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Abstract

This thesis presents the Graphical Description Language (GDL), a meta-
language for the specification of the graphical syntax of the Unified Modeling
Language, version 2.0(UML).

Visual languages have properties that cannot be expressed in conventional
meta–languages for textual languages. To address these properties, we need
to take into account that the symbols of the language most likely does not
adhere to a sequential ordering. We therefore need a meta–language with
some functionality that can address the fact that the symbols of most visual
languages have a more or less arbitrary spatial ordering in the plane. The
contribution of this thesis is such a meta–language, applicable for UML 2.0.

We give an overview of existing research in the field of visual language
research and give an analysis of the graphical syntax of UML to highlight
the issues a meta–language has to address. We also give a specification of
a subset of UML, called Tuml (Tiny UML ), to illustrate use of the meta–
language.

GDL uses the Z Notation as its formal basis. In addition, to address the
unique properties of visual languages, we use concepts from topology, geo-
graphical information systems theory and previously defined visual language
formalisms.
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Chapter 1

Introduction

Visual languages are all around us. We use maps to find our way in a foreign
city and house plans to find out where we are in an unfamiliar building.
Road signs are a form of visual language as are the sign language used to
communicate with the deaf.

We have a variety of different visual languages within our field of computer
science. Statecharts [30], petri nets [34], UML diagrams [48] and flowcharts
are just a small sample. Programmers and program designers use different
diagrams as an aid to visualise the static and dynamic aspects of program
systems. Such diagrams can also be used to explain how programs are de-
signed and work to people who are not trained in computer science.

Another application area for visual languages is geographical information
systems. Here visual languages has been developed as a means to querying
geographical databases, like the Spatial-Query-By-Sketch by Egenhofer [22]
and the extended Lvis language developed by Bonhomme et al. [4]. Using
diagrams and drawing to specify queries to a geographical database can
enable people that are not technically trained to use create precise queries
to such applications, as discussed in Favetta et al. [23] and Blaser et al. [3].

When we specify textual languages, we take advantage of a convenient fea-
ture of text, that it is a sequence of symbols. Thus we only need to spe-
cify the legal sequence of symbols. This is easily achievable with powerful
meta–languages like BNF, also known as Backus–Naur Form (for an intro-
duction to BNF, see Louden [38]). When we are specifying the syntax of
visual languages, however, we need to take into account that the symbols
of the language most likely does not adhere to a sequential ordering. We
therefore need a meta–language with some functionality that can address
the fact that the symbols of most visual languages have a more or less ar-
bitrary spatial ordering in the plane. This problem has, as we shall see in
chapter 2, been approached in a variety of ways.



2 The domain of interest

This thesis will concern itself with the graphical syntax of the Unified Mod-
eling Language, version 2.0 (UML). UML is a language that has had con-
siderable success in the last decade or so. It encompasses several different
types of diagrams. There are diagrams for modelling various aspects of the
static structure of systems in level of detail. There are also diagrams that can
model the behavioural aspects, how different parts of a system interact with
each other, and diagrams where we can model the legal states a system can
have.

The fact that UML consists of this wide variety of diagram types, means that
there are a variety of different notational forms. The meta–language needs
to be able to address this.

1.1 The domain of interest

As background we will review some earlier work done in the field of spe-
cification, description and parsing of visual languages.

When we draw diagrams, at least diagrams of a certain size and complexity,
there is a chance that they will become cluttered and incomprehensible. We
will therefore look at the study of aesthetics and try to implement a mech-
anism that can be used to uphold aesthetical principles in a visual language.

Our test case is the Unified Modeling Language, version 2.0, and we there-
fore found it natural to look at the format for the exchange of UML dia-
grams, Diagram Interchange [46], to see how a specification of the layout
of a particular diagram could be achieved. This is a format that allows UML
diagrams to be interchanged between different systems and tools without
loss of data or layout.

In addition, to get an idea on how other disciplines has tackled the descrip-
tion and specification of visual representation of data or syntax, we will
review research done in the field of spatial databases and geographical in-
formation systems(GIS). We will also take a look at music notation, as it is
a well known and widespread visual language.

This background information will provide us with the necessary insight to be
able to design a meta–language that can specify the visual syntax of UML.
This meta–language is called Graphical Description Language, abbreviated
GDL.

A visualisation of the different fields in our domain related, is shown in
figure 1.1.
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Aesthehtics

Visual language
theory

GIS−theoryMusic notation
theory

Diagram
Interchange

Prescise
definition

GDL

Figure 1.1: Domain model

1.2 Goal and Requirements

The goal of this thesis is to develop a meta–language that is capable of
specifying the spatial syntax of a visual language.

Our primary target language is UML 2.0, which is a rich language of several
different diagram types and thus a variety of notational forms. Since we in-
vestigate UML in particular, the meta–language will inevitably be influenced
by that fact. In spite of that, we will try to make it as generic as possible so
that may be applicable to other visual languages and notations as well.

The meta–language should be able to specify the spatial compositions of
graphical symbols that lead to valid visual sentences in the language we
are specifying. By a visual sentence, we understand an unordered collection
of graphical elements in a spatial relationship to each other that convey
something meaningful.

Another requirement we have, is precision. We want a language that is cap-
able of specifying the spatial relationships of the graphical symbols at a
precise level.

1.3 Design criteria

The topic of this thesis is language design. In design activities there is always
important to have some criteria that guide the design activities to ensure a
good design. Therefore we will now present some criteria, in addition to
those in section 1.2, that we will use as guide–lines to ensure that we end
up with a good design of our meta–language.



4 Design criteria

Donald Norman, in his book “The Design of Everyday Things” [45], de-
scribes several cases of bad design of everyday objects like door–handles,
digital watches and telephones and explains why these designs are so bad,
why users of these things make errors using them. Furthermore, he elabor-
ates different principles that could make the design of everyday things bet-
ter. Now clearly, a formal specification language is not an “everyday thing”
to most people, but nevertheless it is intended for use by human beings
and the knowledge of design principles that apply to everyday things could
prove valuable even in this setting. We will use some of these principles as
guidelines where they are applicable to language design.

Wexelblat [64] outlines, in his rather witty article, a number of steps that
can be taken in programming language design to make the task of program-
ming as difficult as possible. He elaborates why these different aspects on
programming language design make different tasks so difficult for program-
mers. It could prove valuable to have those steps relevant to our domain in
mind to avoid committing these design errors.

One of the criteria we will define, is what we will call transparency. By trans-
parency we mean that the syntax and structure of the language should be
as clear and easily understandable as possible to users of the language, it
should not take a long time to learn. This implies a certain degree of sim-
plicity and uniformity in the syntax and constructs of the language. It is,
according to Wexelblat [64], the irregularities in a language that is difficult
to learn and master. Programming and specification languages are artificial
languages and with a little thought and consideration, there should be pos-
sible to avoid making a language that is too complex or irregular. Wexelblat
also points out the fact that there are certain “standard” ways of the use
of spaces and delimiters both in natural language and mathematics, and
languages that deviates greatly from these “standard” ways are more error
prone than others that conform.

We also want to design a language that is compact and concise, not a lan-
guage that “explodes” with features. We want to strive to make a language
that do not have too many nor too few constructs, just the constructs it
needs to do what it is intended to achieve. One of Normans [45] principles
is constraints. One should put constraints on the choices of what we can do
with an object. When we put constraints on a design, we can greatly reduce
the risk of users making errors and enhance the usefulness of a design. We
should apply constraints so that, as Norman puts it “the user feels that there
is only one thing to do - the right thing” [45].
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1.4 Thesis structure

The following describes the structure of the thesis.

Chapter 2 Background This chapter introduces several theories for the spe-
cification of visual languages. In addition we review the Diagram In-
terchange specification. We also look at the role of aesthetics in visual
languages/language design.

Chapter 3 Background from related disciplines This chapter draws lessons
from the research field of geographical information systems (GISs)
and the efforts to make spatial extensions to the Structured Query Lan-
guage (SQL).
This chapter also looks into music notation to see if there are any les-
sons to be learnt.

Chapter 4 Analysis This chapter provides an analysis of the graphical syn-
tax of UML 2.0 in order to identify the issues our meta–language will
have to be able to address.

Chapter 5 Graphical Description Language This chapter sees the design
of GDL, Graphical Description Language.

Chapter 6 Defining a Visual Language This chapter uses GDL to specify a
visual language, a subset of UML 2.0 called Tiny UML (Tuml).

Chapter 7 Discussion and Further Work This chapter evaluates the Graph-
ical Description Language against the design goals and requirements
and looks at the possibilities for further work.
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Chapter 2

Background

We will in this chapter outline the different theories and techniques that
have evolved in the field of visual language specification. We will concen-
trate on the research that has attempted to specify syntax specifications
and descriptions for visual languages and on some visual programming lan-
guages/environments. We will not elaborate on the parsing algorithms given
for the different formalisms, nor on various visual programming environ-
ments.

2.1 Grammatical approach

The earliest attempts to define a specification for visual languages, dating
back to 1964, were grammatical in nature [40]. The first attempts were
quite simple modifications of the phrase structure grammars that were used
to specify string languages.

2.1.1 String Languages

This section reviews some theory and vocabulary related to string gram-
mars.

A production is a form of rule that specifies the composition of the different
grammatical elements [40]. A non–terminal symbol is a symbol that repres-
ent a compound structure in the language. A non–terminal can be composed
of both non–terminal and terminal symbols. A terminal symbol is a symbol
that represent the symbols that are part the alphabet of the language, Ex-
amples are numbers, a word, a letter or any other symbol. When we specify
grammars, we often place the constraint

N ∩ T = ∅
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on the sets of non–terminal symbols (N) and terminal symbols (T).

Chomsky [12] divided phrase structure grammars into four different types
based on the form of their productions. This now known as the Chomsky
hierarchy [40].

Type 0, or unrestricted grammars allow for an unlimited number of terminal
and non–terminal symbols on either side of the production.

Type 1, or context–sensitive grammars, are grammars that have the form

αAα′ → αβα′

A is a non–terminal symbol and β is a non–empty string and α and α′ are
strings that may be empty. The meaning of the production is that the non-
terminal A can be replaced by the string β in the context of α and α′. So the
result of a production thus relies on the content of the context symbols.

Type 2, or context–free grammars, are grammars that do not allow contexts.
This is the type of grammars that is most often used in the specification
of syntax for programming languages and has thus been studied in great
depth. The productions in a context–free grammar are on the form

A→ β

which can be understood that the non–terminal A is to be replaced with β.

Type 3, or regular grammars. They have the form

A→ aB or A→ a

where A and B are non–terminals and a is a terminal symbol.

2.1.2 String Grammars

2.1.2.1 Picture Description Language

One of the first formalisations of languages for the description and specific-
ation of visual languages was done by Shaw with his Picture Description
Language (PDL) [58]. PDL is a linear, context–free string language.

A picture primitive is a n–dimensional pattern (n ≥ 1). A primitive has two
distinguished points, a tail and a head. The primitives can be concatenated
at their tail and/or head only, to form more complex structures. The restric-
tion that there is at most two point of concatenation, means that primitives
can be represented as labelled directed edges of a graph, pointing from its
tail to its head. This does not mean that there is an implied direction asso-
ciated with the primitives as such, the abstraction using directed edges (i.
e. arrows) is merely a way to distinguish between the tail and the head of a
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primitive. The primitives correspond to the terminal symbols. Each primitive
is member of a pattern class.

There are three different special primitives. A don’t care primitive will match
any primitive type. A blank primitive represents invisible primitives. The
third special primitive, is a null point primitive, a primitive where the tail
and head is the same point, i. e. the tail and head are identical. The null
point primitive is denoted λ and consists only of its tail and head. In a graph,
λ would be represented as a labelled node

In figure 2.1 we see the valid syntax of PDL specified in Backus–Naur Form
(BNF). In this derivation, p represent any primitive class name (including
λ). The symbol l is a label designator.

〈S〉 ::= p | ( 〈S〉 φ 〈S〉 ) | ( ∼ 〈S〉 ) | 〈L〉 | ( /〈L〉 )
〈L〉 ::= 〈S〉l | ( 〈L〉 φ 〈L〉 ) | ( ∼ 〈L〉 ) | ( /〈L〉 )
φ ::= + | − | ∗ | ×

Figure 2.1: PDL syntax

PDL provides four binary concatenation operators. They define different tail/-
head concatenations. Figure 2.2 shows the result of applying these operators
to two primitives a and b. h and t in the figures designate the head and tail
of the primitives. The + operator connects the head of a primitive to the
tail of another, as seen in figure 2.2(a). The × operator connects the tails of
two primitives, as illustrated in figure 2.2(b). The − operator connects the
head of two primitives. This is illustrated in figure 2.2(c). The ∗ operator
connects the tail of a primitive a to the tail of a primitive b and the head of
a to the head of b, as can be seen in figure 2.2(d). The unary operator ∼
is a negation operator which reverses the tail and head of a primitive. The
unary composition operator / is an operator where each primitive inside its
scope refers to an identically labelled node outside its scope.
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Figure 2.2: PDL concatenation operators
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2.1.2.2 Positional grammars

Positional grammars are based on an observation about concatenation in
string grammars. In string grammars, the role of concatenation is to indic-
ate where the next symbol is relative to the current symbol [18, 40]. In the
theory of positional grammars, concatenation is therefore generalised into
an arbitrary spatial relation RELi which convey information about the rel-
ative position of the next symbol αi+1 with respect to the current symbol
αi [18,19]. Productions in a relational grammar thus have the form:

A → α1 REL1 α2 REL2 · · · RELn−1 αn,∆ (2.1)

Here, A is a non–terminal, the αis are terminal or non–terminal symbols and
RELi are the before mentioned spatial relations which specify the position of
αi+1 in relative to αi. ∆ is a rule which synthesises the attribute values of A
from the values of the attributes of α1, · · · , αn.

