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Abstract

While image filtering is limited to two dimensions, the filtering of image sequences
can utilize three dimensions; two spatial and one temporal. Unfortunately, simple
extensions of common two-dimensional filters into three dimensions yield undesir-
able motion blurring of the images. This thesis addresses this problem and intro-
duces a novel filtering approach termed the general flow-adaptive filter.

Most often a three-dimensional filter can be visualized as a cubic lattice shifted
over the data, and at each point the element corresponding to the central coordinate
is replaced with a new value based entirely on the values inside the lattice. The
general principle of the flow-adaptive approach is to spatially adapt the entire filter
lattice to possibly complex spatial movements in the temporal domain by incorpo-
rating local flow-field estimates.

Results using the flow-adaptive technique on five filters – the temporal disconti-
nuity filter, a tensor-based adaptive filter, the average, the median and a Gaussian-
shaped convolution filter – are presented. Both ultrasound image sequences and
synthetic data sets were filtered. An edge-adaptive normalized mean-squared er-
ror is used as performance metric on the filtered synthetic sets, and the error is
shown to be substantially reduced using the flow-adaptive technique, as much as
halved in many instances. There are even indications that simple Gaussian-shaped
convolution filters can outperform larger and more complex adaptive filters by im-
plementing the flow-adaptive procedure. For the ultrasound image sequences, the
filters adopting the flow-adaptive principles had outputs with less motion blur and
sharper contrast compared to the outputs of the non-flow-adaptive filters.

At the cost of flow estimation, the flow-adaptive approach substantially improves
the performance of all the filters included in this study.
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Chapter 1

Introduction

Ultrasound has long been recognized as a powerful tool for use in the diagnosis
and evaluation of many clinical entities. Unfortunately, the ultrasound images are
often rather noisy.

Common frame rates for ultrasound scanners are in the range of ��� to ��� frames
per second. The visual quality of a running film sequence appears better than the
quality of each individual frame. An obvious approach for image enhancement
would hence be to let each filtered image-frame embody information from several
consecutive frames. Improving the frozen ultrasound images are important since
such frames are used for documentation purposes, manual measurements, and au-
tomatic object detection and analysis [31, 34]. Of course, an enhancement of the
isolated frames also benefits the visual appearance of the video sequence.

Even though the noise in ultrasound images has several components, as discussed
in chapter 2, the most prominent is nevertheless characterized by a very low tem-
poral correlation [38]. This implies that temporal smoothing will most often have
a substantial impact on the noise level. However, when imaging fast moving ob-
jects, e.g., in a cardiac examination, temporal filtering is prone to unwanted motion
blurring of the structural edges in the images.

Earlier research

A substantial amount of research has been done on the filtering of ultrasound se-
quences. Several authors have applied techniques based on the topic of chapter 3,
order statistics. Examples on the use of filters based on the median are [9], who
used directional median, and [19], who proposed a filter adaptively selecting either
the mode or the median. Stack filters were applied by Harvey et. al.[17]. Polyno-
mial fitting, as briefly mentioned in that same chapter, has been tried in [6].

Other alternatives are iterative filters such as the geometric filter[8], and yet an-
other technique is that of using inverse filtering to remove speckle noise [47, 18].

3



The utilization of higher order moments in adaptively setting filter weights was in-
vestigated in [15], and averaging over several heart cycles has also been done [25].

Schistad and Taxt[48] applied a filter based on quantum-mechanical field models,
together with an adaptive linear filter and a median filter, on one-dimensional tem-
poral neighborhoods of size � . The outputs were then filtered spatially with filters
from the same classes. They also noted that a simple extension of these filters to
three dimensions gave unacceptable motion blur. Evans and Nixon[12] presented
a spatio-temporal filter based on a modified two-dimensional least mean squares
algorithm, where the iterative weight updates were manipulated both to make the
output biased towards the mode or the mean depending on the local speckle pat-
tern, and to reduce motion blur. An overview of several classes of filters and an
evaluation based on texture classification can be found in [34].

Goals and contributions of this thesis

Besides giving discussions on ultrasound imaging principles, order statistics based
filters and energy-based structure and flow estimation, the main contribution of the
thesis is the introduction and evaluation of the general flow-adaptive filter. The
general flow-adaptive filter utilizes the low spatial variance of flow fields to sim-
plify and improve filter-adaptability to spatial movement in time sequences. It will
be shown that the novel filter approach gives substantial improvement gains in both
synthetic sequences and real ultrasound images.

The organisation of this thesis

The text, including this introduction, is organized into nine chapters and three ap-
pended sections. Succeeding the present, chapter � provides a theoretical summary
of the ultrasound image formation process. Chapter � presents a broader discus-
sion on the topic of filters based on order statistics, giving a firm basis to discuss
the behavior of such filters in the experiments. Two background topics neces-
sary for the appreciation of the conducted experiments; the discontinuity filter and
speckle tracking, are described in chapter � . Local structure and velocity estima-
tion, together with adaptive filtering, using the energy-based approach is discussed
in chapter � . Chapter � presents the general flow-adaptive filter. The description
of the experimental materials and methods, results and discussion, and the conclu-
sions occupy chapter ����� and

�
, respectively. Appendix A holds additional plots,

tables and examples of filtered images. A list of mathematical notations is found
in appendix B, and appendix C lists excerpts from the program code.

4



Chapter 2

Ultrasound Imaging Principles

This chapter describes the basic principles of the formation of ultrasound im-
ages, and the factors affecting their quality. The material presented is based on
Angelsen[2] unless others are referenced.

Ultrasound is a term describing mechanical waves whose frequency is above the
range of normal human hearing, which extends from about 30 to 20,000 Hz. In
medical ultrasound imaging, frequencies in the range of 2-10 MHz are common
for transcutaneous measurements, and for intravascular imaging, tiny catheter-
tipped probes operate at frequencies as high as 30 MHz. The ultrasound waves
pass through the body and the echoes are registered. By processing the backscat-
tered signals from several directions, an ultrasound image is constructed.

The ultrasound wave signals are generated, and received, by a device called a trans-
ducer. The transducer, or array of transducers, is controlled by a radio frequency
(RF) unit allowing the resulting ultrasound beam to be focused and steered. The
scanline processor extracts the time-domain data acquired by the RF-unit for each
pulse, and then the scanline data is further scan converted giving the resulting im-
age to be displayed.

2.1 Ultrasound transducer

The transducer probe generates and receives sound waves using a principle called
the piezoelectric effect. When a voltage source is coupled on each side of a piezo-
electric plate, the plate will either expand or contract depending on the polarity
of the voltage. Applying an oscillating voltage source makes the plate thickness
vibrate, creating the desired mechanical wave.

To obtain the necessary amplitude, the transducer plate must be in resonance,
which happens when the plate thickness is half a wavelength. Since the trans-
ducer is at resonance, it will keep oscillating a few times after the voltage source

5
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Figure 2.1: Schematic illustration of an ultrasound transducer

has been removed. This is called the ring down. As discussed in section 2.3.5,
minimizing the pulse length, i.e. maximizing the pulse bandwidth, is crucial for
the radial resolution of the image.

There are two common ways to reduce the excessive ringing. One is to mount
the transducer plate on an absorbing backing. This dampens the ringing because
energy is transmitted into the backing. The disadvantage of this method is that it
reduces the amplitude of the pulse as well as the sensitivity of the transducer as a
receiver. The other way of reducing the ringing is by using a thin plate between the
transducer and the tissue having a stiffness and mass density between that of the
transducer and that of the tissue. This facilitates the energy coupling between the
transducer and the tissue, making the ringing die out more quickly. The thickness
of the plate should be one quarter of the wavelength in the plate, and is often re-
ferred to as a quarter wave impedance transformer. A schematic illustration of an
ultrasound transducer is shown in figure 2.1.

2.1.1 Transducer arrays

By building the transducer using a number of individually controlled smaller ele-
ments, the resulting ultrasound beam can be electronically focused and steered by
appropriately delaying each element.

There are several different types of arrays. One is the annular array, which con-
sists of concentric rings. Such an array cannot be steered, but is able to focus. A
phased array has a relatively small aperture, and all of the elements are used to
form beams emanating from one point. Such arrays are normally used in cardiol-
ogy applications because the small aperture allows access between the ribs. There
are also linear and curved linear arrays where only parts of the array elements are
active at a time. The complexity and cost of the implementation often limits the
arrays to about 64-128 elements.

6



Three-dimensional imaging, where the beam has to be able to steer the azimuthal
direction as well, requires the use of two-dimensional arrays. Such arrays usually
consist of a very large number of transducers, and it is therefore sought to limit the
number of array elements while still obtaining acceptable performance, see [3] and
references therein.

2.2 Fundamental acoustics

When an ultrasound pulse encounters a boundary between two tissue structures the
pulse will be partially reflected and partially transmitted. The reflection depends
on the difference between the characteristic impedances of the two materials. The
characteristic impedance of a material is given by

�������

where
�

is the mass density and
�

is the wave propagation velocity of that material.
The ratio of the amplitudes of the reflected and the incident pulse is called the
reflection coefficient, and is, for a beam normal to the interface plane, given by

���
			
��������
��������� 			

Thus, interfaces consisting of materials having a large difference in characteristic
impedance reflect a greater fraction of the ultrasound pulse.

The variance of the sound velocity in soft tissue is only about 0.2-0.3% so that
the wave propagates approximately like in an homogeneous material. This allows
simple calculations to estimate the distance to targets based on the time lag be-
tween the pulse transmission and the received reflected pulse. The distance, � , to
the target is

� � ���� � � �
� �
� (2.1)

where � is the time lag and
�

is the sound velocity, which is often set to approx-
imately � � � � m/s. An important exception to the homogeneity assumption is fat,
which has both mass density and sound velocity, much lower than that of muscu-
lar tissue, causing degradation and artifacts in the image as discussed in section 2.5.

As the pulse propagates through the tissues, the wave intensity is attenuated, which
is caused by absorption of wave energy into heat, reflection, scattering and diver-
gence of the ultrasound beam. Because of this attenuation, the reflections from
distant targets are much weaker than the reflections from near targets. This is com-
pensated for by using a time-variable amplitude gain, known as time gain compen-
sation, or TGC.
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2.3 Ultrasound beam

2.3.1 Beam characteristics

The beam radiated from the transducer can be analyzed using Huygens’ principle,
in which each point on the surface acts as a source of a spherical wave. These waves
will interfere and generate a beam similar to the one schematically illustrated in
figure 2.2(a). Besides the high-intensity mainlobe, there are other, smaller lobes
called sidelobes that are located around the main lobe. The imaging effects caused
by sidelobes are discussed in section 2.3.4 on page 10. The beam is divided into a
nearfield and a farfield region. In the farfield region, also known as the Fraunhofer
zone, the wave, due to diffraction, expands with a fixed beamwidth. In the nearfield
the beam contracts before it expands, causing an apparent focusing that is referred
to as diffraction focusing. The transition between the farfield and the nearfield
is not exact, and several different application-dependent criteria are being used.
In [2], the distance, ����� , to the nearfield-farfield transition for a plane circular
transducer is set to be

����� ���
�

��	
where � is the transducer diameter and 	 is the wavelength. The 12dB dual-sided
beamwidth for the same transducer surface is


 � ��	
�

The beam can be focused either electronically, by appropriately delaying array ele-
ments, or mechanically as illustrated in figure 2.2(b). The focus will have reduced
sharpness due to refraction, and the 12dB focal diameter for a uniformly vibrating
disc is

��� � � 	�


(2.2)

where


is the radius of curvature of the disc. For the focusing to have an effect, the
geometric focusing angle must be larger than the diffraction beamwidth, and the
focus must be in the nearfield of a corresponding non-focused transducer. When
using arrays, and the transducer is set to receive, the focus can be varied with time
to follow the reflections from the pulse from gradually deeper depths. This rapid
updating of the focus during receive is called dynamic focusing.

The beam profile becomes more omni-directional as the element size is reduced.
Elements as those used in transducer arrays, should therefore be as small as pos-
sible, at least less than � � , to ensure the interference necessary for a well-formed
steerable beam.

2.3.2 Basic array pattern analysis

In the farfield, the wavefront is approximately planar, and simple models can give
insight into array requirements and the formation of mainlobes and sidelobes.
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Figure 2.2: Schematic illustration of the ultrasound beam formation

Let the wave field,
����� ����� , consist of a monochromatic wave with temporal fre-

quency � propagating with wavenumber
��
,

����� ����� ��������� �"!$#%'& #(�)
Placing the array transducers, or sensors, uniformly on the * -axis with an inter-
element spacing, � , the wave field measured at the + -th sensor is

, � � ��� �-� ����� �"! � %�.�/ )
Letting each of the 0 sensors be individually weighted before summation yields
the total array output:

, � ��� ��1 !
�2

�436587 �
� �9�:� �"! � % . / ) �-� ��� � 1 !

�2
�436587 �

� !;� � % . / �-� ���;�6< �>= � (2.3)

where
= � � ? � , making

< �A@ � the Fourier transform of the transducer weights.
Thus, one can analyze the array output resulting from plane waves arriving from
different directions using simple Fourier transform analysis. Figure 2.3 shows the
response function of a uniformly weighted array. Note that the wave equation lim-
its

< �>= � to represent real propagating signals only when
 �CB /
�ED

=
D
�CB /
�

, also
referred to as the visible region[52].

Lobes having the same height as the mainlobe are called grating lobes and (2.3) re-
veals its periodical occurrence whenever

= ��F �HG � FJILK
. To avoid grating lobes

in the visible region, the inter-element distance, � , must satisfy �NM 	 . However,
steering of the array can be seen as a shift in the beam pattern [52], so to prevent
grating lobes to appear in the visible region when the array is allowed to steer O B � ,
it is required that � D � � . The appearance of grating lobes is equivalent to aliasing
in time-series analysis.

Note that the above models assume a continuous wave excitation. With short
pulsed waves the sidelobes are blurred, and the clear distinctions between them
in the beam pattern are reduced.
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Figure 2.3: Beam pattern of a uniformly spaced, � � � � , linear array with 11
elements using different apodization, or weighting, strategies

Figure 2.4: How beamwidth affects lateral resolution, from [2]

2.3.3 Beamwidth

The width of the beam limits the lateral resolution as illustrated in figure 2.4. By
focusing, the beamwidth can be reduced within a limited distance of the focal
point. From (2.2) we see that the focal diameter can be reduced by increasing the
frequency while maintaining the transducer diameter, but high-frequency waves
attenuate much more than waves of low frequencies which limits the ultrasound
penetration depth. Because of this, different frequencies are used when imaging
different organs and patients, depending on the depth of penetration needed.

2.3.4 Sidelobes

The sidelobes will spread out in many directions, including outside of the image
plane, and result in interfering backscatter degrading the contrast of the image. The
sidelobe levels can be reduced by apodization, which in the case of a continuous
aperture means that the transducer is built in such a way that its center vibrates
with a higher amplitude than its periphery. When using a transducer array, the
amplitudes can be individually manipulated mimicking the same behavior as that
of the continuous apodization, or be based on well-known time-analysis weighting
strategies like Bartlett, Blackman or Hamming, see [36]. Figure 2.3 shows the ef-
fect of apodization using the Hamming window in the farfield model described in

10



section 2.3.2. Reduction of the sidelobes is done at a cost of a wider mainlobe, but
the perceived gain in contrast resolution is often higher than the corresponding loss
in lateral resolution.

Since a transducer array consists of discrete elements, the sidelobe levels are higher
than that of a corresponding continuous aperture. Reducing the size and increasing
the number of the elements mitigates this, and improves the effect of apodization.

2.3.5 Pulse bandwidth

The length of the pulse determines the radial, or range, resolution of the imaging
system. Targets that are radially close cannot be resolved if the distance between
them is less than half the pulse length. In this case the reflections overlap, and
separation is impossible. The least number of times the transducer oscillates is
practically constant, which makes it possible to reduce the pulse length by increas-
ing the frequency.

2.4 Scattering and speckle

When the ultrasound beam encounters a reflecting object that is small compared
to the ultrasound wavelength, a fraction of the beam will scatter in all directions.
This can benefit imaging, since tissue interfaces usually have a certain roughness
which scatters the beam, making interfaces visible even though the beam is not
perpendicular to the tissue surface.

When several of these sub-resolution scatterers interact with each other they cause
intricate interference patterns called speckle. Speckle is seen as grainy or mottled
texture with a rapid spatial variation, and might often be mistaken for real structure.
The pattern depends on the frequency of the transmitted pulse and the beamwidth,
and will, in theory, not change with lateral or radial displacement. This latter can
be utilized in speckle tracking, where blood flow and tissue motion is estimated by
template-matching algorithms, as described in section 4.2.

2.5 Tissue inhomogeneity

Tissue inhomogeneity cause irregular velocity and mass variance along the beam
path which can cause distortion and degradation of the image. Several of the re-
sulting effects are discussed here.

2.5.1 Ranging errors

The time of echo arrival is converted into range using (2.1), which assumes a con-
stant and predefined wave velocity. When the actual velocities deviate from this
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Figure 2.5: Imaging errors caused by tissue inhomogeneity, from [2]

value, image distortions can appear, as illustrated in figure 2.5(a). An important
example is fat, through which the beam has a velocity of about � � ��� m/s which is
considerably lower than the average sound velocity in tissue of about � � � � m/s.

2.5.2 Deflection

Refraction occurs whenever an incident beam strikes an interface at a non-perpendicular
angle, and can cause error in the location of the imaged object. This is often re-
ferred to as deflection error. Figure 2.5(b) illustrates how the system assumes a
straight beam path, while in reality it is bent due to the refraction caused by the
difference in sound velocity in the two tissues.

2.5.3 Wave front aberration

Irregular variations in the wave velocity also destroy the wave front in a process
called wave front aberration. The resulting beam is diffuse, and this causes a
degradation of the spatial resolution.

2.5.4 Shadowing and enhancement

When the ultrasound pulse propagates through an object with a high level of atten-
uation, the area distal to the object receives a signal with reduced amplitude. This
is known as shadowing and causes weaker reflections from the distal area, which
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is typically seen as dark streaking behind the highly attenuating objects. The op-
posite effect is known as enhancement, and gives high brightness levels distal to
objects having a low level of attenuation compared to the surroundings, see [44]
and references therein. Note that a reduction, or removal, of the enhancement and
shadowing artifacts is not always desired, since they often contain valuable infor-
mation for the clinician [45].

2.5.5 Reverberation

As the reflected pulses encounters interfaces on their way back, they will again
be reflected and sent back deeper into the tissue. Such multiple reflections are
known as reverberation, and is illustrated in figure 2.5(c). Even though these multi-
reflected pulses are weaker, they can still cause severe degradation of the image.
Especially the low mechanical impedance of fat compared to muscular tissue, and
the difference in mechanical impedance between the transducer face and the tissue,
give rise to strong reverberation artifacts.

2.6 Temporal resolution

The time it takes to generate an image depends on the number of beams and the
depth of interest. Each beam needs � ����� ��� 5 time to collect data from depth�

, where
� 5 is an extra wait period to make sure that the pulse is sufficiently

attenuated. This gives, for an image consisting of 0 beams, the frame rate:

� ��� FL� ��� � � � �
0 �

� ����� ��� 5 �
Thus, there is a tradeoff between the number of beams, imaging depth and tempo-
ral resolution. When using 128 beams and a depth of about 16cm, a frame rate of
about 30 frames per second is achievable.

