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Abstract 
 
During development programmers are often faced with the need to compare two programs, or 
more exactly two different versions of a program. Line-based tools like diff often produce 
imprecise or too verbose outcome when applied to programs because they do not recognize 
that programs are bound to a rigid structure. Other tools have a different approach, such as 
comparing declarations. But they will only report differences in the API. We give in this 
thesis a tool that combines the technique of these two approaches. We take both declarations 
and syntax into account, as well as contextual semantic differences. Our tool recognizes for 
example the context of methods; some methods are declared in the class they are 
implemented, others are inherited from interfaces and some override the classes’ parent’s 
methods. 
 
This thesis rests heavily on the work of Yang and we have created variants of Yang’s 
algorithms and extended them so they fit our purpose. We introduce algorithms that handle 
both ordered and unordered nodes in an abstract syntax tree. Ordered nodes in an abstract 
syntax tree denote for example statements in a method body. Each node represents one 
statement and the order of the statement is significant for the computation of that method. 
Therefore our algorithms sometimes must respect the order of the nodes when comparing 
them. But in the other hand, we do not need to respect the order of nodes when they represent 
for example methods. The order of the methods in class is not important in Java. Our tool is 
adapted especially to object-oriented aspects of Java, such as inheritance.  
 
We implement the algorithms in the functional language Haskell and use the Strafunski 
libraries for generic programming to transform Java programs into abstract syntax trees and 
partly to traverse the trees. And since we exploit the fact that programs are bound to a rigid 
syntactic structure and that the comparison takes knowledge of Java into account, we are able 
to create improved and useful difference reports regarding syntax, object-orientated constructs 
and their semantics. 
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1. Introduction 
 
In this chapter we explain the starting point for this thesis. The tool described in this thesis is 
implemented in the functional programming language Haskell. We give therefore a small 
introduction of Haskell. Last are the descriptions of the remaining chapters.  
 
 

1.1. Motivation 
 
Programmers often work in groups and several persons might work on the same program. The 
need for a tool for comparing versions of a program is therefore big. They need a tool that can 
identify important and useful changes and not be confused by for example the order of 
methods, white-space and inheritance.  
 
The Unix tool diff1 does not produce desirable outputs when comparing programs since its 
purpose is to compare text. Ordinary text has a different and simpler structure than programs. 
The tool diff compares text line-by-line, where the order is significant. Programs are not 
suited to be broken down into lines, but rather into methods, constructor, fields etc. 
 
The tool JDiff2 in the other hand has a different approach. It only compares the declarations of 
methods and ignores the implementations of them. The main difference between JDiff and diff 
is that JDiff has knowledge of programming language Java. Therefore it recognizes fields and 
methods. The tool JDiff is most suited for comparing distributions of API of large software 
systems. Since the implementations are not a part of the comparison, JDiff is not suited for the 
daily usage of programmers. 
 
Our approach is to combine JDiff’s declaration comparison with diff’s line-based comparison 
and comparing abstract syntax trees instead of lines. Our tool works in the higher level of 
abstraction, such as inheritance between interfaces and classes, and also in the details of the 
implementation, such as variables and statements. It also exploits the fact that Java is bound 
to a rigid syntactic structure. The comparison algorithms also have knowledge of Java syntax 
as well as some understanding of semantic. The combination of the two approaches and the 
knowledge of Java make a powerful and useful tool for programmers, and hopefully improve 
their efficiency on software maintenance. 
 
The difference report of two programs is the same as the least editing script from an older 
version to a newer. The problem of finding the least editing script is equivalent with finding 
the longest common subsequence of two sequences. Our approach of comparing Java 
programs is to compare abstract syntax tree representations of the two versions. Therefore our 
job is not just finding the longest common subsequence, but also finding the equivalent for 
trees, the largest common subtree. 
 
There are in general several algorithms for finding the least editing script between two 
sequences and for finding the largest common subtree. But the shortest editing scripts and the 
                                                
1 http://www.gnu.org/software/diffutils/diffutils.html  
2 http://www.jdiff.org/  
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largest common subtrees may not be the best, or the ones that we are after. We adjust these 
algorithms to suit our approaches and the programming language Java. 
 
 

1.2. Haskell and functional programming 
 
The implementation of our tool is done in Haskell, which is a general purpose, non-strict and 
purely functional programming language. Functional programming is based on the model of 
finding the value of an expression and it therefore uses equations.  
 
The idea of Haskell was born in 1987 at the conference on Functional Programming 
Language and Computer Architecture (FPCA ‘87) in the USA. At that point there existed a 
dozen or so functional languages, all very similar. At a meeting it was decided that a new 
functional language should be designed to unify the existing functional languages and to 
encourage the use of functional languages. The result was Haskell, named after the logician 
Haskell Brooks Curry.  
 
After four iterations, the 1997 Haskell Workshop in the Netherlands felt that a stable variant 
of Haskell was needed. The result was Haskell 98, which we use in this thesis and which we 
refer to when mentioning Haskell. Older versions of Haskell are now obsolete.   
 
We give in section 1.2.1 an introduction to Haskell. Our aim is not to teach Haskell or 
functional programming, but to give a foundation for understanding the implementation we 
describe in later chapters. 
 
 

1.2.1. A short introduction to Haskell 
 
First of all, all computation in Haskell is done via the evaluation of expressions to yield 
values. All values are associated with a type. Intuitively we think of types as sets of values. 
For example, the values 1, 10 and 100 are associated with the type integer, and ‘a’, ‘b’ and ‘c’ 
are associated with characters. Functions are first-class citizens, which means that may be 
passed on as arguments, returned as results, elements in data structures etc. Types on the other 
hand are not. 
 
We are able to define our own types in Haskell using a data declaration. The type Parent are 
defined as follow: 
 

data Parent = Mother | Father 
 
The type Parent has exactly two values; Mother or Father. Types can also be defined 
recursive, as in trees: 
 

data Tree = Empty | Node Int [Tree] 
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We have defined a tree that is either Empty or consist of a Node. Note that “Node” and 
“Empty” are constructors. The type Node consists of an integer and a list of Trees. We use this 
construction as basis for our algorithms and functions in chapter 4 and 5. 
 
Functions can be declared in several ways. The simplest way of declaring a function is just by 
equation: 
 

add x y = x+y 
 
Another kind of declaration of the add function above is type signature declaration: 
 

add :: Integer -> Integer-> Integer 
 
The “::” can be read as “has type”. The function add is an example of a curried function. 
Applying the first argument to function add yields another function which is applied to the 
second argument. The type of the function add, Integer -> Integer -> Integer is equivalent to 
Integer -> (Integer -> Integer), where the “->” is right associated. Here is an uncurried version 
of the function add. 
 

add (x,y) = x + y 
 
Arrays in Haskell are formed from a pair of bounds (the beginning index and the end index) 
and a list of index-value pairs. Here is an array of length 10 containing the squares of numbers 
from one to ten. 
 

squares = array (1, 10) [ ( i, i*i ) | i <- [1..10]] 
 

Here “(1, 10)” denotes the pair of bounds, where 1 is the starting point of the array and 10 is 
the last index. The pair “(i, i*i)” is the index and value, respectively. The last part of the array 
creation “i <- [1..10]” tells us that the range of index i is from 1 to 10. Basically the line above 
is says that the array squares is of length 10 and index i = i*i for i � [1..10]. Subscripting is 
performed with the infix operator “!”. For example, squares!2 = 4. Note that subscripting lists 
is performed with the infix operator “!!” and the first element of lists has always index 0. 
 
Constructing matrices is virtually the same as arrays. We only need to replace any singular 
indexes with a pair of indexes. The pair of bounds of a matrix has therefore the form ( (k, l), 
(m, n) ). The size of the matrix is then (m-k) � (n-l). 
 
Many problems in Haskell are solved using recursive functions. These functions are defined 
using themselves in the definition.  
 

factorial 0 = 1 
factorial 1 = 1 
factorial n = n + factorial (n-1) 

 
This function will successfully compute factorial for all positive integers. The two first lines 
are a specific case of the function. It dictates that if the function gets the value 0 or 1 as 
argument, then it returns the value 1. The successor lines are then not computed. Another way 
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of handle specific cases in Haskell is using guards. Here is the same factorial function as 
above, but with guards: 
 

factorial n 
 |  n = = 0 = 1 

|  n = = 1 = 1 
|  otherwise = n + factorial (n-1) 

 
The first two guards checks whether the argument is 0 or 1, in which case it returns the value 
1. The value of otherwise is always true and the last guard is therefore the default guard. The 
infix operator “= =” is the equality operator, it takes two arguments of the same type and 
returns either false or true, which denotes the equality of the two arguments.  
 
One of the most powerful features of Haskell is pattern matching. Haskell automatically 
recognizes the internal representation of an abstract data type. We use pattern matching 
extensively in our functions. For example, let N be a node as describe earlier and have the 
application value “Node 2 []”, then: 
 

f (Node intN subTreesN) and f N 
 
By using pattern matching we are able to extract all the internal values of a node for use in the 
body of f. The variables intN and subTreesN are now bound to the values 2 and the empty list 
[], respectively. Another example is, let a=[1, 2, 3] be a list and  (hd:tl) = a, then hd = 1 and tl 
= [2, 3].  One can achieve the same result by using the functions head and tail; hd = head a 
and tl = tail a. The variables, hd and tl, in pattern matching “(hd:tl) = a” are therefore often 
called the head and tail of list a. The universal pattern “_” matches every thing.  
 
A way to create local declarations in Haskell is to use the where clause. The where let us put 
local declarations after the actual expression of the function.  
 

factorialString n = “The factorial of  ”++ show n ++” is ” ++ fac 
   where  
    fac = factorial n 

 
The above function takes a number and returns a string telling what the factorial of its 
argument is. We see that the string is constructed using the variable fac. This variable is 
declared in the where clause after it is used. The function show is a built in function that turns 
its argument into a string. The operator “++” is an infix operator that concatenates lists. A 
string in Haskell is just a list of characters. 
 
 

1.3. Description of the remaining chapters 
 
Other projects that have a close relation with our work are presented in chapter 2. We present 
projects that create and traverse syntax trees, that match sequences and trees and also that 
have a similar task as ours, but that consider other programming languages. 
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The major work of creating an AST comparison tool is described in the three major chapters, 
chapter 3, 4 and 5. In chapter 3 we discuss the problem of comparing Java programs. Java is a 
comprehensive general purpose, object-oriented programming language. There are many 
factors to consider when comparing Java programs. We present a short description of the 
language Java and the key areas of Java that we focus our thesis on.  Furthermore we discuss 
other comparison tools, such as line-based tools. There is no tool to this date that identifies the 
syntactic differences between two Java programs, while also taking partial knowledge of Java 
semantic into account. It is therefore unfair to compare the tools that are presented in chapter 
3 with our tool, since they originally have different purposes of use. Finally we give examples 
of comparisons, or rather example of good results of comparisons. And we suggest the best 
difference report based on the viewpoint of programmers.  
 
We present algorithms for finding the longest common subsequences of two sequences in 
chapter 4. Our work rests heavily on the work of Yang [1]. We have extended the algorithms 
of Yang and also give new algorithms for supplement. Sequences can be viewed as trees of 
height two. The children of the root form the sequence. But we deal with much larger trees 
when comparing Java programs. In chapter 4 we also give algorithms for finding the largest 
common subtree.  
 
In chapter 5 we implement the algorithms described in chapter 4. We transform the pseudo 
code into Haskell functions. The pseudo code is based on the imperative way of thinking and 
conflicts with Haskell’s philosophy; some algorithms cannot be transformed to functions. We 
discuss this and also introduce a new attribute in the nodes of a tree. This new attribute is our 
first step towards adapting the functions to compare Java abstract syntax trees and not just the 
simple data structure that we created. 
 
In chapter 6 we described the actual steps for comparing Java programs. We also describe the 
implementation of the Java comparing functions. The Java abstract syntax trees are complex 
and we have to make adaptations to the functions. We present a few comparison functions 
that are representative for the different techniques for comparing Java constructions, such as 
classes and methods.  
 
In chapter 7 we test our tool up against other tools. We use two small files of an open source 
project and compared the iterations. The project is called Eclipse and it is developed by IBM.  
We compared the CVS version of two files and we generate reports using our tool and diff. 
The sizes of these reports are then plotted on a graph. Finally we conclude in chapter 8 with 
an overall statement and suggesting future works. 
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2. Related works 
 
In this chapter we give on overview of works and projects closely related to our work. The 
most important source of support is Yang’s paper [1]. Strafunski is a software bundle that we 
use to create and traverse syntax trees. We also present other systems similar to Strafunski, 
like JJForester. Furthermore we present works about syntax trees and sequence matching. 
Finally we present works about type matching, semantic differences and software merging. 
 
 

2.1. Wuu Yang’s paper 
 
As mentioned earlier, this thesis rests heavily on the work of Yang [1]. In his paper Yang 
describes algorithms that exploit knowledge of the programming language’s grammar. In his 
case it is the programming language C. The algorithms can point out the differences between 
two programs in a more accurate manner than lined-based tools, since line-based tools are 
intended for comparing ordinary text, not software code. 
 
The two programs to be compared are first transformed into parse trees, or abstract syntax 
trees in modern terminology. Each node in these trees represents either a token or a non-
terminal. A token is for example a variable name. Non-terminals denote a substructure, a 
composition of tokens and non-terminals such as expressions. Yang also gives five guidelines 
for building the tree representation. These guidelines are to ensure that the trees reflect the 
syntactic structure and the hierarchical structure of the programs, and to ensure that the size of 
the trees is kept to the minimum. 
 
The algorithm matches the nodes of the two trees by using a dynamic programming scheme. 
A match is found between two nodes, one from each tree, when they contain identical 
symbols, their parents match each other and the order between siblings is respected. Meaning 
that if v1 matches u1 and v2 matches u2, and v1 comes before v2, then u1 must also comes 
before u2. 

 
Yang’s goal is to find the minimum syntactic distance between the programs. This is the same 
problem to finding the maximum syntactic similarity. When dealing with parse trees, this 
means that the goal is to find the largest common subtree. Any nodes in the original trees that 
are not represented in the largest common subtree are considered as a change, hence a 
difference to report. Yang considers the problem of matching trees as a generalization of the 
problem of matching sequences. Therefore Yang describes an algorithm for matching two 
sequences, with the aim of finding the longest common subsequence, before describing the 
algorithm for matching trees. 
 

v1 u1 

v2 u2 

matches 

matches 

before before 
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Yang also describes an algorithm that not only deals with matching nodes, but also 
comparable nodes. Assume that we want to compare the statement of the while loop against 
the statements in the for loop in the example below. The nodes that represent the root of the 
while loop and the root of the for loop are not identical. But to be able to compare the 
statement, their parent nodes must be identical. Yang overcome this problem by postulating 
that root of loops are comparable, although they are not identical.  
 

 
This is an adaptation to the program language C. By implementing this adaptation, Yang is 
able to produce a more precise report. 
 
 

2.2. Strafunski 
 
Strafunski, [6] [9] [15], is a Haskell-centered software bundle. Its domain is generic 
programming and language processing. Strafunski supports generic traversal and is based on 
the notion of functional strategy. This is a set of generic functions that makes programs able 
to traverse a term, and subterms, of any types. And they are able to mix type-specific and 
uniform behavior.  
 
A functional strategy helps programmers to construct more concise, robust and reusable 
programs since they can concentrate on the relevant constructors and deal with the other 
constructors generically. Functional strategies are composed as combinators and are therefore 
first-class generic functions. Strafunski provides the library StrategyLib containing generic 
programming combinators. We use Strafunski in our thesis to produce parse trees for Java 
programs, for traversing the trees and for extracting needed information. The package 
SDF2Haskell takes an SDF grammar1, which is a set of syntax definitions, as input and 
generates Haskell data types for the abstract syntax trees. It is then possible to produce 
abstract syntax trees. 
 
 

2.3. JJForester and other parsers and “tree builders” 
 
JJForester [7] is a tool similar to Strafunski. Where the underlying language in Strafunski is 
Haskell, JJForester has Java. JJForester offers a library of reusable visitors that can be 
combined in many different ways to form new visitors and the result is full traversal control 
[6]. With JJForester one is able to traverse a abstract syntax tree and specify actions for a 

                                                
1 http://catamaran.labs.cs.uu.nl/twiki/pt/bin/view/Sdf/WebHome  

while (w > 0) { 
 x = 1; 
 y = 2; 
 z = 3; 
} 

for ( i = 1; i < 1; i++) { 
 x = 1; 
 y = 2; 
 z = 3; 
} 
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limited number of nodes, nodes with a certain constructor or nodes that share a specific 
attribute. This is similar to Strafunski’s type combinators for generic traversal [9].  
 
JJForester combines advanced language processing technology in the ASF+SDF Meta-
Environment1, specially generalized LR parsing, with Java. The main domain of use for 
JJForester is component-based development of program analyses and transformations for 
languages of non-trivial size, [7]. 
 
In other words, JJForester is a parser and visitor generator for Java. Other parsers, tree 
builders and visitor generators for Java are e.g. JavaCC2 and The Java Tree Builder3. The 
main differences between these tools and JJForester are the support for generalized LR 
parsing and the possibility for constructing new visitors from given ones. 
 
 

2.4. Syntax trees and sequence matching 
 
A number of algorithms exist for the problem of comparing sequences. Wu et al. [10] 
describe in their paper a sequence comparison algorithm whose running time is at most 
O(ND), where N is the sum of the length of the two sequences to be compared and D is the 
size of the minimum edit script between those sequences. The algorithm is best described as 
the problem of finding the shortest path from one point to another on a grid.  
 
Charras and Lecroq [11] list 35 different algorithms for string matching. These algorithms use 
different approaches such as brut force, hashing and quick search.  
 
Wang and Zhang [8] discuss in their paper the complexity of algorithms for four edit-based 
distance measures and they give an algorithm for one of them. They also establish a hierarchy 
among the four measures. The algorithm is based on the distance measure called “Isolated-
subtree mappings”. Basically it is an algorithm that finds the largest common subtree of two 
trees4. The relation between this algorithm and Yang’s algorithm [1] (and our algorithms) is 
the fact that Yang’ algorithm is a particular case of Wang’s and Zhang’s algorithm. Yang’s 
algorithms give the upper-level nodes more weight than the children below and they demand 
that the root of the two trees must be identical. This is called a top-down mapping. Wang and 
Zhang in the other hand treats all the nodes equally and the subtree can be situated anywhere 
in the original trees, meaning that the root of the largest common subtree can match any nodes 
of the original trees.  
 
Top-down mapping is the right choice when comparing programs because it considers the 
structure of programs. Consider the example of comparing the two program fragments in 
section 2.1. The roots of the loops are the while and for statements. A top-down mapping 
dictates that the roots must be identical, or in this case comparable, before the bodies of the 
loops are compared. This is reasonable because we must make sure that we comparing the 
same loops before comparing the rest. If the roots are not identical or incomparable, then the 

                                                
1 http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/MetaEnvironment  
2 https://javacc.dev.java.net/  
3 http://compilers.cs.ucla.edu/jtb/  
4 The algorithm is dependent on a constant that restrain the distance between the common substructures. 
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two fragments are not the same and we do not need to compare the bodies. An isolated-
subtree mapping would have identified that the bodies of the two loops are identical.   
 
 

2.5. Type matching 
 
Jha, Palsberg and Zhao [12] present an algorithm for matching two recursive types. This 
algorithm is an O(n log n) time algorithm and this is done by reducing the problem to finding 
a size-stable partition of a graph. The problem in this case is determining whether two types 
are equivalent. The example in the paper shows four Java interfaces. The goal is to find out if 
one pair of interfaces is equivalent to the other pair. The interfaces in each pair are mutually 
recursive. The notion of equivalent in this case is that the interface names and method names 
do not matter, and neither do the order of methods and the order of formal parameters.  
 

interface I1{ 
 float m1(I1 a, int b); 
 int m2 (I2 a); 
} 
 

interface I2 { 
 J2 m3(float a); 
 I1 m4(float a); 
} 

interface J1 { 
 I1 n1(float a); 
 J2 n2(float a); 
} 

interface J2 { 
 int n3(J1 a); 
 float n4(int a, J2 b); 
} 

 
Above is an example of inputs to their algorithm. The algorithm then gives the following 
output: 
 

I1 = J2 
I2 = J1 

 
I1.m1 = J2.n4 

I2.m3 = I2.m4 = J1.n1 = J1.n2 
I1.m2 = J2.n3 

 
The types of interfaces I1 and J2 are equivalent. All their methods match. Furthermore we see 
that I2 and J1 are equivalent and all their methods match. 
 
 

2.6. Semantic differences 
 
The aim of Binkley et al. [13] is to capture the semantic differences of two programs. Their 
implementation takes two versions of a program and outputs an executable third program. The 
third program captures the semantic differences between the first two. The implementation is 
for the programming language C. A study of a collection of programs is done to investigate 
the time taken to compute the third program and the size of it relative to the size of newer 
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version of the input programs. The base of the implementation is the tools CodeSurfer1 and 
Cdiff [1].   
 
 

2.7. Software merging 
 
Mens [14] does a stat-of-the-art survey of software merging where he gives an overview of 
merge techniques and describes the currently available tools that utilize the different 
techniques. On the subject of syntactic merging, Mens concludes that syntactic merging is 
more powerful than textual merging. Syntactic merging takes the syntax of the programs into 
account. There are two kinds of techniques of syntactic merging; abstract syntax trees and 
graphs. The problem of syntactic merging with abstract syntax trees as the underlying data 
structure is similar to the problem of finding the largest common subtree, and of shortest 
editing path in a graph. 
 
Mens concludes furthermore that to be able to perform a syntactic merging, one must first 
compare the difference between two programs. Yang’s paper [1] is mentioned in this 
particular chapter. 
 
 
 
 

                                                
1  http://www.grammatech.com/products/codesurfer/codesurfer.html.  
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3. The problem of comparing Java programs 
 
In this chapter we give an overview of the challenges and opportunities when comparing 
Java1 programs. Java is a complex language and has many aspects that have to be considered.  
We will give an introduction to the challenges that we face when comparing Java programs 
and discuss where line-based tools, like diff, and API-based tool, like JDiff, fail. 

3.1. Java 
 
Java is an object-oriented language. Object-oriented languages are popular because they can 
make it easier to reuse and adapt previously written software. Java comes with a 
comprehensive library. And developers often use packages in this library or reuse software 
written by others. When including an interface, the programmers must implement all its 
methods. And therefore changes might come in large bulks and affect the implementation a 
great deal.    
 
Object-oriented languages regard objects as entities that encapsulate data and related 
operations, while procedural languages consist of procedures and data structures. According 
to Ghezzi [4], object-oriented languages are characterized by their support of four facilities: 
 

�� Abstract data type definitions  
�� Inheritance 
�� Inclusion polymorphism 
�� Dynamic binding of function calls to functions bodies 

 
Java supports abstract data type by encapsulation using the class construct. Subclasses are 
defined in Java by extending an existing class. The subclass then inherits the implementation 
of its superclass. A class can only have one superclass, but it can inherit from several 
interfaces. By using the implements mechanism, Java supports the notion of multiple 
inheritances2 [4]. Inclusion polymorphism allows the use of polymorphic variable that may 
refer to an object of a class or an object of any of its derived classes; any objects in Java may 
be assigned to a variable of type Object [4]. 
 

3.1.1. Class extension and interface implementation 
 
All classes in Java are nodes in an inheritance and implementing tree. The root of this tree is 
the class Object. Every class therefore inherits the Object class, either directly or indirectly. 
The inheritance tree can be very complicated, since an interface may be implemented by one 
ore more classes and a class may be extended by several subclasses. 
 
 
 
 
 

                                                
1 http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html  
2 But for interfaces, not classes. 
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Figure 1. Inheritance tree 

 
 
We see in Figure 1 that “Vehicle” has two subclasses, “Truck” and “Automobile”. “Sports 
car” is a subclass of “Automobile”. Class “Sports car” also implements the interfaces “Aero 
dynamic” and “Alternative fuel”. This means that “Sports car” inherits the attributes of 
“Automobile” and “Vehicle”, and it has to comply with the demands set by the interfaces.  
 
A subclass inherits all the fields of its superclass and it may redefine the method of its 
superclass. The overriding method must have the exactly the same signature as the method 
being overridden. One cannot override final methods. Static methods are intended to perform 
class-specific rather than object-specific operations. The use of declaring methods as final is 
to protect important methods from being tampered with in subclasses. A class may also be 
declared to be final. In that case, the class may not be extended at all. 
 
An interface may only contain constants and method declarations, but no implementations, 
unlike a class that can contain both. All methods declared in an interface are public. The 
implementation of the declared methods in the interface must be provided in any class that 
implements the interface. 
 
 

3.2. Line-based and byte-based and API-based tools 
 
Line-bases and byte-based comparison tools are designed to work with ordinary text or binary 
files. The Unix tool diff compares two files line by line, finds groups of lines that differ, and 
reports each group of differing lines. There are two ways of comparing two files. One is to 

Vehicle 

Truck Automobile 

Sports car 

Aero dynamic 
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fuel 
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consider the files as text and compare them as mentioned earlier. The other is to consider the 
files as non-text and compare them byte-by-byte. Comparing byte-by-byte works best for 
checking whether two files are identical. Comparing text in this matter is not practical. For 
example, assume we have two identical files. Then we add an extra blank line in the 
beginning of one file, but not the other. The tool comparing byte-by-byte will report that 
every byte is different. Linux’ cmp reports the position of the first differing byte. 
 
The tool diff compares text files by finding large sequences of common lines and small groups 
of lines that differ. That way the report of differences is kept low. For practical purpose, this 
method is effective for textual comparison, especially if the changes are relatively small 
compared to the whole text. 
 
