
UNIVERSITY OF OSLO
Department of Informatics

Investigating the
distribution of
functionality for
building a video
server hypercube
with IXP2400 cards

Master thesis

Andreas Petlund

11th November 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I want to thank my advisors, Pål Halvorsen and Carsten Griwodz for excellent guidance
and unlimited patience. I also want to thank my fellow students Tom Anders Dalseng
and Øystein Yri Sunde for inspiration, discussions and help. Finally, I want to thank my
girlfriend Anne for support and structured help, and my family for never giving up.

iii

Abstract

Streamed multimedia is becoming common on the Internet as the bandwidths increase for
end-users. To stream data with high bitrates to many concurrent users, servers are needed
that can handle these extreme loads. Implementing servers in clusters to be able to meet
demands has proved to be a good strategy, providing scalability and performance. One
commercial actor that has done this successfully is nCube. Their n4x solution is a server
cluster based on a hypercube interconnection topology, andtheir reported server perform-
ance is promising. However, the use of special hardware for offloading routing increases
the cost for deploying this system. Network processing units have many similar proper-
ties to the special hardware used by nCube. They are fully programmable and optimized
for networking tasks. In this thesis, we start by charting the functionality and capabilities
of the IXP2400 network processor by implementing a series oftest applications. Using
knowledge gained from this exploration, the design and implementation of a video server
hypercube prototype is done. We present an evaluation of theIXP2400 hardware plat-
form based on the test applications. Our video server cube prototype is also presented and
evaluated.

Contents

1 Introduction 1

1.1 Background and motivation .1

1.2 Thesis domain . 2

1.3 Document structure . 3

2 Internet exchange architecture 5

2.1 Network Processing Units . 5

2.2 Intel Internet Exhange Processors 7

2.2.1 IXP1200 . 7

2.2.2 ENP2505 . 7

2.2.3 IXP2400 . 8

2.2.4 Radisys ENP2611 . 11

2.2.5 New hardware . 12

2.3 IXA software libraries and tools .. . 14

2.3.1 Intel IXA SDK 3.51 . 14

2.3.2 Radisys ENP SDK 3.5 . 16

2.3.3 IXP programming paradigms . 17

2.3.4 MontaVista Linux . 22

2.4 Summary . 23

ii

3 IXP2400 Evaluation 24

3.1 Exploring the IXP2400 hardware .. 24

3.2 Static forward . 25

3.3 IP header switch application .. 26

3.3.1 µEngines implementation . 27

3.3.2 XScale implementation . 28

3.3.3 IP header switch application evaluation 29

3.4 Performance gain by offloading . 35

3.4.1 Test . 36

3.4.2 Discussion . 36

3.5 Summary . 38

4 Multimedia systems 40

4.1 Multimedia applications .40

4.2 Multimedia requirements .41

4.3 Improving server performance .. 43

4.4 Multimedia server implementations 43

4.4.1 Single server implementation 43

4.4.2 Server cluster implementation45

4.4.3 Proxies . 46

4.5 Hypercube/n4x server solution . 46

4.5.1 Hypercube multicomputer structure 46

4.5.2 The c-cor n4x multimedia server architecture 48

4.6 Protocols . 50

4.6.1 RTSP . 50

4.6.2 RTP . 53

4.7 Summary . 56

iii

5 The VS3 Video Server Cube 57

5.1 Hypercube server general design .. . 57

5.2 The legacy design . 59

5.2.1 The INF5070 implementation 59

5.3 SDK code base . 60

5.4 XScale-Host communication .61

5.5 The raw socket design approach .62

5.5.1 TCP Handling . 62

5.6 Egress TCP design . 64

5.7 Cube routing . 65

5.7.1 Intra-cube header and extension67

5.7.2 IC packet types . 68

5.7.3 Intra-cube session . 69

5.7.4 Partitioning of tasks . 70

5.7.5 µEngine tasks . 71

5.7.6 XScale tasks . 73

5.7.7 Host-XScale data path . 75

5.7.8 Host tasks . 76

5.8 RTP-session . 77

5.9 Microblock designs . 78

5.10 Evaluation . 80

5.10.1 Packets routed through a switched network 80

5.10.2 IXP hypercube routing tests . 80

5.10.3 Comparison of routing times . 83

5.10.4 Processing times given increased load 84

5.11 Summary . 86

6 Conclusion 87

6.1 Summary . 87

6.2 Results . 87

6.3 Further work . 88

iv

A VS3 video server cube source 94

A.1 ICrouter microblock source .. 94

A.1.1 dl_system.excerpt.h . 94

A.1.2 ICrouter.h . 96

A.1.3 ICrouter.c . 97

A.2 XScale source . 105

A.2.1 dcube.h . 105

A.2.2 dcube.c . 109

A.2.3 dcube_utils.h . 120

A.2.4 dcube_utils.c . 121

A.2.5 bogus_tcp.h . 134

A.2.6 bogus_tcp.c . 137

A.2.7 bogus_tcp_utils.c . 143

A.3 Host source . 148

A.3.1 srtsp.h . 148

A.3.2 srtsp.c . 154

A.3.3 srtsp_utils.h . 161

A.3.4 srtsp_utils.c . 161

A.3.5 ic.h . 170

A.3.6 rtp.h . 171

A.3.7 dbg_msg.h . 172

v

List of Figures

2.1 Evolution of technologies [22]. 6

2.2 IXP1200 block diagram [31]. .8

2.3 ENP2505 block diagram [12]. 9

2.4 IXP2400 block diagram [32]. .10

2.5 ENP2611 Block diagram [13] . 13

2.6 RX and TX block functionality and interface. 17

2.7 IXA Hierachy model [6] . 19

2.8 Struct describing packet metadata. 20

2.9 Calculation of metadata and data offsets from buffer handle values. 21

2.10 How buffer handles are passed on scratch rings between processing com-
ponents. 22

3.1 Radisys static forward application block diagram. 26

3.2 IP header switch application onµEngines. 27

3.3 IP header switch application usingµEngines and XScale. 29

3.4 Generic test setup. 30

3.5 User space packet echo application test setup. 31

3.6 Kernel space packet echo using iptables. 32

3.7 IXP XScale ICMP echo test setup. .32

3.8 IXPµEngine ICMP echo test setup. 33

3.9 Comparison of average times for the IP header switch application. 34

3.10 Times spent on tar process with different implementations of IP header
switch application. 38

3.11 Average total time spent on tar process. 39

vi

3.12 Average time spent in user space for tar process. 39

3.13 Average time spent in kernel space for tar process. 39

4.1 Simple general server architecture [23] 44

4.2 Interconnection topologies .. . 45

4.3 Diagram of a possible proxy layout [23]. 47

4.4 Hypercube scaling . 49

4.5 A typical RTSP session [7] . 53

4.6 RTP header format. 54

4.7 RTP header extension format. .. 55

5.1 Basic design of multimedia server cube with IXP cards. 58

5.2 Dataflow inf5070 implementation .. 60

5.3 Design with forwarding of TCP to machine hosting the file.. 63

5.4 Design with egress handling TCP connections. 64

5.5 IC header and header extension format. 67

5.6 IC session struct. 69

5.7 Flow chart forICroutermicroblock when a packet is received. 72

5.8 Flow chart for XScale int_A thread. 74

5.9 Flow chart for Host when receiving data from XScale. 76

5.10 Three microblock structuring alternatives. 79

5.11 Test setup: Routing using switched network. 81

5.12 Test setup: Timing of routing in the IXP hypercube. 82

5.13 Comparison of average routing times. 84

5.14 Development of processing time with increased load. 85

vii

List of Tables

2.1 Main differences between ENP2505 and ENP2611 14

2.2 IXP2400 data terminology [32]. .. 16

3.1 IP header switch application times. 33

3.2 Time used for tar process with different IP header switch implementations. 37

5.1 Routing times for IXP cube and switched network routing.. 83

5.2 Routing times onµEngines given increased load. 85

viii

Chapter 1

Introduction

Streaming data with high bitrates to a potentially high number of concurrent users presents
us with great challenges regarding scalability and throughput. The network bandwidth
rates needed for multimedia streaming systems today strainthe processing power of server
solutions, stealing resources that could be applied to other important tasks. This thesis will
investigate the possibility of using network processing units (NPUs) to offload networking
tasks and, in particular, to implement routing in a distributed server cluster topology.

1.1 Background and motivation

The Internet, since its beginning as an experimental network in 1968, has experienced an
astounding development. Especially in the last ten years, it has become common prop-
erty, and a variety of services are now available to the public. During the last years, the
bandwidth available to end users has been steadily increasing in most developed coun-
tries. With the high bitrates becoming available, the transmission of audio and video has
become the new killer application driving the development of networks and infrastructure.

The most common way to access digital multimedia content is still to download a file and
play it locally. The alternative is to transmit the data as the content is consumed. This is
known as data streaming. Streamed services are becoming more common every day due
to the increased capacity available for end users. For instance, most national radio-stations
in Norway are being streamed from the servers of the NationalBroadcasting Company
(NRK) [44]. They also offer the possibility to watch recently transmitted TV programs
as a streamed service. The fact that the data is streamed implies that the receiver will
require a certain quality to be satisfied. If the stream haltsfor too long, the presentation
of the video will stop, and the customer will probably lose interest. Other multimedia
content, like teleconferencing, is even more sensitive to changes in the quality of the data

1

transmitted. If the different contributions to a teleconference are delivered at the wrong
time, the service will be pointless.

One area of multimedia streaming that is demanding in terms of data rates is the streaming
of high quality video. The servers that have to deliver such streams to many concurrent
end users will be strained to meet demand unless some techniques are applied to enhance
server performance. A multimedia streaming server will notonly have to fetch the data,
and prepare it for streaming, it will have to handle the transmission of a huge number of
network packets. There are many strategies that can be applied to handle these challenges.
One of these is to build an immensely powerful server with several CPU’s, a multitude of
network cards and an extensive amount of memory and storage capacity. Such a single
server would be very expensive, and would soon have to give upif the demand were to
increase.

To solve the scalability problem, a common approach is to distribute the load on several
interacting computers. Several of these approaches will bediscussed in this thesis. One
variant of this strategy is to deploy a multimedia server as adistributed system consisting
of many interconnected computers cooperating to bring the media data to the users. Such
a solution would be scalable by adding more computers to the system, and dividing the
load between the nodes. Data would have to be collected from the correct node in the
interconnection topology, and routed to the egress. The successful interconnection would,
therefore, demand resources in terms of routing and other network processing. With
the servers busy pulling data from the disks, and preparing it for streaming, reserving
resources to process the routing will be a challenge.

One way to ensure effective network processing inside such a topology would be toof-
fload such tasks to a different functional unit. Some commercial actors have done this by
implementing routing functionality on custom hardware. The development of hardware,
however is an expensive and time-consuming task. On the other hand, network processors
optimized for the efficient handling of packets are available today. Although most com-
monly used in routers and switches, implementations of network processors that can be
used in PCs are available. These platforms are highly programmable and configurable to
different networking tasks. By building a distributed topologymultimedia server, and of-
floading internal routing tasks to network processors, it would be possible to achieve high
performance in a scalable system without having the disadvantages of having to build
custom hardware.

1.2 Thesis domain

One commercially available server that has been successfulat implementing a distributed
server topology is the nCube [42] n4x solution. This is, however, a system that depends

2

heavily on custom hardware for internal routing, making it expensive. The design of spe-
cial hardware is a task that is time consuming. This makes thetime-to-market for such
products longer than for programmable solutions. Finding away to implement a sim-
ilar server topology without having to use custom hardware would enable much cheaper
server solutions with the kind of scalability and performance that is needed to meet com-
petition.

This thesis aims at answering the question of whether a distributed multimedia server
cube, similar to the n4x solution, can be implemented using IXP2400 [32] network pro-
cessors. In pursuing this goal, different areas of the network processor programmability
have been explored to find the most effective ways of implementing various applications.
We also seek to explore whether offloading network tasks would enhance the performace
of a host machine. An implementation of a multimedia server hypercube was made in
order to identify strengths and weaknesses of such solutions, and to demonstrate that an
NPU offloading of the routing framework in such a solution would work.

The thesis shows that network processors are more efficient at routing tasks than an ap-
plication running on a Linux host. This proved also to be truefor the host application
when implemented in the kernel. Moreover, it shows that an interconnected network to-
pology, a hypercube, using IXP2400 cards for routing was farsuperiour to a switched
network topology for delivering data packets. Tests showedthat there is a noticeable per-
formace gain by offloading network tasks from the host to the IXP2400 card. The video
server cube (VS3) system was implemented, and proved to work with the proposed rout-
ing framework. In conclusion, our prototype shows that the IXP2400 NPU efficiently can
offload the host machine and provide a favourable way of implementing closely intercon-
nected servers in a cube topology.

1.3 Document structure

In the following chapters, the requirements for successfully implementing a video server
cube using IXP2400 cards will be investigated. This will be done by analyzing hardware
and software capabilities on a general scale, and with regard to our implementation goal.
The requirements and implementation steps taken are presented, and evaluations of the
different results are given.

The focus in chapter 2 and 3 is mainly on general aspects of thenetwork processors and
the applications and tests made to gain the necessary understanding for programming the
IXP2400 platform. Chapter 4 and 5 focus on the requirements for multimedia applica-
tions, and the building of theVS3 server cube application in particular. An evaluation of
the results is given for all stages of implementation.

3

Chapter 2describes the concept of network processors with the main focus on the Intel
internet exchange architecture (IXA). An introduction is given to the hardware boards
(Radisys ENP2611 [13]) used in the thesis, and the network processing units that resides
on them. The software tools provided by the manufacturers isdescribed, as well as the
general programming techniques and strategies.

Chapter 3presents the applications developed to explore and evaluate the ENP2611 net-
work processor card based on the IXP2400 chipset. We describe the different software
and hardware building blocks, and how they perform given different tasks. The results of
tests performed on these applications is also presented, and some general conclusions are
drawn on how to use these NPUs in general.

Chapter 4gives an introduction to multimedia systems. Different multimedia applications
are presented. The requirements that have to be met when dealing with multimedia ap-
plications is discussed. Different solutions for meeting the requirements is also presented.
The nCube n4x solution to these challenges is described, as well as some of the protocols
that can be used for multimedia streaming.

Chapter 5describes all the stages in implementing theVS3 video server cube solution.
Different design approaches are presented, and the routing framework is described in
detail. The main bottlenecks of this system are located, andthe results of tests performed
on the system are shown and discussed.

Chapter 6concludes this thesis, and outlines further work.

The source code for theVS3 server cube system is included as an appendix. The appendix
is divided into subsections based on whether the code is written forµEngines, XScale or
Linux host.

4

Chapter 2

Internet exchange architecture

Network processing Units (NPUs) are special processor architectures used for demand-
ing networking tasks such as backbone routing and switching. This chapter will give a
short introduction to NPUs, and especially the internet exchange architecture (IXA) plat-
forms. We will focus on the two network boards that have been available for testing, and
especially the hardware and software for the ENP2611 [13], based on the IXP2400 [32]
chipset, upon which this thesis bases its studies. The reason why the ENP2505 [12],
based on the IXP1200 [31] chipset, is described as well, is that this was the NPU board
we used before receiving the ENP2611. Some of the areas whichhave been explored have
also been tested on this platform. The comparison of performance on different levels of
the architectures, and the challenges of implementing on each platform have also been
important issues.

2.1 Network Processing Units

After 40 years of Moore’s law [18], we still see processing power expand at an exponential
rate. The successful use of multithreading in the last generations of processors have made
the architectures more efficient. This increases the heat produced by the logic units [41].
This has made the silicon manufacturers think about new waysof continuing the current
progress. The picture we have been shown of future architectures outlines multiple core
processors with simpler structure, thus using more parallel computations.

In a similar manner to how Moore’s law applies to microprocessors, we have had an
exponential growth in network bandwidth capacity. Figure 2.1 shows how networking
bandwidth has increased compared to processing power over the last years. There is no
indication of the development rate slowing down, but it willeventually have to halt due
to limitations of the transmission medium (if new technologies are not introduced). As of

5

B(#�

)	��

Figure 2.1: Evolution of technologies [22].

yet, the network speed growth is faster than the CPU power growth. Thus today’s pos-
sible bandwidths sustain an increasing demand for processing power. With the decreasing
inter-arrival time of network packets, computers will be strained to keep up with protocol
handling, checksumming and other necessary tasks without sacrificing capacity that other
processes need.

One solution to this challenge is to offload network tasks to separate functional units.
These units will be optimized for efficient packet handling and throughput. Since NPUs
are to be optimized for packet handling, the design will differ from traditional comput-
ing chipsets. A typical design is a series of several small, symmetric processing units
working in parallel. The parallel structure of the packet processing enables the tasks to
be performed in a pipeline, with each functional unit performing a special task. This
removes the bottleneck of single CPU processing that has to schedule the processing ca-
pacity between the different tasks.

A wide range of different companies are manufacturing NPUs for different platforms
and purposes, these include Agere [1], AMCC [3], IBM [25], Intel [27], Internet Ma-
chines [26], Motorola [38], PMC-Sierra [48], and Vitesse [61]. All these are more or less
based on the same offloading ideas, but their implementations vary greatly.

6

In the past few years, in particular, Intel has focused on network processing, creating a
series of network processor platforms called the Internet Exchange Architecture (IXA).
This platform group incudes three main series of NPUs, namely the IXP12xx, IXP2xxx
and IXP4xx series of network processors [43].

2.2 Intel Internet Exhange Processors

The IXA platform from Intel includes, as of now, three main series: IXP12xx, IXP2xxx
and IXP4xx. The IXP12xx series was in common use up to last year, when Intel decom-
misioned it in favour of the IXP2xxx series. The IXP4xx series is targeted at the home and
small business market, while the IXP2xxx series aims at the heavier applications. In this
section, the main features of the IXP1200 will be outlined. Amore detailed description
will be given of the IXP2400 as this is the chipset on which most work has been done in
this thesis.

2.2.1 IXP1200

The Intel IXP1200 [31] network processor chipset is designed to meet the wide require-
ments placed on network equipment in high performance systems and consists of six main
functional units as shown in figure 2.2. The core processing unit is a 32 bit StrongARM
processor running at 232MHz. There are six special purpose microprocessors called mi-
croengines (µEngines) running in parallel, also at 232MHz. EachµEngine can accomod-
ate a maximum of four contexts. The DRAM unit provides acces to memory for storing
packet data, and the SRAM unit gives acces to memory for storing shared variables and
metadata. The IX bus connects the internal IXP chipset devices, and the PCI bus enables
the card to interface with other PCI devices. In addition to these six main components
there are 4KB of scratchpad memory used for high-speed communication between func-
tional units. There are also special registers for inter-unit communication.

2.2.2 ENP2505

The Radisys ENP2505 (see figure 2.3) integrates the IXP1200 chipset on a network board.
It has four 10/100 Mbit Ethernet ports for communication. For boot code andother stored
procedures, there are 8MB of Flash memory. The card has a total of 8MB of SRAM and
256MB of DRAM. In addition there are a serial port for interfacing and debugging, and a
PCI connector.

7

Figure 2.2: IXP1200 block diagram [31].

2.2.3 IXP2400

The IXP2400 chipset [32] is a second generation NPU platformfrom Intel. It is designed
to handle a wide range of access, edge and core applications.It has a more powerful CPU
and microengines than the IXP1200 and is better suited for heavy networking tasks. The
physical interfaces are customizable and can be chosen by the manufacturer of the device
on which the IXP chipset is integrated. The number of networkports and the network
port type are also customizable. The major functional blocks of the IXP2400 chipset are
shown in figure 2.4:

8

Figure 2.3: ENP2505 block diagram [12].

• An Intel 600MHz XScale core: The XScale core is capable of running an in-
dependent operating system (in our case, MontaVista Linux for embedded plat-
forms [37]). This unit is used to initialize and manage the chip. In a network
application, it typically controls some of the higher layernetwork processing tasks
like updating IP routing tables.

• 8 600MHzµEngines: For efficient handling of general packet processing, the eight
µEngines can be used. These are separate 32 bit programmable units that are spe-
cialized for network processing. EachµEngine has a maximum of eight threads
(contexts) that can enhance performance further.

• Two independant SRAM controllers: The two SRAM controllers can independ-
ently access one SRAM channel each. This type of memory is generally used for

9

Figure 2.4: IXP2400 block diagram [32].

packet metadata, control data, shared counters and variables. Atomic control oper-
ations are supported for synchronization purposes.

• One DDR DRAM controller: DRAM memory is generally used to store packet
data. When a packet is received, it can be stored here, and allsteps of the packet
handling pipeline can modify the packet from the same memoryarea.

• Media switch fabric (MSF): The MSF is the IXP interface to the framing hard-
ware. This is where connections with the physical layer is configured. It contains
transmit and receive buffers, and packets that are about to be transmitted are divided
into smaller MPackets1 upon transmission to make the IXP chipset compatible with
as many different types of media hardware as possible.

• PCI 2.2 compliant controller: In order to connect with other components, like a
host machine or PCI compilant peripheral devices, the IXP has a PCI controller.

• Scratchpad, hash and CAP (SHaC) unit:Three of the most useful functions of
the IXP chipset resides in the SHaC unit:

– Scratchpad memory - 16KB:The scratchpad memory is a 16 KB storage for
general purpose use with atomic operations and ring support. This is widely
used to convey packet buffer handles between different processing units.

1To make the IXP system compatible with different physical interface standards, packets are divided into
a basic unit called mpackets before they are sent to the interface controllers via the MSF. On the IXP2400
mpackets can be 64, 128 or 256 bytes, but once configured, the mpacket size must remain constant [6].

10

– Hash unit: The hash unit can be used to achieve hardware supported hash cal-
culations, thus giving increased performance when making lookups in tables
etc.

– Chip-wide control and status registers (CAP):The CAP unit is used to
handle inter-processor communications.

• XScale Core peripherals: These include an interrupt controller, four timers, one
serial UART port, 8 general purpose input/output circuits (GPIOs), and an interface
for low-speed off-chip peripherals. In addition, the IXP chipset has a performance
monitor with registers for analyzing and tuning performance.

The sum of these components is the IXP2400 chipset. In the hardware board that is
available to us, this chipset resides on a network card made by Radisys [51].

2.2.4 Radisys ENP2611

The Radisys ENP2611 [13] is a network board that integrates the IXP2400 chipset, peri-
pherals, memory and physical interfaces. Figure 2.5 gives aschematical representation of
the hardware. The following main components are present:

• 256MB (DDR) DRAM: The DRAM is, as mentioned in section 2.2.3, primarily
used to store packet data.

• 8MB SRAM: The SRAM is accessible via two different channels to optimize per-
formance. It is generally used for metadata and shared variables.

• 16MB StrataFlash memory: As on the ENP2505 this memory keeps the boot code
and utilities for the board. The increased size compared to the ENP2505 allows for
a Linux kernel to be loaded into the flash memory.

• Three gigabit ethernet interfaces:The physical communication with the network
is made possible by the optical transceivers that are controlled by the PM3386 (con-
trols two optical interfaces) and PM3387 (controls one optical interface) Gigabit
Ethernet controllers. These give the board a total of 3 optical interfaces that can be
used freely by the IXP hardware.

• SCSI parallel interface v3 (SPI-3) bridge FPGA:The SPI-3 is used for connec-
tion between the physical interfaces and the IXP2400 MSF. Itis the link between
the PM3386 and PM3387 controllers and the IXP2400.

11

• Two PCI-PCI bridges: The first is a non-transparent Intel 21555 PCI-bridge chip
which connects the internal 64-bit PCI bus to the backplane host 32 or 64 bit PCI
bus. This gives the hardware the possibility to provide inter-processor communica-
tion and interrupts. The second is a TI PCI2150 transparent PCI bridge which links
the internal 64-bit PCI bus to a downstream 32-bit PCI bus. This is used to connect
the debug 10/100 interface to the rest of the chipset.

• Ethernet controller: An Intel 82559 PCI Ethernet controller is used to control the
10/100 ethernet debug interface.

• SPI-3 Option Board connector: This can be used to connect the chipset to a
service specific NPU co-processor that can be used to providefurther hardware
support for specific tasks.

• 10/100 Ethernet interface:This debug port can not be used as a part of the IXP to-
pology, but is rather used as a tool for loading images into flash ROM and mounting
NFS filesystems by the Linux kernel running on the XScale core.

• Clock generation circuitry: The clock generation circuitry includes the general
IXP2400 system clock, and the interface clocks for the IXP2400 MSF/FPGA and
the FPGA/PM338x interfaces.

• Reset and initialization circuitry: This circuitry connects to a switch located on
the board to enable a manual reset. Software resets can be initialized both form the
board and via the PCI bridge.

• Power: Power supply circuitry is needed for the different logical parts of the chip-
set.

These components are the external hardware needed to complete a functional IXP chipset
environment. The hardware manufacturers also provide somesoftware tools to make
developing applications for the platform easier.

2.2.5 New hardware

After some time working on the ENP2505 [12], it became clear that Intel intended to
discontinue support of the IXP1200 [31] chipset, and also the IXA SDK 2.01 [29], which
was the latest SDK version available for the IXP1200 chipset. At about the same time, we
received the ENP2611 [13] cards. The decision was then made to switch to the ENP2611,
in the hope that the new Intel SDK 3.51 [30] would be a more stable and thorough release
than the 2.01 which had proved to be especially challenging to make work smoothly. This,

12

Figure 2.5: ENP2611 Block diagram [13]

13

combined with the fact that developing applications for a platform that is no longer in use
would be of little future value, made it feasible to commencewith the hardware change2.

Component ENP2505 ENP2611

Core StrongARM XScale

Core clock frequency 232MHz 600MHz

Number ofµEngines 6 8

µEngine clock frequency 232MHz 600MHz

Threads perµEngine 4 8

Scratch memory 4KB 16KB

Number of network interfaces 4 3

Type of network interfaces 10/100 Base-T Gigabit Optical

Table 2.1: Main differences between ENP2505 and ENP2611

The most significant changes in hardware between the two platforms are shown in table
2.1. The structural changes of the Intel IXA SDK versions 2.01 and 3.51 are so signi-
ficant that porting IXP1200 applications to IXP2400 would have taken excessive work.
This task would be further complicated by the fact that the different hardware peripherals
would demand different drivers and configuration. The consequence of this wasthat the
applications had to be implemented from scratch on the new platform to make it conform
to the new SDK and hardware.

2.3 IXA software libraries and tools

The Intel IXA platform comes with software and libraries to support the programming
task. The main bundle is the Intel IXA software development kit (IXA SDK) that provides
debug tools, compilers and support libraries. There is alsoan SDK for the board imple-
mentation that contains sample code and board specific drivers. This section will give an
introduction to these libraries.

2.3.1 Intel IXA SDK 3.51

The Intel IXA SDK [30] is a set of libraries and reference designs provided by Intel to
support programming the IXP chipsets. It also includes somedebug tools that interface

2This was considered to be profitable even though it ment starting almost from scratch with new hard-
ware and a new microengine programming language (micro-C).The setup and configuration process would
also have to be figured out.

14

with the card, and ease debugging ofµEngine applications3. The main components of the
SDK are as follows:

• Development Workbench:The development workbench is a Windows application
that can be used to simulate the running ofµEngine programs. It can also be used to
debug the program directly on the hardware by means of the 10/100 network debug
port. SinceµEngines cannot directly provide output to screen, this is a tool that
is invaluable when it comes to verifying that your program performs as it should.
It also has the possibility of simulating a packet stream, soas to see how the ap-
plication responds to different input. It allows for analysis of the amount of cycles
different operations consumes, and to use this to eliminate performance bottlenecks.

• Software libraries for µEngines and XScale:Intel’s software libraries, both for
µEngines and XScale, provides means of executing operationsand intrinsics, sav-
ing implementation time on several tasks by reducing the necessary number of code
lines. There are also libraries for debugging via the XScale, and hardware abstrac-
tion libraries for accessingµEngine functionality from the XScale.

• Compilers, assemblers and linkers forµEngines: In the IXA SDK 3.5, Intel has
added Linux support for theµEngine C language, and provided enhanced compilers
and assemblers. This makes development on an all-Linux environment easier than
in was using prevous editions like the IXP1200 platform [31]4.

• Software framework and sample applications:The software framework is a col-
lection of libraries and sample applications that gives an insight into how different
networking functionality can be implemented using standard Intel tools.

There are several layers of abstraction provided with the SDK. On the bottom level micro-
code instructions can be used to manually set all needed registers. Common instruction
combinations are gathered in the intrinsics library for theµEngines. The micro-C lan-
guage provide an even greater level of abstraction by eliminating the need for assembly-
style programming.

When programming for both XScale andµEngines, the hardware abstraction layer (HAL)
and operating system services layer (OSSL) libraries provide access to microengine func-
tionality from the XScale. For larger scale programming there are a software framework
that manages resources and enables structures and methods for acheiving common net-
working tasks.

3Debug printouts and similar techniques are difficult due to the fact that theµEngines do not allow any
screen output. All debugging of this kind will have to go via the XScale.

4This was previously only supported for Windows.

15

We have experienced that the abstractions provided by the software framework often are
small, and therefore it may, for some tasks, be better to use the hardware abstraction
libraries upon which the framework is built. This is particularly relevant for custom tasks
that does not conform with standard network application procedures.

The datatypes used when programming the platform are commonfor bothµEngines and
XScale. The byte order of the datatypes is big-endian. The most common datatypes are
shown in table 2.2.

Term Words Bytes Bits

Byte 1
2 1 8

Word 1 2 16

Longword 2 4 32

Quadword 4 8 64

Table 2.2: IXP2400 data terminology [32].

The IXA SDK is the main tool of development when writing software applications for
the IXP2400 platform. Though the software framework is superfluous in many cases, the
basic libraries are very useful for development on all layers of the IXP2400 hardware.

2.3.2 Radisys ENP SDK 3.5

Radisys supplies an SDK [33] which provides a range of services that are specific to the
ENP2611 board. These services include:

• Drivers for the PM3386 and PM3387 optical interface controllers and for the SPI-3
bridge.

• Sample application code with microblocks for transmittingand receiving packets,
that are adapted to the current physical interfaces.

• Additional drivers that provide connection to the host overPCI.

• Kernel image of the Monta Vista Linux [37] operating system that can be used on
the XScale.

The drivers for the PM3386m, PM3387 and SPI-3 give us the opportunity of tuning para-
meters on the hardware devices (like turning on and off hardware ethernet checksum cal-
culation). Prior to running an IXP application, these drivers have to be initialized.

16

Scratch ring

Scratch ring Scratch ring

Scratch ring

uEngines

Xscale

Microblock(s)
running custom
application.

Transmit(TX)

application.
XScale

port 1

port 2

port 0
microblock.

Receive (RX)

microblock.

Figure 2.6: RX and TX block functionality and interface.

The microblocks provided have been an important tool. They are in principle the same as
the Intel IXA SDK transmit and receive microblock referencedesigns, but the parameters
have been adapted to suit the ENP2611 interfaces. Thus, we can integrate parts of this
code to provide us with suitable transmit and receive blocksfor our purposes. Figure 2.6
shows a typical application setup. The Receive (RX) microblock receives data from all
ports, and passes a reference to the data on one scratch ring (explained later in section
2.3.3). An application onµEngines or XScale can then process the data. To send data, a
reference has to be put on a scratch ring. The Transmit (TX) block is designed with three
input scratch rings. Which port the packet is to be transmitted on is decided by which
scrath ring the reference is passed on. The drivers and board-specific SDK provided by
Radisys is an extension of the more extensive SDK provided byIntel to support program-
ming the IXP chipset itself.

2.3.3 IXP programming paradigms

To handle the large throughput that is expected from a networking application, a method
that has been proven effective is to give the application a hierarchical structure [6]. Figure
2.7 shows a diagram of the levels of structure. In practice, this means that most of the

17

packets arriving have to be handled by the lower processing levels (i.e., theµEngines).
Some packets can be sent to higher levels (XScale) for further processing, and a few
packets can be forwarded further (for instance to the host machine). The reason for this
is that the performance of the lowest level is highly optimized for effective forwarding.
As you look at higher levels, you will find more general purpose processing units that can
handle more diverse tasks at a penalty of throughput.

The operational layers are commonly divided in two. The “data plane” handles the high
speed processing and forwarding of the majority of network packets. The key elements
are real time forwarding and efficiency [41]. The “control plane” involves non-wire-
speed general purpose processing that can include table creation and updating, data plane
exceptions or computationally intensive tasks [41]. In an IXP2400 setting the data plane
typically resides on theµEngines, and the control plane is represented by the XScale.

Both hardware and software design reflects this design philosophy, and as a result, trying
to move large datarates between XScale andµEngines will yield poor results5. To ensure
efficient packet handling, steps must be taken upon implementing applications, so that
the majority of tasks are performed on the data-plane (if thetasks are not so processor-
intensive that they hamper the data pipeline throughput).

Packet handling As the goal of the lower layers of the network processor is to handle
the packets as swiftly and efficiently as possible, it is essential to avoid unneccesary copy
operations. Once the packet has been written to DRAM, it resides in the same memory
buffer until packet processing is finished, and the packet is transmitted or discarded. What
passes between the different processing units is a longword with data (buffer handle) from
which the packet location and metadata can be derived.

In the reference design from Intel, the RX and TX microblocksuse buffer handles as the
means to convey the reference to a packet between processingunits. From each buffer
handle, the location of two related buffers can be extracted:

• Packet metadata:The metadata contains information on the packet size, the port
that received the packet, the port that is to transmit the packet, the linking of buffers
into larger packets etc (see figure 2.8). This data resides inSRAM. (More details
can be found in the IXA framework reference manual [28].)

• Packet data:Located in DRAM, this is the buffer where the packet data is actually
stored. The RX block reserves some space in front of the packet and after the packet
ends in case additional headers have to be appended or prepended.

5We have achieved datarates of up to 100 Mbps between XScale and µEngines in experiments using
batch queuing of packets on a scratch ring.

18

Figure 2.7: IXA Hierachy model [6]

The metadata buffers, although customizable in size, are typically 32 bytes long. The
data buffers are defined by the need for space (2048 bytes would be an appropriate size
if you want to store ethernet packets with an maximum transmission unit (MTU) of 1500
bytes). To be able to use the current buffer handle structure, the size of both the metadata
buffer and the data buffer have to be power of two. Figure 2.9 give an example of how
metadata and data offsets are extracted from the buffer handle in a typical data structure.
The SRAM and DRAM offsets calculated from the buffer handle give the starting position
of the respective buffer. The packet data in DRAM, however, starts a number of bytesinto

19

typedef __declspec(packed) union {

struct {

dl_buf_handle_t buffer_next;

uint16_t buffer_size;

uint16_t offset;

uint32_t packet_size : 16;

uint32_t free_list_id : 4;

uint32_t rx_stat : 4;

uint32_t header_type : 8;

uint16_t input_port;

uint16_t output_port;

uint32_t next_hop_id : 16;

uint32_t fabric_port : 8;

uint32_t reserved : 4;

uint32_t nhid_type : 4;

uint32_t color_id : 4;

uint32_t reserved_1 : 4;

uint32_t flow_id : 24;

uint16_t class_id;

uint16_t reserved_2;

uint32_t packet_next;

};

uint32_t value[8];/* aggregate for the above fields */

} dl_meta_t;

Figure 2.8: Struct describing packet metadata.

the buffer. This is to leave room in front of the packet in case we need to prepend the
packet data with a new header. The offset where the packet data begins can be found in
the metadata (see the “offset” field in figure 2.8). The 24 least significant bits provides us
with the offset of metadata in SRAM and to the data in DRAM. The two most significant
bits indicate if the buffer is start of packet (SOP), end of packet (EOP) or both. This is to
make sure that packet sizes larger than the internal buffer size can be accomodated. Bits

20

32

64

96

..........