Each frame can be constructed from several sweeps of the beam with different
focal depths to improve the lateral resolution. This is referred to as composite
transmit focus, and the frame rate is reduced by a factor equal to the number of
focal depths. The severe reduction of the frame rate renders this method unsuit-
able for imaging fast moving structures like the heart, but it is fully applicable for
imaging internal organs in the abdomen.
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Chapter 3

Adaptive Filters Based on Order
Statistics

This chapter presents selected topics in the field of order-statistics based filtering.

Using low-pass linear filters as noise suppressors have the undesirable side-effect
of blurring sharp transitions in the input signal. The nonlinear filters presented here
try to overcome this weakness while retaining the noise suppressing effect.

Filtering is performed by letting a window move over the data sequence, and at
each point the data values within the window,

�� � � � � ������� � � 1 � , are used as input
to the filter. The output of the filter, ,�� , replaces the value in the signal at the posi-
tion corresponding to the window center.

The ordered input sequence to the filter will be denoted
�� � ) , that is,

�� � ) � � � � � ) ������� � � � 1 ) � � � � � ) D � � � ) D ����� D � � 1 )

3.1 Median filters

Letting the output of the filter being the median of the 0 � � F
� � input values,
i.e., ,�� � � ��� ) (3.1)

we obtain what is referred to as the median filter[41]. If 0 is an even number, the
median is defined to be the average of � ��� 1 	

��
 ) and � ��� 1 	
�� ) [37], but the focus of

this text will be on the case of 0 being odd.

3.1.1 Characteristics of the median filter

By studying figure 3.1 on the next page it appears that the median filter has two
very desirable properties: It preserves sharp edges, or step functions, and it is well
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Figure 3.1: Median filtering of one-dimensional example signals

suited for impulse noise filtering.

Edge information is very important for human perception [49]. The edge preserv-
ing qualities of the median filter makes it more suitable for edge filtering compared
to its low-pass linear counterparts, which do poorly on the, by definition, high fre-
quency contents of edges.

Pulse functions, whose periods are less than one-half the window length, will be
suppressed. In a wide-band sensor, short impulses might represent valid signal
pulses which will be filtered out. Thus, in some cases the median filter will provide
noise suppression, while in others it will cause signal suppression.

Filter shapes In the multi-dimensional case, various forms of filter windows can
be used. Figure 3.2 on the facing page illustrates some of the two-dimensional
window shapes often encountered. A window shape which is symmetric around the
origin, and includes the origin, will preserve sharp edges in any direction, although
the square, and circle ring, windows will result in only slight edge alterations [23].

Signal borders If the input signal is of finite extent, there will be signal borders
where only parts of the applied filter window is defined. There are two approaches
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Figure 3.2: Common two-dimensional filter windows

to solve this problem [41]: In the first, the filter window is truncated so that only
well defined samples, i.e. samples on the inside of the signal borders, are included
in the calculation of the median. In the second approach, the sequence is appended
with the sufficient amount of samples, and the usual (3.1) is applied.

Computational concerns The most intuitive way of implementing the median
filter is to sort all the elements, and then pick the one in the middle. Any which
way the sorting is done, one still has a worst-case lower bound of

� � 0������ 0 � ,
where 0 is the length of the input sequence [53]. Trying to reduce the complexity
by using heap-like structures to avoid sorting the entire array will generally not
prevail. However, due to the fact that the samples inside the filter window is only
partly replaced as the window is moved across the signal, sorting improvements
beyond the above mentioned restrictions can be achieved [21]. Special hardware-
oriented algorithms have also been proposed [10].

3.1.2 Noise reduction

By assuming certain noise density distributions, variance formulas yielding quan-
titative information about the noise suppression of the median filters can be found.
The focus here will be on white noise, i.e., noise sequences being independent
identically distributed. Due to the nonlinearity of the median filters, it is not pos-
sible to separate the signal effects and noise effects as simply as for linear filters.
Thus, the easiest case of a constant signal is assumed.

The signal sequence consists of elements modeled as

� � F � *
where �	� *�
 � � and ��� � 
 � F

. Let
 � � � and

�� � � � � � � � denote the distri-
bution and density functions of the � variables, and � ( denote the variance. The
density of the median of a sequence

� � � � � � ������� � � 1 � is [46]:

� � , � � 0
� 0  �� 0  ��� � ��� �� , �  � , � � 1 !

� ) 	 � � �   � , ��
 � 1 ! � ) 	 � � (3.2)
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This distribution is for large 0 approximately normal [23], 0 ���F � � 1 � , where
�F

is the continuous median, i.e.,
 ���F � � � � � , and

� �1 � �
0 �

� � ���F � ��� � � � FL� ��� �;+�� � � � � � � � ������� � � 1 ��
 � (3.3)

By replacing the factor � � 0 in (3.3) with � � � 0 �
	 � , where
	 � � � � � � � ���F � � �( 
  � ,

the equation (3.3) becomes exact for 0 � � , thereby giving a better approximation
for small 0 .

Uniform distribution Letting the � variables be uniformly distributed on � � � � 
 ,
one can compute the variance of the median exactly using (3.2):

� � � � FL� ��� �;+�� �L� � � � � � ������� � � 1 ��
 � �
�
� 0 � � �

� � �(
0 � �

@
� �

Normal distribution When the � variables are normally distributed, (3.2) must
be computed numerically. Alternatively we can get an approximation using (3.3).
Including the modifications for small 0 , it yields

� ��� � FL� ��� � +� �L� � � � � � ������� � � 1 ��
 � � �(
0 � G � �  �

@ G
� � 0 � � � � � � �������

Comparing this result with the variance of the average of
� � � � � � ������� � � 1 � , which

is � �( � 0 , it is evident that the average filter is much better at suppressing normal
white noise than the median filter. Noting that the average is actually the maximum
likelihood estimate of

F
, this result comes hardly as a surprise.

Double exponential distribution If, on the other hand, the � variables have a
double exponential distribution, i.e.,

�� � � ��� �� ( � !�� ��� ( ! � � 	����
we get, using (3.3):

� � � � FL� ��� �;+�� �L� � � � � � ������� � � 1 ��
 � � �(� 0  � � � �
@ �
�

which is about ����� smaller than the variance, � �( � 0 , of the average. Here, the
median is the maximum likelihood estimate of

F
, which is obvious when one

recalls that the minimum of 12
� 3 ���

� �  � �
is attained for �

� FL� ��� �;+�� � � � � � � � ������� � � 1 � .
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Error rate � + � � + � � + � � �

0.01 0.00030 0 0
0.05 0.00725 0.000033 0
0.1 0.028 0.00089 0.0000002
0.2 0.104 0.0196 0.00037
0.3 0.216 0.099 0.0175
0.4 0.352 0.267 0.1538
0.5 0.5 0.5 0.5

Table 3.1: Probabilities of erroneous reconstruction in case of impulse noise

Impulse noise By making the assumptions that the distorting impulses, or spikes,
occurs at each sample with equal probability, � , and that the impulses are all of the
same value, � , we get

� � ��� � with probability �� � with probability
� �  �6�

where � ���� � denotes the value of the original signal, which is assumed approxi-
mately constant in the local window neighborhood.

The output value, , � , will be correct if, and only if, the number of errors within
the local window neighborhood is less than half the total number of elements in
that same neighborhood. The number of erroneous points in the neighborhood has
a binomial distribution, yielding the following result:� �

correct reconstruction � ��� � , � � � � ��	� � 1 !
� ) 	 �% 365 
 1 %�� � % � �  �6� 1 ! %

A few values of the probability of erroneous reconstruction are shown in table 3.1.

A general conclusion of the above examples is that medians are better than means
when the distributions are heavily tailed.

3.1.3 Frequency response

The frequency response of the median filter for general signals, which can be seen
as linear combinations of complex exponentials, does not exist due to the nonlin-
earity of the filter. In this subsection the power spectrum distribution of a median
filtered single cosine wave is derived. We focus on the simplest case in which0 �

� , giving:� � ��� �� ��� � � ��� � � I�� � � D � D G
, � ��� � FL� ��� �;+�� � � � � �  ��� � � � ��� � � � � � ����
 � � I��
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A few minutes of staring at the above equations verifies that

, � ��� � ����  ��� � � � �  ����� � M � D � � � ��� � � ��� � � � M � D
� � �  � � � ��� � � � � � ����� � � �  � � � M � D
� � �

where
��� �HG � � , i.e., , � ��� is periodic with period

�
.

By expanding , � ��� as a Fourier series with coefficients

� % � �
�����5 �	� � % � � � �

� � O � � O � �������

we can extract the components having frequency O � , i.e., when
� � O � . By

representing
� � � � ��� in its complex exponential form, the calculations needed are

quite simple, leading to

� ��� � � ! � ) � �
��
 �  �

G
� �

G
 ��� 7� � � D � D G

giving the spectral effect at frequencies O � equal to

� � � ��� � � ! � ) � � �
� � �

One can also compute the total spectral effect, i.e., the variance of , � ��� :
� �� � �

�����5 , � � ��� � � � ���� � � �G � ����� � � � �  � ����� � ��� � � D � D G
Figure 3.3 on the facing page shows � �� , � �

� �
and also the variance of a corre-

sponding three-point average filter, � �� . Note that � �
� � � � �� for linear filters. For

7 M �HG � � the plot demonstrates the low-pass characteristics of the median filter,
showing a similar response as the corresponding average filter. For higher frequen-
cies the similarities break down, and we see that both � �� and � �

� �
has the same

response for � � G and � � � . This latter observation is explained by the fact that
the median filter will preserve the form of a sequence � � �

����� � � �  � � � �  � ������� � ,
although shifted one step.

For larger 0 , analytic solutions to the above equations are infeasible, and numer-
ical integration must be used. Frequency response of non-simple signals has been
attempted computed empirically as quotients of Fourier transform of output and in-
put signals, but the result is obviously dependent on the input signals chosen [23].

3.1.4 Some alternatives to the standard median filter

Some commonly encountered alternatives to the standard median filter are dis-
cussed briefly below. Richer descriptions can be found in [41].
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Figure 3.3: Filtering of cosine wave. Spectral effect.

Separable In multiple dimensions, the separable median filter is the result of sev-
eral successive one-dimensional median filtering operations. In the two-dimensional
case, letting � ��� � denote the image value at row � and column

�
, and letting , ��� � de-

note the corresponding filter output, we get

,���� � � FL� ��� � + � �� * ��� ��!�� ��* ��� �9!���� � ������� ��* ��� �����9! � ��* ��� ����� �* ��� � � FL� ��� �;+� �� � � !�� � � � � � !���� � � � ������� � � � ���9! � � � � � � ��� � � �
where 0 � �
	 � � is the one-dimensional filter-window length. The separable
median filter of length 0 has greater output variance than its non-separable 0 � 0
counterpart [41]. The main advantage of the separable median filter is its low
computational complexity. Sorting two sequences of length 0 is more efficient
than sorting one sequence of length 0 � 0 , which is evident from our discussion
on computational concerns in section 3.1.1 on page 17.

Recursive In the recursive median filter, already computed output samples are
used in the calculation of the output , � :

,�� ��FL� ��� � +� �� ,�� !�� � ,�� !���� � ������� � � � ������� � � � ����! � � � � ��� �
Its output tends to be more correlated than that of the standard median filter, and
has more immunity to impulsive noise [41]. The recursive median filter can also
be made separable by obvious modifications.

Weighted The weighted median is the estimator, � , that minimize [41]:

12
� 3 � 7

� � � �  � �
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By letting 7
� � denote the duplication of � 7 times, we can describe the filter by:

,�� ��FL� ��� � +� �� 7 !��
� � � !�� ������� � 7 � � � � ��� �

By properly choosing the filter weights, time information can be incorporated in the
filter, e.g., weighting the central pixel more heavily. Kth nearest neighbor median
filter and two-dimensional in-place growing filter[5] are two examples of filters
obtained by proper weighting.

Multistage The standard median filter performs poorly on multi-dimensional
signals with a high level of fine details. For example, in images, thin lines and
sharp edges are not preserved. Such details are, as mentioned above, very impor-
tant to the human perceptual system, and consequently standard median filtering
can cause severe visual degradation. Thus, several efforts have been made to take
into account structural information. One such attempt gives us the multistage me-
dian filter:

, ��� � � FL� ��� �;+� �� FL� ��� �;+� �� * � ��* � � � ��� � � � FL� ��� � + � �� *�� ��*�� � � ��� � � � � ��� � �* � � FL� ��� �;+� �� � ��� �9!�� ������� � � ��� � ������� � � ��� ����� �* � � FL� ��� �;+� �� � � !�� � � ������� � � ��� � ������� � � � ��� � � �* � � FL� ��� �;+� �� � � ��� � �9!�� ������� � � ��� � ������� � � � !�� � ����� �* � � FL� ��� �;+� �� � � !�� � �9!�� ������� � � ��� � ������� � � � ��� � ����� �
Multistage median filers can preserve details in horizontal, vertical and diagonal
directions, due to the corresponding sub-filters.

3.2 L-filters

An important generalization of the median filter is the L-filter[4]:

,�� � 12
� 3 �

� � � � � ) (3.4)

where 0 is the size of the filter, � � ) are the ordered window samples, and � � � � �
� ������� ��0 , are weight coefficients.

By using the weight coefficients

� � � � � if
� � � 0 � ��� � �

� otherwise

one obtains the standard median filter, and by using the weight coefficients � � �
� � 0 one gets the standard running average filter. Setting all the coefficients to
zero except for � � � � the � th rank order operation[4] is obtained. Obvious mod-
ifications leads to the max/min filter[43]. The � -trimmed mean filter[41] is also
obtainable by properly setting the filter coefficients.
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3.2.1 Adaption to different noise distributions

The filter coefficients can be chosen to satisfy an optimality criterion that is related
to the probability distribution of the input noise. Considering a constant signal
corrupted by zero-mean white noise, we can model the output as

� � � � � + �
where � � is the observed output, � is the constant signal, and + � are independent
identically distributed random variables satisfying ��� + � 
 � � . Assuming that the
noise distribution is symmetric, the condition that � � �	� , � 
 is satisfied by impos-
ing the constraint:

12
� 3 �

� � � �� � �� � � (3.5)

where
�� � � � � ������� � � 1 � and

�
� � � � ������� � ��� . Letting

�� � ) � � � � � ) ������� � � � 1 ) � and�+ � ) � � + � � ) ������� ��+ � 1 ) � the mean squared error norm is given by

�
� � � � � ,��  � � � � � � � �H�� � �� � )  � � � �� � � �4�� � � � �� � �+ � ) �  � � � � � � � �4�� � �+ � ) � � �� �� � � �� (3.6)

where
��� �	� �+ � ) �+ � � ) 
 . Minimizing the above function with the constraint (3.5) can

be done using Lagrange multipliers. The Lagrangian function is given by

� �H�� � � �� � � �� � 	 �H�� � ��  ���
Setting the derivatives with regards to

�� equal to zero gives, assuming
�

is non-
singular, ���

� #� � � �� � 	 �� � � � �� �  � ! � 	 �� (3.7)

and using (3.5) gives

	 �
 ��

� � � ! � ��
Plugging this back into (3.7) yields

�� � � ! � ���
� � � ! � �� (3.8)

Thus, having the noise correlation matrix,
�

, one can easily obtain the filter co-
efficients using (3.8). A more general design scheme for applications involving
non-constant known signals is given in [4].
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3.2.1.1 Computation of the correlation matrix

Evaluation of the
�

in (3.8) requires expressions for the marginal and the bivariate
densities of + ��� ) . Denoting the parent distribution and density of the noise as

 � � �
and

� � � � , respectively, the density of + � � ) � � � � ������� ��0 is given by [46]:

� ������� � � � � 0 �
� �  ��� � � 0  �C� � � � � � �  � � � � � ! � � �   � � � ��
 1 ! � �

The joint density of + � � ) and + � � ) , � � � � � ������� ��0 � � M � � is [4]:� ������� ��� �	� � � � , � ��
 ��� � � � � � � � � � , �  � � � � � ! � �  � � , �   � � � ��
 ��! � ! � � �   � � , ��
 1 !;�
where 
 ��� � � 0 �

� �  ��� � � �  �  ��� � � 0  � � �
The symmetric correlation matrix

�
is obtained by integration:

� ��� � � �� � ��!� ��!� � , � ������� ��� �	� � � � , � � � � , if � M ���!� � � � � ����� � � � � � if � � �

The complexity of these equations makes numerical integration generally neces-
sary, even for simple parent distributions of the original noise.

The resulting optimal coefficients for several noise distributions, and for 0 �
� � � ��� � , is found in [4]. The results for the uniform and normal distributions
are their corresponding maximum likelihood estimators, i.e., the midpoint, � � �
� 1

� � � � for the uniform case, and the average, � � � � � 0 � � � � ������� ��0 ,
for the normal distribution case. Generally, the results confirm the statement in
section 3.1.2 on page 19 in that the weights located in the center becomes more
pronounced as the noise distribution grows heavier tailed.

3.2.1.2 Using empirical data

If the desired filter-output at each sample is known, the minimization of

�
� � ��� � ,  � � ��� (3.9)

where , is the filter output and � the desired output, is obtained by the filter coeffi-
cients [40]: �� � �	� �� � ) �� � ) � 
 ! � �	� � �� � ) 
 (3.10)

By explicitly indexing the � input-samples, (3.10) can be written as

�� ��� �� �2 � 3 � � �� � � ) �� � � ) � 
�� ! � @ �� �2 � 3 � � � � �� � � ) 
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In an on-line, or sample-by-sample estimate, the updates would be of the least
mean square[11] type:

�� � � � ��� � �� � � � ��� �� � � % )� ) � � � � % )  �� � � � � �� � � % )� ) �
where

� � � ��� ������� , �� � � is indexing the samples in a circular fashion, and
�

is a
properly chosen step-size.

Perception-related cost functions Palmieri and Croteau[40] introduce in addi-
tion a factor,

�
, in (3.9), yielding a modified mean squared error function,

�
�% � �	� � � ,  � � � 


where
� � is a feature factor signaling the importance of a close fit at sample � .

The feature extractor could be an edge detector or generally an image-dependent
parameter that reflects the relevance of that specific image area to good image
perception. The resulting filter coefficients are:

�� % � �	� � �� � ) �� � ) � 
 ! � ��� � � �� � ) 

3.2.2 Ll-filters

While the L-filter operates on the ordered input, � � ) , losing spatial information, the
linear FIR filter operates in the spatial domain, not utilizing order information. The
Ll-filter[39] is a generalized L-filter combining information both before and after
ranking.

The output of a linear filter can be written

,�� � �� � ��
where

��
contains the filter weights, and

�� � � � � � � � ������� � � 1 �
�

is the window
sample values. The corresponding L-filter can be written

,�� � �� � � ���� � ��
where

�� contains the filter weights, and
� ���� � is a 0 � 0 permutation matrix sort-

ing the elements of
�� in ascending order.