Although diff has many options for formatting output, we get unsatisfactory reports when 
using diff on source code. The tool diff does not exploit the fact that source codes are bound to 
other syntactic structure than ordinary text. Therefore there are many things that line-based 
comparison tools do not solve satisfyingly. A simple example is the case of interchanging 
methods. Assume that two methods in the same class switch places from one version to the 
next. The tool diff cannot see that this change is really not a change at all to programmers or 
for the outcome of the program. Another example deals with object-oriented issues; consider 
when we implement interface I in class C. Class C has to implement automatic methods that it 
inherit from I. We may only be interested to knowing that C has implemented interface I. All 
the fields and methods that come along with that are not of interest. Example of this problem 
is described in section 3.4.5. The tool diff cannot see the difference between an inherited 
method and a declared method. 
 
JDiff is a doclet1 that produces an HTML report of differences between two Java programs. It 
compares packages, classes, fields and methods, but only the APIs, that is, only the method 
names and signatures. It does not look at the logic implementation of methods. This method 
of comparison is good and satisfyingly when the gap between programs is big and the details 
are not so important. E.g. when comparing differences between versions of the Java language 
or different version of large distributions. 
 
 

3.3. Goals 
 
Our goal with this project is to create a tool that compares two Java programs and reports 
changes regarding syntactic and contextual differences. The aim is not a tool ready for 
commercial production, but it has to improve the quality of the reports of differences. We will 
use the work of Yang [1] as base, but do adaptations towards Java. The reports of differences 
between two versions of a program will improve programmers’ efficiency because they are 
able to share with each other the changes more accurately.  
 
We do not in this version of the tool concern our selves with run-time efficiency, but rather 
focus on the quality of reports. Of course, if the algorithm takes a very long time to compute 
the results, one can question the usefulness of this tool compared with existing tools. Our 
main priority is still what the output is. We chose Java because it a very popular programming 
language and also because it supports the object-oriented paradigm. There are no tools that 
                                                
1 Doclet are a Java programs to specify the content and format of API documentation. 
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yet support the comparison of two programs in a way that takes grammatical structures and 
object-oriented constructs into account. As mentioned earlier, we have JDiff and diff. None of 
these compare programs in a satisfactory way regarding the mentioned criteria. 
 
Java is a comprehensive programming language. We do not have the time to make a tool that 
considers every aspect of Java. In this version we concentrate on some of the aspects, mainly 
on object-oriented ones. We look at inheritance by implementations of interfaces. We also 
look at the method bodies, which JDiff does not do.  
 
 

3.4. Examples of comparisons 
 
We now give some examples of good comparisons, or rather good output from these 
comparisons. These examples illustrate both syntactical and contextual comparisons. Our tool 
does all of the comparison exactly as described in this section. 
 
The best difference report is our view on what is important and usefull in a difference report 
when comparing two Java programs. The difference report is in a sense the least editing script 
from the first version to the second. By applying the changes in the report to the first version 
(version 1), we get the second version (version 2). 
 

3.4.1. Implementing an interface 
 
In this example we illustrate the comparison when a class implement an interface and we give 
the best difference report.  
 

 
 

Java example 1. A class implementing an interface 

Version 1 
 
interface FooPanel 
{ 
 void meth1(); 
 void meth2(); 
} 
 
class Foo 
{ 
 int cf1; 
 void meth3() {} 
} 

Version 2 
 
interface FooPanel 
{ 

void meth1(); 
 void meth2(); 
} 
 
class Foo implements FooPanel 
{ 
 int cf1, cf2; 
 public void meth1() {} 
 public void meth2() {} 
 void meth3() {} 
 void meth4() {} 
} 
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In Java example 1 we have an interface FooPanel. It contains two method descriptions. Then 
we have class Foo, which has one field cf1 and one method meth3. We see also what class  
foo looks like in version 2, after it implements interface FooPanel. Interface FooPanel 
remains the same. The best difference report for Java example 1 is: 
 

�� Class Foo implements FooPanel. 
�� Class Foo adds int cf2. 
�� Class Foo adds meth4() with the following definition: {} 

 
Note that the adding of the methods meth1 and meth2 is not specified in the difference report. 
The first line and the semantics of Java interface implementations imply them, since they are 
inherited from FooPanel. Class Foo has added a field and a method. 
 
A line-based tool would have told us that every line, except three, is changed in class Foo 
from version 1 to version 2. These tools will only recognize the brackets {} and the method 
meth3 in both versions. They consider the other lines either as added or changed in some way. 
An API-based tool, such as JDiff will also report, in addition to the best difference report, that 
Foo has added the method meth1 and meth2. It is not capable of extracting the important 
information since it does not take interface implementations into account.  
 
The reports of a textual tool and an API-tool are also useful in this case, because the example 
is small and simple. But we can see now that it would not be satisfying in the long run. When 
programs get longer and more complicated, the report will not give us a clear overview of the 
changes.  
 
 

3.4.2. Changes in an implemented interface 
 
It is important to locate the source of the changes and report them where they belong. In this 
example we illustrate that changes in interfaces should only be reported as what they are; as 
changes in the interface and not as changes in the classes implementing them. 
 
In Java example 2 we see that all the changes are done in the interface. Since class Foo2 
inherits from FooPanel2, it also inherits the changes. Class Foo2 has only one method; 
meth4. It is not affected by any changes. The best difference report for Java example 2 is: 
 

�� Interface FooPanel2 deletes meth2(). 
�� Interface FooPanel2 deletes meth3(). 
�� Interface FooPanel2 adds meth5(). 

 
We can see that the report only mentions interface FooPanel2 and not class Foo2. Although 
the implementation of Foo2 is altered because of the changes in FooPanel2, class Foo2 itself 
has not been changed in any way. Method meth4 is the only attribute that truly belongs to 
class Foo2. Everything else belongs to the interface, therefore it is natural to present the 
difference as changes in FooPanel2. 
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Java example 2.  Changes in the interface 

 
 
A line-based tool and an API-tool will report that many lines in both Foo2 and FooPanel2 are 
changed. As for the interface part, the report is equal to the ideal difference report. But it also 
contains a report of the changes in the class body of Foo2, which is identical to the report of 
the interface. Any report regarding class Foo2 is unnecessary. 
 
 

3.4.3. Removing an implemented interface 
 
In this example we show that line-based and API-based tools fail because they lack 
knowledge of syntax and semantic of Java. 
 
In Java example 3 we see that all the changes are done in class Foo3. The interface remains 
the same. Class Foo3 in version 2 does not implement FooPanel3 as it does in version 1. 
Therefore it does not inherit any fields or methods any more. The best difference report for 
Java example 3 is: 
 

�� Class Foo3 removes interface FooPanel3. 
�� Class Foo3 adds meth1(). 
�� Class Foo3 adds meth2(). 

 
We see that although the class body of Foo3 has not been changed in any way, the report 
points out many differences. Class Foo3 in version 1 defines only one method directly; meth3. 
Everything else it inherits from interface FooPanel3. Since it in version 2 no longer inherits 
from FooPanel3, therefore it must define the methods meth1 and meth2.  
 

Version 1 
 
interface FooPanel2 
{ 
 void meth1(); 
 void meth2(); 
 void meth3(); 
} 
 
class Foo2 implements FooPanel2 
{ 
 public void meth1(){} 
 public void meth2(){} 
 public void meth3(){} 
 void meth4(){} 
} 

Version 2 
 
interface FooPanel2 
{ 
 void meth1(); 
 void meth5(); 
} 
 
 
class Foo2 implements FooPanel2 
{ 
 public void meth1(){} 
 void meth4(){} 
 public meth5(){} 
} 
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Java example 3. A class removing an interface 

 
A line-based tool and an API-tool will only report that the line “class Foo3 implements 
FooPanel3” has changed to “class Foo3”. Everything else has not been altered. This is an 
insufficient report. Class Foo3 has many importing changes that the tools will not point out. 
 
Java example 3 illustrates the inadequacy of a line-based tool. Comparing programs line by 
line1 is not an ideal way of comparison. In this example it fails, though the number of code 
lines is relatively small.  
 
The signature of the methods of class Foo3 in version 2 has not been changed in any way. 
JDiff do not care whether the methods are inherited or not. Its only concern is to report API 
differences. Therefore it only reports that the declaration of class Foo3 is changed.  
 
 

3.4.4. Changes in the method body 
 
We will now show some examples that illustrate where tools such as JDiff are not sufficient at 
all. These examples compare method bodies. JDiff only compares at the API level and 
therefore do not detect any changes done to methods beyond their signature. 
 
In Java example 4 the method body is changed. The two first lines have been switched and the 
result is different values of the field a when the method returns. In version 1, meth1 returns 
value 1, while meth1 in version 2 returns value 2. The best difference report for Java example 
4 is to point out that the lines “a=a+a” and “a++” have been altered in some way. Both diff 
and our tool face the problem of choosing which line to report as the one been altered. This 
problem is addressed in section 4.2.4.  

                                                
1 The tool diff tries to group large sequences of matching lines together, called hunks. That way the report of 
difference is kept low.   

Version 1 
 
interface FooPanel3 
{ 
 void meth1(); 
 void meth2(); 
} 
 
class Foo3 implements FooPanel3 
{ 
 public void meth1(){} 
 public void meth2(){} 
 void meth3(){} 
} 

Version 2 
 
interface FooPanel3 
{ 
 void meth1(); 
 void meth2(); 
} 
 
class Foo3 
{ 
 public void meth1(){} 
 public void meth2(){} 
 void meth3(){} 
} 
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Regardless of which one is chosen, the important is that the tool reports that a change has 
occurred. Line-based tools work well when comparing method bodies because they are 
relatively small and the structure is similar to ordinary text. Statements in a method body can 
be regarded as a sequence of lines where the order is significant. They report whenever a line 
is changed, moved or altered in any way, but not if the file is reformatted.  
 
 

Java example 4. Changes in method body 

 
Our tool works in a similar way as line-based tools when comparing method bodies, but our 
tool exceeds line-based tools in some areas, such as white-space. See section 3.4.5. JDiff does 
not report anything in Java example 4.  
 
 

3.4.5. Ordering and white-space 
 
Here we have another example where line-based tools fail. Again, line-based tools fail 
because they lack knowledge of Java syntax.  
 

 
Java example 5. The order of methods 

 

Version 1 
 
class Foo4 
{ 
 int a=0; 
 
 int meth1() 
 { 
  a=a+a; 
  a++; 
  return a; 

} 
} 

Version 2 
 
class Foo4 
{ 
 int a=0; 
 
 int met1() 
 { 
  a++; 
  a=a+a; 
  return a; 

} 
} 
 

Version 1 
 
class Foo5 
{ 

void meth1(){} 
void meth2(){} 

} 

Version 2 
 
class Foo5 
{ 

void meth2(){} 
void meth1(){} 

} 
 



The problem of comparing Java programs   19 
 
 
In Java example 5 the order of the methods has changed. In Java the order of methods is not 
significant and the best difference report should not report anything in this case. JDiff does 
not report anything and neither do our tool. But a line-based tool will point out that either the 
line “void meth1(){}” or “void meth2(){}” has been altered. This information is unnecessary.  

 
White-space confuses line-based tools. Java does not consider white-space characters syntax 
and therefore ignores them1. The example above illustrates this. Version (i) and (ii) are in the 
eyes of Java identical or at least equivalent. Line-based tools see a difference here. 
 
 

3.4.6. Changes of the parameter names 
 
In this example we address the situation of where the parameter names changes from one 
version to the next. A formal parameter has the form “parameter-modifier type 
parametername”. Formal parameters are given as a comma-separated list when declaring a 
method. The formal parameters can be viewed as initialized variable, and their scope is the 
method body. The order of the formal parameters affects the signature of the methods. Or to 
be more precise, the order of the type of the parameters affects the signature. The method 
name together with the parameter types forms the methods signature. We compare signatures 
when checking whether two methods are the same.  
 
 
 
 
 
 
 

Java example 6. Changes of the parameter names 

 

The signatures of the two methods are identical. The difference is that the name of the first 
parameter has changed. The best report of differences for Java example 6 is: 
 

�� Parameter a of method meth(int, int) changes to parameter c. 
 
A lined-based tool like diff sees only that the line differ from version 1 to version 2, while a 
API tool like JDiff, does not concern about this change because it does not affect the signature 
of the method. 

                                                
1 Only whit-space in syntactic correct code. 

(i) x = 1; y = 2; 
 
(ii) x = 1; 

y = 2; 

Version 1 
 
public void meth(int a, int b) {} 

Version 2 
 
public int meth(int c, int b) {} 
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4. Fundamental comparison algorithms 
 
In this chapter we present and introduce algorithms for comparing two programs. These 
algorithms are the foundation that our tool is built upon. As mentioned, the problem of 
finding the differences between two programs is equivalent with the problem of finding the 
shortest editing script from one version to the other. And finding the shortest editing script 
and finding the largest similarity are two sides of a problem. We present therefore algorithms 
for finding the largest similarities.  
 
Our approach for comparing programs is to transform them into abstract syntax trees and then 
compare them. The largest similarity between two trees is the largest common subtree. In our 
case, we can view sequences as trees with height two. We give therefore algorithms for 
comparing sequences, which is algorithms for finding the longest common subsequence. And 
we give also algorithms for finding the largest common subtree. 
 
At this stage, we work only with sequences of integers and nodes with integers. Integers are 
preferred because it is easy to compare them and they make simple data structures. We can 
then focus on the fundamentals of the algorithms. 
 
 

4.1. Notation 
In this section we will explain the most important notations and convention that we use later 
in this thesis. Some minor notations will be explained later where it is necessary and 
appropriate. 
 
 

4.1.1. Sequences 
 
Sequences are an ordered set of elements. We use A and B as variable names for sequences. 
They will have a number as suffix, i.e. A1, A2, B3 etc., for ease of use and distinction. An 
example of a sequence of integers is A1=(4, 7). The order of the elements is significant. I.e. 
(4, 7) is not the same sequence as (7, 4). The first element in A1 is “4”, and has index 1, and 
the second element is “7”, which has index 2. The indexes always start at 1 and it increments 
by one for each element. For sequence A, |A| denotes the length of A. 
 
Another way of addressing elements in sequences is to use the notation A<i> where i is the 
index of sequence A, i.e. A1<2> = 7. When the notation is used with two or more indexes, 
then we are addressing a subsequence, i.e. A1<1, 2> = (4, 7). Furthermore we have A1<1,…, 
i>, which is a subsequence with every element in A1 with index from 1 to i. We will use i as 
index for sequence A and j for B.  
 
A subsequence is an ordered set of one or more elements of the original sequence. If we have 
sequence A, and sequence Q is a subsequence of A, then Q is derived by deleting some 
elements of A. We will use Q as variable names for subsequences. They will have suffix for 
distinction. Sequence Q is a common subsequence of A and B if Q is a subsequence of both A 
and B. 
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Subsequence Q is the longest common subsequence if the length of Q is the longest among all 
the common subsequences of A and B. If we have A1=(1, 2, 3) and B1=(1, 2) then the longest 
common sequence Q1=(1, 2). And if we have A2=(1, 2, 3, 4) and B2=(1, 2, 4), then the 
longest common subsequence Q2=(1, 2, 4). Q2 is called a broken subsequence because the 
pairs of elements do not follow in order, but skip one or more elements. We see that element 
A2<3> is skipped because it does not match any element in B2.  
 
 

4.1.2. Matrices 
 
A matrix is a two-dimension grid. In our case, the matrices contain elements of integers. The 
elements are integers because they denote the length of the longest common subsequence 
between two sequences.  We use the letter M to name a matrix and we add a suffix to 
distinguish between them.  
 
Matrix M is a result of Yang’s sequence matching algorithm, described in Algorithm 1. The 
size of the matrix depends on the length of the sequences that are given to the algorithm as 
arguments. Examples of matrix M are found in Table 1. We see in the table that the length of 
sequences A1 and B1 are both four. It is natural to think that the sequence will produce a 
matrix of size 4�4, but the size of the matrix M1 is 5�5. This is because the definition of 
Yang’s matrix requires that an extra row and column be added. They are necessary for 
computing the rest of the elements, or rather to get a compact formulation of the algorithm. 
 
For ease of discussion later, we introduce some conventions for addressing M. 
 

1. M means the whole matrix. 
2. M[i, j] is the element found at indexes i and j. Index j is the index for the rows and i is 

the index for the columns. 
3. Index j is also the index of sequence B and i is the index of A. This is because of the 

close relation between the sequences and the matrix. See Table 1. 
4. The elements in row i=0 and column j=0 are zero by definition.  
5. We often think of matrix M as a long sequence by imagining that the rows in matrix 

M are lined up one after another, and form a linked sequence. The end of the first row 
is linked to the beginning of the next etc. See Figure 2. Note that this is not a 
representation of data structure, but rather a cognitive concept. 

6. When we talk about the beginning and end of matrix M, we think of the beginning and 
end of the imaginary and flattened matrix. See Figure 2. 
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Figure 2. Flattened M 

 

4.1.3. Trees 
 
A tree is a way of storing data. It is a structure that contains elements called nodes. We will 
use the N when addressing a single node. A number for ease of use and distinction will suffix 
them. Every node has a value. The values are the data that we want to store. The tree structure 
helps us store the data.  

Figure 3. Example of a tree 

Following are some convention we use for addressing trees: 
 

1. T means the whole tree. 
2. The root-node, or just root is the top node in a tree. It does not have any parent. The 

node N0 is the root in Figure 3. 
3. A leaf node is a node that does not have any children. The nodes N4, N5, N2 and N6 

are examples of leaf nodes. 
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4. A branch node is a node that is not a leaf node or root. The nodes N1, N2 and N3 are 
examples of branch nodes. 

5. If tree subT is a subtree of tree T, then subT is derived by eliminating some nodes of 
T. The root of tree T is also the root of subT and the parent-child relationships 
between the nodes in subT are the same in as in T. 

6. The tree subT is a common subtree of the trees T1 and T2 if subT is subtree of both 
T1 and T2. 

7. The largest common subtree subT of T1 and T2 is one with the maximum number 
nodes among all the subtrees of T1 and T2. 

8. Any node can be viewed as the root of its subtree. In Figure 3, node N1 is the root of 
the subtree that contains the nodes N1, N4 and N5. 

9. The children of a node are that node’s subnodes. In Figure 3 are N1, N2 and N3 the 
subnodes of N0. 

10. Subnodes can be viewed as a sequence. In Figure 3, we see that N1, N2 and N3 form a 
sequence with index from one to three. 

11. One can address a subtree by using the notion ith subtree of N, where i is the index of 
the sequence formed by the subnodes of N. In Figure 3, N1 is the first subtree of N0. 
And further, we have N5, which is the 2th subtree of subtree N1.  

12. We have node Nx and Ny and the sequences A and B are the sequences containing 
Nx’ and Ny’s subnodes respectively. Sequence matching with the nodes Nx and Ny as 
arguments is the same as sequence matching with the sequences A and B as 
arguments.  

13. We have a tree T, then |T| denotes the number of nodes T has. 
14. The notion |subtrees of N| or |subnodes of N| denote the numbers of children N has. In 

Figure 3 we see that |subtrees of N0| is three. 
 

4.2. Comparing sequences 
 
Follow are descriptions of algorithms for comparing sequences. We present Yang’s algorithm 
for comparing sequences and our algorithm for finding the longest common subsequence. We 
also give an algorithm that combines the two mentioned algorithms. And last we discuss ways 
of reducing the size of the matrices.  

4.2.1. Sequence matching algorithm 
 
The algorithm for finding the length of the longest common subsequence for two sequences is 
described by Yang [1]. Examples of results of the algorithm are shown in Table 1. Although 
this algorithm computes the length, it does not point out the actual longest common 
subsequence. It is necessary to identify this subsequence and we also give an algorithm for 
this.  
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Algorithm 1. Sequence matching 

 
Variable m and n in the algorithm Sequence matching denote the length of sequence A and 
B. They are necessary for computing the matrix M. Element M[m, n] denotes the length of the 
longest common subsequence when comparing sequences A and B. The algorithm, as 
describes by Yang [1] returns only this element (M[m, n]) when the algorithm terminated, not 
the whole matrix (M) as we do in the algorithm Sequence matching. But we need the whole 
matrix in algorithm Longest common subsequence to be able to find the longest common 
subsequence.  
 
 

  B = (2, 3, 4, 5) 
 M =       

A  i j 0 1 2 3 4 

=  0 0 0 0 0 0 

(1,  1 0 0 0 0 0 

2,  2 0 1 1 1 1 

3,  3 0 1 2 2 2 

4)  4 0 1 2 3 3 
 

Table 1. Example of result of Wuu Yang Sequence Matching algorithm 

 
Matrix M in Table 1 is a result of algorithm Sequence matching with A and B as arguments. 
It is to be interpreted as follows. The entry M[i, j] denotes the length of a common 
subsequence of the two prefixes A<1,…, i> and B<1, …,  j>. Therefore M[1, 1] denotes the 
length of a common sequence of A<1> and B<1>. This is zero in matrix M because the two 
elements A<1> and B<1> are not identical. Furthermore we have the entry M[2, 1], which 
tells us that the sequence A<1, 2> and the element B<1>, has one common element (A<2> = 
B<1> = “2”). The entry M[3, 2] tells us that there are two common elements between 

Algorithm: Sequence matching (A, B) 
m := |A| 
n := |B| 
Initialization. M [i, 0] := 0 for i = 0,…, m. 

M [0, j] := 0 for j = 0,…, n. 
 

for i := 1 to m do 
 for j := 1 to n do 
  M [i, j] := max ( M[i, j-1], M[i-1, j], M[i-1, j-1] + W[i, j]) 
   where W[i, j] := 1 if Ai = Bj and W[i, j] := 0 otherwise 
 end 
end 
return( M  ) 
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sequences A<1,…,3> and B<1,…2> (A<2> = B<1> and A<3> = B<2>). Finally M[4, 4] 
(which is the last element in matrix M, see point 6 in section 4.1) tells us that there are three 
common elements when comparing A and B, which is the length of the longest common 
subsequence. 
 

4.2.2. Observations regarding matrix M 
 
Understanding the patterns that emerges from the matrices is the key to identifying the longest 
common subsequence. Following is a list of rules regarding matrix M.  
 
Let matrix M be the product of algorithm Sequence matching with the sequences A and B as 
arguments, and m=|A|, n=|B|. And the element M[i, j] is a match if A<i> = B<j>. 
 
Rule 1. The element M[m, n] always denotes the length of the longest common 

subsequence of sequences A and B. 
Rule 2. When traversing M, a match is found at M[i, j] if and only if the value of M[i, j] is 

exactly one larger than each of the values at M[i-1, j], M[i, j-1] and M[i-1, j-1], for 
i � [1…m] and j � [1…n].  

Rule 3. If a match is identified at M[i, j] then the next match does not occur until at least 
M[i+1, j+1], for i � [1 … m-1] and j � [1 … n-1]. If we consider M as flattened 
(see point 4 in section 4.1), then there are no match between M[i, j] and at least 
M[i+1,j+1].  

Rule 4. If there exists only one instance of the longest common subsequence Q, and Q is 
not broken (see section 4.1.1), then as a result of rule 3, Q=( M[i, j], M[i+1, j+1], 
M[i+2, j+2]… M[i+(c-1), j+(c-1)]), where M[i, j] is the first match and c=M[m, n], 
for i � [1 …m] and j � [1 …n]. 

Rule 5. If the sequences contain multiple common subsequences of the same maximum 
length, see Table 2, then the path from one matching element to the next matching 
element branches out to different path. Each branch represents a common 
subsequence. All the above rules, except no 4, still apply. See Table 2. 

 

4.2.3. Identifying the longest common subsequence 
 
The algorithm for identifying the longest common subsequence (Algorithm 2) first applies 
Sequence matching algorithm to its arguments. The result is returned as matrix M. The 
variable C, which denotes the length of the current longest common subsequence, is initially 
set to zero. It then finds the subsequence by analyzing the matrix M. The algorithm does an 
exhaustive search through the matrix, starting with element M[1, 1]. Every time it finds a 
value in M[i, j] that is greater than C, it ads an element to Q by looking up in sequence A 
using index i. When an entry in matrix M is greater than C, it means that Yang’s algorithm 
has found a match in the two sequences A and B. The value C remains unchanged until 
another match is found.  
 
When applying the examples of Table 1, sequence A1 and B1, to algorithm Longest common 
subsequence, we get the longest common subsequence Q1=(2, 3, 4). And we get Q2=(3, 4, 5) 
of the sequences A2 and B2. Note, if we apply the sequences (1, 2) and (2, 1) to the algorithm 
Longest common subsequence, the result is the common sequence (1), although the common 
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sequence (2) is also an adequate solution. The problem of multiple solutions is addressed in 
section 4.2.4. 

Algorithm 2. Longest common subsequence 

 
 

4.2.4. Example with multiple solutions 
 
The entry M[m, n] always tells us the length of the longest common subsequence, but there 
are times when it does not tells us which one. Sometimes two sequences contain several 
common sequences of the same length. Example, A = (1, 10, 2, 20) and B = (1, 2, 10, 20) 
have two common subsequences, {1, 10, 2} and {1, 2, 20}. Both are equally valid and have 
the same length.  
 
It is possible to retrieve every possible solution from matrix M. As mentioned earlier, the 
characteristics of a match, for example in M[i, j], is that it is exactly one greater than M[i-1, 
j], M[i, j-1] and M[i-1, j-1], see Table 1. In the example in Table 1 the path of matching 
elements starts at entry M[2, 1] and then continues southwest. If m=|A|, n=|B| and the first 
common entry is M[i, j] and we know that the sequence of common subsequences Q is not 
broken, then we know that Q= (M[i, j], M[i+1, j+1], …, M[i+m, j+n]). But when there are 
several solutions, the path is not straight, but it will branch out into equally numbers of path 
as there are solutions, see Table 2. This makes it harder for us to identify the common entries, 
but the rules stated in section 4.2.2 still apply. As seen in Table 2, every common entry is one 
greater than the previous entry. 
 

