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Abstract

Streamed multimedia is becoming common on the Internetelsaghdwidths increase for
end-users. To stream data with high bitrates to many coactusers, servers are needed
that can handle these extreme loads. Implementing servefasters to be able to meet
demands has proved to be a good strategy, providing sagfadnld performance. One
commercial actor that has done this successfully is nCubeir fi4x solution is a server
cluster based on a hypercube interconnection topologytreidreported server perform-
ance is promising. However, the use of special hardwarefftwanling routing increases
the cost for deploying this system. Network processingsumitve many similar proper-
ties to the special hardware used by nCube. They are fullgraromable and optimized
for networking tasks. In this thesis, we start by chartingftimctionality and capabilities
of the IXP2400 network processor by implementing a seriggestfapplications. Using
knowledge gained from this exploration, the design and @m@ntation of a video server
hypercube prototype is done. We present an evaluation opdR2400 hardware plat-
form based on the test applications. Our video server cultefype is also presented and
evaluated.
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Chapter 1

Introduction

Streaming data with high bitrates to a potentially high nendf concurrent users presents
us with great challenges regarding scalability and thrpugh The network bandwidth
rates needed for multimedia streaming systems today straprocessing power of server
solutions, stealing resources that could be applied ta atiortant tasks. This thesis will
investigate the possibility of using network processingauNPUSs) to dfload networking
tasks and, in particular, to implement routing in a distrdaliserver cluster topology.

1.1 Background and motivation

The Internet, since its beginning as an experimental n&two1968, has experienced an
astounding development. Especially in the last ten yealsgs become common prop-
erty, and a variety of services are now available to the puluring the last years, the
bandwidth available to end users has been steadily inaigasimost developed coun-
tries. With the high bitrates becoming available, the tnaission of audio and video has
become the new killer application driving the developmémidworks and infrastructure.

The most common way to access digital multimedia conteriliscsdownload a file and

play it locally. The alternative is to transmit the data as ¢tbntent is consumed. This is
known as data streaming. Streamed services are becomirggammrmon every day due
to the increased capacity available for end users. Fomnostanost national radio-stations
in Norway are being streamed from the servers of the NatiBnahdcasting Company
(NRK) [44]. They also fter the possibility to watch recently transmitted TV progsam
as a streamed service. The fact that the data is streameksntipat the receiver will

require a certain quality to be satisfied. If the stream Halt$oo long, the presentation
of the video will stop, and the customer will probably loséemest. Other multimedia
content, like teleconferencing, is even more sensitivdnanges in the quality of the data
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transmitted. If the dferent contributions to a teleconference are deliveredeatvtong
time, the service will be pointless.

One area of multimedia streaming that is demanding in tefrdata rates is the streaming
of high quality video. The servers that have to deliver suosasns to many concurrent
end users will be strained to meet demand unless some tedas#ge applied to enhance
server performance. A multimedia streaming server willordy have to fetch the data,
and prepatre it for streaming, it will have to handle the traission of a huge number of
network packets. There are many strategies that can beedpplhandle these challenges.
One of these is to build an immensely powerful server wittessgv\CPU'’s, a multitude of
network cards and an extensive amount of memory and stoegggeity. Such a single
server would be very expensive, and would soon have to giviethp demand were to
increase.

To solve the scalability problem, a common approach is toidige the load on several
interacting computers. Several of these approaches wiidmissed in this thesis. One
variant of this strategy is to deploy a multimedia server dstibuted system consisting
of many interconnected computers cooperating to bring théiadata to the users. Such
a solution would be scalable by adding more computers toytkes, and dividing the
load between the nodes. Data would have to be collected fnencdrrect node in the
interconnection topology, and routed to the egress. Theesséul interconnection would,
therefore, demand resources in terms of routing and oth@vonle processing. With
the servers busy pulling data from the disks, and prepatifgr istreaming, reserving
resources to process the routing will be a challenge.

One way to ensurefiective network processing inside such a topology would b&fto
fload such tasks to aftierent functional unit. Some commercial actors have dorseti
implementing routing functionality on custom hardware eTdevelopment of hardware,
however is an expensive and time-consuming task. On the loéimel, network processors
optimized for the #&icient handling of packets are available today. Althoughtroom-
monly used in routers and switches, implementations of o\processors that can be
used in PCs are available. These platforms are highly pnogiable and configurable to
different networking tasks. By building a distributed topologyitimedia server, and of-
floading internal routing tasks to network processors, tildde possible to achieve high
performance in a scalable system without having the disadgas of having to build
custom hardware.

1.2 Thesis domain

One commercially available server that has been successfuplementing a distributed
server topology is the nCube [42] n4x solution. This is, hesvea system that depends
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heavily on custom hardware for internal routing, makingpensive. The design of spe-
cial hardware is a task that is time consuming. This makesitme-to-market for such
products longer than for programmable solutions. Findigag to implement a sim-
ilar server topology without having to use custom hardwaoelal enable much cheaper
server solutions with the kind of scalability and perforroathat is needed to meet com-
petition.

This thesis aims at answering the question of whether aildiséd multimedia server
cube, similar to the n4x solution, can be implemented uskRRUO0 [32] network pro-
cessors. In pursuing this goal fiidirent areas of the network processor programmability
have been explored to find the mofiegetive ways of implementing various applications.
We also seek to explore whethetloading network tasks would enhance the performace
of a host machine. An implementation of a multimedia serwgrelncube was made in
order to identify strengths and weaknesses of such sobjtaond to demonstrate that an
NPU ofioading of the routing framework in such a solution would work

The thesis shows that network processors are mii@eat at routing tasks than an ap-
plication running on a Linux host. This proved also to be tioiethe host application
when implemented in the kernel. Moreover, it shows that éeraonnected network to-
pology, a hypercube, using IXP2400 cards for routing wasstgreriour to a switched
network topology for delivering data packets. Tests shothatithere is a noticeable per-
formace gain by filoading network tasks from the host to the IXP2400 card. THewi
server cube\(S®) system was implemented, and proved to work with the praposiet-
ing framework. In conclusion, our prototype shows that %2400 NPU éiciently can
offload the host machine and provide a favourable way of impléngeolosely intercon-
nected servers in a cube topology.

1.3 Document structure

In the following chapters, the requirements for succefsiiplementing a video server
cube using IXP2400 cards will be investigated. This will lmmel by analyzing hardware
and software capabilities on a general scale, and with degawsur implementation goal.
The requirements and implementation steps taken are peeseand evaluations of the
different results are given.

The focus in chapter 2 and 3 is mainly on general aspects ofdtweork processors and
the applications and tests made to gain the necessary tavugireg for programming the
IXP2400 platform. Chapter 4 and 5 focus on the requirementsnultimedia applica-
tions, and the building of the' S® server cube application in particular. An evaluation of
the results is given for all stages of implementation.
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Chapter 2describes the concept of network processors with the maunsfon the Intel
internet exchange architecture (IXA). An introduction igem to the hardware boards
(Radisys ENP2611 [13]) used in the thesis, and the netwarggsising units that resides
on them. The software tools provided by the manufacturedessribed, as well as the
general programming techniques and strategies.

Chapter 3presents the applications developed to explore and eedln@tENP2611 net-
work processor card based on the 1XP2400 chipset. We desitrébditerent software
and hardware building blocks, and how they perform givetedent tasks. The results of
tests performed on these applications is also presentddame general conclusions are
drawn on how to use these NPUs in general.

Chapter 4gives an introduction to multimedia systemsfiBient multimedia applications
are presented. The requirements that have to be met whenglealh multimedia ap-
plications is discussed. Berent solutions for meeting the requirements is also pteden
The nCube n4x solution to these challenges is describedelhasvsome of the protocols
that can be used for multimedia streaming.

Chapter 5describes all the stages in implementing Yh®® video server cube solution.
Different design approaches are presented, and the routingvirain is described in
detail. The main bottlenecks of this system are locatedjlamdesults of tests performed
on the system are shown and discussed.

Chapter 6concludes this thesis, and outlines further work.

The source code for théS® server cube system is included as an appendix. The appendix
is divided into subsections based on whether the code itewrior uEngines, XScale or
Linux host.



Chapter 2

Internet exchange architecture

Network processing Units (NPUs) are special processoitanthres used for demand-
ing networking tasks such as backbone routing and switchiings chapter will give a
short introduction to NPUs, and especially the internehaxge architecture (IXA) plat-
forms. We will focus on the two network boards that have beeilable for testing, and
especially the hardware and software for the ENP2611 [18{e8 on the IXP2400 [32]
chipset, upon which this thesis bases its studies. The meaby the ENP2505 [12],
based on the IXP1200 [31] chipset, is described as well astths was the NPU board
we used before receiving the ENP2611. Some of the areas waiehbeen explored have
also been tested on this platform. The comparison of pedoo®m on dierent levels of
the architectures, and the challenges of implementing ch platform have also been
important issues.

2.1 Network Processing Units

After 40 years of Moore’s law [18], we still see processingypoexpand at an exponential
rate. The successful use of multithreading in the last getioers of processors have made
the architectures mordtient. This increases the heat produced by the logic unlfs [4
This has made the silicon manufacturers think about new whagentinuing the current
progress. The picture we have been shown of future architecbutlines multiple core
processors with simpler structure, thus using more pa@laputations.

In a similar manner to how Moore’s law applies to micropreces, we have had an
exponential growth in network bandwidth capacity. Figuré 2&hows how networking
bandwidth has increased compared to processing power lovéadt years. There is no
indication of the development rate slowing down, but it veMentually have to halt due
to limitations of the transmission medium (if new technaésgare not introduced). As of
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Figure 2.1: Evolution of technologies [22].

yet, the network speed growth is faster than the CPU powewtgroThus today’s pos-

sible bandwidths sustain an increasing demand for prauggswer. With the decreasing
inter-arrival time of network packets, computers will beasted to keep up with protocol
handling, checksumming and other necessary tasks withotifising capacity that other
processes need.

One solution to this challenge is tdflmad network tasks to separate functional units.
These units will be optimized forfigcient packet handling and throughput. Since NPUs
are to be optimized for packet handling, the design wiffettifrom traditional comput-
ing chipsets. A typical design is a series of several smgihrsetric processing units
working in parallel. The parallel structure of the packetqassing enables the tasks to
be performed in a pipeline, with each functional unit pariorg a special task. This
removes the bottleneck of single CPU processing that hashtedsile the processing ca-
pacity between the ffierent tasks.

A wide range of diferent companies are manufacturing NPUs fdfedent platforms
and purposes, these include Agere [1], AMCC [3], IBM [25]teln[27], Internet Ma-
chines [26], Motorola [38], PMC-Sierra [48], and Vitess&]6All these are more or less
based on the samdfimading ideas, but their implementations vary greatly.
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In the past few years, in particular, Intel has focused omwaoet processing, creating a
series of network processor platforms called the InterxehBnge Architecture (1XA).
This platform group incudes three main series of NPUs, nahel IXP12xx, IXP2xxx
and IXP4xx series of network processors [43].

2.2 Intel Internet Exhange Processors

The IXA platform from Intel includes, as of now, three maimigs: IXP12xx, IXP2xxx
and IXP4xx. The IXP12xx series was in common use up to last ydeen Intel decom-
misioned it in favour of the IXP2xxx series. The IXP4xx serigtargeted at the home and
small business market, while the IXP2xxx series aims at davier applications. In this
section, the main features of the IXP1200 will be outlinedmAre detailed description
will be given of the IXP2400 as this is the chipset on which hwasrk has been done in
this thesis.

2.2.1 [IXP1200

The Intel IXP1200 [31] network processor chipset is desigimemeet the wide require-
ments placed on network equipment in high performance syséad consists of six main
functional units as shown in figure 2.2. The core processmyisia 32 bit StrongARM
processor running at 232MHz. There are six special purpeseprocessors called mi-
croenginesyEngines) running in parallel, also at 232MHz. Eadéingine can accomod-
ate a maximum of four contexts. The DRAM unit provides accasi¢mory for storing
packet data, and the SRAM unit gives acces to memory forrgja@iared variables and
metadata. The IX bus connects the internal IXP chipset dsyand the PCI bus enables
the card to interface with other PCI devices. In additionhese six main components
there are 4KB of scratchpad memory used for high-speed camwation between func-
tional units. There are also special registers for intet-ecommunication.

2.2.2 ENP2505

The Radisys ENP2505 (see figure 2.3) integrates the IXP12p8et on a network board.
It has four 10100 Mbit Ethernet ports for communication. For boot code ather stored
procedures, there are 8MB of Flash memory. The card haslat@MB of SRAM and
256MB of DRAM. In addition there are a serial port for intarifag and debugging, and a
PCI connector.
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Figure 2.2: IXP1200 block diagram [31].

2.2.3 IXP2400

The 1XP2400 chipset [32] is a second generation NPU platfoom Intel. It is designed
to handle a wide range of access, edge and core applicali¢ras a more powerful CPU
and microengines than the IXP1200 and is better suited fawyheetworking tasks. The
physical interfaces are customizable and can be choserelmahufacturer of the device
on which the IXP chipset is integrated. The number of netwmw#is and the network
port type are also customizable. The major functional ldawkthe IXP2400 chipset are
shown in figure 2.4:
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Figure 2.3: ENP2505 block diagram [12].

e An Intel 600MHz XScale core: The XScale core is capable of running an in-
dependent operating system (in our case, MontaVista Liounxembedded plat-
forms [37]). This unit is used to initialize and manage thgchlin a network
application, it typically controls some of the higher layetwork processing tasks
like updating IP routing tables.

e 8 600MHzuENgines: For dficient handling of general packet processing, the eight
uEngines can be used. These are separate 32 bit programmnébléhat are spe-
cialized for network processing. Eagitngine has a maximum of eight threads
(contexts) that can enhance performance further.

e Two independant SRAM controllers: The two SRAM controllers can independ-
ently access one SRAM channel each. This type of memory isrghiy used for
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Figure 2.4: IXP2400 block diagram [32].

packet metadata, control data, shared counters and \@siablomic control oper-
ations are supported for synchronization purposes.

e One DDR DRAM controller: DRAM memory is generally used to store packet
data. When a packet is received, it can be stored here, astep8 of the packet
handling pipeline can modify the packet from the same meraceg.

e Media switch fabric (MSF): The MSF is the IXP interface to the framing hard-
ware. This is where connections with the physical layer isfigoired. It contains
transmit and receive liers, and packets that are about to be transmitted are divided
into smaller MPacketaupon transmission to make the IXP chipset compatible with
as many dterent types of media hardware as possible.

e PCI 2.2 compliant controller: In order to connect with other components, like a
host machine or PCI compilant peripheral devices, the IX$ahBCI controller.

e Scratchpad, hash and CAP (SHaC) unit: Three of the most useful functions of
the IXP chipset resides in the SHaC unit:

— Scratchpad memory - 16KB:The scratchpad memory is a 16 KB storage for
general purpose use with atomic operations and ring suppbis is widely
used to convey packet fier handles betweenfiierent processing units.

1To make the IXP system compatible witHfeirent physical interface standards, packets are divided in
a basic unit called mpackets before they are sent to thdactecontrollers via the MSF. On the 1XP2400
mpackets can be 64, 128 or 256 bytes, but once configured,ghekeat size must remain constant [6].
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— Hash unit: The hash unit can be used to achieve hardware supporteddlash c
culations, thus giving increased performance when maliogups in tables
etc.

— Chip-wide control and status registers (CAP):The CAP unit is used to
handle inter-processor communications.

e XScale Core peripherals: These include an interrupt controller, four timers, one
serial UART port, 8 general purpose infuitput circuits (GPIOs), and an interface
for low-speed &-chip peripherals. In addition, the IXP chipset has a pentoice
monitor with registers for analyzing and tuning performanc

The sum of these components is the IXP2400 chipset. In théwaae board that is
available to us, this chipset resides on a network card madabdisys [51].

2.2.4 Radisys ENP2611

The Radisys ENP2611 [13] is a network board that integréie$XP2400 chipset, peri-
pherals, memory and physical interfaces. Figure 2.5 gigetiamatical representation of
the hardware. The following main components are present:

e 256MB (DDR) DRAM: The DRAM is, as mentioned in section 2.2.3, primarily
used to store packet data.

e 8MB SRAM: The SRAM is accessible via twoftierent channels to optimize per-
formance. It is generally used for metadata and sharedblasia

e 16MB StrataFlash memory: As on the ENP2505 this memory keeps the boot code
and utilities for the board. The increased size comparedad&NP2505 allows for
a Linux kernel to be loaded into the flash memory.

e Three gigabit ethernet interfaces: The physical communication with the network
is made possible by the optical transceivers that are dtedroy the PM3386 (con-
trols two optical interfaces) and PM3387 (controls one agitinterface) Gigabit
Ethernet controllers. These give the board a total of 3 aptnterfaces that can be
used freely by the IXP hardware.

e SCSI parallel interface v3 (SPI-3) bridge FPGA:The SPI-3 is used for connec-
tion between the physical interfaces and the IXP2400 MSE.the link between
the PM3386 and PM3387 controllers and the IXP2400.
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Two PCI-PCI bridges: The first is a non-transparent Intel 21555 PCI-bridge chip
which connects the internal 64-bit PCI bus to the backplast B2 or 64 bit PCI
bus. This gives the hardware the possibility to provideript®cessor communica-
tion and interrupts. The second is a Tl PCI2150 transpar€hbRdge which links
the internal 64-bit PCI bus to a downstream 32-bit PCI buss iBused to connect
the debug 100 interface to the rest of the chipset.

Ethernet controller: An Intel 82559 PCI Ethernet controller is used to control the
10/100 ethernet debug interface.

SPI-3 Option Board connector: This can be used to connect the chipset to a
service specific NPU co-processor that can be used to prduitieer hardware
support for specific tasks.

10/100 Ethernet interface: This debug port can not be used as a part of the IXP to-
pology, but is rather used as a tool for loading images inshfROM and mounting
NFS filesystems by the Linux kernel running on the XScale .core

Clock generation circuitry: The clock generation circuitry includes the general
IXP2400 system clock, and the interface clocks for the IXRMSHFPGA and
the FPGAPM338x interfaces.

Reset and initialization circuitry: This circuitry connects to a switch located on
the board to enable a manual reset. Software resets cartibézad both form the
board and via the PCI bridge.

Power: Power supply circuitry is needed for theférent logical parts of the chip-
set.

These components are the external hardware needed to ¢erajilectional IXP chipset
environment. The hardware manufacturers also provide sswfte/are tools to make
developing applications for the platform easier.

2.2.5 New hardware

After some time working on the ENP2505 [12], it became cléwat intel intended to
discontinue support of the IXP1200 [31] chipset, and aled XA SDK 2.01 [29], which
was the latest SDK version available for the IXP1200 chipaeabout the same time, we
received the ENP2611 [13] cards. The decision was then noegleitch to the ENP2611,
in the hope that the new Intel SDK 3.51 [30] would be a morelstabd thorough release
than the 2.01 which had proved to be especially challengimggke work smoothly. This,
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combined with the fact that developing applications foratfpirm that is no longer in use
would be of little future value, made it feasible to commewndth the hardware change

Component ENP2505 ENP2611
Core StrongARM XScale

Core clock frequency 232MHz 600MHz
Number ofuEngines 6 8

uEngine clock frequency 232MHz 600MHz
Threads perEngine 4 8

Scratch memory 4KB 16KB

Number of network interfaces 4 3

Type of network interfaces 10/100 Base-T Gigabit Optical

Table 2.1: Main diferences between ENP2505 and ENP2611

The most significant changes in hardware between the twtopiat are shown in table
2.1. The structural changes of the Intel IXA SDK versionsl2adid 3.51 are so signi-
ficant that porting IXP1200 applications to IXP2400 woulddaaken excessive work.
This task would be further complicated by the fact that tHeedent hardware peripherals
would demand dierent drivers and configuration. The consequence of thighedghe
applications had to be implemented from scratch on the natfgoim to make it conform
to the new SDK and hardware.

2.3 IXA software libraries and tools

The Intel IXA platform comes with software and libraries tgpport the programming
task. The main bundle is the Intel IXA software developmeaint KA SDK) that provides
debug tools, compilers and support libraries. There is als8DK for the board imple-
mentation that contains sample code and board specificrgriVéis section will give an
introduction to these libraries.

2.3.1 Intel IXA SDK 3.51

The Intel IXA SDK [30] is a set of libraries and reference dgs provided by Intel to
support programming the IXP chipsets. It also includes sdei®ig tools that interface

2This was considered to be profitable even though it mentirsggatmost from scratch with new hard-
ware and a new microengine programming language (micrd+t setup and configuration process would
also have to be figured out.
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with the card, and ease debugging:@&hgine application’s The main components of the
SDK are as follows:

e Development Workbench: The development workbench is a Windows application
that can be used to simulate the runningBhgine programs. It can also be used to
debug the program directly on the hardware by means of tH®0Mhetwork debug
port. SinceuEngines cannot directly provide output to screen, this isch that
is invaluable when it comes to verifying that your progranmf@ens as it should.

It also has the possibility of simulating a packet streamas®o see how the ap-
plication responds to ffierent input. It allows for analysis of the amount of cycles
different operations consumes, and to use this to eliminaterpehce bottlenecks.

e Software libraries for uEngines and XScale:Intel's software libraries, both for
uEngines and XScale, provides means of executing operatiathsntrinsics, sav-
ing implementation time on several tasks by reducing thesssry number of code
lines. There are also libraries for debugging via the XScatel hardware abstrac-
tion libraries for accessingEngine functionality from the XScale.

e Compilers, assemblers and linkers fopEngines: In the IXA SDK 3.5, Intel has
added Linux support for theEngine C language, and provided enhanced compilers
and assemblers. This makes development on an all-Linuxamient easier than
in was using prevous editions like the IXP1200 platform {31]

e Software framework and sample applications:The software framework is a col-
lection of libraries and sample applications that givesrasight into how diferent
networking functionality can be implemented using staddatel tools.

There are several layers of abstraction provided with thiK.SDh the bottom level micro-

code instructions can be used to manually set all needesteegi Common instruction
combinations are gathered in the intrinsics library for ffiggines. The micro-C lan-
guage provide an even greater level of abstraction by editimg the need for assembly-
style programming.

When programming for both XScale anBngines, the hardware abstraction layer (HAL)
and operating system services layer (OSSL) libraries geoaccess to microengine func-
tionality from the XScale. For larger scale programming¢hare a software framework
that manages resources and enables structures and mathedséiving common net-
working tasks.

3Debug printouts and similar techniques argiidillt due to the fact that theEngines do not allow any
screen output. All debugging of this kind will have to go i@ tXScale.
4This was previously only supported for Windows.

15



We have experienced that the abstractions provided by fheae framework often are
small, and therefore it may, for some tasks, be better to hisdhardware abstraction
libraries upon which the framework is built. This is partexly relevant for custom tasks
that does not conform with standard network applicatiorcedares.

The datatypes used when programming the platform are confiondoth uEngines and
XScale. The byte order of the datatypes is big-endian. Thst smmmon datatypes are
shown in table 2.2.

Term Words Bytes Bits
Byte i 1 8
Word 1 2 16
Longword 2 4 32
Quadword 4 8 64

Table 2.2: IXP2400 data terminology [32].

The IXA SDK is the main tool of development when writing sodtve applications for
the IXP2400 platform. Though the software framework is sfipeus in many cases, the
basic libraries are very useful for development on all laysrthe 1XP2400 hardware.

2.3.2 Radisys ENP SDK 3.5

Radisys supplies an SDK [33] which provides a range of sesvibat are specific to the
ENP2611 board. These services include:

Drivers for the PM3386 and PM3387 optical interface comgrsland for the SPI-3
bridge.

Sample application code with microblocks for transmittargl receiving packets,
that are adapted to the current physical interfaces.

Additional drivers that provide connection to the host dvex.

Kernel image of the Monta Vista Linux [37] operating systdrattcan be used on
the XScale.

The drivers for the PM3386m, PM3387 and SPI-3 give us the dppiby of tuning para-
meters on the hardware devices (like turning on affithardware ethernet checksum cal-
culation). Prior to running an IXP application, these drs/eave to be initialized.
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Figure 2.6: RX and TX block functionality and interface.

The microblocks provided have been an important tool. Theyraprinciple the same as
the Intel IXA SDK transmit and receive microblock referem@signs, but the parameters
have been adapted to suit the ENP2611 interfaces. Thus, nvmtegrate parts of this
code to provide us with suitable transmit and receive bldoksur purposes. Figure 2.6
shows a typical application setup. The Receive (RX) miaoklreceives data from all
ports, and passes a reference to the data on one scratclexipigifed later in section
2.3.3). An application opEngines or XScale can then process the data. To send data, a
reference has to be put on a scratch ring. The Transmit (ToGkak designed with three
input scratch rings. Which port the packet is to be trangaitin is decided by which
scrath ring the reference is passed on. The drivers and {spacific SDK provided by
Radisys is an extension of the more extensive SDK providddteyto support program-
ming the IXP chipset itself.

2.3.3 IXP programming paradigms
To handle the large throughput that is expected from a né&ingiapplication, a method
that has been proveiffective is to give the application a hierarchical struct@ie Figure

2.7 shows a diagram of the levels of structure. In practioes, neans that most of the
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packets arriving have to be handled by the lower processivgd (i.e., the:Engines).
Some packets can be sent to higher levels (XScale) for fughmcessing, and a few
packets can be forwarded further (for instance to the hoshina). The reason for this
is that the performance of the lowest level is highly optietifor dfective forwarding.
As you look at higher levels, you will find more general pugasocessing units that can
handle more diverse tasks at a penalty of throughput.

The operational layers are commonly divided in two. The ddalane” handles the high
speed processing and forwarding of the majority of netwakpts. The key elements
are real time forwarding andffeciency [41]. The “control plane” involves non-wire-
speed general purpose processing that can include talblgocrand updating, data plane
exceptions or computationally intensive tasks [41]. In2dR2400 setting the data plane
typically resides on theEngines, and the control plane is represented by the XScale.

Both hardware and software design reflects this design sploy, and as a result, trying
to move large datarates between XScale @adgines will yield poor results To ensure
efficient packet handling, steps must be taken upon implentgeapplications, so that
the majority of tasks are performed on the data-plane (itéls&s are not so processor-
intensive that they hamper the data pipeline throughput).

Packet handling As the goal of the lower layers of the network processor isaadhe
the packets as swiftly andfiziently as possible, it is essential to avoid unneccesgpy co
operations. Once the packet has been written to DRAM, itlessin the same memory
buffer until packet processing is finished, and the packet istnated or discarded. What
passes between thefidirent processing units is a longword with dataffeuhandle) from
which the packet location and metadata can be derived.

In the reference design from Intel, the RX and TX microbloaks bidfer handles as the
means to convey the reference to a packet between processisg From each lter
handle, the location of two related fiiers can be extracted:

e Packet metadata: The metadata contains information on the packet size, thte po
that received the packet, the port that is to transmit th&gtathe linking of bidifers
into larger packets etc (see figure 2.8). This data resid&RiM. (More details
can be found in the IXA framework reference manual [28].)

e Packet data: Located in DRAM, this is the Hitier where the packet data is actually
stored. The RX block reserves some space in front of the paokkafter the packet
ends in case additional headers have to be appended or geghen

SWe have achieved datarates of up to 100 Mbps between XScdlgEagines in experiments using
batch queuing of packets on a scratch ring.
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Figure 2.7: IXA Hierachy model [6]

The metadata Wbters, although customizable in size, are typically 32 byteg! The
data bidfers are defined by the need for space (2048 bytes would be aopaigpe size

if you want to store ethernet packets with an maximum traasion unit (MTU) of 1500
bytes). To be able to use the currenffeuhandle structure, the size of both the metadata
buffer and the data lffer have to be power of two. Figure 2.9 give an example of how
metadata and datdfeets are extracted from thefber handle in a typical data structure.
The SRAM and DRAM dFsets calculated from the fier handle give the starting position
of the respective Hter. The packet data in DRAM, however, starts a number of bgtes
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typedef __declspec(packed) union {
struct {
dl_buf_handle_t buffer_next;

uintl6_t buffer_size;
uintl6_t offset;

uint32_t packet_size : 16;
uint32_t free_list_id : 4;
uint32_t rx_stat : 4;
uint32_t header_type : 8;

uintl6_t input_port;
uintl6_t output_port;

uint32_t next_hop_id : 16;
uint32_t fabric_port : 8
uint32_t reserved : 4;
uint32_t nhid_type : 4

uint32_t color_id : 4;
uint32_t reserved_1 : 4;
uint32_t flow_id : 24;

uintl6_t class_id;
uintl6_t reserved_2;

uint32_t packet_next;
s
uint32_t value[8];/* aggregate for the above fields */
} dl_meta_t;

Figure 2.8: Struct describing packet metadata.

the bufer. This is to leave room in front of the packet in case we neegr¢pend the
packet data with a new header. Th&set where the packet data begins can be found in
the metadata (see theffset” field in figure 2.8). The 24 least significant bits proades
with the dfset of metadata in SRAM and to the data in DRAM. The two mostiBaant

bits indicate if the bffer is start of packet (SOP), end of packet (EOP) or both. Big i
make sure that packet sizes larger than the internétibsize can be accomodated. Bits
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SRAM metadata buffer size: 32 Bytes. 22
DRAM data buffer size: 2048 Bytes. 64
9
New buffer handle = old buffer handle+8. ..
0x8000
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Buffer handle 1: 0x2000 0x8040
SRAM offset = 0x2000 << 2 = 0x8000
DRAM offset = 0x2000 << 8 = 0x200000
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Buffer handle 2: 0x2008 >
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DRAM offset = 0x2008 << 8 = 0x200800
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Buffer handle 3: 0x2010 0x200800
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SRAM offset = 0x2010 << 2 = 0x8040
DRAM offset = 0x2010 << 8 = 0x201000

Figure 2.9: Calculation of metadata and dafsets from béer handle values.

24 through 30 state the cell count, indicating how many ¢blsbufer contains.

Scrath ring mechanics The SHaC unit of the IXP chipset contains 16KB scratchpad

memory that is accessible to the XScale andu@ilhgines. Listed below are its most
important properties:

e Normal read and write: The memory is accessible on 32 bit Baues. That im-
plies that you cannot read or write less than 32 bits at a tWoa.can read or write
up to 16 longwords with a single command.

e Atomic read-modify-write operations: You can set or cleigs,bncrement or decre-
ment, add or subtract in an atomic operation. These opastan also return the
pre-modified value of the written data.

e Sixteen hardware assisted rings for interprocess comratioic These rings are
implemented as FIFO-queues with a head and tail pointer.

5Cells are used for Asynchronous Transfer Mode (ATM) proogssWhen not in ATM mode, bits 24
through 30 can be used for other purposes.
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The most important generic use of scratch memory is as $cratgs. Given the buf-

fer handle structure described above, you can assign alkaiag as “egress” for one
uEngine and as “ingress” for another one (or the XScale ctires), in other words, used

to facilitate message passing betweefliedlent structural blocks. Since the location of
the packet metadata can be derived from th&doinandle, all necessary information can
be supplied by passing this oneffar handle on a scratch ring. Figure 2.10 shows the
use of a scratch ring to move fber handles from a producer component to a consumer
component. For optimization purposes, however, it is bs4o pass more information
about a packet or Itter on the ring. This can save SRAM accesses in cases whese ever
cycle is valuable.

