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Abstract

This thesis spans several research areas, where the main topics being par-
allel programming based on message-passing, general-purpose computation
on graphics processing units (GPGPU), numerical simulations, and domain
decomposition. The graphics processing unit (GPU) on modern graphics ad-
apters is an inexpensive source of wast parallel computing power. To harvest
this power, general purpose graphics programming is used. The main agenda
of the thesis is to make a case for GPU clusters. Numerical simulations of hy-
perbolic conservation laws using explicit temporal difference methods (finite-
difference methods (FDM), finite-volume methods (FVM) and modern high-
resolution methods) are used as test-cases. The GPU cluster is proven to
be usable, efficient and sufficiently accurate on the chosen test-cases. A
white paper where the GPU cluster is used to perform PLU-factorizations
of matrices is also included as an appendix.
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Chapter 1
Introduction

“The Road goes ever on and on
Down from the door where it began.”

— Bilbo Baggins (J. R. R. Tolkien)

This master thesis contains several topics of interest, where the main
areas are parallel programming using message-passing, general-purpose com-
putation on graphics processing units (GPGPU), domain decomposition, and
numerical methods for solving partial differential equations (PDEs). All
these topics are more or less well-known and there are a large number of
publications in these fields. The main contribution of this thesis is the com-
bination of GPGPU and parallel programming with MPI-2. Chapters 2 and
3 contain background material on the topics listed earlier with some specif-
ics for this thesis. In Chapters 4 and 5 the work performed in this thesis is
discussed. The last two chapters are dedicated to results and conclusions.
All development and testing was performed at SINTEF ICT, Oslo. Since the
field of GPGPU is in such rapid evolution, this thesis should only be con-
sidered a snapshot of the available technology at the time of writing. This
thesis also features a lot of background material, which is natural since it
contains several areas of interest that all need to be introduced.

1.1 Research questions – Making a case for GPU

clusters

Throughout my thesis I strive to give complete and precise answers to the
following research questions. The answers will be summed up in Chapter 7.

Are GPU clusters a viable computational resource when considering par-

allel problems?

1



2 Introduction

What are the pros and cons of GPU clusters?

Are the obtained results accurate enough for practical use?

The first research question is narrowed down to the test-cases I use;
explicit discretization of an initial-boundary-value PDE problem. More spe-
cifically the test-cases are systems of hyperbolic conservation laws solved
over a finite two-dimensional Cartesian grid using high-resolution schemes.

1.2 Methods

The main agenda of this master thesis is to test the concept of a GPU cluster
and measure its efficiency. A class of equations called nonlinear hyperbolic
conservation laws will be used to evaluate this concept. This does not mean
that all the results and conclusions in this thesis can be extended to charac-
terize GPU clusters in general, but they will reveal a great deal about the
parallel capabilities of a GPU cluster. To understand the background mater-
ial in the following two chapters it is necessary to have some understanding
of the type of problems that will be considered. A detailed description of the
problems is therefore presented in Section 1.3 in Chapter 1 and in Chapter 5.

The PDEs will be discretized explicitly and solved over a two-dimensional
Cartesian grid. This grid will be split up into sub-domains that are distrib-
uted to the different nodes in the cluster and solved locally on the graphics
adapter using schemes that will be introduced later. Since the grid is split up
and the different parts will be on separate nodes, we will have a communic-
ation need in the boundary between sub-domains. Each node will perform
computations using a discretized scheme on the following form:

un+1
i,j = F (un

i−I,j, ..., u
n
i+M,j , u

n
i,j−N , ..., un

i,j+O), (1.1)

where un+1
i,j is the solution at time-step n + 1 at spatial coordinates (i, j)

and I,M,N , and O will depend on the scheme. If we use a scheme that has
I = M = N = O = 1, this means that all information will be displaced with
one grid cell per time-step.

The main reasons for choosing this particular class of equations and
schemes to evaluate the GPU cluster are:

1. They are easy to solve numerically in parallel.

2. The numerical methods for solving these equations are extensively used
and tested.

3. The complex schemes we use to numerically solve the equations have
a high arithmetic intensity in computing F , and graphics adapters
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are perfect for handling this. Simpler schemes do not have as high
arithmetic intensity, so we will expect a lower speedup on these.

In addition to using hyperbolic PDEs as test-cases, I have also included a
white paper in Appendix A, where the GPU cluster is used to perform PLU-
factorization of a matrix. PLU-factorization is used to solve linear systems
of equations, e.g., elliptic PDE problems. Elliptic equations give boundary-
value problems that require the solution at all points to be simultaneously
determined based on the boundary conditions all around the domain. This
require a large system of linear equations to be solved for the values of u at
each grid-point. PLU-factorization is one way to do this. This white paper
was a joint work with two other master students as SINTEF ICT, Oslo.

1.3 Numerical simulation of PDEs

This section presents the problems being solved in this thesis, and some of
the theory behind them. The development of the different numerical schemes
used to solve these equations is presented in Chapter 5, with focus on the
schemes used in this thesis. Some of the physics behind the equations will
also be explained. An understanding of the problems presented here will
help to make the reasons for my choices in the rest of the thesis clearer.

1.3.1 Partial Differential Equations

A PDE is an equation involving an unknown function of several independent
variables and the partial derivatives of the function with respect to these vari-
ables. These equations differ from ordinary differential equations (ODEs),
which only contain one independent variable. PDEs or systems of PDEs are
often used to describe different physical phenomena. PDEs model processes
that are distributed in space, or in both space and time. PDEs can describe
many physical processes in different dimensions. Usually it is simulations
in three dimensions that are of greatest interest, since this is most easily
transferred to the real world. PDEs can be used to describe for example
heat transfer, sound, fluid flows, elasticity and gasses. This makes them a
powerful tool in many scientific areas, like engineering, chemistry, physics,
biology and mathematics.

PDEs are divided into classes depending on their properties. Equations
of the same class exhibit similar general features. We will review three
classifications here. Not all PDEs fall into these categories, but many of
those arising in practice do. For a linear second-order differential equation
in two independent variables of the form:

auxx + buyx + cuyy + dux + euy + fu = 0, (1.2)

the type of PDE is categorised depending on the sign of the discriminant:
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< 0 ⇒ elliptic,
= 0 ⇒ parabolic,
> 0 ⇒ hyperbolic.

The names are analogies with the conic sections. The order of the equa-
tion is determined from the highest-order differential, such that uxx+uyy = g
(the 2D Poisson problem) is a second-order differential equation. While
elliptic equations, such as the Poisson problem, typically are temporal in-
dependent, parabolic and hyperbolic equations usually are time-dependent.
The canonical examples are the 1D heat equation ut = βuxx (where β > 0)
for a parabolic problem, and the 1D wave equation utt = c2uxx for a hy-
perbolic problem. The different classes of equations describe different types
of phenomena and they require different techniques for their solution, both
analytically and numerically. Hyperbolic PDEs is the type of PDEs explored
in this master thesis. More specifically, we will numerically solve hyperbolic
conservation laws. We will solve them in two spatial dimensions, but the
equations and our methods can be extended to more space dimensions.

1.3.2 Hyperbolic PDEs

The simplest example of a hyperbolic PDE is the constant-coefficient ad-
vection equation, also called the transport equation. In 1D, this equation is
written as:

ut + aux = 0,

where u is the conserved scalar quantity stating the advection velocity. The
solution to this equation is u(x, t) = u(x−at, 0). This means that any profile
in u simply advects with the flow at velocity a.

We will use the linear wave equation, the shallow-water equations and
the Euler equations as test-cases in this thesis. The shallow-water equations
and the Euler equations are examples of a special type of hyperbolic PDEs
derived from conservation laws. The reasons for using this particular class
are that all disturbances have a finite speed of propagation, modern high-
resolution schemes are based on temporal discretizations, and they are easy
to solve in parallel. The equations will be solved, all in two spatial dimensions
using a simple finite-difference scheme for the linear wave equation, and
both classical and two high-resolution finite-volume [LeV02] schemes for the
shallow-water equations and the Euler equations. The schemes are based
on explicit temporal discretization. This means that there is no coupling
between unknowns across different grid cells, which makes them ideal test-
cases for parallel computing, e.g., on a cluster. Another important point
is that high-resolution schemes yield very high arithmetic intensities, which
is exactly what the GPU is best at. The schemes used for the linear wave
equation and the shallow-water equations will be derived, but the schemes
for the Euler equation will only be outlined and described.
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Conservation laws Conservation laws are a special type of equations
where a set of quantities are conserved. The mathematical model of a conser-
vation law often appears as linear or non-linear hyperbolic partial differential
equations in divergence form. Seen in one spatial dimension, the equations
can be written:

Qt + F (Q)x = 0,

where Q ∈ R
m is the set of conserved quantities and F is a flux function.

