
UNIVERSITY OF OSLO
Department of Informatics

Knowledge Engineering
using The Weak-
Transitive-Closure
algorithm – A case
study of The University
of Oslo’s IT system.

Ephrem Tewolde

Network and System Administration

Oslo University College

May 24, 2011

Knowledge Engineering using The
Weak-Transitive-Closure algorithm – A case
study of The University of Oslo’s IT system.

Ephrem Tewolde

Network and System Administration
Oslo University College

May 24, 2011

Abstract

The complexity of human-computer systems nowadays requires the aid
of manageable and simplified, machine-readable representation of those sys-
tems. In addition, the need to accommodate appropriate and mandatory
changes to legacy systems is an inherent challenge in system administration
tasks. Thus, a state-of-the-art knowledge management system must be capa-
ble of balancing both these needs.

A reasoning method that works via a simplified calculus of facts and rules
was suggested by professors Alva L. Couch of Tufts University and Mark
Burgess of Oslo University College. The name ‘weak-transitive-closure algo-
rithm’ or the WTC algorithm for short, is adopted here for this method owing
to the key technique applied in the system. This method visualizes complex
systems as directed graphs, and applies graph theory techniques for inference
of causal dependence between components of the system.

This thesis is an investigative study of the application of the WTC algo-
rithm, using University of Oslo’s IT system as the application domain. A topic
map representation already exists for this system. The application of the WTC
algorithm requires a thorough study of the problem domain, so as to construct
a knowledge base and a set of rules as the embodiment of the abstractions,
modeling and representation of the system. These sets of facts and rules are
then input to a prototype engine, which uses them for supplying answers to
queries about the system. In contrast, the topic map representation of the sys-
tem is as undirected graph, comprised of discrete components called topics
connected by the edges known as associations. Evaluation of the two repre-
sentations at various levels is done thoroughly, since both enforce some con-
straints on how to model and represent the system. In the process, the new op-
portunities of the weak-transitive-closure algorithm in supplementing and/or
replacing the topic map representation are investigated.

We demonstrate that the WTC algorithm has the advantage of discover-
ing connections with specific properties, by generating the paths automati-
cally, which is more optimized for troubleshooting. In addition, the WTC al-
gorithm’s presentation is more suitable for learning about legacy systems.

Acknowledgments

I sincerely thank God the Almighty, for the gift of life and for being gracious
unto me.

I am specially indebted to prof. Alva L. Couch, who gave me insights into
many ideas, answered many of my questions and helped me with corrections
in many parts of the thesis.

My gratitude goes to my advisor, Hårek Haugerud, for being helpful in
many ways, and for commenting on the writings of the thesis.

I thank prof. Mark Burgess for his encouragement at the start of the thesis,
and for his useful feedback.

Special thanks to Jarle Bjørgeengen of USIT, who first proposed the
project idea, for facilitating contact and access with USIT and for helpful co-
operations, including providing system knowledge data from USIT.

Thanks to Are Gulbrandsen of the XML group at USIT for introducing me
to the Houdini topic map.

I would like to thank USIT for allowing me to work with the infrastruc-
ture’s data in this project.

I would like to thank UiO/HiO for giving me the opportunity to study, and
for being such a wonderful place of learning.

I would like to thank the ever cooperative and enthusiastic instructors at
HiO’s Master in Network and System Administration department for provid-
ing diverse knowledge in Network and System Administration.

My special thanks go to Addisu Tesfaye and Eskedar Kefialew, for encour-
aging me to apply for the program and for being supportive friends all along.

Last but not least, I extend my affectionate gratitude to my wife Yetnayet,
for her support, patience and love.

ii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Thesis Structure . 4

2 Background and literature 5
2.1 Introduction to Knowledge . 5
2.2 Knowledge Engineering . 6

2.2.1 Principles of Knowledge Engineering 6
2.2.2 Knowledge Representation 7

2.3 Ontology . 7
2.4 Topic Maps . 9

2.4.1 General Background . 9
2.4.2 Main concepts in Topic Maps 10
2.4.3 Knowledge Representation using Topic Maps 12

2.5 Principles of Knowledge Representation 15
2.6 The Houdini topic map . 16

2.6.1 Background . 16
2.6.2 Houdini’s ontology / data model 17

3 Model, Methodology and Approach 21
3.1 Model . 21

3.1.1 Sets . 21
3.1.2 Set Relations . 21
3.1.3 Graphs . 22
3.1.4 Human-computer systems and graphs 23
3.1.5 Graph problems . 23

3.2 Methodology . 26
3.2.1 General concepts . 26
3.2.2 Elaboration of The WTC algorithm 27
3.2.3 Demonstration of Methodology 36

3.3 Approach in detail . 40
3.3.1 Topic-map approach, Using the Houdini topic maps

Knowledge Base . 40
3.3.2 System-description approach, Using Systems Knowl-

edge to Create the Knowledge Base 41

iii

CONTENTS

4 Results 43
4.1 Results of topic-map approach 43

4.1.1 Finding Relationships . 43
4.1.2 Crafting more Rules . 47
4.1.3 The pivotal relationship 48

4.2 Results of system-description approach 48
4.2.1 Formulation of Entity Representations 49

5 Discussion 53
5.1 Generality . 54
5.2 Tracing connectivity . 56
5.3 Explicit system knowledge . 58

6 Conclusion 59

7 Appendix 63
7.1 Details of Selected Topics from Houdini 63
7.2 topic-map approach . 64

7.2.1 Entities of the WTC algorithm, topic-map Approach . . . 64
7.2.2 Facts file for the topic-map approach 67
7.2.3 Rules file for the topic-map approach 71

7.3 system-description approach . 72
7.3.1 Facts file for the system-description approach 72
7.3.2 Rules file for the system-description approach 76

iv

List of Figures

2.1 Topic Maps create an index of the information outside the information
source. 10

2.2 topic maps enables everything about login1.uio.no to be accessible
from a single click. 15

3.1 some graphs. A is undirected, while B is directed 22
3.2 part of a unix file system represented by a tree 24
3.3 graph representation of network topologies, A) centralized, B) de-

centralized or hierarchical and C) distributed mesh. Shown here with
permission from the author of [34] 25

3.4 graph representation of the connection characteristics of a server and
a switch . 25

3.5 application of transitive closure to graphs 26
3.6 A set relationship between two concepts shown in a Venn diagram . . 32
3.7 Abductive inference to graph computation 34
3.8 In the system-description approach, ‘strongly depends on’ is inferred

from concrete architectural relationships. The solid lines are the con-
crete relationships, while the dotted line is the inferred relationship. . 40

4.1 A transitive relationship, not depicted by the Houdini topic map, is
discovered and presented by the WTC algorithm. 45

4.2 In WTC algorithm, to find new relationships, we formulate it into an
edge connecting the nodes directly. 46

4.3 In WTC algorithm’s system-description approach, the relationships in
the topic map are presented as a result of concrete system facts. . . . 51

5.1 What was exclusive and unrelated, by choice of design, in the Houdini
topic maps is made to have a relationship in the WTC algorithm . . . 57

5.2 The WTC algorithm can be made to provide explicit system knowl-
edge as explanation of more abstract relationships 58

v

List of Tables

3.1 Set theory as a precise expression of verbal statements. 22

4.1 details for service login1.uio.no, its related topics and associations. 44
4.2 system knowledge from IT infrastructure of UiO for system-

description approach use-case. 50

7.1 details for service login1.uio.no, its related topics and associations. 63
7.2 details for service aton.uio.no, its related topics and associations. 64
7.3 details for service backup01.fronter.uio.no, its related topics and

associations. 65
7.4 details for service mail-imap1.fronter.uio.no, its related topics

and associations. 78
7.5 details for service web1.fronter.uio.no, its related topics and as-

sociations. 79

vi

Chapter 1

Introduction

With the increasing complexity of human-computer systems, the task of sys-
tem administration is getting more difficult by each year and technological ad-
vance. One of the key challenges facing system administration is knowledge
management , i.e., how the facts required for managing a system are collected,
updated, and maintained.

For a start, even stand-alone computers are by themselves complex. When
several of them are in a network, infrastructure and inter-dependence com-
plexity follows. All of this complex infrastructure is intended for human use,
i.e., the objective is human-computer interaction, creating an environment of
constant change and unpredictability. Added to all of these factors, there is
pressure to adapt and conform to the ever changing innovation in the field
and the changing needs of users.

Thus, a large amount of knowledge of complex nature is involved in
human-computer systems. In fact, human-computer systems are rightfully
called knowledge-based systems, owing to their reliance on a large amount of
procedural or factual expertise to carry out their function[34].

First, there is the knowledge of the system and its complex structure and
configuration, including the intentions of the ‘why the structure is made so
in the first place.’ Second, there is expert know-how and experience of the
professionals in the form of best practices, proven procedures, documentation
of changes and ’cook book’ solutions. Third, there can be many experts with
specializations in some aspect, so that knowledge includes who knows what.
This ‘who knows what’ knowledge is important for seamless cooperation.

As a matter of expediency – due to shortness of time – little of this knowl-
edge is recorded in a formal and efficiently re-usable manner. Most resides
in the minds of the experts and scattered in numerous other documents. This
scattering results in loss of business continuity when experts leave an orga-
nization. Even when they are there, the lack of a formal, organized body of
knowledge exposes for uncertainty and avoidable repetitions of solution find-
ing to old problems, which causes loss of man hours [18]. This is another

1

1.1. MOTIVATION

reason why knowledge management is viewed as a key challenge of system
administration[29]. In addition, when the inevitable change is required in
complex systems, making the change without catastrophe requires a state-of-
the-art knowledge management.

Part of the solution to the problem of knowledge management is rep-
resenting systems knowledge, representing ‘what there is in the system’,
in machine-readable knowledge bases. Knowledge bases include data and
configuration information which try to capture, in some form, a useful repre-
sentation of a domain for some purpose. Thus, developing machine-readable
knowledge bases and investigating available representation methods is a
crucial piece of research area in system administration.

1.1 Motivation

The main motivation of this project is the tenet that the way we view, model and
represent human-computer networks knowledge bases has a profound effect on our
understanding of the complex system. Topic Maps, an ISO standard technol-
ogy for describing knowledge structures, can be used and are used for knowl-
edge management of human-computer systems. A topic map visualizes and
presents a knowledge domain as a set of discrete components linked to each
other. Another seemingly distinct approach is the WTC algorithm. The WTC
algorithm is an automated reasoning program which views the knowledge do-
main as comprised of entities related to each other by causal chains. This thesis
investigates the new opportunities that the WTC algorithm might provide, in
supplementing and/or replacing a topic maps representation.

In applying either Topic Maps or the WTC algorithm, the whole orchestra-
tion from the representation of the knowledge domain to the front-end presen-
tation can roughly be divided into two main components.

First, there is the knowledge base, which contains the modeling, represen-
tation and abstraction of the system. This part requires a thorough study of
the problem domain, and is specifically dependent on the system being repre-
sented.

Second, there is a software analysis component that uses the knowledge
base and gives output in a desired format to the end user. This part has a
generic name ‘engine’, and is generally similar for one kind of representation,
except minor customizations of the original programs or tools. In topic maps,
this second part is called a topic map engine, and in the WTC algorithm it is
called the prototype engine. This leads us to the fundamental question: How
is the knowledge base represented in Topic Maps, and, in the WTC algorithm?
Besides, the components involved in the processing and presentation of the
knowledge base, in both Topic Maps and in the WTC algorithm, and the cus-
tomizations required on the software analysis component of each, need to be
addressed.

2

1.2. PROBLEM STATEMENT

1.2 Problem Statement

The main purpose of this thesis is the application of the WTC algorithm to
the IT infrastructure at the University of Oslo as a field application and case
study. Topic Maps has already been applied to model it. The XML-group at
the University of Oslo’s Center for Information Technology Services (USIT)
has developed a Topic Map based knowledge base, called the Houdini topic
map, for systems operation, administration and maintenance documentation,
which is used by the Information and Communication Technology (ICT) con-
trol center, codenamed Houston[24]. Houdini is a web application, and serves
as a topic map portal for service documentation. Still, there are a number of
reasons to try the WTC algorithm in this problem domain:

• The WTC algorithm is newer, specifically designed with human-
computer systems in mind and seems specially suited for them. Topic
Maps are richer, but arise from distinct traditions in library science and
general information indexing and search.

• Topic Maps focus on links between components of a knowledge domain,
while the WTC algorithm focuses on chains of reasoning and/or causal
chains. Chains of reasoning and causal chains, as opposed to mere link-
age between components, is more useful in administration and manage-
ment of human-computer networks.

The problem statement of this research is:

To develop a new representation using selected use cases of the Univer-
sity of Oslo’s IT infrastructure knowledge base via the WTC algorithm, taking
this complex system as the new problem domain to be thoroughly studied and
modeled, and investigate what benefits or improvements this method will pro-
vide in either supplementing or replacing the Houdini topic map.

These two representations, the Houdini topic maps and the WTC algo-
rithm representation, might differ in many stages of the knowledge represen-
tation of the system. One difference may be at the very basic level, on how to
conceptualize the system and on the choice of how to describe relationships
between the different entities comprising the system. This means in general
terms, the difference within the knowledge base level. But, they also differ
at a higher level, even when sharing the same conceptualization of a system.
The two representations differ in semantic richness and in consequence, in
discovery abilities. In order to address the differences in both levels, two ap-
proaches will be used to implement the WTC algorithm representation. For
convenience and ease of identification, we name the approaches as the ‘topic-
map approach’ and the ‘system-description approach’.

1. The topic-map approach

In this approach, the existing topic map knowledge base is transformed into
a suitable knowledge base for the WTC algorithm. The knowledge base of

3

1.3. THESIS STRUCTURE

the topic map will be transformed to the WTC representation as-is, in its
entirety. Thus, in this approach, both share the same conceptualization
of the system. This approach will help in investigating the benefits of the
WTC algorithm even when sharing the same kind of conceptualization
of the system as the topic map.

2. The system-description approach

In this approach, an available detail of systems knowledge is used to create a
new knowledge base for the WTC algorithm. This will help to investigate the
benefits of the WTC algorithm at the very basic level. How will WTC
conceptualize the knowledge domain? What choice of relationships will
be best for the WTC algorithm? and what are the benefits of those? Such
questions will be addressed in this second approach.

1.3 Thesis Structure

This thesis is structured as follows.

Chapter 2 describes Background and Literature, which has three main
parts. In the first part, a selected review of the most relevant ideas pertain-
ing to this work are presented. In the second part, the ideas are elaborated in a
practical example application. Then, in the third part, the Houdini topic map
is explained in a summarized way.

Chapter 3 starts with an introduction of the model used in the WTC al-
gorithm. Then, the WTC algorithm itself is explained in detail, followed by
an elaborate example. Finally, the approach used in this work is outlined in
detail.

In Chapter 4, results of the use-cases are presented for both approaches,
with explanations.

Discussion of the results is done in detail in chapter 5, followed by the
conclusion in chapter 6.

Finally, the bibliography has the list of references, and is preceded by the
appendix.

4

Chapter 2

Background and literature

2.1 Introduction to Knowledge

What is knowledge?

This question is broad and generally there is no single answer to it , but
the approach taken here is to avoid the philosophical debate and refrain from
trying to give a general definition of what knowledge is. Rather, an attempt
is made to lay a working definition from a pragmatic, engineering discipline
approach. By this is meant the idea that is useful for solving the practical
problem at hand.

First of all, useful knowledge has to be acquired somehow, and then sum-
marized and stored[34]. Secondly, though there is a relationship between
knowledge and information, information only is not knowledge. Thus, a
working definition is that, in knowledge, one finds the functional associations
between items of information and/or data expressed explicitly[3].

Knowledge is more than a static configuration of facts. Having a knowl-
edge of something means the ability to form a mental model that accurately
represents the thing as well as the actions that can be performed by it and
on it. Therefore, knowledge is the configuration of ideas in a representation
medium that is somewhat formalized and can be transferred[17]. The repre-
sentation medium can be human mind, computer memory or a piece of paper.

If a system administrator has a good knowledge about the complex
human-computer system that he or she is responsible for, that means he or
she has a good mental model of what is there, of the different kinds of rela-
tions, and what can be done by it all and on it. In this there is the underlying
assumption that knowledge is some aspect of something, and not everything
that can be known, even about a domain of interest. Thus knowledge refers,
in this context, the knowledge about a domain of interest necessary and hopefully
sufficient from the perspective of a certain objective or accomplishment.

This paper consciously differentiates between the ‘knowledge that there is
and remains’ and ‘the dynamic knowledge that is not predictable or cannot be

5

2.2. KNOWLEDGE ENGINEERING

assured beforehand’. The focus is on the former, which is synonymous with,
for the purpose of this work, system’s knowledge.

This leads us to the next question of how this can be represented into a
digital system. The general answer to this problem is: by developing knowledge
based systems.

Knowledge based systems are computer programs that contain a large
amount of knowledge base, rules and reasoning system for making inferences. When
we say that knowledge based systems contain large amounts of knowledge,
we mean a large amount of detail about the configuration and facts of the do-
main in question.

Two things come to attention. One, if domain knowledge is encoded in
a computer, and a knowledge based system is formed, this requires that the
knowledge based system behave as some sort of a knowledgeable agent con-
cerning that domain. It will be able to answer some questions, giving kinds
of answers that normally require human expertise. Two, the encoding should
also be understandable by a human, so that it can be used, verified and ex-
panded. In order to develop such knowledge based systems, one needs to
model the knowledge and also be able to represent it.

2.2 Knowledge Engineering

Knowledge Engineering is an engineering discipline that involves integrating
knowledge into computer systems[2]. Integration of knowledge into computer
systems is primarily done in order to solve complex problems normally requir-
ing a high level of human expertise. Thus, Knowledge Engineering is a field of
engineering that develops knowledge based systems. Put another way, knowl-
edge engineering applies logic , conceptualization and way of expression and
representation to build computable models of some domain for some purpose.
It analyzes knowledge about some subject and transforms it to a computable
form for some purpose[36].

2.2.1 Principles of Knowledge Engineering

Knowledge engineers have developed a number of principles, methods and
tools that have considerably improved the process of knowledge acquisition
and ordering. Some of the key principles are summarized as follows[7]:

• There are different types of knowledge, and the proper approach and
technique should be used for the knowledge required.