Algorithm: Longest common subsequence (A, B). 
M := Sequence matching(A, B). 
C := 0 , length of the current longest subsequence. 
m := |A|. 
n := |B|. 
Q := sequence of length M[m, n]. Contains the longest common subsequence when 
the algorithm terminates. 
k := 0, index for Q. 
 
for i := 1 to m 
 for j := 1 to n 
  if M[i, j] > C then 
   Q[k] := A[i] 
   C := M[i, j] 
   k := k+1 
  endif 
 end 
end 
return ( Q ) 
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A := (1, 10, 2, 20) 
B:= (1, 2, 10, 20) 
 
M := Sequence matching (A, B) 
 
M 
 
 

i        
j 0 1 2 3 4  

 0 0 0 0 0 0  
 1 0 1 1 1 1  

 2 0 1 1 2 2  
 3 0 1 2 2 2  
 4 0 1 2 2 3  
        

Table 2. Example with multiple common subsequences 

 
The entries that mark the common subsequence in the example in Table 2 are M[1, 1], M[2,3] 
or M[3, 2], and finally M[4, 4].  
 
The algorithm for identifying the longest common subsequence does not in this thesis 
compute all possible solutions. It will only find one solution and always the first branch. The 
first branch is the path of where the index of the matching elements is the lowest. When 
choosing between two entries, the algorithm always favors the on with lowest index, as in the 
prior element in a flattened M, see point 6 in section 4.1.2. I.e. we have entry ME[iE, jE] and 
MF[iF, jF]. ME is prior to MF if iE < jE. If iE = jF, then ME is prior if iE<jF. 
 

4.2.5. Combining the matching and identifying algorithms 
We see that by applying two sequences to algorithm Sequence matching and then the result 
of this to algorithm Longest common subsequence we get the desirable results. Note that 
algorithm Longest common subsequence only needs |A|, |B| and M. But it is an inefficient 
way of computing the longest common subsequence. The matrix M is first produced and then 
traversed. A dynamic programming scheme will remove unnecessary steps and will improve 
the efficiency. We suggest that the longest common subsequence is identified at the same 
time as the matrix M is constructed. It is then not necessary to go through the matrix more 
than once. We cannot eliminate the matrix entirely because it ensures the finding of a 
maximum matching and every solution for this.  
 
A negative aspect of our suggestion is the loss of multiple solutions. Although our algorithms 
presented so far do not report every adequate solution, it does not totally exclude the 
possibility of finding the other solutions. The information for identifying those solutions still 
lies in the matrix that is produced. But with the combined algorithm we now present there will 
be only one possible solution because algorithm Combining the matching and identifying 
algorithm discards the matrix M after the longest common subsequence is identified and 
therefore no other solution can be identified. The choice, of which solution to pick, is the 
same as describe in section 4.2.4.  
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Algorithm 3. Combining the matching and identifying algorithm 

 
 

4.2.6. Reducing the size of the matrix 

The algorithm for identifying the subsequence searches through every entry of the matrix M. 
It is not necessary and it is of course time consuming, especially when we are dealing with 
full-scale programs and not small and trivial sequences. There are however a few ways that 
would improve the efficiency. 
 
The first way is to start the traversing at element M[1,1] because we know that there is no 
match in the first row and column. By definition the first row and column consist of zeros. 
This saves us from traversing the whole first row. 
 
The second way is once we have found the starting point, the first element in the matrix that 
denote a match, we know that the next match can the earliest be found at the next row and one 
column, see section 4.2.2. This means that when we find an element, we can ignore parts of 
the matrix because the rest is irrelevant. If we have a match at element M[i, j], then we cut off 
the rows with index i � [0…i] and the columns with index j � [0…j]. And continue the 
traversing with element M[i+1, j+1].  
 

 

Algorithm: Combined algorithm (A, B) 
m := |A| 
n := |B| 
Initialization. M[i, 0] := 0 for i = 0, …, m. 
  M[0, j] := 0 for j = 0, …, n. 
C := 0, length of current longest common subsequence. 
Q := sequence of length M[m, n]. Will eventually contain the longest common 
subsequence. 
k := 0, index for Q. 
 
for i := 1 to m 
 for j := 1 to n 
  M[i, j] := max ( M[i, j-1], M[i-1, j], M[i-1, j-1] + W[i, j]) 
   where W[i, j] := 1 if Ai = Bj and W[i, j] := 0 otherwise 
   

If  M[I, j] > C then 
   Q[k] := A[i] 
   C := M[i, j] 
   k := k +1 
  endif 
 end 
end 
return (Q) 
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This method is efficient and usable because we know how to avoid cutting off the relevant 
elements. However when we are dealing with multiple solutions, we will only retrieve one 
solution and always the first one, as in the first one in the flattened M, see section 4.1.2. 
 

4.3. Comparing abstract syntax trees 
 
In this section we give algorithms for comparing abstract syntax trees. We present a modified 
version of Yang’s algorithm and give an algorithm for identifying the largest common 
subtree. Yang’s algorithm assumes that the order of the subtrees of a node is significant, but 
we also want the order to be insignificant. We give therefore algorithms that handles both 
ordered and unordered nodes. 
 
 

4.3.1. Simple tree matching algorithm 
 
The algorithm presented here computes the number of nodes of the largest common subtree of 
two trees. First of all it checks whether the roots of the trees T1 and T2 matches. If they do 
not, the algorithm returns 0, as there are no common nodes between T1 and T2. 
If they match, the algorithm recursively finds the number of pairs in a maximum matching 
between the two trees.  

Algorithm 4. Simple tree matching 

 
 
Matrix M computed by algorithm Simple tree matching is the result of matching the two 
trees. The entry M[m, n] denotes the number of the maximum matching pairs. Note that M[m, 
n] is added 1 when the algorithm terminates. This is done to account for the fact that the roots 
of the two trees match. Matrix W in algorithm Simple tree matching is nothing more than a 
matrix M, but it is a result of a recursive call with two subtrees as arguments.  Matrix M is 
therefore computed from results of several W matrices. And W matrices are again dependent 

 
Algorithm: Simple tree matching (T1, T2) 
if the roots of the two trees A and B contain distinct symbols then return (0). 
m := the number of first-level subtrees of T1. 
n:= the number of first-level subtrees of T2. 
Initialization.  M[i, 0] := 0 for i= 0, …, m. 
  M[0, j] := 0 for j=0, …, n. 
for i := 1 to m do 
 for j := 1 to n do 
  M[i, j] := max ( M[i, j-1], M[i-1, j], M[i-1, j-1]+W[i, j] ) 
   Where W[i, j] = Simple tree macthing (T1i, T2j) 

Where T1i and T2j are the ith and jth first-level subtrees of 
T1 and T2, respectively. 

 od 
od 
return (M[m, n] + 1). 
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on results from W matrices generated from lower subtrees and so on. The result of all W 
matrices is then passed up until they reach the top matrix, which is M. Algorithm Simple tree 
matching is best illustrated by an example, see section 4.3.2. 
 

4.3.2. Example with the Simple tree matching algorithm 
 
We have two trees T1 and T2 as shown in Figure 4. Each node contains only one number and 
they are named for ease of reference. A pair of nodes matches if they contain identical number 
and their parents match. In the case of the roots, it is only necessary for the numbers to be 
identical for them to match. 
 

Figure 4. Examples of simple trees 

 
 
After checking the roots, the algorithm then recursively calls itself with the two first subtrees 
of N1 and N9 as argument. The result is stored as matrix W. Matrix M2 in Table 4 is in fact 
one of the matrix W in matrix M1. Matrix M2 tells us that there are four matching pairs; {N2, 
N10}, {N4, N13}, {N5, N14} and {N8, N15}. But before the algorithm could yield the matrix 
M2, it had to compare each subtree of N2 (N4 and N5) against each subtree of N10 (N13, and 
N14). And the algorithm keeps on going to lower levels until there is no match or until it 
reaches a leaf node. Once algorithm, with N2 and N10 as arguments, terminates the value 4 is 
stored in M1[1, 1]. The algorithm then continues with comparing N2 and N11, which yields 
the value 0 because they don’t have identical characters. The algorithm continues with 
comparing the pairs {N2, N12}, {N3, N10}, {N3, N11} and {N3, N12}. 
 
When the algorithm terminates, M1[2, 3] is 5 and the algorithm will return 6, for the six pairs 
in a maximum matching. We can see that in this case it is the pairs {N1, N9}, {N2, N10}, 
{N4, N13}, {N5, N14}, {N8, N15} and {N3, N11}. Note that N14 has the same character as 

2 3 
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7 

6 

2 

1 N1 1 

N2 N3 
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N6 N7 
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N5 and N6. The same goes for N12 and N7. But it is only N5 and N14 that is a match since 
they are the only ones that the parents also match.  
 
  
 
 
 

 
 
 
 

 
 

 
As mentioned before, the subtrees N2 and N10 will yield the value 4 and we can see that it is 
situated at position M1[1, 1] in Table 3. When the algorithm recursively calls itself with N2 
and N10, the following matrix (Table 4) is then generated. 
 
 

M2=Simple tree matching (N2, N10) 
 
M2 

 0 1(N13) 2(N13-N14) 
0 0 0 0 

1(N4) 0 1 1 
2(N4-N5) 0 1 3 

  

 

 

Table 4 . Matrix M2(W) when applaying algorithm on N2 and N10 

 
We can see that M2[2, 2] in Table 4 is 3. This means that there are three matching pairs under 
N2 and N10. And if we account for the fact that N2 and N10 also match, then the total 
maximum matching for the subtrees N2 and N10 is 4, which is the value passed on to element 
M1[1,1] in Table 3. 
 
This algorithm produces large amount of matrices, but only returns the number of the largest 
common subtree. This cause some challenges for Algorithm 5. It has to reproduce most of 
these matrices to be able to identify the largest common subtree. The reproduction is the topic 
for discussion in section 4.3.6. 
 

4.3.3. Identifying the largest common subtree. 
 
As with the sequence-matching algorithm, Simple tree matching does not point out the 
common nodes. We give an algorithm to compute this. 
 
Once again we use the matrix M to extract information so that we can construct the largest 
common subtree. But there are now not just one matrix M. We have now several matrices at 
different levels. The top-level matrix is dependent on the matrices at the lower levels. See 

M1 = Simple tree matching (T1, T2) 
 
M1  

 0 1(N10) 2(N10-N11) 3(N10-N12) 
0 0 0 0 0 

1(N2) 0 4 4 4 
2(N2-N3) 0 4 5 5 

 

 

 
 

 

Table 3. Matrix M when applying algorithm on T1 and T1 



32   Comparing Java Programs: Syntactic and Contextual Semantic Differences 
 
 
 

Algorithm: Largest common subtree (T1, T2) 
if T1 or T2 is empty then return empty tree. 
M := Simple tree matching (T1, T2) 
m := |subtrees of T1’s root| 
n:= |subtrees of T2’s root| 
if M[m, n] = 0 then return empty tree 
commonSubTrees := Empty list. Will contain the list of common subtrees. 
 subT1i := the ith subtree of  T1’s root 
subT2j := the jth subtree of  T2’s root 
 
for i:= 1 to m do 

for j:= 1 to n do 
if M[i, j] > M[i-1, j] then 

commonSubTrees := commonSubTrees + Largest common subtree 
(subT1i, subT2j) 
endif 

od 
od 
return (T1’s root with commonSubTrees) 

section 4.3.2. An exhaustive search through the top-level matrix M finds the matching pairs of 
two sequences of the root’s subnodes. Whenever a match is found, the algorithm then does 
another exhaustive search. It calls itself recursively with the matching nodes as arguments, or 
more exactly the subtrees where the matching nodes are the roots. Each time a match is found 
the algorithm remembers the position of the nodes and uses them later to construct the largest 
common subtree. 
 

Algorithm 5. Largest common subtree 

 
The first algorithm Largest common subtree does is to check whether T1 or T2 are empty. 
There is no point of going further if at least one of them is empty. Then it passes its arguments 
to the algorithm Simple tree matching. The result is matrix M. The list commonSubTrees is 
initially empty. It will eventually contain the list of common subtrees of T1’s root and T2’s 
root. The algorithm then traverse matrix M. When a match is found, that is subT1i’s root is 
identical to subT2j’s root. The algorithm then calls itself recursively with those nodes. The 
result is the common subtree of subT1i’s root and subT2j’s root it is joined together with the 
list commonSubTrees. The operator “+” is an infix list concatenation operator. 
 
When the algorithm finishes with traversing the lower-level matrix M, then it continues 
traversing the top-level matrix M. At the end, when every element is checked and every 
matrix is traversed, it joins T1’s root with the list of common subtrees of T1’s root and T2’s 
root. This forms the largest common subtree of T1 and T2.  
 

4.3.4. Identifying a match 
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Although the matrices for tree comparison look like the ones for comparing sequences, there 
are some important differences. First of all we see that the entries make larger leaps than 
before. With sequences, the entries are not able to increase with more than one at a time. See 
Rule 2 in section 4.2.2. This is because with sequences, one can at most find one more match 
at any given step of the matching process. But with trees the entries are not bound by that 
constraint. We see, e.g. in Table 3 and Table 4 that the entries increase with four at the most.  
Element M1[1, 1]in Table 3 makes a leap from value 0 (in the previous elements, see section 
4.1.2) to the value 4. The reason is that element M1[1, 1] denote the number of the largest 
common subtree of the subtrees where N2 and N10 are the roots. 
 
Second, the sequences produced only one matrix. With trees, there is one matrix for every 
comparison, because Simple tree matching algorithm needs them to compute. So when 
searching for matches, we must go through everyone to be make that we get all possible 
common nodes. 
 

4.3.5. Observation regarding matrix M when comparing trees 
 
In section 4.2.2 we set out a set of rules for matrix M for sequence matching. They still apply 
to tree matching with a few modifications. Let A and B be sequences of subnodes of T1 and 
T2’s roots, and M is the result of simple tree matching with A and B as argument. The 
modifications are as follow: 
 
Rule 1. We have tree T1 and T2 and m=|subtrees of T1’s root|, n=|subtrees of T2’s root|. 

Then M[m,n] always denotes the number of nodes in the largest common subtree 
of T1 and T2.  

 
Rule 2. A match is found at M[i, j] if and only if the value of M[i, j] is larger than the 

values at M[i-1, j], M[i, j-1] and M[i-1, j-1]. And M[i-1, j] = M[i, j-1] = M[i-1, j-1]. 
 
A new for trees: 
 
Rule 6. When the value of a match at M[i, j] is k larger than M[i-1, j], M[i, j-1] and M[i-1, 

j-1], it means that there are k matching nodes when comparing the subnodes of the 
sequences A<1…i> and B<1…j>. The nodes at position A<i> and B<j> are a 
match, and the remaining k-1 matches can only be identified by analyzing the 
matrix generated when giving the before mentioned nodes as argument to Simple 
tree matching algorithm. 

 
The other rules apply unmodified to trees. 

4.3.6. Discussion 
 
The algorithm Largest common subtree produces a large number of matrices because new 
ones are generated every time the algorithm calls itself recursively. They are not all necessary 
even though they are all unique, in the sense that the inputs are different every time. The 
matrices are produced, and then thrown away and then the exact same ones are some times 
reproduced. This is a waste of space and time. We illustrate this further with an example. We 
have two trees T1 and T2 as seen in Figure 5. They consist of three levels, meaning three 
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generation of nodes, each level having only one node. The steps for computing the largest 
common subtree are described in Figure 6.  
 
In step 1 we have concluded that the roots of the trees are identical, therefore we apply the 
Simple tree matching algorithm to the roots. The result is a matrix M0. But we need matrix 
M1 and matrix M2 to be able to compute matrix M0. The result of matrix M2 is passed up to 
matrix M1, which in turn passes its result to matrix M0. Now we have finished computing and 
are ready for identifying the common subtree. Keep in mind that Simple tree matching does 
not point out the nodes that are common. It simply tells the number of pairs in a maximum 
matching between two trees. 
 
In step 2 we traverse matrix M0 to find the common nodes. We do an exhaustive search 
through the matrix and every time we find a match, we move on to the next step. In this case 
there are only one element to traverse and it is a match. In step 3 we have identified the pair 
N2 and N5 as a match. We must then reproduce matrix M1 so we can identify possible 
common nodes in level 2. And as before, we have to produce matrix M2 before we can 
compute matrix M1. Once we have computed matrix M1, then it is ready for traversing. This 
is done in step 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Trees with only one node in each level 

 
In step 5 we have identified the nodes N3 and N6. We produce again matrix M2. Since at 
least one of them is a leaf node, we do not need to produce any lower-level matrices. In step 6 
we traverse matrix M2. But matrix M2 does not indicate any more common nodes, therefore 
the algorithms terminates here.  
 
If we have several more nodes for example in level 1, then step 3 to step 6 must be repeated 
with the number of matched found in M1. This means that additional matrices in level 1 and 2 
must be created. 
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Figure 6. The steps of Simple tree matching  

 
At the end of this example, the algorithm has produced six matrices. This is a waste since it 
actually only needs three. Simple tree matching algorithm uses a dynamic programming 
scheme to produce these matrices with the aim of finding out the number of nodes in the 
largest common subtree between two trees. Therefore it does not need to keep any of the 
matrices once it is done with them. Our algorithm on the other hand does not worry about the 
number of pairs, but rather identifies the pairs. To do that, we need every matrix. And since 
all the matrices are thrown away, we have to reproduce them.  
 
Simple tree matching algorithm is not ideal for our purpose, since its purpose is to find the 
number and not the actually largest common subtree. But we need the matrices because they 
are the best may to assure the finding of a maximum matching. A better solution is to go back 
to basics and use Sequence matching algorithm instead. The matrices produced here are fully 
sufficient since we do not need to know the number of nodes in the largest common subtree. 
And this algorithm does not need lower-level matrices. 
 
The steps for using the Sequence matching algorithm with T1 and T2 as describe in Figure 5 
are as follow: 
 
Step 1. A match is found at the roots of the trees T1 and T2. Matrix M0 is then produce by 

passing the subnodes of N1 and N4 to Sequence matching.  
Step 2. We traverse matrix M0 as we do in Figure 6.  

Step 1    Step 2    Step 3 
 
Match found (N1, N4) Traversing matrix M0  Match found (N2, N5) 
 
M0 = Stm (N1, N4)      M1 = Stm (N2, N5) 

 
         

M1 = Stm (N2, N5)      M2 = Stm (N3, N6)  
  
 
M2 = Stm (N3, N6)          
 
Step 4    Step 5    Step 6 
 
Traversing matrix M1  Match found (N3, N6) Traversing matrix M2 
 
    M2 = Stm (N3, N6)   
 
The statement Stm(x, y) stands for Simple tree matching (x, y). 
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Step 3. A match is found in matrix M0. We have identified N2 and N5. Then, and only 

then do we produce matrix M1. 
Step 4. We traverse matrix M1. 
Step 5. We identify N3 and N6 as a match and we produce matrix M2. 
Step 6. We traverse matrix M2. 

 
With this strategy we do not produce a matrix until we really need it and none are wasted, 
because we only produce matrices in one level at a time. This strategy works also well with 
our Combining the matching and identifying algorithm, which will in this case reduce the 
steps by half because it generate and traverse the matrices at the same time. But we prefer to 
use Sequence matching algorithm because it does not discard the possibility of finding 
multiple solutions, see section 4.2.5. We incorporated this strategy in Algorithm 7. 
 

4.3.7. Nodes with unordered and ordered subtrees 
 
Sequence matching is based on the assumption that the order of the element is significant, (1, 
2) � (2, 1). The order of the subtrees is also significant. But we sometimes need to ignore that 
constraint to be able to adapt to Java. E.g. method and field declaration orders are not 
significant. We want to have (1, 2) = (2, 1). Note that every element is unique, no elements 
can contain identical symbols, and therefore an element can at most match one element in the 
other sequence. This can be a problem for Java. A statement can occur several times in 
method bodies.  
 
We have now two ways of matching nodes, where order is significant and where order is not 
significant. The methods for matching nodes where order is significant are described in 
previous chapters. And the method for matching nodes when the order is insignificant is just a 
matter of comparing every element in one sequence with every element in the other sequence.  

 
Algorithm 6. Tree matching roots 

 

Algorithm: Tree matching roots (T1, T2) 
 
Node flagA numberA subA = T1  
Node flagB numberB subB = T2 
T = empty tree, will contain the common tree 
 
if flagA and numberA is not identical to flagB and numberB then return T 
 
if flagA then 
 T = Node flagA numberA (Tree matching ordered (subA, subB) ) 
else 
 T= Node flagA numberA (Tree matching unordered (subA, subB) ) 
endif 
return T 
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In the algorithm Tree matching roots we give an algorithm that handles both methods. To do 
this we introduce a flag. The nodes now contain a number and a flag. The flag of a node is to 
indicate whether the order of the node’s subtrees is significant or not. A match between two 
nodes is defined as two nodes, one from each tree, containing identical symbols. This means 
that the flags must be identical and the numbers must be the same. 
 
The first algorithm Tree matching roots does is to check whether the two roots of its 
arguments are identical1. If they are not, then it returns an empty tree, meaning that there are 
no matching nodes between the two trees. Note that the notation “Node flagA numberA subA 
= T1” means that the algorithm uses Haskell-style pattern matching for extracting the 
information of T1’ root node, [5]. Symbol “flagA” is the variable bound to the value of the 
flag of T1. The variable “numberA” is bound to the number stored in T1. The variable “subA” 
is the subnodes, or list of subtrees, of T1’s root. 
 
The algorithm checks the flag to decide if the order of the subtrees is significant or not. It 
does not matter whether it checks T1 or T2 because we have established that the flags of the 
roots are identical. We chose to use T1’s values. Once the significance is checked then the 
algorithm constructs a root node using the information from T1’s root. If the order is 
significant then it passes the two lists of subtrees to Tree matching order algorithm. Note 
that the subtrees are passed as sequences containing the roots of the subtrees. And if the order 
is not important, then the sequences are passed to the algorithm Tree matching unordered. 
Algorithm Tree matching ordered and algorithm Tree matching unordered are auxiliary 
algorithms to algorithm Tree matching roots. The result of either one is the largest common 
subtree minus the root.  
 
Algorithm Tree matching ordered respects the order of the nodes because it combines the 
Sequence matching algorithm and Longest common subsequence algorithm. The latter 
algorithm must be modified so it can handle the flags. The algorithm constructs the matrix M 
by calling the Sequence matching algorithm. Note that this is the algorithm for comparing 
sequences and not trees. The reason for choosing sequence-matching algorithms, is because 
they do not produce unnecessary matrices, see section 4.3.6. The algorithm traverses the 
matrix looking for matches. The matching pair of nodes is passed on as arguments to the Tree 
matching roots algorithm. When the recursion to lower levels is done, then it continues on 
traversing the matrix. When the algorithm terminates, it returns the variable subT, the list of 
common subtrees, to the Tree matching roots algorithm, which puts it together with the root 
to form a proper tree. 
 
Algorithm Tree matching unordered on the other hand does not respect the order of the 
nodes. It also takes two sequences as arguments. It compares every element in sequence A 
with every element in sequence B. A match is found when A<i> and B<j> is identical. Then 
the subtrees where A<i> and B<j> are the roots are passed to the Tree matching roots 
algorithm. The result of the lower recursion is stored in the list subT. The operator “+” joins 
together the list subT with the result of a recursive call, making a new list of subtrees. At the 
end the list is putted together with the root in the higher recursion to form the largest common 
subtree between T1 and T2. 

                                                
1 It is only necessary for the flags and the number to be identical for the roots to match. 
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Algorithm 7. Tree matching ordered 

 
Algorithm Tree matching unordered also finds the list of common subtrees when given two 
lists of subtrees, A and B, as arguments. It compares ever element in A with every element in 
B. When a match is found, that means that A<i> = B<j>, then they are passed to Tree 
matching roots algorithm. Or to be more precise, the subtrees where the nodes A<i> and 
B<j> are the roots are passed to Tree matching roots algorithm. The result stored in the 
variable subT, which is the list of common subtrees when comparing the sequences A and B. 
When the algorithm terminates, it returns the variable subT. This list is then joined together 
with the matching parent of A and B, to form the largest common subtree. 

Algorithm: Tree matching ordered (A, B) 
 
subT = empty list of subtrees, will possible contain the list of common subtrees 
M := Sequence matching(A, B) 
m:= |A| 
 n:= |B| 
C := 0  ,current length of longest common sequence 
subTAi= the subtree at index i of sequence A 
subTBj= the subtree at index j of sequence B 
 
for i := 1 to m do 
 for j := 1 to n do 
  if M[i, j] > C then 
   C := M[i, j] 
   if subT is empty tree 
    subT := Tree matching roots (subTAi, subTBj) 
   else 
    subT := subT + Tree matching roots (subTAi, subTBj) 
   endif 
  endif 
 end 
end 
return subT 
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Algorithm 8. Tree matching unordered 

 
 
The main difference between Tree matching ordered and Tree matching unordered is that 
the second algorithm does not need another algorithm. For the first algorithm, Sequence 
matching forms the matrix, which it traverses.  
 
They do however have in common the fact that they are not optimized. Algorithm Tree 
matching ordered traverses the whole matrix. As we have discussed earlier, this is not 
necessary. And algorithm Tree matching unordered continues to compare a node from 
sequence A with the rest of the nodes from sequence B after it has found a match. We know 
for a fact that a node from sequence A can at most match only one node from sequence B.  
 
It is not difficult to correct the algorithms, but these minor imperfections do not affect the 
outcome of the algorithm and are more an efficiency problem. We choose to not alter these 
fundamentals algorithm to correct these flaws.  
 