0

32

64

96

..........

0

0x200000
0x200800
0x201000

0x8040

0x8000
0x8020

SRAM

DRAM

DRAM data buffer size: 2048 Bytes.

SRAM metadata buffer size: 32 Bytes.

New buffer handle = old buffer handle + 8.

Buffer handle 1: 0x2000

SRAM offset = 0x2000 << 2 = 0x8000

Buffer handle 2: 0x2008

SRAM offset = 0x2008 << 2 = 0x8020

Buffer handle 3: 0x2010

SRAM offset = 0x2010 << 2 = 0x8040

DRAM offset = 0x2000 << 8 = 0x200000

DRAM offset = 0x2008 << 8 = 0x200800

DRAM offset = 0x2010 << 8 = 0x201000

Figure 2.9: Calculation of metadata and data offsets from buffer handle values.

24 through 30 state the cell count, indicating how many cellsthe buffer contains6.

Scrath ring mechanics The SHaC unit of the IXP chipset contains 16KB scratchpad
memory that is accessible to the XScale and allµEngines. Listed below are its most
important properties:

• Normal read and write: The memory is accessible on 32 bit boundaries. That im-
plies that you cannot read or write less than 32 bits at a time.You can read or write
up to 16 longwords with a single command.

• Atomic read-modify-write operations: You can set or clear bits, increment or decre-
ment, add or subtract in an atomic operation. These operations can also return the
pre-modified value of the written data.

• Sixteen hardware assisted rings for interprocess communication: These rings are
implemented as FIFO-queues with a head and tail pointer.

6Cells are used for Asynchronous Transfer Mode (ATM) processing. When not in ATM mode, bits 24
through 30 can be used for other purposes.

21

S
O
P

E
O
P

Scratch ring

Buffer handle

SRAM metadata and DRAM data offset

2432 0

Cell count

(or XScale component)
Producer microengine

(or XScale component)
Consumer microengine

Figure 2.10: How buffer handles are passed on scratch rings between processing compon-
ents.

The most important generic use of scratch memory is as scratch rings. Given the buf-
fer handle structure described above, you can assign a scratch ring as “egress” for one
µEngine and as “ingress” for another one (or the XScale core).It is, in other words, used
to facilitate message passing between different structural blocks. Since the location of
the packet metadata can be derived from the buffer handle, all necessary information can
be supplied by passing this one buffer handle on a scratch ring. Figure 2.10 shows the
use of a scratch ring to move buffer handles from a producer component to a consumer
component. For optimization purposes, however, it is possible to pass more information
about a packet or buffer on the ring. This can save SRAM accesses in cases where every
cycle is valuable.

2.3.4 MontaVista Linux

The final piece of software needed to use the ENP2611 as an operational network plat-
form is an operating system running on the XScale core. For the standard ENP SDK, this
OS is a small Linux distribution optimized for embedded platforms. The kernel image
is developed by MontaVista [37], and provided with the Radisys SDK. The MontaVista
preview kit for ENP2611 is, as the name suggests, a limited edition for evaluation pur-
poses. It is based on the 2.4.14 Linux kernel. The hardware drivers provided by Radisys
and Intel extend the distribution functionality, and give the programmer full control of the
IXP hardware. There is, however, an initiative in the open source community to provide
up to date Linux kernels for this platform [34].

22

2.4 Summary

There is a wide range of possible uses for NPUs. Though their use, up to now, mostly
has been in free-standing embedded devices like routers andmanaged switches, network
boards are being developed that can add NPUs to conventionalmachines. In environ-
ments that have need for heavy network processing, these canprovide valuable offloading
functionality.

The parallel processing done by the IXP chipsets provides effective packet processing
pipelines. More complicated tasks, like managing data structures and handling exeptions,
can be forwarded to the core CPU, though most packets should be handled on the data
plane. The extensive programmability of the IXP platform give us the opportunity of
building custom functionality intoµEngines and core CPU and adapting the NPU func-
tionality to our needs.

There are many aspects of NPU functionality that have to be explored in order to imple-
ment an application which uses the host, the NPU core and NPU data plane. In the next
chapter, we will explore some of these key features on the ENP2611 to try to evaluate the
performance of the hardware, and how such an application best can be implemented.

23

Chapter 3

IXP2400 Evaluation

We have, for some time now, been implementing applications on the ENP2505. The
ENP2611 was radically different, both in hardware functionality and in SDK structure
and use. To be able to efficiently program the IXP2400 hardware platform, and learn
the basics of configuring and using the hardware, it was necessary to start with small
applications and expand the use as the needed knowledge was aquired. With a hardware
platform so different from the programming environments that is common knowledge,
aquiring the information needed and successfully applyingit was a great challenge. This
chapter describes the most important applications developed in this process, and some
measurements that have been valuable, both for designing the video cube solution, and
for planning IXP2400 application development in general.

3.1 Exploring the IXP2400 hardware

This section describes the applications developed to explore the IXP2400 platform. The
first challenge was to be able to successfully transmit and receive packets. The next goal
was to modify packet data, and, finally, to do some packet processing on the XScale. The
ability to move data efficiently between the host and the IXP was also an area in question
(this is discussed in more detail in section 5.4). One of the main challenges was to find
methods of implementation that are as simple as possible, but still effective enough to
solve the task at hand. This was emphasized by the multitude of different approaches that,
judging by the sample code applications provided in the IXA SDK, all would achieve the
same goal.

After reviewing the domain of the server cube application, it became clear that the im-
plementation would need hardware resources on three different levels (see section 2.3.3).

24

The media stream was to be delivered from a server application running on the host ma-
chine. Some of the setup and routing structure maintenance had to be done on the XScale,
but most of the large-scale packet processing had to be done on µEngines. To ensure that
an expedient implementation could be made on the ENP2611 with IXP2400 chipset, the
workings of this hardware would have to be explored and some central questions would
have to be answered:

• How can operations be implemented efficiently on theµEngines?

• Should we use microcode or micro-C onµEngines?

• How can data be transported to and from the XScale level?

• How large bitrates can be moved to the XScale?

• How can control-plane program functionality be implemented on the XScale?

• How can data be transported to and from the host machine?

The questions regarding the IXP platform, when not exhanging data with the host, is
answered in this section, the questions that imply communication with the host machine
will be further discussed in section 5.

3.2 Static forward

The key task when designing a network application is the ability to receive and transmit
packets efficiently. With the SDK supplied by Radisys, a small application was included
that had microblocks designed for these tasks and configuredto work with the ENP2611
hardware. This is an application with a three microblock structure as shown in figure 3.1.
The microblocks perform the following tasks:

• Microblock 1 - RX microblock: This microblock receives datafrom the medium. It
then reassembles the MPackets (see section 2.2.3) into the original ethernet packets.
The packet is written to DRAM, metadata is created in SRAM andthe buffer handle
(see section 2.3.3) is enqueued on a scratch ring.

• Microblock 2 - Packet echo: In this microblock, 5 longwords,including buffer
handle and input port, are read from the RX scratch ring. The input port number is
checked and the buffer handle is enqueued for sending on an outbound scratch ring
(TX) based on which input port it arrived on: 0→ 1, 1→ 2, 2→ 0.

25

Packet echo
microblock

Receive and
assemble packets

RX microblock TX microblock

To port0

To port1

To port2

Read input port

Input port=1

Input port=0

Input port=2

Transmit packets
on port designated
by scratch ring.

Figure 3.1: Radisys static forward application block diagram.

• Microblock 3 - TX microblock: The buffer handles are dequeued from three dif-
ferent scratch rings by this microblock. An output port is then selected based on
which scratch ring the handle arrived on. The packet is splitinto MPackets, and
transmitted on the chosen port.

The RX and TX microblocks maintain statistics on the number of received and transmitted
bytes and packets on each port. These variables are shared, and can be read by the XScale
application. The XScale application is also responsible for initializing the spi3br and
pm3386 (see section 2.3.2) drivers, loadµEngine object file images into theµEngines and
start theµEngines.

It is worth noting that the RX microblock puts not one, but 5 longwords on the scratch ring
bound for the packet echo microblock. The first longword is the buffer handle, the four
next are relevant metadata. The reason for this is probably that the receiving microblock
will save at least one SRAM access by having received the packet offset on the scratch
ring.

After some attempts of trying to design RX and TX code from scratch, it was decided to
try to integrate the microblocks from the static forward application into a custom applic-
ation by replacing the “packet echo” microblock. This proved to be a successful strategy,
and enabled the building of the next application.

3.3 IP header switch application

In order to find out more about the performance ofµEngines and XScale, a simple applic-
ation that had to modify packet data was implemented. The first implementation performs
all task onµEngines, the second one forwards all packets to the XScale for processing.
The designs are described in the following sections.

26

Receive
microblock

Packet echo
microblock

Transmit
microblock

Machine
sending

IXP data plane (microengines)

Scratch ring 4 Scratch ring 6
Switch ethernet

IP packet

IP packet with switched address fields

IP packets

and IP header
fields

Figure 3.2: IP header switch application onµEngines.

3.3.1 µEngines implementation

To try to measure the time consumed by a simple application, and to answer the question
of micro-C or microcode, it was decided to make a simple modification of the static
forwarding application. This application also enabled us to test the mechanisms needed
to change the packet data in DRAM from theµEngine level. The following changes were
implemented:

• The packet echo microblock (originally written in microcode) was replaced with a
version written in micro-C.

• The packet was to be transmitted on the same port it arrived.

• The source and destination ethernet addresses were switched.

• The source and destination IP addresses were switched.

The use of micro-C proved to make the programming ofµEngines easier. The code was
easier to read and survey, and a breakdown of the microcode produced by the compiler
showed that the amount of cycles used was not far from the microcode version.

The greatest change from the static forward application wasthat this application would
actually modify the incoming packets before transmitting them. The RX and TX mi-
croblocks from the static forward applications were reused. To avoid having to calculate
ethernet checksums in software, ethernet checksumming in hardware was enabled for the
interfaces. This was done in the driver initialization of the XScale code. The packet echo
block was given one context on oneµEngine, running in a loop receiving packets, switch-
ing headers, and transmitting packets. Figure 3.2 shows a diagram of the microblock
usage and packet flow.

27

The next thing that had to be explored was the passing of buffer handles to the XScale,
and how packet processing could be performed there. From theexample applications in
the IXA SDK, there seemed to be several feasible approaches.

3.3.2 XScale implementation

To test the communication capabilities betweenµEngines and the XScale, it was decided
to implement the IP address switch functionality on the XScale. In achieving this, a choice
had to be made between using the kernel-mode IXA Software framework structure, or to
manage with the hardware abstraction layer (HAL) libraries.

The software framework was first tried, in the hope that it would provide greater flexibility
and a larger degree of abstraction. The experience from thisexperiment was that most of
the methods introduced a greater aspect of complexity without enhancing functionality,
at least not for such simple tasks. One more complicating factor was that the software
framework required the application to be implemented as a kernel module, thus excluding
the possibility of making use of general user-level libraries in the development. The main
argument for running the XScale part of a network application in kernel mode, was to
avoid extra context switches (making it more efficient). The nature of IXP hardware (see
section 2.3.3), however, restricts the data flow betweenµEngines and XScale. This means
that the bottleneck will not be XScale processing, but the moving of data between XScale
andµEngines.

Another consideration that had to be made was that, in the server cube application, data
had to be moved between the host and the XScale. One way of implementing this, that
looked promising was to use a socket on the ENP2611 debug port(see section 5.4). Im-
plementing in kernel mode would make programming on a socketinterface much more
difficult. The sum of these arguments led to a decision to redesignthe application using
the HAL and operating system services layer (OSSL) libraries in user mode. Figure 3.3
shows the basic structure of this application.

The mechanism that seems to be the best for getting the buffer handles to the XScale is
to spawn a thread that is dedicated to listening for an interrupt triggered by theµEngine
code. There is functionality for this in the HAL. When the interrupt is generated, a given
procedure is called. This procedure processes the packet, and if a packet has to be sent
to another stage in the processing pipeline, it can be enqueued on the appropriate scratch
ring. TheµEngine that wants to send a packet to the XScale simply inserts the buffer
handle on the scratch ring designated for communicating with the XScale and generates
the appropriate interrupt.

28

Receive
microblock

Packet echo
microblock

Transmit
microblock

Machine
sending

IP packet

IP packets

Context 0:
Receive from rx
Forward to XScale

Context 1:
Receive from XScale
Forward to tx

Switch source
and dest addresses

Scratch ring 4 Scratch ring 6

IXP data plane (microengines)

Scratch ring 10 Scratch ring 11

XScale core

Figure 3.3: IP header switch application usingµEngines and XScale.

3.3.3 IP header switch application evaluation

In order to determine the general abilities of the different networking components of the
IXP2400, the IP header switch application was created. Thisapplication receives an IP
packet, switches the IP source and destination addresses, switches the source and des-
tination ethernet addresses, and transmits the packet on the same interface that it arrived
on. The nature of IP checksumming (a ones compliment sum), makes it unnecessary to
recalculate the IP checksum.

In the following sections, the result of tests performed on this functionality implemented
on different areas of the IXP platform and on a Linux host machine is presented. The
measurements are done by timing a packet on the way out from one machine. The packet
is processed on another machine, and returned. The difference between the send time and
the receive time is then taken. The reason why the timing is done on the sending machine,
not the processing machine, is to ensure that the measurements will be comparable. The
difference in platforms and implementations would lead to results that could not be com-
pared if measured on the processing machine. When looking atthe results (inµs) we have
to take into account that the times are not only processing time for the machine perform-
ing the IP header field switch, but the processing time of the sender upon send and receive

29

Eth src.

Eth dst

IP dst

IP src.

Packet

ApplicationHost machine

Ping request

Ping request with switched headers

registering times
requests and
Sending ping

Figure 3.4: Generic test setup.

as well as the transmission times over network link and busses.

Test setup The purpose of the test is to measure the time used by an application to
switch the source and destination IP header fields and the source and destination ethernet
header fields. The application that performs the task is implemented in four different
ways: On a Linux host in user space, on a Linux host in kernel space, on an IXP card on
XScale and on an IXP card onµEngines.

The test itself is done by pinging the interface that the IP header switch application is
assigned to. The ping packet will be echoed back to the sender, which will generate a
reply. The reply is also echoed to the sender. The measurement of elapsed time is done by
having tcpdump listen to the interface on the sending host. Each ping request (or reply)
has a sequence number. By calculating the time between ICMP packets with matching
sequence numbers, the processing time for the packet pair can be acquired. In this test set,
two packet sizes was used: 98 and 1497 bytes packets. This canhelp us to determine how
big part of the whole operation copy operations related to the larger packet size represents.
Figure 3.4 shows the generic test setup for the four tests.

The first implementation was done on a standard (SUSE 9.3) Linux host with a user
space application. To be able to manipulate the IP header freely, a packet socket was
created. This socket makes a copy of received packets that complies with the packet
socket configuration1. The packet is then copied to a local application buffer, and the
source and destination IP addresses are switched. The packet is, finally, returned to the

1The implemented packet socket was configured to receive all IP packets on eth0 (gigabit interface).

30

sender via the packet socket. The kernel ethernet layer takes care of prepending the packet
with the correct ethernet header, and the packet is then transmitted on the interface. In
order of preventing the kernel from generating replies to the received packets (the user
space application should have total control), IP packets onthe given interface is firewalled.
Figure 3.5 shows a diagram of the test setup for this implementation.

Firewall: Packet is dropped

Copy of packet (except ethernet header) is forwarded to packet socket

Add ethernet header

Ping request

Test serverTest client

tcpdump records
times

Ping application

Application: Switches
src and dst IP header fields

User space

Kernel space

Ping request
Echoed

Figure 3.5: User space packet echo application test setup.

The secondimplementation uses Linux iptables to perform the header switch in kernel
space. This eliminates the need of context switches and copyoperations from kernel to
user space. There is, however, a possibility that the complexity of iptables state matching
and routing operations can slow the process down a little compared to what an application
dedicated only to doing this one task can perform. The test was done on the same host
as the user space implementaton test. In figure 3.6, the test setup for this implementation
is shown. The iptables NAT PREROUTING table rule rewrites the IP header destination
field to the sending machine’s address. The packet is then sent to routing. The Linux
routing table directs the packet back to the interface on which it was received (based on
the rewritten IP header dst field). Finally, the iptables NATPOSTROUTING table rule
rewrites the source IP header field with the IP address of the local machine, and the packet
is transmitted.

The third test implementation uses the IXP card, but performs the header switching task
on the XScale core. The task is completely independent of theLinux Host, and all steps
are performed on the IXP platform. Figure 3.7 describes the test setup for this imple-
mentation. The application receives the packets in the RX block and forwards them to
the packet_echo block. They are then sent to the XScale core by calling the “A” interrupt.
The XScale core takes care of switching source and destination headers, and sends the

31

Ping request

Ping application

IP header dst
field rewritten

Packet routed
to the interface
it was received

field rewritten
IP header src

Ping request
Echoed

Test client

Kernel space

User space

Test server

tcpdump recording
send and receive
times

iptables

PREROUTING
table

iptables

POSTROUTING
table

Linux
Routing tableNAT NAT

Figure 3.6: Kernel space packet echo using iptables.

packet back to the packet_echo block. The packet is finally passed to the TX block and
transmitted on the same port it was received.

Ping request
Echoed

Test serverTest client

tcpdump records
times

Ping application
IXP card

RX

Ping request

XScale

microengines

XScale Int A thread

Switching of src and dst

echo TX

Figure 3.7: IXP XScale ICMP echo test setup.

In the fourth IP header switch implementation to be tested, all packet processing is done
on the IXPµEngines. In an application such as this, with limited processing power needs,
we can expect a fairly efficient processing due to the parallel processing capabilities on
theµEngines. If the need for processing power should increase, it is possible to distribute
processing further. In this implementation, however, the task of switching IP source and
destination addresses (and mac adresses) is done on a singlemicroengine. A diagram of
the test setup is shown in figure 3.8. The ICMP packets are received by the TX block, and

32

forwarded to the packet_echo microblock. The ethernet source and destination fields are
switched, then the IP source and destination fields are switched. The packet is then sent
to the TX block to be transmitted back to the host who sent it.

Ping request
Echoed

Test serverTest client

tcpdump records
times

Ping application

Ping request

XScale

microengines

Switch src and dst
header fields

RX TXEcho

Figure 3.8: IXPµEngine ICMP echo test setup.

Packet size Max time Min time Avg time Median Std. dev. Count

Linux host user space implementation

98 Bytes 19331µs 11µs 111µs 105µs 310µs 99380

1497 Bytes 16216µs 16µs 172µs 174µs 102µs 99960

Linux host kernel space implementation

98 Bytes 19723µs 11µs 111µs 101µs 378µs 98902

1497 Bytes 19092µs 16µs 168µs 178µs 182µs 99806

IXP XScale implementation

98 Bytes 1145µs 54µs 123µs 109µs 44µs 100000

1497 Bytes 1146µs 110µs 171µs 173µs 45µs 100000

IXP µEngines implementation

98 Bytes 1169µs 28µs 98µs 99µs 38µs 100000

1497 Bytes 1150µs 84µs 151µs 162µs 50µs 100000

Table 3.1: IP header switch application times.

Evaluation The purpose of the above tests was to compare the processing time of the
same functionality implemented on the IXP platform and on a host machine. Table 3.1

33

 0

 50

 100

 150

 200

 250

1497 Bytes98 Bytes

P
ro

ce
ss

in
g

tim
e

(m
ic

ro
se

co
nd

s)

Packet size

Host-User mode
Host-iptables
IXP-XScale

IXP-Microengines

Figure 3.9: Comparison of average times for the IP header switch application.

shows the times and statistical data from the four IP header switch tests. A comparison of
the average times from the tests can be found in figure 3.9.

The fact that there are similar results on the iptables implementation and user space im-
plementation for the 98B/packet tests on the host can possibly be ascribed to the string
matching support of iptables that makes it necessary to do the packet inspection on the
application layer [5]. The routing process will also consume some cycles. In the user
mode application, no other logic than switching the headersis applied. The packet is
copied directly from the network layer, and immediately returned, thus bypassing several
costly operations.

The method that produced the highest processing time for the98B/packet tests, was the
XScale implementation. This is not unexpected as the architecture is not supposed to do
processing of high-performance tasks on this level, but rather handling of exceptions and
data structure updating (see section 2.3.3).

It is reasonable to assume that the applications will have tospend more time on copy
operations for the larger packet size, and that this is what evens the numbers somewhat.

34

We can see that the overall times have increased for all implememtations when the packet
size is 1497B. The average processing time is very similar for the user space implement-
ation, the iptables implementation and the XScale implementation when the packet size
is 1497B. The reason why the XScale results have improved in comparison to the other
two may be attributed to the fact that no copying of the packetoccurs on the IXP plat-
form after it is received. Thus, more resources should be saved when the packetsize is
larger. The margin between theµEngines implementation and the other three has also
increased slightly. The difference between the XScale andµEngines results for 1497B is,
however, very close to the difference between the same implementations with 98B.This
makes sense when considering that the cost of copy operations is the main thing separat-
ing the two experiments, and the fact that no excessive copying takes place on either of
the IXP implementations.

The IXPµEngine implementation has the shortest average time of the four by a reasonable
margin for both packet sizes. This is probably due to the factthat none of the components
in the processing pipeline has to wait for any system resources other than the read and
write operations. The system is entirely and solely dedicated to the one task.

Although the processing speed of each functional unit of theIXP is slower than on the
generic computer used in the test, it seems that the fact thatthe platform is dedicated to this
task gives an advantage in comparison to the host implementation. For the implementation
that had to pass all the packets to the XScale, however, the results were poorer. This
matches the expectations outlined in section 2.3.3 about IXP programming paradigms.
For the implementation of other applications, this impliesthat packet altering microblock
applications does not stand back in performace to similar implementations on a generic
host, but that XScale processing should be used for exception packets. The XScale was,
however, not so slow as to exclude using it to handle situations that could arise quite
frequently.

Offloading network functionality toµEngines will, in other words, not only free host
resources, but also improve on the processing speed as compared to the what the host
would be able to handle.

3.4 Performance gain by offloading

In this section, the possible system performance gain by offloading network services will
be tested and discussed. As presented in section 2.1, the offloading of network tasks is a
sensible step to take in order to free more system resources on the host.

As the host is given extra network load, an increase in the elapsed time spent on other
processes is expected due to the fact that both the kernel and, in most cases, user space

35

applications will have to process network data. When offloading the network task to the
IXP, there should be no noticable increase in the processingtime.

The following set of tests will try to indicate what the expected gain from offloading a
“low-cost” task to a network processor can be. “Low-cost” inthis context is that the
process of switching IP source and destination header fieldsof ICMP packets requires
little computational power. The fact that transport layer protocols are not involved is also
a simplifying factor.

3.4.1 Test

The way the tests were conducted was to measure the time spentin the process of com-
pressing a set of folders containing about 870MB of data withthe “tar” command. While
this is done, the system is subject to flood pinging with packets of 1497 bytes. The ping
packets are processed with the IP header switch applications described in section 3.3.3.
The time spent was measured by running the “tar” command through the “time” com-
mand. This gave three results for each experiment:

• Real time: The total elapsed time for the command to run. Thisincludes user space
time, kernel space time and the time the process is swapped away, and not running.

• User time: The active time the process has used in user space.

• Sys time: The active time the process has spent in kernel space.

A total of four tests was done, all with different types of IP header switch applications run-
ning on the tested host. Table 3.2 shows the data for the performed tests. The statistical
data for the first test shows how much time was spent on the process with no extraordin-
ary network load. This should be used as a reference. In the second test, a user space
application is used to switch IP headers on the received network packets while the tar
process is running. The third test’s results display the times for the tar process while the
IP header source and destination field switch was handled by iptables in the kernel. In
the fourth test the switching is offloaded to the IXP card, and performed on theµEngines.
Any interaction with the host system that may occur is in order to read from the NFS file
system.

3.4.2 Discussion

Figure 3.10 shows the average load times for this test divided in real time, user time and
sys time. Figures 3.11, 3.12 and 3.13 show a zoom in of the top of each group from figure
3.10.

36

Time class Max time Min time Avg time Median Std. dev. Count

Reference time - No extraordinary load.

Real time 153.07s 132.57s 142.42s 142.35s 4.0946s 201

User time 74.5s 73.16s 73.41s 73.39s 0.1367s 201

System time 6.94s 6.32s 6.6105s 6.61s 0.1152s 201

User space IP header switch.

Real time 165.53s 142.12s 153.43s 153.61s 4.7797s 201

User time 80.17s 77.18s 77.62s 77.57s 0.3219s 201

System time 10.23s 7.57s 9.3971s 9.44s 0.4537s 201

Iptables IP header switch

Real time 162.21s 136.06s 146.56s 146.46s 4.6399s 201

User time 76.89s 75.85s 76.2s 76.18s 0.1639s 201

System time 8.71s 7.36s 7.8907s 7.88s 0.2067s 201

IXP µEngines IP header switch

Real time 156.13s 130.68s 141.12s 141.13s 4.2010s 201

User time 73.88s 73.05s 73.3687s 73.36s 0.134s 201

System time 6.83s 6.14s 6.4602s 6.46s 0.127s 201

Table 3.2: Time used for tar process with different IP header switch implementations.

Because offloading the IP header switch application to the IXP card should leave the host
undisturbed to attend to other tasks, the “no-load” tests should yield the same results as
the IXP-implementation. There is, however, a slight difference in the numbers. It seems
that the times for the IXP implementation tests are slightlylower than for the “no-load”
tests. This is probably due to the difference in network setup that is necessary to perform
the tests. This can lead to system services slightly changing behaviour, and the results
may therefore be somewhat affected.

The trend for the user space IP header switch implementationtest is as expected. The
numbers tells us that when subjected to this network load, the time used by the tar process
increases by 8,73 percent compared to the IXP implementation test. The user space load
times and kernel space load times confirm this tendency.

The iptables implementation load test times show a significant improvement over the user
space implementation tests. It is still somewhat higher than the IXP implementation test
times. The elimination of costly context switches, and alsocopy operations can probably
explain most of the improvement. The elapsed time for this test is still 3,86 percent slower
than for the IXP implementation test.

The IP header switch application applied to ICMP packets is avery simple task. For more
complex protocol handling tasks, the difference in times would be bigger since the kernel
tasks would have priority over the tar process. The potential of the IXP card to handle the

37

 0

 20

 40

 60

 80

 100

 120

 140

 160

SysUserReal

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Average load times

No extraordinary load
User mode IP header switch

Iptables IP header switch
IXP IP header switch

Figure 3.10: Times spent on tar process with different implementations of IP header
switch application.

more complex tasks with equal efficiency (due to pipelining) increases the probability of
even higher benefits from offloading tasks.

3.5 Summary

In this chapter we have evaluated the ENP2611 NPU board. The evaluation have consisted
of tests related to packet handling onµEngines and on theXScale. We have also examined
the possible performance gain by offloading simple network functionality.

The IP header switch tests confirm the control plane/ data plane implementation model,
but also indicates that reasonable processing speed can be achieved on the XScale. This
has to be taken into consideration when partitioning tasks between IXP system layers. The
load tests shows that offloading network tasks to a NPU will free considerable resources.
When the bandwidth increases, this gain will probably be crucial to high-throughput ap-
plications like a multimedia server.

38

 130

 135

 140

 145

 150

 155

 160

 165

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Real time

No extraordinary load
User mode IP header switch

Iptables IP header switch
IXP IP header switch

Figure 3.11: Average total time spent on
tar process.

 70

 72

 74

 76

 78

 80

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

User space time

No extraordinary load
User mode IP header switch

Iptables IP header switch
IXP IP header switch

Figure 3.12: Average time spent in user
space for tar process.

 5

 6

 7

 8

 9

 10

 11

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Kernel space time

No extraordinary load
User mode IP header switch

Iptables IP header switch
IXP IP header switch

Figure 3.13: Average time spent in ker-
nel space for tar process.

39

Chapter 4

Multimedia systems

In order to understand the mechanisms needed to implement a solution in the area of
multimedia systems, we have to take a look at the properties of multimedia systems and
the challenges they present. This chapter will present somemultimedia applications and
the requirements needed by such systems. An overview of someexisting solutions and
related protocols will also be presented.

4.1 Multimedia applications

One attempt to define the term multimedia tells us that it is more than one concurrent
presentation medium [40]. In this thesis, we will refer to multimedia as one or more
presentation media delivered from one computer to another over a network connection.
Note that this does not exclude the cases where only one medium (i.e., only video) is de-
livered. The main point is that the systems that is describedhas the functionality required
to deliver more than one type of media.

There exists many different multimedia applications today, and new, inventive uses are
steadily being developed. Some common areas of use today canbe:

• Teleconferencing: Giving people located physically far apart the possibilityof
speaking to each other and see the other participants of the meeting. Previously
used with only sound over regular phone lines, teleconferencing over data links
opens up new possibilities like sharing presentations, documents or mark up a com-
mon whiteboard.

• Video on demand (VoD):Video (and audio) delivered to a client upon request.
This gives the customer the possibility of requesting a video whenever he/she wants.

40

The greatest challenge in this area has been the large datarates involved. However,
the improvement of the network infrastructure makes these solutions more com-
mon. An example of an operative VoD site is SF-anytime [58].

• Audio on demand: Due to effective compression techniques like RealAudio [53],
mp3 [39] and Ogg Vorbis [45], the streaming of audio has been afamiliarity on the
internet for several years. Common streamed audio servicescan be radio channels
broadcasted over Internet, or sound used to add effect to a website. The data stream
can also provide metadata for the audio transmitted (like telling you which radio
program you are listening to).

• Gaming applications: The number of people using online games and virtual com-
munities have exploded the last years. As an example, there are more than 2 million
users of the role playing game “World of Warcraft” [62]. The data that has to be
transmitted is mainly information about player actions andenvironment, although
pictures, sound and executable code are also common to exhange. In this field there
are a lot of challenges related to keeping the game world consistent to all players,
and to minimize the data that has to be passed to each player.

• Education: There are many ways to use multimedia services for educational pur-
poses. Students can be shown presentations, ask questions (written or by audio
transfer), solve graphical tasks or participate in discussions. Lectures can be trans-
mitted, both live and on demand, allowing students in remotelocations the same
possibilities as those able to travel to the lecture location.

These are only some of the myriad of multimedia applicationsthat are in use today. With
the ascent of common broadband networking, different multimedia content delivered via
network to end users are increasingly common. This presentsus with some challenges,
given the fact that multimedia usually have some propertiesthat are different from the
kind of data that has been the most common to access over the Internet until recently.

4.2 Multimedia requirements

When a server has the task of delivering multimedia content,there are some differences
in requirements compared to most other networking applications. The most important
differences are:

• High data rates: Each second of a movie combining audio and video will require a
relatively large amount of data to be transferred per time unit over the network in
order to yield satisfying results.

41

• Large amount of data: The data that have to be delivered occupy much storage
space, and the internal server operations needed to handle the data will consequently
be costly (due to copy operations, buss transfers etc.).

• Many concurrent streams: If several users request content at the same time, the
server will have to provide output of very high bit rates to many streams.

• Time-sensitivity: The frames delivered will have to reach the client within certain
time-limits to ensure that the presentation will be satisfactory. In applications with
several interacting participants, like teleconferencingor online games, the data has
to reach all participants in due time in order to make the application work.

In addition, there are challenges related to the combination of different types of media
into streams. As an example, there can be a video conference that includes a presentation,
video and audio. All of these components have to be delivered, in time, to all of the
different participants.

Two very common media types are audio and video. An example ofaudio data is a 16
bit, 44KHz compact disk (CD), with a play time of 77 minutes and 20 seconds. The data
on this CD will occupy 780.56MB [14]. If we were to stream thisdata uncompressed, the
bitrate would be 1.3Mbps. This, however, is vastly inefficient. To solve this problem it is
usual to compress the data before transmitting. Audio data like this can be compressed
without losing any of the original sound data. Using free lossless audio compression
(FLAC) [14], this audio file can be reduced to the size of 413.46MB, giving us a bitrate of
713Kbps. Applying a lossy compression we can further reducethe needed bitrate. With
Moving Pictures Expert Group (MPEG) 1/2 Layer 3 (MP3) compression, the bitrate can
be reduced to 128Kbps without noticeable loss of audio quality (as subjectively estimated
by the listener) [16]1.

Video streams will require even higher bitrates than audio.A phase-alternating line (PAL)
DVD standard can have a resolution of 720x576 pixels, and a framerate of 25 frames
per second. This will give an uncompressed bitrate of about 249 Mbps (given a color
depth of 24bit/pixel). This would be almost impossible both to store and send efficiently
with todays technology. On regular DVD records, however, the data is compressed with
MPEG2. This gives a maximum bitrate of about 9 Mbps for the video stream [11]. With
the help of MPEG 4 encoding, the bitrate can be brought down to1-2 Mbps without
apparent loss in visual quality [9].

Even with the help of advanced compression techniques, we can see of the above ex-
amples that the datarates involved are still formidable. This spurs us to find ways of
implementing server solutions that are able to meet the demands that multimedia applic-
ations presents.

1When lossy compression is applied, it is impossible to restore the data to its original form.

42

4.3 Improving server performance

There are several ways to improve operating systems and traditional server models to
enhance performance when applied to multimedia content. Some of the approaches are:

• Enhance server internals and software to allow greater efficiency (on one server).
Such enhancements can be to optimize disk performance by placing data on the
disk in ways that is ideal for the type of media [24], or to eliminate copy operations
when moving data from disk to transmission medium [21]. Enhancements can also
be made to how different protocols are processed, saving precious cycles.

• Build server clusters that behave like one server as seen from the outside. These can
be directly interconnected, or connected by a switched network topology. Examples
of existing solutions are nCube n4x [42], IBM VideoCharger [25] and Oracle inter-
Media [46].

• Distribute delivery through proxies. Examples of systems with support for this
are Apple Darwin streaming server [8] and Komssys [36]. Thiskind of approach
can be further enhanced by applying multicast techniques like gleaning [23] and
patching [20].

In addition, there are different ways to combine one or more of the above components to
accommodate the needs of the system that is to be designed.

Next, we will present some server implementation strategies, and show how these deals
with the challenges that comes from multimedia requirements..

4.4 Multimedia server implementations

There are may strategies that are applicable when it comes toimplementing adapted mul-
timedia servers. In this section, three implementation strategies will be described, namely
single server, server clusters and proxies. It has to be saidthat these strategies are not
mutually exclusive. A good single server implementation can be multiplied to build a
server cluster structure, which again can be enhanced usinga proxy strategy.

4.4.1 Single server implementation

There are many multimedia single-server implementations on the market today, although
most of them can be combined to form different types of clusters. Server implement-
ations that are in production today are amongst others: “Quicktime” [50], “Real Helix
Server” [54], “Alex Arachnid” [2], “Apple Darwin” [8] and “IBM VideoCharger” [25].

43

���
"�
�$#�%��!

�����9
�$#�%��!

)��(�������$#�%��!

�

������

))��(
���
������

(�����
������

(�
��
�
�

�

(�����

Figure 4.1: Simple general server architecture [23]

When deploying a single server to serve a (potentially) large amount of users, it is com-
mon to spend large amounts on hardware (e.g., disks, memory and CPU power) to allow
the server to handle periods of great traffic. Most of these resources will then be idle most
of the time. Another aspect of the single server solution is that it scales poorly. That
implies that hardware upgrades, or even buying a new machine, will be required to meet
demand.