For example, in human-computer systems, we have systems knowledge
and expert knowledge.

• There are different ways of representing knowledge.

For example, we consider two types in this thesis, Topic Maps and the
input to the WTC algorithm.

6

2.3. ONTOLOGY

• There are different ways of using knowledge, so that the acquisition pro-
cess can be guided by the project aims, meaning it will be goal-oriented.

Some of the goals can be to document searching, troubleshooting, or sys-
tem administrative tasks.

2.2.2 Knowledge Representation

The term knowledge representation was originally used in arti-
ficial intelligence (AI) to refer to the encoding of knowledge that an
intelligent program would seem to require in order to plan, observe
or draw conclusions. It is now understood more broadly to refer to
any organized body of general knowledge, including large-scale reposi-
tories of information intended largely for human use. ...knowledge
representation (KR) is usually taken to refer to the representation
of general knowledge that can support some nontrivial reasoning.
To represent knowledge, one must choose a suitable collection of
concepts, a notation and a system of inference rules or processes
that use the notation[19].

2.3 Ontology

The term “ontology” is used in many disciplines with slightly different but
related meanings. Its origin is philosophy, and ontology is defined as the study
of being, or of ‘what exists’. Ontology’s most general definition is as the study of
existence of all things whether abstract or concrete that make up the world. It
provides the vocabulary to describe the things that exist[36].

When applied to different disciplines, the difference comes, partly, in
the definition of ‘the world’ and ‘what exists’. For philosophers and meta-
physicists, ‘the world’ is the universe, and ‘what exists’ is everything. Usually,
philosophers build their ontologies from the top down. They start with grand
conceptions, seeking a general and sufficient way of explanation about every-
thing in heaven and earth[36].

For the Artificial Intelligence community, where the term was first bor-
rowed from philosophy and customized to their field[13], the world is the
subject of study or a domain of interest and ‘what exists’ is that which can
be represented. From this perspective, we have [10]

A body of formally represented knowledge is based on a con-
ceptualization: the objects, concepts, and other entities that are

7

2.3. ONTOLOGY

presumed to exist in some area of interest and the relationships
that hold them. Every knowledge base, knowledge-based system,
or knowledge-level agent is committed, explicitly or implicitly, to
some conceptualization, which is an abstract, simplified view of
the world that we wish to represent for some purpose. An ontology
is an explicit specification of a conceptualization.

In fact, [36] has also a more general definition which confirms this:

The subject of ontology is the study of the categories of things
that exist or may exist in some domain. The product of such a
study, called an ontology, is a catalog of the types of things that are
assumed to exist in a domain of interest D from the perspective of
a person who uses a language L for the purpose of talking about D.
The types in the ontology represent the predicates, word senses, or
concept and relation types of the language L when used to discuss
topics in the domain D.

We need ontology in knowledge representation for many benefits. First,
ontological analysis clarifies the structure of knowledge since it involves the
conceptualizations that underlie knowledge. Given a domain, what forms the
heart of any system of knowledge representation for that domain is in its ontol-
ogy. In other words, there cannot be a vocabulary for representing knowledge
without ontologies. Second, ontologies enable knowledge sharing[14].

Thus, [10] was later broadened to an inclusive definition, that ontology is a
formal, explicit specification of a shared conceptualization[11], to accommodate this
‘knowledge sharing concept’.

In summary, if we keep in mind the distinction between ‘what exists’ and
‘the domain’, and the different contexts the terms are used, ontology

• Is used for systematic account of ‘what exists’ in ‘the domain’. This is
achieved through conceptualization; defining the types and subtypes of
concepts and the relationships necessary to describe the perceived things
in the domain.

• Provides vocabulary for describing ‘what exists’ in ‘the domain’.

• Enables knowledge sharing through formalization of expression.

8

2.4. TOPIC MAPS

2.4 Topic Maps

2.4.1 General Background

Topic Maps1 describes a paradigm centered around efficiently locating and
searching for digital information. It is also used for knowledge manage-
ment. It is a data model by which information is made more manageable and
findable[6]. The approach that Topic Maps provide have advanced techniques
of linking and addressing, comprising the best from several worlds like tradi-
tional indexing, library science and knowledge representation[22].

According to the ISO standard definition, Topic Maps can be used[31]:

• To qualify the content and/or data contained in information objects as
topics to enable navigational tools such as indexes, cross-references, ci-
tation systems, or glossaries.

• To link topics together in such a way as to enable navigation between
them. This capability can be used for virtual document assembly, and
for creating thesaurus-like interfaces to corpora, knowledge bases, etc.

• To filter an information set to create views adapted to specific users or
purposes. For example, such filtering can aid in the management of mul-
tilingual documents, management of access modes depending on secu-
rity criteria, delivery of partial views depending on user profiles and/ or
knowledge domains, etc.

• To structure unstructured information objects, or to facilitate the trans-
formation of topic-oriented user interfaces that provide the effect of
merging unstructured information bases with structured ones. The over-
lay mechanism of topic maps can be considered as a kind of external
markup mechanism, in the sense that an arbitrary structure is imposed
on the information without altering its original form.

As an approach, Topic Maps conceptualize the world out there, a domain
of some sort, as a collection of ‘atomic abouts’. These ‘atomic abouts’ are called
‘subjects’, which are at the heart of the Topic Maps paradigm [21].

For any information source, the topic map tries to manage the mean-
ing of the information conveyed, rather than the information itself. This is
done by taking the key concepts in the information source and relating them
together[23]. This is demonstrated in figure 2.1, in the context of the Houdini
topic map.

1To differentiate between the standard and the applications, the established convention is
“using initial capitals (‘Topic Maps’) when referring to the standard itself or the technology in
general, and lower case (‘topic maps’) when referring to the document- like artifacts created
through the application of that technology”[21].

9

2.4. TOPIC MAPS

Houdini topic map
(machine readable)

UiO’s IT SYSTEM
(Physical

infrastructure)

Figure 2.1: Topic Maps create an index of the information outside the information
source.

Each subject can be conceptualized as having a type, which is a generic
name which ‘bears’ instances. Each instance can then be represented by a
symbol called topic. Topics can be components, called ‘topics’ or, they can
be the concepts of relations among them. Any concept of the interaction be-
tween components, itself a type having topics, has a special name, ‘associa-
tion’. Where and how in the domain the topics occur is their ‘occurrence’. This
is called the TAO of topic maps[22].

In general, the structural information conveyed by topic maps includes[31]:

• groupings of addressable information objects around topics (occur-
rences), and

• relationships between topics (associations).

Knowledge representation using Topic Maps has a formal model, ISO Stan-
dard Topic Maps. In fact, there exist a family of ISO Topic Maps standards
currently[31][32][33]. The complexity of digital information, including how to
attach meaning and context to tokens, has led to more other concepts than the
core topic map concepts, i.e., the TAO.

2.4.2 Main concepts in Topic Maps

• Subject
A subject is “anything whatsoever, regardless of whether it exists or has
any other specific characteristics, about which anything whatsoever may
be asserted by any means whatsoever”[31].

The subjects of a topic map are thus the ‘atomic abouts’ , in the view
of the author of the topic map, that compose the domain in question.
By articulating the subjects, the author claims , in a sense, that what is

10

2.4. TOPIC MAPS

embodied in the domain can be thought of as the set of those discrete
subjects; and, the meaning of the subjects mean exactly the assertions
given about each of them.

• Topic
While subjects are conceptual, they are represented by topics. A topic is a
“symbol used within a topic map to represent one, and only one, subject,
in order to allow statements to be made about the subject”[31].

Thus, a topic serves as a surrogate or symbolic representation of a sub-
ject. Topics have three characteristics: name, occurrence and role.

A topic may have zero or more names, that can be given to it. During
association with other topics, a topic will have a role in the association.
Occurrence is a characteristics of a topic in relation to an information
source that is about the topic.

• Collocation objective and Identity of subjects
Since a domain of interest is conceptualized as comprised of atomic sub-
jects and each subject is represented by one and only one topic , each
subject can be assigned an ‘identity’ to uniquely identify it. By this, all
about a subject can be reached from a single point, a concept known as
the collocation objective. This can be applied even across domains, so
that subjects which represent the same thing will be universally identi-
fied. Using identifiers, it will be possible to know when two or more top-
ics across domains represent the same subject. This is useful for merging
of different topic maps.

• Associations
Associations express relationships among topics. They correspond to
‘see also’ listings in traditional back-of-book indexes. In describing re-
lationships, the nature of the relationship can be made explicit by “asso-
ciation type”, while the “association role” is used to express the nature
of the topic’s involvement in the relationship. As such, the order of the
topics in a relationship is not important in topic maps. In other words,
a relationships “what kind is it?” is explained by the “association type”,
while “as what is a topic involved in this relationship?” is expressed
by the “association role” of a topic. Since assertions can be made about
them, association types and association roles are themselves subjects and
are represented by topics.

• Types in Topic Maps
A type is a specification for a set or collection of entities that exist or
may exist in some domain of discourse[36]. Topics can be categorized
according to their kind. In a topic map, any given topic is an instance
of zero or more topic types. In other words, the relationship between a
topic and its type is a typical class-instance relationship[22].

Thus, we understand that topics are instances of topic types, associations
are instances of association types and association roles are instances of
association role types.

11

2.4. TOPIC MAPS

• Occurrence
A special kind of relationship between a subject’s topic and an informa-
tion source is represented by “occurrence” in Topic Maps. A subject X
occurs in information source Y is another way of stating that subjects X
and Y are related in the sense that the information source Y is about or
mentions about the subject X. The information source is usually repre-
sented by a URL. Any occurrence can be viewed as an instance of an
“occurrence type”, which is itself a topic.

• Scope and Reification
The meaning of an expression is usually validated in a certain context.
For example, the statement “3 is not divisible by 2” is true if the context
is entirely about the set of natural numbers, but is generally not true. We
always presume a certain context when we make statements, otherwise
communication would be difficult.

In topic maps, contextual validity is reinforced by stating ”Scope”.
“Scope is expressed as a set of topics which qualify a statement (i.e., a
name, occurrence, or association) and indicate the context in which the
assertion represented by the statement may be considered valid. If no
scope is explicitly specified, the scope is said to be ‘unconstrained”’[21].

A more general concept is reification, which tries to assert any other
thing (including relations and the topic map itself) in the topic map.
“Reification is making a topic represent the subject of another topic map
construct in the same topic map”[31].

To understand the above concepts, let us consider an example of how an
informal knowledge specification is represented into topic maps.

2.4.3 Knowledge Representation using Topic Maps

Consider the following informal statements, which explain a very tiny portion
of the complex system at the University of Oslo’s IT infrastructure. The system
can be explained by several thousand such statements.

‘A unix server provides login service to users. A switch is connected to it.
The unix server is called login1.uio.no. The switch is called sw-248-191.uio.no.
For the server to provide its service, the switch must also provide its service.’

Topic maps starts by extracting the concepts involved. In other words, we
ask what the best way of thinking about the system is. Both the server and
the switch are there for some purpose. The unix server provides login service.
The switch is there for the server to provide its service. Thus, the concepts
involved in the above statements are ‘service providing by service providers’
and ‘one service-provider depending on another to function - a dependence
relationship between the service-providers.’ Thus, our subjects are ‘service-
providing’ and ‘strong dependence-a concept of the relationship between the
objects’. These are then our ‘atomic abouts’.

12

2.4. TOPIC MAPS

Next, we define the concepts, making the assertions about the subjects[27]:

• Service-giving : is a useful IT functionality provided by a hardware de-
vice or a software running on such a device.

• Strong dependence: is a relationship between service providers so that
the dependent cannot provide service if the depended upon is not pro-
viding its service.

The next step is to model the domain as a representation of the concepts
defined. This means that we can now view the above statements as two
service-providers and their dependence relationship. We define the types in
the domain, which will have instances. Those types are ‘service-providing’
and ‘strong dependence’. By this steps, we have created the ontology of the
domain.

Creating the knowledge base

Create the digital representation of the things involved. This is how they go
into topic maps representation.

• represent the physical unix server by a token = ‘login1.uio.no’

• represent the physical switch by a token = ‘sw-246-191.uio.no’

• represent the concept of the relationship between the server and the
switch, the strong dependence, by a token= ‘strong dependence’

The types we defined help us to categorize topics according to their kind
since every topic is considered an instance of zero or more topic types in any
topic map[21]. The ‘service-providing’ topic type has two instances, the topics
representing the unix server and the switch. The ‘strong dependence’ topic
type has one instance, the topic representing the relationship concept between
the server and the switch.

In Topic Maps, the tokens or symbols which represent things in the com-
puter are called ‘topics’. The topics can represent physical things, concepts of
relationships etc. We have three topics up to now: two topics represent phys-
ical things while one represents a relationship concept or an association. The
association type ‘strong dependence’ categorizes all such kind of relationships
between topics in this topic map.

We now formulate the above into topic|association|topic format. (Note: the
use of the “|” symbol between the tokens is done only as a matter of notation
in these examples. This symbol is part of the syntax in the WTC algorithm, but
not in Topic Maps.)

login1.uio.no|strong dependence|sw-248-191.uio.no

13

2.4. TOPIC MAPS

Contextual validity in topic maps, scope:

We see that the above relationship is true only as far as service providing is
concerned. It does not mean that the unix server depends on the switch for
everything. For example, if the power of the switch is down, the power of the
unix server will not be down. The unix server will fail from the perspective of
providing “login service” due to the failure of the switches power, but in other
ways, the unix server is still there. To address such contextual validity, we use
scope. (The sentence is written in two lines for space consideration, but it is
one line of tokens.)

login1.uio.noas service provider|strongdependenceas association
|sw− 248− 191.uio.noas service provider

Disambiguating the relationship and making direction unnecessary, Using
roles in topic maps:

In topic maps, direction is made unnecessary. This is possible by adding the
‘role’ of a topic in an association. Thus, by adding the role of the topics in the
above,we have (again, written in two lines for space consideration)

login1.uio.noas service provider, dependent|strongdependenceas association
|sw− 248− 191.uio.noas service provider, depended upon by

This relationship is true whether we write ‘login1.uio.no’ first or ‘sw-248-
191.uio.no’ first. This is how direction is made unnecessary in topic maps. This
has the advantage that, login1.uio.no is reachable both from its token or from
any other topic related to it.

The whole thing about the knowledge base in topic maps is the exhaustive
recording of such relations of every topic in the domain. The complete topic
map does this for all topics in the domain. This is stored in files of a standard
format, text files in either XTM or LTM formats, and constitutes the knowledge
base of the topic map.

The processing program, called the topic map engine, parses such knowl-
edge base files and the front end application presents the result to end users.
As an example, a screen shot taken from the web-applications front-end at
Houdini, displayed in fig 2.2, shows how the topic login1.uio.no is presented
by the topic map.

As can be seen in the figure, figure 2.2, this way of writing all relations
of login1.uio.no to any other topic in the domain makes anything about ‘lo-
gin1.uio.no’ reachable from a single click of the topic ‘login1.uio.no’. These are
called ‘occurrences’ of the topic ‘login1.uio.no’ in the domain. Since this topic
is a symbol representing an actual physical server in the complex system, we
have achieved a way of knowing everything relevant about the actual server
in the domain. The complete topic map does this for all topics in the domain.
By doing this to all topics in the domain, Topic Maps achieves the information

14

2.5. PRINCIPLES OF KNOWLEDGE REPRESENTATION

Figure 2.2: topic maps enables everything about login1.uio.no to be accessible from
a single click.

find-ability and knowledge management of a domain possible. In fact, some-
thing that collects the key concepts in the domain and ties them all together is
created[6].

2.5 Principles of Knowledge Representation

Knowledge Representation as a discipline has few widely accepted principles.
Those widely accepted principles of knowledge representation, first outlined
in[8], are explained below.

• The surrogate nature of knowledge representation.

By being a substitute for the actual thing, a knowledge representation
enables to have something to reason about and study consequences, than
doing actions on the actual thing.

In the topic maps representation above, the whole goal was to represent
the physical things and their connection and relation in a digital form.

15

2.6. THE HOUDINI TOPIC MAP

This enables many things like planning of downtime for maintenance
and studying system dependencies, possible[27].

• A knowledge representation addresses the fundamental question of how
to think about a domain, and the representation is committed to the ful-
fillment of this chosen conceptualization.

Again in the example, the choice was to think the domain as ‘service-
givers and their dependence relationships.’

• In a knowledge representation, the underlying tenet is that the domain
can be thought of as some kind of interaction between fundamental com-
ponents. In other words, a knowledge representation assumes that the
most useful aspects of a domain can be viewed as a form of relationship
and dependence among key components of the domain. Therefore it is a
fragmentary theory of intelligent reasoning.

As the example shows, the existence of the server and the switch was
defined not in entirety but in one aspect, in ‘service-giving’ aspect. Then
the inference was made that the switch is there for the server’s goal to be
met.

• By a knowledge representation, we create a medium of efficient compu-
tation.

Due to the specific conceptualization and the representation we made,
it is easier to see from the model that the whole setup is there for a sus-
tained login service to the unix server, and that the switch is there for the
server’s functioning.

• In a knowledge representation, we are actually putting forth a descrip-
tion of the domain we want to represent. Therefore, it is a medium of
human expression.

2.6 The Houdini topic map

2.6.1 Background

The University of Oslo is one of the largest universities in northern Europe,
with approximately 30000 students and more than 4600 employees. The Uni-
versity’s Central IT Unit is called USIT. USIT has an Information and Com-
munication Technology control center called Houston. Houston monitors and
administers a wide range of ICT-service types, spanning from gateways to
Digital Library services. ICT–Information and Communication Technology–
are responsible for network and telephone system as well as other IT-services.

16

2.6. THE HOUDINI TOPIC MAP

One of the groups at USIT, the XML-group, have developed a Topic Map
based knowledge base, the Houdini topic map, for systems operation, admin-
istration and maintenance documentation which is used by Houston.[24]

Next is presented a summary of the documentation, limited to the interest
areas of the thesis. The documentation is mostly an informal translation of the
department’s documentations[27], which are in Norwegian.