In [17], Costagliola et al. describe a formalism that is based on positional
grammars, Extended Positional Grammars. This is a formalism that is based
on an extension of the well–known LR–parsing technique.

Productions in an extended positional grammar are essentially the same as
for ordinary positional grammars:

A → α1 REL1 α2 REL2 · · · RELn−1 αn,∆,Γ (2.2)

The only part of this production that is different, is the set Γ which is a set
that is used to dynamically insert new symbols into the visual sentence that
is to be recognised.

2.1.3 Attributed multiset grammars

Attributed grammars were first devised by Knuth [36], as a means to extract
the semantics from context–free languages.

In this category, the productions rewrite sets or multisets of symbols. The
symbols have geometric and sometimes semantic attributes associated with
them and rewriting can be controlled by constraints over the attributes on
the right hand side of a production [40].

A multiset is a mathematical entity that is very much like an ordinary set.
But unlike ordinary sets, multisets are allowed to have repeated elements
[37,63]. An object may be an element of a multiset a finite number of times.
The multiplicity of an object is relevant. In additions to the ordinary set
operations, there are a few that are unique to multisets. An element which
has a occurrences in multiset A and b occurrences in multiset B will have
a + b occurrences in A ] B, max(a, b) occurrences in A ∪ B and min(a, b)
occurrences in A ∩ B.
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2.1.3.1 Grammar for mathematical notation

One of the first examples of an approach in this group is the Coordinate
Grammar of Anderson [1]. He used this formalism to specify two–dimensio-
nal mathematical notation. The productions had the form:

A→ α where C F

The A is a non–terminal symbol, α is a non-empty string of symbols, C is
a constraint over the attributes in α and F is an expression that computes
the attributes of A with respect to the attributes of α. The symbols in the
grammar each have six geometric attributes and one semantic attribute.
It is worth noting that even though α is written as a string, the order of
the symbols in α does not have any significance at all, as is the case in
productions in string languages, so α is semantically a multiset.

∫ ymax
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Figure 2.3: Coordinate grammar, integral

In figures 2.3 and 2.4, we see two examples on how mathematical symbols
and expressions are placed in a grid that has 3x3 axes. The labels on the
axes, xmin, xcenter xmax, ymin, ycenter and ymax are the six geometrical
attributes of each symbol. Note that the center of a symbol or an expression
is not necessarily the geometrical center but the centre of interest of the
symbol. This can be seen in figure 2.4, where the attribute ycenter refers to
coordinates above the geometrical centre along the y–axis for the horizontal
bar of the fraction.
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Figure 2.4: Coordinate grammar, division
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Finally, we show an example on a production in this grammar. We take the
derivation of a DivTerm, which is shown in figure 2.4 on the page before.

DivTerm −→ Exp1 Exp2 hbar where

Exp1.xmin > hbar.xmin &

Exp1.xmax < hbar.xmax &

Exp1.ymin > hbar.ymax &

Exp2.xmin > hbar.xmin &

Exp2.xmax < hbar.xmax &

Exp2.ymax < hbar.ymin
DivTerm.xcenter = hbar.xcenter
DivTerm.ycenter = hbar.ycenter
DivTerm.meaning = (Exp1.meaning/Exp2.meaning)

Here, DivTerm corresponds to A on the left hand side in the general produc-
tion shown above. The first line after the production arrow corresponds to
’α where’. The next lines correspond to the constraints in the production, the
C in the general production described above. The last three lines correspond
to the F, the expression that computes the variables of A.

In the last line of this production, we see the attribute meaning. This is
the before mentioned semantic attribute of the symbols. It contains the
mathematical meaning of the symbols and as we see here, the value of
DivTerm.meaning is computed on the basis of Exp1.meaning and Exp2.meaning.

2.1.3.2 Picture Processing Grammars

Chang introduced Picture Processing Grammars [7]. This can be viewed as a
generalisation of coordinate grammars in that it allows each symbol to have
an arbitrary number of attributes (Anderson’s Coordinate Grammar could
only have six). The grammars describe the hierarchical structure of two di-
mensional pictures. Chang et al. further developed the SIL system [9] that
handles icon–oriented grammars through the use of spatial operators for
vertical concatenation (ˆ), horizontal concatenation (&) and overlap (+).

2.1.3.3 Picture Layout Grammars

Golin introduced attributed multiset grammars (AMG) [26]. An attributed
multiset grammar is essentially a context–free picture processing grammar.

This grammar formalism was further extended to Picture Layout Grammars
(PLG) [27,28]. A PLG is an AMG that is augmented with adjacency operat-
ors, or production operators. The operators and their meaning are listed in
table 2.1 on page 14.
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The symbols of an AMG has four attributes lx, by, rx and ty. lx is the point
of the leftmost x–position the symbol occupies as defined by a coordinate
system, rx is the rightmost x–position, by is the lowest y–position the symbol
occupies and ty is the highest y–position.

If the object at hand is a shape, the attributes represent the extent of the
object. In this case the relationships lx ≤ rx and by ≤ ty must hold.

If the object at hand is a line, the pair (lx,by) represent the left side of the
line and the pair (rx,ty) represent the right side of the line. Golin points
out that even though the endpoints are called left and right, there is not a
requisite that lx ≤ rx or by ≤ ty hold.

The general form of production is as follows:

A → {B,C}
A.atrr = funcop(B.attr,C.attr)

Where:
predop(B.attr,C.attr)

An example production that corresponds to the situation depicted in fig-
ure 2.5 is

A→ over(B,C).

A is a non–terminal representing the drawing on the right hand side.

The operator over defines that its first argument located geometrically above
its second argument. It is defined with the constraint B.by ≥ C.ty, so that B
is ensured to be located over C.

A

B

C

Figure 2.5: B over C

It is possible to define additional functions or addition to the predefined
ones. As an example, look at the situation depicted in figure 2.6 on the
following page which is specified by:

A→ (B,C)

Where:
B.by == C.ty

This specifies that B must be over and exactly touching C.
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A
B

C

Figure 2.6: B over and touching C

Operator Meaning

over(B,C) B is over C
left of(B,C) B is to the left of C
tiling(B,C) an arbitrary tiling
contains(B,C) B contains C
group of(B) an arbitrary number of B’s
adjacent to(B,C) B is adjacent to C
touches L(B,C) (lx,by) of B on the boundary of C
touches R(B,C) (rx,ty) of B on the boundary of C
points from(B,C) the left end of B is on C
points to(B,C) the right end of B is on C
labels(B,C) B is adjacent to the line C
follow(B,C) the right end of B is on the left end of C
join(B,C) the right end of B is on the right end of C
fork(B,C) the left end of B, is on the left end of C
parallel(B,C) both ends of B and C match
reverse(B) exchange the left and right side of B

Table 2.1: Picture Layout Grammar Production Operators



2.1.4 Adjacency grammars 15

2.1.3.4 Constraint multiset grammars

Constraint multiset grammars are an extension of attributed multiset gram-
mars, first introduced as constraint set grammars by Helm et al. [32]. Con-
straint multiset grammars were further formalised by Marriott [39], where
he gives a general form for productions:

P ::= P1, · · · , Pn where exists P′1, · · · , P′m where C

This rule says that the non–terminal P can be rewritten to the multiset of
symbols P1, · · · , Pn whenever there exists other symbols P′1, · · · , P′m such that
all the symbols satisfy the constraints C.

Chok et al. [11] used constraint multiset grammars to specify rules for dia-
gram beautification. Chok et al. [10] has also utilised this formalism to cre-
ate tools that can create user interfaces directly from a specification written
with a constraint multiset grammar.

2.1.4 Adjacency grammars

Jorge describes a family of adjacency grammars [35].

Adjacency grammars are grammars that build upon the picture layout gram-
mars of Golin [26] the use of adjacency constraints and by allowing specific-
ation and parsing of geometrically overlapping pictures. These grammars
are developed for what he calls calligraphic interfaces, which is a class of
pen–based interfaces where drawing or sketching is the main input method,
as opposed to classical interfaces which uses point–and–click or keyboard
input.

Graphical primitives are divided into three categories. The first is a category
of point primitives. A point primitive is a small shape that is characterised by
a single point. Another category is line primitives, which are line like objects
that serve as concatenation points in adjacency relations. The third an final
category is box primitives. These are closed graphical shapes whose main
attribute is the smallest enclosing convex hull. A convex hull can intuitively
been viewed as a “boundary” of a set of points. This “boundary” can be used
to approximate the shape of an object [29]. The convex hull of an object
is indeed a good way of finding its shape, but it is rather computationally
expensive. To circumvent this, Jorge [35] decides to use the enclosing rect-
angle known as a Bounding Box.

The symbols have a distinct type and a set of attributes, both geometrical
and semantic. Figure 2.7 gives an example of an arc and its attributes. The
arc itself has the attributes sp and ep which denote the start point and end
point respectively. Furthermore, the bounding box (denoted bb), the dashed
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sp
bb.ur

bb.ll
ep

bb

Figure 2.7: Visual symbol and some of its attributes

rectangle around the arc which extent is denoted by the attributes bb.ll,
the lower left coordinate pair and bb.ur, the upper right coordinate pair.
Semantic attributes are attributes that does not necessarily have any visual
representation. This can for example be the type of a token or a graph–
node’s indegree and outdegree.

Jorge [35] describes and classify several different forms of adjacency rela-
tions based on the types of objects involved and how their attributes relate
to each another.

A line adjacency is a relation that relate connection points of different graph-
ical primitives. Some examples are an adjacency that concatenates lines that
have a common endpoint, which is called a chain relation and an adjacency
that relates a primitive, usually a string, to a line, called a label relation.

A tiling adjacency relation is a type of relation where we operate on ob-
jects of a plane surface. The objects occupy disjoint portions of the plane.
Examples of adjacencies in this category are above, below and to-the-right-
of.

Overlap, or containment adjacency relations are relations where the graph-
ical objects involved occupy overlapping or nested regions of space. Over-
laps and contains are examples of adjacencies in this category.

Metric adjacency relations relate the one–dimensional attributes of objects.

Logical adjacency relations are somewhat special, since they do not operate
on the spatial attributes of their arguments. They can however, play an im-
portant part of visual languages. One example is from flowchart diagrams,
where they are used to connect parts of the diagram that are disconnec-
ted. These parts are then logically connected through labelled connections
points in the different diagrams.

Temporal adjacency relations are important in applications where time plays
a central role. One example here is multimedia and interactive applications
Another is GIS1 applications that tracks objects in motion.

He then gives a definition of several adjacency operators that can be used
for the specification of the spatial layout of symbols.

1Geographical Information Systems
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Table 2.2 shows the different adjacencies grouped by class. It also shows the
resulting graphical symbol of the adjacencies.

Adjacency class Result Adjacency

Line to Line

Line chain
Box closes
Point touches
Point intersects

Line to Shape

Line pointsTo
Line pointsFrom
Box enters
Box exits
Line labels

Shape to Shape

Box below
Box leftOf
Box contains
Box overlaps

Logical Item list

Table 2.2: Adjacency relations

Jorge also introduces the concept of fuzzy sets. into his adjacency grammar
to form fuzzy relational adjacency grammars (FRAGs).

Fuzzy sets were first introduced by Zadeh [67]. They can be considered
as an extension to classical sets, by associating a degree of membership to
each element. The degree of membership is a real number in the interval
[0, 1], where a value of zero correspond to non–membership (absolute) and
a value of one correspond to full membership. Values in between denote a
partial degree of membership.

Jorge argues that most of the research on visual languages has focused on
precise spatial relations and that such an approach would not be feasible for
specification and parsing of input data from calligraphic interfaces where
the input can be ambiguous.

In “Sketching User Interfaces with Visual Patterns”, Caetano et al. [6] de-
scribes an application for making user interfaces. The application utilises
FRAGs to parse and generate code for a user interface. from data that is
drawn from a calligraphic interface. Another useful application for fuzzy
relational adjacency grammars is document layout specification, which is
discussed in Pinto–Albuquerque et al. [50].
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2.2 Logical approaches

2.2.1 Definite clauses

This approach uses definite clauses from first order logic. Here one have a
collection of rules that define a predicate p. Here is an example of the form
of rules ( [40]):

p(T1, · · · ,Tn) :− p1(S1
1, · · · , Sn1

1 ), · · · , pm(S1
m, · · · , Smn

1 ) (2.3)

Here, Ti and Sj
i are terms. This rule may be understood to represent the

logical formula:

p1(S1
1, · · · , Sn1

1 ) ∧ · · · ∧ pm(S1
m, · · · , Snm

m ) −→ p(T1, · · · ,Tn) (2.4)

Z

Y

X

Figure 2.8: A simple directed graph

This type of formula is known as a definite clause. This can for example be
used to define paths in a directed graph. Taking the graph of figure 2.8 as
an example, the edges are defined as follows:

edge(X,Y)

edge(Y,Z)

edge(Z,X)

These edge–predicates hold if there is an edge going from node X to node Y,
an edge going from node Y to node Z and finally, an edge going from Z back
to X, respectively. Then, one can define the path from X to Z as:

path(X,Z) :− edge(X,Y) ∧ edge(Y,Z)

which reads ’the path from X to Z is defined as the edge going from X to Y
and the edge going from Y to Z’.
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2.2.2 Visual logical grammars

Visual logic grammars is a formalism that uses visual notation to reason
about and define visual languages [42,43]. The general idea is to introduce
a new kind of term into logic, the picture term. Here pictures are handled as
graph–like structures.
The underlying formal model is graphs with typed nodes. Typed edges de-
note relationship between nodes. These graphs are made according to the
definition of a picture vocabulary.
Suppose we have a vocabulary which defines object types as

{circle, line, label}

and the relations defined as

{touches : circle× line, attached : label× line}

we would get a picture term graph as shown in figure 2.9.

touches

attached

label

line
touches

circle

circle2

Figure 2.9: A picture term graph

This would correspond to the picture term that is shown in figure 2.10.

x

Figure 2.10: A picture term

2.3 MSC and SDL

We have had a look at two visual languages that are specified in a sim-
ilar way to each other, namely MSC and SDL. Both are specified by the
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International Telecommunications Union (ITU). We will briefly review their
definition.