To account for both arrangements of the linear and L-filter, one would need 0 �
coefficients. Namely, a data sample in the window is multiplied by a different coef-
ficient according to its position both before and after ranking. A simplified version
of the estimator that needs only �H0 coefficients is what is called the Ll-filter and
is given by [39]:

, � �� � � ���� ��� �� ��� �	��
 � 	 �� � + ��� , , � �� � � � ���� ��� �� � )
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where � � ��� � � � + �� � � � ������� � � 1 � and � � ��� � � � + � � � � � ������� � � 1 � .
The mean square error surface is generally a non-convex function. However, ob-
serving that the function becomes convex if either

�� or
��

is held fixed, one can
reach a solution using bilinear parameterization: Fix

�� , then find the best value for��
, then fix

��
to the new value and optimize

�� , and so on. The on-line updates can
be written [39]: �� � � � ��� � �� � � � ��� � �� � � � � � � � � % )  �� � � � � �� � � � ����� � � � ��� � �� � � � � � � �� � � � � � � � � % )  �� � � � � �� � � � ���

�� � � � � ��� � ���� � � % ) ��� � � � �� � � (�)� )�� � � � � � � ���� � � % ) ��� � � � ��� �� � � (�)
where

� � and
� � are step parameters. Bilinear parameterization procedures gen-

erally converge to local minima, but using several random starting parameters mit-
igates the problem [11].

3.3 Stack filters

All the rank order operators, median filters, weighted median filters and weighted
order statistics filters are part of a broader class of filters known as stack filters[54].
These filters share two properties: the threshold decomposition property and an
ordering property known as the stacking property.

3.3.1 The threshold decomposition and stacking property

The threshold decomposition property lets us decompose the � -valued input sig-
nal into a set of �  � binary signals, and then filter each signal independently
with its own binary filter, before summing the outputs for the final result. The

�
-th

binary signal, where
� I�� � ��� ������� � �  ��� , is obtained by thresholding the input

signal at the value
�

. Figure 3.4 on the next page illustrates the threshold decom-
position architecture on a median filter of size three.

Letting the input window samples be
�� and the filter output be , � , the process

can be described by

,�� � � ! �2
% 3 �

�� � % ���� ���
where

� % ���� � � 
 � % � � � � � � % � � � � ������� � � % � � 1 ! � � � � % � � 1 � �
in which

� % � � � � ��� � if � ��� �
� else

26



110233122 111233222

����� �����
	�� �������� ���
 and 3

000011000

000111011

110111111

000011000

000111111

111111111

������� �
��� ��	�� �"!�� � �

#$� �
��� �&%����')("� � �
er

#$� �
��� �&%����')("� � �
er

#$� �
��� �&%����')("� � �
er

%���
ian(�� � �
er* + , - . / 0 + 1

e

Figure 3.4: Median filtering by threshold decomposition

and
��A@ � is the boolean filter.

The other requirement defining stack filters is the stacking property, which says
that whenever the boolean function on level � outputs a 1, then the boolean func-
tions on every level below level � must also output 1’s. From this property, and
the requirement that the same boolean function is used on all levels, it follows that
only positive boolean functions are allowed [54]. A boolean function,

�
, is positive

if, and only if ����
� � D

�� �	 � whenever
�
� D

�	
where

�
� D

�	
denotes that if � �

� � it implies that
	 � � � for all � .

The above requirements makes stack filters very suitable for hardware implemen-
tation. The decomposition property makes it highly parallel, and the stacking prop-
erty facilitates the summation of the binary filter-outputs by allowing simple binary
search.

Input compression Coyle et al.[22] use the fact that the output of a stack filter
is always one of the sample points in its input window in making an alternative
implementation of the stack filter using fewer levels in the decomposition. Which
sample is chosen depends on the relative ranks and positions of the samples in
the window, not on the actual magnitude of the samples. The sample points in a
window of size 0 can therefore be mapped to the integers 1 through 0 before the
stack filter is applied. Once this compressed data has been filtered, the compressed
sample chosen is then mapped back to its original value. The number of binary
filters needed is reduced at the cost of sorting the input samples, and the mapping
involved.

3.3.2 Stack filter design

Manually designing the boolean function of the stack filter is of course possible
in some applications, and in [54] the entire set of the 20 possible filters of length
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3 is listed and discussed. However, computation of optimal boolean functions is
most often done using a truth table. Any boolean function,

�
, of 0 variables

can be represented by a length � 1 truth table. The truth table may consist of a
decision vector,

�
� � � � 5 � � � ������� � � ��� ��� � , where � � � �� �� � � and

�� � is one of the
binary sequences which correspond to the window arrays with 0 elements. Thus,
the problem of finding an optimal boolean function is equivalent to finding the
corresponding decision vector.

3.3.2.1 Mean absolute error

The shear volume of positive boolean functions for 0 � � makes exhaustive search
infeasible. Fortunately, the properties of the stack filter together with the mean ab-
solute error criteria has led to several useful algorithms.

The mean absolute error between the output of the filter,
��A@ � , and some desired

signal, � , given the corrupted window signal,
�� , is [32]:� � � � � �	� � �  ����� � � 
 � � � 			 � � ! �% 3 � � � % � � �  �� � % ���� ����
 			 �� � � ! �% 3 � �	� � � % � � �  �� � % ���� ��� � 


The second equality comes from the threshold decomposition property and the
third equality is a result of the stacking property. Thus, the overall mean abso-
lute error is simply the sum of the mean absolute errors on each of the threshold
decomposition levels.

3.3.2.2 Linear program

The optimal filtering problem over the class of stack filters under the mean absolute
error criterion can be formulated as the following linear program [32]:

F � + � F � * � � � � ! �� 365 � � @ � � � subject to the constraints:

� � D � � if � � D � � � � D � � D � for all
�

where each coefficient
� � depends on the joint statistics of the corrupted and the

desired signal. The problem with this program is that the constraints on
�

im-
plied by the stacking property grows exponentially with the window size, and that
the joint statistics coefficients are seldom known. These limitations gave rise to
adaptive filters based on training sequences.

3.3.2.3 Training sequences

Lin and Coyle[33] developed an adaptive algorithm based on training sequences.
In this algorithm, each decision variable, � � , can take on values in the interval � � � � 

with resolution � � 0 , where 0 is some positive integer. In this case, � � can be
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interpreted as the probability that the filter outputs a � when � � is the input. In the
actual implementation, the decision variables are rescaled to integer values in the
interval �  0 � � ��0 � � 
 . A vector of strictly hard decisions can be recovered at any
time by thresholding the soft decision vector at zero.

The algorithm, which is shown to converge, starts by setting all the decision vari-
ables to zero, and for each threshold layer and for each input sample, do:

1. Find the correct decision variable, � � from the input. If the correct output is
� then � � � � � � � , else � � � � �  �

2. If the stacking constraint is not satisfied for � � , iterate and swap � � with
decisions violating the constraint until the constraint is fulfilled.

Faster adaptive algorithms have been developed [57, 56]. However, the princi-
ples of the new algorithms remain the same, and only the frequency of which the
stacking-constraint check is performed, and the techniques of which it is enforced,
is altered.

In image filter design, algorithms can incorporate perceptual information by means
of using the weighted mean absolute error criterion, weighting errors in perceptual-
critical parts heavier [20]. Obtaining the decision vector using genetic program-
ming algorithms has also been explored [7].

3.4 Adaptive space-varying filters

The filters described in the previous sections are usually optimized for å specific
type of noise and sometimes a specific type of signal. However, this is not usu-
ally the case, and in many applications the signal characteristics vary considerably
within the signal. In images, for example, neighborhoods of edges are character-
ized by large signal variance as opposed to neighborhoods located in flat regions.
Space-varying filters are trying to incorporate information about the local signal
neighborhood into the filtering process.

3.4.1 Varying filter sizes

One simple way of adapting the filtering process to the local signal characteristics
is to vary the filter size based on estimation of local signal variance [41].

An example could be to start with a rather large window at each point. Then, if the
estimated signal variance is above a certain threshold, the window size is reduced.
If the new local signal variance is still above a certain threshold, the window size
is again reduced, and so on, until a window of size � � � is reached.
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Figure 3.5: Simple space-varying filter using a linear combination of two filters,
from [40]

3.4.2 Linear combinations of multiple isotropic filters

Another way of obtaining local adaptability is by combining outputs from several
different filters, each optimized for different signal characteristics. The weighting
of the output from the different filters can be based on feature extractors tuned to
the target signal characteristics of the specific filter [40].

Figure 3.5 shows a block diagram of a simple adaptive image filter differentiat-
ing edges and flat neighborhoods. The feature extractor is an edge detector giving
an output between 0 and 1 depending on how “edge-like” the local neighborhood
is deemed to be.

3.4.3 Anisotropic window adaption

The filter window itself can be made adaptable to different signal structures. In
images, for example, the filter window can be aligned with the edge, so as not to
encompass pixels from both sides of the edge.

One way of estimating local structure is that of Granlund and Knutsson[14] which
is explained in chapter 5. Other examples include fitting multi-variable polygons to
the signal [31], and techniques based on binary morphological erosion and dilation
[41]. More pixel-based filters, like the � -trimmed mean, the sigma filter and the�

-nearest neighbors, can be argued belong to another class of filters. Descriptions
of those filters can be found in most introductory books on image processing.
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Chapter 4

Discontinuity Filter and Speckle
Tracking

This chapter presents two important topics referred to later in this thesis. The
temporal discontinuity filter is used extensively throughout the experiments, and
speckle tracking is used in addition to the energy-based method for estimating
motion in the ultrasound image sequences.

4.1 Discontinuity filter

4.1.1 Introduction

This section describes the temporal filtering method for ultrasound image sequences
suggested by Olstad[38]. The general idea is that the time evolution for each indi-
vidual spatial coordinate is divided into homogeneous regions, whereupon the tem-
poral filtering is performed with minimal interaction across the boundaries defining
the regions.

A synthetic example of a time sequence divided into five homogeneous regions
for a fixed spatial coordinate is shown in figure 4.1. The sequence could have been
generated by a high-intensity object present in the time interval � � 5 ��� � 
 and a rapidly
moving structure present in the interval � � � ��� � 
 . Reconstruction based on piecewise
constant and linear functions are superimposed on the intensity sequence.

4.1.2 Homogeneity measure requirements and discontinuity detection

Let
� � � � � � � � ������� � � 1 � be any sequence of temporal consecutive intensity val-

ues. A homogeneity measure for
�

is any nonnegative function:��� � �� � �
satisfying � � � � � � � � � � � � � � � �
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Figure 4.1: Optimal discontinuity locations and piecewise reconstruction

whenever
� � ��� � � �

and
� ��� � � ���

.

Let � � contain a set of � ascending indices � � � � M � 5 M � � M ����� M � � ! � M 0
indicating discontinuities in a time window of 0 samples. The discontinuities gen-
erate the following � � � subsequences:

� 5 � � � 5 ������� � � ��� ! � �
��� � � � ��� ������� � � � � ! � �

...
�

�
� � � �	� � � ������� � � 1 !

� �
An error function, � , on the set of discontinuities, � � , can then be defined using
the homogeneity measure on each

� � :
� � � � � � �2� 365 � � � � � (4.1)

Since the set of all possible � � is finite, a solution to minimizing (4.1) will always
exist, but it is not necessarily unique. An arbitrary choice is made in the case of
multiple minimums. The integer value � is an algorithm parameter, and depends
on a-priori information and computational complexity considerations.

4.1.3 Filtering and homogeneity measures

4.1.3.1 Piecewise constant functions

A natural choice of homogeneity measure is the square error,

� �8� � � � � � ������� � ��
 �$� �

2
� 3 �

� � �  � � �
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where � denotes the mean value of � � ������� � � 
 . Thus, � �A@ � measures how well the
intensity function can be approximated by a function of � � � constant segments.
An example of intensity reconstruction using optimal constant segments is shown
in figure 4.1(a). This approach will have substantial impact on the noise level,
and increase the sharpness of the intensity transitions. Efficient algorithms for the
computation of the optimal discontinuity set utilizing dynamic programming can
be found in [38]

4.1.3.2 Piecewise linear functions

Reconstruction using a piecewise linear function can be obtained by using the ho-
mogeneity measure:

� �$� � � � � � ������� � ��
 �$� ��� ���� � � 
2
� 3 � 
 � �  �

�
� 	 @ �A� � �

This makes � �A@ � measure how well the intensity function can be approximated by
a function of � � � linear segments, as illustrated in figure 4.1(b). Higher order
parametric functions, such as splines, can also be utilized in the reconstruction
[38].

4.1.3.3 Incorporating spatial persistence

Components modeling spatial persistence can be incorporated by weighting the
intensity observations in the error measurement , i.e.,

� �$� � � � � � ������� � � 
 �$� �

2
� 3 � �

� @ � � �  � � �

where � � is a weight coefficient reflecting the spatial persistence of � � . � � could
for example be based on the order statistic of � � in a local spatial neighborhood
such that � �

� � if � � is the median and dropping towards zero as � � turns to the
minimum or maximum value.

4.1.4 Shorter time windows

When using shorter time windows, ordering the window samples in a cyclic man-
ner, as illustrated in figure 4.2, improves performance. The two discontinuities are
computed such that the homogeneity measures of the two intervals in the cyclic
ordering is minimized.

Allowing a small leakage across the boundaries, i.e., including weighted border
pixels in the reconstruction, will improve the noise suppression at the cost of only
a minor edge degradation.
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Figure 4.2: Window samples ordered in a cyclic manner

4.2 Speckle tracking

Speckle tracking is a method used to estimate blood flow and structural movement
in ultrasound image sequences based on template-matching algorithms utilizing
properties of the speckle patterns found in such images. The desired properties are
that speckle patterns have a high spatial variance, and that, as discussed in section
2.4, the speckle pattern will, theoretically, not change with lateral or radial dis-
placement. Of course, rotation, compression, phase aberration, and movement out
of the scan plane all change the patterns.

Figure 4.3 illustrates the template-matching algorithm. First a small kernel re-
gion,

�
, is taken from one image frame. Then the kernel is used as a template to

search for a match in a larger region, � , of the subsequent image. The translation
coordinates of the best match is taken as the local flow estimate. Three common
criteria for finding the best match are: correlation,

� � � � �
2
��� �

� � ��� � @ � � � � � ��� � �
sum-absolute difference, or SAD,

� � � � �
2
��� � �

� ��� �  � � � � � ��� � �
and normalized correlation,

� � � � �
� ��� � � � � ��� �  � � @ � � � � � � ��� �  � � �� � ��� � � � ��� �  � � � @ � ��� � � � � � � � ��� �  � � �

where
�

and � are the mean of
�

and � , respectively, the sums are taken over the
entire kernel, and

F ��+ are the translations.
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Figure 4.3: Illustration of the two-dimensional template-matching algorithm

The first criterion, the correlation, has the worst performance, while the two others
perform quite equally, with a slightly better normalized correlation [13]. The fail-
ure of the correlation metric is obvious, at least for small kernels, since it is highly
susceptible to variance in speckle amplitude. The main reason for the performance
difference between the other two is that the sum-absolute difference does not com-
pensate for changes in mean or variance, as the computationally more costly nor-
malized correlation does. Note that in all such template-matching procedures, there
is a tradeoff between kernel size and the ability to independently detect the motion
of small structures.

An efficient method for computing the normalized correlation can be found in [51],
who also introduces cost functions limiting the resulting movement variation. [30]
is a survey on general medical image registration.

35



36



Chapter 5

Energy-Based Local Structure
and Velocity Estimation

This chapter presents a way of estimating, and representing, local structure and
velocity in multi-dimensional signals.

Fundamental to the following approach, is the recognition of the importance of
local gradient directions, and its sufficiency in determining velocity. In the human
visual system this importance has been demonstrated by both physiological and
psychological studies [49]. It will further be assumed that, generally, the spatial
variation of the gradient direction will be much slower than the spatial variation of
the image itself, i.e., the local signal can be thought of as one-dimensional.

By studying the local Fourier transforms, interesting properties surface. If the sig-
nal is simple, that is, approximately one-dimensional, the energy distribution in the
Fourier domain is concentrated along a narrow sector in the gradient direction. The
less variation of the local orientation the narrower the sector will be, as illustrated
in figure 5.1. The distribution of energy along the radial direction of this sector will
reflect the frequency properties of the local neighborhood in the gradient direction.

A description of the local neighborhood, in terms of both direction and frequency,
can thus be obtained by partitioning the local Fourier transform and studying the
energy contribution from the different parts.

5.1 Phase-independent energy estimation

This section introduces the concept of analytic signals, and their use in obtaining
phase-independent energy estimation.
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Figure 5.1: Two neighborhoods and their corresponding Fourier energy distribu-
tions

5.1.1 Incentive for phase independence

As a way of introducing the essence of phase independence, consider the simple
real signal

�
given by

�� � � � �  ��� � � � � � �

where � reflects the angular frequency. Measurements of the instantaneous value
of

�
at some point � � � 5 will result in any value between -A and A, depending

on � 5 , i.e., we cannot obtain the amplitude, A, in any simple way.

5.1.2 The analytic signal

To overcome this limitation we would like to have also at our disposal a O B � phase-
shifted (positive

B � shift for the positive frequencies, and negative shift for the neg-
ative frequencies) version of the original signal;


 � � � �  � ����� � � �
By combining the two real signals into a complex representation we get

��� � � � � � �  ��� � � � � ����� � � 
 � � � � � (
where the amplitude, A, is given directly by

� � � ��� � � � � �� � �� � ��
 � � � 
 � � ��
 � �
Thus, what is needed is a way of filtering the original signal to obtain the O B � phase-
shifted version. In the Fourier representation this corresponds to multiplication
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with the imaginary unit � and changing the sign for negative frequencies. The
resulting filter

�� � � 
 � � � � if

 � � � otherwise

is known as an ideal Hilbert transform[36].

By combining the original signal with the Hilbert-transformed version,
� � � , in

the following way ��� � �  � � � �

we obtain what is referred to as an analytic signal[36]. In the Fourier domain we
can represent this, by using the linearity of the Fourier transform, as

 � � 
 � �  � 
 �  � �� � � 
 ��  � 
 �  � �  � 
 � @ � sign
� 
 ��
� �  � 
 � @ step

� 
 �
where step

� 
 � is unity where

 � � and � elsewhere, and

 �
,


and
 � � are the

Fourier transforms of
� �

,
�

and
� � � , respectively. We see that the desired, analytic

signal, corresponding to
�

, is obtained by suppressing all the negative frequencies
and multiply by two.

5.1.3 Analytic signals in multiple dimensions

Until now we have focused on one-dimensional signals. A simple generalization
of the Hilbert transform to multiple dimensions is not possible since the concept of
positive and negative frequencies is not defined in that case. As suggested in [14]
the concept of positive and negative frequencies can be employed by introducing a
direction of reference in the Fourier domain. Given a directional vector,

��
, we can

label a frequency coordinate,
�

, positive if

�
 � �� � � and negative if
�
 � �� M � .

The Hilbert transform can thus in the multiple domain be defined, given a refer-
ence vector

��
, as �� � ���
 � �  ���
 � @ � sign #� ���
 � �

where

sign #� ���
 � � � � if
�
 � �� � � � if
�
 � �� M �

Given the Hilbert transform above, the multi-dimensional analytic signal is defined
in the same way as for one-dimensional signals;

� � � �  � � � � .

5.1.4 Band-pass filter

By filtering the analytic signal with a band-pass filter, we can obtain a phase-
independent estimation of the energy distribution in the band-pass region. The
resulting phase-independent filter will, in the Fourier domain, thus be real and have
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Figure 5.2: Fourier representation of a 2D phase-independent band-pass filter

zero in the negative frequencies, see fig 5.2.