Figure 4.1 depicts a common layout for a multimedia server. The diagram divides the
server components in three main parts, namely storage, processor and network subsys-
tems. The storage subsystem keeps the data that is to be transmitted, and the networking
subsystem handles the actual transfer of data to the client.The processor subsystem is re-
sponsible for all the tasks required to control and synchronize the operations. The diagram
also divides the typical tasks of the processor subsystem inthree; Data server, application
server, and control server. The application server functionality is typically the interaction
with the user. This part can give a list of available material, organize billing and keep
track of users. The data stream itself is delivered by the data server. The control server
can be used to guide the whole process, synchronize the operations, and make sure only
valid, authorized transactions are committed.

In order to make the servers better adapted to multimedia transactions, there are many
alterations that can be made to architecture and operating systems. File systems that
specialize on continuous data and large files can be implemented. Examples of specialized
file systems are Minorca, Fellini and Presto [23]. We can use multi-processor (and multi-
core) architectures to make data processing more effective. Operating systems can be
modified to make the data-path more efficient (i.e., DROPS [10] and INSTANCE [47]).
These kind of alterations, especially the ones that imply custom built hardware or over-
provisioning, are expensive. In order to make cost-efficient server solutions, it is common
to use other strategies to meet the scaling obstacles.

44

Figure 4.2: Interconnection topologies

4.4.2 Server cluster implementation

To meet the demand for scalability, it is possible to distribute the multimedia server over
several interconnected computers. These systems can behave as one server as seen from
the outside, but will internally distribute the tasks between several machines. It is also
possible to distribute the content between several physically separated servers.

Different topologies offer different benefits to the cluster. This, and the cost of implement-
ing the system (number of connections per node, cost of switches, etc.), must be taken into
consideration when deciding upon a topology. Figure 4.2 shows some popular intercon-
nection topologies [19]. The fully interconnected solution, where every node has a direct
connection to every other node, is the one with the greatest capabilities in terms of com-
munication, but it is also the most expensive to implement inmost cases [19]. From this
extreme there are interconnect topology variants which have to pass some data through
other nodes to reach its target. For the tree topology, the root is the access point of all data,
and therefore a possible bottleneck. Mesh or hypercube topologies will have more evenly
distributed data, but will require more complex search and routing algorithms. Switched
networking topologies are well-known, and scales well. Theswitching mechanisms, how-

45

ever, increases the inter-node latency.

In order to be scalable, most video server solutions have implemented support for clus-
tering in one way or another. This kind of support can range from simple load-balancing
algorithms which divide the load between different free-standing servers to more com-
plex interconnection topologies and strategies. Examplesof server solutions with support
for clustering is “Real Helix” [54] and “IBM VideoCharger” [25]. There are also server
solutions that are not based on switched network clustering, but on direct interconnection
topologies. An example of this is the “nCube n4x” [42] serversolution [4]. This cluster
solution is based on a hypercube topology, with directly interconnected nodes.

4.4.3 Proxies

The main idea of proxies is to move the most popular content closer to the end users,
and in this way reduce traffic on the main content server(s) and backbone network. A
statistical rule of thumb is that a great majority of the requested content is represented by
just a few of the most popular titles [63]. This empirical observation makes it possible
to design caching strategies that make proxies keep the mostwanted media, and forward
requests for less popular media upward in the media server hierarchy. Another effect
of this strategy is that the proxy servers can actually be moved closer to the end user
physically, thus reducing network traffic.

Figure 4.3 shows a possible proxy server layout. In this diagram, the master servers have
available all the offered content. When requests are made from the end users, the requests
are sent to the master servers which provide the content. Thein-between proxy servers can
then begin to cache the most requested titles of their region. Multimedia server solutions
that support proxying include “Real Helix” [53] and “Komssys” [36],

4.5 Hypercube/n4x server solution

In the myriad of different architectures and server topologies, one system thatpossesses
many of the wanted characteristics is the c-cor n4x [4] (previously nCube n4x [42]). The
solution is, however, based on custom hardware, and is quiteexpensive to deploy. This
section will try to describe some of the key aspects of the n4xsolution.

4.5.1 Hypercube multicomputer structure

This subsection will describe why a hypercube is a good base for an interconnection
topology. To show this, we first have to explain the geometrical properties of a hypercube

46

�

�.

��

�����%��!�

��(
���������

!
�����������

��"���
�
�������

(�!)���������5�

�
��
#���(����

Figure 4.3: Diagram of a possible proxy layout [23].

structure. This is the “Free On-line Dictionary of Computing” (foldoc) [15] definition of
a hypercube:

A cube of more than three dimensions. A single (20 = 1) point (or "node")
can be considered as a zero dimensional cube, two (21) nodes joined by a line
(or "edge") are a one dimensional cube, four (22) nodes arranged in a square
are a two dimensional cube and eight (23) nodes are an ordinary three di-
mensional cube. Continuing this geometric progression, the first hypercube
has 24 = 16 nodes and is a four dimensional shape (a "four-cube") and an
N dimensional cube has 2N nodes (an "N-cube"). To make an N+1 dimen-
sional cube, take two N dimensional cubes and join each node on one cube
to the corresponding node on the other. A four-cube can be visualised as a
three-cube with a smaller three-cube centred inside it withedges radiating
diagonally out (in the fourth dimension) from each node on the inner cube to

47

the corresponding node on the outer cube.

Each node in an N dimensional cube is directly connected to N other nodes.
We can identify each node by a set of N Cartesian coordinates where each
coordinate is either zero or one. Two node will be directly connected if they
differ in only one coordinate.

The simple, regular geometrical structure and the close relationship between
the coordinate system and binary numbers make the hypercubean appropriate
topology for a parallel computer interconnection network.The fact that the
number of directly connected, "nearest neighbour", nodes increases with the
total size of the network is also highly desirable for a parallel computer.

There are several advantages to an interconnected topologyin comparison with a switched
network topology. The direct connections reduces latency,which switched connections
would introduce. Powerful switches are expensive, so a switched network doesn’t scale
well in terms of cost [19]. It must also be considered that when implementing an applic-
ation for an interconnected network, yau are free to make optimized protocols that can
enhance performance for your task.

In principle, the hypercube topology can be used to implement different sorts of parallel
multicomputers. The topology has a balance between the fully interconnected network,
where a connection point to every other node must be supplied, which would be expensive,
and topologies where the data have to travel a long distance from one node to another. A
multicomputer is a cluster of interconnected cooperating computer nodes, behaving as
one computer. It distributes tasks and information by message-passing (as opposed to a
multiprocessor, where several processors share a common memory area) [52].Seen from
the outside, it will behave as one server instance.

The qualities of hypercube topology ensure that when the system size increases, no new
bottlenecks are introduced. Figure 4.4 shows how nodes are added in the cube. The
amount of possible routes for information to take in the cubemakes an even distribution
of message passing possible.

4.5.2 The c-cor n4x multimedia server architecture

The n4x solution [4] makes use of the Hypercube topology to implement a multimedia
server cluster that allows for a great bandwidth potential.This is made efficient by high-
speed message routing hardware [4]. The solution is scalable because you can expand it
exponentially (see section 4.5.1) There is no single point of failure; routing is dynamically
processed. The routing is acieved through hardware especially built for this task. This also
helps performance when data can be routed by the least trafficked route, or avoid broken
routes. Since there are only one copy per content-item, it maximizes storage space. The

48

Figure 4.4: Hypercube scaling

system boasts ability to serve over 60000 concurrent streams with rates of 16Gbps per
node and over 2 Tbps systemwide [42]. This is achieved by using the topology to evenly
distribute data load internally in the cube. Each node has 8 full-duplex, high-speed ports
for intra-cube communication. Internal load-balancing isachieved by striping2 the data
over all disks in the cube. The redundant array of inexpensive disks (RAID) striping also
ensures that if a whole node (and all its disks) fails, the system can continue operation
uninterrupted.

The n4x MediaHUBs are where the data is stored. These nodes are interconnected with
eight hypecube connectors. This can accomodate a hypercubewith n = 8 or a total of
256 nodes. These require no common memory access, they use message-passing to move
data. The messages are controlled by an adaptive routing system. This system will find
the most efficient route from point to point, and will avoid heavily trafficked routes or
broken links.

The interconnection is supported by special hypercube connector hardware. This hard-
ware supports routing logic by using a built-in vector processor unit [42]. This ensures
that sufficient resources are available for video data retrieval and streaming on the server.

To transmit the data delivered by the cube, n4x uses hardwareimplemented interface
modules customized for the needed transmission type. Examples of such modules are:
QAM Cable, ATM, DVB-ASI, Ethernet and Gigabit Ethernet. These interface modules
have hardware support for i.e. multiplexing, encoding or forward error correction (FEC)
operations needed to support its interface type/model. This enables high output datarates
from each hypercube node (MediaHUB).

2The data for each media item is evenly distributed among all nodes, requiring a smaller amount of data
to be fetched from each node, thus reducing the possibility of bottlenecks.

49

The custom built components are assembled on a motherboard with Intel [27] 860 chipset
and an Intel Xeon processor. The disk array are controlled byQlogic 12160 [49] SCSI
controllers. Put together, these components form a customizable, scalable server solution.

The next section will present some protocols that are instrumental in achieving better
multimedia streaming performance. The protocols presented are used for setting up and
performing streaming of real-time data.

4.6 Protocols

To set up a multimedia stream, we have to make use of some toolsto control the stream
(start, stop, pause the stream etc.), to convey informationabout how the stream progresses,
and to be able to ship the data with the necessary information. This can for example be
accomplished with the following protocols:

• Real-Time Streaming Protocol (RTSP) [56]: Used to issue control commands to a
multimedia server. Enables the client to for instance play,stop or pause a media
stream. Also used to setup the stream, and convey necessary information about port
numbers for server and client.

• Real-Time Transport Protocol (RTP) [55]: Used for sending media. Provides ser-
vices like payload type identification, timestamps, sequence numbering and deliv-
ery monitoring.

RTP Control Protocol (RTCP) is used in conjunction with RTP to allow the service to
optimize streaming performance based on feedback from the client. This protocol is used
to send information between the client(s) and server(s) to keep track of the progress and
quality of the stream(s). The server(s) can then make adjustments to compensate for any
events that may occur during transmission.

4.6.1 RTSP

The RTSP protocol [56] is an application-layer protocol forcontrolling media streams.
An RTSP session is identified by its ID on the server and is completely independent of
an eventual TCP connection. Consequently, the client can open and close several TCP
connections, and still control the same RTSP session. RTSP can also be conveyed by user
datagram protocol (UDP). In most aspects, RTSP is very similar to HTTP/1.1 [17]. The
protocol supports the following operations:

• Retrieval of media from media server.

50

• Invitation of a media server to a conference.

• Addition of media to an existing presentation.

To be able to send a request for media, the client has to have some info about it. This can
be placed in a description of the media, and can be made available in different ways, like
publishing it on a web server, or making it available throughthe media server itself. The
description will also give information about the transportmethods the server is capable
of. The alternatives are:

• Unicast with the client determining the port.

• Multicast with the server determining the address and port.

• Multicast with the client determining the address and port.

The stream controlled by RTSP may be sent via a separate protocol, independent of the
control channel. A common protocol combination to use is RTP/UDP. The stream is
totally independent of RTSP, and once started, it will continue until the media is exhausted
if no more commands are received. The RTSP session on the other hand will have to
maintain a state depending on which commands it has received. The specification states
that the RTSP session identifier has to be randomly generated, and has to be at least eight
octets long to make guessing the ID more difficult.

The following RTSP methods will affect the sessions state:

• SETUP: Initiates an RTSP session and allocates resources for a given stream.

• PLAY and RECORD: Start transmission of an already configuredstream.

• PAUSE: Halts a stream. Does not free server resources. The stream can be restarted
if wanted.

• TEARDOWN: Releases the RTSP session, and frees the resources allocated for the
stream.

The location of the media controlled by RTSP is defined by the RTSP uniform resource
locator (URL). It is equivalent to a HTTP URL, and describes the server address, eventual
port number and the absolute path of the media on the server [56]:

rtsp_URL = ("rtsp:" | "rtspu:")

"//" host [":" port] [abs_path]

host = <A legal Internet host domain name of

IP address (in dotted decimal form)>

51

The RTSP message is text-based, and each line is terminated with CRLF. The character
set used is ISO 10646.

When a request is received and interpreted a response will besent. The response can have
the following format: [56]

Response = Status-Line

*(general-header

| response-header

| entity-header)

CRLF

[message-body]

The status line consists of the RTSP version type, a status code and a reason-phrase. The
reason-phrase is intended to give a short textual explanation of the status code. The status
codes can be classified as follows:

• 1xx: Informational - Request received, continuing process

• 2xx: Success - The action was successfully received, understood, and accepted

• 3xx: Redirection - Further action must be taken in order to complete the request

• 4xx: Client Error - The request contains bad syntax or cannotbe fulfilled

• 5xx: Server Error - The server failed to fulfill an apparentlyvalid request

The response header gives additional information that could not be included in the status
field. This includes additional information about the resource requested like for instance
server and client port numbers for the media stream.

Each RTSP request carries a sequence number labeled “CSeq”.The sequence number is
incremented by one for each new request. If a given request isnot acknowledged, the
eventual retransmission of the request have to carry the same sequence number as the
original request.

Figure 4.5 shows a typical RTSP session. The first step for theclient is to retrieve in-
formation about the stream. In this example, it sends a regular HTTP request to a web
server, and gets the description file in response. This file could have been made available
from the media server too, accessed with an RTSP DESCRIBE request. The client now
sends a SETUP request, asking the server to reserve resources for the new stream. If all
is well, the server responds with an OK message containing the information needed by
the client to receive the stream. When the client is ready, a PLAY request is sent to the
server. This tells the server to commence streaming the data. The server sends an RTSP

52

Web server

Media server

SETUP

Http description request

Session description

SETUP OK

PLAY

PLAY OK

RTP Data

RTCP feedback

PAUSE

PAUSE OK

TEARDOWN

TEARDOWN OK

Client

Figure 4.5: A typical RTSP session [7]

OK to the client, and starts to send RTP packets with the requested data. If supported, the
client occasionally sends RTCP feedback messages to the server to report on the state of
the stream. If a PAUSE or STOP message is received, the serverwill have to take the ap-
propriate action. To end the RTSP session, and free all related resources, a TEARDOWN
message is sent from the client.

4.6.2 RTP

RTP [55] is a protocol which provides a set of services for real-time media stream-
ing purposes. These services include payload type identification, sequence numbering,
timestamping and delivery monitoring. RTP is usually beingused on top of UDP, but it is
also possible to use it with other suitable underlying network protocols. The protocol was
primarily designed to facilitate multimedia conferences,but is in common use as a means

53

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|V=2|P|X| CC |M| PT | sequence number |

+-+

| timestamp |

+-+

| synchronization source (SSRC) identifier |

+=+

| contributing source (CSRC) identifiers |

| |

+-+

Figure 4.6: RTP header format.

to transport any kind of real-time media stream.

The RTP header is shown in figure 4.6. The version (V) field of the RTP header states
which version is used in the implementation. The version designated by RFC3550 is 2.

The padding bit (P) states that at least one octet at the end ofthe payload is padding. How
many octets are padding can be found by reading the last octet. This padding is necessary
for some encryption algorithms.

The extension bit (X) states that exactly one header extension follows the RTP header.
The potential header extension has a field that states its ownlength. It is recommended
to try to manage challenges using conventional means, and try to avoid using the header
extension.

The source of an RTP session is identified by a 32 bit synchronization source (SSRC)
identifier (figure 4.6.2). This makes the source independentof network addresses for
identification. Packets from a given synchronization source share the same timer and
sequence number space. In that way the client can group the received packets by SSRC
for playback (for instance where several different RTP sessions are received on the same
port). The SSRC is to be chosen randomly, and is meant to be globally unique inside a
specific RTP session.

If there are contributors to an RTP session (for instance if several media streams are mixed
into one), the RTP header is appended with the SSRC’s for the contributing streams. This
could for instance happen in an audio conference, where the mixer could identify the
speakers contributing to the audio by appending their contributing sources CSRCs to the
RTP header.

54

The CSRC count (CC) field contains a number indicating how many CSRC’s are appen-
ded to the header.

The usage of the marker bit (M) is defined by a profile. It can be used to indicate signific-
ant points in a stream, like frame-boundaries.

The payload type field (PT) contains a code identifying the format of the payload media.
Some standard types are defined in RFC3551. If a receiver doesnot recognize the payload
type, the received packets will be discarded.

The sequence number is incremented by one for each packet sent. The initial value is to
be chosen randomly to make attacks on encryption more difficult.

The timestamp field represents the sampling time for the payload data. It is derived from a
time reading, or from the nominal sample instance. The progression rate of the timestamp
can therefore be different depending on the sample rate of the payload media and format.
The initial value should be chosen randomly. If, for instance, several packets belong to
the same video frame, they should have the same timestamp. They would, however, have
consecutive sequence numbers.

An RTP session can be monitored and enhanced using RTCP in tandem with the session.
This is done by sending RTCP sender and receiver reports thatindicate how all of the
parts involved in an RTP session are doing.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| defined by profile | length |

+-+

| header extension |

| |

+-+

Figure 4.7: RTP header extension format.

RTP header extension (figure 4.7) is a mechanism that allows for custom extensions to be
added to the RTP header. It is possible to implement servers and clients that support these
extensions, but systems that do not support the custom add-on must be able to ignore
the extension without losing any of the original RTP functionality. It is recommended in
the specification that other methods should be used to overcome any challenges that an
extension would help solving.

55

4.7 Summary

What is wanted from a multimedia server solution is high performance to serve the clients
during eventual peaks, scalability to meet an increasing demand, and reliability to make
the users trust the supplier [59]. In this chapter, we have seen that multimedia applica-
tions have a range of stringent requirements that must be met. The methods for achieving
this are to build optimized servers, to group the servers in special topologies and to dis-
tribute the content to proxies, depending on demand. To support such services, enhance
transmission and optimize streaming, we can make use of special protocols like RTSP,
RTP/RTCP that improve the streaming performance and adaptability.

The c-cor n4x addresses many of the multimedia challenges mentioned. The n4x approach
achieves better multimedia streaming performance and is a flexible, freely expandable
topology, but uses special hardware that offloads the main processing platform. There
are custom hardware both for routing inside the server topology and for multeplexing,
encoding and transmitting data out of the cube with different network standards. Although
effective, this kind of custom hardware is expensive to develop.

Today, more and more parts of standard computer components are given their own pro-
cessing power in order to offload the central systems. In the wake of this development,
there have surfaced new platforms of programmble hardware with special properties and
uses. One common example of this is the graphics processing unit (GPU) commonly
used to offload demanding graphical calculations. Another platform that is maturing is
the Network Processing Unit (NPU). These are programmable units optimized for net-
work functionality. The NPU’s are mass-produced, and relatively cheap. The possibility
then arises for programming these units to perform tasks that previously would have to be
hardware-implemented, like hypercube routing mechanismsin a server solution.

In the next chapter, the implementation of the basic functionality of a video server cube
(VS3) will be described. The server cube will have a hypercube design topology, and
IXP2400 NPUs will be used to handle the routing process.

56

Chapter 5

The VS3 Video Server Cube

This section describes the steps taken to implement a limited working multimedia server
cluster based on a hypercube topology. Small parts of a similar system are first implemen-
ted on IXP1200[31] boards as an assignment in the inf5070[23] course, and this system is
also described. From there, each step in testing the hardware, and deciding on implement-
ation strategies up to the final implementation is discussed. A major part of this work has
been to get knowledge of the IXP2400[32] hardware, the IntelIXA SDK 3.51[30] and the
possibilities and disadvantages of different approaches. This has led to several separate
experiments to measure how different implementations and components perform given
specific tasks. The results of these, and the increasing understanding of the hardware
and programming platform have resulted in several incremental design steps that has cul-
minated in the current server solution. The implementationprocess resulted in several
intermediate designs that were rejected. The purpose of these designs, and the reason
why they finally were discarded will be discussed. Finally, approaches on how to further
improve the system, and remove the current bottlenecks willbe presented.

5.1 Hypercube server general design

The system we want to make is an implementation of a multimedia server cluster with
hypercube topology similar to the nCube n4x system. The system should use message-
passing to communicate internally, and have no shared memory areas between nodes. To
make routing efficient, and to offload the host, we want to use IXP2400 network processor
cards to handle the routing operations. In figure 5.1, the basic design is outlined. We want
to use the Linux hosts as data and streaming servers, and the IXP cards to take care of
operations related to locating the media and routing packets to the correct egress node.
When a data packet is to be sent to an outside client, the streaming application has to

57

Cube2

Cube3 Cube4

Cube1

IXP2400 IXP2400

IXP2400 IXP2400

Client

RTCP/RTP
Communication

E
gress

E
gress

E
gress

E
gress

Media server
application

Media server
application

Media server
application

Media server
application

Routing operations Routing operations

Routing operationsRouting operations

IC
communication

(Linux host) (Linux host)

(Linux host) (Linux host)

To clients

To clients

Figure 5.1: Basic design of multimedia server cube with IXP cards.

send it to the IXP card, it will then be routed to the egress node and sent to the client.
An adaptive Domain Name Service (DNS)1 will make sure that requests are distributed
evenly between the egress nodes. The cluster will look like one server as seen from the
client.

RTSP is the protocol we want to use for setting up and controlling the media stream. The
streamed data itself shall be transported using RTP. For intra-cube messages and routing,
a new Intra-Cube (IC) protocol is designed.

1This service could either communicate with the server cluster to find the egress node with the most free
resources, or could statically select a new node each time, in a round robin fashion.

58

As discussed in chapter 4, there are many optimizations thatcan be applied to a multi-
media server cluster. In this assignment, we have implemented the basic functionality
needed by a server cluster capable of delivering a video stream. Optimizations like strip-
ing the data over all nodes, and dynamically adaptive routing will have to be built into the
system at a later stage due to the limited timespan of this master thesis. Then-value of
the hypercube topology is limited to 2.2 The reason for this is that the ENP2611 network
cards have 3 optical interfaces, and one of these interfacesis used for the egress connec-
tion. There is the possibility of inserting more than one card into each host to increase the
possiblen-value of the topology, but this option has not been thoroughly explored due to
the increase in complexity this would lead to, and the numberof available cards.

5.2 The legacy design

The design of the server system is based on the nCube n4x system. nCube claims that
their solution is able to serve 2000 concurrent users with a bandwidth of3,75Mbps per
user with a rack of 8 MediaHUBs (cube withn = 3) [42]. Their solution is, however,
heavily based on custom hardware, and as of such expensive todevelop and produce.
The IXP cards are optimized for packet handling and have several network interfaces, in
a manner similar to the custom hardware of the n4x system. This makes it possible to
envision a similar design using programmable IXP cards for cube interconnection.

The work began with some basic attempts to implement parts ofa routing functionality
on the IXP1200 card as an assignment for the course INF5070 [23]. We describe the main
features of this design in the following section.

5.2.1 The INF5070 implementation

The assignment for INF5070 [57] was to implement an n4x-likesolution with RTP based
transport and RTSP based control utilizing IXP1200 [31] cards and a given programming
framework based on the Intel IXA SDK 2.01 [29]. We chose to implement the routing
part, and postpone the RTP/RTSP part. The software framework that was provided had a
structure that delivered all packets to the StrongARM core (Figure 5.2). The choice was
made to use a source routing algorithm with information conveyed through an intra-cube
(IC) protocol. The purpose of the IC-protocol was to handle:

• Routing between cluster nodes.

• Transportation of video data to the egress-node.

2A hypercube topology withn = 2 consists of a total of 22 = 4 nodes.

59

StrongARM core

dCube setup and routing code

Simple TCP implementation

Ingress microblock Egress microblock

Figure 5.2: Dataflow inf5070 implementation

• Forwarding of video-playback-control to the node serving the stream.

• Handling requests for specific video files, locating the file and setting up the stream.

The final result of the project was an application that managed to stream the requested
data from one node to another using intra-cube routing. The bitrates was, however, very
limited because of the fact that all traffic, routing, setup information and data packets,
had to pass through the StrongARM core on each and every node it passed through. The
performance was also reduced by the fact that the data itselfwas read and streamed by
an application running on the StrongARM. This demanded too many resources to achieve
high performance.

5.3 SDK code base

The SDKs from Radisys and Intel provide an extensive code base from which applications
can be adapted. The majority of these examples, however, focuses on standard networking
tasks, and could not easily be used as a basis for theVS3 application. In the Radisys SDK
static forward application, there were components that could be used successfully. To
build any network application, functionality has to exist for receiving and transmitting
data. This functionality was provided by the RX and TX microblocks from the static
forward application. With an asynchronous interface of passing buffer handles on scratch
rings, new components could be fit seamlessly in between of these microblocks.

With RX and TX functionality being the only “recyclable” component, the following
stages had to be built from the bottom: Microblocks for data plane processing, XScale

60

components for control plane processing and a streaming application located on the host
machine. There were made designs that aimed to be able to use existing host server
applications, thus eliminating the need to implement this.The next sections will discuss
different designs for implementing theVS3 system.

5.4 XScale-Host communication

In order to pull data from the host to XScale andµEngines, the ideal solution would be one
that could accommodate very high data rates. Due to the largescope of the assignment, the
task of implementing this efficiently was temporarily postponed. A strategy for achieving
this can be found in the further work section (see section 6.3). The method that was
ultimately chosen was to transmit the data over the 10/100 debug Ethernet port. Based on
this decision, three different design choices were outlined and tested:

• Use network file system (NFS) to read the file directly from theXScale applic-
ation: Using NFS would provide an abstraction of all operations that are needed
to get the file from the host to the XScale. The performance of the transfer itself,
however, would be reduced due to the nature of NFS services. NFS, based on re-
mote procedure calls (RPC) will, in addition to moving the file data, also use much
resources on consistency checking and synchronization. The NFS approach would
also imply that all tasks related to reading data, generating packets and sending
these packets have to be handled by the XScale core. For a scenario with many
streams, the load would probably be too big for the XScale core, and lead to per-
formance reduction.

• Create a raw socket and forward packets directly to the host:Another approach
was to create a raw socket on the XScale. This would give the opportunity of
creating tailor-made packets and transmitting them to the host without creating a
two-way socket connection. Any available multimedia streaming server software
could then be used on the host machine, but some manipulationof packets would
be needed to make the server software work as wanted within the cube structure .
This concept will be described in more detail in section 5.5.

• Create a regular TCP socket to communicate with an application running on
the host: The regular socket alternative would demand a server application on the
host that could receive a connection from the XScale. The performance of the data
transfer would be limited by the TCP/IP stack processing both on XScale and on the
host machine. It would, however, provide the service of a byte stream between the
applications. The most attractive element of this solutionis that it would simplify

61

some aspects of implementing the streaming (host) application. More information
about this design approach can be found in section 5.6.

The implementation work began using the raw socket strategy. This allowed the use of
a server system that already existed (i.e. komssys [36]) on top of the routing framework.
The next section providess a description of the implementation strategy, and explains why
it eventually was discarded in favour of the regular TCP socket design.

5.5 The raw socket design approach

After exploring the hardware possibilities in section 3.1,the first structural design for the
whole server cube application was made. If stream setup was to be done by RTSP, a
TCP connection would have to be set up. A solution where the Intra-Cube (IC) routing
system would forward all TCP packets to the host machine containing the requested media
was outlined. The task of delivering packets to the correct egress node would rest on
the routing layer (IXP cards), and each host machine would behave like a freestanding
multimedia server, oblivious of the routing layer below.

5.5.1 TCP Handling

For this approach to work, the TCP connection from the clientwould have to address the
machine that hosts the wanted media, not the egress machine.In order to do this, the
egress node (the node receiving the initial TCP SYN request)would have to do a three-
way handshake, then receive the RTSP SETUP message. This is because we don’t know
where the media file is located upon receiving the initial request, and the client expects
a complete TCP connection before sending the RTSP SETUP request. The machine that
hosts the file will have to be found (the mechanisms for this are presented in section 5.6).
When the route between the egress node and the machine delivering the media has been
found, the XScale application on the machine will have to perform a three-way handshake
to connect to the application on the host. It can then forwardthe RTSP SETUP packet. In
this way, the host application will never know that the TCP connection has been routed
through several other machines, and will believe that it is communicating directly with the
client. There are, however, some more complications to doing this. The sequence (seq)
and acknowledgment (ack) numbers of the different TCP connections will be different,
and will have to be simultaneously translated to match. The content of the RTSP packets
will have to be modified to make the server stream to the XScale(which will take care of
routing and forwarding). All these extra steps will have to be done on the IXP platform
as a part of the routing framework.

62

1

2 3

4

Client

IXP 1 IXP 2

IXP 3 IXP 4

2: TCP/RTSP SETUP packet
3, 4: Forwarding of RTSP packet to machine hosting media
5: Three−way handshake XScale−host
6: Forward RTSP packet to host

Server hosting media

5

6

7

7

7

7

1: Three−way handshake client−egress

7: RTSP Reply.

Figure 5.3: Design with forwarding of TCP to machine hostingthe file.

In figure 5.33, the set up of a stream with RTSP is shown. At the egress (IXP 1)the TCP
three-way handshake is done (1). The RTSP SETUP packet is then received (2). The
packet has to be inspected, and the file must be found in the cube. Info about the TCP
session and the IC-session has to be kept both at the egress and at the machine that has the
file. This is to ensure that packets from the outside can be routed to the correct host (egress
IC information) and that correct headers and routing information can be supplied to build
the packets that are outbound (media server IC information). After receiving the RTSP
SETUP message, it is forwarded to the correct machine (3, 4).A three-way handshake
is then done between the XScale and the host machine (5). The RTSP/TCP packet can
be modified to conform with this TCP session, and forwarded tothe host machine(6).
Finally, RTSP replies can be processed the same way, and the server can start streaming
RTP packets to the client (7).

When using raw sockets, received packets are forwarded bothto the kernel and to your
socket. This means that kernel-level filtering has to be introduced in order to stop all
packets bound for your application from being answered by the kernel processes. The
Monta Vista preview kit Linux kernel did not have support foriptables in the distributed
version, so in order to make this work, the kernel had to be reconfigured and recompiled.
Since no extra software was included with this distribution, a cross-compile of iptables
had to be made for the XScale. These steps made the necessary filtering possible.

The advantages of this design approach would be that the media streaming server soft-
ware would not have to be aware of the routing framework below, thus making it easy
to replace the streaming server software. It became evident, however, that the process of
maintaining several parallel TCP sessions for every TCP stream, together with the pro-
cess of translating IP addresses and sequence numbers for the streamed packets would
introduce a degree of complexity that would make the system error-prone and difficult to

3The process of locating the node that has the media file is not represented in the figure

63

implement. The conclusion was that the disadvantages of complexity and structure were
greater than the advantages gained by this approach. The work with this design-option
was discontinued before the routing framework was completed. This was due to the es-
timation that redesigning the software structure would result in an implementation that
was simpler and more likely to be completed inside the time-limits of the thesis.

It was obvious that another approach had to be taken to make a design that was expand-
able, yet simple enough to implement given the time limit. The new design structure
would have to give the egress node responsibility for handling TCP sessions. The next
section presents the final design.

5.6 Egress TCP design

The complexity problems introduced by the TCP-translationsolutions made it necessary
to investigate alternative approaches. An obvious solution was to let the egress node
handle the TCP connection, and let the rest of the control mechanism be implemented by
the cube application. A consequence of this is that the mediastreaming server application
on the host machine would have to be aware of the underlying mechanisms.

1: TCP session between client and egress created.
2: RTSP SETUP message sent.
3: SETUP message forwarded to the media node.
4: SETUP message forwarded to host application
5: Host application generates appropriate reply
6: Reply forwarded to egress by route.
7: Existing TCP connection conveys reply to client.

1

Client

IXP 1 IXP 2

IXP 3 IXP 4

Server hosting media

2

3

3

4

5

6

6

7

Figure 5.4: Design with egress handling TCP connections.

Figure 5.4 shows the setup process for a stream using the egress TCP design. The main
differences from the raw socket design is that the node receivingthe request handles all
TCP operations. The first step, when a request is made, is to setup a TCP session, and
give the correct replies to the client (1). When the client sends the RTSP SETUP request,
the receiving node has to acknowledge the packet, and forward the request to the node
that has the media that was requested4. (2, 3 and 4). The appropriate reply is generated

4The process of locating the media is not represented in the figure, but explained in more detail in section
5.7.4.

64

by the host application (5 and 6) and the egress node wraps thereply in the appropriate
TCP header, and transmits it to the client (7).

Not only would this structure make several aspects of routing and TCP handling easier
to implement, it would also make a better base for expanding the application when the
primary bottleneck, namely host-µEngine dataflow, could be overcome. Using direct
memory access (DMA) to move data between the host and theµEngines would be a
natural way to improve on this bottleneck. This option will be further discussed in section
6.3. In order to achieve this, the host application (or the operating system) would have
to be aware of the underlying structure. Another consideration is that the RTSP standard
states that it should be possible to create several RTSP connections on one single TCP
connection. This would be difficult to implement using the raw socket design.

One of the moments that were crucial in deciding on implementation strategies was how
the routing itself would be handled in the cube. The next section will describe how this
was designed and implemented.

5.7 Cube routing

Several advantages are obtained by implementing a solutionin a distributed hypercube.
In a cube with n> 1, there is more than one possible route between any two nodes. This
gives us the opportunity to avoid congested routes, or to bypass possible broken links.

There are various routing strategies that can be applied to anetwork topology like the
hypercube. One concern in a setting like this must be that thestrategy will allow for a
certain degree of adaptability. This is to be able to cope with eventual broken links and
avoid heavily trafficked routes.

The choice fell on source routing as the routing strategy to implement. Using this strategy,
the sender determines the route that has to be taken. The routing information is included
in the packet header when the packet is transmitted. This eliminates the need for routing
tables at every node. There was two main reasons for this choice. The solution would be
fairly simple to implement, and the processing speed for each packet would be high.

There is also possibilities for extending the routing strategy with features that will add ad-
aptivity. There is, amongst aothers, an internet-draft proposing a dynamic source routing
strategy for ad-hoc networks [35]. Some strategies on how toimprove adaptability for our
source routing strategy will be found in the section 6.3.

Below is a description of how the source routing strategy is implemented in the current
video cube routing framework.

• When a new setup request is received, the message is broadcasted through the cube.

65

• For each node the request visits, the port where it arrived ispushed on the routing
field in the IC header.

• When the request arrives at the node that has the media file, itsaves the route carried
in the packet. It then sends an IC packet via the route to the egress node, instructing
it to setup an IC session to be able to route new control packets directly to the node
that has the media file.

• The stream then appends all RTP packets with an IC header thatroutes the packet
to the egress node.

• The port number popped from the route field of the IC header canhave one of the
following values:

– 0x0: Transmit the packet on port 0.

– 0x1: Transmit the packet on port 1.

– 0x2: Transmit the packet on port 2.

– 0xff: Forward the packet to the XScale and pass it totcp_send.

There are several advantages to this routing strategy. It isfairly simple to implement. It re-
quires no routing information on intermediate nodes, only on the egress and the node that
has the media file. It is very efficient to execute at each intermediate node, the microblock
code only have to pop the port number and transmit the packet.

The disadvantages, however, touch some of the central concepts of implementing the
system as a Hypercube. The current implementation does not take into consideration that
the route have to be redirected if traffic patterns changes and transmission slows down.
The option of redirecting the route if one or more links are broken also has to be added. It
would also be profitable to be able to reserve resources alongthe route to guarantee that
the stream will perform as wanted.