Definition 1.1:
A conservation law states that the rate of change of a quantity or set of

quantities within a given domain Ω equals the flux over the boundaries ∂Ω.

Definition 1.1 gives us the conservation law in integral form:

d

dt

∫∫

Ω

Qdxdy +

∫

∂Ω

(F,G) · (nx, ny)ds = 0. (1.3)

Here we assume that Ω ∈ R
2 with outer normals (nx, ny), and that the flux

has two components, F (Q(x, y, t)) and G(Q(x, y, t)). Using the divergence
theorem we can derive the conservation law in differential form:

∂tQ + ∂xF (Q,x, y, t) + ∂yG(Q,x, y, t) = 0. (1.4)

Definition 1.2:
When the Jacobi matrix ∂Q(F,G)·n has only real eigenvalues, and a complete

set of eigenvectors for all unit vectors n, the system is said to be hyperbolic.

Knowing the differential form (1.4) of the conservation law, Definition 1.2
can be used to show that a system is hyperbolic.

Hyperbolic systems of conservation laws exhibit very singular behaviour,
and admit various kinds of discontinuous and non-linear waves. These can
be shocks, rarefactions, phase boundaries, fluid and material interfaces, etc.
Resolving these propagating discontinuities is a difficult task. In addition
to this; non-linear hyperbolic equations are hard to solve both analytically
and numerically. They can also form discontinuous solutions from smooth
initial data. We will now have a look at the three equations considered in
this thesis.

The linear wave equation

The linear wave equation is a prototype example of an hyperbolic PDE. A
derivation of the equation will not be given here. The interested reader can
find a derivation in the article “Wave equation” [Wik07d].

The linear wave equation in its simplest form reads:

utt = cuxx + cuyy, (1.5)
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where u is a scalar function and c is a constant equal to the propagation
speed of the wave.

The linear wave equation is not a conservation law and is not derived
from the physical principal of conservation of quantities. However, it can be
written as a system of first-order conservation laws:

ut − vx − vy = 0, (1.6)

vt − ux − uy = 0, (1.7)

where u and v are scalar functions.
This equation is mostly used in this thesis on the ground that it is very

simple, and therefore very usable for explaining and demonstrating general
principals used on all three test-cases.

The shallow-water equations

The shallow-water equations constitute a more complex model to simulate
wave propagation than the linear wave equation. These non-linear equations
describe flow below a horizontal pressure surface in a fluid. Without bottom
topography (bathymetri), we get the following homogeneous system:





h
hu
hv





t

+





hu
hu2 + 1

2gh2

huv





x

+





hv
huv

hv2 + 1
2gh2





y

=





0
0
0



 ,

where u is the velocity in the x-direction, v is the velocity in the y-direction,
h is the height of the horizontal pressure surface, and g is the gravitation.

It is important to notice that the wave length of the modelled problem
needs to be much larger than the water depth in order for the shallow-water
equations to be valid.

The Euler equations

The Euler equations describe the dynamics of an ideal gas. It is based on
conservation of mass, momentum and energy. The equations, on matrix
form, in two spatial dimensions can be seen below:









ρ
ρu
ρv
E









t

+









ρu
ρu2 + p

ρuv
u(E + p)









x

+









ρv
ρuv

ρv2 + p
v(E + p)









y

=









0
0
0
0









,

where ρ is the density, u and v are velocity in x- and y-directions, respectively,
p is pressure, and E is total kinetic energy given by:

E =
1

2
ρ(u2 + v2) + p/(γ − 1),
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ny

nx

∆y

∆x

Figure 1.1: A 2-dimensional Cartesian grid with equally sized cells.

where γ is the gas constant, e.g., 1.4 for air. γ = 1.4 is used in all computa-
tions in this thesis.

1.3.3 Grids and schemes

The problems considered in this thesis have been solved on a two-dimensional
Cartesian grid, as illustrated in Figure 1.1. Each quantity in the equations
has values in each grid cell.

The global domain is decomposed and distributed to all the nodes in
the GPU cluster, as Figure 1.2 shows. Each grid cell on each node will be
unique, with exception of the ghost cells which contain copies of the nearest
grid cells on the adjacent sub-domains. When computing the grid cells close
to the boundary of the domain, the scheme may require values from outside
of the domain. There are two ways of handling this; either we use a modified
scheme close to the boundary, or we add ghost cells to the domain boundary.
If we e.g., have a scheme on the form (1.1) where I = M = N = O = 1,
we will need one layer of ghost cells around the domain. The use of ghost
cells in this thesis will be introduced in Section 4.2 in Chapter 4, and are not
displayed in the figures presented here. The organization of the distributed
grid can be seen in Figure 1.3.

The schemes used to solve these three equations have been chosen due
to their inherent parallel nature, and the fact that they are very arithmetic
intensive. This, as explained earlier, makes them good candidates for test-
ing a GPU cluster. For the linear wave equation, a standard second-order
discretization based on the Taylor series is used. This scheme is not as
complex, as therefore not as arithmetic intense as the Lax-Friedrich and Lax-
Wendroff schemes used for the shallow-water equation, or the central-upwind
scheme used for the Euler equations. Derivation and further discussion of
the schemes are found in Chapter 5.
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Global domain

DECOMPOSE

Subdomain 1 Subdomain 2

Subdomain 4Subdomain 3

Node 1 Node 2

Node 3 Node 4

Figure 1.2: Two-dimensional Cartesian domain decomposition.

LOCAL DOMAIN

∆x

∆y

SUBDOMAIN /

GLOBAL DOMAIN

ny

nx

ny_j

nx_i

GRID CELL

Figure 1.3: The relationship between the global grid and the sub-domain
grids.
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Further reading To gain a deeper understanding of the mathematical
analysis and numerical methods for hyperbolic conservation laws, the inter-
ested reader can find a large number of papers and articles on the Conserva-
tion Laws Preprint Server [HOHL]. Images of these phenomena can be seen
in Van Dyke’s Album of Fluid Motion [Van82].





Chapter 2
Introduction to parallel

programming

“Parallel programming may do something to revive the
pioneering spirit in programming, which seems to be degenerating

into a rather dull and routine occupation.”

— S. Gill, Computer Journal, 1958

This chapter will present a generic and traditional approach to parallel
programming. The first sections in this chapter sheds some light on the
history and evolution of parallel programming, and the last sections describe
the Message Passing Interface (MPI) [MPI], and how and why it is used in
this master thesis. We will also try to place MPI in the bigger picture that
is parallel programming. There exist several implementations of MPI, and I
will mention some of them in the last section. This chapter will also give a
better understanding of the GPGPU way of programming, in the sense that
parallel computing is introduced.

2.1 The rapid evolution of computing power

Prior to the development of computers there were few who thought we would
ever be capable of performing several hundred arithmetic computations in
a matter of seconds, or even less. When the computer era emerged, how-
ever, this soon became a reality. This was a revolution for the engineers
and scientist who were able to utilize this new computing power. One was
suddenly able to compute numerical solutions to problems that before had
to be solved analytically, or in many cases could not be solved at all. When
it was made possible to perform hundreds of operations per second, people
wanted even more, as they always tend to do. They wanted to be able to per-

11
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form thousands of arithmetic computations per second, then millions, then
billions, and this is where we are today (with the exception of the worlds
fastest supercomputers, which are already able to perform trillions of com-
putations per second). The current goal is quadrillions of operations per
second (1015). A common measure for arithmetic intensity is floating-point
operations per second (FLOPS). Billions of operations per second is referred
to as gigaflops, trillions as teraflops, and quadrillions as petaflops. This may
seem like all the computing power we will ever need, but as we will see, this
is not the case. These numbers have not yet been connected to any specific
architecture, this will be introduced later.

2.2 Motivation: Large-scale complex simulations

The following example will demonstrate why we need as much as trillions
of arithmetic operations per second and more. The example is a modified
version of the example presented in the book “Parallel programming with
MPI” [Pac97]. Suppose we want to predict the weather over Norway every
hour for the next two days. We use a grid that covers all land area, and
goes from sea level and 20 km up into the atmosphere. The grid is cubical
and we have a grid spacing of 100 meters in all dimensions. This gives us
3.8 · 105km2 × 20km × 103cubes per km3 = 7.6 · 109cubes. If we assume it
takes 100 calculations to determine the weather in one cube and that we use
1 hour time-steps, then we will need to perform 7.6·109×100×48 = 3.65·1013

calculations to predict the weather in every cube for the next 48 hours. If we
further expand this with longer forecasts or larger area, it is clear that 109

arithmetic computations per second is not nearly enough. If this prediction
takes several hours or even several days, it is clearly of little use, as the
results would be outdated. Other large-scale simulations may not be under
such time pressure. On the other hand, we want the simulations performed
as fast as possible.