2.3.4 MontaVista Linux

The final piece of software needed to use the ENP2611 as aatmpel network plat-

form is an operating system running on the XScale core. Fostéindard ENP SDK, this
OS is a small Linux distribution optimized for embedded foahs. The kernel image
is developed by MontaVista [37], and provided with the RgsliSDK. The MontaVista
preview kit for ENP2611 is, as the name suggests, a limitétbador evaluation pur-

poses. Itis based on the 2.4.14 Linux kernel. The hardwaverdrprovided by Radisys
and Intel extend the distribution functionality, and gitae programmer full control of the
IXP hardware. There is, however, an initiative in the opemrse community to provide
up to date Linux kernels for this platform [34].
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2.4 Summary

There is a wide range of possible uses for NPUs. Though tiseir wp to now, mostly
has been in free-standing embedded devices like routersmandged switches, network
boards are being developed that can add NPUs to conventimaetiines. In environ-
ments that have need for heavy network processing, thegeroaide valuable filoading
functionality.

The parallel processing done by the IXP chipsets providiestve packet processing
pipelines. More complicated tasks, like managing datatires and handling exeptions,
can be forwarded to the core CPU, though most packets sheutdibdled on the data
plane. The extensive programmability of the IXP platformegus the opportunity of
building custom functionality intgeEngines and core CPU and adapting the NPU func-
tionality to our needs.

There are many aspects of NPU functionality that have to péoexd in order to imple-
ment an application which uses the host, the NPU core and NR&pdane. In the next
chapter, we will explore some of these key features on theZBIPto try to evaluate the
performance of the hardware, and how such an applicatidrchase implemented.
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Chapter 3

IXP2400 Evaluation

We have, for some time now, been implementing applicationshe ENP2505. The
ENP2611 was radically ffierent, both in hardware functionality and in SDK structure
and use. To be able tdfeiently program the 1XP2400 hardware platform, and learn
the basics of configuring and using the hardware, it was sacgdo start with small
applications and expand the use as the needed knowledgejuiasdca With a hardware
platform so diterent from the programming environments that is common kedge,
aquiring the information needed and successfully applitings a great challenge. This
chapter describes the most important applications deedlap this process, and some
measurements that have been valuable, both for designengdieo cube solution, and
for planning IXP2400 application development in general.

3.1 Exploring the IXP2400 hardware

This section describes the applications developed to expihe 1XP2400 platform. The
first challenge was to be able to successfully transmit aceive packets. The next goal
was to modify packet data, and, finally, to do some packetgasinog on the XScale. The
ability to move data ficiently between the host and the IXP was also an area in guesti
(this is discussed in more detail in section 5.4). One of tlénohallenges was to find
methods of implementation that are as simple as possibtestitiueffective enough to
solve the task at hand. This was emphasized by the multitidi€ferent approaches that,
judging by the sample code applications provided in the DO¥Sall would achieve the
same goal.

After reviewing the domain of the server cube applicatiéiyeicame clear that the im-
plementation would need hardware resources on thiéereint levels (see section 2.3.3).
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The media stream was to be delivered from a server applicationing on the host ma-
chine. Some of the setup and routing structure maintenaatétbe done on the XScale,
but most of the large-scale packet processing had to be dopErmines. To ensure that
an expedient implementation could be made on the ENP26 11132400 chipset, the

workings of this hardware would have to be explored and scenéral questions would

have to be answered:

e How can operations be implementeti@ently on theuEngines?

Should we use microcode or micro-C pEngines?

How can data be transported to and from the XScale level?

How large bitrates can be moved to the XScale?

How can control-plane program functionality be implemerte the XScale?

How can data be transported to and from the host machine?

The questions regarding the IXP platform, when not exhangiata with the host, is
answered in this section, the questions that imply comnatioic with the host machine
will be further discussed in section 5.

3.2 Static forward

The key task when designing a network application is thatghd receive and transmit
packets #iciently. With the SDK supplied by Radisys, a small applicatwas included
that had microblocks designed for these tasks and configaredrk with the ENP2611
hardware. This is an application with a three microblock&tire as shown in figure 3.1.
The microblocks perform the following tasks:

e Microblock 1 - RX microblock: This microblock receives détam the medium. It
then reassembles the MPackets (see section 2.2.3) intagiabethernet packets.
The packet is written to DRAM, metadata is created in SRAM thiecbuter handle
(see section 2.3.3) is enqueued on a scratch ring.

e Microblock 2 - Packet echo: In this microblock, 5 longwordsgluding buter
handle and input port, are read from the RX scratch ring. Tpatiport number is
checked and the lfier handle is enqueued for sending on an outbound scratch ring
(TX) based on which input port it arrived on:-6 1,1 — 2,2 — 0.
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Input ort:/
PUtp To port2
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Figure 3.1: Radisys static forward application block dagr

e Microblock 3 - TX microblock: The bfier handles are dequeued from three dif-
ferent scratch rings by this microblock. An output port isrthselected based on
which scratch ring the handle arrived on. The packet is sptiit MPackets, and
transmitted on the chosen port.

The RX and TX microblocks maintain statistics on the numieeceived and transmitted
bytes and packets on each port. These variables are shadethmbe read by the XScale
application. The XScale application is also responsibleirdializing the spi3br and
pm3386 (see section 2.3.2) drivers, lgdthgine object file images into thé&Engines and
start theuEngines.

Itis worth noting that the RX microblock puts not one, but Bdavords on the scratch ring
bound for the packet echo microblock. The first longword &s biffer handle, the four
next are relevant metadata. The reason for this is probhbtthe receiving microblock
will save at least one SRAM access by having received thegbafiiset on the scratch
ring.

After some attempts of trying to design RX and TX code fronasdr, it was decided to
try to integrate the microblocks from the static forward léggiion into a custom applic-
ation by replacing the “packet echo” microblock. This prdve be a successful strategy,
and enabled the building of the next application.

3.3 IP header switch application

In order to find out more about the performanc@Bhgines and XScale, a simple applic-
ation that had to modify packet data was implemented. Thardementation performs
all task onuEngines, the second one forwards all packets to the XScalgrézessing.
The designs are described in the following sections.
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Figure 3.2: IP header switch application glangines.

3.3.1 uEngines implementation

To try to measure the time consumed by a simple applicatimhi@answer the question
of micro-C or microcode, it was decided to make a simple mcatibn of the static
forwarding application. This application also enabledagest the mechanisms needed
to change the packet data in DRAM from thEngine level. The following changes were
implemented:

e The packet echo microblock (originally written in micro@dvas replaced with a
version written in micro-C.

e The packet was to be transmitted on the same port it arrived.
e The source and destination ethernet addresses were savitche

e The source and destination IP addresses were switched.

The use of micro-C proved to make the programmingehgines easier. The code was
easier to read and survey, and a breakdown of the microcadiped by the compiler
showed that the amount of cycles used was not far from theogode version.

The greatest change from the static forward applicationtasthis application would
actually modify the incoming packets before transmittihgmh. The RX and TX mi-
croblocks from the static forward applications were reuskxdavoid having to calculate
ethernet checksums in software, ethernet checksummingydwiare was enabled for the
interfaces. This was done in the driver initialization of Scale code. The packet echo
block was given one context on opEngine, running in a loop receiving packets, switch-
ing headers, and transmitting packets. Figure 3.2 showsgrain of the microblock
usage and packet flow.
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The next thing that had to be explored was the passing fiébbandles to the XScale,
and how packet processing could be performed there. Fromexidm@ple applications in
the IXA SDK, there seemed to be several feasible approaches.

3.3.2 XScale implementation

To test the communication capabilities betweg&mgines and the XScale, it was decided
to implement the IP address switch functionality on the X&chn achieving this, a choice
had to be made between using the kernel-mode IXA Softwaneenaork structure, or to
manage with the hardware abstraction layer (HAL) libraries

The software framework was first tried, in the hope that it ldquiovide greater flexibility
and a larger degree of abstraction. The experience fronexpisriment was that most of
the methods introduced a greater aspect of complexity witbahancing functionality,
at least not for such simple tasks. One more complicatingpfagas that the software
framework required the application to be implemented asiagtenodule, thus excluding
the possibility of making use of general user-level libearin the development. The main
argument for running the XScale part of a network applicatio kernel mode, was to
avoid extra context switches (making it mof@@ent). The nature of IXP hardware (see
section 2.3.3), however, restricts the data flow betwedgemgines and XScale. This means
that the bottleneck will not be XScale processing, but theingof data between XScale
anduEngines.

Another consideration that had to be made was that, in theiseube application, data
had to be moved between the host and the XScale. One way aénmepiting this, that
looked promising was to use a socket on the ENP2611 debudgsatsection 5.4). Im-
plementing in kernel mode would make programming on a sacketface much more
difficult. The sum of these arguments led to a decision to redéisegapplication using
the HAL and operating system services layer (OSSL) libsaimeuser mode. Figure 3.3
shows the basic structure of this application.

The mechanism that seems to be the best for getting thierthandles to the XScale is
to spawn a thread that is dedicated to listening for an inpgririggered by the.Engine
code. There is functionality for this in the HAL. When thearrupt is generated, a given
procedure is called. This procedure processes the pacicif a packet has to be sent
to another stage in the processing pipeline, it can be emguein the appropriate scratch
ring. TheuEngine that wants to send a packet to the XScale simply s$leet budfer
handle on the scratch ring designated for communicatink thié XScale and generates
the appropriate interrupt.
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Figure 3.3: IP header switch application usjrigngines and XScale.

3.3.3 IP header switch application evaluation

In order to determine the general abilities of th&eatent networking components of the
IXP2400, the IP header switch application was created. dppication receives an IP
packet, switches the IP source and destination addressishes the source and des-
tination ethernet addresses, and transmits the packeemathe interface that it arrived
on. The nature of IP checksumming (a ones compliment sunesnid unnecessary to
recalculate the IP checksum.

In the following sections, the result of tests performediua functionality implemented
on different areas of the IXP platform and on a Linux host machineasgnted. The
measurements are done by timing a packet on the way out frermachine. The packet
is processed on another machine, and returned. Trezelice between the send time and
the receive time is then taken. The reason why the timingne @m the sending machine,
not the processing machine, is to ensure that the measutemiioe comparable. The
difference in platforms and implementations would lead to tesiét could not be com-
pared if measured on the processing machine. When lookihg aesults (inus) we have

to take into account that the times are not only processing for the machine perform-
ing the IP header field switch, but the processing time of émeler upon send and receive
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Figure 3.4: Generic test setup.

as well as the transmission times over network link and misse

Test setup The purpose of the test is to measure the time used by an apptdo
switch the source and destination IP header fields and theesand destination ethernet
header fields. The application that performs the task isemphted in four dierent
ways: On a Linux host in user space, on a Linux host in kernatspon an IXP card on
XScale and on an IXP card qutEngines.

The test itself is done by pinging the interface that the IRdee switch application is
assigned to. The ping packet will be echoed back to the sendhéch will generate a
reply. The reply is also echoed to the sender. The measutahelapsed time is done by
having tcpdump listen to the interface on the sending hoathiping request (or reply)
has a sequence number. By calculating the time between ICMRefs with matching
sequence numbers, the processing time for the packet parecacquired. In this test set,
two packet sizes was used: 98 and 1497 bytes packets. Thietfans to determine how
big part of the whole operation copy operations relatedéddlger packet size represents.
Figure 3.4 shows the generic test setup for the four tests.

The first implementation was done on a standard (SUSE 9.3) Linux hdbt avuser
space application. To be able to manipulate the IP headelyfra packet socket was
created. This socket makes a copy of received packets thaples with the packet
socket configuration The packet is then copied to a local applicatioffér) and the
source and destination IP addresses are switched. Thetpsckrally, returned to the

1The implemented packet socket was configured to receive glatkets on eth0 (gigabit interface).
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sender via the packet socket. The kernel ethernet layes talte of prepending the packet
with the correct ethernet header, and the packet is thesrtriéied on the interface. In
order of preventing the kernel from generating replies ®rgceived packets (the user
space application should have total control), IP packete@given interface is firewalled.
Figure 3.5 shows a diagram of the test setup for this impleatiem.

Test client Test server

Application: Switches
Ping application src and dst IP header fields

User space

Kernel space

Add ethernet header

Echoed
Ping request

tcpdump records
times

Copy of packet (except ethernet header) is forwarded to packet socket

Ping request

‘ Firewall: Packet is dropped

Figure 3.5: User space packet echo application test setup.

The secondmplementation uses Linux iptables to perform the headéicbvn kernel
space. This eliminates the need of context switches and apesations from kernel to
user space. There is, however, a possibility that the cofitplef iptables state matching
and routing operations can slow the process down a littlepawed to what an application
dedicated only to doing this one task can perform. The testdweae on the same host
as the user space implementaton test. In figure 3.6, theetiesgt for this implementation
is shown. The iptables NAT PREROUTING table rule rewrites A header destination
field to the sending machine’s address. The packet is thent@eauting. The Linux
routing table directs the packet back to the interface orclvitiwas received (based on
the rewritten IP header dst field). Finally, the iptables NADSTROUTING table rule
rewrites the source IP header field with the IP address obited machine, and the packet
is transmitted.

Thethird test implementation uses the IXP card, but performs thedreaglitching task
on the XScale core. The task is completely independent dfitinex Host, and all steps
are performed on the IXP platform. Figure 3.7 describes ¢ise getup for this imple-
mentation. The application receives the packets in the Rkoand forwards them to
the packet_echo block. They are then sent to the XScale garalling the “A’ interrupt.
The XScale core takes care of switching source and destmhgaders, and sends the
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times Ping request field rewritten to the interface field rewritten
it was received

Figure 3.6: Kernel space packet echo using iptables.

packet back to the packet_echo block. The packet is finabggmato the TX block and
transmitted on the same port it was received.

Test client Test server

Ping application

IXP card

XScale Int A thread

Switching of src and dst

XScale

microengines
RX echo X

tcpdump records Ping request
) [
times Echoed

Ping request

Figure 3.7: IXP XScale ICMP echo test setup.

In thefourth IP header switch implementation to be tested, all packetgssing is done
on the IXPuEngines. In an application such as this, with limited pregggpower needs,
we can expect a fairlyfgcient processing due to the parallel processing capasildn

theuEngines. If the need for processing power should increasepossible to distribute
processing further. In this implementation, however, #ek tof switching IP source and
destination addresses (and mac adresses) is done on amsingdengine. A diagram of
the test setup is shown in figure 3.8. The ICMP packets arévextby the TX block, and
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forwarded to the packet_echo microblock. The ethernetcgoaind destination fields are
switched, then the IP source and destination fields are lsgdtcThe packet is then sent
to the TX block to be transmitted back to the host who sent it.

Test client Test server

Ping application
XScale
microengines
RX Echo X
Switch src and dst
header fields
tcpdump records Ping request
times Echoed
Ping request

Figure 3.8: IXPuEngine ICMP echo test setup.

Packet size Max time  Min time Avg time Median Std. dev. Count

Linux host user space implementation

98 Bytes 19331us 11us 111us 105us 310us 99380
1497 Bytes 16216us  16us 172us 174us 102us 99960
Linux host kernel space implementation

98 Bytes 19723us  1lus 111us 101us 378us 98902
1497 Bytes 19092us  16us 168us 178us 182us 99806
IXP XScale implementation

98 Bytes 1145us 54us 123us 109us 44us 100000
1497 Bytes 1146us 110us 171us 173us 45,5 100000
IXP pEngines implementation

98 Bytes 1169us 28us 98us 99us 38us 100000
1497 Bytes 1150us 84us 151us 162us 50us 100000

Table 3.1: IP header switch application times.

Evaluation The purpose of the above tests was to compare the processmgtfthe
same functionality implemented on the IXP platform and orostimachine. Table 3.1
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Figure 3.9: Comparison of average times for the IP headdckwapplication.

shows the times and statistical data from the four IP heamiéctstests. A comparison of
the average times from the tests can be found in figure 3.9.

The fact that there are similar results on the iptables impletation and user space im-
plementation for the 98facket tests on the host can possibly be ascribed to the strin
matching support of iptables that makes it necessary to e@acket inspection on the
application layer [5]. The routing process will also congusome cycles. In the user
mode application, no other logic than switching the headeegpplied. The packet is
copied directly from the network layer, and immediatelyraed, thus bypassing several
costly operations.

The method that produced the highest processing time fd@8B#gacket tests, was the
XScale implementation. This is not unexpected as the actite is not supposed to do
processing of high-performance tasks on this level, biierabhandling of exceptions and
data structure updating (see section 2.3.3).

It is reasonable to assume that the applications will havgpend more time on copy
operations for the larger packet size, and that this is wat®the numbers somewhat.
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We can see that the overall times have increased for all rmgxtetations when the packet
size is 1497B. The average processing time is very similaith® user space implement-
ation, the iptables implementation and the XScale implaatem when the packet size

is 1497B. The reason why the XScale results have improvednmparison to the other
two may be attributed to the fact that no copying of the padkeurs on the IXP plat-
form after it is received. Thus, more resources should bedsahen the packetsize is
larger. The margin between thé€&ngines implementation and the other three has also
increased slightly. The ffierence between the XScale aifeingines results for 1497B is,
however, very close to thefiierence between the same implementations with 98B.This
makes sense when considering that the cost of copy opesasidime main thing separat-
ing the two experiments, and the fact that no excessive ogpykes place on either of
the IXP implementations.

The IXPuEngine implementation has the shortest average time obtlrédly a reasonable
margin for both packet sizes. This is probably due to thetfaaitnone of the components
in the processing pipeline has to wait for any system ressuother than the read and
write operations. The system is entirely and solely dedit#b the one task.

Although the processing speed of each functional unit ofi ¥ is slower than on the
generic computer used in the test, it seems that the fadhiatatform is dedicated to this
task gives an advantage in comparison to the host impleti@mt&or the implementation
that had to pass all the packets to the XScale, however, twdtsenvere poorer. This
matches the expectations outlined in section 2.3.3 aboBtglogramming paradigms.
For the implementation of other applications, this imptiest packet altering microblock
applications does not stand back in performace to similptementations on a generic
host, but that XScale processing should be used for exeeptiokets. The XScale was,
however, not so slow as to exclude using it to handle sitnatibat could arise quite
frequently.

Offloading network functionality tauEngines will, in other words, not only free host
resources, but also improve on the processing speed as winjeathe what the host
would be able to handle.

3.4 Performance gain by éoading

In this section, the possible system performance gainfiiyaaling network services will
be tested and discussed. As presented in section 2.1fftbading of network tasks is a
sensible step to take in order to free more system resourcégdiost.

As the host is given extra network load, an increase in thgseld time spent on other
processes is expected due to the fact that both the kernglrantbst cases, user space
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applications will have to process network data. Whétoading the network task to the
IXP, there should be no noticable increase in the processimgy

The following set of tests will try to indicate what the expegt gain from @floading a
“low-cost” task to a network processor can be. “Low-costtls context is that the
process of switching IP source and destination header fadldiSMP packets requires
little computational power. The fact that transport laysstpcols are not involved is also
a simplifying factor.

3.4.1 Test

The way the tests were conducted was to measure the timeisgéetprocess of com-
pressing a set of folders containing about 870MB of data thigt'tar” command. While
this is done, the system is subject to flood pinging with ptcké 1497 bytes. The ping
packets are processed with the IP header switch applisatiescribed in section 3.3.3.
The time spent was measured by running the “tar” commandigfirahe “time” com-
mand. This gave three results for each experiment:

e Real time: The total elapsed time for the command to run. ifcisides user space
time, kernel space time and the time the process is swappag and not running.

e User time: The active time the process has used in user space.

e Systime: The active time the process has spent in kerneéspac

A total of four tests was done, all withftierent types of IP header switch applications run-
ning on the tested host. Table 3.2 shows the data for therpsefbtests. The statistical
data for the first test shows how much time was spent on theepsoweith no extraordin-
ary network load. This should be used as a reference. In ttendeest, a user space
application is used to switch IP headers on the receivedarktpackets while the tar
process is running. The third test’s results display thesiifor the tar process while the
IP header source and destination field switch was handleg@thbles in the kernel. In
the fourth test the switching iditoaded to the IXP card, and performed on figngines.
Any interaction with the host system that may occur is in otdeead from the NFS file
system.

3.4.2 Discussion
Figure 3.10 shows the average load times for this test divideeal time, user time and

sys time. Figures 3.11, 3.12 and 3.13 show a zoom in of thefteaah group from figure
3.10.
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Time class Max time Min time Avg time Median Std. dev. Count

Reference time - No extraordinary load.

Real time 153.07s 132.57s 142.42s 142.35s 4.0946s 201
User time 74.5s 73.16s 73.41s 73.39s 0.1367s 201

System time 6.94s 6.32s 6.6105s 6.61s 0.1152s 201

User space IP header switch.

Real time 165.53s 142.12s 153.43s 153.61s 4.7797s 201
User time 80.17s 77.18s 77.62s 77.57s 0.3219s 201
System time 10.23s 7.57s 9.3971s 9.44s 0.4537s 201

Iptables IP header switch

Real time 162.21s 136.06s 146.56s 146.46s 4.6399s 201
User time 76.89s 75.85s 76.2s 76.18s 0.1639s 201
System time 8.71s 7.36s 7.8907s 7.88s 0.2067s 201

IXP uEngines IP header switch

Real time 156.13s 130.68s 141.12s 141.13s 4.2010s 201
User time 73.88s 73.05s 73.3687s 73.36s 0.134s 201
System time 6.83s 6.14s 6.4602s 6.46s 0.127s 201

Table 3.2: Time used for tar process witlifdrent IP header switch implementations.

Because filoading the IP header switch application to the IXP card shia#lve the host
undisturbed to attend to other tasks, the “no-load” testsishyield the same results as
the IXP-implementation. There is, however, a sligtitetence in the numbers. It seems
that the times for the IXP implementation tests are sligltdyer than for the “no-load”
tests. This is probably due to theff@girence in network setup that is necessary to perform
the tests. This can lead to system services slightly chgniggiaviour, and the results
may therefore be somewhdtected.

The trend for the user space IP header switch implementt&ins as expected. The
numbers tells us that when subjected to this network loakjtie used by the tar process
increases by 8,73 percent compared to the IXP implementtdgi. The user space load
times and kernel space load times confirm this tendency.

The iptables implementation load test times show a sigmifitaprovement over the user
space implementation tests. It is still somewhat highen tha IXP implementation test
times. The elimination of costly context switches, and alspy operations can probably
explain most of the improvement. The elapsed time for tiasigestill 3,86 percent slower
than for the IXP implementation test.

The IP header switch application applied to ICMP packets/srg simple task. For more
complex protocol handling tasks, thefdrence in times would be bigger since the kernel
tasks would have priority over the tar process. The potkottikne IXP card to handle the
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Figure 3.10: Times spent on tar process witffatent implementations of IP header
switch application.

more complex tasks with equdiieiency (due to pipelining) increases the probability of
even higher benefits fromfitoading tasks.

3.5 Summary

In this chapter we have evaluated the ENP2611 NPU board. vidhestion have consisted
of tests related to packet handlingm@Bngines and on theXScale. We have also examined
the possible performance gain bffloading simple network functionality.

The IP header switch tests confirm the control pladata plane implementation model,
but also indicates that reasonable processing speed caieyed on the XScale. This
has to be taken into consideration when partitioning tasks®en IXP system layers. The
load tests shows thaffipading network tasks to a NPU will free considerable resesirc
When the bandwidth increases, this gain will probably beiatuo high-throughput ap-
plications like a multimedia server.
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Chapter 4

Multimedia systems

In order to understand the mechanisms needed to implemesititios in the area of
multimedia systems, we have to take a look at the properiesutiimedia systems and
the challenges they present. This chapter will present saaoiemedia applications and
the requirements needed by such systems. An overview of saisgng solutions and
related protocols will also be presented.

4.1 Multimedia applications

One attempt to define the term multimedia tells us that it isartban one concurrent
presentation medium [40]. In this thesis, we will refer tolimiedia as one or more
presentation media delivered from one computer to another @ network connection.
Note that this does not exclude the cases where only one mddel, only video) is de-

livered. The main point is that the systems that is descritasdthe functionality required
to deliver more than one type of media.

There exists many ffierent multimedia applications today, and new, inventivesusre
steadily being developed. Some common areas of use toddyecan

e Teleconferencing: Giving people located physically far apart the possibibtfy
speaking to each other and see the other participants of #etimg. Previously
used with only sound over regular phone lines, telecont@ngnover data links
opens up new possibilities like sharing presentationsoh@nts or mark up a com-
mon whiteboard.

¢ Video on demand (VoD): Video (and audio) delivered to a client upon request.
This gives the customer the possibility of requesting amigtbenever hishe wants.
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The greatest challenge in this area has been the large @stareolved. However,
the improvement of the network infrastructure makes thedatisns more com-
mon. An example of an operative VoD site is SF-anytime [58].

¢ Audio on demand: Due to dfective compression techniques like RealAudio [53],
mp3 [39] and Ogg Vorbis [45], the streaming of audio has befamsliarity on the
internet for several years. Common streamed audio sergarebe radio channels
broadcasted over Internet, or sound used to &i@tiEto a website. The data stream
can also provide metadata for the audio transmitted (likengeyou which radio
program you are listening to).

e Gaming applications: The number of people using online games and virtual com-
munities have exploded the last years. As an example, thera@re than 2 million
users of the role playing game “World of Warcraft” [62]. Thata that has to be
transmitted is mainly information about player actions andironment, although
pictures, sound and executable code are also common togexhiarthis field there
are a lot of challenges related to keeping the game worldistems to all players,
and to minimize the data that has to be passed to each player.

e Education: There are many ways to use multimedia services for eductpn-
poses. Students can be shown presentations, ask questiotisn( or by audio
transfer), solve graphical tasks or participate in disicunss Lectures can be trans-
mitted, both live and on demand, allowing students in renhmtations the same
possibilities as those able to travel to the lecture locatio

These are only some of the myriad of multimedia applicattbasare in use today. With
the ascent of common broadband networkinffedent multimedia content delivered via
network to end users are increasingly common. This presength some challenges,
given the fact that multimedia usually have some propethas are diferent from the
kind of data that has been the most common to access overtéraghuntil recently.

4.2 Multimedia requirements

When a server has the task of delivering multimedia contbete are some flerences
in requirements compared to most other networking appiicat The most important
differences are:

e High data rates: Each second of a movie combining audio afebwvill require a
relatively large amount of data to be transferred per timeawrer the network in
order to yield satisfying results.
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e Large amount of data: The data that have to be delivered gcowzh storage
space, and the internal server operations needed to haedlata will consequently
be costly (due to copy operations, buss transfers etc.).

e Many concurrent streams: If several users request contaheassame time, the
server will have to provide output of very high bit rates tonypatreams.

e Time-sensitivity: The frames delivered will have to reabhk tlient within certain
time-limits to ensure that the presentation will be satisfgy. In applications with
several interacting participants, like teleconferen@ngnline games, the data has
to reach all participants in due time in order to make theiappbn work.

In addition, there are challenges related to the combinatdfadifferent types of media
into streams. As an example, there can be a video conferkatmtludes a presentation,
video and audio. All of these components have to be delivaretdme, to all of the
different participants.

Two very common media types are audio and video. An exampéidio data is a 16
bit, 44KHz compact disk (CD), with a play time of 77 minutesl&® seconds. The data
on this CD will occupy 780.56MB [14]. If we were to stream thista uncompressed, the
bitrate would be 1.3Mbps. This, however, is vastlyfiteéent. To solve this problem it is
usual to compress the data before transmitting. Audio dleethis can be compressed
without losing any of the original sound data. Using freesless audio compression
(FLAC) [14], this audio file can be reduced to the size of 46818, giving us a bitrate of
713Kbps. Applying a lossy compression we can further redneaneeded bitrate. With
Moving Pictures Expert Group (MPEG)2.Layer 3 (MP3) compression, the bitrate can
be reduced to 128Kbps without noticeable loss of audio tyu@s subjectively estimated
by the listener) [16]

Video streams will require even higher bitrates than aulliphase-alternating line (PAL)
DVD standard can have a resolution of 720x576 pixels, ancgadrate of 25 frames
per second. This will give an uncompressed bitrate of abd@tMbps (given a color
depth of 24bitpixel). This would be almost impossible both to store andisiiciently
with todays technology. On regular DVD records, howeves,dhta is compressed with
MPEGZ2. This gives a maximum bitrate of about 9 Mbps for thewidtream [11]. With
the help of MPEG 4 encoding, the bitrate can be brought dowh-20Mbps without
apparent loss in visual quality [9].

Even with the help of advanced compression techniques, wesea of the above ex-
amples that the datarates involved are still formidableis Bpurs us to find ways of
implementing server solutions that are able to meet the ddethat multimedia applic-
ations presents.

When lossy compression is applied, it is impossible to restoe data to its original form.
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4.3 Improving server performance

There are several ways to improve operating systems anidreed server models to
enhance performance when applied to multimedia contemeSx the approaches are:

e Enhance server internals and software to allow gredtamiency (on one server).
Such enhancements can be to optimize disk performance bingldata on the
disk in ways that is ideal for the type of media [24], or to ehate copy operations
when moving data from disk to transmission medium [21]. Exdements can also
be made to how dlierent protocols are processed, saving precious cycles.

¢ Build server clusters that behave like one server as seentfre outside. These can
be directly interconnected, or connected by a switchedorttpology. Examples
of existing solutions are nCube n4x [42], IBM VideoCharg&s][and Oracle inter-
Media [46].

¢ Distribute delivery through proxies. Examples of systenithsupport for this
are Apple Darwin streaming server [8] and Komssys [36]. Kigl of approach
can be further enhanced by applying multicast techniquesdleaning [23] and
patching [20].

In addition, there are eierent ways to combine one or more of the above components to
accommodate the needs of the system that is to be designed.

Next, we will present some server implementation strategad show how these deals
with the challenges that comes from multimedia requiresient

4.4 Multimedia server implementations

There are may strategies that are applicable when it comegtementing adapted mul-
timedia servers. In this section, three implementaticatsgies will be described, namely
single server, server clusters and proxies. It has to betBatdhese strategies are not
mutually exclusive. A good single server implementation ba multiplied to build a
server cluster structure, which again can be enhanced agingxy strategy.

4.4.1 Single server implementation

There are many multimedia single-server implementationthe market today, although
most of them can be combined to formffdrent types of clusters. Server implement-
ations that are in production today are amongst others: ciQime” [50], “Real Helix
Server” [54], “Alex Arachnid” [2], “Apple Darwin” [8] and “BM VideoCharger” [25].
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Figure 4.1: Simple general server architecture [23]

When deploying a single server to serve a (potentially)damnount of users, it is com-
mon to spend large amounts on hardware (e.g., disks, memdrBU power) to allow
the server to handle periods of greafiia Most of these resources will then be idle most
of the time. Another aspect of the single server solutiorh#é it scales poorly. That
implies that hardware upgrades, or even buying a new magchitide required to meet
demand.

Figure 4.1 depicts a common layout for a multimedia servdre @liagram divides the
server components in three main parts, namely storageegsoc and network subsys-
tems. The storage subsystem keeps the data that is to beiti@as and the networking
subsystem handles the actual transfer of data to the cli@etprocessor subsystem is re-
sponsible for all the tasks required to control and syndlaeotine operations. The diagram
also divides the typical tasks of the processor subsystehnee; Data server, application
server, and control server. The application server funelity is typically the interaction
with the user. This part can give a list of available matemaganize billing and keep
track of users. The data stream itself is delivered by tha datver. The control server
can be used to guide the whole process, synchronize thetmpmsizand make sure only
valid, authorized transactions are committed.