These disadvantages are subjects that should be explored further. Our source routing al-
gorithm could probably be kept without losing the possibility of rerouting in the case of
a broken link. A way of doing this could be to keep all routing messages that arrive at
the node containing the media5 in the IC struct. If a broken link is detected, we could
generate a message that tells the IC session to switch to the next route that has not been
tried. For large cubes (big n-value) it would probably be more efficient to map possible
routes on system startup (and maybe with a predefined interval), and store an index to a
route in the IC session struct. It is also possible to transmit “ping” packets along different
routes, to try to measure any difference in latency. This, however, can not be done too

5All possible paths from the egress to the node inside the limits of the defined TTL.

66

frequently without affecting the streaming performance that should be prioritized. An ap-
proach with reserving resources along a route would probably be a much better alternative
than switching routes “on the fly”, given that this approach easily could lead to streams
jumping back and forth between route alternatives. The ability to reserve resources along
a route is also possible. Each node could keep a record of how many pass-through streams
they support. When the packet locating the file is transmitted through the system, it could
sum the pass-through number for each node it visits. The media server could then choose
the route with the lowest sum.

5.7.1 Intra-cube header and extension

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Payload lengthType TTL

Route

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

IC header extension:

Client source port Client destination port

Client source IP address

Egress IP address

IC header:

Figure 5.5: IC header and header extension format.

Figure 5.5 shows the format of the IC header. The basic IC header is designed to fulfill
the following tasks:

• Separate setup and control packets from data packets.

• Limit the number of jumps a packet can circulate in the cube.

• Give information about payload length (when pushing data through the host-XScale
socket.

• Provide routing information for the packet.

67

The purpose of the IC header extension is to carry information necessary to create IC
session structs and to carry information about IC sessions to the egress when packets
must be sent throughtcp_send (port numbers and IP addresses is needed to look up the
correct TCP struct).

5.7.2 IC packet types

In the system, as it is implemented in this thesis, there are five different IC packet types:
ICH_FIND_FILE, ICH_ROUTE_FB, ICH_CTRL_FB, ICH_CTRL_MSG, and ICH_RTP.
The first three of these packet types implicates that a headerextension will follow imme-
diately after the basic IC header.

The ICH_FIND_FILE is first created at the egress when a new SETUP request arrives.
The IC header is appended with the IC header extension because the machine hosting
the wanted media has to set up an IC session to be able to streamthe content. The
ICH_FIND_FILE packet is broadcasted throughout the cube until the node hosting the
wanted media file is located.

When the file has been located, the node hosting the wanted media generates a packet of
the type ICH_ROUTE_FB. This packet is transmitted back to the egress through the route
found by the ICH_FIND_FILE packet. This packet also carriesthe header extension. This
is because when the packet arrives at the egress, an egress ICsession has to be created.
This session is used to be able to route following RTSP control packets directly to the
correct machine in the cube.

The ICH_CTRL_MSG package is created when the egress receives an RTSP control
packet other than SETUP. The IC session that matches the request is found, and the packet
is forwarded to the correct host through the cube.

When an RTSP control message is processed by the media streaming server, a reply is
generated, and has to be sent to the egress through the cube. These packets are wrapped
in IC headers of the ICH_CTRL_FB type. A header extension is used with these packets
to look up the correct TCP session at the egress. This could have been avoided by adding
a IC session index field to the regular IC header, and use this to look up the egress IC
session. There are two reasons why this solution was implemented:

1. The main bulk of data packets does not need the extra information. Transmitting it
through the cube with each RTP packet would be a waste of resources.

2. The RTSP traffic load in the cube is negligible compared to the RTP data, so the
extra 24 bytes on these packets will not make a noticeable impact on cube perform-
ance.

68

The last IC packet type is the ICH_RTP. This is by far the most common in the cube since
it wraps all RTP data packets. The purpose of this header typeis to bring the payload to
the egress, and subsequently to the client, as fast as possible.

5.7.3 Intra-cube session

The purpose of the IC session is to keep the necessary data to handle the functionality
needed by the cube infrastructure. As of now, the following data is kept by the IC session
struct as shown in figure 5.6:

• Status: Information concerning the state of the session. Used to identify active
sessions, sessions about to be set up and closed sessions.

• Route: The current route the packets have to travel. For the egress node this is the
route to the machine serving the media, for the media server,it is the route to the
egress.

• Client source port and server port: Used to generate UDP headers.

• Source and destination IP addresses:Used to build IP headers.

• Source and destination MAC addresses:Used to build ethernet headers.

typedef struct{

uint8_t status;

uint32_t route; /* Route */

uint16_t sport; /* Client source port */

uint16_t dport; /* Server port */

uint32_t saddr; /* Client source IP addr. */

uint32_t daddr; /* Egress IP addr */

char eth_src[6]; /* Ethernet src address */

char eth_dst[6]; /* Ethernet src address */

} IC_session_t;

Figure 5.6: IC session struct.

The IC session is first created at the server hosting the mediawhen the requested media file
is found. The egress saves the session data when the route is set up, and the host is updated

69

with the session data when the SETUP message is forwarded there. The way the program
is implemented now, the media server on the host builds RTP, UDP, IP, ethernet and IC
headers for the data packets. This means that the XScale IC session on the media server
machine is superfluous. The reason it was implemented in thisway was to facilitate the
transition from a solution where the server handles header generation, to a future design
where this functionality is handled byµEngines (aided by the XScale). The different
aspects of this are discussed in more detail in section 6.3.

Regarding the general design structure and the routing framework that had been de-
cided upon, tasks had to be divided between the different hardware layers available (host,
XScale orµEngines). The next section will describe where the different functionality was
placed, and the advantages and tradeoffs this led to.

5.7.4 Partitioning of tasks

The desicions on where to locate the different application parts was based on the general
programming paradigms for networking applications (see sections 2.3.3) and on the res-
ults of the preliminary tests done on the IXP2400 hardware (see section 3). The way tasks
are divided between the different subcomponents in this design is as follows:

• Host machine: The host machine runs the streaming server application. It receives
RTSP requests, generates replies, creates streaming threads and forwards data to the
XScale. The media data is stored on the host disk, and the hostserver is responsible
for retrieving it.

• XScale core: The XScale core handles the TCP connections (ifegress). It receives
data from the host, and forwards it to theµEngines for routing to the egress node.
It also receives control packets fromµEngines, and forwards them to the host.

• µEngines: TheµEngines receives control packets on the egress port. They filter
all packets not TCP/IP bound for port 90706 and forwards control packets to the
XScale for TCP handling. TheµEngines also receive IC packets and route them
according to the port number given in the route header field.

The IP header switch tests (see section 3.1) showed that theµEngines was very efficient on
a simple task that implicated manipulating packet headers.Consequently, it was decided
to implement the bulk of the routing functionality on theµEngines. Filtering of unwanted
data that could arrive on the egress port was also to be implemented here.

6This port is used because Komssys [36] at first was intended tobe the streaming server application run
on the host. The default RTSP listening port for this system is TCP/9070.

70

Since TCP related traffic would represent a small part of the total, it was acceptableto
place the main functionality on the XScale. This decision was also supported by the fact
that maintaining data structures is a less complicated taskon the XScale.

The media streaming application, performing a processor-intensive task, was to be imple-
mented on the host. It was decided that the streaming application would also generate all
the necessary headers to leave all but the routing to theµEngines. When direct transfer of
data from the host to theµEngines is implemented, it will be natural to let the microblocks
generate some of the headers. As it was, however, the data wasmoved to theµEngines
via the XScale, consuming a lot of processing power from bothµEngines and XScale
alike. To counter this effect, as much of the packet generating functionality as possible
was placed on the Host.

Next, descriptions of how the aforementioned components were implemented on the dif-
ferent hardware layers follow. The structure of the components and the main challenges
regarding each step will also be discussed.

5.7.5 µEngine tasks

TheICroutermicroblock used in the egress TCP design consisted of two active contexts.
This was to better exploit the available resources by switching contexts when memory-
accesses or other operations that leave the code waiting forresults are performed.

First context The packet handling mechanisms used for the first context of theICrouter
microblock are shown in figure 5.7. When a packet arrives at any port, the first thing to
be checked is whether the packet is received on the egress port (port 0) or any of the
intra-cube ports (port 1 or 2). If the packet is received on the egress port, it is sent through
a filter dropping all packets not TCP/IP bound for port 9070, thus eliminating all traffic
except the packets bound for this server solution7. If the given criteria is met, the packet
is forwarded to the XScale for TCP processing. If the packet received arrived at an intra-
cube port (port 1 or 2), it is by definition an IC packet with an IC header (see section
5.7.1) and must be routed according to the given routing algorithm. If the packet is of the
type ICH_FIND_FILE, it is sent to locate the host containingthe wanted media. Such
packets are forwarded to the XScale which performs the rest of this processing. All other
packets are to be routed to the port given by the route field in the IC-header. The Time To
Live (TTL) is decremented. If the TTL is zero, the packet is dropped. If the port number
popped from the IC header route-field is 0 (egress port), the IC-header is stripped and the
packet is transmitted. Packets bound for port one and two is transmitted on the popped
port.

7To support RTCP reports, the filtering mechanism has to be able to open up the corresponding port for
the connections, depending on the RTP transport method. This is as of yet not implemented.

71

Incoming

packet

On which port

Did the packet arrive
Is it an IP packet?Port 0 No

Is it a TCP packet

Yes

No

Is it bound for port

9070?

Yes

No

Yes

Is the packet type

ICH_FIND_FILE

Port 1 or 2

Yes

Is TTL > 0

No

Decrement TTL

No

Pop port number

Yes

Forward to XScale

Forward to XScale

Drop packet

Drop packet

Is the popped port

number == 0
Strip IC headerYes

Forward to

popped port

number

No

Figure 5.7: Flow chart forICroutermicroblock when a packet is received.

Second context The second context of theICrouter µEngine receives buffer handles
from the XScale, and transmits the packets referred to on theport specified by the packet
metadata. All setup of packet and header is done by the media server on the host, or by
the XScale. Functionality for batch processing of packets8 is ready to use, but not yet
supported by the XScale code.

8In this case batch processing means caching packets and sending them to theµEngines collectively to
achieve higher transfer rates and more efficient resource utilization.

72

5.7.6 XScale tasks

The IXA SDK has support for spawning specialized threads that will call a specified
method upon receiving one of two interrupts branded “INT_A”and “INT_B”. In this
implementation, only one such thread for handling data sentby theICrouter microblock
to the XScale is used. The procedure for handling packets forwarded from the XScale
is described schematically in figure 5.8. The first thing thatis done, as in theICrouter
microblock, is to check which port the packet was received on.

If a packet is received on the egress port (port 0), we know that it is a TCP packet, and it
will be passed to thetcp_recv method. This method returns one of three values:

• B_TCP_NO_DATA: The received packet is successfully handled, but containedno
data. This is for example the case for SYN, ACK or FIN packets.

• B_TCP_ERROR: The packet is not successfully processed. This can happen ifthe
TCP session is not found, or an error is detected with respectto sequence number-
ing.

• B_TCP_DATA: There is a data payload in the TCP packet. The method also sets
references to the payload and the payload size in order to enable data processing.

Int_A thread processing When a packet is sent to the XScale, the Int_A procedure is
invoked. If the input port is 0, we calltcp_recv. If tcp_recv returns B_TCP_ERROR
or B_TCP_NO_DATA, the TCP implementation have processed all required replies, and
the call returns without providing any data payload. If datais received, we know that it
is an RTSP control packet. The RTSP command will then have to be identified. If the
packet is a SETUP request, the program will try to find the file on the local machine. If
the file is not found on the machine, an IC header and an IC header extension (containing
information that is required to setup a new IC session) are prepended to the RTSP packet
(for details, see section 5.7.1). The port number that the packet is received on is pushed
on the route field of the IC header, and the packet is sent on both IC ports (port 1 and
2). An egress IC session is not created yet, because the routeto be used is determined by
the packet that arrives first at the host machine that has the requested file. If we assume
that the packet travelling the path with the least load is thefirst to arrive, this will help the
system give the stream an effective route during the current conditions. If the file is found
on the machine, however, both a server IC session, and an egress IC session is created
(given that this machine is both server and egress). The RTSPpacket is prepended with
an IC header and header extension, and forwarded to the host on the socket interface.

73

Incoming

Packet (On

scratch ring

10)

On which port

Did the packet arrive
Port 0

Port 1 or 2

Give TCP packet

to tcp_recv()

Did TCP return data? ReturnNo

Is it a SETUP packet?

Yes

Data for existing

stream: Find IC

session, Add IC

header. Pop port.

No

Send on popped

port
Yes

Is the requested file on

this machine?

Create Server IC

session and

egress IC session.

Yes

Add IC header.

Add IC header

extension. Push

port on route.

Send packet to

host on socket.

Add IC header.

Add IC header

extension. Push

port on route.

No

Send on IC ports

(1 and 2)

IC packet: Is packet

ICH_FIND_FILE?

Is packet

ICH_CTRL_FB?

Is packet

ICH_CTRL_MSG?

Is packet

ICH_ROUTE_FB?

Is the requested file on

this machine?
Yes

No

No

Drop packet

(should not

happen)

Create new

egress IC session.
Yes

Send packet to

host on socket.

No

Yes

No

Give packet to

tcp_send()

Decrement TTL.

Push port.

No

Send on all IC

sockets (except the

one it arrived on)

Is there an IC session

matching this packet?

Packet has been

here before. Drop.
Yes

Yes

Push port. Create

new server IC

session. Create

feedback packet.

No

Send feedback

packet to egress

node. (Send to

popped port)

Send packet to

host on socket.

Figure 5.8: Flow chart for XScale int_A thread.

74

If a packet is received on one of the IC interfaces (port 1 or 2), we know that the packet is
an intra-cube packet and has an IC header. The IC packet received can be one of the five
types mentioned in section 5.7.1.

As shown in figure 5.8, the handling of each packet depends upon which IC header type
the packet has. If the packet is tagged “ICH_FIND_FILE”, thenext step is to check if the
file resides on this machine. If the file is not found, the TTL isdecremented, the port the
packet is received on is pushed on the route, and the packet istransmitted on all IC ports
except the one it arrives on. If the file is found on this machine, a search is done to try to
find an IC session (see section 5.7.3) that matches. If a matching IC session is found, the
same setup packet has arrived before through another route,and the packet is dropped. If
no matching IC session is found, a new server IC session is created. This session keeps
the return route that this stream is to use. To make sure that control messages arrive at the
server by the correct route, a feedback IC message is created(“ ICH_ROUTE_FB”) and
sent through the route to the egress. The original SETUP packet is then passed to the host
on the XScale-host socket.

If the packet received is of the type “ICH_CTRL_FB”, the payload is an RTSP reply
message. The payload is passed totcp_send along with IP addresses and TCP ports (to
be able to find the correct TCP session), and transmitted to the client.

When a packet of the “ICH_CTRL_MSG” type arrives, the payload is an RTSP request
bound for the media server. This packet is directly forwarded to the host on the XScale-
host socket.

The last IC packet type handled by the “int A” thread is the “ICH_ROUTE_FB”. This
packet type is transmitted to the egress machine after a route has been found and the
streaming server has created its IC session. An egress IC session used to guide incoming
RTSP packets to the correct machine is created, and the packet is discarded.

If a packet arrives that matches none of the above categories, the packet is dropped,
but this should not happen if the system works correctly. Thereason “ICH_RTP” never
reaches this stage of processing is that once sent into the routing framework, these packets
never surface to be examined by the XScale, but are forwardedstraight to the egress node.

5.7.7 Host-XScale data path

In addition to the “int A” thread, there is a program loop running on the XScale that is
polling the host-XScale socket for incoming data. This datais formatted in such a way
that an IC header always arrives first. This header contains abyte count for the packet
payload, so that the packets can be distinguished from one another. If the packet is of the
type ICH_ROUTE_FB or ICH_CTRL_FB, we know that an IC header extension comes
after the header (see section 5.7.1). If the destination port (popped from route) is 0xff and

75

the packet is of the type ICH_CTRL_FB, the packet is passed totcp_send. In all other
cases, the packet is routed as is on the port popped from the route field of the IC header.

5.7.8 Host tasks

The host application is implemented in userspace with a TCP socket providing the data
stream to the XScale. For each RTP stream, a processing thread is generated. It opens
the file, prepends each data chunk with the needed headers, and transmits the data on the
host-XScale socket.

Incoming

data

Is the RTSP type

”SETUP”?

No

Get RTSP type.

Create IC

session.Setup

new RTP session.

Yes

Transmit packet

on socket.

Is the RTSP type

”PLAY”?

Start a new RTP

streaming thread.
Yes

Create appropriate

RTSP reply.

Drop packet. (Further

RTSP functionality to be

implemented)

No

Figure 5.9: Flow chart for Host when receiving data from XScale.

Figure 5.9 shows the data flow for the host application when anincoming packet is re-
ceived. When data is received from the XScale, the first step is to get the payload size and
the IC type. Any IC header extension is also read. The RTSP packet type is then read. If it
is a SETUP packet, a new IC session is created, and a new RTP session (see section 5.8) is
prepared. We already know that the file is located on this machine. This was checked on
the XScale. The RTSP reply to the host is then generated stating the server port numbers,
the reply is wrapped in an IC header, and the IC packet is sent on the socket. If a PLAY
message arrives, an RTP streaming thread is created. The program the generates an RTSP
reply message, and transmits the reply on the socket to the XScale.

76

5.8 RTP-session

Though the current version of the cube does not implement genuine RTP functionality,
it keeps some information about each RTP stream. This information is kept in the RTP
session struct, which is comprised of the following components:

• Thread ID: An identifier for the streaming thread. Used to send signals or force-
fully shut down the stream.

• Client RTP Port: The port negotiated by RTSP to deliver data to the client.

• Client RTCP port: The port negotiated by RTSP to deliver RTCP data. Not in use
as of this version.

• Server RTP port: The server port delivering the stream. In this implementation,
this port is a “phoney”, because a regular socket mechanism is not used.

• Server RTCP port: The port used by the server to send RTCP packet. Not in use
as of this version.

• Index of IC session:The index of the IC session corresponding to this RTP session.
Used to look up IP and MAC addresses.

• Filename: The name of the wanted media file. Used to open the file for streaming
at the server.

As the description shows, there are many crucial RTP components that is not yet imple-
mented. These include RTCP feedback and rewinding or forwarding the stream. Eventual
RTCP packets will be discarded by theµEngine code (see section 5.7.5). The current im-
plementation supports the streaming of a file from beginningto end, as is, and with a fixed
bitrate. The reason for this is that the focus has been on implementing a working rout-
ing framework for the cube and exploring the benefits of offloading this kind of routing
functionality on the IXPµEngines.

When an RTSP PLAY message is received, the media server on thehost creates a new
media streaming thread. The first operation that is performed when a new thread is started
is to build the RTP, UDP, IP, ethernet and IC headers that willwrap the media data. Since
only a few of the header fields are changed from packet to packet, these headers are saved,
rather than creating the entire header again for each data packet. This is done by having
only one transmission buffer of the current MTU size. The headers are kept statically
in the beginning of the buffer, and the data from disk is copied into the payload part.
For each of the data chunks read from disk, the length field is updated in the IC, IP and
UDP header. The sequence number and timestamp are updated inthe RTP header. Then,
checksums are calculated for UDP and IP, and the packet is sent to the XScale on the
socket. The thread then goes to sleep until it is time for another packet to be sent.

77

5.9 Microblock designs

How the different tasks should be prioritized between the microblocks was an issue that
strongly depended on the choice of routing algorithm. Another deciding factor was the
method of moving data from the host to theµEngines. Given the possibility of using 8
µEngines in parallel, there were many tasks that could be distributed and optimized by
distributing them on severalµEngines. The fact that eachµEngine also supports eight
program threads, further enhanced this possibility.

If the network processing application that is to be written expects a very heavy load,
steps can be taken to enhance RX and TX performance. The reference designs of RX
and TX microblocks provided by Intel give the programmer thepossibility of distributing
the task (RX or TX) on two microblocks (figure 5.10(a)). Four threads are assigned
to handling each of the ports for receive and transmit, giving the performance of the
microblocks a potential efficiency increase in comparison to the one-microblock RX and
TX designs. The actual effects of this enhancement depends on the transmission medium.
Implementing this solution reduces the chance of queues that in the worst case can lead to
packets being dropped. This measure would, however, be in vain if the packet processing
between RX and TX is slower than the receive and transmit process. In order to meet
with this problem, steps should be taken to optimize other packet processing tasks. Figure
5.10(b) shows the same application with the two main tasks split between twoµEngines.

As long as each step in the pipeline between RX and TX is kept ata level where fewer
cycles is consumed for each packet than would the RX and TX block, the packet flow
would be optimal. From this a rule of thumb for microblock design can be derived:

CPP 6 CT X 6 CRX (5.1)

where C represents cycles used, PP is each individual microblock used in packet pro-
cessing, TX is transmit microblock(s) and RX is receive microblock(s). In practice this
means that the system should be able to transmit packets at least as quick as they can be
received, and every individual stage of the packet processing pipeline in between should
spend less time on processing one packet than the transmit block(s).

The handling of exception packets and other traffic that has to be forwarded to the XScale
will of course impede the packet processing pipeline severely. It is therefore crucial to
make sure that the bulk of the packet traffic is handled at theµEngines. In the implemented
system, however, the XScale-host transfer bottleneck slows the system down to a point
where theµEngines can easily handle the traffic load it is presented with. The packets
are, as of now, being generated on the host, then moved by TCP socket to the XScale for
then to be sent to theµEngines. Until a more efficient way of moving data from the host
to theµEngines can be implemented (see section 6.3), it is sufficient to keep the RX and

78

Host

RTSP replies, data packet generation.

........

Microengine 2 Microengine 8

Port 1: 4 threads
Port 2: 4 threads

Port 3: 4 threads
Classification TX Microblock 2

Port 1: 4 threads
Port 2: 4 threads

Port 3: 4 threads

TX Microblock 1RX Microblock 1 RX Microblock 2
and routing
microblock

2 threads

XScale Core

Handling of TCP/IP packets and exception packets
Communication with host.

Microengine 1 Microengine 3 Microengine 4 Microengine 5

(a) RX and TX blocks split on twoµEngines.

Host

RTSP replies, data packet generation.

Microengine 2

Port 1: 4 threads
Port 2: 4 threads

Port 3: 4 threads microblock
RX Microblock 1

........

Port 1: 4 threads
Port 2: 4 threads

TX Microblock 1

Microengine 4 Microengine 5

Classification TX Microblock 2

Port 3: 4 threads

RX Microblock 2 Routing
Microblock

XScale Core

Handling of TCP/IP packets and exception packets

Microengine 1 Microengine 3 Microengine 6

(b) Two microblocks for RX, TX and packet processing.

Host

RTSP replies, data packet generation.

Microengine 3

RX Microblock

Port 1: 2 threads
Port 2: 2 threads
Port3: 2 threads

Classification

Port1: 2 threads
Port 2: 2 threads
Port 3: 2 threads

and routing

2 threads.

Microengine 2Microengine 1

........

Microengine 8

TX Microblock

XScale Core

Handling of TCP/IP packets and exception packets
Communication with host.

(c) The current microblock design.

Figure 5.10: Three microblock structuring alternatives.

79

TX functionality on one microblock each, and the packet processing on one microblock
utilizing two program threads. This design is visualized infigure 5.10(c).

When data can be moved directly from the server to theµEngines, more of the functional-
ity of generating packet headers can be delegated to theµEngines. This will be discussed
in more detail in section 6.3.

5.10 Evaluation

This set of tests is done with the purpose of measuring the forwarding time of packets
routed in the cube server implementation. Since the performance of data transport from
the host down to theµEngines yields bitrates of less than 10Mbps due to the lack of
efficient host-µEngine communications, a test of the system as a whole would give little or
no information about how packets would move through a heavily loaded system once this
bottleneck is removed. The test focus is, therefore, on the underlying routing mechanisms.
The results from theµEngine measurements are then compared to packets routed through
a conventional switched network to try to determine the possible performance gain by
implementing the routing in this network topology using IXPcards.

5.10.1 Packets routed through a switched network

The first test emulates a server cluster interconnected by a dedicated conventional switched
network. Figure 5.11 shows the test setup for this configuration. The test is conducted
by transmitting ICMP ping requests from the “Cube1” host destined for “Cube2”. The
forwarding machines (“Cube2”, “Cube3” and “Cube4”) have iptables DNAT and SNAT
rules that forwards the packet to the next host in the chain, thus sending the packets in
a complete circle through the hosts and back to the sender (“Cube1”). There is an ipt-
ables rule firewalling ICMP requests in order to prevent the kernel from replying to the
messages.

The packets that are sent from “Cube1” are timed on the way outby tcpdump [60]. When
they arrive again from “Cube4”, the arrival time is recorded. The difference between the
send and arrival time give us the time used for routing the packets through the four hosts.

5.10.2 IXP hypercube routing tests

To be able to measure the amount of time spent on the routing process in the IXP cube
implementation, a special timestamping mechanism had to bedeveloped. Since every
host relates its timestams to its own time domain, the packets had to be timestamped on

80

Receive packet from
192.168.1.4
Register time

(192.168.1.1)

Gb Switch

Cube 1 Cube 2
(192.168.1.2)

Cube 3
(192.168.1.3)

Cube 4
(192.168.1.4)

Send packet to

Register time
192.168.1.2

Receive packet from
192.168.1.1

Forward packet to
192.168.1.3

Receicve packet from

Forward pacet to
192.168.1.4

Receive packet from
192.168.1.3

Forward packet to
192.168.1.1

192.168.1.2

Figure 5.11: Test setup: Routing using switched network.

the same host. To accurately be able to measure the routing mechanisms, the timestamps
should be done onµEngines. Tests have shown that even when synchronized at a desig-
nated point of code execution, there are still differences in the clocks of each microengine.
This implies that a timestamp has to be made by the same IXPµEngine on the same host.

This challenge was solved by creating a new IC header type called “ICH_TIMER”. Pack-
ets given this designation is to be timestamped, traverse the entire “cube” and return to
the sending host. Upon return, the packet is timestamped again on the sameµEngine as
on the way out. This give us an accurate time for the packet to traverse the entire cube (4
hosts) in a manner similar to the switched network.

The route given to the “ICH_TIMER” packet is processed in thesame way as every other
IC packet to ensure a realistic estimate of the processing time.

Figure 5.12 shows the test setup for this process. The “ICH_TIMER” packet is created
on the host, and passed to the XScale and consequently to the microengines in the same

81

Timestamp
Route
Send

Receive
Timestamp

Receive
Route
Send

Generate timing packet

Receive
Route
Send

uEngines

XScale

Cube4

Receive
Route
Send

uEngines

XScale

Cube3

IXP

uEngines

XScale

Cube1

IXP

XScale

uEngines

Cube2

Write time
to file

Figure 5.12: Test setup: Timing of routing in the IXP hypercube.

manner as for instance an RTP packet in theVS3 server solution. The packet is then
forwarded to theµEngine where it is timestamped. The send port is then popped from the
IC header route field, and the packet is sent to the next host.

On the “Cube2”, “Cube3” and “Cube4” machines theµEngines receive the packet, checks
the packet type to confirm that it is to be routed, routes the packet to the port given by the
IC header route field, and transmits the packet.

When the packet arrives back at the “Cube1” machine, the route field of the IC header
has no valid port number, telling the system to forward it to the XScale, and the fact that
the packet is of the type “ICH_TIMER” tells theµEngine to timestamp the packet before
forwarding it to the XScale. The timestamp is made to not overwrite the timestamp made
on the way out.

On the XScale the two timestamps are read. The difference is then calculated, and printed
to a file on the mounted NFS filesystem used by the IXP card. The packet sizes used

82

for the test was the same as for the switched network test. Theresults from this test are
presented in table 5.1 with the results from the switched network test.

5.10.3 Comparison of routing times

Table 5.1 shows the statistical data of this test and the testdiscussed in section 5.10.2.
Both tests are performed with ICMP packets of 98 bytes and 1500 bytes.

The average times for completing one “circuit” in the machine topology is graphically
displayed in figure 5.13. As expected, the total processing time is radically larger for the
larger packet size (1500 bytes). We can also see that the benefit of implementing routing in
a dedicated interconnected topology (like the hypercube),compared to using a switched
network structure, is significant with respect to inter-server communication. This can
be attributed not only to the extra transmission times introduced by having the packet
move through the switch, but also to the overhead that the layered handling structure of
the kernel requires. Since this does not have to be supportedby the intra-cube routing
mechanisms of the IXP hypercube implementation, the routing costs diminishes. This
effect is magnified by the simple nature of the routing mechanism.

Packet size Max time Min time Avg time Median Std. dev. Count

Switched network times

98 Bytes 9022µs 9µs 135,98µs 129µs 71,481µs 99928

1500 Bytes 2495µs 261µs 265.6µs 265µs 8.2152µs 99991

IXP cube routing times

98 Bytes 30µs 27µs 28.138µs 28µs 0.3544µs 63965

1500 Bytes 109µs 106µs 107.0034µs 107µs 0.1367µs 63965

Table 5.1: Routing times for IXP cube and switched network routing.

For 98 bytes packets, the switched network implementation is 483% more time consum-
ing than the IXP hypercube solution (a difference of 108µs in average). For 1500 bytes
packets, the switched network implementation time is 248% higher than the IXP hyper-
cube time (a difference of 159µs in average). This can be explained by the copy operations
occupying a greater share of the total time consumed.

Based on these numbers we can say that a directly interconnected network topology will
have a vast advantage in comparison to a switched network solution. An increase in
routing algorithm complexity will probably make the difference smaller, but still large
enough to make a significant difference.

83

 0

 50

 100

 150

 200

 250

 300

 350

1500 bytes98 bytes

E
la

ps
ed

 ti
m

e
(m

ic
ro

se
co

nd
s)

Comparison of routing times

Switched network routing
IXP hypercube routing

Figure 5.13: Comparison of average routing times.

5.10.4 Processing times given increased load

To try to find out what level of impact an increase in load i.e.,will have on the IXP
hypercube system, the loop routing test was done again, thistime with packets being
generated on more than one of the hosts. For each new host generating packets, the load
on all hosts increases because all packets have to be forwarded through all hosts. Although
the bit rate of each packet stream is not high (about 2.4Mb/s) it will give an indication of
how load times will behave.

Table 5.2 shows the statistical data from this test transmitting 1500 bytes packets. To max-
imize the bitrate given the sending intervals permitted by the host-ixp implementation, a
packet size of 1500 bytes was used. The reason why the number of measurements (count)
increases by such a degree is that more transmitting nodes give more valid samples. The
number of measurements for four nodes should be approximately the same as four times
the number of measurements for one node.

Figure 5.14 plots the time spent on traversing the loop giventhe increased load. The

84

Transmitting nodes Max time Min time Avg time Median Std. dev. Count

1 109µs 106µs 107.0034µs 107µs 0.1367µs 63965

2 141µs 106µs 107.36µs 107µs 2.6691µs 121395

3 142µs 106µs 108.47µs 108µs 3.532µs 191846

4 202µs 106µs 108.92µs 108µs 4.8546µs 255709

Table 5.2: Routing times onµEngines given increased load.

 105

 106

 107

 108

 109

 110

 111

4321

E
la

ps
ed

 ti
m

e
(m

ic
ro

se
co

nd
s)

Number of transmitting nodes

Processing time for complete IXP hypercube loop (4 nodes)

Processing time

Figure 5.14: Development of processing time with increasedload.

graph shows an increase in load time, but not a significant one9. This indicates that the
system should be able to handle much higher loads, before having to drop packets. The
chipset is built to be able to handle 1Gb/s on the three interfaces, so given that an efficient
processing pipeline can be implemented, the platform should be able to accomodate high
loads.

9Note that the y-axis starts on 105, and that the actual difference is below 2µs

85

5.11 Summary

This chapter has described the process of implementing ourVS3 video server cube with
routing functionality based on the capabilities of IXP2400cards. Several designs were
proposed to achieve this. The first design aimed at using an existing server application
on the host. This was discarded in our prototype, due to the complexity that this would
introduce to packet routing and translation, but should be considered in a later stage.
The design that was finally chosen reused the existing RX and TX components from the
static forward application. The rest of the components had to be built from scratch. The
streaming server application running on the host had to be aware of the underlying rout-
ing framework. This was to ensure that a future implementation using DMA to effectively
move the data to theµEngines could reuse the code (see section 6.3), and to avoid unnec-
cesary complexity.

A video server hypercube was implemented with routing functionality located on the
µEngines, TCP support and uplink to host on the XScale, and a streaming server on the
host. The server solution was tested with several streams delivered from the different
content servers through the same cube egress. Setup and routing worked as expected, and
the video data was delivered as intended. The bitrates, however, were hampered by the
host-XScale bottleneck, thus impeding the performance of the server.

Two tests have been performed on the routing framework. The first was a measurement of
the time used by a data packet to traverse a loop of four machines in the system. A similar
test has been run on a group of Linux hosts linked in a switchednetwork. The second test
measured the increased processing time when doubling and quadrupling the load.

These test show, as expected, that the directly connected hypercube topology delivered
the routed packets much faster than the switched network could manage. This is a strong
argument for implementing data-intensive servers like a multimedia streaming server in
such a topology. When increasing the load, there was a slightincrease in processing time.
To be able to put serious pressure on the routing system, however, packet generators have
to be applied, providing heavier loads.

86

Chapter 6

Conclusion

This chapter concludes the master thesis. We will present a short summary of what has
been done, then the most important results of this work, and finally some key issues that
should be pursued in the future.

6.1 Summary

In this thesis, we have investigated the behaviour of Intel IXP network processors, with
focus on the IXP2400 and the IXA SDK. A series of test implementations have been done
to find the strengths and weaknesses of both the hardware and software platform. Tests
have been run on the different applications to find out whether offloading network tasks to
this platform can be valuable. The knowledge gained from theexperiments has been used
to construct a multimedia server cube solution, similar to the nCube n4x, using network
processors for offloading routing tasks.

6.2 Results

From the work done on the ENP2611 and ourVS3 video server cube we have gained
valuable knowledge of hardware and software issues relatedto programming the IXP2400
NPU. We have also run a number of tests that were done to evaluate performance of the
implemented systems. The tests performed on the applications showed that offloading net-
work operations on a Linux host frees a noticeable amount of resources, even for simple
networking tasks. We could also observe that the time neededto perform a simple task
of editing some protocol header fields was performed more efficiently on the NPU than
on a Linux host. We conclude that wire-speed processing should, to as large degree as

87

possible, be kept on theµEngines, while processor-intensive tasks and control operations
should be put on the XScale. Measurements showed that when using the interrupt “int
A” method of passing packet references to the XScale, the processing times were only
slightly higher than the results for the Linux host and theµEngines. This shows that the
XScale can be used quite efficiently without impeding performance significantly.

From theVS3 implementation we found that the greatest challenge was to move data ef-
ficiently from the host to the IXP as there is no support for DMAtransfers yet. However,
focusing on the internal cube communication, tests on the implemented routing frame-
work showed that this method of intra-cube routing was efficient. Tests showed that,
compared to implementing the server cluster in a switched network, the hypercube topo-
logy with direct interconnection was far more efficient.

In conclusion, our prototype shows that the IXP2400 NPU can efficiently offload the host
machine and provide a favourable way of implementing closely interconnected servers in
a cube topology.

6.3 Further work

In this section, we present a short description of what we deem to be the most important
issues to address in future work on this subject.