So what is the solution to this problem? We could solve it by sticking to
the well-known sequential model of the von Neumann computer, and simply
extend this further. But we are starting to see a decrease in the growth
of processor speed. The growth in processor speed has been doubled every
24th month for the past decades, but this is not the case anymore. There
are several reasons why, and without going in depth on this subject, I will
mention some of them here.

Not only is the evolution and development of CPUs slowing down, but
the way we are designing and building CPUs today will probably eventu-
ally have to come to a halt. The following example, based on an example
from “Parallel programming with MPI” [Pac97], demonstrates this. It is im-
portant to note that this is a constructed example to prove the insufficiency
of the traditional single-CPU computer when it comes to big and complex
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computational problems. One would of course never attempt to run such
a large-scale simulation on a single CPU today. Suppose we want to build
a computer capable of doing one trillion computations each second. If we
want to add two vectors of length one trillion, we would successively fetch
one and one entry from memory, add the values and write the answer back
to memory. This gives 3 · 1012 copies between registers and memory each
second. If we assume that the data travel with the speed of light (3 · 108

m/s), and that r is the distance from the CPU to the memory, then r must
satisfy:

3 · 1012rm = 3 · 108m/s · 1s,
or r = 10−4m. The computer must, of course, contain at least three

trillion words of memory to store the three vectors x, y, and the result z.
Memory is typically organized in a rectangular grid. If we use a square grid
with side length l and place the CPU in the center of the grid, then the
average distance from a memory location to the CPU will be l/2. This leads
to the equation l/2 = r = 10−4 or l = 2 · 10−4m. We let our memory
words form a square grid, a typical row of memory words will then contain√

3 · 1012 =
√

3 · 106 words. This means we have to fit a single word of
memory into a square with a side length measuring:

2 · 10−4m√
3 · 106

≈ 10−10m

Since this is the size of a small atom, it poses a big problem. This leaves
us with a choice; Either we must find a way to represent 32 bit, or preferably
64 bit, with a single atom, or we will have to use a different architecture all
together. This is where parallel programming provides us with a solution.
The traditional solution is to use high-performance computing (HPC), either
in the form of large clusters of computers, or as supercomputers with up
to 130 000 processors (IBM’s BlueGene/L) [UUN] working in parallel. In
this master thesis we will pursue a somewhat different solution, by utilizing
the raw computing power of modern graphics hardware combined with a
computer cluster.

Another problem that becomes more and more apparent due to the single-
minded focus on performance (FLOPS), is the power problem. The power
usage is increasing faster than the computational power. IBM’s BlueGene/L
is currently ranked as number one in the Top 500 list of supercomputers1.
This supercomputer needs a stunning 2.5 MW to run [SHF06], and this
is actually the most “green” computer on the Top 500 list [UUN]. The
Japanese Earth Simulator, for example, uses up to 7 MW for power and
cooling [SHF06]. A similar problem applies to both conventional single- or
dual CPU computers and supercomputers of all sizes.

1As of 2007-05-01.
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2.3 Classifications of parallel systems and computers

There are many platforms, interfaces, architectures and terms in parallel
computing, and this section will hopefully give a basic introduction to the
most important ones.

2.3.1 Flynn’s taxonomy

According to Flynn [Fly66], parallel computers and computer systems can
be classified using a simplified scheme. This scheme has come to be known
as Flynn’s taxonomy. The four schemes are Single Instruction Multiple Data
(SIMD), Multiple Instruction Multiple Data (MIMD), Single Instruction
Single Data (SISD), and Multiple Instruction Single Data (MISD). These
terms are also used in the GPU section to classify GPUs. These schemes
were later extended to Single Program Multiple Data (SPMD) and Multiple
Program Multiple Data (MPMD). The SIMD scheme executes the same
instruction with multiple data, while the MIMD scheme executes multiple
instructions on multiple data. The SPMD scheme runs the same program on
multiple processors, where each processor works on a different set of data.
Typically you start out with a large dataset which you divide into subsets
and distribute to each processor. The processors then run the program on
the portion of the dataset they were given, and the complete result can fi-
nally be collected from the memory of each processor after execution. The
MPMD scheme runs different programs on each processor, but it is parallel
in the sense that each program handles a task towards a common goal. It
is also possible to have hybrid schemes where several schemes are combined,
where the processors are grouped, some SPMD and some MPMD.

The application written for this thesis uses the SPMD scheme, where all
processors execute the same program in parallel, but uses different datasets.
This specific application has data values on a Cartesian 2-dimensional grid,
which is decomposed into smaller Cartesian sub-grids and distributed to all
the available nodes. Each node then executes the same program on its local
sub-grid and communicates with the neighbouring nodes. To recompose the
global domain after the simulation is complete, it is necessary to collect data
from all nodes. After this is done, the data can be analyzed and visualized.

2.3.2 Shared memory and distributed memory computers

Flynn’s taxonomy is used to classify parallel software and parallel schemes.
Now we need a way to classify the parallel hardware. Loosely-coupled mul-
tiprocessor systems, also known as clusters, have different ways of distribut-
ing the resources and different ways of accessing them. The alternative to
loosely-coupled systems is tightly-coupled systems, where the CPUs are con-
nected on a bus-level. The different classes of parallel systems refer to where
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Figure 2.1: Distributed memory model.

the memory is located, and how it is utilized by each node in the cluster.
The first model is the distributed memory model, where each node has ac-
cess to its own memory. The nodes are then typically connected through a
fast Ethernet, a gigabit, a Myrinet, or a Infiniband [IBT] network. Since the
network often is a major bottleneck in this type of systems, the challenge
is to minimize communication between processors. The type of system used
in the application for this thesis uses a loosely-coupled distributed memory
system, also known as a computer cluster. This type of distributed memory
model can be seen in Figure 2.1.

Shared memory systems, on the other hand, typically contain one large
block of memory (RAM) that all processors have access to, as seen in Fig-
ure 2.2. In addition, each processor has its own on-chip cache memory. Such
a system is relatively easy to program, since every processor has access to
the same memory (RAM). There are, however, some complications with this
model. The bandwidth between CPUs and memory becomes a bottleneck,
and it may not scale very well. It is also necessary to update the cache
on every CPU when the cache is changed on one of them, such that the
processors do not work on incoherent cache data.

Distributed shared memory (DSM) is a variation of the shared memory
model, in which each node of a cluster has access to a large shared memory
in addition to each node’s limited non-shared private memory. In this model
each node can use the local memory for local operations to prevent unneces-
sary traffic on the memory bus, while still having access to a shared global
memory.

2.4 Cluster

A computer cluster is a group of loosely coupled computers that work closely
together, so that in many respects they can be viewed as though they are a
single computer. There exist several types of clusters, including HA-clusters
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(High availability clusters) and load-balancing clusters. HA-clusters have
redundant nodes, so that if one node should fail, another will take over.
Load-balancing clusters use front ends that distribute the workload to the
back-end of servers or nodes. This type of cluster is primarily implemented
for improved general performance.

A high-performance cluster is the type of cluster that has been used in
this thesis. It provides increased performance by splitting a computational
task across many different nodes in the cluster. It is most commonly used in
scientific computing. The programs that run on high-performance clusters
are usually designed specifically for this purpose, and all nodes (processes)
should be working as independently of each other as possible. Although each
process should work independently, it will often be necessary for one or more
processes to send messages between each other. MPI makes this possible.
There are several implementations of high-performance cluster services. The
most commonly used are Beowulf clusters for UNIX/Linux, Microsoft’s Win-
dows Compute Cluster Server, and different implementations of MPI for all
kinds of operating systems.

2.4.1 Beowulf

Beowulf is a way of clustering Linux machines. It is not a single piece of
software you can buy as a complete package, but rather an idea of how
ordinary Linux desktops can be used to achieve the same performance as a
million-dollar supercomputer.

The Beowulf project was conceived in early 1994 by Donald Becker and
Thomas Sterling. They were working at the Center of Excellence in Space
Data and Information Sciences (CESDIS) under the sponsorship of the HP-
CC/NASA Earth and Space Sciences (ESS) project. CESDIS is a division
of the non-profit University Space Research Association (USRA). CESDIS
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is located at the Goddard Space Flight Center in Greenbelt Maryland and
supported in part by the ESS project. The initial prototype was a cluster
consisting of 16 nodes with DX4 processors connected with bonded Ether-
net2. When the first Beowulf cluster was built, it was to address problems
associated with the large data sets that are often involved in ESS applic-
ations. As more and more companies and institutions are starting to see
the potential in computer-based simulations, Beowulf clusters have become
an inexpensive way of providing the massive (parallel) computational power
needed.

There are several pieces of software many people have found useful for
building Beowulf clusters [Beo], and together they form a powerful platform
for parallel programming. They include MPICH/MPICH2, LAM, PVM,
the Linux kernel, the channel-bonding patch to the Linux kernel (which
lets you bond multiple Ethernet interfaces into a faster virtual Ethernet
interface), the global pid space patch for the Linux kernel (which lets you
see all the processes on your Beowulf with ps, and eliminate them), and
DIPC (which lets you use sysv shared memory, semaphores and message
queues transparently across a cluster).