Houdini is USIT’s service registry and operations documentation system.
Basic information about the services, responsibilities and the dependencies be-
tween the services will be stored. Documentation already available in the web
are linked by Houdini.

The data model is built on the ISO standard Topic Maps. This makes it pos-
sible to delegate responsibility and information to the individual responsible
groups at USIT and seamlessly merge together different types of information
from different sources.

According to the projects document, the purpose of the topic map is to have
a binding point of documentation and systems operation. This will be used as
the core of the operations center, in order to plan maintenance and downtime
if something goes wrong, and, to avoid duplication of information at different
sources.

2.6.2 Houdini’s ontology / data model

According to the designers, USIT operates services, and it is these that need to be
represented. So it is service which is the basic entity that the whole system is modeled
around. All services must be rooted in a group, and there shall be one person who is
responsible for the documentation of a service. The main entity types defined are
organizational unit, person and service[25].

There were main guiding goals in designing the data model:

• Finding a common set of information that must or may be registered for
a service. Each single service will be represented by a topic. Each topic
will have mandatory and optional characteristics.

• Different service types form a class hierarchy, which is useful for arrang-
ing the services. Each subclass can add special attributes of its own.

• Document and show how different systems are based on and depend on
each other.

• Integration of information from existing sources.

Some of the definition of the subjects at Houdini and their published subject
identifiers are shown below.

17

2.6. THE HOUDINI TOPIC MAP

Published subjects for operating documentation

This is a collection of published subjects for operational documentation, with
emphasis on services and dependencies between them, developed and pub-
lished by USIT.

Subject Indicators:

• The concept of ‘service’: A service is something that offers a useful IT
function; a computer, other hardware device or software running on one.
(PSI:http://psi.uio.no/usit/ddok/ # service)

• The concept of ‘person’: A person is an individual. In other words, ‘per-
son’ as defined here is the same as the everyday understanding of the
word.
(PSI:http://psi.uio.no/usit/ddok/ # person)

• The concept of ‘strong dependency’: A strong dependence is a relation-
ship between two services, one of which is ‘dependent’ and the other is
‘depended’. The dependence is such that if the depended does not func-
tion, the dependent cannot provide its service.
(PSI: # http://psi.uio.no/usit/ddok/ strong dependence)

• The concept of ‘weak dependency’: A weak dependence is a relation-
ship between two services, one of which is ‘dependent’ and the other is
‘depended’. The dependence is such that if the dependent fails, the de-
pendent will lose some of its service or functionality, but still provides
service.
(PSI: # http://psi.uio.no/usit/ddok/ weak dependence)

• The concept of ‘resource person’: A resource person is a person who has
thorough knowledge of a service.
(PSI: http://psi.uio.no/usit/ddok/ # resource person)

• The concept of ‘doc-responsible’: A doc-responsible is a person who has
written, or have a thorough knowledge of, the documentation for a ser-
vice.
(PSI:http://psi.uio.no/usit/ddok/ # doc manager)

• The concept of ‘short-description’: A short description is a short and con-
cise description of a service.
(PSI: http://psi.uio.no/usit/ddok/ # short-description)

• The concept of ‘long-description’: A long description is an exhaustive
description of a service.
(PSI: http://psi.uio.no/usit/ddok/ # long description)

• The concept of ‘up-check command’: An up-check command is a de-
scription of how a person can test if a service works.
(PSI: http://psi.uio.no/usit/ddok/ # top check)

18

2.6. THE HOUDINI TOPIC MAP

• The concept of ‘mailing list’: A mailing list is a collection of email
addresses, so that all who are on the list receive an email sent to the list.
A mailing list has an email address.

(PSI: http://psi.uio.no/usit/ddok/ # mailing list)

• The concept of ‘common problems’: Common problems are a list of the
most common mistakes that a service suffers.
(PSI: http://psi.uio.no/usit/ddok/ # common problems)

• The concept of ‘Box’: A network box is a piece of hardware that is placed
as a node in a network and manages network traffic through this point.
(PSI: http://psi.uio.no/usit/ddok/ # this box)

• The concept of ‘machine’: A machine is a piece of hardware that offers
one or more services.
(PSI: http://psi.uio.no/usit/ddok/ # machine)

• The concept of ‘webapp’: A webapp, or web application is an application
where the user interface is available on the web.
(PSI: http://psi.uio.no/usit/ddok/ # webapp)

The main ontology can be summarized as follows:

• The main entity types are ICT-service or simply Service, Person and
OrgUnit, short for Organizational Unit.

• An ICT-service, which is an instance of the type “ICT-service” or simply
“Service”, must have

– A person responsible for its documentation.

– An OrgUnit which is its owner.

• An ICT-service may have one or more service experts, called responsible
person.

• The association between services is either of “strong dependence” or
“weak dependence”.

A Service will have a set of mandatory and optional characteristics which
describe it, all of which are published subject identifiers. The following are
mandatory characteristics of any service at Houston.

• A string of short description

• An email address, which is a collection of the email addresses of all those
who will receive mail on behalf of the service.

19

2.6. THE HOUDINI TOPIC MAP

• A service code, and

• A service name.

A person must have a full name as mandatory characteristics, and option-
ally a user name and short name.

An OrgUnit must have a name, an email address, a homepage URL, and
a URI showing a telephone list as mandatory characteristics. Optionally, It
might have child units or a parent unit.

The topics , the symbols representing the actual things or concepts, are the
binding points of all information about the corresponding subject. At Houdini,
there are more than a thousand different topics, representing services, people,
organizational units and associations among them. The topic for people is
usually their full name.

A web applications screen shot, as shown in figure 2.2 shows the topics as
binding points of information in the topic map. The topic clicked here is a unix
server represented by the topic ‘login1.uio.no’.

The main associations of interest in the topic map can be grouped into the
following types:

• Those association types between a service and an OrgUnit: these are de-
fined by the concept of “responsible orgunit”.

• Those associations between different services: these are the associa-
tions defined by the concepts of “strong dependence” and “weak de-
pendence”. There is also the special “Subclass, Superclass” relationship
due to the class hierarchy of services.

• Those association types between persons and services. We have the fol-
lowing associations:

– The associations between a service and the documentation respon-
sible person is explained by the concept of “doc-responsible”.

– The associations between a service and the experts of the service is
explained by the concept of “resource person”.

• There are also those associations between the entities and their character-
istics. Examples are the concepts of “short description” and “email-list”
of a service.

20

Chapter 3

Model, Methodology and
Approach

3.1 Model

The basic model used in the WTC algorithm is the graph model. This chapter
begins with a very selected introduction of set theory and the graph model.

3.1.1 Sets

A set is a collection of things. All manner of useful collections can be repre-
sented or denoted using sets[34]. In set representations, the elements of the
collection can be real or imaginary, physical or abstract. Abstract things like
numbers and points can be represented by sets. Real physical thing collections
like the set of apples or of people can also be elements of a set. In computer sci-
ence, useful representations by sets are composed of bits, bytes, pointers and
blocks of storage. Usually, the significance of set representation is not in defin-
ing the elements, but in forming abstractions of representation. These abstractions
of representation can take many forms in different media[37].

A set consisting of finitely many elements is called a finite set. We usually
write such sets as A = {a1, a2, . . . , an}. In such notation, the set is denoted by
A while the representations of the elements are listed inside the braces.

3.1.2 Set Relations

Sets can have different relations with one another. One of the set relations is
the subset relationship. If we have two finite sets A and B, we say A is the
subset of B, written A ⊆ B, if all elements of A are also elements of B.

Set theory is used for an exact description of verbal statements. For ex-
ample, the subset relationship can be used to denote containment of concepts
within another, or for event descriptions as shown in table3.1.

21

3.1. MODEL

verbal statement set theory expression
A more general concept B contains a specific concept A A ⊆ B

if A occurs, so does B A ⊆ B

Table 3.1: Set theory as a precise expression of verbal statements.

3.1.3 Graphs

A graph consists of a set of vertices, or nodes, connected by edges, or lines
or curves. The usual way of drawing a graph is by representing the nodes as
circles or points, and connecting them by lines. We say a graph G has the set
of vertices V and the set of edges E, and denote it as G(V,E).

Definition: A graph is a pair (X, γ) that consists of a set of nodes X and a
mapping γ : X → X, formed by the arcs or lines between the points x ε X[34].

A B

Figure 3.1: some graphs. A is undirected, while B is directed

The graphs at figure 3.1 show some elementary graphs. They depict only
one sort of graphs, the labeled graph. But graphs can have different represen-
tations and can be quit complex.[34]

We categorize graphs in the way the nodes are connected as directed or
undirected graphs. The graphs as shown in figure 3.1 (A) where the lines con-
necting them are not directed are called undirected graphs. When the lines
connecting the nodes are arrows, as in figure 3.1 (B), we say the graph is di-
rected.

Graphs can also be categorized as cyclic or acyclic. A cyclic graph is a
graph in which one can return back to the starting point. An acyclic graph
goes away from the starting point, and provides no direction for returning
back to the starting point.

For two graphs G(V,E) and G’(V’,E’), we say that G’ is a subgraph of G (and
G a supergraph of G’)if V’ is subset of V and E’ is subset of E. A subgraph can
often be built by deleting specific vertices and/or edges from a graph[4].

22

3.1. MODEL

3.1.4 Human-computer systems and graphs

As with all problem representations, a graph based representation is used to
provide a particular perspective on a problem. We draw graphs to denote
some kind of information which requires the depiction of entities and rela-
tionships among them. The important thing here is that, graphs enable us
to represent the aspects of a system that we want to emphasize clearly. In
computer science, those aspects we want to emphasize are usually aspects of
relationships between items of data.

An example of a common graph in computer science is a tree, which is a
graph with one and only one path between every two nodes[5]. One common
application of a tree graph is in describing file systems as depicted in diagram
3.2.

In human-computer networks, the aspects we want to emphasize are usu-
ally aspects of relationships between the components of the system. For ex-
ample, we depict membership i.e., certain things belong together, and, causal-
ities,i.e., certain things depend on other things, using graphs[35]. The connect-
ing edges between the nodes often represent some qualities of those relation-
ship aspects,such as[34],

• A dominates B (directed),

• A depends on B (directed),

• A is associated with B (usually undirected),

and so on. When the relationships are one-way, the joining lines will be di-
rected, and when the relationships are multi-way or symmetric, the joining
lines will be undirected.

Many concepts and information in human-computer systems are repre-
sented by graphs. It is, for example, most common to represent network
topologies using graphs in human computer systems. This is shown in fig
3.3.

A particular need in discussing human-computer systems, where elemen-
tary graph theory helps us a lot, is the depiction of the system by joining the
items having a certain relationship, with the arrow going in certain direction.
These direction oriented depictions are useful, because the items will be joined
only if certain criteria are met. On this basis, the example we had in the back-
ground, in section 2.4.3, can be depicted using graphs. This is shown in fig
3.4.

3.1.5 Graph problems

There are many graph problems that have interesting applications in many
fields of study. In this section, two of them, the shortest path problem and the
transitive closure algorithm, are discussed.

23

3.1. MODEL

/

var etc binhome

ephrem Hårek

project lectures

usr

Figure 3.2: part of a unix file system represented by a tree

The shortest path problem is a problem of finding the shortest total path
between two given nodes in a graph. There are many algorithms to solve the
shortest path problem. One of the well known is the Dijkstra algorithm[5].
Such algorithms are useful when there exist more than one path between
nodes, which is the case in graph representation of human-computer systems.
The basic fact used in Dijkstra’s shortest path algorithm is that, if the minimal
path between two nodes A and B is found, it implies knowledge of the mini-
mal path between the starting node A and any intermediate node between A
and B[5]. The steps can be rephrased as follows:

1. Start at A, and find the shortest distance node connected to it.

2. Make the new shortest distance node from A as a starting point and find
the shortest distance node from it.

3. Repeat step 2 until you reach node B.

24

3.1. MODEL

A) B) C)

Figure 3.3: graph representation of network topologies, A) centralized, B) de-
centralized or hierarchical and C) distributed mesh. Shown here with permission from
the author of [34]

Login1.uio.no Sw-248-91.uio.no

Depends on

Figure 3.4: graph representation of the connection characteristics of a server and a
switch

4. The shortest path between A and B is the sum of all paths found in steps
1, 2, and 3.

In mathematics, a binary relation R is transitive over a set S if it fulfills the
following: for elements a, b and c in the set, if ‘a R b’ and ‘b R c’, then ‘a R
c’. For example, the binary relation ‘is greater than’ is transitive on any set of
numbers. For any three numbers a, b and c, if ‘a > b’ and ‘b > c’ then ‘a > c’.

The transitive closure of a binary relation R over a set S is another transi-
tive relation that contains the binary relation R and is minimal. The transitive
closure of R is given by the intersection of all transitive relations containing
the binary relation R. A very important point in transitive closure relation is
that, if the binary relation R is transitive, the transitive closure relation will be
the same transitive relation R. Otherwise, the transitive closure is a different
transitive relation.

The application of the transitive algorithm to graphs is to answer reacha-
bility questions. For example, consider three nodes in a graph as shown in fig
3.5.

25

3.2. METHODOLOGY

A

B

C

r

s

?

Figure 3.5: application of transitive closure to graphs

The binary relation tells us about the connection between two nodes. But,
if we have a connection between A and B that it r, and, a connection between B
and C that is s, what is the connection between A and C ? A transitive closure
algorithm is an algorithm used to find such a path.

3.2 Methodology

In this section, the methodology used in the project, the WTC algorithm, is
explained. This section has three parts. The first section explains general con-
cepts specifically relevant to the methodology. The second section is a detailed
elaboration of the methodology. This elaboration is entirely based on the two
papers that the originators of the algorithm published to describe their work,
[28] and [29]. In the third section, the elaborated ideas are demonstrated using
examples.

3.2.1 General concepts

Causality: The principle of causality states that every change or effect happens
due to a certain cause. The main issue with this intuitive and simple principle
is the fact that finding cause and effect in a dynamic and complex system is
not always an easy matter. Specially, establishing a causal link between the
resulted change in a system and the cause for that change is a much desired
outcome. But, such discoveries of cause and effect are difficult in complex sys-
tems. Such skills are, however, key in many occasions like troubleshooting[34].

Reasoning System: A reasoning system is a system which gives answers
or conclusions that are results of some sort of reasoning or deduction done by
itself. Among other things, reasoning requires figuring out what one needs to
know from what one already knows. Thus, whenever a computer system is
required to do things that it has not been told,explicitly, how to, the system
must reason. In such scenarios, the system must be able to deduce and verify
many new facts from those it has explicitly been told[20].

26

3.2. METHODOLOGY

Inference: Inference is a formalized reasoning to draw conclusions from
given facts. In computing, it is a reasoning performed on data through rules.

Abductive inference: Abduction is a kind of inference to generate hypoth-
esis that are best explanations of a conclusion. While deduction arrives at the
consequence or conclusion from given facts or hypothesis, abduction goes the
opposite, and finds the best explanation of a conclusion or an end result.

Rules of inference: The constraints of the reasoning process which limit
what kind of conclusions can be drawn from given facts are called the rules of
inference. Rules of inference preserve truth in such a way that, if the starting
formulas are true, the result of performing a rule of inference on them must
also be true.

3.2.2 Elaboration of The WTC algorithm

The WTC algorithm is an automated reasoning method for the generation
of human-understandable inferences of causal relations. Human-understandable
statements follow the usual language rules. In fact, in the WTC algorithm, the
statements are limited to subject-verb-object constructs only.

The WTC algorithm is designed to aid humans to understand causal rela-
tionships between components in a complex system. This reasoning method
has three main parts[30]:

• A text file used as the knowledge base, the facts file. This text file follows
a specific syntax, and is filled with statements of assertion about the sys-
tem. Each statement is called a base fact, and is an entity–relationship–
entity construct.

• Another text file, the rules file, which contains the rules of inference.

• A Perl CGI program, a prototype, that uses the above two files as inputs
and provides an interactive web interface for answering queries about
the system.

This reasoning method first conceptualizes complex systems as directed
graphs, with ‘entities’ as nodes and ‘relationships’ as edges. The basic idea is
to utilize a description of system knowledge for inferring dependencies and
causal relations of a more useful and subtle nature.

A statement, written as entity-relationship-entity triple, that describes any
invariant and positive system property is called a fact. The collection of all
facts, taken to be true from the outset, is what are called the base facts of a
problem domain and is stored in the facts file.

27

3.2. METHODOLOGY

Entities

An entity is a component in the system that can be named and represented
by a noun that does not change with time. In the preferred visualization of a
system, anything that can have a name and can be viewed as a component of
the system is called an entity. Kinds of entities include:

• Physical machines, eg., ‘login1.uio.no’ , ‘sw-248-196.uio.no’.

• Software, eg., Unix, windows explorer.

• Services, eg., ‘login service’, ‘dns service’.

• Classes of physical machines, eg., ‘unix servers’ ,‘windows servers’.

Relationships

A relationship expresses the concept that connects entities, and is usually a
verb. In other words, a concept depicting the interaction between entities in
the system is called a relationship. Such concepts include:

• Dependencies, including ‘requires’, ‘provides’, ‘strongly depends on’,
‘weakly depends on’.

• Containment, including ‘is a part of’, ‘is an instance of’, ‘is a subclass of’.

• Causality, including determines, influences.

• Connectivity, including connected to.

• Intent, including promises, uses.

Facts

Facts are recorded by studying the system and writing the descriptions in
entity–relationship–entity triples. The specific syntax of the system requires
that facts be subject–object–verb, and be written as:

entity|relationship|entity

In such facts, the subject and object are system entities while the verb is a
relationship between them. There are a number of constraints on the facts that
can be recorded in the WTC algorithm’s facts file:

• Facts must describe invariant properties of entities of the system and,
generally, variation over time is not supported. In the fact sentence, there
are two entities and a relationship. The relationship type must therefore
be something that does not change over the lifetime of the entities in-
volved.

28

3.2. METHODOLOGY

As an example, consider facts that describe the address of machines in
a LAN. If the LAN uses a dhcp-service, it is not useful to record ip–
addresses of machines in the fact file, since this would lead to erroneous
conclusions. In this sense, the mac address would be a good choice.

• Facts cannot be negatives, only positive assertions.