During the course of implementing theVS3, it soon became clear that the main bottleneck
of the system would be the host-IXP data transfer. Hardware documentation and exper-
iences from research projects elsewhere using the same hardware tells us that DMA can
be used to move data directly from the host to theµEngines over the PCI bus. This can
be done without having to go through the XScale as of the present implementation. This
would help the system in two ways:

1. It would dramatically enhance transfer speeds. If a 64 bitbus could be used effect-
ively, it would be able to feed enough data to fully utilize the optical interfaces of
the IXP card.

2. It would enable the host to transmit the data only, leavingsome or all of the header
generation operations to be done onµEngines. Allocating one or moreµEngines to
the task of packet preparation could be done without stealing resources from neither
host nor existing IXP functions.

Work is currently in progress in our research group to find methods of doing this efficiently
on the IXP2400.

To be able to reap the full benefits of RTP/RTCP and RTSP on theVS3, many improve-
ments have to be done. As of this implementation, the system only has support for RTSP

88

SETUP and PLAY, and basic RTP sending. To enable further control of the streaming,
we should complete the RTSP and RTP implementations. To be able to receive RTCP
receiver reports, the filter in egress nodeµEngines must have functionality to dynamically
update which ports (and protocols) should be allowed to enter the cube, according to the
port numbers conveyed by the RTSP SETUP exchange.

The source routing algorithm should be extended to find a new route if a link is broken
during streaming. Another feature that should be implemented is the ability to reserve
resources along the route, and to choose the optimal route based on recorded reservations.

Finally, there were some tests that could have been performed to support the data already
collected, if time had permitted.

To get an even more accurate comparison of the routing performance compared to Linux
hosts, a test could have been run monitoring the routing timefor a group of directly
connected Linux hosts. By eliminating the time used for switching, we could get more
precise data for the time saved by processing packets on the IXP.

It is possible that, even with the kernel having priority, the packet processing time would
suffer from a heavily loaded host. We could therefore have measured the time used by a
Linux host to process the IP header switching when loaded with heavy work (like a tar
process).

To find out which kind of load theµEngines can take before having to drop packets, a
packet generator (or several) could be used to strain the IP header switch application.

89

Bibliography

[1] The Agere website. November 2005, http://www.agere.com.

[2] Alex Arachnid server website. October 2005,
http://www.alex.com/pages/anglais/fond_stream.html.

[3] The AMCC website. November 2005, http://www.amcc.com.

[4] The C-COR website. http://www.c-cor.com/.

[5] Anton Chuvakin. Iptables linux firewall with packet string-matching support.
Published at SecurityFocus: http://www.securityfocus.com, 2001. October 2005,
http://www.securityfocus.com/infocus/1531.

[6] Douglas E. Comer.Using Network Processors, Intel IXP2xxx version. Pearson
Education, Inc., 2005.

[7] California software laboratories: RTSP techguide. October 2005,
http://www.cswl.com/whiteppr/tech/StreamingTechnology.html.

[8] Apple Darwin streaming server. November 2005,
http://developer.apple.com/darwin/projects/streaming/.

[9] The DivX website. October 2005, http://www.divx.com.

[10] The Dresden real-time operating system (DROPS) website. November 2005,
http://web.inf.tu-dresden.de/SyA/lsbs/project/overview.html.

[11] DVD demystified website. November 2005, http://www.dvddemystified.com/.

[12] RadiSys ENP2505 hardware reference manual. November 2005,
http://www.radisys.com/files/support_downloads/007-01266-0002.ENP-2505.pdf.

[13] RadiSys ENP2611 hardware reference manual. November 2005,
http://www.radisys.com/files/support_downloads/007-01419-0003.ENP-
2611HW.pdf.

90

[14] Flac - free lossless audio compression website. October 2005
http://flac.sourceforge.net.

[15] The Free On-line Dictionary of Computing. November 2005,
http://foldoc.doc.ic.ac.uk/foldoc/index.html.

[16] The Fraunhofer website. October 2005, http://www.iis.fraunhofer.de.

[17] J. Gettys, J Mogul, H. Frystyk, L. Masinter, P Leach, andT. Berners-Lee. RFC3550,
1999. October 2005, http://www.ietf.org/rfc/rfc2616.txt.

[18] Moore Gordon. Cramming more components onto in-
tegrated circuits. Electronics Magazine, 1965. Octo-
ber 2005, ftp://download.intel.com/museum/Moores_Law/Articles-
Press_Releases/Gordon_Moore_1965_Article.pd f.

[19] A. Griffiths and G. Metherall. Cluster interconnection networks.
Report for CSC433, Monash University, 1999. Available online:
http://www.buyya.com/csc433/ClusterNets.pdf.

[20] Carsten Griwodz, Michael Liepert, Michael Zink, and Ralf Steinmetz. Tune to
lambda patching.ACM Performance Evaluation Review, 27(4):20–26, March 2000.

[21] Pål Halvorsen. Improving I/O performance of multimedia servers.Thesis for the
Dr. Scient. (PhD) degree at University of Oslo, Published byUnipub forlag, ISSN
1501-7710, No. 161, Oslo, Norway, 2001.

[22] Pål Halvorsen and Carsten Griwodz. INF5060 - multimediakommunikasjon med
nettverksprosessorer. IFI, UIO.

[23] Pål Halvorsen and Carsten Griwodz. INF5070 - media storage and distribution sys-
tems. IFI, UIO.

[24] Pål Halvorsen, Carsten Griwodz, Vera Goebel, Ketil Lund, Thomas Plagemann, and
Jonathan Walpole. Storage system support for multimedia applications, part I and
II. IEEE Distributed Systems Online, Vol 5, No. 1/2, Jan/Feb 2004, 2003.

[25] IBM VideoCharger. October 2005, http://www-
306.ibm.com/software/data/videocharger.

[26] The Internet Machines website. November 2005, http:/www.internetmachines.com.

[27] The Intel website. November 2005, http://www.intel.com.

[28] Intel IXA portability framework reference manual., 2003.

91

[29] Intel IXA SDK 2.01 programmers reference manual.

[30] Intel IXA SDK 3.51 programmers reference manual. November 2005,
http://www.intel.com/design/network/products/npfamily/sdk_download.htm#351.

[31] Intel IXP1200 hardware reference manual.

[32] Intel IXP2400 hardware reference manual.

[33] RadiSys ENP SDK 3.5 programmers guide.

[34] Generic linux kernel for the IXP2xxx hardware open source initiative. November
2005, http://ixp2xxx.sourceforge.net/.

[35] David B Johnson, David A. Maltz, and Yih-Chun Hu. The dynamic source
routing protocol for mobile ad hoc networks (DSR), 2004. November 2005,
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt.

[36] Komssys pages at sourceforge. October 2005, http://komssys.sourceforge.net.

[37] The Monta Vista website. http://www.mvista.com/.

[38] The Motorola website. November 2005, http:/www.motorola.com.

[39] The fraunhofer MP3 website. November 2005,
http://www.iis.fraunhofer.de/amm/techinf/layer3.

[40] Whatis.com - definition of "multimedia". "October 2005,
http://searchwebservices.techtarget.com/sDefinition/0„sid26_gci212612,00.html".

[41] Chuck Narad. Communications and Moore’s Law. Keynote at Intel 10th Academic
Forum, 2005. October 2005, http://download.intel.com/corporate/education/EMEA
/academicforum/keynotes/Narad/Keynote%20Chuck%20Narad.pdf.

[42] The nCube website. Site decommissioned when the company was sold to c-cor. Old
URL: http://www.ncube.com/.

[43] The Intel network processor family website. October 2005,
http://www.intel.com/design/network/products/npfamily/index.htm.

[44] The Norwegian broadcasting company (NRK). November 2005, http://www.nrk.no.

[45] The Ogg Vorbis website. November 2005, http://www.vorbis.com.

[46] The Oracle interMedia website. November 2005,
http://www.oracle.com/technology/products/intermedia/index.html.

92

[47] T. Plagemann, V. Goebel, P. Halvorsen, and O. Anshus. Operating system support
for multimedia systems, 2000.

[48] The PMC-Sierra website. November 2005, http:/www.pmcsierra.com.

[49] The Qlogic website. October 2005, http:/www.qlogic.com.

[50] Apple Quicktime streaming server. October 2005,
http://www.apple.com/quicktime/streamingserver/.

[51] The RadiSys website. October 2005, http://www.radisys.com.

[52] Sanjay Ranka, Youngju Won, and Sartaj Sahni. Programming a hypercube mul-
ticomputer.IEEE Software Magazine, 1988.

[53] Real Networks website. November 2005, http://www.realnetworks.com.

[54] Real Networks media delivery website. October 2005,
http://www.realnetworks.com/products/media_delivery.html.

[55] H Schulzrinne, S Casner, R Frederick, and V Jacobson. RFC3550, 2003.

[56] H Schulzrinne, A Rao, and R. Lanphier. RFC2326, 1998. November 2005,
http://www.ietf.org/rfc/rfc2326.txt.

[57] Frank Olaf Sem-Jacobsen, Tom Anders Dalseng, and Andreas Petlund. Achiev-
ing intra-cube routing using Intel IXP cards. Assignment inINF5070: Multimedia
storage and distribution systems, 2003.

[58] The SF-anytime website. November 2005. http://www.sf-anytime.com/.

[59] Dinkar Sitaram and Asit Dan.Multimedia Servers - Applications, environments, and
design. Morgan Kaufmann Publishers, 2000.

[60] The tcpdump/libpcap project homepage. November 2005:
http://www.tcpdump.org/.

[61] The Vitesse website. November 2005, http://www.vitesse.com.

[62] The World of Warcraft website. November 2005, http://www.worldofwarcraft.com/.

[63] George Kingsley Zipf. Human behaviour and the principle of least-effort. Addison-
Wesley, Cambridge MA, 1949.

93

Appendix A

VS3 video server cube source

A.1 ICrouter microblock source

A.1.1 dl_system.excerpt.h

1 /∗∗

2 ∗∗ ∗∗

3 ∗∗ This file contains definitions of scratch rings ∗∗

4 ∗∗ and shared memory areas for the VS3 application. ∗∗

5 ∗∗ This is only an excerpt. ∗∗

6 ∗∗ The whole file could not be included due to ∗∗

7 ∗∗ Intel proprietary regulations. ∗∗

8 ∗∗ To get the whole picture, access the file ∗∗

9 ∗∗ dispatch_loop/dl_system.h in the build tree. ∗∗

10 ∗∗ ∗∗

11 ∗∗/

12

13 /∗

14 ∗ i) Base address for meta data (buffer descriptors) of packet

15 ∗ buffers for free list 2 dcube

16 ∗ ∗/

17 #ifndef DCUBE_NUM_BUF_HANDLES

18 #define DCUBE_NUM_BUF_HANDLES 1024

19 #endif

20

21 #ifndef DCUBE_SRAM_BASE

22 #define DCUBE_SRAM_BASE 0x80000

94

23 #endif

24

25 /∗ Size of metadata (buffer descriptor) in bytes for each buffer.

26 Should be a power of 2.∗/

27 #ifndef DCUBE_META_DATA_SIZE

28 #define DCUBE_META_DATA_SIZE 32

29 #endif

30

31 /∗ Total SRAM size allocated in bytes for meta data.

32 In simulation we use only 20KB.∗/

33 #ifndef DCUBE_SRAM_SIZE

34 #define DCUBE_SRAM_SIZE (DCUBE_NUM_BUF_HANDLES∗ DCUBE_META_DATA_SIZE)

35 #endif

36

37 #ifndef DCUBE_SRAM_MAX

38 #define DCUBE_SRAM_MAX DCUBE_SRAM_BASE+ DCUBE_SRAM_SIZE

39 #endif

40

41 /∗

42 ∗ i) Base address for packet buffers. This is the actual packet data.

43 ∗ dcube

44 ∗ ∗/

45 #ifndef DCUBE_SDRAM_BASE

46 #define DCUBE_SDRAM_BASE 0x2000000

47 #endif

48

49 /∗ Size of one packet buffer in bytes. ∗/

50 #ifndef DCUBE_BUFFER_SIZE

51 #define DCUBE_BUFFER_SIZE 2048

52 #endif

53

54 /∗ Total DRAM size allocated in bytes for packet buffers. ∗/

55 #ifndef DCUBE_SDRAM_SIZE

56 #define DCUBE_SDRAM_SIZE (DCUBE_NUM_BUF_HANDLES∗ DCUBE_BUFFER_SIZE)

57 #endif

58

59 /∗

60 ∗ Scratch ring packet_echo > XScale

61 ∗/

62 #define PE_XSCALE_COMM_RING 10

63 #define PE_XSCALE_COMM_BASE 8192

95

64 #define PE_XSCALE_COMM_SIZE 512

65

66

67 /∗

68 ∗ Scratch ring XScale > packet_echo

69 ∗/

70 #define XSCALE_PE_COMM_RING 11

71 #define XSCALE_PE_COMM_BASE 9216

72 #define XSCALE_PE_COMM_SIZE 512

A.1.2 ICrouter.h

1 /∗∗

2 ∗∗ ∗∗

3 ∗∗ Includes and definitions for the ICrouter microblock∗∗

4 ∗∗ ∗∗

5 ∗∗/

6

7 #ifndef _ICROUTER_H

8 #define _ICROUTER_H

9

10 #include <ixp.h>

11 #include <dl_system.h>

12 #include <dl_buf.c>

13 #include <dl_meta.c>

14 #include <hardware.h>

15 #include <sig_functions.h>

16 #include <ixp_lib.h>

17 #include <ixp_crc.c>

18 #include <rtl.c>

19 #include <ix_cc_microengines_bindings.h>

20

21 #define PKTHDR_CACHE_SIZE 5 /∗ Number of quadwords to read in isRTSP()∗/

22 #define ETHPROT_IP 0x0800 /∗ Ethernet protocol for filter∗/

23 #define IPPROT_TCP 6 /∗ IP protocol for filter ∗/

24 #define SERVER_PORT 9070 /∗ Server port for filter ∗/

25

26 extern dl_buf_handle_t dlBufHandle; /∗ The current buffer handle ∗/

27 extern dl_buf_handle_t dlEopBufHandle; /∗ For large packets, this is the last buffer in the chain. ∗/

28 extern dl_meta_t dlMeta; /∗ Metadata struct∗/

96

29 __declspec(gp_reg)int dlNextBlock; /∗ Next block that should process the buffer/packet ∗/

30

31 /∗ IC packet types∗/

32 enum {

33 ICH_FIND_FILE = 1,

34 ICH_ROUTE_FEEDBACK,

35 ICH_CONTROL_MSG,

36 ICH_RTP

37 };

38

39 #endif /∗ #ifndef _ICROUTER_H∗/

A.1.3 ICrouter.c

1 /∗∗

2 ∗∗ ∗∗

3 ∗∗ The ICrouter microblock and support methods∗∗

4 ∗∗ ∗∗

5 ∗∗/

6

7 #include "ICrouter.h"

8

9 /∗ Read and return the input port from metadata∗/

10 int getInputPort(unsigned int bufHandle){

11 /∗ Check if packet came in on port 0∗/

12 __declspec(sram_read_reg)unsigned int metaData[5];

13 __declspec(gp_reg)unsigned int metaOffset;

14

15 SIGNAL sig_sram_rw;

16

17 metaOffset = bufHandle << 2;

18 sram_read (metaData, (volatilevoid __declspec(sram)∗)metaOffset, 5, \

19 sig_done, &sig_sram_rw);

20 wait_for_all(&sig_sram_rw);

21 return (metaData[3]>> 16);

22 }

23

24 /∗ Read and return the output port from metadata∗/

25 int getOutputPort(unsigned int bufHandle){

26 __declspec(sram_read_reg)unsigned int metaData[5];

97

27 __declspec(gp_reg)unsigned int metaOffset;

28

29 SIGNAL sig_sram_rw;

30

31 metaOffset = bufHandle << 2;

32 sram_read (metaData, (volatilevoid __declspec(sram)∗)metaOffset, 5, \

33 sig_done, &sig_sram_rw);

34 wait_for_all(&sig_sram_rw);

35 return (metaData[3] & 0xffff);

36 }

37

38 /∗ Pop the next port from route field of IC header∗/

39 int popPort(){

40 uint32_t route;

41 char port;

42 __declspec(sdram)unsigned char ∗p_pkt_hdr;

43

44 p_pkt_hdr= (__declspec(sdram)unsigned char ∗)

45 (Dl_BufGetData(dlBufHandle)+ dlMeta.offset);

46

47 route = ua_get_u32(p_pkt_hdr, 4);

48

49 port = route & 0xff;

50 route >>= 8;

51 route |= 0xff000000;

52 ua_set_32(p_pkt_hdr, 4, route);

53

54 return port;

55 }

56

57 /∗ Decrement and return TTL in IC header∗/

58 int ttlDecr(){

59 __declspec(sdram)unsigned char ∗p_pkt_hdr;

60 int ttl;

61

62 p_pkt_hdr= (__declspec(sdram)unsigned char ∗)

63 (Dl_BufGetData(dlBufHandle)+ dlMeta.offset);

64

65 ttl = ua_get_u8(p_pkt_hdr, 1);

66 ttl ;

67 ua_set_8(p_pkt_hdr, 1, ttl);

98

68

69 return ttl;

70 }

71

72 /∗ Get the IC packet type from IC header∗/

73 int getType(){

74 __declspec(sdram)unsigned char ∗p_pkt_hdr;

75

76 p_pkt_hdr= (__declspec(sdram)unsigned char ∗)

77 (Dl_BufGetData(dlBufHandle)+ dlMeta.offset);

78

79 return ua_get_u8(p_pkt_hdr, 0);

80 }

81

82 /∗ Strips the IC header (for outbound packets)∗/

83 void stripICHeader(){

84 __declspec(sram) dl_meta_t∗pMeta;

85

86 pMeta = (__declspec(sram) dl_meta_t∗)Dl_BufGetDesc(dlBufHandle);

87 pMeta >bufferSize =8;

88 pMeta >offset +=8;

89 }

90

91 /∗ Remove ethernet checksum automatically generated by hardware ∗/

92 void removeEthChecksum(){

93 __declspec(sram) dl_meta_t∗pMeta;

94

95 pMeta = (__declspec(sram) dl_meta_t∗)Dl_BufGetDesc(dlBufHandle);

96 pMeta >bufferSize =4;

97 }

98

99 /∗ Packet filter . Configured to allow TCP packets destined for port 9070 ∗/

100 int isRTSP(unsigned int bufHandle, unsigned int dlMeta1){

101 __declspec(gp_reg)unsigned short ethtype, dstport;

102 __declspec(gp_reg)unsigned char ipprot;

103 __declspec(sdram)unsigned char ∗p_pkt_hdr;

104 __declspec(dram_read_reg)unsigned int pkthdr_in[10];

105 __declspec(local_mem)unsigned int temp[10];

106 SIGNAL_PAIR sig_dram_rw;

107

108 /∗ set the meta data accordingly∗/

99

109 dlMeta.value[1] = dlMeta1;

110 dlBufHandle.value = bufHandle;

111

112 p_pkt_hdr= (__declspec(sdram)unsigned char ∗)

113 (Dl_BufGetData(dlBufHandle)+ dlMeta.offset);

114

115 dram_read(pkthdr_in,(volatilevoid __declspec(sdram)∗)p_pkt_hdr,

116 PKTHDR_CACHE_SIZE, sig_done,&sig_dram_rw);

117 wait_for_all(&sig_dram_rw);

118

119 /∗ Copy the header to local memory∗/

120 temp[0] = pkthdr_in[0];

121 temp[1] = pkthdr_in[1];

122 temp[2] = pkthdr_in[2];

123 temp[3] = pkthdr_in[3];

124 temp[4] = pkthdr_in[4];

125 temp[5] = pkthdr_in[5];

126 temp[6] = pkthdr_in[6];

127 temp[7] = pkthdr_in[7];

128 temp[8] = pkthdr_in[8];

129 temp[9] = pkthdr_in[9];

130

131 /∗Read eth header protocol type∗/

132 ethtype= ua_get_u16(temp, 12);

133 if (ethtype != ETHPROT_IP)

134 return 0;

135

136 /∗ Read IP protocol field∗/

137 ipprot = ua_get_u8(temp, 23);

138 if (ipprot != IPPROT_TCP)

139 return 0;

140

141 /∗ Check dst port∗/

142 dstport= ua_get_u16(temp, 36);

143 if (dstport != SERVER_PORT)

144 return 0;

145

146 return 1;

147 }

148

149 /∗ Main procedure containing the processing loop.

100

150 Upon receiving a new packet on the scratch ring,

151 the packet is processed and dropped or forwarded

152 ∗/

153 main() {

154

155 __declspec(sram_write_reg)unsigned int txReq1, txReq2, txReq3;

156 __declspec(sram_read_reg)unsigned int rx_msg1[5], rx_msg2, rx_msg3;

157 __declspec(gp_reg)unsigned int ipsrc, ipdest, ethsrc1, ethdest1;

158 __declspec(gp_reg)unsigned short ethsrc2, ethdest2;

159

160 int sig;

161 SIGNAL sig_scr_created;

162 SIGNAL sig_new_packet;

163 SIGNAL sig_sram_read;

164 SIGNAL sig_sram_write;

165 SIGNAL sig_scr_get;

166 SIGNAL sig_scr_put;

167 SIGNAL sig_get_meta;

168 SIGNAL sig_flush_meta;

169 SIGNAL sig_never;

170 SIGNAL sig_buf_alloc;

171

172 __assign_relative_register(&sig_scr_created, 13);

173 __assign_relative_register(&sig_new_packet, 14);

174

175 /∗ Wait for signal from XScale before proceeding

176 This is to prevent the system from starting to

177 forward packets until the XScale functionality is ready∗/

178 cap_fast_write(0, csr_thread_interrupt_a);

179 wait_for_all(&sig_scr_created);

180

181 /∗ Context 0: Read from RX(sr4), Filter packets.

182 Forward according to Packet type∗/

183 if (ctx() == 0) {

184 while(1){

185

186 /∗ Read from scratch ring∗/

187 scratch_get_ring(rx_msg1,

188 (void∗)(POS_RX_RING_OUT<< 2),

189 5,

190 sig_done,

101

191 &sig_scr_get);

192 wait_for_all(&sig_scr_get);

193

194 /∗ If data is received, commence processing∗/

195 if (rx_msg1[0]){

196 /∗ Set metadata offset and buf handle values

197 (used by helper functions∗/

198 dlMeta.value[1] = rx_msg1[2];

199 dlBufHandle.value = rx_msg1[0];

200 txReq1= rx_msg1[0];

201

202 /∗ Remove eth checksum (added by hw) by

203 decrementing bufferSize in metadata by 4∗/

204 removeEthChecksum();

205

206 /∗ Read the input port number∗/

207 if (getInputPort(rx_msg1[0])== 0){

208 /∗ External packet, filter∗/

209 if (isRTSP(rx_msg1[0], rx_msg1[2])){

210 /∗ Forward to XScale∗/

211 scratch_put_ring(&txReq1,

212 (void∗)(PE_XSCALE_COMM_RING<< 2),

213 1,

214 sig_done,

215 &sig_scr_put);

216 wait_for_all(&sig_scr_put);

217 /∗ Invoke int_a to wakeup XScale packet processing∗/

218 cap_fast_write(0, csr_thread_interrupt_a);

219 }

220 }else{

221 /∗ Internal packet. Route according to IC header∗/

222 U8 port, ttl, type;

223

224 type = getType();

225 if (type == ICH_FIND_FILE){

226 /∗ File locating packet Always forward to XScale∗/

227 scratch_put_ring(&txReq1,

228 (void∗)(PE_XSCALE_COMM_RING<< 2),

229 1,

230 sig_done,

231 &sig_scr_put);

102

232 wait_for_all(&sig_scr_put);

233 cap_fast_write(0, csr_thread_interrupt_a);

234 }else{

235 /∗ Other packet. Route according to route field of IC header∗/

236 /∗ Decrement ttl ∗/

237 ttl = ttlDecr();

238 if (ttl > 0){

239 /∗ Pop route ∗/

240 port = popPort();

241 /∗ Send to popped port∗/

242 if (port == 0){

243 /∗ If outbound, strip IC header∗/

244 stripICHeader();

245

246 /∗ Send to port 0 (external)∗/

247 scratch_put_ring((void∗)&txReq1,

248 (void∗)(PACKET_TX_SCR_RING_0<< 2),

249 1,

250 sig_done,

251 &sig_scr_put);

252 wait_for_all(&sig_scr_put);

253 }else if(port == 1){

254 scratch_put_ring((void∗)&txReq1,

255 (void∗)(PACKET_TX_SCR_RING_1<< 2),

256 1,

257 sig_done,

258 &sig_scr_put);

259 wait_for_all(&sig_scr_put);

260 }else if(port == 2){

261 scratch_put_ring((void∗)&txReq1,

262 (void∗)(PACKET_TX_SCR_RING_2<< 2),

263 1,

264 sig_done,

265 &sig_scr_put);

266 wait_for_all(&sig_scr_put);

267 }else if(port == 0xff){

268 /∗ Forward to XScale∗/

269 scratch_put_ring(&txReq1,

270 (void∗)(PE_XSCALE_COMM_RING<< 2),

271 1,

272 sig_done,

103

273 &sig_scr_put);

274 wait_for_all(&sig_scr_put);

275 cap_fast_write(0, csr_thread_interrupt_a);

276 }

277 } /∗ If ttl == 0 packet is dropped∗/

278 }

279 } /∗ Packet is dropped∗/

280 }/∗if packet∗/

281 } /∗while(1)∗/

282 } /∗ else ∗/

283 /∗ The second context.

284 Receives packets from the XScale, and forwards according tometadata output port

285 the route has already been popped on the XScale.∗/

286 if (ctx() == 2) {

287 unsigned int numPackets;

288 int i;

289

290 while(1){

291

292 scratch_get_ring(&rx_msg2,

293 (void∗)(XSCALE_PE_COMM_RING<< 2),

294 1,

295 sig_done,

296 &sig_scr_get);

297 wait_for_all(&sig_scr_get);

298

299 numPackets= (rx_msg2 >> 24);

300

301 for (i = 0; i < numPackets; i++){

302 txReq2= rx_msg2 + (i ∗ 8);

303 if (getOutputPort(rx_msg2)== 0){

304 scratch_put_ring((void∗)&txReq2,

305 (void∗)(PACKET_TX_SCR_RING_0<< 2),

306 1,

307 sig_done,

308 &sig_scr_put);

309 }else if(getOutputPort(rx_msg2)== 1){

310 scratch_put_ring((void∗)&txReq2,

311 (void∗)(PACKET_TX_SCR_RING_1<< 2),

312 1,

313 sig_done,

104

314 &sig_scr_put);

315 }else if(getOutputPort(rx_msg2)== 2){

316 scratch_put_ring((void∗)&txReq2,

317 (void∗)(PACKET_TX_SCR_RING_2<< 2),

318 1,

319 sig_done,

320 &sig_scr_put);

321 }

322 wait_for_all(&sig_scr_put);

323 }

324 } /∗while(1)∗/

325 }else{

326 /∗ All other contexts are sleeping∗/

327 wait_for_all(&sig_never);

328 }

329 } /∗ main∗/

A.2 XScale source

A.2.1 dcube.h

1 #ifndef DCUBE_H

2 #define DCUBE_H

3

4 #include "uclo.h"

5 #include "hal_mev2.h"

6 #include "halMev2Api.h"

7 #include "hal_scratch.h"

8 #include "hal_sram.h"

9 #include "hal_dram.h"

10 #include "ix_macros.h"

11 #include "ix_ossl.h"

12 #include <stdio.h>

13 #include <errno.h>

14 #include <stdlib.h>

15 #include <string.h>

16 #include <fcntl.h>

17 #include <unistd.h>

18 #include <sys/time.h>

105

19 #include <sys/ioctl.h>

20 #include <enpv2_types.h>

21 #include <sys/mman.h>

22

23 /∗ Socket includes∗/

24 #include <sys/socket.h>

25 #include <sys/types.h>

26 #include <arpa/inet.h>

27

28 #ifdef DEBUG

29 #define DBG_MSG(str,args...) printf(str,##args)

30 #else

31 #define DBG_MSG(str, args...)

32 #endif

33

34 #define VIRT_DRAM_BASE (void ∗)(ix_uint32)Hal_dram_ch0_virtAddr

35 #define VIRT_SRAM_BASE (void ∗)(ix_uint32)Hal_sram_ch0_virtAddr

36 #define MAX_CONCURRENT_STREAMS 100

37 #define MULT_FACTOR 6 /∗ Used to get pointer to data from buf handle∗/

38 #define MAX_IC_SESSIONS MAX_CONCURRENT_STREAMS

39 #define ICH_TTL 4

40

41 /∗ XScale to host socket defines∗/

42 #define DEST_PORT 23456

43 #define DEST_IP "192.168.1.1"

44

45 enum {

46 RTSP_DESC = 1,

47 RTSP_SETUP

48 };

49

50 typedef union {

51 struct {

52 unsigned int bufferNext; /∗∗< Next buffer in the chain ∗/

53

54 unsigned short bufferSize; /∗∗< amount of data currently in buffer ∗/

55 unsigned short offset; /∗∗< offset in DRAM where data begins∗/

56

57 unsigned int packetSize : 16; /∗∗< amount of data in the chain of buffers ∗/

58

59 unsigned int freeListId : 4; /∗∗< Free List to which this buffer belongs to∗/

106

60 unsigned int rxStat : 4; /∗∗< Receive status∗/

61 unsigned int headerType : 8; /∗∗< HEader Type: IPv4, IPv6 etc∗/

62

63 unsigned short inputPort; /∗∗< Input port on which packet was received∗/

64 unsigned short outputPort; /∗∗< Output port on which packet to be transmitted∗/

65

66 unsigned int nextHopId : 16; /∗∗< Nexthop ID ∗/

67 unsigned int fabricPort : 8; /∗∗< Blade:Port ∗/

68 unsigned int reserved : 4; /∗∗< reserved ∗/

69 unsigned int nhidType : 4; /∗∗< nexthop ID type∗/

70

71 unsigned int colorId :4;

72 unsigned int reserved1 :4;

73 unsigned int flowId :24; /∗∗< FLow ID ∗/

74

75 unsigned short classId; /∗∗< Class ID ∗/

76 unsigned short reserved2;

77

78 unsigned int packetNext; /∗∗< Next packet in the chain∗/

79 /∗∗< (used only in Hierarchical Queuing)∗/

80 } __attribute__((packed)); // end of struct

81

82 unsigned int value[8]; /∗∗< aggregate for the above fields∗/

83

84 } dl_meta_t;

85

86 enum {

87 ICH_FIND_FILE = 1,

88 ICH_ROUTE_FB,

89 ICH_CTRL_MSG,

90 ICH_CTRL_FB,

91 ICH_RTP

92 };

93

94 /∗ Standard IC header:

95 Common for all IC packets.∗/

96 typedef struct{

97 uint8_t type; /∗ Type of IC packet∗/

98 uint8_t ttl; /∗ To avoid circulating packets∗/

99 uint16_t dataLen;/∗ Length of IC packet data (excluding the header)∗/

100 uint32_t route;/∗ Routing information. Src routing∗/

107

101 } ICHeader_t __attribute__((packed));

102

103 /∗ IC header extension:

104 Used to setup route information when assigning a new stream∗/

105 typedef struct{

106 uint16_t sport;/∗ Client source port∗/

107 uint16_t dport;/∗ Server port ∗/

108

109 uint32_t saddr;/∗ Client source IP addr.∗/

110 uint32_t daddr;/∗ Egress IP addr∗/

111

112 char eth_src[6]; /∗ Ethernet src address∗/

113 char eth_dst[6]; /∗ Ethernet src address∗/

114 } ICHeader_ext_t __attribute__((packed));

115

116 enum {

117 ICS_CLOSED= 0,

118 ICS_WAIT_ROUTE,

119 ICS_ACTIVE,

120 };

121

122 typedef struct{

123 uint8_t status;

124 uint32_t route;/∗ Routing information. Src routing∗/

125 uint16_t sport;/∗ Client source port∗/

126 uint16_t dport;/∗ Server port ∗/

127

128 uint32_t saddr;/∗ Client source IP addr.∗/

129 uint32_t daddr;/∗ Egress IP addr∗/

130

131 char eth_src[6]; /∗ Ethernet src address∗/

132 char eth_dst[6]; /∗ Ethernet src address∗/

133 } IC_session_t;

134 /∗ Structs located at the server that has the relevant file∗/

135 IC_session_t serv_ics[MAX_IC_SESSIONS];

136 /∗ Structs located at the egress (used for forwarding incomingRTSP and RTCP data)∗/

137 IC_session_t egr_ics[MAX_IC_SESSIONS];

138

139 extern void StartSpi3br();

140 extern void StartMacs();

141

108

142 /∗ Local includes

143 Needs structs above∗/

144 #include "bogus_tcp.h"

145 #include "dcube_utils.h"

146

147 #endif /∗ #ifndef DCUBE_H ∗/

A.2.2 dcube.c

1 #include "dcube.h"

2

3 Hal_IntrMasks_T intMask;

4 ix_uint32 cbdata, intThread_A_handle, intThread_B_handle;

5 const char ∗pImageName="ICrouter.uof";

6 int hostSock, errno;

7

8

9 /∗/Called when the ICrouter microblock receives a

10 packet on port 0 or a packet destined for

11 this node is received∗/

12 void intThread_A(){

13 unsigned int metaOffset, dataOffset, bufHandle, rtspType;

14 dl_meta_t∗ pMeta;

15 void∗ dataVAddr;

16

17 /∗ Get packet and vaddr for metadata and data∗/

18 bufHandle= SCRATCH_RING_GET(10);

19

20 DBG_MSG("Got from sr10: %0#10x\n", (int)bufHandle);

21

22 metaOffset = (bufHandle & 0xffffff) << 2;

23 dataOffset = (bufHandle & 0xffffff) << (MULT_FACTOR + 2);

24

25 DBG_MSG("metaOffset: %0#10x\n", (int)metaOffset);

26

27 pMeta = VIRT_SRAM_BASE + metaOffset;

28

29 dataVAddr= VIRT_DRAM_BASE + dataOffset + pMeta >offset;

30

31 /∗ IC packet or from port 0 0?∗/

109

32 if (pMeta >inputPort == 0){ /∗ External packet∗/

33 char data[1500];

34 int len = 0, idx = 0, status;

35

36 /∗ Since all other packets are filtered on the uEngines,

37 ∗This has to be a TCPpacket destined for port 9070∗/

38

39 /∗ Port 0:

40 Do we have the file?

41 Yes: Create session and forward to host.

42 No: Create IC header and forward to port 1 and 2∗/

43 status= tcp_recv(dataVAddr, data, &len, &idx);

44 DBG_MSG("status: %i\n", status);

45 if ((status == B_TCP_DATA)){

46 DBG_MSG("tcp_recv returned the following data:\n");

47

48 /∗ Ensure support for creating more than one stream on each TCP connection ∗/

49 rtspType= getRtspType(data);

50 if (rtspType == RTSP_DESC){

51 DBG_MSG("dcube.c: packet is DESC\n");

52 /∗ Implement later ..∗/

53 }else if(rtspType == RTSP_SETUP){

54 DBG_MSG("dcube.c: packet is SETUP\n");

55 if (localHasFile(data)){

56 DBG_MSG("dcube.c: host has file.\n");

57 /∗ Construct IC header and forward packet to host∗/

58 add_IC_hdr(data, len, ICH_FIND_FILE, 0xffffffff);

59 add_IC_ext_hdr(data, idx);

60 ICPushPort(data, pMeta>inputPort);

61 debug_print_ICheader(data);

62 idx = newServICSession(data);

63 debug_print_servICsession(idx);

64 idx = newEgrICSession(data);

65 egr_ics[idx].route= 0xffffffff; /∗ Since this is no feedback message∗/

66 debug_print_egrICsession(idx);

67 /∗ Send to host∗/

68 errno = send(hostSock, data, len+sizeof(ICHeader_t)+sizeof(ICHeader_ext_t), 0);

69 if (errno == 1){

70 DBG_MSG("send() returned error\n");

71 }else{

72 DBG_MSG("Successfully sent %i bytes to socket\n",errno);

110

73 }

74 }else{

75 DBG_MSG("dcube.c: file not found.\n");

76 /∗ Set up IC header and forward packet

77 to port 1 and 2 ∗/

78 /∗ Set route to be 0xffffffff. Ports will be pushed

79 as the packet is broadcasted through the system∗/

80 add_IC_hdr(data, len, ICH_FIND_FILE, 0xffffffff);

81 add_IC_ext_hdr(data, idx);

82 ICPushPort(data, pMeta>inputPort);

83 ixp_send_packet(data, len+sizeof(ICHeader_t)+sizeof(ICHeader_ext_t), 1);

84 ixp_send_packet(data, len+sizeof(ICHeader_t)+sizeof(ICHeader_ext_t), 2);

85 }

86 }else{

87 int icIdx, port;

88 /∗ Data for an existing stream

89 if the stream cannot be found,

90 discard the packet∗/

91 DBG_MSG("Received RTSP package\n");

92 debug_print_egrICsession(0);

93 icIdx = egrFindICsess(idx);

94 if (icIdx == 1){

95 DBG_MSG("IC session not found\n");

96 /∗ Discard packet∗/

97 }else{

98 add_IC_hdr(data, len, ICH_CTRL_MSG, egr_ics[icIdx].route);

99 debug_print_buffer32(data, len+sizeof(ICHeader_t));

100

101 port = ICPopPort(data);

102 if (port == 0xff){

103 /∗ Send to host∗/

104 errno = send(hostSock, data, len+sizeof(ICHeader_t)+sizeof(ICHeader_ext_t), 0);

105 if (errno == 1){

106 DBG_MSG("send() returned error\n");

107 }else{

108 DBG_MSG("Successfully sent %i bytes to socket\n",errno);

109 }

110 }else{

111 ixp_send_packet(data, len+sizeof(ICHeader_t), port);

112 }

113 }

111

114 }

115 }else if((status == B_TCP_ERROR)){

116 DBG_MSG("tcp_recv returned B_TCP_ERROR \n");

117 return ;

118 }else if((status == B_TCP_NO_DATA)){

119 DBG_MSG("tcp_recv returned B_TCP_NO_DATA \n");

120 return ;

121 }

122

123 }else{ /∗ IC packet ∗/

124 /∗ IC packet∗/

125

126 DBG_MSG("Got IC Packet, %i bytes\n", ((ICHeader_t∗)dataVAddr) >dataLen);

127

128 switch(∗((uint8_t∗)dataVAddr)){ /∗ Read IC header Type∗/

129

130 case ICH_FIND_FILE: {

131 DBG_MSG("ICH_FIND_FILE\n");

132

133 if (localHasFile(dataVAddr+sizeof(ICHeader_t)+sizeof(ICHeader_ext_t))){

134 DBG_MSG("dcube.c IC: host has file.\n");

135 /∗ If this is the first time I got this packet:

136 create stream struct forward to host

137 If I have seen this packet before:

138 drop packet∗/

139 /∗ Find index of IC session for stream.