Almost all the components mentioned in the previous section are also
available to Windows and other platforms in some form. The big advantage
with Beowulf, however, is that it is free. The downside of choosing a Beowulf
cluster is that you are not guaranteed support on the software, but you will
probably find answers to all your questions online anyhow.

2.4.2 Windows compute cluster server

The closest Windows equivalent to Linux/UNIX Beowulf is Microsoft’s Win-
dows Compute Cluster Server3 [Micb]. This is also a collection of tools and
technologies that together form a HPC cluster. The Windows Compute
Cluster Server is of course made up of Windows software, and uses MPI-2
for message passing. Companies and institutions that already have a Win-
dows platform might be better off choosing the Windows alternative over a
Beowulf cluster.

2.5 Parallel applications

Now that the hardware and some ideas are introduced, we will take a look
at parallel programming from a software and application viewpoint. There
are two main actors in this area, Parallel Virtual Machine (PVM) and the
Message Passing Interface (MPI and MPI-2). Before 1996, PVM was the

2Several physical Ethernet interfaces used as one logical/virtual interface.
3Windows Compute Cluster Server is new with Windows 2003. Earlier, Microsoft

Cluster Server (MSCS) was used instead.



18 Introduction to parallel programming

de-facto standard of parallel applications. In 1996, a paper called “PVM
and MPI: a Comparison of Features” [GKP96] was published, and in the
later years MPI and MPI-2 have taken over a large portion of the parallel
software industry. MPI however, is not a virtual parallel machine, but rather
a standard for passing messages between processes and groups of processes.
The topic of message-passing in parallel applications will be more thoroughly
treated in Section 2.5.1.

There are many things that must be considered when developing and
using parallel algorithms. Most importantly; it is of no use to rewrite a
good sequential algorithm to a poor parallel algorithm. Some algorithms
are inherently parallel in nature, but in some cases the algorithm cannot be
adopted to the parallel way of thinking. If you, after careful consideration,
come to the conclusion that your algorithm and application will benefit from
parallel execution, the next issue is to choose a development platform and
technology. Since we will be using a GPU cluster in this master thesis, this
is the platform we will discuss further.

Another issue that needs consideration when designing parallel programs
for clusters is the number of available nodes and processors. Sometimes it
is not even necessary to pay attention to the underlaying hardware, it all
depends on the algorithm you want to implement. I will illustrate this with
an example. If you are writing a program that calculates the decimals of
pi using e.g., the circle algorithm, you want as many available nodes and
processors as possible. The program can usually even find out how many
available processors there are, and distribute the problem itself. In your
next program you want to solve some equation with quantities spread over a
Cartesian grid (like in this thesis). This time the logic of the application will
have a closer relationship with the number of nodes and processors available.
For instance, if your grid is of size 100×100, then it is likely that you cannot
use more than 10000 processors simultaneously. And furthermore, it would
be very ineffective to have only one grid point per process. This is because of
the communication cost of sending messages between processes. The number
of processes versus the number of nodes must also be considered if possible.
Each node can have multiple processors, and many HPC clusters are designed
this way. This is often pictured as a P × Q grid, where P is the number of
processors and Q the number of nodes.

2.5.1 Message passing interface

MPI is a standard interface for message-passing. This standard is developed
by the MPI Forum (MPIF). The MPIF consists of over 40 different organiz-
ations with a common interest in developing a standard for message-passing
programs. They state that: “The goal of the Message Passing Interface,
simply stated, is to develop a widely used standard for writing message-
passing programs” [MPI]. Version 1.0 was released in June 1994. In Novem-
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ber 2003 the MPI-2 standard was published; it contained specifications for
version 1.2 of MPI, and MPI-2. The MPI-2 specification describes additions
to the MPI standard. These include process creation and management with
a dynamic process model, one-sided communication, extended collective op-
erations, external interfaces, parallel I/O, and additional language bindings.
Dynamic process model basically means that all processes do not need to be
created at startup, which was the case with MPI 1.2. From now on, MPI
will always refer to the MPI-2 standard, if not stated otherwise.

Implementations of MPI There are many implementations of the MPI
standard. The most used ones, to name a few, are MPICH2 [Argc], Microsoft
MPI [Mica], LAM MPI [BDV94], OpenMPI [GFB+04], DeinoMPI [Arga],
and pyMPI [Law]. For this master thesis, MPICH2 has been used, which is
an implementation made by the Mathematics and Computer Science Division
of Argonne National Laboratory. This software package consists of two main
components, the MPI launcher and the MPI process manager.

The MPI process manager, also called SMPD, is the primary process
manager for MPICH2 on Windows. It is also used when running on a com-
bination of both Windows and UNIX/Linux machines, and it is written in
C. On UNIX/Linux, MPD is the default process manager, and it is SMPD’s
equivalent. MPD is written in Python. Together with the MPI process
launcher this is what primarily makes up the MPICH2 software package.
The MPI launcher is called mpiexec, and this is the program that is ex-
ecuted when running MPI-jobs. This program can take a large number of
arguments to control how and where the MPI job is executed.

Programming with MPI Since MPI is a widely used cross-platform
standard, there are many freely available resources and utilities. Some of
them are mentioned in Section 2.5.3. The parallel way of programming takes
some getting used to, and there are numerous issues to keep track of. I will
mention some of them here, and some will be mentioned in the description
of my application.

When programming with MPI, you use C/C++ or Python, and MPI
methods and constants. MPI is as a message-passing interface, which means
it is used to pass messages between different processes. These processes could
be on a single computer, or distributed among any number of computers.
MPI implements a large number of functions, but usually only a relatively
small subset is needed. There are two main classes of methods, called block-
ing and non-blocking calls. Blocking calls make the process stop and wait
for the call to complete. Non-blocking calls on the other hand, do not wait
for the call to return, but continues executing the program. This means that
you cannot be certain whether the MPI-call was successful or not when us-
ing non-blocking functions. The advantage of using non-blocking calls over
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Figure 2.3: Sequential I/O from one process.

blocking calls, however, is that you avoid idle processes, since the process
continues executing the program immediately.

2.5.2 Parallel I/O

There are several ways to handle file reading and writing with MPI [GLT99].
Which way is most effective depends on the setup of the parallel system (one
disk, multiple disks, etc.) and the application itself. The easiest method is
to let one process do all the file handling, and let all the other processes send
their data to this process. The file will then be written to sequentially, but
you will have no parallelism. The method is shown in Figure 2.3.

There are several advantages with this approach:

• This method will work on all types of parallel systems.

• It is possible to use I/O libraries without parallel support since only
one process executes I/O operations.

• The resulting single file is easy to handle.

The next method is non-MPI parallel I/O to multiple files on multiple
nodes as shown in Figure 2.4. The big advantage here is that you have no
communication between processes. This approach, however, has multiple
disadvantages as well:

• The resulting multiple files must be joined together to get the complete
results.

• To work with the resulting files, it may be necessary to start another
MPI-program with exactly the same number of processes, in order
to access the files spread across the nodes. Alternatively one could
transfer all the files to a single node and access them there, but even
then one would probably choose to use MPI.
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Figure 2.5: Parallel I/O to a single file.

• It is difficult to handle multiple files when moving, copying and/or
sending them.

This method can also use MPI parallel I/O, with the same advantages and
disadvantages.

The last method is parallel MPI I/O to a single file. There are many ways
to do this, since MPI has a broad collection of functions for file handling.
One way of doing it is to use the MPI_File_set_view function to give each
process a different view in the file. In this way each process will write to
different parts of the file using the MPI_File_write function as shown in
Figure 2.5.

There can also be sequential I/O operations performed on each node in
addition to the parallel I/O, e.g., for debugging and log messages.

2.5.3 Profiling and optimizing

When dealing with sequential programs one needs only examine the al-
gorithm to predict the behaviour of the program. This is not the case with
parallel programs. It is notoriously difficult to predict the behaviour of par-
allel programs, precisely because they are executed in parallel. In addition to
the normal bugs, parallel programs are subject to performance issues, where
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you will get the expected results, but more slowly than anticipated. To find
and correct this type of issues, a profiling tool is used.

There are many tools and utilities for profiling parallel programs. The
most well-known are Upshot [Argd], AIMS [NAS], ParaGraph [HF], Traceview
[MHJ91], XPVM [Oak], XMPI [Cen] and Pablo [oI]. This is a detailed de-
scription of some of them:

Gist A proprietary tool that was developed to study log files produced on
BBN4 parallel computers.

Upshot A tool developed by Argonne National Laboratory, inspired by gist.
Upshot provides a graphical view of the log file, where all process
states can be viewed simultaneously in parallel time lines. In that way
problems can be identified by looking at the time lines and adjusting
the program so that no processes are forced to wait for other processes.
Upshot was originally developed for the X windowing system with the
Athena widget set system, but was expanded and partially rewritten
several times later.