Since real signals will always be Hermitian [14], the only way of obtaining a filter
with zero negative frequencies, is by letting the filter coefficients be complex. The
actual spatio-temporal convolution filter pairs comprising of the real and imagi-
nary part of the complex filter are obtained by methods explained in section 5.7 on
page 51.

5.2 Tensor representation of local structure

Using vectors as a way of representing orientation of local structure, like lines and
planes, has an innate ambiguity problem. A � ��� �

rotation of a line or a plane leads
to no change at all. Thus, two lines being of nearly the same angle may end up
having vector representations at opposite directions, leading to an unacceptable
distance measure. Another problem of using vectors is that of certainty, both in
representation and its use in averaging. When estimating how well a neighbor-
hood fits the local one-dimensionality assumption, one can use the double-angle
representation [26] in the 2D case, thereby making the norm of the vector signal
certainty. However, in higher dimensional space the double-angle technique obvi-
ously breaks down. The inconvenience of using vectors when averaging flow-fields
is addressed in section 5.5 on page 47.

5.2.1 The outer-product tensor

Knutsson[27] introduced an alternative way of representing local structure using
outer-product tensors. As we shall see, using tensors exceeds the above mentioned
shortcomings.

Let
��� be a unit vector in the direction of maximal local variance. The tensor repre-

sentation, T, is given by

T � �
��� ��� � (5.1)
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Figure 5.3: Local simple neighborhoods with equal orientation but differing signals

where A can be any constant greater than zero.

5.2.2 Orientation tensor requirements

As mentioned above, one of the main incentives for using tensors is the require-
ment that both the orientation vectors

�� and
 �� yields the same result. From the

definition of the tensor (5.1) we immediately see that this requirement is met.

It is also necessary that the tensor representing orientation be invariant to the type
of signal actually encountered, i.e. obtaining the same angle independent of am-
plitude, or whether it is an edge, line etc. As an example, the orientation obtained
from the two signals in figure 5.3 should be the same. Again, from the definition
of the tensor, which has no reference to the contents of the signal, we see that this
requirement is met. The actual orientation estimation is shown in section 5.3.

The orientation tensor should also locally preserve the angle metric, i.e., the tensor,
T, should change proportionally to the change in local orientation. The proof that
this holds is omitted here, but can be found in [27].

5.3 Orientation estimation

The general idea of energy-based direction estimation is to probe the Fourier space
in several directions with filters each picking up energy in a particular angular
sector, and then combining the filter outputs yielding the direction of most signal
variance. This section shows how a combination of outputs from specific filters can
be used to estimate the orientation tensor presented in section 5.2.1 on the facing
page.

5.3.1 The filter sets

Due to the angular invariance required by the orientation tensor, it is immediately
recognized that the filters must be distributed equally over the entire orientation
space. Note that the phase independent filter outputs will be symmetric so that the
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Figure 5.4: Relative contribution from two filters

output of
�� and

 �� gives the same result. In the 2D case it may seem at first that
the obvious number of filters is two, but as indicated in figure 5.4 there will be
no way of differentiating contributions from the filters (bold lines) along opposing
directions of the two thin lines. Two particular areas in the Fourier plane giving
identical contributions from the two filters are indicated by circles.

Thus, the minimum number of filters required for the 2D orientation space is three.
Distributing them equally gives the orienting vectors:

��+ � � � � � � � �
��+ � � �

� � 	 � �
��+ � � � 

� � 	 � �
(5.2)

where �
�

� � � and
	 � � �

� � , as also illustrated in figure 5.5 on the next page.

By following the same reasoning one can show that the minimum number of filters
in three-dimensions is six, and their orienting vectors are:

��+ � � � �
� � � � 	 � � ��+ � � � � 

� � � � 	 � �
��+ � � � � 	 � � � � � � ��+ � � � � 	 �  � � � � �
��+�� � � �

� � 	 � � � � ��+�� � � �
� � 	 �  � � �

where �
� � ,

	�� � � � � � � and
� � � � � � � � � � ! � 	 � .

5.3.2 Filter outputs

In the following the analysis is restricted to real valued simple neighborhoods, i.e.,
neighborhoods that can be expressed as

� � �� � � � � �� @ ��� � (5.3)

where � and � are real functions. Two-dimensional examples of such signals are
given in figure 5.3
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Figure 5.5: Two-dimensional filter orientations

As shown in section 5.1 on page 37 the filters used in the phase-independent energy
estimation are zero over one half of the Fourier space, also known as quadrature
filters[26]. Given the filter direction vector,

��+ % , we have

 % ���
 � � � if
�
 @ ��+ % D � �

The output � % of the corresponding filter will, as mentioned above, be complex.
The magnitude

� % � � � % � will be independent of whether the local signal is an
edge or line. If � is a sinusoidal signal, the magnitude will be completely phase
invariant, as demonstrated in section 5.1.

The Fourier transform of the simple signal � � �� � can be expressed as

� ���
 � ��� ���
 @ ��� ��� � � � ��#( ���
 �
where �

� � � ��#( ���
 � is an impulse-line in the direction of
��� .

Let the filter functions be spherically separable, i.e.,

 ���
 � ��� � � � � � ��
 � � � � � �
 � �
The filtering of

�
by


results in:

� � � 
!�  ���
 � � ���
 � � �
 � � 

!� � � � � � � ��
 � � ���
 @ ��� ��� � � � ��#( ���
 � � �


replacing
�
 ��� ��� yields:

� � � � ��� � ��5 � � � � � � � � � � � � �  ��� � ��5 � � � � � �  � � � �� � � � ��� � ���
	 � �  ��� �
where � � � 

5
� � � � � � � � � �
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and
� 	

denotes complex conjugate. The complex conjugate comes from the Her-
mitian property of the Fourier transform,

� � � � , of the real signal � � �� � .
Since the filter is zero over one half of the Fourier domain, either � � ��� � or � �  ��� �
will be zero. This makes it possible to write the filter output as

� � � � � � ��� � � � �  ��� ��
 (5.4)

where � � � � � can be seen as the local signal amplitude.

As first suggested by Knutsson[26] the following directional function will be shown
to have quite desirable properties:

� % � ��
 � � � � ��
 @ ��+ % � � if
��
 @ ��+ % � �

� otherwise
(5.5)

where
��+ % is the filter orienting vector.

Combining equation (5.4) and (5.5) gives the filter output magnitude

� % � � � ��
 @ ��+ % � � (5.6)

where � is independent of the filter orientation and depends only on the radial dis-
tribution of the signal spectrum,

� � � � , and the filter function,
� � � � .

The radial function,
� � � � , can be chosen arbitrarily, and is typically some kind

of band-pass function. When actually implementing the filters the usual limita-
tions of filter design must be considered. The function suggested by Knutsson[14]
is given by � � � � �-� ! ������ � �

�	�
� ��� 	 � � )
where � is the relative band-width and

� � is the center frequency. Figure 5.2 shows
the ideal filter reference function with � � � and

� � � G @
� ! �  � .

5.3.3 Tensor construction

Here it is shown that, given a simple neighborhood, the orientation tensor can be
estimated exactly by linearly combining the result of the quadrature filters. In non-
simple neighborhoods the resulting tensor still conveys interesting properties, as
explained in section 5.4 on page 46. Due to notational simplicity, we focus on the
two-dimensional construction, but the three-dimensional case is done in exactly the
same manner.

Define the tensors
�� % as being the outer product of the orienting vectors

��+ % , i.e.,
�� % � ��+ % ��+ � %
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Letting the signal orienting vector be:�� � � � � � � � � �
gives, by using the equations (5.2) and (5.6), the following filter output magnitudes:

� � � � � ! � � � �� � � � � ! � � � � � � � � � � 	 � � � � � 	 � � �� ��
�
� � � ! � � � � � � �  � � 	 � � � � � 	 � � �� �

where � � � �� � . Combining the tensors,
�� % , by their corresponding output magni-

tudes,
� % , we obtain the tensor

� � � 2
%

� % �� %
which has the following components:

� � � � � �
� �

� � � � � ! � � �� �� � � � � �
� �

� � �� � ! � � �� �� � � � � � � � � � �
� � � � � � � !

�

If we subtract �� � from the diagonals we end up with a tensor of the desired form
(5.1): � �  �

� ���
� �

� �
��� ��� �

Using the fact that the sum of all the filter outputs,
� % , is �� � , we can form new

tensors � % � �
�

�� %  �
�
�

making
�

a linear combination of the

� % tensors, i.e.,

� � �
��� ��� � � 2

%
� % � �

�
�� %  �

�
���

�
� � 2

%
� % � % � (5.7)

Thus, the orientation tensor can be estimated by filtering the signal with the appro-
priate set of quadrature filters, and using the filter output magnitudes as weights in
equation (5.7). Note that the

� % tensors do not depend on the signal, and can thus
be precalculated.

As mentioned above, the method of obtaining the three-dimensional results is iden-
tical, and the

� % tensors in equation (5.7) will for the three-dimensional case be
[14]: � % � �

�
�� %  �

� � �
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5.4 Interpretation of the orientation tensor

Acquired data does not tend to be simple, in the sense of equation (5.3). How-
ever, it is still possible to find a best approximation to the estimated tensor,

�
,

corresponding to a simple neighborhood,
���

, i.e., minimizing
� � � �  � � � � � � � �

��� ��� �
where subtraction is done component-wise and the norm of a tensor is given by:

� � �
� � 2

� � � �� � � 2
�
	
�
�

where 	 � are the eigenvalues of
�

. The tensor,
���

, minimizing
�

is:
��� � 	 �

��� � ����� �
where 	 � are the largest eigenvalue, and

��� �
is its corresponding eigenvector. The

value
�

indicates how well the one-dimensional hypothesis fits the acquired data;
the smaller the value the better the fit.

As illustrated in figure 5.6, one can in three-dimensional space categorize the local
neighborhood into a spatially planar, a linear, or an isotropic case depending on
the eigenvalue-distribution of

�
:

1. Planar case:
��� 	 �

� �� � ��� � �
( 	 ��� 	 � � 	 � )

This corresponds to a simple neighborhood, i.e., the spatial variation is in
only one direction, given by

��� �
.

2. Linear case:
��� 	 � � ��� � ��� � � � ��� � ��� � � � ( 	 � � 	 ��� 	 � )

This corresponds to a neighborhood that is approximately constant on lines.
The direction of the lines is given by

���
� .

3. Isotropic case:
�	� 	 � � ��� � ��� � � � ��� � ��� � � � ���

�
��� �
� � ( 	 � � 	 � � 	 � )

This corresponds to where the energy is distributed in no particular direction.

Relative strength of the eigenvalues The eigenvalues linearly reflect the amount
of band-pass energy in the direction of the corresponding eigenvectors.

By modeling non-simple neighborhoods by combining simple neighborhoods ori-
ented in perpendicular directions, equation (5.7), for three dimensions, becomes

� � 2
% 
 � % � � % � ��� % �

� % � � � %�
 � %�
 � � � �
��� � ��� � � � � �

��� � ��� � � � � �
���
�

��� �
�

where
� % � , � � and

�� � are the output of filter
�

, the radial energy, and the direction
of the � -th simple neighborhood, respectively. Since

��� � , ��� � and
���
� are all per-

pendicular to each other, we immediately recognize that
��� � , ��� � and

���
� will be the

eigenvectors of
�

, with � � , � � and � � as their corresponding eigenvalues.
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��� �
TIAL DOMAIN                              FOURIER DOMAIN

Figure 5.6: Spatial representation and Fourier energy distribution of local neigh-
borhoods. From top to bottom: plane, line and isotropic case

5.5 Flow estimation in time sequences

Image sequences can be represented as three-dimensional spaces; two spatial and
one temporal dimension. For such time sequences, a 3D plane means a line in the
2D image and a 3D line means a point in the image. As demonstrated in section
5.4, the eigenvalue-distribution of the 3D estimated orientation tensor can be used
to classify the local neighborhood into a plane, line or an isotropic case. In the
line case, corresponding to a moving point in the 2D image, one can project the
orientation of the lines, given by

���
� , onto the temporal axis, and obtain an estimate

of local velocity. In the plane case only an estimate of velocity perpendicular to
the plane, or moving line in the 2D image, can be determined. The velocity com-
ponent along the moving line cannot be determined since motion in that direction
induces no change in the local signal. This is commonly referred to as the ’aperture
problem’[14].

5.5.1 Extracting normal and true flow

By examining the relation between the eigenvalues, it is possible to estimate to
which of the above categories the neighborhood belongs. Depending on the cate-
gory, either a true, or a normal flow can be estimated. As suggested in [14], the
following functions can be seen as probabilities for each case:

��� � � � � � � � ! � �
� �� � � � � � � � ! � 

� �� � ��� �	� � � �	
 � �



� �
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If the function giving the highest output is
� � � � � � , i.e., we are in the moving line

case, the normal flow is calculated by:

�
	 � � ��� �  � � � � � ��� � � � � � �� � � � � � � � � � �� �

where � ��� �
�� � @ ��� � � � � �

�� � @ � �� � �
�
� �

�� � @ ���
in which

�
�� �

,
�
�� �

and
�
�� are the orthonormal vectors defining the image plane and time

direction, respectively. If
� � � � � gives the highest output, i.e. we are in the moving

point case, the true flow is calculated by:

�
	 � � � � ��� � � � � � �� � � � � �

where � ��� �
��
�
@ ��� � � � � �

��
�
@ � �� � �

�
� �

��
�
@ ���

If, on the other hand,
� � � � �	� � � � 
 is of highest value, the neighborhood is deemed

isotropic, and thus no velocity can be determined.

5.5.2 Averaging

Physical data always contain a fair amount of noise, and one way of obtaining a
higher degree of certainty, is by averaging. By assuming that the image flow is not
changing considerably from pixel to pixel, the orientation tensors can be averaged.
This can be accomplished by component-by-component convolution using a low-
pass filter function, � , i.e.,

� � � �� � � 2
#( �

���� � @ � � ��  �� �
or written more compactly as � � � � � �
Since normal flow can be estimated more robustly than true flow, one can use
the
��� � � � � functions as certainties, thereby giving more weight to the more ro-

bustly estimated simple neighborhoods [55]. Generally, averaging two simple-
neighborhood tensors, yields the result of a tensor having two eigenvectors span-
ning a plane, i.e., the line case, as illustrated in figure 5.7. The true flow can then
be estimated using the resultant tensor. Using normalized convolution [55, 14] the
weighted averaging can be written

� � � � � ��� � � � � �
� � � � � � � � (5.8)

It is crucial that the averaging is done in the tensor representation. Smoothing
normal vector velocities, will generally not prevail. As an example, the true motion
in figure 5.8 would not be obtained by averaging the normal vectors because the
box is an elongated square and has more vectors pointing upwards than downwards.
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Figure 5.7: a) Tensor addition in a corner of a moving structure. b) The same
tensors shown in three dimensions.

Figure 5.8: Normal flow

49



5.6 Adaptive filtering

The orientation tensors can be the basis for an efficient adaptive filtering approach
in which the adaptive filters are synthesized as a tensor-controlled weighted sum-
mation of shift-invariant filters.

5.6.1 Tensor-controlled filters

The general tensor-controlled adaptive filter can be modeled as [14]:

 ���
 ��� � �  � � � � � � �  � � � � �   � � � � ��� 12
�43 � � �

� ��� � @ ��
 � � (5.9)

where
 � � and

 � � are position invariant low-pass and all-pass filters, and � � and
��� � are the eigenvalues and eigenvectors of the control tensor, � . If the norm of the
tensor is large, the filter will reflect the shape of the control tensor, and hence retain
high-pass contents along the direction of the largest eigenvalues while it will do a
low-pass filtering along the orientation of the smaller eigenvalues. Small tensor
norms yield isotropic low-pass filters. Figure 5.9 shows examples of resulting two-
dimensional filters.

5.6.2 Tensor mapping

The control tensor, � , in equation (5.9) can be based upon the orientation tensor
by remapping its eigenvalues. A simple example would be to merely rescale the
entire orientation tensor so as to fit in the filter model, e.g.,

� � �
� � � � �
	 �

� � � M � �A@ � M�� (5.10)

The � -function determines the overall high-pass content of the adaptive filter and
is often set close to unity for neighborhoods with large signal-to-noise ratio, while
dropping towards zero in noisy isotropic areas. A more lengthy discussion on the
subject of eigenvalue mapping can be found in [14].

5.6.3 Adaptive filter synthesis

By using a set of fixed, spherically separable, high-pass filters,

 % � ��
 � � �  � � � � �   � � � � � � � ��+ % @ ��
 � � �
directed along the same orientations as the quadrature filters, the flow-adaptive
filter can be written

 ���
 ��� � �  � � � � � � 2
%
� %  % � ��
 � (5.11)
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(a) � ������� � � ��� (b) � ����� 	
� � � ��� (c) � ���� � � ���
Figure 5.9: Fourier-space representation of two-dimensional adaptive filters result-
ing from tensors describing line-like neighborhoods with different control-tensor
eigenvalues

in which
� % � � @ � % . Merely simple algebraic manipulations are needed to get

from (5.11) to (5.9).

There is no need to actually produce the adaptive filters since the process is lin-
ear, and hence the output of the synthesized filter,

�
, is obtainable by weighting the

outputs from the fixed filters: � � � � � � 2
%
� % � % (5.12)

5.7 Kernel optimization

This section demonstrates how to obtain the actual quadrature filter pairs.

5.7.1 The reference function

As mentioned in section 5.1 on page 37 the ideal band-pass filter will, in the Fourier
domain, be real and have zero negative frequencies. As suggested in [14] the ideal
reference functions used here are of the form:

 % ���
 � �
� � ! �� � � � �

�	� � ��� 	 � � ) � ��
 @ ��+ % � � if
�
 @ ��+ % � �

� otherwise
(5.13)

where
� � � �
 � , ��+ % is the filter directing vector, � is the relative bandwidth and

� � is
the center frequency. A visualization of the reference function in two dimensions,
with � � � and

� � � G @
� ! �  � , is given in figure 5.2 on page 40. The smoothness

of the function ensures spatio-temporal locality.

5.7.2 Distance measure

The kernel coefficients are optimized so as to minimize a weighted mean square
distance to the ideal filter reference function, i.e., minimizing

�
� � � � �

� � � �� �� � �
� � � � �� �� � � � � ���� �� � (5.14)
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where � is a diagonal weight-matrix,
�

is the sampled ideal reference function,
�

is the Fourier basis function matrix, and
��

is a vector containing the spatial kernel
coefficients. Sampling the ideal Fourier space using a density 2-3 times as high, in
each dimension, as the size of the spatial filter, is in practice adequate. Further in-
creasing the sampling density will give an insignificant effect on the resulting filter.

This is a classical over-determined inverse problem which can be solved by simply
computing the partial derivatives of (5.14) with respect to the kernel coefficients,��

, and solving � �
� �� � �

The solution with respect to the kernel coefficients,
��
, can, with a little time and

effort, be shown to be [35]: �� � � � � � � 
 ! � � � � �
5.7.2.1 Multiple space optimization

The error measure, � , might incorporate multiple representation spaces. Let
���

, � and � �
be the basis function matrix, ideal sampled reference function and

weight function, respectively, corresponding to representation space + . The total
error measure then becomes

�
� � 12

�4365
� � � �� � �� � � � � � � � �� � �� � (5.15)

which, minimized with respect to the kernel coefficients,
��
, results in [28]:

�� � � 12
�H365

� � � � � � � 
 ! � �2
�4365

� � � � � � �
By including the spatio-temporal space, setting the corresponding reference func-
tion to zero, and using a weighting function of the form; 7

���� � � � �� � � � � � � , one
can introduce a distance measure favoring spatio-temporally localized kernels.