140 If no ssession, create a new one∗/

141

142 if (findICSession(dataVAddr)>= 0){

143 DBG_MSG("ICSession found\n");

144 /∗ We have already received this packet through another route:

145 Drop packet ∗/

146 }else{

147 int idx, i, fbpSize =sizeof(ICHeader_t)+ sizeof(ICHeader_ext_t)+ 4 ;

148 char ∗feedback,∗rp;

149 ICHeader_t∗ich;

150

151 feedback= (char∗)malloc(fbpSize);

152 /∗ Zero the packet∗/

153 memset(feedback, 0, fbpSize);

154

112

155 DBG_MSG("Creating new IC session\n");

156 debug_print_ICheader(dataVAddr);

157 /∗ Push input port ∗/

158 ICPushPort(dataVAddr, pMeta>inputPort);

159 idx = newServICSession(dataVAddr);

160 debug_print_servICsession(idx);

161 /∗ Send feedback packet to egress to

162 create session struct there∗/

163 memcpy(feedback, dataVAddr,sizeof(ICHeader_t)+sizeof(ICHeader_ext_t));

164 ich = (ICHeader_t∗)feedback;

165

166 /∗ Make sure the packet is forwarded to XScale at egress∗/

167 /∗ Make sub of this ?∗/

168 rp = (uint8_t∗)(&ich >route);

169 for (i=0; i<4; i++){

170 if (rp[i]!=0xff){

171 rp[i]=0xff;

172 break;

173 }

174 }

175 /∗ Copy the route to payload of packet∗/

176 memcpy(feedback+sizeof(ICHeader_t)+sizeof(ICHeader_ext_t), &(ich>route), 4);

177 /∗ Prepare other fields of IC header∗/

178 ich >type=ICH_ROUTE_FB;

179 ich >dataLen=4;

180 ich >ttl=4;

181 DBG_MSG("feedback: ich >route: %x\n", ich >route);

182

183 /∗ Send feedback packet∗/

184 ixp_send_packet(feedback, fbpSize, ICPopPort(feedback));

185 /∗ Send packet to server∗/

186 /∗ The program will crash (!!) if the connect was not successful:

187 add handling of this problem∗/

188 errno = send(hostSock, dataVAddr, pMeta>bufferSize, 0);

189 if (errno == 1){

190 DBG_MSG("send() returned error\n");

191 }else{

192 DBG_MSG("Successfully sent %i bytes to socket\n",errno);

193 }

194 }

195 }else{

113

196 DBG_MSG("dcube.c IC: file not found.\n");

197 /∗ decrement ttl, forqward to port 1 and 2∗/

198 if (IC_ttl_dec(dataVAddr)){

199 /∗ Push port on IC header∗/

200 ICPushPort(dataVAddr, pMeta>inputPort);

201 /∗ if ttl=0, drop packet∗/

202 /∗ Send to the port not received from∗/

203 if (pMeta >inputPort==2)

204 ixp_send_packet(dataVAddr, pMeta>bufferSize, 1);

205 else

206 ixp_send_packet(dataVAddr, pMeta>bufferSize, 2);

207 }

208 DBG_MSG("ttl is now: %i\n", ∗((uint8_t∗)dataVAddr+1));

209 }

210

211 break;

212 }

213

214 case ICH_CTRL_FB: {

215 uint32_t saddr, daddr;

216 uint16_t sport, dport;

217 int status, size;

218 ICHeader_t∗ich = (ICHeader_t∗)dataVAddr;

219 ICHeader_ext_t∗iche = (ICHeader_ext_t∗)(dataVAddr + sizeof(ICHeader_t));

220 DBG_MSG("ICH_CTRL_FB\n");

221 debug_print_ICheader(dataVAddr);

222 /∗ Get port data from IC header∗/

223 saddr= iche >saddr;

224 daddr= iche >daddr;

225 sport = iche >sport;

226 dport = iche >dport;

227 size = ich >dataLen;

228 DBG_MSG("ICH_CTRL_FB: size = %i\n", size);

229 /∗ Strip IC header∗/

230 dataVAddr+= sizeof(ICHeader_t)+ sizeof(ICHeader_ext_t);

231 /∗ Forward payload to tcp_send∗/

232 status= tcp_send(dataVAddr, size, saddr, daddr, sport, dport);

233 if (status == 1){

234 DBG_MSG("tcp_send() returned an error.\n");

235 }else{

236 DBG_MSG("Successfully passed %i bytes to tcp_send.\n",status);

114

237 }

238

239 break;

240 }

241

242 case ICH_CTRL_MSG: {

243 DBG_MSG("ICH_CONTROL_MSG\n");

244 /∗ Forward to server ∗/

245 errno = send(hostSock, dataVAddr, pMeta>bufferSize, 0);

246 if (errno == 1){

247 DBG_MSG("send() returned error\n");

248 }else{

249 DBG_MSG("Successfully sent %i bytes to socket\n",errno);

250 }

251

252 break;

253 }

254

255 case ICH_ROUTE_FB: {

256 int idx;

257 DBG_MSG("ICH_ROUTE_FEEDBACK\n");

258 debug_print_ICheader(dataVAddr);

259 debug_print_buffer32(dataVAddr, pMeta>bufferSize);

260 /∗ Set up egress icsession with reverse route∗/

261 idx = newEgrICSession(dataVAddr);

262 debug_print_egrICsession(idx);

263

264 break;

265 }

266

267 default: break;

268 }

269

270 }

271

272 return ;

273 }

274

275 int main(){

276 void ∗ucloHandle;

277 int status;

115

278 struct sockaddr_in dest_addr; // will hold the destination addr

279

280 /∗ init ixa sdk uclo lib ∗/

281 UcLo_InitLib();

282

283 /∗ init all uengs ∗/

284 UcLo_InitLibUeng(0xff);

285

286 /∗ load ueng image into memory∗/

287 status= UcLo_LoadObjFile(&ucloHandle, (char∗) pImageName);

288 if (status != UCLO_SUCCESS) {

289 printf("UcLo_LoadObjFile1 failed with status code :%d\n", status);

290 return 1;

291 }

292

293 /∗ write to microengines∗/

294 status= UcLo_WriteUimageAll(ucloHandle);

295 if (status != UCLO_SUCCESS) {

296 printf("UcLo_WriteUimageAll failed\n");

297 printf("status = %i\n", status);

298 return 1;

299 }

300

301 /∗ verify uengine 0 for sanity check∗/

302 status= UcLo_VerifyUengine(ucloHandle, 0);

303 if (status != UCLO_SUCCESS) {

304 printf("UcLo_VerifyUengine 0 failed, status = 0x%x\n", status);

305 return 1;

306 }

307

308 printf("verify uengine passed\n");

309

310 /∗ delete object∗/

311 status= UcLo_DeleObj(ucloHandle);

312 if (status != UCLO_SUCCESS) {

313 printf("UcLo_DeleObj failed\n");

314 return 1;

315 }

316

317 /∗ Enable interrupt A ∗/

318 halMe_IntrEnable(HALME_INTR_THD_A_MASK);

116

319

320 /∗ init and start spi3br ∗/

321 StartSpi3br();

322

323 /∗ init and start macs∗/

324 StartMacs();

325

326 halMe_Init(0xff);

327 /∗Start microengines∗/

328 halMe_Start(0, 0xff);

329 halMe_Start(1, 0xff);

330 halMe_Start(2, 0xff);

331 printf("Microengines started\n");

332

333 /∗ Wait for int A Indicates that uEngines are initialized and ready ∗/

334 halMe_IntrPoll(HALME_INTR_THD_A_MASK, &intMask);

335

336 DBG_MSG("Got int A\n");

337

338 /∗ Spawn callback thread for meXScale comm∗/

339 status= halMe_SpawnIntrCallbackThd(HALME_INTR_THD_A_MASK, intThread_A,

340 &cbdata, 1, (void∗)&intThread_A_handle);

341 if (status != HALME_SUCCESS){

342 printf("Error spawning intThread_A\n");

343 } else {

344 printf("Success spawning intThread_A\n");

345 }

346

347 /∗ Send signal 13 to me1, ctx 0, 2 and 4∗/

348 status= me_signal(1, 0, 13);

349 if (status != HALME_SUCCESS){

350 printf("Error signaling me 1, ctx 0\n");

351 }

352 status= me_signal(1, 2, 13);

353 if (status != HALME_SUCCESS){

354 printf("Error signaling me 1, ctx 2\n");

355 }

356 status= me_signal(1, 4, 13);

357 if (status != HALME_SUCCESS){

358 printf("Error signaling me 1, ctx 4\n");

359 }

117

360

361 /∗ Setup socket to communicate with host∗/

362 hostSock= socket(AF_INET, SOCK_STREAM, 0);// do some error checking!

363 if (hostSock== 1){

364 printf("socket() returned error\n");

365 }else{

366 printf("Socket successfully created\n");

367 }

368

369 dest_addr.sin_family= AF_INET;

370 dest_addr.sin_port= htons(DEST_PORT);

371 dest_addr.sin_addr.s_addr= inet_addr(DEST_IP);

372 memset(&(dest_addr.sin_zero),’\0’, 8);

373

374 errno = connect(hostSock, (struct sockaddr∗)&dest_addr,sizeof(struct sockaddr));

375 if (errno == 1){

376 printf("connect() returned error\n");

377 }else{

378 printf("Successfully connected to %s, port %i\n",inet_ntoa(dest_addr.sin_addr), DEST_PORT);

379 }

380 /∗Show Spi3br driver information∗/

381 //ShowSpi3br();

382

383 /∗Show mac driver information∗/

384 //ShowMac();

385

386 while(1) {

387 char data[1500], ∗dp;

388 int status, bytecount, dataSize;

389 /∗ Listen to hostSock

390 collect data, create Correct headers,

391 and forward to uEngines for transmit∗/

392

393 /∗ Assumes that IC Header is the first to arrive,

394 and that all packets arrive in the order: ICHeader>Payload >ICHeader >Payload etc.∗/

395

396 /∗ Read IC header∗/

397 dp = data;

398 bytecount= sizeof(ICHeader_t);

399 while(bytecount> 0){

400 status= recv(hostSock, dp, bytecount, 0);

118

401 if (status == 1){

402 DBG_MSG("recv() returned error\n");

403 sleep(1000);

404 }else if(status > 0){

405 DBG_MSG("Socket: Received IC header, %i bytes\n", status);

406 dp += status;

407 bytecount = status;

408 }

409 }

410

411 /∗ Get size of data from IC header∗/

412 ICHeader_t∗ich = (ICHeader_t∗)data;

413 int port;

414 if ((ich >type == ICH_ROUTE_FB) || (ich >type == ICH_CTRL_FB))

415 bytecount= ich >dataLen+ sizeof(ICHeader_ext_t);

416 else

417 bytecount= ich >dataLen;

418

419 dataSize= bytecount;

420 DBG_MSG("dataSize: %i\n", dataSize);

421 DBG_MSG("bytecount: %i\n", bytecount);

422 while(bytecount> 0){

423 status= recv(hostSock, dp, bytecount, 0);

424 if (status == 1){

425 DBG_MSG("recv() returned error\n");

426 sleep(1000);

427 }else if(status > 0){

428 DBG_MSG("Socket: Received %i bytes of data\n", status);

429 dp += status;

430 bytecount = status;

431 }

432 }

433 dataSize+=sizeof(ICHeader_t);

434

435 debug_print_buffer32(data, dataSize);

436 port = ICPopPort(data);

437 if (port == 0xff){ /∗ This is an RTSP message on egress machine∗/

438 ICHeader_ext_t∗iche = (ICHeader_ext_t∗)(data+sizeof(ICHeader_t));

439

440 status= tcp_send(data+sizeof(ICHeader_t)+sizeof(ICHeader_ext_t), ich>dataLen,

441 iche >saddr, iche>daddr, iche>sport, iche>dport);

119

442 if (status == 1){

443 DBG_MSG("tcp_send() returned an error.\n");

444 }else{

445 DBG_MSG("Successfully passed %i bytes to tcp_send.\n",status);

446 }

447 }else{

448 dp = data;

449 if (port == 0){ /∗ If data is at egress, strip IC header∗/

450 dp += sizeof(ICHeader_t);

451 dataSize = sizeof(ICHeader_t);

452 }

453 ixp_send_packet(dp, dataSize, port);

454 }

455 }

456

457 return 0;

458 }

459

460

461

462

463

464

465

466

467

468

469

A.2.3 dcube_utils.h

1 #ifndef _DCUBE_UTILS_H

2 #define _DCUBE_UTILS_H

3

4 #include "dcube.h"

5

6 void tcp_udp_checksum(void∗, int);

7 void ip_checksum(void∗);

8 ix_error me_signal(ix_uint32, ix_uint32, ix_uint32);

9 void ixp_send_packet(uint8_t∗, int , uint16_t);

120

10 void debug_print_metadata(dl_meta_t∗);

11 void debug_print_buffer32(void∗, int);

12 int getRtspType(char ∗data);

13 int localHasFile (char ∗descString);

14 void add_IC_hdr(char ∗data, int len, int type, uint32_t route);

15 void add_IC_ext_hdr(char ∗data, int idx);

16 int IC_ttl_dec(void∗ dataVAddr);

17 int findICSession(void∗ ICpacket);

18 int newServICSession(void∗ ICpacket);

19 int newEgrICSession(void∗ ICpacket);

20 void debug_print_egrICsession(int idx);

21 void debug_print_servICsession(int idx);

22 void debug_print_ICheader(void∗ ICpacket);

23 void ICPushPort(void∗ ICpacket, uint8_t port);

24 int ICPopPort(void∗ ICpacket);

25 int egrFindICsess(int idx);

26 int timeval_subtract (struct timeval ∗result, struct timeval ∗x, struct timeval ∗y);

27

28 #endif /∗ #ifndef _DCUBE_UTILS_H∗/

A.2.4 dcube_utils.c

1 #include "dcube_utils.h"

2

3 #define IX_RM_SAME_ME_SIGNAL_OFFSET 0x108

4 #define VIRT_DRAM_BASE (void ∗)(ix_uint32)Hal_dram_ch0_virtAddr

5 #define VIRT_SRAM_BASE (void ∗)(ix_uint32)Hal_sram_ch0_virtAddr

6

7 int bufCount = 0; /∗ what buffer handle number is currently "active∗/

8 uint8_t packetcount= 0; /∗ How many packets currently scheduled for batck send∗/

9 int bufBase; /∗ The base buffer handle for the next batch∗/

10 struct timeval curTime, lastBatch;

11

12 ix_error me_signal(ix_uint32 arg_MENumber,

13 ix_uint32 arg_ContextNumber,

14 ix_uint32 arg_SignalNumber) {

15 ix_error err = IX_SUCCESS;

16

17 WRITE_LWORD(((ix_uint32)Hal_cap_me_local_csr_virtAddr

18 + (arg_MENumber<< 10) + IX_RM_SAME_ME_SIGNAL_OFFSET),

121

19 ((arg_SignalNumber<< 3) + arg_ContextNumber));

20

21 return err;

22 }

23

24 /∗∗

25 ∗ To calculate tcp checksum :

26 ∗ Construct pseudo header:

27 ∗ + + + + +

28 ∗ | Source Address |

29 ∗ + + + + +

30 ∗ | Destination Address |

31 ∗ + + + + +

32 ∗ | zero | PTCL | TCP Length |

33 ∗ + + + + +

34 ∗ Zero out checksum field

35 ∗ Pad one zeroed byte if length is an odd number

36 ∗ Do a ones complement sum of the whole thing

37 ∗ If a carry occur, add one, and return

38 ∗ Return the ones complement of the sum

39 ∗∗/

40

41 /∗ Calculates the 16 bit onescomplement sum of a given

42 buffer. Pads the last byte with 0 if odd size

43 Input: data: Pointer to buffer start

44 len: length of data∗/

45 uint32_t partial_csum(uint8_t∗ data, int len) {

46 uint32_t sum= 0;

47 uint16_t last= 0;

48 int odd = 0;

49

50 if (len & 1)

51 odd = 1;

52

53 len >>= 1;

54 while (len > 0) {

55 sum += ∗((uint16_t∗)data);

56 data += sizeof(uint16_t);

57 len ;

58 }

59 /∗ odd len ∗/

122

60 if (odd){

61 last = ∗data << 8;

62 sum += last;

63 }

64

65 return sum ;

66 }

67

68 /∗ Calculate checksum for TCP or UDP header, and

69 write it to the packet

70 Input: ipHdrStart Pointer to beginning of IP header

71 size total size of packet∗/

72 void tcp_udp_checksum(void∗ ipHdrStart, int size){

73 uint32_t sum= 0;

74 uint16_t finalsum;

75 uint8_t protocol;

76 uint32_t zero_ptcl_tcpsize;

77

78 /∗ Extract protocol type from IP header∗/

79 memcpy(&protocol, ipHdrStart+9, 1);

80 zero_ptcl_tcpsize= (protocol << 16) | ((size 20) & 0xffff);

81

82 /∗ zero out checksum field∗/

83 memset(ipHdrStart+36, 0, 2);

84 /∗ Pseudo header calculations∗/

85 /∗ Calculate checksum of src& dest ∗/

86 sum = partial_csum(ipHdrStart+12, 8);

87 /∗ Calculate checksum of protocol nr and TCP size∗/

88 sum += partial_csum((uint8_t∗)&zero_ptcl_tcpsize, 4);

89

90 /∗ Calculate checksum of tcp header and data∗/

91 sum += partial_csum(ipHdrStart+20, size 20);

92

93 /∗ Add carries ∗/

94 while (sum & 0xffff0000)

95 sum = (sum >> 16) + (sum & 0xffff);

96

97 /∗ Write the one’s complement of the sum to

98 the correct spot in the TCP header∗/

99 finalsum = ˜sum;

100 memcpy(ipHdrStart+36, &finalsum, 2);

123

101 }

102

103 /∗ Calculate checksum for IP header, and

104 write it to the packet

105 Input: Pointer to beginning of IP header∗/

106 void ip_checksum(void∗ ipHdrStart){

107 uint32_t sum;

108 uint16_t finalsum;

109

110 memset(ipHdrStart+10, 0, 2);

111 sum = partial_csum(ipHdrStart, 20);

112

113 /∗ Add carries ∗/

114 while (sum & 0xffff0000)

115 sum = (sum >> 16) + (sum & 0xffff);

116

117 finalsum= ˜sum;

118 memcpy(ipHdrStart+10, &finalsum, 2);

119 }

120

121 /∗ Send packet buffer to port specified

122 todo: implement batch sending and sending to

123 different ports ∗/

124 void ixp_send_packet(uint8_t∗ buffer, int size, uint16_t port){

125 int curBufHandle, bufHandle, metaOffset, dataOffset, status;

126 struct timeval timediff;

127 void∗ dataVAddr;

128 dl_meta_t∗ pMeta;

129 DBG_MSG("Send packet of %i bytes to port %i\n", size, port);

130

131 packetcount++;

132 curBufHandle= 0x20000 + (bufCount ∗ 8);

133 /∗ If we’re at the beginning of a new batch∗/

134 if (packetcount== 1){

135 bufBase= curBufHandle;

136 }

137

138 /∗ Prepare the current packet∗/

139 bufHandle= curBufHandle;

140 metaOffset = (bufHandle & 0xffffff) << 2;

141 dataOffset = (bufHandle & 0xffffff) << (MULT_FACTOR + 2);

124

142 pMeta = VIRT_SRAM_BASE + metaOffset;

143 /∗ Zero metadata∗/

144 memset(pMeta, 0,sizeof(dl_meta_t));

145

146 pMeta >bufferNext =0xff;

147 pMeta >value[2] = 0x00001001;

148 pMeta >bufferSize = size;

149 pMeta >packetSize= size;

150 pMeta >nextHopId = 0xff;

151 pMeta >offset = 0x100;

152 pMeta >outputPort= port;

153

154 dataVAddr= VIRT_DRAM_BASE + dataOffset + pMeta >offset;

155

156 memcpy(dataVAddr, buffer, size);

157

158 /∗ Increment or wrap buffer count ∗/

159 if (bufCount == 1024){

160 bufCount= 0;

161 } else

162 bufCount++;

163

164 status= gettimeofday(&curTime, NULL);

165 if (status == 1){

166 DBG_MSG("gettimeofday returned an error\n");

167 }

168

169 timeval_subtract (&timediff, &curTime, &lastBatch);

170 DBG_MSG("timediff.tv_sec: %u timediff.tv_usec: %u\n", timediff.tv_sec, timediff.tv_usec);

171

172 //if(timediff.tv_sec > 0 || timediff.tv_usec> 500 || packetcount>= 50){

173 /∗

174 | 31 24 | 23 0 |

175 num packets bufHandle

176 ∗/

177 bufHandle= (packetcount<< 24) | curBufHandle;

178 DBG_MSG("bufHandle : %0#10x\n", bufHandle);

179 SCRATCH_RING_PUT(11, bufHandle);

180 /∗ Reset batch packet counter∗/

181 packetcount= 0;

182 status= gettimeofday(&lastBatch, NULL);

125

183 if (status == 1){

184 DBG_MSG("gettimeofday returned an error\n");

185 }

186 //}

187

188 //status = me_signal(1, 2, 14);

189 //if (status != HALME_SUCCESS){

190 // DBG_MSG("Error signaling me 1, ctx 2\n");

191 // }

192 }

193

194 /∗ Print relevant metadata∗/

195 void debug_print_metadata(dl_meta_t∗ pMeta){

196 DBG_MSG("bufferNext: %0#10x\n", pMeta >bufferNext);

197 DBG_MSG("bufferSize: %0#10x\n", pMeta >bufferSize);

198 DBG_MSG("offset: %0#10x\n", pMeta >offset);

199 DBG_MSG("packetSize: %0#10x\n", pMeta >packetSize);

200 DBG_MSG("freeListId: %0#10x\n", pMeta >freeListId);

201 DBG_MSG("rxStat: %0#10x\n", pMeta >rxStat);

202 DBG_MSG("headerType:: %0#10x\n",pMeta >headerType);

203 DBG_MSG("inputPort: %0#10x\n", pMeta >inputPort);

204 DBG_MSG("outputPort: %0#10x\n", pMeta >outputPort);

205 DBG_MSG("nextHopId: %0#10x\n", pMeta >nextHopId);

206 DBG_MSG("fabricPort: %0#10x\n", pMeta >fabricPort);

207 DBG_MSG("flowId: %0#10x\n", pMeta >flowId);

208 DBG_MSG("classId: %0#10x\n", pMeta >classId);

209 DBG_MSG("classId: %0#10x\n\n", pMeta >packetNext);

210 }

211

212 /∗ Print buffer in 32 bit words hex in byte order∗/

213 void debug_print_buffer32(void∗ buf, int size){

214 int i;

215

216 for (i=0; i < size; i++){

217 if (i % 4==0)

218 DBG_MSG("\nbuf[%i]: 0x", i);

219

220 if (∗((uint8_t∗)(buf+i)) == 0)

221 DBG_MSG("00");

222 else if(∗((uint8_t∗)(buf+i)) < 15)

223 DBG_MSG("0%x", ∗((uint8_t∗)(buf+i)));

126

224 else

225 DBG_MSG("%x", ∗((uint8_t∗)(buf+i)));

226 }

227 DBG_MSG("\n");

228 }

229

230 /∗ Check if the payload is a SETUP packet

231 Implement check for other types when needed∗/

232 int getRtspType(char ∗data){

233 char ∗setupStr= "SETUP";

234 if (strncmp(data, setupStr, strlen(setupStr))== 0)

235 return RTSP_SETUP;

236

237 return 0;

238 }

239

240 /∗ Check if the requested file exists on the local server∗/

241 int localHasFile (char ∗descString){

242 char fname[50] = "/opt/storage/\0";

243 char ∗start;

244 FILE ∗status;

245

246 start = strstr(descString,"9070");

247 if (start == NULL)

248 return 0;

249 start += 5;

250

251 strncat(fname, start, strchr(start,’ ’) start);

252 DBG_MSG("fname = %s\n", fname);

253

254 status= fopen (fname,"rb");

255 if (status == NULL)

256 return 0;

257 else

258 fclose(status);

259 return 1;

260 }

261

262 /∗ Input: data: pointer to buffer containing payload

263 len: pointer to length of payload

264 idx: index of tcp stream in the tsarray

127

265 Prepends the payload with an IC header∗/

266 void add_IC_hdr(char ∗data, int len, int type, uint32_t route){

267 ICHeader_t ich;

268 /∗ Zero IC header∗/

269 memset(&ich, 0,sizeof(ICHeader_t));

270 ich.type= type;

271 ich.ttl = ICH_TTL;

272 ich.dataLen= len;

273 ich.route= route;

274 memmove(data+sizeof(ICHeader_t), data, len);

275 memcpy(data, &ich,sizeof(ICHeader_t));

276 }

277

278 /∗ Assumes that an IC header already has been added∗/

279 void add_IC_ext_hdr(char ∗data, int idx){

280 ICHeader_t∗ich = (ICHeader_t∗)data;

281 ICHeader_ext_t iche;

282 /∗ Zero IC header ext∗/

283 memset(&iche, 0,sizeof(ICHeader_ext_t));

284 iche.sport= ts[idx].sport;

285 iche.dport= ts[idx].dport;

286 iche.saddr= ts[idx].saddr;

287 iche.daddr= ts[idx].daddr;

288 memcpy(&iche.eth_src, &ts[idx].eth_src, 6);

289 memcpy(&iche.eth_dst, &ts[idx].eth_dst, 6);

290 memmove(data+sizeof(ICHeader_t)+sizeof(ICHeader_ext_t), data+sizeof(ICHeader_t), ich>dataLen);

291 memcpy(data+sizeof(ICHeader_t), &iche,sizeof(ICHeader_ext_t));

292 }

293

294 /∗Input: pointer to beginning of IC packet

295 Decrements IC ttl by one, and returns the value∗/

296 int IC_ttl_dec(void∗ dataVAddr){

297 return (∗((uint8_t∗)dataVAddr+1));

298 }

299

300 /∗ Check if IC session exists.

301 Input: pointer to start of IC packet

302 Output: postion of IC session (or 1 if it does not exist)∗/

303 int findICSession(void∗ ICpacket){

304 ICHeader_ext_t∗iche = (ICHeader_ext_t∗)(ICpacket+sizeof(ICHeader_t));

305 int i, pos = 1;

128

306

307 DBG_MSG("findICSession: sport= %i\n", iche >sport);

308

309 for (i=0; i<MAX_IC_SESSIONS; i++) {

310 if (serv_ics[i].status != ICS_CLOSED && serv_ics[i].saddr==iche >saddr &&

311 serv_ics[i].daddr==iche >daddr && serv_ics[i].sport== iche >sport && serv_ics[i].dport== iche >dport) {

312 /∗ We have found an active session that corresponds to the ic header ∗/

313 pos = i;

314 DBG_MSG("ICSession: found session\n");

315 break;

316 }

317 }

318 return pos;

319 }

320

321 uint32_t routeInverse(uint32_t route){

322 uint32_t inv_route;

323 uint8_t ∗rp= (uint8_t∗)&route, ∗irp=(uint8_t∗)&inv_route;

324 int i, j=3;

325

326 for (i=0; i < 4; i++){

327 if (∗(rp+i)==0xff)

328 ∗(irp+i) = 0xff;

329 else

330 ∗(irp+(j)) = ∗(rp+i);

331 }

332 return inv_route;

333 }

334

335 /∗ Initialize IC session from data

336 Input: Pointer to IC packet

337 Output: index of new IC session (1 if no free slot)

338 ∗/

339 int newEgrICSession(void∗ ICpacket){

340 ICHeader_ext_t∗iche = (ICHeader_ext_t∗)(ICpacket + sizeof(ICHeader_t));

341 /∗ The payload of IC_ROUTE_FB is rout to server with the file∗/

342 uint32_t route_data= ∗(uint32_t∗)(ICpacket+sizeof(ICHeader_t)+sizeof(ICHeader_ext_t));

343 DBG_MSG("newEgrICSession: route_data: %x\n", route_data);

344 int i, pos = 1;

345 /∗ locate first free slot∗/

346 for (i=0; i<MAX_IC_SESSIONS; i++) {

129

347 if (egr_ics[i].status== ICS_CLOSED){

348 pos = i;

349 DBG_MSG("newEgrICSession: first free: %i\n", pos);

350 break;

351 }

352 }

353

354 if (pos != 1){

355 egr_ics[pos].status= ICS_ACTIVE;

356 egr_ics[pos].route= routeInverse(route_data);

357 egr_ics[pos].sport= iche >sport;

358 egr_ics[pos].dport= iche >dport;

359 egr_ics[pos].saddr= iche >saddr;

360 egr_ics[pos].daddr= iche >daddr;

361 memcpy(&egr_ics[pos].eth_src, &iche>eth_src, 6);

362 memcpy(&egr_ics[pos].eth_dst, &iche>eth_dst, 6);

363 }

364 return pos;

365 }

366

367 /∗ Initialize IC session from data

368 Input: Pointer to IC packet

369 Output: index of new IC session (1 if no free slot)

370 ∗/

371 int newServICSession(void∗ ICpacket){

372 ICHeader_t∗ich = (ICHeader_t∗)ICpacket;

373 ICHeader_ext_t∗iche = (ICHeader_ext_t∗)(ICpacket+sizeof(ICHeader_t));

374 int i, pos = 1;

375 /∗ locate first free slot∗/

376 for (i=0; i<MAX_IC_SESSIONS; i++) {

377 if (serv_ics[i].status== ICS_CLOSED){

378 pos = i;

379 DBG_MSG("newServICSession: first free: %i\n", pos);

380 break;

381 }

382 }

383

384 if (pos != 1){

385 serv_ics[pos].status= ICS_ACTIVE;

386 serv_ics[pos].route= ich >route;

387 serv_ics[pos].sport= iche >sport;

130

388 serv_ics[pos].dport= iche >dport;

389 serv_ics[pos].saddr= iche >saddr;

390 serv_ics[pos].daddr= iche >daddr;

391 memcpy(&serv_ics[pos].eth_src, &iche>eth_src, 6);

392 memcpy(&serv_ics[pos].eth_dst, &iche>eth_dst, 6);

393 }

394 return pos;

395 }

396

397 void debug_print_servICsession(int idx){

398 if (idx < MAX_IC_SESSIONS){

399 DBG_MSG("IC session:\n");

400 DBG_MSG("index: %i\n", idx);

401 DBG_MSG("status: %u\n", serv_ics[idx].status);

402 DBG_MSG("route: %x\n", serv_ics[idx].route);

403 DBG_MSG("sport: %u\n", serv_ics[idx].sport);

404 DBG_MSG("dport: %u\n", serv_ics[idx].dport);

405 DBG_MSG("saddr: %x\n", serv_ics[idx].saddr);

406 DBG_MSG("daddr: %x\n", serv_ics[idx].daddr);

407 DBG_MSG("eth_src: ");

408 debug_print_buffer32(serv_ics[idx].eth_src, 6);

409 DBG_MSG("eth_dst: ");

410 debug_print_buffer32(serv_ics[idx].eth_dst, 6);

411 }

412 }

413

414 void debug_print_egrICsession(int idx){

415 if (idx < MAX_IC_SESSIONS){

416 DBG_MSG("IC session:\n");

417 DBG_MSG("index: %i\n", idx);

418 DBG_MSG("status: %u\n", egr_ics[idx].status);

419 DBG_MSG("route: %x\n", egr_ics[idx].route);

420 DBG_MSG("sport: %u\n", egr_ics[idx].sport);

421 DBG_MSG("dport: %u\n", egr_ics[idx].dport);

422 DBG_MSG("saddr: %x\n", egr_ics[idx].saddr);

423 DBG_MSG("daddr: %x\n", egr_ics[idx].daddr);

424 DBG_MSG("eth_src: ");

425 debug_print_buffer32(egr_ics[idx].eth_src, 6);

426 DBG_MSG("eth_dst: ");

427 debug_print_buffer32(egr_ics[idx].eth_dst, 6);

428 }

131

429 }

430

431 void debug_print_ICheader(void∗ ICpacket){

432 ICHeader_t∗ich = (ICHeader_t∗)ICpacket;

433

434 DBG_MSG("ICheader:\n");

435 DBG_MSG("type: %u\n", ich >type);

436 DBG_MSG("ttl: %u\n", ich >ttl);

437 DBG_MSG("dataLen: %u\n", ich >dataLen);

438 DBG_MSG("route: %x\n", ich >route);

439

440 if ((ich >type == ICH_FIND_FILE) || (ich >type == ICH_ROUTE_FB) || (ich >type == ICH_CTRL_FB)){

441 ICHeader_ext_t∗iche = (ICHeader_ext_t∗)(ICpacket+sizeof(ICHeader_t));

442 DBG_MSG("sport: %u\n", iche >sport);

443 DBG_MSG("dport: %u\n", iche >dport);

444 DBG_MSG("saddr: %x\n", iche >saddr);

445 DBG_MSG("daddr: %x\n", iche >daddr);

446 DBG_MSG("eth_src: ");

447 debug_print_buffer32(iche>eth_src, 6);

448 DBG_MSG("eth_dst: ");

449 debug_print_buffer32(iche>eth_dst, 6);

450 }

451 }

452

453 /∗ Input: ICpacket: Pointer to IC packet

454 port: input port number

455 Pushes the given port number on the right side of the 4 byte route ∗/

456 void ICPushPort(void∗ ICpacket, uint8_t port){

457 ICHeader_t∗ich = (ICHeader_t∗)ICpacket;

458

459 ich >route <<= 8;

460 ich >route |= port;

461 DBG_MSG("ICPushPort: ich >route: %x\n", ich >route);

462 }

463

464 /∗ Input: ICpacket: Pointer to IC packet

465 Pops a port from the IC header route, and returns it.∗/

466 int ICPopPort(void∗ ICpacket){

467 ICHeader_t∗ich = (ICHeader_t∗)ICpacket;

468 int port;

469

132

470 port = ich >route & 0xff;

471 ich >route >>= 8;

472 ich >route |= 0xff000000;

473 DBG_MSG("ICPopPort: ich >route: %x\n", ich >route);

474 DBG_MSG("ICPopPort: popped port: %u\n", port);

475 return port;

476 }

477

478 /∗ Input: idx: Index of TCP session

479 Output: index of IC session (or 1 if not found) ∗/

480 int egrFindICsess(int idx){

481 int i;

482

483 for (i=0; i<MAX_IC_SESSIONS; i++) {

484 if (egr_ics[i].status != ICS_CLOSED && egr_ics[i].saddr==ts[idx].saddr &&

485 egr_ics[i].daddr==ts[idx].daddr && egr_ics[i].sport== ts[idx].sport &&

486 egr_ics[i].dport== ts[idx].dport){

487 /∗ We have found an active IC session that corresponds to the received packet∗/

488 return i;

489 DBG_MSG("egrFindICsess: found session\n");

490 }

491 }

492 return 1;

493 }

494

495 /∗ Subtract the ‘struct timeval’ values X and Y,

496 storing the result in RESULT.