The Specification and Definition Language (SDL) is a language that is used
for the specification of behaviour in real time systems [56]. The technique
used to specify the language is based on a mixture of the meta–languages
Meta IV, BNF and a set of extension symbols to BNF. The extensions are the
following: contains, is associated with, is followed by, is connected to
and set

The extension symbols operate on graphical symbols and define the rela-
tionship between its left–hand and its right–hand argument. For example,
the symbol contains means that its right–hand argument is placed inside
the symbol on the left side.

The symbol is associated with specifies that the left–hand argument is,
both logically and visually, associated with the right–hand argument. Fur-
thermore, the symbol is followed by specifies that the argument on its left
side is followed by the argument on its right side. The last symbol, is con-
nected to, describe a situation where the left argument is connected to its
right side argument, both visually and logically.

Message Sequence Charts is a language that can model the message inter-
change of real time applications.

For Message Sequence Chart (MSC), the specification [33] states that

the meta–language consists of a BNF–like notation with the spe-
cial meta–constructions: contains, is followed by, is associated
with, is attached to, above and set.

MSC is thus specified in a similar way as SDL is, except for the symbol
above, that specifies that the left–hand argument is above the right–hand
argument.

None of the meta–symbols of neither MSC or SDL that handle the spatial
layout of graphical symbols are specified more than in informal text.

Figure 2.11 on the next page illustrates a message sequence chart. In this
MSC, we have three instances, x, y and z. The instances send messages to
each other, visualised by the labelled arrows. The instance x sends a mes-
sage, labelled rep out to the environment (the environment is represented
by the frame around the MSC).

2.4 Diagram Interchange

To be able to exchange UML diagrams between different tools, a mechan-
ism was included in the first UML standard. UML has a strong emphasis on
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x y z

m1
res

m2
rep

msc Example

Figure 2.11: A message sequence chart

graphical representation and a deficiency in this first mechanism was that it
only supported the definition of the different elements of a model and not
the spatial organisation of the elements of the diagrams.

This should be enough information for tools that merely check the con-
sistency of UML models or that generate code. Other tools that are more
graphical oriented, do not benefit from this mechanism. The ’Diagram Inter-
change’ (DI) format, described in [46] is a response to a request from the
Object Management Group (OMG) for a mechanism that could solve these
problems.

The submitters of the DI propose that it should not restrict the extensibility
of UML. The mechanism should, if possible, not have any notion of concrete
geometrical shapes of the elements in a diagram. That responsibility should
lie with the UML tools that render the diagrams on screen or paper.

DI is based on the fact that most UML diagram types follow a schema
known from graph theory, with nodes (that can be rectangles, circles or
other shapes) and edges (lines that connect the nodes). The edges can have
arrows at their ends and annotations (text attributes). The nodes can con-
tain different compartments and annotations.
Most of the UML diagram types has a straightforward mapping to a graph.
An exception here is the sequence diagrams, that do not map as naturally to
a graph as the other diagram types.

2.4.1 The structure of Diagram Interchange

Diagram Interchange is specified as an extension to the current UML meta–
model. It does not change the UML standard, it merely adds an extension
package.
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The core classes of the extended meta model are GraphNode and GraphEdge.
The base class of these two classes, is GraphElement. The different elements
are linked via a GraphConnector class. An excerpt taken from the DI meta
model [46], showing the core classes, is shown in figure 2.12.

GraphElement

GraphEdge GraphNode

+position : Point

GraphConnector

+position : Point

{ordered} 0..*
+graphEdge2 +anchor

1+graphElement

0..*

+anchorage

+waypoints{ordered} {2..*}:BezierPoint +size[0..*]:Dimension

DiagramElement

+visible : Boolean

0..* +contained

{ordered}

0..1

Figure 2.12: Excerpt of Diagram Interchange (DI) meta–model

A GraphElement can have any number of GraphConnectors. This way, any
number of GraphEdges can connect to the GraphElements. A GraphEdge
references two GraphConnectors, representing the endpoints of the edge.
The connectors are ordered, with the first representing the first way–point
and the second represents the last way–point of a GraphEdge.

The association between GraphElement and DiagramElement allows for the
construction of classes, with GraphNodes representing the different parts of
a class, i. e. the different compartments and so fort.

Figure 2.13 on the next page2 shows the nesting of GraphElements, which
outline the structure of a simple class. A more complex class may have con-
tain more nested elements to represent inheritance, aggregation and other
constructs.

The graphical representation of GraphElements is not stored explicitly in
the (DI) meta–model. The knowledge to draw a class as a rectangle, for
example, have to be taken care of by a drawing tool and a XSL style-sheet.

2.4.1.1 The Diagram

Diagram is a special node. It is the topmost node (GraphElement) in a dia-
gram and thus recursively contains all other GraphElements. It has two at-
tributes, a name and a viewport. The viewport is a point that indicates the

2taken from the DI specification [46]
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class : GraphNode

operationCompartment :GraphNode

attributeCompartment:GraphNode

nameCompartment:GraphNode

contained

contained

contained

attribute2 : GraphNode

contained

attribute1 : GraphNode

contained contained

contained

visibility : GraphNode initialValue : GraphNode

text : TextElement

Figure 2.13: Example of a Class Diagram in DI

top left corner of the (currently) visible part of a diagram.
The type of the Diagram, e. g. StateDiagram, ClassDiagram etc., is stored in
a SimpleSemanticModelElement. The Diagram references it through its se-
manticModel (these classes are not shown in the excerpt of the meta–model
in fig. 2.12 on the facing page)

The DI metamodel allows for an additional semantic meaning by linking an
element of an existing semantic model to a GraphElement via the abstract
SemanticModelBridge.

attribute : GraphNode
semanticModel

containedcontained

bridge:CoreSemanticModelBridge

visibility:GraphNode visibility:GraphNode

text:TextElementtext:TextElement

containedcontained

anAttribute:Attribute

element

semanticModel

semanticModel:SimpleSemanticModelElement

Figure 2.14: Example of a TextElement in DI

2.4.1.2 Representing the different diagram types

Through semantic links to the UML metamodel, DI can represent most of
the UML diagram types. As mentioned above, most of the diagram types
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of UML are represented well by a graph. Sequence diagrams however, are
somewhat different.

In a UML class diagram for example, classes, interfaces and packages are
represented by GraphNodes, while associations, inheritance (also known
as generalisation) and dependencies are represented through GraphEdges.
A class may have multiple compartments for attributes and/or operations.
These compartments are represented, as shown in figure 2.13 on the page
before, through nested GraphNodes with a link to a SimpleSemanticModelEle-
ment. This is because compartments are not part of the UML meta model.
Compartments are only part of the representation of a class.

The end of edges, how they appear depending whether it is an aggregation,
composition or generalisation, is controlled by the corresponding UML meta
model elements.

The other diagram types are represented in a similar way.

object A

object B
create

message

destroy

return

GarphNode with
SimpleSemantic−
ModelElement
typeInfo=’header’

GraphNode with
SemanticModelBridge

GraphNode with
SimpleSemantic−
ModelElement
typeInfo=’active’

Figure 2.15: Example of Sequence Diagram in DI

Sequence diagrams are modelled with a GraphNode that has a semantic
model bridge to the corresponding instance. This GraphNode contains other
GraphNodes that represent the active section of the lifeline and a Graph-
Node that represent the rectangle at the top of the lifeline. An example
depicting this, is shown in figure 2.15.
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2.5 Aesthetics

In this context, aesthetics does not necessarily refer to the notion of ’aes-
thetically pleasing’, but rather to criteria that have been defined and used in
diagram/graph layout. In ’Graph drawing aesthetics and the comprehension
of UML class diagrams: an empirical study’ [52], Purchase et al. investigates
which aesthetics have most impact on user comprehension of UML class
diagrams.

Many CASE–tools which provide support for drawing UML diagrams, be-
nefit from automatic graph layout algorithms. According to the authors,
these algorithms are largely defined with respect to abstract graphs struc-
tures (nodes, edges). These structures often have no relationships to real
world objects. They do not take into account some human computer issues
relating to diagram comprehension.

Previous studies by the authors have shown that if one optimised the aes-
thetic of symmetry in a diagram and reduced the number of crosses and
bends of lines, comprehension of diagrams could be improved greatly. Other
aesthetics that may have influence for the comprehension of a diagram are
variation in edge (path) lengths and flow. The experiments in [52] showed
that diagrams with a medium variation in path lengths produce better res-
ults with regard to user performance than diagrams with greatly varying
path lengths and diagrams with all path of the same length.
With regard to flow, which is described as which way for example inherit-
ance arrows go, the results from this particular study actually was contra-
dictory to an earlier study by the same authors [54]. This study found that
the performance decreased in this study when the inheritance arrows poin-
ted upwards (i.e. the superclass i above the subclass), when the previous
results showed that this actually increased performance.

The authors of [54] have also conducted a similar study, ’UML collabor-
ation diagram syntax: an empirical study of comprehension’ [53], which
addresses the same type of questions for collaboration diagrams that [54]
did for class diagrams. The conclusions in this study concurred with the re-
searchers expectations about which notational variant that would give the
highest rate of comprehension. But when they looked at how the different
notations scored with respect to how easy it was to identify errors, none of
the notational variants gave any advantage over the other.

This research shows that one should not jump to quick conclusions about
what is the best layout of a diagram.

What constitutes a good diagram layout, may vary with the task, domain,
language and the person interpreting the diagram.

In creating a metalanguage for UML, one of the goals is to be able to elim-
inate at least some of the ambiguities that can arise in the notation. The
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research of Purchase et al.. can prove valuable in defining certain criteria
that can be implemented in the metalanguage to rule out some of the nota-
tional ambiguities/difficulties.

2.6 Summary

This chapter has presented some background material from the research
field of visual language specification. The theories and approaches presented
here are by no means a complete account of all the theories that exist. To
stay reasonably within the limits of the thesis, we chose the theories that
was most relevant to our own work.

For readers interested in learning more about visual language and visual
languages in general, we refer to the excellent survey of Marriott et al. [40]
and to Chang’s article on visual languages [8].



Chapter 3

Background from related
disciplines

This chapter presents some relevant background theory for the thesis in
other disciplines than the theory of specification of visual languages that
was presented in chapter 2. What they have in common with the theories
presented in that chapter is that they deal with spatial data or the spatial
presentation of data.

We look at the research field of spatial databases with focus on geographical
information systems. In addition we look at some theory of musical notation.

3.1 Geographical Information Systems

There are many different applications that rely on spatial data. Notable ex-
amples are CAD/CAM system, image databases, VLSI design systems and
geographical information systems (GISs) [20]. We will in this section con-
centrate on GIS or more precisely, the research field of spatial databases and
the attempts to define a spatial SQL.

To enable users to query databases that contain spatial data, the research
field of spatial databases has grown considerably for the last two decades.

3.1.1 Topological relationships

The study of point set topology has been the basis for many of the attempts
to formally specify spatial relationships. There have been developed a num-
ber of theories that utilise this formalism to define the spatial relationships
between objects of different types [13,14,16,57]. We will here present some
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of the more notable in the field. In topology, the concepts of interior, bound-
ary and exterior are well defined. The concepts can be used to define spatial
relationships between two–dimensional objects in two–dimensional space
(<2).In this section, we will adopt the following notation convention: A and
B denote point sets. A◦ denotes the interior of A, ∂A denotes the boundary
of A and A− denotes the exterior of A.

The 9–intersection(9IM) method is a model for binary spatial relations [57].
It applies to objects of the types area, line and point. These object types
can be grouped together in six binary relationship categories (area/point,
area/line, area/area, line/point, line/line, point/point). The topological re-
lationships are characterised by the set intersections between the interior,
boundary and exterior of A with those of B, as shown in the matrix in equa-
tion 3.1.

I(A,B) =




A◦ ∩ B◦ A◦ ∩ ∂B A◦ ∩ B−

∂A ∩ B◦ ∂A ∩ ∂B ∂A ∩ B−

A− ∩ B◦ A− ∩ ∂B A− ∩ B−


 (3.1)

Each intersection is either empty (∅) or non–empty (¬∅) depending on the
topological relationship described. The contains relationship for example,
would be specified with the following 9–intersection:

I(A,B) =




∅ ∅ ¬ ∅
¬ ∅ ¬ ∅ ¬ ∅
∅ ∅ ¬ ∅


 (3.2)

The 9–intersection method is based on an earlier method, the 4–intersection
(4IM) method. The 4IM method however, did not consider the exterior of
objects, only the interior and the boundary. The spatial relations of the 4IM
is represented by the following matrix:

I(A,B) =

(
∂A ∩ ∂B ∂A ∩ B◦

A◦ ∩ ∂B A◦ ∩ B◦

)
(3.3)

The dimension extended method (DEM), developed by Clementini et al. [16],
take into account the dimension of the intersections. It is based on the 4IM.
The operator dim(x) return the maximum dimension of the geometries in x.
The dimensions can take the values −1, 0, 1, 2, where:

dim(x) =





−1 if x = ∅
0 if x contains at least one point and no lines/areas
1 if x contains at least one line and no areas
2 if x contains at least one area
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Another method introduced by Clementini et al. [14,16], is a calculus–based
method (CBM), which they prove is more efficient and powerful than the
4IM, 9IM and DEM. It specifies topological relationships using object calcu-
lus. They define five relationships and three boundary operators. For clarity,
we will show the definitions of the relationships and boundary functions
here. Let A and B be point sets. In the following equations we have the
object calculus expression on the left equivalence arrow and the point set
expression that defines it on the right side of the arrow.
The touch relationship is defined as the combination of two intersections, the
intersection between the interior of the two point sets, which is the empty
set and the non–empty intersection between the other regions of the two
sets:

〈A, touch,B〉 ⇔ (A◦ ∩ B◦ = ∅) ∧ (A ∩ B 6= ∅) (3.4)

Furthermore, we have the in relationship, which is defined as:

〈A, in,B〉 ⇔ (A ∩ B = A) ∧ (A◦ ∩ B◦ 6= ∅) (3.5)

Figure 3.1 on the following page illustrates the in relationship, the circle is
in the box.