5.7.3 The weighting function

The Fourier-space weighting function determines the importance of a close fit for
the different spatial frequencies. Generally, one ought to incorporate as much a-
priori information available on the specific problem at hand in determining the
weight function. Here, we will use our knowledge of the expected radial spectra,�

, of synthetic images comprising of a large number of random edges or lines [28];

� � � ��� � � ! 5  � random lines� ! �  � random edges
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Assuming that noise presents itself in broadband terms, an appropriate weighting
functions might be:

7
���
 � ��� ! � � + (5.16)

where + relates to the expected level of noise. A more general weighting func-
tion might take into account possible band-limiting of the signal [28]. Note that��� � ��� 5 ��� , ensuring that the DC-component is given top priority. Here, and for
many other instances, this is of crucial importance.

Figure 5.10: Optimized
� � �

filter kernels and their Fourier transforms

5.7.4 The resulting filter pairs

The resulting complex filter kernel can be separated into one symmetric real part,
and one anti-symmetric imaginary part. Letting the output of each of these filters
be

�
� and

� � for the real and imaginary part, respectively, we can obtain an estimate
of local orientational energy by combining the output, i.e.,

� � � � �
�
� � �� �

The real and imaginary part of a two-dimensional
� � �

filter kernel, and their
respective Fourier transforms are given in figure 5.10. The Fourier transform of
the real symmetric part is real, and the Fourier transform of the anti-symmetric
imaginary part is imaginary. The two parts can be thought of as generalized line
and edge detectors, respectively.
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Chapter 6

The General Flow-Adaptive
Filter

The general flow-adaptive filter utilizes the low spatial variance of flow fields to
simplify and improve filter-adaptability to spatial movement in time sequences.
Before discussing the details of the filter, the more traditional ways of implement-
ing filters in such sequences are summarized.

6.1 Spatio-temporal filtering

When each frame is treated individually, the general filter can be seen as a two-
dimensional lattice shifted over the data, and at each point the element correspond-
ing to the central coordinate of the lattice is replaced with a new value based en-
tirely on the values inside the filter. The lattice, as illustrated in figure 6.1(a), then
corresponds to the realm of the filter. In image sequences, the data to be filtered is
three dimensional, two spatial and one temporal dimension, hence the filter can be
extended to a cubic lattice as illustrated in figure 6.1(b).

6.1.1 Simple adaptive 3D filtering

As mentioned in section 3.4, simple ways of adapting the filtering process to local
signal characteristics are to use varying filter sizes or linear combinations of multi-
ple filters. Such schemes usually operate on simple isotropic models, like whether
the filter is in a high-variance, or an homogeneous, neighborhood. Neighborhoods
of high variance are often filtered by either a size-reduced or an edge preserving
filter.

6.1.2 Anisotropic window adaption

By weighting the elements of the lattice, the window itself can be made adaptable
to different signal structures, i.e., it can be aligned to edges and three-dimensional
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(a) Two-dimensional filter (b) Three-dimensional filter (c) General flow-adaptive filter

Figure 6.1: Two- and three-dimensional filters

structures as discussed in section 3.4.3. Schemes like these often assume linear
structures in the three dimensional data sets, or have complex underlying models
requiring relatively large amount of data, that is, large lattice sizes, to ensure some
stability.

6.2 General flow-adaptive filter

A novel filtering technique based on estimated flow fields will now be presented.
First, the reliability of the flow fields must be assured.

6.2.1 Flow-field assumption

One important assumption, which is valid for most image sequences and is analog
to the assumption mentioned in the introduction to chapter 5, is that the spatial
variance of the local flow is relatively small. That is, the local flow rarely changes
much from pixel to pixel. This assumption renders it likely that our estimate of
the local flow can be made reassuringly accurate, since both the use of larger, i.e.,
more robust, windows in the flow-field estimation and spatial filtering of the re-
sulting flow fields can be implemented. Enough a-priori information about the
flow fields can make the above assumption superfluous.

The filtering process described below does not rely on any single technique for the
estimation of the flow fields, and both block-matching and energy-based schemes
have been used in this thesis. The important point here is just that it is available,
and that it has a certain reliability.

6.2.2 Filtering principle

The general principle is to spatially adapt the entire filter lattice to possibly com-
plex spatial movements in the temporal domain by incorporating local flow-field
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estimates.

The filter lattice is placed in the data sequence according to the following pro-
cedure:

1. Place the middle, spatial slice, or plane, centrally upon the output pixel.

2. From the central pixel, let the flow field guide a spatial movement, go one
temporal step down, and place the next filter plane centrally at that location.
Now, let the local flow at that last spatio-temporal position, guide another
spatial move, go one more temporal step, and place the next filter plane
centrally at that location. Continue until all the planes from the middle and
downwards have been placed.

3. The planes from the upper half of the filter are placed in the same manner,
except that now the temporal direction is negative. If separate flow fields for
the temporal directions are not available, the orientations of the flow field are
merely reversed.

An example of a resulting lattice is shown in figure 6.1(c). Note that it is referred
to local flow, so that the estimates change at different spatial coordinates.

The technique just presented is independent of the type of filtering deployed upon
the resulting lattice, e.g., whether it is an average, median or a more complex-
modeled filter. In a sense, the general flow-adaptive filter transforms the image
sequence into a more manageable motionless state.

An example is illustrated in figure 6.2. The � � � � � filter lattice is shown frame
by frame. The first row shows which pixels the original cubic lattice encapsulates.
The lower row shows which pixels are selected when utilizing an estimate of the
local flow and the novel filtering procedure. The pool of relevant pixels are much
larger in the novel approach, yielding a more correct filter output.

6.2.3 Implications

Some of the direct implications of the proposed filtering scheme are that it:
� Overcomes the limitation of the often-made assumption of linear structures

� Gives a higher temporal stability than the complex-modeled filters

� Allows simpler within-filter models to trace complex temporal movement

� Allows smaller filter sizes since the lattice is filled with more stable pixels

� Known filters can be used directly on the resulting filter data

Of course, the computational costs needed to estimate the flow fields cannot be
disregarded, but there are several highly efficient estimation techniques, including
[51] for correlation-based estimation and [24] for the energy-based approach.

57



�����������	��
��� ���	� �� ���� ���
���	�������	������ ���	� �����! ��� �"�

#�������#��$��
��� ���	� �% �"�� ���
���	�������$���� �&��� ���'�� (�) ���

*)+ ,�- �.�*)+ ,�- ��/)� *0+ ,1- �$�

� �"2 , � * � + �43 ,�+ � * � ��3

Figure 6.2: Example of how the flow-field estimates improve the local, spatial
stability of the pixels encapsulated by a � � � � � filter

6.2.4 Example: Discontinuity filter

In the case of the strictly temporal discontinuity filter discussed in section 4.1, the
flow-adoptive approach can make a noticeable difference. As illustrated in figure
6.3, objects in ultrasound image sequences are likely to move, making the pool
of samples collected in the temporal direction contain values from both inside the
object, the border of the object, outside the object, and even from other objects. By
adopting the flow-adaptive filter and hence letting an estimate of local flow guide
an additional spatial movement at each frame, this error can be reduced. The pool
then consists of intensity values that spatially are more locally stable within the
moving objects.

The principle of letting the local flow-estimate guide the spatial movement when
selecting the set of values used in the filtering process is illustrated in figure 6.4.
At frame zero, for instance, the local flow indicates that the object moves slightly
to the right, and therefore at frame one the sample is selected correspondingly in
that direction. This gives a more locally stable path, yielding more correct filter
outputs.
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time

Figure 6.3: Illustration of an object’s true path (solid line) and the path of which the
samples are selected in a strictly temporal fashion in an ultrasound image sequence
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Figure 6.4: How the flow-adaptive approach can render more correct results in the
case of discontinuity filtering. The dashed line indicates a path of straight temporal
orientation, and the full line a flow-estimate guided path. The right side shows the
resulting intensity values together with a piecewise constant reconstruction.
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Chapter 7

Experimental Materials and
Methods

This chapter describes the experiments conducted in this thesis. The objective was
to see whether the flow-adaptive filter approach of chapter 6 improves filtering per-
formance. Both the filtering of real ultrasound-image sequences and synthetic sets
were carried out. Synthetic sets open for a larger scope of filters to be tested for
improvement using the flow-adaptive approach and make it possible to generalize
the results to a non-ultrasound context.

The filtering of the real ultrasound sequences was focused on the discontinuity
filter described in section 4.1, both in its original form and using the novel flow-
adaptive filter method. The discontinuity filter was elected based on its excellent
performance in temporal filtering of ultrasound sequences.

Three simple non-adaptive filters, the average, Gaussian-shaped convolution and
the median, were implemented using the flow-adaptive technique and tested on the
synthetic data sets. These filters were picked based on their simplicity, and their
lack of underlying models and parameters. Hence, indications of improvement us-
ing flow-adaptive principles are not cluttered by discussion of parameter settings,
and their implementation is straightforward. In addition, the tensor-based adap-
tive filter described in section 5.6 was tested using the flow-adaptive approach.
This filter was chosen due to its close relationship with the energy-based flow-
estimation technique, and to show that even fairly advanced filters improve with
the flow-adaptive procedure. Testing how the general flow-adaptive filtering tech-
nique improves the entire spectrum of filters is not the intention of this thesis.

The first section describes the acquisition of the all-important flow fields.
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7.1 Estimating the flow field

The flow fields have been estimated both by using speckle tracking and the energy-
based technique discussed in chapter 5. Details of their implementation are dis-
cussed next.

7.1.1 Energy-based estimation

The energy-based method of estimating flow first probes the local three dimen-
sional data set for gradients, resulting in a tensor representation of the local neigh-
borhood. The tensors are then filtered before local flows are extracted.

7.1.1.1 Quadrature filters

The quadrature functions were obtained by minimizing a weighted square distance
to the reference function (5.13), using the weights given in (5.16), where the latter
was chosen to maintain high generality. The sample resolution was twice that of
the filter size.

The optimized filters had a size of � � � � � . This gives an acceptable compu-
tational load, allows robust estimation, and corresponds well with the size of the
structures in the data sets.

7.1.1.2 Tensor filtering

An alternative to the certainty weights used in the normalized convolution (5.8),��� � � � � , is [55]:
� � 	 �� � 	 �

	 �

where the parameter � � � allows favoring tensors describing the more robustly
estimated plane-like neighborhoods.

The tensor filtering was performed using a � � � � � Gaussian function as shown
in figure 7.1(a), and using � � � � � .

7.1.1.3 From tensors to flow

Before extracting the flow, a small constant, � � , was added to the tensors as pro-
posed in [55]. This constant can be seen as a regularization term. Small tensors
will be deemed isotropic since they will become nearly ’round’, and consequently
be dismissed. The experiments were done with an � equal to about one percent
of the largest tensor norm in the data sequence. The flow was extracted from the
tensor as described in section 5.5.1.
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(a) � 	�� � 	 kernel used in tensor filtering (b) 	�� 	 kernel used for flow filtering

Figure 7.1: Two-dimensional filtering functions

7.1.1.4 Flow field smoothing

To ensure a more stable and correct flow field, filtering by normalized convolu-
tion was performed. The application function is shown in figure 7.1(b), and the
certainty of each flow estimate was set to

� � �T � @;� � � � � � � �H�
where �T � is the norm of the tensor and � is a small constant preserving strictly
normal-flow neighborhoods. Thus, the certainty value favors large tensors describ-
ing line-like neighborhoods.

Other popular ways of filtering flow fields are based on vector medians [1]. A
simple implementation of a vector directional filter[42] was tried, but abandoned,
since the difference in performance was negligible for the type of experiments con-
ducted in this thesis.

7.1.2 Speckle tracking

The flow fields for the real ultrasound sequences described in section 7.3.2 were
also estimated using the speckle tracking technique explained in section 4.2. The
kernels had a size of � � pixels radially and � pixels laterally, and the search dis-
tance was � � pixels in both directions. The normalized correlation was used for
the best-match criterion. The resulting flow field was filtered in the same manner
and with the same convolution function as in the energy-based case, but by using
the peak correlation coefficients as weights in the normalized convolution. Flow in
both positive and negative temporal direction was extracted.

The kernels were set large enough to ensure relatively robust flow estimates, while
still allowing a certain spatial variance. Optimal speckle-tracking settings for every
sequence were not pursued. The focus was on simplicity, and showing that even
rough motion estimates are adequate for the prevalence of the flow-adaptive filter.
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Figure 7.2: The gamma scaling function used in obtaining the control tensor with
� � ��� and varying

�

7.2 Filter parameters

7.2.1 Discontinuity filter

The size of the time window used in the filtering algorithm described in section 4.1
was set to � samples, and placed in a cyclic manner. Constant reconstruction was
performed with � discontinuities, as in figure 4.2. The leakage was set to � � � , that
is, 30% of each of the boundary pixels were included in the final filter output.

The length of the filter was kept short to justify the use of only two discontinu-
ities, reduce computational complexity, and assure good relative performance of
the straight temporal filter. The leakage was set low enough to not introduce men-
tionable motion blur, but high enough to make an impact on the filtering. It is
shown that, even with these settings giving fairly optimal results using the original
filter, the flow-adaptive technique prevails.

7.2.2 Non-adaptive filters

The simple non-adaptive filters, the average, Gaussian shaped convolution and the
median, all had a spatial size of � � � and � � � , with a varying temporal extent.
The filter sizes were kept small to fit the image structures. Note that the quadrature
filters of section 7.1.1.1 have a different function and can hence be of a larger size.
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(a) (b) (c) (d)

Figure 7.3: Still frames from the synthetic data sets. Direction of motion is indi-
cated by arrows.

7.2.3 Tensor-based filter

The implemented filter based its adaptive filter synthesis on the same orientation
tensors used in the energy-based flow estimation. The low-pass filter of equation
(5.9) was Gaussian shaped while the all-pass filter was a Dirac-delta pulse. The
high-pass filters of equation (5.12) were obtained by minimizing the squared dis-
tance to a sampled reference function with twice the resolution. The size of the
high-pass and low-pass filters were all � � � � � . The control tensor was derived
from the orientation tensor by the scaling function of equation (5.10), in which

�
� � � � �

� � � ! � ( ! � ) � (7.1)

where � reflects the noise, and
�

controls the transition period from low-pass to
high-pass filtering. Figure 7.2 shows the scaling function with varying

�
. The ex-

periments were done with
� �

� � � � .

The adaptive tensor-based filter has to be of a larger size than the non-adaptive
filters of section 7.2.2 because the high-pass filters require a certain amount of
coefficients to resemble their reference functions in an adequate way. As a conse-
quence, the synthetic sequences used for testing the tensor-based filter had larger
image structures matching the increase in filter size.

7.3 Data sets

7.3.1 Synthetic sets

In addition to the real ultrasound data sets described in section 7.3.2, synthetic
image sequences were generated. This provided a sterile environment with a com-
plete control of all parameters, and a direct error metric as discussed in section
7.4. To assure reliability, all experiments using the synthetic sets had at least ���
iterations.
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7.3.1.1 The sequences

Four classes of sequences, each consisting of � � frames of size � � � � � pixels, were
generated:

Moving wall Figure 7.3(a) shows one of the frames in a simple sequence
consisting of a white, vertical wall moving from left to right. The only adjustable
parameter is the velocity of the moving wall. If otherwise not explicitly stated,
the velocity parameter is � pixels per frame for this sequence, that is, the standard
parameter is a velocity of value � .

Circulating annulus Figure 7.3(b) depicts a frame from a sequence in which
a white annulus moves around the image center in a circular fashion. The parame-
ters are the radius of movement, the annulus size, given by inner and outer radius,
and the angle increment per frame of the movement. The standard parameters for
this sequence are a movement radius of � � pixels, an inner radius of � , outer radius
of � � , and a

B�
� per-frame angle-increment giving about a � � � pixel movement of

the annulus center per frame.

Pendulum Figure 7.3(c) displays a still frame of a moving pendulum se-
quence. The parameters are the pendulum width, the drop angle, and a movement
step per frame to regulate velocity in the sequences. The standard parameters are
a width of

�
pixels,

B
� drop angle, and a movement per step making the sequence

repeat itself every � � th frame.

Pulsating ellipse Figure 7.3(d) is an image from a sequence where a white
ellipse is changing size in a pulsating way. The parameters are the distance be-
tween the foci, the size of the inner and outer major axis, maximum increase in
size along the major axis, and a step value to regulate inter-frame movement. The
standard parameters are, in the same order as above, � , � � , � � , � � pixels and a
movement step making the sequence repeat itself every � � th frame.

In addition, ’ball’ sequences consisting of disc-shaped structures moving from left
to right were generated when the effect of structure sizes was investigated. The
parameters were the diameter and velocity of the ball. The frames for these se-
quences were elongated when high-velocity environments were generated.

The first sequence class, the moving wall, provides an environment for studying
filter behavior on sequences consisting of purely simple unidirectional flow, while
the other classes provide sequences with multifarious non-simple movements. All
classes, except the first, allows the size of the image structures to be manipulated.

The sequences were kept with floating point precision at all times. That which
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appears grey in the images of figure 7.3 has a value of ��� , and what appears white
has a value of � � � .

Image smoothness The borders of the image structures in the sequences above
are step-wise, that is, goes from background to foreground intensity in one pixel.
To see whether this had any effects on the results, sets of sequences where the
edges had been smoothed were included in the experiments. The smoothing was
done by filtering the sequences with a spatial � � � average filter.

7.3.1.2 Noise models

Three different noise models were used; Gaussian additive, Gaussian-based multi-
plicative, and impulse noise. More precisely,

� � � � + , � � � � � � @ + (7.2)

are the additive and multiplicative models, respectively, where � is the uncorrupted
signal and + is an independent, zero-mean, Gaussian random variable, i.e., its prob-
ability density function is given by

� � � �� � �HG
� ��� ���� � � (7.3)

The multiplicative noise model in (7.2) can be used to mimic the noise character-
istics of ultrasound images [29]. The impulse noise model is given by

� � � � with probability �� with probability
� �  �6�

where � is the probability that a distortion, � �� � , will occur at each sample. The
� -value was set either to � � or � � � with equal probability.

Unless explicitly stated, the signal-to-noise ratio (SNR) was set to � dB for the
additive and multiplicative noise, that is, � � /�/ � ��� and � ��� � � � � in the density
function (7.3). The impulse-noise model had � � � � � as its standard parame-
ter. Figure 7.4 shows the synthetic sets corrupted by additive Gaussian noise with
SNR= � dB.

Other methods producing even more speckle-like noise were omitted. The required
models for such an approach would have to assume a lot of underlying parameters,
and since the focus here is on the images themselves, they would not make much
difference anyway. However, if the error metric was based on the corrupted images
instead of the approach in section 7.4.1, e.g., some kind of texture-classification
scheme, it would be critical to have an accurate noise model.
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(a) (b) (c) (d)

Figure 7.4: The images in figure 7.3 corrupted by additive white Gaussian noise
with SNR= � dB

7.3.2 Ultrasound sequences

The clinical ultrasound image-sequences that were filtered upon were of beating
hearts taken by a � � -element probe with a central frequency of � � � MHz. The end-
depths, the number of beams used for each image frame, as well as the frame rate
differed between the sequences. Typically the non-scan-converted images had a
size of about ��� � � � ��� to ��� � � ��� � pixels, and the number of frames in a se-
quence covering one heart cycle was between � � and ��� images. The experiments
were performed directly upon the non-scan-converted images without producing
the geometrically correct outputs. This was done to avoid any unnecessary tam-
pering of the data before the experimental filtering was conducted. The benefits of
doing this over-shadowed the geometrical distortion disadvantages when perform-
ing the speckle tracking.