For example, if an item is part of another item A, we would state that in
a fact. But if it is not, we simply omit it. However, stating that the item
‘is not part of A’ is not supported in the system.

The above two points means that, in the WTC algorithm, not every kind
of fact can be represented.

• Facts, to the prototype, are syntactic tokens, and nothing more.

Thus, tokens are known to be entity tokens or relationship tokens by the
syntax in a fact. In any fact, the first and third tokens are entities, while
the second token is a relationship. But the meaning of an entity token
is implicitly found in the cumulation of the facts that describe it. For a
relationship token, the meaning is found in the cumulation of the rules
that describe it. This is the ontology of the system.

For example, what does the token ‘host01’ mean? This is implicit in the
set of facts that describe the entity. It means, it is the result of what all
facts about the entity are stating about it. If this ‘host01’ is stated as “host
01 is an instance of workstation” in one fact , as “host 01 is influenced by
dns service” in another, and as “host 01 has part external ATA drive” by
still another third fact, then those collection of facts are the meaning of
the entity so that it would mean the particular ’host01’ physical entity in
the domain.

Similarly, what does a relationship, say ‘describes’, mean? The mean-
ing is implicit within what this relationship concept implies, what its
inverses are, etc.

This understanding of how meaning is stated in the system is fundamen-
tal so that the stating of facts is done with thorough understanding of the
system. Facts must be carefully selected in their construct, so that they
are suitable and useful.

• Facts about an entity are facets of its meaning, and additive to other facts
about it.

According to the system, if a fact is stated about an entity, it is one facet
that does not contradict with any other facts about the same entity. This
means that the system does not detect contradictory facts, and this part

29

3.2. METHODOLOGY

should be taken care of in the formation of the facts. Unless care is taken
not to have contradictory facts in the fact base, misleading and wrong
conclusions will be drawn by the reasoning system.

• In this system, it is not assumed that facts are exhaustive from the outset.

The system is based on an open model of knowledge, in that, new facts
can be added later when known. The absence of a fact means only that,
it is not known to be true.

• Deleting a fact is handled by out-dating it.

• Inverses are true, but are not recorded as facts. They are represented by
rules as described below.

Rules

Rules in the WTC algorithm are written by the way they describe relation-
ships. While a relationship describes the interaction between entities, a rule
on the other hand describes the interaction between the relationship concepts
themselves. Thus, the rules file is full of rules, each of which describes how the
relationships interact with each other. The meaning of a relationship concept
is determined by the rules that describe it in the rules file.

• Rules are used to infer new facts from base facts and also new rules from
existing rules.

Rules are crafted so that only certain kinds of facts can be implied. This is
a core concept in the WTC algorithm. This truth means that, what kind
of dependences and causal connection we can grasp as the end result
depends on the formulation of the rules.

A set of rules with specific properties also affect the speed of computa-
tion.

• By applying rules repeatedly, it is assumed that all facts will be repre-
sented.

In other words, by some finite application of rules, the system achieves
a fixed point state in which no further operations add new facts or rules.
This is the principle of convergence as applied in the reasoning system.

• Like facts, rules are deleted by out-dating them. If no inferences are
made using the rule, the rule will be as good as deleted.

There are four kinds of rules in the system:

30

3.2. METHODOLOGY

1. Canonical rules

These rules are used for both saving typing and ensuring that representa-
tion of facts are sufficiently precise to be useful. The notation for canoni-
calization is

r=>s

This means, everywhere in the file where an r is found, the system should
replace it with an s. In the text file which contain the rules, these rules
are placed first, since they apply to everything in the file and influence
readability.

2. Implication rule

Implication is a rule used for depicting the relationship between con-
crete and more general concepts. By the implication rule, denoted by the
symbol ->, we create derived facts that demonstrate a more general re-
lationship between the entities. Every relationship between entities must
be a subset of a more general relationship. This rule is written as

relationship->implied relationship

This means that, if entities X and Y are related by “relationship”, they
can also be related by “implied relationship” without risking error. Also,
the latter will be a more general relationship between entities X and Y
than the former concrete relationship.

As an example, let us consider the concepts ‘influences’ and ‘determines’.
If A determines B, we can also say that A influences B. But if A influences
B, we cannot generalize that A determines B. This is because determining
is a type of influence. But influence is not only determining. It can be any
other type of influence than determines. In this context, we can say that
if an entity determines another, it also influences it. Thus, determines
implies influences, but influences does not necessarily imply determines.
In the notation of the system, this is written as

determines->influences

This can also be represented as a set relationship between the two con-
cepts. We can say, in other words, that the concept of ‘determines’ is
contained within the more general concept of ‘influences’. Therefore, It
is a subset relationship, where ‘determines’ is the subset of ‘influences’.
This idea is shown in a Venn diagram in fig 3.6.

By similar analysis, all implication relationships in the WTC algorithm
are also reckoned as having the subset relationship between them.

3. The inverse rule

31

3.2. METHODOLOGY

influences

determines

Figure 3.6: A set relationship between two concepts shown in a Venn diagram

The inverse rule is used to handle direction. Every stated fact must have
an inverse fact which is also true. The handling of such facts is done
using the inverse rule in the reasoning system, rather than writing them
down in the knowledge base. The inverse rule is denoted by <>. We
write

relationship<>its inverse

This is understood to mean that for any entities X and Y,

if

X|relationship|Y

is a fact, then

Y|its inverse|X

is also a fact.

An inverse rule can also be explained using implication. Using implica-
tion, the above rule can be rewritten as ‘for every X and Y, if X relationship
Y, then Y inverse relationship X and vice versa.’ Therefore, inverse rule can
be viewed as a special kind of implication. Some facts are self-inverse,
e.g., if ‘X is a peer of Y’, then ‘Y is a peer of X’.

4. Weak Transitive rules

Weak transitive rules are used for addressing connectivity problems in
the system. This is a rule which shows what the relation between entities
X and Z will be if entities X and Y are related by a relation ‘r’ and entities
Y and Z are related by a relation ‘s’. This rule is a way of addressing
complex systems interdependence which is usually built by transitivity.
The notation for weak transitivity is the symbol ^ .

In transitive rules, we involve three entities and three rules.
r^s^t means that for every X , Y and Z, if X r Y and Y s Z , then X t
Z . As an example, consider the following two facts

32

3.2. METHODOLOGY

server1|requires|network-connectivity

network-connectivity|is provided by|sw1

If we want to know how server1 and sw1 are related based on only those
facts, we cannot formulate the relationship. But if we have the weak
transitive rule

requires^is provided by^strongly depends on

The rule will guide us that, they are related as follows:

server1|strongly depends on|sw1

When the consequent relationship does not match at least one of the an-
tecedents and is usually more general than at least one of them, the tran-
sitive rule is called ‘weak transitive.’ As such,

requires^requires^requires

is a (strong) transitive rule but,

has part^controls^controls

is a weak one.

As shown by the above example, these rules are the key to turning a logic
computation into a graph computation when computing queries about
facts, which is done using the prototype engine of the system.

The prototype engine

The engine of the WTC algorithm is a Perl-CGI program written by professor
Alva Couch of Tufts. This program is available as a free software under the
GNU license at [30]. In this program, abstract mathematical principles are
transformed into result yielding computations.

• Sets, Graphs and Perl

Sets and Graphs are represented by hashes in Perl[35]. Sets are hashes
with values of 1, and keys would be the members of the set. For graphs,
we may use different ways of representation. One usual way is the adja-
cency list, where the neighbors of each edge are listed. This way, opera-
tions in graphs and sets are converted into operations in hashes. This is
made use of extensively in the prototype.

• Abductive inference is changed to graph computation

First, binary relations between entities, which are our facts, are consid-
ered as labeled graphs.

A|provided by|B

B|depends upon|C

provided by depends upon

A----------->B------------>C

33

3.2. METHODOLOGY

Second, the transformation of a new relation between A and C by the
(weak) transitive rule is considered to be an action on the graph to create
a new edge connecting A and C.

The rule: provided by^depends upon^depends upon

The action: Adds edge, as shown below in fig 3.7

A
B

C

Provided by
D

ep
en

ds
 u

po
n

Depends u
pon

Figure 3.7: Abductive inference to graph computation

Thus, abductive inference is changed to graph computation, something
that computers can do using well established algorithms. Also, since
we can “measure” the length of the new edge by counting how many
inferences are done to reach at it, a problem of logic, i.e., inferring A^B^C ,
is turned to a problem of distance, i.e., how many A^B^C applications
are needed.

This operation has many benefits. Once the change of abductive in-
ference to graph computation is achieved, answering queries about the
most related entities to a chosen one is possible. In addition, any derived
fact can be explained as a shortest chain of base facts that were used to
infer it. This explanation is human-readable, thus the person will under-
stand it without knowing the details of how it was inferred.

The pivotal relationship of a problem domain

In order for the reasoning system to work, we must have a pivotal relation-
ship. This is something the program runs to achieve, thus performing all the
inferences. In other words, in the complex graph that represents the system,
looking for a pivotal relationship means routing the way towards a specific

34

3.2. METHODOLOGY

edge. All the ways leading to the edge are then explanations of the depen-
dence or causal connection path in the network, in different ways.

Typically, the pivotal relationship is the most abstract relationship that re-
mains interesting. Therefore, to have this pivotal relationship, we think of a
set which encompasses all the other relationship concepts. Put another way,
the pivotal relationship should be implied by all the relationship concepts in
the problem domain. If we have a relationship concept that does not imply
the pivotal relationship, then we can find no result pertaining to it because the
system is doing all inferences that lead it to the pivotal relationship.

The reasoning system assumes a thorough study of a problem domain,so
that to craft ‘the central relationship of a problem domain.’ This is something
the user wants to know. The rule set describes many relationships, in fact, an
intractable number of them. The pivotal relationship is a statement of what
one wants to know, and that limits the graph computation, since, when looking
for a pivotal relationship, it means looking for a specific kind of edge in the
graph.

The system is then asked to “explain” the edge. This is what is provided as
the explanation of any relationship between entities. Often a less specific pivot
is better than a strict one, for example, “can influence” is better than “deter-
mines”. This is because, less specific relationships are at a higher abstraction
level than more strict ones. A higher abstraction level means it is the result
of many lower leveled relationships, thus providing explanation in terms of
them.

As an example, if we have relationship concepts like ‘determines’, ‘con-
tains’, and ‘is part of’ in our facts, then ‘influences’ can serve as the pivot since
it is implied by all of those concepts. This is equivalent to say that, if we choose
‘determines’ to be the pivot, facts that have ‘is part of’ as relationship will have
no result or no explanation, because ‘determines’ is not implied by ‘is part of’.

Queries

There are many kinds of queries that can be answered in this system. In the
first kind of query, the goal is to find all the entities related to a chosen one,
with a known relationship concept. This means that, if the chosen entity is X,
and the known relationship is r, then we find as much entities Y such that X r
Y is satisfied.

Consider the relation to be ‘depends upon’ and the chosen entity to
be node A in fig 3.7. The first query is what answers the “which?” in
‘ A|depends upon|which?’. Put another way, this query means that, given an
entity A, which entities do we reach at using an edge named ‘depends upon’?
In our simple example, the answer is node C.

The system answers such queries as follows:

35

3.2. METHODOLOGY

• First, calculates all new facts and new rules by using the rules and base
facts.

• A new collection of facts is generated, base facts plus derived facts.

• The facts that satisfy the particular query are then presented.

The second kind of query is explaining a particular fact X r Y in terms of
all the other facts that were used to reach at it. By the graph computation, this
means that, if we have the two nodes X and Y related by a derived or inferred
relationship r, we had other intermediate nodes and edges that were base facts.
The second kind of query is the presentation of those facts in human-readable
format. In short the second kind of query asks this: ‘when we reach at an
inferred fact ‘X r Y’, what minimum number of weak transitive rules and what
number of base facts did we apply to reach at it?’.

In our example, figure 3.7, this would mean answering or explaining how
we reached at the conclusion

‘‘A|depends upon|C’’.

The answer is two facts and one inference, which are facts:

A|provided by|B

B|depends upon|C

and the rule
provided by^depends upon^depends upon

Thus, the first query is about what an entity is related to, given an entity
and a relationship, while the second query is about the fact bases and number
of inferences needed to reach the new inferred relationship between two enti-
ties, put forth as the ‘distance’ between the entities. This distance is measured
by the minimum number of weak transitive rules that must be applied to base
facts to reach at this inferred fact. The result of this query is what we call an
explanation or history of the relationship.

The basic conceptualization is that the binary relation between entities is
seen as labeled graphs. An inferred kind of relationship is an action of adding
a new edge between nodes, to connect them directly.

3.2.3 Demonstration of Methodology

This section will demonstrate how the WTC algorithm is applied with an ex-
ample. We refer to the example we used in topic maps representation, in chap-
ter 2, section 2.4.3. We can use both the two approaches to represent this using
the WTC algorithm.

36

3.2. METHODOLOGY

1. Based on topic maps knowledge base, the topic-map approach:

This methodology utilizes the topic maps knowledge base as follows:

• Take the topics to be entities, and represent the association as a di-
rectional relation.

Direction of relation is one difference between the two approaches.
In topic maps, direction is made unnecessary and the role of each
topic in the association is included for that. In the WTC algorithm,
relations are directional.

Thus, we will start from one direction of the association. Instead
of ‘strong dependence’ which is a noun phrase, we use ‘strongly
depends on’, a verb showing the dependence of the server on the
switch.

login1.uio.no|strongly depends on|sw-248-191.uio.no

This is a one directional relationship and is an entity-relationship-
entity triple, a fact. Facts like this are taken to be true from the outset
and are therefore the base facts. But from this fact, the reverse fact
is also true,

sw-248-191.uio.no|is strongly depended upon by|login1.uio.no

This is handled by one of the rules in this approach, called the in-
verse rule.

• Craft rules:
Rules are expressed in terms of the relationships they manipulate.
Therefore, we can have them as follows:
The canonicalization rule:
Since this rule is used for shorthand notations to save typing and
also to make facts precise, for the above example, we can have the
canonicalization rule:
strongly depends on=>strong , and write the above sentence as
login1.uio.no|strong|sw-248-191.uio.no

The system will understand this to mean the same as the tokens
login1.uio.no|strongly depends on|sw-248-191.uio.no

When we have several hundred facts to type, this rule is beneficial.

The inverse rule:
In the above, we have seen that the base fact
login1.uio.no|strongly depends on|sw-248-191.uio.no

has the reverse fact
sw-248-191.uio.no|is strongly depended upon by|login1.uio.no

which is also true. Thus, we will have the inverse rule

37

3.2. METHODOLOGY

strongly depends on<>is strongly depended upon by

This is understood by the system to mean that for any entities X and
Y in the system, if
X|strongly depends upon|Y

is a fact, then
Y|is strongly depended upon by|X

is also a fact.

The implication rule:
In the above, ‘strongly depends on’ is a subset of a more general
kind of relationship ‘is influenced by’, for example. We say that
‘strongly depends on’ implies ‘is influenced by’. Therefore, any en-
tities X and Y related by ‘strongly depends on’, can also be related
by ‘is influenced by’ without risking error. The above rule is written
as
strongly depends on-->is influenced by

The weak transitive rule:
Consider, in the example above, there were a second switch called
sw2 that is not directly connected to login1, but on which the first
switch is related to by ‘is influenced by’. The relation of login1 to
sw2, will be the result of the fact that login1 is related to sw1 and
sw1 is related to sw2. It can be seen that login1 and sw2 can be
related by ‘is influenced by”, because
login1.uio.no|strongly depends on|sw-248-191.uio.no

and
sw2|is influenced by|sw-248-191.uio.no

are facts. To code this as rule, we write
strongly depends on^is influenced by^is influenced by

which means that if
X|strongly depends on|Y

and
Y|is influence by|Z,

then
X|is influence by|Z

2. Based on architectural base facts and corresponding rules, the system-
description approach:

In this approach, a knowledge base is created from scratch, based on sys-
tem architecture. An attempt is made to limit facts only on the architec-
tural level, so that the associations depicted by the topic maps construct
are inferred from them. In the above example, we resort to record the
lower level relationships in the system that caused ‘strong dependence’

38

3.2. METHODOLOGY

between the server and the switch. Instead of trying to put the rela-
tionship between the switch and the server in a concept of relationship
like what the topic map does, we simply record the assertions about the
server and the switch. We then let the system infer the kind of depen-
dence by using these base facts and the rules. The fact that the server
‘cannot function without the switch giving its service’ can then be de-
rived by the prototype, using the lower level facts and the rules crafted
accordingly.

For example, consider the following restatement of the above:

login1.uio.no|requires|network-connectivity

sw-248-191.uio.no|provides|network-connectivity

These are simple architectural facts that can be recorded to the knowl-
edge base.

Now consider the reverse rule,

provides<>is provided by

This rule enables the system to add the new fact

network-connectivity|is provided by|sw-248-191.uio.no

to the knowledge base.

Let us also consider the following weak transitive rule:

requires^is provided by^strongly depends on

This rule is stating that, for three entities X, Y and Z in the system, if
entities X and Y are related by ‘requires’ and Y and Z are related by ‘is
provided by’, then X and Z are related by ‘strongly depends on’. In other
words, according to this rule, the facts
X|requires|Y

and

Y|is provided by|Z

give rise to the fact

X|strongly depends on|Z

Therefore, using this rule, the system reaches at the inferred fact that

login-service|strongly depends on|sw-248-191.uio.no

since we have the fact

login-service|requires|network-connectivity

as base fact, and

network-connectivity|is provided by|sw-248-191.uio.no

as a derived fact using the reverse rule. This is demonstrated in fig 3.8
below.

39

3.3. APPROACH IN DETAIL

Network-connectivity

Login1.uio.no sw-248-191-uio.no

Is provided by

Strongly depends on

requires

Figure 3.8: In the system-description approach, ‘strongly depends on’ is inferred
from concrete architectural relationships. The solid lines are the concrete relation-
ships, while the dotted line is the inferred relationship.

3.3 Approach in detail

The project uses similar procedures of the two approaches, as demonstrated
above, for selected use cases of the IT system at University of Oslo. The thor-
ough study of the domain, both from the topic map data and the available
detail of system knowledge, will be performed for creating useful facts, a piv-
otal relationship for each case, and appropriate rules of inference.