 
 
 
 
 

Algorithm: Tree matching unordered (A, B) 
 
subT = empty list of subtree, will possible contain the list of common subtrees 
m:= |A| 
 n:= |B| 
subTAi= the subtree at index i of sequence A 
subTBj= the subtree at index j of sequence B 
 
 
for i := 1 to m do 
 for j := 1 to n do 
  if A<i> = B<j> then 
   if subT is empty tree 
    subT := Tree matching roots (subTAi, subTBj) 
   else 
    subT := subT + Tree matching roots (subTAi, subTBj) 
   endif 
  endif 
 end 
end 
return subT 
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5. Functional comparison algorithms 
 
In this chapter we present functional, real code fragment of the algorithms introduced in 
chapter 4. There is of course a big difference between pseudo code and actual Haskell 
implementation. And not to mention that the fundamental algorithms are constructed in an 
imperative style and Haskell is a functional language. This may cause some conflicts during 
the transformation, as we see in section 5.1.3.  
 

5.1. Functions for comparing sequences 
 
In this section we describe functions for matching sequences and also functions for finding 
the longest common subsequences. We give also an improved functions for finding the 
longest common subsequence. 

5.1.1. Sequence matching  
 
In section 4.3.6 we concluded that the basic sequence-matching algorithm serves our purpose 
best. We found that with Sequence matching algorithm, we save time and space because the 
algorithm does not produce unnecessary matrices. In this section we present a functional 
version of that algorithm. We will therefore describe this function in greater detail than the 
other functions. This function, as with its predecessor algorithm, only computes the matrix M.  
 

sequenceMatching:: ( Eq t ) => [ t ]  ->   [ t ]  ->  Array ( Int, Int ) Int 
 
This is the signature of the sequence matching function. The “[t] -> [t]” denotes the two 
arguments of the function. This function takes two lists of the same type. The lists denote the 
sequences that we wish to compare. With Haskell functions, we do not need to specify the 
specific types of the sequences. In this case we simply call them for t. By this way the 
function is polymorphic and can apply to any homogenous kinds of sequences. We will 
therefore no longer use sequences of integers. The “(Eq t)” tell us that the elements t are 
subjects to the Haskell Eq class. This ensures the possibility for comparing the elements in the 
sequences by using the operator “= =”. The result of the function is of type “Array (Int, Int) 
Int”, which is Haskell’s representation of a matrix, or to be more precise, of an array. But a 
matrix is basically two-dimensional array. 
 
Following is the implementation of the function sequenceMatching. The values of the 
elements in the matrix are dependent on the values of others. Therefore the matrix is 
implemented recursively and the computation starts with the first row and column and 
proceeds from northwest to southeast. The parallel implementation enables us to refer to the 
array while it is being computed. 
 
 

1 sequenceMatching A B = M 
2   where  M = array ( (0, 0), (m, n) )   
3    (   [ ( (i, 0), 0)  |  i <- [1..m] ] ++ 
4     [ ( (0, j), 0)  |  j <- [1..n] ] ++ 
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5     [ ( (i, j), v )  |  i <- [1..m], j <- [1..n] ]  ) 
6    v = returnMax (  ( M!(i-1, j) ) 
7           ( M!(j-1, i) )  
8           ( (M!(i-1, j-1)) + compareValue i A j B) )

   

Function 1. sequenceMatching 

 
In line 2, we see that the bounds are set. In line 3 and 4, we set the first row and column to 
consist only of zeros. In line 5 we see that the index (i, j) is set to the value v. Each of the 
lines 3 to 5 creates a list of index-value pairs. They are joined together by the infix list 
concatenation operator “++” to form the whole list of index-value pairs that creates the array. 
The value v is the result of the function returnMax. The signature of returnMax is as 
follow. 
 

returnMax :: Int -> Int -> Int -> Int 
 
Function returnMax takes three arguments of type integer and returns the one with the 
highest value. This function works the same way as Prelude’s max, which only takes two 
arguments. The arguments given to returnMax are shown in line 6 to 8. The first two 
arguments are the values of the elements situated immediately to the north and west of the 
current element. The third argument is the sum of the value of the immediate element in the 
northwest and the result of the function compareValue.  
 

compareValue ::( Eq t )=> Int -> [ t ] -> Int -> [ t ] -> Int 
 
Function compareValue compares the value at index i in sequence A and the value at index j 
in sequence B. If the values are identical then it returns 1 otherwise it returns 0. Function 
compareValue uses a built in function to extract the right element from the sequences. And 
again we see the “(Eq t)”. This means that the elements of type t inherits from class Eq and 
function compareValue is able to apply the operator “= = ” no matter what type the element 
really have. 
 
In other words, the function sequenceMatching creates a matrix of size (m+1)�(n+1), where 
the first row and column are zeros. The value v of the element (i, j) is always equals to the 
highest value of its predecessors (in term of a flattened M, see section 4.1.2), until there is a 
match in A!i  and B!j. In that case the value v is incremented by 1. This corresponds to 
Sequence matching algorithm. 
 
 

5.1.2. Common subsequence 
 
This function sets out to find the longest common subsequence by analyzing the matrix M 
produced by function sequenceMatching. It goes through every element in the matrix and 
retrieves the information needed to construct the longest common subsequence. The function 
starts its search at M!(0, 0) and works its way row by row to M!(m, n), where m and n is the 
length of sequence A and B. The path of the function is best explained by imaging the matrix 
as a long sequence, a flattened M, see section 4.1.2. The function simply starts at the 
beginning and works its way to the end. 
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commonSubsequence :: Array ( Int, Int ) Int -> ( Int, Int ) -> Int -> [ t ] -> [ t ] 
 
The function commonSubsequence returns an array of elements of type t. Type t is of course 
the type of the two sequences A and B, which are given to the function sequenceMatching as 
arguments. The four arguments are a matrix, a pair of bound, an integer and a list of elements. 
The first argument is the matrix M that sequenceMatching returns. The second argument is a 
pair of bound telling the function commonSubsequence how far the function has computed. 
The third argument is the length of the current longest common subsequence that the function 
commonSubsequence has computed. The last argument is either sequence A or B. It does not 
matter which one, because it is only use to look up the common elements. 
 
 

1 commonSubsequence M (i, j) C A 
2   | j > n   = commonSubsequence M  (i+1, 0) C A 
3   |  i > m  = [ ] 
4   | C < C_ = [ ( A !! (i-1)) ] ++ commonSubsequence M (i, j+1) C_   A 
5 |  otherwise  = commonSubsequence M (i, j+1) C A 
6  where 
7   C_ = M!(i, j) 

 
Function 2. commonSubsequence 

 
The initial invocation of this function is “commonSubsequence M (0, 0) 0 A”. The reason the 
pair of bound is set at (0, 0) is, as mention earlier, that we want the function to start at the 
beginning of the flattened M. One might wonder why we do not start the traversing with 
element M[1, 1]. After all, the first common element cannot be found earlier1. But even 
though we do not traverse the first row at all, we still have to traverse the first column of the 
remaining rows and they are still zeros. We do not improve the efficiency much in the long 
run. Therefore we leave the efficiency improving to the function commonSubsequence2 that 
we present in section 5.1.4. 
 
The variable C is initially zero and as the function computes; variable C increases every time 
the function finds a match. The guard in line 2 applies if the function is at the end of a row in 
the matrix. It then calls itself recursively and tells the function to start at the beginning of the 
next row. The variable C remains the same. The second guard in line 3 applies if the function 
has finished with the last row and has therefore gone through the whole matrix. It then returns 
an empty list. The guard in line 4 applies if a match is found. It recognizes a match by 
comparing the value of the current element (i, j) with variable C. Remember that the variable 
C denotes the length of longest common subsequence until now. If the value of variable C_, 
which is computed in line 7, is higher than the value of variable C, then the common element 
is added to the final list and joined together with other common elements that are to be 
computed. Note that when the function calls itself recursively this time, the variable C_ , not 
variable C, denotes the length of the current longest common subsequence. The last guard 
applies if the other fails, and basically what it does it to call itself recursively telling it to 
move to the next element in the row. 

                                                
1 The first row and column of the matrix are by definition zeros. 
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We see that in line 4 that we wish to obtain element i in sequence A, because we know that 
the element is a match. This is done with the built in operator “!!” and note that we decrement 
the index i. This is because our sequences cognitively start with index 1, as in does in the 
matrices, but the Haskell lists starts at index 0. We could just as well have taken element j in 
sequence B, because they are identical. Note that we do not check for case of index out of 
bounds. If is not possible to be out of bounds because our sequences and the matrix operates 
with the same boundaries. 
 
 

5.1.3. Combining the matching and identifying functions 
 
In section 4.2.5 we gave an algorithm for combining the two algorithms Sequence matching 
and Longest common subsequence. We cannot give a functional version of that algorithm. 
Combining the two functions sequenceMatching and commonSubsequence in their current 
form is not possible. The algorithm Combining the matching and identifying algorithm 
suggests that during the construction of the matrix, the common elements are retrieved 
immediately after a match has been identified. Unfortunately this is not possible using the 
array construction in Haskell. There are no side effects in Haskell and we are not able to store 
the common elements outside the matrix during its computation.  
 
However, it is possible to combine these two functions if we alter the function 
sequenceMatching. If we choose to construct the matrix in a different way such that we are 
able to retrieve the common elements as we compute. One way of doing this is to first 
construct a matrix consisting of only zeros. The size of the matrix depends on the size of the 
sequences to be match, plus an extra row and column. Then we traverse it in the same manner 
as we do in the function commonSubsequence. For each and every element, except the ones 
in the first row and column, we compute values as usual. And when we find a match, we add 
it to the longest common subsequence list.  
 
combinedMatchingIdentifying :: [ t ] -> [ t ] -> Array (Int, Int) Int ->(Int, Int)-> Int -> [ t ] 
 
The first two arguments are the two sequences to be compared. The next three arguments 
correspond exactly to the first three arguments of the function commonSubsequence. The 
function combinedMatchingIdentifying must also call itself recursively in the same way as 
the function commonSubsequence does. The result of the function is of course the longest 
common subsequence. 
 

updateMatrix :: Array (Int, Int) Int -> (Int, Int) -> Int -> Array (Int, Int) Int 
 
The function above aids the operation of replacing the existing value of an element. What it 
does is basically copy every element from the array given as argument, except the element in 
position of the second argument. It replaces that element’s value with its third argument 
before returning the new matrix. The combined function must do this operation for every 
element and provide this new matrix as argument every time it calls itself recursively. 
 
The initial invocation for this function is as follows.  
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combinedMatchingIdentifying A B mZeros (0, 0) 0 
 
Let A and B be two sequences and m = | A | and n = | B |. 
 

mZeros = array ((0, 0), (m, n))  [ ((i, j), 0) | i <- [1..m], j <- [1..n] ] 
 
This solution works, but the implementation of this function is complicated and not compact 
and easy to understand. It is also space consuming because every time we compute an element 
and store it in the matrix, we in reality creates a new matrix. In Haskell, we do not have 
variables in the imperative languages sense, but rather like constant. A variable is bound to a 
value, and the value does not change once bound [4]. In order to “change” the value, we have 
to create a new variable with the desire value.  
 
Because of this reason and because it discard the possible of finding multiple solutions as 
discussed in section 4.2.5, we choose not to implement and use the combined function. We 
will not show how such a function might be implemented but rather give a sketch. We present 
this solution because it may prove to be useful in future works.  
 
 

5.1.4. Improving the commonSubsequence function 
 
In section 4.2.6 we discussed ways to reduce the running time by improving the efficiency. In 
this section we give a function that not only incorporate the suggestion in section 4.2.6 but we 
also improve the efficiency in some special cases that are likely to occur, like multiple 
solutions and broken subsequences. 
 

commonSubsequence2 :: Array (Int, Int) Int -> (Int, Int) -> Int -> [ t ] -> [ t ] 
 
The signature of this function is identical to that of the original function. The construction of 
the function is also similar. We have just added two more guards and done some minor 
adjustments. The main difference is the order in which the elements are searched. In this 
function we do not search through every element. We start the search at index M[1, 1] and 
move on to M[2, 2], M[3, 3] and so on. The extra guards ensure that we do not miss any 
matches. Let A and B be the sequences to be compared and m = |A|, n=|B|. 
 

1  CommonSubsequence2 M (i, j) C A 
2   |      j > n   = commonSubsequence2 M  (i+1, 0) C A 
3   |  i > m  = [ ] 
4   | C < C_ = [(A !! i)] ++ commonSubsequence2 M (i+1, j+1) C_ A 
5   | C==C_ &&  j /= n  && C < Cj = commonSubsequence2 M (i, j+1) C A 
6   | C==C_ &&  i /= m  && C < Ci = commonSubsequence2 M (i+1, j) C A 
7 |  otherwise  = commonSubsequence2 M (i+1, j+1) C A 
8    where 
9    C_ = M!(i, j) 
10     Cj = M!(i, j+1) 
11     Ci = M!(i+1, j) 

Function 3. commonSubsequence2 
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Note in line 4 and 7, when we call the function recursively, the pair of indexes is set to (i+1, 
j+1) and not (i, j+1) as it is in the original function. We do this to exploit the knowledge we 
have of matrix M, see section 4.1.2. We exploit the fact that if a match is found at index (i, j), 
then the next match does not occur until at least at index (1+1, j+1). This adjustment saves us 
from looking at the rest of the row. The next guard, in line 5 ensures that the function always 
choose the first1 solution if there are multiple longest common subsequences. 

 
The matrix M1 depicts a situation where there are two possible solutions of the longest 
common subsequence, M1[1, 2] and M1[2, 1]. The search starts as mention at M1[1, 1]. 
Without this guard, the function will move on to M[2, 2] and it will consider that element as a 
match, which it is not. The guard moves the focus to the element M1[1, 2] if it considers the 
element to be a match. The lazy evaluation style of Haskell and the test “j /= n” ensure that 
the function stays within bounds when computing the variable Cj. Matrix M2 depicts another 
situation which is also caught by the guard. The guard in line six prevents the wrong element 
to be identified in a situation described below. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

                                                
1 The first solution is the one with the lowest index, see section 4.1.1. 

A1 = (1, 2) 
B1 = (2, 1) 
M1 = sequenceMatching (A1,B1) 
 
M1 

i     
j 0 1 2 

0 0 0 0 
1 0 0 1 
2 0 1 1 

 

A2 = (5, 6, 7) 
B2 = (5, 8, 6) 
M2 = sequenceMatching (A2, B2) 
 
M2 

i       
j 0 1 2 3 

0 0 0 0 0 

1 0 1 1 1 

2 0 1 1 2 
3 0 1 1 2 

 

A3 = (1, 4, 2) 
B3 = (1, 2, 5) 
 
M3 = sequence matching (A3, B3) 
 
M3 

i       
j 0 1 2 3 

0 0 0 0 0 

1 0 1 1 1 

2 0 1 1 1 
3 0 1 2 2 
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Without the guard, the function would identify the elements M3[1, 1] and M3[3, 3] as the 
longest common subsequence of A3 and B3, which is wrong. The correct elements in the 
longest common subsequence between sequences A3 and B3 are M3[1, 1] and M3[3, 2]. 
 
 

5.2. Functions for comparing abstract syntax trees 
 
With sequences we operated with a general type t. We are not able to do that when we 
implement the functions that compare abstract syntax trees. In section 4.3.7 we introduce the 
data type for nodes in a tree. We will in this section elaborate more of the data representation 
of trees in our implementations. Here is a Haskell data type for trees. 
 

data Tree  = Empty | Node Bool Int [Tree] 
 
A tree is either Empty, which means that there are no nodes in that tree, or it consists of a 
node with a list of subtrees. And further more we see that a node also consists of a flag of type 
Boolean and an integer. The flag determines how we treat the list of subtrees. If the Boolean 
value is true, then we consider the order of subtrees to be significant, and insignificant if false.  
The integer represents the information we want to store in the abstract syntax tree. An empty 
list means that the node is a leaf.  
 
The function compareNodes takes two nodes and returns the value true if they are equal, 
otherwise it returns false. Two nodes are considered equal if the pair of Boolean-values, one 
of each node, is identical and the pair of integers are identical. The lists of subtrees are not 
considered when comparing nodes. 
 

compareNodes : : Node -> Node -> Bool 
 

5.2.1. Tree matching 
 
This functions task is to compare the roots of two trees. It is a functional version of algorithm 
Tree matching roots. It works in the same way; first it checks whether the roots are identical 
and then sends the subtrees to the appropriate functions for comparison; 
orderedTreeMatching or unorderedTreeMatching. 
 

treeMatchingRoots ::  Tree -> Tree -> Tree 
 
The function treeMatchingRoots takes two trees as arguments and returns the largest 
common subtree. If at least one of the trees is empty then it returns an empty tree. It also 
returns empty if the roots do not match. 
 

1 treeMatchingRoots   Empty  _ = Empty 
2 treeMatchingRoots   _  Empty = Empty 
3 treeMatchingRoots a@(Node flgA intA treesA) b@(Node flgB intB treesB) 
4   |  cmpN && flgA = Node flgA intA (treeMatchingOrdered treesA treesB) 
5   |  cmpN && not flgA = Node flgA intA (treeMatchingOrdered treesA treesB) 
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6   |  otherwise = Empty 
7   where cmpN = compareNodes a b 
 

Function 4. treeMatchingRoots 

 
The guards in line 1 and line 2 return an empty tree if one of the fundtion’s arguments is 
empty. The operator “@” in line 3 assigns the pattern after it to the symbol before it. We can 
then use the symbol when we address the whole pattern. In line 4 the variable cmpN is the 
result of a matching between the nodes a and b, which is computed in line 7. If the result is 
the value true and the flag of node a (and of node b) is also true, then the function constructs a 
root node and sends the subtrees of a and b to orderedTreeMatching. If the flag is false then 
a root node is then also constructed, but the subtrees are sent to unorderedTreeMatching. 
 
 

5.2.2. Ordered tree matching 
 
In section 4.3.6 we suggested a strategy where we do not need to create unnecessary matrices 
and in section 4.3.7 we incorporated that strategy in algorithm Tree matching ordered. In 
this section we present a function that respects the order of the element in a sequence and also 
incorporate the mentioned strategy. 
 

orderedTreeMatching :: [ Tree ] -> [ Tree ] -> [ Tree ] 
 
This function takes two lists of subtrees and returns a list of common subtrees. Note that this 
function does not handle the nodes that are the parents of these subtrees because they are 
compared at a higher level of recursion. We can say that this function corresponds to the 
algorithm Tree matching ordered, because it also needs a sequence-matching algorithm. The 
function orderedTreeMatching calls the function sequenceMatching to compute. The 
function sequenceMatching uses the function compareValue and a few minor adjustments 
are needed, since we do not deal with sequences of integers any more. Earlier we compared 
elements of type t’s by using the operator “= =”. This will not have the desire effect with 
nodes because we do not wish to include the subtrees in the comparisons. Therefore the 
function compareValue must call the function compareNodes to determine whether the 
nodes are equal or not. 
 
1 orderedTreeMatching  [ ]  _ =  [ ] 
2 orderedTreeMatching  _  [ ] =  [ ] 
3 orderedTreeMatching treesA treesB = orderedCommonSubTrees M (1, 1) 0 treesA treesB 
4    where  M = sequenceMatching treesA treesB 
 

Function 5. orderedTreeMatching   

 
The first two lines returns an empty list if either of the two arguments are also empty. We see 
the function generates a matrix M in line 4 by calling sequenceMatching. Matrix M is then 
given to the function orderedCommonSubTrees, which corresponds to the function 
commonSubsequence2. Except that the last function do not compute into lower levels of 
recursion when it finds a match. 
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orderedCommonSubTrees :: :: Array (Int, Int) Int -> (Int, Int) -> Int -> [ t ] -> [ t ] -> [ t ] 

 
We see that the list of arguments is almost exactly the same function commonSubsequence2. 
An additional list has been added as argument. The two last arguments are the two sequences 
used to generate the matrix M. They are needed for looking up elements when a match is 
found. The implementation is also similar to the function commonSubsequence2. 
 

1 orderedCommonSubTrees M (i, j) C A B 
2   |      j > n      = orderedCommonSubTrees M  (i+1, 0) C A B 
3   |  i > m     = [ ] 
4   | C < C_    = [Node_ ] ++ orderedCommonSubTrees M (i+1, j+1) C_ A B 
5   | C==C_ &&  j /= n  && C < Cj  = orderedCommonSubTrees M (i, j+1) C A B 
6   | C==C_ &&  i /= m  && C < Ci = orderedCommonSubTrees M (i+1, j) C A B 
7    |  otherwise  = orderedCommonSubTrees M (i+1, j+1) C AB 
8    where 
9    C_ = M!(i, j) 
10     Cj = M!(i, j+1) 
11     Ci = M!(i+1, j) 
12     Node_ = treeMatchingRoots T1 T2 
13     T1 A !! i 
14     T2 = B !! j 

 
Function 6. orderedCommonSubTrees 

The main difference in this version is in line 4. When a match is found we do not just return 
the common element, but we construct a new node. In line 12 we construct a node using the 
values of the common node in sequence A. The two common nodes are then sent to function 
treeMatchingRoots as arguments. They are the roots of a new common subtree. In line 13 
and 14 we get the nodes from the lists and extract the information we need to form the new 
node in line 12. 
 
When this function terminates, it has formed a list of trees. This list is then put together with 
the root node to form the largest common subtree. 
 

5.2.3. Unordered tree matching 
 
This function matches lists of trees where the order of the trees is not significant. This is a 
step towards to Java. An example of such a list is the list of methods in a class. In Java, the 
order of the methods is irrelevant. Therefore we cannot use the functions that incorporate 
Yang’s matrices, such as functions orderedTreeMatching. 
 
In section 4.3.7 we introduce an algorithm, Algorithm 8, where we match two lists against 
each other without considering order. The function in this section is a functional version of 
that algorithm. 
 

unorderedTreeMatching ::  [ Tree ] -> [ Tree ] -> [ Tree ] 
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As with function orderedTreeMatching, this function takes two lists of trees and returns the 
list of common trees. And this function does not handle the roots that these subtrees belongs 
to because they are compared at a higher level of recursion, in the function 
treeMatchingRoots.  
 

1 unorderedTreeMatching treesA treesB 
2   |  treeA = = [ ]   | |    treesB = = [ ]      =     [ ] 
3   | otherwise =    commonSubseqUnordered treesA treesB treesB 

 

Function 7. unorderedTreeMatching 

 
The first guard in line 2 returns an empty list if one of the arguments is also an empty list. The 
function then calls the auxiliary function unorderedCommonSubTrees. Note that the two 
last arguments of that function are the same. The reason that this function does not do much is 
that we want to encapsulate the complicated implementation in an auxiliary function and 
provide an intuitive interface; given two lists we get one list of common elements. 
 

unorderedCommonSubTrees :: [ Tree ] ->  [ Tree ] ->  [ Tree ] ->  [ Tree ] 
 
This function takes three lists and as mentioned, the last two are initially identical. The reason 
for this is that the first two are used for comparison during recursive calls. During these calls 
the second list undergoes various manipulations, and sometimes we need to go back to its 
original value. Therefore the last argument is not subject to any change at all. 
 
1 unorderedCommonSubTrees [] _  _  = [] 
2 unorderedCommonSubTrees (_:tlA) [] orgB = unorderedCommonSubTrees tlA orgB orgB 
3 unorderedCommonSubTrees a@( hdA : tlA )   ( hdB: tlB )  orgB 
4   |  compareNodes hdA hdB = [ Node_ ]++ unorderedCommonSubTrees tlA orgB orgB 
5   |  otherwise  =  unorderedCommonSubTrees a tlB orgB 
6    where Node_ =  treeMatchingRoots hdA hdB 
 

Function 8. unorderedCommonSubTrees 

 
The first line in Function 8 applies when the function has finished computing. The strategy of 
this function is to compare the first element in the first list with every element in the second 
list. When it has gone through the second list, it moves on to the second element in the first 
list and compares it with the entire second list and so on. Therefore when the first list is 
empty, it means that we have compared every element in it and the function terminates. Note 
that when the function calls itself and gives a tail of a list, then the head is lost. 
 
The second line applies when the function has gone through comparing every element in the 
second list with the first element in the first list. It then calls itself recursively with the rests of 
the first list (tlA), and two instances of original second list orgB as arguments. The reason for 
using the list orgB as the second arguments is give the rest of the first list a chance to compare 
with the entire second list.  
 
The guard in line 4 applies if the result of the function comparingNodes is true. This means 
that there is a match between the two heads of the two lists and the variable Node_ is 
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constructed in line 6. Variable Node_ is the root of the largest common subtree when 
comparing the two heads of the lists. This subtree is then joined together with the rest of the 
possible subtrees.  
 
As with the function unorderedTreeMatching, the result of this function is put together with 
the root node in the higher recursion to form the largest common subtree. 
 
 

5.3. Functions for maximum matching 
 
 
We present in this section two functions that are in a sense the API for the functions described 
in the previous sections. These two functions both take two lists as arguments and return a 
third. The implementation of our tool does not call the functions in the previous sections 
directly, but only these two we present here.  
 

5.3.1. Ordered maximum matching 
 
This function combines the two functions sequenceMatching and commonSubsequence2. 
This combined function is then a useful auxiliary function as we see in section 6.2.  
 

1. orderedMaximumMatching :: (Eq t) => [ t ] -> [ t ] -> [ t ] 
2. orderedMaximumMatching A B = commonSubsequence2 M (1, 1) 0 A 
3.    where M = sequenceMatching A B 

 

Function 9. orderedMaximumMatching 

 
This function takes two lists of the same type and returns a third, which denotes the longest 
common subsequence when comparing the two arguments. The order of the elements in the 
lists is significant. The elements in the list are subjects of the standard Haskell class Eq and 
we are able to apply them to the equality oprator “= = “ when comparing them.  
 
 

5.3.2. Unordered maximum matching 
 
This function does not respect the order of the elements of the lists when comparing them. It 
compares every element from the first list with every element from the second list. This 
function is a variation of the function unorderedCommonSubTrees.  
 

