
UNIVERSITY OF OSLO
Department of Informatics

Quality of Service in
Virtual Cut-through
Networks

Cand. Scient. Thesis

Frank Olaf
Sem-Jacobsen

Jaunary 2004

Preface

This master thesis is the culmination of two years of work which have been done
as a fulfillment of the requirements for the Cand. Scient. degree at the University
of Oslo. The work on this thesis has resulted in two articles. One has already been
published, while the other awaits submission to the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA).

• Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen, Tor Skeie, and Olav Lysne.
“Admission Control for DiffServ based Quality of Service in Cut-Through
Networks.” In Proceedings of the 10th International Conference on High
Performance Computing, 2003.

• Frank Olaf Sem-Jacobsen, Sven-Arne Reinemo, Tor Skeie, and Olav Lysne.
“Achieving Flow Level QoS in Cut-Through Networks through Admission
Control and DiffServ.” To be submitted to International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA),
2004.

The articles are included in appendix B.

Acknowledgments

I want to thank my advisor, Tor Skeie at Simula Research Laboratory (SRL), for
his guidance through the work on this thesis. Additionally I want to thank Sven-
Arne Reinemo (SRL), and also Olav Lysne (SRL), for their assistance in evaluating
the simulation results used in the project. I also thank John Tibbals for catching
my spelling and grammar mistakes, Nils Agne Norbotten for his assistance with a
final read-through, and my parents and girlfriend for the support they have given
me.

1

Abstract

This thesis explores the possibility of achieving class level and flow level Quality of
Service guarantees in a Virtual Cut-Through network with a class based Quality of
Service mechanism in conjunction with admission control. There is an increasing
number of System Area Network technologies based on the Virtual Cut-Through
principle. Many of these support Quality of Service mechanisms, but little work
has been done on performing admission control in Virtual Cut-Through networks.

Three different admission control algorithms for use in Virtual Cut-Through
networks are proposed in this thesis. All three algorithms operate in accordance
with the DiffServ philosophy, but the basis for their admission control decisions
differ. The first relies on apriori knowledge of the capacity of each link, and has
information about the load on each link in the network. Its decision is based on
whether the links can support more traffic. The second method performs measure-
ments at the egress of the network to ascertain whether the network can tolerate
an increase in traffic with a given latency requirement. The third and final method
for admission control measures the jitter of special probe packets as the basis for
its decision.

An evaluation of the proposed algorithms is presented through extensive sim-
ulation results. The Quality of Service properties that are studied are the ability
to give bandwidth guarantees to each individual flow, and to the service class as a
whole, and the latency and jitter characteristics that the traffic displays with the
different admission control algorithms. Through these simulations the apparent
limits of the admission control algorithms are discovered, and the range of QoS
guarantees that may be achieved in Virtual Cut-Through networks becomes clear.

The simulations show that throughput guarantees on the class level and the
flow level are achievable, but that latency and jitter in VCT networks are hard to
control. Finally, packet dropping is investigated as a method for reducing packet
jitter. The results show that this method is able to reduce the jitter perceived
by the network traffic, but it does not outperform some of the admission control
algorithms.

Contents

Preface 1
Acknowledgments . 1

1 Introduction 7
1.1 Thesis . 10
1.2 Readers Guide . 10

I Background 12

2 Problem Domain 13
2.1 Switched Networks and Interconnection Networks 13

2.1.1 Switching . 15
2.1.2 Routing and Topology Issues 18
2.1.3 Scalability . 20

2.2 InfiniBand . 21
2.2.1 Elements of an InfiniBand Network 22

2.3 Quality of Service in Internet . 24
2.3.1 End-to-End Quality of Service 25
2.3.2 Heterogeneous Networks . 30
2.3.3 MPLS/GMPLS . 30
2.3.4 Quality of Service in Switched Networks 31

2.4 Admission Control . 32

3 VCT Quality of Service 34
3.1 Related work . 34
3.2 Quality of Service in IBA . 37
3.3 Admission control in IBA . 39

3.3.1 Is Admission Control Necessary? 39
3.3.2 Back-pressure issues . 40

1

4 Properties of Admission Control 42
4.1 Characterisation of a good admission control algorithm 42

4.1.1 The Network Utilisation vs. QoS trade-off 44
4.2 Arbitration Tables and Admission Control 45

II Application of Admission Control 47

5 Admission Control Algorithms 48
5.1 Switch Level Admission Control, Link-by-Link 48

5.1.1 Parameter Based . 48
5.1.2 Measurement based . 50
5.1.3 AC Differentiation for Bandwidth Requirements 51

5.2 Endpoint Admission Control . 56
5.2.1 Egress Admission Control 56
5.2.2 Jitter Probing . 61

5.3 Centralised Admission Control . 62
5.3.1 Link-by-Link . 62
5.3.2 Combinations . 64

5.4 Aiming for Low Jitter . 64
5.5 Summary of the Proposals . 65

6 Simulations 67
6.1 Simulation Environment . 67

6.1.1 Network Components in the Simulator 67
6.1.2 The simulator engine . 68
6.1.3 Network Topologies . 68
6.1.4 Routing . 69

6.2 Simulation Parameters . 69
6.2.1 Admission Control Criteria 71
6.2.2 The Nature of the Simulations 74
6.2.3 Other technological assumptions inherent in the simulator . 76
6.2.4 Traffic Distribution . 77
6.2.5 Traffic Generation . 77

7 Results and Evaluation 82
7.1 Target for Admission Control . 83
7.2 Throughput/Network utilisation . 83

7.2.1 Total Throughput . 83
7.2.2 The Throughput of Each Flow 89

7.3 Latency . 94

2

7.3.1 Random Pairs . 94
7.3.2 Two Hot-spots . 96
7.3.3 Summary . 97

7.4 Jitter . 98
7.4.1 Random Pairs . 99
7.4.2 Two Hot-spots . 101
7.4.3 Summary . 101

7.5 Throughput/QoS Trade-off . 102
7.6 Achieving Low Jitter . 103
7.7 Concluding Remarks . 107

8 Conclusion 108
8.1 Further work . 109

A Additional figures 117

B Produced Articles 120

C Simulator Source Code 149

3

List of Figures

1.1 A typical Internet configuration, client on a LAN, server on a SAN 9

2.1 A switched network . 14
2.2 Deadlock in a packet switched network 20
2.3 A figure illustrating the back-pressure mechanism in VCT networks 23
2.4 Two DiffServ domains, each controlled by a BB. Clients and servers

connect to the boundary nodes, data is forwarded efficiently in the
interior. 28

5.1 Latency distribution for SL1, 3 hops in a unsaturated and saturated
network . 63

5.2 Figure depicting saturated and non-saturated regions indicated with
high and medium marker . 63

6.1 Average flow latency as a function of hops 73
6.2 Jitter as a function of Hops . 75
6.3 Switch architecture . 76
6.4 Packet rate at an increasing timescale 81

7.1 Aggregated Throughput . 84
7.2 Aggregated Throughput for Two Hot-spots 87
7.3 Mean per flow rate . 90
7.4 Mean per flow rate for two hot-spots 92
7.5 Mean of mean flow latency . 95
7.6 Mean of mean flow latency for two hot-spots 97
7.7 Maximum packet jitter for a flow 99
7.8 Maximum packet jitter of flows for two hot-spots 102
7.9 Trade-off between QoS and network utilisation 104
7.10 Throughput with packet dropping 105
7.11 Maximum packet jitter with packet dropping 105
7.12 Distribution of how many packets flows have successfully sent through

the network . 106

4

A.1 Average packet jitter for a flow . 117
A.2 Average packet jitter of flows for two hot-spots 118
A.3 Average packet jitter with packet dropping 119

5

List of Tables

6.1 Service Level and Virtual Lane Configuration 70
6.2 Latency requirement distribution for each hop for use with Egress

Measurements . 72
6.3 Jitter requirement distribution . 74
6.4 The SL and VL added for use with Jitter Probing, SL 1 - SL 5

remain the same . 74

7.1 Admission Control Schemes Sorted by Network Utilisation 89
7.2 Percent of flows with full throughput with different AC 91
7.3 Admission Control Schemes Sorted by Bandwidth Guarantees . . . 93
7.4 Admission Control Schemes Sorted by Latency 98
7.5 Mean and standard deviation for SL 1, 3 hops at a offered packet

rate of 1,3 packets per cycle (high load) 101
7.6 Admission Control Schemes Sorted by Jitter 103

6

Chapter 1

Introduction

The Internet has shown an exceptional growth over the past few years. It has
evolved into a global infrastructure supporting services from e-mail to complex
multimedia applications and business transactions. Many of these new emerging
applications place demands on the network with regards to throughput and latency.
In essence they require a certain Quality of Service (QoS).

Quality of Service (QoS) may be described from two distinctly different points
of view:

“QoS is the measure of how good a service is, as presented to the user. It is
expressed in user understandable language and manifests itself in a number of pa-
rameters, all of which have either subjective or objective values.”1

In other words, a user has subjective demands for QoS guarantees from the net-
work, such as that the network traffic should arrive fast and correctly. These
guarantees are realised in the network in the form of guarantees for bandwidth,
latency/jitter, low packet loss etc. The user demands are translated to QoS pa-
rameters in the network, and the QoS guarantees the network is able to provide is
translated to a user understandable form.

The Internet today is basically a best effort network. The Internet Engineer-
ing Task Force (IETF) has therefore undertaken the task of defining Quality of
Service mechanisms for use in the Internet. This has resulted in the definition
of IntServ (Section 2.3.1), MPLS/GMPLS (Section 2.3.3) and DiffServ (Section
2.3.1). IntServ is a Quality of Service scheme based on per flow reservation of
resources in the network by the use of the Resource Reservation Protocol (RSVP).
GMPLS is a generalisation of MPLS, a forwarding scheme using label switching
to provide efficient forwarding and service differentiation based on labels. DiffServ

1RACE D510, F. Fluckige 1995

7

on the other hand defines a relative Quality of Service concept with no explicit
signaling or per flow information in the core of the network. Neither of the IETF
QoS concepts specify how QoS is to be achieved on the link level, e.g. how routers
and switches should treat different traffic. For IntServ however, Integrated Ser-
vices over Specific Link Layers (ISSLL) is an organ that provides specifications
and techniques for mapping the QoS requirements to the different link layers [4].

As Internet applications become larger and involve larger data transfers, and
as the number of users of each application increases, so does the load on the servers
providing the application. Applications supporting a huge number of users, such
as streaming media, network storage, and large information databases place great
demands on the resources of the application server. There has therefore been
a move from single server environments to applications running on a cluster of
machines. To facilitate this we have in the recent years seen the development of
several new technologies for use in “System Area Networking” and “Local Area
Networking” (SAN/LAN). These technologies include InfiniBand [9], Myrinet [16],
Autonet [28], Tnet [33], and Gigabit Ethernet [58]. Gigabit Ethernet is the only
listed technology relying on store and forward switching, each of the other tech-
nologies rely on virtual cut-through (VCT) or wormhole switching, technologies
supporting a back pressure mechanism. These switching techniques are presented
in Section 2.1.1.

TNet [33] is profiled as a reliable System Area Network for use as an intercon-
nection technology for interconnecting CPUs and peripheral hardware in a cluster.
The technology is based on wormhole switching to achieve bounded worst-case
latencies. Both Myrinet [16] and Autonet [28] rely on virtual cut-through switch-
ing. Similar to TNet, Myrinet is a high-speed interconnection technology for use
in SANs. Autonet is an older LAN technology operating at lower speeds than
Myrinet and TNet. None of the technologies described here support Quality of
Service mechanisms for differentiating traffic, but are instead designed with certain
QoS characteristics, e.g. the bounded latency in TNet.

In a typical client/server transaction, such as a user requesting a media stream
from a multimedia distribution system in the Internet, the distribution system
is typically located in a high-capacity System Area Network that forms a server
cluster. On the client side the user will typically be located on a computer terminal
connected to a LAN, e.g. Ethernet, with the traffic between client and server
traversing several different network technologies over the Internet, see figure 1.
It is crucial that we are able to achieve predictable communication between the
different nodes making up the cluster for a server cluster to operate satisfactorily.
In order for the traffic from the server (in this example a video stream) to receive
the demanded Quality of Service, every network technology step must support
some sort of (unified) Quality of Service mechanism. As DiffServ seems to become

8

the most prominent Quality of Service paradigm for the Internet, it is important
that the “Quality of Service”-mechanism in each network can operate with DiffServ
at the higher level. This is challenged by the emerging SAN/LAN technologies such
as InfiniBand [9] and Gigabit Ethernet [58]. These technologies are equipped with
their own Quality of Service mechanisms for inter-operation with DiffServ or some
other mechanism at the higher level.

Figure 1.1: A typical Internet configuration, client on a LAN, server on a SAN

To ensure the predictability of the interprocessor communication in a cluster,
regardless of the demands on the network, it is necessary to introduce some method
of admission control (AC). The admission control should limit the amount of traffic
in the network, so that the Quality of Service always remains within predictable
limits [68] [74].

As mentioned, most emerging SAN technologies are based on virtual cut-
through switching or other mechanisms supporting back-pressure. The back-
pressure mechanism in virtual cut-through networks complicates achieving pre-
dictable transfers, and we will see in section 3.1 that there have been few contri-
butions in the field of admission control in virtual cut-through networks, none of
which are, to our knowledge, associable with DiffServ.

9

The back-pressure mechanism in virtual cut-through networks makes latency
demands hard to meet. It is therefore necessary to find an admission control
algorithm that efficiently provides latency guarantees to flows in the network.
With the aid of admission control the network should be able to provide absolute
guarantees as to bandwidth per flow/per service level regardless of the amount of
admission requests sent by the hosts.

1.1 Thesis

In light of the situation outlined above, this project aims to propose and evaluate
several admission control algorithms for use in virtual cut-through networks to
achieve per class and per flow guarantees with regards to throughput, latency and
jitter. This will be done in conjunction with a class-based, DiffServ compatible and
thus flow negligent, Quality of Service scheme. The admission control schemes will
be tested in a simulated Infiniband inspired network using the Quality of Service
mechanisms as specified by the InfiniBand Trade Association.

1.2 Readers Guide

This thesis is divided into two parts. Part I describes the current state of affairs in
interconnection networks and argues the need for admission control to be deployed
to achieve better QoS. This is done by introducing the necessary background: in-
terconnection networks, switching techniques, Quality of Service, and the concept
of admission control. Also, InfiniBand is introduced as the technology of choice for
the simulations in this project, and the relevant characteristics of this technology
are presented. The second part starts by presenting several algorithms adapted
from other environments, e.g. Internet. Next, the simulation environment is given,
and finally the obtained simulation results are presented and the proposed algo-
rithms are evaluated.

Part I – Background:
Chapter 2 introduces interconnection networks and the various switching tech-
niques used in these. The different challenges pertaining to such networks are in-
troduced in section 2.1. Section 2.2 introduces the InfiniBand Architecture model,
the architecture used as a technology basis in this thesis. Section 2.3 provides an
overview of the current Quality of Service mechanisms used in the Internet today.
Finally Section 2.4 introduces admission control.

Chapter 3 gives an overview over related work pertaining to Quality of Service

10

and admission control in virtual cut-through networks, before the Quality of Ser-
vice mechanisms available in the InfiniBand Architecture are introduced in Section
3.2 and an introduction to the admission control problem domain is given in sec-
tion 2.4.

Chapter 4 gives criteria for evaluating the efficiency of the admission control al-
gorithms. Section 4.2 discusses admission control in relation to the InfiniBand
arbitration tables.

Part II – Application of Admission Control:
Chapter 5 proposes and describes several admission control algorithms to be eval-
uated in Chapter 7.

Chapter 6 gives an overview of the simulator in Section 6.1, and describes other
simulation specific details in section 6.2.

Chapter 7 presents the target for admission control in Section 7.1. Subsequently
the proposed admission control algorithms are evaluated with regard to throughput
in section 7.2, latency in section 7.3, and jitter in section 7.4 using the evaluation
criteria given in Chapter 4. In Section 7.6 results are presented for an alternative
method for achieving low jitter.

Chapter 8 presents a conclusion to this thesis and further work is outlined in
section 8.1.

Appendixes:
Appendix A contains additional simulation results.

Appendix B contains the papers that have been published/submitted during this
project.

Appendix C contains the source code added to the simulator for this project.

11

Part I

Background

12

Chapter 2

Problem Domain

2.1 Switched Networks and Interconnection Net-

works

In switched networks every device/node in the network is connected to the rest
of the network via a serial line. At the other end of the serial line there may be
another node, a switch, or a network router, the purpose of which are described
below. These nodes, switches, and routers may again be interconnected to other
such devices, forming a large switched network as the one in Figure 2.1.

A switched network may in principle be of arbitrary size. It might consists of as
little as two nodes and a switch, or be a large Wide Area Network (WAN) spanning
a whole city. A special type of switched networks are interconnection networks.
These are System Area Networks interconnecting nodes in a tightly coupled group,
typically a cluster, a parallel computer, or even within the switching fabric of
some switches. Interconnection networks are further divided into two categories.
If every switch in the network is connected to one processor and one or more
other switches, we have what is known as a Direct Interconnection Network [60].
If there are switches that are not directly connected to any processor, such as in
a Multistage Interconnection Network (MIN), the network is termed an Indirect
Interconnection Network [60].

Common for interconnection networks is that they require low latency and
do not tolerate dropping of packets. To inhibit packet dropping such networks
employ a credit-based link-level flow control ensuring that no packets have to be
dropped due to insufficient buffer space. Such a flow control mechanism may lead
to blocking of packets throughout the network, leading to an increased possibility
of deadlocks. This places strict demands on the design of interconnection networks,
and especially the routing protocol to be used.

The process of forwarding data (switching), deciding where to send the data

13

Figure 2.1: A switched network

14

destined for a specific end node (routing) and how to avoid deadlocks is the topic
for the next few sections in this chapter.

2.1.1 Switching

Moving data from one link to another is known as switching, a process most
commonly performed by switches as described above. We will now take a closer
look at some of the more common switching techniques.

Circuit Switching

One of the oldest widespread switching methods is line- or circuit-switching. In
a circuit-switched network, a physical connection between an incoming line and
outgoing line is established so that the traffic in the network may pass effort-
lessly through the switches from the source to the destination [25]. This switching
technique was originally used in telephony networks where a physical line was es-
tablished through the network from the caller to the callee as the caller dialed up
the numbers on the telephone [23]. Nowadays most of this is done digitally and
the telephone switch boards are replaced with microcircuits, but the concept still
applies, there is a dedicated line from the caller to the callee.

There exists several data networks based on this switching principle where a
line is established from the sender to the receiver. Optical networks are switched
networks based on optical fiber instead of electrical wires. Data in optical networks
are represented by light waves, a medium which is difficult to buffer and control.
To avoid the time-consuming process of converting between electrical and optical
signals, many optical switches use a technique based on separating light waves
through multiplexers and demultiplexers to propagate traffic to the correct output
link. In essence the data travels on a continuous optical circuit. An overview
of different optical switching techniques may be found in [67], and a technology
based on optical circuit switching is TeraNet [29]. Another network technology
based on (virtual) circuit switching is ATM [44], a technology developed by the
telecom industry. In this case the circuit switching is done at a slightly higher
level than in optical networks. ATM is basically packet switched (cell switched),
but in order to send data through the network a virtual circuit (VC) has to be
established from the sender to the receiver. The packets are then forwarded based
on a virtual circuit identifier (VCI) present in every packet header. Associated
with each VC is a set of resources which gives the VC the ability to give a certain
Quality of Service guarantee. The result of these mechanisms is similar to that of
having a circuit-switched link through the network.

Given a general packet switched network, it is possible to achieve a form of
circuit switching similar to that used in ATM through the use of IntServ and

15

RSVP. This method is presented in Section 2.3.1.
Circuit switching is a technique well-suited for telephony since there is a re-

served path through the network from the sender to the receiver once the call has
been set up, ensuring that everything said at one end will arrive at the other. This
works well as long as the participant at either end of the line is talking, but if the
participants stop talking to each other without hanging up, the line will still be
reserved without any traffic on it. A reserved line may not be utilised by other
applications and the network resource is therefore wasted [25]. This means that
any other traffic in the network is unable to utilise the resources used by an already
established connection, the resources are effectively reserved. This fact makes it
possible for the network to provide a clearly defined and strict Quality of Service
to the traffic using a given connection at the expense of adaptability.

Packet Switching

In a data network circuit switching is not necessarily an ideal technique since much
of the traffic in such a network consists of short to moderate length bursts of data,
for example, a single web page from the Internet. If the client were to initiate
a circuit to the web server for each web page to be downloaded, and then tear
down the line when the web page is downloaded, a considerable amount of time
would be wasted setting up and tearing down circuits. If, on the other hand, the
client initiated a circuit to the web server and then left it open, even while not
downloading web pages in case another page would be downloaded later, network
resources would be wasted which might be more efficiently utilised by other traffic.
This is where the invention of packet switching gains its importance. Instead of
reserving a line through the network and sending a continuous stream of data over
the line, the data is divided into several packets of a fixed or variable size [25].
These packets are then individually sent through the network leaving the switches
to handle the packets one by one as they arrive and forward them to the correct
destination based on the destination address and other information present in
every packet header. The actual forwarding is done by looking up this header
information in a forwarding table that indicates which output port should be used
for each packet destination. The forwarding table may be statically configured at
system initialisation or by a distributed routing protocol running on the network.
Packet routing will be explained in section 2.1.2.

It is the nature of packet switching that packets from several packet streams
are interleaved (statistically multiplexed) in various ways on different links through
the network. As opposed to circuit switching where the circuit only holds traffic
of that specific connection, packets in packet switched networks may be held back
if there currently are other packets being transmitted on the link it is destined
for. The Quality of Service received by a certain packet stream is thus dependent

16

on the amount of additional traffic in the network, traffic which possibly has no
relation to the stream in question.

Store and Forward Switches differ in the way they treat packets as they are
forwarded through the network. When a packet arrives on an input link the switch
may buffer the whole packet regardless of the state of the output link, or buffer
parts of the packet depending on whether the output link is busy or not.

The traditional switching principle is store and forward switching. When a
packet starts arriving the switch gathers up all data for that packet. Only when
the whole packet has arrived will the switch perform a forwarding table lookup
based on the header information in the packet and possibly perform checksum
calculations to detect packet errors. This requires that the whole packet has to
arrive, be stored in a buffer, processed, and then transmitted. Depending on the
size of the packet it takes some time for it to arrive at the switch and the switch
has to have buffer space for several packets. When the packet’s path through the
network takes it across several switches this might constitute a considerable delay.

Store and forward is the switching principle used in Switched Ethernet. This
gives the switches the opportunity to perform CRC checks and drop bad packets.
Switched Ethernet is an extension of the original Ethernet definition [43], but using
point-to-point links and switches instead of a broadcast medium.

Virtual Cut-Through In an effort to minimise latency through the network
and buffer requirements in the switches a switching method known as Virtual
Cut-Through (VCT) switching was developed [39][25]. Each packet is divided into
small data units called flits, with a size typically between one and several bytes.
When a switch receives the first flits of a packet it gathers them up until it has the
necessary header information to forward the packet to the correct output link if it
is free. As the rest of the flits of the packet arrive, they are forwarded directly to
the correct output link without the need for internal buffering. If it should happen
that the output link is busy when the first flits of a packet arrive, the rest of the
flits are gathered up as they arrive and the packet is buffered as a whole in the
switch. It is then possible to perform error discovery and correction routines if
necessary. The necessity of buffering every packet in every switch is avoided and
the network is effectively speeded up.

In order to ensure that the receiving end of a link does not become overloaded
by the sender transmitting too many packets, VCT networks may utilise flow
control. Flow control is a mechanism for limiting the sending rates of the sender
at one end of the link according to the capabilities of the receiver at the other end
of the link [65]. Typically the flow control mechanism will prevent the sender from
sending packets if there is no buffer space available at the receiver. Note that this

17

flow control is performed at a link by link level, there is no specific end-to-end flow
control involved at the link layer in VCT.

The flow control causing the buffering of packets on a busy output link leads
to a back-pressure mechanism where a queue builds up in switches upstream from
the switch in question, so that a queue forms and causes ripples throughout the
network, affecting the QoS properties of the networks. This effect will be studied
in more detail in section 3.3.2.

Wormhole Switching Wormhole switching is a switching technique that takes
the VCT ideas to the extreme by only providing buffer capacity in the switches to
store a couple of flits [25]. Wormhole switching utilises flow control in the same
manner as VCT switching. When an output link is busy, the current switch only
buffers a few flits of the packet. This blocks the upstream switch which also buffers
a few flits of the packet and so on upstream. The results is a packet that is spread
out over the whole network. This decreases the buffer requirements of the switches
to the bare minimum, but the danger is an increased likelihood of deadlocks since
a single packet occupies resources in several switches. Therefore, and also because
the price of buffer space has decreased, wormhole switching is not widely deployed
today. Deadlocks will be explained more fully in the next section (2.1.2).

While store and forward switching is widely in use today, wormhole switching
and especially virtual cut through switching are the techniques most commonly
used in high-performance interconnection networks.

2.1.2 Routing and Topology Issues

We have seen the many ways in which a switch handles a packet while it consults
its forwarding tables to decide via which link the packet is destined to depart.
The question now is where do their forwarding tables come from. The answer is:
they are built by a routing protocol running on the network. The routing protocol
utilises a routing algorithm. The routing problem is basically how to compute the
forwarding tables for the switches in such a way that a packet is forwarded to its
destination. In order to achieve this, the routing algorithm has to satisfy several
goals. The main goal is of course to compute routes through the network which
ultimately conduct every packet to its final destination. To achieve this the routes
must be created in such a way that a packet will never be forwarded from switch
to switch, in a loop, without ever reaching its destination. Such a loop is called
a “livelock”. Packets are continuously forwarded through the network, but the
packets never reach their destination. Livelocks are difficult to discover since the
network seems to operate correctly. The difficulty of creating livelock-free routes
depends on the complexity of the network topology. In a network with a regular

18

topology the nodes and switches are interconnected in well defined and well known
patterns, such as Multi-stage Interconnection Networks (MIN) [60]. It is possible
to use the knowledge of the well defined patterns to build loop free and shortest
path routes. Networks with irregular topologies on the other hand are a much
bigger problem, they require a generic routing algorithm which is able to handle
any type of network topology. Ad hoc networks are typically irregular networks,
there is no plan or system behind the network connections. Regular networks
which are expanded in some direction might become irregular, as do networks in
which a node or a link fails. There has been done much research in the area are of
routing in irregular networks, and several generic algorithms such as Up*/Down*
routing [55], Destination Renaming [48], and Layered Shortest Path (LASH) [64]
have been developed. Also refer to [49] for another method for achieving adaptive
routing in cut-through networks.

Other properties of routing protocols are their adaptability and tolerance for
faults. A fault tolerant routing algorithm detects network errors such as a link
fault or other topology changes, and rebuilds the forwarding tables to avoid the
problem. An adaptive algorithm will try to balance the load on the network, that
is, when there is much traffic on one link and less traffic on another link, some of
the traffic from the heavily loaded link may be moved to the lightly loaded link.

The Deadlock Problem

In switched networks links and buffers are shared resources with packets competing
for access to them. In store and forward and VCT, the critical resources are buffers
since a packet is buffered when it encounters a busy link. As in all cases involving
critical resources a deadlock is also possible here. A deadlock occurs in this case
when several packets are holding a resource, a buffer in one switch, and requesting a
new one, a buffer in another switch, forming a cyclic dependency. This is illustrated
in Figure 2.2. The figure shows four switches organised in a ring, each switch has
a link to the next one. The buffer space in each switch is occupied by a packet
waiting to be transmitted on the link to the next switch forcing the packet in the
previous switch to be held back. A circular dependency between the packets in the
different switches is therefore formed. The situation in Figure 2.2 may be described
in terms of a Channel Dependency Graph (CDG). A Channel dependency graph
is a graph illustrating the dependencies between different channels in a network.
A possible deadlock is characterised by a cycle in the CDG.

There are two different ways of handling the deadlock problem [23].

• Deadlock recovery

• Deadlock avoidance

19

One approach is deadlock recovery where one tries to recover from a potential
deadlock situation by, for example, introducing time-out on the packet forwarding.
When the timer expires and the packet has not yet been forwarded, the packet
may either be dropped or for example sent out on a free link to let it continue
to its destination from there [60]. Although such schemes work it is difficult to
detect all deadlocks correctly and then recover from them. It is important that
no deadlocks remain undetected, and that few false deadlocks are detected. The
detection of deadlocks often rely on timeouts, values which are very difficult to set
in such a way as to operate most efficiently.

The most commonly used technique is deadlock avoidance. In this case the
routing protocols calculate the routes in such a way as to avoid the cyclic depen-
dencies that otherwise might cause a deadlock.

Figure 2.2: Deadlock in a packet switched network

2.1.3 Scalability

A switched network can be scaled to increase its size by adding switches and
links to the network. As it becomes necessary to add more nodes to an existing
network each node has to be connected to the network through a new link and
possibly through new switches if all the available switches are in use. Adding
additional links and switches to the network will increase the network’s theoretical
data transfer capacity, but the actual throughput from the network is not increased
to the same extent. Each individual link is still only able to support the same

20

transfer rate, and as the number of nodes in the network increases so will the
amount of data crossing some links in the network. Depending on network topology
and traffic distribution, some links experience an increase in traffic as the number
of nodes in the network increases, while their capacity remains the same. This
means that in most cases the actual capacity of the network and the load put onto
the network by the processors does not have an equal growth rate. Consequently
there is a limit to the capacity of a network which is expanded solely by branching
out with new links and switches. The scalability of the network throughput is
limited.

As the number of nodes in the network increases so does the number of ad-
dresses the network must be able to route packets to. If every switch should have
listed the output port to use for every node in the network, the switches would
quickly use a vast amount of space to hold the information. The network size is
thus limited by the method used for assigning addresses and organising the net-
work forwarding. The size of the network also influences the time spent on building
the routing tables [23].

We will see in Section 2.3.1 that the choice of Quality of Service mechanism may
also affect the expandability of a network. Quality of Service mechanisms which
require a certain amount of information in the network depending on the amount
of network traffic will not scale as well as mechanisms which have a constant
amount of information stored in the network components regardless of the amount
of traffic [47].

For a network to be scalable, every component of the network should operate
with an efficiency unrelated to the amount traffic in or the size of the network.
This means that the amount of information stored in the network nodes should
not increase (much) as the size of the network increases, and that the time spent
performing critical tasks should remain low [23].

2.2 InfiniBand

InfiniBand is a newly specified serial-line switched network technology. The spec-
ification has been developed by the InfiniBand Trade Association, an association
which is supported by several large technological companies including IBM, Intel
and SUN [8]. The InfiniBand Architecture (IBA) is an interconnection network
intended for use in System and Local Area Networks. It is basically a layer 2
technology, but it also specifies higher layer protocols. The switching principle
used in IBA is VCT with the addition of a Quality of Service mechanism built into
the switch architecture. These properties make IBA a good choice for the network
architecture to be used in this project; it supports QoS mechanisms and relies on
VCT, giving us the opportunity to evaluate the degree of QoS guarantees that

21

may be achieved in such networks through the use of different admission control
schemes.

2.2.1 Elements of an InfiniBand Network

As a serial line switched network an InfiniBand network is comprised of several
major components. In the following paragraphs the main components of IBA as
they are described in [9] will be presented.

Links

Every network is dependent on what links the different components of the network
together. According to the specification of InfiniBand[9] an InfiniBand network can
support both twisted pair and optical cable. The bandwidth of each link is specified
to be 1.2 Gbps. Additionally, IBA offers the option of combining several such links
in parallel configurations of 4 and 12 links with the respective bandwidths of 10
Gbps and 30 Gbps. A link may be divided in up to 16 logical channels, called
Virtual Lanes (VL). Each virtual lane has separate send and receive buffers at
both ends of link. VL 0 is always required to be present as the basic data VL, a
virtual lane for ordinary network traffic. Each link must also support VL 15 which
is reserved for management traffic as described later on in Section 2.2.1.

Switches

Switches are one of the types of network nodes the links interconnect. The main
purpose of an InfiniBand switch is to accept incoming packets, inspect the header,
perform a forwarding table look-up, and forward the packet on to the correct
outgoing link in a way that brings the packet closer to its final destination. In order
to achieve this the switch looks at a part of the packet header called the Local
Route Header (LRH). Every InfiniBand network component; switches, nodes, and
routers, are identified by a Local Identification (LID). In addition to this every
switch has a forwarding table constructed by the Subnet Manager (SM), to be
described below, in which the correct outgoing link for every LID in the subnet is
listed.

A switch has three built in Quality of Service mechanisms: a service level to
virtual lane mapping table, two arbitration tables, and a Limit of High-Priority
(LHP), all of which will be described in Section 3.2. The specification states that
the switches in an InfiniBand network should operate as VCT switches as described
in section 2.1.1. Thus if a packet is delayed in a switch, packets will queue-up in
every switch upstream until the end-node is prohibited from sending. The switches
shall not and cannot drop packets.

22

Flow control At the link level InfiniBand utilises flow control in order to prevent
packet loss at the receiving end of a link. This is done by using a strict credit based
scheme in which a packet is sent out on a link only if there is available credit for
that particular receiver. The flow control operates on a VL by VL basis and there
is no end-to-end flow control specified. The terms sender and receiver correspond
to the sending and receiving side of a physical link. Every node and switch in
the network keeps track of the total amount of data that has been sent since link
initialisation. The receiver uses this information to send credits back to the sender
indicating the additional amount of data it is allowed to send. The receiver will
continue to send more credits to the sender as long as it has available capacity in
its buffers. In this way, when a receiver’s buffer is full, the sender will be blocked
from sending new packets to the receiver. The sender will then quickly fill up
its own buffers and stop providing credits to the nodes sending to it. In this
way blocked packets will lead to packets being blocked in the upstream switches
(switches sending data to the current switch). This behavior continues in a chain
reaction ultimately forcing the sender to cease sending packets into the network.
This mechanism is known as the back-pressure mechanism, which is illustrated in
Figure 2.3. Two packets are destined for the same link. One is forwarded and link
1 is blocked. This leads to a blocking of link 2, which further leads to blockages of
links 3, then 4, and so on, even though the packets are not en route to the same
destination. One of the level 3 packets may be destined for link 5, but is affected
by the back-pressure nonetheless.

Figure 2.3: A figure illustrating the back-pressure mechanism in VCT networks

23

Hosts

Hosts are computing nodes producing and consuming network packets. There is
also a small amount of traffic generated by the switches in order to perform flow
control, but this is just in order to ensure that the nodes do not overflow parts of
the network with too much traffic.

At the transport layer, between nodes, communication takes place between
queue pairs (QP). A QP consists of both a send work queue and a receive work
queue. With these QPs InfiniBand supports five transport service types: reli-
able or unreliable connection, datagram, raw IPV6 datagrams and raw EtherType
datagrams. The architecture supports up to 264 QPs per channel adapter.

Subnet Managers

The subnet manager is the control-center of a subnet. The main purpose of the
subnet manager is to discover the network topology, perform routing and construct
forwarding tables for every switch in the network. The IBA specification [9] leaves
many of the implementation specific aspects of the subnet manager unspecified.
In [12] the authors present a subnet management mechanism for use in IBA, a
mechanism including among others, methods for topology discovery and updating
the switches’ forwarding tables.

Routers

Routers are used to link several subnets together. In addition to its LID, every
network component has a unique Global Identification (GID) which is used when
routing between subnets. It is the responsibility of the router to translate the GID
into a LID in one of its local networks, or forward the packet to the appropriate
router if the GID is not present in the local subnet.

2.3 Quality of Service in Internet

The Internet is one of the largest and most diverse packet switched networks in
existence today. It spans the entire globe with millions of connected computers
creating a huge international network for transporting information and data all
over the world. Internet is a network layer concept built upon a large diversity
of link layer technologies. Many of the link layer technologies are based on the
switching principles presented in section 2.1.1. The QoS concepts for Internet
described further down must therefore co-operate with the QoS mechanisms, if
any, of the link layer technology.

24

The Internet structure is based on a best-effort model where as little infor-
mation and as few guarantees as possible should be present in the core of the
network. The forwarding of packets through the Internet is done using the Inter-
net Protocol (IP), a best-effort protocol giving no guarantees as to packet delivery.
The end nodes should have all the intelligence necessary to ensure safe delivery
of data across the Internet. This means that the basic operation of an Internet
relay/network node is to forward received packets if possible, without guaranteeing
that the packet will ever reach its destination. Because of this lack of guarantee
from the network, it is up to the transport layer protocol residing at the end nodes
to give the illusion of a better Quality of Service than Internet really provides.
There exist today basically two transport protocols for ordinary computer traf-
fic: the Unreliable Datagram Protocol (UDP) and the Transport Control Protocol
(TCP). UDP is a connection-less protocol which gives no further guarantees than
the Internet protocol itself, packets may get lost or reordered along the way. TCP,
on the other hand, is a connection-oriented protocol able to guarantee packet de-
livery in correct order end-to-end using timeouts and retransmissions as long as
there is an end to end connection. It is, however, not able to give any guarantees
as to bandwidth or latency through the network [31].

2.3.1 End-to-End Quality of Service

Achieving the ability to give Quality of Service guarantees in the Internet is a much
sought-after goal [68][74]. An increasing number of companies use the Internet as
part of their daily business transactions, IP telephony and video on demand are
rapidly growing fields and online gaming also shows a rapid increase. Each of these
applications require a particular level of service from the Internet with respect to
packet loss, bandwidth and latency/jitter. This is complicated by the fact that
Internet is basically a best-effort network, with no guarantees as to how packets
will be treated. One domain may offer the packets an extremely good service while
another domain may drop many packets and impose huge delays on the packets
which make it through. The Quality of Service perceived end-to-end is not much
better than the worst Quality of Service received in any of the domains along the
path. This makes it almost impossible to give any sort of guarantees as to how
data traffic will be serviced in the Internet.

Attempts have been made to give QoS guarantees in Internet. IntServ and
DiffServ are the two main QoS concepts for use in Internet put forward by the
IETF (Internet Engineering Task Force). They represent two widely different
viewpoints of QoS in switched networks. Each of these two concepts are presented
below.

25

IntServ

In conventional packet switched networks, several flows may share the same physi-
cal link and buffer space. This makes it difficult to service different flows individu-
ally; there exists no mechanisms for treating one flow differently from another. In
line- or circuit-switched networks this is not a problem since every flow has its own
dedicated line through the network which is allocated a certain amount of band-
width. Furthermore, no packet loss can be guaranteed as long as the transmitting
end of the line does not exceed its allocated bandwidth, and the flow receives
Quality of Service.

An intuitive way of providing Quality of Service in a packet-switched network
would be to emulate circuit-switched networking. This is the basis for the In-
tegrated Services (IntServ) [17] Quality of Service paradigm. The idea behind
IntServ is to emulate circuit-switched networks by reserving a certain amount
of the resources in every switch and router for each flow from source to desti-
nation [17][71]. Such a reservation may be a certain priority for the packets if
the switch or router supports priority scheduling, a certain amount of minimum
bandwidth on the outgoing link, no packet dropping, and so forth. A reservation
message is sent through the network along the path the flow will follow to set
up the reservations in the network. A specific protocol has been developed for
this purpose, the Resource Reservation Protocol (RSVP) [71]. RSVP is a receiver
oriented reservation protocol in that it is the receiver that initiates the reservation
of resources in the network. First, a PATH message is sent through the network
to potential receivers, typically using multicast. The receiver then responds with
a reservation message (RESV) which reserves resources on its way to the source
of the PATH message. Every network node along the path of the reservation mes-
sage through the network reads the reservation message and tries to reserve the
resources specified. If the reservation in a node is unsuccessful, a message is sent
back to the receiver indicating that the reservation failed, terminating the reserva-
tion process. If the reservation is successful, the reservation message is forwarded
to the next hop on the path and the process is repeated. The reservations are
associated with a timeout function. This makes RSVP a soft-state reservation
protocol forcing the receiver to periodically update its reservations in the network.
In case the sender should stop sending packets the reservation will eventually time
out and be deleted from the network. Upon completion of a transaction using a
reservation, a tear-down message is sent through the network to free the reserved
resources.

In order to classify what kind of behaviour each packet should receive on enter-
ing a router, the router has to determine to which flow the current packet belongs.
This is found through a combination of several fields in the packet header like
source address, destination address, transport protocol, and port number. This

26

classification has to be done at every router/switch to provide differential service.
The classification is a time-consuming process imposing unnecessary delay on the
network traffic. The move towards IP version 6 (IPv6) [3] will avoid this problem
since the packet header has a specific flow label for this purpose.

A scheme like this requires that every node in the network has information
about every flow passing through it. As the network size increases the number of
flows through each node in the network increase, and so does the amount of stored
state information. Additionally there is an overhead associated with reserving and
tearing down the resource reservations. As discussed in Section 2.1.3 this breaks
one of the properties of a scalable network: the amount of information stored in
the network should be independent of the amount of traffic (number of flows) in
the network.

The result is a Quality of Service scheme which is able to give very specific
guarantees to each individual flow, but does not scale very well.

DiffServ

Realising that per flow state information in every node in the core of the network
does not scale very well, Differentiated Services (DiffServ) [14] was developed in
an attempt to push the complexity to the extremities of the network, much in
accordance with how the Internet is designed [14][71]. Instead of reserving re-
sources for each flow in every core node in the network, the traffic is divided into a
certain number of classes: Expedited Forwarding (EF), Assured Forwarding (AF)
and Best Effort (BE). The core nodes are configured to provide different service
to the different classes. Each class has several attributes associated with Quality
of Service defining the Per Hop Behavior (PHB) of that class. The PHB defines
the treatment of the packets associated with it. This includes giving the packets
a certain priority in the routers and switches, allowing them a certain portion of
the link bandwidth and specifying to what degree packets may be dropped.

To facilitate the different PHBs the switches and routers in the network have
to support certain mechanisms for differentiating packet treatment. For instance
the service classes associated with the different PHBs should have separate queues.
This gives the router/switch the opportunity to treat the service classes differently
by giving the packet queues different priorities.

A mechanism for achieving the desired variation in treatment of the packet
queues is Weighted Fair Queuing (WFQ). WFQ is a packet scheduling technique
which assigns portions of the outgoing link’s bandwidth to the different packet
queues relative to their priorities. The EF class provides low delay and low jitter
by using a queue with high priority. AF is divided into several classes with differ-
ent properties, offering higher-priority classes lower drop rates and higher queue
priorities than ordinary best effort traffic.

27

Instead of having information about every flow, the core nodes of the net-
work are required only to hold information about a fixed number of service classes
regardless of the number of flows in the network. The packet differentiation, de-
ciding what service the different packet should receive on entering a network node,
is done through reading the the DSCP (Differentiated Service CodePoint) field in
the packet header indicating which service class the packet belongs to. The DSCP
field is set either by the sender, assuming that the sender has information about
the different service classes available in the network and has permission to use
them, or by the ingress router to the network if the packet comes from another
network.

There is a clear distinction, as can be seen in Figure 2.4, between boundary
nodes at the perimeter of the clouds, and interior nodes in the center of the clouds
in a DiffServ domain. The boundary nodes in the DiffServ domain classifies and
marks packets with the appropriate DSCP value. This is a function that requires
time and computational resources which are not available in the interior nodes.
The task of the interior nodes is to forward packets and treat them based on the
DSCP field in the packet header.

Figure 2.4: Two DiffServ domains, each controlled by a BB. Clients and servers
connect to the boundary nodes, data is forwarded efficiently in the interior.

28

In order for an application to utilise the different service classes present in a
DiffServ domain, the sender must have a Service Level Agreement (SLA) with the
domain in question. This agreement specifies what kind of service the packets
from the specific sender should receive and is used by the ingress router to mark
the packets from that sender correctly. The SLA information may be located at a
Bandwidth Broker (BB), a host in the DiffServ domain with information about the
service level agreements and the current traffic through the domain. The BB is not
a necessary part of a DiffServ domain, but it may often be included to function as a
admission control mechanism and a resource controller ensuring that a party with
which it has a SLA does not send more traffic than specified. Figure 2.4 illustrates
the integration of a BB into a DiffServ domain. The figure shows how the boundary
nodes communicate with the BB when it receives a QoS requests. When the client
sends traffic to the boundary router, the boundary router communicates with
the BB to ascertain whether the client has a SLA with the DiffServ domain and
whether the traffic may be admitted. The boundary router receives the response
with the appropriate service class and marks the packet accordingly. The packets
are then forwarded through the interior nodes based on the destination and the
DSCP field. Upon entering a new DiffServ domain the boundary router of this
new domain must perform a similar communication with its BB before forwarding
the traffic.

This scheme is not able to give any per flow guarantees. The guarantees given
by the different service classes are relative to the other service classes. This means
that a service class is not able to give an absolute guarantee as to latency, jitter,
and so forth, it can only guarantee a service no worse than that of the service
classes with lower priority. This is only partly true. If the EF class has much
traffic and the AF class has little, it might be conceivable that the traffic in the
AF class receives better QoS, e.g. drops fewer packets, than the traffic in the EF
class.

Having too much traffic in the EF class will degrade both the performance of
every flow in that class and every service class below. Entering too much traffic
in a lower service class will not degrade the service perceived by the flows in the
higher classes to the same extent. This scheme achieves high scalability at the
cost of no flow level control and seems to be the only viable option with regard to
achieving Quality of Service in large-scale networks.

The deployment of DiffServ and IntServ, possibly in some combination, might
be able to correct the lack of QoS in Internet if it is ever possible to unify the QoS
mechanisms in Internet by implementing a global Quality of Service scheme [68].
The combination of DiffServ and IntServ may be achieved by using DiffServ in the
core of the Internet, the backbone, where there are large amounts of traffic requir-
ing high-speed mechanisms. IntServ may then be used in the endpoint networks

29

offering precise control over local traffic.

2.3.2 Heterogeneous Networks

One of the main reasons for the lack of guarantees from the network layer in Inter-
net is the diversity of the hardware that makes up the network, its heterogeneity.
Internet is built up from many autonomous domains which are created and man-
aged by separate organisations [68]. The rest of the world may not necessarily
have any information about the hardware used in a particular domain; it could be
Ethernet, Token Ring, ATM or others, each with its own properties as to latency
characteristics and packet dropping. It is therefore not safe to assume anything
about the kind of service that the traffic through any arbitrary domain will receive.

Many of the link layer technologies that make up the Internet provide different
QoS mechanisms, if they provide any at all. Supposing a flow has an end-to-end
Quality of Service request, that request needs to be mapped to every QoS mech-
anism present in the link layer technologies traversed by the flow. This requires
vertical integration between the high-level and low-level QoS mechanisms [30], but
many low-level QoS mechanisms are not associable with the high-level IETF QoS
concepts such as IntServ and DiffServ.

Additionally the various QoS mechanisms must be able to inter-operate in
such a way that the different networks using different link layer technologies may
provide similar QoS. This is known as horizontal integration [30]. Both types
of integration are necessary to be able to provide a unified Quality of Service
throughout the Internet.

The IETF has developed a method for seamless integration of heterogeneous
networks, i.e. a method for horizontal integration. This approach consists of a
protocol called Generalized Multiprotocol Label Switching (GMPLS) [34] and is
described below.

2.3.3 MPLS/GMPLS

GMPLS is a generalisation of Multiprotocol Label Switching (MPLS) [69], a label
switching protocol developed for use in packet switched networks to provide a
common forwarding method for ATM, Frame Relay and IP [34]. It allows the
use of a uniform protocol for data forwarding in a larger variety of link layers,
technologies based on time domain multiplexing (TDM), Lambda switching (LSC)
and Fiber Switching (FSC) in addition to ordinary packet switching [34]. As with
MPLS, GMPLS provides a forwarding label which is independent of the packet’s
network layer header and any specific routing function. Depending on the link
layer technology this label may be a number, a specific wave-length, a time slot,
or information encoded in another way which is easily accessible for the switches,

30

making the switching action as efficient as possible. For example, in an optical
network the labels are light-bursts at specific wave-lengths which may be easily
switched by optical switches. When a switch/router receives a packet with a
specific label, it uses the packet’s label and input port to determine the output
port and the label to be used on that hop, much as in MPLS [69].

When a new flow is initiated a label switched path (LSP) through the network
is set up and the flow is assigned a label for use in the first network. When the
flow reaches a new network, the flow is assigned a new label for the new network
of the type that network supports. Several flows destined for the same destination
in the local network may be bundled and assigned the same label, reducing the
need for label information in the switches. GMPLS supports tunneling of packets
through another network technology (at a higher hierarchical level) with a larger
multiplexing capability (the capacity to aggregate more LSPs on one link), so that
the packet emerges another place in the original network technology by providing
for hierarchical LSPs[11, 10]. A new label is then added to the packets entering the
higher hierarchical level, aggregating several LSPs together. The label is removed
as the packet emerges to the lower hierarchical level, demultiplexing the LSP[10].

Setting up the paths and assigning labels is done by a special label distribution
protocol which operates together with the routing algorithm[11].

GMPLS leads to efficient transportation of for example IP packets over various
link layer technologies, and it also provides for service differentiation in the process
of setting up the LSPs.

2.3.4 Quality of Service in Switched Networks

IntServ and DiffServ are two high level IETF QoS concepts. They focus on how
traffic may be classified and at which resolution the Quality of Service should be
provided. They do not, however, specify in what way the Quality of Service should
be realised in the lower layers such as the link layer. The link layer requires specific
mechanisms for treating packets differently based on some sort of classification, ei-
ther per flow (IntServ) or per class (DiffServ), for example WFQ described above.
This has led to the development and implementation of several QoS mechanisms
which vary greatly in the way they provide quality of service. As noted in Sec-
tion 2.3.2 the parameters of the different QoS mechanisms are not easily mapped
from one mechanism to another. Little attention has been given to this vertical
integration of QoS concepts.

InfiniBand is an example of a VCT network technology with a specific QoS
implementation. Although it may not inter-operate well with other link layer QoS
mechanisms, the QoS mechanisms implemented in IBA are designed for coopera-
tion with higher level QoS concepts. The QoS mechanisms present in IBA will be
presented in chapter 3.2.

31

2.4 Admission Control

Admission control is the act of restricting the admittance of a new flow into a
network when the acceptance of the new flow would cause the network to not be
able to satisfy the service commitments it has already undertaken [35].

Regardless of the complexity of the QoS mechanism, the QoS received from a
network depends upon the amount of traffic to receive that particular QoS. In
both the IntServ and DiffServ QoS paradigm Quality of Service is dependent on
the traffic of that “service level”. If a flow with reserved resources in IntServ was to
increase its sending rate, the service given each individual packet will be degraded.
Packets will be delayed longer in each switch and the switches’ buffer capacity may
be insufficient for the amount of traffic, forcing further delays or packet dropping.
This situation is avoided by having the switches deny reservation requests if there
is insufficient resources to accommodate them. The client wishing to increase its
flow bandwidth is hindered, avoiding too much traffic in the network. The mecha-
nism in operation here is known as admission control. DiffServ on the other hand
does not have such an admission control mechanism, with the exception of the
optional BB. If any client increases the packet rate of a flow this will affect the
quality of service received by the other flows in that service class and the service
classes with lower priorities. The addition of the optional BB gives DiffServ the
ability to perform a general form of admission control.

As more and more SAN technologies arrive with their own QoS mechanisms it
is natural to also extend the concept of admission control down to the link layer.
Neither DiffServ nor IntServ specify exactly how QoS and admission control is
to operate on the link layer. If the network technology offers these mechanisms
they may be used in a DiffServ or IntServ context. The application of both QoS
and admission control at the link level will provide a good framework on top of
which to build end-to-end large-scale Quality of Service schemes such as IntServ
and DiffServ in the Internet.

A network usually employs an admission control algorithm to perform the ad-
mission control. Whenever a node has a flow it wishes to start sending through the
network, the admission control algorithm activates and checks to see if admitting
the new flow would reduce the Quality of Service offered to the flows already ad-
mitted to an unacceptable level. There are a number of ways to perform admission
control, some of the differences being in which part of the network the admission
control decision is being made, according to what criteria the decision is being
made and so on. Chapter 5 will present and describe different admission control
algorithms that may be applied to a VCT network.

The following chapter presents the QoS mechanisms present in IBA. Further-
more it discusses some aspects of admission control related to VCT and the de-

32

scribed QoS mechanisms.

33

Chapter 3

VCT Quality of Service

Users are typically greedy. They post requests for data and try to gain as much
bandwidth from the network as they are able to. It is therefore necessary to
have some sort of QoS mechanism combined with Admission Control (AC). There
exists several interconnection network technologies for use in SANs, LANs and
Cluster Networks, many of which use VCT as the switching technique. As stated
above, InfiniBand is such a communication technology which might be used as a
interconnection network technology for server clusters, it utilises VCT switching
and contains support for Quality of Service at the lower network levels, e.i. at
the link level. What is missing from the technology and the many other VCT
switched technologies with regards to Quality of Service is a reliable admission
control scheme.

This chapter first presents an overview of the previous work done in the field
of Quality of Service and admission control in VCT networks. The chapter is
continued by presenting the various Quality of Service mechanisms in InfiniBand,
describing the concept of admission control and concludes with explaining why it
is difficult to achieve predictable transfers in VCT networks.

3.1 Related work

This section will present an overview of the work done with regards to Quality of
Service and admission control in System Area Networks.

With the emergence of SAN/LAN technologies such as InfiniBand [9], Myrinet [16],
Autonet [28], Tnet [33] and Gigabit Ethernet [58] some work has been done in the
field of Quality of Service and to some extent admission control in these types of
networks.