3.3.1 Topic-map approach, Using the Houdini topic maps Knowl-
edge Base

In this case, the conceptualizations used for the representation of the system
by the topic map will be preserved. What is done is transform the topic maps
knowledge base to be the knowledge base of the WTC algorithm. Topics will
be nodes, and the relationships derived from the associations will be used as
edges. Thus, in this approach, the Houdini system is seen as a directed graph
of ‘topics’ and ‘relationships.’

• The topics defined by the topic map will be taken to be entities.

• The associations of the topic map between the topics will be translated
to one directional relations between the entities.

• These entity|relationship|entity triples will form the base facts of
the system.

• The inverse rules will be crafted to create the inverse facts from the base
facts.

• The implication rules will be crafted to create new set of rules and facts
that are more general than the base relationships and facts.

• Weak transitive rules will be crafted to take account of transitive relations
between topics.

40

3.3. APPROACH IN DETAIL

• A pivotal relationship will be selected so that it will both present the
outcome we want and will also be a universal abstraction of all the rela-
tionships.

3.3.2 System-description approach, Using Systems Knowledge to
Create the Knowledge Base

In this case, we focus on the architecture of the system to create the knowl-
edge base. We will conceptualize the system as a graph of named entities and
relationships among them. The named entities are components in the system
like physical machines, services, people and the like. The relationships we fo-
cus on will be architectural relationships between those named entities. The
expectation from this approach is that it may result in further dividing of the
topic maps associations into lower level relationships. Another deviation is
that there will be no limitation to the ontological commitments of the Houdini
topic map.

As the example demonstrated by figure 3.8 shows, facts transformed from
the topic map are considered to be the result of other, lower level facts of ar-
chitectural nature in this approach.

In short, this method simply records architectural relations, and lets the in-
ference rules infer the type of dependence chosen by us between the entities.
This has an advantage in clarifying the causal relationships for troubleshoot-
ing.

The steps we follow will be,

• Write down architectural facts in terms of

named-entity|relationship|named-entity

triples. These will form the base facts of the new knowledge base. Un-
like the topic map approach, where the relationship concepts have to be
derived from the associations of the topic map, in this approach relation-
ships will be selected from system knowledge. The same holds true for
the pivotal relationship.

• Inverse rules will handle the transformation of the inverse facts from the
base facts.

• The implication rules will be crafted so as the lower level architectural
relationships will be the more specific relationships which imply higher
level abstractions.

• Weak transitive rules will be crafted to take account of transitive relations
between topics.

41

Chapter 4

Results

The use case is implemented for a random sample of services documented
by the Houdini web application, http://intra.usit.uio.no/houdini/. We select
some services as described by the topic maps for the use case, which comprise
a total of more than 100 topics and 9 association types with more than 100
associations to deal with.

A table showing the selected services, the associations and all the topics
associated with the services, as presented by the topic map, are shown in the
appendix. One of the services is shown in table 4.1 as an example.

4.1 Results of topic-map approach

The result for this approach is available at the site
http://ephrem.vlab.iu.hio.no/cgi-bin/topic-map.cgi

4.1.1 Finding Relationships

The topic-map approach is solely based on the topic maps knowledge base,
therefore associations are changed to relationships, and the topics will auto-
matically be the related entities. Primary focus will be on those aspects that
inference is most beneficial. First, focus is on the service–to–person and on
service–to–service relationships. According to the topic map, there are four
links between those topic types[25]:

1. A service–to–service association, ‘strong dependence’. This association
will be transformed to ‘strongly depends on’ in one direction and ‘is
strongly depended upon by’ in the reverse direction when used in the
WTC algorithm.

2. A service–to–service association, ‘weak dependence’. This association
will be transformed to ‘weakly depends on’ in one direction and ‘is
weakly depended upon by’ in the reverse direction when used in the
WTC algorithm.

43

4.1. RESULTS OF TOPIC-MAP APPROACH

Selected topic Related topics Association type
login1.uio.no ‘Login–service for UiO

(one of login.uio.no)’
short description

login1.uio.no ‘fping login1.uio.no
&& ssh login1.uio.no’

up-check command

login1.uio.no ‘unix–
drift@usit.uio.no’

e-post list

login1.uio.no ‘M29,25 bsd–
bladecenter5.uio.no’

physical location

login1.uio.no ‘Dell Inc. PowerEdge
M600’

device description

login1.uio.no Trond Hasle Amund-
sen

doc-responsible

login1.uio.no Trond Hasle Amund-
sen

resource person

login1.uio.no sw–248–
191.uio.no, bsd–
bladecenter5.uio.no,
sw–248–56.uio.no

strong dependence

login1.uio.no domain dvergen.uio.no,
domain nissen.uio.no,
domain huldra.uio.no,
ypserv radius1.uio.no,
ipv6–
connected virtual,
viktighet-2 virtual,
nfs platon.uio.no,
tsm sumo.uio.no

weak dependence

Table 4.1: details for service login1.uio.no, its related topics and associations.

3. A service–to–person association, ‘doc–responsible’. This association will
be ‘has doc–responsible’ when relating from service to person, and ‘is
doc–responsible for’ when going from person to service in the WTC al-
gorithm.

4. A service–to–person association , ‘resource person’. This association will
be ‘has resource person’ when going from service to person, and ‘is re-
source person for’ when going from person to service in the WTC algo-
rithm.

Thus, what was non–directional in the topic map, has now turned to a di-
rectional relationship. The most imminent advantage of the WTC algorithm is
the ability to find existing relationships with specific properties using tran-
sitivity. The topic map contains binary relations between services that are
‘weak dependence’ and ‘strong dependence’, which are respectively changed

44

4.1. RESULTS OF TOPIC-MAP APPROACH

to ‘weakly depends upon’ and ‘strongly depends upon’. If we formulate a
weak transitivity rule as follows:

weakly depends on^weakly depends on^weakly depends on

then we can arrive at what the dependence between services that are not
directly addressed by the Houdini topic map will be. Similarly,

strongly depends on^strongly depends on^strongly depends on

will give us another transitive result. For example, we see no relationship
between login1.uio.no and viktighet-1 virtual in the Houdini topic map, re-
fer to figure 2.2. But a 2 step weak dependence relationship, shown by the
red color code, is inferred between those topics after applying those rules, as
shown in the screen shot in figure 4.1.

Figure 4.1: A transitive relationship, not depicted by the Houdini topic map, is dis-
covered and presented by the WTC algorithm.

The explanation, ‘from viktighet-1 virtual to login1.uio.no’, shows that this
dependence is inferred from the two base facts namely

login1.uio.no|weakly depends on|domain_huldra.uio.no

and
domain_huldra.uio.no|weakly depends on|viktighet-1_virtual

The reasoning system applies the inverse rule for the opposite direction,
and then the weak transitive rule is used to reach at the final inference.

Another useful relationship may be between a resource person for one ser-
vice and the services on which this service depends on. In other words, if
person1 is resource person for service1, and service1 weakly or strongly de-
pends on service2 and service3, it is clear that person1 has some interest on
those two services. This means, for any resource person, he or she will be able
to see which services have dependence upon the service that he or she is re-
sponsible for. Let us represent this relationship concept with ‘has interest in’.
Thus we want inferred facts of the form

45

4.1. RESULTS OF TOPIC-MAP APPROACH

resource person|has interest in|service,

or its inverse which is,
service|is interest of|resource person

This kind of facts are like the edge labeled by X in fig 4.2.

Another relationship that can be inferred by the WTC algorithm is a
person-to-person relationship, not depicted by the Houdini topic map. This
relationship can be explained as follows: When a resource person, person1,
clicks a service that he is responsible for, say service A, he finds all the services
that service A strongly depends on. In the Houdini topic map, this is available.
But whom shall he contact about those other services? For that to happen, the
person has to click the service, get another window, and read the resource per-
son for that service. This is because, the topic map cannot use inference to
infer new relationships. But in the WTC algorithm, we can formulate this as
an edge and try to find the edge. This is the edge labeled by Y in fig 4.2.

service1 service2

strongly depends on

has
 re

so
urc

e p
ers

on
h

as
 r

es
o

u
rc

e
p

er
so

n

person1
person2

y=?

X=?

Figure 4.2: In WTC algorithm, to find new relationships, we formulate it into an edge
connecting the nodes directly.

The solid lines are the relationships from the topic map. The dotted lines
are the new inferences we want to make. Edges X and Y are unknown. Once
they are known, a resource person of a service can right away see which other
resource people he needs to contact.

The diagram shows how the WTC algorithm simplifies finding such new
relationships. First, we notice that if a person is a resource person for service1,
and service1 strongly depends on service2, then person1 and service2 have a

46

4.1. RESULTS OF TOPIC-MAP APPROACH

relationship X. We can say that the relationship is ‘has interest in’. We can now
define Y from the need that motivated the formation of the edge, communica-
tion between person1 and person2. Thus, Y can be a symmetric relationship
‘needs communication with’. This means we have two weak transitive rules
to connect person1 and person2.

is resource person for^strongly depends on^has interest in

and
has interest in^has resource person^needs communication with

To explain this using the graph: First it makes use of the fact that, going
from person1 to service2 was taking two edges in the topic map. These are
‘is resource person for’, which is the reverse of ‘has resource person’ because
we are going in the reverse direction, and ‘strongly depends on’. But now, a
new edge, ‘has interest in’, is created from them using this rule. So, a direct
relationship, via edge X, is created. This edge can be explained when clicked.

Once we have X, we can traverse from person1 to service2 via edge X and
then to person2 through ‘has resource person’. But if that is possible, then
going from person1 to person2 directly is possible, according to the transitive
closure algorithm. Thus, the second rule which makes this route possible is
crafted:

has interest in^has resource person^needs communication with

Now this new edge Y, ‘needs communication with’, is symmetric, so that
we use the same relationship whether we go from person1 to person2 or vice-
versa.

This person-to-person relationships can be done for both doc-responsible
and resource person of services that depend on one another whether strongly
or weakly using the appropriate weak transitive rules. Those rules are:

is resource person for^strongly depends on^has interest in

is resource person for^weakly depends on^has interest in

has interest in^has resource person^needs communication with

is doc-responsible for^strongly depends on^has interest in

is doc-responsible for^strongly depends on^has interest in

has interest in^has doc-responsible^needs communication with

The entire rules file for this use-case is available at the appendix.

The result of this is that when a person’s name is clicked and the related
entities are displayed, we see many relationships right away in the WTC algo-
rithm that require more steps of navigations in the Houdini topic map.

4.1.2 Crafting more Rules

Each of the above relationships will have their inverses that will be in the rule
file:

47

4.2. RESULTS OF SYSTEM-DESCRIPTION APPROACH

strongly depends on<>is strongly depended upon by

weakly depends on<>is weakly depended upon by

is doc-responsible for<>has doc-responsible

has resource person<>is resource person for

has interest in<>is interest of

needs communication with<>needs communication with

4.1.3 The pivotal relationship

The pivotal relationship is that relationship between entities that we are look-
ing for. To have this pivotal relationship, we think of a relationship concept
that encompasses all the above concepts. Normally, the pivotal relationship
of a problem domain should be a universal abstraction of all the relationships
that exist in the system of design.

But in this approach, the aim is to accommodate the generality of the topic
map. Thus, we cannot use a relationship in the topic map as the pivotal re-
lationship, since we have one exception, namely, “weak dependence” is not
implied by “strong dependence”. We therefore aim for a universal synonym.
This is a universal relationship that encompasses all the relationships, but is
not necessarily a useful abstraction of all of them. To have a universal syn-
onym, we reason that all of the above are a subset of a “relationship concept”.
Therefore, we can have the implication rules as follows:

strongly depends on->is related to

weakly depends on->is related to

has doc-responsible->is related to

has resource person->is related to

has interest in->is related to

needs communication with->is related to

The inverse of this new concept is itself, i.e.,
is related to<>is related to

Now we are ready to form the knowledge file or facts file, the rules file, and
modify the prototype for a result. Those files are available at the appendix.

Thus, by crafting appropriate rules, and changing the topic map knowl-
edge base into a suitable facts file for the WTC algorithm, we have the benefit
of easily reading a lot of inferred relationships. To reach at such conclusions
using the topic map needs many navigations.

4.2 Results of system-description approach

The result for this approach is available at the site
http://ephrem.vlab.iu.hio.no/cgi-bin/creation.cgi

48

4.2. RESULTS OF SYSTEM-DESCRIPTION APPROACH

In the system-description approach, system knowledge is directly used to
create the knowledge base and the rule set of the WTC algorithm. The entities
will be representing devices, services, personnel and usefulness of any sort
of network items. While in most cases these will be the topics of the Houdini
topic map, we are not bound to that in this approach. The chain of dependence
and causal connection among the entities will be represented by the relation-
ship concepts chosen to express the aspects we want to represent, since again
we are not bound by the topic map associations. The rules will be crafted so
that straight forward binary connections will give rise to inferred connections
that traverse the complex system.

The difference between this and the prior approach is that we will honor
neither the topic limits nor the associations of the Houdini topic map. We will
allow natural implications as in English, and not worry about whether they
are faithful to the topic map.

4.2.1 Formulation of Entity Representations

The primary idea of entity representation is to think the best representation
of the network when conceptualized as a set of individual nodes connected to
each other. The sources of our entities are therefore:

• Devices: Includes the servers, switches, ups and so may other network
devices.

• Services: The network is about service giving. There are file-service,
print-service, dns-service, dhcp-service and the like.

• Personnel: People who have specific tasks and have expertise will be
represented by their names as nodes. While the people may change, the
expertise and task is more or less ‘invariant’.

• Usefulness of Items: like connectivity, power standby, back-up.

Since the system-description approach uses system knowledge, the level
of what we know about the system is crucial. In the case of this thesis, very
accurate architecture will not be used, due to the sensitivity of such informa-
tion. A limited level of detail about the system around the selected use cases is
shown below in table 4.2. This level of system knowledge will be used as the
demonstration of the system-description approach.

Using the above system knowledge, we will use the key relationships “is
provided by”, “needs” and “utilizes” to formulate our facts. Services with
strong dependence will be identified by “needs”, while services with weak
dependence will be identified by “utilizes”. Since “needs” is a more concrete
and strong relationship, it implies “utilizes”. Thus, in the system-description
approach, “utilizes” is the pivotal relationship of the problem domain. That

49

4.2. RESULTS OF SYSTEM-DESCRIPTION APPROACH

Service Function
sw* all sw-* provide network connectivity. exam-

ple: sw–248–191.uio.no, sw–248–56.uio.no
bsd-blader* provide physical location and infrastructure.

example: bsd–bladecenter5.uio.no
ypserv * provide nis catalog service. example

ypserv kvernbit.uio.no
dvergen,huldra,nissen provide dns-lookup service
domain dns-cache provide dns-cache service. example: do-

main dns-cache
nfs * provide nfs file access ser-

vice.example:nfs fronter-netapp01.uio.no
* virtual provide host classification service. examples

are ipv6 connected virtual, viktighet-2 virtual

Table 4.2: system knowledge from IT infrastructure of UiO for system-
description approach use-case.

means, “utilizes” is the universal abstraction towards which the reasoning sys-
tem converges.

We will have, therefore, facts of the kind shown below. Here it is shortened
for readability. The full facts file is found in the appendix.

aton.uio.no|needs|disk-shelf-for-aton

aton.uio.no|needs|network-connectivity-for-aton

aton.uio.no|utilizes|dns-lookup-for-aton

aton.uio.no|utilizes|nfs-file-access-for-aton

disk-shelf-for-aton|is provided by|raid-93.uio.no

network-connectivity-for-aton|is provided by|sw-248-146.uio.no

dns-lookup-for-aton|is provided by|domain_dvergen.uio.no

nfs-file-access-for-aton|is provided by|nfs_alruba.uio.no

The main connectivity rules will then be as follows, shortened for readabil-
ity. The full rules file is available in the appendix.

needs^is provided by^strongly depends upon

utilizes^is provided by^weakly depends upon

strongly depends upon^strongly depends upon^strongly depends upon

weakly depends upon^weakly depends upon^weakly depends upon

The main advantage now is the presentation of explicit systems knowledge
at the front-end. For example, consider the screen shot 4.3 shown below.

50

4.2. RESULTS OF SYSTEM-DESCRIPTION APPROACH

Figure 4.3: In WTC algorithm’s system-description approach, the relationships in the
topic map are presented as a result of concrete system facts.

We see details of login1.uio.no. Relationships like ‘strong dependence’ and
‘weak dependence’ are shown by red color code, since they are the result of
more concrete system facts which are shown in yellow. One red code fact says
that ‘login1.uio.no strongly depends on bsd-bladecenter5.uio.no’. The expla-
nation for it gives us the history of why this dependence exists, in concrete
system terms.

In summary, we combine the benefits from both approaches and the WTC
algorithm benefits us in many ways:

• The discovery of transitive relationships among services

• The discovery of new, useful person-to-person relationships, related
with ‘needs to communicate with’.

• The discovery of new person-to-service relationships, related with ‘has
interest in’.

• The explanation of the Houdini topic map associations in terms of con-
crete system terms

This result, which combines both benefits, is available at the site
http://ephrem.vlab.iu.hio.no/cgi-bin/general.cgi

If we were to assign a color code to the Houdini topic map, we will have
only one color code, because all we can see is binary associations between top-
ics. But in the output of the WTC algorithm, the color codes display the dif-
ferent levels of inference used to present new relationships that have specific
properties.

In addition to those benefits, the front end of the WTC algorithm makes
learning about legacy systems very convenient. This is because, all system

51

4.2. RESULTS OF SYSTEM-DESCRIPTION APPROACH

knowledge records are available by clicking the ‘see raw facts’ button. All
rules and calculated rules are also available by clicking the respective buttons,
as can be seen in figure 4.3. This is something the Houdini topic maps does
not give us. All we can do in the Houdini topic map is navigate through the
knowledge structure.

52

Chapter 5

Discussion

This thesis work has been an endeavor to a new area not formally covered
in the curriculum. Understanding Topic Maps, Understanding the WTC al-
gorithm and dealing with the complex IT system’s knowledge base at Oslo
University has been a challenge. This required the understanding of mathe-
matical principles and their implementation to practical system administration
tasks. Thus, the work has been an investigative study, with open questions to
answer. Yet, the questions were within the limit of knowledge management
opportunities via a different kind of representation for an already represented
system.