Note that the filtering procedures investigated in this thesis all operate exclusively
in the image domain, making the technical details of the ultrasound-scanner set-
tings less important. Of course, the frame rate, for instance, is important, but only
indirectly. An increased frame rate reduces the inter-frame structural movement,
and that is what is important for the filters applied here, not the frame rate itself.

Varying clinical conditions of the patients yielded the necessary variance in the
visual quality of the images needed for the error metric described in section 7.4.
This error metric requires the sequences to be grouped into classes of either high
or low visual quality. Examples of still images from both categories are found in
figure 7.5.

7.4 Error metrics

How the filters perform are measured differently in the synthetic and the ultrasound
sequences.
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(a) High quality (b) Low quality

Figure 7.5: Excerpts of four-chamber-view images of the cardiac function from the
high- and low-quality classes. The image in b) is severely degraded by reverbera-
tion. Note that the images are non-scan-converted.

7.4.1 Synthetic sets

The success of the filters on the synthetic sets were measured by the mean-square
error between the filter output and the original uncorrupted, or noiseless, sequence
normalized by the noise level, i.e.,

nmse
�

2
(������

� � �  � � �
2
(����

� �  � � � (7.4)

where � � is the filtered pixel taken over a set of pixels,
�

, � is the original uncor-
rupted signal, and � is the noisy data that has been used as filter input.

�
was set to contain all pixels in the noiseless sequence which had the property

that if a square, spatial window of size � � � was placed centrally upon it, there
would be variance within the window pixels. This makes the effective metric re-
gions contain only the edges, that is, the pixels before and after any transitions
from background to foreground and vice versa. The non-adaptive filters were also
examined with a variance-detection filter of size

� � �
. Such a size exposes possible

motion blurring, while still assures that large homogeneous areas, e.g., outside the
objects, which is not of interest here, do not dampen the error metric.

In addition, the filtered results were inspected visually. Other application-dependent
error metrics could have been implemented, but the above methods, when the ideal,
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noiseless sequences are available, are quite general and robust. Implementing a
wide range of all possible error metrics is not within the scope of this thesis.

7.4.2 Ultrasound sequences

To test whether the novel flow-adaptive filtering scheme excels in the case of the
real ultrasound sequences, the following two postulates were put to the test:

1. For noisy sequences the filtered regions of motion should be smoother with
the novel than with the strictly temporal approach. I.e., the filtering should
decrease the local variance, and produce spatially more stable output.

2. For images with little noise, the filter should retain fine structures in the
original image, also for regions of motion.

To verify the first postulate in the present case, measures of local variance were
put into different velocity classes. Each neighborhood had their local absolute
velocity rounded to the nearest integer, and their local variance estimate was said
to belong to that velocity class. This way the spatial smoothness can be displayed
as a function of absolute velocity. To make sure that gradient neighborhoods were
not given excessive non-smoothness estimates, the usual variance was replaced
with how well the local neighborhood could be represented by a plane, that is,

non-smoothness
��� ���� � � � 
 2(���� � �  �

� � � 	 , ��� ��� � � � � + � � � 
 	 ��� 
 � � �
Figure 7.6 shows a neighborhood and a plane minimizing the squared error cri-
terion. The size of the local neighborhoods was set to � � � . If computational
efficiency is an issue, the coefficients in such polynomial fitting schemes can be
estimated by a few simple convolutions [31, 16].

The second postulate was verified using the local squared difference between the
original, nearly noiseless, sequence and the output of each of the two filtering tech-
niques, again using different velocity classes. The size of the local neighborhoods
was set to � � � � � , which is big enough to detect structure but small enough to al-
low velocity variance. The novel scheme should reduce filtering artifacts, and thus
give a smaller value in the above method than the old approach for neighborhoods
with motion. Of course, such a metric does not incorporate perceptual considera-
tions and is hence prone to detect errors like simple shifting, but it must be noted
that the squared error is taken over local windows and not entire images, and that
such spatial shifts could be argued to be qualified errors. Other ways of measuring
whether fine structures are retained can be found in [50] and references therein.

As with the synthetic sets, visual judgements were also performed. Other intu-
itive approaches would be to let clinical professionals judge the resulting images
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Figure 7.6: Fitting a plane to the local neighborhood using the minimum squared-
error criterion

for diagnostic usefulness, or use the images as input in programs performing au-
tomatic measurements. The first approach is infeasible due to the relatively low
priority of such a task among busy clinical professionals. The other approach is
very technique-dependent, and doing a wide study on the subject would go beyond
the limits of this thesis.
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Chapter 8

Results and Discussion

This chapter presents the results and discussions of the experiments. Although they
reside in the same chapter to ease the reading, the result and discussion parts are
kept separate. The main focus will be on the synthetic data sets. Those sets have
a more direct and robust quality metric, hold important free parameters, and they
make it possible to generalize the results to non-ultrasound contexts.

The consequences of the parameters of the synthetic sequences are discussed sepa-
rately, beginning with the noise models and varying SNR. Then the other parame-
ters; velocity, structure size, image smoothness, metric region and filter parameters
are discussed before a general conclusion to the visual inspection is given. It will
be shown that the flow-adaptive approach substantially improves the performance
of all the implemented filters.

The abbreviations fa, nfa and nmse are used extensively throughout the text and
they are short for flow-adaptive, non-flow-adaptive and normalized mean-square
error, respectively.

8.1 Synthetic sets

The details of the synthetic sets, including their standard parameters, are described
in section 7.3.1. Note that unless otherwise stated, only edges are included in the
metric, which accounts for the occasional above � � � nmse. The nmse in more ho-
mogeneous regions is of course below � � � .

Most of the plots omit showing the results for the Gaussian-shaped convolution
filter because its introduction would clutter the figures and add limited additional
information. The Gaussian-shaped filter can be argued to be in the same class as
the average filter, with similar overall properties except for slightly better edge-
preserving capabilities due to the central weighting of the Gaussian-shaped convo-
lution kernel.
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8.1.1 Noise characteristics

The synthetic sequences were corrupted by the three different noise models of sec-
tion 7.3.1.2 with varying SNR. Figure 8.1 shows the results for the circulating
annulus sequence using the additive Gaussian and the pulse noise model. Note
that the metric is the non-normalized mean square error, as opposed to the normal-
ized alternative used elsewhere. The results for the circulating annulus using the
multiplicative model is found in the appendix.

8.1.1.1 Results

The flow-adaptive filters had a lower nmse than their non-adaptive counterparts
for all the sequences with their standard parameters for all the noise levels. The
results using the multiplicative noise model gave almost identical results as in the
additive case, with merely a slight overall reduction of the nmse. Such a result was
also apparent for the smooth images discussed in section 8.1.4, and hence justifies
the extensive use of one noise model in most of this chapter.

Referring to figure 8.1, it is evident that none of the filters retain the edges per-
fectly even in the no-noise environment. Further, the average filters have a very
straight curve for both the additive and the pulse-noise models, with the fa ver-
sion being quite below its nfa counterpart. The median filters have for the additive
case a slight improvement going from no noise to � � dB SNR, before they both
get steadily worse as the noise intensifies. In the pulse case, the gap between the
fa and the nfa median widens with higher noise levels until a certain point, about� � � � ��� , where the gap narrows. In the case of extreme noise, the discontinu-
ity filters have a dramatic increase in nmse, and in both graphs the average filter
handles such extremes the best. Generally the gaps between the fa and nfa filters
decrease as the noise level becomes more severe. This is especially prominent for
the pulse model.

8.1.1.2 Discussion

The overall low nmse for the fa filters indicate that the energy-based flow estima-
tion procedure is quite robust, at least for sequences with image structures of a
certain size, demonstrating the prevalence of the general fa filter in various noise
environments. For the slight scaling of the nmse using multiplicative noise, note
that even though the multiplicative and additive noise models have an equal peak
SNR, the overall multiplicative noise is lower due to the nature of equation (7.2).

In the case of zero noise, the leakage parameter of the discontinuity filter, dis-
cussed in section 8.1.6, accounts for much of the nmse. The rest is accounted for
by the rapid changes from foreground to background intensities in the temporal
path due to the velocity, the small size and the complexity of the structure in this
sequence. The fa version of the discontinuity filter using zero leakage is flawless in
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this particular no-noise sequence. The stability of the plots for the average filters is
a result of the large number of coefficients included in the average calculation and
the zero-mean property of the noise distribution. It should be noted that median
filters in low-noise environments are especially penalized by the employed met-
ric, since even though the images seem visually perfect, some of the border pixels
might have been eroded, adding greatly to the nmse. For the particular sequence
of figure 8.1, it is in addition a source of deficiency for the median that the image
structure is small and of high velocity.

The improvement for the median filters from zero to low additive noise can be ex-
plained by the zero-mean noise property, since a little noise can make the window
median closer to the window average in the cases where the alternative is complete
erosion. For the pulse noise, this effect is not present, since the added noise pixels
all have a value further from the average than the original pixels. The gap increase
between the nfa and fa median filters in the first intervals for the pulse-noise case
can be explained by the fact that the fa filter window encapsulates a larger frac-
tion of ’correct’ pixels, either foreground or background, than the more unstable
nfa filter, and is hence more able to resist the noise increase. This gap increase is
not seen for the average filter, since, as explained in chapter 3, the heavily-tailed
pulse-noise distribution is handled better by the median filter.

In extreme noise, the poor performance of the strictly temporal discontinuity fil-
ter is because more than one-pixel spatial extent are needed to dampen the noise.
Since the pulse noise consists of equally distributed very high and very low inten-
sities, the average filters are not as prone to error as the median, which has to pick
one of the window intensities as output. The general equalization of the fa and nfa
filter-results as the noise gets more prominent is due to the resulting loss of flow
estimation, that is, the image sequences are too noisy to make exact motion esti-
mates. Flow estimation depends furthermore on the size of the moving structures,
as discussed in section 8.1.3.

8.1.2 Structure velocity

The effects of varying the velocities of the image structures in the generated se-
quences were investigated. Figure 8.2 shows the nmse for the synthetic sequences
with varying structural velocities using the � � � variance-detection filter. Except
for the velocity, standard parameters were used in the generation of the sequences.

8.1.2.1 Results

The flow-adaptive filters had, for large velocity intervals, generally a lower nmse
than their non-flow-adaptive counterparts. The median outperformed the average
filter most of the time. The gaps between the graphs of the fa and nfa filters were
wider in the wall and annulus sequences than that of the pendulum and ellipse.
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Figure 8.1: Non-normalized mean squared-error metric using the � � � variance-
detection filter with varying noise levels on the circulating annulus sequence with
standard parameters.

Figure 8.2(a) shows that for the wall sequence there is a step-edge worsening for
the nfa discontinuity filter from a velocity of zero to one pixel per frame. Similar
rapid increase in nmse is found for the nfa average and median filters, but in the
velocity interval from � to � . After their respective nmse increments the errors sta-
bilize. The wall results for the simple fa filters are quite stable until a velocity of
� , where they worsen before they again stabilize at � pixels per frame at the same
level as for the nfa filters. The fa discontinuity filter has a similar behavior, except
that the increase of the nmse starts at a velocity of � .

Figure 8.2(b), which shows the results for the annulus sequence, has a more no-
ticeable gap widening between the fa and nfa graphs as the velocity increases, until
a certain point where the gap narrows. Further, the nfa filters show a nmse decrease
in the angle-increment interval

B
�
� to

B�
� . A similar effect is found for the ellipse

sequence in figure 8.2(d).

Figure 8.2(c) reveals a small decrease in the average-filter nmse from no motion
at all to the next step along the velocity axis. The median filter displays a similar
property, except that the nmse is not decreased, only stabilized in that same inter-
val. At the highest velocity, the nmse for the fa discontinuity filter rises above its
nfa counterpart.

8.1.2.2 Discussion

The prevalence of the fa filters in wide velocity intervals is apparent. The size of
the intervals is determined by the capacity of the flow-estimation technique, and
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is related both to the upper absolute values of the velocity and to the inter-frame
velocity consistency. The results from the wall sequence shows that the upper ab-
solute velocity limit is about � pixels per frame. Recalling that the quadrature
filters used in the energy-based flow estimation has a spatial extent of � � � pixels,
the failure in detecting a � pixel per frame movement is obvious. Of course, using
some kind of spatial coarse-to-fine strategy could overcome such upper velocity
limitations [24]. The results for the pendulum and the pulsating ellipse sequences
show that even though the upper absolute velocity is below the � pixel barrier just
discussed, the swift change of direction makes the energy-based flow-estimation
technique fail.

The edge-preserving properties of the median filter, as discussed in chapter 3, ac-
counts for the low nmse of the median compared to the average filter. This is
especially observable in the large-structured wall sequence. The narrower gaps be-
tween the nmse for the fa and nfa filters in the pendulum and ellipse sequences can
be explained by the low velocity in many of the frames in those sequences.

The sudden increase in nmse for the nfa discontinuity filter from zero to one ve-
locity, and the subsequent stability, for the wall sequence can be explained by the
following: When the velocity is zero, the entire filter window is filled with ’correct’
pixels, i.e., all are either foreground or background pixels, yielding the low nmse
result, but when the velocity is � or more pixels per frame, the filter windows at the
edges now consist of one more ’correct’ than ’incorrect’ pixel regardless of veloc-
ity. Hence the stable subsequent error output. For the average and median filters,
which both have a spatial and temporal extent of � pixels, figure 8.3(a) can illumi-
nate the reason for the edge-like behavior of the nmse at velocity 2 pixels per frame
and the subsequent stability. The figure illustrates how the filter window is filled
with background and foreground pixels in varying velocity neighborhoods. The
ratio of background and foreground pixels is the same for windows in neighbor-
hoods of velocities zero and one pixel per frame, but for neighborhoods of velocity
� , the ratio turns more unfavorable. The proportions remain the same regardless of
further velocity increments.

The reduction of fa nmse in the angle-increment interval
B
�
� to

B�
� in figure 8.2(b)

can be explained by the slightly poorer performance of the energy-based flow es-
timation for low velocities. In such low velocity neighborhoods the tensor norms
are smaller and thus more prone to noise inaccuracies.

In figure 8.2(c), the decrease in nmse for the average filters from no to a slight
velocity can be explained with the help of figure 8.3(b). The velocity is not large
enough to cause serious performance degradation, but now many of the frames de-
picts the pendulum standing diagonally: At pixel level, it is revealed that the � � �
variance-detection filter used in the metric will include pixels at locations similar
to the one marked as a

�
in the figure, and the � � � average-filter window en-
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Figure 8.2: Normalized squared-error metric using the � � � variance detection
filter on various synthetic sequences. Standard parameters were used except for
the incrementing velocities.

capsulating that pixel will contain a large number of ’correct’ pixels yielding the
reduced nmse.

8.1.3 Structure size

This section describes the results of varying the image structure sizes of the syn-
thetic sequences. Figure 8.5 shows the results for the pendulum and ball sequences.
Additional data is found in the appendix.

8.1.3.1 Results

All the sequences had a notable reduction in fa nmse as the structure size increased,
until a certain point where the error stabilized. The nfa filters, especially those with
more than one pixel spatial extent, did also benefit from the increase in structure
size, but somewhat in a more limited way. Further, the point of stabilization for the
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Figure 8.3: Figures aiding the explanations in section 8.1.2. a) Slices in the
temporal-spatial plane illustrating the behavior of the � � � filters for varying ve-
locities. b) The diagonal standing of the pendulum increases the number of pix-
els included in the nmse metric to encompass similarly located pixels as the one
marked

�
.

nfa median filter was at a higher structure size than that of the other nfa filters.

The results for the ball sequence, see figure 8.5(b), show a significant increase
in nmse as the diameter increases from � to � pixels. A similar phenomenon is
observable for the pendulum sequence, figure 8.5(a), but for the nfa discontinu-
ity filter only. As the structure sizes increase further, the gap between the fa and
nfa filters widens. For the ball sequence, the nmse seems to grow for very large
structures.

8.1.3.2 Discussion

The gap between the fa and nfa filters widens with larger structure sizes because
fairly large structures are needed, in high-noise environments, to properly estimate
the flow fields used by the fa filters. All the filters, including the nfa, benefit from
the increase in temporal stability caused by larger structure sizes. The additional
gain when enlarging the structures is obvious for filters of spatial extent. The me-
dian filter is particularly sensitive of structure sizes, accounting for the prolonged
reduction of nmse in the plots.

The increase in nmse for the ball sequence as the diameter increases from � to
� pixels can be explained by the following: When the size of the ball is merely a
single pixel, there are eight pixels included in the nmse that are background and
one pixel that is foreground. Any filter reducing, or completely removing, the fore-
ground pixel will still have a very low nmse. However, when the structure grows,
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Figure 8.4: Small structures in noisy environments. The images are from the mov-
ing ball sequence with ball diameters, from left to right: � , � , � and � pixels. The
structures with diameters � and � are hard to detect even in running video.

the ratio of foreground and background pixels even out, yielding the more correct,
increased nmse. The increase for the nfa discontinuity filter, while not for the other
nfa filters, in figure 8.5(a), is due to the fact that even though the discontinuity filter
will remove, or severely dampen, the one-pixel pendulum at its high-motioned tip,
the filter will give excellent results at the more motion stable pendulum top. The
other filters, on the other hand, will not have the benefit of any excellent results
anywhere, hence the high nmse for both the average and median filters. For the
two-pixel pendulum, the discontinuity filter still removes, or heavily dampens, the
pendulum tip, but the benefit of the foreground-background proportion bias in the
nmse is no longer present.

The slight growth in nmse for very large structures can be accounted for by the
increase in normal as opposed to true flow that is an unavoidable consequence
of the energy-based approach and its failure to handle the aperture problem. The
benefits of increased structure size suppress this phenomenon for the other filters.

8.1.4 Smooth images

The flow-adaptive filters were tested on image sequences consisting of moving
structures with both step- and smooth edges.

8.1.4.1 Results

Generally the filters with more than one pixel spatial extent had a much lower nmse
for the smoothed sequences than the strictly temporal discontinuity filter. The over-
all best filter in the smoothed case was the average filter. Only the Gaussian filter
could match the discontinuity filter for the step-edged sequences.

Table 8.1 shows that for the wall sequence, there is merely a negligible difference
between the nmse for the two sequences using the discontinuity filter. Further, the
average filter is the only filter which has a worse performance for the step-edge
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Figure 8.5: The effects of varying the size of the image structures. Except for the
size parameters, standard parameters were used in the generation of the sequences.
a)-b) The nmse for the pendulum and ball sequences for varying structure sizes.
c) The nmse for the nfa discontinuity filter using the ball sequence with varying
velocity and structure sizes. d) as in c) only using the fa discontinuity filter. d) The
difference between c) and d). Note the change in view angle.
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Filter Edges Wall Annulus Pendulum Ellipse

step 0.3683 0.5569 0.5515 0.5666
Discont.

smooth 0.3662 0.4088 0.4024 0.4116

step 0.7426 0.6963 0.6769 0.6617
Average

smooth 0.1206 0.1469 0.1327 0.1311

step 0.4870 0.5993 0.5808 0.5613
Median

smooth 0.1437 0.1672 0.1536 0.1527

step 0.3816 0.5033 0.4855 0.4730
Gaussian

smooth 0.1362 0.1500 0.1437 0.1427

Table 8.1: The effects in nmse of smoothing the edges of the sequences before
adding the noise. Standard parameters for the sequences were used. The filters
were implemented using the flow-adaptive approach, and the average, median and
Gaussian filters had an extent of � � � � � pixels. Note that the effective metric
regions, pixels deemed as edges, are increased in the smoothed case.

wall sequence compared to the other sequences. For the smooth images, all filters
have a lower nmse for the wall sequence than the others.