Switched Ethernet is not a SAN technology as such, but rather a LAN tech-
nology. The switches in Switched Ethernet may be equipped with a priority mech-

34

anism to support a certain degree of Quality of Service differentiation of network
traffic. This mechanism includes several queues and priority tagging of packets
to achieve traffic differentiation as is specified in IEEE 802.1p [37]. For Switched
Ethernet several bodies of work have been presented that analyse the delay char-
acteristics of the technology. In [36] the authors concentrate on the latency charac-
teristics of a Switched Ethernet network, whilst in [62] and [37] the authors focus
on the deterministic properties displayed by the priority mechanisms present in
such networks.

Switcherland [26] is a switching technology for use in SANs. As many other
technologies it is based on point-to-point links interconnected by VCT switches.
The technology relies on a fixed packet size and uses separate queues in the switches
to provide different service to CBR and VBR traffic in combination with rate-
based flow-control for CBR traffic and credit-based flow-control for VBR traffic.
The technology is optimised for low latency by building the switch and managing
queues in such a way as to minimise the maximum packet latency in each switch.
Additional speed gains are achieved by assuming that nodes are well behaved,
avoiding the need for admission control.

In relation to the InfiniBand Architecture several bodies of work have been
presented suggesting methods of utilising the Quality of Service mechanisms sup-
ported by this technology. Some of the articles presented below include some
sort of admission control in their systems, but as we shall see, these methods of
admission control are not necessarily applicable to real-life networks.

In [46] Pelissier gives a presentation of the different Quality of Service mecha-
nisms present in the InfiniBand Architecture and shows how these may be used to
enable support for DiffServ over IBA. He divides traffic into four classes, one sup-
porting time sensitive traffic which is mapped to a virtual lane in the high-priority
table. The rest of the traffic is mapped to virtual lanes in the low priority table,
thus giving the best service to the time sensitive traffic. Pelissier does not specify
the way in which the different virtual lanes should be weighted in order to achieve
the correct differentiation between the service levels.

The work is carried further by Alfaro et al. in [6] and [7] where the authors
in [6] define a method for calculating the arbitration tables for the low priority
virtual lanes based on the bandwidth requirements of the traffic assigned to the
service levels mapped to the different virtual lanes. In [7] the authors include time
sensitive traffic into the scheme from [6] . The time sensitive traffic is assigned to a
virtual lane in the high-priority table just as in [46] and the worst case latency for
this high-priority time sensitive traffic is calculated for several switch architectures.
The authors conclude by performing simulations showing that all time sensitive
traffic traverses the network with latencies below the worst-case calculations.

Common for these three contributions is that they imply some sort of admission

35

control mechanism in the network in order to avoid overloading the network and
thus degrading the Quality of Service received by the flows. Furthermore, none of
the authors specify what type of admission control is needed or indeed have any
detailed description of an admission control algorithm. The authors of [6] and [7]
assume the presence of an admission control algorithm modifying the contents of
the arbitration tables of every switch affected by the arrival of a new flow. This is
a time-consuming process and not compatible with DiffServ. Methods relying on
run-time modification of the arbitration tables in the switches are further examined
in section 4.2.

In [51] Skeie et. al analyse the effect of a DiffServ inspired Quality of Service
concept applied to VCT networks. The network on which they perform the simu-
lations relies on the QoS mechanisms specified by IBA as described in Section 3.2.
The authors show that the InfiniBand Quality of Service mechanisms are able to
differentiate the traffic with regards to throughput. The authors also state that as
long as the network operates below the saturation point, the configuration of the
InfiniBand arbitration tables and the limit of high priority is nearly insignificant
for the throughput of each flow. On the other hand, when the network reaches
and passes its saturation point the throughput of the different service levels is
dominated by the Quality of Service mechanisms. Another finding is that low
latency and especially low jitter is hard to achieve in back-pressure networks such
as InfiniBand. It is shown that the maximum possible latency of a packet grows
exponentially as the packets path through the network increases in length, and
methods for calculating the maximum latency are given.

A body of work giving a more thorough description of an admission control
algorithm to be used in an InfiniBand environment is [73]. Here the authors pro-
pose one method for admission control and one method for congestion control.
They show how these two methods cooperate in a wormhole-switched InfiniBand
network to keep the network traffic at a level at which the Quality of Service char-
acteristics are better than without them. The admission control algorithm is based
on per flow bandwidth reservations in every switch/router in the network. This is
done through the use of setup and tear-down messages much in the same way as
in IntServ [17]. This method requires both per flow signaling and recalculation of
the arbitration tables used in the weighted round-robin scheduler and is therefore
not very scalable nor in accordance with DiffServ.

To the best of my knowledge there has not been published any previous work
regarding admission control in VCT networks and therefore no detailed admission
control algorithm for virtual cut through networks has yet been proposed.

After this brief summary of related work, the question remains to be answered:
how does one perform admission control efficiently in a virtual cut through net-
work whilst adhering to the DiffServ philosophy? It is apparent that some sort of

36

admission control is necessary in order to guarantee a certain level of Quality of
Service. It is also seems like no previous work has been done regarding admission
control in VCT networks.

3.2 Quality of Service in IBA

What follows is a description of the QoS mechanisms available in IBA as they are
presented in [9]. There are three mechanisms in InfiniBand for Quality of Service
differentiation. First there is the service level to virtual lane mapping table. Second
is the virtual lane arbitration tables, and third, the Limit of High-Priority (LHP).
All of these mechanisms and how they interrelate is described below.

Service level to virtual lane mapping An InfiniBand packet may be sent at
one of 16 Service Levels (SL). On which SL a specific packet is to operate is decided
at the sending node, possibly with some communication with the subnet manager.
The definition of what type of service a specific SL offers may vary from network
to network. The purpose of the SLs becomes clear when we look at the SL to VL
mapping table which exist in every switch, Host Channel Adapter (HCA), and
router in an InfiniBand network. The goal of these tables is to map a packet’s SL
to the VL which is to be used on the next hop. As mentioned earlier, each network
component may have a different number of VLs, and so the SL to VL mapping
table may also vary from switch to switch. Examples of what service is expressed
in a given SL might be a minimum bandwidth guarantee, delay guarantee, and so
forth. The SL to VL mapping table must set up so that each SL is mapped to the
VL which in the current switch has the right priorities/properties in order for it
to fulfill the requirements of the service level. The properties of VLs are described
in the next section.

Arbitration tables If nothing else was said one would expect that each Virtual
Lane would receive an equal amount of bandwidth on the link. One may then
raise the question: “So what is the point of virtual lanes?”

The VL serves three basic purposes:

• To be used for solving the deadlock problem

• Increase throughput

• Provide for service differentiation

It is possible to exploit the existence of VLs in a routing algorithm to avoid dead-
locks. Recall form Section 2.1.2 that deadlocks occur when packets occupy buffers

37

when waiting for available buffer capacity in another switch, forming a cyclic
dependency. Having several VLs may be utilised by assigning routes between dif-
ferent source/destination pairs to different VLs. If a particular assignment causes
cycles in the channel dependency graph, a source/destination pair may be moved
to another VL to break the cycle. LASH [64] and Up*/Down* combined with
VLs [54] are examples of a routing algorithms using several VLs to avoid dead-
locks. A short description of LASH is presented in Section 6.1.4. As to increased
throughput, each VL is associated with its own set of send and receive buffers.
The blocking of packets in one VL will not affect the packets in the other VLs.
This contributes to increase network throughput by allowing more efficient link
utilisation.

In our context the role played by the VLs in providing service differentiation is
perhaps the most important. The separation of traffic into VLs makes it possible
to treat various packet streams in different ways by controlling the service given to
each VL. The service received by a VL is controlled by the arbitration tables. Every
switch has two arbitration tables, one high-priority table and one low-priority
table, with the high-priority table being able to preempt the low priority table.
The entries in both the high-priority and low-priority table consist of a VL number
and a weight, with a value from 0 to 255, indicating the number of 64 byte-units
which may be transmitted from that VL when its turn comes. The decision as
to which VL’s turn it is may be done in a Round Robin fashion. The tables may
have up to 64 such entries which means that the VLs may be listed several times
in order to increase the overall weight of the VL.

Limit of High-priority There is a Limit of High-Priority Counter (LHPC)
which counts the number of bytes sent from the high-priority VLs between each
packet from low-priority VL. It is initsialised to 4096 * LHP. The LHP may have
a value between 0 and 255. This sets a limit on how many bytes may be sent from
the high-priority table before an entry in the low-priority table has to be serviced.
The LHPC prevents the virtual lanes in the low priority table from being starved.
As long as LHPC > 0 a packet may be sent, even if the remaining value of LHPC
is less than the packet size. If LHP = 255 the high-priority arbitration table
always preempts the low-priority table, there is no guarantee against starvation of
the low-priority traffic.

In essence this is a combination of preemptive scheduling and Weighted Fair
Queuing, with the high-priority table preempting the low-priority table, and with
WFQ used within the tables. On top of this VL 15 always has top priority, it
preempts any other VL.

This technique allows us to give quite firm guarantees on some VLs by putting
them in the high-priority table without stopping flows in the low priority table and

38

thus still be able to provide best effort service. A flow may receive relatively high
bandwidth by giving the appropriate VL a large weight in the low or high-priority
table. In [6] the authors propose a method for computing the weights to be used in
the InfiniBand arbitration tables. The authors calculate the relationship between
the arbitration table weights and the actual bandwidth on the link corresponding
to the weight. The weights may then be distributed among the different VLs
based on the priority and amount of traffic that VL is to service. Low delay can
be achieved by giving the VL an entry in the high-priority table, and thus giving
that VL priority, the delay may then be calculated as described in [51] and in
Section 3.3.2.

The mechanisms described here form a DiffServ compliant QoS scheme. There
is some complexity in the client/boundary routers required for selecting the ap-
propriate initial SL for the traffic, leaving the core switches free to forward traffic
based only on destination and SL much as in DiffServ.

3.3 Admission control in IBA

3.3.1 Is Admission Control Necessary?

The Quality of Service mechanisms of IBA are only able to provide class based
Quality of Service at a VL level. All traffic present in a VL will receive exactly
the same treatment no matter to which flow it belongs. This means that as long
as there is more than one flow per VL the network is unable to give per flow
Quality of Service guarantees. To illustrate this consider the following example:
suppose we have a link supporting a single VL with the total bandwidth 100 Mbps
and flow requests admittance with a throughput requirement of 50 Mbps. Since
the requested bandwidth is below the link bandwidth the flow may be admitted
without problems. If the second flow requests admittance with the same bandwidth
requirement, 50 Mbps, it too may be admitted. The link bandwidth is now fully
utilised by the two flows, and both flows receive a throughput as requested from
the network. Now, consider what would happen if a flow increases its rate from 50
to 100 Mbps. The network would obviously no longer be able to handle the amount
of traffic generated and it would have to restrict the sending of a large number
of packets. Since both flows are using the same VL, and since IBA is unable to
differentiate traffic within a VL, all of the present flows will receive a degradation
of service. The network will block packets from both flows resulting in that none
of the flows receive the bandwidth they initially requested. By preventing the
second flow from increasing its sending rate, e.g. rejecting its request to send more
traffic, the situation above may be avoided and the network can continue providing
adequate service to the admitted flows.

39

A typical system where these sorts of problems are relevant would be a network
supporting a multimedia server. Suppose this server contains video files to be
streamed to nodes in the network. Each video stream has bandwidth and jitter
requirements. That is, the delay between packets in the video stream may not
exceed a certain threshold. If this was to happen, the video playing on the node
would have to skip video frames and the resulting video would not be a pleasant
sight. By employing admission control in such a network one could limit the
number of video streams from the server to the different nodes in such a way that
as many nodes as possible may request video streams while the quality of each
individual stream remains acceptable.

3.3.2 Back-pressure issues

The back-pressure mechanism of VCT switches described in section 2.1.1 may
cause very large and variable delays since the blocking of one packet in a switch
may lead to blocked packets in other switches in the network. In [51] Skeie et.
al present a set of equations to calculate the worst-case latency in the network of
a certain number of switches with only one VL per port. These equations show
that the maximum latency experienced by packets traversing the network increases
exponentially as the number of hops the packet has to traverse increases.

The maximum latency given in [51] is dependent on the amount of ports in the
switches and the number of hops the packet traverses. More specifically:

P =
n∑

sw=1

(nLinks− 2)sw (3.1)

This calculates the maximum number of packets a specific packet might have to
wait for before it may be sent itself. The maximum latency L may then be given
as

L = T ∗ P (3.2)

T is here the transmission speed in cycles.
Using this equation as presented in [51] it should be possible to calculate the

worst latency the packets would get on any path through the network. This worst
case latency would be the only one the network is able to guarantee 100%. This is
similar to the experiments performed in [7] where the authors calculate the delay
a packet would experience through several different switch architectures and show
through simulations that the network is able to provide a packet latency less than
that specified by the worst case calculations. Skeie et. al show in [51] that the
average latency experienced by the packets injected into the network is far below
the worst-case calculations, but with a large amount of traffic in the network the
latency may approach the worst-case scenario.

40

By their very nature, VCT networks do not drop packets. As the network load
increases, more and more packets are held back for a short while in buffers in the
switches. If the network is saturated, that is, there is always a packet ready to
be sent on any link when the link becomes free, the packet latency will approach
the maximum given by the above equation (equation 3.2). As the network load
decreases, so does the number of packets in the network at the same time. A
smaller amount of packets in the network means that there is smaller probability
of having to wait for other packets. This again leads to lower network latency.

It is clear in this case that admission control is necessary to limit the load
on the network to such a degree as to be able to guarantee a worst-case network
latency with a lower bound than worst-case. This view is supported by the authors
of [51] as they conclude by advocating the need for admission control to keep the
network load at a level below saturation in order to enhance the latency and jitter
characteristics of the network.

The DiffServ nature of the Infiniband Architecture puts certain restrictions on
the types of admission control that may be utilised. In order to comply with the
DiffServ spirit, the admission control algorithms should not require any signaling
or state information in the core of the network. Additionally it should not be
necessary to alter information in any switch at the admission of a new flow.

The next chapter discusses admission control more thoroughly and gives criteria
by which admission control algorithms may be evaluated.

41

Chapter 4

Properties of Admission Control

The previous chapter introduced admission control as an important mechanism for
providing QoS. In this chapter a more detailed presentation of admission control
will be given. Furthermore criteria will be given against which the admission
control algorithms to be proposed in the next chapter will be evaluated.

4.1 Characterisation of a good admission control

algorithm

Based on the QoS definition presented in the introduction, there are two key goals
admission control algorithms have to meet.

Network Throughput One is the ability to provide the bandwidth that the
flow is requesting. If a flow is requesting a certain guaranteed bandwidth, the
admission control routine should only admit the flow if it can guarantee that the
flow will receive the requested bandwidth throughout its lifetime, and that the
service experienced by the already admitted flows should not be degraded. If
the flow is admitted and does not receive its requested bandwidth, the admission
control routine is not strict enough when making its decisions. If, however, every
flow that is admitted receives its required bandwidth, but the admission control
routine starts rejecting flows while there is still enough available capacity in the
network in order to ensure that the requirements are met, the admission control
routine is too strict. A good admission control algorithm should in other words
utilise as much bandwidth as possible whilst still being able to guarantee the
required bandwidth of the individual flows [72].

There are of course modifications to this statement. For some applications it
might be absolutely essential that the flows receive the requested bandwidth and
one might accept wasting some of the networks bandwidth in order to give absolute

42

guarantees to such flows. On the other hand the flows might ordinarily be sending
at a rate lower than the peak rate which they originally reserved in the network. If
these flows accept that they might not get the reserved rate absolutely all the time,
the admission control algorithm may accept more flows so as to utilise the network
bandwidth to its fullest extent by assuming that not all the flows will send at their
reserved rate at the same time. High network utilisation and absolute bandwidth
guarantees may not necessarily combine easily and the importance of one over the
other may vary according to the type of traffic in the network.

Timeliness The second goal is latency and jitter. A requesting flow might re-
quire that the latency its packets experience through the network should never
exceed a certain threshold, or the packet inter-arrival time, jitter, should remain
within certain bounds. These demands may be made separately or in combination
with bandwidth requirements as described above.

The latency experienced by the packets of a flow depends heavily on the charac-
teristics of the network through which the packets traverse. It is clearly impossible
to achieve a network latency lower than the time it takes to process the packets
in the network switches and forward them across the links, and it is clear that the
longer the network path is the larger latency the packets will experience. Since
the network latency is so heavily dependent on the topology and on the physical
characteristics of the network, it is difficult to achieve a latency guarantee beyond
a certain minimum. Whether or not the packets of a flow arrive at the end node
within the latency bound is therefore not a good indication of an admission con-
trol algorithm’s efficiency, unless one takes into account the network topology when
calculating the latency bounds. The jitter on the other hand is less dependent on
the network topology and is therefore better suited as an efficiency measurement.

We see here again a conflict regarding jitter versus network utilisation. As
the network utilisation increases, the traffic in each switch in the network will
also increase and the jitter will presumably worsen. The only jitter requirement
that can be met absolutely is obtained from calculating the difference between
the best case and the worst-case latency in the network [46]. In order to provide
good jitter characteristics to a flow, the admission control algorithm must therefore
limit the network traffic in such a way as to make the worst-case latency small
enough that the difference between the worst-case and best case does not exceed
the requirement.

The relationship between bandwidth and latency in the network is not very
clear, but as the network load increases there will be an increase in the number of
packets in the network and in the chance of a packet having to wait for a longer
time. It follows that if every flow in the SL reserves more bandwidth than is
actually used all the flows will experience less network latency.

43

There is no relationship between bandwidth requirements and latency require-
ments of a flow, a flow may request high bandwidth and ignore latency or vice versa.
On the other hand the relationship between latency and jitter is well-defined in
that low network latency necessarily leads to low jitter since the difference between
the maximum and minimum time the packet spends in the network decreases [46].

4.1.1 The Network Utilisation vs. QoS trade-off

As discussed in the previous section there is a trade-off between the Quality of
Service received from the network and the utilisation of the network. It would
seem impossible to give guarantees beyond a certain point without going too low
in the network utilisation. This indicates that it should be possible to get the best
Quality of Service technically possible from the network at the expense of network
utilisation, a postulate which is evaluated and confirmed in Section 7.5. It is there-
fore necessary to include the network utilisation as the criteria for measuring the
efficiency of admission control algorithms in addition to the goals of latency/jitter
and throughput mentioned above.

What follows is a list that summarises the criteria against which the admission
control algorithms described in this project will be tested and evaluated.

1. The admission control algorithm should be able to guarantee the requested
bandwidth to each flow admitted into the network.

2. The admission control algorithm should be able to satisfy the latency/jitter
requirements of the flows (if applicable).

3. The admission control algorithm should be able to differentiate between dif-
ferent service levels with different latency/jitter requirements (if applicable).
In other words, two SLs with different latency demands should receive dif-
ferent latency from the network.

4. The network utilisation should be kept as high as possible in relation to
the admission control requirements. This means that an admission control
scheme with high network utilisation but with slack QoS requirements is
not necessarily better than a network with low utilisation, but with strict
QoS demands. Any best-effort service levels which will use the remaining
available bandwidth and thus push the network utilisation up towards the
maximum point must be considered when assessing the admission control
algorithm.

5. The admission control algorithm should keep the network below saturation
in order to guarantee the requested bandwidth to all service levels. Recall

44

from [51] that in a saturated network, the bandwidth distribution between
service levels is controlled by the QoS mechanism in InfiniBand, not by the
offered load.

Item 2 and 3 will be difficult to test on an admission control scheme that bases
its decisions entirely on available bandwidth, such as the one described in section
5.1. It should however be possible to configure the different algorithms so that
they yield approximately the same network utilisation and compare the latency
and jitter characteristics of different algorithms.

It is against these criteria that the admission control algorithms proposed in
this thesis will be evaluated in a VCT environment, taking into account the char-
acteristics of each individual algorithm as to the type of guarantees it can give in
the framework described above.

4.2 Arbitration Tables and Admission Control

As touched upon in Section 3.1 regarding related work, some authors have intro-
duced papers relying on admission control based on modifications of the arbitration
tables. This section will discuss this as a method of admission control and point
out some strengths and weaknesses of this approach.

The values present in the arbitration tables represent the relative difference
in priority between the different VLs. A certain value indicates that the VL in
question should receive a certain part of the total bandwidth available to the link.
If the link in question is unsaturated, that is, there is available bandwidth, traffic
on every VL will be serviced as it arrives in the switch. This means that as long
as there is available capacity on the link the VLs may receive a larger part of the
link’s bandwidth than specified in the arbitration tables, the weight values in the
arbitration tables have no real significance [51]. If on the other hand the network is
saturated, that is, the amount of traffic pushed on to the link approaches the link
bandwidth, the limit of high-priority and arbitration tables takes effect and the
traffic load is distributed as they dictate. This means that for a given flow with a
certain bandwidth a VL is only able to guarantee specific bandwidth to a limited
number of flows with the same bandwidth, calculated by dividing the bandwidth
available to a VL, BWV irtualLane, calculated later in equation 5.6 in section 5.1.3,
by the flow’s bandwidth, BWFlow.

NumberOfF lows =
BWV irtualLane

BWflow

(4.1)

This is a property that should be utilised in admission control. When receiving
a request for admission of a flow it could be possible to modify the weights in the

45

arbitration tables of switches through which the flow should pass in such a way
as to increase the number of flows the VL is able to support. These modifications
could be done for example by leaving the total of the assigned weights constant
and increasing the weight of the VL to which the flow will be mapped, and de-
creasing the weight of a VL to which a low priority SL is mapped. This scheme will
guarantee available bandwidth for high priority flows at the cost of the bandwidth
available to the low priority flows. The downside is that upon acceptance of a
flow every switch of a flow’s path will have to take an active part in the admis-
sion control process in order to modify its arbitration tables. Modification of the
arbitration tables leads to the reservation of resources in each switch, exactly as
is done in IntServ. This is unacceptable in a DiffServ context which requires that
all complexity is limited to the boundary nodes.

An alternative technique assumes that a fully reserved switch would contain the
maximum possible weight values in every entry in the arbitration tables. One could
then use this information to calculate the bandwidth corresponding to a weight of
“1” in the high-priority and low priority table. A flow with a specific bandwidth
would then require a certain weight added to the VL to which it is mapped. As long
as there is available space in the arbitration tables one could continue admitting
flows and increase the weight of the appropriate VL accordingly. A flow is rejected
when it is no longer possible to assign the necessary weight to the appropriate
VL. This method is able to guarantee bandwidth to every flow on every SL and is
much simpler than the one first mentioned.

Both these methods are able to give bandwidth guarantees and are flexible in
the sense that they can recalculate the weights of the different arbitration tables as
the flows’ demands varies. If there are many flow requests on a specific SL/VL the
VL will be assigned appropriate weights as long as there is room in the arbitration
table.

In [6] and [7] the authors assume an admission control algorithm which op-
erates through modifying the arbitration tables in the switches, possibly in the
way described above. The large and relevant downside of this method is that the
arbitration tables of every switch along a flow’s path has to be modified every
time a flow is admitted or torn down. This leads to a considerable overhead when
setting up and tearing down flows and is not associable with DiffServ. This means
that although the methods have some very pleasant properties in their ability to
give bandwidth guarantees, they are virtually useless in large-scale networks with
many flow events. It is therefore necessary to find alternative methods of admis-
sion control which adhere to the DiffServ paradigm by not demanding runtime
reconfigurations of the core elements of the network, the switches and routers.

46

Part II

Application of Admission Control

47

Chapter 5

Admission Control Algorithms

In this chapter several admission control algorithms for use in VCT networks will
be proposed and described. The range of algorithms represents widely differing
approaches to admission control, and when evaluated they should provide insights
into what type of admission control is the most effective and what type of guar-
antees that may be achieved. As there is no previous work regarding admission
control and VCT, all the algorithms presented in this chapter are adapted from
other networking environments, such as Internet.

5.1 Switch Level Admission Control, Link-by-

Link

5.1.1 Parameter Based

The simplest and most intuitive form of admission control would be to have every
part of the network through which the flow is to pass decide whether it can support
the requesting flow or not. In this way every part of the network is able to say with
a degree of certainty that it is able to accept the flow or not. One such method is
introduced in [35]. If every part of the network which is affected by the requesting
flow indicate that they are able to handle it, it is reasonable to assume that the
network as a whole is able to accept the flow.

In an Infiniband network central elements of the network are the links and
switches. The links are just unintelligent wires running between the switches,
and since every link is connected to a switch (or an end node), the switches have
complete control over the traffic on every link in the network. By letting the
requesting node and every switch on the flows path from the node to the sender
check to see whether the outgoing link is able to support the requesting flow, one
can achieve this form of admission control. This scheme operates in accordance

48

with IntServ [17] where it is up to the core of the network to perform the admission
control decisions.

There are several ways in which the switches can decide whether the outgoing
link can handle the flow or not. The absolutely safest way to perform the admission
control, a method which guarantees that the link is able to accept the flow, is one
described as the “simple sum” algorithm in [35]. In this algorithm the sender
includes in the reservation message the peak rate of the requesting flow. The
peak rate of a flow is the maximum rate at which a node will be sending packets
belonging to the flow. Upon receiving the flow admittance request the switch
adds the peak rate to the peak rate of the already admitted flows and performs a
check to see whether the result is greater than the bandwidth of the link. If this
sum does not exceed the link bandwidth, the flow is accepted and the peak rate
is added to the sum of the peak rates of the admitted flows. The reservation is
then forwarded to the next switch on the path for it to perform the same test.
If, however, the sum exceeds the link bandwidth, the flow must be rejected and a
message sent back to the sender along the path by which it arrived. The switches
that have already admitted the flow must remove the flows peak rate from its sum
of admitted peak rates since the flow is no longer admitted in the network. If p
is the peak rate of the requesting flow, s the sum of the admitted peak rates and
bw the link bandwidth, the requesting flow will be admitted if the following check
succeeds [35]:

p + s < bw (5.1)

In Infiniband where SLs and VLs play an important role in the assurance of Quality
of Service it might be desirable to split the system up from the link level admission
control as described here to VL level admission control. In VL level admission
control one divides the link’s bandwidth among the VLs according to whichever
rules one wishes. Since different SLs may have different bandwidth and latency
requirements it is natural to introduce some sort of differentiation into equation
5.1 by exchanging bw for ACbw, ACbw being the available bandwidth for a VL. The
differentiation may for example be done according to the offered load by giving
each VL a portion of the link bandwidth relative to the traffic load as described
in section 5.1.3.

p + s < ACbw (5.2)

The method described here is a so-called parameter based approach where the
admission control decision is made using parameters calculated a priori, the link
capacity and the peak bandwidth requirements of the requesting flows. In order
to give bandwidth guarantees, it is assumed that the sending rate of the flows will
be the same as the peak rate. This is often not the case, flows often have variable
send rate with the peak rate being the absolute highest sending rate. Parameter

49

based systems are known to give better QoS guarantees at the expense of network
utilisation since the switches tend to reserve too much bandwidth for each flow.

Switched networks have a property that complicates this scheme a little. A
network is unable to utilise the maximum of the theoretical bandwidth of a link
in the network. For a typical network link utilisation might lie around 60% [38] of
the link capacity in a switch using input queuing and processing only one packet
per packet slot. This is due to inefficiencies in the switches’ forwarding mecha-
nisms, such as head of line blocking and the fact that the packets spend a small
amount of time in the switch when being forwarded. In VCT networks the flow
control mechanism is also responsible for some of the reduction of the actual link
utilisation.

Head-of-line blocking is a phenomenon which occurs in certain switch archi-
tectures as the network load increases. It is a consequence of the way buffers are
handled and where in the switch they are placed. Consider a switch with a packet
queue at each input link where the packets wait before they cross the switching
fabric to the output port. If the first packet is destined for an output port which
is busy the packet must wait until the output port is available. Using FIFO (first
in, first out) queuing the packets that are further back in the queue will also be
forced to wait, even though they are destined for an available output port. The
head of the line blocks the rest of the queue. There exists switch architectures
that avoid the problem of head-of-line blocking, shared queuing [19] and virtual
output queuing [19] among others, but they require complex buffer management
schemes.

The reduced actual link utilisation indicates that one should reduce the link
capacity in the above calculations to the amount indicated as the actual link
utilisation. This information can be obtained by gathering throughput statistics
from the network and calculating the link utilisation from them.

5.1.2 Measurement based

Measurement based admission control schemes are known to give better network
utillisation than parameter based admission control schemes [72], but they may
lead to the switches overbooking the network capacity, thus decreasing the ability
to give QoS guarantees. A variation of the parameter based link-by-link scheme
is the “measured sum”-approach, also mentioned in [35]. Instead of just accumu-
lating the peak bandwidth of the admitted flows which results in a guaranteed
service, the measured sum approach measures the load of the network and uses
this to make admission control decisions. While the simple sum approach ensures
that every flow may send at its peak rate continuously without overloading the
network, the measured sum approach only ensures that the current rate at which
the nodes are sending does not exceed the link capacity. It works as follows: every

50

switch keeps track of its throughput rate, and when a flow requests admittance the
throughput rate is added to the peak rate of the admitting flow. If the result is
less than the link capacity the flow is admitted. The link capacity should also here
be modified by its percentage of actual utilisation. Additionally the modification
must take into account the fact that the load might increase anytime if several
flows decide to send at their peak rate instead of mean rate at the same time.

The parameter based link-by-link scheme is able to guarantee that a flow may
send at its packet rate without overflowing the network and disturbing the already
admitted flows, it can give absolute QoS guarantees. The price of the absolute
guarantees is network throughput. The method will tend to minimise throughput
in order to make hard guarantees, giving a good indication of how low delay/jitter
it is possible to achieve in this kind of network. The results achieved with this
method may therefore act as a reference against which the other algorithms to be
described here may be compared.

5.1.3 AC Differentiation for Bandwidth Requirements

The link-by-link scheme operates by comparing the link capacity to the aggregate
bandwidth of the admitted traffic. Since Infiniband allows the existence of up to
16 VLs on each link supporting traffic of different priority, the admission control
should be done on a VL by VL basis rather than on a link-by-link basis. The
relative portion of the links bandwidth available to each VL is specified by the
weights in the arbitration tables. A VL with a large weight in an arbitration table
will have a larger amount of the link bandwidth than a VL with a small weight in
the same table. Similarly a VL with an entry in the high-priority arbitration table
will have a larger proportion of the link bandwidth than a VL in the low-priority
arbitration table with equal weight. Since the traffic in the different VLs may
have a different priority, it is desirable that the admission control routine treats
the different VLs in a manner related to their priority. Traffic with high priority
typically use VLs with large weights in the low or high-priority arbitration tables,
but it is not always the case. Traffic on a VL with a lower weight than other VLs
in the same arbitration table may receive better service than the other VLs if the
amount of traffic using the VL is restricted appropriately, allowing it to support
traffic of higher priority.

As mentioned earlier, the link-by-link (LBL) admission control scheme bases its
decision on the available link bandwidth. Therefore, when introducing several VLs
supporting traffic with different priorities, LBL requires a method for relating the
VL weight and traffic priority to the link bandwidth parameter, the VL capacity,
used in the admission control decisions. In other words, LBL needs a way of
calculating the amount of traffic that may be admitted on each VL based on its
weight and priority of the traffic on it, a way of differentiating the admission control

51

parameter of the different VLs.
There are at least three possible ways of having the admission control routine

differentiate the VLs based on bandwidth. These are

1. Statically: having the admission control routine admit and equal/predefined
amount of traffic on each VL.

2. Available bandwidth for each VL (AB): tailoring the admitted traffic to the
bandwidth available to the appropriate VL based on the QoS mechanisms
LHP and the arbitration tables.

3. Offered load (OL): admitting traffic according to the expected load on the
VL, admitting much traffic on VLs with higher load and less traffic on VLs
with less load.

The first item is trivial, the portion of link bandwidth to be used in the admis-
sion control decision may be set to any value, possibly an equal share of the link
bandwidth, without any guarantees as to how it will work out. The other two
methods, one based on calculating the available bandwidth for each VL based on
the weights in the arbitration table and the LHP and the other relating the offered
load to the admission control parameter, are described in the following sections.
One major difference of these two methods is that OL requires a priori knowledge
of the load to the offered on the different VLs while the AB method does not.

The third method requires that we have a one-to-one or one-to-many relation-
ship between SLs and VLs. Packets operate on SLs, and the way in which we can
know the load a priori is to specify the amount of traffic allowed to use certain SLs,
e.g., each node is allowed to send 10% of its traffic on a certain SL. The method
requires that there is a clear relationship between the expected SL load and the
VL load. This is most easilly done if each SL is mapped to exactly one VL. If a
single SL is mapped to several VLs, as is the case with LASH (Section 6.1.4), the
routing algorithm used in the simulations, we have to give each VL an equal share
of the total bandwidth available to that VL. If we have a many-to-many mapping
between SLs and VLs, things become much more complicated and depend heavily
on whether the different VLs have the same weights and so forth. Many-to-one
mapping, or aggregating, may also present a problem, but as long as every switch
offers an equal number of VLs the problem may be avoided since aggregating of
SL’s is avoidable. In this project we limit ourselves to use only a one-to-one or
one-to-many mapping depending on the routing algorithm (see section 6.2) and
therefore avoid these problems.

52

Differentiation based on each VL’s available bandwidth

Recall that Infiniband already supplies the mechanisms necessary to provide Qual-
ity of Service. These mechanisms are the SL to VL mapping, the VL arbitration
tables and the limit of high-priority. Together these mechanisms form a frame-
work for guaranteeing a certain minimum bandwidth to each VL existing in the
network. Using the equations to be presented in Section 5.1.3 one could calculate
the bandwidth available to each VL based on whether the VL is in a high- or low-
priority arbitration table, the LHP and the VL’s weight. It can be seen from these
equations that as the weight of a VL increases so will the portion of bandwidth
allocated to that VL increase. This means that VLs with higher weights and/or
which reside in the high-priority table will have more available bandwidth than
VLs with less weight, which is exactly what is supposed happen. Now, if one were
to use the available bandwidth of a VL as the basis for admission control, one
would end up admitting more traffic on VLs with higher weight since they have
more available bandwidth. If ACbw is the parameter given LBL as the bandwidth
available to a VL as described above, i.e. the amount of traffic LBL may admit
for a VL, and BWV irualLane is the bandwidth available to a VL in saturation (an
equation for BWV irtualLane is given below), the calculation of ACbw is trivial:

ACbw = BWV irtualLane (5.3)

This forces the network into the behaviour displayed when it is saturated, where
the traffic is dictated by the QoS mechanisms instead of by the offered load as is
the case when the network is unsaturated. This behaviour is undesirable since
time sensitive traffic should be given a VL in the high-priority table [46], a VL
with large available bandwidth. LBL will use this large available bandwidth to
admit many flows so that there will be a large amount traffic in the high-priority
VL. As the amount of traffic in the high-priority VL is increased by admitting
traffic, the individual flows will receive poorer service, effectively neutralising the
benefit of having the traffic in a high-priority VL in the first place. An extreme
situation might illustrate the point: if all the traffic were to use the high-priority
VL, the service of the individual flows would be no better than if all the traffic
used a low priority VL. Time sensitive and high-priority traffic requires a VL a
large amount of available bandwidth and a small amount of traffic.

If one assumes that high-priority traffic is assigned large weights in the arbi-
tration tables, it is possible to utilise this by differentiating the VLs based on the
inverse of the available bandwidth, admitting few flows on VLs with high available
bandwidth and vice versa. The calculation of the admission control parameter
used as the available bandwidth in this case, ACbw, is as follows:

ACbw = BWlink −BWV irtualLane (5.4)

53

Differentiation based on offered load

Instead of using the available bandwidth for each VL as an admission control
parameter, one can assume that there will be less high-priority traffic than low-
priority traffic, e.g., 10% of the total network traffic is high-priority and uses SL
1. This can utilised to divide the bandwidth according to the load given to the
different SLs mapped onto the VLs. This requires that the load on the SLs is known
a priori, something which is not always the case. We achieve the differentiation
by statically dividing the link bandwidth into portions with a size relative to the
traffic load of the SLs as in equation 5.5.

ACbw = bwlink ∗
loadSL

loadtotal

(5.5)

ACbw is the bandwidth used by LBL for the VL to which the SL with the load
loadSL is mapped. We assume here a one-to-one mapping between SL and VL.
loadtotal is the total load put on the network from one node for all the SLs combined.

A SL with high load would be permitted to send large amounts of traffic,
thereby giving them the chance to utilise the available network bandwidth, and
leaving it up to the QoS mechanisms in the network to force these flows down to
the level of the bandwidth available to the SL as necessary if the network reaches
saturation. The SLs with a light load will be restrained by the admission control
routine giving them, depending on the weighting and prioritising of VLs, less
throughput and allowing them to experience lower latency. As mentioned, this
method requires that the approximate load on every SL is known a priori. This is
easily done in a simulation environment where there are parameters to determine
the load to be put on each SL, but might not be so easily achieved in real life.
However the theory still applies, admit less traffic on SLs requiring lower latency.

The bandwidth differentiation used in this thesis for LBL is based on the offered
load approach as described above. This makes it easier to ascertain whether the
admission control algorithm is able to give bandwidth guaranties on the class
level as the differentiation resembles the offered traffic. In the special case of the
simulations, the relationship between offered load and available bandwidth on the
different SLs is such that the SLs with high available bandwidth, the SLs with the
ability to provide best Quality of Service, has the lowest offered load (see table 6.1
in section 6.2). This should be similar to basing the differentiation on the inverse
available bandwidth.

Bandwidth Calculation

Calculating the available bandwidth in an InfiniBand network is a tricky affair due
to the nature of the arbitration tables. As described earlier, the scheduling mech-
anism of an Infiniband switch consists of a two level priority scheme with weighted

54

fair queuing within each priority level. The amount of available bandwidth for a
VL is dependent upon four factors:

1. the weight assigned to the VL

2. whether it is a high-priority VL or a low priority VL

3. the total weighting assigned to the VLs of the current priority level

4. the limit of high-priority.

According to the specification ([9]) one packet may be sent from the low-priority
table each time the limit of high-priority counter reaches 0. Within a given priority
level the amount of bandwidth available to a VL is just the weight of the VL divided
by the total weights of all the VLs in that priority level, times the bandwidth
available to that arbitration table (BWHP/LP), as made explicit in equation 5.6:

BWV irtualLane = BWHP/LP
WeightV irtualLane

WeightHP/LP

(5.6)

with HP or LP depending on whether the VL is in the high-priority table or
low-priority table.

The bandwidth available to the low-priority arbitration table in a saturated
network is calculated as follows: The amount of bytes that may be sent from the
high-priority (HP) arbitration table is LHP ∗ 4096 bytes. Since the switch may
send a HP packet as long as LHP ∗ 4069 > 0, part of the last packet sent is sent
in addition to the LHP ∗ 4096 bytes, packet size mod (LHP ∗ 4096). The total
amount of HP bytes becomes

BytesHP = LHP ∗ 4096 + packet size mod (LHP ∗ 4096) (5.7)

The total amount of low-priority (LP) bytes that may be sent between each HP
batch is

BytesLP = packet size (5.8)

The fraction of bandwidth available to the LP arbitration table is then

BWfraction = BytesLP

BytesLP +BytesHP

= packet size
packet size+(LHP∗4096)+packet size mod (LHP∗4096)

(5.9)

The fraction from 5.9 may then be multiplied with the link bandwidth to arrive at
the bandwidth available to the LP arbitration table according to the rules specified
in [9] and in section 3.2:

BWLP =


0.5 ∗BWtotal if LPH = 0
BWtotal ∗BWfraction if 0 < LPH < 255
0 if LHP = 255

(5.10)

55

The amount of bandwidth available to the high-priority VLs is just the remaining
bandwidth,

BWHP = BWtotal −BWLP (5.11)

Equation 5.6 calculates the minimum guaranteed bandwidth available to each
VL, i.e. the amount of bandwidth the VL is assigned even when the network is
saturated. Thus this is a description of how the throughput will be distributed
between the VLs in the saturation region of the network, the region we intend to
avoid using the admission control algorithm.

5.2 Endpoint Admission Control

In a large and high-speed network it is desirable to keep the switches as simple
as possible. In a network which operates at high speeds the switches are required
to process packets extremely fast and there is usually no time to perform any
additional operations other than forwarding packets. Any sort of modification of
switch parameters would take too much time and the network would slow down.
Additionally if one were to store per flow information in the switches, the amount
of data stored in each switch would rapidly increase as the size of the network and
number of flows in the network increases. LBL described above is an example of
such a scheme, requiring per flow alteration of the switches.

Because of these limitations one wishes to keep as much of the information and
intelligence outside the core of the network as possible, mainly in routers or even
ingress/egress nodes. In Infiniband the Quality of Service mechanisms are already
built into the core elements in the network, the switches and routers, in an effective
class-based manner much as in a DiffServ system. When implementing admission
control into this scheme it is desirable to leave the switches unchanged and only
change the endpoints in order to avoid increasing the load of the switches. In
such a scenario where the endpoints perform the admission control it is natural to
utilise a measurement based admission control algorithm since measurements are
the most practical way for the endpoints to gather information about the current
load in the network.

5.2.1 Egress Admission Control

Egress Measurements (EM), which is described in [21] and [56], is an admission
control scheme developed for use in conjunction with IP (Internet Protocol). The
admission control decision is located at the egress of the network, or the destination
node. In [56] the authors implement the admission control scheme described in
[21], while making some adjustments and clarifications appropriate for the system
in which the admission control scheme is implemented. In order to be able to

56

make any admission control decisions, the egress nodes/routers have to gather
information about the current load of the network. The only way an egress node
has of knowing anything about the network to which it is connected is to analyse
the traffic it receives locally from the network.

The egress node constructs two functions which together provide the informa-
tion necessary to make an admission control decision. First is a service envelope, a
function describing the packet service rate. To make more information available to
the egress nodes, each packet in the network is timestamped as it departs from the
networks ingress node/router. These timestamps are then used by the egress node
to calculate the service envelope, basically the amount of packet units serviced by
the network as a function of time intervals [21]. Second is an arrival envelope, a
function describing the packet arrival rate at the egress node.

Service Envelope To calculate the service envelope the egress node measures
the time each packets spends in the network, that is, the time aj from which the
packet j arrives in the network to the time dj when it departs from the network.
As long as there is only one single packet in the network en-route to a specific
egress node, the service class (SL in InfiniBand) is said to be backlogged for k = 1
packet transmission. If a new packet enters the network before the previous has
departed, that is, aj < dj−1, the service class is said to be backlogged for k = 2
packet transmissions. If a third packet enters the network before one or both of the
previous packets have departed, then the service class is backlogged for k = 3 and
so on. Mathematically it can be said that a traffic flow is continuously backlogged
for k packet transmissions in the interval [a,dj+k−1] if

dj+m < aj+m+1 for all 0 ≤ m ≤ k − 2 (5.12)

for k ≥ 2 [21]. The egress node gathers the maximum of these measurements in
an increasing function of packet units according to the following equation:

Ui = max(Ui, dj+k−1 − aj) (5.13)

where

i =
k−1∑
m=0

lj+m (5.14)

and lj+m is the size of packet j + m expressed in packet units [21]. Ui is the time
it takes for the network to service i packet units.

This is done during a measurement interval Tτ (explained below) and stored.
After M such measurement intervals the mean (U) and variance of these M mea-
surements are calculated for use in the calculations. If U is inverted we get the
number of packet units serviced as a function of time which is our service envelope
S(t).

57

Arrival Envelope The egress node measures the rate of incoming packets in
order to calculate the aggregate maximal rate envelope R(t). Time is divided into
T time slots of length τ and the number of a service class’ arrivals in such a time
slot is stored in a table. Using the following notation one can say that A[s, s + Ik]
is the number of arrived packet units in the interval [s, s+ Ik], and the arrival rate
in the same interval is A[s, s + Ik]/Ik [21]. The peak rate of this interval length
is the maximum rate of every interval measured, Rk = maxsA[s, s + Ik]/Ik. If we
say that the interval length is k times the interval length τ we have that

R1
k =

1

kτ
maxt−T+k≤s≤tA[(s− k + 1)τ, sτ] (5.15)

[21] for k = 1, ..., T . This is done every T time slots and the final measured
peak rate arrival envelope R(t) is calculated from the M most recent Rk. The
measured peak rate arrival envelope is basically a table containing the maximum
rate of arrivals for longer and longer intervals. As the interval length increases, the
sensitivity to the current arrival rate is decreased as the arrival rate approaches
the mean arrival rate.

The Admission Control Function To summarise, the egress node has infor-
mation about the incoming rate and the outgoing rate in the network on every
path to itself in S(t) and R(t) respectively. These two values are different in one
respect, namely that R(t) is measured as packet units per time units in a given
time interval t, e.g. bps, and S(t) is just the number of packet units serviced by
the network for the same time interval t. For a time interval t, if one were to sub-
tract S(t) from t ∗R(t) one would get a negative number indicating the remaining
capacity of the network as the result (as long as the network is not overloaded)[21].
Then, if one were to add a new flow to the network in the state described by these
variables with a peak rate P and delay bound D one would simply add the peak
rate P to the measured peak rate arrival envelope and increase the interval for
the service envelope with the delay bound D like this S(t + D). By computing
the variance of the measurements of the measured peak rate arrival envelope and
the service envelope and adding this to the equation described above, the result is
as follows: A flow with peak rate P and delay bound D may be admitted to the
network if the following condition is satisfied:

tR(t) + Pt− S(t + D) + α
√

t2σ2(t) + Ψ2(t + D) < 0 (5.16)

for all interval lengths 0 ≤ t ≤ T . R(t) and S(t + D) are as already described,
and σ2(t) and Ψ2(t + D) are the variance of the arrival envelope and the service
envelope respectively. This equation simply states that a flow may be admitted if
the arrival rate plus the peak rate is less than the service rate within an acceptable

58

delay bound, corrected by the variance for all possible interval lengths less than
T . The variable α in the above equation is a variable defining the confidence level
of the equation.

In addition there is one other limitation on the number of flows that may be
accepted, known as the stability criterion in [21], the peak rate arrival envelope
plus the peak rate of the new flow may not exceed the service rate of the incoming
links [56]. This is realised in the following equation:

lim
t→∞

R(t) + P < lim
t→∞

S(t)

t
(5.17)

where, according to [56], S(t)
t

may be replaced by the incoming link’s bandwidth.
A flow may be accepted if both equations 5.16 and 5.17 are satisfied for every

t between 0 and T .
In order to get a flow accepted, a node wishing to initiate a new flow must send

a reservation message through the network to the egress node in order for it to
perform the admission control. This requires some sort of signaling or reservation
protocol. In [56] the authors proposed to use RSVP as a signaling protocol, though
with some modifications. The RSVP demon is only required to be running on the
boundary nodes/routers in the system since the core nodes of the network are not
required to take any part in the admission control routine other than to forward
the packets.

Synchronisation

Since the admission control scheme requires time-stamping of packets, some sort of
reliable synchronisation between endpoint nodes must be in place in order for the
system to operate correctly. The authors of [56] propose to use the Network Time
Protocol (NTP) [41] for this purpose. The accuracy with this type of synchronisa-
tion is not sufficient for use in a small to medium System Area Network such as a
server cluster. It is more suited for synchronising computers in networks which do
not require very high accuracy. The authors take this a step further by indicating
that the Global Positioning System (GPS) might be utilised for synchronisation
purposes by building a GPS receiver into the network nodes. In [32] and [61] how-
ever, the authors present methods for achieving high precision synchronisation in
switched networks using NTP, making this a viable option.

In a simulator environment, such as the one to be described later, in which this
admission control scheme will be implemented and evaluated, it is not necessary to
provide any method of synchronisation to the system. This is because the simulator
runs on a stand-alone machine and every node in the simulation therefore has the
same simulation and system time.

59

Open Issues

The authors of [21] do not specify what is to happen at the beginning of a network’s
lifetime. How can the egress nodes perform any sort of admission control without
any traffic yet having passed through the egress node? All the measurements will
be 0 at the beginning of a network’s existence and thus equation (5.16) cannot be
< 0. One way of avoiding this is to admit flows until one has a certain amount
of security/certainty in the measurements and then start the admission control
seriously.

Another way of achieving this is a hybrid approach utilising some sort of prob-
ing scheme at the beginning of a network’s existence until enough history has been
built up at the egress nodes. One such probing scheme is described in [18], but
the problems with these approaches are that the probe packets require either to
be dropped when they are in overflow or some sort of marking mechanism which
marks the probe packets that exceed some threshold. Infiniband does not drop
packets. Infiniband switches are subject to VCT flow control and packet queues
build up in the switches along the path to the sender. If one were to perform the
probing in the same SL as the actual traffic would use, this queue-up caused by the
excess probing packets would affect and degrade the service of the already admit-
ted flows in the SL. It is possible to use marking of probe packets that should have
been dropped, packets that are delayed, rather than dropping of probing packets.
This is an approach which leads to shorter probing times [18], but one has the
difficulty of relating the marking rate with the acceptance threshold [18], and of
setting the marking threshold of the probe packets. The criterion for marking
packets would be when the queue in a switch exceeds a certain length. Exactly at
what queue length packets are to be marked is uncertain, but this could be deter-
mined through experiments. One could treat these marked packets as dropped,
but as already marked packets could cause problems in many switches ahead there
will be an excess of packets marked. [18] does not describe any method of relating
packet marking rate to the acceptance threshold. Different probing schemes are
discussed further in section 5.2.2.

Yet another way of achieving admission control before the egress routers have
had the chance to build up an adequate history would be for the ingress node to
send a certain amount of dummy/probe traffic to the egress node and have the
egress node check to see if the already admitted flows are affected by the test
traffic. If the egress node sees that the admitted traffic is affected by the test
traffic it can send a message to the source of the test traffic indicating that the
flow is rejected. The drawback of this approach is that already admitted traffic
may receive poorer service during the test run. Another problem is that the test
traffic may affect the traffic received by other egress nodes without them being
able to let the source know.

60

In the results presented in the next chapters the method deployed is one in
which the egress nodes accept all traffic until they have enough data to perform
admission control in an orderly fashion.

5.2.2 Jitter Probing

Instead of passively monitoring the network activity in the egress nodes of the
network, it is possible for the end nodes in the network to take a more active role
in the admission control decision. This may be done by actively sending probe
packets through the network from the ingress node and monitoring the probe
packets’ arrivals at the egress of the network. If the size and rate of the probe
packets is designed correctly they should give the egress node the opportunity to
calculate how the new flow will be treated by the network. As opposed to the
EM scheme described in section 5.2.1 where the egress nodes had to calculate
the available capacity in the network based on the already existing traffic, the
additional probe packets give the end points the opportunity to inject more traffic
into the network and see what happens. This may lead to other problems such as
bandwidth stealing.

Bandwidth stealing is a phenomenon where the probe packets steal bandwidth
from the already admitted flows, degrading the service they experience [31].

Several probing schemes have been proposed, some of which are described in
[31], [18], and [13]. Both [31] and [18] require either that packets be dropped to
indicate congestion, which is impossible when using virtual cut-through switching
as Infiniband does, or that congested packets be marked in the switches in the
network. This requires intelligence in the switches and partly negates the whole
point of end-point admission control. In [13] the authors propose a probing scheme
in which the load level of the network is calculated by measuring the jitter of the
probe packets. The authors solve the bandwidth stealing problem by requiring that
the probe packets be forwarded through the network with the lowest priority of
all packets. This ensures that the probe packets will be unable to steal bandwidth
from the already existing traffic in the network whilst additionally giving worst-
case measurements of the network jitter and thus guaranteeing that the traffic
when admitted will get at least the service that the probe packets received. When
applying this to the InfiniBand network it is therefore natural to let the probe
traffic be forwarded on a VL in the low priority table with a relatively low weight,
possibly equal to 1. The probe packets will still be guaranteed delivery to their
destination even if the network is saturated, but due to the nature of virtual cut-
through networks the probe packets will most likely experience large jitter and the
flow will therefore be rejected.

For each probe packet received, the receiver registers the packet’s transmission
time, e.g. the time the packet spends in the network. When an adequate num-

61

ber of probe packets have been sent and received the receiver calculates the jitter
by subtracting the minimum packet transmission time from the maximum packet
transmission time. This value is compared to the jitter requirements embedded in
the probe packets and an admission decision is sent back to the sender. Addition-
ally if any of the probe packets are rejected by the sender due to the limited size of
the send queue buffer, the flow is also rejected. In other words a flow is accepted
if

TransmissionT imemax − TransmissionT imemin < Jitter threshold (5.18)

and
Packets rejected = 0 (5.19)

The worst-case latency of a path through a virtual cut-through network grows
exponentially as the network size increases [51] and as the network load increases so
does the probability of a packet having to wait while other packets are transmitted
on a link. One packet waiting in one switch may lead to several packets waiting
in several switches upstream and so on. This increase in network load will lead to
a measurable increase in packet jitter.

Figure 5.1 and 5.2 are figures taken from the simulations presented in chapter
7. The simulations use 5 SLs of which the two first are high-priority. The two
plots in Figure 5.1 represent the distribution of packet latency on SL1 for all
packets traversing 3 hops in the network. The x-axis is latency and the y-axis is
the frequency of that latency. The state of the network as the load increases is
displayed in Figure 5.2. We see here how the 5 SLs are treated by the network as the
load increases along the x-axis. The y-axis represents the aggregated throughput
of all the flows in the SLs.