Jumpshot In order to address the portability and maintainability issues
faced by Upshot, it has been ported to a Java version called Jump-
shot [Argb], which is in use today.

AIMS Automated Instrumentation and Monitoring System (AIMS) is a
software toolkit developed by NASA. It is a software suite with tools for
measuring and analyzing the performance of FORTRAN and C/C++
message-passing programs that uses the NX [Pie94], PVM, or MPI
communication libraries. AIMS can be used to illustrate algorithm
behavior, to help analyze program execution, and to highlight problem
areas. In other words, AIMS works much like Jumpshot.

4BBN Technologies (originally Bolt Beranek and Newman) is a high-technology com-
pany that provides research and development services.



Chapter 3
Introduction to GPUs and GPGPU

programming

“To err is human - and to blame it on a computer is even more so.”

— Robert Orben

This chapter presents the use and the intended use of graphics hardware
in the past and today. The use of GPUs for general purpose programming
and some tools and programming languages are also presented. The chapter
will cover the subjects necessary to understand the use of GPU in this master
thesis, with relevant examples. Other uses of the GPU which are not directly
relevant for this thesis are also included for completeness.

3.1 Introduction

The most widely used computational resource today is the CPU. These pro-
cessors have grown in capacity according to Moore’s law in the past 50 years.
Moore’s law states that the CPU doubles in capacity every 24 months. More
accurately it says that the complexity of integrated circuits, with respect to
minimum component cost, doubles every 24 months [Moo00]. Moore has,
however, stated that his law may soon become obsolete. While the evolution
of CPUs is slowing down, the need for computational resources is increas-
ing at a high rate. We may turn to supercomputers or clusters for these
resources, or we may turn to new alternative solutions.

One alternative that became viable ground in 1999 is the use of com-
modity off-the-shelf (COTS) graphics adapters [OLG+07], like the one seen
in Figure 3.1, for general-purpose computing. This was an effect of the
introduction of programmable graphics adapters, with the GPU as the pro-
grammable processing unit. In 1999 the current generation of GPUs already

23
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Figure 3.1: The newest generation graphics adapter from XFX with NVIDIA
technology [XFX].

surpassed the performance of contemporary CPUs, and the trend seems to
continue. One of the main reasons for this is that while the CPU uses much
of its chip for logic and cache, the transistors in the GPU’s chip are almost
dedicated to performing floating-point operations (FLOPs). It is important
to notice that the GPU only outperforms the CPU with regards to parallel
tasks. The CPU is still more effective on inherently serial tasks, e.g., text
processing. It may seem strange that the GPU is not more utilized when it
offers such massive computational power, but as we will see, this power comes
with a cost. The cost is a relatively hard programming interface, poorly port-
able code, and only single-precision representation of floating-point numbers.
However, this is a small price to pay when one considers that while Moore’s
law for CPUs describe a yearly growth rate of ∼1.4, the yearly growth rate
for GPUs have been 1.7 (pixels/second) to 2.3 (vertices/second) [OLG+07].

There are many suppliers of graphics adapters, but the two biggest act-
ors today are ATI and NVIDIA. A graphics adapter consists of the GPU,
memory, a chipset, and a BIOS, today often packaged as a PCI-Express
adapter. The chipset controls the graphics adapter and the BIOS provides
software access to the hardware. You will find the same setup on a mother-
board, with a chipset, memory (RAM), a BIOS, and a processor (CPU).

3.2 OpenGL and the graphics pipeline

To access and run programs on the GPU, we can use the Open Graphics
Language (OpenGL) [SWND05] graphics API. OpenGL is traditionally used
to render graphics, and in this thesis it will be our access point to the graphics
adapter and the GPU. Rendering is the process of generating an image from
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a model. OpenGL utilizes a graphics pipeline to perform rendering, and all
graphics data passes through this pipeline. Before the graphics pipeline is
outlined, there are some terms that need to be introduced and explained. I
will briefly explain the terms, and try to connect them to their most likely
“counterpart” in traditional CPU programming where this is possible.

State machine OpenGL is a state machine. This means that when a state
is set, it will be used until changed or unset. The current color is one such
state, so that when the color is set it will be applied to all consequent drawing,
until it is changed again. Many of the state variables in OpenGL can be set
and unset using the glEnable(SOME_STATE) and glDisable(SOME_STATE)

functions. This functionality is possible due to the data-driven nature of
OpenGL.

Vertices and fragments OpenGL draws geometric shapes like points,
lines, polygons etc. These graphics primitives are defined by special points
(e.g., the corners for polygons) called vertices (vertex in singular form). For
each defined vertex, there is also possible to supply additional information,
like the color of the vertex, the normal, the material, etc. After the primitives
have gone through the rasterization part of the graphics pipeline, they are
split up into fragments, which will eventually be what we see as pixels on
the screen.

Textures Instead of defining the color of a vertex, you may connect a
texel in a texture to the vertex. A texture can be thought of as a vector
or a matrix in the graphics adapter’s memory, usually containing an image.
Texels are point values from the texture that are connected to the vertices.
When the graphics primitives are rasterized later in the pipeline, all points
in each primitive will get values from the attached texture, and the texture
will appear as “glued onto” the primitive.

The relationship between vertices, texels, pixels and fragment is illus-
trated in Figure 3.2. This figure also demonstrates how the texturing and
rasterizing process works.

The graphics pipeline The GPU is traditionally used for rendering
graphics scenes, and it is part of a rendering pipeline as the one in Fig-
ure 3.3. In this figure we see the OpenGL graphics pipeline [Ros06] with
the vertex and fragment processors clearly marked as 1 and 2, respectively.
Most graphics APIs use a pipeline very similar to this. The vertex processor
takes vertices and topology information as input, and then calculates light-
ing and color. Next is the primitive assembly stage, where the vertices are
assembled into geometric primitives like triangles and quads. The primitives
then get clipped and projected according to the modelview and projection
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Figure 3.2: Texturing and rasterizing in the OpenGL graphics pipeline.

matrices and the current viewport settings. Then the rasterizer interpolates
per-vertex values over the primitives and breaks them down to fragments
with color values attached. The fragments are in turn sent to the fragment
processor. The fragment processor executes per-fragment operations, like
texturing. Last, fixed-functionality operations are executed on each frag-
ment before it is written to the framebuffer, which is what we see on the
screen during traditional graphics rendering. The computations performed
on the vertex and the fragment processors in this thesis are described in
more detail later.

OpenGL’s graphics pipeline and the GPU are data-driven, in contrast to
the instruction-driven CPU. This means that the GPU has a predetermined
set of operations that will be performed on any specified input data. The
CPU is not fed with data in this way, but executes a program and accesses
memory as instructed by that program.

3.3 Shader programs

Programs that are executed on the GPU are called shaders. The vertex pro-
cessor executes vertex shaders, and the fragment processor executes fragment
shaders. This section contains a simple, but complete, example of how to
program the graphics pipeline of your graphics adapter. In addition to these
shader programs, it is necessary to have an OpenGL program that initializes
the execution, uploads and compiles the shader programs, and defines input
and output. The OpenGL program is executed on the CPU, an example can
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Figure 3.3: OpenGL graphics pipeline [Ros06]. Figure courtesy of R. Rost.

varying vec4 texcoord ;

void main (void) {

texcoord = gl_MultiTexCoord0 ;

gl_Position = ftransform ();

}

Listing 3.1: Vertex shader program

be seen in Listing 5.1 in Chapter 5. The shader programs are executed on
multiple data simultaneously; this will be explained in detail later.

Vertex shader In the vertex shader you have access to the vertices spe-
cified in your main OpenGL application (the CPU application). These ver-
tices are available through the built-in attribute input gl_Vertex. Attribute
variables are per-vertex input to the vertex shader from the OpenGL pro-
gram, and there are more of them than just the vertex attribute. Another
variable named gl_MultiTexCoord0 contains the appurtenant texture co-
ordinates.

The vertex shader in Listing 3.1 does nothing more than one of the
operations from the usual fixed-function pipeline computation; the func-
tion ftransform multiplies all vertices with the current modelview matrix
(gl_ModelViewProjectionMatrix) to compute the homogeneous coordin-
ates of each vertex in clip space. The results are stored in the special output
variable gl_Position. The vertex shader must perform this computation.
Another thing worth noticing is the initialization of the varying variable
texcoord. Varying variables are interpolated and sent as read-only input
to the fragment processor and can then be accessed by the fragment shader
program. The attribute gl_MultiTexCoord0 contains the texture coordin-
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varying vec4 texcoord ;

uniform sampler2D texCurrent ;

void main (void ) {

vec4 tex = texture2D (texCurrent , texcoord .xy);

gl_FragColor = tex;

}

Listing 3.2: Fragment shader program

ates associated with the vertex coordinates and is transfered to the fragment
processor via texcoord in this shader.