1. unorderedMaximumMatching :: (Eq t) => [ t ] -> [ t ] -> [ t ] 
2. unorderedMaximumMatching A B = auxUMM A B B 
3. auxUMM :: (Eq t) => [ t ] -> [ t ] -> [ t ] -> [ t ] 
4. auxUMM [ ] _  _  =  [ ] 
5. auxUMM ( _ : tlA ) [ ] orgB = auxUMM tlA orgB orgB 
6. auxUMM a@(hdA : tlA ) ( hdB : tlB ) orgB  
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7.   |  hdA = = hdB = [ hdA ] ++ auxUMM tlA orgB orgB 
8.   |  otherwise  = auxUMM a tlB orgB 

 

Function 10. unorderedMaximumMatching 

 
The unorderedMaximumMatching is in reality two functions; the function 
unorderedMaximumMatching and the auxiliary function auxUMM, which is short for 
auxiliary unordered maximum matching. Function unorderedMaximumMatching provides 
a simple API and hides the computation details of auxUMM. The first function corresponds 
to the function unorderedTreeMatching and the second function corresponds to the function 
unorderedCommonSubTrees, in the sense that they both treat subnodes where order is not 
significant and that the function unorderedTreeMatching needs the function 
unorderedCommonSubTrees to compute in the same way as the function 
unorderedMaximumMatching need the function auxUMM.  
 
In line 2 we see that the only function unorderedMaximumMatching does is to call upon 
auxiliary function auxUMM, which does all the comparison work. The construction of 
auxiliary function importDeclarationList is exactly the same as the function 
unorderedCommonSubTrees. The only difference is in line 7. In this case we do not need to 
construct a common subtree but we only returns the first argument if the two arguments 
matches. This function is only use to compare lists where order is insignificant and where we 
do not need to compare subterms of the elements of the lists.  
 
 

5.4. Comments 
 
During the construction of these functions, we are not concerned much with the efficiency of 
the functions. The most important for us is that the functions compute correct values and that 
the functions are neat and compact. In section 3.3 conclude that this tool is far from ready for 
commercial use, but we do not totally neglect the efficiency. In section 4.2.6 and 5.1.4 we 
implement functions that are more efficient than the basic functions. But these changes are 
not done with the intention of reducing the running time, but because it is a waste of time and 
space if we do not. The changes are an act of principle and it is a bonus that it also reduces 
running time. 
 
The reason for choosing Haskell as the programming language shines through during the 
construction of these functions. The pattern-matching feature of Haskell is powerful yet easy 
to use. The functions owe their compact and nice structures much to pattern matching. 
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6. Implementation 
6.1. Overview 
 
The work of finding the syntactic difference between two Java programs is not just the task of 
finding the largest common tree between two abstract syntax trees, although it is the hardest 
and most time consuming. In this section we give a description of the different stages in the 
procedure of comparing two programs. 
 
The steps are as follow. 
 

1) Preparing source files. 
2) Constructing abstract syntax trees. 
3) Identify methods inherited from interfaces. 
4) Comparing abstract syntax trees; finding the largest common subtree. 
5) Analyzing the common sub tree. 
6) Generating a report on the differences. 

 
The preparation of source files makes Strafunski able to generate abstract syntax trees. The 
most important is that the source files are syntactically correct, which we assume that they 
are. It is also important for all the associated files, like source files for super classes or 
interfaces, to be accessible to Strafunski. We need the abstract syntax trees for these files to 
identify contextual differences. 
 
Strafunski then takes in the second stage. It generates not only abstract syntax trees for the 
files that we want to compare, but also for all associated files. Our task here is to separate 
these trees and getting the ones we wants. Then we traverse the two trees and search for 
methods that they inherited from their implemented interfaces.  
 
When we have the two abstract syntax trees prepared as we want, the job of comparing these 
can begin. This stage is described throughout this thesis since it the most important stage and 
requires complicated algorithms.  
 
The largest common subtree is not the final result. To obtain the final result, we need to 
compare the common subtree with the original abstract syntax trees. Let T1 and T2 be version 
1 and version 2 of the program we want to compare. And T’ be the largest common subtree 
when comparing T1 and T2. Then we get the desired information if we compare T1 against T’ 
and T2 against T’. The information that we are looking for is the “rest” when “subtracting” T’ 
from T1 and from T2. In other words, we are looking for the nodes in either T1 or T2 not 
found in T’. The result of the comparison between T’ and T1 denotes deletions in going from 
T1 to T2. And the result from the comparison between T’ and T2 denotes the additions in 
going from T1 to T2. Some changes might be considered as an alteration and neither an 
addition nor a subtraction, but an alteration is a subtraction-additional pair of actions. If a 
node in T’ has a corresponding node in both T1 and T2, then the node in T1 has changed into 
the node in T2. Note that we said corresponding, not matching. This is best explained by an 
example. 
 



Implementation   53 
 
 
Let node N1 in tree T1 have the value integer and node N2 in tree T2 have the value double. 
Node N1 does not match N2, so the largest common subtree T’ should not have a node that 
matches any of the nodes N1 or N2. But if we want to match N1’ subnodes to N2’s subnodes 
anyway, we need to go away from the rule that the parent nodes must match. For this reason 
there must be a node in the corresponding place in T’ as N1 has in T1 and N2 has in T2, then 
we must assign the node N’ in T’ with a value that reflect the situation. We use a third value 
to achieve this. Let N’ have the value changed in this example. Then when comparing N’ in 
T’ with N1 in T1, we detect that N1 has been deleted since it does not match with the 
corresponding node in T’. And when comparing N’ in T’ with N2 in T2, we detect that N2 
has been added because it does not match its corresponding node N’ in T’. We view the 
deletion action and addition action as a single alteration action, since the two actions derive 
from the same node in T’   
 
The final stage is to generate a reader-friendly report that sums up the changes between the 
two versions of the program. This thesis does not include this stage. The outputs of our 
functions contain all the information needed to produce the best report of differences, but it is 
in the form of an abstract syntax tree. It is a trivial exercise to transform the outputs into a 
reader-friendly report. 

6.2. Comparing Java abstract syntax trees 
 
In this section we present and describe the function that does the actual work of comparing 
two Java programs. We do not show all of the implementation because it takes a lot of time 
and space, and we will not gain much by doing that. What this section does is to explain the 
most important parts of the implementation and we go through a few examples that are 
representative for the rest of the implementation.  
 
In section 4.3.7 we introduce a flag to distinguish between ordered and unordered subtrees. 
That flag demonstrates how the functions interact with each other. When comparing abstract 
syntax trees generated by Strafunski, we do not have such a flag. The Java abstract syntax tree 
is also complicated. Comparing the Java abstract syntax trees is not as simple as sending them 
as arguments to the function treeMatchingRoots and let the function do the rest. The abstract 
syntax trees are not structured the same way as our simple and basic trees are. It will require 
more work to be able to compare Java programs. We have to adapt the functions to Java 
syntax.  
 
This does not mean that the effort of previous chapters is wasted. The fundamental algorithms 
that lead to the corresponding functions are still the foundation on which our tool rests. What 
this means is that, since there are no flag to decide whether the order is significant or not, we 
have to make those decisions in a case-to-case basis. And the functions explained in this 
section demonstrate the different cases and how we solve the problems. 
 
Strafunski breaks down a Java program into small and categorized data types, or data types. 
These data types vary in size and complexity therefore we cannot create a universal function 
that traverses through the abstract syntax tree and compares all the different kind of data types 
or nodes. We have to create a function for each and every kind of data type. We have to 
analyze what the data types represent and decide whether the order of the subtrees is 
significant or not, and then implement the function that compares them. 
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The consequence of this is that we now have three sorts of functions; order is significant, 
order is insignificant and data type specific. The two first sorts have been described in details 
in the previous chapters. The data type specific functions cannot be described in general 
terms, but explained with examples. The following sections demonstrate our solution on key 
areas.  
 
 

6.2.1. Comparing compilation units 
 
A compilation unit represents basically a Java file. Most times such a file consists of the 
implementation of one class, but one may find implementation of several classes and 
interfaces. The compilation unit is to the root node of an abstract syntax tree. Strafunski 
represents compilation units as follows. 
 

data CompilationUnit = CU ( Maybe PackageDeclaration ) [ ImportDeclaration ] 
[ TypeDeclaration ] 

 
The characters CU is the constructor for the data type CompilationUnit. As we see, a 
compilation unit consists of an optional package declaration, a list of import statements and a 
list of type declarations. The data type TypeDeclaration is either a class declaration, an 
interface declaration or an empty block statement (semicolon). The function compilationUnit 
compares the two roots of the abstract syntax trees.  
 

1 compilationUnit :: CompilationUnit ->CompilationUnit ->CompilationUnit 
2 compilationUnit (CU pdA impsA tpsA) (CU pdB impsB tpsB) 
3 = CU (packageDeclaration pdA pdB) (importDeclaration impsA impsB)         

(typeDeclarationt tpsA tpsB) 
 

Function 11. compilationUnit 

 
The data type CompilationUnit has not just one set of subtrees, but also three. The function 
for comparing compilation units is simple because the data type does not have any data for 
comparison. The function just returns a new compilation unit. In line 3, we see that the 
constructor CU and function invocation for three function; packageDeclaration, 
importDeclaration and typeDeclaration. These functions’ task is to compare the sub data 
types they are specifically designed for.  
 
We break down the compilation units in line 2 by applying pattern matching. The variables 
are then sent as arguments to the three functions used to construct a new compilation unit. 
The two package-declarations pdA and pdB are sent to the function packageDeclaration, the 
two lists of import statements are sent to the function importDeclaration and finally the two 
lists of type declarations are sent to the function typeDeclaration. The results of these 
functions form the new compilation unit. 
 
We see in the compilation unit construction that there is only one instance of package 
declaration. The function for comparing package declarations cannot therefore be a subject of 
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list comparison. The function packageDeclaration is therefore a data type specific function. 
Strafunski implements package declarations as follows. 
 

data PackageDeclaration = Package_semicolon Name 
deriving (Eq) 

 
The line “deriving (Eq)” is our supplement and means that the data type PackageDeclaration 
is a subject of the class Haskell standard class Eq and that we can apply PackageDeclaration 
to the equality operator “= =”. The result is that the implementation of the function 
packageDeclaration is compact. 
 

1 packageDeclaration :: Maybe PackageDeclaration ->Maybe PackageDeclaration 
->Maybe PackageDeclaration 

2 packageDeclaration pkdA pkdB 
3     | pkdA  == pkdB  = pkdA 
4   | otherwise   = Nothing 

 

Function 12.  packageDeclaration 

 
 
The function takes on two package declarations as arguments and returns its first argument 
them, in line 3, if they are identical. Otherwise it returns Nothing. In Java, one is not force to 
declare packages, therefore the Maybe constructor in the signature. The Maybe constructor is 
defined in Haskell as: 

Maybe a = Nothing | Just a 
 
The lists of import statements are subjects of insignificant order matching because the 
sequence of import statements in Java is not important. Strafunski implements import 
declaration as follows. 
 
data ImportDeclaration = SingleTypeImportDeclaration SingleTypeImportDeclaration     
   |  TypeImportOnDemandDeclaration TypeImportOnDemandDeclaration 
 
The import declaration list contains data types of the types SingleTypeImportDeclaration or 
TypeImportOnDemandDeclaration.  
 
The function for comparing import declarations is as follows. 
 

1 importDeclaration :: [ ImportDeclarationList ] -> [ ImportDeclarationList ] -> 
[ImportDeclarationList] 

2 importDeclaration a b = unorderedMaximumMatching a b b 

 

Function 13. importDeclaration 

 
All the function importDeclaration does is to call on the function 
unorderedMaximumMatching, which does all the work. Comparing further down into 
lower levels of the data type ImportDeclaration does not give us any more accurate and 
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desirable report of differences. Therefore we are able to use the function 
unorderedMaximumMatching. 
 
The lists of the data type TypeDeclarations are also subject to order insignificant matching. 
But we cannot pass on the arguments to the function unorderedMaximumMatching as the 
function importDeclaration does. We need to compare subtypes of TypeDeclaration and 
therefore we have to specific implement the function for comparing TypeDeclaration. 
Strafunski implements type declaration as follows. 
 
data TypeDeclaration = ClassTypeDeclaration ClassDeclaration 
   | InterfaceDeclaration InterfaceDeclaration 
   | Semicolon5 
 
Since the data type TypeDeclaration consists of either three subtypes, the implementation of 
the function typeDeclaration is also divided threefold. 
 

1 typeDeclaration :: [TypeDeclaration] -> [TypeDeclaration] -> [TypeDeclaration] 
2 typeDeclaration a b = typeDeclarationList a b b 

 
The function typeDeclaration provide a simple API and corresponds to the function 
unorderedTreeMatching. Therefore in line 2 it just passes the argument on to the auxiliary 
function typeDeclarationList. 
 

3 typeDeclarationList :: [TypeDeclaration] -> [TypeDeclaration] -> 
[TypeDeclaration] -> [TypeDeclaration] 

4 typeDeclarationList [ ] _  _ = [ ] 
5 typeDeclarationList (hd : tl) [ ] orgB = typeDeclarationList tl orgB orgB 

 
These lines apply to the condition that terminates the function. In the next segment of the 
function we matches the first subtype of type declaration, class declaration. This segment of 
the function only applies if the heads of both lists are of type ClassTypeDeclaration. 
 

6 typeDeclarationList  a@((ClassTypeDeclaration cdA) : tailA)  
((ClassTypeDeclaration cdB) : tailB)  orgB 

7     | idA = = idB  =  [ ClassTypeDeclaration (classDeclaration cdA cdB) ] ++ 
typeDeclarationList tailA orgB orgB 

8     | otherwise     = typeDeclarationList a tailB orgB 
9     where  
10      idA = getFirstId cdA 
11      idB = getFirstId cdB 

 
The construction of this segment is exactly like the function unorderedCommonSubTrees. 
The two calls for function getFirstId in line 10 and 11 returns the name of the two classes. 
These functions are addressed in section 6.3. The two classes are considered to match if and 
only if the names are identical. The call of function classDeclaration in line 7 returns a 
complete match for the subentities of data type ClassTypeDeclaration. The function 
classDeclaration will not be described in this thesis.  
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The next segment applies the second subtype of the data type TypeDeclaration; interface 
declarations. Again the next segment only applies if both the head of the two lists are both of 
the same type. This segment of the function applies if types are InterfaceDeclaration. 
 

12 typeDeclarationList  a@((InterfaceDeclaration ifdA) : tailA)  
((InterfaceDeclaration ifdB) : tailB)  orgB 

13 | idA = = idB  =  [ InterfaceDeclaration (interfaceDeclaration cdA cdB) ] ++ 
typeDeclarationList tailA orgB orgB 

14     | otherwise     = typeDeclarationList a tailB orgB 
15     where  
16      idA = getFirstId ifdA 
17      idB = getFirstId ifdB 

 
This segment works the same way as the previous. The difference is the call of function 
interfaceDeclaration in line 13. That function returns the common data type of type 
InterfaceDeclaration when it matches the two InterfaceDeclaration data types. We do not 
address this function in this thesis. 
 
The last segments rounds it up by matching the last subtype, Semicolon5. This type consists 
only of the constructor and nothing else. The last two lines applies in the case that the head of 
the two lists do not have the same type.  
 

18 typeDeclarationList  (Semicolon5:tailA) (Semicolon5:tailB) orgB 
19 typeDeclarationList  a ( _ :tailB) orgB 
20   = typeDeclarationList  a tailB orgB 

 

Function 14. typeDeclaration 

 
This concludes this example of matching compilation units. We choose not to follow the trail 
any further by describing the two functions classDeclaration and interfaceDeclaration. We 
gain nothing more by pursuing them. Instead we will give other examples that are subjects to 
order significant matching. 
 
 

6.2.2. Comparing method declarations 
 
We show in this section our solution for comparing methods; their signatures and method 
bodies. According to Sestoft [3], a method declaration declaring method m has the form: 
 

method-modifiers returntype m(formal-list) throws-clause 
 method-body 

 
In parallel, the data structure of methods in Strafunski is as follows. 
 
data MethodDeclaration = MethodHeader_MethodBody MethodHeader MethodBody   
 
data MethodHeader = Modifier_s_Type_MethodDeclarator_Throws_opt [Modifier] Type 

MethodDeclarator (Maybe Throws) 
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 |  Void [Modifier] MethodDeclarator (Maybe Throws) 
  
 
data MethodDeclarator = Comma2 Identifier [FormalParameter] 
  |  MethodDeclarator MethodDeclarator 
  
 
data MethodBody =     Block1 Block 
   | Semicolon3 
    | Nothing31 
 
data Block = BlockStatement_s   [BlockStatement] 
 
As we see, Strafunski breaks down the method declaration into smaller data types. These data 
types require a function of their own with implementation specific for them. We start with the 
function for comparing the data type MethodDeclaration. 
 

1 methodDeclaration :: MethodDeclaration -> MethodDeclaration -> 
MethodDeclaration 

2 methodDeclaration (MethodHeader_MethodBody mhA mbA) 
(MethodHeader_MethodBody mhB mbB)  

3 = MethodHeader_MethodBody (methodHeader mhA mhB)(methodBody mbA mbB) 

Function 15. methodDeclaration 

 
This function’s only task is to forward the method header parameters to the function 
methodHeader and the method body parameters to the function methodBody. In line 3, it 
creates a new MethodDeclaration data type and calls the two auxiliary functions. 
 
The method header has two forms. The two options are similar except that the first option 
represents methods with return types and the second option represents the ones that do not. 
Note that the signatures of the two methods being compared have been established to be 
identical in higher recursion; therefore we know that the methods are the same. 
 

1 methodHeader :: MethodHeader ->MethodHeader ->MethodHeader 
2 methodHeader (Modifier_s_Type_MethodDeclarator_Throws_opt modsA tpA mdA 

thA) (Modifier_s_Type_MethodDeclarator_Throws_opt modsB tpB mdB thB) 
3   = Modifier_s_Type_MethodDeclarator_Throws_opt (modifier modsA modsB) 

(typeMatching tpA tpB) (methodDeclarator mdA mdB) (throws thA thB) 
 
The above segment of the function deals only with the first type of methods, the ones that has 
a return type. The segment only applies if both of the arguments are of this type. 
 

4 methodHeader (Void modsA mdA thA) (Void modsB mdB thB) 
5   =Void (modifier modsA modsB) (methodDeclarator mdA mdB) (throws thA thB) 

 
The above segment is similar to the first segment, but it deals with methods that do not return 
any values. 
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6 methodHeader (Void modsA mdA thA) 
(Modifier_s_Type_MethodDeclarator_Throws_opt modsB tpB mdB thB) 

7   = Void (modifier modsA modsB) (methodDeclarator mdA mdB) (throws thA 
thB) 

8 methodHeader (Modifier_s_Type_MethodDeclarator_Throws_opt modsA tpA mdA 
thA) (Void modsB mdB thB) 

9     = Modifier_s_Type_MethodDeclarator_Throws_opt (modifier modsA modsB) 
tpA (methodDeclarator mdA mdB) (throws thA thB) 

 

Function 16. methodHeader 

 
The last segment of function methodHeader applies when one of the methods has a return 
type and the other does not. Line 6 and line 7 appliers to the combination void-returntype and 
line 8 and line 9 vice versa. In both cases the function returns a methodHeader, which has the 
form of its first argument. The subentities of the data type methodHeader are compared the 
same way in both cases. Note that in line 9 we return the variable tpA without comparing it to 
anything. Variable tpA denotes the return type of a method. Since the second argument in this 
case does not have a return type, then we use the variable of the first argument. We need a 
return type in the construction of the data type MethodHeader when it is the header of a 
method that returns a value. This problem is addressed in section 6.1. During the analysis 
stage, we keep this in mind and therefore able to report that the method in question has 
changed from returning type tpA to not returning anything (void method) from one version to 
the other. 
  
The next function compares the data type MethodDeclarator. This function is straightforward 
because the data type contains the signature information of methods. And as mention earlier, 
the signatures of the methods have been compared in higher recursions and have been found 
to be identical before they could reach these functions.  
 

1 methodDeclarator :: MethodDeclarator ->MethodDeclarator -> 
MethodDeclarator 

2 methodDeclarator (Comma2 idA fpsA) (Comma2 idB fpsB) 
3   = Comma2 idA (formalParameter fpsA fpsB) 
4 methodDeclarator (MethodDeclarator mdA) (MethodDeclarator mdB) 
5   = MethodDeclarator (methodDeclarator mdA mdB) 
6 methodDeclarator (MethodDeclarator mdA) b@(Comma2 idB fpsB) 
7   = MethodDeclarator (methodDeclarator mdA b) 
8 methodDeclarartor a@(Comma2 idA fpsA) (MethodDeclarator mdB)  
9   = methodDeclaration a mdB 

 

Function 17. methodDeclarator 

The MethodDeclarator data type has two forms and the last one is recursively constructed. 
The lines 4 to 9 recursively calls on the function until both the MethodDeclarator data type 
has the first form. Lines 2 and line 3 applies when that happens. Since the signatures of the 
methods have already been compared, there is nothing else the function can do but to return 
the one of it arguments. Note that the formal parameters are sent to the function 
formalParameter in line 3. The reason is although the types are identical their names might 
have been changed form one version to the other. 
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The MethodBody data type also has two forms. The first one contains a list of statements and 
the second is a semicolon, representing the empty body.  
 

1 methodBody :: MethodBody ->MethodBody ->MethodBody 
2 methodBody (Block1 blckA) (Block1 blckB) =Block1 ( block blckA blckB) 
3 methodBody (Semicolon3) (Semicolon3) = Semicolon3 
4 methodBody _ _ = Nothing31 

 
Function 18. methodBody 

 
The last line is in the case where the above combinations fail. The constructor Nothing31 is 
our supplement to Strafunski’s implementation. It is used when there is no other alternative to 
express that the two method bodies in question have nothing in common and an absent of the 
data type MethodBody in the data type MethodDeclaration is not incorporated according to 
the grammar. This kind of problem is addressed in section 6.1. 
 
The last function in this section handles the comparison of statements in a method body. The 
order of statement is important for the semantic of programs, and the function is therefore 
subject to the order significant matching. 
 

1 block :: Block -> Block -> Block 
2 block (BlockStatement_s bsA) (BlockStatement_s bsB)  
3    = BlockStatement_s (orderedMaximumMatching bsA bsB) 

 
Function 19. block 

 
The implementation of this function is simple. The two lists of statements are sent to the 
function orderedMaximumMatching and let it do all the works. 
 
 

6.2.3. Comparing class bodies 
 
In the previous sections we have seen example of order significant matching, order 
insignificant matching and specific matching. This example illustrates more of our use of the 
Strafunski traverse schemes.  
 
According to Sestoft [3], the classbody may contain declarations of fields, constructors, 
methods, nested classes, nested interfaces, and initializer blocks. The declarations may appear 
in any order. 
 
 

{ 
field-declarations 
constructor-declarations 
method-declarations 
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class-declarations 
interface-declarations 
initializer-blocks 

} 
 

 
Here are the corresponding Strafunski representations. 
 
data ClassBody = ClassBodyDeclaration_s [ ClassBodyDeclaration ] 
 
data ClassBodyDeclaration = ClassMemberDeclaration ClassMemberDeclaration 
    | StaticInitializer StaticInitializer 
    | ConstructorDeclaration ConstructorDeclaration 
    | EmptyClassBodyDeclaration 
    | ClassDeclaration1 ClassDeclaration 
    | ClassDeclaration2 InterfaceDeclaration 
 
The data type ClassBodyDeclaration has six forms and creating a function that handles all the 
combination in the same way as the previous functions do, is not an option. The function will 
be very complicated and cluttered. We present another way, which uses Strafunski traversal 
scheme extensively. 
 

1 classBody :: ClassBody -> ClassBody -> ClassBody 
2 classBody (ClassBodyDeclaration_s clsbdsA) (ClassBodyDeclaration_s clsbdsB)  
3 = ClassBodyDeclaration_s (clms++st++cs++es++cl1++cl2) 
4   where 
5    clms = classMemberDeclaration clmsA clmsB 
6    st = staticInitializer stA stB 
7    cs = constructorDeclaration csA csB 
8    es = emptyClassBodyDeclaration esA esB 
9    cl1 = classDeclaration cl1A cl1B 
10    cl2 = interfaceDeclaration cl2A cl2B 
11    [clmsA] = getClassMemberDeclarations clsbdsA 
12    [clmsB] = getClassMemberDeclarations clsbdsB 
13    [stA] = getStaticInitializers clsbdsA 
14     [stB] = getStaticInitializers clsbdsB 
15    [csA] = getConstructorDeclarations clsbdsA 
16    [csB] = getConstructorDeclarations clsbdsB 
17    [esA] = getEmptyClassBodyDeclarations clsbdsA 
18    [esB] = getEmptyClassBodyDeclarations clsbdsB 
19    [cl1A] = getClassDeclarations clsbdsA 
20    [cl1B] = getClassDeclarations clsbdsB 
21    [cl2A] = getInterfaceDeclarations clsbdsA 
22    [cl2B] = getInterfaceDeclarations clsbdsA 

 
Function 20. Class body 

This may look overwhelming at first, but is quit easy to get an overview. The lines from 11 to 
22 use Strafunski to traverse the classbodies and extract the different subtypes of the data type 
ClassBodyDeclarations into respectively lists. The functions used to do these operations are 
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described in section 6.3. For each type of class declarations there are two lists, one of each 
class body. These lists are then given as arguments to their respective functions for 
comparison. This is done in line 5 to 10. These functions use various forms of matching, 
suited for their type, to compare the lists. The results of these operations are then joined 
together in line 3 to form the finished list of common class body declarations. 
 
We do not explain further the functions in the lines 5 to 10. They all have the same form as 
the other functions explained in section 6.2.   
 