Figure 5.1(a) is the latency distribution for an unsaturated network correspond-
ing to the ”‘medium”’-marker in Figure 5.2. Similarly Figure 5.1(b) is the latency
distribution for a saturated network, a network in a state corresponding to the
”‘high”’-marker in Figure 5.2. Recall from section 4.1.1 that the network should
operate below saturation to be able to give bandwidth guarantees. We can clearly
see from figures 5.1(a) and 5.1(b) that the variation in latency increases drastically
as the network reaches saturation, indicating that packet jitter may be used as an
indication of network saturation.

5.3 Centralised Admission Control

5.3.1 Link-by-Link

As explained in section 5.2.1 it is undesirable to put too much functionality in the
switches of a large-scale network. The LBL admission control scheme described

62

(a) Unsaturated (b) Saturated

Figure 5.1: Latency distribution for SL1, 3 hops in a unsaturated and saturated
network

Figure 5.2: Figure depicting saturated and non-saturated regions indicated with
high and medium marker

63

there is therefore impractical to implement in a real-life network. It is, however,
possible to get the same functionality if one were to utilise something similar
to a BB as it described in conjunction with DiffServ in Section 2.3.1. In this
case the BB is a node with knowledge of the total network topology which holds
information about the switches’ reservations. When a flow requests admittance,
the request is sent to the BB which traverses its tables and is able to perform the
same type of control as if the real-life switches were traversed by the reservation
message. This is the same setup as described previously in Figure 2.4 in Section
2.4. The “measured sum” approach is not as easily adapted for use with a BB
since it requires that the switches perform measurements which are not suitable to
be moved to the bandwidth broker. The switches may perform measurements and
send reports to the BB so it can perform admission control, but this still requires
much functionality in the switches which is what we are trying to avoid.

In a large network with much traffic and many flows there will be many flow
admission requests and flow tear-down requests sent to the single BB in the system.
The BB becomes a hot-spot in the system and may become a bottleneck, limiting
the efficiency and scalability of this approach.

5.3.2 Combinations

It is possible to combine several AC-schemes into one using a BB much like the
system described in [72]. One could for example let the egress nodes described
in section 5.2.1 report to the BB in combination with the link-by-link scheme
described above in 5.3.1. This can be done in order to provide parameter based
AC for high-priority traffic and measurement based AC for the low-priority traffic
much as in [72]. Such combinations will not be explored by this project.

5.4 Aiming for Low Jitter

As we will see in chapter 7 and as has been described in [51] and [50], low jitter
may be hard to achieve in VCT networks. The main reason for this is the nature
of the flow control mechanism utilised in such networks. A packet buildup in one
switch in the network will lead to packets being blocked in several other switches
leading to highly unpredictable network latency. All the methods described so far
in this chapter focus on providing guaranteed bandwidth or low jitter through the
use of admission control algorithms. As we will see in chapter 7 these methods are
not sufficient to guarantee a network jitter within the bounds set by the admission
control algorithms, it seems that a more radical approach may be necessary.

Suppose we have an application with hard jitter demands, but which might
accept some packet loss. An example of such an application might be a video

64

stream. Now, suppose if one, instead of, or in addition to admission control,
started dropping packets whenever they were held back by the flow control. By
monitoring the queue length in the switches one could drop packets whenever the
queue length reached a certain threshold which is below the point where the flow
control mechanism starts holding packets back in the upstream switches. This
mechanism will avoid the state where the flow control starts blocking packets and
affecting network latency, and thus hopefully keep the network latency at a stable
level.

It must be noted that this approach is rather radical and not really associable
with the VCT paradigm. It seems however that some drastic means are needed in
order to guarantee jitter within a certain bounds in VCT networks. This method
will probably be able to provide good jitter characteristics, but whether they are
any better than the admission control algorithms described previously remains to
be seen in chapter 7.

5.5 Summary of the Proposals

The presentation and discussion of the different admission control algorithms in
this chapter leads to six scenarios that will be investigated. A comparison and
evaluation of an uncontrolled network and three different admission control algo-
rithms will take place. These algorithms are described previously in this chapter,
and a short summary is given here:

• Link-by-Link is presented in Section 5.1. The algorithm requires detailed in-
formation about the load on each link in the network. To achieve bandwidth
differentiation, each VL is assigned a portion of the link’s bandwidth in ac-
cordance with the offered load as described in Section 5.1.3. VLs to which
SLs with low offered load are mapped receive a smaller portion of bandwidth
than VLs to which SLs with higher offered load is mapped. The parameter
based (simple sum) approach is chosen where the flow’s peak rate is reserved
on every link on the path.

• Egress Measurements is presented in Section 5.2.1. The algorithm measures
the arrival rate and service rate of the packets and uses the allowed increase
in service time to decide whether a flow with a given peak rate may be
admitted.

• Jitter Probing is presented in Section 5.2.2. Probe packets are sent through
the network, and the packet jitter is measured at the egress. The admis-
sion control decision is based on whether the measured jitter is below the
requirement or not.

65

Additionally, the effect of packet dropping on throughput and jitter will be
studied, both without admission control and with Link-by-Link admission control.

66

Chapter 6

Simulations

This chapter presents the environment in which the admission control algorithms
proposed in chapter 5 will be tested. First an overview of the simulator used
in this project is given, followed by a more detailed presentation of the different
simulation and admission control parameters used.

6.1 Simulation Environment

The admission control algorithms proposed in chapter 5 are implemented in a
simulator developed in house at the Simula Research Laboratory (SRL) by In-
gebjørg Theiss and subsequently by Sven-Arne Reinemo. The simulator consists
of a discrete event-driven simulation engine with several types of network elements
generating events which are executed by the engine at the appropriate simulation
time. The simulator is originally developed for virtual cut-through networks and
has therefore been adapted to Infiniband by Sven-Arne Reinemo. The simulator
code is written in Java.

The results received from the simulator are further processed in MatLab or
some other appropriate mathematical program in order to analyse the results and
present them in intelligible ways.

6.1.1 Network Components in the Simulator

The simulator provides code for every network component necessary to simulate a
local or system area network. There are nodes/processors that produce and con-
sume packets, switches that forward the packets further along the correct links to
their destination and links that transport packets from one processor/switch to an-
other. The simulator does not contain routers or subnet managers so the network
parameters are statically configured at the start of simulation time. This also pre-

67

cludes the option of linking several subnets together with routers, or recalculating
routing tables and forwarding tables during the simulation lifetime.

The links in the simulator are able to process one flit per simulation cycle, with
a flit-size of 1 byte. One simulation cycle is defined to be 3 ns long, giving a link
speed of 2.5 Gbps.

6.1.2 The simulator engine

The simulation engine, or kernel, is as already mentioned discrete event driven.
Every event in the simulation lifetime, that is, the generation of a packet, the
arrival of a packet on a link, the arrival of a packet at a switch, forwarding table
look-up completion and so on, generates an event with a time stamp sometime in
the future, indicating the time at which the event should be completed. Every
such event is put in an event heap waiting to be scheduled by the simulator kernel.
The simulator kernel has a dispatcher which goes through the heap of upcoming
events executing the events scheduled for the current simulation time. When there
are no more events for the current simulation time, the time is advanced one step
and the process is repeated until the heap is empty or the maximum simulation
time is reached.

There is one major problem inherent in such event driven simulators, this is the
problem of concurrency. In a real-life network there are multiple processing units
doing calculations in parallel. When one is simulating such a network on a single
processing unit system such as an ordinary computer it is no longer possible to do
multiple calculations in parallel. In order to simulate such parallel calculations the
only option is to enqueue the events taking place at the same time in some specific
order and execute them serially. This may cause problems since the outcome may
depend upon in which order the events are executed. Much work has been done in
the field of the event driven simulations, some of which can be read in [57] and [20].
In our simulator, the simple approach has been chosen of executing in a random
order events scheduled for the same time tick.

6.1.3 Network Topologies

When dealing with simulations, several simulation runs with different topologies
must be made in order to achieve a certain degree of statistical credibility in the
results. We have chosen to use irregular topologies since this is the more general
case. Regular topologies are a special case of irregular topologies. This means
that every algorithm that works in a irregular network will also work in regular
networks. Therefore, by testing the algorithms in irregular networks, we achieve
results which represents the general case. Every simulation series is carried out on
16 different random irregular topologies.

68

A typical network configuration is a network containing 32 switches intercon-
nected randomly, but in such a way that every network node has a path to every
other. There are connected 5 processors, one for each SL, to every switch in the
network. Each processor is connected to its switch with a separate link such that
every switch is connected to five processors and its neighbouring switches. In the
core of the network however, between switches, the SLs are mapped to different
VLs on the same link. The processors connected to a switch form a logical entity
as a single node, and when talking about packet production rates of a node in the
next sections this is derived from the combined rates of a node’s processors.

6.1.4 Routing

There exists few generic routing algorithms which are able to guarantee shortest
path routing in irregular networks. One of the few algorithms to achieve this
is Layered Shortest Path Routing (LASH) [64]. This is a deterministic routing
algorithm which guarantees shortest path routing and in-order delivery in both
regular and irregular networks [64]. Additionally, in [63] the authors show that
generic LASH is as efficient as dedicated routing algorithms for regular topologies
such as Dimension-Ordered Routing (DOR) [66].

LASH utilises VLs to create shortest path, deadlock free routes, a service which
is already available in the Infiniband switches, and is therefore well-suited for use
in this scenario. The routing algorithm works by assigning all source/destination
pairs to exactly one virtual layer. It is then able to ensure that each layer is
deadlock free by assigning the source/destination pairs to layers in such a way
that the source/destination pairs assigned to one layer do not generate cycles.
The idea of using VLs to avoid routing deadlocks is also explored in [54]. Here the
authors use Up*/Down* routing and solve potential deadlocks by moving certain
paths to other VLs. The authors of [48] present another method for calculating
minimal routing in Infiniband networks through the use of destination renaming,
exploiting the existence of multiple QPs in the hosts.

6.2 Simulation Parameters

The configuration of the SLs in the simulations are inspired by the traffic classes
in DiffServ. In the DiffServ terminology, we have two SLs, SL 1 and SL 2, which
are considered to be in the Expedited Forwarding (EF) traffic class. These two
SLs are to support high priority, time sensitive traffic and are therefore mapped
to VLs with entries in the high-priority arbitration table. Two more SLs, SL 3
and SL 4, are implemented to correspond to the Assured Forwarding (AF) traffic
class. These SLs are available to traffic requiring throughput guarantees from the

69

network, and are mapped to VLs in the low-priority arbitration table. Finally SL
5 is implemented as a Best Effort (BE) SL, a SL available to elastic applications
with little or no QoS requirements from the network. This SL is mapped to a VL
in the low-priority table with very low weight so that it may not disturb SLs with
higher priorities. Every SL is mapped to a unique VL, that is, there is a one-to-one
relationship between SLs and VLs. However, the routing algorithm uses several
VLs to achieve deadlock-free routing, so the SLs are in reality mapped to several
VLs. This does not affect the performance of the admission control algorithms
or QoS mechanisms, the relative relationship between SLs and VLs remains the
same.

For SL 1 to SL 4 there is a clear relationship between the weights of the VL
and traffic load on the corresponding SL. VLs with a small weight has a smaller
percentage of the network node than VLs with higher weight. SL 5 is the exception,
it has a weight of 1 and the most traffic. This is done to emulate the large amount
of best effort traffic that may be found in a network and to try to utilise the
network to its fullest extent while still giving QoS guarantees to the EF and AF
traffic classes.

The relationship between SLs, priorities and VL weights are given in table 6.1.

SL Priority VLWeight Load
1 high 4 10
2 high 6 15
3 low 8 20
4 low 10 25
5 low 1 30

Table 6.1: Service Level and Virtual Lane Configuration

The load is given as a percentage of the load of a node and the load of every
processor on a node should therefore add up to 100%. The weights in the table are
according to the specification meant to indicate the number of 64 bytes units to
be sent on the VL when its turn comes, but due to the small packet size (32 bytes)
used in most of the simulations, the values are redefined to mean the number of
packets to be sent from each VL. The limit of high-priority is set to 32, again being
redefined from meaning 4096 times the number of bytes to the transmitted from
the high-priority table to mean the number of packets to be transmitted from the
high-priority table.

Due to time limitations, most of the simulations performed in this project
use a packet size of 32 bytes. Increasing the packet size to a more normal size,

70

for example 512 bytes, leads to an increase in simulation time from 200 000 to
3.2 million simulation cycles in order to get the same number of packets through
the network. Using large packets leads to longer simulation times. This project
requires a large number of simulations and it is therefore imperative to keep each
simulation run as short as possible for the data to be available within a reasonable
time.

With a larger packet size the packet rate of each flow must be reduced to
achieve the same data rate for each flow. This results in that the data rate in the
network remains the same, only the simulation runs for a longer period of time.
As the admission control algorithms look at either data rate or latency/jitter, the
increase of data in each packet should not affect the performance of the algorithms
as the data rate is unaltered. The latency and jitter will increase, but this may be
accounted for when choosing the latency and jitter admission control parameters.

Half of the processors in the network are configured to send flows with a packet
rate of 0.0001 packets per simulation cycle. With a packet size of 32 bytes and a
cycle length of 3 ns this adds up to a bit rate of 8.13 Mbps. The other half are
configured to send flows with a packet rate double that of the first half, 0.0002
packets per simulation cycle, yielding an effective bit rate of 16.26 Mbps. Half of
the processors in a SL are configured with the first packet rate, while the other half
sends with the second packet rate. In this way we have flows with different band-
width requirements in each SL giving us the opportunity to study whether each
flow receives bandwidth it requests or if the service is unrelated to the requested
bandwidth.

6.2.1 Admission Control Criteria

The following paragraphs discuss the admission control criteria used as parameters
to the admission control algorithms in the simulations. Recall that the different
algorithms use different parameters for admission control. LBL uses bandwidth
as the admission control parameter while egress measurements uses latency and
jitter probing uses packet jitter as the admission control parameter. Consequently
it is difficult to configure the different admission control algorithms to operate
in the same manner. There is no clear way of defining the relationship between
bandwidth guarantees, latency guarantees, or jitter guarantees. Consequently,
given the different admission control parameters used, the proposed algorithms
will have different performance as to bandwidth, latency and jitter guarantees.

Link-by-Link

The LBL admission control algorithm bases its admission control decisions on
detailed knowledge about the available unreserved bandwidth on each link . A

71

switched network such as the one mentioned here is not able to fully utilise the
theoretical link capacity. Based on results presented in [51] the link utilisation
percent is set to 50%. This is further divided amongst the VLs according to
the Offered Load (OL) method described in 5.1.3 as the first admission control
parameter. The peak rate for each flow, which is given to the admission control
algorithm as the second parameter, is double that of the mean flow bandwidth
when using self similar traffic generation (Section 6.2.5).

Egress Measurements

The egress measurements admission control algorithm uses both a flow’s requested
maximum latency and a flow’s peak rate as parameters. The peak rate is, as for
every other algorithm, double that of the flows the mean rate as described above.
Recall from figures 5.1 and 5.2 in Section 5.2.2 that there was a marked difference
in latency distribution within a SL in an unsaturated and a saturated network.
Instead of limiting the network throughput to just below network saturation by
monitoring the available bandwidth as is done in LBL, it should be possible to
limit network latency to the level just below network saturation and achieve a
result similar to that of LBL. The latency parameter has therefore been obtained
by looking at the mean value of the latency as a function of hops at medium load
(unsaturated network, see Figure 5.2) without admission control, see Figure 6.1
for the latency distribution.

Based on the mean latency distributions of larger hops the latency requirement
is increased by 25 time units per hop. The latency requirements for each SL are
listed in table 6.2.

SL 1 hop 2 hops 3 hops 4 hops
1 - 4 100 125 150 175

5 ∞ ∞ ∞ ∞

Table 6.2: Latency requirement distribution for each hop for use with Egress
Measurements

The infinite latency values for SL 5 in table 6.2 indicates that this is a best
effort SL and should therefore not be subject to admission control.

Notice that all the SLs have the same latency requirements regardless of the
mean latency in Figure 6.1. The admission control algorithm is not configured to
differentiate SL 1 - SL 4. Experiments have shown that admitting more traffic on
low-priority SL 3 and SL 4 leads to poorer service for every SL. It has therefore
been decided to have strict demands on every SL in order to achieve as good
results as possible. A possible causes for this behaviour is that the value of LHP

72

Figure 6.1: Average flow latency as a function of hops

is so low that as long as the network is below saturation, the addition of more
low-priority traffic will worsen the service perceived by high-priority traffic until
the LHP becomes the dominating factor. As long as we admission control the
network, the network will never reach saturation and LHP will never dominate.
This makes the high-priority traffic susceptible to be influenced by the low-priority
traffic.

Jitter Probing

Jitter probing uses only desired maximum jitter as the admission control param-
eter. As for egress measurements we surmise from figure 5.1 in section 5.2.2 that
packet jitter worsens as the network reaches saturation. The jitter requirements
for each flow are therefore inspired by the jitter perceived by each flow at medium
load with no admission control, see Figure 6.2. Every probe is sent on the same
SL, SL 6, which for this occasion is an SL added for probe packets. Every probe
will therefore receive the same service from the network without regard to the SL
sending the probes. SL 5 is best effort and is therefore not subject to admission
control and SL 6 is reserved for probing with a weight of one and zero load (see
table 6.4). The jitter requirements for the other SLs are given in table 6.3. The

73

jitter requirements are based on the offered load to attempt to achieve a reasonable
SL differentiation. As the offered load on the SLs increases so does the amount of
allowed jitter. This places hard demands on the high-priority SLs SL 1 and SL 2
and less strict demands on the low priority SLs, SL 3 and SL 4. Path length is
not taken into account here as it is with egress measurements. Given the increase
in jitter in Figure 6.2 as the number of hops increase, there will be fewer accepted
flows on paths containing many hops. This makes it easier to determine whether
the jitter requirements have been met, every flow in a SL should display jitter
within the same bound.

SL Jitter
1 15
2 20
3 25
4 30

Table 6.3: Jitter requirement distribution

With a simulation time of 200000 simulation cycles and a flow rate of 0.0001
packets per cycle each flow is able to send 20 packets through the network. In
order to get an accurate picture of the network state a total of 6 probe packets is
sent for each flow requesting admittance. This is quite a large amount of probe
packets compared to the length of a flow, about 30% of the flows lifetime, and we
should therefore be able to get a quite accurate picture of how the flow will be
treated in the network.

SL Priority VLWeight Load
6 low 1 0

Table 6.4: The SL and VL added for use with Jitter Probing, SL 1 - SL 5 remain
the same

6.2.2 The Nature of the Simulations

A series of simulations consists of several individual simulation runs at different
loads. The rates range from one packet per node per 15 time units (highest load)
to one packet per node per 230 time units (lowest load). Given a typical network
size of 32 nodes, packet size equals 32 bytes and a link speed of 2.5 Gbps leading
to a time unit of 3 ns, mean load put on the network from one node at high

74

Figure 6.2: Jitter as a function of Hops

load equals 5.3 Gbps. This is twice that of the link rate divided between the
five links connecting the five processors to the switch. This load is high enough
to saturate the network. This is also evident from the simulation run with no
admission control. At the lowest load, one packet per 230 time units, the load
on the network from a given node equals 353 Mbps, a value well below the link
capacity.

Each simulation produces a file containing latency data for every packet in the
network with information about which flow and SL it belongs to, how many hops
it has traversed and so on. This information is used to calculate the mean latency
and jitter of every flow in the network, giving a picture of how the traffic is treated
in different SLs.

A simulation starts by having each processor attempt to add a new flow to the
network. This continues at regular intervals until every flow attempting admission
is rejected or we have reached the target load of that specific simulation run. After
there have been no flow admissions for a specific number of retries, the processors
give up trying to insert more flows and the simulation goes into a stabilising period.
When the network has reached its stable state the system starts gathering statistics
for as many simulation cycles as specified.

It is important here to understand that as the target load of the simulation

75

runs increase, the packet rate of a flow remains stable. As the load increases the
time between each new packet being produced in the processor decreases. Since
the flow bandwidth remains stable, the effect of an increasing target load is the
ability to add more flows to the network.

6.2.3 Other technological assumptions inherent in the si-
mulator

The core of the switch built into the simulator consists of a crossbar to which
each link has dedicated access. Every VL on a link is multiplexed on to the
crossbar between the other VLs on the link. A crossbar is a interconnection matrix
providing a connection from every input port to every output port in the switch.
To which output port a given input port is to transmit its data is controlled by the
switch logic. Each switch has enough buffer capacity for exactly one packet on the
input end and buffer capacity of 2 flits at the output end for increased efficiency.
At the input side VL arbitration is performed to decide which VL is to send next
for this link. On the output side link arbitration is performed to decide which input
link is to send to the specific output link. This arbitration is done in a round-robin
fashion. The switch architecture is depicted in Figure 6.3. Every processor is able
to buffer two packets should the output link be busy. The overall network design
in the simulator is based on the canonical router architecture described in [25].

Figure 6.3: Switch architecture

76

6.2.4 Traffic Distribution

A variable that has some impact on the performance of a network in network
simulations is how the traffic is distributed throughout the network. There are
many ways in which traffic may be distributed in a network. With the coming
of peer-to-peer file sharing programs such as Kazaa [5], Gnutella [2], Direct Con-
nect [1] and others, we have a traffic pattern where many nodes both receive and
send data to many other nodes. The traffic is reasonably evenly distributed in the
network giving the possibility of high network utilisation. On the other hand, in
a typical Internet environment much of the traffic flows between a huge number
of clients (Web browsers, FTP clients, IRC clients, etc.) to a limited number of
servers (Web servers, FTP servers, IRC servers, etc.), we have a typical many-
to-one/one-to-many scenario. Given a certain amount of traffic these servers will
become hot spots and function as bottlenecks in terms of network utilisation. This
traffic distribution will not be able to achieve as high network utilisation as the
peer-to-peer case.

The simulations in this project are performed using two distinctly different
traffic patterns, one for each of the two scenarios described above. The first traffic
pattern is called “random pairs” where each node is receiving data from one and
only one source and sending data to one and only one destination. The source
and destination are not the same node. This is somewhat similar to the peer-to-
peer file sharing scenario with the difference being that each client is downloading
only from one of the peers at a time and serving only one peer at a time. The
other traffic pattern consists of choosing random nodes to become hot-spots in
the network. Every node in the network sends its data to one of the designated
hot-spot nodes in the network. The hot-spot nodes themselves send data to one
of the other hot-spot nodes (if any) in the network. If there are no other hot-spot
nodes in the network one of the other nodes is randomly chosen.

Random pairs traffic pattern will probe the limits of the network utilisation
possible to achieve with different admission control algorithms whilst the hot-spot
traffic pattern will challenge the ability of the admission control algorithm to limit
the network traffic based on the load of a bottleneck link. In the simulations two
hot-spot nodes will be used.

6.2.5 Traffic Generation

The results obtained from a simulator is dependent upon the process used to
generate traffic. Since the simulated network is not a real network we have to rely
on mathematical models or traces from real-life traffic to calculate when packets
should be sent from the different sources. There exist many such algorithms for
generating artificial traffic in the network, many of them tailored to the type of

77

traffic one wishes to generate.

Poisson Distributed Arrivals

One such commonly used method of emulating network traffic is known as the
Poisson process. A Poisson arrival process is a process in which the probability
of a packet arriving in a certain interval is independent of packet arrivals in other
intervals. Given the mean inter-arrival time and standard deviation the Poisson
process generates the next time a packet should be sent in such a way that the mean
inter-arrival time of all the packets approach the desired mean value. This method
works well for modeling the arrival of telephone calls [40] and FTP sessions [45],
but as we shall see in the next section this method is not adequate for modeling
general network traffic.

Self-Similar Traffic

Analysis of real-life network traffic traces [24] [40] have shown that the arrival of
each packet in the network is not totally independent of the arrival of any other
packet such as in a Poisson process, the arrival patterns display a degree of self
similarity. The traffic pattern is repeated on smaller and larger time scales in
accordance with fractal theory [45]. Several papers have been written on how to
efficiently simulate such long-range dependencies in the network traffic. One of the
findings in [70, 15, 53] is that such traffic can be modeled by a process with a finite
mean and infinite variance. In [70] the authors show that an aggregation of Pareto
distributed on/off sources with strictly alternating on and off periods are within
the necessary mathematical criterion, with the proper α values between 1 and 2,
to produce self similar traffic. To be within the necessary mathematical criterion
in this respect means that the number-sequence generated by the Pareto-generator
given an appropriate value of α has a finite mean value independent of the length
of the number-sequence, and infinite variation [70].

A Pareto distributed on/off source produces alternating on and off periods of
a Pareto distributed length. A formula to generate Pareto-distributed numbers on
a computer is as follows:

Xpareto =
b

U
1
α

(6.1)

where U is a uniformly distributed value in the range (0,1] and b the minimum
value of Xpareto. The parameter α controls the probability density function for the
Pareto distribution. A small value of α (α not much greater than 1) returns a
function with a higher probability of large values than a function with α closer to
2.

78

The theory in [70] states that the packet flow obtained from aggregating a
number of Pareto on/off sources converges towards self-similarity as the number of
sources generating the traffic flow and the time approaches infinity. In a simulation
it is clearly impossible either to have infinite time or an infinite number of on/off
sources for each traffic flow. Depending on the speed of the convergence towards
self-similarity it might be possible to achieve a self-similar traffic flow within a
limited amount of time and with a limited number of Pareto on/off sources. To
investigate the self-similar property of a traffic stream generated within a limited
time and only 10 Pareto on/off sources the plots in Figure 6.4 have been generated.
Before the statistics were gathered the simulation was allowed to run for 100000
simulation cycles to allow the packet generation to stabilise. Each plot indicates
the number of packets produced by a processor within a given timespan. The
timespan of each figure is 10 times greater than that of the previous figure, each
bar in the plots corresponds to the amount of packets produced in larger and larger
time intervals. If one were using a normal exponential distribution such as Poisson
to generate traffic one would see that the aggregate packet generation rates for the
different sources would approach a mean value, with less variation in generation
rate, as the timespan increases. The plots generated as we see them in Figure 6.4
do however not show the same tendency of leveling out as the timespan increases.
The hight of the bars in plot 6.4(c) maintain the same high variability as the bars
in plot 6.4(a) indicating a certain degree of self similarity in the traffic.

For simplicity the α values of the 10 on/off sources for each flow are equal
and αon is equal to αoff . When every Pareto-source used to generate a flow has
the same α values there is a well-defined relationship between α and the Hurst
parameter, or index of self similarity, H, described in equation 6.2 [70].

H =
(3− α)

2
(6.2)

According to [22] a typical value of H is about 0.7 for naturally occurring time
series such as Ethernet traffic. For this project H = 0.75 has been chosen giving
α = 1.5 for each of the 10 Pareto on/off sources generating traffic for each flow in
the network.

The method used for producing self-similar traffic for the simulations in this
project is as follows: Every flow has a packet generation engine consisting of 10
Pareto on/off sources, each producing packets at approximately one tenth of the
flow’s packet rate. The packets produced are deposited in a queue and are sent
from the node at more or less regular intervals at double the packet rate of the
flow to allow for the off-periods. This means that the peak rate of flows generated
using Pareto on/off sources is double that of the flows’ mean rates.

The main drawback of this method of traffic generation compared to the Pois-
son process described above is its infinite variability property. This means that for

79

relatively short time intervals, e.g. the time intervals used in the simulations to
be presented in the next chapter, the mean value of the Pareto generated numbers
show a great deal of variation. This means that the mean offered load of the flows
also will vary leading to very few flows having the offered load specified for the
simulations. As we shall see in section 7.2.2 this complicates the matter of finding
out whether the flows receive their requested bandwidth or not.

The reason for using self similar traffic despite the complications in analysing
the results is the recent criticism regarding the lack of realism in simulations using
a Poisson process for traffic generation.

Alternative methods for generating self similar traffic are described in [15, 42,
53, 52, 27].

Jitter Measurements Using on/off Sources Normally jitter is defined as
the inter-arrival time of packets. When using on/off sources the packet inter-
arrival time may show very high variation when measuring two packets within one
packet train compared to the last packet in one packet train and the first packet
in the next packet train. Packet jitter will therefore be very much dependent on
the packet generator and less dependent on the network architecture. To combat
this, the jitter measurements in this project are based on the difference in packet
transmission time, i.e. the time each packet spends in the network. In this way
the only thing affecting packet jitter is the way in which the packets are treated
as they traverse the network nodes, not the packet generation process.

80

(a) Packets produced at the normal timescale

(b) Packets produced at 10 times the normal timescale

(c) Packets produced at 100 times the normal timescale

Figure 6.4: Packet rate at an increasing timescale

81

Chapter 7

Results and Evaluation

In this chapter we are to evaluate the VCT admission control algorithms proposed
by this thesis. Two types of experiments have been performed to evaluate different
aspects of the admission control algorithms, namely the ability to give guarantees
per SL and per flow. Some of the results from this thesis have been presented in
[50] and [59]. In [50] we focus on the ability of the admission control algorithms to
give throughput and latency guarantees per SL in conjunction with the Infiniband
QoS mechanisms. In [59] the attention is turned towards achieving flow level
guarantees using the same mechanisms as presented in [50].

The next sections will attempt to analyse the simulation results with respect to
both SL guarantees and flow level guarantees. We analyse the admission control
algorithms presented in chapter 5:

• Link-by-Link (LBL)

• Egress Measurements (EM)

• Jitter Probing (JP)

• no admission control for comparison

with respect to the evaluation points listed in section 4.1:

• network utilisation

• throughput guarantees

• latency

• jitter

82

7.1 Target for Admission Control

Recall from section 3.1 and [51] that as long as the network operates below the
saturation point, each SL receives the throughput it requires and the QoS mech-
anisms have little significance. Thus by keeping the network below saturation
each SL receives guaranteed throughput. Lets call the network throughput be-
low which the SLs receive throughput guarantees for the admission control target
(ACT). This point is where the throughput of some SLs are forced down by the
QoS mechanisms in the network. To achieve high network utilisation and still be
able to give throughput guarantees, the network throughput should be kept as
close up to this point as possible. The ACT corresponds to the saturation point
in Figure 7.1 where the network throughput is about 0.42 packets per simulation
cycle.

7.2 Throughput/Network utilisation

The term throughput may be divided into two categories. The first category is
the total network throughput, or network utilisation. This information consists of
the total number of packets arriving in the network for each SL divided by the
simulation lifetime. This form of throughput may be used to determine the ability
of the admission control algorithms to give throughput guarantees per SL, and
the network utilisation. The other throughput category is flow throughput. This
is the number of packets that have arrived at their destination for a flow in the
network divided by the simulation time. This has not so much to do with network
utilisation, but more with the Quality of Service received by each individual flow
and is included to visualise the per-flow Quality of Service. These two categories
are therefore described separately in the sections below.

7.2.1 Total Throughput

The results obtained from simulations using the two traffic distributions, random
pairs and two hot-spots will be presented in separate sections below.

Random Pairs

As stated in section 4.1.1 one of the goals of an admission control algorithm is to
achieve high throughput whilst keeping the network below saturation. Figure 7.1
displays the throughput for each SL and the overall network throughput for each
of the three admission control schemes tested. Additionally Figure 7.1(a) displays
the throughput characteristics of a network without admission control. The x-axis
in the figures is the load put on the network, the number of packets attempted

83

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure 7.1: Aggregated Throughput

injected into the network per simulation cycle. This is also the case for almost
all the figures presented in this chapter. The y-axis is the achieved throughput in
packets per simulation cycle.

The difference in the offered load and achieved throughput that may be seen
in the figures may have one of two causes. In the case without admission control
packets may be rejected by the sender if the send queue is full. When admission
control is added flows will be rejected, forcing every packet to be produced by that
flow to be rejected.

As can be seen in Figure 7.1(a) the network operates below saturation up to a
point about midway between 0.25 and 0.5 on the x-axis marked by the saturation
point. Up to this point the throughput increases linearly for each SL and for the
total network. At about this point the low weight of SL 5 forces its throughput
down by letting the other SLs have a greater share of the network bandwidth. At

84

about 0.5 the other two low priority SLs receive the same treatment and we see
how the high priority SL 1 and SL 2 have high throughput at the expense of the low
priority SLs. Note also that the maximum achievable network throughput without
admission control equals a packet rate of 0.58 packets/cycle. This corresponds to
a total network throughput of 46.1 Gbps.

This figure clearly shows how the high priority SLs preempt the low priority
ones and how the SLs with high weight achieve better throughput than the SLs
with low weight when the network is saturated. This indicates that the network
is unable to give bandwidth guarantees. Instead of letting each SL have as much
bandwidth as they desire as is the case below saturation, the network forces the
throughput of the low-priority SLs down in favour of the high-priority SLs in the
saturated state.

Moving on to Figure 7.1(b) which displays the throughput characteristics of
the same network when LBL admission control is applied, we see that it is quite
different from figure 7.1(a). Every SL except SL 5 is subject to admission control.
As the offered load increases so does the throughput of every SL until the admission
control starts rejecting flows. The admission control starts rejecting flows when
the reservation of each SL has reached its target link utilisation. As the offered
load continues to increase the admission control algorithm keeps the throughput
on the controlled SLs constant. The throughput differentiation of the SLs is as
specified by the algorithm even as the offered load increases. There is no hint of the
service degradation seen in Figure 7.1(a), confirming that the network effectively
is kept below the saturation point and thus giving bandwidth guarantees, at least
on the class level. SL 5 continues to increase until it reaches its maximum possible
throughput in the network and its packets are rejected in the sending nodes due
to buffer overflow. The total network throughput lies around 0.46 packets/cycle,
which is 22% lower than without admission control. The fact that the throughput
is as high as it is, is mostly due to the large amount of best effort traffic in the
network.

The LBL scheme bases its admission control decisions on reserved and available
bandwidth, and it is therefore easy to force the method to differentiate between
the different SLs. The EM scheme uses network latency as one of the key metrics
and it is therefore difficult to achieve SL differentiation to the same degree. The
throughput plot for EM can be seen in Figure 7.1(c). We see that this plot has
more similarities with the plot without admission control than with the LBL plot.
As the network load increases the network reaches, and passes, the point where the
low priority SLs receive a degradation of service, their throughput is forced down.
It is evident from figure 7.1(c) that the network is being admission controlled, but
the admission control scheme is clearly not able to give bandwidth guarantees at
this level. The network throughput is not as high as without admission control. An

85

interesting point is that as the load reaches its maximum, i.e. the offered packet
rate increases, the throughputs of the high priority SLs are grouped together and
the throughputs of the low priority SLs are close to each other. Recall that every
SL requests the same latency guarantee from the network. The fact that the SLs
in a priority level are grouped together regardless of the weight of the individual
VLs, indicates that the VL weight does not affect the network latency, at least not
to the same extent as whether it is a high- or low-priority VL.

The total throughput in the case of JP is the lowest of all three admission
control schemes, though it is almost as high as the LBL case. When looking at the
throughput of the individual SLs we see that the throughput of SL 1 and SL 2 are
about half of what they are in the LBL case. SL 3 and SL 4 on the other hand,
slowly approach the same values that are present in LBL. The jitter requirements
of the SLs were chosen from on the smallest values present in a unsaturated,
uncontrolled network (see section 6.2.1). The relatively low throughput of the
controlled SLs are caused by the fact that the jitter requirements are quite strict,
forcing the algorithm to admit less traffic. Instead of the throughput of each SL
flattening out as is the case of LBL, the throughput of every SL displays a more
or less steady, though small, tendency to increase as the offered load increases.
There is no sharp cut-off point as is the case with LBL and to some extent EM.
The algorithm continues to admit traffic as the offered load increases, and we will
see how this affects jitter in Section 7.4. Notice that the throughput of SL 5 is
somewhat higher than in the LBL case, this can account for the relative high
throughput despite the low throughput of the other SLs.

On a positive note we see that the throughput of each SL is differentiated in
a manner consistent with the offered load on the different SLs and as dictated by
the given jitter requirements. We may therefore conclude that the JP scheme is
able to give bandwidth guarantees on a class level.

None of the admission control algorithms hit the ACT as well as they should.
The throughput in every controlled network lies about 12% above what we defined
as ACT. Despite of this, both LBL and JP are able to give class-based guarantees.
In the latency and jitter results presented later however, the results might have
been slightly better if the ACT was reached.

Two Hot-spots

When changing the traffic distribution from random pairs to two hot-spots, the
throughput characteristics of the network does, as expected, change. The through-
put characteristics for all three admission control schemes in addition to the one
without admission control is displayed in Figure 7.2. In the case without admission
control, Figure 7.2(a), we see that instead of having the high-priority SLs steadily
increase at the expense of the low priority SLs as we saw in the random traffic

86

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure 7.2: Aggregated Throughput for Two Hot-spots

distribution, the throughput stabilises with the high-priority SLs SL 1 and SL 2
slightly above the low priority SLs SL 3 and SL 4, which again have four thirds of
the throughput of SL 5. The high-priority SLs preempt the low-priority ones just
as in Figure 7.1(a) and the network is saturated. The network is stabilised with
a total throughput of 0.18 packets per cycle, with both SL 1 and 2 stabilising at
about 0.042.

Both LBL (Figure 7.2(b)) and EM (Figure 7.2(c)) display quite different be-
haviour than without admission control. We see that the LBL scheme still is able
to differentiate between the different SLs in the same way as it did using the ran-
dom pairs traffic distribution. The differentiation is however not as distinct since
the network throughput and the number of flows is significantly lower. The to-
tal network throughput achieved using the scheme is just above half as much as
achieved without admission control.

87

The EM scheme does not display any differentiation between high priority
and low priority SLs. Neither does it force the throughput of SL 5 down, the
network throughput has not reached the saturation point, or ACT. The total
throughput achieved using EM is higher than that of the LBL scheme, not too far
below that with no admission control, the same as with random pairs. In other
words, the network is kept below saturation, but the network does not seem to
give any bandwidth guarantees. Bear in mind that every SL has the same latency
requirement. If every SL had the same priority, we would expect no differentiation.
The SLs do have different priority, but there still is no differentiation.

JP (Figure 7.2(d)) displays the lowest total throughput of all the figures. None
of the controlled SLs are able to achieve much throughput, the algorithm seems
to be a bit too strict when admitting flows. Despite the low throughput we are
still able to detect a certain degree of SL differentiation indicating the ability
to give bandwidth guarantees. Since all the network traffic is forced through a
limited number of links there will be many more probe packets going through the
bottleneck links than in the case of random pairs. This increased traffic will lead
to larger jitter and thus fewer admitted flows. By easing the jitter requirements
the overall throughput may be increased.

Summary

Of the presented admission control algorithms only LBL and JP are able to give
bandwidth guarantees on a class level using the random pairs traffic distribution.
When using two hot-spots traffic distribution network throughput is very low and it
is therefore difficult to ascertain whether bandwidth guarantees are given. However
it seems like only the LBL and JP admission control algorithms are able to give
bandwidth guarantees in this case too. To summarise, the deployment of admission
control in a network using either of the two traffic distributions discussed above
leads to lower throughput on the controlled SLs and higher on the best effort. This
might however not be a problem since the low throughput on the controlled SLs
may lead to better latency and jitter characteristics, whilst the high throughput
of the best effort SL helps in achieving a relatively high total network throughput.

Ranking the admission control schemes based on achieved throughput we get
the following table (table 7.1). It is interesting to note that the rate pertaining
to throughput is almost inverse of the rank pertaining to bandwidth guarantees.
This is by no means the final rank of the admission control algorithms. As will
become apparent in the next sections there are several other parameters that will
influence the rank of the admission control schemes. Note that this ranking system
is not provided to name a winner among the admission control algorithms, rather
as a means of organising them as to their respective qualities.

88

AC Throughput Bandwidth Guarantees
No Admission Control 1 4
Egress Measurements 2 3

Link by Link 3 1
Jitter Probing 4 2

Table 7.1: Admission Control Schemes Sorted by Network Utilisation

7.2.2 The Throughput of Each Flow

The quality of service at the class level does not represent well how the individual
flows in the SL are treated. A SL may consist of several flows which receive good
treatment and several flows which are treated badly, all the individual flows in
the SL may receive highly variable Quality of Service, or all flows in the SL may
receive almost the same treatment corresponding to the SLs QoS. This last case
where each flow is treated equally within a SL is what we hope is the reality. To
find out if this is the case, Quality of Service received by individual flows has to
be studied.

In an attempt to visualise the throughput of each flow in the network the
following plots have been generated (Figure 7.3 for the random pairs traffic dis-
tribution and Figure 7.4 for the hot-spot traffic distribution). The figures depict
the aggregation of the mean rate of flows in their respective SLs, e.g. the average
packet rate of all the flows in the SLs. As mentioned in Section 6.2, each flow may
have one of two packet rates. Only the results for the flows with a packet rate of
0.0001 packets per cycle are presented. The plots for the flows with a packet rate
of 0.0002 packets per cycle show the same behaviour as the figures included here.
As before, the x-axis represents the offered load in packets per simulation cycles.
The y-axis represents the average achieved packet rate for the flows in the SLs.
Ideally the achieved packet rate should lie around 0.0001 packets per cycle which
is the configured packet rate for the flows presented in the plots.

Random Pairs

The simulations operate in an environment with limited buffer space. Specifically
the size of the send queue in the processor is set to two packets as described in
Section 6.2.3. As the network reaches saturation the queue buildup in the network
will force the send queue buffers at the processors to become full and subsequent
packets will be rejected due to insufficient buffer space. This will again force the
throughput of each flow downwards and may therefore be used as an indication of
network saturation and the ability to give bandwidth guarantees.

89

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure 7.3: Mean per flow rate

Figure 7.3(a) is a plot of the mean rate for every flow in their respective SLs with
no admission control. We see that the curve for every SL drops from its initial
value of about 0.0001 with a speed corresponding to the different SLs relative
priority. SL 5 is the first to drop and drops the fastest while SL 1 and SL 2 hold
on the longest. The downward tendency of the curves indicates that each flow
gets fewer and fewer packets through the network, or alternatively that fewer and
fewer flows get enough packets through the network whilst the other flows get full
service. In any case, there are more and more flows added whilst the network
bandwidth remains the same. This figure may not be used to determine which is
the case, to this purpose table 7.2 is provided. The table indicates the percentage
of flows which get 100% of their offered traffic through the network. As we can see
the numbers for the case without admission control are not impressively high.

90

SL NoAc Link-by-Link Egress Probe
1 51.6 97.6 77.5 98.5
2 41.0 98.1 77.5 98.3
3 7.7 97.7 64.9 98.1
4 2.7 96.2 66.7 98.4
5 0.0 0.95 0.095 1.4

Table 7.2: Percent of flows with full throughput with different AC

It is worth noting at this point that although SL 2 has a larger weight than SL
1, giving SL 2 a higher relative priority than SL 1, SL 2 shows worse behaviour
than SL 1. This is caused by the fact that SL 2 has a higher percentage of the
offered load than SL 1, giving it the ability to insert more flows into the network.
The increased priority of SL 2 vs SL 1 seems however not to be enough to handle
the increase in the number of flows. The main conclusion to be drawn from this
figure is, however, that without admission control none of the SLs are able to
provide all their flows with the bandwidth they initially requested.

The other three plots in Figure 7.3, figures 7.3(b),7.3(c) and 7.3(d), display a
markedly different behaviour, but are quite similar to each other. All three plots
display a more or less constant bandwidth for SL 1 through SL 4. SL 5 on the
other hand, which is not subject to admission control, plummets in much the same
way as it does in Figure 7.3(a).

Despite the similarity there is a marked difference in the percentage of flows
able to achieve full throughput. The numbers for egress scheme in Table 7.2 are
certainly much better than the values without admission control, but they are still
worse than both LBL (table 7.2) and the JP scheme which allows almost every
flow full throughput, even for SL 4, despite the fact that SL 4 has laxer jitter
requirements than SL 1.

All the four plots of Figure 7.3 exhibit more or less noisy curves. That is,
there are few straight/smooth lines, the different points on a curve seem to jump
a bit erratically up and down. This is due to the random nature of the self similar
packet generation. The difference in level of “noise” between the different SLs
and between the different plots is caused by the difference in the amount of flows
admitted in the SLs. A large number of flows will produce a more stable value for
mean flow throughput than a smaller number of flows.

Two Hot-spots

As we saw in Section 7.2.1 regarding the network throughput using two hot-spots
as traffic distribution, the overall network traffic is quite small. This is worth

91

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure 7.4: Mean per flow rate for two hot-spots

bearing in mind when introducing the rate plots using the same two hot-spots
traffic distribution, Figure 7.4.

For JP in this case, we have a situation where only the high bandwidth flows
were accepted in the network. None of the flows with the lower packet rate were
admitted. The figure presented in Figure 7.4(d) therefore displays the data of the
flows with a packet rate of 0.0002. The figure shows that the admitted flows seem
to be able to send at their specified rate as is the case with the random pairs
scheme.

Comparing the rate plots using two hot-spots and no admission control (Figure
7.4(a)) with the corresponding figure using the random pairs traffic distribution
(Figure 7.3(a)) we see that the mean flow rate has a far more drastic decrease for
two hot-spots. This is expected since the same amount of traffic is sent through a

92

fewer number of links.
The LBL and JP schemes are however quite similar to the corresponding plots

using the random pairs distribution, the only difference being a larger variation
in rate due to the smaller number of flows. In the case of EM on the other hand,
Figure 7.4(c), although they too seem quite similar, there seems to be a small
tendency to a negative slope on the curves. This indicates that the admission
control scheme is not quite able to guarantee each admitted flow its requested
bandwidth.

Summary

The results in the previous section showed that some of the different admission
control schemes were able to differentiate the throughput of each SL, based on
the parameters given to the admission control algorithm. This meant that the
admission control schemes were able to give bandwidth guarantees on a class level.
In this section we have seen that two of the admission control schemes are able
to give each individual flow bandwidth guarantees. No matter which one of the
two packet rates used in the simulations a flow requested, the flow is given the
requested throughput in the network.

In the EM scheme only 77% of the flows were able to achieve full throughput.
We can therefore not say that the scheme was able to give bandwidth guarantees.
The guarantees of the other two admission control mechanisms are, however, not
100%. As described in the tables presented in this section there was a certain
percentage of flows that were unable to get every packet sent through the network.
100 percent guarantee was not even achieved with the LBL scheme which has
detailed knowledge of each link in the network. The results are nonetheless quite
uplifting as they are achieved in the network with only class based Quality of
Service mechanisms. Table 7.3 ranks the admission control algorithms based on
the ability to achieve flow level bandwidth guarantees.

Rank AC
1 Jitter Probing
2 Link-by-Link
3 Egress Measurements
4 No Admission Control

Table 7.3: Admission Control Schemes Sorted by Bandwidth Guarantees

93

7.3 Latency

This section presents the network latency as it is observed with the different ad-
mission control algorithms. The figures presented depict the mean of the mean
latency of every flow in the SLs. These figures are only slightly different from the
figures depicting mean SL latency which have therefore not been included here.
The figures are not able to give us as detailed information about each flow as we
could with flow level throughput, but they give a fair indication of the latency
characteristics of the different admission control algorithms. The y-axis in the
figures represent the latency in simulation cycles.

Of the algorithms evaluated, only EM has any direct relationship with the net-
work latency. One would therefore expect EM to be a good method for controlling
network latency, but as we shall see in this section, this may not be the case.

7.3.1 Random Pairs

The mean of each flows mean latency is displayed in Figure 7.5. To start with
Figure 7.5(a), a plot of the system without admission control, we see that the
latency of every SL, except SL 5, starts to increase around the point where the
network reaches saturation, about midway between 0 and 0.5. This strengthens
the claim that the admission control algorithms should not allow the network to
reach saturation. We see that the latency of SL 5 starts to increase drastically
almost immediately and stabilises at a higher value than the other SLs. This is
consistent with the high load and low weight given to the SL. Also note that the
latency of the SLs in the same priority arbitration table, e.g. the SLs in the high-
priority table and the SLs in the low priority table, seem to converge to the same
value. This indicates that although the arbitration weights control the throughput
of the different SLs as we see in Figure 7.1(a), they have little influence on the
latency experienced by the SLs at the same priority level. This may also indicate
that the SL load and VL weight matches each other perfectly, except for SL 5, but
this is somewhat unlikely, there is a linear increase in load through the SLs, but
the VL priority is not increased linearly form SL 1 to SL 4.

Moving on, we see that the latency characteristics of the LBL scheme as seen in
Figure 7.5(b) are much improved. SL 5, which is not subject to admission control,
displays a marked rise, though not to the same extent as SL 5 in Figure 7.5(a).
The other SLs, SL 1 through SL 4, display an almost constant latency as the load
increases. There is a small increase from around 90 to just above 100 simulation
cycles at about load 0.5 from which the latency is constant. Although the SLs
were well differentiated with regards to bandwidth as we saw in Figure 7.1(b),
there does not seem to be much differentiation, apart from between priority levels
as with no admission control, with regards to latency. This goes further to indicate

94

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure 7.5: Mean of mean flow latency

that the VL weight has little influence on network latency at high loads.
The EM scheme in Figure 7.5(c) displays a behaviour which is not in accordance

with what one would expect given the admission control parameters. SL 1 and SL
2 are grouped and stable around 700, SL 3 and 4 are grouped and a bit less stable
around 1000 and SL 5 with no admission control increases rapidly as in the other
plots. For SL 1 and SL 2 we see that the latency is above 100 which was the basic
requirement, and even above 200, the requirement for the longest paths. From
this it can be concluded that the EM scheme is unable to give latency guarantees,
even on high-priority SLs. A question may be raised, is a latency requirement of
100 realistic? As we saw in Figure 6.1 in Section 6.2.1, the mean of the mean
flow latency for SL 1 in an uncontrolled network below saturation ranged from
90 to about 210 as the number of hops increased. It should therefore be possible

95

to achieve the same network latency by limiting the network traffic through the
admission control. To achieve this with EM the latency requirements may possibly
have to be mapped to lower symbolic latency requirements for use in the algorithm.

As with throughput the JP scheme displays much the same behaviour as LBL
with regards to latency. The latency is slightly lower for SL 1 to SL 4 and the dif-
ferentiation between the SLs is less prominent. We see the same tendency towards
a convergence of the latencies of the high- and low-priority SLs. The lower latency
and lack of differentiation with JP compared to LBL is most likely due to the fact
that JP has slightly lower throughput than LBL. The lower throughput means
fewer packets and less probability of being forced to wait during transmission of a
packet through the network.

7.3.2 Two Hot-spots

When switching to the two hot-spots address distribution it is evident from the
plots in Figure 7.6 that the latency of the strictly controlled SLs decreases while the
latency of the uncontrolled SLs increases. This means that for the LBL admission
control scheme in Figure 7.6(b) SL 1 to SL 4 perceives a slight decrease in latency
whilst SL 5 experiences much higher latency. The same goes for JP in Figure
7.6(d). The EM in Figure 7.6(c) shows the same behaviour for SL 1, SL 2 and SL
5, but SL 3 and SL 4 are almost unchanged. The uncontrolled SL, SL 5, shows
worse behaviour since the same amount of traffic as with random pairs is trying
to cross a limited number of links. Thus there is more traffic in each link and
the latency worsens. The admission controlled virtual lanes, on the other hand,
experience better latency because the limited number of links that all the traffic
has to traverse force the admission control algorithm to stop admitting flows at
an earlier time. There is less traffic and thus lower latency.

All of the admission control algorithms are able to give the same, or even better,
latency guarantees to flows in a hot-spots traffic scenario. This may be explained
by the fact that there are only a small number of links determining the amount of
traffic to be allowed in the network and it is therefore easier to get an adequate
picture of the state of the network for the admission control decision. One can
further surmise from this that the algorithms with lower latency, especially LBL
and JP, are able to adapt their admissions to the bottleneck links in the network.

JP displays exceptionally good latency characteristics for the controlled SLs.
This is as mentioned due to the fact that the algorithm is very strict when admit-
ting flows and does not achieve very high throughput.

96

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure 7.6: Mean of mean flow latency for two hot-spots

7.3.3 Summary

As we have seen here, the addition of admission control in a virtual cut-through
switched network is able to significantly reduce the average latency experienced
by the admitted flows for different address distributions. Admittedly not all the
admission control algorithms are able to reduce the latency by much, the EM
scheme was unable to reduce the latency much and does not achieve the requested
latency bounds. The situation was better for this and all the other admission
control algorithms using the two hot-spots address distributions, but not even
then was EM able to uphold the latency guarantees. As discussed in section 3.3.2
the nature of virtual cut-through makes it difficult to use measured latency as an
indication of the network capacity, as EM clearly demonstrates. However, it should
be possible to strengthen the latency requirements to for example 20 simulation

97

cycles instead of 100 for SL 1. One may then expect much improved results, but
a latency requirement of 20 is unrealistic since the shortest time a packet uses in
the network simulated here is about 60 simulation cycles. This requires a mapping
between actual latency demand and the latency parameter given the algorithm.

Rank AC
1 Jitter Probing
2 Link by Link
3 Egress Measurements
4 No Admission Control

Table 7.4: Admission Control Schemes Sorted by Latency

We see that there is a tight relationship between throughput and latency. The
higher throughput of a SL the larger will the average latency for that SL be.

The ranking of best latency in Table 7.4 is the exact opposite of the best
throughput ranking in Table 7.1. In other words, it may be possible to decrease
throughput to obtain better latency. The question is however, how much one is
willing to reduce throughput to achieve slightly better latency characteristics.