The cross relationship applies to line/line and line/area combinations:

〈A, cross,B〉 ⇔ (dim(A◦ ∩ B◦) = max(dim(A◦), dim(B◦))− 1)

∧(A ∩ B 6= A) ∧ (A ∩ B 6= B) (3.6)

overlap is a relationship that applies to area/area and line/line combina-
tions:

〈A, overlap,B〉 ⇔ (dim(A◦) = dim(B◦) = dim(A◦ ∩ B◦))
∧(A ∩ B 6= A) ∧ (A ∩ B 6= B) (3.7)

The disjoint relationship applies to all combinations of the three different
object types:

〈A, disjoint,B〉 ⇔ A ∩ B = ∅ (3.8)

There are three boundary operators, one for areas and two for lines.

The boundary operator b, when applied to an area A as a pair (A, b) will
return the line ∂A.

The boundary operators f and t for a line L will when applied as the pairs
(L, f) and (L, t) return the two points that represent the set ∂L.

Finally, we have the dimension extended 9–intersection method which is a
combination of the DEM and the 9IM (DE+9IM). In [13], Clementini et al.
proves that the combination of these two point–set methods is necessary to
match the expressive power of the CBM.
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Figure 3.1: The in relationship

3.1.2 Spatial operators

There have been many attempts to define a query language that can handle
spatial data. The most successful approaches seem to be those that have
taken the standard query language for relational databases, SQL, as a basis
[15, 21]. According to Clementini et al. [15], the reason for the success
of the SQL based approaches, is that the contributors first developed an
understanding of what requirements the spatial operators should satisfy.
The OpenGIS Consortium has specified an extension to SQL that utilise the
DE+9IM discussed in section 3.1.1 to handle spatial queries [49]. It has
been adopted by well known database systems like Oracle and MySQL.

Clementini et al. [15], however stress that even though the OpenGIS exten-
sion contains several spatial operators, the set of operators is by no means
complete and that more research in need to be done. They also describe
a set of requirements the spatial operators should satisfy. One of these re-
quirements is that the set of operators should be small. A large number of
operators (the 9IM defines 56 relationships between 2–D geometric objects)
would not be reasonable in a query language. The time required by users
to master all the operators fully would simply be too long. Generality is an-
other important requirement. The operators should be defined at a level
of abstract geometrical data (points, line and regions), so that they are ap-
plication independent. Expressiveness is another important requirement. The
users should be enabled to formulate a wide range of spatial queries. The
operators should be consistent, i. e. they should not give rise to ambiguities
in computations or inconsistencies in the results to a query.

Shariff et al. [57] acknowledge that even though the spatial operators of
a spatial query language have natural–language–like terms, like connects,
enters, leaves and near for example, the formal definition of these terms
rarely reflect the same meaning that people would associate with them when
they are talking about a spatial relation. Even though there had been pro-
posed many different models that tried to capture the semantics of spatial
relations, these models most often stood only for themselves, which in turn
led to languages that were mathematically well defined, but had little or no
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link to the natural language semantics of the spatial operators. The work of
Shariff et al. is an attempt to bridge that gap.

They performed an experiment with the purpose of investigating the un-
derstanding of English terms with respect to spatial relationship. They first
developed a set of metric concepts to aid as a refinement to line/region rela-
tions. These concepts is splitting, which determines how the interior, bound-
ary and exteriors of the regions and line are cut, closeness, which how far
the boundary of a region is from different parts of a line and approximate
alongess which is a combination of the closeness and splitting metrics.

The experiment consisted of a number of pictures with a region illustrating
a park and an English-language sentence beneath. The participants were
then asked to draw a line representing a road in relation to the park so that
the resulting drawing would correspond to the English sentence. They then
compared the different results to each other.

There has also been some research into the possibilities of making a tem-
poral extension to SQL for use with databases that contains information
on moving objects [66]. For this purpose, we would have to develop a set
of temporal operators that are capable of retrieving data. If we known the
present location, speed and heading of a car for example, we could perform
a query about where the car would be in five minutes. There are many pos-
sible applications for temporal applications [65], the emergency services,
delivery companies and taxis are but a small sample where these applica-
tions could be put to use. We will however not look further into this field, as
we will not be looking at the temporal aspects of visual language specifica-
tion.

3.2 Music notation

The modern, “normal” notation for music, called orthochronic notation1,
dates back to the beginning of the sixteenth century [55]. Before this period
there had been no standard for music notation. That this particular form of
notation was so successful, can according to Read [55] be considered as a
consequence of the invention of music printing which occurred at about this
point in time, not long after the invention of letter printing. An important
benefit from the invention of music printing was the slow down of the evol-
ution of notation, which made it “standardised”. The music notation as we
know it today is thus not the result of a deliberate standardisation process.
The advantage with the staff notation as we know it, is that it combines the
visualisation of pitch and time in one process as many of the notation in our
filed of computer science is. The symbols are characteristic for the subject

1from Greek ortho, meaning “correct” and chronos, meaning “time”
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they represent and they are clear and concise (e. g. notes, rests and orna-
ments are clearly distinguishable). At last, but not least, the total number of
symbols required is actually quite small [55].

A small example of standard music notation is shown in figure 3.2.

Figure 3.2: Standard music notation

As compositions grew increasingly more complex in the twentieth century,
especially after the second world war, it became evident that the classical
way of notation was inadequate for the new demands [62]. One aspect
is rhythm. The rhythmic notation provided by the classical system is, with
some exceptions, pulse–dominated, it presupposes a pulse. It is also regu-
larly subdivided with only one geometric progression for all durations: 1,
2, 4, 8, 16, 32 etc. That is often not adequate for contemporary composers,
as the rhythms they demand may be highly irregular, a–metrical or even
pulse–less, according to Stone [61].

Another aspect is pitch. The classical western notation system is crafted for
the tempered system. This system is based on half–steps between the dif-
ferent tones. After the second world war, there was a demand for a greater
variety of pitches arose, for example quarter tone steps. This led composers
to invent new symbols to indicate these steps. These symbols were of course
different from composer to composer, so that there were no standards. Read
[55] lists 24 of these symbols that indicates a quarter tone step in an upward
or downward direction.

Some composers did not feel that the classical form of notation was able to
express their music at all. They therefore invented their own notation based
on their needs. Since this notation was not standardised anywhere, com-
posers taking this approach soon found that they needed to include detailed
instructions on the notation used in their compositions. Figure 3.3 shows
an extreme example on how such a notation could look like. Without some
explanation, it is quite hard to understand what the composer has inten-
ded. Some composers would here have given a detailed explanation, others
would have stated that the notation is merely a guide to a performer and
that the performer should improvise over it.
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After the second world war, the quality and usability of electronic sound
devices had increased so that composers were now able to create music
electronically. Making music electronically, made composers independent of
musicians and notation to a certain degree. A problem arose when scholars
were to analyse the electronic pieces, look at its structure and so forth. To
do so, one would have to rely on the sounds of the work only, as there
were no This led Fennelly [24], based on experiments with composers and
musicians, to develop a descriptive language that could be used to analyse
this type of music.

This has been a very brief review of the field of music notation. Music nota-
tion is a very varied form of notation, ranging from the classical, “standard”
notation to the notation used by the composers in the front of the avant–
garde.

Figure 3.3: Example of avant–garde music notation
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Chapter 4

Analysis

4.1 Introduction

The test case for this thesis is the Unified Modeling Language, version 2.0
[48](UML 2.0). UML 2.0 1 makes a good case for investigation, since it has
no formal definition of the visual syntax.

The specification [48] does say how the different symbols of the language
should look and what the semantics of the different relationships are. This
is however done in plain text and not in any formal manner.

In this chapter we will investigate and analyse the visual syntax of UML to
find what aspects of our meta–language will have to be able to address.

4.2 Categorisation

As an aid in finding the graphical problems, it is useful to make categories of
graphical elements. In UML we have identified three different geometrical
categories, lines, text and objects. The two first are self–explanatory but the
latter one needs some explanation. Since this class of geometrical shapes
must hold not only polygons, but rectangles with rounded corners, ellipses,
circles etc., we have found that the term object sufficiently describes what
we want to convey, a two–dimensional geometrical shape. When we put
these in relation to each other, we get 9 categories of geometrical relation-
ships.

However, there are three relationships which are permutations of some of
the other, so we are left with six real relationships which are shown in
table 4.1. These categories comprise what we will call the geometrical level.

1hereby refereed to as UML
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Graphical primitive Relation

Line
line – line
line – text
line – object

Text
text – text
text – object

Object object – object

Table 4.1: Geometrical relations

When we write diagrams using the above mentioned geometrical categor-
ies, for example into a diagram editor, it will most likely be represented
internally with some kind of graph structure. For the editor, the underlying
graph does not pose a problem for interpretation. Everything is clear and
crisp. However, problems may arise when the diagram is to be interpreted
by a human user. If the diagram is very complex, it is likely that misinter-
pretation will occur. We therefore introduce another level of analysis, which
we will call the communicative level. At this level, we will try to find if there
are any special issues that would need to be addressed to enhance human
interpretation of the diagrams.

Graphical compactness is a category at this level where some information in
a diagram is suppressed in order to emphasise the essence of the diagram.
Another category at this level is what we will call style. By style we refer to
the grouping of graphical elements, the direction of flow (see section 2.5 on
page 25) in a diagram and other elements that can affect the layout of a
diagram.

Communicative
level

Geometrical
level

Figure 4.1: Analysis levels

The relationship between the levels, is illustrated in figure 4.1. As we can
see, the communicative level relies on the geometrical level.
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4.3 Geometrical level analysis

This section takes the categories in table 4.1 on the preceding page as its
starting point and examines them one by one.

4.3.1 Line–line

One of the problems with lines, arise when they cross and is illustrated in
figure 4.2(a). Here the line going from A to B is crossing the line going from
C to D. In this case, the problem could be solved by rearranging the classes,
but sometimes that is not possible.

It is often desirable to insert an additional graphical element, most often a
semicircle, to ensure that the lines are distinguishable. i. e. to signify that the
line crossing is purely graphical and does not have any logical implications.
This is illustrated in figure 4.2(b). However, this addition of a semicircular
element is only an optional requirement in UML [48].

C

A

D

B

(a) Crossing lines
w/o semicircular
element

C

A

D

B

(b) Crossing lines
with semicircular
element

Figure 4.2: Line crossings

The insertion of a semicircular element to make lines distinguishable, can
be a good aesthetic if the diagram is simple, as the diagrams in figure 4.2
are. If the diagram is a bit more complex, the semicircles can very easily
make a diagram cluttered and more incomprehensible than without. As we
can see in figure 4.3(a), this is a diagram that has a number of lines cross-
ing. Some of the crossings are marked with semicircles to distinguish the
different lines.

If the crossings are relatively close to each other, and there are many line
crossings in a particular, perhaps small, area, the semicircles may make the
diagram harder to comprehend. To determine how many crossings are too
many and what “to close to each other” is, is however not an easy task.

Removing the semicircular elements, makes the diagram a bit easier to read,
as we can see in figure 4.3(b), but it is still not satisfactory to a human
reader.
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To solve this, one would have to do something about the distribution of the
boxes in the diagrams. This is discussed in later sections.

E

B

D

C A

(a) Cluttered diagram with
semicircular elements

E

B

D

C A

(b) Cluttered diagram
without semicircular ele-
ments

Figure 4.3: Cluttered diagrams

4.3.2 Line–text

In figure 4.4 we see an example of two text labels on an association line
between two classes, A and B. Here, one can ask if the label ’n’ is a name
for the association between the classes, if it is a name for the role of this
end of the association or if it represents the cardinality of this end of the
association. As discussed in Morris et al. [44], an UML diagramming tool
would have no problems in parsing this figure, knowing what is what in
the diagram regardless of how the marks are placed in conjunction with the
association line.

m

A Bn

Figure 4.4: Association text labels

A human user however, could experience problems resolving this ambiguity
without consulting the author of the diagram or using some parsing func-
tionality of a tool to determine what the correct interpretation is.

The UML standard [48] states that “the association’s name can be shown as
a name string near to the association symbol, but not near enough to an end
to be confused with the end’s name”.
Since the standard states that the name should be near the line, we interpret
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Song

1 .. *

Ownership
Song

1

Artist

(a) Besides line

Song

1 .. *

1

Artist

Song
Ownership

(b) Overlap-
ping line

Figure 4.5: Placement of association text

that as it should not overlap the line. This is illustrated in figure 4.5. In ad-
dition, it is stated that the text should be sufficiently far from the endpoints
of the line so that it will not be confused with the names on the ends.

In Purchase et al. [53], the authors tested how users preferred the placement
of text in relation to lines. How would a notation where the text is rotated
horizontally regardless of the direction of the line be considered compared
to a notation where the rotation of the text always followed the direction of
the line?

In figures 4.6 and 4.7, there are a few examples on a notation that has
the text rotated to fit the direction of the lines. The experiment conducted
in [53] found that most of the participants did not prefer this notations at
all.

Their main objection to this form of notation, was as simple as that it made
the text harder to read. If the diagram is on a sheet of paper, it is of course
easy to just rotate the paper if the text is too hard to read. But it is a bit
harder to do so if the diagram is displayed on a computer screen. Computer
screens tend to be a bit larger and heavier than paper.

There was, however a small minority that preferred this notation because
they thought that it was a more compact form of notation and that it made
it more easy to follow associations between objects.