6.3. Strafunski traversal 
 
Strafunski’s main purpose is traversal of abstract syntax trees. Traversal is done by generic 
functions that can traverse into terms and subterms while mixing uniform and type-specific 
behavior. Following is a Haskell code skeleton for traversal functions [15]. We give a small 
description, but a comprehensive explanation can be found at our references, [15] [9] [6]. 
 

traversal term = apply (scheme step) term 
 where step = default ‘adhoc’ mono1 … ‘adhoc’ mono2 

 
The apply is either applyTP or applyTU, which are explicit application combinators. The 
scheme is a placeholder for traversal schemes, such as full_tdTU (type-unified full traversal), 
once_tdTU (type-unified single-hit traversal) and stop_tdTP (type-preserved cut-off 
traversal). We use the full_tdTU scheme the most in our function. The default is a placeholder 
for the default type. The common type are: idTP (type preserve), constTU u (uniform type u) 
and failTU (always failing type). The ‘adhoc’ is either ‘adhodTU’ or ‘adhocTP’. And mono1 
…mono2 are type-specific rewrite steps. 
 
The most used function that incorporates the Strafunski traversal is the function getFirstId. 
 

1 getFirstId :: (Term t) => t -> String 
2 getFirstId cus  
3   | id == [] = "" 
4   | otherwise = head id 
5    where 
6    [id] = getIdentifier cus 

 

Function 21. getFirstId 

 
This method takes an abstract syntax tree as argument and returns the first identifier that it 
finds. The actual traversal is done by the function getIdentifiers. 
 

1 getIdentifier ::(Term t, Monad m) => t -> m [String] 
2 getIdentifier cus = applyTU (full_tdTU id) cus 
3    where 
4    id = constTU [] àdhocTU  ̀idn  
5    idn (identifier::Identifier) = return [show identifier]  
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Function 22.  getIdentifiers 

 
We see in line 2 that the application combinator is applyTU. The scheme is full_tdTU, which 
means that the functions traverse the whole tree from top to bottom. In line 4, we see that the 
default is an empty list (constTU []) and the specific rewrite step is idn. The step idn returns 
every term that are of type Identifier. Note that the result is a monad, [2], with a list of strings. 
 
Other functions that also incorporate the Strafunski traversal scheme are. 
 
getClassMemberDeclarations :: (Term t, Monad m) => t -> m [ClassMemberDeclaration] 
 
getStaticInitializers :: (Term t, Monad m) => t -> m [StaticInitializer] 
 
getConstructorDeclarations :: (Term t, Monad m) => t -> m [ConstructorDeclaration] 
 
getEmptyClassBodyDeclarations :: (Term t, Monad m) => t -> m [ClassBodyDeclaration] 
 
getClassDeclarations :: (Term t, Monad m) => t -> m [ClassDeclaration] 
 
getInterfaceDeclarations :: (Term t, Monad m) => t -> m [InterfaceDeclaration] 
 
 
Examples of usage of these functions are found in section 6.2.3. The implementations of these 
functions are almost identical with the function getIdentifiers. The only difference is the 
rewrite step. We give an example to illustrate this. 
 

1 getClassDeclarations cus 
2   = applyTU (full_tdTU worker) cus 
3    where 
4    worker = constTU [] àdhocTU  ̀clssDec 
5    clssDec (unit::ClassDeclaration)= return [ unit] 

 

Function 23. getClassDeclarations 

 
The real differences between this function and the function getIdentifiers are the name of the 
rewrite step and the type of the term to be returned. 
 
Strafunski uses a Java SDF grammar to generate the Haskell data types. We have introduced 
new constructions to express differences between two nodes when the generated Haskell data 
types are not sufficient. We address these constructions in section 6.1 and the constructor 
Nothing31 is an example of such construction, and it is found in section 6.2.2 when we 
discuss method bodies. These constructions are not formally defined in the Java SDF 
grammar, therefore the Strafunski traversal schemes do not recognize them. We are not able 
to apply the traversal functions described in this section to any abstract syntax trees that 
contain such constructors. Only the largest common subtrees might have such constructors 
and we do not need to traverse them. 
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We do not show the implementation for the others because they basically are the same. These 
functions are powerful yet simple and compact, and demonstrate generic programming at its 
best. 
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7. Experiment 
 
We have used our tool to compare different versions of a program to measure the tool’s 
performance. We apply series of CVS-versions of two source files of The Eclipse1 project to 
our tool and diff and compared their outputs. Eclipse is an open source software development 
project dedicated to providing a robust, full-featured, commercial-quality, industry platform 
for the development of highly integrated tools. The Eclipse platform currently contains three 
projects and The Eclipse project is one of them. 
 
The two files that we use are relatively small (64 lines and 214 lines in average), but they 
have gone through much iteration. Another reason for choosing these files is that Strafunski 
currently do not support inner classes. It fails to construct abstract syntax trees when applied 
to such files. The tasks of the two files are to managing property values and to load classes.  
 
We measure the size of the outputs of the two tools when given two versions of a program as 
arguments. Then we calculate the percentage of the outputs compared to the combined size of 
the two arguments. These percentages are plotted in the charts in this chapter.  
 
The tool diff reports the lines that differ in both versions. Therefore we measure the number of 
lines in diff’s output relative to the total number of lines in the two versions. But with our tool 
we measure the number of nodes of its outputs relative to the total number of nodes of the two 
abstract syntax trees. By measuring percentage of the outputs, we get a more adequate 
comparison between the two tools. Otherwise the scale of the output from our tool would be 
considerable higher than diff’s outputs. Take for example CVS version 14 and CVS version 
15 of the file AntClassLoader.java, see section 7.1. The result of comparing CVS version 14 
and CVS version 15 is 172 nodes when using our tool. The result when using diff is 13 lines. 
There is a big gap between the numbers 172 and 13. It is unfair to compare the two numbers 
because the first denotes the number of nodes and the second denotes the number of lines. 
However, 172 nodes are 10% of the total number of nodes of the two abstract syntax trees that 
represent CVS version 14 and CVS version 15. And 13 lines are 7% of the total number of 
lines of CVS version 14 and CVS version 15. Comparing the two percentages gives a better 
picture of proportions.  
 
The values on the horizontal axis in the charts below represent the different versions of the 
files being compared. The oldest version has number one. The vertical axis denotes the 
percentage of the size of the outputs compared to the size of the original files. Note that the 
measured values depend on two versions of the file. For example in Figure 8, the value at 
CVS version 4 is about 20 %. This 20 % is calculated by measuring the size of the output of 
diff when it is given CVS version 4 and CVS version 5. The last value in the same chart is 
calculated using CVS version 21 and CVS version 22, but the last version is not plotted in the 
chart. 
 
 
 

                                                
1 http://eclipse.org  
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7.1. The results 
 
The first experiment is of the file PropertyManager.java1 and the result is plotted in Figure 7. 
The size of this file ranges from 169 lines to 287 lines, and the average number of lines that 
differ from one version to another is 49. All the versions implement a minimum of one 
interface and at most three.  
 
We see that the two curves, Java AST (our tool) and diff are close together most of the time. 
The only times that there are considerable differences between the two curves are at CVS 
versions 2, 7 and 19. The average value from Java AST is about 9% and about 12% from diff. 
 
The changes from CVS version 2 to CVS version 3 are a few updates in the comments and 
deleting a few test clauses for catching exceptions. The changes do not affect many lines of 
codes, but the percentage of outputs nodes compared the total number of nodes, is much 
higher than the percentage of lines compared to the total number of lines of the two versions. 
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Figure 7. Size of the report of differences for file PropertyManager.java 

 
There are no syntactic differences from CVS version 7 to CVS version 8. The only difference 
is that CVS version 7 has 175 lines and CVS version 8 has 174 lines. In the eyes of Java AST, 
the two versions are identical. But somehow diff fails to recognize that the two versions are 
the same. It actually reports that the entire first version differ from the second version. This is 
the reason for the big gap in CVS version 7.  

 
There is on the other hand done extensive work from CVS version 19 to CVS version 20. 
Several methods have been extended and in total 54 lines have been added. This is the biggest 

                                                
1http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.core.resources/src/org/eclipse/core/internal/properties/Prope
rtyManager.java  
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change in the series of CVS versions. We see that both tools indicate that there are many 
changes. But diff’s measured output is much higher than the measured output from Java AST.  

 
Java AST reports nothing at the CVS versions 3, 7, 8, 13, 14, 18, 21 and 22 because there is 
either no differences or the changes are comments. The tool diff also reports the same in CVS 
versions 3, 13 and 18. The average size of the outputs from Java AST is a few percentages 
below diff’s. But this is mostly due to the unexplainable and strange result from diff in CVS 
version 7. If we set diff’s result in CVS version 7 to 0%, which reflects the actual changes 
much better, then diff’s outputs is about 8% in average. This is about the same as Java AST’s 
average.  

 
A second experiment is done to see if there is trend in the results. The file we compared this 
time is AntClassLoader.java1 and we plotted the result in Figure 8. The size of this file is 
smaller, and it ranges from 46 lines to 96 lines. The average number of lines that differ from 
one version to another is 20. The versions do not implement any interfaces, but they have one 
super class. Also this time the curves stay close together most of the time. We see that biggest 
gaps are in CVS versions 4, 7 and 16. The size of the outputs of Java AST is 9% in average 
and 16% in average for diff’s outputs.  

 
Figure 8. Size of the reports of differences for file AntClassLoader.java 

 
The changes at the CVS versions 1, 2, 3, 4, 6, 7, 17 and 21 are only in the comments. No 
syntactic changes are done. Therefore Java AST does not report any differences. It seems that 
Java AST in Figure 8 at CVS versions 10 and 17 also report nothing. The truth is that one line 
has changed in the source code from CVS version 10 to CVS version 11 and from CVS 
version 17 to CVS version 18. The result in both occasions is only 2 nodes that differ from a 
total of 1052 nodes and 1096 nodes. The results are too small and impossible to see in the 
chart. 
 

                                                
1http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ant.core/src/org/eclipse/ant/internal/core/AntClassLoader.ja
va?rev=1.20&content-type=text/vnd.viewcvs-markup  
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Again we see the huge gap between the two outputs in CVS version 7. The code in CVS 
version 8 has been formatted since CVS version 7. The formatting does not have any syntactic 
consequences; therefore Java AST does not report anything. The tool diff in the other hand 
fails to recognize the two versions as equivalent and report that 96% of the first version does 
not match the second version. 
 
The most changes done in the series of versions are from CVS version 11 to CVS version 12, 
which are reflected by the high percentage of the two outputs. The difference between the two 
outputs is very small and in favor of Java AST.  
 
The biggest gap between the two outputs that favor diff is found at CVS version 16. There are 
not many lines that have been changed from CVS version 16 to CVS version 17, but most 
significant to Java AST is that a method name has been changed. Java AST compares the 
methods signatures to match a method in the first version with the same method in the second 
version. And since the signature is not the same, then Java AST considers them as two 
different methods. It then reports that the method in first version is deleted and the method in 
the second version is added. The two bodies are identical and therefore diff reports in this case 
that only one line is different. 
 

7.2. Comments 
 
The only solid conclusion that we can draw from these experiments is that diff sometimes 
fails miserably when applied to programs. The result at CVS version 7 in Figure 8 shows that 
diff easily get confused when the code is reformatted and we are still puzzled by the result at 
CVS version 7 in Figure 7.  
 
We see also that comments have no effect on Java AST. It reports in total 8 times to diff’s 
three times that there are no changes in Figure 7. And Java AST also reports 8 times in Figure 
8 that there are no syntactic changes, while diff only reports the same on two occasions.  
 
Overall we see that the outputs from Java AST are a little smaller than the outputs from diff. 
As mentioned earlier, diff sometimes fails totally, but most times it manages quit well. When 
the changes are small compared to the original file’s size, it does not matter that some lines 
are irrelevant. It is when the changes are large that we see the potential for Java AST. As in 
CVS version 19 in Figure 7, the output of diff is much bigger than the outputs of Java AST. 
But Java AST also produces large outputs. In CVS version 16 in Figure 8, the Java AST 
output is several times lager than diff’s output. This is due to the tools different approach for 
matching methods.  
 
We must also mention that these experiments do not measures the performance of Java AST 
accurately since the outputs are not yet formatted. We use the raw outputs from Java AST and 
it is unfair to compare those with the outputs from diff. Formatting the outputs from Java AST 
gives text lines and code fragment, similar to diff’s outputs. For some situations, such as 
comparing statements in method bodies, the two outputs should be very similar in size and 
content, see section 3.4.4. The comparison between those outputs is a better way to measure 
the performance of the two tools. That comparison is not in the scope of this thesis. 
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8. Conclusions and future work 
 
We have improved and extended Yang’s algorithms to fit our purpose, which is to compare 
Java programs. But the fundamental algorithms do not only work with Java, it can easily be 
adapted to other programming languages. We do not introduce and adapt to Java until the 
final comparison functions. All the fundamental algorithms and functions are designed to 
compare abstract syntax trees and not specific to Java. 
 
Yang’s algorithms only compute the length of the longest common subsequence and the 
number of nodes in the largest common subtree. The algorithms compute these values with 
help of matrices. Our goal is to find the actual longest common subsequence and the actual 
largest common subtree. We have therefore modified Yang’s algorithms to return the whole 
matrices instead, because the key to find subsequences and subtrees lay in the matrices. We 
give also algorithms for traversing the matrices and extracting the subsequences and subtrees 
from them. These algorithms are then combined with Yang’s modified algorithms and the 
result is algorithms that serve our purpose; finding longest common subsequences and largest 
common subtrees. 
 
Our tool has a different approach for comparing Java programs than diff or JDiff. This new 
approach gives more useful and more precise outputs. Good comparisons tools for Java 
programs are much needed because Java is currently one of the most popular programming 
languages. It is our conclusion that we laid the ground for the development of a useful tool 
with much potential.  
 

8.1. Critique and areas for improvement 
 
The fundamental algorithms in this thesis are small and compact, which means that there is 
much room for improving the efficiency. For example, the algorithm for comparing two lists 
of unordered nodes, algorithm Tree matching unordered, does not move on when it finds a 
match. It keeps matching the same node until it has matched it with the entire second list. This 
is of course not necessary. The function orderedMaximumMatching finds the longest 
common subsequence in two steps; it generates a matrix and then traverses it. We have 
discussed that it is not possible to do this in one step in Haskell. Perhaps it is possible to take 
advantage of Haskell’s lazy evaluation to improve the efficiency; only compute the elements 
in matrix M that are needed. 
 
The main area for improvement is the implementation of the tool presented in this thesis. We 
are novices with Haskell programming and the implementation reflects that. Much work can 
be done to compact the code since we were not concerned with that during implementation. 
Our solution is to give each of the data types, which are generated by Strafunski, a function of 
its own. But it is possible to groups several data types together and to make a single function 
that applies to all of them. Many data types are similar and do not need a function with a 
specific comparison rule.  
 
We have also introduced a series of constructors used when we cannot express differences 
without violating the grammar. These constructors have been added without being defined in 
the Java SDF grammar. Strafunski generates Haskell data types for the Java language based 
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on this grammar. The consequence of this is that we are not able to traverse abstract syntax 
trees that contain these new constructors with Strafunski’s traversal schemes because they do 
not recognize the new constructors. But only the largest common subtrees might have these 
constructors. We do not in this thesis need to traverse the largest common subtrees using 
Strafunski traversal schemes. But if Strafunski should some day support pretty-printing, then 
our largest common subtrees are not syntactically correct. Defining the constructors in the 
SDF grammar will solve these problems.  
 
We set out in this thesis to produce a tool that improves the quality of the difference reports. 
The judgment of the quality is a subjective matter and it should be the subject of empirical 
testing. We focus much in this thesis on the length of the common subsequences and the size 
of the largest common subtrees, but these values are not good indicators of quality in our case. 
The shortest report of differences is not always the best. Consider the Java example 3 in 
section 3.4.3, where a class removes an interface of one version to another, but it keeps all the 
inherited methods of the interface. The shortest report is to only say that the class has 
removed the interface. But the best report of differences is to say further that the mentioned 
methods are now declared methods in the second version. 
 
The experiment in this thesis only focuses on the size of the outputs from our tool and diff. 
The two outputs are not in the same scale and it is unfair to compare the two. The only way to 
conclude that we have improved the quality of the reports of differences is case studies and 
interviews. Real programmers using our tool in their work are the best judges. The feedbacks 
from them must be the base of a final conclusion. 
 
 

8.2. Future work 
 
Future work includes improving the difference reports regarding for other aspects of Java, 
such as concurrency, abstract classes etc. Other work includes using an updated version of the 
SDF grammar for Java 1.5 (J2SE 5.0) so Strafunski can create abstract syntax trees from 
programs that have inner class constructs.  
 
We have discussed the finding of multiple solutions. The work in this thesis does not discard 
that option, and it is possible to extend our work to pursue that line. Last but not least, a 
reader-friendly report must be generated for the ease of use. 
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Appendix B. Source code 
 
File MatchingWStr.hs task is to compare the two abstract syntax trees. 
 
module MatchingWStr where 
 
import Java 
import JavaATermConvertibleInstances 
import JavaTermInstances 
import JavaChaseImports 
import ChaseImports 
import StrategyLib 
import ATermLib 
import System 
import DTDJavaMetrics 
import DTDJavaMetricsTermInstances 
import Text.XML.HaXml.Xml2Haskell 
import IO 
import Monad 
import SequenceMatching 
 
 
getIdentifier ::(Term t, Monad m) => t -> m [String] 
getIdentifier cus = applyTU (full_tdTU id) cus 
  where 
  id = constTU [] àdhocTU  ̀idn  
  idn (identifier::Identifier) = return [show identifier]  
 
getFieldIdentifier ::(Term t, Monad m) => t -> m [String] 
getFieldIdentifier cus = applyTU (full_tdTU id) cus 
  where 
  id = constTU [] àdhocTU  ̀idn  
  idn (Identifier1 identifier) = return [show identifier]  
 
getMethIdentifier ::(Term t, Monad m) => t -> m [String] 
getMethIdentifier cus = applyTU (full_tdTU id) cus 
  where 
  id = constTU [] àdhocTU  ̀idn  
  idn (Comma2 identifier _) = return [show identifier] 
 
getFirstId :: (Term t) => t -> String 
getFirstId cus  
    | id == [] = "" 
    | otherwise = head id 
   where 
   [id] = getIdentifier cus 
 
 
getClassMemberDeclarations :: (Term t, Monad m) => t -> m [ClassMemberDeclaration] 
getClassMemberDeclarations cus 
   = applyTU (full_tdTU worker) cus 
     where 
     worker = constTU [] àdhocTU  ̀clssDec 
     clssDec (unit::ClassMemberDeclaration)= return [unit] 
 
 
getStaticInitializers :: (Term t, Monad m) => t -> m [StaticInitializer] 
getStaticInitializers cus 
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   = applyTU (full_tdTU worker) cus 
     where 
     worker = constTU [] àdhocTU  ̀clssDec 
     clssDec (a@(Static1 _)) = return [a] 
 
 
getConstructorDeclarations :: (Term t, Monad m) => t -> m [ConstructorDeclaration] 
getConstructorDeclarations cus 
   = applyTU (full_tdTU worker) cus 
     where 
     worker = constTU [] àdhocTU  ̀clssDec 
     clssDec (a@(Modifier_s_ConstructorDeclarator_Throws_opt_ConstructorBody _ _ _ _)) = 
return [a] 
 
getEmptyClassBodyDeclarations :: (Term t, Monad m) => t -> m [ClassBodyDeclaration] 
getEmptyClassBodyDeclarations cus 
   = applyTU (full_tdTU worker) cus 
     where 
     worker = constTU [] àdhocTU  ̀clssDec 
     clssDec (EmptyClassBodyDeclaration) = return [EmptyClassBodyDeclaration] 
 
getClassDeclarations :: (Term t, Monad m) => t -> m [ClassDeclaration] 
getClassDeclarations cus 
   = applyTU (full_tdTU worker) cus 
     where 
     worker = constTU [] àdhocTU  ̀clssDec 
     clssDec (unit::ClassDeclaration)= return [ unit] 
 
getInterfaceDeclarations :: (Term t, Monad m) => t -> m [InterfaceDeclaration] 
getInterfaceDeclarations cus 
   = applyTU (full_tdTU worker) cus 
     where 
     worker = constTU [] àdhocTU  ̀clssDec 
     clssDec (unit::InterfaceDeclaration)= return [unit] 
 
 
getTypeFromFP :: (Term t, Monad m) => t -> m [String] 
getTypeFromFP cus 
       = applyTU (full_tdTU worker) cus 
  where 
  worker = constTU [] àdhocTU  ̀tp 
  tp (Type_VariableDeclaratorId tps _) = return [show tps] 
     
 
getMethodName ::(Term t) => t -> String 
getMethodName cus = head id 
   where 
   [id] = getMethIdentifier cus 
 
 
compilationUnit :: CompilationUnit ->CompilationUnit ->CompilationUnit 
compilationUnit (CU pdA impsA tpsA)(CU pdB impsB tpsB)  
    = CU (packageDeclaration pdA pdB) (importDeclaration impsA impsB) (typeDeclaration tpsA tpsB) 
 
packageDeclaration :: Maybe PackageDeclaration ->Maybe PackageDeclaration ->Maybe PackageDeclaration 
packageDeclaration pkdA pdkB 
    | pdkA == pdkB = pdkA 
    | otherwise = Nothing 
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importDeclaration :: [ImportDeclaration] -> [ImportDeclaration] -> [ImportDeclaration] 
importDeclaration a b = unorderedMaximumMatching a b b 
 
 
typeDeclaration :: [TypeDeclaration] ->[TypeDeclaration] ->[TypeDeclaration] 
typeDeclaration a b = typeDeclarationList a b b 
typeDeclarationList :: [TypeDeclaration] ->[TypeDeclaration] ->[TypeDeclaration]->[TypeDeclaration] 
typeDeclarationList (_:tailA) [] orgB = typeDeclarationList tailA orgB orgB 
typeDeclarationList [] _ _ = [] 
typeDeclarationList a@((ClassTypeDeclaration cdA):tailA)((ClassTypeDeclaration cdB):tailB) orgB 
    | idA == idB = [ClassTypeDeclaration (compareClassDeclaration cdA cdB)] ++ typeDeclarationList tailA 
orgB orgB 
    | otherwise = typeDeclarationList a tailB orgB 
    where 
    idA = getFirstId cdA 
    idB = getFirstId cdB 
typeDeclarationList a@((InterfaceDeclaration ifdA):tailA)((InterfaceDeclaration ifdB):tailB) orgB 
    | idA == idB = [InterfaceDeclaration (compareInterfaceDeclaration ifdA ifdB )]++ typeDeclarationList tailA 
orgB orgB 
    | otherwise = typeDeclarationList a tailB orgB 
    where 
    idA = getFirstId ifdA 
    idB = getFirstId ifdB 
typeDeclarationList (Semicolon5:tailA) (Semicolon5:tailB) orgB = [Semicolon5] ++ typeDeclarationList tailA 
orgB orgB 
typeDeclarationList a (hd:tailB) orgB = typeDeclarationList a tailB orgB 
 
 
super :: Maybe Super ->Maybe Super ->Maybe Super 
super (Nothing) _ = Nothing 
super _ (Nothing) = Nothing 
super (Just (Extends clstpA)) (Just (Extends clstpB)) = Just (Extends (classType clstpA clstpB)) 
 
interfaces :: Maybe Interfaces ->Maybe Interfaces ->Maybe Interfaces 
interfaces (Nothing) _ = Nothing 
interfaces _ (Nothing) = Nothing 
interfaces (Just (Implements_comma itpA))(Just (Implements_comma itpB))= Just (Implements_comma 
(interfaceType itpA itpB)) 
 
 
interfaceType :: [InterfaceType]->[InterfaceType]->[InterfaceType] 
interfaceType itpA itpB = interfaceTypeList itpA itpB itpB 
interfaceTypeList :: [InterfaceType]->[InterfaceType]->[InterfaceType]->[InterfaceType] 
interfaceTypeList [] _ _ = [] 
interfaceTypeList (_:tailA) [] orgB = interfaceTypeList tailA orgB orgB 
interfaceTypeList a@(headA:tailA) (headB:tailB) orgB 
    | headA == headB = [headA]++interfaceTypeList tailA orgB orgB 
    | otherwise = interfaceTypeList a tailB orgB 
 
 
classBody :: ClassBody ->ClassBody ->ClassBody 
classBody (ClassBodyDeclaration_s clsbdsA)(ClassBodyDeclaration_s clsbdsB)  
    = ClassBodyDeclaration_s (clms++st++cs++es++cl1++cl2) 
      where 
      clms = classMemberDeclaration clmsA clmsB 
      st = staticInitializer stA stB 
      cs = constructorDeclaration csA csB 
      es = [] 
      --es = emptyClassBodyDeclaration esA esB 
      cl1 = classDeclaration cl1A cl1B 
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      cl2 = interfaceDeclaration cl2A cl2B 
      [clmsA] = getClassMemberDeclarations clsbdsA 
      [clmsB] = getClassMemberDeclarations clsbdsB 
      [stA] = getStaticInitializers clsbdsA 
      [stB] = getStaticInitializers clsbdsB 
      [csA] = getConstructorDeclarations clsbdsA 
      [csB] = getConstructorDeclarations clsbdsB 
      [esA] = getEmptyClassBodyDeclarations clsbdsA 
      [esB] = getEmptyClassBodyDeclarations clsbdsB 
      [cl1A] = getClassDeclarations clsbdsA 
      [cl1B] = getClassDeclarations clsbdsB 
      [cl2A] = getInterfaceDeclarations clsbdsA 
      [cl2B] = getInterfaceDeclarations clsbdsA 
 