In order to make the servers better adapted to multimednsadions, there are many
alterations that can be made to architecture and operaystgras. File systems that
specialize on continuous data and large files can be impl@deBxamples of specialized
file systems are Minorca, Fellini and Presto [23]. We can uskifprocessor (and multi-
core) architectures to make data processing méective. Operating systems can be
modified to make the data-path mo@@ent (i.e., DROPS [10] and INSTANCE [47]).
These kind of alterations, especially the ones that impktam built hardware or over-
provisioning, are expensive. In order to make cdBtient server solutions, it is common
to use other strategies to meet the scaling obstacles.
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4.4.2 Server cluster implementation

To meet the demand for scalability, it is possible to disti@the multimedia server over

several interconnected computers. These systems canebat@ne server as seen from
the outside, but will internally distribute the tasks beéweseveral machines. It is also
possible to distribute the content between several phijyss@parated servers.

Different topologiesfber different benefits to the cluster. This, and the cost of implement
ing the system (number of connections per node, cost of Bastetc.), must be taken into
consideration when deciding upon a topology. Figure 4.2wslsbme popular intercon-
nection topologies [19]. The fully interconnected solatizvhere every node has a direct
connection to every other node, is the one with the greasgsililities in terms of com-
munication, but it is also the most expensive to implemembast cases [19]. From this
extreme there are interconnect topology variants whicle haypass some data through
other nodes to reach its target. For the tree topology, thiasthe access point of all data,
and therefore a possible bottleneck. Mesh or hypercubddggs will have more evenly
distributed data, but will require more complex search anding algorithms. Switched
networking topologies are well-known, and scales well. 3lwvgching mechanisms, how-
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ever, increases the inter-node latency.

In order to be scalable, most video server solutions havéemmgnted support for clus-
tering in one way or another. This kind of support can rangmfsimple load-balancing
algorithms which divide the load betweenrnfdrent free-standing servers to more com-
plex interconnection topologies and strategies. Exangdlsesrver solutions with support
for clustering is “Real Helix” [54] and “IBM VideoCharger2b]. There are also server
solutions that are not based on switched network clustglnigon direct interconnection
topologies. An example of this is the “nCube n4x” [42] serselution [4]. This cluster
solution is based on a hypercube topology, with directlgricdnnected nodes.

4.4.3 Proxies

The main idea of proxies is to move the most popular contergetlto the end users,
and in this way reduce tfiac on the main content server(s) and backbone network. A
statistical rule of thumb is that a great majority of the resfed content is represented by
just a few of the most popular titles [63]. This empirical ebstion makes it possible
to design caching strategies that make proxies keep thewawsed media, and forward
requests for less popular media upward in the media sereearchy. Another fect

of this strategy is that the proxy servers can actually beedastoser to the end user
physically, thus reducing network tfec.

Figure 4.3 shows a possible proxy server layout. In thisrdiag the master servers have
available all the ffered content. When requests are made from the end usersgthests
are sent to the master servers which provide the contentinfitween proxy servers can
then begin to cache the most requested titles of their redituitimedia server solutions
that support proxying include “Real Helix” [53] and “Komss)[{36],

4.5 Hypercubgn4x server solution

In the myriad of diferent architectures and server topologies, one systenpolsaesses
many of the wanted characteristics is the c-cor n4x [4] (loesly nCube n4x [42]). The
solution is, however, based on custom hardware, and is qupensive to deploy. This
section will try to describe some of the key aspects of thesoiution.

4.5.1 Hypercube multicomputer structure

This subsection will describe why a hypercube is a good baseari interconnection
topology. To show this, we first have to explain the geomatpcoperties of a hypercube
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structure. This is the “Free On-line Dictionary of Compugtirffoldoc) [15] definition of
a hypercube:

A cube of more than three dimensions. A singlé £1) point (or "node")
can be considered as a zero dimensional cube, thYam(®les joined by a line
(or "edge") are a one dimensional cube, folf) (@des arranged in a square
are a two dimensional cube and eight)(Rodes are an ordinary three di-
mensional cube. Continuing this geometric progressiamfitst hypercube
has 2 = 16 nodes and is a four dimensional shape (a "four-cube") and a
N dimensional cube has'Zhodes (an "N-cube"). To make an+lll dimen-
sional cube, take two N dimensional cubes and join each nodme cube
to the corresponding node on the other. A four-cube can helsed as a
three-cube with a smaller three-cube centred inside it e@ipes radiating
diagonally out (in the fourth dimension) from each node anitimer cube to
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the corresponding node on the outer cube.

Each node in an N dimensional cube is directly connected ttheranodes.
We can identify each node by a set of N Cartesian coordinakesereach
coordinate is either zero or one. Two node will be directlgrected if they
differ in only one coordinate.

The simple, regular geometrical structure and the closgiosiship between
the coordinate system and binary numbers make the hypeacudggpropriate
topology for a parallel computer interconnection networke fact that the
number of directly connected, "nearest neighbour”, node®ases with the
total size of the network is also highly desirable for a datalomputer.

There are several advantages to an interconnected topaloggnparison with a switched
network topology. The direct connections reduces latewtych switched connections
would introduce. Powerful switches are expensive, so achet network doesn’t scale
well in terms of cost [19]. It must also be considered that mvimeplementing an applic-
ation for an interconnected network, yau are free to makenigetd protocols that can
enhance performance for your task.

In principle, the hypercube topology can be used to impldrdéferent sorts of parallel
multicomputers. The topology has a balance between the ifttkrconnected network,
where a connection point to every other node must be supmi@dh would be expensive,
and topologies where the data have to travel a long distanoedne node to another. A
multicomputer is a cluster of interconnected cooperatiognuter nodes, behaving as
one computer. It distributes tasks and information by nesgessing (as opposed to a
multiprocessor where several processors share a common memory areapg.from
the outside, it will behave as one server instance.

The qualities of hypercube topology ensure that when thesysize increases, no new
bottlenecks are introduced. Figure 4.4 shows how nodesdutedain the cube. The

amount of possible routes for information to take in the coiades an even distribution
of message passing possible.

4.5.2 The c-cor n4x multimedia server architecture

The n4x solution [4] makes use of the Hypercube topology tolément a multimedia
server cluster that allows for a great bandwidth potenfiais is made #icient by high-
speed message routing hardware [4]. The solution is sealsdause you can expand it
exponentially (see section 4.5.1) There is no single pdifdilure; routing is dynamically
processed. The routing is acieved through hardware edlydnidt for this task. This also
helps performance when data can be routed by the le#isthkex route, or avoid broken
routes. Since there are only one copy per content-item, xinmaes storage space. The
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system boasts ability to serve over 60000 concurrent sgeasith rates of 16Gbps per
node and over 2 Thps systemwide [42]. This is achieved bygukie topology to evenly
distribute data load internally in the cube. Each node hasl&itiplex, high-speed ports
for intra-cube communication. Internal load-balancingdsieved by stripingthe data
over all disks in the cube. The redundant array of inexpendisks (RAID) striping also
ensures that if a whole node (and all its disks) fails, theéesgscan continue operation
uninterrupted.

The n4x MediaHUBs are where the data is stored. These nodestarconnected with
eight hypecube connectors. This can accomodate a hypevdtibe = 8 or a total of
256 nodes. These require no common memory access, they ssageepassing to move
data. The messages are controlled by an adaptive routitgnsyd his system will find
the most éicient route from point to point, and will avoid heavily fii@ked routes or
broken links.

The interconnection is supported by special hypercube exon hardware. This hard-
ware supports routing logic by using a built-in vector psss® unit [42]. This ensures
that sdficient resources are available for video data retrieval &redsing on the server.

To transmit the data delivered by the cube, n4x uses hardingrkemented interface
modules customized for the needed transmission type. Heangp such modules are:
QAM Cable, ATM, DVB-ASI, Ethernet and Gigabit Ethernet. Beeinterface modules
have hardware support for i.e. multiplexing, encoding ewfrd error correction (FEC)
operations needed to support its interface fypelel. This enables high output datarates
from each hypercube node (MediaHUB).

2The data for each media item is evenly distributed amongpales, requiring a smaller amount of data
to be fetched from each node, thus reducing the possibflibptilenecks.
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The custom built components are assembled on a motherbaarthtel [27] 860 chipset
and an Intel Xeon processor. The disk array are controlle@logic 12160 [49] SCSI
controllers. Put together, these components form a cugtdstd, scalable server solution.

The next section will present some protocols that are instntal in achieving better
multimedia streaming performance. The protocols presearte used for setting up and
performing streaming of real-time data.

4.6 Protocols

To set up a multimedia stream, we have to make use of somettootsitrol the stream
(start, stop, pause the stream etc.), to convey informationit how the stream progresses,
and to be able to ship the data with the necessary informatfibis can for example be
accomplished with the following protocols:

e Real-Time Streaming Protocol (RTSP) [56]: Used to issugrobnommands to a
multimedia server. Enables the client to for instance pdégp or pause a media
stream. Also used to setup the stream, and convey necesfarpation about port
numbers for server and client.

e Real-Time Transport Protocol (RTP) [55]: Used for sendirgdia. Provides ser-
vices like payload type identification, timestamps, segeamumbering and deliv-
ery monitoring.

RTP Control Protocol (RTCP) is used in conjunction with RDBPatlow the service to
optimize streaming performance based on feedback fromligr&.cThis protocol is used
to send information between the client(s) and server(seapkrack of the progress and
quality of the stream(s). The server(s) can then make adgrgs to compensate for any
events that may occur during transmission.

46.1 RTSP

The RTSP protocol [56] is an application-layer protocol dontrolling media streams.
An RTSP session is identified by its ID on the server and is detaly independent of
an eventual TCP connection. Consequently, the client cen epd close several TCP
connections, and still control the same RTSP session. R&BRlso be conveyed by user
datagram protocol (UDP). In most aspects, RTSP is very aimolHTTR1.1 [17]. The
protocol supports the following operations:

e Retrieval of media from media server.
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e Invitation of a media server to a conference.

e Addition of media to an existing presentation.

To be able to send a request for media, the client has to have sdo about it. This can
be placed in a description of the media, and can be made bheitadifferent ways, like
publishing it on a web server, or making it available throtigg media server itself. The
description will also give information about the transpmetthods the server is capable
of. The alternatives are:

e Unicast with the client determining the port.
e Multicast with the server determining the address and port.

¢ Multicast with the client determining the address and port.

The stream controlled by RTSP may be sent via a separatecptpbodependent of the
control channel. A common protocol combination to use is RIDP. The stream is
totally independent of RTSP, and once started, it will aoungi until the media is exhausted
if no more commands are received. The RTSP session on the lahd will have to
maintain a state depending on which commands it has receiiel specification states
that the RTSP session identifier has to be randomly genei@tedas to be at least eight
octets long to make guessing the ID mor#idult.

The following RTSP methods willffect the sessions state:
e SETUP: Initiates an RTSP session and allocates resouncagfeen stream.
e PLAY and RECORD: Start transmission of an already configstesam.

e PAUSE: Halts a stream. Does not free server resources. fgastan be restarted
if wanted.

o TEARDOWN: Releases the RTSP session, and frees the resalloceated for the
stream.

The location of the media controlled by RTSP is defined by th&Runiform resource
locator (URL). Itis equivalentto a HTTP URL, and describes $server address, eventual
port number and the absolute path of the media on the ser@&r [5

rtsp_URL = ( "rtsp:" | "rtspu:" )
"//" host [ ":" port ] [ abs_path ]
host = <A legal Internet host domain name of

IP address (in dotted decimal form)>

51



The RTSP message is text-based, and each line is termingte@€RLF. The character
set used is ISO 10646.

When a request is received and interpreted a response veidlrite The response can have
the following format: [56]

Response = Status-Line
*( general-header
| response-header
| entity-header )
CRLF
[ message-body ]

The status line consists of the RTSP version type, a statlssa&od a reason-phrase. The
reason-phrase is intended to give a short textual exptamafithe status code. The status
codes can be classified as follows:

e 1xx: Informational - Request received, continuing process

e 2xX: Success - The action was successfully received, utoaetsand accepted

3xx: Redirection - Further action must be taken in order tmglete the request

4xx: Client Error - The request contains bad syntax or cabedulfilled

5xx: Server Error - The server failed to fulfill an apparentyfid request

The response header gives additional information thaidcoot be included in the status
field. This includes additional information about the reseurequested like for instance
server and client port numbers for the media stream.

Each RTSP request carries a sequence number labeled “CBsg5equence number is
incremented by one for each new request. If a given requesitiacknowledged, the
eventual retransmission of the request have to carry the smguence number as the
original request.

Figure 4.5 shows a typical RTSP session. The first step focliaet is to retrieve in-
formation about the stream. In this example, it sends a aeddil TP request to a web
server, and gets the description file in response. This fildddoave been made available
from the media server too, accessed with an RTSP DESCRIBkeseqThe client now
sends a SETUP request, asking the server to reserve resdorcee new stream. If all
is well, the server responds with an OK message containiegnfiormation needed by
the client to receive the stream. When the client is ready, AYRequest is sent to the
server. This tells the server to commence streaming the @aeserver sends an RTSP
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Figure 4.5: A typical RTSP session [7]

OK to the client, and starts to send RTP packets with the gqdealata. If supported, the
client occasionally sends RTCP feedback messages to ter $ereport on the state of
the stream. If a PAUSE or STOP message is received, the seifl/bave to take the ap-
propriate action. To end the RTSP session, and free alecelasources, a TEARDOWN
message is sent from the client.

46.2 RTP

RTP [55] is a protocol which provides a set of services foll-tigae media stream-
ing purposes. These services include payload type idattdit, sequence numbering,
timestamping and delivery monitoring. RTP is usually baisgd on top of UDP, but itis
also possible to use it with other suitable underlying nekwwwotocols. The protocol was
primarily designed to facilitate multimedia conferendast is in common use as a means
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Figure 4.6: RTP header format.

to transport any kind of real-time media stream.

The RTP headeris shown in figure 4.6. The version (V) field of the RTP headatest
which version is used in the implementation. The versiongteged by RFC3550 is 2.

The padding bit (P) states that at least one octet at the ethé payload is padding. How
many octets are padding can be found by reading the last dé¢tistpadding is necessary
for some encryption algorithms.

The extension bit (X) states that exactly one header exdarfsilows the RTP header.
The potential header extension has a field that states itdevgth. It is recommended
to try to manage challenges using conventional means, grid &void using the header
extension.

The source of an RTP session is identified by a 32 bit synchation source (SSRC)
identifier (figure 4.6.2). This makes the source independémetwork addresses for
identification. Packets from a given synchronization sewsbare the same timer and
sequence number space. In that way the client can group ¢bvee packets by SSRC
for playback (for instance where severdfeient RTP sessions are received on the same
port). The SSRC is to be chosen randomly, and is meant to l@kfainique inside a
specific RTP session.

If there are contributors to an RTP session (for instancevwésal media streams are mixed
into one), the RTP header is appended with the SSRC'’s fordhiibuting streams. This
could for instance happen in an audio conference, where tkerrmould identify the
speakers contributing to the audio by appending their dmritng sources CSRCs to the
RTP header.
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The CSRC count (CC) field contains a number indicating howyn@®RC'’s are appen-
ded to the header.

The usage of the marker bit (M) is defined by a profile. It cand®lto indicate signific-
ant points in a stream, like frame-boundaries.

The payload type field (PT) contains a code identifying threnit of the payload media.
Some standard types are defined in RFC3551. If a receivemioescognize the payload
type, the received packets will be discarded.

The sequence number is incremented by one for each packefl$eninitial value is to
be chosen randomly to make attacks on encryption mdiieuli.

The timestamp field represents the sampling time for thegaatlata. It is derived from a
time reading, or from the nominal sample instance. The gsgjon rate of the timestamp
can therefore be tfierent depending on the sample rate of the payload media améai{o
The initial value should be chosen randomly. If, for inseneeveral packets belong to
the same video frame, they should have the same timestamsy.Wduld, however, have
consecutive sequence numbers.

An RTP session can be monitored and enhanced using RTCPdertaewith the session.
This is done by sending RTCP sender and receiver reportsnitiaate how all of the
parts involved in an RTP session are doing.

0 1 2 3
01234567890 123456789012345678901
T T e o T T e S S e B e s s ot TR R DR R
| defined by profile | length |
T T e o T T e S S e B e s s ot TR R DR R

| header extension

et e s st S s mat o S S

Figure 4.7: RTP header extension format.

RTP header extension (figure 4.7) is a mechanism that allomaistom extensions to be
added to the RTP header. Itis possible to implement sernerslgéents that support these
extensions, but systems that do not support the custom maddust be able to ignore
the extension without losing any of the original RTP funpabty. It is recommended in

the specification that other methods should be used to over@my challenges that an
extension would help solving.
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4.7 Summary

What is wanted from a multimedia server solution is high @enfance to serve the clients
during eventual peaks, scalability to meet an increasimgashel, and reliability to make
the users trust the supplier [59]. In this chapter, we haea $leat multimedia applica-
tions have a range of stringent requirements that must beThetmethods for achieving
this are to build optimized servers, to group the serverpetisl topologies and to dis-
tribute the content to proxies, depending on demand. Toa@tigpch services, enhance
transmission and optimize streaming, we can make use ofadgeotocols like RTSP,
RTPRTCP that improve the streaming performance and adaptabili

The c-cor ndx addresses many of the multimedia challengasoned. The n4x approach
achieves better multimedia streaming performance and isxalié, freely expandable
topology, but uses special hardware thitoads the main processing platform. There
are custom hardware both for routing inside the server tgpolnd for multeplexing,
encoding and transmitting data out of the cube witfedent network standards. Although
effective, this kind of custom hardware is expensive to develop

Today, more and more parts of standard computer componentgven their own pro-
cessing power in order tofftoad the central systems. In the wake of this development,
there have surfaced new platforms of programmble hardwéhesgecial properties and
uses. One common example of this is the graphics processih@g@PU) commonly
used to tfload demanding graphical calculations. Another platforat th maturing is
the Network Processing Unit (NPU). These are programmatiks optimized for net-
work functionality. The NPU’s are mass-produced, and netht cheap. The possibility
then arises for programming these units to perform taskgtieaiously would have to be
hardware-implemented, like hypercube routing mechanisrasserver solution.

In the next chapter, the implementation of the basic fumetiity of a video server cube
(VS®) will be described. The server cube will have a hypercubégde®pology, and
IXP2400 NPUs will be used to handle the routing process.
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Chapter 5

The VS? Video Server Cube

This section describes the steps taken to implement a inwteking multimedia server
cluster based on a hypercube topology. Small parts of aaigyktem are first implemen-
ted on IXP1200[31] boards as an assignment in the inf507@f@a8se, and this system is
also described. From there, each step in testing the haedasad deciding on implement-
ation strategies up to the final implementation is discus&adajor part of this work has
been to get knowledge of the IXP2400[32] hardware, the IX&ISDK 3.51[30] and the
possibilities and disadvantages offdrent approaches. This has led to several separate
experiments to measure howfférent implementations and components perform given
specific tasks. The results of these, and the increasingrstadeing of the hardware
and programming platform have resulted in several increateesign steps that has cul-
minated in the current server solution. The implementapimotess resulted in several
intermediate designs that were rejected. The purpose eéttesigns, and the reason
why they finally were discarded will be discussed. Finalpp@aches on how to further
improve the system, and remove the current bottleneckdeiiresented.

5.1 Hypercube server general design

The system we want to make is an implementation of a multimedrver cluster with
hypercube topology similar to the nCube n4x system. Theesysthould use message-
passing to communicate internally, and have no shared nmyeaneas between nodes. To
make routing #icient, and to éload the host, we want to use IXP2400 network processor
cards to handle the routing operations. In figure 5.1, theclggsign is outlined. We want

to use the Linux hosts as data and streaming servers, anXfheards to take care of
operations related to locating the media and routing padkethe correct egress node.
When a data packet is to be sent to an outside client, thensitigaapplication has to
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Figure 5.1: Basic design of multimedia server cube with DéRds.

send it to the IXP card, it will then be routed to the egressenand sent to the client.
An adaptive Domain Name Service (DNSYill make sure that requests are distributed
evenly between the egress nodes. The cluster will look Iike server as seen from the

client.

RTSP is the protocol we want to use for setting up and comgpthe media stream. The
streamed data itself shall be transported using RTP. Fa-outbe messages and routing,
a new Intra-Cube (IC) protocol is designed.

1This service could either communicate with the server elustfind the egress node with the most free
resources, or could statically select a new node each timeeround robin fashion.
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As discussed in chapter 4, there are many optimizationscérabe applied to a multi-
media server cluster. In this assignment, we have implesdetfite basic functionality
needed by a server cluster capable of delivering a videarstr©ptimizations like strip-
ing the data over all nodes, and dynamically adaptive rgutiitli have to be built into the
system at a later stage due to the limited timespan of thisen#dsesis. Thea-value of
the hypercube topology is limited to?ZThe reason for this is that the ENP2611 network
cards have 3 optical interfaces, and one of these interfacesed for the egress connec-
tion. There is the possibility of inserting more than oneddato each host to increase the
possiblen-value of the topology, but this option has not been thorbugkplored due to
the increase in complexity this would lead to, and the nurolbewailable cards.

5.2 The legacy design

The design of the server system is based on the nCube ndxrsysteube claims that
their solution is able to serve 2000 concurrent users witlaradtvidth of3,75Mbps per
user with a rack of 8 MediaHUBs (cube with= 3) [42]. Their solution is, however,
heavily based on custom hardware, and as of such expensdevétop and produce.
The IXP cards are optimized for packet handling and haverakmetwork interfaces, in
a manner similar to the custom hardware of the n4x systems akes it possible to
envision a similar design using programmable IXP cards titieanterconnection.

The work began with some basic attempts to implement parésrotiting functionality
on the IXP1200 card as an assignment for the course INF5@]0\|& describe the main
features of this design in the following section.

5.2.1 The INF5070 implementation

The assignment for INF5070 [57] was to implement an n4xgisdition with RTP based
transport and RTSP based control utilizing IXP1200 [31§lsaand a given programming
framework based on the Intel IXA SDK 2.01 [29]. We chose to lenpent the routing
part, and postpone the RIFTSP part. The software framework that was provided had a
structure that delivered all packets to the StrongARM cé&igyre 5.2). The choice was
made to use a source routing algorithm with information eyed through an intra-cube
(IC) protocol. The purpose of the IC-protocol was to handle:

¢ Routing between cluster nodes.

e Transportation of video data to the egress-node.

2A hypercube topology witim = 2 consists of a total of2= 4 nodes.
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Figure 5.2: Dataflow inf5070 implementation

e Forwarding of video-playback-control to the node servimg stream.

e Handling requests for specific video files, locating the fiid aetting up the stream.

The final result of the project was an application that madagestream the requested
data from one node to another using intra-cube routing. Tinetés was, however, very
limited because of the fact that all ffi@, routing, setup information and data packets,
had to pass through the StrongARM core on each and every hpdssed through. The
performance was also reduced by the fact that the data wsalfread and streamed by
an application running on the StrongARM. This demanded taaymesources to achieve
high performance.

5.3 SDK code base

The SDKs from Radisys and Intel provide an extensive code tvas1 which applications
can be adapted. The majority of these examples, howeveisésmn standard networking
tasks, and could not easily be used as a basis fov 8tepplication. In the Radisys SDK
static forward application, there were components thatdcbe used successfully. To
build any network application, functionality has to exist feceiving and transmitting
data. This functionality was provided by the RX and TX midoais from the static
forward application. With an asynchronous interface ospagbufer handles on scratch
rings, new components could be fit seamlessly in betweeresktmicroblocks.

With RX and TX functionality being the only “recyclable” cqgranent, the following
stages had to be built from the bottom: Microblocks for ddtne processing, XScale
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components for control plane processing and a streaminigcappn located on the host
machine. There were made designs that aimed to be able toxiste@ host server

applications, thus eliminating the need to implement thise next sections will discuss
different designs for implementing theS® system.

5.4 XScale-Host communication

In order to pull data from the host to XScale ariehgines, the ideal solution would be one
that could accommodate very high data rates. Due to the $amee of the assignment, the
task of implementing thisficiently was temporarily postponed. A strategy for achigvin
this can be found in the further work section (see sectiol. 6The method that was
ultimately chosen was to transmit the data over th@Q0Q debug Ethernet port. Based on
this decision, three éfierent design choices were outlined and tested:

e Use network file system (NFS) to read the file directly from theXScale applic-
ation: Using NFS would provide an abstraction of all operations #va needed
to get the file from the host to the XScale. The performanc&efttansfer itself,
however, would be reduced due to the nature of NFS servicé§, Nased on re-
mote procedure calls (RPC) will, in addition to moving the filata, also use much
resources on consistency checking and synchronizatiom NHS approach would
also imply that all tasks related to reading data, geneggteckets and sending
these packets have to be handled by the XScale core. For arscarnth many
streams, the load would probably be too big for the XScale,cand lead to per-
formance reduction.

e Create araw socket and forward packets directly to the hostAnother approach
was to create a raw socket on the XScale. This would give tip®rynity of
creating tailor-made packets and transmitting them to thet Wvithout creating a
two-way socket connection. Any available multimedia stigay server software
could then be used on the host machine, but some manipulztipackets would
be needed to make the server software work as wanted witaioube structure .
This concept will be described in more detail in section 5.5.

e Create a regular TCP socket to communicate with an applicatn running on
the host: The regular socket alternative would demand a server aipiton the
host that could receive a connection from the XScale. Thimpraance of the data
transfer would be limited by the TGP stack processing both on XScale and on the
host machine. It would, however, provide the service of & Isyteam between the
applications. The most attractive element of this solutsothat it would simplify
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some aspects of implementing the streaming (host) apjlicaMore information
about this design approach can be found in section 5.6.

The implementation work began using the raw socket stratégis allowed the use of
a server system that already existed (i.e. komssys [36]ppf the routing framework.

The next section providess a description of the implemmmtatrategy, and explains why
it eventually was discarded in favour of the regular TCP sbdlesign.

5.5 The raw socket design approach

After exploring the hardware possibilities in section 3tk first structural design for the
whole server cube application was made. If stream setup evae tdone by RTSP, a
TCP connection would have to be set up. A solution where tlr@4@ube (IC) routing
system would forward all TCP packets to the host machineatoinig the requested media
was outlined. The task of delivering packets to the corrgeegs node would rest on
the routing layer (IXP cards), and each host machine woulcbe like a freestanding
multimedia server, oblivious of the routing layer below.

5.5.1 TCP Handling

For this approach to work, the TCP connection from the chemiild have to address the
machine that hosts the wanted media, not the egress machmreder to do this, the
egress node (the node receiving the initial TCP SYN reqwestjd have to do a three-
way handshake, then receive the RTSP SETUP message. Tkisaigde we don’t know
where the media file is located upon receiving the initiabesy, and the client expects
a complete TCP connection before sending the RTSP SETURSsedqlhe machine that
hosts the file will have to be found (the mechanisms for tresiesented in section 5.6).
When the route between the egress node and the machineruhgjittee media has been
found, the XScale application on the machine will have tdqrer a three-way handshake
to connect to the application on the host. It can then forilaedRTSP SETUP packet. In
this way, the host application will never know that the TCRrmection has been routed
through several other machines, and will believe that ibimmunicating directly with the
client. There are, however, some more complications togithiis. The sequence (seq)
and acknowledgment (ack) numbers of th&atent TCP connections will be fiierent,
and will have to be simultaneously translated to match. Tment of the RTSP packets
will have to be modified to make the server stream to the XSeehech will take care of
routing and forwarding). All these extra steps will have éodbne on the IXP platform
as a part of the routing framework.
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Figure 5.3: Design with forwarding of TCP to machine hosting file.

In figure 5.3, the set up of a stream with RTSP is shown. At the egress (IXRelJCP
three-way handshake is done (1). The RTSP SETUP packetnisréloceived (2). The
packet has to be inspected, and the file must be found in the dafo about the TCP
session and the IC-session has to be kept both at the egreastae machine that has the
file. This is to ensure that packets from the outside can lieddo the correct host (egress
IC information) and that correct headers and routing infation can be supplied to build
the packets that are outbound (media server IC informatidfter receiving the RTSP
SETUP message, it is forwarded to the correct machine (3A4hree-way handshake
is then done between the XScale and the host machine (5). TBE®RCP packet can
be modified to conform with this TCP session, and forwardethéohost machine(6).
Finally, RTSP replies can be processed the same way, aneéiver £an start streaming
RTP packets to the client (7).

When using raw sockets, received packets are forwardedtbdtte kernel and to your

socket. This means that kernel-level filtering has to beoduced in order to stop all

packets bound for your application from being answered leykéirnel processes. The
Monta Vista preview kit Linux kernel did not have support fptables in the distributed

version, so in order to make this work, the kernel had to benkgured and recompiled.

Since no extra software was included with this distributiarcross-compile of iptables
had to be made for the XScale. These steps made the neceklsangfpossible.

The advantages of this design approach would be that theansé@aming server soft-
ware would not have to be aware of the routing framework betbws making it easy

to replace the streaming server software. It became evilentever, that the process of
maintaining several parallel TCP sessions for every TC&astr together with the pro-
cess of translating IP addresses and sequence numbere fsiréamed packets would
introduce a degree of complexity that would make the systear-prone and diicult to

3The process of locating the node that has the media file isspoésented in the figure
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implement. The conclusion was that the disadvantages oplexity and structure were
greater than the advantages gained by this approach. Thewitbr this design-option

was discontinued before the routing framework was comgletdis was due to the es-
timation that redesigning the software structure wouldlies an implementation that
was simpler and more likely to be completed inside the timmts$ of the thesis.

It was obvious that another approach had to be taken to maksigrdthat was expand-
able, yet simple enough to implement given the time limit.e Trew design structure
would have to give the egress node responsibility for hagdliCP sessions. The next
section presents the final design.

5.6 Egress TCP design

The complexity problems introduced by the TCP-translasiolutions made it necessary
to investigate alternative approaches. An obvious salutvas to let the egress node
handle the TCP connection, and let the rest of the controhar@em be implemented by
the cube application. A consequence of this is that the nsttBaming server application
on the host machine would have to be aware of the underlyirdharesms.

1

3
/—\ IXP 1 — IXP2
/7_-> 6 “

Client

4
1: TCP session between client and egress created.
2: RTSP SETUP message sent. |

3: SETUP message forwarded to the media node.
4: SETUP message forwarded to host application IXP 3 IXP 4 S
5: Host application generates appropriate reply

6: Reply forwarded to egress by route.
7: Existing TCP connection conveys reply to client.

I

A

Server hosting media

Figure 5.4: Design with egress handling TCP connections.

Figure 5.4 shows the setup process for a stream using theseg@P design. The main
differences from the raw socket design is that the node recaiv@gequest handles all
TCP operations. The first step, when a request is made, isup aelTCP session, and
give the correct replies to the client (1). When the cliemidsesthe RTSP SETUP request,
the receiving node has to acknowledge the packet, and fdrtkar request to the node
that has the media that was reque$tg@, 3 and 4). The appropriate reply is generated

4The process of locating the media is not represented in thesfigput explained in more detail in section
5.7.4.
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by the host application (5 and 6) and the egress node wrapgphein the appropriate
TCP header, and transmits it to the client (7).