Fragment shader The fragment shader has access to texture memory,
varying variables passed from the vertex shader, and some built-in special
variables.

The fragment shader in Listing 3.2 simply sets all fragments to the value
of the input texture. The texture value is fetched with the texture2D func-
tion. texCurrent is a uniform that is passed from the OpenGL application
that specifies which texture to read from, and texcoord specifies which texel
to read. Uniforms are read-only variables that can be passed to both vertex
and fragment shaders. gl_FragColor is a special output variable that sets
the color of each fragment that later is written to the framebuffer.

In addition to the already mentioned input and output variables, it is also
possible to specify constants in both vertex and fragment shaders. Constants
are declared using the const keyword.

3.3.1 The GPU

GPUs are primarily used, and intended, for rendering and are equipped with
parallel processing units. This is because graphics operations can be ex-
ecuted in parallel. The GPU logically consists of two types of processing
units, the vertex processors and the fragment processors. The vertex pro-
cessor computes the per-vertex operations and can be programmed. Vertex
transformation, normal transformation and normalization, texture coordin-
ate generation, texture coordinate transformation, lighting, and color ma-
terial application are the operations performed in the fixed pipeline by the
vertex processor. When a vertex shader is in use on the vertex processor,
it can replace all these operations, if wanted. It is not possible to let these
operations be performed by the fixed-functionality pipeline as long as a ver-
tex shader is active. However, it is not required that your vertex shader
performs all these operations. Vertex shaders can also perform many other
per-vertex operations if you want.

The operations usually performed by the fragment processor are: Oper-
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ations on interpolated values, texture access, texture application, fog effects,
and color sum. While the vertex processor handles vertices as input, the
fragment processor works on a stream of fragments. Fragments are pixels
that have not yet been written to the framebuffer, but they may also contain
more information than just the final pixel color, e.g., depth.

The intended use of the vertex and the fragment processor units is in
rendering, but as we are going to see, they can also be used in more general
purpose programming.

3.4 Graphics programming

The purpose of graphics programming is usually to present graphics on the
screen in some form. There are many uses of computer graphics, in the range
from entertainment to visualization of scientific data. Some of the main uses
are covered in this section. This section is dedicated to non-GPGPU use of
graphics hardware.

3.4.1 Game programming

The largest, single user of computer graphics today is the computer gaming
industry. This industry drives the development of new graphics techno-
logy, both software and hardware. DirectX [Mic07] and OpenGL [SWND05]
are the two most used graphics APIs. DirectX is developed by Microsoft.
OpenGL was founded by SGI, and is currently being maintained by the
OpenGL Architecture Review Board (ARB) [The07a]. ARB consists of sev-
eral of the biggest actors in computer graphics and development, for instance
3DLabs, ATI, and Apple. In the fall of 2006, the OpenGL ARB became a
part of the Khronos Group [The07b].

The graphics in the newest computer games is very computationally de-
manding, even though many techniques to lower the cost of certain graphics
operations exist. Some of these techniques include specialized hardware on
the graphics cards, and effective software algorithms. The demands from
modern computer games have made the GPUs today’s most powerful com-
putational hardware relative to price [OLG+07].

3.4.2 Visualization

Visualization is the process of taking raw scientific data, e.g., values collected
with sonar or MR, and processing them for visual presentation. The goal
is to convey as much of the information from the raw data as possible, in
an effective way. Since the short-term picture memory in the human brain
is very brief, it is of great advantage if the visualization can be made inter-
active. This obviously requires heavy computations to be carried out fast,
especially since the datasets often are big and also can be 3-dimensional.
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Writing effective shader programs for the GPU is one way of coping with
these demands.

3.4.3 Movie industry

The movie industry is a heavy consumer of computer graphics, for special
effects in movies. Some movies contain more computer graphics than ac-
tual film, and can have all-virtual characters. The people responsible for
creating characters and special effects using computer graphics are referred
to as artists. They are often not that familiar with the technical aspects of
computer graphics; instead they rely on programs like 3D Studio Max [Auta]
and Maya [Autb] to render their drawings and films. 3D Studio Max and
similar programs often generate shaders for use on the GPU. Pixar’s Ren-
derMan [Ups89] was one of the first offline renderers that utilized shader
programs.

Most of the computer graphics in movies, however, is computed offline.
Until recently it has been computed by the CPU and not the graphics hard-
ware. The attitude towards using graphics hardware in rendering is chan-
ging, and as the movie industry starts to demand more powerful graphics
hardware, this will further push the development.

3.5 GPU vs CPU

The GPU is architecturally quite different from the CPU. Today’s GPUs have
multiple pipelines (128 scalar processors on NVIDIA GeForce 8800 [NVIb])
and a huge memory bandwidth (103,7 GB/s on NVIDIA GeForce 8800 [NVIb]).
GPUs are one of the most, if not the most, computationally effective pro-
cessors currently available in the mass market, with over 384 million tran-
sistors built on a 90-nanometer fabrication process [OLG+07]. This makes
the GPU an extremely powerful parallel processing unit. The memory is
also designed differently than on CPUs. The GPU allocates memory in 2D,
while the CPU allocates memory in only one dimension.

Figure 3.4 shows a comparison of the floating-point performance of the
GPU and the CPU from the period 2000-2008. As this figure shows, the
GPUs have outperformed the CPU increasingly over these four years, and
this development is likely to continue. Although GPUs outperform CPUs in
many computational experiments like the one shown in Figure 3.4, the CPU
will still in most cases beat the GPU when the program is of a certain size
and complexity that demands a large instruction set from the processor to
be executed efficiently. This is because the CPU has a relative large cache
memory and a much broader set of instructions than the GPU. This is, how-
ever, not necessarily a bad thing since it means that the GPU’s transistors
are almost exclusively used for floating point operations. That is, GPUs
will outperform CPUs in number of floating-point operations per second
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Figure 3.4: The programmable floating-point performance of GPUs (meas-
uring one multiply-add instruction as 2 floating-point operations) compared
to CPUs [OLG+07]. Figure courtesy of J. D. Owens.

(FLOPS), but the CPU will in most cases handle advanced operations like
branching better than the GPU. Therefore, one should avoid constructions
like if-tests, etc., when writing shaders for the GPU. The key to high effi-
ciency in a GPU cluster comes from the use of CPU and the GPU, such that
each processor type performs the subtasks for which it is most efficient.

3.6 GPGPU programming

Writing programs, or shaders, for GPUs is not a straight-forward process.
In traditional CPU-programming you have a variety of different program-
ming languages available to you, both high-level like Java and low-level like
assembly. CPU-programmers also have a magnitude of highly developed
compilers, profilers and debugging tools available. For GPU-programmers
this is not the case. Until recently, GPU-programmers had to use assembly
or (relatively) low-level shading languages made for graphics programming
to implement their general purpose programs. Today there are several new
languages available, including high-level languages made for GPGPU pro-
gramming. Many of these tools and languages are described in Sections 3.6.4
and 3.6.5. Even with these new programming languages and tools, you are
usually forced to think unconventionally when writing shaders for the GPU.

Graphics hardware vendors also make it difficult to write compilers and
other tools for GPUs since the exact specifications of the hardware often are
well-kept business secrets.
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3.6.1 Parallel problems

Parallel problems are problems that can be divided into pieces which are
possible to solve simultaneously and independently of each other, as intro-
duced in Chapter 2. Parallel programs can use several processors in parallel
to solve a single problem. A subset of this programming model is known
as stream programming, and the GPU can be explained according to this
model: The vertex- and the fragment shaders are known as kernels in stream
programming terms. The vertex shader takes a stream of vertices as input,
and the fragment shader a stream of fragments. The kernels process the
data in the stream in an arbitrary order. There are several processors on the
graphics adapter, and streams are processed in parallel.

3.6.2 The programming model

When a program is executed on the CPU, your code is executed one instruc-
tion at a time in a sequential order. The GPU on the other hand, executes
in a parallel fashion.

In a scene there are almost always many more fragments than vertices,
and because of this the fragment processor is more powerful than the vertex
processor. Based on this, most GPGPU-programs use the fragment pro-
cessor as the main computational engine. The newest generation of graphics
adapters feature unified shaders [Bly06], where each processor is capable of
executing both vertex- and fragment-shader programs. In this model, the
graphics adapter will decide how many processors that will process vertices,
and how many that will process fragments. However, fragment-shaders will
still be preferred, because they are more suitable for GPGPU-programming.
A typical GPGPU program is structured as follows [OLG+05]:

1. The application is segmented into independent parallel sections. Each
of these sections can be considered a kernel, and is implemented as a
fragment program, or possible as a vertex program. The input and
output are data arrays stored as textures in the GPU memory. These
data arrays can be considered as the streams. The kernels are then
executed on each stream in parallel.