The examples in figures 4.8 on the next page and 4.9 on page 41 shows
the form of notation that was preferred by a majority of the participants,
illustrated with both class and sequence diagrams. This is the notation that
also showed the best results at identifying correct diagrams with regard to
a textual description.

The notation in figures 4.8 and 4.9 is the form of notation that has been
utilised in the UML standard [48] and in the UML user guide by Booch et
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Figure 4.6: Complex text adjacency, class diagram

sd
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Figure 4.7: Complex text adjacency, sequence diagram

al. [5].

Artist

Band

2..10

Memebership
Band

Song
Ownership

Song
1

1..*
unique}

{ordered

*

Figure 4.8: Horizontal rotation of text in adjacency to lines

4.3.3 Line–object

Almost all of the relationships between different types of objects in UML
is expressed with the use of lines in some form. The lines are connected
to the boundary of the objects and do not extend to the interior. The lines
connecting two objects should not cross other objects. In figure 4.14 on
page 43, we see two class diagrams where this is observed.
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sd

oracle

ask_question()

teacherstudent

think()

forward_question()

answer()

answer()

teaching

Figure 4.9: Horizontal rotation of text in adjacency to lines

4.3.4 Text–text

When we look at a string of text, it is easy to see that it can be treated as a
line. At least in some cases. But text can also be viewed as an object, because
it has an extent, i. e. it is not an one–dimensional entity as are lines.

The property that we most often is interested in when we look at text, is its
meaning. We want to be able to read what it says. One reasonable constraint
to put on a text entity in relation to another, is that the should not overlap.
That actually goes for text versus any other graphical entity, for example
line–text, that we discussed in section 4.3.2 on page 38.

4.3.5 Text–object

Figure 4.10 represents a simple UML class diagram. We see that the names
of the classes is placed at different locations inside the class symbol. The
UML standard [48] recommends that the name of the class is centred in
the class symbol, so class X is drawn as recommended. Class Y has the class
name the upper left corner. This is not considered as an error, but it is not
optimal. So for a diagram to be coherent and easy to read, it is desirable
that the symbols are drawn in the same manner.

X
Y

Figure 4.10: Example of insignificant differences in notation
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However, looking at the diagram in figure 4.11, we see that the name of
class Y is placed outside the class symbol. This is clearly a graphical error
because the name of the class could then be interpreted as virtually any
other text element that are used in class diagrams (that is, text that does
not appear inside class symbols).

X

Y

Figure 4.11: Example of significant differences in notation

So we need to be able to address the fact that the names of a class have to
be inside the class symbol.

X Z

sd xyz
AveryLongIdentifier

Figure 4.12: Acceptable variations in placement of text

With sequence diagrams we have to take another point into consideration.
The heads of the lifelines, the boxes that represent the objects in the dia-
grams, normally are quite small compared to their counterparts in class dia-
grams. Therefore, if the text that is designating the name and type of the
object is too long to fit into the box itself, it should be allowable to place the
text outside and above the lifeline head, as illustrated in figure 4.12.

The situation illustrated in figure 4.13 on the next page is however not a
good placement for long identifiers. Placed beneath the lifeline head, it is
highly possible that it will be mistaken for some other element in the dia-
gram.
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Z

sd error

X

AveryLongIdentifier

Figure 4.13: Erroneous placement of text

4.3.6 Object–object

In their article “Graph drawing aesthetics and the comprehension of UML
class diagrams: an empirical study”, Purchase et al. [52] perform some ex-
periments to find out what aesthetics in a diagram makes it more or less
comprehensive. They find that diagrams that have minimised the number
of line bends and crossings and that have done something to optimise the
symmetry of the diagram, produce the best results with regard to compre-
hension. In figure 4.14, we have rewritten the diagram from figure 4.3 on
page 38 in two different ways to eliminate the crossings. The diagram to the
left, fig. 4.14(a), has only one bend, but still appears a bit cluttered because
of the lack of symmetry. The diagram on the right, fig. 4.14(b), has elimin-
ated the bends and is rewritten a bit to be more symmetrical. This diagram
appears more clean and comprehensive.

Much of the reason that this diagram is perceived to be more clear, is that
the nodes are distributed more evenly and that the node “B”, which is the
node that have the most edges connected to it, is placed in the centre (“B”
is the central node).

C A

DE

B

(a) Rewritten, lacks
symmetry

E D

AC

B

(b) Rewritten, more
symmetrical

Figure 4.14: Rewritten diagrams
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4.4 Communicative level analysis

4.4.1 Graphical compactness

In [54], Purchase et al. perform an empirical study on which variant of a
syntax variation for several different elements of a UML class diagram users
prefer.

One of the elements tested, was how different notational styles for multipli-
cities was understood. In the UML standard, the general form of a multipli-
city is defined to be on the form ’lower bound .. upper bound’.

In the figures in 4.15, we see some variations on how to express multi-
plicities on an association. As the authors found, the subject preferred the
notation in figure 4.15(b), because the multiplicities are made explicit. The
notation in figure 4.15(a) implies, as the authors found, a 0 .. ∗ multiplicity,
not 1 .. ∗. This is consistent with the UML standard [48], which states that
if the lower bound of the multiplicity is equal to 0 and the upper bound is
unspecified, one may use the alternative notation ∗ instead of 0 .. ∗. If an
association has a lot of adornments, using this alternative notation when
appropriate could make a diagram easier to read.

Looking at the figures in 4.15, we also see another form of notation that
does not use the ’lower .. upper’–form of notation. The UML standard states
that if the lower bound is equal to the upper bound, an alternate notation is
to use only the upper bound. In the figures in 4.15, we have used 1 instead
of 1 .. 1.

Artist Song
1

*

(a) Implicit

Artist Song
1

1 .. *

(b) Explicit

Figure 4.15: Association multiplicities

A common practise when modelling, is to suppress or show the different
compartments of a class symbol depending on what is modelled. If the dia-
gram is meant to be used as a implementation diagram, i. e. to be used by
a programmer, then one have to show all the attributes and operations of
a class, according to Fowler et al. [25]. This is shown in figure 4.16 on the
facing page.
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Foo

bar

baz

qux

quux

Figure 4.16: Class, showing all attributes and operations

When, however the purpose of the diagram is to show the concept of a do-
main only, it is customary to suppress the attribute and operations compart-
ments, because this is information that is not needed [25,41]. This is shown
in figure 4.17. This is also how classes have been depicted throughout this
chapter when only the name of the class has been of importance.

Foo

Figure 4.17: Class, all but name suppressed

A similar concept is shown in figures 4.18 and 4.19. Here we have a com-
posite structure showing how a sliding bar icon is collaborating with a call
queue in a call centre. The sliding bar shows operators how the call queue
is developing (from [48]). Here, the standard gives two distinct ways of
drawing. If we want to show the concept of the collaboration, we use the
diagram in figure 4.18 and if we want to use it as an aid in implementation,
we would use the diagram in figure 4.19.

observer:SlidingBarIconsub:CallQueue

Observer

Figure 4.18: Composite structure, collaboration



46 Communicative level analysis

reading:Real

color:Color

range:Interval

SlidingBarIcon

queue:ListOfCall

source:Object

waitAlarm:Alarm

capacity:Integer

CallQueue

Observer

ObserverSubject

Observer.reading = length(Subject.queue)
Observer.range = (0 .. Subject.capacity)

Figure 4.19: Composite structure, explicit collaboration

4.4.2 Style

Another notation tested in [54], was which type of inheritance arcs pro-
duced the best results and in what direction the inheritance should go (up-
wards or down), called the direction of flow in the diagram. In figure 4.20,
there are examples of three notation variants. Figure 4.20(a) and 4.20(b)
shows the types of arcs that are used to signify inheritance. The notation
in fig. 4.20(a) produced the best results when identifying correct diagrams
and was preferred by most of the participants. The notation in fig. 4.20(b),
however, produced better results when the task was to identify incorrect
diagrams. One of the participants who preferred this notation said that this
notation forced him to concentrate more on the meaning, because it was
less intuitive than the variant in fig. 4.20(a).

With regard to the direction of flow, figures 4.20(a) and 4.20(c) shows the
tested variants. The direction in fig. 4.20(a) produced better results with
regard to identifying correct diagrams. The participants explained that they
preferred this, because they read from top–to–bottom and it therefore was
more natural to have the superclass above the subclasses. Again, the first
variant, thought to produce better results than the second, does worse when
it comes to identifying errors. The variant in 4.20(c) produced better results
in this regard.

The UML standard [48] calls the style depicted in figures 4.20(a) and 4.20(c)
“shared target style”. There is of no significance to the semantics of a dia-
gram whether the shared or the single style is used.

Another UML diagram type that give users the possibility to use different
drawing styles, is statemachines.

State machines utilise so called pseudo states to define entry and exit points
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ZYX

A

(a) Up wards joined/shared

A

X Y Z

(b) Up wards diagonals/single

ZYX

A

(c) Down wards joined/shared

Figure 4.20: Inheritance arcs and direction

sm

aborted

A B

enter

pseudo

Figure 4.21: Placement of pseudo states on border

from a state machine. They also define initial (default), history and termin-
ation states.

The standard [48] says that the entry and exit points (represented by the
pseudo states of a state machine) is shown with the appropriate symbol on
the border of the state machine diagram, as shown in figure 4.21. An al-
ternative notation is to place the symbol outside or inside the state machine
diagram. This is shown in figure 4.22. Again, there is according to the stand-
ard, no semantic difference in the different ways to place pseudo states.

4.5 Summary

In this chapter we have provided an analysis of the graphical syntax of UML
2.0. We have highlighted issues that our meta–language will have to be able
to address.
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sm pseudo_variations

BA

aborted

aborted2

Figure 4.22: Pseudo states, alternative placement



Chapter 5

Graphical Description
Language

5.1 Introduction

In this chapter we describe GDL, Graphical Description Language . GDL is a
language that specifies valid syntactic constructions of a visual language.

In the initial work with the design of the language, we considered several
different approaches. One approach would be to define everything from
scratch ourselves, but as we pursued that approach, it soon became evid-
ent that we were actually reinventing the wheel. We then searched for other
suitable methodologies that we could use as basis for our language. We
found two possible candidates that we wanted to investigate further, the Z
notation [60] and the Object Constraint Language (OCL) [47].

We decided to adopt the Z notation [60] as the basis for our language defin-
ition. The issues that led us to discard OCL as our basis and adopt Z is firstly
that Z has existed longer than OCL and is thus more stable. Secondly, even
though OCL is a precise specification language which has several features
that are based on mathematics, it uses its own notation for this. We feel
that the clarity of standard mathematical notation is preferable to the OCL
version of these. Another issue is that we feel OCL is too bound to UML.
Even though the test case for this thesis is UML 2.0, the intention with GDL
that it should be more generic so that it can be used to specify other visual
languages as well.
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5.2 Brief introduction to Z

The Z Notation is based on typed set theory and uses standard mathematical
notation to specify schemata [31, 59]. A schema is a collection of variables
which are assigned a type and a collection of axioms that specify the rela-
tionship between these variables.

Schemata are notated vertically, with two compartments separated by a line.

S
x, y : N

x < y

The construct above specifies a schema named S with two variables above
the short middle line, x and y which have the type of natural numbers Below
the middle line we have a predicate which states that x is have to be smaller
than y for this schema to hold. Z provides a convenient platform for GDL
and we will use it in this chapter to define the predicates of GDL and in
consequent chapters.

We will assume that the readers of this thesis has some knowledge of Z or
mathematics beforehand, so we will not go further into details here and
refer readers that are interested in learning more about Z to one of these
excellent books [31,59,60].

5.3 Designating graphical elements

To be able to assign variable names to different graphical elements in dia-
grams, and to distinguish the variable names from textual elements that are
actual parts of a diagram, we will adopt the following notation.

Variable names will be set in typewriter font and lines with arrows point-
ing from the variable to the graphical element it denotes will be set with
a line consisting of dashes and points interleaved. As we will not typeset
anything else in the example figures with typewriter font, the lines will be
omitted if it is clear which graphical element the variable denotes. An ex-
ample of this is illustrated in figure 5.1 on page 53. Here the two boxes
and the texts A and B are parts of the diagram. X and Y are variables that
designate one box each, designated by the “point–dashed” lines.

5.4 Visual symbols and attributes

To specify visual syntax, we need to be able to define how the different
visual symbols relate to each other. Some relationships can be conveniently
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be specified using definitions from topology. To specify other relationships
that are not described as easily by topology precisely, we need the aid of
geometrical attributes.

Using a grid with x and y axes, we adopt the technique devised by Golin [26]
and assign the following four geometrical attributes to graphical symbols:
lx, rx, by and ty. As described in section 2.1.3.3 on page 12, the attributes
designate the leftmost x–position, the rightmost x–position, the lowest y–
position and the topmost y–position of the visual symbol respectively. If the
symbol is an object, the attributes designate the extent of the symbols and
if it is a line, the attribute pair (lx,by) designate the left end of the line and
the attribute pair (rx,ty) designate the right end of the line.

We need to be able to signify that lines have a start and end point, i. e. that
it has a direction. The above mentioned attribute pairs is not capable of con-
veying this information. Lines are therefore given two attributes, named tail
and head. These two attributes are inspired by the attributes of Shaw’s [58]
graphical primitives (see section 2.1.2.1 on page 8). Although the attributes
in Shaw’s formalism did not imply that the graphical primitives had a dir-
ection, out version of these attributes does. The attribute tail specifies the
starting point of the line and the attribute head specifies the end point of the
line.

We also need to signify the appearance of a symbol. This is solved by the at-
tribute appearance and its value designate how the symbol looks. The values
it can take, depends on the type of the symbol.

Lines can be solid or dashed. Objects can be filled or transparent. Filled is a
value that the interior of the object has the same colour or pattern as the
background of the diagram. The value transparent means that the object is
essentially just a frame.