Not only would this structure make several aspects of rgutind TCP handling easier
to implement, it would also make a better base for expandiegapplication when the
primary bottleneck, namely hogtngine dataflow, could be overcome. Using direct
memory access (DMA) to move data between the host and/Emgines would be a
natural way to improve on this bottleneck. This option welforther discussed in section
6.3. In order to achieve this, the host application (or therapng system) would have
to be aware of the underlying structure. Another considamnas that the RTSP standard
states that it should be possible to create several RTSRectians on one single TCP
connection. This would be fficult to implement using the raw socket design.

One of the moments that were crucial in deciding on imple@atgr strategies was how
the routing itself would be handled in the cube. The nextiseawill describe how this
was designed and implemented.

5.7 Cube routing

Several advantages are obtained by implementing a solutiardistributed hypercube.
In a cube with n> 1, there is more than one possible route between any two ndties
gives us the opportunity to avoid congested routes, or takypossible broken links.

There are various routing strategies that can be appliednitwork topology like the
hypercube. One concern in a setting like this must be thastitaegy will allow for a

certain degree of adaptability. This is to be able to copé witentual broken links and
avoid heavily tréficked routes.

The choice fell on source routing as the routing strateggngdément. Using this strategy,
the sender determines the route that has to be taken. Thegaformation is included
in the packet header when the packet is transmitted. Thisredtes the need for routing
tables at every node. There was two main reasons for thiseh®he solution would be
fairly simple to implement, and the processing speed fonh @acket would be high.

There is also possibilities for extending the routing gggtwith features that will add ad-
aptivity. There is, amongst aothers, an internet-drafppsing a dynamic source routing
strategy for ad-hoc networks [35]. Some strategies on hompoove adaptability for our
source routing strategy will be found in the section 6.3.

Below is a description of how the source routing strategyriplemented in the current
video cube routing framework.

e When a new setup request is received, the message is brtatitasugh the cube.
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e For each node the request visits, the port where it arrivedshed on the routing
field in the IC header.

e When the request arrives at the node that has the media gt the route carried
in the packet. It then sends an IC packet via the route to tressgode, instructing
it to setup an IC session to be able to route new control padkedctly to the node
that has the media file.

e The stream then appends all RTP packets with an IC heademwititat the packet
to the egress node.

e The port number popped from the route field of the IC headeheae one of the
following values:

— 0x0: Transmit the packet on port O.
— Ox1: Transmit the packet on port 1.
— 0x2: Transmit the packet on port 2.
— Oxff: Forward the packet to the XScale and pass ttdp_send.

There are several advantages to this routing strategyaltig simple to implement. It re-
guires no routing information on intermediate nodes, omyte egress and the node that
has the mediafile. It is veryfigcient to execute at each intermediate node, the microblock
code only have to pop the port number and transmit the packet.

The disadvantages, however, touch some of the central ptsoé implementing the
system as a Hypercube. The current implementation doeskirito consideration that
the route have to be redirected if fiia patterns changes and transmission slows down.
The option of redirecting the route if one or more links arekan also has to be added. It
would also be profitable to be able to reserve resources d@tmigute to guarantee that
the stream will perform as wanted.

These disadvantages are subjects that should be explatedrfuOur source routing al-
gorithm could probably be kept without losing the possipibf rerouting in the case of

a broken link. A way of doing this could be to keep all routingssages that arrive at
the node containing the medim the IC struct. If a broken link is detected, we could
generate a message that tells the IC session to switch tegi@aute that has not been
tried. For large cubes (big n-value) it would probably be engficient to map possible
routes on system startup (and maybe with a predefined ihteaval store an index to a
route in the IC session struct. It is also possible to trah§pmg” packets along dierent
routes, to try to measure anyfidirence in latency. This, however, can not be done too

SAll possible paths from the egress to the node inside thediofithe defined TTL.
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frequently without &ecting the streaming performance that should be priodti2a ap-

proach with reserving resources along a route would pretizdi much better alternative
than switching routes “on the fly”, given that this approaeBiky could lead to streams
jumping back and forth between route alternatives. Thetglbd reserve resources along
aroute is also possible. Each node could keep a record of lteow pass-through streams
they support. When the packet locating the file is transohitteough the system, it could
sum the pass-through number for each node it visits. Thearsaniver could then choose
the route with the lowest sum.

5.7.1 Intra-cube header and extension

IC header:

1234567189 10 11 12 13 14 1

b 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |3

Type

TTL

Payload length

Route

IC header extension:

123456789 10 11 12 13 14 1

b 16 17 18 19 20 21 22 23 24 25 26 27 28 29

w

Client source port

Client destination port

Client source IP address

Egress |

P address

Figure 5.5: IC header and header extension format.

Figure 5.5 shows the format of the IC header. The basic ICdraadlesigned to fulfill
the following tasks:

e Separate setup and control packets from data packets.

e Limit the number of jumps a packet can circulate in the cube.

¢ Give information about payload length (when pushing datautgh the host-XScale
socket.

e Provide routing information for the packet.
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The purpose of the IC header extension is to carry informatiecessary to create IC
session structs and to carry information about IC sessioribd egress when packets
must be sent througtcp_send (port numbers and IP addresses is needed to look up the
correct TCP struct).

5.7.2 IC packet types

In the system, as it is implemented in this thesis, there aeediiferent IC packet types:
ICH_FIND_FILE, ICH_ROUTE_FB, ICH_CTRL_FB, ICH_CTRL_MS@nd ICH_RTP.
The first three of these packet types implicates that a headension will follow imme-
diately after the basic IC header.

The ICH_FIND_FILE is first created at the egress when a newl8ETfequest arrives.
The IC header is appended with the IC header extension bet¢hesnachine hosting
the wanted media has to set up an IC session to be able to stheanpontent. The
ICH_FIND_FILE packet is broadcasted throughout the culxd tire node hosting the
wanted media file is located.

When the file has been located, the node hosting the wantei mpederates a packet of
the type ICH_ROUTE_FB. This packet is transmitted back ¢oatpress through the route
found by the ICH_FIND_FILE packet. This packet also cartiesheader extension. This
is because when the packet arrives at the egress, an egressdiGn has to be created.
This session is used to be able to route following RTSP cbpaokets directly to the
correct machine in the cube.

The ICH_CTRL_MSG package is created when the egress racaiveRTSP control
packet other than SETUP. The IC session that matches theseigidound, and the packet
is forwarded to the correct host through the cube.

When an RTSP control message is processed by the media stgesenver, a reply is
generated, and has to be sent to the egress through the dukse packets are wrapped
in IC headers of the ICH_CTRL_FB type. A header extensiorseduvith these packets
to look up the correct TCP session at the egress. This coukllheen avoided by adding
a IC session index field to the regular IC header, and usedhmsok up the egress IC
session. There are two reasons why this solution was impitzde

1. The main bulk of data packets does not need the extra iattwm Transmitting it
through the cube with each RTP packet would be a waste of ressu

2. The RTSP tréiic load in the cube is negligible compared to the RTP data, so th
extra 24 bytes on these packets will not make a noticeabladirgn cube perform-
ance.

68



The last IC packet type is the ICH_RTP. This is by far the mostimon in the cube since
it wraps all RTP data packets. The purpose of this headerisyfeebring the payload to
the egress, and subsequently to the client, as fast as [@ssib

5.7.3 Intra-cube session

The purpose of the IC session is to keep the necessary datmtidehthe functionality
needed by the cube infrastructure. As of now, the followiatads kept by the IC session
struct as shown in figure 5.6:

e Status: Information concerning the state of the session. Used totifgeactive
sessions, sessions about to be set up and closed sessions.

e Route: The current route the packets have to travel. For the egaeks this is the
route to the machine serving the media, for the media seivsrthe route to the
egress.

¢ Client source port and server port: Used to generate UDP headers.
e Source and destination IP addressedJsed to build IP headers.
e Source and destination MAC addressestsed to build ethernet headers.
typedef struct{
uint8_t status;
uint32_t route; /* Route */

uintl6_t  sport; /* Client source port */
uintl6_t  dport; /* Server port */

uint32_t saddr; /* Client source IP addr. */
uint32_t daddr; /* Egress IP addr */

char eth_src[6]; /* Ethernet src address */
char eth_dst[6]; /* Ethernet src address */

} IC_session_t;

Figure 5.6: IC session struct.

The IC session s first created at the server hosting the mdwia the requested media file
is found. The egress saves the session data when the roete s and the host is updated
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with the session data when the SETUP message is forwarded e way the program
is implemented now, the media server on the host builds RTH®, UP, ethernet and IC
headers for the data packets. This means that the XScalesfibeeon the media server
machine is superfluous. The reason it was implemented imiyswas to facilitate the
transition from a solution where the server handles heageleergtion, to a future design
where this functionality is handled lyEngines (aided by the XScale). Theftdrent
aspects of this are discussed in more detail in section 6.3.

Regarding the general design structure and the routingefnaork that had been de-
cided upon, tasks had to be divided between tfftetint hardware layers available (host,
XScale ouEngines). The next section will describe where tHedent functionality was
placed, and the advantages and trdideihis led to.

5.7.4 Partitioning of tasks

The desicions on where to locate th&elient application parts was based on the general
programming paradigms for networking applications (seti@es 2.3.3) and on the res-
ults of the preliminary tests done on the IXP2400 hardwage gection 3). The way tasks
are divided between theftierent subcomponents in this design is as follows:

e Host machine: The host machine runs the streaming servécafppn. It receives
RTSP requests, generates replies, creates streaminggslaee forwards data to the
XScale. The media data is stored on the host disk, and thes&o&r is responsible
for retrieving it.

e XScale core: The XScale core handles the TCP connectioagrgks). It receives
data from the host, and forwards it to thEngines for routing to the egress node.
It also receives control packets frqikngines, and forwards them to the host.

e uEngines: TheuEngines receives control packets on the egress port. They fil
all packets not TCRP bound for port 9070and forwards control packets to the
XScale for TCP handling. ThgEngines also receive IC packets and route them
according to the port number given in the route header field.

The IP header switch tests (see section 3.1) showed thaEtigines was veryf&cient on

a simple task that implicated manipulating packet headeosisequently, it was decided
to implement the bulk of the routing functionality on thEngines. Filtering of unwanted
data that could arrive on the egress port was also to be ingoited here.

5This port is used because Komssys [36] at first was intendid tbe streaming server application run
on the host. The default RTSP listening port for this systemGH9070.
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Since TCP related tfac would represent a small part of the total, it was acceptable
place the main functionality on the XScale. This decisios ais0 supported by the fact
that maintaining data structures is a less complicateddagke XScale.

The media streaming application, performing a processensive task, was to be imple-
mented on the host. It was decided that the streaming agiplicaould also generate all
the necessary headers to leave all but the routing toEmgines. When direct transfer of
data from the host to theEngines is implemented, it will be natural to let the micaxtis
generate some of the headers. As it was, however, the datenoxged to theuEngines
via the XScale, consuming a lot of processing power from hdihgines and XScale
alike. To counter thisféect, as much of the packet generating functionality as ptessi
was placed on the Host.

Next, descriptions of how the aforementioned components \weplemented on the dif-
ferent hardware layers follow. The structure of the compdsmiand the main challenges
regarding each step will also be discussed.

5.7.5 uEngine tasks

ThelCrouter microblock used in the egress TCP design consisted of twaeambntexts.
This was to better exploit the available resources by switclbontexts when memory-
accesses or other operations that leave the code waitimgdolts are performed.

First context The packet handling mechanisms used for the first contekedCrouter
microblock are shown in figure 5.7. When a packet arrives watpant, the first thing to
be checked is whether the packet is received on the egresg¢ppor 0) or any of the
intra-cube ports (port 1 or 2). If the packet is received andfress port, it is sent through
a filter dropping all packets not T@P bound for port 9070, thus eliminating all fiia
except the packets bound for this server solutidhthe given criteria is met, the packet
is forwarded to the XScale for TCP processing. If the packe¢ived arrived at an intra-
cube port (port 1 or 2), it is by definition an IC packet with &) header (see section
5.7.1) and must be routed according to the given routingrethguo. If the packet is of the
type ICH_FIND_FILE, it is sent to locate the host containthg wanted media. Such
packets are forwarded to the XScale which performs the fektsoprocessing. All other
packets are to be routed to the port given by the route fielden€-header. The Time To
Live (TTL) is decremented. If the TTL is zero, the packet isgped. If the port number
popped from the IC header route-field is O (egress port),@Rledader is stripped and the
packet is transmitted. Packets bound for port one and twamsinitted on the popped
port.

"To support RTCP reports, the filtering mechanism has to betalpen up the corresponding port for
the connections, depending on the RTP transport method.ig s of yet not implemented.
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Figure 5.7: Flow chart folCrouter microblock when a packet is received.

Second context The second context of thi€router uEngine receives Wter handles
from the XScale, and transmits the packets referred to opdhespecified by the packet
metadata. All setup of packet and header is done by the mediarson the host, or by
the XScale. Functionality for batch processing of packitseady to use, but not yet
supported by the XScale code.

8n this case batch processing means caching packets andgénem to the:Engines collectively to
achieve higher transfer rates and moffecent resource utilization.
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5.7.6 XScale tasks

The IXA SDK has support for spawning specialized threads Wik call a specified
method upon receiving one of two interrupts branded “INT afid “INT_B”. In this
implementation, only one such thread for handling data IsgtiheICrouter microblock
to the XScale is used. The procedure for handling packetgafaled from the XScale
is described schematically in figure 5.8. The first thing ibatone, as in théCrouter
microblock, is to check which port the packet was received on

If a packet is received on the egress port (port 0), we knowitlga TCP packet, and it
will be passed to thecp_recv method. This method returns one of three values:

e B_TCP_NO_DATA: The received packet is successfully handled, but contained
data. This is for example the case for SYN, ACK or FIN packets.

e B_TCP_ERROR: The packet is not successfully processed. This can happes if
TCP session is not found, or an error is detected with regpessgquence number-

ing.

e B_TCP_DATA: There is a data payload in the TCP packet. The method also sets
references to the payload and the payload size in order tueedata processing.

Int_A thread processing When a packet is sent to the XScale, the Int_A procedure is
invoked. If the input port is 0, we caticp_recv. If tcp_recv returns B_TCP_ERROR
or B_TCP_NO_DATA, the TCP implementation have processkckqlired replies, and
the call returns without providing any data payload. If dateeceived, we know that it
is an RTSP control packet. The RTSP command will then havestaéntified. If the
packet is a SETUP request, the program will try to find the fiidlee local machine. If
the file is not found on the machine, an IC header and an IC nextlension (containing
information that is required to setup a new IC session) apegnded to the RTSP packet
(for details, see section 5.7.1). The port number that tlokedds received on is pushed
on the route field of the IC header, and the packet is sent dmlkbports (port 1 and
2). An egress IC session is not created yet, because thetoolokeused is determined by
the packet that arrives first at the host machine that hastieested file. If we assume
that the packet travelling the path with the least load iditiseto arrive, this will help the
system give the stream affective route during the current conditions. If the file isridu
on the machine, however, both a server IC session, and asselffesession is created
(given that this machine is both server and egress). The RESket is prepended with
an IC header and header extension, and forwarded to the indis¢ ocket interface.
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Figure 5.8: Flow chart for XScale int_A thread.

node. (Send to
popped port)

Send packet to
host on socket.

s the requested file on
this machine?

Give packet to
tcp_send()

Yes

Add IC header.
Add IC header

extension. Push
port on route.

Yes Send packet to
host on socket.

N

Create Server IC
session and
egress |C session.

Create new
Yes .
egress IC session,

Send packet to
host on socket.

74

Did TCP return data?

N

Data for existing
stream: Find IC
session, Add IC
header. Pop port.

Send on popped
port

Add IC header.
Add IC header

extension. Push
port on route.

A 4
end on IC port:
(1and 2)



If a packet is received on one of the IC interfaces (port 1 pw2)know that the packet is
an intra-cube packet and has an IC header. The IC packeteeoean be one of the five
types mentioned in section 5.7.1.

As shown in figure 5.8, the handling of each packet depends which IC header type
the packet has. If the packet is tagged “ICH_FIND_FILE”, tlext step is to check if the
file resides on this machine. If the file is not found, the TTidécremented, the port the
packet is received on is pushed on the route, and the padkah&nitted on all IC ports
except the one it arrives on. If the file is found on this maehasearch is done to try to
find an IC session (see section 5.7.3) that matches. If a ingté@ session is found, the
same setup packet has arrived before through another emdehe packet is dropped. If
no matching IC session is found, a new server IC session &eatie This session keeps
the return route that this stream is to use. To make sure timitat messages arrive at the
server by the correct route, a feedback IC message is crédted_ROUTE_FB”) and
sent through the route to the egress. The original SETUPgbaxkhen passed to the host
on the XScale-host socket.

If the packet received is of the type “ICH_CTRL_FB”, the paadl is an RTSP reply
message. The payload is passeddp_send along with IP addresses and TCP ports (to
be able to find the correct TCP session), and transmittecetolidnt.

When a packet of the “ICH_CTRL_MSG” type arrives, the pagleman RTSP request
bound for the media server. This packet is directly forwdrttethe host on the XScale-
host socket.

The last IC packet type handled by the “int A’ thread is theHIGROUTE_FB”. This
packet type is transmitted to the egress machine after @ ilvag been found and the
streaming server has created its IC session. An egress $idsesed to guide incoming
RTSP packets to the correct machine is created, and thetpackscarded.

If a packet arrives that matches none of the above categahespacket is dropped,
but this should not happen if the system works correctly. fdason “ICH_RTP” never

reaches this stage of processing is that once sent intowkiagdramework, these packets
never surface to be examined by the XScale, but are forwastiiight to the egress node.

5.7.7 Host-XScale data path

In addition to the “int A’ thread, there is a program loop rimmnon the XScale that is
polling the host-XScale socket for incoming data. This dat®rmatted in such a way
that an IC header always arrives first. This header contamgeacount for the packet
payload, so that the packets can be distinguished from oothem If the packet is of the
type ICH_ROUTE_FB or ICH_CTRL_FB, we know that an IC headdeesion comes
after the header (see section 5.7.1). If the destination(popped from route) is Gkand
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the packet is of the type ICH_CTRL_FB, the packet is passadposend. In all other
cases, the packet is routed as is on the port popped fromukefield of the IC header.

5.7.8 Hosttasks

The host application is implemented in userspace with a T&eRet providing the data
stream to the XScale. For each RTP stream, a processingltltrge@nerated. It opens
the file, prepends each data chunk with the needed headdrsaasmits the data on the
host-XScale socket.

Incoming
data

7

Create IC
Yes—»| session.Setup
new RTP session.

Is the RTSP type

Get RTSP type. "SETUP"?

A

Create appropriate i
Transmit packet
No RTSP reply. on socﬁet.

A

Drop packet. (Further
RTSP functionality to be N
implemented)

Start a new RTP
streaming thread.

Is the RTSP type
"PLAY"?

Figure 5.9: Flow chart for Host when receiving data from X8ca

Figure 5.9 shows the data flow for the host application whemeanming packet is re-
ceived. When data is received from the XScale, the first stepget the payload size and
the IC type. Any IC header extension is also read. The RTSkep&ype is then read. If it
is a SETUP packet, a new IC session is created, and a new R3iBrsgsee section 5.8) is
prepared. We already know that the file is located on this maci his was checked on
the XScale. The RTSP reply to the host is then generatedgtide server port numbers,
the reply is wrapped in an IC header, and the IC packet is setit@socket. If a PLAY
message arrives, an RTP streaming thread is created. Ti@prohe generates an RTSP
reply message, and transmits the reply on the socket to tealXS
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5.8 RTP-session

Though the current version of the cube does not implementigerRTP functionality,
it keeps some information about each RTP stream. This irdoam is kept in the RTP
session struct, which is comprised of the following compuse

e Thread ID: An identifier for the streaming thread. Used to send signaferce-
fully shut down the stream.

e Client RTP Port: The port negotiated by RTSP to deliver data to the client.

e Client RTCP port: The port negotiated by RTSP to deliver RTCP data. Not in use
as of this version.

e Server RTP port: The server port delivering the stream. In this implemeatsgti
this port is a “phoney”, because a regular socket mecharssmtiused.

e Server RTCP port: The port used by the server to send RTCP packet. Not in use
as of this version.

¢ Index of IC session:The index of the IC session corresponding to this RTP session
Used to look up IP and MAC addresses.

¢ Filename: The name of the wanted media file. Used to open the file forrsirea
at the server.

As the description shows, there are many crucial RTP compyerikat is not yet imple-
mented. These include RTCP feedback and rewinding or faliwgithe stream. Eventual
RTCP packets will be discarded by thEngine code (see section 5.7.5). The current im-
plementation supports the streaming of a file from begintorend, as is, and with a fixed
bitrate. The reason for this is that the focus has been oneirmgahting a working rout-
ing framework for the cube and exploring the benefits fiibading this kind of routing
functionality on the IXPuEngines.

When an RTSP PLAY message is received, the media server dioiereates a new
media streaming thread. The first operation that is perfdiwigen a new thread is started
is to build the RTP, UDP, IP, ethernet and IC headers thatwvdlp the media data. Since
only a few of the header fields are changed from packet to patiese headers are saved,
rather than creating the entire header again for each dakeparhis is done by having
only one transmission lfier of the current MTU size. The headers are kept statically
in the beginning of the Wier, and the data from disk is copied into the payload part.
For each of the data chunks read from disk, the length fielgpdsmated in the IC, IP and
UDP header. The sequence number and timestamp are updatedRmP header. Then,
checksums are calculated for UDP and IP, and the packet is@dime XScale on the
socket. The thread then goes to sleep until it is time forlargpacket to be sent.
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5.9 Microblock designs

How the diferent tasks should be prioritized between the microblocks an issue that
strongly depended on the choice of routing algorithm. Aeotteciding factor was the
method of moving data from the host to thEngines. Given the possibility of using 8
uEngines in parallel, there were many tasks that could beilolis¢d and optimized by
distributing them on severalEngines. The fact that eaglEngine also supports eight
program threads, further enhanced this possibility.

If the network processing application that is to be writtespexts a very heavy load,
steps can be taken to enhance RX and TX performance. Theme&edesigns of RX
and TX microblocks provided by Intel give the programmerpbssibility of distributing

the task (RX or TX) on two microblocks (figure 5.10(a)). Fobreads are assigned
to handling each of the ports for receive and transmit, giviime performance of the
microblocks a potentialféciency increase in comparison to the one-microblock RX and
TX designs. The actualiects of this enhancement depends on the transmission medium
Implementing this solution reduces the chance of queu¢#thize worst case can lead to
packets being dropped. This measure would, however, banrifithe packet processing
between RX and TX is slower than the receive and transmitga®cIn order to meet
with this problem, steps should be taken to optimize othekgigprocessing tasks. Figure
5.10(b) shows the same application with the two main taskistegiween twquEngines.

As long as each step in the pipeline between RX and TX is keatlewel where fewer
cycles is consumed for each packet than would the RX and Tgkblihe packet flow
would be optimal. From this a rule of thumb for microblock id@scan be derived:

Cpp < Crx < Cgryx (5.1)

where C represents cycles used, PP is each individual nbaiolised in packet pro-
cessing, TX is transmit microblock(s) and RX is receive windock(s). In practice this
means that the system should be able to transmit packetasatde quick as they can be
received, and every individual stage of the packet pronggspeline in between should
spend less time on processing one packet than the transok(b).

The handling of exception packets and otheffitahat has to be forwarded to the XScale
will of course impede the packet processing pipeline séyeteis therefore crucial to
make sure that the bulk of the packetfi@is handled at theEngines. In the implemented
system, however, the XScale-host transfer bottlenecksstbe system down to a point
where theuEngines can easily handle theftia load it is presented with. The packets
are, as of now, being generated on the host, then moved by d€ketgo the XScale for
then to be sent to theEngines. Until a morefécient way of moving data from the host
to theuEngines can be implemented (see section 6.3), itfiscgnt to keep the RX and
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(a) RX and TX blocks split on twpEngines.
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(b) Two microblocks for RX, TX and packet processing.
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(c) The current microblock design.

Figure 5.10: Three microblock structuring alternatives.
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TX functionality on one microblock each, and the packet pesing on one microblock
utilizing two program threads. This design is visualizefigure 5.10(c).

When data can be moved directly from the server tqtBegines, more of the functional-
ity of generating packet headers can be delegated teEhgines. This will be discussed
in more detail in section 6.3.

5.10 Evaluation

This set of tests is done with the purpose of measuring theaiating time of packets
routed in the cube server implementation. Since the pedooa of data transport from
the host down to th@Engines yields bitrates of less than 10Mbps due to the lack of
efficient hostaEngine communications, a test of the system as a whole waougditile or

no information about how packets would move through a hgévé@ded system once this
bottleneck is removed. The test focus is, therefore, onrlderlying routing mechanisms.
The results from theEngine measurements are then compared to packets roubeg/thr

a conventional switched network to try to determine the fbsperformance gain by
implementing the routing in this network topology using IX&rds.

5.10.1 Packets routed through a switched network

The first test emulates a server cluster interconnected bgliaated conventional switched
network. Figure 5.11 shows the test setup for this configuratThe test is conducted
by transmitting ICMP ping requests from the “Cubel” hosttues for “Cube2”. The
forwarding machines (“Cube2”, “Cube3” and “Cube4”) havealgles DNAT and SNAT
rules that forwards the packet to the next host in the chaus sending the packets in
a complete circle through the hosts and back to the sendebg€C). There is an ipt-
ables rule firewalling ICMP requests in order to prevent temgl from replying to the
messages.

The packets that are sent from “Cubel” are timed on the wapytdpdump [60]. When
they arrive again from “Cube4”, the arrival time is record@the diference between the
send and arrival time give us the time used for routing thé&g@@ahrough the four hosts.

5.10.2 IXP hypercube routing tests
To be able to measure the amount of time spent on the routoaeps in the IXP cube
implementation, a special timestamping mechanism had tdelpeloped. Since every

host relates its timestams to its own time domain, the padkad to be timestamped on
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Figure 5.11: Test setup: Routing using switched network.

the same host. To accurately be able to measure the routicigamisems, the timestamps
should be done opEngines. Tests have shown that even when synchronized aig: de
nated point of code execution, there are stiffefiences in the clocks of each microengine.
This implies that a timestamp has to be made by the sameEfigine on the same host.

This challenge was solved by creating a new IC header typedcdCH_TIMER”. Pack-
ets given this designation is to be timestamped, traveeseriire “cube” and return to
the sending host. Upon return, the packet is timestampdad agahe sam@Engine as
on the way out. This give us an accurate time for the packett@tse the entire cube (4
hosts) in a manner similar to the switched network.

The route given to the “ICH_TIMER” packet is processed inghme way as every other
IC packet to ensure a realistic estimate of the processing ti

Figure 5.12 shows the test setup for this process. The “ICMER” packet is created
on the host, and passed to the XScale and consequently ta¢heengines in the same

81



Cubel Cube2
Generate timing packet
IXP IXP
Write time
to file
] XScale XScale
UEngines y uEngines
_| Receive Timestamp) Receive
Timestamp| | Route ™ Route
Send Send
Cubed Cube3
XScale XScale
UEngines uEngines
Receive Receive
Route < Route -
Send Send

Figure 5.12: Test setup: Timing of routing in the IXP hypdreu

manner as for instance an RTP packet in W& server solution. The packet is then
forwarded to the:Engine where it is timestamped. The send port is then poppedthe
IC header route field, and the packet is sent to the next host.

On the “Cube2”, “Cube3” and “Cube4” machines fitengines receive the packet, checks
the packet type to confirm that it is to be routed, routes tloigiato the port given by the
IC header route field, and transmits the packet.

When the packet arrives back at the “Cubel” machine, theerbeid of the IC header
has no valid port number, telling the system to forward ith® XScale, and the fact that
the packet is of the type “ICH_TIMER” tells theEngine to timestamp the packet before
forwarding it to the XScale. The timestamp is made to notwviée the timestamp made
on the way out.

On the XScale the two timestamps are read. Thteince is then calculated, and printed
to a file on the mounted NFS filesystem used by the IXP card. Ho&eat sizes used
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for the test was the same as for the switched network test.rdhts from this test are
presented in table 5.1 with the results from the switchedowe test.

5.10.3 Comparison of routing times

Table 5.1 shows the statistical data of this test and thedisstissed in section 5.10.2.
Both tests are performed with ICMP packets of 98 bytes an@ bytes.

The average times for completing one “circuit” in the maehiapology is graphically
displayed in figure 5.13. As expected, the total processing is radically larger for the
larger packet size (1500 bytes). We can also see that thétadmeplementing routing in
a dedicated interconnected topology (like the hypercutmypared to using a switched
network structure, is significant with respect to interveercommunication. This can
be attributed not only to the extra transmission times thiced by having the packet
move through the switch, but also to the overhead that theréalyhandling structure of
the kernel requires. Since this does not have to be suppbytélde intra-cube routing
mechanisms of the IXP hypercube implementation, the rgutimsts diminishes. This
effect is magnified by the simple nature of the routing mechanism

Packet size Max time  Mintime Avg time Median Std. dev. Count
Switched network times

98 Bytes 9022s s 135,98:s  12%s 71,48us 99928
1500 Bytes 249%s 26Ls 265.6is 265:s 8.2152s 99991
IXP cube routing times

98 Bytes 30us 27us 28.138is  28us 0.3544is 63965
1500 Bytes 10us 106:s 107.0034s  10%s 0.1367s 63965

Table 5.1: Routing times for IXP cube and switched networkirg.

For 98 bytes packets, the switched network implementas@88% more time consum-
ing than the IXP hypercube solution (aférence of 108s in average). For 1500 bytes
packets, the switched network implementation time is 24&$kdr than the IXP hyper-
cube time (a dference of 158sin average). This can be explained by the copy operations
occupying a greater share of the total time consumed.

Based on these numbers we can say that a directly interctatheetwork topology will

have a vast advantage in comparison to a switched netwouti@ol An increase in
routing algorithm complexity will probably make thefidirence smaller, but still large
enough to make a significantftérence.
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Figure 5.13: Comparison of average routing times.

5.10.4 Processing times given increased load

To try to find out what level of impact an increase in load iwil] have on the IXP
hypercube system, the loop routing test was done againtithes with packets being
generated on more than one of the hosts. For each new hosageggackets, the load
on all hosts increases because all packets have to be fawtmdugh all hosts. Although
the bit rate of each packet stream is not high (about 2/4Mbwill give an indication of
how load times will behave.

Table 5.2 shows the statistical data from this test tranigrgil 500 bytes packets. To max-
imize the bitrate given the sending intervals permittedhsy/lost-ixp implementation, a
packet size of 1500 bytes was used. The reason why the nurnipeagurements (count)
increases by such a degree is that more transmitting nodesmgire valid samples. The
number of measurements for four nodes should be approXythgesame as four times
the number of measurements for one node.