2. To invoke a kernel, the range (output to the framebuffer) of the compu-
tation must be specified by passing vertices to the GPU. Typically this
is a quadrilateral oriented parallel to the image plane, sized to cover
a rectangular region of pixels matching the desired size of the output
array.

3. The rasterizer then generates a fragment for every pixel location in the
input quad.



3.6 GPGPU programming 33

4. Each of the generated fragments is then processed by the active frag-
ment program. The fragment program can read from arbitrary global
memory locations (texture reads), but can only write to locations cor-
responding to the fragment in the framebuffer as determined by the
rasterizer.

The domain (input texture) for the computation is specified for each
input texture (stream) by specifying texture coordinates at each of the
input vertices, which are then interpolated at each generated fragment.
Texture coordinates can be specified independently for each input tex-
ture, and can also be computed on the fly in the fragment program,
allowing arbitrary memory addressing.

5. The output from the fragment program is a value or a vector of values
per fragment. This may be your final output, or they may be stored
in an offscreen auxiliary buffer, and used in additional computations.
This is referred to as multipass computation. Multipassing allows for
applications of arbitrary complexity.

3.6.3 Low-level languages

GPU programming started out with assembly-level programs. The introduc-
tion of programmable graphics hardware and an assembly language for the
vertex- and the fragment processor made it possible to program for general
purposes on GPUs. The assembly language was used to specify programs to
run on each vertex or each fragment. Later, several new languages and tools
have arrived. Some of them are described in the following section.

3.6.4 High-level languages

The OpenGL Shading Language (GLSL) [Ros06] is the most used language
for programming shader programs on modern GPUs. The choice of language,
depends on the type of application, the degree of control you need over GPU-
operations, and which languages the programmer is accustomed to.

NVIDIA has developed a language for GPU-programming named C for
graphics, or Cg [MGAK03]. Their goal was to make a high performance
language similar to C that was easy to program, portable, and with complete
support for hardware functionality. They have achieved the last point by
introducing profiles. One profile fits one graphics processor, and ensures
that you do not use any functionality not supported by the hardware by
giving you access to only a subset of Cg. It should be mentioned, however,
that Cg is not developed for GPGPU, but for graphics shader development.

High Level Shading Language (HLSL) [Mic05a] is Microsoft’s shading
language for their DirectX API, and a counterpart to GLSL. It has a syntax
very similar to Cg. Since OpenGL is used in this master thesis, GLSL will
be the shading language of choice.
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In the past few years several new languages have been developed. I will
briefly describe some of them here. Brook [BFH+04b] is a system for general-
purpose computation on GPUs. It consists of a compiler and a runtime sys-
tem. Brook is built on the stream-processing principals, defining a program
as a kernel and the dataset as a stream. Brook is also the code-base for
PeakStream [Pea].

Glift [LSK+06] is a collection of data structures for use in GPGPU-
programming. The great advantage with using Glift is that you can separate
data structures from logic, something that has been and still is a problem
for GPGPU-programmers. When the actual logics of the shader program is
separated from the data structure, it makes the program far much easier to
modify and develop further. Each structure in Glift has a Cg and a C++-
implementation, and hence does not introduce yet another language or tool.

Ashli [PB03] is a shading language interface which makes it easier for
artists to access shader functionality more directly, and not just through
shaders generated by different 3D-programs. Ashli takes code written or gen-
erated in RenderMan Shading Language, Maya Shading Network or 3DStu-
dio Max Standard Materials as input and outputs DirectX 9.0 Vertex and
Pixel Shader version 2.0 and OpenGL ARB_{vertex,fragment}_programs.
It also outputs shader formals describing parameters.

Shallows [SIN05] is a GPGPU interface developed at SINTEF. It allows
easy access to GPU-functionality through a C++-library, like writing to
offscreen buffers and compiling and running shader programs.

3.6.5 Tools

There are a few development tools and debuggers for the GPU, and in this
section I will mention some of the most useful ones.

gDEBugger [Gra05] and GLIntercept [Tre05] are tools for debugging
OpenGL programs. Both are able to capture and log the OpenGL state
from a program. With gDEBugger it is possible to set breakpoints and
watch OpenGL state variables at runtime, but debugging of shaders is not
supported. GLIntercept provides runtime shader editing, but debugging of
shaders is not supported.

The Microsoft Shader Debugger [Mic05c] is integrated into Visual Studio
IDE [Mic05b] and provides watches for runtime variables and breakpoints
for shaders. The catch is that the shaders must be run in software emu-
lation, and not on the actual hardware. In contrast, the Apple OpenGL
Shader Builder [App05] can run shaders on hardware, but is designed for
writing shaders for rendering and not for GPGPU. As a result, the shaders
are not run in the context of the application, but in a separate environ-
ment designed to help shader writing. This prohibits debugging of advanced
GPGPU-programs since you do not have the degree of control needed, e.g.,
over OpenGL-GLSL interaction.
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The Image Debugger [Bax05] is a tool that provides support for shader
visualization in the form of a printf-like function over a region of memory.
The region of memory gets mapped to a display window and is visualized
as an image. This is often a very useful form of debugging as you can see
the results from a computation directly. The Image Debugger does not have
any special support for shader programs, so the programmer must map the
output from a shader to an output buffer for visualization.

The Shadesmith Fragment Program Debugger [PS03] provides printf-
style debugging, and also basic shader debugging functionality like break-
points and stepping. Shadesmith decomposes a fragment program into mul-
tiple programs, one for each instruction, and then adds an output instruc-
tion to each of these smaller programs. Shadesmith automates the printf-
debugging by running the appropriate shader for the register that one wants
to track, and then draws the output to an image window.

PyShallows is a small and simple tool written in Python and C++/OpenGL.
It is an GUI-application with two text fields where the vertex shader pro-
gram goes in one field and the fragment shader program in the other. It
then visualizes the results of the shaders on some chosen OpenGL object, or
prints out the compilation errors if the shaders fail to compile. It is a project
of mine, and is currently under development. It is presented in Appendix C.

3.6.6 Problems

Since the graphics hardware is built for a specific use, it puts some restraints
on GPGPU-programmers. For instance, there is currently no support for
scatter operations i.e., assignments of type A[i] = x for an arbitrary i; some
graphics adapters have a limit on the number of instructions you can have
in your shader program (not the newer cards); and reading and writing to
the same texture memory simultaneously only works under very restricted
conditions, since it is an undefined operation. Limited resources on the
graphics adapter such as too little texture memory can also be a problem
when running large simulations and other programs requiring extended use
of memory. This can be solved by virtualization of hardware resources.
Virtualization implies that the computation executed in several passes, also
known as multipass. This implies global management of application data and
hardware, since the program will have to generate different shader programs
for each pass. Without this virtualization, a complex program using more
than the available resources will abort at runtime.

Branching is supported by current GPUs. However, since current vertex
processors and fragment processors are SIMD, the use of branching will slow
down your program significantly. This is because a branch will force many
processors to execute both sides of the branch, if both branches are taken
by different fragments. GPUs are currently missing support for integers and
bit operands, which include operations such as bit-shifts and bitwise logical
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operations like AND, OR, XOR and NOT. This makes the GPU ill-suited
for some computationally intense tasks such as cryptography, that involve
heavy integer-calculations. GPUs now have 32-bit single-precision, but are
missing 64-bit double-precision. NVIDIA have disclosed, however, that they
plan to have support for double-precision in late 2007.

3.7 Conclusions

The demand for powerful computational engines are ever-increasing, espe-
cially by the need for large-scale simulations. Traditionally the CPU and
supercomputers have been used for this, but now there exists an inexpensive
alternative. Today, GPUs actually give you most computational power for
the dollar [OLG+07]. Many simulations are of a parallel nature and thus
well-suited for computation on GPUs.

Writing shader programs for the GPU, however, is not a trivial process.
It involves dividing your problem in such a way that it can be solved in
parallel, figuring out how to handle dataset input and output, and finally
writing the shader or shaders in a language that can compiled for the GPU.

The biggest obstacle in GPGPU-programming is the unusual program-
ming model as described before. But one cannot ignore the potential gain
in utilizing the GPU for computation. The next generation of hardware
will probably have increased generality and will certainly have even greater
performance.

3.7.1 The future

Graphic adapters and GPUs are being developed at a high rate and new
adapters are released sometimes as often as 3-4 times a year. The graphics
hardware of today is already fast, but is also accelerating. This could mean
that GPUs will become an important computational resource in near future,
as it is already a fast-growing field of interest.

In Shader Model 4.0, a new stage has been added to the rendering
pipeline, the geometry stage [Bly06]. This stage allows you to write shaders
that manipulate assembled primitives. One of the most anticipated feature
are probably the arrival of double-precision floating-point accuracy, but this
will not be available for some time yet. In addition to further development
on existing hardware and software, we also have some new additions:

• NVIDIA has released a new technology and SDK called Compute Uni-
fied Device Architecture (CUDA) [NVIa]. CUDA is made specifically
for developing GPGPU-applications.