 
staticInitializer :: [StaticInitializer]->[StaticInitializer]->[ClassBodyDeclaration] 
staticInitializer stA stB = staticInitializerList stA stB stB 
staticInitializerList :: [StaticInitializer]->[StaticInitializer]->[StaticInitializer]->[ClassBodyDeclaration] 
staticInitializerList (head:tail) [] orgB = staticInitializerList tail orgB orgB 
staticInitializerList [] _ _ = [] 
staticInitializerList a@((Static1 blA):tailA) ((Static1 blB):tailB) orgB 
    | blA == blB = [StaticInitializer (Static1 blA)]++staticInitializerList tailA orgB orgB 
    | otherwise = staticInitializerList a tailB orgB 
 
 
constructorDeclaration :: [ConstructorDeclaration]->[ConstructorDeclaration]->[ClassBodyDeclaration] 
constructorDeclaration ctA ctB = constructorDeclarationList ctA ctB ctB 
constructorDeclarationList :: [ConstructorDeclaration]->[ConstructorDeclaration]->[ConstructorDeclaration] 
      ->[ClassBodyDeclaration] 
constructorDeclarationList (head:tail) [] orgB = constructorDeclarationList tail orgB orgB 
constructorDeclarationList [] _ _ = [] 
constructorDeclarationList a@((Modifier_s_ConstructorDeclarator_Throws_opt_ConstructorBody modsA cdA 
thA bdA):tailA) 
       ((Modifier_s_ConstructorDeclarator_Throws_opt_ConstructorBody modsB cdB 
thB bdB):tailB) orgB 
    | cdA == cdB = [ConstructorDeclaration (Modifier_s_ConstructorDeclarator_Throws_opt_ConstructorBody 
cMods cdA cTh cBd)] 
     ++constructorDeclarationList tailA orgB orgB 
    | otherwise = constructorDeclarationList a tailB orgB 
    where 
    cMods = modifier modsA modsB 
    cTh = throws thA thB 
    cBd = constructorBody bdA bdB 
 
 
constructorBody :: ConstructorBody -> ConstructorBody -> ConstructorBody 
constructorBody (ExplicitConstructorInvocation_opt_BlockStatement_s exciA blcksA) 
      (ExplicitConstructorInvocation_opt_BlockStatement_s exciB blcksB) 
    = ExplicitConstructorInvocation_opt_BlockStatement_s (explicitConstructorInvocation exciA exciA) 
      (blockStatement blcksA blcksB) 
 
 
explicitConstructorInvocation ::Maybe ExplicitConstructorInvocation ->Maybe ExplicitConstructorInvocation  
         ->Maybe ExplicitConstructorInvocation  
explicitConstructorInvocation Nothing _ = Nothing 
explicitConstructorInvocation _ Nothing = Nothing 
explicitConstructorInvocation (Just (This_comma_semicolon _)) (Just (Super_comma_semicolon _)) = Nothing 
explicitConstructorInvocation (Just (Super_comma_semicolon _)) (Just (This_comma_semicolon _)) = Nothing 
explicitConstructorInvocation (Just (This_comma_semicolon exsA)) (Just (This_comma_semicolon exsB)) 
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    = Just (This_comma_semicolon (expressionList exsA exsB)) 
explicitConstructorInvocation (Just (Super_comma_semicolon spA))(Just (Super_comma_semicolon spB)) 
    = Just (Super_comma_semicolon (expressionList spA spB)) 
 
 
expressionList :: [Expression]->[Expression]->[Expression] 
expressionList exA exB = maximumMatching exA exB 
 
 
emptyClassBodyDeclaration :: [ClassBodyDeclaration]->[ClassBodyDeclaration]->[ClassBodyDeclaration] 
emptyClassBodyDeclaration a b 
    | (length a) > (length b) = b 
    | otherwise = a 
 
 
compareClassDeclaration :: ClassDeclaration ->ClassDeclaration ->ClassDeclaration 
compareClassDeclaration (Class1 mdsA idA spA infA bdA)(Class1 mdsB idB spB infB bdB) 
    | idA == idB = Class1 (modifier mdsA mdsB) idA (super spA spB) (interfaces infA infB) (classBody bdA 
bdB) 
    | otherwise = Nothing32 
 
 
classDeclaration :: [ClassDeclaration]->[ClassDeclaration]->[ClassBodyDeclaration] 
classDeclaration cdA cdB = classDeclarationList cdA cdB cdB 
classDeclarationList :: [ClassDeclaration]->[ClassDeclaration]->[ClassDeclaration]->[ClassBodyDeclaration] 
classDeclarationList (head:tail) [] orgB = classDeclarationList tail orgB orgB 
classDeclarationList [] _ _ = [] 
classDeclarationList a@(cdA:tailA) (cdB:tailB) orgB 
    | cp == Nothing32 = classDeclarationList a tailB orgB 
    | otherwise = [ClassDeclaration1 cp] ++ classDeclarationList tailA orgB orgB 
    where 
    cp = compareClassDeclaration cdA cdB 
 
 
interfaceDeclaration :: [InterfaceDeclaration]->[InterfaceDeclaration]->[ClassBodyDeclaration] 
interfaceDeclaration ifA ifB = interfaceDeclarationList ifA ifB ifB 
interfaceDeclarationList :: [InterfaceDeclaration]->[InterfaceDeclaration]->[InterfaceDeclaration]-
>[ClassBodyDeclaration] 
interfaceDeclarationList (head:tail) [] orgB = interfaceDeclarationList tail orgB orgB 
interfaceDeclarationList [] _ _ = [] 
interfaceDeclarationList a@(a_@(Interface _ idA _ _):tailA) (b_@(Interface _ idB _ _):tailB) orgB 
    | idA == idB = [ClassDeclaration2 (compareInterfaceDeclaration a_ b_)] ++ interfaceDeclarationList tailA 
orgB orgB 
    | otherwise = interfaceDeclarationList a tailB orgB 
 
 
compareInterfaceDeclaration :: InterfaceDeclaration -> InterfaceDeclaration -> InterfaceDeclaration 
compareInterfaceDeclaration (Interface modsA idA exiA bdA)(Interface modsB idB exiB bdB) 
    = Interface (modifier modsA modsB) idA (extendsInterfaces exiA exiB) (interfaceBody bdA bdB) 
 
 
extendsInterfaces :: Maybe ExtendsInterfaces -> Maybe ExtendsInterfaces -> Maybe ExtendsInterfaces 
extendsInterfaces Nothing _ = Nothing 
extendsInterfaces _ Nothing = Nothing 
extendsInterfaces (Just(Extends_comma iftpA))(Just(Extends_comma iftpB)) = Just(Extends_comma 
(interfaceType iftpA iftpB))  
 
 
interfaceBody :: InterfaceBody -> InterfaceBody -> InterfaceBody 
interfaceBody (InterfaceMemberDeclaration_s ifmdA) (InterfaceMemberDeclaration_s ifmdB) 
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    = InterfaceMemberDeclaration_s (interfaceMemberDeclaration ifmdA ifmdB) 
 
 
interfaceMemberDeclaration :: [InterfaceMemberDeclaration]->[InterfaceMemberDeclaration]-
>[InterfaceMemberDeclaration] 
interfaceMemberDeclaration a b = interfaceMemberDeclarationList a b b 
interfaceMemberDeclarationList :: [InterfaceMemberDeclaration]->[InterfaceMemberDeclaration]-
>[InterfaceMemberDeclaration] 
       ->[InterfaceMemberDeclaration] 
interfaceMemberDeclarationList (head:tail) [] orgB = interfaceMemberDeclarationList tail orgB orgB 
interfaceMemberDeclarationList [] _ _ = [] 
interfaceMemberDeclarationList a@((ConstantDeclaration cdA):tailA) ((ConstantDeclaration cdB):tailB) orgB 
    | idA == idB = [ConstantDeclaration (constantDeclaration cdA cdB)]++ interfaceMemberDeclarationList 
tailA orgB orgB 
    | otherwise = interfaceMemberDeclarationList a tailB orgB 
    where 
    idA = head (getFieldIdentifier cdA) 
    idB = head (getFieldIdentifier cdB) 
interfaceMemberDeclarationList a@((AbstractMethodDeclaration amA):tailA)((AbstractMethodDeclaration 
amB):tailB) orgB 
    | idA == idB = [AbstractMethodDeclaration (abstractMethodDeclaration amA amB)] 
     ++ interfaceMemberDeclarationList tailA orgB orgB 
    | otherwise = interfaceMemberDeclarationList a tailB orgB 
    where 
    idA = head (getMethIdentifier amA) 
    idB = head (getMethIdentifier amB) 
interfaceMemberDeclarationList a (head:tail) orgB  = interfaceMemberDeclarationList a tail orgB 
 
 
constantDeclaration :: ConstantDeclaration ->ConstantDeclaration ->ConstantDeclaration 
constantDeclaration (FieldDeclaration fdA)(FieldDeclaration fdB) = FieldDeclaration (fieldDeclaration fdA fdB) 
 
 
abstractMethodDeclaration :: AbstractMethodDeclaration ->AbstractMethodDeclaration -
>AbstractMethodDeclaration 
abstractMethodDeclaration (Semicolon4 mhA)(Semicolon4 mhB) = Semicolon4 (methodHeader mhA mhB) 
 
classMemberDeclaration :: [ClassMemberDeclaration] -> [ClassMemberDeclaration] -> [ClassBodyDeclaration] 
classMemberDeclaration clsmbA clsmbB = classMemberDeclarationList clsmbA clsmbB clsmbB 
 
classMemberDeclarationList :: [ClassMemberDeclaration] -> [ClassMemberDeclaration] -> 
[ClassMemberDeclaration] ->[ClassBodyDeclaration]  
classMemberDeclarationList ((FieldDeclaration1 fdA):tailA) [] orgB = classMemberDeclarationList tailA orgB 
orgB 
classMemberDeclarationList [] _ _ = [] 
classMemberDeclarationList a@((FieldDeclaration1 fdA:tailA)) ((MethodDeclaration _):tailB) orgB  
    = classMemberDeclarationList a tailB orgB 
classMemberDeclarationList a@((FieldDeclaration1 fdA):tailA) ((FieldDeclaration1 fdB):tailB) orgB 
    | fdAName == fdBName = [ClassMemberDeclaration(FieldDeclaration1 (fieldDeclaration fdA fdB))] 
      ++classMemberDeclarationList tailA orgB orgB 
    | otherwise = classMemberDeclarationList a tailB orgB 
    where 
    fdAName = head (getFieldIdentifier fdA) 
    fdBName = head (getFieldIdentifier fdB) 
 
 
classMemberDeclarationList ((MethodDeclaration mdA):tailA) [] orgB = classMemberDeclarationList tailA 
orgB orgB 
classMemberDeclarationList a@((MethodDeclaration mdA):tailA) ((FieldDeclaration1 _):tailB) orgB 
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    = classMemberDeclarationList a tailB orgB 
classMemberDeclarationList a@((MethodDeclaration mdA):tailA) ((MethodDeclaration mdB):tailB) orgB 
    | compareMethodSign mdA mdB = [ClassMemberDeclaration (MethodDeclaration (methodDeclaration mdA 
mdB))] 
      ++classMemberDeclarationList tailA orgB orgB 
    | otherwise = classMemberDeclarationList a tailB orgB 
     
 
 
compareMethodSign :: MethodDeclaration -> MethodDeclaration -> Bool 
compareMethodSign mdA mdB 
    | chckA || chckB  = False 
    | mdAName == mdBName  &&  mdAfp == mdBfp = True 
    | otherwise = False 
    where 
    mdAName = getMethodName mdA 
    mdBName = getMethodName mdB 
    [mdAfp] = getTypeFromFP mdA 
    [mdBfp] = getTypeFromFP mdB 
    chckA = isInheritedMethod "InheritedMethod:" mdAName 
    chckB = isInheritedMethod "InheritedMethod:" mdBName 
 
 
isInheritedMethod :: String -> String -> Bool 
isInheritedMethod a [] = False 
isInheritedMethod [] _ = True 
isInheritedMethod (hdA:tlA) (hdB:tlB)  
    | hdA == hdB = isInheritedMethod tlA tlB 
    | otherwise = False 
 
 
fieldDeclaration :: FieldDeclaration -> FieldDeclaration -> FieldDeclaration 
fieldDeclaration (Comma_semicolon modsA typeA varDecA) (Comma_semicolon modsB typeB varDecB) 
    = Comma_semicolon (modifier modsA modsB) (typeMatching typeA typeB) (variableDeclarator varDecA 
varDecA) 
 
 
modifier :: [Modifier] -> [Modifier] -> [Modifier] 
modifier modsA modsB = modifierList modsA modsB modsB 
modifierList :: [Modifier] -> [Modifier] -> [Modifier]-> [Modifier] 
modifierList [] _ _ = [] 
modifierList (_:tailA) [] orgB = modifierList tailA orgB orgB 
modifierList a@(headA:tailA) (headB:tailB) orgB 
    | headA == headB = [headA]++modifierList tailA orgB orgB 
    | otherwise = modifierList a tailB orgB 
 
 
typeMatching :: Type -> Type -> Type 
typeMatching (PrimitiveType prtpA) (PrimitiveType prtpB) = PrimitiveType (primitiveType prtpA prtpB) 
typeMatching (ReferenceType rftpA) (ReferenceType rftpB) = ReferenceType (referenceType rftpA rftpB) 
typeMatching _ _ = Nothing1 
 
 
primitiveType :: PrimitiveType -> PrimitiveType -> PrimitiveType 
primitiveType (NumericType nmtpA) (NumericType nmtpB) = NumericType (numericType nmtpA nmtpB) 
primitiveType (Boolean) (Boolean) = Boolean 
primitiveType _ _ = Nothing2 
 
 
numericType :: NumericType -> NumericType -> NumericType 
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numericType (IntegralType intpA) (IntegralType intpB)  
     | (show intpA) == (show intpB) = IntegralType intpA 
     | otherwise = IntegralType Nothing4 
numericType (FloatingPointType flpttpA) (FloatingPointType flpttpB) 
     | (show flpttpA) == (show flpttpB) = FloatingPointType flpttpA 
     | otherwise = FloatingPointType Nothing5 
numericType _ _ = Nothing3 
 
 
referenceType :: ReferenceType -> ReferenceType -> ReferenceType 
referenceType (ClassOrInterfaceType clsintfctpA) (ClassOrInterfaceType clsintfctpB)  
    = ClassOrInterfaceType (classOrInterfaceType clsintfctpA clsintfctpB) 
referenceType (ArrayType arrtpA) (ArrayType arrtpB) = ArrayType (arrayType arrtpA arrtpB) 
referenceType _ _ = Nothing6 
 
 
classOrInterfaceType :: ClassOrInterfaceType -> ClassOrInterfaceType -> ClassOrInterfaceType 
classOrInterfaceType (Name nameA) (Name nameB) 
       | nameA == nameB = Name nameA 
       | otherwise = Nothing7 
 
 
arrayType ::  ArrayType -> ArrayType -> ArrayType 
arrayType (PrimitiveType1 prtpA) (PrimitiveType1 prtpB) = PrimitiveType1 (primitiveType prtpA prtpB) 
arrayType (ArrayType0 nameA) (ArrayType0 nameB) = ArrayType0 (name nameA nameB) 
arrayType (ArrayType1 arrtpA) (ArrayType1 arrtpB) = ArrayType1 (arrayType arrtpA arrtpB) 
arrayType _ _ = Nothing8 
 
 
name :: Name -> Name -> Name 
name (Identifier_p idsA) (Identifier_p idsB) = Identifier_p commonIdentifiers 
            where 
            commonIdentifiers = maximumMatching idsA idsB 
name (Class idsclsA) (Class idsclsB) = Class commonIdentifiers1 
           where 
           commonIdentifiers1 = maximumMatching idsclsA idsclsB 
name _ _ = Nothing9 
    
 
variableDeclarator :: [VariableDeclarator] ->[VariableDeclarator] ->[VariableDeclarator] 
variableDeclarator vrdecA vrdecB =  matchingVariableDec vrdecA vrdecB vrdecB 
       
 
matchingVariableDec :: [VariableDeclarator] ->[VariableDeclarator] -> [VariableDeclarator]-
>[VariableDeclarator] 
matchingVariableDec (vrdecA:tailA) [] orgB = matchingVariableDec tailA orgB orgB 
matchingVariableDec [] _ _ = [] 
matchingVariableDec a@(vrdecA:tailA) (vrdecB:tailB) orgB 
      | idA == idB = [matchingVariableDec1 vrdecA vrdecB]++ matchingVariableDec tailA orgB 
orgB 
      | otherwise = matchingVariableDec a tailB orgB 
      where 
      idA = getFirstId vrdecA 
      idB = getFirstId vrdecB 
 
 
matchingVariableDec1 :: VariableDeclarator -> VariableDeclarator ->VariableDeclarator 
matchingVariableDec1 (VariableDeclaratorId vrdcidA) (VariableDeclaratorId vrdcidB)  
    = VariableDeclaratorId (variableDeclaratorId vrdcidA vrdcidB) 
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matchingVariableDec1 (Equal vrdcidA vrinitA) (Equal vrdcidB vrinitB) 
    = Equal (variableDeclaratorId vrdcidA vrdcidB) (variableInitializer vrinitA vrinitB) 
matchingVariableDec1 (Equal vrdcA _) (VariableDeclaratorId vrdcB) = Nothing10 (variableDeclaratorId vrdcA 
vrdcB) 
matchingVariableDec1 (VariableDeclaratorId vrdcA) (Equal vrdcB _) = Nothing10 (variableDeclaratorId vrdcA 
vrdcB) 
 
 
variableDeclaratorId :: VariableDeclaratorId ->VariableDeclaratorId ->VariableDeclaratorId 
variableDeclaratorId (Identifier1 idA) (Identifier1 idB) 
    | idA == idB = Identifier1 idA 
    | otherwise = Identifier1 "No match" 
variableDeclaratorId (VariableDeclaratorId1 vrdcidA) (VariableDeclaratorId1 vrdcidB)  
    = VariableDeclaratorId1 (variableDeclaratorId vrdcidA vrdcidB) 
variableDeclaratorId (Identifier1 idA) (VariableDeclaratorId1 _) = Nothing11 idA 
variableDeclaratorId (VariableDeclaratorId1 _) (Identifier1 idB) = Nothing11 idB 
 
 
variableInitializer :: VariableInitializer -> VariableInitializer -> VariableInitializer 
variableInitializer (Expression xprA) (Expression xprB) = Expression (expression xprA xprB) 
variableInitializer (ArrayInitializer arinitA)(ArrayInitializer arinitB) = ArrayInitializer (arrayInitializer arinitA 
arinitB) 
variableInitializer _ _ = Nothing26 
 
 
expression :: Expression ->Expression ->Expression 
expression (Primary prmA) (Primary prmB) = Primary (primary prmA prmB) 
expression (Plus xprA) (Plus xprB) = Plus (expression xprA xprB) 
expression (Minus xprA) (Minus xprB) = Minus (expression xprA xprB) 
expression (Tilde xprA) (Tilde xprB) = Tilde (expression xprA xprB) 
expression (Not xprA) (Not xprB) = Not (expression xprA xprB) 
expression (PrimitiveType_Dim_s_Expression prmtpA dimA xprA)(PrimitiveType_Dim_s_Expression prmtpB 
dimB xprB) 
    = PrimitiveType_Dim_s_Expression (primitiveType prmtpA prmtpB) (dim dimA dimB) (expression xprA 
xprB) 
expression (Expression_Expression2 xprA1 xprA2)(Expression_Expression2 xprB1 xprB2) 
    = Expression_Expression2 (expression xprA1 xprB1)(expression xprA2 xprB2)  
expression (Name_Dim_p_Expression nameA dimA xprA)(Name_Dim_p_Expression nameB dimB xprB) 
    = Name_Dim_p_Expression (name nameA nameB) (dim dimA dimB) (expression xprA xprB) 
expression (Expression_times_or_div_or_mod_Expression1 xprA1 tmphb1A xprA2) 
        (Expression_times_or_div_or_mod_Expression1 xprB1 tmphb1B xprB2) 
    = Expression_times_or_div_or_mod_Expression1 (expression xprA1 xprB1)(tempHuub1 tmphb1A 
tmphb1B)(expression xprA2 xprB2) 
expression (Expression_plus_or_minus_Expression1 xprA1 tmphb2A xprA2) 
        (Expression_plus_or_minus_Expression1 xprB1 tmphb2B xprB2) 
    = Expression_plus_or_minus_Expression1 (expression xprA1 xprB1)(tempHuub2 tmphb2A 
tmphb2B)(expression xprA2 xprB2) 
expression (Expression_shift_left_or_shift_right_or_Expression1 xprA1 tmphb3A xprA2) 
        (Expression_shift_left_or_shift_right_or_Expression1 xprB1 tmphb3B xprB2) 
    = Expression_shift_left_or_shift_right_or_Expression1 (expression xprA1 xprB1)(tempHuub3 tmphb3A 
tmphb3B)(expression xprA2 xprB2) 
expression (Expression_lt_or_gt_or_le_or_ge_Expression1 xprA1 tmphb4A xprA2) 
        (Expression_lt_or_gt_or_le_or_ge_Expression1 xprB1 tmphb4B xprB2) 
    = Expression_lt_or_gt_or_le_or_ge_Expression1(expression xprA1 xprB1)(tempHuub4 tmphb4A 
tmphb4B)(expression xprA2 xprB2) 
expression (Instanceof xprA rftpA) (Instanceof xprB rftpB) = Instanceof (expression xprA xprB) (referenceType 
rftpA rftpB) 
expression (Expression_equal_or_not_equal_Expression1 xprA1 tmphb5A xprA2) 
        (Expression_equal_or_not_equal_Expression1 xprB1 tmphb5B xprB2) 
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    = Expression_equal_or_not_equal_Expression1 (expression xprA1 xprB1)(tempHuub5 tmphb5A 
tmphb5B)(expression xprA2 xprB2) 
expression (Address1 xprA1 xprA2)(Address1 xprB1 xprB2) = Address1 (expression xprA1 xprB1) (expression 
xprA2 xprB2) 
expression (Expression_Expression3 xprA1 xprA2) (Expression_Expression3 xprB1 xprB2)  
    = Expression_Expression3 (expression xprA1 xprB1) (expression xprA2 xprB2) 
expression (Bar1 xprA1 xprA2) (Bar1 xprB1 xprB2) = Bar1 (expression xprA1 xprB1) (expression xprA2 
xprB2) 
expression (And1 xprA1 xprA2) (And1 xprB1 xprB2) = And1 (expression xprA1 xprB1) (expression xprA2 
xprB2) 
expression (Or1 xprA1 xprA2) (Or1 xprB1 xprB2) =  Or1 (expression xprA1 xprB1) (expression xprA2 xprB2) 
expression (Colon2 xprA1 xprA2 xprA3) (Colon2 xprB1 xprB2 xprB3)  
    = Colon2 (expression xprA1 xprB1) (expression xprA2 xprB2)(expression xprA3 xprB3) 
expression (StatementExpression stmtxprA) (StatementExpression stmtxprB)  
    = StatementExpression (statementExpression stmtxprA stmtxprB) 
expression (Assignment1 asgA) (Assignment1 asgB) = Assignment1 (assignment asgA asgB) 
expression  _ _ = Nothing12 
 
 
 
primary :: Primary -> Primary -> Primary 
primary (PrimaryNoNewArray prnnaA) (PrimaryNoNewArray prnnaB) = PrimaryNoNewArray 
(primaryNoNewArray prnnaA prnnaB) 
primary (ArrayCreationExpression acxprA) (ArrayCreationExpression acxprB)  
    = ArrayCreationExpression (arrayCreationExpression acxprA acxprB) 
primary _ _ = Nothing13 
 
 
dim :: [Dim] -> [Dim] -> [Dim] 
dim dimA dimB = matchingDim dimA dimB 
 
matchingDim :: [Dim] -> [Dim] -> [Dim] 
matchingDim dimA dimB 
     | m > n = dimB 
     | otherwise = dimA 
     where 
     m = length dimA 
     n = length dimB 
 
 
tempHuub1 :: TempHuub1 ->TempHuub1 ->TempHuub1 
tempHuub1 tmphbA tmphbB 
   | tmphbA == tmphbB = tmphbA 
   | otherwise = Nothing14 
 
tempHuub2 :: TempHuub2 ->TempHuub2 ->TempHuub2 
tempHuub2 tmphbA tmphbB 
   | tmphbA == tmphbB = tmphbA 
   | otherwise = Nothing15 
 
tempHuub3 :: TempHuub3 ->TempHuub3 ->TempHuub3 
tempHuub3 tmphbA tmphbB 
   | tmphbA == tmphbB = tmphbA 
   | otherwise = Nothing16 
 
tempHuub4 :: TempHuub4 ->TempHuub4 ->TempHuub4 
tempHuub4 tmphbA tmphbB 
   | tmphbA == tmphbB = tmphbA 
   | otherwise = Nothing17 
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tempHuub5 :: TempHuub5 ->TempHuub5 ->TempHuub5 
tempHuub5 tmphbA tmphbB 
   | tmphbA == tmphbB = tmphbA 
   | otherwise = Nothing18 
 
 
statementExpression :: StatementExpression -> StatementExpression -> StatementExpression 
statementExpression (MethodInvocation mthinvA) (MethodInvocation mthinvB) = MethodInvocation 
(methodInvocation mthinvA mthinvB) 
statementExpression (ClassInstanceCreationExpression clsinsxprA) (ClassInstanceCreationExpression 
clsinsxprB) 
    = ClassInstanceCreationExpression (classInstanceCreationExpression clsinsxprA clsinsxprB) 
statementExpression (Incr2 xprA) (Incr2 xprB) = Incr2 (expression xprA xprB) 
statementExpression (Decr2 xprA) (Decr2 xprB) = Decr2 (expression xprA xprB) 
statementExpression (Incr3 xprA) (Incr3 xprB) = Incr3 (expression xprA xprB) 
statementExpression (Decr3 xprA) (Decr3 xprB) = Decr3 (expression xprA xprB) 
statementExpression (Assignment asgA) (Assignment asgB) = Assignment (assignment asgA asgB) 
statementExpression _ _ = Nothing19 
 