Topic Maps allow one to encode all that is and can be known about the
system and simplifies navigation within that knowledge realm, serving as a
binding point for all the system knowledge. Thus Topic Maps assume some-
what an exhaustive representation, at least for the intended purpose, of the
represented system. This means that, what the front end presents is only what
has been recorded from the outset.

The WTC algorithm does not assume an exhaustive representation, but re-
lies on its rules for inferring more from the basic facts. The WTC algorithm
records as many known facts as possible at first, and, using rules and an en-
gine, infers consequences of the more obvious relations. This means that the
front end presents some more relationships than the ones originally recorded.

As a reasoning system, the WTC algorithm is able to infer as many con-
sequences as possible by trying to reach at the universal abstraction of all the
relationships, from as many concrete facts as possible. This universal abstrac-
tion is the pivotal relationship of a problem domain. This has a consequence,
however. The need for a pivotal relationship means that the WTC algorithm is
narrow and can accommodate only specific issues in the system. If the pivotal
relationship is the universal abstraction of all the relationships in a problem
domain, all other relationships must somehow imply it. This means, we will
be forced to think differently than the Houdini topic map, or drop the idea that
the pivotal relationship is a universal abstraction. This latter decision will in
turn limit the ability of the reasoning system in some ways, as demonstrated
in the topic-map approach.

53

5.1. GENERALITY

In the representation of system knowledge, there are differences as well.
In the topic map, the knowledge base that contains the system knowledge is
comprised of different text files. The system knowledge is in the ltm, xml or
xtm files, while most of the expert knowledge also resides in the ontology. The
topic map engine then presents this to the end user. Or, put another way, the
meaning of the front end result about the system is not very clear without the
knowledge of the ontology. It can be found from the front end that one ser-
vice is “strongly dependent” on another. But what does this really mean? This
meaning is the knowledge known by the expert, and is encoded in the ontol-
ogy. Thus, in the Houdini topic map, knowledge of the ontology is assumed
for the intended use of the front end.

In the WTC algorithm, all the concrete knowledge about the system is rep-
resented in the facts file. The facts themselves are simple and straight forward.
The rules work in meaningful and logical ways, that give sense even in com-
mon semantics. Thus, the front end results are very clear at the outset. When
the front end user finds that one service is “strongly dependent” on another,
the meaning is usually found in the explanation, there at the front end. The
front end user does not necessarily need to know any ontology, for that mat-
ter.

These stark differences could have been used, from the outset, as a basis of
argument about the pros and cons of each method for knowledge engineering
in system administration. But this kind of argument would have assumed the
best, ideal utilization of each system. Thus, in the approach, the question was
deliberately left open. This has helped us to focus on very pragmatic, detailed
and real-life differences between the two. When the methods are compared
on such basis, there arise practical limitations of each approach, bringing their
significance to practical solutions into more rigorous test. This has been evi-
dent in the results as explained in the coming sections.

5.1 Generality

To accommodate all practical needs of USIT, the semantic richness of Topic
Maps has been an advantage. Things like “weak dependence” and “strong de-
pendence” has been defined in the ontology and used to define dependences of
different nature. According to the Houdini topic map, these two dependences
are exclusive. If service A is strongly dependent on service B, it cannot function
without the service depended upon, service B, functioning. But if it is weakly
dependent on B, A can still function without the service depended upon, B.
Thus, strong and weak dependence are exclusive. A service that strongly de-
pends on another cannot be said to be weakly dependent as well.

In the Houdini ontology, “strong dependence” doesn’t imply “weak de-
pendence” because of the model of knowledge. In their view of the world,
“strong dependence” is a completely separate thing from “weak dependence”.

54

5.1. GENERALITY

Because of the semantic richness of Topic Maps, those kind of seemingly
illogical definitions caused no problem and could be accommodated by the
Houdini topic map. Thus, the advantage of Topic Maps is the ability to accom-
modate such a generality.

When we try to accommodate this generality in the WTC algorithm using
the topic-map approach, there arose a need to restrict its full potential, which
was achieved by making the pivotal relationship a concept of universal syn-
onym instead of making it a universal abstraction. Thus, in practical usability
in a certain field, this is one of the rigorous differences between the Houdini
topic map and the WTC algorithm.

This difference shows how Topic Maps are richer in semantics, and are
more general. It is understandable, for a human, to accommodate these de-
pendence types as exclusive. Since the Houdini topic map is not a reasoning
system, it can represent such ideas, ideas that the human mind can abstractly
understand, into the computer system.

But as a reasoning system, the WTC algorithm cannot accommodate such
semantic width. The reasoning system works by trying to reach at valid con-
clusions, using the rules, from the facts. When concrete, stronger kinds of
relations cannot imply weaker kinds, there will be an unbridgeable break to
the reasoning system. Thus, we think differently about the domain of interest
in the WTC algorithm.

When thinking differently than the Houdini topic map, what we can ac-
commodate are relationships in the domain that are subsets of the pivotal re-
lationship. The semantic width will be limited. Concrete relationships always
imply their weaker kinds. As an example, “requires” implies “might require”.
This is the true essence of WTC algorithm.

On the other hand, if we decide to accommodate everything in the topic
map by the WTC algorithm, we can reduce the pivotal relationship to a uni-
versal synonym. The effect of such a choice is the limitation of the reasoning
system. Due to this choice, most of the explanations will not be useful for un-
derstanding the facts. But, we can compensate this by making some of the
facts in no need of further explanation.

Consider the results for the topic-map approach. The explanation for those
facts labeled yellow is not useful. This is indeed a limitation, since explanation
of the edges is one of the advantages of the WTC algorithm. This limitation is
imposed because, the pivotal relationship is not a universal abstraction of all
relationships as it should normally be. Rather, it is a universal synonym, “is
related to”.

Since the system is told to try to arrive at “is related to” as pivot, the expla-
nation for all of the yellow labeled relationships is “is related to”, not partic-
ularly an insight adding explanation. But, the compensation of this limitation

55

5.2. TRACING CONNECTIVITY

was done so that all yellow colored relationships be self explanatory that need
no further elaboration. This was done so that to present everything the topic
map had in the WTC algorithm, i.e., for generality purposes. The reasoning
system was limited, by the absence of rules, from its normal way that “strong”
implies “weak.”

Since “weak dependence” is weaker and more general, it should be implied
by “strong dependence”. This is how the WTC algorithms implication rule
normally works. But, when that is so, as is done in the system-description
approach, the seemingly exclusive nature of “weak dependence” and “strong
dependence” in the Houdini topic map cannot be presented as they are.

Thus the fundamental difference between the two representations owing
to semantic generality or richness forces us to choose. To keep what the Hou-
dini topic map had as it is, i.e., making “weak dependence” and “strong de-
pendence” exclusive, the WTC algorithm must be limited to use a universal
synonym as pivot. Or, we must decide it is not necessary to make them ex-
clusive, and handle the domain as we did in the system-description approach.
This brings the excellence of the WTC algorithm, which is tracing connectivity,
to full effect.

5.2 Tracing connectivity

The general issue here is that there is a subtle distinction between what is
allowable in creating a topic map and what is allowable and meaningful in
reasoning about a topic map. Just because relationships A and B have to be
mutually exclusive in the Houdini topic map, does not mean that one has to
reason about them as if they are mutually exclusive, outside the topic map. In
the WTC algorithm, that we place on top of the topic map, the implication

strong => weak

has a profound effect, even though at the lower level, i.e. the Houdini topic
map, it does not.

The system-description approach of the WTC algorithm demonstrates why
it is not a reasonable option to separate “weak” and “strong” dependence in
an exclusive manner for the WTC algorithm. This exclusive representation
of the two dependence types prohibits the WTC algorithm from inferring the
consequences of any kind of intermediate dependence between two entities.
Thus, the WTC algorithm is allowed to reject this in the system-description ap-
proach, and it takes the liberty of its fundamental assumption into full effect.
The assumption is that concrete relationships imply more abstract relation-
ships. While concrete relationships are specific and narrow, they are within the
domain of weaker, more abstract relationships. Thus, according to the WTC
logic, “strong” implies “weak”. If weak dependence affects only a certain func-
tionality of a service, then strong dependence can be seen as a cumulation of
many weak dependences, the sum effect of which will be affecting all func-
tionality aspects of the depending service. Thus, we don’t have unbridgeable

56

5.2. TRACING CONNECTIVITY

break between the two dependences. This means that, “weak” can be used as
a pivotal relationship of the problem domain, being a universal abstraction.
The result of this is that, consequences of relations can be inferred between
any two entities in the system. Thus, the WTC algorithm has keenness to de-
tail and consequence pin pointing. This is a really good quality for the WTC
algorithm’s superior advantage for troubleshooting and learning about legacy
systems. This semantic difference is shown in figure 5.1.

Strong dependence = Requires

Weak dependence = Utilizes

Houdini topic map WTC algorithmvs

Figure 5.1: What was exclusive and unrelated, by choice of design, in the Houdini
topic maps is made to have a relationship in the WTC algorithm

In troubleshooting, understanding the different connections is necessary.
Thus, breaks in the connection are not useful for connectivity analysis. As to
learning of legacy systems, the whole causal chain is possible to trace using
this new connectivity, thus making the acquaintance with the system more
friendly. No break means also that new connectivities can be traced by the
reasoning system.

Using transitivity rules, it was possible to immediately see how two re-
mote entities may depend on each other, as we saw in the example between
login1.uio.no and viktighet-1 virtual.uio.no. There is no direct way to see such
transitive dependences in the Houdini topic map. For the WTC algorithm,
once there is an appropriate weak transitivity rule, all such dependences are
presented to the user.

New connectivity were traced, as another additional example, between re-
source persons of two strongly dependent services. This simplifies the naviga-
tion that has to be done to reach at such connections using the Houdini topic
map. While in the topic map, such navigation will require remembering the
details by oneself, in the WTC algorithm the detail is vividly presented. The
way we navigate between such two persons in the topic map is that, first, a
person clicks a service to see who the resource person is. Then, remembering
this, one of the services which has a strong dependence is clicked to see who
the resource person for this other service is. For more than two services, this

57

5.3. EXPLICIT SYSTEM KNOWLEDGE

would amount several back and forth clicks and remembering several names.
The information is there, but it requires navigating and remembering details.
But in the WTC algorithm, this is presented at one click of a resource person.

This discovery of new connectivity as a consequence of existing concrete
connections is the result of utilizing graph computation and inference rules.
From graph computation, we know that if we can traverse from one node to
another using two or more edges, we can also have an edge that directly con-
nects those two nodes. Then, we tell the prototype how to get that new edge
by crafting the rules of inference.

If the Houdini topic map was to add this resource person–to–resource per-
son association, it will take a lot more than what the WTC required. A new
association type will be defined in the ontology, and every occurrence of this
association needs to be written down with the role and scope of each member
in the association. This requires the modification of the topic map itself. But
in the WTC algorithm, only telling the prototype how to reach such conclu-
sions was necessary, adding two new rules! This is a powerful advantage of
the WTC algorithm.

5.3 Explicit system knowledge

The WTC algorithm presents explicit system knowledge to end users. First of
all, the front-end can supply the raw files knowledge base to the user. Since
the facts are made of simple, system descriptive sentences, this is by itself a
tool for learning about legacy systems.

In addition, by making more abstract concepts the results of concrete sys-
tem descriptions, as demonstrated by the results of the system-description ap-
proach, we were not only able to present what the Houdini topic map pre-
sented, but also with the added advantage of an explanation in terms of con-
crete system description. The following result is as an example.

login1.uio.no|strongly depends on|bsd-bladecenter5.uio.no .

This is a fact that we get from both the Houdini topic map and the WTC
algorithm. While in the Houdini topic map this is all that we have, in the WTC
algorithm we have the explanation of this as a result of two concrete system
facts, as shown in fig 5.2:

Figure 5.2: The WTC algorithm can be made to provide explicit system knowledge
as explanation of more abstract relationships

58

Chapter 6

Conclusion

As knowledge representation technologies, Topic Maps and the WTC algo-
rithm both give us the means to create a digital representation of the system
knowledge. As such, both the Houdini topic map and the WTC algorithm
encoding for the system achieved the goal of creating a representation where
system administration staff have access to study, think and reason about the
system without referring to the physical infrastructure.

It has been possible to demonstrate how the WTC algorithm can benefit
us using two approaches, the first approach based on the topic map and the
second approach based on the system description.

In the first approach, no direct knowledge of the underlying system was
assumed. All knowledge about the system is confined to what the Houdini
topic map can tell us. Based on the description of the system by the Houdini
topic map, the representation of the system by the WTC algorithm provided
additional benefits. These benefits include the inference of new connections
between items in the system, in ways that the topic map did not depict.

In the second approach, the facts are simple system descriptions and the
benefits over the Houdini topic map was that the WTC algorithm results en-
abled the explicit presentation of system knowledge in more concrete system
terms to end users. The somewhat abstract associations of the topic map were
shown to be the result of more concrete dependences of an architectural nature
among system components.

In general, therefore, discovery of less direct forms of dependence, and the
detailed presentation of system knowledge in explicit terms were enabled by
the WTC algorithm.

The choice of two approaches was a deliberate attempt to place emphasis
on the differences between the two representations at various levels. In the first
approach, the differences came even when both have the same system knowl-
edge base, namely, the topic map knowledge base. This is because, the topic
map knowledge base was, in its entirety, transformed to a suitable knowledge
base for the WTC algorithm. The difference came due to the presence of in-
ference in the WTC algorithm, which allowed the latter to make a better use

59

of the knowledge base by providing more relationships that are inferred from
the basic facts.

In the second approach, a far more fundamental difference was outlined.
This is the choice of how to think about the domain. For Houdini topic maps,
the choice is to view the system as discrete components related to each other,
with one and only one kind of relationship between two entities. Services will
depend on another either strongly or weakly, but not both. There has been
a policy decision that associations cannot overlap in meaning. They can in
topic maps; they can’t in Houdini. The reason for this policy decision is that it
makes data easier to gather and more reliable, even if many people are gath-
ering it. The other reason is that when depicting the data, one can use one
and only one depiction for each kind of edge. There is no requirement as to
what kind of relationship the different types of associations may have to one
another. In other words, if a concept can express an association between the
chosen discrete components, it will be applied with no care as to what its rela-
tionship with other association concepts my be. What the Houdini topic map
cares most is to capture the domain and enable navigational interconnection
between the components. The association-to-association interaction is not a
concern in the Houdini topic map.

This is not the choice of thinking in the WTC algorithm. In this represen-
tation, relationships between the associations themselves can be represented.
Association-to-association interaction is a key concern in the WTC algorithm.
These are the rules in this algorithm. The different associations themselves
must somehow be related to each other. Therefore, in the WTC algorithm,
it is not about capturing the domain and enabling navigation that matters,
it is capturing the causal dependence among the components of the domain
and representing those chains that matters. While topic map enables naviga-
tion and give us paths whenever available, the WTC algorithm “colors” those
paths and shows us different connections as consequences of other basic con-
nections. In other words, we are navigating in the Houdini topic map graph,
but we are extracting and viewing subgraphs of choice in the WTC algorithm.
The choice of which subgraphs to view is dictated by the inference rules and
the pivotal relationship in the WTC algorithm.

The Houdini topic map is an excellent match for the purpose of its design,
i.e., it serves as a binding point for system administration tasks. These are,
among others,

• Serves as seamless connection of different information sources

• Helps personnel to study system dependencies and plan things like
downtime during maintenance

• Makes it easy to view responsibility divisions among staff and knowing
who to contact in contingencies

60

The WTC algorithm adds value. It meets all of the Houdini topic
map goals, and benefits some more. Among the responsibility divisions
and knowing who does what and for eventual contact, the new connec-
tions by the WTC algorithm make it more accessible than the Houdini topic
map does. By adding transitive rules, new person-to-person and person-to-
service of interest relationships are inferred.

The detailed system knowledge presentation has more substantial benefit
for personnel when studying system dependence. In addition, learning about
the system is made easier by the WTC presentation. In the topic map, the
knowledge base files are not accessible from the front end. Even if they were,
the knowledge base files in the topic map are difficult to read as they are. In
the WTC presentation, general relationships acquire detailed explanation in
concrete terms. In addition, the facts file, which is the knowledge base of the
WTC algorithm, is accessible from the front end. The facts file is full of easy to
understand system descriptions, and can enhance acquaintance with a legacy
system.

Both Houdini and the WTC algorithm attempt to make Topic Maps useful
by imposing limitations. Houdini limits by allowing only one kind of associ-
ation per pair. The WTC algorithm limits by restricting to two kinds of rea-
soning, the implication and the weak transitive closure. Houdini is optimal
for people coding information, but does not utilize reasoning. The WTC al-
gorithm is optimal for understanding hidden relationships, but not for coding
the initial relationships.

61

Chapter 7

Appendix

7.1 Details of Selected Topics from Houdini

Selected topic Related topics Association type
login1.uio.no ‘Login-service for UiO

(one of login.uio.no)’
short description

login1.uio.no ‘fping login1.uio.no
&& ssh login1.uio.no’

up-check command

login1.uio.no ‘unix-drift@usit.uio.no’ e-post list
login1.uio.no ‘M29,25 bsd-

bladecenter5.uio.no’
physical location

login1.uio.no ‘Dell Inc. PowerEdge
M600’

device description

login1.uio.no Trond Hasle Amund-
sen

doc-responsible

login1.uio.no Trond Hasle Amund-
sen

resource person

login1.uio.no bsd-
bladecenter5.uio.no,
sw–248–56.uio.no,
sw–248–191.uio.no

strong dependence

login1.uio.no domain dvergen.uio.no,
domain huldra.uio.no,
domain nissen.uio.no,
ipv6-connected virtual,
nfs platon.uio.no,
tsm sumo.uio.no,
tsm tsm-
prod01.uio.no,
viktighet-2 virtual,
ypserv radius1.uio.no

weak dependence

Table 7.1: details for service login1.uio.no, its related topics and associations.