7.4 Jitter

Recall that jitter is the difference between the transmission time of two packets
in a flow. The jitter of a flow with only one packet is therefore 0. The maximum
jitter of a flow is the difference between the minimum and maximum transmissions
time of the flows packets. As the number of packets in a flow decreases so does the
probability of high variations in the transmission times, and the jitter therefore
decreases.

The jitter plots in this section display the maximum jitter of all flows in the
given SL. The average jitter of all the flows in the different SLs is somewhat
lower and more regular, i.e. less chaotic, than the plots shown here. Although
the average jitter plots may be more informative as to what generally happens to
the jitter in the network using the different admission control schemes, it is when
looking at the maximum jitter we see the most interesting differences. This will
be especially noticeable when we come to the results from the packet dropping
scheme at the end of this chapter. The plots for average jitter are presented as
Figures A.1(Random pairs) and A.2(two hot-spots) in appendix A.

98

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure 7.7: Maximum packet jitter for a flow

7.4.1 Random Pairs

The jitter plot without admission control in Figure 7.7(a) is rather chaotic. The
jitter curves of the different SLs cross each other and the overall jitter seems
to decrease towards maximum load. There is no clear distinction between the
maximum jitter of the different SLs, but for most of the time the high-priority
SLs have the lowest maximum jitter. If one were to look at the average jitter
plots without admission control (not shown here, see appendix 8.1) one would
see that the average jitter for all SLs peaks at about a offered packet rate of 0.6
with an average jitter lying around 500 cycles, with SL 5 at about 1000 cycles.
The interesting thing to notice is that as the offered load increases further the
average and maximum jitter starts decreasing. As the offered load increases, the
number of packets each flow gets through the network decreases, leading to lower

99

probabilities for large latency variation. This effect is most noticeable on SL 5 and
less noticeable upward towards SL 1 (see Figure 7.3(a)). As the number of packets
for each flow decreases so does the number of jitter measurements.

The deployment of LBL admission control scheme decreases the maximum
jitter by about 1 order of magnitude. In Figure 7.7(b) we see that SL 2 to SL 4
experience roughly the same amount of jitter, about 3000 simulation cycles, while
SL 1 is somewhat below and SL 5 is somewhat above. The average jitter in this
case is much better. SL 1 and 2 stabilises with jitter between 60 and 80 while SL
3 and 4 stabilises around 150.

The maximum jitter of the EM scheme in Figure 7.7(c) resembles the corre-
sponding plot without admission control. The jitter increases rapidly to about
20000 and stabilises, though with less variation than without admission control.
This means that the EM scheme actually displays worse jitter characteristics than
the case without admission control. Again, this stems from the fact that without
admission control each flow has few packets through the network and thus there is
a smaller probability of large variation in latency. The average jitter plot is similar
to that of LBL, but the stabilising values for SL 1 and SL 2 are about 400 whilst
SL 3 and SL 4 increase to 900.

JP in Figure 7.7(d) displays the lowest maximum jitter of all the presented
admission control algorithms. This is as one should expect since JP bases its
admission control decision on measured packet jitter in the network. On the other
hand, EM was not able to provide good latency characteristics despite the fact
that it bases its decisions on measured network latency. The maximum jitter
for every SL, except SL 5, stabilises at a value between 100 and 200, migrating
towards 200 as the offered load reaches its maximum. As with latency there is no
real differentiation between the different SLs, most probably since all the probe
packets are sent on the same SL and thus receive the same service. Despite the low
jitter, neither the average nor the maximum jitter is as low as the requirements
stated in table 6.3 in section 6.2.1.

Even though the throughput of each SL increased with the offered load, we do
not see an increase in maximum jitter to the same degree. The algorithm is in
other words able to keep the maximum packet jitter stable with different network
loads. There is however a small increase in the average jitter, the algorithm is not
perfect.

Even though the maximum jitter for LBL, and to some degree JP, seems quite
high, we see from Table 7.5 that the mean and stddev for these algorithms are
quite low. Table 7.5 presents the mean jitter and standard deviation for SL 1 in a
network at high load (indicated with the “high”-marker in figure 7.1(a)) for flows
with a hop length of 3 hops. 3 hops is chosen since the highest number of flows
have this path length. The table clearly shows that LBL and JP are able to reduce

100

jitter, and that EM actually is worse than no admission control.

AC Mean Std. deviation
No Admission Control 392 600

Link by Link 79 39
Egress Measurements 490 898

Jitter Probing 62 21

Table 7.5: Mean and standard deviation for SL 1, 3 hops at a offered packet rate
of 1,3 packets per cycle (high load)

7.4.2 Two Hot-spots

Without admission control (Figure 7.8(a)) the maximum jitter with two hot-spots
is not much different from the case with random pairs. The maximum jitter shows
the same high values, but there is less variation between the measurements. With
the LBL scheme (figure 7.8(b)) the maximum jitter for the controlled SLs decreases
as expected given the lower latency. The same goes for EM (figure 7.8(c)) though
not at all to the same extent.

JP displays in this case the absolutely lowest maximum jitter observed in this
project. Again this is caused by the low throughput achieved caused by the be-
haviour of this admission control algorithm when using two hot-spots.

As expected, lower latency of the controlled SLs leads to lower maximum jitter
for the same SLs.

7.4.3 Summary

As stated in Section 4.1 jitter and latency is closely coupled. Low packet latency
leads to low jitter since the variation in latency decreases as the maximum latency
decreases. By using admission control algorithms to reduce throughput and thus
packet latency it is possible to achieve jitter characteristics that are significantly
better than in an uncontrolled network. For SL 1 using JP the average flow jitter
is less than 30% of the average flow latency. For the worst case the jitter lies
within 100% of the average latency. Although the results are better than without
admission control, the jitter is still quite high relative to the latency. In conclusion,
very low jitter seems very hard to achieve in VCT networks.

101

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure 7.8: Maximum packet jitter of flows for two hot-spots

7.5 Throughput/QoS Trade-off

The results that have been presented in this chapter demonstrates that, in the
general case, lower throughput leads to lower latency. To find out to what degree
this is the case, how low latency we can achieve by reducing throughput, experi-
ments have been performed with different network utilisation targets for the LBL
scheme.

In Figure 7.9 the LBL scheme is shown ranging from very strict admission
control to not so strict. The purpose is to make clear the connection between
network throughput and QoS, and to see how good QoS guarantees we are able
to get from the network at the expense of network throughput. The values on
the x-axis represents the level of theoretical link capacity used by the admission

102

Rank AC
1 Jitter Probing
2 Link by Link
3 No Admission Control
4 Egress Measurements

Table 7.6: Admission Control Schemes Sorted by Jitter

control algorithm ranging from 10 percent link utilisation to 100 percent link util-
isation. Recall that the results from using the LBL admission control scheme
presented previously are obtained with a link utilisation of 50%. In Figure 7.9(a)
we see that the network throughput increases linearly to about 65 percent link
utilisation where SL 5 starts to experience poor Quality of Service with regards to
throughput. Similarly in Figure 7.9(b) the latency of each SL is quite stable until
about 50 percent link utilisation where the average flow latency starts to increase.
The maximum jitter plot (figure 7.9(c)) displays similar behaviour, only with the
difference that the maximum jitter starts to increase at about 40 percent network
utilisation. It is clear from these figures that there is a definite lower bound on the
latency guarantee that can be given to a set of flows. This lower bound is closely
related to the path length, fewer hops will give lower latencies. The lower bound
on jitter is not as clear, it is not so closely related to path length. There is however
a point below which a further reduction in throughput is not as effective.

All this shows that although reduced throughput may lead to better latency
and jitter characteristics there seems to be a limit as to how far it is effective to
reduce throughput through the use of admission control. Beyond this point other
methods must be found to reduce the latency (if possible) and especially jitter
further.

7.6 Achieving Low Jitter

The dropping of packets on a SL has been proposed in section 5.4 as a method
to further reduce jitter on that SL. To save space only two versions of packet
dropping have been included. First there is packet dropping without admission
control where packets on SL 1 are dropped if they are held back in the switches by
the flow control mechanism. Second is the same setup only with LBL admission
control. As can be seen in Figure 7.10 there is not much difference in throughput
with and without (Figure 7.1 in Section 7.2.1) dropping packets. In the case
without admission control the total network throughput is 11 percent lower than
when not dropping packets. For the LBL scheme the total network throughput

103

(a) Link-by-Link TP (b) Link-by-Link latency

(c) Link-by-Link maximum jitter

Figure 7.9: Trade-off between QoS and network utilisation

reduction is only two percent. The main difference that can be observed is that
the throughput of SL 1 with no admission control and packet dropping in Figure
7.10(a) is not quite as high as the throughput of SL 1 without packet dropping.

Turning our attention to jitter (figure 7.11), we see a markedly greater differ-
ence, especially in the case without admission control. The average jitter in this
case is forced down to just below 100 which is 75% lower than in the case without
packet dropping where the average jitter of SL 1 lies around 4-500. But it is not in
average jitter we see the most marked difference with packet dropping. Although
the average jitter of the LBL scheme is almost unaltered when introducing packet
dropping, when comparing the maximum jitter with packet dropping (Figure 7.11)
with the maximum jitter without packet dropping (Figure 7.7 in Section 7.4.1) we
see that there is a drastic decrease, 75%, in the maximum jitter perceived by any
flow in the network for SL 1. In other words, the introduction of packet dropping

104

(a) No admission control (b) Link-by-Link

Figure 7.10: Throughput with packet dropping

on SL 1 leads to a smaller variation in network latency and thus lower packet jitter.
The maximum jitter of LBL is still higher than the maximum jitter achieved with
JP, but not by much. When one takes the double throughput of SL 1 in the LBL
scheme with packet dropping compared with SL 1 in JP into account, this small
degradation in maximum jitter for SL 1 does not seem to have great significance.
Halving the throughput rate of SL 1 is quite a price to pay for reducing maximum
jitter by 20%, but depending on the application it might be worth-while.

(a) No admission control (b) Link-by-Link

Figure 7.11: Maximum packet jitter with packet dropping

It remains now to be seen at what cost this reduction in maximum packet
jitter has been achieved. Figures 7.12(a) and 7.12(b) depict the distribution of

105

flows based on the amount of packets they were able to send through the network
compared to the amount of packets that they tried to send. The height of the
bar in the plot indicates the percentage of flows which were able to send a specific
percentage of packets through the network. As we see in Figure 7.12(a) for the case
without admission control, only 41% of the flows were able to propagate all their
packets through the network without any of them being dropped by the network.
A few flows did not even get 10% of the traffic through the network. LBL on the
other hand, in Figure 7.12(b), is able to ensure that 95 percent of the flows get
all their packets through the network. This is a small decrease of 2% compared
to the value for SL 1 (around 97%) listed in Table 7.2 in section 7.2.2 for the case
without packet dropping. As opposed to the plot without admission control the
smallest percentage of packets a flow was able to successfully send through the
network was about 85 percent.

(a) No admission control (b) Link-by-Link

Figure 7.12: Distribution of how many packets flows have successfully sent through
the network

To summarise, packet dropping is not allowed in VCT networks, but it seems
that packet dropping can be a useful tool to provide better jitter characteristics in
a VCT network without the necessity of reducing network throughput too much.
It also seems that including packet dropping with a form of admission control
gives the ability to provide this benefit without the cost of dropping too many
packets, and without having to endure delays in the admission control decision
while probing the network. The jitter is however still not lower than when using
JP, it still remains to find a way of further reducing jitter.

106

7.7 Concluding Remarks

This section presents some concluding remarks regarding the performance and
usability of the evaluated AC algorithms. Based on the tables presented in this
chapter it is apparent that LBL and JP are the algorithms that are able to give
best guarantees. EM is not able to give either bandwidth or latency guarantees
and is not a viable approach in this scenario. LBL achieves higher throughput than
JP and has better bandwidth differentiation, while JP displays lower latency and
jitter. Additionally packet dropping with LBL displays low jitter and relatively
high throughput. Packet dropping is however not supported or desirable in VCT,
this is therefore not a method that is usable in the current situation.

Both LBL and JP have their drawbacks. LBL requires either direct modifica-
tion of the switches, or a BB which might become a bottleneck in the AC fase. JP
spends some time sending probe packets, delaying the admission of the flow until
the probing is completed.

If the flows have time to wait for the probing to complete, JP is a good alter-
native offering low latency and jitter, though at the expense of throughput. If the
AC decision must be performed quickly, LBL may be used, as long as there is a
limited rate of flow events. LBL may also be tuned to provide even lower jitter as
we saw in Section 7.5.

107

Chapter 8

Conclusion

This project has proposed and evaluated three admission control algorithms with
the purpose of achieving Quality of Service guarantees with regards to throughput,
latency, and jitter for both the service levels as a whole and for individual flows, as
well as an alternative method for achieving low jitter. The admission control al-
gorithms have been evaluated through extensive simulation experiments involving
many different network topologies and several address distributions. The three ad-
mission control schemes represent fundamentally different approaches to admission
control. The Link-by-Link scheme utilises a centralised bandwidth broker with a
priori knowledge about the effective link utilisation and knowledge of the network
topology. In the Egress Measurement method the egress nodes passively monitor
the existing network traffic and uses mainly latency as the admission control cri-
teria, whilst Jitter Probing actively probes the network for available capacity by
observing the jitter of the probe packets. The results show that both Link-by-Link
and Jitter Probing are capable of giving bandwidth guarantees both to the service
level and individual flows. The Egress Measurements proved a disappointment, it
was not able to give such good guarantees.

Latency and jitter on the other hand are properties that are difficult to control
in virtual cut-through networks. Although Jitter Probing and Link-by-Link are
able to improve on the network without admission control, Jitter Probing being
the better one, it seems difficult to give strict guarantees.

The problem of unpredictable latency and jitter was challenged by allowing the
switches to drop packets on Service Level 1 if there was any danger of the flow
control mechanism holding packets back due to lack of buffer space. This solution
was not able to improve the maximum jitter over that of the Jitter Probing, but it
was able to achieve only slightly worse jitter with significantly higher throughput,
almost double, for Service Level 1 when combined with Link-by-Link admission
control.

There is a strong relationship between throughput and network latency/jitter.

108

Any improvements in latency/jitter come at the expense of lower network through-
put. This may be partly rectified by having uncontrolled low priority traffic in the
network as has been the case in the simulations presented here, but depending on
the Quality of Service parameters, much low priority traffic may also worsen the
Quality of Service perceived by the high-priority traffic.

8.1 Further work

There still remains to find a way of efficiently controlling latency and jitter in
virtual cut-through networks. The nature of virtual cut-through networks makes
it uncertain whether such methods will ever be found.

The results presented in this project have been achieved using a certain set of
parameters for the different admission control algorithms. With a correct tuning
of the different parameters, for example the effective link bandwidth in the Link-
by-Link scheme, it might the possible to improve on the results as we present them
here.

As for the results presented here, simulations should have been performed for
a longer simulation time, using networks of smaller and larger sizes, using larger
packets, presenting other parameter configurations of the admission control algo-
rithms and so on. All of this may be done to study further the application of
admission control in virtual cut-through networks.

Packet dropping should also be studied further. Although packet dropping is
incompatible with the virtual cut-through philosophy, further work as to when the
switches should drop packets may lead to solutions which are able to give jitter
guarantees.

109

Bibliography

[1] The direct connect web page. http://www.neo-modus.com/.

[2] The gnutella web page. http://www.gnutella.com/.

[3] Ipv6: The next generation internet. http://www.ipv6.org/.

[4] The issll charter. http://www.ietf.org/html.charters/issll-charter.html.

[5] The kazaa web page. http://www.kazaa.com/.

[6] F. J. Alfaro, Jose L. Sanchez, Jose Duato, and Chita R. Das. A strategy
to compute the infiniband arbitration tables. Proceedings of International
Parallel and Distributed Processing Symposium, April 2002.

[7] Francisco J. Alfaro, Jose L. Sanchez, and Jose Duato. A strategy to manage
time sensitive traffic in infiniband. Proceedings of Workshop on Communica-
tion Architechture for Clusters (CAC), April 2002.

[8] Infiniband Trade Association. Infiniband web page.
http://www.infinibandta.com/.

[9] InfiniBand Trade Association. InfiniBand Architecture Release 1.0, Volume
One - General Specifications, final edition, October 24th 2000.

[10] Ayan Banerjee, John Drake, Jonathan Lang, Brad Turner, Daniel Awduche,
Lou Berger, Kireeti Kompella, and Yakov Rekhter. Generalized mulitpro-
tocol label switching: An overview of signaling enhancements and recovery
techniques. IEEE Communications Magazine, pages 144–151, July 2001.

[11] Ayan Banerjee, John Drake, Jonathan Lang, Brad Turner, Kireeti Kompella,
and Yakov Rekhter. Generalized multiprotocol label switching: An overview
of routing and management enhancements. IEEE Communications Magazine,
pages 144–150, January 2001.

110

[12] Aurelio Bermudez, Rafael Casado, Francisco J. Quiles, Timothy M. Pinkston,
and Jose Duato. Evaluation of a subnet management mechanism for infini-
band networks. ICPP, March 2003.

[13] G. Bianchi, F. Borgonovo, A. Capone, L. Fratta, and C. Petrioli. End-
point admission control with delay variation measurements for qos in ip net-
works. ACM SOGCOMM Computer Communications Review, 32(2):61–69,
April 2002.

[14] S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
architecture for differentiated services. Rfc 2475, IETF, 1998.

[15] Stefan Bodamer and Joachim Charzinski. Evaluation of effective bandwidth
schemes for self-similar traffic. Proceedings of the 13th ITC Specialist Seminar
on IP Measurement, Modeling and Management, pages 21–1–21–10, Septem-
ber 2000.

[16] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A gigabit-
per-second local area network. IEEE Micro, 15(1):29–36, 1995.

[17] R. Braden, D. Clarke, and S. Shenker. Integrated services in the internet
architecture: an overview. Rfc 1633, IETF, 1994.

[18] Lee Breslau, Edward W. Knightly, Scott Shenker, Ion Stoica, and Hui Zhang.
Endpoint admission control: architectural issues and performance. In Pro-
ceedings of the conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, 2000.

[19] Werner Bux, Wolfgang E. Denzel, Ton Enbersen, Andreas Herkersdorf, and
Ronald P. Luijten. Technologies and building blocks for fast packet forward-
ing. IEEE Communications magazine, January 2001.

[20] John S. Carson. Modeling and simulation worldviews. Proceedings of the 1993
Winter Simulation Conference, pages 18–23, 1993.

[21] C Cetikaya and E. W. Knightly. Egress admission control. IEEE infocom,
3:1471–1480, 2000.

[22] Y. Chen and C. L. Williamson. A model for self-similar ethernet LAN traffic:
Design, implementation, and performance implications. Technical Report DR-
95-7, 27, 1995.

[23] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems,
Concepts and Design. Addison Wesley, third edition, 2001.

111

[24] Mark Crovella and Azer Bestavros. Self-similarity in world wide web traf-
fic: Evidence and possible causes. In Proceedings of SIGMETRICS’96: The
ACM International Conference on Measurement and Modeling of Computer
Systems., Philadelphia, Pennsylvania, May 1996. Also, in Performance eval-
uation review, May 1996, 24(1):160-169.

[25] J. Duato, S. Yalamanchili, and L. Ni. Interconnection networks: an engeneer-
ing approach. IEEE Computer Society, 1997.

[26] Hans Eberle and Erwin Oertli. Switcherland: A qos communication architec-
ture for workstation clusters. In ISCA, pages 98–108, 1998.

[27] Ashok Erramilli, R. P. Singh, and Parag Pruthi. Chaotic maps as models of
packet traffic. ITC, 14, 1994.

[28] M. D. Schroder et. al. Autonet: a high-speed, self-configuring local area net-
work using point-to-point links. SMR Research Report 59, Digital Equipment
Corporation, 1990.

[29] R. Gidron. Teranet: A multihop multichannel ATM lightwave network. Third
IFIP WG 6.4 Conference on High Speed Networking; Berlin, Germany, pages
61–76, 1991.

[30] Stein Gjessing, Olav Lysne, Audun Fosselie Hansen, and Amund Kvalbein.
The vine project: Towards predictabe communication in heterogeneous net-
works. To appear in proceedings from ICN’04, 3rd International Conference
on Networking, 2004.

[31] H. T. Hill, R. ; Kung. A diffserv enhance admission control scheme. IEEE,
4:2549–2555, 2001.

[32] Øyvind Holmeide and Tor Skeie. Switched synchronization. In Industrial
Ethernet Book (IEB), volume 7, pages 24–27. 2001.

[33] Robert W. Horst. Tnet: A reliable system area network. IEEE Micro, pages
15(1):37–45, 1995.

[34] Guillermo Ibanez. Gmpls. towards a common control and management plane:
Generalized multiprotocol label switching in optical transport networks (gm-
pls).

[35] Sugih Jamin, Scott J. Shenker, and Peter B. Danzig. Comparison of
measurement-based admission control algorithms for controlled-load service.
IEEE, 1997.

112

[36] Jurgen Jasperneite and Peter Neumann. Switched ethernet for factory com-
munication. Proceedings of 8’th IEEE International Conference on Emerging
Technologies and FActory Automation (ETFA’01), pages 205–212, October
2001.

[37] Jurgen Jaspernite, Peter Neumann, Michael Theis, and Kym Watson. De-
terministic real-time communication with switched ethernet. Proceedings
of 4’th IEEE International Workshop on Factory Communication Systems
(WFCS’02), August 2002.

[38] Mark J. Karol, Michael G. Hluchyj, and Samuel P. Morgan. Input versus
output queueing on a space-division packet switch. IEEE Transactions on
Communications, COM-35(12):13471356, 1987.

[39] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer commu-
nication switching technique. Computer Networks, 3(4):267–286, 1979.

[40] Will E. Leland, Murad S. Taqq, Walter Willinger, and Daniel V. Wilson. On
the self-similar nature of Ethernet traffic. In Deepinder P. Sidhu, editor, ACM
SIGCOMM, pages 183–193, San Francisco, California, 1993.

[41] D. L. Mills. Internet time synchronization: the network time protocol. IEEE
Trans. Communications COM-39, pages 1482–1493, 1992.

[42] Anibal D. A. Miranda and Abzaloni A. Synthetizing of markovian and self-
similar lan/wan traffic on data networks. IEEE International Telecommuni-
cations Symposium, 2002.

[43] Institute of Electrical and Electronic Engineers. Local area network - csma/cd
access method and physical layer specifications. American National Standard
ANSI/IEEE 802.3, IEEE computer Society, 1985.

[44] Jørgen Olsen. Atm internetworking. Master’s thesis, 1996.

[45] Vern Paxson and Sally Floyd. Wide area traffic: the failure of Poisson mod-
eling. IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[46] Joe Pelissier. Providing quality of service over infinband architecture fabrics.
Proceedings of Hot Interconnects X, 2000.

[47] Larry L. Peterson and Bruce S. Davie. Computer Networks a Systems Ap-
proach. Morgan Kaufman Publishers, Inc., second edition edition, 1996.

113

[48] P.Lpez, J.Flick, and J.Duato. Deadlock-free routing in infiniband through
destination renaming. IEEE Computer Society, Proceedings of the 2001 In-
ternational Conference on Parallel Processing (ICPP ’01):427–434, 2001.

[49] Wenjian Qiao and Lionel M. Ni. Adaptive routing in irregular networks using
cut-through switches. In ICPP, Vol. 1, pages 52–60, 1996.

[50] Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen, Tor Skeie, and Olav Lysne.
Admission control for diffserv based quality of service in cut-through networks.
Proceedings of the 10th International Conference on High Performance Com-
puting, 2003.

[51] Sven-Arne Reinemo, Tor Skeie, and Olav Lysne. Applying the diffserv model
on cut-through networks. Proceedings of the 2003 International Conference
of Parallel and Distributed Processing Techniques and Applications, 2003.

[52] Stephan Robert and Jean-Yves Le Boudec. New models for pseudo self-similar
traffic. 1996.

[53] L.G. Samuel, J.M. Pitts, and R.J. Mondagon. Fast self-similar traffic genera-
tion. Proceeding of the Fourteenth UK Teletraffic Symposium on Performance
Engineering in Information Systems, pages 8/1–8/4, March 1997.

[54] J. C. Sancho, A. Robles, J. Flich, P. Lopez, and J. Duato. Effective method-
ology for deadlock-free minimal routing in infiniband networks.

[55] Jos Carlos Sancho, Antonio Robles, and Jos Duato. Effective strategy to
compute forwarding tables for infiniband networks. 2001.

[56] Julie Schlembach, Anders Skoe, Ping Yuan, and Edward Knightly. Design
and implementation of scalable admission control. QoS-IP, pages 1–15, 2001.

[57] Thomas J. Schriber and Daniel T. Brunner. Inside simulation software: How
it works and why it matters. Proceedings of the 1996 Winter Simulation
Conference, pages 23–30, 1996.

[58] Rich Seifert. Gigabit Ethernet. Addison Wesley Pub Co., 1998.

[59] Frank Olaf Sem-Jacobsen, Sven-Arne Reinemo, Tor Skeie, and Olav Lysne.
Acheiving flow level qos in cut-through networks through admission control
and diffserv. To be submitted to International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), 2004.

[60] Tor Skeie. Topics in Interconnect Networking. PhD thesis, University of Oslo,
April 1998.

114

[61] Tor Skeie, Svein Johannessen, and Øyvind Holmeide. Highly accurate time
sychronisation over switched ethernet. In 8th IEEE conference on Emerging
Technologies and Factory Automation (ETFA), 2001.

[62] Tor Skeie, Svein Johannessen, and Øyvind Holmeide. The road to an end-to-
end deterministic ethernet. Proceedings of 4’th IEEE International Workshop
on Factory Communication Systems (WFCS’02), August 2002.

[63] Tor Skeie, Olav Lysne, J. Flich, P. Lopez, A. Robles, and J. Duato. Lash-tor:
A generic transition-oriented routing algorithm. Submitted to International
Conference on Parallel and Distributed Systems (ICPADS), 2004.

[64] Tor Skeie, Olav Lysne, and Ingebjørg Theiss. Layered shortest path (lash)
routing in irregular system area networks. Proceedings of Communication
Architecture for Clusters, 2002.

[65] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, Inc., third edition
edition, 1996. International edition.

[66] Y. Tseng. Multi-node broadcasting in hypercubes and star graph, 1998.

[67] R. Tucker and W. Zhong. Photonic packet switching: an overview, 1999.

[68] Nikolaos Vasiliou. Reading course paper, overview of internet qos and web
server qos. April 2000.

[69] Arun Viswanathan, Nancy Feldman, Zheng Wang, and Ross Callon. Evolution
of multiprotocol label switching. IEEE Communications Magazine, pages
165–173, May 1998.

[70] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson.
Self-similarity through high-variability: statistical analysis of Ethernet LAN
traffic at the source level. IEEE/ACM Transactions on Networking, 5(1):71–
86, 1997.

[71] Xipeng Xiao and Lionel M. Ni. Internet qos: A big picture. IEEE Network,
pages 8–18, March 1999.

[72] Jia Yongxing and Ming-Chen. A new architecture of providing end-to-end
quality of service for differentiated services network. IEEE Military Commu-
nications Conference, 2:1450–1455, 2001.

[73] Ki Hwan Yum, Eun Jung Kim, Chita R. Das, Mazin Yousif, and Jose Du-
ato. Integrated admission and congestion control for qos support in clusters.
Proceeding of IEEE Internationa Conference on Cluster Computing, pages
325–332, September 2002.

115

[74] Weibin Zhao, David Olshefski, and Henning Schulzrinne. Internet quality of
service: an overview.

116

Appendix A

Additional figures

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure A.1: Average packet jitter for a flow

117

(a) No admission control (b) Link-by-Link

(c) Egress Measurements (d) Jitter Probe

Figure A.2: Average packet jitter of flows for two hot-spots

118

(a) No admission control (b) Link-by-Link

Figure A.3: Average packet jitter with packet dropping

119

Appendix B

Produced Articles

120

Admission Control for DiffServ Based Quality of

Service in Cut-through Networks

Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen, Tor Skeie, and Olav Lysne

Simula Research Laboratory
P.O.Box 134, N-1325 Lysaker, Norway

svenar@simula.no, frankose@ifi.uio.no, {tskeie, olavly}@simula.no

Abstract. Previous work on Quality of Service in Cut-through networks
shows that resource reservation mechanisms are only effective below the
saturation point. Admission control in these networks will therefore need
to keep network utilization below the saturation point, while still utilising
the network resources to the maximum extent possible. In this paper we
propose and evaluate three admission control schemes. Two of these use
a centralised bandwidth broker, while the third is a distributed meas-
urement based approach. We combine these admission control schemes
with a DiffServ based QoS scheme for virtual cut-through networks to
achieve class based bandwidth and latency guarantees. Our simulations
show that the measurement based approach favoured in the Internet com-
munities performs poorly in cut-trough networks. Furthermore it demon-
strates that detailed knowledge on link utilization improves performance
significantly.

1 Introduction

Internet has today evolved into a global infrastructure supporting applications
such as streaming media, E-commerce, network storage, etc. Each of these applic-
ations must handle an ever increasing volume of data demanded as predictable
transfers. In this context the provision of Quality of Service (QoS) is becoming
an important issue. In order to keep pace with computer evolution and the in-
creased burden imposed on data servers, application processing, etc. created by
the popularity of the Internet, we have in recent years seen several new technolo-
gies proposed for System and Local Area Networking (SAN/LAN) [3,4,7,14,24].
Common for this body of technologies is that they rely on point-to-point links
interconnected by off-the-shelf switches that support some kind of back-pressure
mechanism. Besides, most of the referred technologies also adhere to the cut-
through or wormhole switching principles - only Gigabit Ethernet is using the
store-and-forward technique. For a survey of some relevant networking principles
we refer to [6].

IETF has for several years provided the Internet community with QoS con-
cepts and mechanisms. The best known ones are Integrated Services (IntServ) [8],
Resource Reservation Protocol (RSVP) [13], and Differentiated Services (Diff-
Serv) [5]. IntServ together with RSVP define a concept based on per flow re-
servations (signalling) and admission control to be present end-to-end. DiffServ,

however, takes another approach assuming no explicit reservation mechanism
in the interior network elements. QoS is here realized by giving data packets
differentiated treatment relative to the QoS header code information. In the un-
derlying network technologies QoS has to a less extent been emphasised - the key
metrics here have mainly been mean throughput and latency. To provide QoS
end-to-end, possibly over heterogeneous technologies this means that the lower
layers should also have support for predictable transfer including the ability to
interoperate with a higher level IETF concept. This issue is being challenged
by emerging SAN/LAN standards, such as InfiniBandTM [4] and Gigabit Eth-
ernet [24] providing various QoS mechanisms.

Recently we have also seen several research contributions to this field. Jasper-
nite et. al. [9,10] and Skeie et. al [15] discuss different aspects of taking control of
the latency through switched Ethernet relative to the IEEE 802.1p standard aim-
ing for traffic priorities. Another body of work is tailored to the InfiniBandTM

architecture (IBA) [1, 2, 12]. In [12] Pelissier gives an introduction to the set
of QoS mechanisms offered by IBA and the support for DiffServ over IBA. In
this approach the presence of admission control is assumed. Alfaro et. al build
on this scheme and present a strategy for computing the arbitration tables of
IBA networks, moreover a methodology for weighting of virtual layers referring
to the dual arbitrator defined by IBA [2]. The concept is evaluated through
simulations assuming that only bandwidth sensitive traffic requests QoS. In [1]
Alfaro et. al also include time sensitive traffic, besides calculating the worst case
latency through various types of switching architectures.

DiffServ is foreseen to be the most prominent concept for providing QoS
in the future Internet [11, 17]. DiffServ makes a distinction between boundary
nodes and core nodes with respect to support of QoS features. Following the
DiffServ philosophy no core switch should hold status information about passing-
through traffic. Neither should there be any explicit signalling on a per flow
basis to these components. This means that within the DiffServ framework any
admission control or policing functionality would have to be implemented by
boundary nodes or handled by a dedicated bandwidth broker. The core switches
are assumed to perform traffic discrimination only based on service class, which
is decided by a QoS tag included in the packet header - all packets carrying
the same QoS tag will get equal treatment. From that viewpoint DiffServ is
apparently a relative service model having difficulties giving absolute guarantees.

None of the previous debated contributions comply with the DiffServ model.
In [12] Pelissier, however, discusses interoperation between DiffServ and IBA
on a traffic class and service level basis, but refer to RSVP with respect to
admission control. The strategy proposed by Alfaro et. al has to recompute the
IBA dual arbitrator every time that a new connection is honoured [1,2]. And such
a scheme is not associable with DiffServ. Neither is the admission control scheme
presented in [29] by Yum et. al, which use hop by hop bandwidth reservations
and requires recomputations of the weighted round robin scheduler at every hop
towards the destination. In [25] Reinemo et. al. studied the provision of QoS
in cut-through networks by adhering to the DiffServ model. The problem was

approached without any explicit admission control mechanism, as a pure relative
model. Empirically they examined the sensitivity of different QoS properties
under various load and traffic mixture conditions, hereunder assessing the effect
of back-pressure.

In this paper we endeavour to achieve class based QoS in cut-through net-
works by use of admission control. More specifically, we extend the concept de-
scribed in [25] with admission control. However, still in compliance with the Diff-
Serv paradigm where service classes, as aggregated flows, are the target for QoS.
Three different admission control mechanisms are proposed and carefully evalu-
ated through extensive simulations. Two of the schemes assume pre-knowledge
of the network’s performance behaviour without admission control, and are fur-
thermore implemented as a centralised bandwidth broker. The third scheme is
based on endpoint/egress admission control and relies on measurements to as-
sess the load situation, inspired by Internet QoS provisioning. To the best of the
authors’ knowledge no detailed admission control methods have been proposed
for cut-through networks before.

The rest of this paper is organised as follows. In section 2 we give a description
of our QoS architecture and routing algorithm, in section 3 our three admission
control mechanisms are described, and in section 4 our simulation scenario is
described. In section 5 we discuss our performance results, and finally in section 6
we give some concluding remarks.

2 QoS Architecture

The architecture used in our simulations is inspired by IBA link layer technology
[4] and is a flit based virtual cut-through (VCT) switch. The overall design is
based on the canonical router architecture described in [6].

In VCT the routing decision is made as soon as the header of the packet
is received and if the necessary resources are available the rest of the packet
is forwarded directly to the destination link [23]. If the necessary resources are
busy the packet is buffered in the switch. In addition we use flow control on all
links so all data is organised as flow control digits (flits) at the lowest level.

The switch core consists of a crossbar where each link and VL has dedicated
access to the crossbar. Each link supports one or more virtual lanes (VL), where
each VL has its own buffer resources which consist of an input buffer large enough
to hold a packet and an output buffer large enough to hold two flits to increase
performance. Output link arbitration is done in a round robin fashion.

To achieve QoS our switch architecture support QoS mechanisms like the ones
found in the IBA architecture. IBA supports three mechanisms for QoS which
are mapping of service level (SL) to VL, weighting of VLs and prioritising VLs
as either low priority (LP) or high priority (HP). A more detailed description of
these QoS aspects can be found in [25].

The routing used is a newly introduced routing algorithm called Layered

shortest path routing (LASH) [16]. LASH is a minimal deterministic routing
algorithm for irregular networks which only relies on the support of virtual layers.

There is no need for any other functionality in the switch, so LASH fits well with
our simple approach to QoS. An in-depth description of LASH is found in [16].

3 Admission Control

In this section we propose three different admission control (AC) mechanisms
that we carefully evaluate in section 5.

3.1 Calibrated Load Based Admission Control

The Calibrated Load (CL) approach is a simple scheme relying on the fact that a
BB knows the total rate of traffic entering the network. Our AC parameter is the
amount of traffic which can be injected into the network while still keeping the
load below saturation. As the rate of traffic entering the network reaches the CL
parameter no more traffic will be admitted. In most cases the CL parameter must
be decided by measurements on the network in question to find the saturation
point - our CL is deduced from measurements performed in [25].

To keep HP and LP traffic separated we use two different CL parameters,
one for the total HP traffic and one for the total LP traffic. For HP traffic this
can be expressed as follows

n∑

i=0

LHP,i + PHP < CLHP . (1)

Here CLHP is the calibrated load for outgoing HP traffic, LHP,n is the HP load
in node n and PHP is the peak rate for the requesting flow. Moreover, the flow
is admitted if the total HP load

∑n

i=0
LHP,i plus the requested increase PHP

is below the calibrated load CLHP . LP traffic can be expressed similarly just
substituting HP values with LP values. The strength of this scheme is that it is
simple, its weakness is that it is inaccurate since it does not take into account the
distribution of flows in the network. And from that viewpoint it is less suitable
for handling hot spots.

3.2 Link by Link Based Admission Control

Our second scheme is the Link-by-Link (LL) approach. Here the BB knows the
load on every link in the network and will consult the availability of bandwidth
on every link between source and destination before accepting or rejecting a
flow. Compared to the CL approach, this solution assumes both topological and
routing information about the network.

For the AC decision we adopt the simple sum approach as presented in [28].
This algorithm states that a flow may be admitted if its peak rate p plus the
peak rate of the already admitted flows s is less than the link bandwidth bw.
Thus the requested flow will be admitted if the following inequality is true [28]

p + s < bw (2)

we view p as the increase in peak rate for the flow and s as the sum of the
admitted peak rates. As for the CL method we deduce the effective bandwidth
from the measurements obtained in [25]. Since we are dealing with service levels
where each SL have different bandwidth requirements it is natural to introduce
some sort of differentiation into equation (2). We achieve this by dividing the
link bandwidth into portions relative to the traffic load of the SLs, and include
only the bandwidth available to a specific service level bwSL in the equation as
follows

p + sSL < bwSL (3)

where

bwSL = bwlink ∗

loadSL

loadtotal

(4)

and sSL is the sum of the admitted peak rates for service level SL and bwlink is
the effective link bandwidth.

3.3 Egress Based Admission Control

Our third scheme is the Egress Based (EB) approach. This is a fully distributed
AC scheme where the egress nodes are responsible for conducting the provi-
sions. Basically, we here adopt the Internet AC concept presented by Cetikaya
and Knightly in [26]. This method does not assume any pre-knowledge of the
network behaviour as was the case with our previous solutions. Also different
from the previous approaches is the use of a delay bound as the primary AC
parameter. For clarity we give a brief outline of the algorithm below, a more
detailed description can be found in [27].

The method is entirely measurement based and relies on that the sending
nodes timestamp all packets enabling the egress nodes to calculate two types of
measurements. First, by dividing time into timeslots of length τ and counting
the number of arriving packets, the egress nodes can deduce the arrival rate of
packets in a specific timeslot. By computing the maximum arrival rate for in-
creasingly longer time intervals we get a peak rate arrival envelope R(t), where
t = 0, ..., T timeslots, as described in [26]. Second, by comparing the originat-
ing timestamp relative to the arrival time, the egress node can calculate the
transfer time of a packet. Having this information available the egress node can
furthermore derive the time needed by the infrastructure to service k following
packets; i.e. a consecutive stream of packets where the next packet in the ser-
vice class enters the infrastructure before the previous packet has departed the
egress node. By doing this for larger and larger k sequences of packets within
a measuring interval of length Tτ and subsequently inverting this function we
achieve the service envelope S(t), giving the amount of packets processed by the
network in a given time interval t. Now repeating this M times, the mean R(t)
and the variance σ2(t) of R(t), and the mean S(t) and variance Ψ2(t) of S(t)
may be calculated. If a flow request has a peak rate P and a delay bound D it

may be accepted if the peak rate P plus the measured arrival rate R(t) is less
than the service rate allowing for the delay D, S(t + D) .

The EB scheme derives its knowledge of the network from measurements
of the traffic passing through the egress nodes. It is therefore difficult for the
egress nodes to have a complete picture of the load in the network, moreover the
packet latency is used to infer the network load utilising the fact that an increased
network load will cause increase in latency as well. From that viewpoint it seems
difficult to give a service class bandwidth guarantees since it has no concrete
knowledge of the network load. The algorithm will admit as much traffic as it
can without breaking the delay bound. The key instrument of the scheme is the
given delay bound for the different flows, and the efficiency of the algorithm is
linked to its ability to limit the service levels to operate within the delay bounds.

3.4 Target for Admission Control

The main findings for the work in [25] are that (i) throughput differentiation
can be achieved by weighting of VLs and by classifying the VLs as either low or
high priority, (ii) the balance between VL weighting and VL load is not crucial
when the network is operating below the saturation level. In general this sets
the target for the AC, since as long as we can ensure that the load of the various
service classes is below saturation level we can also guarantee that each of these
classes get the bandwidth they request. The target for admission control is thus
the point where the amount of accepted traffic is starting to become less than
traffic offered. The effective bandwidth at this point will be used as a steering
vehicle by the CL and LL methods.

Another main finding in [25] is that though the latency characteristics be-
low saturation were fairly good, significant jitter was observed. This problem
we challenge by proposing the EB method, where a given delay bound is the
requested quality of service. Since this concept is continuously monitoring the
end-to-end latency characteristics for all pair of nodes one should possibly expect
that delay guarantees could be given.

4 Simulation Scenario

For all simulations we have used a flit level simulator developed in house at
Simula Research Laboratory. In the simulation results that follow, all traffic
is modelled by a normal approximation of the Poisson distribution. We have
performed simulations on a network with 32 switches, where each switch is con-
nected to 5 end nodes and the maximum number of links per switch is 10 in
addition to the end nodes. We have randomly generated 16 irregular topologies
and we have run measurements on these topologies at increasing load. We use
LASH [16] as routing algorithm and random pairs as traffic pattern. In the ran-
dom pairs scheme each source sends only to one destination and no destination
receives from more that one source. The link speed is one flit per cycle, the flit
size is one byte and the packet size is 32 bytes for all packets.

The five different end nodes send traffic on one of five different service levels.
One service level for each node (Table 1), SL 1 and 2 are considered to be of
the expedited forwarding (EF) class in DiffServ terminology. And SL 3 and 4
are considered to be of the assured forwarding (AF) class. SL 5 is considered as
best effort (BE) traffic and from that viewpoint is not a subject of AC.

For the CL and LL schemes all simulations where run with an ACT deduced
from our measurements in [25]. In the first part of the simulation the send rate
is steadily increased by adding more and more flows until admission is denied
by the AC scheme. When this happens the current rate is not changed, but the
node will continue to try to go beyond the ACT for a fixed number of times
before it gives up. For the EB scheme the send rate is increased in the same
way, but the AC decision is primarily based on measured latency as described
in section 3.3.

Table 1. Services levels

SL DS1 Load % BW2 Pri SL DS Load % BW Pri SL DS Load % BW Pri

1 EF 10 4 high 3 AF 20 8 low 5 AF 30 1 low

2 EF 15 6 high 4 AF 25 10 low

5 Performance Results

5.1 Throughput

Recall that the target for the AC is to make sure that the network operates
below saturation at all times, since below this point we can guarantee that all
SLs get the bandwidth they request. The relative requests for each SL are as
shown in Table 1. Figure 1(a) shows what happens in a network without AC
when it enters saturation. We are no longer able to give all service classes the
bandwidth they request and the HP classes preempts LP bandwidth, i.e. the
bandwidth differentiation is no longer according to the percentages in Table 1.
In the CL scheme, we see from figure 1(b) that we are successful in keeping the
accepted load below the saturation point, even as the offered load goes beyond
this point. The bandwidth differentiation does not fail as is the case in figure
1(a), but it suffers slightly as we reaches high load. As the load increases the
differentiation between SLs in the same class is diminished. Thus, the CL scheme
is able to keep the load below saturation. However, it appears that it is too coarse
to achieve good bandwidth differentiation between SLs of the same class since it
makes its AC decisions based on the total load for a class and not for each SL.

Moving on to the LL scheme (figure 1(c)) we see several improvements com-
pared to the CL scheme. First, we get a sharper bandwitdh cut-off with much

1 The DiffServ equivalent service class.
2 The maximum number of flits allow to transmit when scheduled.

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Throughput

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(a) No admission control

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Throughput

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(b) Calibrated load

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Throughput

Total
SL1
SL2
SL3
SL4
SL5

low

medium high

(c) Link by link

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

Number of packets offered

N
um

be
r

of
 p

ac
ke

ts
 a

cc
ep

te
d

Throughput

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(d) Egress measurements

Fig. 1. Throughput

less hesitation than for CL. Second, we achieve a differentiation relative to the
requests, meaning that we can give bandwidth guarantees. Third, we are able to
utilise the network resource better as we get closer to the saturation point. This
improvement is probably due to the fact that the LL scheme knows the load of
every link in the network and is able to make the AC decision based on the load
along the actual source/destination path.

Finally, we have the EB method. It is apparent from figure 1(d) that this
method is unable to give bandwidth guarantees, as well as increasing the load
beyond the saturation point and admitting too much traffic. Now as the load
increases beyond saturation the best effort traffic (SL 5) is reduced as it must
make way for traffic on the other SLs. The issue here is that delay is the most
significant AC parameter in this scheme and bandwidth requirements have more
or less been ignored.

5.2 Latency

Let us now turn our attention to the latency results. Figure 2(a) shows the
average latency for increasing load values without admission control. Comparing
it with the CL results in figure 2(b) shows that the CL scheme is quite close when
we look at the same load values. The average latency for all packets is 436 for
CL at the high mark which is a 6% increase compared to the scheme without
AC at a corresponding load. A problem with the CL scheme is that the latency

0 2 4 6 8 10 12

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of packets offered

La
te

nc
y

Latency for all packets

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(a) No admission control

0 2 4 6 8 10 12

x 10
4

0

100

200

300

400

500

600

700

800

900

Number of packets offered

La
te

nc
y

Latency for all packets

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(b) Calibrated load

0 2 4 6 8 10 12

x 10
4

0

200

400

600

800

1000

1200

Number of packets offered

La
te

nc
y

Latency for all packets

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(c) Link by link

0 2 4 6 8 10 12

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of packets offered

La
te

nc
y

Latency for all packets

Total
SL1
SL2
SL3
SL4
SL5

low medium

high

(d) Egress measurements

Fig. 2. Average latency

values are unstable as the load increases since the estimate of current throughput
is to coarse to target the exact rejection point. The LL scheme overcomes this
problem as show in figure 2(c). As soon as the LL scheme starts rejecting flows
the latency stabilises. The latency values for high load is 485 which is slightly
above the CL latency at this particular point. The LL method also gives a more
linear increase in latency as we approach the rejection point for new flows. The
LL scheme is the better of the two as it gives lower latency to SL 1-4 and higher
latency to the best effort traffic in SL 5. Even if it has a higher average latency
for all packets (compared to CL) it performs better since the increase in the
average is caused by the best effort traffic in SL 5.

The EB scheme uses measured latency as its primary AC parameter. The
results are presented in figure 2(d). This scheme produces average results which
fall between the CL and LL scheme. Furthermore, it is capable of giving the
same latency to SLs fairly independently of weight such as SL 1 and 2, but it
is unable to satisfy the delay bound of 100 for SL 1 and 2, and 250 for SL 3
and 4. The achieved latency at the high mark is 187 for SL 1 and 316 SL 3.
So even if using a measurement based method we are unable to give hard delay
guarantees. It seems very difficult to give delay bounds in combination with good
throughput in cut-through networks. To remedy this problem one possible could
reduce the throughput by hardening the AC, or we could turn to other means
such as modifying the flow control to better handle delay bound traffic.

(a) No admission control (b) Calibrated load

(c) Link by link (d) Egress measurements

Fig. 3. Latency distribution for packets with 3 hops

5.3 Jitter

Finally lets turn our attention to jitter. Figure 3 shows the latency distributions
for packets with a path length of 3 hops. This was the most frequently occurring
path length in our simulations. The mean, standard deviation and 95 % percent-
ile are marked with a dashed line in the figures. The distance between the mean
mark and the standard deviation mark reflects the standard deviation.

Figure 3(a) shows the latency distribution achieved without AC at the load
marked as medium in figure 1(a). Figure 3(b) shows the distribution for the CL
scheme at the load marked as high in figure 1(b). Note that the load at this
point is about 20% above that without admission control. We see that the CL
scheme has quite poor jitter characteristics, which is reasonable if we recall the
latency curve we saw in figure 2(b). The mean is 194, the standard deviation 279
and the 95% percentile is 498. Thus 95% of the packets have a latency of 498
or below. Even if the mean value is not too bad, the large standard deviation
and the 95% percentile shows that jitter is clearly very high. The LL scheme has
better jitter characteristics. From figure 3(c) we see that the histogram has a
shorter tail compared to figure 3(b). We have a mean of 142, standard deviation
of 87 and a 95% percentile of 297. Which reduces the jitter potential and gives us
almost a 40% reduction of packet latency for 95% of the packets. In addition the
load for LL at this point is about 7% above the CL load. Thus, better results
are achieved at a higher load. For EB scheme in figure 3(d) we see that it is

unable to improve on the results from the LL scheme. With a 95% percentile of
357 it has a 30% improvement over the CL. Note that this is achieved at a load
25% above the CL load. Still, even a measurements based delay bound scheme
is unable to give good jitter characteristics in cut-through networks.

6 Conclusion

In this paper we propose and evaluate three different admission control schemes
for virtual cut-through networks. Each one suitable for use in combination with
a DiffServ based QoS scheme to deliver soft real-time guarantees. Two of the
schemes assume pre-knowledge of the network’s performance behaviour without
admission control, and are both implemented with bandwidth broker. The third
method is based on endpoint/egress admission control and relies on measure-
ments to assess the load situation.

Our main findings are as follows. First, bandwidth guarantees for aggreg-
ated flows are achievable with the use of the Link-by-Link scheme. While the
Calibrated Load and Egress Based methods are unable to achieve such good
guarantees. Second, latency and jitter properties are hard to achieve regardless
of the method used. This is due to the nature of cut-networks and the way flow
control affects latency. Strict admission control can be used to improve latency,
but at the cost of lower throughput. To achieve a combination of high throughput
and low latency modifications to the flow control may be considered.

References

1. F. J. Alfaro, J. L. Sanchez, J. Duato, and C. R. Das. A strategy to compute
the InfiniBand arbitration tables. In Proceedings of International Parallel and
Distributed Processing Symposium, April 2002.

2. F. J. Alfaro, J. L. Sanchez, and J. Duato. A strategy to manage time sensitive
traffic in InfiniBand. In Proceedings of Workshop on Communication Architecture
for Clusters (CAC), April 2002.

3. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
and W. K. Su. Myrinet – a gigabit-per-second LAN. IEEE MICRO, 1995.

4. InfiniBand Trade Association. Infiniband architecture specification.
5. Differentiated Services. RFC 2475.
6. J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks an engineering

approach, IEEE Computer Society, 1997.
7. R. W. Horst. Tnet: A reliable SAN. IEEE Micro, 15(1):37–45, 1995.
8. Integrated Services. RFC 1633.
9. J. Jaspernite, and P. Neumann. Switched Ethernet for Factory Communication. In

Proceedings of 8th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’01), 205–212, October 2001.

10. J. Jaspernite, P. Neumann, M. Theiss, and K. Watson. Deterministic real-time
communication with switched Ethernet. In Proceedings of 4th IEEE International
Workshop on Factory Communication Systems (WFCS’02), August 2002.

11. K. Kilkki. Differentiated services for the Internet. Macmillian Tech. Publishing,
1999.

12. J. Pelissier. Providing quality of service over InfiniBandTM architecture fabrics.
In Proceedings of Hot Interconnects X, 2000.

13. ReSource ReserVation Protocol. RFC 2205.
14. M. D. Schroder et.al., “Autonet: a high-speed, self-configuring local area network

using point-to-point links,” SRC Research Report 59, Digital Equipment Corpor-
ation, 1990.

15. T. Skeie, J. Johannessen, and Ø. Holmeide. The road to an end-to-end determ-
inistic Ethernet. In Proceedings of 4th IEEE International Workshop on Factory
Communication Systems (WFCS’02), August 2002.

16. T. Skeie, O. Lysne, and I. Theiss. Layered shortest path (LASH) routing in irregular
system area networks. In Proceedings of Communication Architecture for Clusters,
2002.

17. X. Xiao and L. M. Ni. Internet QoS: A Big Picture In IEEE Network Magazine,
8–19, March/April 1999.

18. J. S. Yang and C. T. King, “Turn-restricted adaptive routing in irregular wormhole-
routed networks,” in Proceedings of the 11’th International Symposium on High
Performance Computing (HPCS97), July 1997.

19. A. A. Chien and J. H. Kim, “Approaches to Quality of Service in High-Performance
Networks,” in Lecture Notes in Computer Science, vol. 1417, 1998.

20. J. Duato and S. Yalamanchili and B. Caminero and D. S. Love and F. J. Quiles,
“MMR: A High-Performance Multimedia Router - Architecture and Design Trade-
Offs,” in HPCA, pages 300-309, 1999.

21. B. Caminero, C. Carrion, F. J. Quiles, J. Duato and S. Yalamanchili, “ A Solution
for Handling Hybrid Traffic in Clustered Environments: The MultiMedia Router
MMR,” in Proceedings of IPDPS-03, April 2003.

22. M. Gerla and B. Kannan and B. Kwan and E. Leonardi and F. Neri and P. Palnati
and S. Walton, “Quality of Service Support in High-Speed, Wormhole Routing
Networks,” in International Conference on Network Protocols (ICNP’96), 1996.

23. P. Kermani and L. Kleinrock, “Virtual Cut-through: A New Computer Commu-
nication Switching Technique,” in Computer Networks, no. 4, vol. 3, 1979.

