, I Refanidis, and A Tsoukiàs. ESSE : An Expert System
for Software Evaluation. Knowledge Creation Diffusion Utilization.

[6] G. Polancic, R.V. Horvat, and T. Rozman. Comparative assessment of open
source software using easy accessible data.

[7] GNU. Method for Quali cation and Selection of Open Source software (QSOS)
GNU Free Documentation Licence . Source, (April), 2006.

[8] Won Jun Sung, Ji Hyeok Kim, and Sung Yul Rhew. A Quality Model for Open
Source Software Selection. In Sixth International Conference on Advanced Lan-
guage Processing and Web Information Technology (ALPIT 2007), pages 515–
519. IEEE, 2007.

[9] Mi-lung Choi, Hyoun-mi Choi, and James W Hong. XM L- Ba sed CO n f i
g u ration M a nag em en t for IP Network Devices. IEEE Communications
Magazine, (July):84–91, 2004.

[10] S. Waldbusser. Remote Network Monitoring Management Information Base Ver-
sion 2. RFC 4502 (Draft Standard), May 2006.

[11] David Breitgand. On Generic Scalibility Problems in Monitoring Of Data Com-
munication Networks.

[12] Common Information Model. http://dmtf.org/standards/cim.

[13] Web-Based Enterprise Management. http://dmtf.org/standards/
wbem.

82

http://collectd.org/
http://www.gwos.com/
http://www.gwos.com/
http://graphite.wikidot.com/
http://graphite.wikidot.com/
http://dmtf.org/standards/cim
http://dmtf.org/standards/wbem
http://dmtf.org/standards/wbem

BIBLIOGRAPHY

[14] Remote Monitoring (RMON). http://tools.ietf.org/html/
rfc3577.

[15] Andy Bierman, Rob Enns, Martin Bjorklund, and Juergen Schoenwaelder. Net-
work Configuration Protocol (NETCONF).

[16] David Josephsen. Building A monitoring infrastructure with NAGIOS.

[17] Configuration Management Software For Agile System Administrators. http:
//cfengine.com/.

[18] Jeff Heflin and James Hendler. Semantic Interoperability on the Web. pages
1–15, 2000.

[19] Frank Van Harmelen and Vrije Universiteit Amsterdam. The Semantic Web :
What , Why , How , and When WHY DO WE NEED THE SEMANTIC WEB ?
HOW WILL WE ACHIEVE THE SEMANTIC. 5(3):1–4, 2004.

[20] Nagios Is The Industry Standard In IT Infrastructure Monitoring. http://
www.nagios.org/.

[21] Monitoring clusters and Grids since the year 2000. http://ganglia.
sourceforge.net/.

[22] Liang Zhengyu, Sun Yundong, and Wang Cho-Li. ClusterProbe: an open, flex-
ible and scalable cluster monitoring tool. In ICWC 99. IEEE Computer Society
International Workshop on Cluster Computing, pages 261–268. IEEE Comput.
Soc.

[23] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel Comput-
ing, 30(7):817–840, July 2004.

[24] Brian K. Sheffler. The Design and Theory of Data Visualization Tools. Informa-
tion Security.

[25] Khai N Truong, Gregory D Abowd, and Jason A Brotherton. Who , What , When
, Where , How : Design Issues of Capture & Access Applications. Design, pages
1–20.

[26] Stephen Few. DATA VISUALIZATION PAST , PRESENT , AND FUTURE.
Computer, 2007.

[27] Melanie Tory and Torsten Möller. Human factors in visualization research. IEEE
transactions on visualization and computer graphics, 10(1):72–84, 2004.

[28] Marc Green and D Ph. Toward a Perceptual Science of Multidimensional Data
Visualization : Bertin and Beyond. Image (Rochester, N.Y.).

[29] Ronald Van Der Pol and Freek Dijkstra. Data Exchange between Network Mon-
itoring Tools.

83

http://tools.ietf.org/html/rfc3577
http://tools.ietf.org/html/rfc3577
http://cfengine.com/
http://cfengine.com/
http://www.nagios.org/
http://www.nagios.org/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/

BIBLIOGRAPHY

[30] Michal Džmurá. Introduction to Data Integration Driven by a Common Data
Model.