63

7.2. TOPIC-MAP APPROACH

Selected topic Related topics Association type
aton.uio.no ‘Fail over machine for

inti, HINODE data cen-
ter, astro’

short description

aton.uio.no ‘fping aton.uio.no &&
ssh aton.uio.no’

up-check command

aton.uio.no ‘drift@astro.uio.no’ e-post list
aton.uio.no ‘M24,25’ physical location
aton.uio.no ‘Sun-Fire-T200’ device description
aton.uio.no Kjetil Kirkeba doc-responsible
aton.uio.no Unni Fuskeland, Kjetil

Kirkeba, Torben Leif-
sen, Stein Vidar Hag-
fors Haugan

resource person

aton.uio.no raid–93.uio.no, sw–
186–105.uio.no, sw–
248–146.uio.no

strong dependence

aton.uio.no domain dvergen.uio.no,
ypserv mistilteinn.uio.no,
nfs sadir.uio.no,
nfs alruba.uio.no,
domain nissen.uio.no,
domain huldra.uio.no,
viktighet-3 virtual

weak dependence

Table 7.2: details for service aton.uio.no, its related topics and associations.

7.2 topic-map approach

7.2.1 Entities of the WTC algorithm, topic-map Approach

Problem source

’ ’

’ M24,25’

’Application server for fronter.com’

’Cachende DNS-server for UiO’

’Dell Inc. PowerEdge M610,417TS4J’

’Dell Inc. PowerEdge R710 7C0LM4J’

’Diskhylle for aton og eltanin’

’Failovermaskin for inti, HINODE datasenter, astro’

’HP ProLiant BL460c ,G1 447707-B21,GB874953F7’

’M11,27’

’M14,27 fronter-bladecenter3.uio.no’

’M23,12’

’M24,25’

’Mail-server for Fronter’

64

7.2. TOPIC-MAP APPROACH

Selected topic Related topics Association type
backup01.fronter.uio.no ‘Server for TSM-

backup of fronter-
netapp01’

short description

backup01.fronter.uio.no ‘fping
backup01.fronter.uio.no
&& ssh
backup01.fronter.uio.no’

up-check command

backup01.fronter.uio.no ‘fronter-
core@usit.uio.no’

e-post list

backup01.fronter.uio.no ‘M11,27’ physical location
backup01.fronter.uio.no ‘Dell Inc. PowerEdge

R710’
device description

backup01.fronter.uio.no Kjetil Kirkeboe doc-responsible
backup01.fronter.uio.no Frank Solem, Helge

Hauglin, Poal Hjelme-
seth Myklebust

resource person

backup01.fronter.uio.no sw-248-150.uio.no, sw-
248-23.uio.no

strong dependence

backup01.fronter.uio.no domain dvergen.uio.no,
domain huldra.uio.no,
domain nissen.uio.no,
nfs fronter-
netapp01.uio.no,
tsm sumo.uio.no,
tsm tsm-
prod01.uio.no,
viktighet-2 virtual,
ypserv kvernbit.uio.no,

weak dependence

Table 7.3: details for service backup01.fronter.uio.no, its related topics and as-
sociations.

’Server for TSM-backup of fronter-netapp01’

’Sun-Fire-T200’

’drift@astro.uio.no’

’fping aton.uio.no && ssh aton.uio.no’

’fping backup01.fronter.uio.no && ssh backup01.fronter.uio.no’

’fping domain_huldra.uio.no && ssh domain_huldra.uio.no’

’fping mail-imap1.fronter.uio.no && ssh mail-imap1.fronter.uio.no’

’fping raid-93.uio.no && ssh raid-93.uio.no’

’fping web1.fronter.uio.no && ssh web1.fronter.uio.no’

’fronter-core@usit.uio.no’

’postmaster@usit.uio.no’

’storage-core@usit.uio.no’

Anders Odberg

65

7.2. TOPIC-MAP APPROACH

Bente Christine Aasgaard

Dell Inc. PowerEdge M600,B8CBS3J

Frank Solem

Helge Hauglin

Kjell Andresen

Kjetil Kirkebo

M29,25 bsd-bladecenter5.uio.no

Morten Werner Forsbring

Myklebust

Poal Hjelmeseth

Poal Hjelmeseth Myklebust

Stein Vidar Hagfors Haugan

Torben Leifsen

Trond Hasle Amundsen

Unni Fuskeland

aton.uio.no

backup01.fronter.uio.no

bsd-bladecenter5.uio.no

domain_dns-cache.uio.no

domain_dvergen.uio.no

domain_huldra.uio.no

domain_nissen.uio.no

fronter-bladecenter3.uio.no

hostmaster@usit.uio.no

ipv6-connected_virtual

login1.uio.no

mail-imap1.fronter.uio.no

need-up-sup-in-365_virt

nfs_alruba.uio.no

nfs_fronter-netapp01.uio.no

nfs_sadir.uio.no

power-kurs-M159

power-kurs-M160

power-kurs-M50-5

power-ups-02-69

power-ups-02-71

power-ups-02-74

raid-93.uio.no

sw-186-105.uio.no

sw-186-113.uio.no

sw-248-141.uio.no

sw-248-146.uio.no

sw-248-150.uio.no

sw-248-169.uio.no

sw-248-170.uio.no

sw-248-191.uio.no

sw-248-23.uio.no

66

7.2. TOPIC-MAP APPROACH

sw-248-33.uio.no

sw-248-56.uio.no

sw-248-71.uio.no

tsm_sumo.uio.no

tsm_tsm-prod01.uio.no

viktighet-1_virtual

viktighet-2_virtual

viktighet-3_virtual

web1.fronter.uio.no

ypserv_kvernbit.uio.no

ypserv_mistilteinn.uio.no

7.2.2 Facts file for the topic-map approach

#for short description, upcheck command, e-post list, pysical

#location and device description

aton.uio.no|has short|’Failovermaskin for inti, HINODE datasenter, astro’

backup01.fronter.uio.no|has short|’Server for TSM-backup of fronter-netapp01’

login1.uio.no|has short|’Login-service for UiO (one of login.uio.no)’

mail-imap1.fronter.uio.no|has short|’Mail-server for Fronter’

web1.fronter.uio.no|has short|’Application server for fronter.com’

raid-93.uio.no|has short|’Diskhylle for aton og eltanin’

domain_huldra.uio.no|has short|’Cachende DNS-server for UiO’

aton.uio.no|has comm|’fping aton.uio.no && ssh aton.uio.no’

backup01.fronter.uio.no|has comm|’fping backup01.fronter.uio.no

&& ssh backup01.fronter.uio.no’

login1.uio.no|has comm|’fping login1.uio.no && ssh login1.uio.no’

mail-imap1.fronter.uio.no|has comm|’fping mail-imap1.fronter.uio.no

&& ssh mail-imap1.fronter.uio.no’

web1.fronter.uio.no|has comm|’fping web1.fronter.uio.no

&& ssh web1.fronter.uio.no’

raid-93.uio.no|has comm|’fping raid-93.uio.no && ssh raid-93.uio.no’

domain_huldra.uio.no|has comm|’fping domain_huldra.uio.no

&& ssh domain_huldra.uio.no’

aton.uio.no|has epost|’drift@astro.uio.no’

backup01.fronter.uio.no|has epost|’fronter-core@usit.uio.no’

login1.uio.no|has epost|’unix-drift@usit.uio.no’

mail-imap1.fronter.uio.no|has epost|’postmaster@usit.uio.no’

web1.fronter.uio.no|has epost|’fronter-core@usit.uio.no’

raid-93.uio.no|has epost|’storage-core@usit.uio.no’

domain_huldra.uio.no|has epost|hostmaster@usit.uio.no

67

7.2. TOPIC-MAP APPROACH

aton.uio.no|has phys|’M24,25’

backup01.fronter.uio.no|has phys|’M11,27’

login1.uio.no|has phys|’M29,25 bsd-bladecenter5.uio.no’

mail-imap1.fronter.uio.no|has phys|’M23,12’

web1.fronter.uio.no|has phys|’M14,27 fronter-bladecenter3.uio.no’

raid-93.uio.no|has phys|’ M24,25’

domain_huldra.uio.no|has phys|M29,25 bsd-bladecenter5.uio.no

aton.uio.no|has dev|’Sun-Fire-T200’

backup01.fronter.uio.no|has dev|’Dell Inc. PowerEdge R710 7C0LM4J’

login1.uio.no|has dev|’Dell Inc. PowerEdge M600’

mail-imap1.fronter.uio.no|has dev|’HP ProLiant BL460c ,G1 447707-B21,GB874953F7’

web1.fronter.uio.no|has dev|’Dell Inc. PowerEdge M610,417TS4J’

web1.fronter.uio.no|has dev|’ ’