497 Return 1 if the difference is negative, otherwise 0.∗/

498 int timeval_subtract (struct timeval ∗result,

499 struct timeval ∗x, struct timeval ∗y){

500 /∗ Perform the carry for the later subtraction by updating y.∗/

501 if (x >tv_usec< y >tv_usec) {

502 int nsec = (y >tv_usec x >tv_usec) / 1000000+ 1;

503 y >tv_usec = 1000000 ∗ nsec;

504 y >tv_sec += nsec;

505 }

506 if (x >tv_usec y >tv_usec> 1000000) {

507 int nsec = (x >tv_usec y >tv_usec) / 1000000;

508 y >tv_usec+= 1000000 ∗ nsec;

509 y >tv_sec = nsec;

510 }

133

511

512 /∗ Compute the time remaining to wait.

513 tv_usec is certainly positive.∗/

514 result >tv_sec = x >tv_sec y >tv_sec;

515 result >tv_usec= x >tv_usec y >tv_usec;

516

517 /∗ Return 1 if result is negative.∗/

518 return x >tv_sec < y >tv_sec;

519 }

520

521 /∗ To do:

522 Make linked lists of TCP structs and IC session structs∗/

A.2.5 bogus_tcp.h

1 #ifndef _BOGUS_TCP_H

2 #define _BOGUS_TCP_H

3

4 #include "dcube.h"

5

6 #define MAX_TCP_SESSIONS MAX_CONCURRENT_STREAMS

7 #define ETH_HDR_SIZE 14

8 #define ETH_TYPE_IP 0x0800

9 #define IP_HDR_SIZE 20

10 #define TCP_HDR_SIZE 20

11

12 /∗ Return states∗/

13 #define B_TCP_ERROR 0

14 #define B_TCP_NO_DATA 1

15 #define B_TCP_DATA 2

16

17 /∗ TCP FLAGS ∗/

18 #define TCP_FLAGS_FIN 1

19 #define TCP_FLAGS_SYN 1<<1

20 #define TCP_FLAGS_RST 1<<2

21 #define TCP_FLAGS_PSH 1<<3

22 #define TCP_FLAGS_ACK 1<<4

23 #define TCP_FLAGS_URG 1<<5

24

25 /∗ TCP states∗/

134

26 enum {

27 TCP_CLOSED= 0,

28 TCP_SYN_RCVD,

29 TCP_ESTABLISHED,

30 TCP_CLOSE_WAIT,

31 TCP_FIN_WAIT,

32 TCP_TIME_WAIT

33 };

34

35 /∗ TCP Change options∗/

36 enum {

37 TCP_NO_CHANGE= 0,

38 TCP_RST,

39 TCP_FIN

40 };

41

42 typedef struct{

43 uint8_t status;

44 uint32_t saddr;

45 uint32_t daddr;

46 uint16_t sport;

47 uint16_t dport;

48 uint32_t local_num;

49 uint32_t remote_num;

50 time_t last_used;

51 char eth_dst[6];

52 char eth_src[6];

53 } tcp_session_s;

54 tcp_session_s ts[MAX_TCP_SESSIONS];

55

56 /∗ 14 bytes Ethernet header∗/

57 typedef struct{

58 char dst[6];

59 char src[6];

60 uint16_t type;

61 } eth_hdr __attribute__((packed));

62

63 /∗ 20 bytes IP Header∗/

64 typedef struct{

65 uint8_t version : 4 ; /∗ Version ∗/

66 uint8_t hlen : 4 ; /∗ Header length∗/

135

67 uint8_t tos; /∗ Type of service∗/

68 uint16_t length; /∗ Total length ∗/

69 uint16_t ident; /∗ Identification ∗/

70 uint16_t flags : 3 ; /∗ Flags ∗/

71 uint16_t offset : 13; /∗ Fragment offset ∗/

72 uint8_t ttl; /∗ Time to live ∗/

73 uint8_t protocol; /∗ Protocol ∗/

74 uint16_t checksum; /∗ Header checksum∗/

75 uint32_t src; /∗ Source address∗/

76 uint32_t dst; /∗ Destination address∗/

77 }ip_hdr __attribute__((packed));

78

79 /∗ 20 bytes TCP Header∗/

80 typedef struct{

81 uint16_t sport; /∗ Source port ∗/

82 uint16_t dport; /∗ Destination port ∗/

83 uint32_t seq; /∗ Sequence Number∗/

84 uint32_t ack; /∗ Acknowledgement number∗/

85 uint16_t hdrlen : 4; /∗ TCP Header length∗/

86 uint16_t reserved : 6; /∗ Reserverd Zero ∗/

87 uint16_t flags : 6; /∗ Flags ∗/

88 uint16_t win; /∗ Window size∗/

89 uint16_t checksum; /∗ Header Checksum∗/

90 uint16_t urgptr; /∗ Urgent pointer ∗/

91 }tcp_hdr __attribute__((packed));

92

93 /∗ Exported methods∗/

94 int tcp_recv(void ∗dataVAddr, char ∗data, int ∗len, int ∗idx);

95 int tcp_send(void ∗data, int size, uint32_t saddr, uint32_t daddr, uint16_t sport, uint16_t dport);

96 void set_tcp_data(int ts_id, uint32_t sa, uint32_t da, uint16_t sp, uint16_t dp, uint32_t seq, uint8_t flags);

97 int find_create_tcp(uint32_t sa, uint32_t da, uint32_t sp, uint16_t dp, uint32_t seq, uint8_t flags);

98 int find_tcp(uint32_t sa, uint32_t da, uint32_t sp, uint16_t dp);

99 void get_eth_src(void ∗dataVAddr, char ∗eth_src);

100 void get_eth_dst(void ∗dataVAddr, char ∗eth_dst);

101 void get_ip_hlen(void ∗dataVAddr, uint8_t∗ip_hlen);

102 void get_ip_data_len(void ∗dataVAddr, uint16_t∗datagram_len);

103 void get_ip_src(void∗ dataVAddr, uint32_t∗ip_sa);

104 void get_ip_dst(void∗ dataVAddr, uint32_t∗ip_da);

105 void get_tcp_sport(void∗ dataVAddr, uint8_t ip_hlen, uint16_t∗tcp_sp);

106 void get_tcp_dport(void∗ dataVAddr, uint8_t ip_hlen, uint16_t∗tcp_dp);

107 void get_tcp_seq(void∗ dataVAddr, uint8_t ip_hlen, uint32_t∗tcp_seq);

136

108 void get_tcp_ack(void∗ dataVAddr, uint8_t ip_hlen, uint32_t∗tcp_ack);

109 void get_tcp_flags(void∗ dataVAddr, uint8_t ip_hlen, uint8_t∗tcp_flags);

110 void get_tcp_hlen(void∗ dataVAddr, uint8_t ip_hlen, uint8_t∗tcp_hlen);

111 void prepare_iph(ip_hdr∗iph);

112 void prepare_tcph(tcp_hdr∗tcph);

113 void debug_print_TCPsess(tcp_session_s tcps);

114

115 #endif /∗ #ifndef _BOGUS_TCP_H∗/

A.2.6 bogus_tcp.c

1 #include "bogus_tcp.h"

2

3 /∗

4 ∗ (C)2003, Matija Puzar<matija@ifi.uio.no>

5 ∗ Adapted by Andreas Petlund 2005

6 ∗/

7

8 /∗ Input: ipData: Pointer to beginning of IP packet

9 Returns: B_TCP_ERROR if error, B_TCP_NO_DATA if no data, B_TCP_DATA if data is received.

10 data: pointer to packet payload (should be at least 1500 bytes long).

11 len: length of packet payload.

12 idx: index into tcp struct array (to get port and IP data for IC sessions)∗/

13 int tcp_recv(void ∗ipData, char ∗data, int ∗len, int ∗idx){

14 /∗ We already know this is a TCP packet destined for port 9070∗/

15

16 char eth_src[6], eth_dst[6], resp_data[54];

17 uint8_t tcp_flags, new_tcp_flags, ip_hlen, tcp_hlen;

18 uint16_t tcp_sp, tcp_dp, datagram_len, tcp_len, data_len;

19 uint32_t ip_sa, ip_da, tcp_seq, tcp_ack;

20 int ts_id, tcp_ack_incr= 0, fin_incr = 0;

21

22 ∗idx = 1;

23 /∗ Get necessary data∗/

24 /∗ Get eth src and dst addr∗/

25 get_eth_src(ipData, eth_src);

26 debug_print_buffer32(eth_src, 6);

27 get_eth_dst(ipData, eth_dst);

28 debug_print_buffer32(eth_dst, 6);

29

137

30 /∗ Get necessary data from IP header∗/

31 get_ip_hlen(ipData, &ip_hlen);

32 get_ip_data_len(ipData, &datagram_len);

33 get_ip_src(ipData, &ip_sa);

34 get_ip_dst(ipData, &ip_da);

35

36 /∗ Let’s get all the necessary data from the TCP header∗/

37 get_tcp_sport(ipData, ip_hlen, &tcp_sp);

38 get_tcp_dport(ipData, ip_hlen, &tcp_dp);

39 get_tcp_seq(ipData, ip_hlen, &tcp_seq);

40 get_tcp_ack(ipData, ip_hlen, &tcp_ack);

41 get_tcp_flags(ipData, ip_hlen, &tcp_flags);

42 get_tcp_hlen(ipData, ip_hlen, &tcp_hlen);

43 tcp_len = datagram_len (ip_hlen ∗ 4); /∗ hlen is given in 32 bit words∗/

44 data_len= tcp_len (tcp_hlen ∗ 4); /∗ hlen is given in 32 bit words∗/

45

46 /∗ Let’s find the TCP session which corresponds to the given data(or create a new one)∗/

47 ts_id = find_create_tcp(ip_sa, ip_da, tcp_sp, tcp_dp, tcp_seq, tcp_flags);

48 /∗ Copy MAC addresses into struct

49 Do this only once (to be implemented :) ∗/

50 memcpy(ts[ts_id].eth_src, eth_src, 6);

51 memcpy(ts[ts_id].eth_dst, eth_dst, 6);

52

53 /∗ Now, let’s handle the received flags and set the sending ones.

54 ∗ By default, we set the ACK flag

55 ∗ tcp_ack_incr is set to 1 if we got a SYN or FIN flag (each of them "consumes" 1 sequence number)

56 ∗/

57 new_tcp_flags= TCP_FLAGS_ACK;

58 tcp_ack_incr= 0;

59

60 /∗ If we got a SYN packet, we will respond also with a SYN packet∗/

61 if (tcp_flags & TCP_FLAGS_SYN) {

62 new_tcp_flags|= TCP_FLAGS_SYN;

63 tcp_ack_incr= 1;

64 }

65

66 /∗ By default we push all received data immediately, so here we don’t do anything ∗/

67 if (tcp_flags & TCP_FLAGS_PSH) {

68 DBG_MSG("TCP_FLAGS_PSH\n");

69 }

70

138

71 /∗ If we get an ACK, let’s check if we have to switch to a different state∗/

72 if (tcp_flags & TCP_FLAGS_ACK) {

73 switch (ts[ts_id].status) {

74

75 /∗ We received the third TCP packet (last in the 3way handshake operation)∗/

76 case TCP_SYN_RCVD: {

77 //fprintf(stderr, "Received 3hs ACK, dropping packet\n");

78 ts[ts_id].status= TCP_ESTABLISHED;

79 return B_TCP_NO_DATA;

80 }

81

82 /∗ We received the last ACK, after already closing the connection ∗/

83 case TCP_CLOSE_WAIT: {

84 //fprintf(stderr, "Received last ACK, dropping packet\n");

85 ts[ts_id].status= TCP_CLOSED;

86 return B_TCP_NO_DATA;

87 }

88

89 /∗ We received the last ACK but still need to send ours∗/

90 case TCP_FIN_WAIT: {

91 ts[ts_id].status= TCP_TIME_WAIT;

92 break;

93 }

94

95 default: break;

96 }

97 }

98

99 /∗ If we get a FIN, we should respond with an ACK and, if we didn’t initiate

100 ∗ a FIN before, we will do it now and pass to the CLOSE_WAIT state

101 ∗/

102 if (tcp_flags & TCP_FLAGS_FIN) {

103 if (ts[ts_id].status== TCP_ESTABLISHED) {

104 new_tcp_flags|= TCP_FLAGS_FIN;

105 ts[ts_id].status= TCP_CLOSE_WAIT;

106 }

107 tcp_ack_incr= 1;

108 }

109

110 /∗ If we get a seq. number that we already ACKed, we don’t do it again∗/

111 if (ts[ts_id].status== TCP_ESTABLISHED && data_len== 0 && tcp_seq == ts[ts_id].remote_num) {

139

112 //fprintf(stderr, "Already ACK ed, dropping packet\n");

113 return B_TCP_NO_DATA;

114 }

115

116 /∗ If any payload, copy it into buffer pointed to by data∗/

117 if ((data_len> 0) && (ts[ts_id].status != TCP_FIN_WAIT)) {

118 memcpy(data, ipData+ETH_HDR_SIZE+(ip_hlen∗4)+(tcp_hlen∗4), data_len);

119 ∗len = data_len;

120 ∗idx = ts_id;

121 }

122

123 /∗ Now, let’s send a response∗/

124 memset(resp_data, 0,sizeof(resp_data));

125 if (tcp_seq== ts[ts_id].remote_num && ts[ts_id].status != TCP_CLOSED) {

126

127 /∗ Prepare ethernet header∗/

128 eth_hdr ethh;

129 memset(ðh, 0,sizeof(ethh)); /∗ make sure struct is zeroed∗/

130 memcpy(ðh.dst, eth_src,sizeof(eth_src));

131 memcpy(ðh.src, eth_dst,sizeof(eth_dst));

132 ethh.type= ETH_TYPE_IP;

133

134 /∗ Let’s prepare the IP header as well∗/

135 ip_hdr iph;

136 prepare_iph(&iph);/∗ Fill in predefined fields∗/

137 iph.src= ip_da;

138 iph.dst= ip_sa;

139 iph.length= sizeof(resp_data)ETH_HDR_SIZE;

140

141 /∗ remote_num is the remote sequence number we expect next∗/

142 ts[ts_id].remote_num= tcp_seq+ data_len+ tcp_ack_incr;

143

144 /∗ Now, we prepare the TCP header as well∗/

145 tcp_hdr tcph;

146 prepare_tcph(&tcph);/∗ Fill in predefined fields∗/

147 iph.src= ip_da;

148 tcph.sport= tcp_dp;

149 tcph.dport= tcp_sp;

150 tcph.seq= ts[ts_id].local_num;

151 tcph.ack= ts[ts_id].remote_num;

152 tcph.flags= new_tcp_flags;

140

153

154 /∗ Copy headers to buffer ∗/

155 memcpy(resp_data, ðh,sizeof(ethh));

156 memcpy(resp_data+ETH_HDR_SIZE, &iph, IP_HDR_SIZE);

157 memcpy(resp_data+ETH_HDR_SIZE+IP_HDR_SIZE, &tcph, TCP_HDR_SIZE);

158

159 /∗ Calculate checksums∗/

160 ip_checksum(resp_data+ ETH_HDR_SIZE);

161 tcp_udp_checksum(resp_data+ ETH_HDR_SIZE, IP_HDR_SIZE+ TCP_HDR_SIZE);

162

163 /∗ local_num has the next sequence number on our side∗/

164 ts[ts_id].local_num+= tcp_ack_incr+ fin_incr;

165

166 } else {

167 /∗ Something went wrong∗/

168 DBG_MSG("B_TCP_ERROR\n");

169 return B_TCP_ERROR;

170 }

171

172 /∗ In this app, only port 0 (external) will need TCP∗/

173 ixp_send_packet(resp_data,sizeof(resp_data), 0);

174

175 /∗ If we were in the TIME_WAIT state and sent our last ACK,

176 ∗ we close the connection totally∗/

177 if (ts[ts_id].status== TCP_TIME_WAIT)

178 ts[ts_id].status= TCP_CLOSED;

179

180 /∗ If we get a RST flag, we reset the connection and discard the packet ∗/

181 if (tcp_flags & TCP_FLAGS_RST) {

182 ts[ts_id].status= TCP_CLOSED;

183 }

184

185 /∗ Give proper return value∗/

186 if (data_len> 0)

187 return B_TCP_DATA;

188 else

189 return B_TCP_NO_DATA;

190 }

191

192 /∗ Input: data: Pointer to payload.

193 size: Size of payload in bytes.

141

194 saddr: Source IP address.

195 daddr: Destination IP address.

196 sport: Source port.

197 dport: Destination port.

198 change: Status change (i.e. FIN or RST) (0 if no change)

199 Output: Nuber of bytes sent,1 if error. ∗/

200 int tcp_send(void ∗data, int size, uint32_t saddr, uint32_t daddr, uint16_t sport, uint16_t dport){

201 int tcpIdx, psize= size + TCP_HDR_SIZE+ IP_HDR_SIZE + ETH_HDR_SIZE;

202 char ∗packet = malloc(psize);

203

204 tcpIdx = find_tcp(saddr, daddr, sport, dport);

205 if (tcpIdx == 1)

206 return tcpIdx;

207

208 DBG_MSG("tcp_send(): Found TCP stream. Index: %i\n", tcpIdx);

209

210 /∗ Prepare ethernet header∗/

211 eth_hdr eh;

212 memcpy(&eh.dst, &ts[tcpIdx].eth_src, 6);

213 memcpy(&eh.src, &ts[tcpIdx].eth_dst, 6);

214 eh.type= ETH_TYPE_IP;

215

216 DBG_MSG("After ETH header prepare");

217

218 /∗ Let’s prepare the IP header as well∗/

219 ip_hdr iph;

220 prepare_iph(&iph);/∗ Fill in predefined fields∗/

221 iph.src= daddr;

222 iph.dst= saddr;

223 iph.length= (uint16_t)(psizeETH_HDR_SIZE);

224

225 DBG_MSG("After IP header prepare");

226

227 /∗ Now, we prepare the TCP header as well∗/

228 tcp_hdr tcph;

229 prepare_tcph(&tcph);/∗ Fill in predefined fields∗/

230 tcph.sport= ts[tcpIdx].dport;

231 tcph.dport= ts[tcpIdx].sport;

232 tcph.seq= ts[tcpIdx].local_num;

233 tcph.ack= ts[tcpIdx].remote_num;

234 tcph.flags= TCP_FLAGS_PSH| TCP_FLAGS_ACK;

142

235

236 DBG_MSG("After TCP header prepare");

237

238 /∗ Increment local_num with number of bytes sent∗/

239 ts[tcpIdx].local_num= ts[tcpIdx].local_num+ size;

240

241 /∗ Copy headers to packet∗/

242 memcpy(packet, &eh, ETH_HDR_SIZE);

243 memcpy(packet+ETH_HDR_SIZE, &iph, ETH_HDR_SIZE+IP_HDR_SIZE);

244 memcpy(packet+ETH_HDR_SIZE+IP_HDR_SIZE, &tcph, ETH_HDR_SIZE+IP_HDR_SIZE+TCP_HDR_SIZE);

245 /∗ Copy payload to packet∗/

246 memcpy(packet+ETH_HDR_SIZE+IP_HDR_SIZE+TCP_HDR_SIZE, data, size);

247

248 debug_print_buffer32(packet, psize);

249 /∗ Calculate checksums∗/

250 ip_checksum(packet+ ETH_HDR_SIZE);

251 tcp_udp_checksum(packet+ ETH_HDR_SIZE, size+ IP_HDR_SIZE + TCP_HDR_SIZE);

252

253 ixp_send_packet(packet, psize, 0);

254 free(packet);

255

256 return size;

257 }

A.2.7 bogus_tcp_utils.c

1 #include "bogus_tcp.h"

2

3 /∗ Look up our table of established TCP connectionsif found, return the index in the table

4 ∗ If not, create a new entry∗/

5 int find_create_tcp(uint32_t sa, uint32_t da, uint32_t sp, uint16_t dp, uint32_t seq, uint8_t flags){

6 int i, pos = 1, min_time_id = 0, first_free = 1;

7 time_t min_time;

8

9 min_time = time(NULL);

10

11 for (i=0; i<MAX_TCP_SESSIONS; i++) {

12 if (ts[i].status != TCP_CLOSED && ts[i].saddr==sa && ts[i].daddr==da && ts[i].sport == sp && ts[i].dport ==

13 /∗ We have found an active stream that corresponds to the packet∗/

14 pos = i;

143

15 DBG_MSG("b_tcp: found stream\n");

16 break;

17 } else if(ts[i].status != TCP_CLOSED){

18 /∗ This is an active stream that does not correspond to the packet.

19 Check when it was last used∗/

20 if (ts[i].last_used< min_time) {

21 min_time = ts[i].last_used;

22 min_time_id= i;

23 }

24 } else if(first_free == 1){

25 /∗ First free slot ∗/

26 first_free= i;

27 }

28 }

29

30 /∗ Use the first free slot, if none, reuse the least recently used∗/

31 if (pos == 1){

32 if (first_free != 1){

33 pos = first_free;

34 DBG_MSG("b_tcp: using first free\n");

35 }else{

36 pos = min_time_id;

37 DBG_MSG("b_tcp: using lru\n");

38 }

39 }

40

41 set_tcp_data(pos, sa, da, sp, dp, seq, flags);

42

43 return pos;

44 }

45

46 /∗ Look up our table of established TCP connections.

47 If found, return the index in the table.

48 If not found, return 1 ∗/

49 int find_tcp(uint32_t sa, uint32_t da, uint32_t sp, uint16_t dp){

50 int i;

51

52 for (i=0; i < MAX_TCP_SESSIONS; i++) {

53 if (ts[i].status != TCP_CLOSED && ts[i].saddr== sa

54 && ts[i].daddr == da && ts[i].sport == sp && ts[i].dport == dp) {

55 /∗ We have found an active stream that corresponds to the packet∗/

144

56 DBG_MSG("b_tcp: found stream\n");

57 return i;

58 }

59 }

60 DBG_MSG("find_tcp: No matching stream found\n");

61 return 1;

62 }

63

64 void set_tcp_data(int ts_id, uint32_t sa, uint32_t da, uint16_t sp, uint16_t dp, uint32_t seq, uint8_t flags){

65 if (flags & TCP_FLAGS_SYN){

66 ts[ts_id].remote_num= seq;

67 ts[ts_id].local_num= 1;

68 ts[ts_id].status= TCP_SYN_RCVD;

69 }

70 if (ts[ts_id].status== TCP_SYN_RCVD){

71 ts[ts_id].saddr= sa;

72 ts[ts_id].daddr= da;

73 ts[ts_id].sport= sp;

74 ts[ts_id].dport= dp;

75 }

76 ts[ts_id].last_used= time(NULL);

77 }

78

79 /∗ Input: Pointer to start of eth packet

80 Output: Eth src 6 bytes ∗/

81 void get_eth_src(void ∗dataVAddr, char ∗eth_src){

82 memcpy(eth_src, dataVAddr+6, 6);

83 }

84

85 /∗ Input: Pointer to start of eth packet

86 Output: Eth dst 6 bytes ∗/

87 void get_eth_dst(void ∗dataVAddr, char ∗eth_dst){

88 memcpy(eth_dst, dataVAddr, 6);

89 }

90

91 /∗ Input: Pointer to start of eth packet

92 Output: ip src 4 bytes ∗/

93 void get_ip_src(void∗ dataVAddr, uint32_t∗ip_sa){

94 memcpy(ip_sa, dataVAddr+ETH_HDR_SIZE+12, 4);

95 }

96

145

97 /∗ Input: Pointer to start of eth packet

98 Output: ip dst 4 bytes ∗/

99 void get_ip_dst(void∗ dataVAddr, uint32_t∗ip_da){

100 memcpy(ip_da, dataVAddr+ETH_HDR_SIZE+16, 4);

101 }

102

103 /∗ Input: Pointer to start of eth packet

104 Output: IP Hlen 4 bit ∗/

105 void get_ip_hlen(void ∗dataVAddr, uint8_t∗ip_hlen){

106 memcpy(ip_hlen, dataVAddr+ETH_HDR_SIZE, 1);

107 ∗ip_hlen &= 0xf; /∗ Hlen is the 4 lsb∗/

108 }

109

110 /∗ Input: Pointer to start of eth packet

111 Output: IP length 2 bytes ∗/

112 void get_ip_data_len(void ∗dataVAddr, uint16_t∗datagram_len){

113 memcpy(datagram_len, dataVAddr+ETH_HDR_SIZE+2, 2);

114 }

115

116 /∗ Input: dataVAddr: Pointer to start of eth packet

117 ip_hlen: length of IP header in 32 bit words

118 Output: TCP source port 2 bytes ∗/

119 void get_tcp_sport(void∗ dataVAddr, uint8_t ip_hlen, uint16_t∗tcp_sp){

120 int tcp_hdr_off = ip_hlen ∗ 4; /∗ ip_hlen is given in 32 bit words∗/

121 memcpy(tcp_sp, dataVAddr+ETH_HDR_SIZE+tcp_hdr_off, 2);

122 }

123

124 /∗ Input: dataVAddr: Pointer to start of eth packet

125 ip_hlen: length of IP header in 32 bit words

126 Output: TCP dest port 2 bytes ∗/

127 void get_tcp_dport(void∗ dataVAddr, uint8_t ip_hlen, uint16_t∗tcp_dp){

128 int tcp_hdr_off = ip_hlen ∗ 4; /∗ ip_hlen is given in 32 bit words∗/

129 memcpy(tcp_dp, dataVAddr+ETH_HDR_SIZE+tcp_hdr_off+2, 2);

130 }

131

132 /∗ Input: dataVAddr: Pointer to start of eth packet

133 ip_hlen: length of IP header in 32 bit words

134 Output: TCP seq 4 bytes ∗/

135 void get_tcp_seq(void∗ dataVAddr, uint8_t ip_hlen, uint32_t∗tcp_seq){

136 int tcp_hdr_off = ip_hlen ∗ 4; /∗ ip_hlen is given in 32 bit words∗/

137 memcpy(tcp_seq, dataVAddr+ETH_HDR_SIZE+tcp_hdr_off+4, 4);

146

138 }

139

140 /∗ Input: dataVAddr: Pointer to start of eth packet

141 ip_hlen: length of IP header in 32 bit words

142 Output: TCP ack 4 bytes ∗/

143 void get_tcp_ack(void∗ dataVAddr, uint8_t ip_hlen, uint32_t∗tcp_ack){

144 int tcp_hdr_off = ip_hlen ∗ 4; /∗ ip_hlen is given in 32 bit words∗/

145 memcpy(tcp_ack, dataVAddr+ETH_HDR_SIZE+tcp_hdr_off+8, 4);

146 }

147

148 /∗ Input: dataVAddr: Pointer to start of eth packet

149 ip_hlen: length of IP header in 32 bit words

150 Output: TCP flags 6 bits ∗/

151 void get_tcp_flags(void∗ dataVAddr, uint8_t ip_hlen, uint8_t∗tcp_flags){

152 int tcp_hdr_off = ip_hlen ∗ 4; /∗ ip_hlen is given in 32 bit words∗/

153 memcpy(tcp_flags, dataVAddr+ETH_HDR_SIZE+tcp_hdr_off+13, 1);

154 ∗tcp_flags &= 0x3F; /∗ all but the 6 lsb’s ∗/

155 }

156

157 /∗ Input: dataVAddr: Pointer to start of eth packet

158 ip_hlen: length of IP header in 32 bit words

159 Output: TCP header length 4 bits ∗/

160 void get_tcp_hlen(void∗ dataVAddr, uint8_t ip_hlen, uint8_t∗tcp_hlen){

161 int tcp_hdr_off = ip_hlen ∗ 4; /∗ ip_hlen is given in 32 bit words∗/

162 memcpy(tcp_hlen, dataVAddr+ETH_HDR_SIZE+tcp_hdr_off+12, 1);

163 ∗tcp_hlen >>= 4; /∗ Hlen is in the 4 msb’s∗/

164 }

165

166 void prepare_iph(ip_hdr∗iph){

167 memset(iph, 0,sizeof(ip_hdr)); /∗ make sure struct is zeroed∗/

168 iph >ttl = 64;

169 iph >version = 4;

170 iph >hlen = (sizeof(ip_hdr) / 4); /∗ hlen is given in 32 bit words∗/

171 iph >flags = 2;

172 iph >protocol = 6;

173 }

174

175 void prepare_tcph(tcp_hdr∗tcph){

176 memset(tcph, 0,sizeof(tcp_hdr)); /∗ make sure struct is zeroed∗/

177 tcph >hdrlen = (sizeof(tcp_hdr) / 4); /∗ hlen is given in 32 bit words∗/

178 tcph >win = 0x16d0;

147

179 }

180

181 void debug_print_TCPsess(tcp_session_s tcps){

182 DBG_MSG("TCP session:\n");

183 DBG_MSG("tcps.status: %i\n", tcps.status);

184 DBG_MSG("tcps.saddr: %x\n", tcps.saddr);

185 DBG_MSG("tcps.daddr: %x\n", tcps.daddr);

186 DBG_MSG("tcps.sport: %i\n", tcps.sport);

187 DBG_MSG("tcps.dport: %i\n", tcps.dport);

188 DBG_MSG("tcps.local_num: %x\n", tcps.local_num);

189 DBG_MSG("tcps.remote_num: %x\n", tcps.remote_num);

190 DBG_MSG("tcps.last_used: %x\n", (uint32_t)tcps.last_used);

191 DBG_MSG("eth_dst: 0x%x\n", ∗((uint32_t∗)&(tcps.eth_dst)));

192 DBG_MSG("eth_src: 0x%x\n", ∗((uint32_t∗)&(tcps.eth_src)));

193 }

A.3 Host source

A.3.1 srtsp.h

1 #ifndef _SRTSP_H

2 #define _SRTSP_H

3

4 /∗ felles ∗/

5 #include <pthread.h>

6 #include <stdio.h>

7 #include <linux/types.h>

8 #include <time.h>

9 #include <sys/types.h>

10 #include <sys/socket.h>

11 #include <sys/time.h>

12 #include <sys/sendfile.h>

13 #include <netinet/in.h>

14 #include <netinet/tcp.h>

15 #include <errno.h>

16 #include <ctype.h>

17 #include <netdb.h>

18 #include <string.h>

19 #include <arpa/inet.h>

148

20 #include <fcntl.h>

21 #include <stdlib.h>

22 #include <sys/stat.h>

23 #include <ctype.h>

24 #include <sys/resource.h>

25 #include <sys/mman.h>

26 #include <unistd.h>

27 #include <linux/unistd.h>

28 #include <syscall.h>

29

30 /∗ "Local" includes ∗/

31 #include "dbg_msg.h"

32 #include "rtp.h"

33 #include "ic.h"

34

35

36 #define UDP_CORK 1

37 #define NSEC_PER_USEC (1000L)

38

39 #define MYPORT 23456 // the port users will be connecting to

40 #define BACKLOG 5 // how many pending connections queue will hold

41 #define MAX_RTP_STREAMS 100

42 #define ETH_TYPE_IP 0x0800

43 #define BIT_WRAP 0xffff

44

45 #define MEDIASTREAM_PLAY 1

46 #define MEDIASTREAM_PAUSE 2

47 #define MEDIASTREAM_FF 3

48 #define MEDIASTREAM_REWIND 4

49 #define MEDIASTREAM_TEARDOWN 5

50 #define MEDIASTREAM_STATISTICS_INIT 6

51 #define MEDIASTREAM_STATISTICS 7

52 #define MEDIASTREAM_STATUS 8

53

54 #define SESSION_STATUS_INIT 201

55 #define SESSION_STATUS_RUNNING 202

56 #define SESSION_STATUS_PAUSED 203

57 #define SESSION_STATUS_FF_REWIND 204

58 #define SESSION_STATUS_STOPED 205

59

60

149

61 typedef struct {

62 uint32_t ipsrc;

63 uint32_t ipdst;

64 uint8_t notused;/∗ always zero∗/

65 uint8_t proto;/∗ protocol used∗/

66 uint16_t len;/∗ UDP len ∗/

67 } pseudo_udp __attribute__((packed));

68

69 /∗ 14 bytes Ethernet header∗/

70 typedef struct{

71 char dst[6];

72 char src[6];

73 uint16_t type;

74 } eth_hdr __attribute__((packed));

75

76 /∗ 20 bytes IP Header∗/

77 typedef struct{

78 uint8_t version : 4 ; /∗ Version ∗/

79 uint8_t hlen : 4 ; /∗ Header length∗/

80 uint8_t tos; /∗ Type of service∗/

81 uint16_t length; /∗ Total length ∗/

82 uint16_t ident; /∗ Identification ∗/

83 uint16_t flags : 3 ; /∗ Flags ∗/

84 uint16_t offset : 13; /∗ Fragment offset ∗/

85 uint8_t ttl; /∗ Time to live ∗/

86 uint8_t protocol; /∗ Protocol ∗/

87 uint16_t checksum; /∗ Header checksum∗/

88 uint32_t src; /∗ Source address∗/

89 uint32_t dst; /∗ Destination address∗/

90 }ip_hdr __attribute__((packed));

91

92 /∗ 8 bytes UDP Header∗/

93 typedef struct{

94 uint16_t sport; /∗ Source port ∗/

95 uint16_t dport; /∗ Destination port ∗/

96 uint16_t len; /∗ Length ∗/

97 uint16_t csum; /∗ Checksum∗/

98 }udp_hdr __attribute__((packed));

99

100 typedef struct {

101 uint32_t secs;

150

102 uint32_t frac;

103 } ntp64_t;

104

105 /∗ supported RTSP message types:∗/

106 enum {

107 RTSP_SETUP= 1,

108 RTSP_PLAY,

109 RTSP_UNKNOWN

110 };

111

112 struct playinfo {

113 pid_t pid; /∗ initielt 0, settes etter retur fra første play kall.∗/

114 int in_fd; /∗ fil som skal streames.∗/

115 int out_fd; /∗ socket. ∗/

116 loff_t start_offset; /∗ start offset i in_fd. ∗/

117 loff_t stop_offset; /∗ stop offset i in_fd. ∗/

118 long trans_interval; /∗ transmission interval:

119 mpeg ts: antall usec mellom hver pakke.