 
 
assignment :: Assignment -> Assignment -> Assignment 
assignment (LeftHandSide_AssignmentOperator_Expression lftsA asgopA xprA) 
        (LeftHandSide_AssignmentOperator_Expression lftsB asgopB xprB) 
    =LeftHandSide_AssignmentOperator_Expression(leftHandSide lftsA lftsB)(assignmentOperator asgopA 
asgopB)(expression xprA xprB) 
 
 
assignmentOperator :: AssignmentOperator -> AssignmentOperator -> AssignmentOperator 
assignmentOperator asgopA asgopB 
    | asgopA == asgopB = asgopA 
    | otherwise = Nothing20 
 
 
primaryNoNewArray :: PrimaryNoNewArray -> PrimaryNoNewArray -> PrimaryNoNewArray 
primaryNoNewArray (Literal lrlA) (Literal lrlB) = Literal (literal lrlA lrlB) 
primaryNoNewArray (This0) (This0) = This0 
primaryNoNewArray (This1 nameA) (This1 nameB) = This1 (name nameA nameB) 
primaryNoNewArray (Expression1 xprA) (Expression1 xprB) = Expression1 (expression xprA xprB) 
primaryNoNewArray (ClassInstanceCreationExpression1 clsinsxprA)(ClassInstanceCreationExpression1 
clsinsxprB) 
    = ClassInstanceCreationExpression1 (classInstanceCreationExpression clsinsxprA clsinsxprB) 
primaryNoNewArray (FieldAccess faA) (FieldAccess faB) = FieldAccess (fieldAccess faA faB) 
primaryNoNewArray (MethodInvocation1 mthinvA) (MethodInvocation1 mthinvB)= MethodInvocation1 
(methodInvocation mthinvA mthinvB) 
primaryNoNewArray (ArrayAccess arraA) (ArrayAccess arraB) = ArrayAccess (arrayAccess arraA arraB) 
primaryNoNewArray _ _ = Nothing21 
 
 
arrayCreationExpression :: ArrayCreationExpression -> ArrayCreationExpression -> ArrayCreationExpression 
arrayCreationExpression (New prtpA dimxprsA dimA)(New prtpB dimxprsB dimB)  
    = New (primitiveType prtpA prtpB) (dimExpressionList dimxprsA dimxprsB) (dim dimA dimB) 
arrayCreationExpression (New1 clsintA dimxprsA dimA)(New1 clsintB dimxprsB dimB) 
    = New1 (classOrInterfaceType clsintA clsintB) (dimExpressionList dimxprsA dimxprsB) (dim dimA dimB) 
arrayCreationExpression (New2 clsintA dimxprinitA arrinitA)(New2 clsintB dimxprinitB arrinitB) 
    = New2(classOrInterfaceType clsintA clsintB)(dimExprInitializedList dimxprinitA 
dimxprinitB)(arrayInitializer arrinitA arrinitB) 
arrayCreationExpression _ _ = Nothing22 
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classInstanceCreationExpression :: ClassInstanceCreationExpression->ClassInstanceCreationExpression 
    ->ClassInstanceCreationExpression 
classInstanceCreationExpression (New_comma clstpA xprsA) (New_comma clstpB xprsB)  
    = New_comma (classType clstpA clstpB) (expressionList xprsA xprsB)  
classInstanceCreationExpression (New_comma1 clstpA xprsA clsbdA)(New_comma1 clstpB xprsB clsbdB)  
    = New_comma1 (classType clstpA clstpB) (expressionList xprsA xprsB) (classBody clsbdA clsbdB) 
classInstanceCreationExpression (New_comma clstpA xprsA)(New_comma1 clstpB xprsB _) 
    = Nothing23 (classType clstpA clstpB) (expressionList xprsA xprsB) 
classInstanceCreationExpression (New_comma1 clstpA xprsA _)(New_comma clstpB xprsB) 
    = Nothing23 (classType clstpA clstpB) (expressionList xprsA xprsB) 
 
 
methodInvocation :: MethodInvocation ->MethodInvocation ->MethodInvocation 
methodInvocation (NameMethodInvocation nameA xprsA)(NameMethodInvocation nameB xprsB) 
    =  NameMethodInvocation (name nameA nameB) (expressionList xprsA xprsB) 
methodInvocation (PrimaryMethodInvocation prA idA xprsA)(PrimaryMethodInvocation prB idB xprsB) 
   | idA == idB  = PrimaryMethodInvocation (primary prA prB) idA (expressionList xprsA 
xprsB) 
   | otherwise = PrimaryMethodInvocation (primary prA prB) "No match" (expressionList xprsA 
xprsB) 
methodInvocation (SuperMethodInvocation idA xprsA)(SuperMethodInvocation idB xprsB) 
   | idA == idB = SuperMethodInvocation idA (expressionList xprsA xprsB) 
   | otherwise = SuperMethodInvocation "No match" (expressionList xprsA xprsB) 
 
 
 
leftHandSide :: LeftHandSide -> LeftHandSide -> LeftHandSide 
leftHandSide (Name2 nameA) (Name2 nameB) = Name2 (name nameA nameB) 
leftHandSide (FieldAccess1 faA) (FieldAccess1 faB) = FieldAccess1 (fieldAccess faA faB) 
leftHandSide (ArrayAccess1 arraA) (ArrayAccess1 arraB) = ArrayAccess1 (arrayAccess arraA arraB) 
leftHandSide _ _ = Nothing24 
 
 
fieldAccess :: FieldAccess -> FieldAccess -> FieldAccess 
fieldAccess (Name1 nameA) (Name1 nameB) = Name1 (name nameA nameB) 
fieldAccess (Primary_Identifier prA idA) (Primary_Identifier prB idB) 
     | idA == idB = Primary_Identifier (primary prA prB) idA 
     | otherwise = Primary_Identifier (primary prA prB) "No match" 
 
 
arrayAccess :: ArrayAccess ->ArrayAccess ->ArrayAccess 
arrayAccess (Name_Expression nameA xprA) (Name_Expression nameB xprB)=Name_Expression (name 
nameA nameB) (expression xprA xprB) 
arrayAccess (PrimaryNoNewArray_Expression prnnaA xprA)(PrimaryNoNewArray_Expression prnnaB xprB) 
    = PrimaryNoNewArray_Expression (primaryNoNewArray prnnaA prnnaB) (expression xprA xprB) 
arrayAccess _ _ = Nothing25 
 
 
dimExpression :: DimExpr -> DimExpr -> DimExpr 
dimExpression (Expression2 xprA)(Expression2 xprB) = Expression2 (expression xprA xprB) 
 
 
arrayInitializer :: ArrayInitializer -> ArrayInitializer -> ArrayInitializer 
arrayInitializer (Comma_comma vrinitsA mbprtA)(Comma_comma vrinitsB mbprtB) 
    | mbprtA == mbprtB = Comma_comma (variableInitializerList vrinitsA vrinitsB) mbprtA 
    | otherwise = Comma_comma (variableInitializerList vrinitsA vrinitsB) Nothing 
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dimExprInitialized :: DimExprInitialized ->DimExprInitialized ->DimExprInitialized 
dimExprInitialized (Expression_opt mbxprA) (Expression_opt mbxprB) 
    |(mbxprA == Nothing) || (mbxprB == Nothing) = Expression_opt Nothing 
    |otherwise = Expression_opt (Just (expression mbxprA_ mbxprB_)) 
   where 
   (Just mbxprA_) = mbxprA 
   (Just mbxprB_) = mbxprB 
  
 
literal :: Literal -> Literal -> Literal 
literal (IntegerLiteral ilA) (IntegerLiteral ilB) = IntegerLiteral (integerLiteral ilA ilB) 
literal (FloatingPointLiteral fplA)(FloatingPointLiteral fplB) = FloatingPointLiteral (floatingPointLiteral fplA 
fplB) 
literal (BooleanLiteral blA)(BooleanLiteral blB)= BooleanLiteral (booleanLiteral blA blB) 
literal (CharacterLiteral clA)(CharacterLiteral clB) = CharacterLiteral (characterLiteral clA clB) 
literal (StringLiteral slA)(StringLiteral slB) = StringLiteral (stringLiteral slA slB) 
literal (NullLiteral nlA) (NullLiteral nlB) = NullLiteral (nullLiteral nlA nlB) 
literal _ _ = Nothing27 
 
 
integerLiteral :: IntegerLiteral ->IntegerLiteral ->IntegerLiteral 
integerLiteral (DecimalIntegerLiteral dilA)(DecimalIntegerLiteral dilB) = 
DecimalIntegerLiteral(decimalIntegerLiteral dilA dilB) 
integerLiteral (HexIntegerLiteral hxA)(HexIntegerLiteral hxB)= HexIntegerLiteral (hexIntegerLiteral hxA hxB) 
integerLiteral (OctalIntegerLiteral oclA)(OctalIntegerLiteral oclB) = OctalIntegerLiteral (octalIntegerLiteral 
oclA oclB) 
integerLiteral _ _ = Nothing28 
 
 
octalIntegerLiteral :: OctalIntegerLiteral->OctalIntegerLiteral->OctalIntegerLiteral 
octalIntegerLiteral oclA oclB  
    | oclA == oclB = oclA 
    | otherwise = "No match" 
 
 
hexIntegerLiteral :: HexIntegerLiteral ->HexIntegerLiteral ->HexIntegerLiteral 
hexIntegerLiteral hxA hxB 
    | hxA == hxB = hxA 
    | otherwise = "No match" 
 
 
nullLiteral :: NullLiteral ->NullLiteral ->NullLiteral 
nullLiteral nlA nlB 
    | nlA == nlB = nlA 
    | otherwise = "No match" 
 
 
 
stringLiteral :: StringLiteral ->StringLiteral ->StringLiteral 
stringLiteral slA slB 
    | slA == slB =  slA 
    | otherwise = "No match" 
 
 
characterLiteral :: CharacterLiteral ->CharacterLiteral ->CharacterLiteral 
characterLiteral clA clB 
    | clA == clB = clA 
    | otherwise = "No match" 
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booleanLiteral :: BooleanLiteral ->BooleanLiteral ->BooleanLiteral 
booleanLiteral blA blB 
    | blA == blB = blA 
    | otherwise = "No match" 
 
 
floatingPointLiteral :: FloatingPointLiteral ->FloatingPointLiteral ->FloatingPointLiteral 
floatingPointLiteral fplA fplB 
    | fplA == fplB = fplA 
    |  otherwise = "No match" 
 
 
decimalIntegerLiteral :: DecimalIntegerLiteral ->DecimalIntegerLiteral ->DecimalIntegerLiteral 
decimalIntegerLiteral dmlA dmlB 
    | dmlA == dmlB = dmlA 
    | otherwise = "No match" 
 
 
methodDeclarator :: MethodDeclarator ->MethodDeclarator ->MethodDeclarator 
methodDeclarator (Comma2 idA fpsA) (Comma2 idB fpsB) 
    = Comma2 idA (formalParameter fpsA fpsB) 
methodDeclarator (MethodDeclarator mdA) (MethodDeclarator mdB) = MethodDeclarator (methodDeclarator 
mdA mdB) 
methodDeclarator a@(Comma2 _ _)(MethodDeclarator mdB) = methodDeclarator a mdB 
methodDeclarator (MethodDeclarator mdA) b@(Comma2 _ _) = methodDeclarator mdA b  
 
 
methodDeclaration :: MethodDeclaration ->MethodDeclaration ->MethodDeclaration 
methodDeclaration (MethodHeader_MethodBody mhA mbA)(MethodHeader_MethodBody mhB mbB) 
    = MethodHeader_MethodBody (methodHeader mhA mhB) (methodBody mbA mbB) 
 
methodHeader :: MethodHeader ->MethodHeader ->MethodHeader 
methodHeader (Modifier_s_Type_MethodDeclarator_Throws_opt modsA tpA mdA thA) 
   (Modifier_s_Type_MethodDeclarator_Throws_opt modsB tpB mdB thB) 
   = Modifier_s_Type_MethodDeclarator_Throws_opt (modifier modsA modsB)(typeMatching tpA tpB) 
        (methodDeclarator mdA mdB) (throws 
thA thB) 
methodHeader (Void modsA mdA thA)(Void modsB mdB thB) 
    = Void (modifier modsA modsB)(methodDeclarator mdA mdB)(throws thA thB) 
methodHeader (Void modsA mdA thA)(Modifier_s_Type_MethodDeclarator_Throws_opt modsB tpB mdB 
thB) 
    = Void (modifier modsA modsB)(methodDeclarator mdA mdB)(throws thA thB) 
methodHeader (Modifier_s_Type_MethodDeclarator_Throws_opt modsA tpA mdA thA)(Void modsB mdB 
thB) 
    = Modifier_s_Type_MethodDeclarator_Throws_opt (modifier modsA modsB) tpA (methodDeclarator mdA 
mdB) (throws thA thB) 
 
 
formalParameter :: [FormalParameter]->[FormalParameter]->[FormalParameter] 
formalParameter a b = formalParameterList a b b 
formalParameterList :: [FormalParameter]->[FormalParameter]->[FormalParameter]->[FormalParameter] 
formalParameterList (_:tl) [] orgB = formalParameterList tl orgB orgB 
formalParameterList [] _ _ = [] 
formalParameterList a@(hdA:tlA) (hdB:tlB) orgB  
    | hdA == hdB = [hdA]++formalParameterList tlA orgB orgB 
    | otherwise = formalParameterList a tlB orgB 
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comparingFormalParameter :: FormalParameter ->FormalParameter ->FormalParameter 
comparingFormalParameter (Type_VariableDeclaratorId tpA vdA)(Type_VariableDeclaratorId tpB vdB) 
    = Type_VariableDeclaratorId (typeMatching tpA tpB) (variableDeclaratorId vdA vdB) 
 
 
throws :: Maybe Throws ->Maybe Throws ->Maybe Throws 
throws Nothing _ = Nothing 
throws _ Nothing = Nothing 
throws (Just(Throws_comma clspA))(Just(Throws_comma clspB)) = Just(Throws_comma (classTypeList clspA 
clspB)) 
 
 
classTypeList :: [ClassType] ->[ClassType] ->[ClassType] 
classTypeList clstpA clstpB = maximumMatching clstpA clstpB 
 
 
classType :: ClassType ->ClassType ->ClassType 
classType (ClassOrInterfaceType1 clsintA)(ClassOrInterfaceType1 clsintB)  
    = ClassOrInterfaceType1 (classOrInterfaceType clsintA clsintB) 
 
 
methodBody :: MethodBody ->MethodBody ->MethodBody 
methodBody (Block1 blckA)(Block1 blckB) =Block1 ( block blckA blckB) 
methodBody (Semicolon3)(Semicolon3) = Semicolon3 
methodBody _ _ = Nothing31 
 
 
block :: Block -> Block -> Block 
block (BlockStatement_s bsA)(BlockStatement_s bsB) = BlockStatement_s (blockStatement bsA bsB) 
 
 
blockStatement :: [BlockStatement]->[BlockStatement]->[BlockStatement] 
blockStatement bsA bsB = maximumMatching bsA bsB 
 
 
variableInitializerList :: [VariableInitializer] -> [VariableInitializer]->[VariableInitializer] 
variableInitializerList visA visB = maximumMatching visA visB 
 
 
dimExpressionList :: [DimExpr]->[DimExpr]->[DimExpr] 
dimExpressionList desA desB = maximumMatching desA desB 
 
 
dimExprInitializedList :: [DimExprInitialized]->[DimExprInitialized]->[DimExprInitialized] 
dimExprInitializedList deiA deiB = maximumMatching deiA deiB 
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File JavaMetrics.hs task is to construct abstract syntax trees. 
 
module Main where 
 
import Java 
import JavaATermConvertibleInstances 
import JavaTermInstances 
import JavaChaseImports 
import ChaseImports 
import StrategyLib 
import ATermLib 
import System 
import DTDJavaMetrics 
import DTDJavaMetricsTermInstances 
import Text.XML.HaXml.Xml2Haskell 
import IO 
import Monad 
import NameTheme 
import List 
 
import MatchingWStr 
 
 
main =  
    do  
    args <- getArgs 
    cusA <- javaChaseImports [(args!!0)] [(args!!1)] 
    cusB <- javaChaseImports [(args!!2)] [(args!!3)] 
    infCusA <- getInterfaces cusA 
    clsCusA <- getClasses cusA (args!!1) 
    sprClsA <- getSuperClasses cusA 
    infCusB <- getInterfaces cusB 
    clsCusB <- getClasses cusB (args!!1) 
    sprClsB <- getSuperClasses cusB 
    elClsCusA <- eliminateInheritedMethods clsCusA (infCusA++sprClsA) 
    elClsCusB <- eliminateInheritedMethods clsCusB (infCusA++sprClsA) 
    trAd <- deleteInheretedMethodsBody elClsCusA 
    trBd <- deleteInheretedMethodsBody elClsCusB 
     commonTree <- compareCUNew trAd trBd 
    commonTree2 <- compareCUNew clsCusA clsCusB 
    hPutStr stdout ("£\n"++show trAd) 
    hPutStr stdout ("£\n"++show trBd) 
    hPutStr stdout ("£\n"++show commonTree) 
    hPutStr stdout ("£\n"++show commonTree2) 
    hPutStr stdout ("£\n"++show clsCusA) 
    hPutStr stdout ("£\n"++show clsCusB) 
 
 
compareCU :: ( Monad m) => [CompilationUnit] -> m CompilationUnit 
compareCU cus = return (compilationUnit tree1 tree2) 
  where 
  tree1 = cus !! 1 
               tree2 = cus !! 2 
 
 
compareCUNew :: ( Monad m) => [CompilationUnit] ->[CompilationUnit] -> m CompilationUnit 
compareCUNew tA tB = return (compilationUnit (head tA) (head tB)) 
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getInterfaces :: (Term t, Monad m) => t -> m [CompilationUnit] 
getInterfaces cus = applyTU (full_tdTU worker) cus 
     where 
     worker = constTU [] àdhocTU  ̀inf 
     inf i = case i of 
      (a@(CU pg im [InterfaceDeclaration id])) -> return [a] 
      _ -> return [] 
 
 
getClasses :: (Term t, Monad m) => t-> String -> m [CompilationUnit] 
getClasses cus name= applyTU (full_tdTU worker) cus 
    where 
    worker = constTU [] àdhocTU  ̀cls 
    cls c = case c of 
     (a@(CU pg im [ClassTypeDeclaration (Class1 _ id _ _ _)])) -> if name == id then return [a] 
          else return [] 
     _ -> return [] 
 
 
getMethodParameter :: (Term t) => t -> [FormalParameter] 
getMethodParameter cus = head fp 
    where 
    [fp] = getMethParameter cus 
 
getMethParameter :: (Term t, Monad m) => t -> m [[FormalParameter]] 
getMethParameter cus = applyTU (full_tdTU worker) cus 
         where 
         worker = constTU [[]] àdhocTU  ̀pm 
         pm p = case p of  
         (Comma2 _ fpm) -> return [fpm] 
         _ -> return [] 
 
 
 
getSuperClasses :: (Term t, Monad m) => t -> m [CompilationUnit] 
getSuperClasses cus = applyTU (full_tdTU worker) cus 
    where 
    worker = constTU [] àdhocTU  ̀spr 
    spr s = case s of  
     (Class1 _ _ (Just (Extends (ClassOrInterfaceType1 (Name (Identifier_p ids))))) _ _) -> return sprclss 
     where 
     [sprclss] = getSprclass cus (head ids) 
     _ -> return [] 
    
 
 
getSprclass :: (Term t, Monad m) => t ->String -> m [CompilationUnit] 
getSprclass cus name = applyTU (full_tdTU worker) cus 
    where 
    worker = constTU [] àdhocTU  ̀spr 
    spr s = case s of 
     (a@(CU pg im [ClassTypeDeclaration (Class1 _ id _ _ _)])) -> if id == name then return [a] else 
return [] 
     _ -> return [] 
 
 
eliminateInheritedMethods :: (Term t, Monad m) => t -> [CompilationUnit] -> m t 
eliminateInheritedMethods cus interfaces 
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    = applyTP (full_tdTP worker) cus 
      where 
      worker = idTP  àdhocTP  ̀meths 
      meths mt = case mt of  
   (a@(Comma2 name parameter)) -> if inheritedMeth then  
      return (Comma2 ("InheritedMethod: "++name) parameter) 
      else return a 
          where 
          inheritedMeth = checkInheritedMethod ((show 
name)++(show parameter)) interfaces 
   (b@(_)) -> return b 
   
 
 
deleteInheretedMethodsBody :: (Term t, Monad m) => t -> m t 
deleteInheretedMethodsBody cus = applyTP (full_tdTP worker) cus 
    where 
    worker = idTP àdhocTP  ̀del 
    del d = case d of 
     (a@(MethodHeader_MethodBody mh mb)) -> if (chkMeth mh) then 
         return (MethodHeader_MethodBody mh Semicolon3) 
         else return a 
    -- (b@(_)) -> return b 
      
           
  
chkMeth :: (Term t)=> t -> Bool 
chkMeth cus = isPrefixOf "\"InheritedMethod:" mets 
       where 
    mets = getMethodName cus 
 
 
 
getNameParameter :: (Term t) => t -> (Identifier, [FormalParameter]) 
getNameParameter methHeader 
    | mp == [] = ("" ,[]) 
    | otherwise = head mp 
    where 
    [mp] = getIdPara methHeader 
 
 
getIdPara :: (Term t, Monad m) => t -> m [(Identifier, [FormalParameter])] 
getIdPara methHeader = applyTU (full_tdTU worker) methHeader 
         where 
         worker = constTU [] àdhocTU  ̀np  
         np (Comma2 name parameter) = return [(name,parameter)] 
 
 
checkInheritedMethod :: String -> [CompilationUnit] -> Bool 
checkInheritedMethod sign interfaces 
    | methodIsInInterface = True 
    | otherwise = False 
    where 
    methodIsInInterface = elem sign interfaceSign 
 
    interfaceSign = lines(head(getMethodSignsFromInterfaces interfaces)) 
 
 
getMethodSignsFromInterfaces :: (Term t) => t ->[String] 
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getMethodSignsFromInterfaces cus 
    = applyTU (full_tdTU worker) cus 
      where 
      worker = constTU [] àdhocTU  ̀signs  
      signs (Comma2 name parameter) = [((show name)++(show parameter)++"\n")] 
 
 
 
 
 
The file SequenceMatching.hs contains the functions unorderedMaximumMatching and 
orderedMaximumMatching. 
 
module SequenceMatching where 
 
import Array 
 
seqMatching :: (Eq t)=>[t] -> [t] ->  Array (Int, Int) Int 
seqMatching seqA seqB = a  
    where 
    a = array ((0,0),(m,n)) ([((i,0), 0) | i <- [0..m]] ++ 
   [((0,j), 0) | j <- [0..n]] ++ 

[((i,j), returnMax (a!(i,j-1)) (a!(i-1,j)) ((a!(i-1,j-1)) + compareValue i seqA j seqB)) | i 
<- [1..m], j <- [1..n]]) 

    m = length seqA 
    n = length seqB 
      
 
returnMax :: Int -> Int -> Int -> Int 
returnMax a b c  
 | a >= b = max a c 
 | otherwise = max b c 
 
 
compareValue :: (Eq t)=>Int -> [t] -> Int -> [t] -> Int 
compareValue indexA arrayA indexB arrayB 
 | lookup indexA arrayA_ == lookup indexB arrayB_  = 1 
 | otherwise        = 0 
           where 
    arrayA_ = zip [1, 2..] arrayA 
    arrayB_ = zip [1,2..] arrayB 
 
 
findingSubSeq :: [(Int,Int)] -> [t] -> [t] 
findingSubSeq [] _= [] 
findingSubSeq ((i,_):tail) arrayA = v : findingSubSeq tail arrayA 
  where 
   v = getValue  arrayA_ i 
   arrayA_ = zip [1,2..] arrayA 
 
getValue :: [(Int, t)] -> Int -> t 
getValue ((i,v):rest) index  
 | i == index = v 
 | otherwise = getValue rest index 
 
 
exSearchNew :: Array (Int, Int) Int -> (Int, Int) -> Int -> (Int, Int) -> [(Int, Int)] 
exSearchNew a (i, j) c (m, n) 
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 | j > n  = exSearchNew a (i+1, 1) c (m, n) 
 | i > m = [] 
 | c < newC = [(i, j)] ++ exSearchNew a (i+1, j+1) newC (m, n) 
 | c == newC && i /= m && c < horC = exSearchNew a (i+1, j) c (m, n) 
 | c == newC && j /= n && c < verC = exSearchNew a (i, j+1) c (m, n)  
 | otherwise = exSearchNew a (i+1, j+1) c (m, n) 
 where 
  newC = a!(i, j) 
  horC = a!(i+1, j) 
  verC = a!(i, j+1) 
 
 
orderedMaximumMatching :: (Eq t)=>[t] -> [t] -> [t] 
orderedMaximumMatching seqA seqB  
    | (length seqA)== 0 || (length seqB)== 0 = [] 
    | otherwise = commonSeq 
       where 
       commonSeq = findingSubSeq nodesInPair seqA 
       nodesInPair = exSearchNew multiA (0, 0) 0 (m, n) 
       multiA = seqMatching seqA seqB 
       m = length seqA 
       n = length seqB 
 
 
unorderedMaximumMatching :: (Eq t) => [t] -> [t] -> [t] 
orderedMaximumMatching seqA seqB = auxUMM A B B 
auxUMM :: (Eq t) => [t] -> [t] -> [t] -> [t] 
auxUMM [] _ _ = [] 
auxUMM (_:tlA) [] orgB = auxUMM tlA orgB orgB 
auxUMM a@(hd:tlA) (hdB:tlB) orgB 
 | hdA = = hdB = [hdA] ++ auxUMM tlA orgB orgB 
 | otherwise = auxUMM a tlB orgB 
 
 