[31] Lucas Zamboulis. XML Data Transformation and Integration A Schema Trans-
formation Approach. (November), 2009.

[32] Maurizio Lenzerini, La Sapienza, Via Salaria, and I Roma. Data Integration : A
Theoretical Perspective.

[33] Munin monitoring tool. http://munin-monitoring.org/.

[34] Jan Bergstra and Mark Burgess. A static theory of promises. pages 1–14, 2008.

[35] Www.cfengine.com. Monitoring with CFEngine.

[36] Mark Burgess. Two dimenssional time series for anomaly detection and regula-
tion in adaptive systems.

[37] Nagoya Cabinet: super hyper ultra database manager. http://fallabs.
com/tokyocabinet/.

[38] QDBM: Quick DataBase Manager. http://sourceforge.net/
projects/qdbm/.

[39] Representational State Transfer (REST). http://www.ics.uci.edu/

˜fielding/pubs/dissertation/rest_arch_style.htm.

[40] RRDtool is the OpenSource industry standard, high performance data logging
and graphing system for time series data. . http://oss.oetiker.ch/
rrdtool/.

[41] PostgreSQL is a powerful, open source object-relational database system.
http://www.postgresql.org/about/.

[42] MySQL is the world’s most popular open source database. http://www.
mysql.com/products/.

[43] Groundwork Foundation Developer Reference. http://gwfoundation.
sourceforge.net/Foundation-bookshelf-2.0.1.pdf.

[44] Farshad Hakimpour and Andreas Geppert. Resolving Semantic Heterogeneity in
Schema Integration : an Ontology Based Approach. 2001.

[45] Alon Y Halevy. Why Your Data Won t Mix : Semantic Heterogeneity.

[46] Farshad Hakimpour and Andreas Geppert. Ontologies : an Approach to Resolve
Semantic Heterogeneity in Databases. pages 1–25, 2001.

[47] Thomas R Gruber. Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. pages 907–928, 1993.

[48] Rohit Mahajan and Ben Shneiderman. Visual and Textual Consistency Checking
Tools for Graphical User Interfaces. 23(11):722–735, 1997.

84

http://munin-monitoring.org/
http://fallabs.com/tokyocabinet/
http://fallabs.com/tokyocabinet/
http://sourceforge.net/projects/qdbm/
http://sourceforge.net/projects/qdbm/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/
http://www.postgresql.org/about/
http://www.mysql.com/products/
http://www.mysql.com/products/
http://gwfoundation.sourceforge.net/Foundation-bookshelf-2.0.1.pdf
http://gwfoundation.sourceforge.net/Foundation-bookshelf-2.0.1.pdf

BIBLIOGRAPHY

[49] Jeremy Mendel and Richard Pak. The effect of Interface Consistency and Cog-
nitive Load on user performance in an information search task. Human Factors
and Ergonomics Society Annual Meeting Proceedings, 53(22):1684–1688, Octo-
ber 2009.

85

	Introduction
	Monitoring and Reporting

	Background and literature
	What is monitoring and Reporting
	Software comparison
	Monitoring terminologies
	SNMP
	CIM
	RMON
	NETCONF
	RRDTool

	Interoperability between tools
	Syntactic interoperability
	Semantic interoperability

	Problems
	Common interface
	Scalability
	Data Visualization

	Model and Methodology
	Defining a common model for data representation
	Global-as-view GAV
	Local-as-view LAV

	XML as common data model based on data to be integrated
	Why XML as data source?
	Definition of common model elements

	Architecture for integration

	Implementation
	Data wrapper layer for CFEngine
	Architecture
	Monitoring and Reporting
	Data storage model
	API
	Implementation

	Data wrapper layer for Munin
	Architecture
	Monitoring and Reporting
	Data storage model
	API
	Implementation

	Data formatter for Groundworks
	Architecture
	Monitoring and Reporting
	Data storage model
	API
	Implementation

	Data formatter for Graphite
	Architecture
	Monitoring and Reporting
	Data storage model
	API
	Implementation

	Results
	Non-privileged process
	Munin process threads
	CFEngine Root process
	Munin system load average
	Disk Free
	Syslog

	Discussion and future work
	Tools selection for integration
	Implementation
	Problems
	Future work

	Conclusion
	Source code
	CFEngine Data Wrapper
	Munin data formatter
	Data Formatter