The attributes of the symbols are accessed using dot–notation. Thus, if we
have a symbol s, we can access the attribute for the left–most x–position, lx,
like this: s.lx. This can be read as “the lx of s”.

Table 5.1 on the following page summarises the attributes.

5.5 The predefined predicates

GDL is a language that rely on predicates to specify the spatial relationship
between the various graphical elements of the language. We provide a pre-
defined set of predicates. Based on earlier research in this area [15], we will
make the set of predefined predicates as small as possible. We will also try
to be as precise as possible regarding the naming of predicates, keeping the
research of Shariff et al. [57] in mind.
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Type Attribute Description

Geometrical

lx left–most x–position
rx right–most x–position
by lowest y–position
ty top–most y–position

Direction
tail a line’s start point
head a line’s end point

Visualisation appearance how the symbol looks

Table 5.1: GDL symbol attributes

The predicates are designed in such a way that they can be read as a state-
ment in natural language. We believe this to be a good principle make the
understanding of them easier. Thus, a predicate stating above(x, y) can be
read as “x is above y” and disjoint(x,y) can be read as “x is disjoint from y”.

We will use topology to define the predicates where possible and the co-
ordinate based method otherwise. This implies that we view the symbols as
point–sets.

5.5.1 inside

Definition 5.1 (inside) The inside (x,y) predicate defines that x is inside
the object y.

The inside predicate is specified in the schema inside.

inside[x, y : OBJECT]
x ⊂ y

which specifies that x is a proper subset of y.

An example illustrating the inside relationship between two objects is shown
in figure 5.1(a) on the next page, where the box designated by the variable
X is contained in the box designated by the variable Y. The same relationship
also apply to the two text fragments “A” and “B” in the diagram, where the
text “A” is inside the box Y and “B” is inside X.

The two symbols may also have intersecting boundaries, but x must not be
outside the boundary of y in any way. An illustration of this, can be found in
figure 5.1(b) on the facing page.
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A

B

Y

X

(a) Complete containment

A

Y

B
X

(b) Boundary intersec-
tion

Figure 5.1: Inside relationships (inside(X, Y))

5.5.2 centerOf

Definition 5.2 (centerOf) The centerOf (x,y) predicate defines that y should
be at the centre of x.

The centerOf predicate is used to describe that a graphical element should
be at the geometrical centre of another graphical element. This does not
mean that the graphical element y necessarily have to be inside the object x,
but it can just as well be on the centre–point of a line. Figure 5.2(a) shows
the use of centerOf in conjunction with inside, while figure 5.2(b) shows
text that is centred on a line.

X

(a) Text centred in
object

text
T

L

(b) Text centred on a line

Figure 5.2: Use of centerOf–predicate

5.5.3 leftOf

Definition 5.3 (leftOf) The leftOf (x,y) predicate defines that x is to the
left of y.

As we can see in the schema leftOf that specifies this predicate, it is defined
that the right–most x–coordinate of the symbol x have to be smaller that the
left–most x–coordinate of the symbol y.
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leftOf[x, y : OBJECT]
x.rx < y.lx

Figures 5.3(a) and 5.3(b) are figures that satisfy this predicate, while fig-
ure 5.3(c) does not satisfy our condition.

X Y

A B

(a) leftOf(X, Y)

A

B

X Y

(b) Also leftOf(X,
Y)

YX

A

B

(c) Overlapping

Figure 5.3: Different left-of adjacencies

5.5.4 above

Definition 5.4 (above) The above (x,y) predicate defines x is spatially above
y.

The above predicate is a predicate that specifies that its first argument is
above its second argument in the y–direction.

above[x, y : OBJECT]
x.by > y.ty

X

Y Z

A

B C

(a) X above Y

A

B C

X

Y Z

(b) X above Y and Z

Figure 5.4: Different above adjacencies
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5.5.5 overlap

Definition 5.5 (overlap) The overlap (x,y) predicate defines that the sym-
bol x is overlapping the symbol y.

The overlap relationship is another spatial relationship that is suitable for
topological definition.

overlap[x, y : OBJECT]
x ∩ y 6= ∅

An example of the overlap relationship is illustrated in figure 5.3(c), where
the two boxes overlap each other slightly.

5.5.6 disjoint

Definition 5.6 (disjoint) The disjoint (x,y) predicate defines that the sym-
bol x is disjoint from the symbol y.

The disjoint predicate is a complement to the overlap predicate and is thus
specified as follows:

disjoint[x, y : OBJECT]
x ∩ y = ∅

Both figures 5.3(a) and 5.3(b) satisfy this predicate, while figure 5.3(c) does
not, because this is a overlap relationship.

5.5.7 overlay

Definition 5.7 (overlay) The overlay (x, y) predicate defines that the sym-
bol x is overlaying the symbol y.

Sometimes it is necessary to express that objects are layered. We use the
overlay predicate for this purpose. This predicate describes an overlaying
relationship. For two symbols X and Y, overlay(X, Y) means that X is visible
but Y is not where the two objects overlap.

Figure 5.5 illustrates the overlay predicate. The box X is laid over the line
Y, so that the line is not visible at the overlaying region.
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X

Y

Figure 5.5: Overlay relationship

5.5.8 connectsTail and connectsHead

These two predicates connects lines with objects. We need two predicates to
do so, because lines do have direction, as specified by the attributes tail and
head.

Definition 5.8 (connectsTail) The connectsTail (l,x) predicate specifies that
the intersection between the line l and the symbol x is the point on the line des-
ignated by its attribute tail

connectsTail[l : LINE, x : OBJECT]
l ∩ x = l.tail

Definition 5.9 (connectsHead) The connectsHead (l, x) predicate specifies
that the intersection between the line l and the symbol x is the point on the line
designated by its attribute head

connectsHead[l : LINE, x : OBJECT]
l ∩ x = l.head

Figure 5.6 on the facing page illustrates the concept of connection for the
predicate
connectsTail. The connection point is shown as L.tail. The other end of
the line L would then be L.head and had there been an object at that end, it
would be connected to that object with connectsHead.

5.5.9 intersect

When we draw large and complex diagrams it is often hard, and sometimes
even impossible, to draw lines between objects without having to have two
or more lines cross. We therefore define a predicate intersect.
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L
X

L.tail

Figure 5.6: Connecting predicate (connectsTail)

Definition 5.10 (intersect) The intersect (x,y) predicate defines that the
line x is crossing the line y at a single point that is not the endpoint of y.

Since lines are point sets as well, we can easily define intersection to be a
single point, as we do in the schema intersect.

intersect[x, y : LINE]
#(x ∩ y) = 1
(x ∩ y 6= y.head) ∧ (x ∩ y 6= y.tail)

Here we see that the cardinality of the set resulting from the intersection
between the two lines is specified as being one. This is due to the fact that
we consider the lines to be point sets (see section 5.4 on page 50) and the
result is thus a single point where the two lines cross.

Examples of intersections are shown in figure 5.7.

Both of these figures satisfy the predicate intersect. Figure 5.7(b) is a spe-
cial case which was discussed in section 4.3.1 on page 37 to visually sig-
nify that the intersection is purely a graphical intersection and that it does
not have any logical implications. In spite of that, it still is an intersection
between two lines graphically and thus it satisfies the predicate.

X

Y


(a) Without semi-
circle

X

Y

(b) With semi-
circle

Figure 5.7: Intersections
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5.5.10 vertical and horizontal

These two predicates applies to lines.

Definition 5.11 (vertical) The vertical (l) predicate defines that the line
l is parallel to the y–axis of a coordinate system.

Using the attributes of the line, we define the vertical predicate as follows
for a line l:

vertical[l : LINE]
l.lx = l.rx

which unambiguously specifies that the line is vertical.

Definition 5.12 (horizontal) The horizontal (l) predicate defines that the
line l is parallel to the x–axis of a coordinate system.

Again, using the attributes of the line, we get a definition of horizontal for
a line l as:

horizontal[l : LINE]
l.by = l.ty

which unambiguously specifies that the line is horizontal.

5.5.11 closeTo

Definition 5.13 (closeTo) The closeTo (x,y) predicate defines that the sym-
bol x is sufficiently close to the symbol y.

closeTo is a predicate that we do not give a formal specification in Z. This
predicate is of a type that Clementini et al. [15] would call a qualitative
operator.

We adopt the notion that this predicate is true if its first argument is “close
enough” to its second argument. This is an approach that is used both by
Golin [26] and Jorge [35]. They introduce the concept of an adjacency re-
gion between the two symbol that should not contain any other objects.

Figure 5.8 on the facing page shows different closeTo adjacencies. In fig-
ures 5.8(a) and 5.8(b) we have a valid closeTo relationship between a line
and a text, i. e. the text is close enough to the line in both cases. In fig-
ure 5.8(c) we see a pseudo–state symbol and a text. This also a valid con-
struction.



Summary of predicates 59

foo

X

Y

(a) Horizontal
line and text

foo

X

Y

(b) Diagonal line
and text

Y

entry X

(c) Pseudo–state
symbol and text

Figure 5.8: Different closeTo realtions

5.6 Summary of predicates

Table 5.2 lists the predefined predicate set of GDL together with the type of
relationship between visual symbols they apply to.

Relationship Predicate

Object – object inside
Any centerOf
Object–object leftOf
Object–object above
Object–object, text–text or object–text overlap
Any disjoint
Any overlay
Line–object connectsTail
Line–object connectsHead
Line–line intersect
Line (unary predicate) vertical
Line (unary predicate) horizontal
Any closeTo

Table 5.2: GDL predicates
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Chapter 6

Defining a Visual Language

In the previous chapter we defined Graphical Description Language (GDL).
This chapter will be devoted to the application of GDL, specifying the graph-
ical syntax of a visual language.

A visualisation of the specification is shown in figure 6.1. As the basis, we
have the Z notation, in which we will express the specification. Above that,
we have GDL, which predicates we defined in chapter 5. At the top, we have
Tuml, the language we will define in this chapter.

Tuml

GDL

Z

Figure 6.1: Structure of the specification

6.1 Tiny UML

We will show how GDL can be applied to a visual language by specifying
the visual syntax of a subset of the Unified Modeling Language, version 2.0
(UML). We will for clarity call this subset Tiny UML, abbreviated Tuml. The
first and foremost reason that we only define a subset of UML, is that UML
is a very large language encompassing a variety of different diagram types
and it would prove too much for the scope of this thesis to define the visual
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syntax of the entire language. Another reason is that we do not believe that
it is necessary to define the entire UML to illustrate the potential of GDL.

UML 2.0 is defined using a meta–model that is notated in UML itself [48].
In this meta-model we can find all the concepts that users are familiar with.
Class, association, collaboration and generalization are but a tiny selection.
Some of the concepts of UML have a direct visual representation. Other
concepts do not have a visual representation at all. The concepts of UML
that we normally see in diagrams are typically defined with the aid of many
other classes of concepts that have no inherent visual representation. One
need only look through the UML 2.0 specification [48] to understand the
complexity of the language definition.

The UML meta–model is quite large and defining all of the classes mod-
elled in the UML meta–model would be impracticable and highly undesir-
able.Since Tuml is a subset of UML, it also has a meta–model. The meta–
model of Tuml is a subset of the meta–model of UML in the same way as Tuml
is a subset of UML.

The subset of UML that is Tuml, are the following diagram types:

• Class diagram

• Sequence diagram

• State Machines

6.2 Naming conventions

We will adopt the following naming conventions.

When we specify a schema for a concept that we can find in the meta–
model, we will give that schema the same name as it has in the meta–model.
That will normally mean that the name of the schema will start with an
upper–case letter and the rest of the name will be in lower–case except in
cases where we have a name that is composed of more than one word, a
compound name, where the individual words will have upper–case letters,
as in ThisIsACompundName. Schemata that do not have a counterpart in the
meta–model but are defined as a kind of “utility” schemata, are given names
that are written in all lower–case. When we refer directly to a symbol that
is mentioned in the specification, it will be written in all upper–case, as in
SYMBOL.

Variable names that occur in a schema, will be written in all lower–case.

In the UML specification [48], the specification for the various visual sym-
bols are given in plain text. There is no formal definition of the appear-
ance of the symbols. We adopt the practise of Diagram Interchange [46] by
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not defining the actual appearance of the visual symbols in GDL, since they
might change in the future.

We will, however give a figure depicting the symbols in question.

6.3 The graphical syntax of Tuml

This section gives a specification of the graphical syntax of Tuml using GDL.
We will start with the top level schemata of the different diagram types and
work our way down to the schemata at the lowest level.

6.3.1 Class diagrams

The class diagram is perhaps the most used and well known diagram type.
We model the static, structural aspects of a system with this type of diagram.

This section will outline the GDL specification for class diagrams.

The top–level schema is ClassDiagram.

ClassDiagram
cls : PClass
assocs : PAssociation
gens : PGeneralization

cls 6= ∅
∀ c1, c2 ∈ cls | disjoint(c1, c2)
∀a ∈ assocs • ∃ c1, c2 ∈ cls • a[c1, c2]
∀ g ∈ gens • ∃ c1, c2 ∈ cls • g[c1, c2]

Here we see that a class diagram consists of a set of classes, designated cls, a
set of associations, designated assocs and a set of generalizations, designated
gens.

The predicate section of this schema, specifies that the set of classes can-
not be empty. Further, it specifies that none of the classes that are members
of this class diagram, may overlap, they must be disjoint. For all of the as-
sociations that are in the diagram, we specify that we have to apply the
corresponding schema with the two classes that are part of that particular
association. The same hold for all the generalisations that are part of the
diagram. The schemata for these concepts are presented in later sections.
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6.3.1.1 Class

A class specifies a classification of objects that have some common charac-
teristics [48]. It specifies the name of the objects and what attributes and
operations they are composed of.

The schema Class shows a specification for classes. A class is visualised by
a classifier symbol, which is specified as a schema itself and by an identifier
(which is the name of the class).