24. R. Seifert, Gigabit Ethernet, Addison Wesley Pub Co., 1998.
25. S. A. Reinemo and T. Skeie and O. Lysne, “Applying the DiffServ Model in

Cut-through Networks,” in Proceedings of the 2003 International Conference on
Parallel and Distributed Processing Techniques and Applications, 2003.

26. C. Cetikaya and E. W. Knightly, “Egress admission control,” in INFOCOM (3),
pages 1471-1480, 2000.

27. J. Schlembach and A. Skoe and P. Yuan and E. Knightly, “Design and Implement-
ation of Scalable Admission Control,” in QoS-IP, pages 1-15, 2001.

28. S. Jamin and S. J. Shenker and P. B. Danzig, “Comparison of Measurement-Based
Admission Control Algorithms for Controlled-Load Service,” in INFOCOM (3),
pages 973-980, 1997.

29. K. H. Yum, E. J. Kim, C. R. Das, M. Yousif, J. Duato, “Integrated Admission
and Congestion Control for QoS Support in Clusters,” in Proceedings of IEEE
International Conference on Cluster Computing, pages 325-332, September 2002.

Achieving Flow Level QoS in Cut-through Networks through
Admission Control and DiffServ

Frank Olaf Sem-Jacobsen Sven-Arne Reinemo Tor Skeie
Olav Lysne

Simula Research Laboratory
P.O.Box 134, N-1325 Lysaker, Norway

frankose@ifi.uio.no, {svenar, tskeie, olavly}@simula.no

Abstract

Cluster networks will serve as the future access networks for multimedia streaming, massive multi-
player online gaming, e-commerce, network storage etc. And for those application areas provisioning of
Quality of Service (QoS) is becoming and important issue. DiffServ as specified by the IETF is foreseen
to be the most prominent concept for providing predictability in the future Internet. To enable seamless
interoperation with the higher level IETF concepts the QoS architecture of the lower layers should com-
ply with the DiffServ paradigm as well. Previous work on predictability in cut-through networks has only
studied class based QoS. In this paper we set out to achieve flow level QoS using flow aware admission
control in combination with a flow negligent DiffServ inspired QoS mechanism. Our results show that
flow level bandwidth guarantees are achievable with the use of the Link-by-Link and the Probe based
schemes. In addition we are able to achieve an order of magnitude improvement in jitter and latency in
individual flows.

1 Introduction

As the global Internet has evolved into a marketplace with a wealth of applications, the performance
demands on the servers running these applications has grown too large to be handled by a single machine
alone. This has resulted in a move from single server applications to applications running on a cluster
of machines. Furthermore, new challenges have appeared, one of these are the interconnection of com-
puters in a cluster, another is how to achieve predictable communication between machines in a cluster.
This has renewed the focus on Quality of Service and resulted in several new technologies for System
and Local Area Networking (SAN/LAN) [3, 4, 7, 14, 24, 31]. Common for this body of technologies is
that they rely on point-to-point links interconnected by off-the-shelf switches that support some kind of
flow-control mechanism. Besides, most of the referred technologies also adhere to the cut-through or
wormhole switching principles - only Gigabit Ethernet is using the store-and-forward technique. For a
survey of some relevant networking principles we refer to [6, 32].

1

IETF has for several years provided the Internet community with QoS concepts and mechanisms.
The best known ones are Integrated Services (IntServ) [8], Resource Reservation Protocol (RSVP) [13],
and Differentiated Services (DiffServ) [5]. IntServ together with RSVP define a concept based on per
flow reservations (signalling) and admission control to be present end-to-end. DiffServ, however, takes
another approach assuming no explicit reservation mechanism in the interior network elements. QoS is
here realized by giving data packets differentiated treatment relative to the QoS header code informa-
tion. In the underlying network technologies QoS has to a less extent been emphasized - the key metrics
here have mainly been mean throughput and latency. To provide QoS end-to-end, possibly over hetero-
geneous technologies this means that the lower layers should also have support for predictable transfer
including the ability to interoperate with a higher level IETF concept. This issue is being challenged by
emerging SAN/LAN standards, such as InfiniBandTM [4] and Gigabit Ethernet [24] providing various
QoS mechanisms.

Recently we have also seen several research contributions to this field. Jaspernite et. al. [9, 10] and
Skeie et. al [15] discuss different aspects of taking control of the latency through switched Ethernet
relative to the IEEE 802.1p standard aiming for traffic priorities. Another body of work is tailored to
the InfiniBandTM architecture (IBA) [1, 2, 12]. In [12] Pelissier gives an introduction to the set of QoS
mechanisms offered by IBA and the support for DiffServ over IBA. In this approach the presence of
admission control is assumed. Alfaro et. al build on this scheme and present a strategy for computing
the arbitration tables of IBA networks, moreover a methodology for weighting of virtual layers referring
to the dual arbitrator defined by IBA [2]. The concept is evaluated through simulations assuming that
only bandwidth sensitive traffic requests QoS. In [1] Alfaro et. al also include time sensitive traffic,
besides calculating the worst case latency through various types of switching architectures.

DiffServ is foreseen to be the most prominent concept for providing QoS in the future Internet [11,
17]. DiffServ makes a distinction between boundary nodes and core nodes with respect to support
of QoS features. Following the DiffServ philosophy no core switch should hold status information
about passing-through traffic. Neither should there be any explicit signalling on a per flow basis to
these components. This means that within the DiffServ framework any admission control or policing
functionality would have to be implemented by boundary nodes or handled by a dedicated bandwidth
broker. The core switches are assumed to perform traffic discrimination only based on service class,
which is decided by a QoS tag included in the packet header - all packets carrying the same QoS tag
will get equal treatment. From that viewpoint DiffServ is apparently a relative service model having
difficulties giving absolute guarantees.

None of the previous debated contributions comply with the DiffServ model. In [12] Pelissier, how-
ever, discusses interoperation between DiffServ and IBA on a traffic class and service level basis, but
refer to RSVP with respect to admission control. The strategy proposed by Alfaro et. al has to recom-
pute the IBA dual arbitrator every time that a new connection is honored [1, 2]. Such a scheme is not
associable with DiffServ. Neither is the admission control scheme presented in [29] by Yum et. al,
which use hop by hop bandwidth reservations and requires recomputations of the weighted round robin
scheduler at every hop towards the destination. In [25] Reinemo et. al. studied the provision of QoS in
cut-through networks by adhering to the DiffServ model. The problem was approached without any ex-
plicit admission control mechanism, as a pure relative model. Empirically they examined the sensitivity
of different QoS properties under various load and traffic mixture conditions, hereunder assessing the
effect of flow-control. This work was further studied in [30] where the concept described in [25] was
extended with three different admission control mechanisms. Our contributions showed the feasibility

2

of doing this at the class level (i.e. aggregated flows). One important question that we need to ask with
regards to these results is “What happens to QoS at the flow level?”. Even if things look good on the
class level it might not look good on the flow level. We might have a lot of good and a lot of bad flows
making the overall result for the class look good, or we have large differences between all flows with a
large variation in QoS. Finally, we might have each flow receiving QoS in according to what we see at
the class level, which is what we actually want. Our earlier work doesn’t answer these questions so we
intend to study this in detail in this paper.

The object of this paper is to study if we are able to achieve flow level QoS in cut-through networks
by combining admission control with a class based scheme which is in compliance with the DiffServ
paradigm. Spesifically, we will have a QoS concept with flow aware admission control and flow neg-
ligent traffic classes. Empirically we will study the throughput, latency and jitter characteristics at the
flow level, all in combination with three different admission control mechanisms each with a fundament-
ally different approach to admission control. Our first scheme assumes pre-knowledge of the network’s
performance behavior without admission control and is implemented as a centralised bandwidth broker.
Our second scheme is based on endpoint/egress measurements to assess the load situation, and our third
scheme makes use of probe packets to assess the load situation.

Our results are important in two ways. Firstly, they are important as a means to achieve QoS in cut-
through networks. Secondly, they are important to bridge QoS between the global Internet and a local
cluster. If IETF standards such as DiffServ or IntServ are applied for some applications on the Internet
we need ways to represent these QoS attributes on our cluster to be able to serve the appliaction request
according to their specified QoS.

The rest of this paper is organised as follows. In section 2 we give a description of our QoS architec-
ture, in section 3 our three admission control mechanisms are described, and in section 4 our simulation
scenario is described. We discuss our performance results in section 5 , and in section 6 we finish off
with some concluding remarks.

2 QoS Architecture

The architecture used in our simulations is inspired by IBA link layer technology [4] and is a flit
based virtual cut-through (VCT) switch. The overall design is based on the canonical router architecture
described in [6].

In VCT the routing decision is made as soon as the header of the packet is received and if the necessary
resources are available the rest of the packet is forwarded directly to the destination link [23]. If the
necessary resources are busy the packet is buffered in the switch. In addition we use flow control on all
links so all data is organised as flow control digits (flits) at the lowest level.

The switch core consists of a crossbar where each link and VL has dedicated access to the crossbar.
Each link supports one or more virtual lanes (VL), where each VL has its own buffer resources which
consist of an input buffer large enough to hold a packet and an output buffer large enough to hold two
flits to increase performance. Output link arbitration is done in a round robin fashion.

To achieve QoS our switch architecture support QoS mechanisms similar to the ones found in the IBA
architecture. IBA supports three mechanisms for QoS which are mapping of service level (SL) to VL,
weighting of VLs and prioritising VLs as either low priority (LP) or high priority (HP). A more detailed
description of these QoS aspects can be found in [25].

3

2.1 Layered shortest path routing

LASH is a deterministic routing algorithm that guarantees true shortest path routing and in-order
delivery in both regular and irregular networks [16]. It achieves this through the use of virtual layers
without any need for more advanced functionality in the switches. It fits well with our simple approach
to QoS and we have used it in all our simulations.

The idea is that each virtual layer in the network has a set of source/destination pairs assigned to it, in
such a way that all source/destination pairs are assigned to exactly one virtual layer. In addition it makes
sure that each virtual layer is deadlock free by ensuring that the channel dependencies stemming from
the source/destination pairs of one layer do not generate cycles. An in depth descriptions of LASH is
found in [16].

3 Admission Control

In this section we propose three different admission control (AC) mechanisms that we carefully eval-
uate in section 5.

3.1 Link by Link Based Admission Control

In the Link-by-Link (LL) approach a bandwidth broker (B) knows the load on every link in the net-
work and will consult the availability of bandwidth on every link between source and destination before
accepting or rejecting a flow. This solution assumes that both topology and routing information about
the network is available.

For the AC decision we adopt the simple sum approach as presented in [28]. This algorithm states that
a flow may be admitted if its peak rate p plus the peak rate of the already admitted flows s is less than
the link bandwidth bw. Thus the requested flow will be admitted if the following inequality is true [28]

p+ s < bw (1)

We deduce the effective bandwidth from the measurements obtained in [25]. Since we are dealing
with service levels where each SL has different bandwidth requirements it is natural to introduce some
sort of differentiation into equation (1). We achieve this by dividing the link bandwidth into portions
relative to the traffic load of the SLs, and include only the bandwidth available to a specific service level
bwSL in the equation as follows

p+ sSL < bwSL (2)

where
bwSL = bwlink ∗

loadSL
loadtotal

(3)

and sSL is the sum of the admitted peak rates for service level SL and bwlink is the effective link band-
width.

4

3.2 Egress Based Admission Control

The Egress Based (EB) approach is a fully distributed AC scheme where the egress nodes are respons-
ible for conducting the provisions. Basically, we adopt the Internet AC concept presented by Cetikaya
and Knightly in [26]. This method does not assume any pre-knowledge of the network behaviour as
was the case with the previous solution. Also different from the previous approach is the use of a delay
bound as the primary AC parameter. For clarity we give a brief outline of the algorithm below, a more
detailed description can be found in [27].

The method is entirely measurement based and relies on that the sending nodes timestamp all packets
enabling the egress nodes to make two types of measurements. First, by dividing time into timeslots
of length τ and counting the number of arriving packets, the egress nodes can deduce the arrival rate
of packets in a specific timeslot. By computing the maximum arrival rate for increasingly longer time
intervals we get a peak rate arrival envelope R(t), where t = 0, ..., T timeslots, as described in [26].
Second, by comparing the originating timestamp relative to the arrival time, the egress node can calculate
the transfer time of a packet. Having this information available the egress node can furthermore derive
the time needed by the infrastructure to service k following packets; i.e. a consecutive stream of packets
where the next packet in the service class enters the infrastructure before the previous packet has departed
the egress node. By doing this for larger and larger k sequences of packets within a measuring interval
of length Tτ and subsequently inverting this function we achieve the service envelope S(t), giving the
amount of packets processed by the network in a given time interval t. Now repeating this M times,
the mean R(t) and the variance σ2(t) of R(t), and the mean S(t) and variance Ψ2(t) of S(t) may be
calculated. If a flow request has a peak rate P and a delay bound D it may be accepted if the peak rate
P plus the measured arrival rate R(t) is less than the service rate allowing for the delay D,S(t+D) .

The EB scheme derives its knowledge of the network from measurements of the traffic passing through
the egress nodes. It is therefore difficult for the egress nodes to have a complete picture of the load in
the network, moreover the packet latency is used to infer the network load utilising the fact that an
increased network load will cause an increase in latency as well. From that viewpoint it seems difficult
to give a service class bandwidth guarantees since it has no concrete knowledge of the network load. The
algorithm will admit as much traffic as it can without breaking the delay bound. The key instrument of
the scheme is the given delay bound for the different flows, and the efficiency of the algorithm is linked
to its ability to limit the service levels to operate within the delay bounds.

3.3 Probe Based Admission Control

As an alternative to passively monitoring the network activity in the egress nodes of the network, as
was the case with the EB scheme, it is possible for the end nodes in the network to take a more active
role in the AC decision. This can be done by actively sending probe packets through the network from
source to destination and monitor the arrival of the probes at the egress of the network [36,37]. If the size
and rate of the probe packets is designed correctly they should give the egress node the opportunity to
calculate how the new flow will be treated by the network. Several probing schemes have been proposed
in the litterature, some of which are described in [36,37]. The approach in [37] require either that packets
be dropped to indicate congestion or that congested packets be marked in the switches in the network.
Packet dropping is implausible in virtual cut-through networks such as Infiniband since packets are not
dropped, but flow-controlled. Explicit marking of packets requires intelligence in the switches and partly
avoids the whole point of end-point admission control. In [36] however Bianchi et.al. propose a probing

5

scheme where the load is infered by measuring the jitter for the probe packets. They require that the
probe packets are forwarded through the network with the lowest priority of all packets. This ensures
that the probe packets will be unable to steal bandwidth from the already existing traffic in the network
whilst additionally giving worst-case measurements of the network jitter and thus guaranteeing that the
traffic, when admitted, will get at least the service of the probe packets. When applying this in our
simulation scenario it is natural to let the probe traffic be forwarded on one of the low priority SLs with
a relatively low weight, possibly equal to 1. The AC decision is as follows

TransmissionT imemax − TransmissionT imemin < Jitter threshold (4)

and
Packets rejected = 0 (5)

For each probe packet received the receiver registers the packet’s transmission time, e.g. the time
the packet spends in the network. When an adequate amount of probe packets have been sent and
received the receiver calculates the jitter by substracting the minimum packet transmission time from
the maximum packet transmission time. This value is compared to the jitter requirements embedded in
the probe packets and an admission decision is sent back to the sender. If the percived jitter was less
than the requirement the flow is acccepted, otherwise the flow is rejected. Additionally if any of the
probe packets are rejected by the sender due to the limited size of the send queue buffer the flow is also
rejected.

3.4 Target for Admission Control

The main findings for the work in [25] are that (i) throughput differentiation can be achieved by
weighting of VLs and by classifying the VLs as either low or high priority, (ii) the balance between
VL weighting and VL load is not crucial when the network is operating below the saturation level. In
general this sets the target for the AC, since as long as we can ensure that the load of the various service
classes is below saturation level we can also guarantee that each of these classes get the bandwidth they
request. The target for admission control is thus the point where the amount of accepted traffic is starting
to become less than the traffic offered. The effective bandwidth at this point will be used as a steering
vehicle by the LL method. The success of this method is documented in [30].

Another main finding in [25] is that although the latency characteristics below saturation were fairly
good, significant jitter was observed. We challenged this problem in [30] with the EB method, unfor-
tunately the EB scheme was unable to give bandwidth guarantees and the latency results was slightly
worse than the LL scheme at the class level. We have included the EB scheme for comparison only, and
added the PB scheme in order to improve the latency and jitter performance.

4 Simulation Scenario

For all simulations we have used a flit level simulator developed in house at Simula Research Labor-
atory. In the simulation results that follow all traffic is modelled to display self-similair behaviour (see
section 4.1). We have performed simulations on a network with 32 switches, where each switch is con-
nected to 5 end nodes and the maximum number of links per switch is 10 in addition to the end nodes.
We have randomly generated 16 irregular topologies and we have run measurements on these topologies

6

SERVICE LEVELS
SL DS1 Load % BW2 Pri

1 EF 10 4 high
2 EF 15 6 high
3 AF 20 8 low
4 AF 25 10 low
5 BE 30 1 low

Table 1. The five services levels used in simulation.

at increasing load. We use LASH [16] as our routing algorithm and random pairs as our traffic pattern.
In the random pairs scheme each source sends to one destination and no destination receives from more
that one source. The link speed is one flit per cycle, the flit size is one byte and the packet size is 32
bytes for all packets.

The five different end nodes send traffic on one of five different service levels. One service level for
each node (Table 1), SL 1 and 2 are considered to be of the expedited forwarding (EF) class in DiffServ
terminology,SL 3 and 4 are considered to be of the assured forwarding (AF) class. SL 5 is considered as
best effort (BE) traffic and from that viewpoint is not a subject for AC.

For the LL scheme all simulations where run with a target load deduced from our measurements
in [25]. In the first part of the simulation the send rate is steadily increased by adding more and more
flows until admission is denied by the AC scheme. When this happens the current rate is not changed,
but the node will try to add more flows for a fixed number of times before it gives up. For the EB scheme
the send rate is increased in the same way, but the AC decision is primarily based on measured latency
as described in section 3.2. For the PB scheme the AC decision is based on the measured jitter for the
probe packets as described in section 3.3.

4.1 Self- similair Traffic

Analyses of real-life network traffic traces have shown that the arrival of each packet in the network
is not totally independent of the arrival of any other packet such as in a Poisson process. Instead the
arrival patterns display a degree of self similarity where the traffic is repeated on smaller and larger time
scales in accordance with fractal theory [33, 34]. Several papers have been written on how to efficiently
simulate long-range dependencies in network traffic. One of the findings is that such traffic can be
modelled by a process with a finite mean and infinite variance [35]. In [35] Willinger et.al. show that
an aggregation of Pareto distributed on/off sources are within the necessary mathematical criterion to
produce self-similar traffic. This is the approach we have adopted in this paper.

5 Performance Results

We will now discuss our results with regards to throughput, latency and jitter, all in that order.
1The DiffServ equivalent service class.
2The maximum number of flits allow to transmit when scheduled.

7

5.1 Throughput

As was presented in section 4 our traffic is divided into five different classes. The throughput results
for these classes are presented in figure 1, while throughput results for flows are presented in figure
2. Figure 1(a) shows the throughput achieved without any form of admission control (NoAC). We
observe that we are unable to give all service classes the requested bandwidth as we enter saturation.
Furthermore, the high priority (HP) classes preempts the low priority (LP) classes, i.e. the bandwidth
differentiation is no longer according to the percentages in Table 1. This behaviour is reflected at the
flow level in figure 2(a) where we see that the throughput per flow is decreased as the number of flows
is increased. With this in mind we will evaluate each of our proposed AC schemes.

Our first candidate is the probe based (PB) scheme where jitter is the primary AC parameter. From
figure 1(b) we observe that this scheme performs very well. The admission control decision is very
precise about when to accept and reject traffic and we see bandwidth differentiation that is relative to
the actual requests. In other words we are able to give bandwidth guarantees with this scheme. We are
also able to utilise the network resource well since we get close to the saturation point without passing
it. Looking at flow level througput we see from figure 2(b) that all flows get the requested bandwidth at
the cost of less bandwidth for best effort traffic in SL5.

The next candidate is the EB scheme using latency as the primary AC parameter. It is apparent from
figure 1(c) that the EB is unable to give bandwidth guarantees at the class level. The load is allowed to
increase beyond the saturation point and admits too much traffic. In addition the differentiation between
SLs detoriates as the load increases. The poor performance3 of the EB scheme can be ascribed to the use
of delay as the primary AC parameter, this results in the bandwidth requirements being ignored. At the
flow level the EB scheme gives all accepted flows the requested bandwidth (figure 2(c)), but the number
of flows accepted in each class is not differentiated in a way relative to the actual requests.

Our final candidate is the LL scheme which use bandwidth as the primary AC parameter. The LL
scheme presented in figure 1(d) shows several improvements compared to the mediocre performance of
the EB method. It is actually as good as the PB approach. The admission control is precise about when
to accept and deny admission. We achieve a bandwidth differentiation which is relative to the actual
requests, meaning that we can give bandwidth guarantees. Moreover, we are able to utilise the network
resource well since we go close to the saturation point without passing it. The good performance of the
LL can be attributed to the fact that it knows the load of every link in the network and is able to make
the AC decision based on the load along the actual source/destination path. Comparing figure 1(b) and
1(d) in detail we observe that the PB scheme gives slightly higher throughput to most classes. This is
caused by the slightly higher load applied in the PB scheme to balance the lack of normal SL4 traffic.
At the flow level the LL approach is as good as the PB scheme. It is able to give all flows the requested
bandwidth at the cost of less bandwitdh available to best effort traffic in SL5.

5.2 Latency

In the previous section we saw that we are able to give bandwidth guarantees with both the PB and
the LL scheme at both the class and flow level. Now we will study the ability to guarantee latency at
the flow level, typically we want to have low latency for flows in the high priority SLs, while we accept

3As a sidenote, the performance of the EB scheme is worse when using self-similair compared to the use of a Poisson
process as was the case in [30].

8

higher latency values for the low priority SLs. For the best effort traffic in SL5 we dont’t care about
latency.

Figure 3(a) shows the average per flow latency for increasing load values without admission control.
Comparing this with the results from PB in figure 3(b) shows that there is an improvement in latency of
about one order of magnitude for HP flows, furthermore the differentiaton between flows from different
SLs is good. For the EB scheme in figure 3(c) the results are similar, but the improved latency is not as
low as is the case for the PB method. On the other hand the differentiation between flows in different
SLs is better. Still, the EB scheme is unable to achieve latency as low as the other schemes even if its
using latency as the primary AC parameter. The reason for this is probably the unpredictable latency
characteristics in cut-through networks as observed in [25]. Finally the LL scheme is able to get an
improvement in latency on par with the PB scheme. From figure 3(d) we see an improvement in latency
of more than one order of magnitude. It is also able to diffferentiate better between flows in different
SLs than both the PB and EB scheme. The good performance of the LL scheme can be ascribed to its
detailed knowledge about the network.

5.3 Jitter

Our third QoS attribute is the variation in latency, also refered to as jitter. We want our jitter to be as
low as possible and to better evaluate this we have plotted the maximum observed jitter for all our AC
schemes in figure 4. The plots contain the maximum per flow jitter observed throughout the simulation
run.

The NoAC results show that there is substantial increase in jitter for all flows even at very low load.
With the introduction of the PB scheme jitter is reduced by one order of magnitude for high priority
flows (figure 4(b)). For low priority flows the reduction is slightly less. The primary AC parameter for
this method is jitter and thus it performs well. Still, even if we are able to reduce jitter significantly our
guarantees are coarse since jittering is still in the order of several hundred cycles.

The EB scheme performs only slightly worse that the PB approach with higher jitter and less differ-
ence between SLs. This is understandable as the EB method focus on latency instead of jitter.

Moving on to our last candidate, the LL mechanism in figure 4(d), we see an improvement in overall
jitter. But the improvement is worse than what is the case for both the EB and PB scheme. Furthermore,
the jitter in flows from SL1 and SL4 shows a large amount of variation compared to both EB and PB
approach. This is probably caused by the fact that this scheme ignores latency and jitter properties and
only concentrates on throughtput when making the AC decisions.

6 Conclusion

In this paper we set out to achieve flow level QoS with regards to throughput, latency and jitter. Our
goal was to achieve this by only using flow aware admission control in combination with a flow negligent
DiffServ inspired QoS mechanism. Towards this goal we have evaluated three different admission con-
trol schemes for virtual cut-through networks. These three schemes represents three different approaches
to admission control. One is a probe based scheme using jitter as the primary AC parameter, another is
a measurements based approach using lantecy as the primary AC parameter and yet another is a cent-
ralized bandwidth broker approach using pre-knowledge of the network link load without admission
control as the primary AC parameter.

9

Our contributions are as follows. First, flow level bandwidth guarantees are achievable with the use
of the Link-by-Link and the Probe based schemes, while the Egress Based method is unable to achieve
good guarantees. Second, improved per flow latency and jitter properties are achievable with both the
Probe and Egress based methods, but strict guarantees are hard to give since jitter is still high. Overall,
the Probe based scheme gives us the best performance with regards to throughput, latency and jitter.
The final conclusion is that we are able to achieve flow level QoS with a combination of DiffServ and
admission control in cut-through networks.

References

[1] F. J. Alfaro, J. L. Sanchez, J. Duato, and C. R. Das. A strategy to compute the InfiniBand arbitration
tables. In Proceedings of International Parallel and Distributed Processing Symposium, April
2002.

[2] F. J. Alfaro, J. L. Sanchez, and J. Duato. A strategy to manage time sensitive traffic in InfiniBand.
In Proceedings of Workshop on Communication Architecture for Clusters (CAC), April 2002.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W. K. Su.
Myrinet – a gigabit-per-second LAN. IEEE MICRO, 1995.

[4] InfiniBand Trade Association. Infiniband architecture specification.

[5] Differentiated Services. RFC 2475.

[6] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks an engineering approach, IEEE
Computer Society, 1997.

[7] R. W. Horst. Tnet: A reliable SAN. IEEE Micro, 15(1):37–45, 1995.

[8] Integrated Services. RFC 1633.

[9] J. Jaspernite, and P. Neumann. Switched Ethernet for Factory Communication. In Proceedings of
8th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’01),
205–212, October 2001.

[10] J. Jaspernite, P. Neumann, M. Theiss, and K. Watson. Deterministic real-time communication with
switched Ethernet. In Proceedings of 4th IEEE International Workshop on Factory Communication
Systems (WFCS’02), August 2002.

[11] K. Kilkki. Differentiated services for the Internet. Macmillian Tech. Publishing, 1999.

[12] J. Pelissier. Providing quality of service over InfiniBandTM architecture fabrics. In Proceedings of
Hot Interconnects X, 2000.

[13] ReSource ReserVation Protocol. RFC 2205.

[14] M. D. Schroder et.al., “Autonet: a high-speed, self-configuring local area network using point-to-
point links,” SRC Research Report 59, Digital Equipment Corporation, 1990.

10

[15] T. Skeie, J. Johannessen, and Ø. Holmeide. The road to an end-to-end deterministic Ethernet. In
Proceedings of 4th IEEE International Workshop on Factory Communication Systems (WFCS’02),
August 2002.

[16] T. Skeie, O. Lysne, and I. Theiss. Layered shortest path (LASH) routing in irregular system area
networks. In Proceedings of Communication Architecture for Clusters, 2002.

[17] X. Xiao and L. M. Ni. Internet QoS: A Big Picture In IEEE Network Magazine, 8–19, March/April
1999.

[18] J. S. Yang and C. T. King, “Turn-restricted adaptive routing in irregular wormhole-routed net-
works,” in Proceedings of the 11’th International Symposium on High Performance Computing
(HPCS97), July 1997.

[19] A. A. Chien and J. H. Kim, “Approaches to Quality of Service in High-Performance Networks,”
in Lecture Notes in Computer Science, vol. 1417, 1998.

[20] J. Duato and S. Yalamanchili and B. Caminero and D. S. Love and F. J. Quiles, “MMR: A High-
Performance Multimedia Router - Architecture and Design Trade-Offs,” in HPCA, pages 300-309,
1999.

[21] B. Caminero, C. Carrion, F. J. Quiles, J. Duato and S. Yalamanchili, “ A Solution for Handling
Hybrid Traffic in Clustered Environments: The MultiMedia Router MMR,” in Proceedings of
IPDPS-03, April 2003.

[22] M. Gerla and B. Kannan and B. Kwan and E. Leonardi and F. Neri and P. Palnati and S. Walton,
“Quality of Service Support in High-Speed, Wormhole Routing Networks,” in International Con-
ference on Network Protocols (ICNP’96), 1996.

[23] P. Kermani and L. Kleinrock, “Virtual Cut-through: A New Computer Communication Switching
Technique,” in Computer Networks, no. 4, vol. 3, 1979.

[24] R. Seifert, Gigabit Ethernet, Addison Wesley Pub Co., 1998.

[25] S. A. Reinemo and T. Skeie and O. Lysne, “Applying the DiffServ Model in Cut-through Net-
works,” in Proceedings of the 2003 International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, 2003.

[26] C. Cetikaya and E. W. Knightly, “Egress admission control,” in INFOCOM (3), pages 1471-1480,
2000.

[27] J. Schlembach and A. Skoe and P. Yuan and E. Knightly, “Design and Implementation of Scalable
Admission Control,” in QoS-IP, pages 1-15, 2001.

[28] S. Jamin and S. J. Shenker and P. B. Danzig, “Comparison of Measurement-Based Admission
Control Algorithms for Controlled-Load Service,” in INFOCOM (3), pages 973-980, 1997.

11

[29] K. H. Yum, E. J. Kim, C. R. Das, M. Yousif, J. Duato, “Integrated Admission and Congestion
Control for QoS Support in Clusters,” in Proceedings of IEEE International Conference on Cluster
Computing, pages 325-332, September 2002.

[30] S. A. Reinemo and Frank Olaf Sem-Jacobsen and T. Skeie and O. Lysne, “Admission Control for
DiffServ based Quality of Service in Cut-through Networks,” to appear in Proceedings of the 10th
International Conference on High Performance Computing, 2003.

[31] C.Bell et.al., “An Evaluation of Current High-Performance Networks,” in Proceedings of the
International Parallel and Distributed Processing Symposium, 2003.

[32] R. Seifert, The Switch Book: The Complete Guide to LAN Switching Technology, John Wiley &
Sons, Inc., 2000.

[33] W. E. Leland et.al., “On the self-similar nature of Ethernet traffic,” in Proceedings of the ACM
Sepcial Interest Group on Data Communications, 1993.

[34] V. Paxson and S. Floyd, “Wide area traffic: The failure of Poisson modeling,” in IEEE/ACM
Transaction on Networking, 3(3):226-244, 1995.

[35] W. Willinger et.al. “Self-similarity through high-variability: statistical analysis of Ethernet LAN
traffic at the source level,” in IEEE/ACM Transaction on Networking, 5(1):71-86, 1997.

[36] G. Bianchi and F. Borgonovo and A. Capone and L. Fratta and C. Petrioli “Endpoint ad-mission
control with delay variation measurements for qos in ip networks,” in ACM SOGCOMM Computer
Communications Review, 32(2):61-69, 2002.

[37] Lee Breslau and Edward W. Knightly and Scott Shenker and Ion Stoica and Hui Zhang “End-point
admission control: architectural issues and performance,” in Proceedings of the ACM Sepcial
Interest Group on Data Communications, 2000.

12

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Offered packetrate

A
cc

ep
te

d
pa

ck
et

ra
te

Throughput

Total
SL1
SL2
SL3
SL4
SL5

(a) No admission control

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Offered packetrate

A
cc

ep
te

d
pa

ck
et

ra
te

Throughput

Total
SL1
SL2
SL3
SL4
SL5

(b) Probe

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Offered packetrate

A
cc

ep
te

d
pa

ck
et

ra
te

Throughput

Total
SL1
SL2
SL3
SL4
SL5

(c) Egress

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of packets offered

N
um

be
r o

f p
ac

ke
ts

 a
cc

ep
te

d

Throughput

Total
SL1
SL2
SL3
SL4
SL5

(d) Link by link

Figure 1. Average class throughput

13

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Offered packetrate

P
ac

ke
tra

te
 o

f t
he

 fl
ow

s

Mean Packetrate

SL1
SL2
SL3
SL4
SL5

(a) No admission control

0 0.5 1 1.5 2 2.5
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2
x 10

−4

Offered packetrate

P
ac

ke
tra

te
 o

f t
he

 fl
ow

s

Mean Packetrate

SL1
SL2
SL3
SL4
SL5

(b) Probe

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Offered packetrate

P
ac

ke
tra

te
 o

f t
he

 fl
ow

s

Mean Packetrate

SL1
SL2
SL3
SL4
SL5

(c) Egress

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
3

4

5

6

7

8

9

10

11
x 10−5

Number of packets offered

P
ac

ke
tra

te

Mean Packetrate

SL1
SL2
SL3
SL4
SL5

(d) Link by link

Figure 2. Average flow packetrate

14

0 0.5 1 1.5 2 2.5
10

1

10
2

10
3

10
4

Offered packetrate

M
ea

n
la

te
nc

y
pe

r f
lo

w

Mean of mean flow latency for all flows

Total
SL1
SL2
SL3
SL4
SL5

(a) No admission control

0 0.5 1 1.5 2 2.5
10

1

10
2

10
3

Offered packetrate

M
ea

n
la

te
nc

y
pe

r f
lo

w

Mean of mean flow latency for all flows

Total
SL1
SL2
SL3
SL4
SL5

(b) Probe

0 0.5 1 1.5 2 2.5
10

1

10
2

10
3

10
4

Offered packetrate

M
ea

n
la

te
nc

y
pe

r f
lo

w

Mean of mean flow latency for all flows

Total
SL1
SL2
SL3
SL4
SL5

(c) Egress

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
101

102

103

Number of packets offered

La
te

nc
y

pe
r f

lo
w

Latency for all flows

Total
SL1
SL2
SL3
SL4
SL5

(d) Link by link

Figure 3. Average flow latency

15

0 0.5 1 1.5 2 2.5
10

2

10
3

10
4

10
5

Offered packetrate

M
ax

im
um

 ji
tte

r o
f a

 fl
ow

Maximum jitter of a flow

SL1
SL2
SL3
SL4
SL5

(a) No admission control

0 0.5 1 1.5 2 2.5
10

1

10
2

10
3

10
4

10
5

Offered packetrate

M
ax

im
um

 ji
tte

r o
f a

 fl
ow

Maximum jitter of a flow

SL1
SL2
SL3
SL4
SL5

(b) Probe

0 0.5 1 1.5 2 2.5
10

1

10
2

10
3

10
4

10
5

Offered packetrate

M
ax

im
um

 ji
tte

r o
f a

 fl
ow

Maximum jitter of a flow

SL1
SL2
SL3
SL4
SL5

(c) Egress

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
102

103

104

105

Number of packets offered

M
ax

im
um

 ji
tte

r o
f a

 fl
ow

Maximum jitter of a flow

SL1
SL2
SL3
SL4
SL5

(d) Link by link

Figure 4. Maximum flow jitter

16

Appendix C

Simulator Source Code

What follows is the source code which I have produced for the simulator. The sim-
ulator itself consists of several thousand lines of code, much of this has therefore
been omitted. The source code presented contains all the code relating to admis-
sion control and traffic generation. The code presented here is only my additions
to the already existing simulator framework. It is included for completeness so
that one may verify that the algorithms are implemented as they are described in
the thesis. For more information about the simulator and the entire source code,
feel free to contact me.

The basic setup is that Processors are connected to Switches which are con-
nected to other Switches and Processors via HalfLinks which support several
VLanes. The admission control for EM is implemented mostly in MSProcessor.
Jitter Probing is implemented in PROBEProcessor, while LBL is implemented
partly in BBRMSProcessor and BBRMSSwitch. The available bandwidth cal-
culation is performed in VLane and stored in HalfLink. The self-similar traffic
generation routines are implemented in ParGen, PSource and Flow. Payload is
used for admission control information in the network packets, mostly time stamps
for use in EM and Jitter Probing.

149

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 1
 1 /*
 2 * Processor.java: This class implements the basic processor in the network.
 3 * It is responsible for producing and consuming packets. It is subclassed to
 4 * implement various AC algorithms.
 5 */
 6
 7 package base;
 8
 9 import java.util.Vector;
 10
 11 public class Processor extends Node {
 12
 13 public static final boolean DEBUG = false;
 14 public static final boolean DEBUG2 = false;
 15 public static final boolean DEBUG5 = false;
 16 public static final boolean DEBUG9 = false;
 17 public static final boolean DEBUG33 = false;
 18 public static final boolean DEBUG11 = false;
 19
 20 // decide the SL for this Processor (modulo number_of_servicelevels)
 21 public static int nextSL = 0;
 22 public int localSL = 0;
 23 public int selfNumToSend = -1;
 24 public HalfLink[] drop_links;
 25 public Connectable[] drop_connects;
 26 public SendQueue send_q;
 27 public Vector bind_q;
 28 public int service_time;
 29 public int receive_buffers;
 30 public int bound_receive_buffers;
 31 public int in_transmission = 0;
 32 // counts the number of packets sent as part of this IBA message
 33 public int iba_message_packetcount = 0;
 34 public int iba_msg_size = 10;
 35 public int iba_last_sl = 0;
 36 public Processor iba_last_dest = null;
 37 //self-similar flows
 38 public double flowBW;
 39 public static parGen pareto;
 40 public Flow[] flows;
 41 public double localOfferedFlows = 0;
 42 protected double maxFlows;
 43 public static boolean initdone = false;
 44 //adctr
 45
 46 private static int[] procNum =
 47 new int[Kernel.CV[Kernel.highpri_service_levels] +
 48 Kernel.CV[Kernel.lowpri_service_levels]];
 49 public int adctrlID = -1;
 50 private int[] pack_to_drop = new int[16];
 51 public Processor (int id) {
 52 this (id,
 53 Kernel.CV[Kernel.Processor_receive_buffers],
 54 Kernel.CV[Kernel.Processor_send_q_size],
 55 Kernel.CV[Kernel.Processor_service_time],
 56 Kernel.CV[Kernel.Processor_drop_connects],
 57 Kernel.CV[Kernel.Node_drop_links]);
 58 }
 59
 60 public Processor (int id,
 61 int receive_buffers,
 62 int send_q_size,
 63 int service_time, int drop_connects, int drop_links) {
 64 this.id = id;
 65 //self-similar, initiate the pareto generator
 66 if (!initdone) {
 67 pareto = new parGen (/*Kernel.rand.nextLong() */ 2341534);
 68 initdone = true;
 69 }
 70
 71 this.receive_buffers = receive_buffers;
 72 this.bound_receive_buffers = 0;
 73 this.service_time = service_time;
 74 this.send_q = new SendQueue (send_q_size);
 75 this.bind_q = new Vector (send_q.size, 1);

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 2
 76 this.drop_links = new HalfLink[drop_links];
 77 this.drop_connects = new Connectable[drop_connects];
 78 for (int i = 0; i < drop_connects; i++)
 79 this.drop_connects[i] = new Connectable (i);
 80
 81 this.localSL = nextSL % (Kernel.CV[Kernel.highpri_service_levels]
 82 + Kernel.CV[Kernel.lowpri_service_levels]);
 83 //System.out.println(this.toString() + " sends SL " + localSL);
 84 nextSL++;
 85 //adctrl
 86 adctrlID = procNum[this.localSL];
 87 procNum[this.localSL]++;
 88 }
 89
 90
 91 public String toString () {
 92 return " Processor [" + id + "]";
 93 }
 94
 95 // the producer state procedures, see the process model processor_producer
 96
 97 public Packet createPacket (Processor src, int pid,
 98 Processor dst, int payload, int sl) {
 99 return new Packet (src, pid, dst, payload, sl);
 100 }
 101
 102 public int pid = Kernel.max_switches;
 103 public void packet_produced_enter (EasterEgg egg) {
 104 Packet p = null;
 105 int sl = 0;
 106
 107 sl = localSL;
 108
 109 if (DEBUG)
 110 System.out.println (toString () + " packet_produced_enter");
 111
 112 if (!Kernel.IBA_ENABLE_MESSAGE || iba_last_dest == null) {
 113 // first msg send from this processor or iba_msg not enabled
 114 p = createPacket (this,
 115 pid + id,
 116 Kernel.kernel.packetDestination (this),
 117 Kernel.Traffic.payload_size (id), sl);
 118 iba_last_dest = p.destination;
 119 iba_last_sl = p.sl;
 120 } else {
 121 if (iba_message_packetcount > iba_msg_size) {
 122 // reset counter
 123 iba_message_packetcount = 0;
 124 // starting a new message with a new destination
 125 p = createPacket (this,
 126 pid + id,
 127 Kernel.kernel.packetDestination (this),
 128 Kernel.Traffic.payload_size (id), sl);
 129 iba_last_dest = p.destination;
 130 iba_last_sl = p.sl;
 131 } else {
 132 // continuing and existing message
 133 p = createPacket (this,
 134 pid + id,
 135 iba_last_dest,
 136 Kernel.Traffic.payload_size (id), iba_last_sl);
 137
 138 }
 139 }
 140
 141 pid += Kernel.max_switches;
 142 if (send_q.full ()) {
 143 Packet.packets_rejected[p.sl]++;
 144 Packet.incRejected (p.hops, p.sl);
 145 }
 146 send_q.insert (p);
 147 if (in_transmission < drop_connects.length) {
 148 send_enter (null);
 149 }
 150

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 3
 151 if (!Kernel.stop_packet_generation) {
 152 if (!Kernel.IBA_ENABLE_MESSAGE || iba_last_dest == null
 153 || iba_message_packetcount > iba_msg_size) {
 154 // (new Event(this, PACKET_PRODUCED))
 155 // .schedule(Kernel.Now + Kernel.Traffic.packet_interarriv

al_time(id));
 156 (new Event (this, PACKET_PRODUCED)).schedule (Kernel.Now
 157 +
 158 Kernel.Traffic.
 159 packet_interarrival_time
 160 ((int) Kernel.
 161 slLoad[localSL],
 162 Kernel.CV[Kernel.
 163 std_dev_packet_interarrival_time]));
 164 } else {
 165 (new Event (this, PACKET_PRODUCED)).schedule (Kernel.Now + 10);
 166 }
 167 }
 168
 169 // keep track of number of packets send in this msg
 170 if (Kernel.IBA_ENABLE_MESSAGE)
 171 iba_message_packetcount++;
 172 }
 173
 174 public void send_enter (EasterEgg egg) {
 175 if (DEBUG)
 176 System.out.println (toString () + " send_enter");
 177 (new Event (this, CONNECTABLE)).schedule (Kernel.Now, connectable_flag);
 178 }
 179
 180 // the connecter state procedures, see the process model processor_connecter
 181
 182 public void connectable_enter (EasterEgg egg) {
 183 if (DEBUG)
 184 System.out.println (toString () + " connectable_enter");
 185
 186 Packet p = send_q.firstUnConnectedElement ("Processor");
 187
 188 while (p != null && in_transmission < drop_connects.length) {
 189
 190 Connectable connector = null;
 191 // we guess that there are generally not more than two link
 192 // alternatives, and try to optimize size of the vector.
 193 Vector alternative_vlanes =
 194 new Vector (drop_links[localSL].vlinks * 2,
 195 drop_links[localSL].vlinks);
 196
 197 int ii;
 198 for (ii = 0; ii < drop_connects.length; ii++) {
 199 if (drop_connects[ii].packet == null) {
 200 connector = drop_connects[ii];
 201 break;
 202 }
 203 }
 204
 205 if (Kernel.LOGICAL_ERROR_CHECK) {
 206 if (connector == null) {
 207 System.out.println (toString () + ": No connector found");
 208 System.exit (0);
 209 }
 210 }
 211 // how do we find alternative vlanes? for now, we just use the
 212 // drop link at the same index as drop_connects :D
 213
 214 // select vlanes according to SLs
 215 int nVL = Kernel.CV[Kernel.vlinks_per_sl];
 216 int nSL = Kernel.CV[Kernel.highpri_service_levels]
 217 + Kernel.CV[Kernel.lowpri_service_levels];
 218
 219 nSL = (p.sl * nVL) + nVL;
 220
 221 for (int i = p.sl * nVL; i < nSL; i++) {
 222 alternative_vlanes.addElement (drop_links[ii + localSL].
 223 vlanes[i]);
 224 }

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 4
 225
 226
 227 //ADMISSION CONTROLL
 228 //send reservation- and confirmation- messages on ctrl_vlane to speed up

the process
 229 /*
 230 if(Kernel.RMS_ADMISSION_CONTROL && p.payloadpointer.resvinit || p.payloa

dpointer.resvok || p.payloadpointer.resvnotok){
 231 alternative_vlanes.clear();
 232 alternative_vlanes.addElement(drop_links[ii + localSL].ctrl_vlane);
 233 }
 234 */
 235
 236 alternative_vlanes = Kernel.kernel.shuffle (alternative_vlanes);
 237
 238 for (int i = 0; i < alternative_vlanes.size (); i++) {
 239 VLane outvl;
 240
 241 outvl = (VLane) (alternative_vlanes.elementAt (i));
 242
 243
 244
 245 // note: this check for letting a packet onto a link
 246 // implements "late release" of a vlane... that is, no vlane
 247 // may hold two different packets simultaneously
 248
 249 // early release is a very complex feature to implement; it
 250 // involves the routing function, and any killing of packets
 251 // and flushing links is much more complex and will require
 252 // much more testing! early release requires room for (at
 253 // least) one flit in the rx buffer. early release implements
 254 // that the tail flit of the previous packet has been received
 255 // at the rx buffer.
 256
 257 // we implement early release by the code decorated with
 258 // CHANGE
 259
 260 if (DEBUG5) {
 261 if (Kernel.Now >= 33850)
 262 System.out.println (Kernel.time () + toString ()
 263 + " trying to connect new packet with "
 264 + outvl.toString ());
 265 }
 266
 267 if (outvl.receiver.no_restrictions (null, outvl)
 268 && outvl.tx_buffer.empty ()
 269 && outvl.new_connection_acceptable ()) {

// CHANGE
 270
 271 if (DEBUG5) {
 272 if (Kernel.Now >= 33850)
 273 System.out.println (" succeeded");
 274 }
 275
 276 EasterEgg SF_egg = new EasterEgg ();
 277 in_transmission++;
 278 outvl.previous = connector; // "connect"
 279 connector.next = outvl;
 280 connector.packet = p;
 281 p.connected = true;
 282 p.injection_time = Kernel.Now;
 283 Kernel.SourceRoute (p);
 284 if (DEBUG)
 285 System.out.println (toString () + " choosing "
 286 + outvl.toString () + " for "
 287 + p.toString ());
 288 p.traversed_route.addElement (outvl);
 289 SF_egg.c = connector;
 290 (new Event (this, SCHEDULED_FRAGMENT, SF_egg)).
 291 schedule (Kernel.Now + Kernel.Cycle (1));
 292
 293 break;
 294 } else {
 295 if (DEBUG5) {
 296 if (Kernel.Now >= 33850)

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 5
 297 System.out.println (" failed");
 298 }
 299 }
 300
 301 } // for
 302 p = send_q.nextUnConnectedElement ();
 303 } // while
 304 }
 305
 306 // the transmitter state procedures, see the process model processor_tx
 307
 308 public void scheduled_fragment_enter (EasterEgg egg) {
 309 if (DEBUG)
 310 System.out.println (toString () + " scheduled_fragment_enter");
 311 VLane outvl = egg.c.next;
 312 EasterEgg cre_egg = new EasterEgg ();
 313 cre_egg.vl = outvl;
 314 cre_egg.flit = egg.c.packet.nextFlit ();
 315 if (DEBUG9) {
 316 if (Kernel.now >= 466660)
 317 System.out.println (toString () + " packet " +
 318 cre_egg.flit.toString ());
 319 }
 320 if (DEBUG) {
 321 if (cre_egg.flit == null)
 322 System.out.println (toString () + " gack, produced flit null"
 323 + " for " + egg.c.packet.toString ()
 324 + " gotten from out vlane " +
 325 outvl.toString ());
 326 }
 327 if (Kernel.TRACE_PACKET) {
 328
 329 if (!cre_egg.flit.isKill ()
 330 && cre_egg.flit.packet.pid == Kernel.PACKET_TRACED
 331 && (cre_egg.flit.isHeader () || cre_egg.flit.isTail ()))
 332 System.out.println (Kernel.time () + toString () +
 333 " scheduled_fragment " +
 334 cre_egg.vl.toString () + " for " +
 335 cre_egg.flit.toString ());
 336 }
 337 check_rx_enter (cre_egg);
 338 }
 339
 340 public void check_rx_enter (EasterEgg egg) {
 341 if (DEBUG)
 342 System.out.println (toString () + " check_rx_enter to "
 343 + egg.vl.toString () + " for "
 344 + egg.flit.toString ());
 345 VLane outvl = egg.vl;
 346 if (outvl.rx_buffer.full () || !outvl.credits_available ()) {
 347 if (DEBUG)
 348 System.out.println (" (full)");
 349 EasterEgg wre_egg = new EasterEgg ();
 350 wre_egg.vl = egg.vl;
 351 wre_egg.flit = egg.flit;
 352 if (Kernel.DROP_PACKETS && false) {
 353 if (egg.vl.rx_buffer.top ().isHeader () || true) {
 354 System.out.println ("dropping header at RX processor");
 355 pack_to_drop[egg.vl.layer] =
 356 egg.vl.rx_buffer.top ().packet.pid;
 357 egg.vl.rx_buffer.pop ();
 358 } else if (egg.vl.rx_buffer.top ().packet.pid ==
 359 pack_to_drop[egg.vl.layer]) {
 360 egg.vl.rx_buffer.pop ();
 361 } else
 362 wait_rx_enter (wre_egg);
 363 } else
 364 wait_rx_enter (wre_egg);
 365 //wait_rx_enter(wre_egg);
 366 } else {
 367 if (DEBUG)
 368 System.out.println (" (ready)");
 369 outvl.rx_buffer.reserve ();
 370 EasterEgg cte_egg = new EasterEgg ();
 371 cte_egg.vl = egg.vl;

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 6
 372 cte_egg.flit = egg.flit;
 373 check_tx_enter (cte_egg);
 374 }
 375 }
 376
 377 public void wait_rx_enter (EasterEgg egg) {
 378 if (Kernel.TRACE_PACKET) {
 379
 380 if (!egg.flit.isKill () && egg.flit.packet.pid == Kernel.PACKET_TRACED
 381 && (egg.flit.isHeader () || egg.flit.isTail ()))
 382 System.out.println (Kernel.time () + toString () +
 383 " wait_rx_enter on " + egg.vl.toString () +
 384 " for " + egg.flit.toString ());
 385 }
 386 egg.vl.NU_wait_rx = true;
 387 egg.vl.previous.flitstore = egg.flit;
 388 }
 389
 390 public void wait_rx_exit (EasterEgg egg) {
 391 VLane outvl = egg.vl;
 392 if (outvl.NU_wait_rx) {
 393 if (Kernel.TRACE_PACKET) {
 394 if (!egg.vl.previous.flitstore.isKill ()
 395 && egg.vl.previous.flitstore.packet.pid ==
 396 Kernel.PACKET_TRACED && (egg.vl.previous.flitstore.isHeader (

)
 397 || egg.vl.previous.flitstore.
 398 isTail ()))
 399 System.out.println (Kernel.time () + toString () +
 400 " wait_rx_exit on " + egg.vl.toString () +
 401 " for " +
 402 egg.vl.previous.flitstore.toString ());
 403 }
 404 outvl.NU_wait_rx = false;
 405 EasterEgg cte_egg = new EasterEgg ();
 406 cte_egg.vl = egg.vl;
 407 cte_egg.flit = outvl.previous.flitstore;
 408 outvl.previous.flitstore = null;
 409 outvl.rx_buffer.reserve ();
 410 check_tx_enter (cte_egg);
 411 } else {
 412 if (DEBUG)
 413 System.out.println (toString () + "on_rx_available "
 414 + outvl.toString () + " disregarded");
 415 }
 416 }
 417
 418 public void check_tx_enter (EasterEgg egg) {
 419 if (DEBUG)
 420 System.out.println (toString () + " check_tx_enter to "
 421 + egg.vl.toString () + " for "
 422 + egg.vl.previous.packet.toString ());
 423 VLane outvl = egg.vl;
 424 if (outvl.tx_buffer.full ()) {
 425 if (DEBUG)
 426 System.out.println (" (tx full)");
 427 EasterEgg wte_egg = new EasterEgg ();
 428 wte_egg.vl = egg.vl;
 429 wte_egg.flit = egg.flit;
 430 if (Kernel.LOGICAL_ERROR_CHECK) {
 431 if (egg.flit.isHeader ())
 432 System.out.println (Kernel.time () + toString () +
 433 " logical error:" + " header " +
 434 egg.flit.toString () +
 435 " needs to wait for tx");
 436 }
 437 if (Kernel.DROP_PACKETS && false) {
 438 if (egg.flit.isHeader () || true) {
 439 System.out.println ("dropping header at TX-procesor");
 440 pack_to_drop[outvl.layer] = egg.flit.packet.pid;
 441 if (egg.flit.isEnd ()) {
 442 EasterEgg cce_egg = new EasterEgg ();
 443 cce_egg.vl = outvl;
 444 close_connection_enter (cce_egg);
 445 } else {