120 mpeg es: antall usec mellom hver frame.

121 ∗/

122 uint16_t max_pkt_len;/∗ max pakke lengde:

123 mpeg ts payload:

124 max_pkt_lenrtp_hdr_size.

125 max_pkt_len må være (188∗n)+rtp_hdr_size.

126 mpeg es payload:

127 payload > 1 && payload < max_pkt_lenrtp_hdr_size mpeg_hdr_size.

128 ∗/

129 uint32_t tsinc; /∗ timestamp increment:

130 mpeg ts: increment per pakke

131 mpeg es: increment per frame

132 ∗/

133 uint8_t type; /∗ type media∗/

134 /∗RTP∗/

135 uint32_t ssrc; /∗ synchronization source∗/

136

137 unsigned long head;

138 unsigned long tail;

139 unsigned long datasize;

140 };

141

142

151

143 struct ff_rewind_info {

144 loff_t start_offset;

145 loff_t stop_offset;

146 };

147

148 struct ses_stat {

149 ntp64_t ntp_timestamp;

150 uint32_t rtp_timestamp;

151 uint32_t packet_count;

152 uint32_t octet_count;

153 uint16_t rtp_seq;

154 };

155

156 struct ses_stat_first {

157 uint32_t rtp_timestamp;

158 ntp64_t ntp_timestamp;

159 };

160

161 typedef struct {

162 //struct list_head list;

163 uint32_t sid;

164 pid_t pid;

165 uint8_t status;

166

167 int in_fd;

168 int out_fd;

169 loff_t start_offset;

170 loff_t stop_offset;

171 unsigned long buffaddr;

172

173 long trans_interval;//i usec

174 uint32_t tsinc;

175 uint16_t max_pkt_len;

176

177 /∗RTP∗/

178 uint16_t rtp_seq;

179 uint32_t rtp_timestamp;

180 uint32_t ntp_timestamp;

181 uint32_t ssrc;

182

183 /∗ The value of the RTP timestamp when the session opened (chosen randomly)

152

184 ∗/

185 uint16_t init_RTP_seq;

186 uint32_t init_RTP_timestamp;

187 ntp64_t init_NTP_timestamp;

188

189 struct timeval time_start;// settes til timeofday etter pause

190 /∗ current rtp timestamp offset∗/

191 struct timeval time_elapsed;// settes til 0 ved pause

192

193 //DISSE NULLES UT FOR HVER GANG STAT KALLES

194 uint32_t packet_count;

195 uint32_t octet_count;

196

197 unsigned long head;

198 unsigned long tail;

199 unsigned long datasize;

200

201 } rtp_session_info_t;

202

203 enum {

204 RTPS_CLOSED= 0,

205 RTPS_ACTIVE

206 };

207

208 enum {

209 R_EGRESS= 0,

210 R_OUTBOUND

211 };

212

213 typedef struct{

214 uint8_t status;

215 int thdId; /∗ Id of streaming thread∗/

216 int client_rtp_port;

217 int client_rtcp_port;

218 int server_rtp_port;

219 int server_rtcp_port;

220 int icIdx; /∗ Index of corresponding IC session∗/

221 char filename[100];

222 } RTP_stream_t;

223 RTP_stream_t rtps[MAX_RTP_STREAMS];

224

153

225 /∗ Socket descriptor for comm with XScale∗/

226 int xscale_sock;

227

228

229 void debug_print_ICheader(void∗ ICpacket);

230 void debug_print_buffer32(void∗ buf, int size);

231 void debug_print_ICsession(int idx);

232 struct timeval usec2tv(long usec);

233 struct timeval AddTimes(struct timeval ∗time1, struct timeval ∗time2);

234 struct timeval SubTimes(struct timeval ∗time1, struct timeval ∗time2);

235 int getRtspType(char∗ data);

236 int getRtspSession(char ∗data);

237 void getFileName(char ∗data, char∗ fn);

238 int newICSession(void∗ ICheader, void∗ icHdrExt);

239 int newRtpStream(int icIdx, ICHeader_t∗ich, char ∗data);

240 void getClientPorts(char ∗data, int ∗c_rtp_p, int ∗c_rtcp_p);

241 void createRtspReply(int ses, char ∗data, int type, char ∗reply);

242 int addICheader(IC_session_t ics,char ∗data, int size, int ICtype, int routeType);

243 void addICExtHeader(IC_session_t ics,char ∗data, int size);

244 void sendToXScale(char ∗reply, int size);

245 uint32_t egressRoute(uint32_t route);

246

247 void partial_csum(uint32_t∗sum, void∗ data, int len);

248 void udp_checksum(void∗ ipHdrStart, int size);

249 void ip_checksum(void∗ ipHdrStart);

250

251 #endif /∗ #ifndef _SRTSP_H∗/

A.3.2 srtsp.c

1 #include "srtsp.h"

2

3 /∗ Will send the whole file with packets in a predefined interval∗/

4 void ∗mpeg_ps(RTP_stream_t∗streamInfo) {

5 char ∗path = "/opt/hardhat/previewkit/arm/xscale_be/target/opt/storage/", fullpath[100];

6 char ∗packet = malloc(1500); //char packet[1500];

7 int hdrs_size= sizeof(ICHeader_t)+ sizeof(eth_hdr) + sizeof(ip_hdr) + sizeof(udp_hdr) + sizeof(rtp_hdr_t);

8 ICHeader_t∗ich=(ICHeader_t∗)packet;

9 eth_hdr ∗eth=(eth_hdr∗)(packet+sizeof(ICHeader_t));

10 ip_hdr ∗iph=(ip_hdr∗)(packet+sizeof(ICHeader_t)+ sizeof(eth_hdr));

154

11 udp_hdr∗udph=(udp_hdr∗)(packet+sizeof(ICHeader_t)+ sizeof(eth_hdr) + sizeof(ip_hdr));

12 rtp_hdr_t ∗rtph = (rtp_hdr_t∗)(packet+sizeof(ICHeader_t)+ sizeof(eth_hdr) + sizeof(ip_hdr)+sizeof(udp_hdr));

13 uint32_t new_rtp_seq, new_rtp_ts;

14 int fd, bytes_read;

15

16 DBG_MSG("∗∗∗∗∗∗∗∗∗∗∗NEW THREAD ID: %i ∗∗∗∗∗∗∗∗∗∗∗∗\n", (int)pthread_self());

17

18 /∗ Generate full path to file∗/

19 sprintf(fullpath, "%s%s", path, streamInfo>filename);

20

21 /∗ Open file ∗/

22 fd = open(fullpath, O_RDONLY);

23 if (fd == 1){

24 DBG_MSG("open() failed\n");

25 DBG_MSG("Couldn’t open file. error: %s. \n", strerror (errno));

26 goto out;

27 }else{

28 DBG_MSG("Successfully opened %s, fd: %i\n", fullpath, (int)fd);

29 }

30 /∗ Init IC header ∗/

31 memset(ich, 0,sizeof(ICHeader_t));

32 ich >type = ICH_RTP;

33 ich >ttl = 4;

34 ich >route = htonl(ics[streamInfo>icIdx].route);

35

36 /∗ Init ETH header ∗/

37 memset(eth, 0,sizeof(eth_hdr));

38 memcpy(eth>dst, ics[streamInfo>icIdx].eth_src, 6);

39 memcpy(eth>src, ics[streamInfo>icIdx].eth_dst, 6);

40 eth >type = htons(ETH_TYPE_IP);

41

42 /∗ Init IP header ∗/

43 memset(iph, 0,sizeof(ip_hdr));

44 //iph >version = 4;

45 //iph >hlen = 5;

46 ∗((uint8_t∗)iph) = 0x45;

47 //iph >flags = 2;

48 ∗((uint8_t∗)iph+6) = 0x40;

49

50 iph >ttl = 64;

51 iph >protocol = 0x11;

155

52 iph >src = htonl(ics[streamInfo>icIdx].daddr);

53 iph >dst = htonl(ics[streamInfo>icIdx].saddr);

54

55 /∗ Init UDP header ∗/

56 memset(udph, 0,sizeof(udp_hdr));

57 udph >sport = htons(streamInfo>server_rtp_port);

58 udph >dport = htons(streamInfo>client_rtp_port);

59 udph >csum = 0xffff;

60

61 /∗ Init RTP header∗/

62 memset(rtph, 0,sizeof(rtp_hdr_t));

63 rtph >version = RTP_VERSION;

64 //rtp_hdr.p = 0;

65 //rtp_hdr.x = 0;

66 //rtp_hdr.cc = 0;

67 //rtp_hdr.m = 0;

68 rtph >pt = PT_MP2P;

69 rtph >seq = htons((uint16_t)rand());

70 rtph >ts = htonl(rand());

71 rtph >ssrc = htonl(rand());

72

73 /∗∗∗/

74 /∗ STREAM FILE ∗/

75 /∗∗∗/

76 while(streamInfo>status==RTPS_ACTIVE) {

77

78 /∗ Read file data into buffer+headers∗/

79 bytes_read= read(fd, packet+ hdrs_size, 1400);

80 if (bytes_read> 0){

81

82 /∗ Update IC header∗/

83 ich >dataLen= htons(bytes_read+ sizeof(eth_hdr) + sizeof(ip_hdr) + sizeof(udp_hdr) + sizeof(rtp_hdr_t));

84 /∗ Update IP header∗/

85 iph >length = htons(bytes_read+ sizeof(ip_hdr) + sizeof(udp_hdr) + sizeof(rtp_hdr_t));

86 /∗ Update UDP header∗/

87 udph >len = htons(bytes_read+ sizeof(udp_hdr) + sizeof(rtp_hdr_t));

88

89 /∗ Update RTP header∗/

90 new_rtp_seq= ntohs(rtph >seq);

91 rtph >seq = htons(new_rtp_seq++);

92 new_rtp_ts= ntohl(rtph >ts);

156

93 rtph >ts = htonl(new_rtp_ts++); /∗ Update this to correct values∗/

94

95 /∗ Calculate checksums∗/

96 ip_checksum(iph);

97 udp_checksum(iph, bytes_read+ sizeof(rtp_hdr_t)+sizeof(udp_hdr));

98

99 /∗ Send packet to socket∗/

100 sendToXScale(packet, bytes_read+ hdrs_size);

101

102 /∗ Wait appropriate amount of time∗/

103 usleep(2000);

104 }else{

105 close(fd);

106 DBG_MSG("∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗BREAK∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n");

107 break;

108 }

109 }

110 out:

111 DBG_MSG("∗∗∗∗∗∗∗∗∗∗ EXIT THREAD ∗∗∗∗∗∗∗∗∗\n");

112 free(packet);

113 pthread_exit(0);

114 }

115

116 int main(){

117

118 int sockfd; // listen on sock_fd, new connection on xscale_sock

119 struct sockaddr_in my_addr; // my address information

120 struct sockaddr_in their_addr;// connector’s address information

121 int sin_size, dataLen, rtspType, icType;

122 char data[1500], icheader[20];

123 int status, recv_size, threadcount=0;

124 pthread_t thread[100];

125

126 sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

127 if(sockfd == 1){

128 printf("main(): socket returned error\n");

129 }else{

130 DBG_MSG("main(): Socket successfully created\n");

131 }

132

133 my_addr.sin_family = AF_INET; // host byte order

157

134 my_addr.sin_port = htons(MYPORT); // short, network byte order

135 my_addr.sin_addr.s_addr = INADDR_ANY; // auto fill with my IP endre til 192.168.1.1

136 memset(&(my_addr.sin_zero), ’\0’, 8); // zero the rest of the struct

137

138 status = bind(sockfd, (struct sockaddr ∗)&my_addr, sizeof(struct sockaddr));

139 if(status == 1){

140 printf("main(): bind returned error\n");

141 exit(1);

142 }else{

143 printf("main(): Port %i successfully bound\n", MYPORT);

144 }

145

146 status = listen(sockfd, BACKLOG);

147 if(status == 1){

148 printf("main(): listen() returned error\n");

149 }else{

150 printf("main(): Listening on port %i\n", MYPORT);

151 }

152

153 sin_size = sizeof(struct sockaddr_in);

154

155 status = accept(sockfd, (struct sockaddr ∗)&their_addr, &sin_size);

156 if(status == 1){

157 printf("main(): accept() returned error\n");

158 }else{

159 printf("main(): accepting connection on port %i\n", MYPORT);

160 xscale_sock = status;

161 }

162

163 /∗ Close listen socket (will only need one connection) ∗/

164 close(sockfd);

165

166 while(1){

167 /∗ Assumes that IC Header is the first to arrive,

168 and that all packets arrive in the order: ICHeader >Payload >ICHeader >Payload etc. ∗/

169

170 /∗ Read IC header ∗/

171 status = recv(xscale_sock, icheader, sizeof(ICHeader_t), 0);

172 if(status == 1){

173 DBG_MSG("main(): recv() returned error\n");

174 }else if(status > 0){

158

175 DBG_MSG("main(): Received IC header, %i bytes\n", status);

176 }

177

178 /∗ Get size of data from IC header

179 If ICH type is ICH_FIND_FILE, we also have to

180 receive an IC header extension with address info ∗/

181 ICHeader_t ∗ich = (ICHeader_t∗)icheader;

182 icType = ich >type;

183 dataLen = ntohs(ich >dataLen);

184 if((icType == ICH_FIND_FILE))

185 recv_size = dataLen + sizeof(ICHeader_ext_t);

186 else

187 recv_size = dataLen;

188

189 status = recv(xscale_sock, data, recv_size, 0);

190 if(status == 1){

191 DBG_MSG("main(): recv() returned error\n");

192 }else if(status > 0){

193 DBG_MSG("main(): Received %i bytes of data.\n", status);

194 }

195

196 if(icType == ICH_FIND_FILE)

197 DBG_MSG("main(): Data: %s\n", data+sizeof(ICHeader_ext_t));

198 else

199 DBG_MSG("main(): Data: %s\n", data);

200

201

202 /∗ Get RTSP message type

203 take appropriate action

204 IF type==ICH_FIND_FILE data resides after IC header ext∗/

205 if(icType == ICH_FIND_FILE){

206 DBG_MSG("ICH_FIND_FILE\n");

207 rtspType = getRtspType(data + sizeof(ICHeader_ext_t));

208 }else{

209 rtspType = getRtspType(data);

210 }

211 if(rtspType == RTSP_SETUP){

212 int rtpIdx, icIdx, packetSize, replysize; /∗ RTP session index and IC session index∗/

213 char reply[200];

214 DBG_MSG("main(): Received RTSP_SETUP\n");

215

159

216 /∗ Setup icsession struct ∗/

217 icIdx = newICSession(ich, data);

218 /∗ Create RTP stream struct ∗/

219 rtpIdx = newRtpStream(icIdx, ich, data+sizeof(ICHeader_ext_t));

220

221 /∗ Give RTSP feedback ∗/

222 createRtspReply(rtpIdx, (char∗)(data+sizeof(ICHeader_ext_t)), RTSP_SETUP, reply);

223 replysize = strlen(reply);

224 packetSize = addICheader(ics[icIdx], reply, replysize, ICH_CTRL_FB, R_EGRESS);

225 addICExtHeader(ics[icIdx], reply, replysize);

226 packetSize+=sizeof(ICHeader_ext_t);

227 sendToXScale(reply, packetSize);

228

229 }else if(rtspType == RTSP_PLAY){

230 int rtpIdx, packetSize, replysize;

231 char reply[200];

232 DBG_MSG("main(): Received RTSP PLAY\n");

233

234 /∗ Give rtsp feedback ∗/

235 rtpIdx = getRtspSession(data);

236

237 createRtspReply(rtpIdx, (char∗)data, RTSP_PLAY, reply);

238 replysize = strlen(reply);

239 packetSize = addICheader(ics[rtps[rtpIdx].icIdx], reply, replysize, ICH_CTRL_FB, R_EGRESS);

240 addICExtHeader(ics[rtps[rtpIdx].icIdx], reply, replysize);

241 packetSize+=sizeof(ICHeader_ext_t);

242

243 sendToXScale(reply, packetSize);

244

245 /∗ Create rtp stream thread ∗/

246 /∗ Implement handling of thread_exit ∗/

247 pthread_create(&(thread[threadcount++]), NULL, (void∗)mpeg_ps, &rtps[rtpIdx]);

248 //threadcount++;

249

250 }else if(rtspType == RTSP_UNKNOWN){

251 DBG_MSG("main(): Unknown RTSP type received, packet discarded.\n");

252 }

253 }

254 }

160

A.3.3 srtsp_utils.h

1 #ifndef _SRTPS_UTILS_H

2 #define _SRTPS_UTILS_H

3

4 #include <netinet/in.h>

5 #include <string.h>

6 #include <sys/time.h>

7 #include <time.h>

8 #include "dbg_msg.h"

9 #include "ic.h"

10

11 void debug_print_ICheader(void∗ ICpacket);

12 void debug_print_buffer32(void∗ buf, int size);

13

14 #ifndef _RTSP_TYPE

15 #define _RTSP_TYPE

16 enum {

17 RTSP_SETUP= 1,

18 RTSP_PLAY,

19 RTSP_UNKNOWN

20 };

21 #endif

22

23 struct timeval usec2tv(long usec);

24 struct timeval AddTimes(struct timeval ∗time1, struct timeval ∗time2);

25 struct timeval SubTimes(struct timeval ∗time1, struct timeval ∗time2);

26 int getRTSPType(char∗ data);

27

28 #endif /∗ #ifndef _SRTPS_UTILS_H∗/

A.3.4 srtsp_utils.c

1 #include "srtsp.h"

2

3 pthread_mutex_t socklock= PTHREAD_MUTEX_INITIALIZER;

4

5 void debug_print_ICheader(void∗ ICpacket){

6 ICHeader_t∗ich = (ICHeader_t∗)ICpacket;

7

161

8 DBG_MSG("ICheader:\n");

9 DBG_MSG("type: %u\n", ich >type);

10 DBG_MSG("ttl: %u\n", ich >ttl);

11 DBG_MSG("dataLen: %u\n", ich >dataLen);

12 DBG_MSG("route: %x\n", ich >route);

13

14 if ((ich >type == ICH_FIND_FILE) || (ich >type == ICH_ROUTE_FB) || (ich >type == ICH_CTRL_FB)){

15 ICHeader_ext_t∗iche = (ICHeader_ext_t∗)(ICpacket+sizeof(ICHeader_t));

16 DBG_MSG("sport: %u\n", iche >sport);

17 DBG_MSG("dport: %u\n", iche >dport);

18 DBG_MSG("saddr: %u\n", iche >saddr);

19 DBG_MSG("daddr: %u\n", iche >daddr);

20 DBG_MSG("eth_src: ");

21 debug_print_buffer32(iche>eth_src, 6);

22 DBG_MSG("eth_dst: ");

23 debug_print_buffer32(iche>eth_dst, 6);

24 }

25 }

26

27 void debug_print_ICsession(int idx){

28 if (idx < MAX_IC_SESSIONS){

29 DBG_MSG("IC session:\n");

30 DBG_MSG("index: %i\n", idx);

31 DBG_MSG("status: %u\n", ics[idx].status);

32 DBG_MSG("route: %x\n", ics[idx].route);

33 DBG_MSG("sport: %u\n", ics[idx].sport);

34 DBG_MSG("dport: %u\n", ics[idx].dport);

35 DBG_MSG("saddr: %x\n", ics[idx].saddr);

36 DBG_MSG("daddr: %x\n", ics[idx].daddr);

37 DBG_MSG("eth_src: ");

38 debug_print_buffer32(ics[idx].eth_src, 6);

39 DBG_MSG("eth_dst: ");

40 debug_print_buffer32(ics[idx].eth_dst, 6);

41

42 }

43 }

44

45 /∗ Print buffer in 32 bit words hex in byte order∗/

46 void debug_print_buffer32(void∗ buf, int size){

47 int i;

48

162

49 for (i=0; i < size; i++){

50 if (i % 4 == 0)

51 DBG_MSG("\nbuf[%i]: 0x", i);

52

53 if (∗((uint8_t∗)(buf+i)) == 0)

54 DBG_MSG("00");

55 else if(∗((uint8_t∗)(buf+i)) < 15)

56 DBG_MSG("0%x", ∗((uint8_t∗)(buf+i)));

57 else

58 DBG_MSG("%x", ∗((uint8_t∗)(buf+i)));

59 }

60 DBG_MSG("\n");

61 }

62

63 /∗ Return RTSP message type, based on the first characters in thepacket ∗/

64 int getRtspType(char∗ data){

65 char ∗setup = "SETUP";

66 char ∗play = "PLAY";

67

68 if (strncmp(data, setup, strlen(setup))== 0)

69 return RTSP_SETUP;

70 else if(strncmp(data, play, strlen(play))== 0)

71 return RTSP_PLAY;

72 else

73 return RTSP_UNKNOWN;

74

75 return 0;

76 }

77

78 /∗ Initialize IC session from data

79 Input: Pointer to IC header

80 Output: index of new IC session (1 if no free slot)

81 ∗/

82 int newICSession(void∗ ICheader, void∗ icHdrExt){

83 ICHeader_t∗ich = (ICHeader_t∗)ICheader;

84 ICHeader_ext_t∗iche = (ICHeader_ext_t∗)icHdrExt;

85 int i, pos = 1;

86 /∗ locate first free slot∗/

87 for (i=0; i<MAX_IC_SESSIONS; i++) {

88 if (ics[i].status == ICS_CLOSED){

89 pos = i;

163

90 DBG_MSG("newICSession: first free: %i\n", pos);

91 break;

92 }

93 }

94

95 if (pos != 1){

96 ics[pos].status= ICS_ACTIVE;

97 ics[pos].route= ntohl(ich >route);

98 ics[pos].sport= ntohs(iche>sport);

99 ics[pos].dport= ntohs(iche>dport);

100 ics[pos].saddr= ntohl(iche >saddr);

101 ics[pos].daddr= ntohl(iche >daddr);

102 memcpy(&ics[pos].eth_src, &iche>eth_src, 6);

103 memcpy(&ics[pos].eth_dst, &iche>eth_dst, 6);

104 }

105 return pos;

106 }

107

108

109 /∗Input: icIdx: index int array of ic session structs

110 ich: pointer to start of IC header

111 data: pointer to packet data

112

113 Allocate RTP stream struct

114 return index (session nr∗/

115 int newRtpStream(int icIdx, ICHeader_t∗ich, char ∗data){

116 int i, pos= 1, c_rtp_p, c_rtcp_p;

117 char fn[100];

118

119 /∗ locate first free slot∗/

120 for (i=0; i<MAX_RTP_STREAMS; i++) {

121 if (rtps[i].status== RTPS_CLOSED){

122 pos = i;

123 DBG_MSG("newRTPStream: first free: %i\n", pos);

124 break;

125 }

126 }

127

128 getClientPorts(data, &c_rtp_p, &c_rtcp_p);

129 getFileName(data, fn);

130

164

131 if (pos != 1){

132 rtps[pos].status= RTPS_ACTIVE;

133 rtps[pos].client_rtp_port= c_rtp_p;

134 rtps[pos].client_rtcp_port= c_rtcp_p;

135 rtps[pos].server_rtp_port= 7654; /∗ bogus value∗/

136 rtps[pos].server_rtcp_port= 7655; /∗ bogus value∗/

137 rtps[pos].icIdx= icIdx;

138 strcpy(rtps[pos].filename, fn);

139 }

140 return pos;

141 }

142

143 /∗ Input: data: Pointer to RTSP SETUP message

144 Output: c_rtp_p: Client RTP port

145 c_rtcp_p: Client RTCP port

146 ∗/

147 void getClientPorts(char ∗data, int ∗c_rtp_p, int ∗c_rtcp_p){

148 char ∗sp, ∗ep;

149

150 sp = strstr(data,"client_port=");

151 sp+=12; /∗ Move pointer to beginning of port number∗/

152 ∗c_rtp_p = strtol(sp, &ep, 10);

153 ∗c_rtcp_p = strtol(ep+1, NULL, 10);

154 }

155

156 /∗ Input: data: Pointer to RTSP SETUP message

157 Output: fn pointer to filename (\0 terminated)

158 ∗/

159 void getFileName(char ∗data, char∗ fn){

160 char ∗sp, ∗ep;

161 int len;

162

163 sp = strstr(data,"9070/");

164 sp+=5;

165 ep = strstr(sp, "RTSP/1.0");

166 ep =1;

167 len = ep sp;

168 strncpy(fn, sp, len);

169 memset(fn+len, 0, 1); /∗ Zero terminate string ∗/

170 }

171

165

172 void createRtspReply(int ses, char ∗data, int type, char ∗reply){

173 char ∗cseq;

174

175 switch(type){

176

177 case RTSP_SETUP: {

178 cseq= strstr(data,"Cseq: ");

179 cseq+= 6;

180 sprintf(reply,"RTSP/1.0 200 OK\nCseq: %i\nSession: %i\nTransport: RTP/AVP;unicast;client_port=%i %i;server_port=

181 (int)strtol(cseq, NULL, 10), ses, rtps[ses].client_rtp_port, rtps[ses].client_rtcp_port,

182 rtps[ses].server_rtp_port, rtps[ses].server_rtcp_port);

183

184 break;

185 }

186

187 /∗ May supply more info here∗/

188 case RTSP_PLAY: {

189 cseq= strstr(data,"Cseq: ");

190 cseq+= 6;

191 sprintf(reply,"RTSP/1.0 200 OK\nCseq: %i", (int)strtol(cseq, NULL, 10));

192

193 break;

194 }

195

196 default: break;

197

198 }

199 }

200

201 /∗ Assumes there is room in data buffer for header

202 Adds values in network byte order∗/

203 int addICheader(IC_session_t ics,char ∗data, int size, int ICtype, int routeType){

204 ICHeader_t∗ich;

205

206 /∗ Make space for header∗/

207 memmove(data+ sizeof(ICHeader_t), data, size);

208 ich = (ICHeader_t∗)data;

209 /∗ Zero IC header∗/

210 memset(ich, 0,sizeof(ICHeader_t));

211

212 ich >type = ICtype;

166

213 ich >ttl = 4;

214 ich >dataLen= htons(size);

215 if (routeType== R_EGRESS)

216 ich >route = htonl(egressRoute(ics.route));

217 else

218 ich >route = htonl(ics.route);

219

220

221 return size + sizeof(ICHeader_t);

222 }

223

224 void addICExtHeader(IC_session_t ics,char ∗data, int size){

225 ICHeader_ext_t∗iche;

226

227 /∗ Make space for header∗/

228 memmove(data+ sizeof(ICHeader_t)+ sizeof(ICHeader_ext_t), data+sizeof(ICHeader_t), size);

229 iche = (ICHeader_ext_t∗)(data + sizeof(ICHeader_t));

230 /∗ Zero ICExt header∗/

231 memset(iche, 0,sizeof(ICHeader_ext_t));

232 iche >sport = htons(ics.sport);

233 iche >dport = htons(ics.dport);

234 iche >saddr = htonl(ics.saddr);

235 iche >daddr = htonl(ics.daddr);

236 memcpy(&iche>eth_src, &ics.eth_src, 6);

237 memcpy(&iche>eth_dst, &ics.eth_dst, 6);

238 }

239

240 void sendToXScale(char ∗data, int size){

241

242 pthread_mutex_lock(&socklock);

243 errno = send(xscale_sock, data, size, 0);

244 pthread_mutex_unlock(&socklock);

245 if (errno == 1){

246 DBG_MSG("send() returned error\n");

247 }else{

248 //DBG_MSG("Successfully sent %i bytes to socket\n", errno);

249 }

250 }

251

252 /∗ Removes the outgoing port from a route to make

253 the packet go to the XScale on the egress node

167

254 to be transmitted with in the correct TCP stream∗/

255 uint32_t egressRoute(uint32_t route){

256 uint8_t ∗rp;

257 int i;

258

259 rp = (uint8_t∗)(&route);

260 for (i=3; i>=0; i){

261 if (rp[i]!=0xff && rp[i] ==0){

262 rp[i]=0xff;

263 break;

264 }

265 }

266 return route;

267 }

268

269 /∗ Input: pointer to rtsp packet

270 Output: Session number for This RTP stream.∗/

271 int getRtspSession(char ∗data){

272 int ses;

273 char ∗sp;

274 sp = strstr(data,"Session: ");

275 sp+=9; /∗ Move pointer to beginning of session number∗/

276 ses= strtol(sp, NULL, 10);

277

278 return ses;

279 }

280

281 /∗ Calculates the 16 bit onescomplement sum of a given

282 buffer. Pads the last byte with 0 if odd size

283 Input: data: Pointer to buffer start

284 len: length of data∗/

285 void partial_csum(uint32_t∗sum, void∗ data, int len) {

286 int i;

287

288 for (i = len>>1; i>0; i){

289 ∗sum += ∗((uint16_t∗)data);

290 data+= sizeof(uint16_t);

291 /∗ Add carries ∗/

292 ∗sum = (∗sum >> 16) + (∗sum & 0xffff);

293 ∗sum += ∗sum >> 16;

294 }

168

295

296 }

297

298 void udp_checksum(void∗ ipHdrStart, int size){

299 uint32_t sum= 0;

300 uint16_t finalsum;

301 pseudo_udp ph;

302

303 /∗ Construct pseudo header∗/

304 memcpy(&ph.ipsrc, ipHdrStart+12, 4);

305 //ph.ipsrc = ntohl(ph.ipsrc);

306 memcpy(&ph.ipdst, ipHdrStart+16, 4);

307 //ph.ipdst = ntohl(ph.ipdst);

308 ph.notused= 0;

309 ph.proto= 0x11;

310 ph.len= htons(size);

311

312 /∗ Calculate checksum of pseudo header∗/

313 partial_csum(&sum, &ph, 12);

314 /∗ Zero checksum field∗/

315 memset(ipHdrStart+26, 0, 2);

316 /∗ Calculate checksum of udp header and data∗/

317 partial_csum(&sum, ipHdrStart+20, size);

318

319 /∗ Write the one’s complement of the sum to

320 the correct spot in the TCP header∗/

321 finalsum= ˜sum;

322 memcpy(ipHdrStart+26, &finalsum, 2);

323 }

324

325 void ip_checksum(void∗ ipHdrStart){

326 uint32_t sum=0;

327 uint16_t finalsum;

328

329 memset(ipHdrStart+10, 0, 2);

330 partial_csum(&sum, ipHdrStart, 20);

331

332 finalsum= ˜sum;

333 memcpy(ipHdrStart+10, &finalsum, 2);

334 }

169

A.3.5 ic.h

1 #ifndef _IC_H

2 #define _IC_H

3

4 #include <inttypes.h>

5

6 #define MAX_IC_SESSIONS 100

7

8 enum {

9 ICH_FIND_FILE = 1, /∗ Packets used to locate file∗/

10 ICH_ROUTE_FB, /∗ Used to setup egress IC sessions∗/

11 ICH_CTRL_MSG, /∗ RTSP messages (except DESC and SETUP∗/

12 ICH_CTRL_FB, /∗ RTSP replies∗/

13 ICH_RTP /∗ RTP data Packets∗/

14 };

15

16 /∗ Standard IC header:

17 Common for all IC packets.∗/

18 typedef struct{

19 uint8_t type; /∗ Type of IC packet∗/

20 uint8_t ttl; /∗ To avoid circulating packets∗/

21 uint16_t dataLen;/∗ Length of IC packet data (excluding the header)∗/

22 uint32_t route;/∗ Routing information. Src routing∗/

23 } ICHeader_t __attribute__((packed));

24

25 /∗ IC header extension:

26 Used to setup route information when assigning a new stream∗/

27 typedef struct{

28 uint16_t sport;/∗ Client source port∗/

29 uint16_t dport; /∗ Server port ∗/

30

31 uint32_t saddr;/∗ Client source IP addr.∗/

32 uint32_t daddr;/∗ Egress IP addr∗/

33

34 char eth_src[6]; /∗ Ethernet src address∗/

35 char eth_dst[6]; /∗ Ethernet src address∗/

36 } ICHeader_ext_t __attribute__((packed));

37

38 enum {

39 ICS_CLOSED= 0,

170

40 ICS_WAIT_ROUTE,

41 ICS_ACTIVE,

42 };

43

44 typedef struct{

45 uint8_t status;

46 uint32_t route;/∗ Routing information. Src routing∗/

47 uint16_t sport;/∗ Client source port∗/

48 uint16_t dport; /∗ Server port ∗/

49

50 uint32_t saddr;/∗ Client source IP addr.∗/

51 uint32_t daddr;/∗ Egress IP addr∗/

52

53 char eth_src[6]; /∗ Ethernet src address∗/

54 char eth_dst[6]; /∗ Ethernet src address∗/

55 } IC_session_t;

56

57 /∗ Information about the IC sessions∗/

58 IC_session_t ics[MAX_IC_SESSIONS];

59

60 #endif /∗ #ifndef _IC_H ∗/

A.3.6 rtp.h

1 #ifndef _RTP_H

2 #define _RTP_H

3

4 #include <inttypes.h>

5

6 #define RTP_VERSION 2

7 #define PT_MP2T 33 /∗ MPEG2 TS A/V ∗/

8 #define PT_MP2P 567/∗ MPEG2 PS A/V ∗/

9

10 /∗ RTP data header∗/

11 typedef struct {

12 uint16_t version:2; /∗ protocol version ∗/

13 uint16_t p:1; /∗ padding flag ∗/

14 uint16_t x:1; /∗ header extension flag∗/

15 uint16_t cc:4; /∗ CSRC count∗/

16 uint16_t m:1; /∗ marker bit ∗/

171

17 uint16_t pt:7; /∗ payload type∗/

18 uint16_t seq; /∗ sequence number∗/

19 uint32_t ts; /∗ timestamp∗/

20 uint32_t ssrc; /∗ synchronization source∗/

21 //u_int32 csrc[1]; /∗ optional CSRC list∗/

22 } rtp_hdr_t __attribute((packed));

23

24 #endif /∗ #ifndef _RTP_H∗/

A.3.7 dbg_msg.h

1 #ifndef _DBG_MSG_H

2 #define _DBG_MSG_H

3

4 #define DEBUG

5

6 #include <stdio.h>

7

8 #ifdef DEBUG

9 #define DBG_MSG(str,args...) printf(str,##args)

10 #else

11 #define DBG_MSG(str, args...)

12 #endif

13

14 #endif /∗ #ifndef _DBG_MSG_H∗/

172