domain_huldra.uio.no|has dev|Dell Inc. PowerEdge M600,B8CBS3J

for strong dependence

aton.uio.no|strongly depends on|raid-93.uio.no

aton.uio.no|strongly depends on|sw-186-105.uio.no

aton.uio.no|strongly depends on|sw-248-146.uio.no

backup01.fronter.uio.no|strongly depends on|sw-248-23.uio.no

backup01.fronter.uio.no|strongly depends on|sw-248-150.uio.no

login1.uio.no|strongly depends on|sw-248-191.uio.no

login1.uio.no|strongly depends on|bsd-bladecenter5.uio.no

login1.uio.no|strongly depends on|sw-248-56.uio.no

mail-imap1.fronter.uio.no|strongly depends on|sw-248-170.uio.no

mail-imap1.fronter.uio.no|strongly depends on|sw-248-141.uio.no

mail-imap1.fronter.uio.no|strongly depends on|sw-248-169.uio.no

mail-imap1.fronter.uio.no|strongly depends on|sw-248-33.uio.no

web1.fronter.uio.no|strongly depends on|sw-248-71.uio.no

web1.fronter.uio.no|strongly depends on|fronter-bladecenter3.uio.no

web1.fronter.uio.no|strongly depends on|power-kurs-M159

web1.fronter.uio.no|strongly depends on|power-kurs-M50-5

web1.fronter.uio.no|strongly depends on|power-kurs-M160

web1.fronter.uio.no|strongly depends on|power-ups-02-74

web1.fronter.uio.no|strongly depends on|sw-186-113.uio.no

web1.fronter.uio.no|strongly depends on|power-ups-02-71

web1.fronter.uio.no|strongly depends on|power-ups-02-69

raid-93.uio.no|strongly depends on|sw-186-105.uio.no

domain_huldra.uio.no|strongly depends on|bsd-bladecenter5.uio.no

domain_huldra.uio.no|strongly depends on|sw-248-56.uio.no

68

7.2. TOPIC-MAP APPROACH

#for weak dependence

aton.uio.no|weakly depends on|domain_dvergen.uio.no

aton.uio.no|weakly depends on|ypserv_mistilteinn.uio.no

aton.uio.no|weakly depends on|nfs_sadir.uio.no

aton.uio.no|weakly depends on|nfs_alruba.uio.no

aton.uio.no|weakly depends on|domain_nissen.uio.no

aton.uio.no|weakly depends on|domain_huldra.uio.no

aton.uio.no|weakly depends on|viktighet-3_virtual

backup01.fronter.uio.no|weakly depends on|tsm_tsm-prod01.uio.no

backup01.fronter.uio.no|weakly depends on|domain_huldra.uio.no

backup01.fronter.uio.no|weakly depends on|domain_dvergen.uio.no

backup01.fronter.uio.no|weakly depends on|domain_nissen.uio.no

backup01.fronter.uio.no|weakly depends on|nfs_fronter-netapp01.uio.no

backup01.fronter.uio.no|weakly depends on|viktighet-2_virtual

backup01.fronter.uio.no|weakly depends on|ypserv_kvernbit.uio.no

backup01.fronter.uio.no|weakly depends on|tsm_sumo.uio.no

login1.uio.no|weakly depends on|domain_huldra.uio.no

login1.uio.no|weakly depends on|domain_nissen.uio.no

login1.uio.no|weakly depends on|domain_dvergen.uio.no

login1.uio.no|weakly depends on|ipv6-connected_virtual

login1.uio.no|weakly depends on|viktighet-2_virtual

login1.uio.no|weakly depends on|ypserv_radius1.uio.no

login1.uio.no|weakly depends on|nfs_platon.uio.no

login1.uio.no|weakly depends on|tsm_sumo.uio.no

mail-imap1.fronter.uio.no|weakly depends on|domain_dns-cache.uio.no

mail-imap1.fronter.uio.no|weakly depends on|domain_nissen.uio.no

mail-imap1.fronter.uio.no|weakly depends on|ypserv_kvernbit.uio.no

mail-imap1.fronter.uio.no|weakly depends on|domain_dvergen.uio.no

mail-imap1.fronter.uio.no|weakly depends on|need-up-sup-in-365_virt

mail-imap1.fronter.uio.no|weakly depends on|domain_huldra.uio.no

mail-imap1.fronter.uio.no|weakly depends on|viktighet-2_virtual

mail-imap1.fronter.uio.no|weakly depends on|tsm_sumo.uio.no

web1.fronter.uio.no|weakly depends on|domain_nissen.uio.no

web1.fronter.uio.no|weakly depends on|viktighet-3_virtual

web1.fronter.uio.no|weakly depends on|tsm_tsm-prod01.uio.no

web1.fronter.uio.no|weakly depends on|domain_dvergen.uio.no

web1.fronter.uio.no|weakly depends on|ypserv_mistilteinn.uio.no

web1.fronter.uio.no|weakly depends on|domain_huldra.uio.no

web1.fronter.uio.no|weakly depends on|tsm_sumo.uio.no

raid-93.uio.no|weakly depends on|viktighet-3_virtual

domain_huldra.uio.no|weakly depends on|domain_dvergen.uio.no

69

7.2. TOPIC-MAP APPROACH

domain_huldra.uio.no|weakly depends on|domain_huldra.uio.no

domain_huldra.uio.no|weakly depends on|domain_nissen.uio.no

domain_huldra.uio.no|weakly depends on|ipv6-connected_virtual

domain_huldra.uio.no|weakly depends on|tsm_sumo.uio.no

domain_huldra.uio.no|weakly depends on|viktighet-1_virtual

for documentation of service

Kjetil Kirkebo|is doc-responsible for|aton.uio.no

Kjetil Kirkebo|is doc-responsible for|backup01.fronter.uio.no

Trond Hasle Amundsen|is doc-responsible for|login1.uio.no

Trond Hasle Amundsen|is doc-responsible for|mail-imap1.fronter.uio.no

Trond Hasle Amundsen|is doc-responsible for|web1.fronter.uio.no

Anders Odberg|is doc-responsible for|domain_huldra.uio.no

Morten Werner Forsbring|is doc-responsible for|raid-93.uio.no

#for resource person

Unni Fuskeland|is resource person for|aton.uio.no

Kjetil Kirkebo|is resource person for|aton.uio.no

Torben Leifsen|is resource person for|aton.uio.no

Stein Vidar Hagfors Haugan|is resource person for|aton.uio.no

Poal Hjelmeseth|is resource person for|backup01.fronter.uio.no

Myklebust|is resource person for|backup01.fronter.uio.no

Frank Solem|is resource person for|backup01.fronter.uio.no

Helge Hauglin|is resource person for|backup01.fronter.uio.no

Trond Hasle Amundsen|is resource person for|login1.uio.no

Frank Solem|is resource person for|mail-imap1.fronter.uio.no

Bente Christine Aasgaard|is resource person for|mail-imap1.fronter.uio.no

Trond Hasle Amundsen|is resource person for|mail-imap1.fronter.uio.no

Frank Solem|is resource person for|web1.fronter.uio.no

Poal Hjelmeseth Myklebust|is resource person for|web1.fronter.uio.no

Morten Werner Forsbring|is resource person for|raid-93.uio.no

Anders Odberg|is resource person for|raid-93.uio.no

Kjell Andresen|is resource person for|raid-93.uio.no

Anders Odberg|is resource person for|domain_huldra.uio.no

Morten Werner Forsbring|is resource person for|domain_huldra.uio.no

####################

login1.uio.no$

70

7.2. TOPIC-MAP APPROACH

7.2.3 Rules file for the topic-map approach

canonical

has short=>has short description

has comm=>has up check command

has epost=>has e-post list

has phys=>has physical location

has dev=>has device description

is comm=>is short command for

is epost=>is epost list for

is short=>is short description for

is phys=>is physical location of

is dev=>is device description for

inverse

strongly depends on<>is strongly depended upon by

weakly depends on<>is weakly depended upon by

is doc-responsible for<>has doc-responsible

is resource person for<>has resource person

is related to<>is related to

is determined by<>determines

is influenced by<>influences

has interest in<>is interest of

requires communication with<>requires communication with

has comm<>is comm

has epost<>is epost

has short<>is short

has phys<>is phys

has dev<>is dev

implication

strongly depends on->is determined by

weakly depends on->is influenced by

is determined by->is related to

is influenced by->is related to

#strongly depends on->is related to

#weakly depends on->is related to

has short->is related to

has comm->is related to

has epost->is related to

has phys->is related to

has dev->is related to

71

7.3. SYSTEM-DESCRIPTION APPROACH

is doc-responsible for->is related to

is resource person for->is related to

has interest in->is related to

requires communication with->is related to

weak transitive rules

strongly depends on^strongly depends on^strongly depends on

weakly depends on^weakly depends on^weakly depends on

the effect of these two rules is a service might be both strongly and

#weakly dependent on another, from different routes

#weakly depends on^strongly depends on^weakly depends on

#strongly depends on^weakly depends on^weakly depends on

new for person to person

is resource person for^strongly depends on^has interest in

is resource person for^weakly depends on^has interest in

has interest in^has resource person^requires communication with

is doc-responsible for^strongly depends on^has interest in

is doc-responsible for^strongly depends on^has interest in

has interest in^has doc-responsible^requires communication with

7.3 system-description approach

7.3.1 Facts file for the system-description approach

aton.uio.no|requires|disk-shellf-for-aton

disk-shellf-for-aton|is provided by|raid-93.uio.no

aton.uio.no|requires|network-connectivity-for-aton

network-connectivity-for-aton|is provided by|sw-248-146.uio.no

aton.uio.no|utilizes|dns-lookup-for-aton

dns-lookup-for-aton|is provided by|domain_dvergen.uio.no

dns-lookup-for-aton|is provided by|domain_huldra.uio.no

dns-lookup-for-aton|is provided by|domain_nissen.uio.no

aton.uio.no|utilizes|nfs-file-access-for-aton

nfs-file-access-for-aton|is provided by|nfs_alruba.uio.no

nfs-file-access-for-aton|is provided by|nfs_sadir.uio.no

aton.uio.no|utilizes|host-classification-for-aton

host-classification-for-aton|is provided by|viktighet-3_virtual

72

7.3. SYSTEM-DESCRIPTION APPROACH

aton.uio.no|utilizes|nis-catalog-service-for-aton

nis-catalog-service-for-aton|is provided by|ypserv_mistilteinn.uio.no

Kjetil Kirkebo|documents|aton.uio.no

Unni Fuskeland|is responsible for|aton.uio.no

Stein Vidar Hagfors Haugan|is responsible for|aton.uio.no

Kjetil Kirkebo|is responsible for|aton.uio.no

Torben Leifsen|is responsible for|aton.uio.no

###################################

login1.uio.no|requires|phys-infra-and-loc-for-login1

phys-infra-and-loc-for-login1|is provided by|bsd-bladecenter5.uio.no

login1.uio.no|requires|network-connectivity-for-login1

network-connectivity-for-login1|is provided by|sw-248-191.uio.no

network-connectivity-for-login1|is provided by|sw-248-56.uio.no

login1.uio.no|utilizes|dns-lookup-for-login1

dns-lookup-for-login1|is provided by|domain_dvergen.uio.no

dns-lookup-for-login1|is provided by|domain_huldra.uio.no

dns-lookup-for-login1|is provided by|domain_nissen.uio.no

login1.uio.no|utilizes|host-classification-for-login1

host-classification-for-login1|is provided by|ipv6-connected_virtual.uio.no

host-classification-for-login1|is provided by|viktighet-2_virtual.uio.no

login1.uio.no|utilizes|nfs-file-access-for-login1

nfs-file-access-for-login1|is provided by|nfs_platon.uio.no

login1.uio.no|utilizes|sumo-service-for-login1

sumo-service-for-login1|is provided by|tsm_sumo.uio.no

login1.uio.no|utilizes|tsm-prod01-service-for-login1

tsm-prod01-service-for-login1|is provided by|tsm_tsm-prod01.uio.no

login1.uio.no|utilizes|nis-catalog-service-for-login1

nis-catalog-service-for-login1|is provided by|ypserv_radius1.uio.no

Trond Hasle Amundsen|documents|login1.uio.no

Trond Hasle Amundsen|is responsible for|login1.uio.no

######################################

mail-imap1.fronter.uio.no|requires|network-connectivity-for-mail-imap1

network-connectivity-for-mail-imap1|is provided by|sw-248-141.uio.no

network-connectivity-for-mail-imap1|is provided by|sw-248-169.uio.no

network-connectivity-for-mail-imap1|is provided by|sw-248-170.uio.no

network-connectivity-for-mail-imap1|is provided by|sw-248-33.uio.no

73

7.3. SYSTEM-DESCRIPTION APPROACH

mail-imap1.fronter.uio.no|utilizes|dns-for-mail.imap1

dns-for-mail.imap1|is provided by|domain_dvergen.uio.no

dns-for-mail.imap1|is provided by|domain_huldra.uio.no

dns-for-mail.imap1|is provided by|domain_nissen.uio.no

mail-imap1.fronter.uio.no|utilizes|dnscache-for-mail.imap1

dnscache-for-mail.imap1|is provided by|domain_dns-cache.uio.no

mail-imap1.fronter.uio.no|utilizes|hostclassification-for-mail-imap1

hostclassification-for-mail-imap1|is provided by|need-up-sup-in-365_virt

hostclassification-for-mail-imap1|is provided by|viktighet-2_virtual

mail-imap1.fronter.uio.no|utilizes|tsm-sumo-for-mail-imap1

tsm-sumo-for-mail-imap1|is provided by|tsm_sumo.uio.no

mail-imap1.fronter.uio.no|utilizes|nis-catalog-service-for-mail-imap1

nis-catalog-service-for-mail-imap1|is provided by|ypserv_kvernbit.uio.no

Trond Hasle Amundsen|documents|mail-imap1.fronter.uio.no

Frank Solem|is responsible for|mail-imap1.fronter.uio.no

Trond Hasle Amundsen|is responsible for|mail-imap1.fronter.uio.no

Bente Christine Aasgaard|is responsible for|mail-imap1.fronter.uio.no

##

backup01.fronter.uio.no|requires|network-connectivity-for-backup01

network-connectivity-for-backup01|is provided by|sw-248-150.uio.no

network-connectivity-for-backup01|is provided by|sw-248-23.uio.no

backup01.fronter.uio.no|utilizes|dns-for-backup01

dns-for-backup01|is provided by|domain_dvergen.uio.no

dns-for-backup01|is provided by|domain_huldra.uio.no

dns-for-backup01|is provided by|domain_nissen.uio.no

backup01.fronter.uio.no|utilizes|nfs-for-backup01

nfs-for-backup01|is provided by|nfs_fronter-netapp01.uio.no

backup01.fronter.uio.no|utilizes|tsm-sumo-for-backup01

tsm-sumo-for-backup01|is provided by|tsm_sumo.uio.no

backup01.fronter.uio.no|utilizes|tsm-tsm-for-backup01

tsm-tsm-for-backup01|is provided by|tsm_tsm-prod01.uio.no

backup01.fronter.uio.no|utilizes|hostclassification-for-backup01

hostclassification-for-backup01|is provided by|viktighet-2_virtual

74

7.3. SYSTEM-DESCRIPTION APPROACH

backup01.fronter.uio.no|utilizes|nis-catalog-service-for-backup01

nis-catalog-service-for-backup01|is provided by|ypserv_kvernbit.uio.no

Kjetil Kirkebo|documents|backup01.fronter.uio.no

Frank Solem|is responsible for|backup01.fronter.uio.no

Helge Hauglin|is responsible for|backup01.fronter.uio.no

Poal Hjelmeseth Myklebust|is responsible for|backup01.fronter.uio.no

#####################################

web1.fronter.uio.no|requires|phys-infra-and-loc-for-web1

phys-infra-and-loc-for-web1|is provided by|fronter-bladecenter3.uio.no

web1.fronter.uio.no|requires|network-connectivity-for-web1

network-connectivity-for-web1|is provided by|sw-248-71.uio.no

web1.fronter.uio.no|utilizes|dns-for-web1

dns-for-web1|is provided by|domain_dvergen.uio.no

dns-for-web1|is provided by|domain_huldra.uio.no

dns-for-web1|is provided by|domain_nissen.uio.no

web1.fronter.uio.no|utilizes|tsm-sumo-for-web1

tsm-sumo-for-web1|is provided by|tsm_sumo.uio.no

web1.fronter.uio.no|utilizes|tsm-tsm-for-web1

tsm-tsm-for-web1|is provided by|tsm_tsm-prod01.uio.no

web1.fronter.uio.no|utilizes|hostclassification-for-web1

hostclassification-for-web1|is provided by|viktighet-3_virtual

web1.fronter.uio.no|utilizes|nis-catalog-service-for-web1

nis-catalog-service-for-web1|is provided by|ypserv_kvernbit.uio.no

Trond Hasle Amundsen|documents|web1.fronter.uio.no

Frank Solem|is responsible for|web1.fronter.uio.no

Poal Hjelmeseth Myklebust|is responsible for|web1.fronter.uio.no

##

huldra.uio.no|requires|phys-infra-and-loc-for-huldra

phys-infra-and-loc-for-huldra|is provided by|bsd-bladecenter5.uio.no

huldra.uio.no|requires|network-connectivity-for-huldra

network-connectivity-for-huldra|is provided by|sw-248-56.uio.no

huldra.uio.no|utilizes|dns-for-huldra

75

7.3. SYSTEM-DESCRIPTION APPROACH

dns-for-huldra|is provided by|domain_dvergen.uio.no

dns-for-huldra|is provided by|domain_huldra.uio.no

dns-for-huldra|is provided by|domain_nissen.uio.no

huldra.uio.no|utilizes|tsm-sumo-for-huldra

tsm-sumo-for-huldra|is provided by|tsm_sumo.uio.no

huldra.uio.no|utilizes|hostclassification-for-huldra

hostclassification-for-huldra|is provided by|ipv6-connected_virtual

hostclassification-for-huldra|is provided by|viktighet-1_virtual

Anders Odberg|documents|web1.fronter.uio.no

Anders Odberg|is responsible for|web1.fronter.uio.no

Morten Werner Forsbring|is responsible for|web1.fronter.uio.no

######################################

login1.uio.no$

7.3.2 Rules file for the system-description approach

#canonical

has a=>has instance

is a=>is an instance of

inverses

has a<>is a

requires<>is required by

utilizes<>is utilized by

documents<>is documented by

is responsible for<>has responsible

is provided by<>provides

strongly depends upon<>is strongly depended upon by

weakly depends upon<>is weakly depended upon by

#implications

strongly depends upon->weakly depends upon

documents->is utilized by

is responsible for->is required by

requires->strongly depends upon

utilizes->weakly depends upon

#weak transitive

76

7.3. SYSTEM-DESCRIPTION APPROACH

requires^is provided by^strongly depends upon

utilizes^is provided by^weakly depends upon

strongly depends upon^strongly depends upon^strongly depends upon

weakly depends upon^weakly depends upon^weakly depends upon

77

7.3. SYSTEM-DESCRIPTION APPROACH

Selected topic Related topics Association type
mail-imap1.fronter.uio.no ‘ Mail-server for Fron-

ter’
short description

mail-imap1.fronter.uio.no ‘fping mail-
imap1.fronter.uio.no
&& ssh mail-
imap1.fronter.uio.no’

up-check command

mail-imap1.fronter.uio.no ‘ postmas-
ter@usit.uio.no’

e-post list

mail-imap1.fronter.uio.no ‘M23,12’ physical location
mail-imap1.fronter.uio.no ‘HP ProLiant BL460c

G1’
device description

mail-imap1.fronter.uio.no Trond Hasle Amund-
sen

doc-responsible

mail-imap1.fronter.uio.no Frank Solem, Trond
Hasle Amundsen,
Bente Christine Aas-
gaard

resource person

mail-imap1.fronter.uio.no sw-248-141.uio.no,
sw-248-169.uio.no,
sw-248-170.uio.no,
sw-248-33.uio.no

strong dependence

mail-imap1.fronter.uio.no domain dns-
cache.uio.no, do-
main dvergen.uio.no,
domain huldra.uio.no,
domain nissen.uio.no,
need-updated-support-
in-365-days virtual,
tsm sumo.uio.no,
viktighet-2 virtual,
ypserv kvernbit.uio.no

weak dependence

Table 7.4: details for service mail-imap1.fronter.uio.no, its related topics and
associations.

78

7.3. SYSTEM-DESCRIPTION APPROACH

Selected topic Related topics Association type
web1.fronter.uio.no ‘Applikasjonserver for

fronter.com’
short description

web1.fronter.uio.no ‘fping
web1.fronter.uio.no
&& ssh
web1.fronter.uio.no’

up-check command

web1.fronter.uio.no ‘fronter-
core@usit.uio.no’

e-post list

web1.fronter.uio.no ‘M14,27 fronter-
bladecenter3.uio.no’

physical location

web1.fronter.uio.no ‘Dell Inc. PowerEdge
M610’

device description

web1.fronter.uio.no Trond Hasle Amund-
sen

doc-responsible

web1.fronter.uio.no Frank Solem, Poal
Hjelmeseth Myklebust

resource person

web1.fronter.uio.no fronter-
bladecenter3.uio.no,
sw-248-71.uio.no

strong dependence

web1.fronter.uio.no domain dvergen.uio.no,
domain huldra.uio.no,
domain nissen.uio.no,
tsm sumo.uio.no,
tsm tsm-
prod01.uio.no,
viktighet-3 virtual,
ypserv kvernbit.uio.no

weak dependence

Table 7.5: details for service web1.fronter.uio.no, its related topics and associ-
ations.

79

Bibliography

[1] S. L. Kendal and M. Creen. An Introduction to Knowledge Engineering
Springer Link DOI 10.1007/978-1-84628-667-4 ISBN 978-1-84628-475-5
(Print) 978-1-84628-667-4 (Online)

[2] Edward A. Feigenbaum, Pamela McCorduck The fifth generation : artificial
intelligence and Japan’s computer challenge to the world OSTI ID: 6089771
Addison-Wesley Pub. Co., 1983.

[3] John K Debenham Normal forms of rule-based knowledge systems
DOI:10.1016/0950-7051(89)90019-1 Copyright 1989 Published by Else-
vier Science B.V

[4] Reinhard Diestel Graph Theory, Fourth Edition 2010 Springer-Verlag,
Heidelberg Graduate Texts in Mathematics, Volume 173 ISBN 978-3-642-
14278-9

[5] E. W. DIJKSTRA A Note on Two Problems in Connexion with Graphs
Numerische Mathematik , 1959-12-01, Springer Berlin / Heidelberg
http://dx.doi.org/10.1007/BF01386390 DOI: 10.1007/BF01386390

[6] Lars Marius Garshol http://www.xml.com/pub/a/2002/09/11/topicmaps.html
Accessed in February 2011

[7] Xiaohui Yang To Facilitate Knowledge Management Using Basic Princi-
ples of Knowledge Engineering 2009 IEEE DOI 10.1109/KESE.2009.33

[8] Randall Davis, Howard Shrobe, and Peter Szolovits What is a Knowledge
Representation? Copyright 1993, AAAI AI Magazine, 14(1):17-33, 1993

[9] Ontology, entry by Thomas Gruber Encyclopedia of Database Systems
Springer US, 2009 DOI:10.1007/978-0-387-39940-9

[10] Gruber, Thomas R A translation approach to portable on-
tology specifications Knowl. Acquis. journal vol. 5, issue 2,
June1993 http://portal.acm.org/citation.cfm?id=173743.173747
DOI:10.1006/knac.1993.1008 Academic Press Ltd., London, UK

[11] Nicola Guarino,Daniel Oberle and Steen Staab Handbook on Ontologies,
Second Edition What is an Ontology? pages 1-17 Springer Verlag,2009
DOI:10.1007/978-3-540-92673-3

80

BIBLIOGRAPHY

[12] Nicola Guarino Formal Ontology, Conceptual Analysis and Knowl-
edge Representation Int. J. Hum.-Comput. Stud., volume 43, issue 5-
6, December 1995 http://portal.acm.org/citation.cfm?id=219666.219668
DOI:10.1006/ijhc.1995.1066 Academic Press, Inc., Duluth, MN, USA

[13] M. Hadzic et al Ontology-Based Multi-Agent Systems, SCI 219, pp. 3760
Springer-Verlag, Berlin Heidelberg ,2009

[14] Chandrasekaran, B. and Jorn R. Josephson, V. Richard Benjamins What
Are Ontologies, and Why Do We Need Them? IEEE Intelligent Systems.
14 (1): pp. 20 - 26. 1999

[15] Standard Upper Ontology Working Group http://suo.ieee.org/ Ac-
cessed in March 2011

[16] http://www.w3.org/standards/semanticweb/ontology Accessed in
February 2011

[17] M. Burgess Knowledge Management and Promises Lecture Notes in Com-
puter Science 2009 ;Volume 5637. s. 95-107 Oslo University College, Norway

[18] M. Burgess CFengine Knowledge Management CFengine Technical white
paper,CFengine AS, Norway

[19] W.B. Norton ACM Digital Library Encyclopedia of Computer Science,
4th edition: 2003 ISBN:0-470-86412-5

[20] ed. Barr, Avron, and Edward A. Feigenbaum The Handbook of Artificial
Intelligence, Volume 1, page 146 1981, Stanford, Los Altos, CA: Heuris
Tech Press, William Kaufmann, Inc.

[21] Steve Pepper Topic Maps Encyclopedia of Library and Information Sci-
ences, Third Edition DOI: 10.1081/E-ELIS3-120044331

[22] Steve Pepper The TAO of Topic Maps
http://www.ontopia.net/topicmaps/materials/tao.html Accessed
in February 2011

[23] Lars Marios Garshol http://www.xml.com/pub/a/2002/09/11/topicmaps.html
Accessed February 2011

[24] Are Gulbrandsen The XML group, Center for Informa-
tion Technology Services University of Oslo, Norway Con-
ceptual Modeling of Topic Maps with ORM Versus UML
http://www.springerlink.com/content/t15rr815l2n1/#section=495866&page=1&locus=0
First accessed at the end of February 2011

[25] Houdini, Main ontology
http://folk.uio.no/areg/topicmaps/HoudiniOntology/houdiniOntology.html
First accessed at the end of February 2011

81

BIBLIOGRAPHY

[26] The front-end web application at houdini
http://intra.usit.uio.no/houdini/ First accessed at the end of February
2011

[27] Houdini documentation in Norwegian
http://www.usit.uio.no/prosjekter/houdini/dokumentasjon/ First
accessed at the end of February 2011

[28] Couch, A.L. and Burgess, M Human-Understandable Infer-
ence of Causal Relationships Network Operations and Manage-
ment Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP
DOI:10.1109/NOMSW.2010.5486560

[29] Alva Couch and Mark Burgess Troubleshoot-
ing with Human-readable Automated Reasoning
http://www.usenix.org/event/lisa10/tech/full papers/Couch.pdf
Accessed end of January 2011

[30] http://www.cs.tufts.edu/c̃ouch/topics First accessed in February 2011

[31] ISO/IEC 13250 Topic Maps Second Edition 19 May 2002

[32] ISO 18048: Topic Maps Query Language (TMQL)

[33] ISO 19756: Topic Maps Constraint Language (TMCL)

[34] M. Burgess Analytical Network and System Administration — Managing
Human-Computer Systems J. Wiley & Sons, Chichester, 2004

[35] Jon Orwant, Jarkko Hietaniemi, John Macdonald Mastering Algorithms
with Perl Copyright 1999 O’Reilly & Associates, Inc.

[36] John F. Sowa Knowledge Representation - Logical,Philosophical and Computa-
tional Foundations Brooks/Cole: Pacific Grove, CA, 2000.

[37] http://www.jfsowa.com/logic/math.htm#Set Accessed in March 2011

82