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 7
 446 self_signal_scheduled_fragment (egg.vl.previous);
 447 }
 448 } else if (egg.flit.packet.pid == pack_to_drop[egg.vl.layer]) {
 449 if (egg.flit.isEnd ()) {
 450 EasterEgg cce_egg = new EasterEgg ();
 451 cce_egg.vl = outvl;
 452 close_connection_enter (cce_egg);
 453 }
 454 System.out.println ("Dropping bodyflit at processor");
 455 } else
 456 wait_tx_enter (wte_egg);
 457 } else
 458 wait_tx_enter (wte_egg);
 459
 460 //wait_tx_enter(wte_egg);
 461 } else {
 462 if (DEBUG)
 463 System.out.println (" (tx ready)");
 464 EasterEgg fse_egg = new EasterEgg ();
 465 fse_egg.c = egg.vl.previous;
 466 fse_egg.flit = egg.flit;
 467 if (Kernel.DROP_PACKETS && false) {
 468 if (egg.flit.packet.pid == pack_to_drop[egg.vl.layer]) {
 469 if (egg.flit.isEnd ()) {
 470 EasterEgg cce_egg = new EasterEgg ();
 471 cce_egg.vl = outvl;
 472 close_connection_enter (cce_egg);
 473 } else {
 474 self_signal_scheduled_fragment (egg.vl.previous);
 475 }
 476 System.out.println ("Dropping bodyflit at processor");
 477 } else
 478 flit_send_enter (fse_egg);
 479 } else
 480 flit_send_enter (fse_egg);
 481 }
 482 }
 483
 484 public void wait_tx_enter (EasterEgg egg) {
 485 VLane outvl = egg.vl;
 486 if (Kernel.TRACE_PACKET) {
 487 if (!egg.flit.isKill ()
 488 && egg.flit.packet.pid == Kernel.PACKET_TRACED
 489 && (egg.flit.isHeader () || egg.flit.isTail ()))
 490 System.out.println (Kernel.time () + toString () +
 491 " wait_tx_enter on " + egg.vl.toString () +
 492 " for " + egg.flit.toString ());
 493 }
 494 outvl.NU_wait_tx = true;
 495 outvl.previous.flitstore = egg.flit;
 496 }
 497
 498 public void wait_tx_exit (EasterEgg egg) {
 499 VLane outvl = egg.vl;
 500
 501 if (outvl.NU_wait_tx) {
 502 if (Kernel.TRACE_PACKET) {
 503 if (egg.vl.previous != null
 504 && !egg.vl.previous.flitstore.isKill ()
 505 && egg.vl.previous.flitstore.packet.pid ==
 506 Kernel.PACKET_TRACED && (egg.vl.previous.flitstore.isHeader (

)
 507 || egg.vl.previous.flitstore.
 508 isTail ()))
 509
 510 System.out.println (Kernel.time () + toString () +
 511 " wait_tx_exit on " + egg.vl.toString () +
 512 " for " +
 513 egg.vl.previous.flitstore.toString ());
 514 }
 515 outvl.NU_wait_tx = false;
 516 EasterEgg fse_egg = new EasterEgg ();
 517 fse_egg.c = egg.vl.previous;
 518 fse_egg.flit = outvl.previous.flitstore;
 519 outvl.previous.flitstore = null;

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 8
 520 flit_send_enter (fse_egg);
 521 } else {
 522 if (DEBUG)
 523 System.out.println (toString () + "on_tx_available "
 524 + outvl.toString () + " disregarded");
 525 }
 526 }
 527
 528 public void flit_send_enter (EasterEgg egg) {
 529 if (DEBUG)
 530 System.out.println (toString () + "flit_send_enter on "
 531 + /*egg.vl.toString()+ */ " for " +
 532 egg.flit.toString ());
 533
 534 VLane outvl = egg.c.next;
 535 outvl.tx_buffer.reserve ();
 536 outvl.tx_buffer.insert (egg.flit);
 537 (new Event (outvl, VLane.FLIT_IN_TRANSMITTER)).schedule (Kernel.Now);
 538 if (egg.flit.isEnd ()) {
 539 EasterEgg cce_egg = new EasterEgg ();
 540 cce_egg.vl = outvl;
 541 close_connection_enter (cce_egg);
 542 } else {
 543 self_signal_scheduled_fragment (egg.c);
 544 }
 545 }
 546
 547 public void self_signal_scheduled_fragment (Connectable c) {
 548 if (DEBUG)
 549 System.out.println (toString () + " self_signal_scheduled_fragment");
 550 EasterEgg SF_egg = new EasterEgg ();
 551 SF_egg.c = c;
 552 (new Event (this, SCHEDULED_FRAGMENT, SF_egg)).schedule (Kernel.Now +
 553 Kernel.
 554 Cycle (1));
 555 }
 556
 557 public void close_connection_enter (EasterEgg egg) {
 558 VLane outvl = egg.vl;
 559 if (DEBUG)
 560 System.out.println (toString () + " close_connection_enter on "
 561 + outvl.previous.toString () + " for "
 562 + outvl.previous.packet.pid);
 563 send_q.removeElement (outvl.previous.packet);
 564 outvl.previous.packet = null;
 565 outvl.previous.next = null;
 566 outvl.previous = null;
 567 in_transmission--;
 568 //System.out.println("close_connection_enter");
 569 (new Event (this, CONNECTABLE)).schedule (Kernel.Now);
 570 }
 571
 572 public void handle_ctrl_flit (EasterEgg egg) {
 573 // the basic processors ignores control flits
 574 // it will typically be overridden by fault tolerant switches
 575
 576
 577 }
 578
 579
 580 // the receiver state procedures, see the process model processor_rx
 581
 582 public void flit_on_top_enter (EasterEgg egg) {
 583 if (DEBUG)
 584 System.out.println (toString () + " flit_on_top_enter on "
 585 + egg.vl.toString () + " for "
 586 + egg.vl.rx_buffer.top ().toString ());
 587
 588 if (egg.vl.link.ctrl_vlane == egg.vl) {
 589 // if the incoming flit is on a control link!
 590 if (DEBUG)
 591 System.out.println (toString () + " control lane");
 592 EasterEgg hcf_egg = new EasterEgg ();
 593 hcf_egg.vl = egg.vl;
 594 hcf_egg.flit = egg.vl.rx_buffer.pop ();

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 9
 595 handle_ctrl_flit (hcf_egg);
 596 return;
 597 }
 598
 599 if (egg.vl.NU_header_waiting)
 600 return;
 601
 602 // if (Kernel.TRACE_PACKET) {
 603 // Flit f = egg.vl.rx_buffer.top();
 604 // int pid=0;
 605 // if (egg.vl.packet != null)
 606 // pid = egg.vl.packet.pid;
 607 // else if (f != null)
 608 // System.out.println(toString() + "no packet in FOT");
 609 // else
 610 // pid = f.packet.pid;
 611 // if (pid == Kernel.PACKET_TRACED)
 612 // System.out.println(Kernel.time() + toString() + " FOT "
 613 // + egg.vl.toString() + f.toString());
 614 // }
 615
 616 if (egg.vl.next == null && egg.vl.rx_buffer.top ().isHeader ()) {
 617 EasterEgg be_egg = new EasterEgg ();
 618 be_egg.vl = egg.vl;
 619 egg.vl.NU_header_waiting = true;
 620 bound_enter (be_egg);
 621 } else if (egg.vl.next != null) {
 622 EasterEgg ae_egg = new EasterEgg ();
 623 ae_egg.vl = egg.vl;
 624 assemble_enter (ae_egg);
 625 } else {
 626 // probably a kill flit. some garbage, which we should ignore!
 627 Flit f = (Flit) egg.vl.rx_buffer.pop ();
 628
 629 if (DEBUG33) {
 630 System.out.println (toString () + " garbage entered: " +
 631 f.toString ());
 632 }
 633
 634 (new Event (egg.vl, VLane.PURGED_RX)).schedule (Kernel.Now);
 635 }
 636 }
 637
 638 public void bound_enter (EasterEgg egg) {
 639 if (DEBUG)
 640 System.out.println (toString () + " bound_enter");
 641 bind_q.addElement (egg.vl);
 642 (new Event (this, BINDABLE)).schedule (Kernel.Now, bindable_flag);
 643 }
 644 public void bound_exit (EasterEgg egg) {
 645 if (DEBUG)
 646 System.out.println (toString () + " bound_exit");
 647 EasterEgg ae_egg = new EasterEgg ();
 648 ae_egg.vl = egg.vl;
 649 egg.vl.NU_header_waiting = false;
 650 assemble_enter (ae_egg);
 651 }
 652
 653 public void assemble_enter (EasterEgg egg) {
 654 VLane invl = egg.vl;
 655 Flit flit = (Flit) invl.rx_buffer.pop ();
 656 if (DEBUG)
 657 System.out.println (toString () + " assemble_enter on "
 658 + invl.toString () + " for " + flit.toString ());
 659 if (DEBUG11)
 660 System.out.println (flit.packet.sl);
 661 (new Event (invl, VLane.PURGED_RX)).schedule (Kernel.Now);
 662
 663 if (!flit.isKill ())
 664 flit.packet.ticked_in ();
 665
 666 if (flit.isEnd ()) {
 667 if (DEBUG)
 668 System.out.println (" (was end-flit)");
 669 EasterEgg re_egg = new EasterEgg ();

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 10
 670 re_egg.vl = egg.vl;
 671 re_egg.flit = flit;
 672 receive_enter (re_egg);
 673
 674 } else if (invl.rx_buffer.inhabitated ()) {
 675 // any trailing header flits have been self signalled in
 676 // receive_enter
 677 self_signal_flit_on_top (invl);
 678 }
 679 }
 680
 681 public void receive_enter (EasterEgg egg) {
 682 if (DEBUG)
 683 System.out.println (toString () + " receive_enter on "
 684 + egg.vl.toString () + " for "
 685 + egg.flit.toString ());
 686
 687 VLane invl = egg.vl;
 688 invl.next = null;
 689 invl.packet = null;
 690
 691 if (invl.rx_buffer.inhabitated ()) {
 692 self_signal_flit_on_top (invl);
 693 }
 694
 695 // what about invl’s packet?? it is used when receiving so that
 696 // it is possible to remember which packet we are currently
 697 // assembling. and only there, mesa thinks. it is set again by
 698 // bindable, so it should not be moved here, just nulled out.
 699 EasterEgg PR_egg = new EasterEgg ();
 700 PR_egg.flit = egg.flit;
 701 (new Event (this, PACKET_RECEIVED, PR_egg)).schedule (Kernel.Now +
 702 service_time);
 703 }
 704
 705 public void self_signal_flit_on_top (VLane invl) {
 706 if (DEBUG)
 707 System.out.println (toString () + " self_signal_flit_on_top_enter");
 708 EasterEgg FOT_egg = new EasterEgg ();
 709 FOT_egg.vl = invl;
 710 (new Event (this, FLIT_ON_TOP, FOT_egg)).schedule (Kernel.Now +
 711 Kernel.Cycle (1));
 712 }
 713
 714 // the binder state procedures, see the process model processor_binder
 715
 716 public void bindable_enter (EasterEgg egg) {
 717 while (bind_q.size () > 0 && bound_receive_buffers < receive_buffers) {
 718 VLane top = (VLane) (bind_q.firstElement ());
 719 bind_q.removeElementAt (0); // pop
 720 top.next = top; // "bind" (or "connect", if you like)
 721 top.packet = top.rx_buffer.top ().packet;
 722 bound_receive_buffers++;
 723 EasterEgg B_egg = new EasterEgg ();
 724 B_egg.vl = top;
 725 (new Event (this, BOUND, B_egg)).schedule (Kernel.Now +
 726 Kernel.Cycle (1));
 727 }
 728 }
 729
 730 // the consumer state procedures, see the process model processor_consumer
 731
 732 public void packet_received_enter (EasterEgg egg) {
 733 bound_receive_buffers--;
 734 (new Event (this, BINDABLE)).schedule (Kernel.Now, bindable_flag);
 735
 736
 737 if (!egg.flit.isKill () && egg.flit.packet.destination != this) {
 738 System.out.println (Kernel.time () + toString ()
 739 + "Misrouted packet (SL " + egg.flit.packet.sl +
 740 "): " + egg.flit.toString ());
 741 System.out.println (" Src: " + egg.flit.packet.source + " " +
 742 egg.flit.packet.source.hashCode ());
 743 System.out.println (" Dst: " + egg.flit.packet.destination + " " +
 744 egg.flit.packet.destination.hashCode ());

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 11
 745 System.out.println (" Cur: " + this + " " + this.hashCode ());
 746 }
 747 }
 748
 749 // event implementations, remember to update the dispatcher function
 750 // if adding more events!!
 751
 752 public static final int PACKET_PRODUCED = 10;
 753 public void packet_produced (EasterEgg egg) {
 754 packet_produced_enter (egg);
 755 }
 756
 757 public static final int CONNECTABLE = Node.CONNECTABLE;
 758 public Flag connectable_flag = new Flag (false, Kernel.Edge);
 759 public void connectable (EasterEgg egg) {
 760 connectable_enter (egg);
 761 }
 762
 763 public static final int SCHEDULED_FRAGMENT = 30;
 764 public void scheduled_fragment (EasterEgg egg) {
 765 scheduled_fragment_enter (egg);
 766 }
 767
 768 public static final int RX_AVAILABLE = Node.RX_AVAILABLE;
 769 public void rx_available (EasterEgg egg) {
 770 wait_rx_exit (egg);
 771 }
 772
 773 public static final int TX_AVAILABLE = Node.TX_AVAILABLE;
 774 public void tx_available (EasterEgg egg) {
 775 wait_tx_exit (egg);
 776 }
 777
 778 public static final int FLIT_ON_TOP = Node.FLIT_ON_TOP;
 779 public void flit_on_top (EasterEgg egg) {
 780 flit_on_top_enter (egg);
 781 }
 782
 783 public static final int BINDABLE = 60;
 784 public Flag bindable_flag = new Flag (false, Kernel.Edge);
 785 public void bindable (EasterEgg egg) {
 786 bindable_enter (egg);
 787 }
 788
 789 public static final int BOUND = 70;
 790 public void bound (EasterEgg egg) {
 791 bound_exit (egg);
 792 }
 793
 794 public static final int PACKET_RECEIVED = 80;
 795 public void packet_received (EasterEgg egg) {
 796 packet_received_enter (egg);
 797 }
 798
 799 //Regular event for refreshing egress statistics, defined in MSProcessor.java
 800 public static final int MEASURE_INTERVAL = 90;
 801 public void measure_interval (EasterEgg egg) {
 802 measure_interval_enter (egg);
 803 }
 804
 805 public static final int FLOW_INTERVAL = 100;
 806 public void executeFlowEnter (EasterEgg egg) {
 807 executeFlow (egg);
 808 }
 809
 810 public void measure_interval_enter (EasterEgg egg) {}
 811 public void executeFlow (EasterEgg egg) {}
 812
 813 // common for all Processor events
 814
 815 public void dispatcher (int dispatcher, EasterEgg egg) {
 816
 817 switch (dispatcher) {
 818 case PACKET_PRODUCED:
 819 packet_produced (egg);

Processor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:58 2003 12
 820 break;
 821 case CONNECTABLE:
 822 connectable (egg);
 823 break;
 824 case SCHEDULED_FRAGMENT:
 825 scheduled_fragment (egg);
 826 break;
 827 case RX_AVAILABLE:
 828 rx_available (egg);
 829 break;
 830 case TX_AVAILABLE:
 831 tx_available (egg);
 832 break;
 833 case FLIT_ON_TOP:
 834 flit_on_top (egg);
 835 break;
 836 case BINDABLE:
 837 bindable (egg);
 838 break;
 839 case BOUND:
 840 bound (egg);
 841 break;
 842 case PACKET_RECEIVED:
 843 packet_received (egg);
 844 break;
 845 //used for admis.ctrl.
 846 case MEASURE_INTERVAL:
 847 measure_interval (egg);
 848 break;
 849 case FLOW_INTERVAL:
 850 measure_interval (egg);
 851 break;
 852 default:
 853
 854 }
 855 } // end dispatcherEvent
 856
 857 public void purgeEvents () {
 858 while (scheduled_events.size () > 0) {
 859 Event e = (Event) (scheduled_events.elementAt (0));
 860 scheduled_events.removeElementAt (0);
 861 Kernel.globalHeap.removeEvent (e);
 862 e.dismiss ();
 863 }
 864 }
 865
 866 public Vector scheduled_events = new Vector ();
 867 public Vector scheduled_events () {
 868 return scheduled_events;
 869 }
 870
 871 public boolean remote_admit (Packet p) {
 872 return true;
 873 }
 874 public boolean probeDone (Packet p) {
 875 return false;
 876 }
 877 public void probeReset () {}
 878 public void stopProbe () {}
 879 public static boolean stableDone () {
 880 return true;
 881 }
 882 public void continueAdmitting (int load) {}
 883 } // end class Processor
 884

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 1
 1 /*
 2 * MSProcessor.java: MSProcessor is a subclass of Processor. It implements
 3 * the Egress Measurements AC scheme by introducing flows, and an AC routine.
 4 * The admission descission is performed by having the sending node call the AC
 5 * routine at the reciever. The reciever responds based on the data it has gathered.

 6 */
 7 package base;
 8
 9 import java.util.Random;
 10 import java.util.Vector;
 11 import java.lang.Math;
 12
 13 public class MSProcessor extends Processor {
 14 boolean ADDEBUG = false;
 15 boolean DEBUG = false;
 16 static boolean NEWDEBUG = false, INTERESTED = true, MUCHOUTPUT = false;
 17 private int flowMessages = 0;
 18 private boolean wasnotOk = true, statsOk = false;
 19 long resvtime, timeout = 10000;
 20 private static boolean print_stats = true;
 21 private int num_flows = 0;
 22 private double peakRate = 2, delay = 500;
 23 private double alpha = 1;
 24 private int numFlowsInNet = 0;
 25 private int measPeriodTau = Kernel.measPeriod; //Resolution of arrival measu

rements
 26 private static final int timeSlotsT = Kernel.timeSlots; //Number of measureme

nt periods
 27 private static final int measHistorym = 5; //How long to retain history
 28 private static final int maxBacklog = timeSlotsT;
 29 private static final int BHLength = maxBacklog;
 30 private int[][] arrivals = new int[16][timeSlotsT + 1];
 31 private float[][][] R = new float[16][measHistorym][timeSlotsT]; //arrival env

elope
 32 //in U(i), The time interval for i packets in backlog, index 0 equals 1 packet in

 backlog osv.
 33 private int totalSL =
 34 Kernel.CV[Kernel.highpri_service_levels] +
 35 Kernel.CV[Kernel.lowpri_service_levels];
 36 private long[][][] U = new long[totalSL][timeSlotsT][maxBacklog]; //service env

elope
 37 private long[][][] Uhistory = new long[totalSL][measHistorym][maxBacklog];
 38 private long[][] BacklogHistory = new long[BHLength][2];
 39 private int index;
 40 private int flowRetry = 100, retryCounter = 1;
 41 private boolean onlyFlows = true;
 42 private Random rand = new Random ();
 43 private long measInt, measStart = 0;
 44 private double sendPacketCounter = -12;
 45 private double sendPacketCounterInit = 0;
 46 private boolean NEW_FLOW = false;
 47 private long lnf = 0;
 48 private boolean localAdded = false, localUse1 = true;
 49 public static double offeredFlows = 0;
 50 //static things for ensuring that all processors add a new flow
 51 public static int newFlowCounter = 0;
 52 private static boolean stabilise = false;
 53 public static boolean adding1 = false, adding2 = false, use1 =
 54 true, NO_MORE_FLOWS = false;
 55 public static int increases = 0, numNoAdditions = 0;
 56 private static long lastNewFlow = 0, timeBetweenFlows = 0;
 57 private static int lastSent = 1;
 58 private int localLastSent = 0;
 59 private boolean toosmall = false;
 60 private boolean firsttime = true;
 61 private static int numOk = 160;
 62 private int flowNum = 0;
 63 private long outSynk = 0;
 64
 65 private double flowBW;
 66 int[] flowMapping;
 67
 68
 69 /*Method called when the processor is done adding a new flow, handels finishing o

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 2
f flow-adding period and so on */

 70 private static boolean doneNewFlow (boolean admitted) {
 71 if (admitted) {
 72 if (NEWDEBUG)
 73 System.out.println ("Admitted...");
 74 stabilise = true;
 75 numNoAdditions = 0;
 76 }
 77 newFlowCounter++;
 78 if (NEWDEBUG)
 79 System.out.
 80 println ("Numbers of processors who have added their flow: " +
 81 newFlowCounter);
 82 if (newFlowCounter ==
 83 Kernel.CV[Kernel.num_switches] *
 84 Kernel.CV[Kernel.Processor_per_switch]) {
 85 if (!stabilise)
 86 numNoAdditions++;
 87 if (NEWDEBUG)
 88 System.out.println ("Time of stable period: " + numNoAdditions);
 89 newFlowCounter = 0;
 90 if (NEWDEBUG)
 91 System.out.println ("Time to stabilise if necessary");
 92 increases++;
 93
 94 if ((numNoAdditions == 10) || increases >= offeredFlows - 1) {
 95 if (NEWDEBUG)
 96 System.out.println("%% 10 times without admittance, time to stabi

lize and get results %%");
 97 Kernel.unstable = true;
 98 Kernel.admitting = false;
 99 //stableDone();
 100 NO_MORE_FLOWS = true;
 101 stabilise = false;
 102 lastSent++;
 103 if (NEWDEBUG || INTERESTED)
 104 System.out.println ("%Number of times new flows have been added:

" + increases + "\n%Stabilising network");
 105 } else {
 106 Kernel.stabiliseEnd = Kernel.Now;
 107 lastSent++;
 108 if (NEWDEBUG || INTERESTED)
 109 System.out.
 110 println ("%Number of times new flows have been added: " + increas

es + "\n%No need to restabilise network.");
 111
 112 }
 113 stabilise = false;
 114 }
 115 return true;
 116 }
 117
 118 /*Called when network is stabilised */
 119 public static boolean stableDone () {
 120 Kernel.stabiliseEnd = Kernel.Now;
 121 lastSent++;
 122 if (NEWDEBUG)
 123 System.out.println ("%Done stabilising...");
 124 return true;
 125 }
 126
 127 private int NumPackInFlow (int min, int max) {
 128 return min + rand.nextInt (max);
 129
 130 }
 131
 132 public MSProcessor (int id) {
 133 this (id, Kernel.CV[Kernel.Processor_receive_buffers],
 134 Kernel.CV[Kernel.Processor_send_q_size],
 135 Kernel.CV[Kernel.Processor_service_time],
 136 Kernel.CV[Kernel.Processor_drop_connects],
 137 Kernel.CV[Kernel.Node_drop_links]);
 138 }
 139
 140 /*Constructor initsialising variables for flow handling, packet interrarival time

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 3
.... */

 141 public MSProcessor (int id, int receive_buffers, int send_q_size,
 142 int service_time, int drop_connects, int drop_links) {
 143 super (id, receive_buffers, send_q_size, service_time, drop_connects,
 144 drop_links);
 145 Kernel.admitting = true;
 146 for (int i = 0; i < BHLength; i++)
 147 BacklogHistory[i][0] = -1;
 148 if (maxBacklog > BHLength)
 149 System.out.println ("BHLength er for liten\n");
 150 double f = 1000000, h = 0;
 151 for (int i = 0; i < totalSL; i++) {
 152 f = Math.min (f, Kernel.BWflow[i]);
 153 h = Math.max (h, Kernel.slLoad[i]);
 154 }
 155
 156 //calculates number of flows supported at this load-level
 157 h = Kernel.minMean * (float) Math.pow (h / 100.0, -1);
 158 offeredFlows = 0;
 159
 160 //doubles flowBW of every other flow
 161 if (Kernel.DOUBLE_BW && Math.IEEEremainder (adctrlID, 2) == 0)
 162 flowBW = 2 * Kernel.BWflow[localSL];
 163 else
 164 flowBW = Kernel.BWflow[localSL];
 165 Packet.bandwidths[localSL][adctrlID] = flowBW;
 166 double temp =
 167 (double) 1 / Kernel.CV[Kernel.mean_packet_interarrival_time];
 168 localOfferedFlows =
 169 (temp * (Kernel.slPercentage[localSL] / 100)) / flowBW;
 170 if (localOfferedFlows < 2)
 171 localOfferedFlows = 2;
 172 Packet.numFlows[localSL] = (int) localOfferedFlows;
 173 offeredFlows = Math.max (offeredFlows, localOfferedFlows);
 174 maxFlows = localOfferedFlows;
 175 timeBetweenFlows = measHistorym * timeSlotsT * measPeriodTau;
 176 if (NEWDEBUG)
 177 System.out.println ("%Time between flows: " + timeBetweenFlows +
 178 "\n%Number of flows to be offered: " +
 179 offeredFlows);
 180 h =
 181 Kernel.CV[Kernel.mean_packet_interarrival_time] *
 182 (float) Math.pow (Kernel.slLoad[localSL] / 100.0, -1);
 183 flowNum = (int) localOfferedFlows;
 184 Packet.numFlows[localSL] =
 185 Math.max (Packet.numFlows[localSL], (int) localOfferedFlows);
 186 flowMapping = new int[(int) maxFlows];
 187 if (Kernel.admitall) {
 188 timeBetweenFlows = 0;
 189 }
 190 //self-similar
 191 flows = new Flow[(int) localOfferedFlows + 3];
 192
 193 //clocks out of synk with 10% of min latency.
 194 if (Kernel.MS_OUT_OF_SYNK)
 195 outSynk = (long) (0.1 * (rand.nextInt (2 * 65) - 65));
 196
 197 }
 198
 199 /* Called when it is time to produce a new packet */
 200 public void packet_produced_enter (EasterEgg egg) {
 201 Packet p = null;
 202 int sl = 0;
 203 int hops = 0;
 204 sl = localSL;
 205 if (numOk == 0) {
 206 Packet.statsOk = true;
 207 }
 208
 209
 210 if (DEBUG)
 211 System.out.println (toString () + " packet_produced_enter");
 212 //send dummy packets when waiting for reservation confirm, to create correct

statistics.
 213 Packet.dummy_send ();

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 4
 214
 215
 216 long e = Kernel.Now - Kernel.stabiliseEnd;
 217 if (NEWDEBUG)
 218 if (!Kernel.unstable && !localAdded)
 219 System.out.println ("tid siden sist nye flyt: " + e);
 220 /*determines if it is time to add a new flow */
 221 if (!NO_MORE_FLOWS && !Kernel.unstable && (lastSent != localLastSent)
 222 && (Kernel.Now - Kernel.stabiliseEnd >=
 223 Kernel.Cycle (timeBetweenFlows))) {
 224 localLastSent = lastSent;
 225 if (NEWDEBUG)
 226 System.out.println ("Time to add new flow: " + id);
 227 double f =
 228 1 / (Kernel.BWflow[localSL] * Kernel.slLoad[localSL] *
 229 (num_flows + 1));
 230 if (num_flows + 1 <= (int) localOfferedFlows) {
 231 NEW_FLOW = true;
 232 if (Kernel.SELF_SIMILAR) {
 233 //make a pessimistic assumption about peakrate
 234 if (Kernel.SELF_TIGHT) {
 235 peakRate =
 236 ((double) 1 /
 237 Kernel.CV[Kernel.mean_packet_interarrival_time]);
 238 peakRate *= (Kernel.Traffic.payload_size (id) + 2);
 239 } else {
 240 peakRate = (double) (1 / (flowBW * 2));
 241 peakRate -=
 242 2 * Kernel.CV[Kernel.std_dev_packet_interarrival_time];
 243 peakRate = 1 / peakRate;
 244 peakRate *= (Kernel.Traffic.payload_size (id) + 2);
 245 }
 246 } else {
 247 peakRate = flowBW;
 248 peakRate *= (Kernel.Traffic.payload_size (id) + 2);
 249 peakRate *= (localOfferedFlows * Kernel.slLoad[localSL]);
 250 peakRate /= (localOfferedFlows * Kernel.slLoad[localSL] -
 251 2 *
 252 Kernel.CV[Kernel.
 253 std_dev_packet_interarrival_time]);
 254 }
 255 } else {
 256 //handle special case of flowbw being larger than packet sending rate

,
 257 //reduces flowbw to sending rate.
 258 if (firsttime) {
 259 peakRate =
 260 (Kernel.Traffic.payload_size (id) +
 261 2) / (Kernel.slLoad[localSL]);
 262 NEW_FLOW = true;
 263 toosmall = true;
 264 } else {
 265 if (NEWDEBUG)
 266 System.out.
 267 println
 268 ("Not room for another flow produced between flows = " +
 269 f);
 270 Packet.rejFlowsPreOk[localSL]++;
 271 this.doneNewFlow (false);
 272 }
 273 }
 274 }
 275 firsttime = false;
 276
 277 if (NEW_FLOW) //It is time to add new flow..
 278 {
 279 NEW_FLOW = false;
 280 //if new flow, do not send new packet, just perform reservations
 281 flowMessages =
 282 NumPackInFlow (Kernel.min_flow_length,
 283 Kernel.max_flow_length - Kernel.min_flow_length);
 284 resvtime = Kernel.Now;
 285 if (DEBUG)
 286 System.out.println ("Sending new reservation\n");
 287

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 5
 288 p = createPacket (this,
 289 pid + id,
 290 Kernel.kernel.packetDestination (this), 20, sl);
 291
 292 hops = Kernel.kernel.numHops (this, p.destination, p.sl);
 293 delay = Kernel.delayBound[p.sl] + ((hops - 1) * 25);
 294 p.payloadpointer = new Payload (Kernel.Now, peakRate, delay);
 295 p.payloadpointer.resvinit = true;
 296 iba_last_dest = p.destination;
 297 iba_last_sl = p.sl;
 298
 299
 300 // Admission is done using procedure-calls between processors and switche

s, no packets are involved, takes too much time.
 301 //send_pack(p);
 302 if (p.destination.remote_admit (p)) {
 303 num_flows++;
 304 //self-similar
 305 flows[num_flows] = new Flow (this, num_flows);
 306 double ratio = maxFlows / num_flows;
 307 if (ratio < 1)
 308 ratio = 1;
 309 double findex = 0;
 310 for (int fn = 0; fn < (int) maxFlows; fn++)
 311 flowMapping[fn] = 0;
 312 for (int fn = 0; fn < (int) num_flows; fn++) {
 313 findex = fn * ratio;
 314 if (findex >= (int) maxFlows)
 315 findex = maxFlows - 1;
 316 if (findex < maxFlows && Kernel.EVEN_FLOW)
 317 flowMapping[(int) (findex)] = fn + 1;
 318 else
 319 flowMapping[fn] = fn + 1;
 320 }
 321 sendPacketCounterInit = 1 / (Kernel.BWflow[localSL] * Kernel.slLoad[l

ocalSL] * num_flows);
 322 sendPacketCounter = sendPacketCounterInit;
 323 if (toosmall)
 324 sendPacketCounterInit = sendPacketCounter = 1;
 325 this.doneNewFlow (true);
 326 } else
 327 this.doneNewFlow (false);
 328 }
 329 flowNum--;
 330 //Sends a packet belonging to the correct flow.
 331 if (flowMapping[flowNum] != 0) {
 332 //self-similar
 333 if ((flows[flowMapping[flowNum]].update_selfsim_flow (this))
 334 || !Kernel.SELF_SIMILAR) {
 335 if (!Kernel.IBA_ENABLE_MESSAGE || iba_last_dest == null) {
 336 // first msg send from this processor or iba_msg not enabled
 337 p = createPacket (this,
 338 pid + id,
 339 Kernel.kernel.packetDestination (this),
 340 Kernel.Traffic.payload_size (id), sl);
 341 p.payloadpointer = new Payload (Kernel.Now);
 342 p.flowNum = flowMapping[flowNum];
 343 iba_last_dest = p.destination;
 344 iba_last_sl = p.sl;
 345 send_pack (p);
 346 } else {
 347 if ((iba_message_packetcount > iba_msg_size)
 348 || !Kernel.IBA_ENABLE_MESSAGE) {
 349 // reset counter
 350 iba_message_packetcount = 0;
 351
 352 p = createPacket (this,
 353 pid + id,
 354 iba_last_dest,
 355 Kernel.Traffic.payload_size (id),
 356 iba_last_sl);
 357 p.payloadpointer = new Payload (Kernel.Now);
 358 p.flowNum = flowMapping[flowNum];
 359 if (DEBUG)
 360 System.out.println ("Decreasing flowMessages\n");

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 6
 361 send_pack (p);
 362 } else {
 363 // continuing and existing message
 364 if (DEBUG)
 365 System.out.println ("Sending continued message\n");
 366 p = createPacket (this,
 367 pid + id,
 368 iba_last_dest,
 369 Kernel.Traffic.payload_size (id),
 370 iba_last_sl);
 371 p.payloadpointer = new Payload (Kernel.Now);
 372 p.flowNum = flowMapping[flowNum];
 373 send_pack (p);
 374 }
 375 }
 376 }
 377 }
 378 if (flowNum <= 0) {
 379 flowNum = (int) maxFlows;
 380 }
 381
 382
 383 if (!Kernel.stop_packet_generation) {
 384 //Only send 1 packet in FLOW_RESV state, not whole message
 385 // comment out first if to continue sending packets when waiting for rese

rvation confirm.
 386 //if(flowState!=FLOW_RESV){
 387 if (!Kernel.IBA_ENABLE_MESSAGE || iba_last_dest == null
 388 || iba_message_packetcount > iba_msg_size) {
 389
 390 (new Event (this, PACKET_PRODUCED)).schedule (Kernel.Now
 391 +
 392 Kernel.Traffic.
 393 packet_interarrival_time
 394 ((int) Kernel.
 395 slLoad[localSL],
 396 Kernel.CV[Kernel.
 397 std_dev_packet_interarrival_time],
 398 this));
 399
 400 } else {
 401 (new Event (this, PACKET_PRODUCED)).schedule (Kernel.Now + 10);
 402 }
 403 }
 404
 405 // keep track of number of packets send in this msg
 406 if (Kernel.IBA_ENABLE_MESSAGE) {
 407 if (DEBUG)
 408 System.out.println ("Increasing message_packetcount\n");
 409 iba_message_packetcount++;
 410 }
 411 }
 412 private static int teller = -1;
 413
 414 //Determines admission using egress admission control
 415 private boolean admit_flow (Packet p) {
 416 boolean ok = true;
 417 double U;
 418 boolean allzero1 = true, allzero2 = true;
 419 boolean highpri;
 420 int j = 0, k = 0;
 421 Packet packettemp = createPacket (this,
 422 pid + id,
 423 p.source,
 424 20, p.sl);
 425 packettemp.payloadpointer = new Payload (Kernel.Now);
 426 double[] mR = meanR (R, p.sl);
 427 double[] s2 = sigma2 (mR, R, p.sl);
 428 double[] mU = meanU (Uhistory, p.sl, p.payloadpointer.delay);
 429 double[] p2 = psi2 (mU, Uhistory, p.sl, p.payloadpointer.delay);
 430 int antsl;
 431 teller++;
 432
 433 if (p.sl < Kernel.CV[Kernel.highpri_service_levels]) {
 434 antsl = Kernel.CV[Kernel.highpri_service_levels];

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 7
 435 highpri = true;
 436 } else {
 437 antsl = Kernel.CV[Kernel.lowpri_service_levels];
 438 highpri = false;
 439 }
 440 double[][] mRall = new double[totalSL][timeSlotsT];
 441
 442 for (int u = 0; u < totalSL; u++) {
 443 mRall[u] = meanR (R, u);
 444 }
 445
 446 //print debug
 447 if (Math.IEEEremainder (teller, 160) == 0 && MUCHOUTPUT) {
 448 long in =
 449 Packet.numFlowHist * (Kernel.Now) /
 450 (Kernel.Cycle (Kernel.CV[Kernel.simulation_cycles]) +
 451 Kernel.stableTime);
 452 System.out.println ("Servicelevel = " + p.sl);
 453
 454 System.out.println ("mRplot = [");
 455 for (int g = 0; g < timeSlotsT; g++) {
 456 System.out.print (g * measPeriodTau * mR[g] + ",");
 457 }
 458 System.out.println ("]");
 459 System.out.println ("");
 460
 461 System.out.println ("mUplot = [");
 462 for (int g = 0; g < maxBacklog; g++) {
 463 System.out.print (mU[g] + ",");
 464 }
 465 System.out.println ("]");
 466 System.out.println ("");
 467
 468 System.out.println ("peakrate = " + p.payloadpointer.peak);
 469
 470
 471 }
 472
 473 if (ADDEBUG)
 474 System.out.println ("admitting...");
 475
 476 //the actual AC calculation
 477 for (int i = 0; i < timeSlotsT; i++) {
 478 if (Kernel.delaytoo) {
 479 double tot =
 480 ((i) * measPeriodTau) * mR[i] +
 481 ((i) * measPeriodTau) * p.payloadpointer.peak - mU[i];
 482 if (i * measPeriodTau * mR[i] +
 483 i * measPeriodTau * p.payloadpointer.peak - mU[i] +
 484 alpha *
 485 Math.
 486 sqrt ((double)
 487 ((i) * (i) * measPeriodTau * measPeriodTau * s2[i]) +
 488 (p2[i])) >= 0)
 489 ok = false;
 490 if (Math.IEEEremainder (teller, 160) == 0 && MUCHOUTPUT)
 491 System.out.print (tot + ",");
 492 }
 493 j = 0;
 494 U = 0;
 495 //inequality 2:
 496
 497 double abwSL = 0;
 498 int totw = 0;
 499 int LHP = Kernel.CV[Kernel.iba_limit_of_highpri];
 500 double tbw = 1;
 501 double abw;
 502 if (LHP >= 0 && LHP <= 1)
 503 abw = 0.5 * tbw;
 504 else {
 505 abw = tbw / (LHP + 1);
 506 }
 507 if (p.sl < Kernel.CV[Kernel.highpri_service_levels]) {
 508 abw = tbw - abw;
 509 if (abw == 0)

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 8
 510 abw += 0.00000001;
 511 for (int v = 0; v < Kernel.CV[Kernel.highpri_service_levels]; v++) {
 512 totw += Kernel.vlWeight[v];
 513 }
 514 abwSL = abw * Kernel.vlWeight[p.sl] / totw;
 515 } else {
 516 if (abw == 0)
 517 abw += 0.00000001;
 518 for (int v = Kernel.CV[Kernel.highpri_service_levels];
 519 v <
 520 Kernel.CV[Kernel.lowpri_service_levels] +
 521 Kernel.CV[Kernel.highpri_service_levels]; v++) {
 522 totw += Kernel.vlWeight[v];
 523 }
 524 abwSL = abw * Kernel.vlWeight[p.sl] / totw;
 525 }
 526
 527
 528 if (highpri) {
 529 for (int u = 0; u < antsl; u++) {
 530 if (u != p.sl)
 531 abw -= mRall[u][i];
 532 }
 533 } else {
 534 for (int u = Kernel.CV[Kernel.highpri_service_levels];
 535 u < Kernel.CV[Kernel.highpri_service_levels] + antsl; u++) {
 536 if (u != p.sl)
 537 abw -= mRall[u][i];
 538 }
 539 }
 540
 541 //usually use nobandwidth, inequality 2 is therefore not used.
 542 if (Kernel.rembandwith) {
 543 if (mR[i] + p.payloadpointer.peak > abw)
 544 ok = false;
 545 } else if (Kernel.nobandwidth) {}
 546 else {
 547 if (mR[i] + p.payloadpointer.peak > abwSL)
 548 ok = false;
 549 }
 550 }
 551
 552
 553 for (int i = 0; i < timeSlotsT; i++) {
 554 if (mR[i] != 0)
 555 allzero1 = false;
 556 }
 557
 558 for (int i = 0; i < maxBacklog; i++) {
 559 if (mU[i] < 10000000)
 560 allzero2 = false;
 561 }
 562
 563 //always admitt if not enough data.
 564 if ((allzero1) && !statsOk) {
 565 if (Math.IEEEremainder (teller, 160) == 0 && MUCHOUTPUT)
 566 System.out.println ("Chicken");
 567 ok = true;
 568 } else
 569 statsOk = true;
 570
 571 if (!ok) {
 572 packettemp.payloadpointer.resvnotok = true;
 573 if (ADDEBUG)
 574 System.out.println ("Rejecting reservation");
 575 } else {
 576 packettemp.payloadpointer.resvok = true;
 577 if (ADDEBUG)
 578 System.out.println ("Accepting reservation");
 579 }
 580
 581 //debug
 582 if (DEBUG) {
 583 System.out.println ("mR[i]\n");
 584 for (int i = 0; i < timeSlotsT; i++) {

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 9
 585 System.out.println (mR[i] + "\n");
 586 }
 587 System.out.println ("mU[i]\n");
 588 for (int i = 0; i < maxBacklog; i++) {
 589 System.out.println (mU[i] + "\n");
 590 }
 591 }
 592
 593 //debug
 594 if (Math.IEEEremainder (teller, 160) == 0 && MUCHOUTPUT) {
 595 if (ok)
 596 System.out.println ("%flow was accepted");
 597 else
 598 System.out.println ("%flow was not accepted");
 599 print_stats = false;
 600 }
 601
 602 if (Kernel.admitall)
 603 ok = true;
 604 return ok;
 605
 606 }
 607
 608 //gathers statistics from revceived data.
 609 public void packet_received_enter (EasterEgg egg) {
 610 bound_receive_buffers--;
 611 (new Event (this, BINDABLE)).schedule (Kernel.Now, bindable_flag);
 612
 613
 614
 615 if (!egg.flit.isKill () && egg.flit.packet.destination != this) {
 616 Packet.misRouted++;
 617 System.out.println (Kernel.time () + toString ()
 618 + "Misrouted packet (SL " + egg.flit.packet.sl +
 619 "): " + egg.flit.toString ());
 620 System.out.println (" Src: " + egg.flit.packet.source + " " +
 621 egg.flit.packet.source.hashCode ());
 622 System.out.println (" Dst: " + egg.flit.packet.destination + " " +
 623 egg.flit.packet.destination.hashCode ());
 624 System.out.println (" Cur: " + this + " " + this.hashCode ());
 625 } else {
 626 //do not count resv messages
 627 //gather statistics
 628 //aggregate maximal rate envelope
 629 if (measStart == 0) {
 630 measStart = Kernel.Now;
 631 (new Event (this, MEASURE_INTERVAL)).
 632 schedule (Kernel.Now + Kernel.Cycle(measPeriodTau) * timeSlotsT);
 633 }
 634 index = (int) ((Kernel.Now - measStart) / Kernel.Cycle (measPeriodTau));
 635 if (index > timeSlotsT)
 636 System.out.
 637 println ("Index in Packet_recieved_enter is too large: " + index);
 638 else
 639 arrivals[egg.flit.packet.sl][index] += egg.flit.packet.size;
 640
 641 //Service envelope statistics
 642 for (int i = 0; i < BHLength - 1; i++) {
 643 BacklogHistory[i][0] = BacklogHistory[i + 1][0];
 644 BacklogHistory[i][1] = BacklogHistory[i + 1][1];
 645 }
 646 BacklogHistory[BHLength - 1][0] =
 647 (egg.flit.packet.payloadpointer.timestamp / 10) + outSynk;
 648 BacklogHistory[BHLength - 1][1] = Kernel.Now / 10;
 649 int i = 0;
 650 while ((i < maxBacklog) && (BacklogHistory[i][0] == -1))
 651 i++;
 652 int start = i;
 653
 654 if (i == 0) {
 655 while (i < BHLength - 1
 656 && (BacklogHistory[i][1] > BacklogHistory[i + 1][0]))
 657 i++;
 658 for (int p = 0; p <= i; p++) {
 659 int j = 0;

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 10
 660 if (p < maxBacklog)
 661 U[egg.flit.packet.sl][j][p] =
 662 Math.max (U[egg.flit.packet.sl][j][p],
 663 (BacklogHistory[p][1] - BacklogHistory[0][0]));
 664 }
 665 }
 666 }
 667 }
 668
 669
 670
 671
 672
 673 private void send_pack (Packet pp) {
 674 pid += Kernel.max_switches;
 675 if (send_q.full ()) {
 676 flows[pp.flowNum].sentPackets++;
 677 Packet.packets_rejected[pp.sl]++;
 678 Packet.incRejected (pp.hops, pp.sl);
 679 if (pp.payloadpointer.resvok) {
 680 if (Packet.statsOk)
 681 Packet.admitFlows[pp.sl]--;
 682 else
 683 Packet.admitFlowsPreOk[pp.sl]--;
 684 } else if (pp.payloadpointer.resvnotok) {
 685 if (Packet.statsOk)
 686 Packet.rejFlows[pp.sl]--;
 687 else
 688 Packet.rejFlowsPreOk[pp.sl]--;
 689 }
 690 }
 691 send_q.insert (pp);
 692 if (in_transmission < drop_connects.length) {
 693 send_enter (null);
 694 }
 695 }
 696
 697 /*All functions below are helperfunctions used in calculating
 698 the variables used in the AC descission
 699 */
 700
 701
 702 //starts a new measurement interval, moves current data to history.
 703 public void measure_interval_enter (EasterEgg egg) {
 704 measStart = 0;
 705 float temp = 0, temp2 = 0;
 706 //arrival
 707 for (int sltemp = 0; sltemp < totalSL; sltemp++) {
 708 for (int i = 0; i < measHistorym - 1; i++) {
 709 for (int j = 0; j < timeSlotsT; j++) {
 710 R[sltemp][i][j] = R[sltemp][i + 1][j];
 711 }
 712 }
 713 }
 714 for (int sltemp = 0; sltemp < totalSL; sltemp++) {
 715 for (int i = 0; i < timeSlotsT - 1; i++)
 716 R[sltemp][measHistorym - 1][i] = 0;
 717 }
 718
 719 for (int sltemp = 0; sltemp < totalSL; sltemp++) {
 720 R[sltemp][measHistorym - 1][0] = 0;
 721 for (int k = 0; k < timeSlotsT - 1; k++) {
 722 temp2 = 0;
 723 for (int s = 0; s < timeSlotsT - k; s++) {
 724 temp = 0;
 725 for (int j = 0; j <= k; j++) {
 726 temp += arrivals[sltemp][s + j];
 727 }
 728 temp2 = Math.max (temp, temp2);
 729 }
 730 R[sltemp][measHistorym - 1][k + 1] =
 731 temp2 / ((k + 1) * measPeriodTau);
 732
 733 }
 734 }

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 11
 735
 736
 737
 738
 739 //service
 740 //retain history
 741 for (int sltemp = 0; sltemp < totalSL; sltemp++) {
 742 for (int i = 0; i < measHistorym - 1; i++) {
 743 for (int j = 0; j < maxBacklog; j++) {
 744 Uhistory[sltemp][i][j] = Uhistory[sltemp][i + 1][j];
 745 }
 746 }
 747 }
 748
 749 for (int sltemp = 0; sltemp < totalSL; sltemp++) {
 750 Uhistory[sltemp][measHistorym - 1][0] = U[sltemp][0][0];
 751 for (int j = 1; j < maxBacklog; j++) {
 752 Uhistory[sltemp][measHistorym - 1][j] =
 753 Math.max (U[sltemp][0][j],
 754 Uhistory[sltemp][measHistorym - 1][j - 1]);
 755 }
 756 }
 757
 758 for (int sltemp = 0; sltemp < totalSL; sltemp++) {
 759 for (int j = 0; j < maxBacklog; j++) {
 760 U[sltemp][0][j] = 0;
 761 }
 762 }
 763
 764 for (int sltemp = 0; sltemp < totalSL; sltemp++) {
 765 for (int j = 0; j < timeSlotsT; j++) {
 766 arrivals[sltemp][j] = 0;
 767 }
 768 }
 769
 770 if (!Packet.statsOk) {
 771 double[] mR;
 772 double[] mU;
 773 boolean allzero1 = true, allzero2 = false;
 774 for (int sl = 0; sl < totalSL; sl++) {
 775 mR = meanR (R, sl);
 776 mU = meanU (Uhistory, sl, 0);
 777 for (int i = 0; i < timeSlotsT; i++) {
 778 if (mR[i] != 0)
 779 allzero1 = false;
 780 }
 781 for (int i = 0; i < maxBacklog; i++) {
 782 if (mU[i] > 10000000)
 783 allzero2 = true;
 784 }
 785 //always admitt if not enough data.
 786 if (allzero1 || allzero2) {
 787 if (ADDEBUG)
 788 System.out.println ("Chicken");
 789 } else {
 790 numOk--;
 791 }
 792
 793 }
 794 }
 795
 796 }
 797
 798 private double[] meanR (float[][][]Rtemp, int servicel) {
 799 double[] temp = new double[timeSlotsT];
 800 int m = measHistorym;
 801 boolean z = true;
 802 for (int j = 0; j < measHistorym; j++) {
 803 z = true;
 804 for (int i = 0; i < timeSlotsT; i++) {
 805 if (Rtemp[servicel][j][i] != 0)
 806 z = false;
 807 }
 808 if (z)
 809 m--;

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 12
 810 }
 811 if (m < 1)
 812 m = 1;
 813 for (int i = 0; i < timeSlotsT; i++) {
 814 for (int j = 0; j < measHistorym; j++) {
 815 temp[i] += Rtemp[servicel][j][i];
 816 }
 817 temp[i] /= m;
 818 }
 819 return temp;
 820 }
 821
 822
 823 private double[] sigma2 (double[]meanRtemp, float[][][]Rtemp, int servicel) {
 824 double[] res = new double[timeSlotsT];
 825 int m = measHistorym;
 826 boolean z = true;
 827 for (int j = 0; j < measHistorym; j++) {
 828 z = true;
 829 for (int i = 0; i < timeSlotsT; i++) {
 830 if (Rtemp[servicel][j][i] != 0)
 831 z = false;
 832 }
 833 if (z)
 834 m--;
 835 }
 836
 837 if (m < 2)
 838 m = 2;
 839 for (int i = 0; i < timeSlotsT; i++) {
 840 for (int j = 0; j < measHistorym; j++) {
 841 res[i] +=
 842 ((Rtemp[servicel][j][i] -
 843 meanRtemp[i]) * (Rtemp[servicel][j][i] - meanRtemp[i]));
 844 }
 845 res[i] /= (m - 1);
 846 }
 847 return res;
 848 }
 849
 850 private double[] inverseU (long[]Utemp, double delay) {
 851 double[] UU = new double[maxBacklog];
 852 int j;
 853 double U;
 854 for (int i = 0; i < timeSlotsT; i++) {
 855 j = 0;
 856 U = 0;
 857 //inequality 1:
 858
 859 while (j < maxBacklog && (Utemp[j] < ((i * measPeriodTau) + delay)))
 860 j++;
 861 if (j > 0 && j < maxBacklog) {
 862 if (Utemp[j] - Utemp[j - 1] != 0)
 863 U =
 864 j +
 865 (((i * measPeriodTau) + delay - Utemp[j - 1]) / (Utemp[j] -
 866 Utemp[j -
 867 1]));
 868 else
 869 U = j;
 870 //U=j;
 871 } else if (j >= maxBacklog) {
 872 U = 10000000;
 873 j = maxBacklog - 1;
 874 } else {
 875 U = 0;
 876 }
 877 U *= Kernel.CV[Kernel.payload_size] + 2;
 878 UU[i] = U;
 879 }
 880 return UU;
 881 }
 882
 883 private double[] meanU (long[][][]Uhtemp, int servicel, double delay) {
 884 int j;

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 13
 885 double U;
 886 double[] temp = new double[maxBacklog];
 887 double[][] temp2 = new double[maxBacklog][timeSlotsT];
 888 int m = measHistorym;
 889 boolean z = true;
 890 for (int y = 0; y < measHistorym; y++) {
 891 z = true;
 892 for (int i = 0; i < maxBacklog; i++) {
 893 if (Uhtemp[servicel][y][i] != 0)
 894 z = false;
 895 }
 896 if (z)
 897 m--;
 898 }
 899 if (m < 1)
 900 m = 1;
 901 m = measHistorym;
 902 for (int g = 0; g < measHistorym; g++) {
 903 temp2[g] = inverseU (Uhtemp[servicel][g], delay);
 904 }
 905
 906 for (int i = 0; i < maxBacklog; i++) {
 907 for (int y = 0; y < measHistorym; y++) {
 908 temp[i] += temp2[y][i];
 909 }
 910 temp[i] = temp[i] / m;
 911 }
 912 return temp;
 913 }
 914
 915 private double[] psi2 (double[]meanUtemp, long[][][]Uhtemp, int servicel,
 916 double delay) {
 917 int j;
 918 double U;
 919 double[] res = new double[maxBacklog];
 920 double[][] temp2 = new double[measHistorym][timeSlotsT];
 921 int m = measHistorym;
 922 boolean z = true;
 923 for (int y = 0; y < measHistorym; y++) {
 924 z = true;
 925 for (int i = 0; i < maxBacklog; i++) {
 926 if (Uhtemp[servicel][y][i] != 0)
 927 z = false;
 928 }
 929 if (z)
 930 m--;
 931 }
 932 if (m < 2)
 933 m = 2;
 934
 935 for (int mm = measHistorym - 1; mm >= measHistorym - m; mm--) {
 936 temp2[mm] = inverseU (Uhtemp[servicel][mm], delay);
 937 }
 938
 939 for (int i = 0; i < timeSlotsT; i++) {
 940 for (int y = measHistorym - 1; y > measHistorym - m; y--) {
 941 res[i] +=
 942 ((temp2[y][i] - meanUtemp[i]) * (temp2[y][i] - meanUtemp[i]));
 943 }
 944 res[i] /= (m - 1);
 945 }
 946 return res;
 947 }
 948
 949
 950
 951 //called by requesting processor, uses AC descission implemented above
 952 public boolean remote_admit (Packet p) {
 953 boolean ok = admit_flow (p);
 954 if (ok) {
 955 if (Packet.statsOk || true)
 956 Packet.admitFlows[p.sl]++;
 957 else
 958 Packet.admitFlowsPreOk[p.sl]++;
 959 } else {

MSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:28 2003 14
 960 if (Packet.statsOk || true)
 961 Packet.rejFlows[p.sl]++;
 962 else
 963 Packet.rejFlowsPreOk[p.sl]++;
 964 }
 965 return ok;
 966 }
 967
 968 }
 969

BBRMSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:47:32 2003 1
 1 /*
 2 * BBRMSProcessor.java: BBRMSProcessor is a subclass of Processor. Together with BBRM

SSwitch
 3 * it implements the link-by-link AC scheme. The sending node calls a AC method in th

e first
 4 * switch, which calls in next switch etc. until the destination is reached.
 5 */
 6
 7 package base;
 8
 9 import java.util.Random;
 10 import java.util.Vector;
 11 import java.lang.Math;
 12
 13 public class BBRMSProcessor extends Processor {
 14 boolean ADDEBUG = false;
 15 boolean DEBUG = false;
 16 boolean DEBUGAC = false;
 17 static boolean NEWDEBUG = false, INTERESTED = true;
 18 private int flowMessages = 0;
 19 long resvtime, timeout = 10000;
 20 private int num_flows = 0;
 21 private double peakRate = 2, delay = 500;
 22 private double alpha = 0;
 23 private int totalSL =
 24 Kernel.CV[Kernel.highpri_service_levels] +
 25 Kernel.CV[Kernel.lowpri_service_levels];
 26 private int index;
 27 private Random rand = new Random ();
 28
 29 private double sendPacketCounter = -12;
 30 private double sendPacketCounterInit = 0;
 31 private boolean NEW_FLOW = false;
 32 private long lnf = 0;
 33 private boolean localAdded = false, localUse1 = true;
 34 public static double offeredFlows = 0;
 35
 36 //static things for ensuring that all processors add a new flow
 37 public static int newFlowCounter = 0;
 38 private static boolean stabilise = false;
 39 public static boolean NO_MORE_FLOWS = false;
 40 public static int increases = 0, numNoAdditions = 0;
 41 private static long lastNewFlow = 0, timeBetweenFlows = 0;
 42 private static int lastSent = 1;
 43 private int localLastSent = 0;
 44 private Vector retry = new Vector ();
 45 private boolean toosmall = false;
 46 private boolean firsttime = true;
 47 private int flowNum = 1;
 48 public double flowBW;
 49 int[] flowMapping;
 50 //self-similar
 51 boolean print = true;
 52
 53 /*called when a new flow is accepted or rejected, handles stabilising of network

when done adding flows.*/
 54 private static boolean doneNewFlow (boolean admitted) {
 55 if (admitted) {
 56 stabilise = true;
 57 numNoAdditions = 0;
 58 }
 59
 60 newFlowCounter++;
 61 if (NEWDEBUG)
 62 System.out.println ("Number of processors who have added their flow: " +
 63 newFlowCounter);
 64 if (newFlowCounter ==
 65 Kernel.CV[Kernel.num_switches] *
 66 Kernel.CV[Kernel.Processor_per_switch]) {
 67 if (!stabilise) {
 68 numNoAdditions++;
 69 if (INTERESTED)
 70 System.out.println ("No new additions");
 71 }
 72 if (NEWDEBUG)

BBRMSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:47:32 2003 2
 73 System.out.println ("Time of stable period: " + numNoAdditions);
 74 newFlowCounter = 0;
 75 if (NEWDEBUG)
 76 System.out.println ("Time to stabilise if necessary");
 77 increases++;
 78 // Done adding flows, time to stabilize
 79 if ((numNoAdditions == 10) || increases >= offeredFlows - 1) {
 80 if (NEWDEBUG)
 81 System.out.
 82 println
 83 ("%% 10 times without admittance, time to stabilize and get resul

ts %%");
 84 Kernel.unstable = true;
 85 NO_MORE_FLOWS = true;
 86 Kernel.admitting = false;
 87 stabilise = false;
 88 lastSent++;
 89 if (NEWDEBUG || INTERESTED)
 90 System.out.
 91 println ("%Number of times new flows have been added: " +
 92 increases + "\n%Stabilising network");
 93 } else {
 94 Kernel.stabiliseEnd = Kernel.Now;
 95 lastSent++;
 96 if (NEWDEBUG || INTERESTED)
 97 System.out.
 98 println ("%Number of times new flows have been added: " +
 99 increases + "\n%No need to restabilise network.");
 100
 101 }
 102 stabilise = false;
 103 }
 104 return true;
 105 }
 106 /* Called from simulate() when done stabilising */
 107 public static boolean stableDone () {
 108 Kernel.stabiliseEnd = Kernel.Now;
 109 lastSent++;
 110 System.out.println ("%Done stabilising...");
 111 return true;
 112 }
 113
 114 private int NumPackInFlow (int min, int max) {
 115 return min + rand.nextInt (max);
 116
 117 }
 118
 119 //Dummy constructor
 120 public BBRMSProcessor (int id) {
 121 this (id, Kernel.CV[Kernel.Processor_receive_buffers],
 122 Kernel.CV[Kernel.Processor_send_q_size],
 123 Kernel.CV[Kernel.Processor_service_time],
 124 Kernel.CV[Kernel.Processor_drop_connects],
 125 Kernel.CV[Kernel.Node_drop_links]);
 126 }
 127
 128
 129 public BBRMSProcessor (int id, int receive_buffers, int send_q_size,
 130 int service_time, int drop_connects, int drop_links) {
 131 super (id, receive_buffers, send_q_size, service_time, drop_connects,
 132 drop_links);
 133
 134 Kernel.admitting = true;
 135 double f = 1000000, h = 0;
 136 for (int i = 0; i < totalSL; i++) {
 137 f = Math.min (f, Kernel.BWflow[i]);
 138 h = Math.max (h, Kernel.slPercentage[i]);
 139 }
 140 h = Kernel.minMean * (float) Math.pow (h / 100.0, -1);
 141 //double the flowbandwidth of every other flow.
 142 if (Kernel.DOUBLE_BW && Math.IEEEremainder (adctrlID, 2) == 0)
 143 flowBW = 2 * Kernel.BWflow[localSL];
 144 else
 145 flowBW = Kernel.BWflow[localSL];
 146 Packet.bandwidths[localSL][adctrlID] = flowBW;

BBRMSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:47:32 2003 3
 147 //calculates the number of flows that may be added.
 148 h = Kernel.CV[Kernel.mean_packet_interarrival_time] * (float) Math.pow (Kerne

l.slLoad[localSL] / 100.0, -1);
 149 double temp = (double) 1 / Kernel.CV[Kernel.mean_packet_interarrival_time];
 150 localOfferedFlows = (temp * (Kernel.slPercentage[localSL] / 100)) / flowBW;
 151 if (localOfferedFlows < 2)
 152 localOfferedFlows = 2;
 153 Packet.numFlows[localSL] = Math.max (Packet.numFlows[localSL], (int) localOff

eredFlows);
 154 offeredFlows = Math.max (offeredFlows, localOfferedFlows);
 155 maxFlows = localOfferedFlows;
 156 flowNum = (int) localOfferedFlows - 1;
 157 //debug
 158 if (INTERESTED)
 159 System.out.println ("Flows to be offered sl" + localSL + ": " +
 160 localOfferedFlows);
 161 timeBetweenFlows =
 162 (long) (Kernel.CV[Kernel.simulation_cycles] / offeredFlows);
 163 timeBetweenFlows = 1;
 164 if (NEWDEBUG)
 165 System.out.println ("%Time between flows: " + timeBetweenFlows +
 166 "\n%Number of flows to be offered: " +
 167 offeredFlows);
 168 flowMapping = new int[(int) maxFlows + 1];
 169 //self-similar
 170 flows = new Flow[(int) localOfferedFlows + 3];
 171 }
 172
 173 public void packet_produced_enter (EasterEgg egg) {
 174 Packet p = null;
 175 int sl = 0;
 176 sl = localSL;
 177 if (DEBUG)
 178 System.out.println (toString () + " packet_produced_enter");
 179 //Increase send_counter no matter if a packet is sent, creates correct statis

tics
 180 Packet.dummy_send ();
 181
 182 //A local retry queue, not used
 183 if (!retry.isEmpty ()) {
 184 Packet t = (Packet) retry.firstElement ();
 185 send_pack (t);
 186 retry.remove (0);
 187 Packet.packets_resent++;
 188 }
 189
 190 //set up necessary variables for adding a new flow, determine if new flow sho

uld be added.
 191 long e = Kernel.Now - Kernel.stabiliseEnd;
 192 if (NEWDEBUG)
 193 if (!Kernel.unstable && !localAdded)
 194 System.out.println ("tid siden sist nye flyt: " + e);
 195 if (!NO_MORE_FLOWS && !Kernel.unstable && (lastSent != localLastSent) && (Ker

nel.Now - Kernel.stabiliseEnd >= Kernel.Cycle (timeBetweenFlows))) {
 196 localLastSent = lastSent;
 197 if (NEWDEBUG)
 198 System.out.println ("Time to add new flow: " + id);
 199 //f is the number of packets to be produced between each time a packet sh

ould be sent according to the number of flow sending.
 200 double f = 1 / (flowBW * Kernel.slLoad[localSL] * (num_flows + 1));
 201 if (num_flows + 1 < (int) localOfferedFlows) {
 202 NEW_FLOW = true;
 203 if (Kernel.SELF_SIMILAR || Kernel.SELF_SIM_NEW) {
 204 //make a pessimistic assumption about peakrate
 205 //Kernel.SELF_TIGHT is a variation on self_similar, not used
 206 if (Kernel.SELF_TIGHT) {
 207 peakRate =
 208 ((double) 1 /
 209 Kernel.CV[Kernel.mean_packet_interarrival_time]);
 210 peakRate *= (Kernel.Traffic.payload_size (id) + 2);
 211 } else {
 212 peakRate =
 213 ((double) flowBW * 1.5) * (localOfferedFlows *
 214 Kernel.slLoad[localSL]);
 215 peakRate /= (localOfferedFlows * Kernel.slLoad[localSL] -

BBRMSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:47:32 2003 4
 216 2 *
 217 Kernel.CV[Kernel.
 218 std_dev_packet_interarrival_time]);
 219 peakRate *= (Kernel.Traffic.payload_size (id) + 2);
 220 }
 221 } else {
 222 peakRate = flowBW;
 223 peakRate *= (Kernel.Traffic.payload_size (id) + 2);
 224 }
 225
 226 } else {
 227 //handle special case of flowbw being larger than packet sending rate

,
 228 //reduces flowbw to sending rate.
 229 if (firsttime) {
 230 peakRate =
 231 (Kernel.Traffic.payload_size (id) +
 232 2) / (Kernel.slLoad[localSL]);
 233 if (NEWDEBUG)
 234 System.out.println ("Fisttime with peakrate: " + peakRate);
 235 NEW_FLOW = true;
 236 toosmall = true;
 237 firsttime = false;
 238 } else {
 239 if (NEWDEBUG)
 240 System.out.
 241 println
 242 ("Not room for another flow produced between flows = " +
 243 f);
 244 Packet.rejFlowsPreOk[localSL]++;
 245 this.doneNewFlow (false);
 246 }
 247 }
 248 }
 249
 250 //time to add new flow
 251 if (NEW_FLOW) {
 252 NEW_FLOW = false;
 253
 254 flowMessages =
 255 NumPackInFlow (Kernel.min_flow_length,
 256 Kernel.max_flow_length - Kernel.min_flow_length);
 257 resvtime = Kernel.Now;
 258 if (DEBUG)
 259 System.out.println ("Sending new reservation\n");
 260
 261 p = createPacket (this,
 262 pid + id,
 263 Kernel.kernel.packetDestination (this), 20, sl);
 264
 265
 266 if (DEBUGAC) {
 267 System.out.println ("peakRate: " + peakRate);
 268 System.out.println ("Payload size = " +
 269 Kernel.Traffic.payload_size (id));
 270 System.out.println ("Interarrival time = " +
 271 Kernel.Traffic.
 272 packet_interarrival_time ((int) Kernel.
 273 slLoad[localSL],
 274 Kernel.CV[Kernel.
 275 std_dev_packe

t_interarrival_time]));
 276 }
 277 delay = Kernel.delayBound[p.sl];
 278
 279 p.payloadpointer = new Payload (Kernel.Now, peakRate, delay);
 280 p.payloadpointer.resvinit = true;
 281 p.payloadpointer.resvok = true;
 282 p.payloadpointer.resvnotok = false;
 283 iba_last_dest = p.destination;
 284 iba_last_sl = p.sl;
 285 if (Kernel.Now < Kernel.Cycle (Kernel.CV[Kernel.simulation_cycles])
 286 && Kernel.Now > 0) {
 287 long indextest =
 288 Packet.numFlowHist * ((Kernel.Now)) /

BBRMSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:47:32 2003 5
 289 Kernel.Cycle (Kernel.CV[Kernel.simulation_cycles]);
 290 }
 291
 292 //don’t perform admission control on SL5 if we have BEST_EFFORT traffic
 293 //calculate time between sending packest belonging to which flow.
 294 if ((Kernel.BEST_EFFORT && localSL == 4) || admit_flow (p)
 295 || Kernel.admitall) {
 296 Packet.admitFlows[p.sl]++;
 297 num_flows++;
 298 //self-similar
 299 if (flows[num_flows] != null)
 300 System.out.println ("Noe er galt");
 301 flows[num_flows] = new Flow (this, num_flows);
 302 double ratio = maxFlows / num_flows;
 303 double findex = 0;
 304 for (int fn = 0; fn < (int) maxFlows; fn++)
 305 flowMapping[fn] = 0;
 306 for (int fn = 0; fn < (int) num_flows; fn++) {
 307
 308 if (fn * ratio < maxFlows && Kernel.EVEN_FLOW)
 309 flowMapping[(int) (fn * ratio)] = fn + 1;
 310 else if (!Kernel.EVEN_FLOW)
 311 flowMapping[fn] = fn + 1;
 312 else
 313 System.out.println ("mattefeil!!!!");
 314 }
 315 if (NEWDEBUG)
 316 System.out.println ("Admitted");
 317 this.doneNewFlow (true);
 318 } else {
 319 Packet.rejFlows[p.sl]++;
 320 if (NEWDEBUG)
 321 System.out.println ("Rejected");
 322 this.doneNewFlow (false);
 323 }
 324 EasterEgg egget = new EasterEgg ();
 325 egget.flyt = flows[num_flows];
 326 if (Kernel.SELF_SIM_NEW)
 327 executeFlow (egget);
 328 }
 329
 330 //send packet
 331 if (!Kernel.SELF_SIM_NEW)
 332 executeFlow (null);
 333
 334 if (!Kernel.stop_packet_generation) {
 335 //Only send 1 packet in FLOW_RESV state, not whole message
 336 // comment out first if to continue sending packets when waiting for rese

rvation confirm.
 337 //if(flowState!=FLOW_RESV){
 338 if (!Kernel.IBA_ENABLE_MESSAGE || iba_last_dest == null
 339 || iba_message_packetcount > iba_msg_size) {
 340
 341 (new Event (this, PACKET_PRODUCED)).schedule (Kernel.Now +
 342 Kernel.Traffic.
 343 packet_interarrival_time
 344 ((int) Kernel.
 345 slLoad[localSL],
 346 Kernel.CV[Kernel.
 347 std_dev_packet_interarrival_time],
 348 this));
 349
 350 } else {
 351 (new Event (this, PACKET_PRODUCED)).schedule (Kernel.Now + 10);
 352 }
 353 }
 354
 355 // keep track of number of packets send in this msg
 356 if (Kernel.IBA_ENABLE_MESSAGE) {
 357 if (DEBUG)
 358 System.out.println ("Increasing message_packetcount\n");
 359 iba_message_packetcount++;
 360 }
 361 }
 362

BBRMSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:47:32 2003 6
 363 /* Sends a packet in normal opperation, without SELF_TIGHT */
 364 public void executeFlow (EasterEgg egg) {
 365 Packet p = null;
 366 int sl = 0;
 367 sl = localSL;
 368 do {
 369 flowNum--;
 370 if (flowMapping[flowNum] != 0 || Kernel.SELF_SIM_NEW) {
 371 //self-similar
 372 if ((Kernel.SELF_SIM_NEW || flows[flowMapping[flowNum]].update_selfsi

m_flow (this))) {
 373 if (Kernel.SELF_SIM_NEW)
 374 egg.flyt.update_selfsim_flow (this);
 375 if (!Kernel.IBA_ENABLE_MESSAGE || iba_last_dest == null) {
 376 // first msg send from this processor or iba_msg not enabled
 377 if (print) {
 378 //System.out.println("destinasjon: " + Kernel.kernel.pack

etDestination(this).id);
 379 print = false;
 380 }
 381 p = createPacket (this,
 382 pid + id,
 383 Kernel.kernel.packetDestination (this),
 384 Kernel.Traffic.payload_size (id), sl);
 385
 386 //set the correct flow number of the packet. Special case if

 SELF_SIM_NEW, not used/not working
 387 if (Kernel.SELF_SIM_NEW)
 388 p.flowNum = egg.flyt.flowNum;
 389 else
 390 p.flowNum = flowMapping[flowNum];
 391
 392 iba_last_dest = p.destination;
 393 iba_last_sl = p.sl;
 394 send_pack (p);
 395 } else {
 396 if ((iba_message_packetcount > iba_msg_size)
 397 || !Kernel.IBA_ENABLE_MESSAGE) {
 398 // reset counter
 399 iba_message_packetcount = 0;
 400
 401 p = createPacket (this,
 402 pid + id,
 403 iba_last_dest,
 404 Kernel.Traffic.payload_size (id),
 405 iba_last_sl);
 406 if (Kernel.SELF_SIM_NEW)
 407 p.flowNum = egg.flyt.flowNum;
 408 else
 409 p.flowNum = flowMapping[flowNum];
 410 if (DEBUG)
 411 System.out.println ("Decreasing flowMessages\n");
 412 send_pack (p);
 413 } else {
 414 // continuing and existing message
 415 if (DEBUG)
 416 System.out.println ("Sending continued message\n");
 417 p = createPacket (this,
 418 pid + id,
 419 iba_last_dest,
 420 Kernel.Traffic.payload_size (id),
 421 iba_last_sl);
 422 if (Kernel.SELF_SIM_NEW)
 423 p.flowNum = egg.flyt.flowNum;
 424 else
 425 p.flowNum = flowMapping[flowNum];
 426 send_pack (p);
 427 }
 428 }
 429 }
 430 }
 431 } while (flowNum > 0 && Kernel.SELF_TIGHT && Kernel.SELF_SIMILAR);
 432
 433 if (flowNum <= 0) {
 434 flowNum = (int) maxFlows;

BBRMSProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:47:32 2003 7
 435 }
 436 }
 437
 438 public void packet_received_enter (EasterEgg egg) {
 439 Packet p = null;
 440 bound_receive_buffers--;
 441 (new Event (this, BINDABLE)).schedule (Kernel.Now, bindable_flag);
 442
 443
 444 if (!egg.flit.isKill () && egg.flit.packet.destination != this) {
 445 System.out.println (Kernel.time () + toString ()
 446 + "Misrouted packet (SL " + egg.flit.packet.sl +
 447 "): " + egg.flit.toString ());
 448 System.out.println (" Src: " + egg.flit.packet.source + " " +
 449 egg.flit.packet.source.hashCode ());
 450 System.out.println (" Dst: " + egg.flit.packet.destination + " " +
 451 egg.flit.packet.destination.hashCode ());
 452 System.out.println (" Cur: " + this + " " + this.hashCode ());
 453 }
 454
 455 }
 456
 457 private void send_pack (Packet pp) {
 458 pid += Kernel.max_switches;
 459 Packet.sentPackets[pp.sl]++;
 460
 461 //normally used for internal send_q, not used.
 462 if (send_q.full ()) {
 463 //if(pp.payloadpointer!=null) enqueue(pp);
 464 Packet.packets_rejected[pp.sl]++;
 465 Packet.incRejected (pp.hops, pp.sl);
 466 }
 467 send_q.insert (pp);
 468 if (in_transmission < drop_connects.length) {
 469 send_enter (null);
 470
 471 }
 472 }
 473
 474 private void enqueue (Packet p) {
 475 retry.addElement (p);
 476 }
 477
 478 //Admition routine used in link-by-link. Reserves resources here in processor an

d likewise in BBRMSSwitch.java
 479 private boolean admit_flow (Packet p) {
 480 VLane outvl = drop_links[p.sl].vlanes[p.sl];
 481 BBRMSSwitch s = (BBRMSSwitch) outvl.receiver;
 482 if (outvl.link.bw - p.payloadpointer.peak >= 0) {

//continue if admitted
 483 outvl.link.bw -= p.payloadpointer.peak;
 484 if (!s.next_admit_flow (p, outvl)) {
 485 outvl.link.bw += p.payloadpointer.peak;
 486 return false;
 487 }
 488 return true;
 489 }
 490 return false;
 491 }
 492
 493 //Processor has no link to be congested, allways accept new flow.
 494 public boolean next_admit_flow (Packet p, VLane vl) {
 495 if (p.destination != this)
 496 System.out.
 497 println
 498 ("!!!!Wrong destination, something is wrong with the admission-routing.\n

"
 499 + p.destination.toString () + " is not " + toString () + "!");
 500 else if (NEWDEBUG)
 501 System.out.println ("Correct destination");
 502 return true;
 503 }
 504
 505
 506

PROBEProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:46 2003 1
 1 /*
 2 * PROBEProcessor.java: PROBEProcessor subclasses Processor. It implements the
 3 * "Jitter Probing" AC scheme. The processor sends probePacketsInit (=6) probe
 4 * packets through the network to the reciever which monitors the transmission time.
 5 * The probe packets are sent on probeSL if the parameter "probelow" is given,
 6 * which might be a separate SL. Without "probelow", the probes are sent on localSL.
 7 */
 8
 9 package base;
 10
 11 import java.util.Random;
 12 import java.util.Vector;
 13 import java.lang.Math;
 14
 15 public class PROBEProcessor extends Processor {
 16 boolean ADDEBUG = false;
 17 boolean DEBUG = false;
 18 boolean DEBUGAC = false;
 19 static boolean NEWDEBUG = false, INTERESTED = true;
 20 private int flowMessages = 0;
 21 private boolean wasnotOk = true;
 22 long resvtime, timeout = 10000;
 23 private int num_flows = 0;
 24 private double peakRate = 2, delay = 500;
 25 private double alpha = 0;
 26 private int numFlowsInNet = 0;
 27 private int totalSL =
 28 Kernel.CV[Kernel.highpri_service_levels] +
 29 Kernel.CV[Kernel.lowpri_service_levels];
 30 private int index;
 31 private int flowRetry = 100, retryCounter = 1;
 32 private boolean onlyFlows = true;
 33 private Random rand = new Random ();
 34
 35 private double sendPacketCounter = -12;
 36 private double sendPacketCounterInit = 0;
 37 private boolean NEW_FLOW = false;
 38 private long lnf = 0;
 39 private boolean localAdded = false, localUse1 = true;
 40 public static double offeredFlows = 0;
 41
 42 //static things for ensuring that all processors add a new flow
 43 public static int newFlowCounter = 0;
 44 private static boolean stabilise = false;
 45 public static boolean adding1 = false, adding2 = false, use1 =
 46 true, NO_MORE_FLOWS = false;
 47 public static int increases = 0, numNoAdditions = 0;
 48 private static long lastNewFlow = 0, timeBetweenFlows = 0;
 49 private static int lastSent = 1;
 50 private int localLastSent = 0;
 51 private int probePackets = -1, probePacketsInit = 6, probeRec =
 52 0, probeSent = 0, flowsSent = 0, rejectedCounter =

 0, probeDropped;
 53 private long probeMin = 100000000, probeMax = 0, probeSessionNum =
 54 0, probeSessionExpected = 1, probeLast = 0;
 55 private Vector retry = new Vector ();
 56 private boolean toosmall = false, sendProbe = false;
 57 private boolean firsttime = true;
 58 private Packet probePack;
 59 public int recProbe = 0;
 60 private static int admittedthistime = 0;
 61 private long lastprobe = 0;
 62 private int randomSendDelay = 0;
 63 private int probeSL = 5;
 64 private double flowBW;
 65 private int newLoad;
 66 int[] flowMapping;
 67 int lastBufferFill = 0, maxBufferFill = 0;
 68
 69
 70 //used for long run with all loads, not working, not used.
 71 public void continueAdmitting (int load) {
 72 newLoad = load;
 73 Kernel.admitting = true;
 74 NO_MORE_FLOWS = false;

PROBEProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:46 2003 2
 75 NEW_FLOW = false;
 76 localAdded = false;
 77 localUse1 = true;
 78 stabilise = false;
 79 adding1 = false;
 80 adding2 = false;
 81 use1 = true;
 82 NO_MORE_FLOWS = false;
 83 sendProbe = false;
 84 double temp = (double) 1 / load;
 85 localOfferedFlows =
 86 (temp * (Kernel.slPercentage[localSL] / 100)) / flowBW;
 87 Packet.numFlows[localSL] =
 88 Math.max (Packet.numFlows[localSL], (int) localOfferedFlows);
 89 offeredFlows = Math.max (offeredFlows, localOfferedFlows);
 90
 91 }
 92
 93 /*Called when new flow has been added un/succesfully*/
 94 private static boolean doneNewFlow (boolean admitted) {
 95 if (admitted) {
 96 stabilise = true;
 97 numNoAdditions = 0;
 98 admittedthistime++;
 99 }
 100
 101 newFlowCounter++;
 102 if (NEWDEBUG)
 103 System.out.println ("Number of processors who have added their flow: " +
 104 newFlowCounter);
 105 if (newFlowCounter ==
 106 Kernel.CV[Kernel.num_switches] *
 107 Kernel.CV[Kernel.Processor_per_switch]) {
 108 if (INTERESTED)
 109 System.out.println ("Kernel time now (/10): " + Kernel.Now / 10);
 110 if (INTERESTED)
 111 System.out.println ("Flows admitted: " + admittedthistime);
 112 admittedthistime = 0;
 113 if (!stabilise)
 114 numNoAdditions++;
 115 if (NEWDEBUG)
 116 System.out.println ("Time of stable period: " + numNoAdditions);
 117 newFlowCounter = 0;
 118 if (NEWDEBUG)
 119 System.out.println ("Time to stabilise if necessary");
 120 increases++;
 121 if (INTERESTED)
 122 System.out.println ("Number of flows added: " + increases);
 123 if ((numNoAdditions == 1) || increases >= offeredFlows - 1) {
 124 if (NEWDEBUG || INTERESTED)
 125 System.out.
 126 println
 127 ("%% 10 times without admittance, time to stabilize and get resul

ts %%");
 128 Kernel.unstable = true;
 129 NO_MORE_FLOWS = true;
 130 Kernel.admitting = false;
 131 stabilise = false;
 132 lastSent++;
 133 if (NEWDEBUG || INTERESTED)
 134 System.out.
 135 println ("%Number of times new flows have been added: " +
 136 increases + "\n%Stabilising network");
 137 } else {
 138 Kernel.stabiliseEnd = Kernel.Now;
 139 lastSent++;
 140 if (NEWDEBUG || INTERESTED)
 141 System.out.
 142 println ("%Number of times new flows have been added: " +
 143 increases + "\n%No need to restabilise network.");
 144
 145 }
 146 stabilise = false;
 147 }
 148 return true;

PROBEProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:46 2003 3
 149 }
 150
 151 public static boolean stableDone () {
 152 Kernel.stabiliseEnd = Kernel.Now;
 153 lastSent++;
 154 if (NEWDEBUG || INTERESTED)
 155 System.out.println ("%Done stabilising...");
 156 return true;
 157 }
 158
 159 private int NumPackInFlow (int min, int max) {
 160 return min + rand.nextInt (max);
 161
 162 }
 163
 164 public PROBEProcessor (int id) {
 165 this (id, Kernel.CV[Kernel.Processor_receive_buffers],
 166 Kernel.CV[Kernel.Processor_send_q_size],
 167 Kernel.CV[Kernel.Processor_service_time],
 168 Kernel.CV[Kernel.Processor_drop_connects],
 169 Kernel.CV[Kernel.Node_drop_links]);
 170 }
 171
 172
 173 public PROBEProcessor (int id, int receive_buffers, int send_q_size,
 174 int service_time, int drop_connects, int drop_links) {
 175 super (id, receive_buffers, send_q_size, service_time, drop_connects,
 176 drop_links);
 177 Kernel.admitting = true;
 178 double f = 1000000, h = 0;
 179 for (int i = 0; i < totalSL; i++) {
 180 f = Math.min (f, Kernel.BWflow[i]);
 181 h = Math.max (h, Kernel.slLoad[i]);
 182 }
 183 h = Kernel.minMean * (float) Math.pow (h / 100.0, -1);
 184 //doubles flowBW of every other flow
 185 if (Kernel.DOUBLE_BW && Math.IEEEremainder (adctrlID, 2) == 0)
 186 flowBW = 2 * Kernel.BWflow[localSL];
 187 else
 188 flowBW = Kernel.BWflow[localSL];
 189 Packet.bandwidths[localSL][adctrlID] = flowBW;
 190 double temp =
 191 (double) 1 / Kernel.CV[Kernel.mean_packet_interarrival_time];
 192 newLoad = Kernel.CV[Kernel.mean_packet_interarrival_time];
 193 localOfferedFlows =
 194 (temp * (Kernel.slPercentage[localSL] / 100)) / flowBW;
 195 if (localOfferedFlows < 2)
 196 localOfferedFlows = 2;
 197 maxFlows = localOfferedFlows;
 198 offeredFlows = Math.max (offeredFlows, localOfferedFlows);
 199 timeBetweenFlows = 1;
 200 System.out.println ("%Time between flows: " + timeBetweenFlows +
 201 "\n%Number of flows to be offered: " +
 202 localOfferedFlows);
 203 randomSendDelay = NumPackInFlow (0, 1000);
 204 flowMapping = new int[(int) maxFlows];
 205 flowsSent = (int) localOfferedFlows;
 206 flows = new Flow[(int) localOfferedFlows + 3];
 207 }
 208
 209 public void packet_produced_enter (EasterEgg egg) {
 210 Packet p = null;
 211 int sl = 0;
 212 sl = localSL;
 213
 214 if (DEBUG)
 215 System.out.println (toString () + " packet_produced_enter");
 216
 217 long e = Kernel.Now - Kernel.stabiliseEnd;
 218 if (NEWDEBUG)
 219 if (!Kernel.unstable && !localAdded)
 220 System.out.println ("tid siden sist nye flyt: " + e);
 221 //determines if it is time to add another flow
 222 if (!NO_MORE_FLOWS && !Kernel.unstable && (lastSent != localLastSent)
 223 && (Kernel.Now - Kernel.stabiliseEnd >=

PROBEProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:46 2003 4
 224 Kernel.Cycle (timeBetweenFlows) + randomSendDelay)) {
 225 localLastSent = lastSent;
 226 if (NEWDEBUG)
 227 System.out.println ("Time to add new flow: " + id);
 228 //f is the number of packets to be produced between each time a packet sh

ould be sent according to the number of flow sending.
 229 double f = 1 / (flowBW * Kernel.slLoad[localSL] * (num_flows + 1));
 230 if (num_flows + 1 <= (int) localOfferedFlows) {
 231 NEW_FLOW = true;
 232 //make a pessimistic assumption about peakrate
 233 if (Kernel.SELF_SIMILAR) {
 234 if (Kernel.SELF_TIGHT) {
 235 peakRate =
 236 ((double) 1 /
 237 Kernel.CV[Kernel.mean_packet_interarrival_time]);
 238 peakRate *= (Kernel.Traffic.payload_size (id) + 2);
 239 } else {
 240 peakRate = (double) (1 / (flowBW * 2));
 241 peakRate -=
 242 2 * Kernel.CV[Kernel.std_dev_packet_interarrival_time];
 243 peakRate = 1 / peakRate;
 244 peakRate *= (Kernel.Traffic.payload_size (id) + 2);
 245 }
 246 } else {
 247 peakRate = flowBW;
 248 peakRate *= (Kernel.Traffic.payload_size (id) + 2);
 249 peakRate *= ((localOfferedFlows * Kernel.slLoad[localSL]));
 250 peakRate /=
 251 ((localOfferedFlows * Kernel.slLoad[localSL] -
 252 2 * Kernel.CV[Kernel.std_dev_packet_interarrival_time]));
 253 }
 254 } else {
 255 if (NEWDEBUG || INTERESTED)
 256 System.out.
 257 println ("Not room for another flow produced between flows = "
 258 + ((int) (localOfferedFlows) - num_flows));
 259 Packet.rejFlowsPreOk[localSL]++;
 260 this.doneNewFlow (false);
 261
 262 }
 263 }
 264 //It is time to add another flow
 265 if (NEW_FLOW) {
 266 NEW_FLOW = false;
 267 probeDropped = 0;
 268 probeSessionNum++;
 269 flowMessages = NumPackInFlow (Kernel.min_flow_length,
 270 Kernel.max_flow_length - Kernel.min_flow_le

ngth);
 271 resvtime = Kernel.Now;
 272 if (DEBUG)
 273 System.out.println ("Sending new reservation\n");
 274
 275 p = createPacket (this,
 276 pid + id,
 277 Kernel.kernel.packetDestination (this), 20, sl);
 278
 279
 280 if (DEBUGAC) {
 281 System.out.println ("peakRate: " + peakRate);
 282 System.out.println ("Payload size = " +
 283 Kernel.Traffic.payload_size (id));
 284 System.out.println ("Interarrival time = " +
 285 Kernel.Traffic.
 286 packet_interarrival_time ((int) Kernel.
 287 slLoad[localSL],
 288 Kernel.CV[Kernel.
 289 std_dev_packe

t_interarrival_time]));
 290 }
 291 delay = Kernel.delayBound[p.sl];
 292 p.payloadpointer = new Payload (Kernel.Now, peakRate, delay);
 293 iba_last_dest = p.destination;
 294 iba_last_sl = p.sl;
 295 if (Kernel.Now < Kernel.Cycle (Kernel.CV[Kernel.simulation_cycles])

PROBEProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:46 2003 5
 296 && Kernel.Now > 0) {
 297 long indextest =
 298 Packet.numFlowHist * ((Kernel.Now)) /
 299 Kernel.Cycle (Kernel.CV[Kernel.simulation_cycles]);
 300 //System.out.println(index);
 301 }
 302
 303
 304 num_flows++;
 305 //self-similar
 306 flows[num_flows] = new Flow (this, num_flows);
 307
 308 //this SL shall send probes on probeSL
 309 if ((localSL != 4 && !Kernel.PROBE_LOWPRI) || (Kernel.PROBE_LOWPRI && loc

alSL != probeSL && localSL != 4)) {
 310 if (localOfferedFlows <= num_flows) {
 311 this.doneNewFlow (false);
 312 num_flows--;
 313 Packet.rejFlows[localSL]++;
 314 } else {
 315 if (localSL == 2) //this is not used
 316 lastBufferFill = send_q.size ();
 317 probePack = p;
 318 probePackets = probePacketsInit;
 319 double ratio = maxFlows / num_flows;
 320 double findex = 0;
 321 for (int fn = 0; fn < (int) maxFlows; fn++)
 322 flowMapping[fn] = 0;
 323 for (int fn = 0; fn < (int) num_flows; fn++) {
 324 if (fn * ratio < maxFlows && Kernel.EVEN_FLOW)
 325 flowMapping[(int) (fn * ratio)] = fn + 1;
 326 else
 327 flowMapping[fn] = fn + 1;
 328 }
 329 }
 330 }
 331
 332 //This is probeSL, should not send or admitt packets
 333 else if (Kernel.PROBE_LOWPRI && localSL == probeSL) {
 334 this.doneNewFlow (false);
 335 num_flows--;
 336 }
 337 //this is SL5, not subject to AC, admit all.
 338 else if (localSL == 4) {
 339 Packet.admitFlows[localSL]++;
 340 this.doneNewFlow (true);
 341 double ratio = maxFlows / num_flows;
 342 double findex = 0;
 343 for (int fn = 0; fn < (int) maxFlows; fn++)
 344 flowMapping[fn] = 0;
 345 for (int fn = 0; fn < (int) num_flows; fn++) {
 346 if (fn * ratio < maxFlows && Kernel.EVEN_FLOW)
 347 flowMapping[(int) (fn * ratio)] = fn + 1;
 348 else
 349 flowMapping[fn] = fn + 1;
 350
 351 }
 352
 353
 354 }
 355 }
 356 flowsSent--;
 357 if (flowMapping[flowsSent] != 0) {
 358 //self-similar, if this flow should send a packet, determine if probeing

is over..
 359 if ((flows[flowMapping[flowsSent]].update_selfsim_flow (this)) || !Kernel

.SELF_SIMILAR) {
 360 //Determines if probe period is over, is over if sent probes == recie

ved + rejected, and have sent all.
 361 if (probePackets == -2 || (probePackets == 0 && localSL != 4 && (((PR

OBEProcessor) (probePack.destination)).recProbe + probeDropped >= probePacketsInit)))
{

 362 probePackets = -1;
 363
 364 if (((PROBEProcessor) (probePack.destination)).recProbe < probePa

PROBEProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:46 2003 6
cketsInit || !probePack.destination.probeDone (probePack)) {

 365 //Flow is rejected
 366 probePack.destination.probeReset ();
 367 num_flows--;
 368 double ratio = maxFlows / num_flows;
 369 double findex = 0;
 370 for (int fn = 0; fn < (int) maxFlows; fn++)
 371 flowMapping[fn] = 0;
 372 for (int fn = 0; fn < (int) num_flows; fn++) {
 373 if (fn * ratio < maxFlows && Kernel.EVEN_FLOW)
 374 flowMapping[(int) (fn * ratio)] = fn + 1;
 375 else
 376 flowMapping[fn] = fn + 1;
 377
 378 }
 379 Packet.rejFlows[localSL]++;
 380 rejectedCounter++;
 381 this.doneNewFlow (false);
 382 } else {
 383 //flow is admitted
 384 probePack.destination.probeReset ();
 385 Packet.admitFlows[localSL]++;
 386 rejectedCounter = 0;
 387 this.doneNewFlow (true);
 388 }
 389 probeSent = 0;
 390 probeDropped = 0;
 391 } else if (probePackets == 0 && localSL != 4) {
 392 probePackets = -2;
 393 }
 394
 395 //keep track of the number of flows being sent.
 396 if (num_flows > localOfferedFlows)
 397 System.out.println ("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
 398 //Send probepacket or conclude probing.
 399 if (flowMapping[flowsSent] == num_flows && probePackets > 0) {
 400 sendProbe = true;
 401 probePackets--;
 402 }
 403
 404 //Probes ar typically done on SL6 -> localSL=5, with a weight of 1 an

d no traffic
 405 if ((Kernel.PROBE_LOWPRI && localSL != probeSL)
 406 || !Kernel.PROBE_LOWPRI) {
 407 if (!Kernel.IBA_ENABLE_MESSAGE || iba_last_dest == null) {
 408 // first msg send from this processor or iba_msg not enabled
 409 p = createPacket (this,
 410 pid + id,
 411 Kernel.kernel.packetDestination (this),
 412 Kernel.Traffic.payload_size (id), sl);
 413 p.flowNum = flowMapping[flowsSent];
 414 iba_last_dest = p.destination;
 415
 416 iba_last_sl = p.sl;
 417
 418 if (sendProbe && localSL != 4) {
 419 //send on other SL if low priority probing is used
 420 if (Kernel.PROBE_LOWPRI) {
 421 p.sl = probeSL;
 422 }
 423 p.processorSL = localSL;
 424
 425 sendProbe = false;
 426 probeSent++;
 427 if (NEWDEBUG)
 428 System.out.
 429 println ("Sending probepacket, probePackets=" +
 430 probePackets + "\nHave sent " +
 431 probeSent + " probepackets.");
 432 p.payloadpointer = new Payload (Kernel.Now);
 433 p.payloadpointer.probe = true;
 434 p.payloadpointer.probeSessionNum = probeSessionNum;
 435 //used for sendbuffer monitoring by localSL=2, alternativ

 AC, not used
 436 maxBufferFill =

PROBEProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:46 2003 7
 437 Math.max (maxBufferFill, send_q.size ());
 438 }
 439 send_pack (p);
 440 } else {
 441 if ((iba_message_packetcount > iba_msg_size)
 442 || !Kernel.IBA_ENABLE_MESSAGE) {
 443 // reset counter
 444 iba_message_packetcount = 0;
 445 p = createPacket (this,
 446 pid + id,
 447 iba_last_dest,
 448 Kernel.Traffic.payload_size (id),
 449 iba_last_sl);
 450
 451 p.flowNum = flowMapping[flowsSent];
 452 if (DEBUG)
 453 System.out.println ("Decreasing flowMessages\n");
 454 if (sendProbe && localSL != 4) {
 455 if (Kernel.PROBE_LOWPRI) {
 456 p.sl = probeSL;
 457 }
 458 p.processorSL = localSL;
 459
 460 sendProbe = false;
 461 p.payloadpointer = new Payload (Kernel.Now);
 462 probeSent++;
 463 p.payloadpointer.probe = true;
 464 p.payloadpointer.probeSessionNum =
 465 probeSessionNum;
 466 maxBufferFill =
 467 Math.max (maxBufferFill, send_q.size ());
 468 }
 469 send_pack (p);
 470 } else {
 471 // continuing and existing message
 472 if (DEBUG)
 473 System.out.println ("Sending continued message\n");
 474 p = createPacket (this,
 475 pid + id,
 476 iba_last_dest,
 477 Kernel.Traffic.payload_size (id),
 478 iba_last_sl);
 479
 480 p.flowNum = flowMapping[flowsSent];
 481 if (sendProbe && localSL != 4) {
 482 if (Kernel.PROBE_LOWPRI) {
 483 p.sl = probeSL;
 484 }
 485
 486 p.processorSL = localSL;
 487
 488 sendProbe = false;
 489 probeSent++;
 490 p.payloadpointer = new Payload (Kernel.Now);
 491 p.payloadpointer.probe = true;
 492 p.payloadpointer.probeSessionNum =
 493 probeSessionNum;
 494 maxBufferFill =
 495 Math.max (maxBufferFill, send_q.size ());
 496 }
 497 send_pack (p);
 498 }
 499 }
 500 }
 501 }
 502 }
 503
 504 if (flowsSent <= 0) {
 505 flowsSent = (int) maxFlows;
 506 Packet.offered += localOfferedFlows;
 507 }
 508
 509
 510 if (!Kernel.stop_packet_generation) {
 511 //Only send 1 packet in FLOW_RESV state, not whole message

PROBEProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:46 2003 8
 512 // comment out first if to continue sending packets when waiting for rese

rvation confirm.
 513 //if(flowState!=FLOW_RESV){
 514 if (!Kernel.IBA_ENABLE_MESSAGE || iba_last_dest == null
 515 || iba_message_packetcount > iba_msg_size) {
 516
 517 (new Event (this, PACKET_PRODUCED)).schedule (Kernel.Now + Kernel.Tra

ffic.packet_interarrival_time((int) Kernel.slLoad[localSL],Kernel.CV[Kernel.std_dev_pa
cket_interarrival_time], this));

 518 } else {
 519 (new Event (this, PACKET_PRODUCED)).schedule (Kernel.Now + 10);
 520 }
 521 }
 522
 523 // keep track of number of packets send in this msg
 524 if (Kernel.IBA_ENABLE_MESSAGE) {
 525 if (DEBUG)
 526 System.out.println ("Increasing message_packetcount\n");
 527 iba_message_packetcount++;
 528 }
 529 }
 530
 531
 532 public void packet_received_enter (EasterEgg egg) {
 533 Packet p = null;
 534 bound_receive_buffers--;
 535 (new Event (this, BINDABLE)).schedule (Kernel.Now, bindable_flag);
 536
 537
 538 if (!egg.flit.isKill () && egg.flit.packet.destination != this) {
 539 System.out.println (Kernel.time () + toString ()
 540 + "Misrouted packet (SL " + egg.flit.packet.sl +
 541 "): " + egg.flit.toString ());
 542 System.out.println (" Src: " + egg.flit.packet.source + " " +
 543 egg.flit.packet.source.hashCode ());
 544 System.out.println (" Dst: " + egg.flit.packet.destination + " " +
 545 egg.flit.packet.destination.hashCode ());
 546 System.out.println (" Cur: " + this + " " + this.hashCode ());
 547 }
 548
 549 if (egg.flit.packet.destination != this)
 550 System.out.println ("Wrong destination");
 551 if (egg.flit.packet.payloadpointer != null
 552 && egg.flit.packet.payloadpointer.probe
 553 && egg.flit.packet.processorSL != localSL)
 554 System.out.println ("Wrong processorSL");
 555 //handles the reception of probe packets
 556 if (egg.flit.packet.payloadpointer != null
 557 && egg.flit.packet.payloadpointer.probe
 558 && egg.flit.packet.payloadpointer.probeSessionNum ==
 559 probeSessionExpected) {
 560 probeMin =
 561 Math.min ((Kernel.Now - egg.flit.packet.injection_time) / 10,
 562 probeMin);
 563 probeMax =
 564 Math.max ((Kernel.Now - egg.flit.packet.injection_time) / 10,
 565 probeMax);
 566 recProbe++;
 567 }
 568 }
 569
 570 private void send_pack (Packet pp) {
 571 sendProbe = false;
 572 pid += Kernel.max_switches;
 573 if (send_q.full ()) {
 574 //internal send_q, not used
 575 //if(pp.payloadpointer!=null) enqueue(pp);
 576 Packet.packets_rejected[pp.sl]++;
 577 Packet.incRejected (pp.hops, pp.sl);
 578 probeDropped++;
 579 }
 580 send_q.insert (pp);
 581 if (in_transmission < drop_connects.length) {
 582 send_enter (null);
 583

PROBEProcessor.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:46:46 2003 9
 584 }
 585 }
 586
 587 private void enqueue (Packet p) {
 588 retry.addElement (p);
 589 }
 590
 591 //Remnant from BBRMSProcessor, not used here
 592 private boolean admit_flow (Packet p) {
 593 VLane outvl = drop_links[p.sl].vlanes[p.sl];
 594 BBRMSSwitch s = (BBRMSSwitch) outvl.receiver;
 595 if (outvl.link.bw - p.payloadpointer.peak >= 0) {//continue if admitted
 596 outvl.link.bw -= p.payloadpointer.peak;
 597 if (!s.next_admit_flow (p, outvl)) {
 598 outvl.link.bw += p.payloadpointer.peak;
 599 return false;
 600 }
 601 return true;
 602 }
 603 return false;
 604 }
 605 //Remnant from BBRMSProcessor, not used here
 606 public boolean next_admit_flow (Packet p, VLane vl) {
 607 if (p.destination != this)
 608 System.out.
 609 println
 610 ("!!!!Wrong destination, something is wrong with the admission-routing.\n

"
 611 + p.destination.toString () + " is not " + toString () + "!");
 612 else if (NEWDEBUG)
 613 System.out.println ("Correct destination");
 614 return true;
 615 }
 616
 617 //reset probe data
 618 public void probeReset () {
 619 probeLast = 0;
 620 probeSessionExpected++;
 621 recProbe = 0;
 622 probeMax = 0;
 623 probeMin = 100000000;
 624 }
 625
 626 //returns result of probing.
 627 public boolean probeDone (Packet p) {
 628 System.out.println ("Max Probe Jitter: " + (probeMax - probeMin));
 629 System.out.println ("Recieved probepackets: " + recProbe);
 630 if (probeMax - probeMin > 0
 631 && probeMax - probeMin < p.payloadpointer.delay
 632 && recProbe >= probePacketsInit) {
 633 return true;
 634 } else {
 635 return false;
 636 }
 637 }
 638 }
 639

BBRMSSwitch.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:45:49 2003 1
 1 /*
 2 * BBRMSSwitch.java: BBRMSSwitch subclasses switch. It is part of the link-by-link
 3 * scheme. Uses the avaliable bandwidth for each SL calculated in HalfLink.
 4 */
 5
 6 package base;
 7 public class BBRMSSwitch extends Switch {
 8 boolean DEBUGAD = false;
 9
 10 public BBRMSSwitch (int id) {
 11 super (id,
 12 Kernel.CV[Kernel.Switch_routetime],
 13 Kernel.CV[Kernel.Switch_degree],
 14 Kernel.CV[Kernel.Node_drop_links]);
 15 }
 16
 17 public BBRMSSwitch (int id, int routetime, int degree, int drop_links) {
 18 super (id, routetime, degree, drop_links);
 19 }
 20
 21
 22
 23
 24 //The main AC routine for RMS. It checks capacity and forwards the request to the

 next switch.
 25 public boolean next_admit_flow (Packet p, VLane last) {
 26 VLane outvl = (VLane) Kernel.ExtendedRoute (last, p, p.source, this,
 27 p.destination).elementAt (0);
 28
 29 if (Kernel.SMS_ADMISSION_CONTROL) {
 30 //used for RMS version with measured sum instread of static sum, not used

 in results.
 31 int a = 0;
 32 while (outvl.link.mean[p.sl][a] != 0 && a < outvl.link.history)
 33 a++;
 34 if ((a == 0 && p.payloadpointer.peak < outvl.link.abwSL[p.sl])
 35 || 10 * (a + 1) / (Kernel.Now - outvl.link.mean[p.sl][a]) +
 36 p.payloadpointer.peak < outvl.link.abwSL[p.sl]) {
 37 return true;
 38 } else {
 39 return false;
 40 }
 41 } else {
 42 //admits flow if available bw here, and in every following switch.
 43 //Kernel.slLoad
 44 if (DEBUGAD)
 45 System.out.println ("Peakrate: " + p.payloadpointer.peak);
 46 if (outvl.link.abwSL[p.sl] - p.payloadpointer.peak > 0) {
 47 outvl.link.abwSL[p.sl] -= p.payloadpointer.peak;
 48 if (!outvl.receiver.next_admit_flow (p, outvl)) {
 49 outvl.link.abwSL[p.sl] += p.payloadpointer.peak;
 50 if (DEBUGAD)
 51 System.out.println ("Rejected by a later switch");
 52 return false;
 53 }
 54 if (DEBUGAD)
 55 System.out.println ("Admitting: " + outvl.link.abwSL[p.sl]);
 56 return true;
 57 }
 58 if (DEBUGAD)
 59 System.out.println ("Rejected by this switch");
 60 return false;
 61 }
 62 /*
 63 //abwHP/LP
 64 //Base AC on high-pri/low-pri available BW instead of each SL.
 65 if(DEBUGAD)System.out.println("Peakrate: "+p.payloadpointer.peak);
 66 if(outvl.ibaHighPri){
 67 if(outvl.link.abwHP-p.payloadpointer.peak>0){
 68 outvl.link.abwHP-=p.payloadpointer.peak;
 69 if(!outvl.receiver.next_admit_flow(p,outvl)){
 70 outvl.link.abwHP+=p.payloadpointer.peak;
 71 if(DEBUGAD)System.out.println("Rejected by a later switch");
 72 return false;
 73 }

BBRMSSwitch.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:45:49 2003 2
 74 if(DEBUGAD)System.out.println("Admitting: " + outvl.link.abwHP);
 75 return true;
 76 }
 77 if(DEBUGAD)System.out.println("Rejected by this switch");
 78 return false;
 79 }else {
 80 if(outvl.link.abwLP-p.payloadpointer.peak>0){
 81 outvl.link.abwLP-=p.payloadpointer.peak;
 82 if(!outvl.receiver.next_admit_flow(p,outvl)){
 83 outvl.link.abwLP+=p.payloadpointer.peak;
 84 if(DEBUGAD)System.out.println("Rejected by a later switch");
 85 return false;
 86 }
 87 if(DEBUGAD)System.out.println("Admitting: " + outvl.link.abwLP);
 88 return true;
 89 }
 90 if(DEBUGAD)System.out.println("Rejected by this switch");
 91 return false;
 92 }
 93 */
 94 }
 95 }
 96