Figure 5.14 plots the time spent on traversing the loop gihenincreased load. The
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Transmitting nodes  Maxtime  Min time Avg time Median Std. dev. Count
1 10%s 106:s 107.0034s 107%s 0.136Zs 63965
2 141us 10€us 107.3Gs 107us 2.669Ls 121395
3 142us 106:s 108.47s 108:s 3.532%s 191846
4 202us 106:s 108.92s 108:s 4.854%is 255709

Table 5.2: Routing times guEngines given increased load.
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Figure 5.14: Development of processing time with incredsed.

graph shows an increase in load time, but not a significart. ohleis indicates that the
system should be able to handle much higher loads, beforadvav drop packets. The
chipset is built to be able to handle 1Slon the three interfaces, so given that fiicient
processing pipeline can be implemented, the platform shioeilable to accomodate high
loads.

®Note that the y-axis starts on 105, and that the actdEdrdince is below 2s
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5.11 Summary

This chapter has described the process of implementiny 8tivideo server cube with
routing functionality based on the capabilities of IXP24f#¥ds. Several designs were
proposed to achieve this. The first design aimed at using istirex server application
on the host. This was discarded in our prototype, due to thgtaxity that this would
introduce to packet routing and translation, but should tresiclered in a later stage.
The design that was finally chosen reused the existing RX ahhdomponents from the
static forward application. The rest of the components bdaktbuilt from scratch. The
streaming server application running on the host had to lz@eaf the underlying rout-
ing framework. This was to ensure that a future implementaising DMA to défectively
move the data to theEngines could reuse the code (see section 6.3), and to avoetu
cesary complexity.

A video server hypercube was implemented with routing fiometlity located on the
uEngines, TCP support and uplink to host on the XScale, ancearastng server on the
host. The server solution was tested with several streamses from the diferent
content servers through the same cube egress. Setup amdjnewatked as expected, and
the video data was delivered as intended. The bitrates, eywere hampered by the
host-XScale bottleneck, thus impeding the performancheserver.

Two tests have been performed on the routing framework. TéteAdas a measurement of
the time used by a data packet to traverse a loop of four meslirthe system. A similar

test has been run on a group of Linux hosts linked in a switcledadork. The second test
measured the increased processing time when doubling adiupling the load.

These test show, as expected, that the directly connecieetdtybe topology delivered

the routed packets much faster than the switched networkl coanage. This is a strong

argument for implementing data-intensive servers like #imadia streaming server in

such a topology. When increasing the load, there was a stigigase in processing time.
To be able to put serious pressure on the routing system Meoyeacket generators have
to be applied, providing heavier loads.
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Chapter 6

Conclusion

This chapter concludes the master thesis. We will presenba summary of what has
been done, then the most important results of this work, arailyisome key issues that
should be pursued in the future.

6.1 Summary

In this thesis, we have investigated the behaviour of I{&l hetwork processors, with
focus on the IXP2400 and the IXA SDK. A series of testimpletagans have been done
to find the strengths and weaknesses of both the hardwareofimée platform. Tests
have been run on theftierent applications to find out whethefloading network tasks to
this platform can be valuable. The knowledge gained fronepeeriments has been used
to construct a multimedia server cube solution, similah®nCube n4x, using network
processors forffiloading routing tasks.

6.2 Results

From the work done on the ENP2611 and M8® video server cube we have gained
valuable knowledge of hardware and software issues refaj@dgramming the 1XP2400
NPU. We have also run a number of tests that were done to egglegformance of the
implemented systems. The tests performed on the applsadlmowed thatfioading net-
work operations on a Linux host frees a noticeable amourgsifurces, even for simple
networking tasks. We could also observe that the time netxpdrform a simple task
of editing some protocol header fields was performed méieiently on the NPU than
on a Linux host. We conclude that wire-speed processingldhtuas large degree as
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possible, be kept on theEngines, while processor-intensive tasks and controlatioers
should be put on the XScale. Measurements showed that wieg the interrupt “int
A’ method of passing packet references to the XScale, theegging times were only
slightly higher than the results for the Linux host and ifgngines. This shows that the
XScale can be used quitéieiently without impeding performance significantly.

From theVS® implementation we found that the greatest challenge wasoterdata ef-
ficiently from the host to the IXP as there is no support for Dil@nsfers yet. However,
focusing on the internal cube communication, tests on th@amented routing frame-
work showed that this method of intra-cube routing wéient. Tests showed that,
compared to implementing the server cluster in a switchédorg, the hypercube topo-
logy with direct interconnection was far mor#ieient.

In conclusion, our prototype shows that the IXP2400 NPU d¢haiently offioad the host
machine and provide a favourable way of implementing closgerconnected servers in
a cube topology.

6.3 Further work

In this section, we present a short description of what wendeebe the most important
issues to address in future work on this subject.

During the course of implementing tMS3, it soon became clear that the main bottleneck
of the system would be the host-IXP data transfer. Hardwaoeithentation and exper-
iences from research projects elsewhere using the samedrartells us that DMA can
be used to move data directly from the host to glgines over the PCI bus. This can
be done without having to go through the XScale as of the ptesglementation. This
would help the system in two ways:

1. It would dramatically enhance transfer speeds. If a 68ustcould be usediect-
ively, it would be able to feed enough data to fully utilize tbptical interfaces of
the IXP card.

2. It would enable the host to transmit the data only, leagimge or all of the header
generation operations to be doneudngines. Allocating one or mogegEngines to
the task of packet preparation could be done without stgadisources from neither
host nor existing IXP functions.

Work is currently in progress in our research group to findmods of doing this#iciently
on the IXP2400.

To be able to reap the full benefits of RRFTCP and RTSP on théS®, many improve-
ments have to be done. As of this implementation, the systdynhas support for RTSP
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SETUP and PLAY, and basic RTP sending. To enable furthercbot the streaming,
we should complete the RTSP and RTP implementations. To leetalseceive RTCP
receiver reports, the filter in egress nadengines must have functionality to dynamically
update which ports (and protocols) should be allowed torehtecube, according to the
port numbers conveyed by the RTSP SETUP exchange.

The source routing algorithm should be extended to find a wemerif a link is broken
during streaming. Another feature that should be impleettig the ability to reserve
resources along the route, and to choose the optimal rosesllmn recorded reservations.

Finally, there were some tests that could have been pertbtongupport the data already
collected, if time had permitted.

To get an even more accurate comparison of the routing pegioce compared to Linux
hosts, a test could have been run monitoring the routing fonex group of directly
connected Linux hosts. By eliminating the time used for skitg, we could get more
precise data for the time saved by processing packets oXEe |

It is possible that, even with the kernel having prioritye fpacket processing time would
sufer from a heavily loaded host. We could therefore have medsine time used by a
Linux host to process the IP header switching when loaded vy work (like a tar
process).

To find out which kind of load th@Engines can take before having to drop packets, a
packet generator (or several) could be used to strain thedBdr switch application.
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Appendix A

V' S3 video server cube source

A.1 ICrouter microblock source

A.1.1 dl_system.excerpt.h

1 /**************************************************************

2 &k kk
3 xx This file contains definitions of scratch rings ok

4 «x and shared memory areas for the VS3 application. ok

5 =« This is only an excerpt. ok

6 =« The whole file could not be included due to ok

7 =+ Intel proprietary regulations. ok

8 =xx To get the whole picture, access the file ok

9 s+ dispatch_loogl_system.h in the build tree. *%

10 xx ok
12

13 /x

14 « i) Base address for meta data (fier descriptors) of packet
15 « buffers — for free list 2 — dcube

16 =

17 #ifndef DCUBE_NUM_BUF_HANDLES

18 #define DCUBE_NUM_BUF_HANDLES 1024

19 #endif

20

21 #ifndef DCUBE_SRAM_BASE

22 #define DCUBE_SRAM_BASE 0x80000
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23 #endif

24

25 4 Size of metadata (byfer descriptor) in bytes for each ffar.

26 Should be a power of 2/

27 #ifndef DCUBE_META_DATA SIZE

28 #define DCUBE_META_DATA_SIZE 32

29 #endif

30

31 A Total SRAM size allocated in bytes for meta data.

32 In simulation we use only 20KBsy/

33 #ifndef DCUBE_SRAM_SIZE

34 #define DCUBE_SRAM_SIZE (DCUBE_NUM_BUF_HANDLES« DCUBE_META DATA_SIZE
35 #endif

36

37 #ifndef DCUBE_SRAM_MAX

38 #define DCUBE_SRAM_MAX DCUBE_SRAM_BASE+ DCUBE_SRAM_SIZE
39 #endif

40

41 KA

42 « i) Base address for packet fers. This is the actual packet data.

43 =« ——dcube

44 x %/
45 #ifndef DCUBE_SDRAM_BASE

46 #define DCUBE_SDRAM_BASE 0x2000000

47 #endif

48

49 Jx Size of one packet ffar in bytes. =/

50 #ifndef DCUBE_BUFFER_SIZE

51 #define DCUBE_BUFFER_SIZE 2048
52 #endif

53

54 /« Total DRAM size allocated in bytes for packetffbts. =/

55 #ifndef DCUBE_SDRAM_SIZE

56 #define DCUBE_SDRAM_SIZE (DCUBE_NUM_BUF_HANDLES+« DCUBE_BUFFER_SIZE
57 #endif

58

59 /«

60 =« Scratch ring packet _eche—> XScale

61 =/

62 #define PE_XSCALE_COMM_RING 10

63 #define PE_XSCALE_COMM_BASE 8192
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64 #define PE_XSCALE_COMM_SIZE 512

65

66

67 /x

68 =« Scratch ring XScale-—> packet_echo

69 ¥/

70 #define XSCALE_PE_COMM_RING 11
71 #define XSCALE_PE_COMM_BASE 9216
72 #define XSCALE_PE_COMM_SIZE 512

A.1.2 ICrouter.h

/#*********************************************************

skk skk
++ |ncludes and definitions for the ICrouter microblockss

kk kk

**********************************************************/

#ifndef ICROUTER_H
#define _ICROUTER_H

© 0N O OB WN -

=Y
o

#include <ixp.h>

#include <dl_system.k

#include <dl_buf.c>

#include <dl_meta.c

#include <hardware.l

#include <sig_functions.ls

#include <ixp_lib.h>

#include <ixp_crc.c>

#include <rtl.c>

#include <ix_cc_microengines_bindings:h

NN P R R R R R R R
B O © N UM WNPR

#define PKTHDR_CACHE_SIZE 5 /+ Number of quadwords to read in iSRTSR()
#define ETHPROT _IP 0x0800 /« Ethernet protocol for filters/

#define IPPROT_TCP 6 /« IP protocol for filter =/

#define SERVER_PORT 9070 /x Server port for filter =/

N NN NN
O O WN

extern dl_buf handle_t diBufHandle; /« The current bgfer handle =/
extern dl_buf _handle t dlIEopBufHandle; /x For large packets, this is the last far in the chain. s/
extern dl_meta_t dIMeta; /+ Metadata structs/

N N
o0
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29
30
31
32
33
34
35
36
37
38
39

© 00N O Ol WN PP

N NNRE R PR R R R P R
NP, O ®©Oow~NOUMWNEREO

23
24
25
26

__declspec(gp_reght dINextBlock;

/% 1C packet typess/

enum {
ICH_FIND_FILE = 1,
ICH_ROUTE_FEEDBACK,
ICH_CONTROL_MSG,
ICH_RTP

h

#endif 4 #ifndef _ICROUTER_Hv/

A.1.3 ICrouter.c

/#*************************************************
sk

xx The ICrouter microblock and support methods:
3k

**************************************************/
#include "ICrouter.h"
/+ Read and return the input port from metadata
int getlnputPortinsigned int bufHandle){
/+ Check if packet came in on port &
__declspec(sram_read_reg)signed int metaData[5];
__declspec(gp_reg)nsigned int metaQtset;

SIGNAL sig_sram_rw;

meta@fset = bufHandle << 2;

/% Next block that should process the flagpacket «/

kK

kK

sram_read (metaData, (volatileoid _ declspec(sram))metaQfset, 5, \

sig_done, &sig_sram_rw);
wait_for_all(&sig_sram_rw);
return (metaData[3]>> 16);

/«+ Read and return the output port from metadata
int getOutputPort{nsigned int bufHandle){
__declspec(sram_read_regpsigned int metaData[5];
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27 __declspec(gp_reg)nsigned int metaQtset;

28

29 SIGNAL sig_sram_rw;

30

31 metadfset = bufHandle << 2;

32 sram_read (metaData, (volatileid __ declspec(sram))metaQfset,
33 sig_done, &sig_sram_rw);

34 wait_for_all(&sig_sram_rw);

35 return (metaData[3] & OXff);

36 }

37

38 /« Pop the next port from route field of IC headef
39 int popPort(){

40 uint32_t route;

41 char port;

42 __declspec(sdram)nsigned char «p_pkt_hdr;

43

44 p_pkt _hdr= (__declspec(sdramiinsigned char x)
45 (DI_BufGetData(dIBufHandle}+ diMeta.dfset);
46

47 route = ua_get_u32(p_pkt_hdr, 4);

48

49 port = route & OXf;

50 route >>= 8;

51 route |= Oxff0O00000;

52 ua_set 32(p_pkt_hdr, 4, route);

53

54 return port;

55 }

56

57 s+ Decrement and return TTL in IC headey
58 int ttiIDecr(){

59 __declspec(sdram)nsigned char «p_pkt_hdr;

60 int ttl;

61

62 p_pkt hdr= (__declspec(sdramiinsigned char =)
63 (DI_BufGetData(dIBufHandle}+ dIMeta.dfset);
64

65 ttl = ua_get u8(p_pkt_hdr, 1);

66  tth—;

67 ua_set 8(p_pkt_hdr, 1, ttl);
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68

69 return ttl;

70 }

71

72 s« Get the IC packet type from IC headef
73 int getType()}

74  _ declspec(sdram)nsigned char «p_pkt _hdr;

75

76 p_pkt hdr= (__declspec(sdramlinsigned char x)
77 (DI_BufGetData(dIBufHandle}+ diMeta.dfset);
78

79  return ua_get u8(p_pkt_hdr, 0);

80 }

81

82 /« Strips the IC header (for outbound packets)

83 void striplCHeader(){

84  _ declspec(sram) dl_metaxpMeta;

85

86 pMeta = (__declspec(sram) dl_meta:)DI_BufGetDesc(dIBufHandle);
87 pMeta->bufferSize-=8;

88 pMeta >offset +=8;

89 }

90

91 /« Remove ethernet checksum automatically generated by herdw
92 void removeEthChecksum(){

93 __declspec(sram) dl_metaxpMeta;

94

95 pMeta = (__declspec(sram) dl_meta:)DI_BufGetDesc(dIBufHandle);
96 pMeta >bufferSize =4;

97 }

98

99 /« Packet filter . Configured to allow TCP packets destined fort @070 =/

100 int isRTSP@nsigned int bufHandle, unsigned int diMetal){

101 __declspec(gp_reg)nsigned short ethtype, dstport;
102 __declspec(gp_reg)nsigned char ipprot;

103 __declspec(sdram)nsigned char «p_pkt _hdr;

104  _ declspec(dram_read_reagpsigned int pkthdr_in[10];
105 _ declspec(local_memjnsigned int temp[10];

106 SIGNAL_PAIR sig_dram_rw;

107

108 /4 set the meta data accordingly
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109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

dIMeta.value[1]
dIBufHandle.value

diMetal;
bufHandle;

p_pkt hdr= (__ declspec(sdramiinsigned char x)
(DI_BufGetData(dIBufHandle} dIMeta.dtset);

dram_read(pkthdr_in,(volatileoid __declspec(sdram})p_pkt_hdr,
PKTHDR_CACHE_SIZE, sig_done,&sig_dram_rw);
wait_for_all(&sig_dram_rw);

/+ Copy the header to local memory
temp[0] = pkthdr_in[O];
temp[1l] = pkthdr_in[1];
temp[2] = pkthdr_in[2];
temp[3] = pkthdr_in[3];
temp[4] = pkthdr_in[4];
temp[5] = pkthdr_in[5];
temp[6] = pkthdr_in[6];
temp[7] = pkthdr_in[7];
temp[8] = pkthdr_in[8];
temp[9] = pkthdr_in[9];

/«Read eth header protocol type

ethtype= ua_get ul6(temp, 12);

if (ethtype £ ETHPROT_IP)
return O;

/+ Read IP protocol fields/

ipprot = ua_get u8(temp, 23);

if (ipprot = IPPROT_TCP)
return O;

/+ Check dst ports/

dstport= ua_get ul6(temp, 36);

if (dstport £ SERVER_PORT)
return O;

return 1;

149 /« Main procedure containing the processing loop.
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150 Upon receiving a new packet on the scratch ring,

151 the packet is processed and dropped or forwarded

152 =/

153 main() {

154

155  _ declspec(sram_write_reghsigned int txReql, txReq2, txReq3;

156 __declspec(sram_read_rag)signed int rx_msgl1[5], rx_msg2, rx_msg3;
157 __declspec(gp_reg)nsigned int ipsrc, ipdest, ethsrcl, ethdestl;

158 __declspec(gp_reg)nsigned short ethsrc2, ethdest2;

159

160 int sig;

161 SIGNAL sig_scr_created,;
162 SIGNAL sig_new_packet;
163 SIGNAL sig_sram_read;
164 SIGNAL sig_sram_write;
165 SIGNAL sig_scr_get;
166 SIGNAL sig_scr_put;
167 SIGNAL sig_get_meta,;
168 SIGNAL sig_flush_meta;
169 SIGNAL sig_never;

170 SIGNAL sig_buf alloc;

171

172 __assign_relative_register(&sig_scr_created, 13);

173 __ assign_relative_register(&sig_new_packet, 14);

174

175 A Wait for signal from XScale before proceeding

176 This is to prevent the system from starting to

177 forward packets until the XScale functionality is ready

178 cap_fast write( 0, csr_thread_interrupt_a);
179 wait_for_all(&sig_scr_created);

180

181 4 Context 0: Read from RX(sr4), Filter packets.
182 Forward according to Packet type/

183 if (ctx() == 0) {

184 while(1){

185

186 /« Read from scratch rings/

187 scratch_get_ring(rx_msg1,

188 (void:)(POS_RX_RING_OUT<< 2),
189 5,

190 sig_done,
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191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

&sig_scr_get);
wait_for_all(&sig_scr_get);

/x If data is received, commence processigg
if (rx_msg1[0]){
/x Set metadata fset and buf handle values
(used by helper functions/
dIMeta.value[1]
dIBufHandle.value
txReql= rx_msgl[O];

rx_msg1[2];
rx_msg1[0];

/« Remove eth checksum (added by hw) by
decrementing bferSize in metadata by 4/
removeEthChecksum();

/« Read the input port numbes/
if (getinputPort(rx_msgl1[0])== 0){
/« External packet, filters/
if iISRTSP(rx_msg1[0], rx_msgl[2])){
/x Forward to XScales/
scratch_put_ring(&txReq1,
(voidx)(PE_XSCALE_COMM_RING << 2),
1,
sig_done,
&sig_scr_put);
wait_for_all(&sig_scr_put);
/+ Invoke int_a to wakeup XScale packet processig
cap_fast_write( 0, csr_thread_interrupt_a);
}
}else{
/+ Internal packet. Route according to IC headef
U8 port, ttl, type;

type = getType();
if (type == ICH_FIND_FILE){
/« File locating packet— Always forward to XScaley
scratch_put_ring(&txReql,
(void+)(PE_XSCALE_COMM_RING << 2),
1,
sig_done,
&sig_scr_put);
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232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

wait_for_all(&sig_scr_put);
cap_fast_write( 0, csr_thread_interrupt_a);
telsef
/+ Other packet. Route according to route field of IC headgr
/x Decrement ttls/
ttl = ttiDecr();
if (ttl > 0){
/= Pop route =/
port = popPort();
/« Send to popped port/
if (port == 0){
/x If outbound, strip IC headery/
striplCHeader();

/x Send to port O (externad)
scratch_put_ring((voigi&txReq1,
(void=)(PACKET_TX_SCR_RING_0<< 2),
1,
sig_done,
&sig_scr_put);
wait_for_all(&sig_scr_put);
lelse if(port == 1){
scratch_put_ring((voigi&txReq1,
(void«)(PACKET_TX_SCR_RING_1<< 2),
1,
sig_done,
&sig_scr_put);
wait_for_all(&sig_scr_put);
lelse if(port == 2){
scratch_put_ring((voigi&txReq1l,
(void«)(PACKET_TX_SCR_RING_2<< 2),
1,
sig_done,
&sig_scr_put);
wait_for_all(&sig_scr_put);
lelse if(port == Oxf){
/x Forward to XScales/
scratch_put_ring(&txReql,
(void=)(PE_XSCALE_COMM_RING << 2),
1,
sig_done,
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273 &sig_scr_put);

274 wait_for_all(&sig_scr_put);

275 cap_fast write( 0, csr_thread_interrupt_a);
276 }

277 } /x If ttl == 0 — packet is droppeds/

278 }

279 } /« Packet is droppeds/

280 Yx«if packety

281 } /xwhile(1)y/

282 } /x else x/
283 s+ The second context.

284 Receives packets from the XScale, and forwards accordingnétadata output port
285 the route has already been popped on the XScale.

286 if (ctx() == 2) {

287 unsigned int numPackets;

288 int i

289

290 while(1){

291

292 scratch_get_ring(&rx_msg2,

293 (voidk)(XSCALE_PE_COMM_RING << 2),
294 1,

295 sig_done,

296 &sig_scr_get);

297 wait_for_all(&sig_scr_get);

298

299 numPackets= (rx_msg2 >> 24);

300

301 for(i = 0; i < numPackets; ++){

302 txReq2= rx_msg2+ (i = 8 );

303 if (getOutputPort(rx_msg2¥= 0){

304 scratch_put_ring((voig&txReq2,

305 (void+)(PACKET_TX_SCR_RING_0<< 2),
306 1,

307 sig_done,

308 &sig_scr_put);

309 lelse if{getOutputPort(rx_msg2¥= 1){

310 scratch_put_ring((voig&txReq2,

311 (void+)(PACKET_TX_SCR_RING_1<< 2),
312 1,

313 sig_done,
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314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
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}

&sig_scr_put);

lelse if{getOutputPort(rx_msg2¥= 2){

scratch_put_ring((voig&txReq2,

(void«)(PACKET_TX_SCR_RING_2<< 2),
1,
sig_done,
&sig_scr_put);

}

wait_for_all(&sig_scr_put);

} fswhile(Ly/

telsef{

/x All other contexts are sleeping/
wait_for_all(&sig_never);

}

} /« mainy/

A.2

A21

XScale source

dcube.h

#ifndef DCUBE_H
#define DCUBE_H

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"uclo.h"
"hal_mev2.h"
"halMev2Api.h"
"hal_scratch.h"
"hal_sram.h"
"hal_dram.h"
"ix_macros.h"
"ix_ossl.h"
<stdio.h>
<errno.h-
<stdlib.h>
<string.h>
<fentl.h>
<unistd.h>
<sygtime.h>
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19
20
21
22

#include <sygioctl.h>
#include <enpv2_types.h
#include <sygmman.h-

23 /+ Socket includesy

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41 )+ XScale to host socket defines

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#include <sygsocket.h
#include <systypes.h-
#include <arpdinet.h>

#ifdef DEBUG

#define  DBG_MSG(str,args...)
#else

#define DBG_MSG(str, args...)
#endif

printf(str,##args)

#define VIRT_DRAM_BASE (void =)(ix_uint32)Hal_dram_chO_virtAddr
#define VIRT_SRAM_BASE (oid =)(ix_uint32)Hal_sram_chO_virtAddr
#define MAX_CONCURRENT_STREAMS 100

#define MULT_FACTOR 6 /« Used to get pointer to data from buf handig
#define MAX_IC_SESSIONS MAX CONCURRENT_STREAMS

#define ICH_TTL 4

#define DEST_PORT 23456
#define DEST_IP "192.168.1.1"

enum {
RTSP_DESC = 1,
RTSP_SETUP

h
typedef union {
struct {

unsigned int bufferNext;

unsigned short bufferSize;
unsigned short offset;

unsigned int packetSize

unsigned int freeListld

/fxx< Next byfer in the chain s/

/xx< amount of data currently in ber «/
/x< offset in DRAM where data beging/

. 16; /=< amount of data in the chain of ffars =/

D4 /xx< Free List to which this hgier belongs tox/
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82
83

unsigned int rxStat D4 /xx< Receive statusy

unsigned int headerType : 8; J#x< HEader Type: IPv4, IPv6 etcy

unsigned short inputPort; /< Input port on which packet was received
unsigned short outputPort; /xx< Output port on which packet to be transmitted
unsigned int nextHopld : 16; < Nexthop ID #/

unsigned int fabricPort . 8; /xx< Blade:Port =/

unsigned int reserved D4 /fxx< reserved x/

unsigned int nhidType D4 /#x< nexthop ID types/

unsigned int colorld 4;

unsigned int reservedl 4;

unsigned int flowld :24; /fex< FLow ID =/

unsigned short classld; /xx< Class ID %/

unsigned short reserved2;

unsigned int packetNext; /xx< Next packet in the chainy/
/xx< (used only in Hierarchical Queuing)/
} _ attribute_ ((packed)); // end of struct
unsigned int value[8]; /+x< aggregate for the above fields

84 } dl_meta t;

85
86
87
88
89
90
91
92
93

enum {

I3

ICH_FIND_FILE = 1,
ICH_ROUTE_FB,
ICH_CTRL_MSG,
ICH_CTRL_FB,
ICH_RTP

94 /+ Standard IC header:

95

Common for all IC packets:/

96 typedef struct{

97
98
99
100

uint8_t type;/x Type of IC packety/

uint8_t ttl; s To avoid circulating packetsy

uintl6 t dataLeny« Length of IC packet data (excluding the headey)
uint32_t route;x Routing information. Src routingy/
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101 } ICHeader_t __ attribute  ((packed));

102

103 /+ IC header extension:

104 Used to setup route information when assigning a new stream
105 typedef struct{

106 uintl6_t sportyx Client source ports/

107 uintl6_t dport;« Server port s/

108

109 uint32_t saddr/x Client source IP addr.x/
110 uint32_t daddry= Egress IP addrs/

111

112 char eth_src[6]; 4 Ethernet src addressy/
113  char eth_dst[6]; / Ethernet src address/
114 } ICHeader_ext t  attribute  ((packed));

115

116 enum {

117 ICS_CLOSED= 0,
118 ICS_WAIT_ROUTE,
119 ICS_ACTIVE,

120 };

121

122 typedef struct{

123 uint8_t status;

124 uint32_t route;x Routing information. Src routingy/
125 uintl6 t sport;x Client source ports/

126 uintl6 t dport; Server port s/

127

128 uint32_t saddr/x Client source IP addr.x/
129 uint32_t daddry= Egress IP addrs/

130

131  char eth_src[6]; 4 Ethernet src addressy/
132 char eth_dst[6]; / Ethernet src address/

133 } IC_session_t;

134 /« Structs located at the server that has the relevant fle

135 IC_session_t serv_ics[MAX IC_SESSIONS];

136 /« Structs located at the egress (used for forwarding incomRESP and RTCP datay/
137 IC_session_t egr_ics[MAX_IC_SESSIONS];

138

139 extern void StartSpi3br();

140 extern void StartMacs();

141
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/% Local includes

Needs structs above/
#include "bogus_tcp.h"
#include "dcube_utils.h"

#endif 4 #ifndef DCUBE_H s/

A.2.2 dcube.c

#include "dcube.h"

Hal_IntrMasks_T intMask;

iX_uint32 chdata, intThread A handle, intThread B dben

const char =plmageName"ICrouter.uof";
int hostSock, errno;

/+/Called when the ICrouter microblock receives a
packet on port O or a packet destined for
this node is received
void intThread_A(){
unsigned int metaQftset, data@set, bufHandle, rtspType;
dl_meta st pMeta;
void« dataVAddr;

/« Get packet and vaddr for metadata and data
bufHandle= SCRATCH_RING_GET(10);

DBG_MSG('Got from sr10: %0#10x\n", (int)bufHandle);

meta@fset = (bufHandle & OMffiff) << 2;
data@fset = (bufHandle & OXiffff) << (MULT_FACTOR + 2);

DBG_MSG('metaOffset: %0#10x\n", (int)metaQfset);

pMeta = VIRT_SRAM_BASE + metaQfset;

dataVAddr= VIRT_DRAM_BASE + dataQfset + pMeta >offset;
/% IC packet or from port O 07?«/
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if (pMeta->inputPort == 0){ A External packets/
char data[1500];
int len = 0, idx = 0, status;

/« Since all other packets are filtered on the uEngines,
«This has to be a TCHpacket destined for port 907/

/% Port 0:

Do we have the file?

Yes: Create session and forward to host.