As we see in the predicate section of the schema Class, we specify that the
name have to be inside the classifier symbol’s name compartment and that
it should be centred there. This rule is a response to the issues concerning
classes we discussed in section 4.3.5 on page 41. A Tuml class is illustrated
in figure 6.2.

Class
c : classifiersymbol
i : IDENT

inside(i, c) ∧ centerOf(i, c)

X i

c

Figure 6.2: Tuml class symbol

6.3.1.2 Associations

An association specifies a relationship between two classes.

The schema Association specifies an association.

The schema has two parameters, which both are of type Class. It also has
one attribute, an association line. The predicate section specifies that the
first parameter is connected to the tail–end of the association line and that
the second parameter is connected to the head–end of the association line.
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Association[c, d : Class]
l : associationline

connectsTail(l, c)
connectsHead(l, d)

As illustrated in the schema associationline, an associationline is composed
of a line symbol, an identifier and two multiplicity elements. The predicate
section of that schema specifies that the identifier has to be close to the line
and that it should be centred on the line. The multiplicity elements should
also be close to the line, but not centred as the idenitifier, rather close to the
tail and head ends of the line respectively.

associationline
l : LINE
r : IDENT
mu1,mu2 : MultiplicityElement

closeTo(r, l) ∧ centerOf(r, l)
closeTo(mu1, l.tail)
closeTo(mu2, l.head)

Associations has multiplicities, represented by the type MultiplicityElement.
Since a MultiplicityElement is a string, we can use BNF to specify it:

〈MultiplicityElement〉 ::= 〈multiplicity〉
〈multiplicity〉 ::= 〈multiplicity range〉 [[ { 〈order dsignator〉 } ]]

〈multiplicity range〉 ::= [[ 〈lower〉 .. ]] 〈upper〉
〈lower〉 ::= 〈integer〉 | 〈value specification〉
〈upper〉 ::= 〈unlimited natural〉 | * | 〈value specification〉
〈order designator〉 ::= ordered | unordered

This BNF–production, which is taken from the UML specification [48] and it
specifies the legal format of multiplicities.

6.3.1.3 Generalisation

A generalisation is a relationship between twoclasses, where one of the
classes is a generalisation of the other classes. The more specialised classes
inherits the attributes and operations from the general class (this class is
also known as a super class from object–oriented terminology).

The schema ClassDiagram specifies generalization.
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Generalisation[gclass, sclass : Class]
gl : GENERALISATIONLINE

above(gclass, sclass)
connectsHead(gl, gclass)
connectsTail(gl, sclass)

As we can see, the schema defines only one attribute, a generalisation line,
and two parameters which are of type Class. An example of a generalisation
line can be seen in figure 6.3(b). The end of the line that is adorned with
the hollow arrowhead is designated as the head end of the line. This end
of the line is connected to the most general class, as we can see in the
predicate section of the schema. The tail end of the line is thus connected to
the more specialised class. In section 4.4.2 on page 46 we discussed some
elements of layout style based on empirical research. One of the results
from that research was that the preferred layout for generalisation is with
the more general class above the more specialised classes. We therefore put
the constraint on the general class that it should be above the special class,
as seen in the first line of the predicate section.

C

D

(a) Generalisation

gl

gl.headgl.tail

(b) Generalisation line

Figure 6.3: Generalisation in Tuml

6.3.2 Sequence Diagrams

Sequence diagrams are a special kind of interaction diagram. Interaction
diagrams are used to model and analyse the dynamic aspects of systems.
UML has several different types of interaction diagrams in addition to se-
quence diagrams, but only sequence diagrams are part of Tuml.

Sequence diagrams are used to model and analyse the sequencing of mes-
sage passing between instances in the system concerned.

This section will outline the GDL specification of sequence diagrams.

A Tuml sequence diagram with the different elements designated is illus-
trated in figure 6.4 on the facing page.
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sd

:Student :Teacher :Oracle

learning

ask_question()

:AnotherOracle

Lifeline
Message

IDENTIFIER

PENTAGON

FRAME

alt
forward_question

ref

Discussion

answer

answer

answer

Combined
Fragment

Interaction
Occurence

Operand

SEPARATOR

Figure 6.4: Tuml sequence diagram

A sequence diagram is represented by a frame with a compartment in the
upper left corner that contains the interaction identifier. The schema Se-
quenceDiagram specifies an interaction. Besides the frame and the name
compartment, which contains the name of the interaction preceded by the
string sd, we see that an interaction also has a set of life lines.

SequenceDiagram
f : FRAME
c : PENTAGON
name : STRING
lls : P Lifeline
if : P InteractionFragment

lls 6= ∅
∀ lfl ∈ lls • inside(lfl, f)
∀ lfl1, lfl2 ∈ lls • disjoint(lfl1, lfl2)

inside(”sd”a name, c)
inside(c, f) ∧ (c.lx = f.lx) ∧ (c.ty = f.ty)
∀ ifx ∈ if • ∃ ll ⊂ lls • ifx[ll]

The predicate section of the schema SequenceDiagram defines that the set
of lifelines that are part of this interaction cannot be empty. This makes
sense because there will not be any interaction if there are no one that
can interact. One could argue that we should put the constraint on the set
of lifelines that it should have more than one member, but we see it as
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possible that someone want to model the interaction an instance has with
itself also known as a self–call. Furthermore, we demand that all the lifelines
are contained within the frame of the interaction.

We also specify a constraint on the layout of lifelines within the frame. We
do not want any of the lifelines to overlap each other. If they did, a diagram
would appear very cluttered. This to address the issues described in sec-
tion 4.3.6 on page 43, where we at the distribution of elements in diagrams.
We do, however not impose any constraint that they have to be completely
disjoint, because if there are many lifelines in a diagram, they might be
placed very close to each other, maybe even touching each other. This is not
an optimal situation however and one should consider a decomposition of
the sequence diagram into smaller parts to solve this.

The frame has a name compartment, in which the name of the interaction
is contained, preceded by the string “sd”. This identifies the interaction. We
add a constraint to the name compartment, that it have to be inside the
frame and that the leftmost x–coordinate and the upper y–coordinate have
to be equal to its counterparts of the frame.

InteractionFragment[ll : P Lifeline]
c : PCombinedFragment
o : P InteractionOccurence
m : PMessage

#m + #o + #c = 1

The schema InteractionFragment specifies interaction fragments. An interac-
tion fragment is an abstraction of several interaction units [48]. An inter-
action fragment groups together several fragments of an interaction, as its
name indicates.

As we can see, the schema contains three sets, one of type CombinedFrag-
ment (see section 6.3.2.2 on the facing page), one of type InteractionOc-
curence (see section 6.3.2.3 on page 70) and one of type Message (see sec-
tion 6.3.2.4 on page 71).

The predicate section of the schema InteractionFragment specifies that the
sum of the cardinalities of the three sets have to be equal to one. This is
a modelling of a syntactic choice, which expresses that an interaction frag-
ment is either a combined fragment, an interaction occurrence or a message.

6.3.2.1 Lifeline

A lifeline is a construct that represent the participants in an interaction. Each
participant has its own lifeline.
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Lifeline
lh : lifelinehead
l : LINE

vertical(l)
l.appearance = ”dashed”
above(lh, l)
connectsHead(l, lh)

The schema Lifeline defines two variables, one of type lifelinehead and one
of type LINE. The line’s appearance attribute is given the value dashed. Fur-
thermore, we apply some constraints on the line, namely that it have to be
vertical and below the lifeline head (or, as the predicate actually reads, the
lifeline head is above the line). The last predicate states that the head–end
of the line and the head are connected.

The type lifelinehead, which is actually defined as a schema itself, is not a
type that can be found in the Tuml meta–model. It is a part of the lifeline
itself, containing its name. We have defined it as a schema for itself to sep-
arate out the particularities concerning this symbol.

lifelinehead
ls : LIFELINEHEADSYMBOL
li : LIFELINEIDENT

inside(li, ls) ∨ above(li, ls)

The schema lifelinehead specifies a constraint on the spatial relationship
between the “head symbol” and its identifier. The identifier can be either
inside the symbol or above it. This is analogous to what we discussed in
section 4.3.5 on page 41, where we discussed the placement of identifiers
for lifelines. We do not give a specific constraint on how long the string have
to be before it could be placed above the head, because that will depend on
the size of the lifeline head and the font size of the string. This will have to
be up to a tool creator or a modeller to decide.

6.3.2.2 Combined Fragment

A combined fragment is a definition of different interaction fragments [48].
Its type depends on its interaction operator. A combined fragment can over-
lap a number of lifelines, thus specifying the operation carried out on these
life lines (i. e. interaction fragments).
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CombinedFragment[lls : P Lifeline]
cfs : COMBINEDFRAGMENTSYMBOL
nc : PENTAGON
opr : INTERACTIONOPERATOR
ops : POperand
sep : P SEPARATORSYMBOL

cfs.appearance = transparent
inside(opr,nc)
inside(nc, cfs) ∧ (nc.lx = cfs.lx) ∧ (nc.ty = cfs.ty)
∀ ll ∈ lls • overlap(cfs, ll)
#sep = (#opr− 1)
∀ o1, o2 ∈ opr • ∃ sp ∈ sep • above(o1, sp) ∧ above(sp, o2)

The schema CombinedFragment specifies combined fragments.

The symbol designating a combined fragment has its appearance attribute
set to transparent. Furthermore, the pentagon is placed at the same posi-
tion as the pentagon is for the frame of sequence diagrams. The interaction
operator is specified inside the pentagon.

The schema has as its input parameter a set of lifelines. The predicate sec-
tion of the schema specifies that each of the elements in that set, has to be
overlapped by the combined fragment symbol.

The schema also defines a set of Operands and a set of separator symbols.
The operands are represented by the compartments in a combined fragment.
If there are more than one operand, the operands are divided by a separator
symbol. In figure 6.4 on page 67 there are two operands, separated by a
dashed line, the separator symbol. The predicate section of this schema spe-
cifies that the number of elements in the set of separator symbols must equal
to the number of elements in the set operands subtracted by one. Further,
it is specified that the operands are organised vertically with the separator
symbols in between.

6.3.2.3 Interaction Occurrence

An interaction occurrence is a reference to an Interaction [48]. That is, the
content of the interaction that is referenced by the interaction occurrence is
copied into the place where the interaction occurrence is.

We will only be concerned with the graphical aspect of this.
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InteractionOccurrence[lls : P Lifeline]
ics : COMBINEDFRAGMENTSYMBOL
nmc : PENTAGON
name : STRING

ics.appearance = filled
inside(nmc, ics) ∧ (ics.lx = nmc.lx) ∧ (ics.ty = nmc.ty)
inside(”ref”,nmc)
inside(name, ics) ∧ ¬ inside(name,nmc)
∀ ll ∈ lls • overlay(ics, ll)
∀ ll′ 6∈ lls • overlay(ll′, ics) ∨ disjoint(ll′, ics)

As we see in the schema InteractionOccurence, it is represented by the symbol
for a combined fragment. The difference here, is that its operator is the
keyword ref. The name of the occurrence is contained in the main area of
the symbol.

The pentagon, containing the operator ref is placed inside the combined
fragment symbol, in its upper left corner. The name of the interaction occur-
rence is to be placed inside the main symbol, but not inside the pentagon.
The schema has one input parameter, a set of lifelines. This set contains the
lifelines that are part of the interaction occurrence. All of the lifelines that
are elements of this set, are specified to be overlaid by the symbol of the
interaction occurrence. Thus, as specified in the last line of the schema, the
lifelines that are not part of this input set are not part of the interaction
occurrence and are thus not overlaid by its symbol. Instead, they may them-
selves overlay the interaction occurrence symbol or they may be disjoint
from it.

6.3.2.4 Message

A message is a visualisation of communication between two lifelines. There
are several types of messages, distinguished by their visual representation.
Asynchronous messages have solid lines with an open arrowhead. Synchron-
ous messages have the open head replaced with a closed arrowhead. There
is usually associated a return message with a synchronous message and this
is represented by a dashed line with an open arrowhead.

Message[ll1, ll2 : Lifeline]
msgid : STRING
ms : MESSAGESYMBOL

closeTo(msgid,ms) ∧ disjoint(msgid,ms) ∧ centerOf(msgid,ms) ∧
horizontal(msgid)

(connectsTail(ms, ll1) ∧ connectsHead(ms, ll2))
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The schema Message specifies a message. It consists of two symbols, the mes-
sage symbol and an identifier. The identifier is the name of the message, of-
ten it represent a call for a procedure in the recipient instance. The predicate
section of this schema states that the message identifier can not be absent
and furthermore, that the identifier have to be centred on the message sym-
bol, not overlapping it. Figure 6.5 illustrates a Tuml message symbol. The t
and h in the figure denotes the tail and head attributes respectively.

ht

Figure 6.5: Tuml message symbol

The first parameter, ll1, is connected to the tail end of the message symbol.
This is the sending end of a message. The second parameter, ll2 is connec-
ted to the head end of the message symbol and is at the receiving end of
the message. In figure 6.4 on page 67, we can see an example of message
passing. There, ll1 would be the lifeline labelled :Student and ll2 would be
the lifeline labelled :Teacher. The message originates at :Student and ends at
:Teacher.

6.3.2.5 Operand

As we see in the schema Operand, an operand contains a set of interaction
fragments. An operand has one input parameter, a set of lifelines. Operands
allow for nesting of interaction fragments, which is illustrated by interaction
occurrence “Discussion” in figure 6.4 on page 67.

Operand[ll : P Lifeline]
if : P InteractionFragment

∀ ifx ∈ if • ∃ ll ⊂ lls • ifx[ll]

The predicate section of this schema specifies that for all the interaction
fragments that are contained in this operand, there has to exists a proper
subset of the input set of lifelines, so that the interaction fragment is applied
to it.