PSource.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:38:45 2003 1
 1 package base;
 2
 3 /*
 4 PSource.java: PSource is the class generating the pareto sequence,
 5 use 10 for each flow in the simulator.
 6 */
 7 public class PSource {
 8 int ontime = 0, offtime = 0;
 9 Flow f;
 10 Processor p;
 11 int turnsToSend = 0;
 12 int turnsToWait = 0;
 13 boolean sending = false;
 14
 15 public PSource (Flow fl, Processor pr) {
 16 f = fl;
 17 p = pr;
 18 }
 19
 20 //Returns the length of an on-period, called each time a packet is to be sent.
 21 //returns turnsToSend only when current on and following off period is over, 0 ot

herwise
 22 public int update () {
 23 if (sending && turnsToSend > 0) {
 24 turnsToSend--;
 25 return 0;
 26 } else if (sending && turnsToSend == 0) {
 27 sending = false;
 28 turnsToWait =
 29 (int) ((p.pareto.getNext (f.alfa_off, f.b_off) + f.b_on) / f.b_on);
 30 return 0;
 31 } else if (!sending && turnsToWait > 0) {
 32 turnsToWait--;
 33 return 0;
 34 } else if (!sending && turnsToWait == 0) {
 35 sending = true;
 36 turnsToSend =
 37 (int) ((p.pareto.getNext (f.alfa_on, f.b_on) + f.b_on) / f.b_on);
 38 return turnsToSend;
 39 }
 40 return 0;
 41 }
 42
 43
 44 public int update_new () {
 45 return (int) ((p.pareto.getNext (f.alfa_off, f.b_off) +
 46 f.b_on) / f.b_on) + (int) ((p.pareto.getNext (f.alfa_on,
 47 f.b_on) +
 48 f.b_on) / f.b_on);
 49 }
 50 }
 51

parGen.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:45:00 2003 1
 1 package base;
 2
 3 import java.util.Random;
 4 /*
 5 * parGen.java: parGen Generates a pareto distributed number
 6 */
 7
 8 public class parGen {
 9 protected Random randNum;
 10 private double tall;
 11 public parGen (long seed) {
 12 randNum = new Random (seed);
 13 }
 14
 15
 16 public double getNext (double a, double b) {
 17 tall = b / Math.pow (1 - randNum.nextDouble (), 1.0 / a);
 18 return (tall);
 19 }
 20 }
 21

Flow.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:45:26 2003 1
 1 /*
 2 * Flow.java: Flow is the class containing the pareto send statistics of a flow
 3 */
 4
 5 package base;
 6
 7 public class Flow {
 8 //int turnsToSend=0;
 9 //int turnsToWait=0;
 10 //boolean sending=false;
 11 int sentPackets = 0;
 12 public int flowNum;
 13 int waitPackets = 0;
 14 int recievedPackets = 0;
 15 double ratio;
 16 private boolean paretoInit = true;
 17 private int initTime = 500000;
 18 public int sendQueue;
 19 public final int numPareto = 10;
 20 PSource[] sources;
 21 public double b_on, b_off = 1;
 22 public double alfa_on = 1.5;
 23 public double alfa_off = 1.5;
 24
 25 public Flow (Processor p) {
 26 b_on = 5000;
 27 double C_on = Math.pow (1.19 * alfa_on - 1.166, -0.027);
 28 double C_off = Math.pow (1.19 * alfa_off - 1.166, -0.027);
 29 double S = Math.pow (2, -53);
 30 double T_on = (alfa_on - 1) / alfa_on;
 31 double T_off = (alfa_off - 1) / alfa_off;
 32 b_off = b_on * ((T_off / T_on) * ((1 - Math.pow (S, (T_on))) / (1 - Math.pow

(S, T_off))) * ((1.0 / 0.05) - 1));
 33 sources = new PSource[numPareto];
 34 for (int g = 0; g < numPareto; g++) {
 35 sources[g] = new PSource (this, p);
 36 }
 37 }
 38
 39
 40 //This is the constructor normally used, it is the one working.
 41 public Flow (Processor p, int fnum) {
 42 flowNum = fnum;
 43 if (Kernel.SELF_SIM_NEW)
 44 b_on = (1 / p.flowBW) / 2;
 45 else
 46 b_on = 5000;
 47 double C_on = Math.pow (1.19 * alfa_on - 1.166, -0.027);
 48 double C_off = Math.pow (1.19 * alfa_off - 1.166, -0.027);
 49 double S = Math.pow (2, -53);
 50 double T_on = (alfa_on - 1) / alfa_on;
 51 double T_off = (alfa_off - 1) / alfa_off;
 52 //This works at least as long as T_on==T_off.
 53 if (Kernel.SELF_SIM_NEW)
 54 b_off = b_on * ((T_off / T_on) * ((1 - Math.pow (S, (T_on))) / (1 - Math.

pow (S, T_off))) * ((1.0 / p.flowBW / 10) - 1));
 55 else
 56 b_off = b_on * ((T_off / T_on) * ((1 - Math.pow (S, (T_on))) / (1 - Math.

pow (S, T_off))) * ((1.0 / 0.05) - 1));
 57 sources = new PSource[numPareto];
 58 for (int g = 0; g < numPareto; g++) {
 59 sources[g] = new PSource (this, p);
 60 }
 61 }
 62
 63 public double report () {
 64 ratio = (double) sentPackets / (sentPackets + waitPackets);
 65 return ratio;
 66 }
 67
 68
 69 public boolean update_selfsim_flow (Processor p) {
 70
 71
 72 if (!Kernel.SELF_SIMILAR && !Kernel.SELF_SIM_NEW) {

Flow.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:45:26 2003 2
 73 //We are not using self-similar traffic, always send a packet.
 74 sentPackets++;
 75 return true;
 76 }
 77
 78
 79 //alternative way of generating self-similar traffic, generates new events ir

regurarely instead of what is normal, not used.
 80 if (Kernel.SELF_SIM_NEW) {
 81 if (paretoInit) {
 82 for (int h = 0; h < initTime; h++)
 83 for (int g = 0; g < numPareto; g++)
 84 sources[g].update ();
 85 paretoInit = false;
 86 }
 87
 88 for (int g = 0; g < numPareto; g++) {
 89 EasterEgg egget = new EasterEgg ();
 90 egget.flyt = this;
 91 (new Event (p, Processor.FLOW_INTERVAL, egget)).schedule (Kernel.
 92 Now +
 93 Kernel.
 94 Cycle
 95 (sources
 96 [g].
 97 update_new
 98 ()));
 99 }
 100 return true;
 101 } else {
 102 //normal way
 103 if (paretoInit) {
 104 //init the pareto sources of the flow
 105 for (int h = 0; h < initTime; h++)
 106 for (int g = 0; g < numPareto; g++)
 107 sources[g].update ();
 108 paretoInit = false;
 109 }
 110
 111 //gather length of on period from PSources
 112 for (int g = 0; g < numPareto; g++) {
 113 sendQueue += sources[g].update ();
 114
 115 }
 116 //debug
 117 //if (p.adctrlID == 0 && p.localSL == 0) System.out.println ("recievedPac

kets proc " + p.adctrlID + " " + flowNum + ": " + recievedPackets);
 118 if (sendQueue > 0) {
 119 //We are allowed to send a packet
 120 sentPackets++;
 121 sendQueue--;
 122 //if (p.adctrlID == 0 && p.localSL == 0) System.out.println ("sentPac

kets proc " + p.adctrlID + " " + flowNum + ": " + sentPackets);
 123 return true;
 124 } else {
 125 //may not send packet
 126 waitPackets++;
 127 //if (p.adctrlID == 0 && p.localSL == 0) System.out.println ("waitPac

kets proc " + p.adctrlID + " " + flowNum + ": " + waitPackets);
 128 return false;
 129 }
 130 }
 131 }
 132 }
 133

Payload.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:45:41 2003 1
 1 /*
 2 * Payload.java: Payload is a class for carrying AC specific data in network packets,

 3 * like timestamps and AC requirements.
 4 */
 5 package base;
 6 import java.util.Random;
 7
 8 public class Payload {
 9 public SwitchList sList = new SwitchList ();
 10 public long timestamp, probeSessionNum;
 11 public double delay, peak;
 12 public boolean resvinit = false, resvok = false, resvnotok =
 13 false, resvteardown = false, probe = false;
 14 public int sl;
 15 public int packetNum = 0;
 16 private static Random rand = new Random ();
 17
 18 public Payload (long ts) {
 19 /*if(Kernel.MS_OUT_OF_SYNK)
 20 timestamp=ts+(0.1*(rand.nextInt(2*Kernel.CV[Kernel.mean_packet_interarrival_

time])-Kernel.CV[Kernel.mean_packet_interarrival_time]));
 21 else
 22 */
 23 timestamp = ts;
 24 }
 25 public Payload (long ts, double p, double d) {
 26 /*if(Kernel.MS_OUT_OF_SYNK)
 27 timestamp=ts+(rand.nextInt(2*Kernel.CV[Kernel.mean_packet_interarrival_time]

)-Kernel.CV[Kernel.mean_packet_interarrival_time]);
 28 else
 29 */
 30 timestamp = ts;
 31 delay = d;
 32 peak = p;
 33 }
 34 }
 35

HalfLink.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:42:22 2003 1
 1 package base;
 2
 3 import java.util.*;
 4 import java.math.BigInteger;
 5
 6 /*
 7 * HalfLink - A class implementing the basic link. Subclassing this class
 8 * will typically be used for gathering more statistics than already
 9 * offered.
 10 *
 11 * @author I. Theiss 20010327
 12 **/
 13
 14 public class HalfLink implements Schedulable {
 15
 16 public static final boolean DEBUG = false;
 17 public static final boolean DEBUG2 = false;
 18 public static final boolean DEBUG3 = false;
 19 public static final boolean DEBUG4 = false;
 20 public static final boolean DEBUG_FC = false;
 21 // public static final boolean IBA_FC_ENABLED = false;
 22
 23
 24 //BBRMSSwitch uses this, calculated in VLane:
 25 public double abwLP, abwHP, bw = Kernel.linkbw;
 26 public double[] abwSL =
 27 new double[Kernel.CV[Kernel.highpri_service_levels] +
 28 Kernel.CV[Kernel.lowpri_service_levels]];
 29 public int history = 100;
 30 public long mean[][] =
 31 new long[Kernel.CV[Kernel.highpri_service_levels] +
 32 Kernel.CV[Kernel.lowpri_service_levels]][history];
 33 private boolean debugprinted = false;
 34
 35
 36
 37 public BiLink bilink;
 38 public HalfLink opposite = null;
 39 public VLane vlanes[];
 40 public VLane ctrl_vlane;
 41 public int vlinks;
 42 public int length; // cycles for one flit to cross the cable
 43 public Node transmitter, receiver;
 44 // Hack! Used when called from Tor’s C++ simulator to create
 45 // updown routes
 46 public int number = -1;
 47 // public VLane token = null;
 48 // High pri VLane Limit of High Priority
 49 public int ibaLHP;
 50 // High priority counter, how much high pri data has been sent since
 51 // scheduled reduced for each flit sent on hp vlane, reset when
 52 // sending on lp
 53 public int ibaHPC;
 54 // number of higpri/lowpri vlanes, must be read from routingtable
 55 public int nHighPriVLanes =
 56 Kernel.CV[Kernel.highpri_service_levels] *
 57 Kernel.CV[Kernel.vlinks_per_sl];
 58 public int nLowPriVLanes =
 59 Kernel.CV[Kernel.lowpri_service_levels] * Kernel.CV[Kernel.vlinks_per_sl];
 60 // split VLanes in groups of high and low priority
 61 public VLane highpri_token[];
 62 public VLane lowpri_token[];
 63 public VLane token;
 64 // VLane currently active
 65 public int curHighPriVLane = 0;
 66 public int curLowPriVLane = 0;
 67 //public VLane highpri_token = null;
 68 //public VLane lowpri_token = null;
 69 boolean ibaHPActive = true;
 70 int ibaLPFlitCount = 0;
 71 public int flits_waiting = 0;
 72 public int direction;
 73
 74 public HalfLink (BiLink bilink,
 75 int length,

HalfLink.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:42:22 2003 2
 76 int vlinks,
 77 int rx_buffer_size,
 78 int tx_buffer_size,
 79 Node transmitter, Node receiver, int direction) {
 80
 81 this.bilink = bilink;
 82 this.length = length;
 83 if (length < 1) {
 84 System.out.println ("Fatal error: links cannot have zero length");
 85 System.exit (0);
 86 }
 87 this.vlinks = vlinks;
 88 this.vlanes = new VLane[vlinks];
 89 this.transmitter = transmitter;
 90 this.receiver = receiver;
 91 this.direction = direction;
 92
 93 // iba arbitration variables initialisation
 94 ibaLHP = Kernel.CV[Kernel.iba_limit_of_highpri];
 95 //System.out.println("LHP is: " +ibaLHP);
 96 //Kolaf: Should this be 4000 * ibaLHP?
 97 // SAR: nope, we set this directly in the cfg file
 98 ibaHPC = ibaLHP;
 99
 100 // token initialisation
 101 highpri_token = new VLane[nHighPriVLanes];
 102 lowpri_token = new VLane[nLowPriVLanes];
 103
 104 for (int i = 0; i < nHighPriVLanes; i++)
 105 highpri_token[i] = null;
 106 for (int i = 0; i < nLowPriVLanes; i++)
 107 lowpri_token[i] = null;
 108
 109 // System.out.println("Number of vlinks: "+vlinks);
 110 for (int i = 0; i < vlinks; i++)
 111 this.vlanes[i] = createVLane (this, transmitter, receiver,
 112 direction,
 113 tx_buffer_size, rx_buffer_size, i);
 114
 115 this.ctrl_vlane = createVLane (this, transmitter, receiver,
 116 direction,
 117 tx_buffer_size, rx_buffer_size, vlinks);
 118
 119 }
 120
 121 public VLane createVLane (HalfLink hl, Node transmitter, Node receiver,
 122 int direction,
 123 int tx_buffer_size, int rx_buffer_size, int layer) {
 124 return new VLane (hl, transmitter, receiver,
 125 direction, tx_buffer_size, rx_buffer_size, layer);
 126 }
 127
 128
 129 public void dump () {
 130 System.out.println (toString ());
 131 System.out.println (" highpri flits_waiting: " + flits_waiting);
 132 for (int i = 0; i < nHighPriVLanes; i++) {
 133 if (highpri_token[i] != null) {
 134 VLane t = highpri_token[i];
 135 do {
 136 t.tx_buffer.dump ();
 137 t = t.rrrnext;
 138 } while (t != highpri_token[i]);
 139 }
 140 }
 141 System.out.println (" lowpri flits_waiting: " + flits_waiting);
 142 for (int i = 0; i < nLowPriVLanes; i++) {
 143 if (lowpri_token[i] != null) {
 144 VLane t = lowpri_token[i];
 145 do {
 146 t.tx_buffer.dump ();
 147 t = t.rrrnext;
 148 } while (t != lowpri_token[i]);
 149 }
 150 }

HalfLink.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:42:22 2003 3
 151
 152 System.out.println (" Events:");
 153 for (int i = 0; i < scheduled_events.size (); i++) {
 154 Event e = (Event) (scheduled_events.elementAt (i));
 155 System.out.println (" FLIT_AT_ARBITRATOR (10): "
 156 + e.dispatcher + " time: " + e.time);
 157 }
 158 }
 159
 160
 161
 162 public String toString () {
 163 if (transmitter == null && receiver == null)
 164 return "HalfLink [null,null]";
 165 else if (transmitter == null)
 166 return "HalfLink [null," + receiver.id + "]";
 167 else if (receiver == null)
 168 return "HalfLink [" + transmitter.id + ",null]";
 169 else
 170 return "HalfLink [" + transmitter.id + "," + receiver.id + "]";
 171 }
 172
 173 // update hpc per flit
 174 public void updateHPC () {
 175 if (ibaLHP < 255 && ibaHPC > 0)
 176 ibaHPC--;
 177 }
 178
 179 // iba update High Priority Counter (HPC)
 180 // public void updateHPC(Packet p)
 181 // {
 182 // //BigInteger threshold = new BigInteger("255");
 183
 184 // if (ibaLHP != 255)
 185 // ibaHPC -= Math.ceil(p.size / 4);
 186
 187 // if (ibaHPC <= 0 && lowpriWaiting() == null)
 188 // resetHPC();
 189
 190 // //System.out.println("*** Updated HPC = " + ibaHPC);
 191 // }
 192
 193 // iba update High Priority Counter (HPC)
 194 public void resetHPC () {
 195 ibaHPC = ibaLHP;
 196
 197 //System.out.println("*** Reset HPC = " + ibaHPC);
 198 }
 199
 200 // number of lowpri filts waiting
 201 public VLane lowpriWaiting () {
 202 int lowpriwaiting = 0;
 203
 204 for (int i = curLowPriVLane; i < nLowPriVLanes; i++) {
 205 if (lowpri_token[i] != null) {
 206 VLane t = lowpri_token[i];
 207
 208 do {
 209 if (t.tx_buffer.flits_to_transfer () && t.ibaWeightCount > 0) {
 210 lowpriwaiting++;
 211 curLowPriVLane = i;
 212 return t;
 213 }
 214 t = t.rrrnext;
 215 } while (t != lowpri_token[i]);
 216 }
 217 }
 218
 219 // if we are here no lowpri was found
 220 // start on top next time and reset weight
 221 curLowPriVLane = 0;
 222 resetLowPriVLWeight ();
 223 return null;
 224 }
 225

HalfLink.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:42:22 2003 4
 226 // number of highpri filts waiting
 227 public VLane highpriWaiting () {
 228 int highpriwaiting = 0;
 229
 230 for (int i = curHighPriVLane; i < nHighPriVLanes; i++) {
 231 if (highpri_token[i] != null) {
 232 VLane t = highpri_token[i];
 233
 234 do {
 235 // if (t.ibaWeightCount <= 0)
 236 // System.out.println("*** " + t);
 237 if (t.tx_buffer.flits_to_transfer () && t.ibaWeightCount > 0) {
 238 highpriwaiting++;
 239 curHighPriVLane = i;
 240 return t;
 241 }
 242 t = t.rrrnext;
 243 } while (t != highpri_token[i]);
 244 }
 245 }
 246
 247 // if we are here no highpri was found
 248 // start on top next time and reset weight
 249 curHighPriVLane = 0;
 250 resetHighPriVLWeight ();
 251 return null;
 252 }
 253
 254
 255 // iba reset lowpri vl weight counter
 256 public void resetLowPriVLWeight () {
 257 for (int i = 0; i < nLowPriVLanes; i++) {
 258 if (lowpri_token[i] != null)
 259 lowpri_token[i].ibaWeightCount = lowpri_token[i].ibaWeight;
 260 }
 261 }
 262
 263 // iba reset highpri vl weight counter
 264 public void resetHighPriVLWeight () {
 265 for (int i = 0; i < nHighPriVLanes; i++) {
 266 if (highpri_token[i] != null)
 267 highpri_token[i].ibaWeightCount = highpri_token[i].ibaWeight;
 268 }
 269 }
 270
 271 // the arbitrator state procedures
 272
 273 public int direction () {
 274 return direction (0, vlinks);
 275 }
 276
 277 public int direction (int start, int layers) {
 278 int dir = vlanes[start].direction;
 279 for (int i = start + 1; i < start + layers; i++) {
 280 if (dir != vlanes[i].direction)
 281 return BiLink.UNDEFINED;
 282 }
 283 return dir;
 284 }
 285
 286 public void set_direction (int dir) {
 287
 288 set_direction (0, vlinks, dir);
 289
 290 }
 291
 292 public void set_direction (int start, int layers, int dir) {
 293
 294 if (start == 0 && layers == vlinks) {
 295
 296 direction = dir;
 297 opposite.direction = dir * (-1);
 298
 299 if (DEBUG4) {
 300 String s;

HalfLink.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:42:22 2003 5
 301 if (dir == BiLink.UNDEFINED)
 302 s = "UNDEFINED";
 303 else if (dir == BiLink.UP)
 304 s = "UP";
 305 else
 306 s = "DOWN";
 307 System.out.println (toString () + " set to " + s);
 308 }
 309 }
 310
 311 for (int i = start; i < start + layers; i++) {
 312 vlanes[i].direction = dir;
 313 opposite.vlanes[i].direction = dir * (-1);
 314 }
 315
 316 }
 317
 318 public void set_half_direction (int dir) {
 319
 320 set_half_direction (0, vlinks, dir);
 321
 322 }
 323
 324 public void set_half_direction (int start, int layers, int dir) {
 325
 326 if (start == 0 && layers == vlinks) {
 327 if (DEBUG4) {
 328 String s;
 329 if (dir == BiLink.UNDEFINED)
 330 s = "UNDEFINED";
 331 else if (dir == BiLink.UP)
 332 s = "UP";
 333 else
 334 s = "DOWN";
 335 System.out.println (toString () + " set to " + s);
 336 }
 337 direction = dir;
 338 }
 339
 340 for (int i = start; i < start + layers; i++) {
 341 vlanes[i].direction = dir;
 342 }
 343
 344 }
 345
 346 public void register_transmission (VLane vl) {
 347 // if (vl == ctrl_vlane) return;
 348 // if (token == null) {
 349 // token = vl;
 350 // token.rrrnext = token;
 351 // } else {
 352 // vl.rrrnext = token.rrrnext;
 353 // token.rrrnext = vl;
 354 // token = vl;
 355 // }
 356
 357 // IBA link arb.
 358 // if VL is highpri then put it in highpri_token otherwise in lowpri_token
 359 //System.out.println("VL.layer = " + vl.layer + " highpri = " + vl.ibaHighPri

);
 360 if (vl == ctrl_vlane)
 361 return;
 362 if (vl.ibaHighPri) {
 363 //System.out.println("highp registered " + vl.layer);
 364 // dump();
 365 if (highpri_token[vl.layer] == null) {
 366 highpri_token[vl.layer] = vl;
 367 highpri_token[vl.layer].rrrnext = highpri_token[vl.layer];
 368 } else {
 369 vl.rrrnext = highpri_token[vl.layer].rrrnext;
 370 highpri_token[vl.layer].rrrnext = vl;
 371 highpri_token[vl.layer] = vl;
 372 }
 373 } else {
 374 //System.out.println("lowp registered " + vl.layer);

HalfLink.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:42:22 2003 6
 375 // dump();
 376 if (lowpri_token[vl.layer - nHighPriVLanes] == null) {
 377 lowpri_token[vl.layer - nHighPriVLanes] = vl;
 378 lowpri_token[vl.layer - nHighPriVLanes].rrrnext =
 379 lowpri_token[vl.layer - nHighPriVLanes];
 380 } else {
 381 vl.rrrnext = lowpri_token[vl.layer - nHighPriVLanes].rrrnext;
 382 lowpri_token[vl.layer - nHighPriVLanes].rrrnext = vl;
 383 lowpri_token[vl.layer - nHighPriVLanes] = vl;
 384 }
 385 }
 386
 387 }
 388
 389
 390 public void flit_at_arbitrator_enter (EasterEgg egg) {
 391
 392 // this is not really a round robin, since the order of chosen
 393 // vlanes is kinda random and...
 394
 395 // the control lanes are always prioritized
 396
 397 boolean yowsa = false;
 398 if (DEBUG3) {
 399 System.out.println (toString () + " popping");
 400 dump ();
 401 System.out.println (toString () + " end popping");
 402 if (transmitter.id == 12 && receiver.id == 5 && Kernel.now >= 459125) {
 403 System.out.println (toString () + " popping");
 404 dump ();
 405 System.out.println (toString () + " end popping");
 406 yowsa = true;
 407 }
 408 }
 409
 410 // do a logical error check if enabled
 411 // if (Kernel.LOGICAL_ERROR_CHECK && transmitter.id == 12 && receiver.id

 == 5) {
 412 if (Kernel.LOGICAL_ERROR_CHECK) {
 413 int testing = flits_waiting;
 414 if (ctrl_vlane.tx_buffer.flits_to_transfer ()) {
 415 testing -= ctrl_vlane.tx_buffer.flits_contained;
 416 }
 417
 418 for (int i = 0; i < nHighPriVLanes; i++) {
 419 if (highpri_token[i] != null) {
 420 VLane t = highpri_token[i];
 421
 422 do {
 423 if (t.tx_buffer.flits_to_transfer ())
 424 testing -= t.tx_buffer.flits_contained;
 425 t = t.rrrnext;
 426 } while (t != highpri_token[i]);
 427 }
 428 }
 429
 430 for (int i = 0; i < nLowPriVLanes; i++) {
 431 if (lowpri_token[i] != null) {
 432 VLane t = lowpri_token[i];
 433
 434 do {
 435 if (t.tx_buffer.flits_to_transfer ())
 436 testing -= t.tx_buffer.flits_contained;
 437 t = t.rrrnext;
 438 } while (t != lowpri_token[i]);
 439 }
 440 }
 441
 442 if (testing != 0)
 443 System.out.println (Kernel.time () + toString () + "logical error: "
 444 + " flits_waiting doesn’t seem to match actual "
 445 + "number of flits waiting:" + testing);
 446
 447 }
 448

HalfLink.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:42:22 2003 7
 449
 450 // pick active table
 451 // if (highpriWaiting() != null) {
 452 // ibaHPActive = true;
 453 // } else {
 454 // ibaHPActive = false;
 455 // }
 456
 457
 458 // pick active table
 459 token = null;
 460 if (ibaHPC > 0) {
 461 if (highpriWaiting () != null) {
 462 updateHPC ();
 463 token = highpriWaiting ();
 464 token.ibaWeightCount--;
 465 // if (token.uID == 16)
 466 // System.out.println("ibaWeightCount = " + token.ib

aWeightCount);
 467 } else {
 468 //resetHPC();
 469 token = lowpriWaiting ();
 470 if (token != null) {
 471 token.ibaWeightCount--;
 472 //System.out.println("ibaWeightCount = " + token.ibaWeightCount);
 473 }
 474 }
 475 } else {
 476 if (lowpriWaiting () != null) {
 477 resetHPC ();
 478 token = lowpriWaiting ();
 479 token.ibaWeightCount--;
 480 } else {
 481 resetHPC ();
 482 updateHPC ();
 483 token = highpriWaiting ();
 484 if (token != null)
 485 token.ibaWeightCount--;
 486 }
 487 }
 488
 489 // if (highpriWaiting() != null && lowpriWaiting() == null && ibaHPC <=

0) {
 490 // // no credit for hp, but no lp waiting so we send a hp
 491 // // without reseting hpc
 492 // token = highpriWaiting();
 493 // // if (token == null)
 494 // // System.out.println("hp ative active on null");
 495 // } else if (lowpriWaiting() != null && highpriWaiting() == null) {
 496 // token = lowpriWaiting();
 497 // resetHPC();
 498 // } else if (lowpriWaiting() != null && highpriWaiting() != null && iba

HPC <= 0) {
 499 // token = lowpriWaiting();
 500 // resetHPC();
 501 // } else if (highpriWaiting() != null && ibaHPC > 0) {
 502 // token = highpriWaiting();
 503 // updateHPC();
 504 // }
 505
 506 // if (highpriWaiting() != null) {
 507 // token = highpriWaiting();
 508 // } else {
 509 // token = lowpriWaiting();
 510 // }
 511
 512
 513
 514 // handle ctrl flits first, then highpri or finally lowpri
 515 if (ctrl_vlane.tx_buffer.flits_to_transfer ()) {
 516 if (yowsa)
 517 System.out.println ("ctrl_vlane");
 518 ctrl_vlane.tx_buffer.set_next_in_transfer ();
 519 (new Event (ctrl_vlane, VLane.FLIT_TRANSMITTED)).schedule (Kernel.
 520 Now +

HalfLink.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:42:22 2003 8
 521 Kernel.
 522 Cycle
 523 (length));
 524 flits_waiting--;
 525 if (DEBUG3) {
 526 if (transmitter.id == 21 && receiver.id == 11)
 527 System.out.println (Kernel.time () + toString () + " lowering"
 528 + " flits_waiting (" + flits_waiting + ")");
 529 }
 530
 531 if (Kernel.LOGICAL_ERROR_CHECK) {
 532 if (flits_waiting < 0)
 533 System.out.println (Kernel.time () + toString () +
 534 " logical error:" +
 535 " flit_at_arbitrator, flits_waiting below "
 536 + "zero on ctrl link");
 537 }
 538 if (DEBUG)
 539 System.out.println (toString () + " ctrl flit");
 540 } else if (token != null) {
 541 token.tx_buffer.set_next_in_transfer ();
 542 (new Event (token, VLane.FLIT_TRANSMITTED)).schedule (Kernel.Now +
 543 Kernel.
 544 Cycle (length));
 545 flits_waiting--;
 546 }
 547
 548 if (flits_waiting > 0) {
 549 self_signal_flit_at_arbitrator_enter (null);
 550 }
 551 }
 552
 553 public void self_signal_flit_at_arbitrator_enter (EasterEgg egg) {
 554 (new Event (this, FLIT_AT_ARBITRATOR)).schedule (Kernel.Now +
 555 Kernel.Cycle (1),
 556 flit_at_arbitrator_flag);
 557 }
 558
 559 // event implementations, remember to update the dispatcher function
 560 // if adding more events!!
 561
 562 public static final int FLIT_AT_ARBITRATOR = 10;
 563 public Flag flit_at_arbitrator_flag = new Flag (false, Kernel.Edge);
 564
 565 public void flit_at_arbitrator (EasterEgg egg) {
 566 flit_at_arbitrator_enter (egg);
 567 }
 568
 569 // common for all HalfLink events
 570
 571 public void dispatcher (int dispatcher, EasterEgg egg) {
 572
 573 switch (dispatcher) {
 574 case FLIT_AT_ARBITRATOR:
 575 flit_at_arbitrator (egg);
 576 break;
 577 default:
 578 System.out.println ("HalfLink: no such event " + dispatcher);
 579
 580 }
 581 } // end dispatcherEvent
 582
 583 public void purgeEvents () {
 584 while (scheduled_events.size () > 0) {
 585 Event e = (Event) (scheduled_events.elementAt (0));
 586 scheduled_events.removeElementAt (0);
 587 Kernel.globalHeap.removeEvent (e);
 588 e.dismiss ();
 589 }
 590 }
 591
 592 public Vector scheduled_events = new Vector ();
 593 public Vector scheduled_events () {
 594 return scheduled_events;
 595 }

HalfLink.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:42:22 2003 9
 596
 597 public void gatherStats (EasterEgg egg) {
 598 for (int s = 0;
 599 s <
 600 Kernel.CV[Kernel.highpri_service_levels] +
 601 Kernel.CV[Kernel.lowpri_service_levels]; s++) {
 602 for (int h = history - 2; h >= 0; h--) {
 603 mean[s][h + 1] = mean[s][h];
 604 }
 605 }
 606 if (egg.vl.rx_buffer.top () != null) {
 607 mean[((Flit) (egg.vl.rx_buffer.top ())).packet.sl][0] = Kernel.Now;
 608
 609 }
 610 }
 611
 612 } // end class HalfLink
 613

VLane.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:43:52 2003 1
 1 package base;
 2
 3 import java.util.Vector;
 4 import java.math.BigInteger;
 5 /*
 6 * VLane - A class implementing the basic virtual lane. Subclassing this
 7 * class will typically be used for gathering more statistics than
 8 * already offered.
 9 *
 10 * @author I. Theiss 20010329
 11 *
 12 * Constructor is modified by Frank Olaf Sem-Jacobsen to calculate the available
 13 * bandwidth of the VL based on VL weight (commented out) and offered load on
 14 * corresponding SL.
 15 *
 16 **/
 17
 18 public class VLane extends Connectable implements Schedulable {
 19
 20 public static final boolean DEBUG = false;
 21 public static final boolean DEBUG2 = false;
 22 public static final boolean DEBUG3 = false;
 23 public static final boolean DEBUG_FC = false;
 24
 25 public static int uniqueID = 0;
 26 public int uID = (-1);
 27
 28 public boolean NU_wait_rx = false; // used only by the nodes!
 29 public boolean NU_wait_tx = false; // -"-
 30 public boolean NU_header_waiting = false; // -"-
 31 public Flit NU_flit_switched = null; // -"-
 32 public Vector NU_alternative_nexts; // -"-
 33
 34 public HalfLink link;
 35 public Node transmitter, receiver;
 36 public int layer;
 37 public int restrictions = 0;
 38 public boolean rx_locked = false;
 39 //admission control stuff, BBRMSSwitch.
 40
 41 //RMS admission control
 42 int availableWeightLowPri = 64 * 255;
 43 int availableWeightHighPri = 64 * 255;
 44 final int maxWeightLowPri = 64 * 255, maxWeightHighPri = 64 * 255;
 45
 46
 47 // IBA stuff
 48 // is flowcontrol initialised
 49 public boolean IBA_FC_UNINITIALISED = true;
 50 // VLane priority, can be high or low)
 51 public boolean ibaHighPri = false;
 52 // VLane service level
 53 public int sl;
 54 // VLane weight, number of 64 byte blocks allowed to send when scheduled
 55 public int ibaWeight = 64;
 56 public int ibaWeightCount = ibaWeight;
 57 public static int nVLperSL = Kernel.CV[Kernel.vlinks_per_sl];
 58 public static int nSL = Kernel.CV[Kernel.highpri_service_levels]
 59 + Kernel.CV[Kernel.lowpri_service_levels];
 60 public static int weightIndex = 0;
 61
 62 // delay between flowcontrol packet events in cycles
 63 int ibaFC_TX_DELAY = 500;
 64 int ibaFC_RX_DELAY = 300;
 65
 66 public int direction = BiLink.UNDEFINED;
 67
 68 public int direction () {
 69 return direction;
 70 }
 71
 72 public txBuffer tx_buffer;
 73 public rxBuffer rx_buffer;
 74
 75 public Connectable previous;

VLane.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:43:52 2003 2
 76
 77 public VLane rrrnext = null;
 78
 79 public String toString () {
 80 String s;
 81 if (link.ctrl_vlane == this)
 82 s = " " + uID + " ctrl";
 83 else
 84 s = " " + uID + " " + layer;
 85 if (transmitter == null && receiver == null)
 86 return "VLane" + s + "[null,null]";
 87 else if (transmitter == null)
 88 return "VLane" + s + " [null," + receiver.id + "]";
 89 else if (receiver == null)
 90 return "VLane" + s + " [" + transmitter.id + ",null]";
 91 else
 92 return "VLane" + s + " [" + transmitter.id + "," + receiver.id + "]";
 93 }
 94
 95 public VLane (HalfLink link, Node transmitter, Node receiver, int direction,
 96 int tx_buffer_size, int rx_buffer_size, int layer) {
 97 this.link = link;
 98 this.transmitter = transmitter;
 99 this.receiver = receiver;
 100 this.direction = direction;
 101 this.layer = layer;
 102 this.uID = VLane.uniqueID;
 103 VLane.uniqueID++;
 104
 105 tx_buffer = new txBuffer (this, tx_buffer_size);
 106 rx_buffer = new rxBuffer (this, rx_buffer_size);
 107
 108 // highpri vlanes are always lower layers, default is only one
 109 // highpri SL
 110 if (layer <
 111 (Kernel.CV[Kernel.vlinks_per_sl] *
 112 Kernel.CV[Kernel.highpri_service_levels])) {
 113 //System.out.println("set highpri " + layer);
 114 this.ibaHighPri = true;
 115 }
 116
 117 // use the same weightIndex for all VLs in an SL
 118 weightIndex = layer / nVLperSL;
 119
 120 //for RMSSwitch
 121 if (this.ibaHighPri)
 122 this.availableWeightHighPri -= this.ibaWeight;
 123 else
 124 this.availableWeightLowPri -= this.ibaWeight;
 125
 126 // skip control vlanes
 127 if (layer != this.link.vlinks) {
 128 this.ibaWeight = Kernel.vlWeight[weightIndex];
 129 this.ibaWeightCount = this.ibaWeight;
 130 }
 131 //System.out.println("Layer " + layer + " " + this.toString() + " " + this.i

baWeightCount + " vlWeight = " + Kernel.vlWeight[layer]);
 132 //Trenger ikke ta hensyn til nSLperVL dersom alle VL’ene til en SL har samme

vekt. nSLperVL vil forsvinne fra abwSL uttrykket.
 133 //BBRMSSwitch uses this:
 134
 135 /* //Used for available bw sl.
 136 int totw=0;
 137
 138 int LHP = Kernel.CV[Kernel.iba_limit_of_highpri];
 139 double tbw = link.bw;
 140 double abw, abwSL;
 141 if(LHP>=0 && LHP <= 1) abw=0.5*tbw;
 142 else{
 143 abw=tbw/(LHP+1);
 144 }
 145 if(this.ibaHighPri){
 146 abw=tbw-abw;//+p.payloadpointer.peak;
 147 link.abwHP=abw;
 148 if(abw==0) abw+=0.00000001;

VLane.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:43:52 2003 3
 149 for(int v=0;v<Kernel.CV[Kernel.highpri_service_levels];v++){
 150 totw+=Kernel.vlWeight[v];
 151 }
 152 abwSL=abw*this.ibaWeight/totw;
 153 //System.out.println("highpri_sl_" + p.sl+" = " + abwSL);
 154 }else{
 155 link.abwLP=abw;
 156 if(abw==0) abw+=0.00000001;
 157 for(int v=Kernel.CV[Kernel.highpri_service_levels];v<Kernel.CV[Kernel.lowpri

_service_levels]+Kernel.CV[Kernel.highpri_service_levels];v++){
 158 totw+=Kernel.vlWeight[v];
 159 }
 160 abwSL=abw*this.ibaWeight/totw;
 161 //System.out.println("lowpri_sl_" + p.sl+" = " + abwSL);
 162 }
 163 if(weightIndex<nSL)
 164 link.abwSL[weightIndex]=abwSL;
 165 //System.out.println("abwSL for SL " + weightIndex +" is " + abwSL);
 166 */
 167
 168 //use kernel.slload
 169
 170 int totalload = 0;
 171 for (int g = 0; g < nSL - 1; g++) {
 172 totalload += Kernel.slLoad[g];
 173 }
 174 if (weightIndex < nSL) {
 175 link.abwSL[weightIndex] =
 176 link.bw * Kernel.slLoad[weightIndex] / totalload;
 177 }
 178
 179 }
 180
 181 // iba credit check, returns true if credits are available
 182 public boolean credits_available () {
 183 // using BigInteger to get unsigned modulo arithmetic
 184 BigInteger CL, CR, modulo, creditValue, threshold;
 185
 186 // if disabled we always have iba credits
 187 if (!Kernel.IBA_ENABLE_FLOW_CONTROL) {
 188 //System.out.println("no fc");
 189 return true;
 190 }
 191 // if (this.uID == 0)
 192 // System.out.println(toString() + " AvailableBlocks " + rx_buffer.avai

lableBlocks);
 193
 194 // quick hack to get packet size
 195 long psize = Kernel.CV[1] + 2;
 196 threshold = new BigInteger ("2048");
 197 modulo = new BigInteger ("4096");
 198 CL = new BigInteger ("" + rx_buffer.ibaFCCL);
 199 CR = new BigInteger ("" + (tx_buffer.ibaFCTBS + (int)
 200 Math.ceil (psize / 64.0)) % 4096);
 201
 202 creditValue = CL.subtract (CR).mod (modulo);
 203 if (creditValue.compareTo (threshold) <= 0)
 204 return true;
 205
 206 return false;
 207 }
 208
 209 // iba send flowcontrol packet to receiver
 210 public void send_flowcontrol_rx_enter (EasterEgg egg) {
 211 // we fake flowcontrol by directly updating the rx and tx buffers
 212 // no packets are sent/received
 213
 214 if (DEBUG_FC) {
 215 System.out.println ("Update flowcontrol rx: " + toString ());
 216 System.out.println (" FCTBS = " + tx_buffer.ibaFCTBS);
 217 System.out.print (" Old ABR = " + rx_buffer.ibaABR);
 218 }
 219 // fake sending of flowctrl by updating receive buffer ABR
 220 rx_buffer.incABR (0, 1);
 221 if (DEBUG_FC)

VLane.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:43:52 2003 4
 222 System.out.println (" New ABR = " + rx_buffer.ibaABR);
 223
 224 // schedule the next flowcontrol packet
 225 (new Event (this, VLane.SEND_FLOWCONTROL_RX)).schedule (Kernel.Now +
 226 Kernel.
 227 Cycle
 228 (ibaFC_RX_DELAY));
 229 }
 230
 231 // iba send flowcontrol packet to transmitter
 232 public void send_flowcontrol_tx_enter (EasterEgg egg) {
 233 // we fake flowcontrol by directly updating the rx and tx buffers
 234 // no packets are sent/received
 235 if (DEBUG_FC)
 236 System.out.println ("Update flowcontrol tx: " + toString ());
 237 // before transmission of flowctrl packet update FCCL
 238 rx_buffer.incFCCL ();
 239 // fake sending of flwoctrl by updating transmit buffer Last Known FCCL
 240 if (DEBUG_FC)
 241 System.out.print (" Old FCCL = " + tx_buffer.ibaLastFCCL);
 242 tx_buffer.ibaLastFCCL = rx_buffer.ibaFCCL;
 243 if (DEBUG_FC)
 244 System.out.println (" New FCCL = " + tx_buffer.ibaLastFCCL);
 245
 246 // schedule the next flowcontrol packet
 247 (new Event (this, VLane.SEND_FLOWCONTROL_TX)).schedule (Kernel.Now +
 248 Kernel.
 249 Cycle
 250 (ibaFC_TX_DELAY));
 251 }
 252
 253
 254 // the tranceiver state procedures, see the process model vlane_trx
 255
 256 public void flit_in_transmitter_enter (EasterEgg egg) {
 257 if (DEBUG)
 258 System.out.println (toString () + " flit_in_transmitter_enter");
 259 tx_buffer.set_next_ready_to_transfer ();
 260 link.flits_waiting++;
 261 if (DEBUG3) {
 262 if (transmitter.id == 21 && receiver.id == 11)
 263 System.out.println (Kernel.time () + toString () + " increasing"
 264 + " flits_waiting (" + link.flits_waiting +
 265 ") for flit " +
 266 tx_buffer.latest_inserted ().toString ());
 267 }
 268 if (rrrnext == null) {
 269 // if (layer > 1) {
 270 // System.out.print("vl " + layer);
 271 // System.out.print(" " +tx_buffer.latest_inserted().toString())

;
 272 // }
 273 link.register_transmission (this);
 274 }
 275
 276 (new Event (link, HalfLink.FLIT_AT_ARBITRATOR)).schedule (Kernel.Now,
 277 link.
 278 flit_at_arbitrator_flag);
 279
 280 if (Kernel.TRACE_VLANE_ACCESS) {
 281 if (uID == Kernel.VLANE_TRACE_UID) {
 282 Flit f = tx_buffer.latest_inserted ();
 283 if (f != null && f.packet != null)
 284 System.out.println (Kernel.time () + toString ()
 285 + " flit " + f.toString ()
 286 + " in transmitter "
 287 + Kernel.VLANE_TRACE_UID);
 288 }
 289
 290 }
 291
 292 // schedule initial flowcontrol events
 293 if (IBA_FC_UNINITIALISED && Kernel.IBA_ENABLE_FLOW_CONTROL) {
 294 IBA_FC_UNINITIALISED = false;
 295 (new Event (this, VLane.SEND_FLOWCONTROL_TX)).schedule (Kernel.Now +

VLane.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:43:52 2003 5
 296 Kernel.
 297 Cycle
 298 (ibaFC_TX_DELAY));
 299 (new Event (this, VLane.SEND_FLOWCONTROL_RX)).schedule (Kernel.Now +
 300 Kernel.
 301 Cycle
 302 (ibaFC_RX_DELAY));
 303 }
 304
 305 if (Kernel.TRACE_PACKET) {
 306 Flit f = tx_buffer.latest_inserted ();
 307 // if (f != null) System.out.println("trace test " + f.packet.pid +

" : " + Kernel.PACKET_TRACED);
 308 if (f != null && f.packet != null) {
 309 if (f.packet.pid == Kernel.PACKET_TRACED
 310 // && uID == 136) {
 311 && (f.isHeader () || f.isTail ())) {
 312 System.out.println (Kernel.time () + toString () +
 313 " fite: " + f.toString ());
 314 tx_buffer.dump ();
 315 rx_buffer.dump ();
 316 if (transmitter.id < Kernel.max_switches && previous != null) {
 317 if (((VLane) previous).NU_flit_switched != null)
 318 System.out.println (" another coming: "
 319 +
 320 ((VLane) previous).NU_flit_switched.
 321 toString ());
 322 else if (NU_wait_tx)
 323 System.out.
 324 println
 325 (" another coming, reserved rx, waiting for tx: ");
 326 }
 327
 328 link.dump ();
 329 System.out.println (Kernel.time () + toString ()
 330 + " end fite: " + f.toString ());
 331 }
 332 }
 333 }
 334 }
 335
 336 // on event FLIT_TRANSMITTED scheduled by HalfLink (arbitrator)
 337
 338 public void flit_transmitted_enter (EasterEgg egg) {
 339 if (DEBUG)
 340 System.out.println (toString () + " flit_transmitted_enter");
 341 // a possible optimization could be to only schedule if
 342 // the tx_buffer was full before this clearance
 343 if (rx_buffer.flits_contained == rx_buffer.size || rx_locked)
 344 return;
 345
 346 if (Kernel.TRACE_VLANE_ACCESS) {
 347 if (uID == Kernel.VLANE_TRACE_UID) {
 348 Flit f = tx_buffer.top ();
 349 if (f != null && f.packet != null)
 350 System.out.println (Kernel.time () + toString ()
 351 + " flit " + f.toString ()
 352 + " transmitted " + Kernel.VLANE_TRACE_UID);
 353 }
 354
 355 }
 356
 357 if (Kernel.TRACE_PACKET) {
 358 Flit f = tx_buffer.top ();
 359 if (f.packet != null && f.packet.pid == Kernel.PACKET_TRACED
 360 // && uID == 93) {
 361 && (f.isHeader () || f.isTail ())) {
 362 System.out.println (Kernel.time () + toString ()
 363 + " fte: " + f.toString ());
 364 System.out.println ("rx_buffer considered empty: " +
 365 rx_buffer.empty ());
 366 System.out.println ("rx_buffer.flits_contained: " +
 367 rx_buffer.flits_contained);
 368 System.out.println ("rx_buffer.reserved_slots: " +
 369 rx_buffer.reserved_slots);

VLane.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:43:52 2003 6
 370 // System.out.println("rx_buffer.top(): " + rx_buffer.top().toSt

ring());
 371
 372 }
 373 }
 374 if (NU_wait_tx) {
 375 EasterEgg TA_egg = new EasterEgg ();
 376 TA_egg.vl = this;
 377 (new Event (transmitter, Node.TX_AVAILABLE, TA_egg)).schedule (Kernel.
 378 Now);
 379 }
 380
 381 if (rx_buffer.empty ()) {
 382 notify_node_enter (null);
 383 }
 384
 385 // iba update HPC when we see a tailflit (i.e. a packet has
 386 // finished transmission)
 387 // Flit f = tx_buffer.top();
 388 // if (f != null && f.packet != null && f.isTail() && f.packet.sl == 0)
 389 // link.updateHPC(f.packet);
 390 //else if (f != null && f.packet != null && f.isTail() && f.packet.sl == 1)
 391 // link.resetHPC();
 392
 393 rx_buffer.insert (tx_buffer.pop ());
 394 }
 395
 396 public void notify_node_enter (EasterEgg egg) {
 397 if (DEBUG)
 398 System.out.println (toString () + " notify_node_enter");
 399 if (Kernel.TRACE_PACKET) {
 400 Flit f = tx_buffer.top ();
 401 if (f != null && f.packet != null
 402 && f.packet.pid == Kernel.PACKET_TRACED
 403 // && uID == 136) {
 404 && (f.isHeader () || f.isTail ())) {
 405 System.out.println (Kernel.time () + toString ()
 406 + " nne: " + f.toString ());
 407 }
 408 }
 409 EasterEgg FOT_egg = new EasterEgg ();
 410 FOT_egg.vl = this;
 411 FOT_egg.caller = this;
 412 if (DEBUG)
 413 System.out.println (toString () + " call FLIT_ON_TOP");
 414 (new Event (receiver, Node.FLIT_ON_TOP, FOT_egg)).schedule (Kernel.Now);
 415 }
 416
 417 public void purged_rx_enter (EasterEgg egg) {
 418 if (DEBUG)
 419 System.out.println (toString () + " purged_rx_enter");
 420 // possible optimization; only send when it moved from full to
 421 // non-full
 422 if (NU_wait_rx) {
 423 EasterEgg RA_egg = new EasterEgg ();
 424 RA_egg.vl = this;
 425 (new Event (transmitter, Node.RX_AVAILABLE, RA_egg)).schedule (Kernel.
 426 Now);
 427 }
 428 // CHANGE
 429 if (new_connection_acceptable ()) {
 430 notify_connect_enter (null);
 431 }
 432 // if (rx_buffer.non_reserved() && previous == null) {
 433 // notify_connect_enter(null);
 434 // }
 435 }
 436
 437 // CHANGE
 438 public boolean new_connection_acceptable () {
 439 // if there is no current connection, and either the rx buffer
 440 // is empty or the last flit in the rx buffer is a tail flit, it
 441 // should be possible to accept a new connection on this vlane.
 442 // of course, only if there is still room in the rx buffer!
 443

VLane.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:43:52 2003 7
 444 if (previous == null) {
 445 Flit f = rx_buffer.latest_inserted ();
 446 return (rx_buffer.non_reserved () ||
 447 (f != null && f.isEnd () && !rx_buffer.full ()));
 448 } else {
 449 return false;
 450 }
 451
 452
 453 }
 454
 455 public void notify_connect_enter (EasterEgg egg) {
 456 if (DEBUG)
 457 System.out.println (toString () + " notify_connect_enter");
 458 EasterEgg C_egg = new EasterEgg ();
 459 C_egg.caller = this;
 460 C_egg.info = "called from notify_connect_enter";
 461 (new Event (transmitter, Node.CONNECTABLE, C_egg)).schedule (Kernel.Now +
 462 Kernel.
 463 Cycle (1),
 464 transmitter.
 465 connectable_flag);
 466 }
 467
 468 // event implementations, remember to update the dispatcher function
 469 // if adding more events!!
 470
 471 public static final int FLIT_IN_TRANSMITTER = 10;
 472 public void flit_in_transmitter (EasterEgg egg) {
 473 flit_in_transmitter_enter (egg);
 474 }
 475
 476 public static final int FLIT_TRANSMITTED = 20;
 477 public void flit_transmitted (EasterEgg egg) {
 478 flit_transmitted_enter (egg);
 479 }
 480
 481 public static final int PURGED_RX = 30;
 482 public void purged_rx (EasterEgg egg) {
 483 purged_rx_enter (egg);
 484 }
 485
 486 public static final int SEND_FLOWCONTROL_RX = 40;
 487 public void send_flowcontrol_rx (EasterEgg egg) {
 488 send_flowcontrol_rx_enter (egg);
 489 }
 490
 491 public static final int SEND_FLOWCONTROL_TX = 50;
 492 public void send_flowcontrol_tx (EasterEgg egg) {
 493 send_flowcontrol_tx_enter (egg);
 494 }
 495
 496 // common for all VLane events
 497
 498 public void dispatcher (int dispatcher, EasterEgg egg) {
 499
 500 switch (dispatcher) {
 501 case FLIT_IN_TRANSMITTER:
 502 flit_in_transmitter (egg);
 503 break;
 504 case FLIT_TRANSMITTED:
 505 flit_transmitted (egg);
 506 break;
 507 case PURGED_RX:
 508 purged_rx (egg);
 509 break;
 510 case SEND_FLOWCONTROL_TX:
 511 send_flowcontrol_tx (null);
 512 break;
 513 case SEND_FLOWCONTROL_RX:
 514 send_flowcontrol_rx (null);
 515 break;
 516 default:
 517 System.out.println ("VLane: no such event " + dispatcher);
 518 }

VLane.java MODIFIEDMODIFIEDMODIFIEDWed Dec 31 13:43:52 2003 8
 519 } // end dispatcherEvent
 520
 521 public void purgeEvents () {
 522 while (scheduled_events.size () > 0) {
 523 Event e = (Event) (scheduled_events.elementAt (0));
 524 scheduled_events.removeElementAt (0);
 525 Kernel.globalHeap.removeEvent (e);
 526 e.dismiss ();
 527 }
 528 }
 529
 530 public Vector scheduled_events = new Vector ();
 531 public Vector scheduled_events () {
 532 return scheduled_events;
 533 }
 534
 535 } // end class VLane
 536

	Preface
	Acknowledgments

	Introduction
	Thesis
	Readers Guide

	I Background
	Problem Domain
	Switched Networks and Interconnection Networks
	Switching
	Routing and Topology Issues
	Scalability

	InfiniBand
	Elements of an InfiniBand Network

	Quality of Service in Internet
	End-to-End Quality of Service
	Heterogeneous Networks
	MPLS/GMPLS
	Quality of Service in Switched Networks

	Admission Control

	VCT Quality of Service
	Related work
	Quality of Service in IBA
	Admission control in IBA
	Is Admission Control Necessary?
	Back-pressure issues

	Properties of Admission Control
	Characterisation of a good admission control algorithm
	The Network Utilisation vs. QoS trade-off

	Arbitration Tables and Admission Control

	II Application of Admission Control
	Admission Control Algorithms
	Switch Level Admission Control, Link-by-Link
	Parameter Based
	Measurement based
	AC Differentiation for Bandwidth Requirements

	Endpoint Admission Control
	Egress Admission Control
	Jitter Probing

	Centralised Admission Control
	Link-by-Link
	Combinations

	Aiming for Low Jitter
	Summary of the Proposals

	Simulations
	Simulation Environment
	Network Components in the Simulator
	The simulator engine
	Network Topologies
	Routing

	Simulation Parameters
	Admission Control Criteria
	The Nature of the Simulations
	Other technological assumptions inherent in the simulator
	Traffic Distribution
	Traffic Generation

	Results and Evaluation
	Target for Admission Control
	Throughput/Network utilisation
	Total Throughput
	The Throughput of Each Flow

	Latency
	Random Pairs
	Two Hot-spots
	Summary

	Jitter
	Random Pairs
	Two Hot-spots
	Summary

	Throughput/QoS Trade-off
	Achieving Low Jitter
	Concluding Remarks

	Conclusion
	Further work

	Additional figures
	Produced Articles
	Simulator Source Code