8.1.4.2 Discussion

The filters of spatial extent benefit from the increased spatial stability of the pixel
intensities, that is, the filters have low-pass characteristics which better fit the
smooth image model. For the additive Gaussian noise model, the average filter
is the locally maximum likelihood, accounting for the impressive results for that
filter in the smoothed case. The more centrally weighted Gaussian-shaped filter
retains sharp transitions better than the average filter, and performs better than the
edge-preserving median filter due to the choice of a Gaussian additive noise model,
which is better for the Gaussian filter, and the high-penalized erosion defect of the
median.

All the sequences, except for that depicting a moving wall, gain structure sizes
by the smoothing operation. The increase in structure size improves the flow-
estimation and reduces the temporal instability, yielding the improved nmse for the
discontinuity filter for all but the wall sequence. The high nmse for the average
filter on the wall sequence can be explained by the principles illustrated in figure
8.3(b): Additional pixels, which are better handled by the filter, are included in the
nmse for the other sequences. Such an effect is not seen for the median and Gaus-
sian filters because of the other obvious advantages they have in the wall sequence.
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8.1.5 Metric region and sizes of the non-adaptive filters

The variance-detection filter used in the error metric, the one setting
�

in equation
(7.4), was enlarged to a spatial extent of

� � �
pixels. Such a filter size dilates the

effective metric regions, making filtering artifacts like motion blurring affect the
nmse considerably. Motion blur resulting from discontinuity filtering is discussed
in section 8.1.6. The appendix contains additional data related to this section.

8.1.5.1 Results

The fa filters had a nmse substantially lower than their nfa counterparts, and the
gap widened as the temporal extent increased. All the fa filters with a � pixel tem-
poral extent had lower nmse than their strictly spatial counterparts, and remarkably
lower nmse than the � -pixel spatial extent nfa filters. Increasing the filter sizes to
� � � pixels for the strictly spatial filters had a slight positive effect on the nmse for
both the median and Gaussian filters, but the average filter had in that case an nmse
increase. When the temporal sizes were extended, the larger � � � filters performed
worse than their � � � counterparts.

In table 8.2, which shows the nmse results for the wall sequence, the fa filters
display improvement as the temporal extents increase all the way to � pixels.

8.1.5.2 Discussion

The results show that the fa filters prevail over the nfa filters, with a significant
reduction of motion blur and increased filter stability. When the temporal sizes
increase beyond � pixels, the filters get more prone to flow-estimation inaccura-
cies, which accounts for the slight increase in nmse for such filters in some of the
sequences with complex movement. The central weighting of the Gaussian filter
and the edge-preserving properties of the median explain why those filters improve
while the average worsens when increasing the spatial extent.

8.1.6 Leakage parameter

The leakage parameter of the discontinuity filter has a major impact on the filtering
results. Figure 8.6 shows the nmse plots for the annulus sequence, together with
examples of images. The other sequences gave similar results.

8.1.6.1 Results

The nmse plot of the nfa discontinuity filter in figure 8.6(a) has a convex shape
starting with a sharp decline, and entering a minimum at a leakage of � � � . The fa
plot shows an overall lower nmse, and a prolonged decline not reaching minimum
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Filter Flow adaptive
Temporal extent

1 3 5 7

no 0.3195 0.4677 0.6920 0.8675Average � � �
yes 0.2487 0.2350 0.2302

no 0.3112 0.3932 0.5381 0.6699Median � � �
yes 0.2007 0.1772 0.1690

no 0.2862 0.3279 0.4723 0.6097Gaussian � � �
yes 0.1868 0.1572 0.1451

no 0.3839 0.4395 0.6603 0.8480Average � � �
yes 0.3610 0.3534 0.3514

no 0.3074 0.3000 0.4705 0.6236Median � � �
yes 0.2627 0.2538 0.2507

no 0.2756 0.3519 0.4796 0.6100Gaussian � � �
yes 0.2411 0.2306 0.2256

Table 8.2: The effects in nmse of varying the temporal extent of the filters when
filtering the wall sequence with a velocity of � pixels per frame. Note that the
variance-detection filter was set to

� � �
pixels to detect possible motion blur.

until a leakage of approximately � � � .

Figure 8.6(c) and 8.6(d) show that the noise reduction for zero leakage is lim-
ited. With a leakage of � � � the noise reduction is more pronounced, with only
slight signs of motion blurring for the nfa filter. When the leakage is set to � � � the
noise is reduced substantially, but the image quality is severely degraded by motion
blurring for the nfa filter. The fa filter is virtually free of such blurring, and only
modest smoothing of the edges is introduced.

8.1.6.2 Discussion

The increased leakage parameter improves the damping of the noise, but when set
too high, it causes motion blur for the nfa filter. The fa filter, on the other hand,
has an inborn mechanism for handling image structural movement, and the leakage
parameter can thus dampen the noise without the introduction of motion blur.

Note that the minimum nmse for the nfa filter in figure 8.6(a) justifies the choice of
a leakage parameter of � � � introduced in section 7.2.
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Figure 8.6: a) The nmse when varying the leakage parameter from � to � � � for the
annulus sequence with standard parameters. b)-c) Example images.
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8.1.7 Tensor-based filter

In this section the sizes of the image structures were increased to better match the
larger energy-based filters. The variance-detection filter was set to

� � �
pixels to

give a fair error metric regarding both the size and the nature of the tensor-based
filters. The � parameter in equation (7.1) was obtained by minimizing the nmse for
the nfa tensor-based filter on the enlarged annulus sequence used in figure 8.7(a)
with a per-frame angle increment of

B�
� .

8.1.7.1 Results

Generally the fa tensor-based filter showed an improvement in both nmse and vi-
sual appearance over the nfa twin filter. The fa filter outputs had less noise and
sharper edge transitions than the nfa outputs.

Figure 8.7(a), which shows the nmse results for the enlarged annulus sequence,
reveals a noticeable lower nmse for the fa tensor-based filter than the nfa counter-
part. Further, the fa � � � � � Gaussian-shaped filter has a lower nmse than the nfa
tensor-based filter for a large velocity interval. When the movement of the annulus
becomes substantial, the median filters have a more rapid nmse increase than the
others. At extreme velocities, the tensor-based filters approach a steady-state lower
than the other filters.

The images in figure 8.7 show that in regions where the gradient is in the direc-
tion of motion, the nfa tensor-based filter has a worse visual appearance than that
of its fa twin. The images also reveal that the smoothing of homogeneous regions
is better for the tensor-based filters than that of the Gaussian-shaped.

8.1.7.2 Discussion

The noticeable improvement in both nmse and visual appearance for the fa filter
confirms the prevalence of the fa approach even in the case of complex, adaptive
filters.

The low nmse results for the fa Gaussian-shaped filter indicates that even sim-
ple isotropic filters can, using the flow-adaptive approach, compete with advanced
adaptive filters. A general conclusion that the Gaussian-shaped filter outperforms
the adaptive tensor-based filter can, of course, not be made based on this exper-
iment. The poor results for the median filters for high velocities is due to the
erosion property, although in the temporal direction. At extreme velocities, the
tensor-based filters still manage to align themselves spatially, accounting for the
low nmse for those filters.

The poor performance where the gradient is in the direction of motion for the nfa
tensor-based filter is because of both the non-linear path of motion and the extent
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Figure 8.7: a) The nmse results for varying the velocity in an enlarged annulus
sequence. b)-d) Example images from the enlarged annulus sequence. Each frame
is
� � ��� � pixels, and the inter-frame angle increment is

B�
� .

of the directed high-pass filters in their non-radial orientation, that is, when align-
ing the filter along the orientation of the motion, the filter will necessarily allow
some of the high-pass content in the temporal direction to pass as well. In the fa
approach the transformation to a motionless state removes such errors. For homo-
geneous regions, the size of the tensor-based filter yields the improved smoothness
over the smaller Gaussian-shaped filter.

8.1.8 Visual inspection

Visual inspection of the filtered images reveals that the flow-adaptive filters give
images with less motion blur compared to the non-adaptive filters. Figure 8.6 and
8.8 show examples of filtered images. More examples are found in the appendix.
It is utmost likely that any quality metric based on visual perception would rank
the fa above the nfa filters. Figure 8.8 contains in addition a strictly spatial filter,
revealing that the filters with more than one pixel temporal extent are better at
damping the noise.
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(a) Spatial � � � (b) Nfa � � � � � (c) Fa � � � � �

Figure 8.8: Examples of images filtered with the Gaussian-shaped convolution
filter. The movement of the annulus for the example frames are downwards to the
right.

8.2 Real ultrasound images

The real ultrasound images were filtered using the Gaussian-based convolution,
the median and the discontinuity filter, although the focus was on the latter. The
following web page contains all the filtered image sequences included in this thesis:
http://folk.uio.no/arej/ultrasoundSequences

8.2.1 Results

The flow-adaptive filter outputs had reduced signs of motion blur compared to the
non-flow-adaptive filter outputs. The moving structures in the noisy images were
also more visible in the fa case in that the contrast quality was improved. Figure
8.10 shows examples of images from a noisy sequence.

Figure 8.9(a) shows how well local planes fit the discontinuity filtered data, a met-
ric measuring smoothness as described in section 7.4.2, for a noisy sequence. Local
planes fit the fa better than the nfa outputs for velocities below � pixels per frame.
At higher velocities, the graph shows the opposite.

Figure 8.9(b) shows how well the local image structures are retained using the met-
ric described in section 7.4.2. The results when the flow is estimated by speckle
tracking are also included. The fa versions have less error for all the velocities,
except for the highest absolute velocity where the energy-based filter is approxi-
mately equal to the nfa filter. At zero velocity, the fa filters are slightly better than
their nfa counterpart. The fa filter using flow estimated by speckle tracking has less
error than the fa filter using flow estimated using the energy-based approach for all
velocities.
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Figure 8.9: Results when using the metric described in section 7.4.2 on real ultra-
sound images filtered with the discontinuity filter. Note that results when the flow
is estimated based on speckle tracking is included in b).

8.2.2 Discussion

The obvious improvement when visually inspecting the images and the graphs in
figure 8.9 show that the flow-adaptive approach triumphs in the domain of real ul-
trasound images as well.

The sharp rise for the fa filter in figure 8.9(a) can be explained by the fact that
the fa filter better retains such high-velocity neighborhoods rather than smearing
them out. It should be noted that the number of neighborhoods with an estimated
velocity of more than � pixels per frame is less than on fiftieth the number of neigh-
borhoods with a velocity between � and � .

The results in figure 8.9(b) show that the fa filters retain the original structures
in nearly noiseless images better than the nfa filter. The lower error for the filter
based on speckle tracking indicates that such a method is superior at flow esti-
mation in nearly noiseless sequences. However, as the noise level increased, the
speckle tracking results quickly deteriorated, and in cases of considerable noise,
the energy-based methods had to be used. In a practical setting, a measure of local
variance of the resulting flow fields could be used to guide the choice of using ei-
ther a template-matching or an energy-based approach.

To explain the difference for zero velocity in figure 8.9(b), it must be noted that
the error measure is taken over a window and hence the metric incorporates pixels
besides that of the center. The other pixels could very well belong to neighbor-
hoods of motion.
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(a) Original (b) Nfa (c) Fa

Figure 8.10: Magnified extracts of ultrasound images filtered with the discontinuity
filter
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Chapter 9

Conclusion

This thesis has addressed the problem of unwanted motion blurring of images in
three-dimensional filtering, and introduced a novel filtering approach termed the
general flow-adaptive filter. The principle of the approach is to spatially adapt the
entire filter lattice to possibly complex spatial movements in the temporal domain
by incorporating local flow-field estimates.

Two adaptive and three non-adaptive filters were implemented using the flow-
adaptive approach. Their performance was tested on both synthetic, and real ultra-
sound, image sequences. The synthetic sequences consisted of moving structures
with varying size, velocity and edge smoothness, and were corrupted by several
different noise models. The ultrasound images were of beating hearts.

An edge-adaptive normalized mean-square error was used as the metric for the
synthetic sequences, and the error was severely reduced using the flow-adaptive
technique, as much as halved in many instances. There were even indications
that a simple Gaussian-shaped convolution filter could outperform larger and more
complex adaptive filters by implementing the flow-adaptive procedure. For the ul-
trasound image sequences, the filters which adopted the flow-adaptive principles
had outputs with less motion blur and sharper contrast compared to the outputs of
the non-flow-adaptive filters.

At the cost of flow estimation, the flow-adaptive approach substantially improved
the performance of all the filters.

9.1 Suggestions for further study

The most obvious extension to what is presented in this thesis would to test a wider
range of filters for improvement using the flow-adaptive approach. However, the
filters included in this thesis cover quite wide categories, and it is unlikely that
other filters would deviate in that they would not benefit from the flow-adaptive
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approach. On the other hand, real-life image domains besides that of the ultra-
sound could be an interesting study.

The flow-field estimation could become better. In the energy-based case, the use of
spatial course-to-fine pyramids would improve the stability and also raise the upper
velocity constraints found in the single-scale approach [24]. The speckle tracking
would benefit from a per-sequence choosing of window sizes. Although compu-
tational efficiency has not been an issue in this thesis, both approaches have ways
to reduce computational complexity, as mentioned in chapter 6. Other methods of
estimating the flow fields could also be explored.

One idea to further improve the general flow-adaptive filter would be to let its
temporal extent be adaptively set based on both intensity statistics, like in the dis-
continuity filter, and the velocity estimation certainties.
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Appendix A

Additional Plots, Tables and
Images

This appendix contains additional performance plots and tables together with more
examples of filtered images.

Figure A.1 supplements section 8.1.1, while figure A.2 complements the figures
in section 8.1.3. The tables A.1, A.2 and A.3 are related to section 8.1.5. Figure
A.3 shows additional examples of filtered images.
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Figure A.1: Non-normalized mean squared-error metric using the � � � variance-
detection filter with varying multiplicative noise on the circulating annulus se-
quence with standard parameters
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Figure A.2: The nmse for the annulus and ellipse sequences for varying structure
sizes. Except for the size parameters, standard parameters were used in the gener-
ation of the sequences.

Filter Flow adaptive
Temporal extent

1 3 5 7

no 0.3432 0.5817 0.8796 1.0385
Average � � �

yes 0.3432 0.3059 0.3209 0.3475

no 0.3427 0.5326 0.8901 1.0719
Median � � �

yes 0.3427 0.2794 0.2930 0.3218

no 0.3164 0.3883 0.5872 0.7514
Gaussian � � �

yes 0.3164 0.2574 0.2652 0.2820

no 0.4187 0.6342 0.9005 1.0385
Average � � �

yes 0.4187 0.4175 0.4331 0.4542

no 0.3500 0.5548 0.8992 1.0719
Median � � �

yes 0.3500 0.3347 0.3550 0.3845

no 0.3184 0.4401 0.6274 0.7734
Gaussian � � �

yes 0.3184 0.3058 0.3191 0.3359

Table A.1: The effects in nmse of varying the temporal extent of the filters when
filtering the annulus sequence (standard parameters.)
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Filter Flow adaptive
Temporal extent

1 3 5 7

no 0.2994 0.3790 0.5522 0.7171
Average � � �

yes 0.2994 0.2511 0.2632 0.2920

no 0.3153 0.3284 0.5001 0.6979
Median � � �

yes 0.3153 0.2378 0.2497 0.2819

no 0.2958 0.2881 0.3825 0.4901
Gaussian � � �

yes 0.2958 0.2232 0.2212 0.2361

no 0.3312 0.4152 0.5848 0.7465
Average � � �

yes 0.3312 0.3181 0.3345 0.3543

no 0.2832 0.3337 0.5118 0.7079
Median � � �

yes 0.2832 0.2603 0.2788 0.3045

no 0.2696 0.3080 0.4057 0.5125
Gaussian � � �

yes 0.2696 0.2469 0.2560 0.2696

Table A.2: The effects in nmse of varying the temporal extent of the filters when
filtering the pendulum sequence (standard parameters.)

Filter Flow adaptive
Temporal extent

1 3 5 7

no 0.3269 0.4383 0.7160 0.9395
Average � � �

yes 0.3269 0.2806 0.3095 0.3546

no 0.3278 0.3663 0.6654 0.9329
Median � � �

yes 0.3278 0.2582 0.2963 0.3554

no 0.3097 0.3263 0.4696 0.6238
Gaussian � � �

yes 0.3097 0.2398 0.2499 0.2764

no 0.3885 0.4949 0.7381 0.9471
Average � � �

yes 0.3885 0.3764 0.3961 0.4281

no 0.3225 0.3798 0.6607 0.9313
Median � � �

yes 0.3225 0.2982 0.3262 0.3734

no 0.3038 0.3635 0.4981 0.6474
Gaussian � � �

yes 0.3038 0.2830 0.2945 0.3177

Table A.3: The effects in nmse of varying the temporal extent of the filters when
filtering the ellipse sequence (standard parameters.)
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Figure A.3: Examples of filtered images. a) Original corrupted images. b)-c) Nfa
and fa median filtered. d)-e) Nfa and fa Gaussian-shaped convolution filtered.
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Appendix B

Mathematical Notations

� �
�
� ��� notations for a scalar, a vector

and a matrix (capital boldface)

�
� % ��� % � the

�
th element of the vector

�
� , and the element

in the intersection between the
�

th row and the
� th column of the matrix � .

�
�
� ��� �

the transpose of the vector,
�
� , or matrix, �

� ! �
the inverse of the matrix �

� �� � the norm of the vector
�
�

�	� � � 
 the
F

th moment of the random variable �
�
� � ) the elements of a vector,

�
� , in ordered form, i.e.,�

� � ) � �
� � � ) ������� � � � 1 ) � � � � � ) D � �

� ) D ����� D � � 1 )�
�
@ �	

the scalar-product of the vectors
�
� and

�	
� @��

the scalar-product of the tensors
�

and
�

, i.e.,� @�� � � % � � � % � � % �
	 � � �� � the + th largest eigenvalue and its

corresponding eigenvector

�
�  a filter in spatial and Fourier space, respectively
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Appendix C

Program-Code Excerpts

This appendix presents excerpts from the program code written for this thesis. The
complete program consists of more than � ��� � lines of Java code, and several hun-
dred lines of code in the Matlab language.