No: Create IC header and forward to port 1 and 2
status= tcp_recv(dataVAddr, data, &len, &idx);
DBG_MSG('status: %i\n", status);
if ((status == B_TCP_DATA)){

DBG_MSG('tcp_recv returned the following data:\n");

/+ Ensure support for creating more than one stream on each TGRnhection s/
rtspType = getRtspType(data);
if (rtspType == RTSP_DESC)
DBG_MSG('dcube.c: packet is DESC\n");
/% Implement later #/
}else if( rtspType == RTSP_SETUP ){
DBG_MSG(dcube.c: packet is SETUP\n");
if (localHasFile(data)){
DBG_MSG('dcube.c: host has file.\n");
/+ Construct IC header and forward packet to host
add_IC_hdr(data, len, ICH_FIND_FILE, Bfttr);
add_IC_ext_hdr(data, idx);
ICPushPort(data, pMetainputPort);
debug_print_ICheader(data);
idx = newServICSession(data);
debug_print_servIiCsession(idx);
idx = newEgriCSession(data);
egr_ics[idx].route= Oxfffftft; 4 Since this is no feedback message
debug_print_egriCsession(idx);
/x Send to hosty/
errno = send(hostSock, data, lesizeof(ICHeader_t)sizeof(ICHeader_ext_t), 0);

if (errno == —1){
DBG_MSG('send() returned error\n");
telse{

DBG_MSG('Successfully sent %i bytes to socket\n",errno);
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}

telsef
DBG_MSG('dcube.c: file not found.\n");
/« Set up IC header and forward packet
to port 1 and 2/
[/« Set route to be QHfffff. Ports will be pushed
as the packet is broadcasted through the systg¢m
add_IC_hdr(data, len, ICH_FIND_FILE, fBfff);
add_IC_ext_hdr(data, idx);
ICPushPort(data, pMetainputPort);
ixp_send_packet(data, lesizeof(ICHeader_#)sizeof(ICHeader_ext_t), 1);
ixp_send_packet(data, lesizeof(ICHeader_t)sizeof(ICHeader_ext_t), 2);
}
telse{
int icldx, port;
/« Data for an existing stream
if the stream cannot be found,
discard the packets/
DBG_MSG(Received RTSP package\n");
debug_print_egriCsession(0);
icldx = egrFindICsess(idx);
if (icldx ==-1){
DBG_MSG('IC session not found\n");
/+ Discard packets/
telsef
add_IC_hdr(data, len, ICH_CTRL_MSG, egr_ics[icldxiie);
debug_print_htier32(data, lensizeof(ICHeader _t));

port = ICPopPort(data);
if (port == Oxfh){
/% Send to hostx/
errno = send(hostSock, data, lesizeof(ICHeader_#sizeof(ICHeader_ext t), 0);

if (errno == —1){
DBG_MSG(send() returned error\n");
telsef
DBG_MSG(Successfully sent %i bytes to socket\n",errno);
}
telsef
ixp_send_packet(data, lesizeof(ICHeader_t), port);
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}
lelse if((status == B_TCP_ERROR)X{

DBG_MSG(tcp_recv returned B_TCP_ERROR \n");
return ;

lelse if((status == B_TCP_NO_DATA)){
DBG_MSG(tcp_recv returned B_TCP_NO_DATA \n");
return;

lelse{ i« IC packet #/
/% 1C—packet/

DBG_MSG(Got IC Packet, %i bytes\n", ((ICHeader_t)dataVAddr}->datalLen);

switch(x((uint8_t)dataVAddr)){ / Read IC header Type/

case ICH_FIND_FILE: {
DBG_MSG( ICH_FIND_FILE\n");

if (localHasFile(dataVAddrsizeof(ICHeader_#sizeof(ICHeader_ext_t)))X{
DBG_MSG(dcube.c — IC: host has file.\n");
/= If this is the first time | got this packet:
create stream struct- forward to host
If 1 have seen this packet before:
drop packet s/
/x Find index of IC session for stream.
If no ssession, create a new ong

if (findICSession(dataVAddry»= 0){
DBG_MSG(ICSession found\n");
/+ We have already received this packet through another route:
Drop packet «/
Yelse{
int idx, i, fbpSize =sizeof(ICHeader_t)+ sizeofICHeader_ext t}+ 4 ;
char =«feedback, «rp;
ICHeader_tsich;

feedback= (chak)malloc(fbpSize);

[« Zero the packetsy/
memset(feedback, 0, fbpSize);
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155 DBG_MSG(Creating new IC session\n");

156 debug_print_ICheader(dataVAddr);

157 /% Push input ports/

158 ICPushPort(datavVAddr, pMetainputPort);

159 idx = newServICSession(dataVAddr);

160 debug_print_serviCsession(idx);

161 /+ Send feedback packet to egress to

162 create session struct there/

163 memcpy(feedback, dataVAddsjzeofICHeader_t}sizeof(ICHeader_ext t));
164 ich = (ICHeader _t)feedback;

165

166 /« Make sure the packet is forwarded to XScale at egress

167 /x Make sub of this ?«/

168 rp = (uint8_t)(&ich—>route);

169 for(i=0; i<4; i++){

170 if (rp[i]! =0Oxff){

171 rp[il=0xff;

172 break;

173 }

174 }

175 /+ Copy the route to payload of packet

176 memcpy(feedbaslsizeof(ICHeader_#sizeof(ICHeader_ext_t), &(ich>route), 4);
177 /« Prepare other fields of IC heade#/

178 ich->type=ICH_ROUTE_FB,;

179 ich->datalLenr-4;

180 ich->ttl=4;

181 DBG_MSG( feedback: ich->route: %x\n", ich->route);

182

183 /+ Send feedback packey

184 ixp_send_packet(feedback, fbpSize, ICPopPort(feedh

185 /+ Send packet to servex/

186 /« The program will crash (!!) if the connect was not successful
187 add handling of this problem/

188 errno = send(hostSock, dataVAddr, pMetabufferSize, 0);

189 if (errno == —1){

190 DBG_MSG(send() returned error\n");

191 telsef

192 DBG_MSG(Successfully sent %i bytes to socket\n",errno);
193 }

194 }

195 telse{
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DBG_MSG(dcube.c — IC: file not found.\n");
/x decrement ttl, forqward to port 1 and 2/
if (IC_ttl_dec(dataVAddr)}{
/+ Push port on IC header/
ICPushPort(datavVAddr, pMetainputPort);
/ if tt1=0, drop packets/
/+ Send to the port not received from
if (pMeta->inputPort=2)
ixp_send_packet(datavVAddr, pMetaufferSize, 1);
else
ixp_send_packet(dataVAddr, pMetaufferSize, 2);

}
DBG_MSG(ttl is now: %i\n", *((uint8_t)dataVAddr1));

break;

case ICH_CTRL_FB: {
uint32_t saddr, daddr;
uintl6_t sport, dport;
int status, size;
ICHeader_txich = (ICHeader_#)dataVAddr;
ICHeader_ext_tiche = (ICHeader_ext «)(dataVAddr + sizeofICHeader t));
DBG_MSG( ICH_CTRL_FB\n");
debug_print_ICheader(dataVAddr);
/« Get port data from IC header/
saddr= iche->saddr;
daddr= iche->daddr;
sport= iche->sport;
dport = iche->dport;
size = ich—>datalLen;
DBG_MSG(ICH_CTRL_FB: size = %i\n", size);
/x Strip IC header s/
dataVAddr+= sizeofICHeader t)+ sizeofICHeader ext t);
/« Forward payload to tcp_send/
status= tcp_send(dataVAddr, size, saddr, daddr, sport, dport);
if (status == —1){
DBG_MSG(tcp_send() returned an error.\n");
telse{
DBG_MSG(Successfully passed %i bytes to tcp_send.\n",status);
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break;

case ICH_CTRL_MSG: {
DBG_MSG[ ICH_CONTROL_MSG\n");
/x Forward to server s/
errno = send(hostSock, dataVAddr, pMetabufferSize, 0);
if (errno == -1){
DBG_MSG(send() returned error\n");
Yelse{
DBG_MSG(Successfully sent %i bytes to socket\n",errno);

break;

case ICH_ROUTE_FB: {
int idx;
DBG_MSG( ICH_ROUTE_FEEDBACK\n");
debug_print_ICheader(dataVAddr);
debug_print_Hier32(dataVAddr, pMeta>bufferSize);
/x Set up egress icsession with reverse route
idx = newEgriCSession(dataVAddr);
debug_print_egriCsession(idx);

break;

default: break;

}

return;

int main(){
void =ucloHandle;
int status;
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struct sockaddr_in dest_addr; // will hold the destination addr

/& init ixa sdk uclo lib =/
UcLo_InitLib();

/+ init all uengs #/
UcLo_InitLibUeng( OX );

/+ load ueng image into memory/

status= UcLo_LoadObjFile( &ucloHandle, (char plmageName );

if ( status £ UCLO_SUCCESS ) {
printf('UcLo_LoadObjFilel failed with status code :%d\n", status);
return 1;

/% write to microenginess/

status= UcLo_WriteUimageAll( ucloHandle );

if ( status £ UCLO_SUCCESS ) {
printf('UcLo_WriteUimageAll failed\n");
printf(‘status = %i\n", status);
return 1;

/+ verify uengine 0 for sanity checl/

status= UcLo_VerifyUengine( ucloHandle, 0 );

if ( status £ UCLO_SUCCESS ) {
printf('UcLo_VerifyUengine O failed, status = 0x%x\n", status);
return 1;

printf('verify uengine passed\n");

/« delete objects/

status= UcLo_DeleObj( ucloHandle );

if ( status £ UCLO_SUCCESS ) {
printf('UcLo_DeleObj failed\n");
return 1;

/+ Enable interrupt Ax/
halMe_IntrEnable(HALME_INTR_THD_A_MASK);
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319

320  /« init and start spi3br s/

321 StartSpi3br();

322

323  /+ init and start macss/

324 StartMacs();

325

326 halMe_ Init(OXp);

327  /«Start microenginesy/

328 halMe_Start(0, 0R);

329 halMe_Start(1, 0X);

330 halMe_Start(2, 0X);

331 printf('Microengines started\n");

332

333  /« Wait for int A Indicates that uEngines are initialized andady =/
334 halMe_IntrPoll(HALME_INTR_THD_A_MASK, &intMask);
335

336 DBG_MSG(Got int A\n");

337

338 /« Spawn callback thread for m&Scale comms/

339 status= halMe_SpawnlintrCallbackThd( HALME_INTR_THD_A MASK, tifhread_A,

340 &cbdata, 1, (void)&intThread A _handle);
341 if (status £ HALME_SUCCESS)

342 printf("Error spawning intThread_A\n");

343 } else {

344 printf('Success spawning intThread_A\n");

345 }

346

347 /)« Send signal 13 to mel, ctx 0, 2 and =4
348 status= me_signal( 1, 0, 13);

349 if (status £ HALME_SUCCESS){

350 printf("Error signaling me 1, ctx O\n");
351 }

352 status= me_signal( 1, 2, 13);

353 if (status £ HALME_SUCCESS){

354 printf("Error signaling me 1, ctx 2\n");
355  }

356 status= me_signal( 1, 4, 13);

357 if (status £ HALME_SUCCESS)

358 printf("Error signaling me 1, ctx 4\n");
359 }
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/x Setup socket to communicate with hegt
hostSock= socket(AF_INET, SOCK_STREAM, 0)j/ do some error checking!
if (hostSock== -1){
printf('socket() returned error\n");
telsef
printf('Socket successfully created\n");

dest_addr.sin_family AF_INET;
dest_addr.sin_port htons(DEST_PORT);
dest_addr.sin_addr.s_addrinet_addr(DEST_IP);
memset(&(dest_addr.sin_zerd)\0’, 8);

errno = connect(hostSock,sfruct sockaddr«)&dest addr,sizeof(struct sockaddr));

if (errno == —1){
printf('connect () returned error\n");
telsef
printf('Successfully connected to %s, port %i\n",inet ntoa(dest addr.sin_addr), DEST_PORT);
}
/+Show Spi3br driver informatiop
//ShowSpi3br();

/«Show mac driver informatioy
//ShowMac();

while(1) {
char data[1500], «dp;
int status, bytecount, dataSize;
/x Listen to hostSock
collect data, create Correct headers,
and forward to uEngines for transmit/

/x Assumes that IC Header is the first to arrive,
and that all packets arrive in the order: ICHeaderPayload >ICHeader >Payload etc. s/

/x Read IC headers/
dp = data;
bytecount= sizeof{ICHeader _t);
while(bytecount > 0){
status= recv(hostSock, dp, bytecount, 0);
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401 if (status == —1){

402 DBG_MSG(recv() returned error\n");

403 sleep(1000);

404 lelse if(status > 0}

405 DBG_MSG(Socket: Received IC header, %i bytes\n", status);
406 dp += status;

407 bytecount-= status;

408 }

409 }

410

411 /x Get size of data from IC headey

412 ICHeader_txich = (ICHeader_#)data;

413 int port;

414 if ((ich->type == ICH_ROUTE_FB) || (ich->type == ICH_CTRL_FB))
415 bytecount= ich->dataLen + sizeofICHeader_ ext t);

416 else

417 bytecount= ich->datalLen;

418

419 dataSize= bytecount;

420 DBG_MSG(dataSize: %i\n", dataSize);

421 DBG_MSG(bytecount: %i\n", bytecount);

422 while(bytecount > 0){

423 status= recv(hostSock, dp, bytecount, 0);

424 if (status == —1){

425 DBG_MSG(recv() returned error\n");

426 sleep(1000);

427 lelse if(status > 01

428 DBG_MSG(Socket: Received %i bytes of data\n", status);
429 dp += status;

430 bytecount-= status;

431 }

432 }

433 dataSize=sizeof(ICHeader _t);

434

435 debug_print_Hier32(data, dataSize);

436 port = ICPopPort(data);

437 if (port == Oxff){ A This is an RTSP message on egress machjne
438 ICHeader_ext_tiche = (ICHeader_ext «))(data+sizeof(ICHeader _t));
439

440 status= tcp_send(datesizeof(ICHeader_#)sizeof(ICHeader_ext t), ich-dataLen,
441 iche->saddr, iche>daddr, iche>sport, iche>dport);
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if (status == —1){
DBG_MSG(tcp_send() returned an error.\n");
telse{
DBG_MSG(Successfully passed %i bytes to tcp_send.\n",status);
}
Yelse{
dp = data;
if (port == 0){ /« If data is at egress, strip IC heade#/
dp += sizeofICHeader t);
dataSize-= sizeofICHeader _t);

}
ixp_send_packet(dp, dataSize, port);

return O;

A.2.3 dcube_utils.h

#ifndef _DCUBE_UTILS_H
#define _DCUBE_UTILS_H

#include "dcube.h"

void tcp_udp_checksum(void int);

void ip_checksum(voig);

ix_error me_signal( ix_uint32, ix_uint32, ix_uint32);

void ixp_send_packet(uint8x;t int, uintl6 t);

120



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

© 0N OB WN -

el el e e e =
0N U WNRERO

void debug_print_metadata(dl_meta);t

void debug_print_bfier32(void:, int);

int getRtspTypethar =data);

int localHasFile ¢har =xdescString);

void add_IC_hdr¢har +data, int len, int type, uint32_t route);
void add_IC_ext_hddghar =data, int idx);

int IC_ttl dec(void dataVAddr);

int findlICSession(void ICpacket);

int newServiCSession(void ICpacket);

int newEgrICSession(void ICpacket);

void debug_print_egriCsessian{ idx);

void debug_print_serviCsessiant idx);

void debug_print_ICheader(voidlCpacket);

void ICPushPort(void ICpacket, uint8_t port);

int ICPopPort(voié ICpacket);

int egrFindICses(t idx);

int timeval_subtract gtruct timeval =result, struct timeval =x, struct timeval xy);

#endif 4 #ifndef DCUBE_UTILS_Hsy/

A.2.4 dcube utils.c

#include "dcube_utils.h"

#define IX_ RM_SAME_ME_SIGNAL_OFFSET 0x108
#define VIRT_DRAM_BASE (void =)(ix_uint32)Hal_dram_chO_virtAddr
#define VIRT_SRAM_BASE (oid =)(ix_uint32)Hal_sram_chO_virtAddr

int bufCount = 0; 4 what byfer handle number is currently "active/

uint8_t packetcount 0; /i How many packets currently scheduled for batck send
int bufBase;/ The base bffier handle for the next batch/

struct timeval curTime, lastBatch;

ix_error me_signal( ix_uint32 arg_MENumber,
ix_uint32 arg_ContextNumber,
ix_uint32 arg_SignalNumber ) {
ix_error err= IX_SUCCESS;

WRITE_LWORD(((ix_uint32)Hal_cap_me_local_csr_xiddr
+ (arg_MENumber<< 10) + IX_RM_SAME_ME_SIGNAL_OFFSET),
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19 ((arg_SignalNumbek< 3) + arg_ContextNumber));
20

21 return err,

22 }

23

25 « To calculate tcp checksum :

26 « — Construct pseudo header:

27  « + + + + +
28 = | Source Address |

29 + + + + +
30 = | Destination Address |

31 =« + + + + +
32 =« | zero | PTCL | TCP Length |

33 =« + + + + +
34 =« — Zero out checksum field

35 % - Pad one zeroed byte if length is an odd number
36 x - Do a ones complement sum of the whole thing
37 x —If a carry occur, add one, and return

38 =« — Return the ones complement of the sum

40

41 /« Calculates the 16 bit onesomplement sum of a given
42 buffer. Pads the last byte with O if odd size

43 Input: data: Pointer to byfer start

44 len: length of datax/

45 uint32_t partial_csum(uint8« tdata, int len) {

46 uint32_t sum= 0;

47 uintl6_t last= 0;

48 int odd = O;

49
50 if(len & 1)
51 odd = 1;
52

53 len >>= 1;
54 while (len > 0) {

55 sum += x((uintl6_t)data);
56 data += sizeofuint16_t);
57 len—;

58 }

59 /A odd len %/
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60
61
62
63
64
65
66
67

if (odd){
last = xdata << 8;
sum += last;

return sum ;

68 / Calculate checksum for TCP or UDP header, and

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

write it to the packet
Input: ipHdrStart — Pointer to beginning of IP header
size — total size of packets/

void tcp_udp_checksum(voidipHdrStart, int  size){

uint32_t sum= 0;
uintl6_t finalsum;

uint8_t protocol;

uint32_t zero_ptcl_tcpsize;

/+ Extract protocol type from IP heades/
memcpy(&protocol, ipHdrStard, 1);
zero_ptcl_tcpsize (protocol << 16) | ((size-20) & OxfffT);

/% zero out checksum field/

memset(ipHdrStar36, 0, 2);

/+ Pseudo header calculations/

/% Calculate checksum of sré dest #/

sum = partial_csum(ipHdrStaftl2, 8);

/+ Calculate checksum of protocol nr and TCP size
sum += partial_csum((uint8 «)&zero_ptcl_tcpsize, 4);

/+ Calculate checksum of tcp header and data
sum += partial_csum(ipHdrStar20, size 20);

/« Add carries %/
while (sum & Oxtff0000)
sum = (sum >> 16) + (sum & OXffT);

/« Write the one’s complement of the sum to
the correct spot in the TCP headey

finalsum = “sum;

memcpy(ipHdrStar36, &finalsum, 2);
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101
102

}

103 /4 Calculate checksum for IP header, and

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

write it to the packet

Input: Pointer to beginning of IP heades/
void ip_checksum(void ipHdrStart){

uint32_t sum;

uintl6_t finalsum;

memset(ipHdrStartl0, 0, 2);
sum = partial_csum(ipHdrStart, 20);

/< Add carries =/
while (sum & Oxtff0000)
sum= (sum >> 16) + (sum & Oxfff);

finalsum= "sum;
memcpy(ipHdrStartl0, &finalsum, 2);

121 s« Send packet bfer to port specified

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

todo: implement batch sending and sending to
different ports =/
void ixp_send_packet(uint8« tbuffer, int size, uintl6 t port){
int curBufHandle, bufHandle, metdfet, data@set, status;
struct timeval timedif;
void« dataVAddr;
dl_meta # pMeta;
DBG_MSG(Send packet of %i bytes to port %i\n", size, port);

packetcount+;
curBufHandle= 0x20000 + (bufCount = 8);
/« If we're at the beginning of a new batck/
if ( packetcount== 1){
bufBase= curBufHandle;

/« Prepare the current packet/

bufHandle= curBufHandle;

meta@set = (bufHandle & OXIffff) << 2;

data@set = (bufHandle & Oxfffff) << (MULT_FACTOR + 2);
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142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

pMeta= VIRT_SRAM_BASE + metaQfset;

/x Zero metadatas/
memset(pMeta, Osizeofdl_meta_t));

pMeta >bufferNext =0xff;

pMeta >value[2] = 0x00001001;
pMeta >bufferSize = size;
pMeta >packetSize= size;
pMeta >nextHopld = Oxff;
pMeta >offset = 0x100;

pMeta >outputPort = port;

dataVAddr= VIRT_DRAM_BASE + dataQtset + pMeta >offset;

memcpy(dataVAddr, Ifier, size);

/+ Increment or wrap hgler count =/
if (bufCount == 1024){

bufCount= 0;
} else

bufCount+;

status= gettimeofday(&curTime, NULL);
if (status == —1){

DBG_MSG(gettimeofday returned an error\n");

timeval_subtract (&timeffi &curTime, &lastBatch);
DBG_MSG(timediff.tv_sec: %u — timediff.tv_usec: %u\n", timedif.tv_sec,

J/if( timediff.tv_sec > 0 || timediff.tv_usec> 500 || packetcount>= 50){

[x
| 31-24 |23 - 0|
num packets bufHandle

5/

bufHandle= (packetcount<< 24) | curBufHandle;
DBG_MSG(bufHandle : %0#10x\n", bufHandle);

SCRATCH_RING_PUT(11, bufHandle);
/+ Reset batch packet countey
packetcount= 0;

status= gettimeofday(&lastBatch, NULL);
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183
184
185
186
187
188
189
190
191
192 }
193

if (status == —1){

DBG_MSG(gettimeofday returned an error\n");
}
I}

//status = me_signal( 1, 2, 14);

//if (status E HALME_SUCCESS)

// DBG_MSG('Error signaling me 1, ctx 2\n");
/l'}

194 /« Print relevant metadatas/
195 void debug_print_metadata(dl_meta_pMeta){

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210 }
211

DBG_MSG(bufferNext: %0#10x\n", pMeta->bufferNext);
DBG_MSG(bufferSize: %0#10x\n", pMeta->bufferSize);
DBG_MSG(offset: %0#10x\n", pMeta->offset);
DBG_MSG(packetSize: %0#10x\n", pMeta->packetSize);
DBG_MSG( freeListId: %0#10x\n", pMeta->freeListld);
DBG_MSG(rxStat: %0#10x\n", pMeta->rxStat);
DBG_MSG(headerType:: %0#10x\n" ,pMeta->headerType);
DBG_MSG(inputPort: %0#10x\n", pMeta->inputPort);
DBG_MSG(outputPort: %0#10x\n", pMeta->outputPort);
DBG_MSG(nextHopId: %0#10x\n", pMeta->nextHopld);
DBG_MSG( fabricPort: %0#10x\n", pMeta->fabricPort);
DBG_MSG(flowId: %0#10x\n", pMeta->flowld);
DBG_MSG(classId: %0#10x\n", pMeta->classld);
DBG_MSG(classId: %0#10x\n\n", pMeta>packetNext);

212 /« Print buffer in 32 bit words hex in byte ordef
213 void debug_print_bfier32(void: buf, int size){

214
215
216
217
218
219
220
221
222
223

int i

for(i=0; i < size; k+){
if(i % 4==0)
DBG_MSG(\nbuf[%i]: 0x", i);

if (x((uint8_t)(buf+i)) == 0)
DBG_MSG[(00");

else if(x((uint8_t<)(buf+i)) < 15)
DBG_MSG(0%x", =((uint8_t<)(buf+i)));
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224 else

225 DBG_MSGU%x", *((uint8_g)(buf+i)));
226}

227  DBG_MSG(\n");

228 }

229

230 /« Check if the payload is a SETUP packet
231 Implement check for other types when needgd
232 int getRtspTypethar =data){

233  char =xsetupStr= "SETUP";

234  if(strncmp(data, setupStr, strlen(setupStey 0)

235 return RTSP_SETUP;
236

237  return O;

238 }

239

240 /« Check if the requested file exists on the local server
241 int localHasFile ¢har =descString){

242 char fname[50] = "/opt/storage/\0";

243  char =xstart;

244 FILE =xstatus;

245

246 start=strstr(descString,"9070");

247  if(start == NULL)

248 return O;
249 start += 5;
250

251 strncat(fname, start, strchr(staft, ’)-start);
252 DBG_MSG( fname = %s\n", fname);

253

254 status= fopen (fname,"rb");

255  if(status == NULL)

256 return O;

257  else

258 fclose(status);

259  return 1,

260 }

261

262 /« Input: data: pointer to bgfer containing payload
263 len: pointer to length of payload

264 idx: index of tcp stream in the tarray
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265 Prepends the payload with an IC headef
266 void add_IC_hdr¢har =data, int len, int type, uint32_t route){
267 ICHeader _t ich;

268 4 Zero IC headers/

269 memset(&ich, 0,sizeofICHeader _t));

270 ich.type = type;

271 ich.ttl = ICH_TTL;

272 ich.dataLen= len;

273 ich.route= route;

274 memmove(datssizeof(ICHeader _t), data, len);

275 memcpy(data, &ichsizeofICHeader _t));

276 }

277

278 /« Assumes that an IC header already has been adged
279 void add_IC _ext hddhar =data, int idx){

280 ICHeader_txich = (ICHeader_#)data;

281 ICHeader_ext_t iche;

282 s« Zero IC header extsy/

283 memset(&iche, 0sizeofICHeader_ext t));

284 iche.sport=ts[idx].sport;

285 iche.dport=ts[idx].dport;

286 iche.saddr=ts[idx].saddr;

287 iche.daddr=ts[idx].daddr;

288 memcpy(&iche.eth_src, &ts[idx].eth_src, 6);

289 memcpy(&iche.eth_dst, &ts[idx].eth_dst, 6);

290 memmove(datessizeof(ICHeader_#)sizeof(ICHeader_ext t), dataizeof(ICHeader t), ich>datalLen);
291 memcpy(datesizeof(ICHeader_t), &ichesizeofICHeader_ext_t));
292 }

293

294 /«Input: pointer to beginning of IC packet

295 Decrements IC ttl by one, and returns the valye
296 int IC_ttl_dec(void dataVAddr){

297  return ——(x((uint8_t)dataVAddr1));

298 }

299

300 4 Check if IC session exists.

301 Input: pointer to start of IC packet

302 Output: postion of IC session (orl if it does not exist)s/

303 int findlICSession(void ICpacket)}{
304 ICHeader_ext_tiche = (ICHeader_ext #)(ICpacket-sizeof(ICHeader _t));
305 int i, pos = -1,
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306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

DBG_MSG( findICSession: sport= %i\n", iche->sport);

for (i=0; i<MAX_ IC_SESSIONS; ++) {

if (serv_ics[i].status 2 ICS_CLOSED && serv_ics[i].sadér=iche->saddr &&
serv_ics[i].daddt=iche->daddr && serv_icsJi].sport== iche->sport && serv_ics]i].dport
/« We have found an active session that corresponds to the idehe#

pos = i;

DBG_MSG(ICSession: found session\n");

break;

}

return pos;

uint32_t routelnverse(uint32_t route){
uint32_t inv_route;

uint8_t «rp= (uint8_t)&route, =irp=(uint8_t)&inv_route;

int i, j=3;

for(i=0; i < 4; i++){
if (+(rp+i)==0xff)

«(irp+i) = Oxff;
else
w(irp+(j—=)) = =(rp+i);
}
return inv_route;

335 /4 Initialize IC session from data

336
337
338
339
340
341
342
343
344
345
346

Input: Pointer to IC packet

Output: index of new IC session-X if no free slot)

%/
int newEgriCSession(void ICpacket){

ICHeader_ext_tiche = (ICHeader_ext )(ICpacket + sizeofICHeader _t));

/% The payload of IC_ROUTE_FB is rout to server with the fije

uint32_t route_data *(uint32_t)(ICpacketsizeof(ICHeader_t)sizeof(ICHeader_ext_t));
DBG_MSG(newEgrICSession: route_data: %x\n", route_data);

int i, pos = -1,
/+ locate first free slots/
for (i=0; i<MAX IC_SESSIONS; ++) {
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347 if (egr_ics[i].status== ICS_CLOSED){

348 pos = i;

349 DBG_MSG(newEgrICSession: first free: %i\n", pos);
350 break;

351 }

352 }

353

354  if(pos k& —-1){

355 egr_ics[pos].status ICS_ACTIVE;

356 egr_ics[pos].route= routelnverse(route_data);
357 egr_ics[pos].sport iche->sport;

358 egr_ics[pos].dport iche->dport;

359 egr_ics[pos].sadde iche->saddr;

360 egr_ics[pos].dadde iche->daddr;

361 memcpy(&egr_ics[pos].eth_src, &icheeth src, 6);
362 memcpy(&egr_ics[pos].eth_dst, &icheeth dst, 6);
363 }

364  return pos;

365 }

366

367 /4 Initialize IC session from data

368 Input: Pointer to IC packet

369 Output: index of new IC session-X if no free slot)

370 «/

371 int newServICSession(void ICpacket){

372 ICHeader_tsich = (ICHeader_#)ICpacket;

373 ICHeader_ext_tiche = (ICHeader_ext #)(ICpacket-sizeof(ICHeader _t));
374 int i, pos = -1;

375 /+ locate first free slots/

376  for (i=0; i<MAX_IC_SESSIONS; ++) {

377 if (serv_ics[i].status== ICS_CLOSED){
378 pos = i;

379 DBG_MSG(newServICSession: first free: %i\n", pos);
380 break;

381 }

382 }

383

384 if(pos E -1}

385 serv_ics[pos].status ICS_ACTIVE;
386 serv_ics[pos].route- ich->route;

387 serv_ics[pos].sport iche->sport;
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388
389
390
391
392
393
394
395 }
396

}

serv_ics[pos].dport iche->dport;
serv_ics[pos].sadde iche->saddr;
serv_ics[pos].dadd¢ iche->daddr;
memcpy(&serv_ics[pos].eth_src, &icheeth _src, 6);
memcpy(&serv_ics[pos].eth_dst, &icheeth dst, 6);

return pos;

397 void debug_print_serviCsessiont idx){

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412 }
413

if (idx < MAX_IC_SESSIONS){

DBG_MSG[IC-session:\n");
DBG_MSG(index: %i\n", idx);
DBG_MSG(status: %u\n", serv_ics[idx].status);
DBG_MSG(route: %x\n", serv_ics[idx].route);
DBG_MSG(sport: %u\n", serv_ics[idx].sport);
DBG_MSG(dport: %u\n", serv_ics[idx].dport);
DBG_MSG(saddr: %x\n", serv_ics[idx].saddr);
DBG_MSG(daddr: %x\n", serv_ics[idx].daddr);
DBG_MSG(eth_src: ");
debug_print_Hier32(serv_ics[idx].eth_src, 6);
DBG_MSG(eth_dst: ");
debug_print_Hier32(serv_ics[idx].eth_dst, 6);

414 void debug_print_egriCsessian{( idx){

415
416
417
418
419
420
421
422
423
424
425
426
427
428

if (idx < MAX_IC_SESSIONS){

DBG_MSG[IC-session:\n");
DBG_MSG(index: %i\n", idx);
DBG_MSG(status: %u\n", egr_ics[idx].status);
DBG_MSG(route: %x\n", egr_ics[idx].route);
DBG_MSG(sport: %u\n", egr_ics[idx].sport);
DBG_MSG(dport: %u\n", egr_ics[idx].dport);
DBG_MSG(saddr: %x\n", egr_ics[idx].saddr);
DBG_MSG(daddr: %x\n", egr_ics[idx].daddr);
DBG_MSG(eth_src: ");
debug_print_Hier32(egr_ics[idx].eth_src, 6);
DBG_MSG(eth_dst: ");
debug_print_Hiter32(egr_ics[idx].eth_dst, 6);
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429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

}

void debug_print_ICheader(voidlCpacket){
ICHeader_txsich = (ICHeader_#)ICpacket;

DBG_MSG(ICheader:\n");
DBG_MSG(type: %u\n", ich->type);
DBG_MSG[ttl: %u\n", ich->ttl);
DBG_MSG(datalen: %u\n", ich->datalLen);
DBG_MSG({route: %x\n", ich->route);

if (ich->type == ICH_FIND_FILE) || (ich->type == ICH_ROUTE_FB) || (ich->type == ICH_CTRL_FB)){
ICHeader_ext_tiche = (ICHeader_ext f)(ICpacket-sizeof(ICHeader _t));

DBG_MSG(sport:
DBG_MSG(dport:
DBG_MSG(saddr:
DBG_MSG(daddr:

%u\n",
%u\n",
%x\n",

%x\n",

DBG_MSG(eth_src: ");
debug_print_Hier32(iche >eth_src, 6);
DBG_MSG(eth_dst: ");
debug_print_Hier32(iche>eth_dst, 6);

iche->sport);
iche->dport);
iche->saddr);
iche->daddr);

453 /+ Input: ICpacket: Pointer to IC packet
port: input port number
Pushes the given port number on the right side of the 4 byteereu
void ICPushPort(void ICpacket, uint8_t port){
ICHeader_tsich = (ICHeader_#)ICpacket;

454
455
456
457
458
459
460
461
462
463

ich->route <<= 8;
ich->route |= port;

DBG_MSG(ICPushPort: ich->route: %x\n", ich->route);

464 /+ Input: ICpacket: Pointer to IC packet

Pops a port from the IC header route, and returns .
466 int ICPopPort(void ICpacket){
ICHeader_t«ich = (ICHeader_#)ICpacket;

465

467
468
469

int port;
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470 port = ich->route & OXT;

471 ich->route >>= 8;

472 ich->route |= Oxff000000;

473 DBG_MSG[ICPopPort: ich->route: %x\n", ich->route);

474 DBG_MSG(ICPopPort: popped port: %u\n", port);

475  return port;

476 }

477

478 s+ Input: idx: Index of TCP session

479 Output: index of IC session (ox1 if not found) s/

480 int egrFindICses#ft idx){

481  int i

482

483  for (i=0; i<MAX_IC_SESSIONS; ++) {

484 if (egr_ics[i].status # ICS_CLOSED && egr_ics[i].saddt=ts[idx].saddr &&
485 egr_ics[i].dadds=ts[idx].daddr && egr_ics[i].sport==ts[idx].sport &&
486 egr_ics[i].dport==ts[idx].dport){

487 /« We have found an active IC session that corresponds to theivext packets/
488 return i

489 DBG_MSG(egrFindICsess: found session\n");

490 }

491 }

492 return —1;

493 }

494

495 /« Subtract the ‘struct timeval' values X and Y,

496 storing the result in RESULT.