6.3.3 State Machines

As with sequence diagrams, state machines are used to model the dynamic
aspects of a system.

While sequence diagrams are used to model the interaction, i. e. message
passing between different instances, state machines are used to model the
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different states a system can be in and the different (legal) transitions bet-
ween the states.

This section will outline the GDL specification for state machines. Figure 6.6
on page 75 illustrates a state machine and its different parts.

StateMachine
sms : FRAME
pn : PENTAGON
stn : STRING
ss : PState
trs : PTransition
pss : PPseudoState

sms.appearance = transparent
inside(pn, sms) ∧ (pn.lx = sms.lx) ∧ (pn.ty = sms.ty)
∀ps ∈ pss • overlay(ps, sms)
∀ s ∈ ss • inside(s, sms)
∀ s1, s2 ∈ ss • disjoint(s1, s2)
∀ t ∈ trs • ∃ s1, s2 ∈ ss • t[s1, s2]

As we can see, the schema specifies that a state machine consists of a frame,
a pentagon and a string which is the name of the state. Furthermore, we
have a set of states, a set of transitions and a set of pseudo states.

The predicate section of this schema, defines that the appearance–attribute
of the frame should be transparent and that the pentagon have to be inside
and in the top left corner of the frame. For the set of pseudo states, it is
specified that all the elements of it have to overlay the frame of the state
machine. This is a restriction made to Tuml that is not made in UML. This
was discussed in section 4.4.2 on page 46. In UML, the pseudo state symbols
may be either inside the state machine, on its frame or outside it.

It is specified that all the states that are part of this state machine, must be
contained within the frame, in the same manner as was done for lifelines in
sequence diagrams.

The last line in the predicate section of StateMachine specifies that each
transition, there have to two states that the transition is applied to.

6.3.3.1 State

The schema State specifies the appearance of states.

The schema defines two variables, a state symbol and a string, which is
the name of the state. The predicate section of this schema defines that the
name has to be contained within the state symbol.
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State
ss : STATESYMBOL
sn : STRING

inside(sn, ss)

6.3.3.2 Pseudo states

A pseudo state is an abstraction for a number of different types of states.
The semantics of a pseudo state depends on its kind, which in turn determ-
ines the visual representation of the pseudo state. The ten different kinds of
pseudo states can be seen listed in the schema.

The schema PseudoState specifies a pseudo state.

PseudoState
kind? : kinds
kinds : {entryPoint, exitPoint, initial, deepHistory, shallowHistory,

join, fork, junction, terminate, choice}
fpsym : kinds→→ P PSEUDOSTATESYMBOL
psym : fpsym(kind?)
txt : STRING

closeTo(txt, psym)

The schema declares two variables, a set containing the kind of pseudo
states and a set containing the symbols that a pseudo state can have. It
also declares a total surjective function fpsym, which maps the kind to the
corresponding symbol. That is to say, that for every element in the set of
pseudo state symbol there are at least one element in the set of pseudo state
kinds that maps to it. This also means that there are not necessarily one
symbol for each kind, but that one symbol may designate more than one.
The variable psym is the assigned the symbol of the particular state as a
result of applying fpsym with the input variable kind.

A pseudo state may be labelled, as specified with closeTo in the predicate
section of the schema.

6.3.3.3 Transition

A transition is a relationship between two states. It is a visualisation of the
transition that brings the state machine from one state to another.
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Transition[s1, s2 : State]
ts : TRANSITIONSYMBOL
ti : TransitionText

closeTo(ti, ts)
connectsTail(ts, s1) ∧ connectsHead(ts, s2)

A transition has two input parameters, two states. The schema also defines
two variables, the transition symbol itself and a text that specifies what
triggered the transition and what its effect is. The transition text specified
in BNF:

〈TransitionText〉 ::= trigger / effect

The identifier is specified to be close to the transition symbol. From the
input set of states, there have to be two states, s1 and s2, that is connected
to the transition symbol. One of the state symbols is connected to the tail
end of the transition symbol. This is the originating state of the transition.
The other state symbol is connected to the head end of the transition symbol
and is thus the resulting state of the transition.

aborted

Frame Pseudo state

Pentagon

state machine

workingsleep
input/wake−up

Transition

State

Figure 6.6: Tuml state machine
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Chapter 7

Discussion and Further Work

We aimed to design a language that could act as a meta–language for the
specification of visual languages, a language which could be used for formal
definition of spatial syntax without having to be concerned with the graph-
ical primitives.

To find out what issues the language had to address, we did an analysis
of UML 2.0, which is a complex language that encompasses wide array of
different diagram types. We felt that UML 2.0 would be a suitable language
to analyse, since it does not have a formal specification for spatial syntax.

We then defined GDL, Graphical Description Language, a language for spe-
cifying spatial syntax. Using GDL, we defined Tuml, a language that closely
resembles UML 2.0 and therefore faces the same challenges when it comes
to the spatial syntax.

In this chapter we evaluate GDL with regard to the design criteria described
in section 1.3. We also evaluate the language with regard to the analysis
done in chapter 4.

7.1 Evaluation of Requirements

In section 1.2 on page 3 we presented some requirements that we felt the
language had to meet in order for us to achieve the goal of this thesis.

This section investigates if the requirements were met.

The analysis in chapter 4 is performed after a categorisation of relation-
ships between different types of visual symbols (see table 4.1 on page 36).
This made it easier to identify the different issues we has to address. Based
on this, we designed the predicates of GDL. The predicates are listed in
table 5.2.
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7.1.1 The geometrical level

In section 4.3.1 on page 37 we discussed the relationship between lines. We
needed to be able to specify that lines may cross each other. This is solved
by the intersect predicate. We also discussed the practise of inserting a
graphical element, a semi–circle, at the intersection point to signify that the
lines only intersect graphically, not logically, as illustrated in figure 4.2(b)
on page 37. We have not addressed this explicitly, because we feel that this
is not an issue that is crucial to the layout of a diagram. As noted in this
section, these semi–circles may contribute to that a diagram looks cluttered,
as illustrated in figure 4.3(a) on page 38.

In section 4.3.2 we analysed the line–text relation. The main issue here is
that a string of text is in locates in close proximity to a line. This is solved
by the predicate closeTo. Although this predicate is specified somewhat
loosely in plain text, it is our belief that this is sufficient. Used in conjunction
with the predicate centerOf and the attributes tail and head, we are able to
specify where on the line the text is located. With the disjoint predicate,
we are able to precisely specify that the text should not overlap the line.
The horizontal predicate is able to specify that the text should always be
horizontally rotated to enhance readability.

In section 4.3.3 on page 40 we looked at the relationship between lines and
objects. We have been able to express that lines connects to objects, using
the connective predicates connecsTail and connectsHead. These predicates
connects a line with an object, each at one end of the line.

With regard to the text–text relationship discussed in section 4.3.4 on page 41,
we are able to specify that text strings should not overlap each other. This is
the only issue we looked at regarding this relationship.

The text–object relationship, which we discussed in section 4.3.5 on page 41,
is another relation that is easily specified with GDL. Using the inside pre-
dicate, we are able to place a string of text inside an object. We can further
specify that it have to be centred using the centerOf predicate. With regard
to Tuml lifelines, specified in section 6.3.2.1 on page 68, we can specify that
the identifier may be inside the lifeline head or above it, depending on its
length.

In section 4.3.6 on page 43 we analysed the object–object relationship. In
GDL, we are able to specify that objects may be above each other or to the
left or right of each other. We are also able to specify that an object may be
inside another.
The issue regarding the distribution of objects and symmetry of a diagram,
is however not something GDL is able to address.
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7.1.2 The communicative level

The issues discussed in section 4.4 on page 44, concerning the communic-
ative aspects of diagrams are partially solved. We are able to specify the
direction of flow in a diagram, as illustrated in figures 4.20(b) on page 47
and 4.20(c) on page 47, using the above predicate. We should also be able
to specify the same in the vertical direction using the leftOf predicate.

7.1.3 Requirement of Precision

In section 1.2 on page 3 we also stated that we wanted a language that
could precisely specify the spatial relationships between symbols with some
precision. We will now discuss if that requirement is met.

Since we are using set theory and predicate logic as the basis for GDL, this
implies a certain degree of precision. By defining the visual symbols as point
sets, we were able to use theories developed with topology for use with
geographical information systems to determine the topological relationship
between objects. This gives improved precision for specifying spatial rela-
tionships. However, not all of the spatial relationships we needed were suit-
able for topological definition. This issue had to be solved with other means.

We found the solution to this problem in the technique devised by Golin
[26]. Here we assume a two–dimensional grid on the diagram and assign
four attributes designating two x–positions and two y–positions to the sym-
bols. By constraining the relationships between the different attributes of
the symbols in a relation, we were able to specify the spatial relationships
that did not fit into a topological definition.

With regard to the requirement of precision, there are three relationships we
need to explain further. The overlay–predicate (specified in section 5.5.7
on page 55) is a predicate we did not give a formal specification using the
above mentioned techniques. If we were to specify this predicate formally
with Z, we would have to assign the symbols in this relationship an attrib-
ute that would specify its position on an z–axis of the coordinate system.
This would have added a third dimension to the diagram, which was not
desirable since UML is graphically a two–dimensional language. But we still
needed to be able to express that a symbol is actually covering another. We
could have adopted a concept of layers, similar to that of many image pro-
cessing applications, but this is on closer inspection not an option either. We
will explain why. The graphical interaction between lifelines and interaction
occurrences may be viewed as a form of weaving, which can be seen in fig-
ure 7.1 on the following page. Here we can see two lifelines (X and Y) and
two interaction occurrences (Foo and Bar). As we can see, the interaction
occurrence Foo is covering the line of X and is covered by the line of Y. Bar
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is covered by the line of X and covers the line if Y. Thus, X is part of Foo and Y
is not. Conversely, Y is part of Bar and X is not part of this interaction occur-
rence. We would not have been able to address this situation using layers.
We therefore decided to rely upon a textual description of this relationship.

YX

Foo

ref

ref

Bar

Figure 7.1: "Weaving" of graphical symbols

The centerOf–predicate is another relationship that was not specified form-
ally with Z. The reason for this, is that “center of” can be interpreted in
more than one way. We can for example have that a symbol x have to be
centred in an object y or we may have that a text string is centred on a line,
as illustrated in figure 5.2(b) on page 53. Therefore, we opted to specify this
predicate in plain text.

The predicate closeTo was not specified using Z either. The reason for this,
is that what is “sufficiently close” (see definition 5.13 on page 58) may vary.
Because of this, we felt that it would be better to define it using plain text.

7.2 Evaluation of design

In section 1.3 on page 3 we gave some criteria that we felt we had to follow
in order to ensure that we would be able to design a good enough language.
We will now review the design of GDL with respect to those criteria.

As described in chapter 5, we chose the Z notation as the basis for our
meta–language. By choosing the Z notation [60] we get a predefined, formal
framework to build upon.

With respect to our criteria of transparency, we feel that our design fulfil
this criteria. As we noted in section 1.3, Wexelblat [64] points out that there
are certain “standard” ways of notation and that large deviations from such
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standards could make a language harder to comprehend that it really needs
to be. The mathematical and logical notations are standardised notations
and most computer scientists have some training in both mathematics and
logic. The schemata of Z may require some background, but our experience
is that this concept is quickly comprehended.

The form of Z notation that we have used, notating the schemata vertically
with the variables and predicates divided into two compartments, provide a
convenient structuring mechanism, which gives us the opportunity to struc-
ture the specification into logical parts, as we did with the specification of
Tuml in chapter 6.

The use of mathematical notation gives us a certain amount of compactness
in the specification. Mathematics is a language that is capable of saying a lot
with few symbols. Although the symbols are abundant considering mathem-
atics as a whole, our experience is that there is not that many symbols that
are used in practise (see the schemata through chapter 6).

7.3 Further work

This section will outline the possibilities for on the solutions presented in
this thesis.

7.3.1 Applicability to other languages

The set of predefined predicates of GDL currently counts 13 predicates that
specify different spatial relationships. If GDL is to be applied to other visual
languages than UML, it is possible that this set of predicates need to be
expanded or that the definitions of the predicates may be changed.

GDL is designed with UML 2.0 in mind. The predicates relating symbols
are therefore designed with regard to the issues we found in the analysis
of UML 2.0. We believe, however, that the predicate set is a set that is
generic enough to address issues found in other languages as well. Lan-
guages that spring to mind as possibly suitable for GDL specification are
the Specification and Definition Language(SDL) [56] and Message Sequence
Charts(MSC) [33].

7.3.2 Metrics

In section 4.3.6 on page 43 discussed the layout and distribution of elements
in a diagram. Presently, GDL does not address these issues.
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The factors that influence comprehension of diagrams can be controlled.
There has been a lot of research on this in the field of computational geo-
metry (see Battista et al. [2]). The factors are the orthogonality of nodes
and edges, the number of line crossings, minimising the number of line bends
and the direction of flow in a diagram. Purchase [51] addresses these is-
sues and argues that many previous approaches to diagram aesthetics tend
to have an extreme approach to diagram aesthetics, for example having no
line crossings or maximising the symmetry of the diagram. This also tend to
be done informally. Purchase’s own research in [51] is an attempt to provide
quantifiable metrics for seven different graph drawing aesthetics.

As we did not address these issues in our work, one could look at the pos-
sibility for implementing a functionality to GDL that put constraints on the
of graphical symbols. These parameters could then be adjusted to suit the
language that is to be specified.

7.4 Concluding remarks

This thesis has provided a meta–language that is capable of specifying the
graphical syntax of UML. We have illustrated its use by specifying a subset
of UML which we called Tuml. Tuml consists of three diagram types, class
diagrams, sequence diagrams and state machines.

We have built upon previous research in the field of visual languages and
made a meta–language that is capable of addressing the various notational
forms of UML diagrams. The way GDL is constructed, with the Z notation as
its basis, should make it easy to extend to apply to other languages.
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