C.1 Matlab code

C.1.1 Obtaining the quadrature filters

% OBTAIN A 3D QUADRATURE FILTER BY WEIGHTED MINIMUM SQUARED ERROR
%

M = 7 ; % SIZE OF FILTER
N = 1 5 ; % SAMPLING RESOLUTION

a = 2 ;
b = ( 1 + 5 ^ . 5 ) ;
c = ( 1 0 + 2 	 5 ^ . 5 ) ^ ( ! 1 / 2 ) ;
r e f F u n c = g e t 3 D Q u a d r a t u r e R e f e r e n c e F u n c t (N, 2 , 2 ^ ( ! 1 . 5 ) , c 	 [ a , 0 , b ] ’ ) ;

%r e f F u n c = g e t 3 D Q u a d r a t u r e R e f e r e n c e F u n c t (N , 2 , 2 ^ ( ! 1 . 5 ) , c 	 [ ! a , 0 , b ] ’ ) ;
%r e f F u n c = g e t 3 D Q u a d r a t u r e R e f e r e n c e F u n c t (N , 2 , 2 ^ ( ! 1 . 5 ) , c 	 [ b , a , 0 ] ’ ) ;
%r e f F u n c = g e t 3 D Q u a d r a t u r e R e f e r e n c e F u n c t (N , 2 , 2 ^ ( ! 1 . 5 ) , c 	 [ b , ! a , 0 ] ’ ) ;
%r e f F u n c = g e t 3 D Q u a d r a t u r e R e f e r e n c e F u n c t (N , 2 , 2 ^ ( ! 1 . 5 ) , c 	 [0 , b , a ] ’ ) ;
%r e f F u n c = g e t 3 D Q u a d r a t u r e R e f e r e n c e F u n c t (N , 2 , 2 ^ ( ! 1 . 5 ) , c 	 [0 , b, ! a ] ’ ) ;

f p r i n t f ( ’ g e n e r a t i n g we igh t m a t r i x . . ’ ) ;
% AS SUGGESTED IN S i g n a l P r o c e s s i n g f o r Computer V i s i o n BY Granlund and Knutsson , 1 9 9 5
wWin = z e r o s (N, N,N ) ;
p s i = 1 . 0 0 ;

f o r k1 =0 :N! 1
f o r k2 =0 :N! 1

f o r k3 =0 :N! 1
u = ( [ k1 ; k2 ; k3] ! f l o o r (N / 2 ) ) / f l o o r (N / 2 ) ;
p = norm ( u ) ;

i f p==0
% GIVE DC! COMPONENT TOP PRIORITY :
wWin ( k1 +1 , k2 +1 , k3 + 1 ) = max ( max (max ( wWin ) ) ) 	 9 9 9 ;

e l s e

105



wWin ( k1 +1 , k2 +1 , k3 + 1 ) = p ^( ! 1) + p s i ;
end

end
end

end

f p r i n t f ( ’ done \ n ’ ) ;

f p r i n t f ( ’ f i n d i n g o p t i m i z e d f i l t e r . . ’ ) ;
f i l t = g e t O p t i m i z e d 3 D F i l t e r ( r e fFunc , M, wWin ) ;
f p r i n t f ( ’ done \ n ’ ) ;

%
% PERFORMS THE WEIGHTED SQUARED ERROR MINIMIZATION
%

f u n c t i o n [ f i l t ] = g e t O p t i m i z e d 3 D F i l t e r ( r e fFunc , f i l t S i z e , weightWin )

N = l e n g t h ( r e f F u n c ) ;
r e f F u n c = i f f t s h i f t ( r e f F u n c ) ;
r e f F u n c L i s t = ge tVec to rF rom3DMat r ix ( r e f F u n c ) ;

f p r i n t f ( ’ g e n e r a t i n g DFT m a t r i x . . ’ ) ;
G = getDFT3DMatr ixMiddle (N, f i l t S i z e ) ;
f p r i n t f ( ’ done \ n ’ ) ;

w = ge tVec to rF rom3DMat r ix ( i f f t s h i f t ( weightWin ) ) ;
W = diag (w ) ;

f p r i n t f ( ’ f i n d i n g we igh ted l e a s t s q u a r e s . . . ’ ) ;
f = inv (G’ 	 W	 G) 	 G’ 	 W	 r e f F u n c L i s t ;
f p r i n t f ( ’ done \ n ’ ) ;

f i l t = ge t3DMat r ix ( f , f i l t S i z e , f i l t S i z e , f i l t S i z e ) ;

f i l t = f f t s h i f t ( f i l t ) ;

C.2 Java Code

C.2.1 Creating the tensors

/ 		 Makes a t e n s o r f i e l d from t h e q u a d r a t u r e f i l t e r o u t p u t s .	 < quadAmps > c o n t a i n s t h e o u t p u t ! a m p l i t u d e s o f t h e s i x q u a d r a t u r e f i l t e r s .	 /
p u b l i c s t a t i c f l o a t [ ] [ ] [ ] [ ] g e t T e n s o r F i e l d ( f l o a t [ ] [ ] [ ] quadAmps ) {

i n t s i zeY = quadAmps [ 0 ] . l e n g t h ;
i n t s i zeX = quadAmps [ 0 ] [ 0 ] . l e n g t h ;

f l o a t [ ] [ ] [ ] [ ] t e n s o r F i e l d = new f l o a t [ s i zeY ] [ s i zeX ] [ 3 ] [ 3 ] ;

f l o a t [ ] [ ] [ ] mk = ge tMMat r i ce s ( ) ;

f o r ( i n t x = 0 ; x< s i zeX ; x + + ) {
f o r ( i n t y = 0 ; y< s i zeY ; y + + ) {

f o r ( i n t k = 0 ; k < 6 ; k + + ) {
f o r ( i n t i = 0 ; i < 3 ; i + + ) {

f o r ( i n t j = 0 ; j < 3 ; j + + ) {
t e n s o r F i e l d [ y ] [ x ] [ i ] [ j ] + = quadAmps [ k ] [ y ] [ x ] 	 mk[ k ] [ i ] [ j ] ;

}
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}
}

}
}
re turn t e n s o r F i e l d ;

}

/ 		 Assembles t h e Mk m a t r i c e s .	 /
p r i v a t e s t a t i c f l o a t [ ] [ ] [ ] ge tMMat r i ce s ( ) {

f l o a t [ ] [ ] [ ] mk = new f l o a t [ 6 ] [ 3 ] [ 3 ] ;

f l o a t a = 2 , b = ( f l o a t ) ( ( 1 + Math . s q r t ( 5 ) ) ) ;
f l o a t c = ( f l o a t ) ( 1 . 0 / Math . s q r t (10+2 	 Math . s q r t ( 5 ) ) ) ;
a 	 = c ; b 	 = c ;
f l o a t [ ] [ ] nk = new f l o a t [ 6 ] [ 3 ] ;
nk [ 0 ] [ 0 ] = a ; nk [ 0 ] [ 1 ] = 0 ; nk [ 0 ] [ 2 ] = b ;
nk [ 1 ] [ 0 ] = ! a ; nk [ 1 ] [ 1 ] = 0 ; nk [ 1 ] [ 2 ] = b ;
nk [ 2 ] [ 0 ] = b ; nk [ 2 ] [ 1 ] = a ; nk [ 2 ] [ 2 ] = 0 ;
nk [ 3 ] [ 0 ] = b ; nk [ 3 ] [ 1 ] = ! a ; nk [ 3 ] [ 2 ] = 0 ;
nk [ 4 ] [ 0 ] = 0 ; nk [ 4 ] [ 1 ] = b ; nk [ 4 ] [ 2 ] = a ;
nk [ 5 ] [ 0 ] = 0 ; nk [ 5 ] [ 1 ] = b ; nk [ 5 ] [ 2 ] = ! a ;

f o r ( i n t k = 0 ; k < 6 ; k + + ) {
f o r ( i n t i = 0 ; i < 3 ; i + + ) {

f o r ( i n t j = 0 ; j < 3 ; j + + ) {
mk[ k ] [ i ] [ j ] = 5 . 0 f /4 	 nk [ k ] [ i ] 	 nk [ k ] [ j ] ;
i f ( i == j ) mk[ k ] [ i ] [ j ] ! = 1 . 0 / 4 ;

}
}

}
re turn mk ; / / Mk = 5 / 4 	 nk 	 nk ’ ! 1 /4 	 I ;

}

C.2.2 Extracting the flow

/ 		 E x t r a c t s t h e f l o w from t h e t e n s o r s .	 /
p u b l i c s t a t i c f l o a t [ ] [ ] [ ] g e t F l o w F i e l d ( f l o a t [ ] [ ] [ ] [ ] t e n s o r F i e l d ,

f l o a t [ ] [ ] f l o w F i e l d W e i g h t s , i n t QUADRATUREFILTERSIZE, f l o a t TENSORREGULARIZATION) {

i n t s i zeY = t e n s o r F i e l d . l e n g t h ;
i n t s i zeX = t e n s o r F i e l d [ 0 ] . l e n g t h ;

f l o a t [ ] [ ] [ ] f l o w F i e l d = new f l o a t [ s i zeY ] [ s i zeX ] [ 2 ] ;

f o r ( i n t x=QUADRATUREFILTERSIZE/ 2 ; x< sizeX ! QUADRATUREFILTERSIZE/ 2 ; x + + ) {
f o r ( i n t y=QUADRATUREFILTERSIZE/ 2 ; y<sizeY ! QUADRATUREFILTERSIZE/ 2 ; y + + ) {

f l o a t [ ] [ ] T = t e n s o r F i e l d [ y ] [ x ] ;
/ / i n c r e a s e ’ r o u n d n e s s ’ , as d e s c r i b e d i n [ w e s t i n ! phd ] p116
T [ 0 ] [ 0 ] + = TENSORREGULARIZATION;
T [ 1 ] [ 1 ] + = TENSORREGULARIZATION;
T [ 2 ] [ 2 ] + = TENSORREGULARIZATION;

f l o a t [ ] e i g s = E i g e n v e c t o r s . g e t E i g e n v a l u e s ( T ) ;

f l o a t norm = Math . abs ( e i g s [ 0 ] ) + Math . abs ( e i g s [ 1 ] ) + Math . abs ( e i g s [ 2 ] ) ;
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f l o a t [ ] [ ] e i g v = E i g e n v e c t o r s . g e t E i g e n v e c t o r s ( T , e i g s ) ;

f l o a t p1 = e i g s [ 2 ] > 0 ? ( e i g s [2] ! e i g s [ 1 ] ) / e i g s [ 2 ] : 0 ; / / [ granKnuts ! sp ] p254
f l o a t p2 = e i g s [ 2 ] > 0 ? ( e i g s [1] ! e i g s [ 0 ] ) / e i g s [ 2 ] : 0 ;
f l o a t p3 = e i g s [ 2 ] > 0 ? e i g s [ 0 ] / e i g s [ 2 ] : 0 ;

f l o w F i e l d W e i g h t s [ y ] [ x ] = norm 	 ( p2 +0 .01 f ) ;
i f ( p3 >p1 && p3>p2 ) f l o w F i e l d W e i g h t s [ y ] [ x ] = 0 ;

i f ( p1 >p3 && p1>p2 ) / / p l a n e case
{

double d e n o m i n a t o r = e i g v [ 0 ] [ 2 ] 	 e i g v [ 0 ] [ 2 ] + e i g v [ 1 ] [ 2 ] 	 e i g v [ 1 ] [ 2 ] ;
double v e l o c i t y X = ! e i g v [ 2 ] [ 2 ] 	 ( e i g v [ 0 ] [ 2 ] ) / d e n o m i n a t o r ;
double v e l o c i t y Y = ! e i g v [ 2 ] [ 2 ] 	 ( e i g v [ 1 ] [ 2 ] ) / d e n o m i n a t o r ;
i f ( Math . abs ( v e l o c i t y X ) <QUADRATUREFILTERSIZE

& Math . abs ( v e l o c i t y Y ) <QUADRATUREFILTERSIZE) {
f l o w F i e l d [ y ] [ x ] [ 0 ] = ( f l o a t ) ( v e l o c i t y X ) ;
f l o w F i e l d [ y ] [ x ] [ 1 ] = ( f l o a t ) ( v e l o c i t y Y ) ;

}
}

i f ( p2 >p3 && p2>p1 ) / / l i n e case
{

double v e l o c i t y X = e i g v [ 0 ] [ 0 ] / e i g v [ 2 ] [ 0 ] ;
double v e l o c i t y Y = e i g v [ 1 ] [ 0 ] / e i g v [ 2 ] [ 0 ] ;

i f ( Math . abs ( v e l o c i t y X ) <QUADRATUREFILTERSIZE
& Math . abs ( v e l o c i t y Y ) <QUADRATUREFILTERSIZE) {

f l o w F i e l d [ y ] [ x ] [ 0 ] = ( f l o a t ) ( v e l o c i t y X ) ;
f l o w F i e l d [ y ] [ x ] [ 1 ] = ( f l o a t ) ( v e l o c i t y Y ) ;

}
}

}
}
re turn f l o w F i e l d ;

}

C.2.3 Flow-adaptive convolution

/ 		 Does a f low ! a d a p t i v e c o n v o l u t i o n .	 I f < f lowBackwards >==n u l l , s i n g l e ! way f low ! a d a p t i o n i s used .	 /
p u b l i c s t a t i c f l o a t [ ] [ ] [ ] f l owAdap t iveCo nv o l v e ( f l o a t [ ] [ ] [ ] da t a , f l o a t [ ] [ ] [ ] f i l t e r ,

f l o a t [ ] [ ] [ ] [ ] f low , f l o a t [ ] [ ] [ ] [ ] f lowBackwards ) {

i n t s i z e Z = d a t a . l e n g t h ;
i n t s i zeY = d a t a [ 0 ] . l e n g t h ;
i n t s i zeX = d a t a [ 0 ] [ 0 ] . l e n g t h ;

i n t f i l t S i z e Z = f i l t e r . l e n g t h ;
i n t f i l t S i z e Y = f i l t e r [ 0 ] . l e n g t h ;
i n t f i l t S i z e X = f i l t e r [ 0 ] [ 0 ] . l e n g t h ;

f l o a t [ ] [ ] [ ] o u t = new f l o a t [ s i z e Z ] [ s i zeY ] [ s i zeX ] ;
/ / w i l l be f i l l e d w i t h f low ! a d a p t i v e da ta :
f l o a t [ ] [ ] [ ] l a t t i c e = new f l o a t [ f i l t S i z e Z ] [ f i l t S i z e Y ] [ f i l t S i z e X ] ;

f o r ( i n t i = f i l t S i z e Z / 2 ; i < s i zeZ ! f i l t S i z e Z / 2 ; i + + ) {
f o r ( i n t j = f i l t S i z e Y / 2 ; j < s izeY ! f i l t S i z e Y / 2 ; j + + ) {

f o r ( i n t k= f i l t S i z e X / 2 ; k<sizeX ! f i l t S i z e X / 2 ; k + + ) {
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i f ( f lowBackwards == n u l l ) f i l l F l o w A d a p t i v e L a t t i c e ( i , j , k , da t a , l a t t i c e , f l ow ) ;
e l s e f i l l F l o w A d a p t i v e L a t t i c e ( i , j , k , da t a , l a t t i c e , f low , f lowBackwards ) ;

f o r ( i n t f i = 0 ; f i < f i l t S i z e Z ; f i + + ) {
f o r ( i n t f j = 0 ; f j < f i l t S i z e Y ; f j + + ) {

f o r ( i n t fk = 0 ; fk < f i l t S i z e X ; fk + + ) {
o u t [ i ] [ j ] [ k ] + =

f i l t e r [ f i ] [ f j ] [ fk ] 	 l a t t i c e [ f i l t S i z e Z ! 1! f i ] [ f i l t S i z e Y ! 1! f j ] [ f i l t S i z e X ! 1! fk ] ;
}

}
}

}
}

}

re turn o u t ;
}

/ 		 R e t u r n s a 3D! m a t r i x w i t h t h e v a l u e s o f a f low ! a d a p t i v e l a t t i c e .	 I f f l o w l e a d s o u t s i d e image , t h e f i l l i n g p a r t i s s i m p l y a b o r t e d .	 /
p r i v a t e s t a t i c vo id f i l l F l o w A d a p t i v e L a t t i c e ( i n t i , i n t j , i n t k , f l o a t [ ] [ ] [ ] da t a ,

f l o a t [ ] [ ] [ ] l a t t i c e , f l o a t [ ] [ ] [ ] [ ] f l ow ) {
i n t f i l t S i z e Z = l a t t i c e . l e n g t h ;
i n t f i l t S i z e Y = l a t t i c e [ 0 ] . l e n g t h ;
i n t f i l t S i z e X = l a t t i c e [ 0 ] [ 0 ] . l e n g t h ;

double t j = j ; / / r e t a i n s t a r t i n g p o s i t i o n s
double t k = k ;
i n t p j = j ; / / rounded ! to ! i n t e g e r p o s i t i o n s
i n t pk = k ;

/ / t h e f i r s t h a l f o f t h e l a t t i c e
f o r ( i n t f i = 0 ; f i <= f i l t S i z e Z / 2 ; f i + + ) {

f o r ( i n t f j =! f i l t S i z e Y / 2 ; f j <= f i l t S i z e Y / 2 ; f j + + ) {
f o r ( i n t fk=! f i l t S i z e X / 2 ; fk <= f i l t S i z e X / 2 ; fk + + ) {

i f ( ( p j + f j > = d a t a [ 0 ] . l e n g t h ) | | ( pk+ fk > = d a t a [ 0 ] [ 0 ] . l e n g t h )
| | ( p j + f j < 0 ) | | ( pk+ fk < 0 ) ) re turn ;

l a t t i c e [ f i + f i l t S i z e Z / 2 ] [ f j + f i l t S i z e Y / 2 ] [ fk + f i l t S i z e X / 2 ] = d a t a [ i + f i ] [ p j + f j ] [ pk+ fk ] ;
}

}
t j + = f low [ i + f i ] [ p j ] [ pk ] [ 0 ] ;
t k + = f low [ i + f i ] [ p j ] [ pk ] [ 1 ] ;
p j = ( i n t ) Math . round ( t j ) ;
pk = ( i n t ) Math . round ( t k ) ;

}

/ / now , go backwards
t j = j ! f l ow [ i ] [ j ] [ k ] [ 0 ] ;
t k = k ! f l ow [ i ] [ j ] [ k ] [ 1 ] ;
p j = ( i n t ) Math . round ( t j ) ;
pk = ( i n t ) Math . round ( t k ) ;

f o r ( i n t f i = ! 1; f i >= ! f i l t S i z e Z / 2 ; f i !! ) {
f o r ( i n t f j =! f i l t S i z e Y / 2 ; f j <= f i l t S i z e Y / 2 ; f j + + ) {

f o r ( i n t fk=! f i l t S i z e X / 2 ; fk <= f i l t S i z e X / 2 ; fk + + ) {
i f ( ( p j + f j > = d a t a [ 0 ] . l e n g t h ) | | ( pk+ fk > = d a t a [ 0 ] [ 0 ] . l e n g t h )

| | ( p j + f j < 0 ) | | ( pk+ fk < 0 ) ) re turn ;

109



l a t t i c e [ f i + f i l t S i z e Z / 2 ] [ f j + f i l t S i z e Y / 2 ] [ fk + f i l t S i z e X / 2 ] = d a t a [ i + f i ] [ p j + f j ] [ pk+ fk ] ;
}

}
t j = t j ! f l ow [ i + f i ] [ p j ] [ pk ] [ 0 ] ;
t k = t k ! f l ow [ i + f i ] [ p j ] [ pk ] [ 1 ] ;
p j = ( i n t ) Math . round ( t j ) ;
pk = ( i n t ) Math . round ( t k ) ;

}
}
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