497 Return 1 if the dference is negative, otherwise 0/
498 int timeval_subtract gtruct timeval xresult,
499 struct timeval =X, struct timeval =y){

500 4 Perform the carry for the later subtraction by updating ¥.
501 if (x—>tv_usec< y->tv_usec) {

502 int nsec = (y->tv_usec- x->tv_usec)/ 1000000+ 1;
503 y->tv_usec—= 1000000 = nsec;

504 y->tv_sec += nsec;

505

506 if (x-—>tv_usec— y->tv_usec> 1000000) {

507 int nsec = (x—>tv_usec- y->tv_usec)/ 1000000;
508 y->tv_usec += 1000000 = nsec;

509 y->tv_sec —= nsec;

510 }
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511

512  /« Compute the time remaining to wait.
513 tv_usec is certainly positivey/
514 resub>tv_sec = x->tv_sec- y->tv_sec;
515 resukt>tv_usec= x->tv_usec- y->tv_usec;
516
517 )« Return 1 if result is negatives/
518 return x—>tv_sec < y->tv_sec;
519 }
520
521 s+ To do:
522 Make linked lists of TCP structs and IC session strugts
A.2.5 bogus tcp.h
1 #ifndef _BOGUS_TCP_H
2 #define _BOGUS_TCP_H
3
4 #include "dcube.h"
5
6 #define MAX_TCP_SESSIONS MAX_CONCURRENT_STREAMS
7 #define ETH_HDR_SIZE 14
8 #define ETH_TYPE_IP 0x0800
9 #define IP_HDR_SIZE 20
10 #define TCP_HDR_SIZE 20
11
12 /« Return states+/
13 #define B_TCP_ERROR 0
14 #define B_TCP_NO DATA 1
15 #define B_TCP_DATA 2
16

17 + TCP FLAGS+#

18
19
20
21
22
23
24

#define TCP_FLAGS_FIN 1

#define TCP_FLAGS_SYN %<1
#define TCP_FLAGS_RST %<2
#define TCP_FLAGS_PSH <3
#define TCP_FLAGS_ACK k<4
#define TCP_FLAGS_URG %<5

25 /+ TCP statess/
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26 enum {

27 TCP_CLOSED= 0,
28  TCP_SYN_RCVD,

29 TCP_ESTABLISHED,
30 TCP_CLOSE_WAIT,
31 TCP_FIN_WAIT,

32 TCP_TIME_WAIT

33 }

34

35 /« TCP Change optionsy
36 enum {

37 TCP_NO_CHANGE= 0,
38 TCP_RST,

39 TCP_FIN

40 }

41

42 typedef struct{

43 uint8_t status;

44 uint32_t saddr;

45 uint32_t daddr;

46 uintl6 t sport;

47 uintl6_t dport;

48 uint32_t local_num;
49 uint32_t remote_num;
50 time_t last_used;
51  char eth_dst[6];
52 char eth_src[6];

53 } tcp_session_s;

54 tcp_session_s ts[MAX_TCP_SESSIONS];

55

56 /« 14 bytes Ethernet headey/

57 typedef struct{

58 char dst[6];

59  char src[6];

60 uintl6_t type;

61 } eth_hdr _ attribute  ((packed));

62

63 i 20 bytes IP Headery

64 typedef struct{

65 uint8_t version c 4 /% Version =/
66 uint8_t hlen 4 /x Header lengths/
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67 uint8_t tos; /x Type of servicesx/

68 uintl6_t length; /« Total length s/

69 uintl6_t ident; /x |dentification =/

70 uintle_t flags : 3 [« Flags s/

71 uintl6_t drset 0 13; /= Fragment giset «/

72 uint8_t ttl; /x Time to live %/

73 uint8_t protocol; /% Protocol s/

74 uintl6_t checksum; /x Header checksumy/
75 uint32_t src; /x Source addressy/
76 uint32_t dst; /x Destination addressy/
77 }ip_hdr __ attribute  ((packed));

78

79 s+ 20 bytes TCP Header/
80 typedef struct{

81 uintl6_t sport; /% Source port s/

82 uintl6_t dport; /x Destination port =/

83 uint32_t seq; /+ Sequence Numbet/

84 uint32_t ack; /% Acknowledgement numbey

85 uintl6_t hdrlen . 4; S TCP Header lengths/
86 uintl6 t reserved : 6; /+ Reserverd- Zero x/

87 uintl6_t flags . 6; )+ Flags #/

88 uintl6_t win; /< Window sizes/

89 uintl6_t checksum; /x Header Checksumy/
90 uintl6_t urgptr; /% Urgent pointer =/

91 Mcp_hdr _ attribute_ ((packed));

92

93 /«x Exported methodsy/

94 int tcp_recvyoid +dataVAddr, char =data, int =len, int =idx);

95 int tcp_sendfoid =data, int size, uint32_t saddr, uint32_t daddr, uintl6_t sport, 16nt dport);
96 void set tcp dataéft ts id, uint32_t sa, uint32_t da, uintl6_t sp, uintl6_t dmt32_t seq, uint8 t flags);
97 int find_create_tcp(uint32_t sa, uint32_t da, uint32_t sptléint dp, uint32_t seq, uint8_t flags);
98 int find_tcp(uint32_t sa, uint32_t da, uint32_t sp, uintl6_9;dp

99 void get_eth_srafoid =dataVAddr, char xeth_src);

100 void get_eth_dst(oid =dataVAddr, char =eth_dst);

101 void get_ip_hlenyoid =dataVAddr, uint8_t=ip_hlen);

102 void get ip_data_lempid +dataVAddr, uintl6_t«datagram_len);

103 void get_ip_src(void dataVAddr, uint32_t«ip_sa);

104 void get_ip_dst(void dataVAddr, uint32_t«ip_da);

105 void get_tcp_sport(void dataVAddr, uint8_t ip_hlen, uintl6_stcp_sp);

106 void get tcp_dport(void dataVAddr, uint8 t ip_hlen, uintl6 ttcp dp);

107 void get_tcp_seq(void dataVAddr, uint8 t ip_hlen, uint32_ttcp_seq);
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108 void get_tcp_ack(void dataVAddr, uint8_t ip_hlen, uint32_stcp_ack);
109 void get_tcp_flags(void dataVAddr, uint8_t ip_hlen, uint8_ttcp_flags);
110 void get_tcp_hlen(void dataVAddr, uint8_t ip_hlen, uint8 %tcp_ hlen);
111 void prepare_iph(ip_hdeiph);

112 void prepare_tcph(tcp_hdstcph);

113 void debug_print_ TCPsess(tcp_session_s tcps);

114

115 #endif /4 #ifndef BOGUS_TCP_Hy

A.2.6 bogus tcp.c

1 #include "bogus_tcp.h"

2

3

4 « (C)2003, Matija Puzar<matija@ifi.uio.no-

5 « Adapted by Andreas Petlund 2005

6

7

8 /+ Input: ipData: Pointer to beginning of IP packet

9 Returns: B_TCP_ERROR if error, B_TCP_NO_DATA if no dataT®>_ DATA if data is received.
10 data: pointer to packet payload (should be at least 1500 $yitng).
11 len: length of packet payload.

12 idx: index into tcpstruct-array (to get port and IP data for IC sessions)
13 int tcp_recvyoid =ipData, char =data, int =len, int =idx){

14  /« We already know this is a TCP packet destined for port 96870
15

16  char eth_src[6], eth_dst[6], resp_data[54];

17 uint8_t tcp_flags, new_tcp_flags, ip_hlen, tcp_hlen;

18 uintl6 t tcp_sp, tcp_dp, datagram_len, tcp_len, date |

19 uint32_t ip_sa, ip_da, tcp_seq, tcp_ack;

20 int ts_id, tcp_ack_incr= 0, fin_incr = 0O;

21

22 xidx = —1;

23  / Get necessary data/

24  + Get eth src and dst adds/
25 get_eth_src(ipData, eth_src);
26 debug_print_htier32(eth_src, 6);
27 get_eth_dst(ipData, eth_dst);
28 debug_print_biier32(eth_dst, 6);
29

137



30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

/+ Get necessary data from IP headef

g

get ip_data len(ipData, &datagram_len);

g
g

/« Let's get all the necessary data from the TCP heasdér
get_tcp_sport(ipData, ip_hlen, &tcp_sp);
get_tcp_dport(ipData, ip_hlen, &tcp_dp);
get_tcp_seq(ipData, ip_hlen, &tcp_seq);
get_tcp_ack(ipData, ip_hlen, &tcp_ack);

et _ip_hlen(ipData, &ip_hlen);

et _ip_src(ipData, &ip_sa);
et ip_dst(ipData, &ip_da);

get_tcp_flags(ipData, ip_hlen, &tcp_flags);

get_tcp_hlen(ipData, ip_hlen, &tcp_hlen);
tcp_len = datagram_len- (ip_hlen = 4); 4 hlen is given in 32 bit wordsy
data_len= tcp_len — (tcp_hlen = 4); / hlen is given in 32 bit wordsy/

[+ Let's find the TCP session which corresponds to the given datacreate a new one)y/
ts_id = find_create_tcp(ip_sa, ip_da, tcp_sp, tcp_dp, tcp_seu,flags);

[

Copy MAC addresses into struct

——— Do this only once (to be implemented - x/

memcpy(ts[ts_id].eth_src, eth_src, 6);
memcpy(ts[ts_id].eth_dst, eth_dst, 6);

/+ Now, let's handle the received flags and set the sending ones.

n

x By default, we set the ACK flag

x tcp_ack_incr is set to 1 if we got a SYN or FIN flag (each of theonSumes" 1 sequence number)

%/
ew_tcp_flags= TCP_FLAGS_ACK;

tcp_ack_incr= 0;

[
if

If we got a SYN packet, we will respond also with a SYN paeket

(tcp_flags & TCP_FLAGS_SYN) {
new_tcp_flagg= TCP_FLAGS_SYN;
tcp_ack_incr= 1;

By default we push all received data immediately, so here we'tddo anything s/

(tcp_flags & TCP_FLAGS PSH) {
DBG_MSG( TCP_FLAGS_PSH\n");
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79
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86
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94
95
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109
110
111

/« If we get an ACK, let's check if we have to switch to gfedént statesx/
if (tcp_flags & TCP_FLAGS ACK) {
switch (ts[ts_id].status) {

/= We received the third TCP packet (last in thew&y handshake operationy
case TCP_SYN_RCVD: {

//fprintf(stderr, "Received 3hs ACK, dropping packet\n");

ts[ts_id].status= TCP_ESTABLISHED;

return B_TCP_NO_DATA,

/= We received the last ACK, after already closing the conoacty
case TCP_CLOSE_WAIT: {

//fprintf(stderr, "Received last ACK, dropping packet\n");

ts[ts_id].status= TCP_CLOSED,;

return B_TCP_NO_DATA;

/x We received the last ACK but still need to send oufs
case TCP_FIN_WAIT: {

ts[ts_id].status= TCP_TIME_WAIT;

break;

default: break;

}

/« If we get a FIN, we should respond with an ACK and, if we didmitiate
x a FIN before, we will do it now and pass to the CLOSE_WAIT state
*/

if (tcp_flags & TCP_FLAGS_FIN) {

if (ts[ts_id].status== TCP_ESTABLISHED) ({
new_tcp_flags= TCP_FLAGS_FIN;
ts[ts_id].status= TCP_CLOSE_WAIT;

}

tcp_ack_incr= 1,

/+ If we get a seq. number that we already AGH, we don't do it agains/
if (ts[ts_id].status== TCP_ESTABLISHED && data len== 0 && tcp_seq==
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112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

//fprintf(stderr, "Already ACK—ed, dropping packet\n");
return B_TCP_NO_DATA;

[ If any payload, copy it into bfer pointed to by datas/

if ((data_len> 0) && (ts[ts_id].status £ TCP_FIN_WAIT)) {
memcpy(data, ipDat&TH_HDR_SIZE-(ip_hlen:4)+(tcp_hler4), data_len);
xlen = data_len;
xidx = ts_id;

/+ Now, let's send a response/
memset(resp_data, 8jzeofresp_data));
if (tcp_seq== ts[ts_id].remote_ num && ts[ts_id].status=! TCP_CLOSED) {

/« Prepare ethernet heades/

eth_hdr ethh;

memset(&ethh, Osizeofethh)); / make sure struct is zeroed
memcpy(&ethh.dst, eth_srsjzeofeth_src));

memcpy(&ethh.src, eth_dssjzeofeth_dst));

ethh.type= ETH_TYPE_IP;

/x Let's prepare the IP header as wel/

ip_hdr iph;

prepare_iph(&iph)/« Fill in predefined fields:/
iph.src= ip_da;

iph.dst= ip_sa;

iph.length=sizeofresp_data)ETH_HDR_SIZE;

/x remote_num is the remote sequence number we expectsnext
ts[ts_id].remote_nunx tcp_seq+ data len+ tcp_ack incr;

/x Now, we prepare the TCP header as wesll
tcp_hdr tcph;

prepare_tcph(&tcph)i Fill in predefined fieldss/
iph.src= ip_da;

tcph.sport= tcp_dp;

tcph.dport= tcp_sp;

tcph.seq= ts[ts_id].local_num;

tcph.ack= ts[ts_id].remote_num;

tcph.flags= new_tcp_flags;
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153
154 /x Copy headers to ber s/

155 memcpy(resp_data, &ethisjzeofethh));

156 memcpy(resp_dat& TH_HDR_SIZE, &iph, IP_HDR_SIZE);

157 memcpy(resp_dat& TH_HDR_SIZE-IP_HDR_SIZE, &tcph, TCP_HDR_SIZE);
158

159 /x Calculate checksums/

160 ip_checksum(resp_data ETH_HDR_SIZE);

161 tcp_udp_checksum(resp_dataETH_HDR_SIZE, IP_HDR_SIZE+ TCP_HDR_SIZE);
162

163 /% local_num has the next sequence number on our side

164 ts[ts_id].local_num+= tcp_ack_incr+ fin_incr;

165

166 } else {

167 /% Something went wrong/

168 DBG_MSG(B_TCP_ERROR\n");

169 return B_TCP_ERROR;

170 }

171

172 )+ In this app, only port 0 (external) will need TCK/
173 ixp_send_packet(resp_datizeofresp_data), 0);

174

175 4 If we were in the TIME_WAIT state and sent our last ACK,
176 x we close the connection totally/

177 if (ts[ts_id].status== TCP_TIME_WAIT)

178 ts[ts_id].status= TCP_CLOSED;

179

180 4 If we get a RST flag, we reset the connection and discard th&epag
181 if (tcp_flags & TCP_FLAGS_RST) {

182 ts[ts_id].status= TCP_CLOSED;

183 }

184

185 4 Give proper return values/

186 if(data_len> 0)

187 return B_TCP_DATA,;

188 else

189 return B_TCP_NO_DATA;

190 }

191

192 /x Input: data: Pointer to payload.

193 size: Size of payload in bytes.
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215
216
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224
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230
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233
234

saddr: Source IP address.
daddr: Destination IP address.
sport:  Source port.
dport: Destination port.
change: Status change (i.e. FIN or RST) (0 if no change)
Output: Nuber of bytes sent;1 if error. =/
int tcp_send{oid =data, int size, uint32_t saddr, uint32_t daddr, uintl6_t sport, 16nt dport){
int tcpldx, psize= size + TCP_HDR_SIZE+ IP_HDR_SIZE + ETH_HDR_SIZE;
char =«packet = malloc(psize);

tcpldx = find_tcp(saddr, daddr, sport, dport);
if (tcpldx == -1)
return tcpldx;

DBG_MSG(tcp_send(): Found TCP stream. Index: %i\n", tcpldx);

/« Prepare ethernet heade#/

eth_hdr eh;

memcpy(&eh.dst, &ts[tcpldx].eth_src, 6);
memcpy(&eh.src, &ts[tcpldx].eth_dst, 6);
eh.type= ETH_TYPE_IP;

DBG_MSG(After ETH header prepare");

[« Let's prepare the IP header as wel/
ip_hdr iph;

prepare_iph(&iph)/ Fill in predefined fieldss/
iph.src= daddr;

iph.dst= saddr;
iph.length=(uint16_t)(psizeETH_HDR_SIZE);

DBG_MSG(After IP header prepare");

/« Now, we prepare the TCP header as wasll
tcp_hdr tcph;

prepare_tcph(&tcph)s Fill in predefined fieldss/
tcph.sport=ts[tcpldx].dport;
tcph.dport=ts[tcpldx].sport;

tcph.seq= ts[tcpldx].local_num;
tcph.ack=ts[tcpldx].remote_num;

tcph.flags= TCP_FLAGS_PSH| TCP_FLAGS_ACK;
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235

236 DBG_MSG(After TCP header prepare");

237

238  /« Increment local_num with number of bytes seyit

239 ts[tcpldx].local_num= ts[tcpldx].local_num+ size;

240

241 /)« Copy headers to packet/

242 memcpy(packet, &eh, ETH_HDR_SIZE);

243 memcpy(packeETH_HDR_SIZE, &iph, ETH_HDR_SIZEIP_HDR_SIZE);

244  memcpy(packeETH_HDR_SIZE-IP_HDR_SIZE, &tcph, ETH_HDR_SIZEIP_ HDR_SIZE-TCP_HDR_SIZE);
245 /)« Copy payload to packet/

246 memcpy(packeETH_HDR_SIZE-IP_HDR_SIZE-TCP_HDR_SIZE, data, size);
247

248 debug_print_Hier32(packet, psize);

249 A Calculate checksums/

250 ip_checksum(packet ETH_HDR_SIZE);

251 tcp_udp_checksum(packet ETH_HDR_SIZE, size+ IP_HDR_SIZE + TCP_HDR_SIZE);
252

253 ixp_send_packet(packet, psize, 0);

254 free(packet);

255

256  return size;

257 }

A.2.7 bogus_tcp_utils.c
#include "bogus_tcp.h"

/+ Look up our table of established TCP connectionsif found, return the index in the table
x If not, create a new entryy

int find_create_tcp(uint32_t sa, uint32_t da, uint32_t sptl@int dp, uint32_t seq, uint8_t flags){
int i, pos = -1, min_time_id= 0, first_free= -1,
time_t min_time;

© 0N O WN P

min_time = time(NULL);

10

11 for (i=0; i<MAX_TCP_SESSIONS; 4+) {

12 if (ts[i].status £ TCP_CLOSED && ts[i].sadde=sa && ts[i].dadd==da && tsfi].sport == sp && ts[i].dport ==
13 /« We have found an active stream that corresponds to the pagket

14 pos = i;
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16
17
18
19
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22
23
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27
28
29
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31
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34
35
36
37
38
39
40
41
42
43
44
45

DBG_MSG(b_tcp: found stream\n");
break;
} else if(ts[i].status £ TCP_CLOSED)
/« This is an active stream that does not correspond to the packe
Check when it was last used
if (ts[i].last_used< min_time) {
min_time = ts[i].last_used;
min_time_id = i;
}
} else if(first_free == —1){
/x First free slot «/
first_free= i,
}
}
/« Use the first free slot, if none, reuse the least recently used
if (pos == —1){
if (first_free E —1){
pos = first_free;
DBG_MSG(b_tcp: using first free\n");
telsef
pos = min_time_id;
DBG_MSG(b_tcp: using lru\n");
}
}
set_tcp_data(pos, sa, da, sp, dp, seq, flags);
return pos;
}

46 /« Look up our table of established TCP connections.

47
48
49
50
51
52
53
54
55

If found, return the index in the table.
If not found, return—1 =/

int find_tcp(uint32_t sa, uint32_t da, uint32_t sp, uintl6_9H{dp
int i

for (i=0; i < MAX_TCP_SESSIONS; 4+) {
if (ts[i].status £ TCP_CLOSED && ts[i].saddr== sa
&& tsfil.daddr == da && ts[i].sport == sp && ts[i].dport == dp) {
/s« We have found an active stream that corresponds to the pagket
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56 DBG_MSG(b_tcp: found stream\n");

57 return i

58 }

59 }

60 DBG_MSG('find_tcp: No matching stream found\n");

61 return -1;

62 }

63

64 void set tcp_dataft ts id, uint32_t sa, uint32_t da, uintl6_t sp, uintl6é_t dmt32_t seq, uint8_t flags){
65 if (flags & TCP_FLAGS_SYN){

66 ts[ts_id].remote_num= seq;

67 ts[ts_id].local_num= 1,

68 ts[ts_id].status= TCP_SYN_RCVD;
69

70 if (ts[ts_id].status== TCP_SYN_RCVD)
71 ts[ts_id].saddr= sa;

72 ts[ts_id].daddr= da;

73 ts[ts_id].sport= sp;

74 ts[ts_id].dport= dp;

75 }

76 ts[ts_id].last_used= time(NULL);
77}

78

79 /+ Input: Pointer to start of eth packet

80 Output: Eth src— 6 bytes x/

81 void get eth_srofoid =xdataVAddr, char =xeth_src){
82 memcpy(eth_src, dataVAddB, 6);

83 }

84

85 /4« Input: Pointer to start of eth packet

86 Output: Eth dst— 6 bytes s/

87 void get_eth_dst(oid =dataVAddr, char xeth_dst){
88 memcpy(eth_dst, dataVAddr, 6);

89 }

90

91 /4 Input: Pointer to start of eth packet

92 Output: ip src — 4 bytes s/

93 void get_ip_src(void dataVAddr, uint32_t«ip_sa){
94 memcpy(ip_sa, dataVAddETH_HDR_SIZE-12, 4);
95 }

96
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97 /« Input: Pointer to start of eth packet

98 Output: ip dst— 4 bytes s/

99 void get ip_dst(void dataVAddr, uint32_t«ip_da){

100 memcpy(ip_da, dataVAddETH_HDR_SIZE-16, 4);

101 }

102

103 /A« Input: Pointer to start of eth packet

104 Output: IP Hlen — 4 bit «/

105 void get_ip_hlengoid xdataVAddr, uint8 txip_hlen){

106 memcpy(ip_hlen, dataVAddETH_HDR_SIZE, 1);

107 xip_hlen &= Oxf; A Hlen is the 4 Isbx/

108 }

109

110 /4« Input: Pointer to start of eth packet

111 Output: IP length— 2 bytes «/

112 void get_ip_data_lempid «dataVAddr, uintl6_t«datagram_len){

113 memcpy(datagram_len, dataVAd&TH_HDR_SIZE2, 2);

114 }

115

116 s+ Input: dataVAddr: Pointer to start of eth packet

117 ip_hlen: length of IP header in 32 bit words

118 Output: TCP source port- 2 bytes «/

119 void get_tcp_sport(void dataVAddr, uint8 t ip_hlen, uintl6_stcp_sp){
120 int tcp_hdr_d& = ip_hlen = 4; /4 ip_hlen is given in 32 bit wordsy
121 memcpy(tcp_sp, dataVAdelETH_HDR_SIZErtcp_hdr_df, 2);

122 }

123

124 /<« Input: dataVAddr: Pointer to start of eth packet

125 ip_hlen: length of IP header in 32 bit words

126 Output: TCP dest port- 2 bytes s/

127 void get_tcp_dport(void dataVAddr, uint8_t ip_hlen, uintl6 ttcp dp){
128 int tcp_hdr_d¢f = ip_hlen = 4; / ip_hlen is given in 32 bit wordsy
129 memcpy(tcp_dp, dataVAddETH_HDR_SIZErtcp_hdr_df+2, 2);

130 }

131

132 /4« Input: dataVAddr: Pointer to start of eth packet

133 ip_hlen: length of IP header in 32 bit words

134 Output: TCP seq — 4 bytess/

135 void get_tcp_seq(void dataVAddr, uint8_t ip_hlen, uint32_stcp_seq){
136 int tcp_hdr_d& = ip_hlen = 4; /4 ip_hlen is given in 32 bit wordsy
137 memcpy( tcp_seq, dataVAddETH_HDR_SIZErtcp_hdr_df+4, 4);
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138 }

139

140 /+ Input: dataVAddr: Pointer to start of eth packet

141 ip_hlen: length of IP header in 32 bit words

142 Output: TCP ack- 4 bytess/

143 void get_tcp_ack(void dataVAddr, uint8_t ip_hlen, uint32_stcp_ack){
144  int tcp_hdr_d¢f = ip_hlen = 4; / ip_hlen is given in 32 bit wordsy
145 memcpy( tcp_ack, dataVAdeETH_HDR_SIZE+-tcp_hdr_df+8, 4);

146 }

147

148 /« Input: dataVAddr: Pointer to start of eth packet

149 ip_hlen: length of IP header in 32 bit words

150 Output: TCP flags— 6 bits %/

151 void get tcp_flags(void dataVAddr, uint8 t ip_hlen, uint8 #tcp_flags){
152 int tcp_hdr_d& = ip_hlen = 4; /4 ip_hlen is given in 32 bit wordsy
153 memcpy( tcp_flags, dataVAdeETH_HDR_SIZErtcp_hdr_d¢f+13, 1);
154  «tcp_flags & Ox3F; 4 all but the 6 Isb’s %/

155 }

156

157 /+ Input: dataVAddr: Pointer to start of eth packet

158 ip_hlen: length of IP header in 32 bit words

159 Output: TCP header length — 4 bits «/

160 void get_tcp_hlen(void dataVAddr, uint8_t ip_hlen, uint8 #tcp hlen){
161 int tcp_hdr & = ip_hlen = 4; /4 ip_hlen is given in 32 bit wordsy
162 memcpy( tcp_hlen, dataVAdeETH_HDR_SIZE-tcp_hdr_df+12, 1);
163  xtcp_hlen>>= 4; /« Hlen is in the 4 msbh’sy/

164 }

165

166 void prepare_iph(ip_hdeiph){

167 memset(iph, Osizeofip_hdr)); /< make sure struct is zeroed

168 iph->ttl = 64;

169 iph->version = 4;

170 iph->hlen = (sizeofip_hdr) / 4 ); /« hlen is given in 32 bit wordsy/
171 iph->flags = 2;

172 iph->protocol = 6;

173 }

174

175 void prepare_tcph(tcp_hdstcph){

176 memset(tcph, Osizeoftcp_hdr)); /< make sure struct is zeroed/

177 tcph->hdrlen = (sizeoftcp_hdr)/ 4); / hlen is given in 32 bit wordsy
178 tcph->win = 0x16d0;
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180
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186
187
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190
191
192
193
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void debug_print. TCPsess(tcp_session_s tcps){
DBG_MSG(TCP session:\n");
status: %i\n", tcps.status);

DBG_MSG( tcps.
DBG_MSG( tcps.
DBG_MSG( tcps.
DBG_MSG( tcps.

DBG_MSG( tcps

DBG_MSG( tcps

saddr:
daddr:
sport:

.dport:
DBG_MSG( tcps.

%x\n", tcps.saddr);
%x\n", tcps.daddr);
%i\n", tcps.sport);
%i\n", tcps.dport);

local_num: %x\n", tcps.local_num);

.remote_num: %x\n", tcps.remote_num);
DBG_MSG( tcps.

last_used: %x\n", (uint32_t)tcps.last_used);
DBG_MSG(eth_dst: 0x%x\n", #((uint32_t)&(tcps.eth_dst)));
DBG_MSG(eth_src: 0x%x\n", =((uint32_t)&(tcps.eth_src)));

A.3 Host source

A.3.1 srtsp.h

#ifndef _SRTSP_H
#define _SRTSP_H

/x felles
#include
#include
#include
#include
#include

#/

<stdio.h>

<time.h>

<pthread.b+

<linux/types.b-

<sygtypes.h-

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<sygsocket.b»
<sygtime.h>
<sygsendfile.b
<netinetin.h>
<netinettcp.h>
<errno.h
<ctype.h»
<netdb.h
<string.h>
<arpdinet.h>
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20 #include <fcntl.h>

21 #include <stdlib.h>

22 #include <sygstat.h>

23 #include <ctype.h-

24 #include <sygresource.k

25 #include <sygmman.h-

26 #include <unistd.h>

27 #include <linux/unistd.h>

28 #include <syscall.h-

29

30 /« "Local" includes s/

31 #include "dbg_msg.h"

32 #include "rtp.h"

33 #include "ic.h"

34

35

36 #define UDP_CORK 1

37 #define NSEC_PER_USEC (1000L)

38

39 #define MYPORT 23456 // the port users will be connecting to
40 #define BACKLOG 5 // how many pending connections queue will hold
41 #define MAX_RTP_STREAMS 100

42 #define ETH_TYPE_IP 0x0800
43 #define BIT_WRAP OXTff

44

45 #define MEDIASTREAM_PLAY 1
46 #define MEDIASTREAM_PAUSE 2
47 #define MEDIASTREAM_FF 3
48 #define MEDIASTREAM_REWIND 4
49 #define MEDIASTREAM_TEARDOWN 5
50 #define MEDIASTREAM_STATISTICS_INIT 6
51 #define MEDIASTREAM_STATISTICS 7
52 #define MEDIASTREAM_STATUS 8
53

54 #define SESSION_STATUS _INIT 201

55 #define SESSION_STATUS RUNNING 202
56 #define SESSION_STATUS PAUSED 203
57 #define SESSION_STATUS _FF _REWIND 204
58 #define SESSION_STATUS_STOPED 205
59

60

149



61 typedef struct {

62 uint32_t ipsrc;

63 uint32_t ipdst;

64 uint8_t notuseg; always zerox/
65 uint8_t protok protocol useds/
66 uintl6é_t lens UDP len s/

67 } pseudo_udp __attribute__ ((packed));
68

69 i 14 bytes Ethernet headey

70 typedef struct{

71  char dst[6];

72  char src[6];

73 uintl6_t type;

74 } eth_hdr _ attribute  ((packed));
75

76 /< 20 bytes IP Headery

77 typedef struct{

78 uint8_t version c 4 /x Version s/

79 uint8_t hlen D4 /+ Header lengths/
80 uint8_t tos; /x Type of servicesx/
81 uintlé_t length; [+ Total length =/

82 uintl6_t ident; /x ldentification s/

83 uintl6_t flags © 3 [+ Flags =/

84 uintl6_t drset 0 13; /x Fragment gset #/

85 uint8_t ttl; /x Time to live %/

86 uint8_t protocaol; /« Protocol =/

87 uintl6_t checksum; /x Header checksumy/
88 uint32_t  src; /x Source addressy
89 uint32_t dst; /x Destination addressy/
90 lip_hdr __ attribute_ ((packed));

91

92 s« 8 bytes UDP Headery/
93 typedef struct{

94 uintl6_t sport; /= Source port s/

95 uintl6_t dport; /x Destination port x/
96 uintl6_t len; /% Length «/

97 uintlé_t csum; /% Checksums/
98 }ludp_hdr __ attribute  ((packed));

99

100 typedef struct {
101 uint32_t secs;
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102 uint32_t frac;

103 } ntp64_t;

104

105 /« supported RTSP message types:
106 enum {

107 RTSP_SETUP= 1,

108 RTSP_PLAY,

109 RTSP_UNKNOWN

110 };

111

112 struct playinfo {

113 pid_t pid; /+ initielt O, settes etter retur fra farste play kalk/
114 int in_fd; /x fil som skal streamess/

115 int out fd; /% socket. %/

116 lof t start dfset; /< start gfset i in_fd. «/
117 lof t stop_dfset; /4 stop gfset i in_fd. «/
118 long trans_interval; /« transmission interval:

119 — mpeg ts: antall usec mellom hver pakke.
120 — mpeg es: antall usec mellom hver frame.
121 %/

122 uintl6_t max_pkt_lens max pakke lengde:

123 — mpeg ts payload:

124 — max_pkt_lenrtp_hdr_size.

125 —  max_pkt_len ma veere (189+rtp_hdr_size.
126 — mpeg es payload:

127 — payload > 1 && payload < max_pkt_leartp_hdr_sizempeg_hdr_size.
128 %/

129 uint32_t tsinc; /x timestamp increment:

130 — mpeg ts: increment per pakke

131 — mpeg es: increment per frame

132 %/

133 uint8_t type; /x type mediax/

134  /RTRy

135 uint32_t ssrc; /% synchronization sourcey/

136

137  unsigned long head,;
138 unsigned long tall;

139 unsigned long datasize;
140 }

141

142
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143 struct ff_rewind_info {
144 lof t start dfset;

145 lof t stop_dfset;

146 1},

147

148 struct ses_stat {

149 ntp64_t ntp_timestamp;
150 uint32_t rtp_timestamp;
151 uint32_t packet_count;
152 uint32_t octet count;
153 uintl6é_t rtp_seq;

154 };

155

156 struct ses_stat first {
157 uint32_t rtp_timestamp;
158 ntp64_t ntp_timestamp;
159 };

160

161 typedef struct {

162  //struct list_head list;
163 uint32_t sid;

164 pid_t pid;

165 uint8_t status;

166

167 int in_fd;

168 int out fd;

169 lof t start dfset;

170 lof t stop_dfset;

171  unsigned long buffaddr;
172

173 long trans_interval;//i usec
174 uint32_t tsinc;

175 uintl6_t max_pkt_len;
176

177  4RTPRy

178 uintl6é_t rtp_seq;

179 uint32_t rtp_timestamp;
180 uint32_t ntp_timestamp;
181 uint32_t ssrc;

182

183 s+ The value of the RTP timestamp

when the session opened richasdomly)
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184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

%/

uintl6_t init RTP_seq;
uint32_t init_RTP_timestamp;
ntp64 _t init NTP_timestamp;

struct timeval time_start;// settes til timeofday etter pause
/% current rtp timestamp fet/
struct timeval time_elapsedj/ settes til 0 ved pause

//IDISSE NULLES UT FOR HVER GANG STAT KALLES
uint32_t packet_count;
uint32_t octet_count;

unsigned long head;
unsigned long tail;
unsigned long datasize;

} rtp_session_info_t;

enum {
RTPS_CLOSED= 0,
RTPS_ACTIVE

h

enum {
R_EGRESS= 0,
R_OUTBOUND

h

typedef struct{
uint8_t status;
int thdld; /4 Id of streaming threads/
int client_rtp_port;
int client_rtcp_port;
int server_rtp_port;
int server_rtcp_port;
int icldx; A Index of corresponding IC sessiog
char filename[100];
} RTP_stream_t;
RTP_stream_t rtps[MAX_RTP_STREAMS];
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225 /« Socket descriptor for comm with XScakg

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

1
2

int xscale_sock;

void debug_print_ICheader(voidlCpacket);

void debug_print_bfier32(void: buf, int size);

void debug_print_ICsessioim{ idx);

struct timeval usec2tipng usec);

struct timeval AddTimesgtruct timeval «timel, struct timeval xtime2);
struct timeval SubTimestruct timeval «timel, struct timeval «time2);
int getRtspType(char data);

int getRtspSessionfar xdata);

void getFileNameghar =data, char fn);

int newlCSession(void ICheader, void icHdrExt);

int newRtpStreanift icldx, ICHeader txich, char =data);

void getClientPortsthar =data, int =c_rtp_p, int =c_rtcp_p);

void createRtspReplyft ses, char =data, int type, char =reply);

int addICheader(IC_session_t icehar =data, int size, int ICtype, int routeType);
void addICExtHeader(IC_session_t icshar =data, int size);

void sendToXScalehar =reply, int size);

uint32_t egressRoute(uint32_t route);

void partial_csum(uint32_tsum, void- data, int len);
void udp_checksum(void ipHdrStart, int size);

void ip_checksum(void ipHdrStart);

#endif A #ifndef SRTSP_Hy/

A.3.2 srtsp.c

#include "srtsp.h"

3 4 WiIll send the whole file with packets in a predefined interval

4
5

©O© 00N O

10

void =mpeg_ps(RTP_stream sstreaminfo) {
char =«path = "/opt/hardhat/previewkit/arm/xscale_be/target/opt/storage/", fullpath[100];
char =packet = malloc(1500);//char packet[1500];
int hdrs_size sizeofICHeader_t)+ sizeofeth_hdr) + sizeofip_hdr) + sizeof{udp_hdr) + sizeofrtp_hdr_t);
ICHeader_t«ich=(ICHeader_t)packet;
eth_hdr =eth=(eth_hdk)(packet-sizeof(ICHeader t));
ip_hdr «iph=(ip_hdr)(packet-sizeof(ICHeader_tw sizeofleth_hdr));
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

udp_hdr=udph=(udp_hdk)(packetsizeof(ICHeader_tx+ sizeofleth_hdr) + sizeofip_hdr));
rtp_hdr_t=rtph = (rtp_hdr_t)(packetsizeof(ICHeader_t sizeofeth_hdr) + sizeofip_hdr)sizeof(udp_hdr));

uint32_t new_rtp_seq, new_rtp_ts;
int fd, bytes read;

DBG_MSG( sssesesesessnsnse NEW THREAD — ID: %i ssssisssesssx\n", (int)pthread_self());

/+ Generate full path to filex/
sprintf(fullpath, "%s%s", path, streaminfe>filename);

/« Open file %/
fd = open(fullpath, O_RDONLY);
if (fd == —1){

DBG_MSG(open() failed\n");

DBG_MSG('Couldn’t open file. error: %s. \n", strerror (errno));

goto out;
telse{

DBG_MSG('Successfully opened %s, fd: %i\n", fullpath, (nt)fd);

}
/x Init IC header #/

memset(ich, 0sizeofICHeader _t));

ich->type = ICH_RTP;

ich->ttl = 4;

ich->route = htonl(ics[streamInfe>icldx].route);

/< Init ETH header «/

memset(eth, Osizeofeth_hdr));

memcpy(eth>dst, ics[streamInfe>icldx].eth_src, 6);
memcpy(eth>src, ics[streamInfe>icldx].eth_dst, 6);
eth->type = htons(ETH_TYPE_IP);

/x Init IP header =/
memset(iph, 0sizeofip_hdr));
//iph—>version = 4;
//iph—>hlen = 5;
#((Uint8_tx)iph) = 0x45;
/fiph—>flags = 2;
#((uint8_tx)iph+6) = 0x40;

iph->ttl = 64;
iph->protocol = Ox11;
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

iph->src = htonl(ics[streamInfe>icldx].daddr);
iph->dst = htonl(ics[streamInfo>icldx].saddr);

/+ Init UDP header »/

memset(udph, Osizeof{udp_hdr));

udph->sport = htons(streamInfe>server_rtp_port);
udph->dport = htons(streamInfe>client_rtp_port);
udph->csum = OXxffff;

/% Init RTP headerx/
memset(rtph, Osizeofrtp_hdr_t));
rtph->version = RTP_VERSION;
//rtp_hdr.p = 0;

//rtp_hdr.x = 0;

//rtp_hdr.cc= 0;

//rtp_hdr.m = 0O;

rtph->pt = PT_MP2P;
rtph->seq = htons((uint16_t)rand());
rtph->ts = htonl(rand());
rtph->ssrc = htonl(rand());

/*****************************************/
P STREAM FILE s

/*****************************************/

while(streaminfe->status=RTPS_ACTIVE) {

/x Read file data into bfier+headers s/
bytes read= read( fd, packet+ hdrs_size, 1400);
if (bytes_read> 0}

/« Update IC headers/

ich->dataLen = htons(bytes_read- sizeofleth_hdr) + sizeof(ip_hdr) + sizeofudp_hdr) + sizeofrtp_hdr_t));
/« Update IP headers/

iph->length = htons(bytes_read- sizeofip_hdr) + sizeof{udp_hdr) + sizeof(rtp_hdr_t));

/x Update UDP headers/

udph->len = htons(bytes read- sizeofudp_hdr) + sizeofrtp_hdr_t));

/x Update RTP header/
new_rtp_seqg= ntohs(rtph>seq);
rtph->seq = htons(new_rtp_segt);
new_rtp_ts= ntohl(rtph->ts);
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93 rtph->ts = htonl(new_rtp_ts+); A4 Update this to correct values/
94

95 /x Calculate checksums/

96 ip_checksum(iph);

97 udp_checksum(iph, bytes_read sizeofrtp_hdr_t}sizeof(udp_hdr));
98

99 /x Send packet to sockey

100 sendToXScale(packet, bytes readhdrs_size);

101

102 /x Wait appropriate amount of time/

103 usleep(2000);

104 Yelse{

105 close(fd);

106 DBG_ MSG stk BREAK stttk \N ')
107 break;

108 }

109 }

110 out:

111 DBG_MSG(sxssnksks EXIT THREAD sessssx\n'");

112 free(packet);

113 pthread_exit(0);

114 }

115

116 int main(){

117

118 int sockfd; // listen on sock fd, new connection on xscale sock
119  struct sockaddr_in my_addr; // my address information

120  struct sockaddr_in their_addr// connectots address information
121 int sin_size, datalen, rtspType, icType;

122 char data[1500], icheader[20];

123 int status, recv_size, threadcount=0;

124 pthread_t thread[100];

125

126 sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!
127  if(sockfd == —1){

128 printf("main(): socket returned error\n");

129 }lelse{

130 DBG_MSG("main(): Socket successfully created\n");

131 }

132

133 my_addr.sin_family = AF_INET; // host byte order
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134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

my_addr.sin_port = htons(MYPORT); // short, network byte order
my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP ——endre til 192.168.1.1
memset (&(my_addr.sin_zero), ’\0’, 8); // zero the rest of the struct

status = bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));
if(status == —-1){

printf("main(): bind returned error\n");

exit(l);
}else{

printf("main(): Port %i successfully bound\n", MYPORT);

status = listen(sockfd, BACKLOG);

if(status == —1){

printf("main(): listen() returned error\n");
}telse{

printf("main(): Listening on port %i\n", MYPORT);
}

sin_size = sizeof(struct sockaddr_in);

status = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size);

if(status == —-1){
printf("main(): accept() returned error\n");
}else{

printf("main(): accepting connection on port %i\n", MYPORT);
xscale_sock = status;

/% Close listen—socket (will only need one connection) =/

close(sockfd);

while(1){
/+ Assumes that IC Header is the first to arrive,

and that all packets arrive in the order: ICHeader—>Payload->ICHeader—>Payload etc.

/+* Read IC header =/
status = recv(xscale_sock, icheader, sizeof(ICHeader_t), 0);
if(status == —-1){
DBG_MSG("main(): recv() returned error\n");
}else if(status > 0){

158

*/



175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

DBG_MSG("main(): Received IC header, %i bytes\n", status);

/# Get size of data from IC header
If ICH type is ICH_FIND_FILE, we also have to
receive an IC header extension with address—info =/
ICHeader_t #ich = (ICHeader_tx)icheader;
icType = ich—>type;
datalen = ntohs(ich—>datalen);
if((icType == ICH_FIND_FILE))
recv_size = datalen + sizeof(ICHeader_ext_t);
else
recv_size = datalen;

status = recv(xscale_sock, data, recv_size, 0);
if(status == —-1){
DBG_MSG("main(): recv() returned error\n");
}else if(status > 0){
DBG_MSG("main(): Received %i bytes of data.\n", status);

if(icType == ICH_FIND_FILE)

DBG_MSG("main(): Data: %s\n", data+sizeof(ICHeader_ext_t));
else

DBG_MSG("main(): Data: %s\n", data);

/% Get RTSP message type
take appropriate action
IF type==ICH_FIND_FILE data resides after IC header extx/
if(icType == ICH_FIND_FILE){
DBG_MSG("ICH_FIND_FILE\n");
rtspType = getRtspType(data + sizeof(ICHeader_ext_t));
}else{
rtspType = getRtspType(data);
}
if(rtspType == RTSP_SETUP){

int rtpIdx, icIdx, packetSize, replysize; /+ RTP-session index

char reply[200];
DBG_MSG("main(): Received RTSP_SETUP\n");
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216 /+ Setup icsession struct */

217 icIdx = newICSession(ich, data);

218 /* Create RTP stream struct =/

219 rtpIdx = newRtpStream(icIdx, ich, data+sizeof(ICHeader_ext_t));

220

221 /* Give RTSP feedback =/

222 createRtspReply(rtpIdx, (charx)(data+sizeof(ICHeader_ext_t)), RTSP_SETUP, reply);
223 replysize = strlen(reply);

224 packetSize = addICheader(ics[icIdx], reply, replysize, ICH_CTRL_FB, R_EGRESS);
225 addICExtHeader(ics[icIdx], reply, replysize);

226 packetSize+=sizeof(ICHeader_ext_t);

227 sendToXScale(reply, packetSize);

228

229 }else if(rtspType == RTSP_PLAY){

230 int rtpIldx, packetSize, replysize;

231 char reply[200];

232 DBG_MSG("main(): Received RTSP PLAY\n");

233

234 /* Give rtsp feedback =/

235 rtpIldx = getRtspSession(data);

236

237 createRtspReply(rtpIdx, (chars)data, RTSP_PLAY, reply);

238 replysize = strlen(reply);

239 packetSize = addICheader(ics[rtps[rtpIdx].icIdx], reply, replysize, ICH_CTRL_FB, R_EGRESS);
240 addICExtHeader(ics[rtps[rtpIldx].icIdx], reply, replysize);

241 packetSize+=sizeof(ICHeader_ext_t);

242

243 sendToXScale(reply, packetSize);

244

245 /* Create rtp stream thread =/

246 /+ Implement handling of thread_exit =/

247 pthread_create( &(thread[threadcount++]), NULL, (voids)mpeg_ps, &rtps[rtpIdx]);
248 //threadcount++;

249

250 }else if(rtspType == RTSP_UNKNOWN) {

251 DBG_MSG("main(): Unknown RTSP type received, packet discarded.\n");

252 }

253 }

254 }
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A.3.3 srtsp_utils.h

#ifndef _SRTPS_UTILS_H
#define _SRTPS_UTILS_H

#include <netinetin.h>
#include <string.h>
#include <sygtime.h>
#include <time.h>
#include "dbg_msg.h"
#include "ic.h"

void debug_print_ICheader(voidlCpacket);
void debug_print_bfier32(void: buf, int size);

#ifndef _RTSP_TYPE

#define _RTSP_TYPE

enum {
RTSP_SETUP= 1,
RTSP_PLAY,
RTSP_UNKNOWN

3

#endif

struct timeval usec2tdpng usec);
struct timeval AddTimesgtruct timeval =timel, struct timeval xtime2);
struct timeval SubTimesfruct timeval =timel, struct timeval xtime2);

int getRTSPType(char data);

#endif /« #ifndef _SRTPS_UTILS_H/

A.3.4 srtsp_utils.c
#include "srtsp.h"
pthread_mutex_t socklock PTHREAD_ MUTEX_INITIALIZER;

void debug_print_ICheader(voidlCpacket){
ICHeader_txich = (ICHeader #)ICpacket;
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9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

DBG_MSG('ICheader:\n");
DBG_MSG('type: %u\n", ich->type);
DBG_MSG('ttl: %u\n", ich->ttl);
DBG_MSG('datalLen: %u\n", ich->datalLen);
DBG_MSG('route: %x\n", ich->route);

if (ich->type == ICH_FIND_FILE) || (ich->type == ICH_ROUTE_FB) || (ich->type
ICHeader_ext_tiiche = (ICHeader_ext {)(ICpacketsizeof(ICHeader t));
DBG_MSG('sport: %u\n", iche->sport);
DBG_MSG(dport: %u\n", iche->dport);
DBG_MSG('saddr: %u\n", iche->saddr);
DBG_MSG(daddr: %u\n", iche->daddr);
DBG_MSG(eth_src: ");
debug_print_htier32(iche>eth_src, 6);
DBG_MSG(eth_dst: ");
debug_print_htier32(iche>eth_dst, 6);

void debug_print_ICsessioimf idx){
if idx < MAX_IC_SESSIONS){
DBG_MSG(IC-session:\n");
DBG_MSG(index: %i\n", idx);
DBG_MSG('status: %u\n", ics[idx].status);
DBG_MSG('route: %x\n", ics[idx].route);
DBG_MSG('sport: %u\n", ics[idx].sport);
DBG_MSG(dport: %u\n", ics[idx].dport);
DBG_MSG('saddr: %x\n", ics[idx].saddr);
DBG_MSG('daddr: %x\n", ics[idx].daddr);
DBG_MSG(eth_src: ");
debug_print_hiier32(ics[idx].eth_src, 6);
DBG_MSG(eth_dst: ");
debug_print_htier32(ics[idx].eth_dst, 6);
}
}

45 f« Print buyffer in 32 bit words hex in byte order

46
47
48

void debug_print_bfier32(void: buf, int size){
int i

162

ICH_CTRL_FB)){



49  for(i=0; i < size; k+){

50 if(i % 4 == 0)

51 DBG_MSG(\nbuf[%i]: 0x", i);

52

53 if (+((uint8_t)(buf+i)) == 0)

54 DBG_MSG('00");

55 else if(x((uint8_t)(buf+i)) < 15)

56 DBG_MSG('0%x", *((uint8_t)(buf+i)));
57 else

58 DBG_MSG('%x", =((uint8_t<)(buf+i)));
50 }

60 DBG_MSG(\n");

61 }

62

63 A Return RTSP message type, based on the first characters irpableet +/
64 int getRtspType(char data){

65 char «setup = "SETUP";

66  char =play = "PLAY";

67

68  if(strncmp(data, setup, strlen(setup¥ 0)
69 return RTSP_SETUP;

70  else if(strncmp(data, play, strlen(play= 0)
71 return RTSP_PLAY,;

72  else

73 return RTSP_UNKNOWN;

74

75 return O;

76 }

77

78 /« Initialize IC session from data

79 Input: Pointer to IC header

80 Output: index of new IC session-X if no free slot)
81 «/

82 int newlCSession(void ICheader, void icHdrExt){
83 ICHeader_t«ich = (ICHeader_#)ICheader;

84 ICHeader_ext_tsiche = (ICHeader_ext s)icHdrExt;
85 int i, pos = -1,

86  /+ locate first free slots/

87  for (i=0; i<MAX_IC_SESSIONS; ++) {

88 if (ics[i].status == ICS_CLOSED)

89 pos = i;
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90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

DBG_MSG(newICSession: first free: %i\n", pos);
break;

if (pos & —1){
ics[pos].status= ICS_ACTIVE;
ics[pos].route= ntohl(ich->route);
ics[pos].sport= ntohs(iche >sport);
ics[pos].dport= ntohs(iche >dport);
ics[pos].saddr= ntohl(iche->saddr);
ics[pos].daddr= ntohl(iche->daddr);
memcpy(&ics[pos].eth_src, &icheeth_src, 6);
memcpy(&ics[pos].eth_dst, &icheeth dst, 6);

}

return pos;

109 AInput: icldx: index int array of iesession structs

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

ich: pointer to start of IC header
data: pointer to packet data

Allocate RTPstream struct
return index (session ng/
int newRtpStreanit icldx, ICHeader txich, char xdata){
int i, pos=—1, c_rtp_p, c_rtcp_p;
char fn[100];

/x locate first free slots/
for (i=0; i<MAX_RTP_STREAMS; #+) {
if (rtps[i].status == RTPS_CLOSED)
pos = i;
DBG_MSG(newRTPStream: first free: %i\n", pos);
break;

getClientPorts(data, &c_rtp_p, &c_rtcp_p);
getFileName(data, fn);

164



131  if(pos E -1){

132 rtps[pos].status= RTPS_ACTIVE;

133 rtps[pos].client_rtp_port c_rtp_p;

134 rtps[pos].client_rtcp_port c_rtcp_p;

135 rtps[pos].server_rtp_port 7654; /x bogus valuesx/
136 rtps[pos].server_rtcp_po# 7655; /4 bogus values/
137 rtps[pos].icldx=icldx;

138 strepy(rtps[pos].filename, fn);

139 }

140 return pos;

141 }

142

143 )« Input: data: Pointer to RTSP SETUP message

144 Output: c_rtp_p: Client RTP port

145 c_rtcp_p: Client RTCP port

146 «/

147 void getClientPortsthar =data, int =c_rtp_p, int =c_rtcp_p){
148  char =sp, xep;

149

150 sp = strstr(data,"client_port=");

151 spr=12; /+ Move pointer to beginning of port numbey
152  «c_rtp_p = strtol(sp, &ep, 10);

153  «c_rtcp_p = strtol(eprl, NULL, 10);

154 }

155

156 s+ Input: data: Pointer to RTSP SETUP message

157 Output: fn pointer to filename\Q terminated)

158 «/

159 void getFileNameghar =data, char fn){

160  char =sp, xep;

161 int len;

162

163 sp = strstr(data,"9070/");
164 Spr=5;

165 ep = strstr(sp, "RTSP/1.0");
166 ep-=1,;

167 len = ep-sp;

168 strncpy(fn, sp, len);

169 memset(falen, 0, 1); 4 Zero-terminate string s/
170 }

171
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172 void createRtspReplirit ses, char xdata, int type, char =reply){
173  char =cseq;

174

175  switch(type){

176

177  case RTSP_SETUP: {

178 cseg strstr(data,"Cseq: ");

179 cseg= 6;

180 sprintf(reply, "RTSP/1.0 200 OK\nCseq: %i\nSession: %i\nTransport: RTP/AVP;unicast;client_port=%i-%
181 (int)strtol(cseq, NULL, 10), ses, rtps[ses].client_rtp_patps[ses].client_rtcp_port,
182 rtps[ses].server_rtp_port, rtps[ses].server_gop);

183

184 break;

185 }

186

187 /x May supply more info herey/

188 case RTSP_PLAY: {

189 cseg strstr(data,"Cseq: ");

190 cseg= 6;

191 sprintf(reply, "RTSP/1.0 200 OK\nCseq: %i", (int)strtol(cseq, NULL, 10));
192

193 break;

194 }

195

196 default: break;

197

198 }

199 }

200

201 /« Assumes there is room in data ffar for header
202 Adds values in network byte ordey

203 int addICheader(IC_session_t icshar =data, int size, int ICtype, int routeType){
204 ICHeader _txich;

205

206 /x Make space for heade#/

207 memmove(data sizeofICHeader t), data, size);
208 ich = (ICHeader_s)data;

209 S Zero IC headers/

210 memset(ich, OsizeofICHeader _t));

211

212 ich->type = ICtype;
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213 ich->ttl = 4;
214 ich->dataLen = htons(size);
215 if (routeType== R_EGRESS)

216 ich->route = htonl(egressRoute(ics.route));
217  else

218 ich->route = htonl(ics.route);

219

220

221  return size + sizeofICHeader t);

222 }

223

224 void addICExtHeader(IC_session_t icehar =data, int size){
225 ICHeader_ext_tiche;

226

227 /)« Make space for heade#/

228 memmove(data- sizeofICHeader_t)+ sizeofICHeader_ext t), datssizeof(ICHeader_t), size);
229 iche = (ICHeader_ext «)(data + sizeofICHeader _t));
230 /x Zero ICExt headers/

231 memset(iche, OsizeofICHeader_ext t));

232 iche->sport = htons(ics.sport);

233 iche->dport = htons(ics.dport);

234 iche->saddr = htonl(ics.saddr);

235 iche->daddr = htonl(ics.daddr);

236 memcpy(&iche>eth_src, &ics.eth_src, 6);

237 memcpy(&iche>eth_dst, &ics.eth_dst, 6);

238 }

239

240 void sendToXScal®har =data, int size){

241

242 pthread_mutex_lock( &socklock );

243 errno = send(xscale_sock, data, size, 0);

244 pthread_mutex_unlock( &socklock );

245  if(errno == -1){

246 DBG_MSG(send() returned error\n");

247 telsef

248 //DBG_MSG('Successfully sent %i bytes to socket\n", errno);
249 }

250 }

251

252 /« Removes the outgoing port from a route to make

253 the packet go to the XScale on the egress node
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254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

to be transmitted with in the correct TCP streas

uint32_t egressRoute(uint32_t route){

uint8_t «rp;
int i

rp = (uint8_t)(&route);
for(i=3; i>=0; i——){
if (rp[i]! =0xff && rpl[i] ==0)
rp[il=0xft;
break;

}

return route;

269 /« Input: pointer to rtsp packet

270
271
272
273
274
275
276
277
278
279
280

Output: Session number for This RTP strea.

int getRtspSessionfar xdata){

int ses;

char =sp;

sp = strstr(data,"Session: ");

sp-=9; /« Move pointer to beginning of session numbsfr
ses= strtol(sp, NULL, 10);

return ses;

281 /« Calculates the 16 bit onesomplement sum of a given

282
283
284
285
286
287
288
289
290
291
292
293
294

bufer. Pads the last byte with 0 if odd size
Input: data: Pointer to byfer start
len: length of datas/

void partial_csum(uint32_tsum, void- data, int len) {

int i

for(i = len>>1; i>0; i——){
xsum += x((uintl6_t)data);
data+= sizeofuintl16 _t);
/x Add carries %/
xsum = (xsum >> 16) + (xsum & Oxfifl);
*SUM += *sum >> 16;
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295
296 }
297

298 void udp_checksum(void ipHdrStart, int size){

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323 }
324

uint32_t sum= O;
uintl6_t finalsum;
pseudo_udp ph;

/% Construct pseudo headey/
memcpy(&ph.ipsrc, ipHdrStar12, 4);
//ph.ipsrc = ntohl(ph.ipsrc);
memcpy(&ph.ipdst, ipHdrStarl6, 4);
//ph.ipdst = ntohl(ph.ipdst);
ph.notused= 0;

ph.proto= 0x11;

ph.len= htons(size);

/+ Calculate checksum of pseudo headgr
partial_csum(&sum, &ph, 12);

/x Zero checksum fieldy

memset(ipHdrSta¥26, 0, 2);

/+ Calculate checksum of udp header and data
partial_csum(&sum, ipHdrStai20, size);

/+ Write the one’s complement of the sum to
the correct spot in the TCP headey

finalsum= "sum;

memcpy(ipHdrStar26, &finalsum, 2);

325 void ip_checksum(void ipHdrStart){

326
327
328
329
330
331
332
333
334 }

uint32_t sumo;
uintl6_t finalsum;

memset(ipHdrStartl0, 0, 2);
partial_csum(&sum, ipHdrStart, 20);

finalsum= "sum;
memcpy(ipHdrStartl0, &finalsum, 2);
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A.3.5 ic.h

#ifndef _IC_H
#define _IC_H

#include <inttypes.h-
#define MAX_IC_SESSIONS 100

enum {
ICH_FIND_FILE = 1, & Packets used to locate file/
10 ICH_ROUTE_FB,/« Used to setup egress IC sessiofs
11 ICH_CTRL_MSG, 4 RTSP messages (except DESC and SEWJP
12 ICH_CTRL_FB, / RTSP repliess/
13 ICH_RTP /« RTP data Packetsy

14 };

15

16 4 Standard IC header:

17 Common for all IC packets:/

18 typedef struct{

19 uint8_t type;/x Type of IC packety/

20 uint8_t ttl; s To avoid circulating packetsy
21 uintl6_t dataLeny/« Length of IC packet data (excluding the headey)
22 uint32_t route;s Routing information. Src routingy
23 } ICHeader t _ attribute_ ((packed));

24

25 /s« IC header extension:

26 Used to setup route information when assigning a new stream
27 typedef struct{

28 uintl6 t sport;/« Client source ports/

29 uintl6 t dport;/= Server port s/

30

31 uint32_t saddry+ Client source IP addr.s/

32 uint32_t daddryx Egress IP addrs/

33

34  char eth_src[6]; /+ Ethernet src addressy/

35 char eth_dst[6]; / Ethernet src address/

36 } ICHeader_ext_t __ attribute_ ((packed));

37

38 enum {

39 ICS_CLOSED= 0,
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40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

ICS_WAIT_ROUTE,

ICS_ACTIVE,

h

typedef struct{
uint8_t status;
uint32_t route; Routing information. Src routingy/
uintl6 t sport;/« Client source ports/
uintl6 t dport;/= Server port s/
uint32_t saddry+ Client source IP addr.s/
uint32_t daddry« Egress IP addrs/
char eth_src[6]; 4 Ethernet src address/
char eth_dst[6]; /# Ethernet src address/

} IC_session_t;

57 /« Information about the IC sessions

58
59
60

© 00N O WN P

IC_session_t ics[MAX IC_SESSIONS];

#endif /« #ifndef _IC_H «/

A.3.6 rtp.h

#ifndef _RTP_H
#define _RTP_H

#include <inttypes.h-
#define RTP_VERSION 2

#define PT_MP2T 33+ MPEG2 TS A/ s/
#define PT_MP2P 567+ MPEG2 PS A/ #/

10 4 RTP data headery/

11
12
13
14
15
16

typedef struct {

uintl6_t version:2; /% protocol version =/
uintl6_t p:1; /x padding flag +/
uintlé t x:1; /x header extension flag/
uintl6_t cc:4; /x CSRC counts/
uintl6_t m:1; / marker bit x/
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17
18
19
20
21
22
23
24
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uintl6_t pt:7; /+ payload types/

uintl6_t seq; /% sequence numbes/
uint32_t ts; /% timestamp s/

uint32_t ssrc; /% synchronization sourcey/
//u_int32 csrc[1]; /+ optional CSRC lists/

} rtp_hdr_t __ attribute((packed));

#endif 4 #ifndef _RTP_Hs/

A.3.7 dbg_msg.h

#ifndef DBG_MSG_H
#define _DBG_MSG_H

#define DEBUG

#include <stdio.h>

#ifdef DEBUG

#define  DBG_MSG(str,args...) printf(str,##args)
#else

#define DBG_MSG(str, args...)

#endif

#endif A #ifndef DBG_MSG_Hy/
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