• IBM has released a new chip; the Cell Broadband Engine (Cell BE) [IBM],
with 64-bit Power Architecture technology. The Cell BE is directed to-
ward distributed processing. The chip consists of one or more Power
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Processor Elements (PPEs) and multiple high-performance SIMD Syn-
ergistic Processor Elements (SPEs).

• AMD is also working on stream processing. They have founded The
Torrenza Initiative [ATIb], which will be working towards finding a
common “ecosystem” for hardware providers. Torrenza was conceived
to enable a tight coupling of accelerator coprocessors and other various
option cards to AMD64 technology-based systems.

• NVIDIA has released a new platform for high-performance comput-
ing named Tesla [NVIc]. Tesla is a dedicated, high-performance GPU
computing solution.

3.7.2 Further reading and resources

http://www.gpgpu.org is a fine site for news, articles and papers in the field
of GPGPU programming.

http://www.opengl.org is home to the OpenGL graphics API. Here you
will find everything related to OpenGL.

http://www.microsoft.com/directx is home to Microsoft’s DirectX graph-
ics API.

http://www.nvidia.com and http://www.ati.com are the two largest man-
ufacturers of graphics adapters today.

A Survey of General-Purpose Computation on Graphics Hardware, the
State of the Art report on GPGPU from Eurographics 2005 [OLG+05].

A Survey of General-Purpose Computation on Graphics Hardware, the
State of the Art report on GPGPU from Computer Graphics Forum 2007 [OLG+07].





Chapter 4
Parallel programming using the

GPU

““The time has come,” the Walrus said,
“to talk of many things.””

— L. Carrol

Chapters 2 and 3 introduced two concepts; the parallel programming
paradigm and general-purpose computation on GPUs (GPGPU). In this
chapter we will try to connect these two, and use both GPGPU and paral-
lel programming together in the same application. In reality, this gives us
two layers of parallelism; the first one in the MPI application, and then a
second layer is added when each node uses the GPU for further execution of
the application. The main topics of this chapter will be how to best com-
bine these two layers to achieve the most efficient and clean application, and
how to best test and profile such an application. This is a complex and new
research-area, with little or no existing material to build on. There is a great
deal of published material on parallel programming, and also quite a lot on
GPGPU programming, but almost nothing on combining these two. How-
ever, Fan et al. at Stony Brook University have written “GPU Cluster for
High Performance Computing” [FQKYS04], where they use a GPU cluster
to do flow simulation using the lattice Boltzmann model (LBM). Figure 4.1
shows the GPU cluster used for this thesis, and gives an overview of what a
GPU cluster consists of from a hardware perspective.

4.1 Models

The top layer of the parallel GPGPU-programming model is standard paral-
lel programming, using for example MPI, and the second layer is the graphics

39



40 Parallel programming using the GPU

Switch

CPU

PCI-Express

Running the

shader

GPU

of the main program

Running a process

MPI

Node 2

MPIMPI

Running a process

of the main program

PCI-Express

Running the

shader

GPU

CPU

Node 1

Running a process

of the main program

PCI-Express

Running the

shader

GPU

CPU

Node 3

Running a process

of the main program

PCI-Express

Running the

shader

GPU

CPU

Node 4

RUNNING 4 PROCESSES

100 Mbps

Figure 4.1: Overview of a GPU cluster.

programming model of the GPU. A very likely scenario is that MPI is used
for domain decomposition and distribution, the GPUs solve some problem
over the sub-domains, and MPI is then used to collect data or to recom-
pose the original domain again. It is important to minimize communication
between processes, as this is a costly task. This can be achieved by running
multiple time-steps on each node before sending border values to neighbours,
as detailed in Section 4.2.

Another consideration is how you handle the simulation data from each
node. Do you collect data from each node after each time-step, or for each
20th time-step, or maybe not before the simulation is completed? Storage
of simulation data is also important. When simulating over a very large
grid with perhaps ten quantities to save for each time step, large amounts of
data are generated. When and how these data are saved becomes important.
They can be kept in memory until the end of the simulation, or they can be
written to file on the fly, either on the local node or on a master node. How
this is handled depends mostly on the available hardware. A cluster with
little RAM needs to write data to disk relatively often to avoid running out of
memory, and a cluster with a slow network is better off storing data on each
node’s harddrive instead of using the slow network connection to send all
data to a master node. One needs to consider what is practical against what
is effective. If simulation data are saved on each node during the execution
of the simulation, it is necessary to have another application that makes use
of the data. This application can collect all the data and write them to a
single file, or visualize them directly. This all depends on how the data are
intended used. Maybe it is only the final state that is interesting. In that
case, it would be a simple task to collect the last time-step from each node
and put them together to form the global domain again.

A more or less generic model of parallel applications that solves some
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time-dependent equation or equations over some domain utilizing GPUs on
each node, can be as follows:

1. Initialize MPI.

2. Set up an OpenGL context on each node.

3. Decompose the problem and distribute description of local domains to
each node (e.g., spatial and temporal grid sizes, number of time steps,
domain dimensions etc.).

4. Upload and compile shader program(s) to the GPU, set output render
texture(s) and framebuffer(s), and set uniforms if there are any.

5. Make and upload textures containing initial conditions.

6. Run shader(s) to solve the local problem on each node.

7. Read back results from render texture(s) as needed.

8. Communicate with other processes and nodes as needed.

9. Save simulation data to file or memory as needed throughout the exe-
cution.

10. Collect data to main node, close all open files, free allocated memory,
and clean up.

11. Finalize MPI.

This is also a slightly abstracted flow-chart of the application written for this
thesis.

4.2 Ghost Cell Expansion

Ghost Cell Expansion [DH01] (GCE) is a method used to minimize com-
munication in a parallel system solving PDEs. The idea is to add an ex-
tra number of ghost cells e in addition to the ghost cells L needed by the
PDE scheme. This allows your PDE solver to perform e time steps on each
sub-domain before it is necessary to exchange data with neighbouring sub-
domains. It is important to notice that the reason why we can use GCE is
the fact that the equations used in this thesis have a finite speed of propaga-
tion, and the information is displaced by a known number of spatial grid
cells per time-step. Recall equation (1.1) from Chapter 1, and assume that
I = O = M = N = 1, i.e.:

un+1
i,j = F (un

i−1,j , ..., u
n
i+1,j , u

n
i,j−1, ..., u

n
i,j+1)
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nx_i

ny_j

Figure 4.2: Four sub-domains (green) with expanded ghost cells (red) and
regular PDE scheme ghost cells (blue).

Such a scheme requires only one ghost cell. One example of such a scheme is
the standards finite-difference method for the heat equation ut = uxx + uyy.

In Figure 4.2 the computational scheme requires one ghost cell, and there
are added two additional ghost cells, so we have that e = 2 and L = 1. This
allows for three time steps to be performed before transferring data between
sub-domains. If the original sub-domain has size N , the total size of the
domain in 1D then becomes N +2 · (L+ e). In this thesis, GCE will have an
additional positive effect: By making each process able to perform several
time-steps without inter-node communication, we also reduces readback from
the GPU, since this only occurs in connection with exchange of ghost cells.

Figure 4.3(a) and 4.3(b) shows how data are transfered between neigh-
bouring sub-domains in the y- and x-direction, respectively. This is per-
formed every mod(n, e + L) time steps, where n is the current time-step.
The sub-domains that have one or two global boundaries are treated in the
same way as the internal sub-domains, with the obvious exception that the
global boundaries are left untouched. When using MPI’s MPI_Cart_shift

to identify neighbouring sub-domains, no extra programming is required to
achieve this. One important thing to notice here is that the corner areas of
each grid is implicitly transfered correctly. This is a result of always doing
the vertical exchange before the horizontal exchange. Doing the horizontal
exchange before the vertical exchange will also work, as long as its done
consistently throughout the simulation. This method was first presented by
Ding and Ye [DH01], and it saves four explicit ghost cell exchanges in a two-
dimensional Cartesian grid. Furthermore, if the domain were to be extended
to three spatial dimensions, it would require as much as 26 different ghost-
cell transfers between neighbouring sub-domains. This makes the savings
due to implicit corner transfers even more attractive.
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(a) (b)

Figure 4.3: Exchange of ghostcell data between neighbouring sub-domains
located on different nodes: (a) Ghost cell exchange in vertical directions. (b)
Ghost cell exchange in horizontal directions.

Rojas and Hoemmen [RH04] have measured communication savings of
utilizing GCE for domain decompositions of finite-difference grids. They
concluded that there are considerable savings in one and two spatial dimen-
sions, although it was hard to extrapolate a clear trend from the results,
which varied from platform to platform. The specific savings obtained in
this thesis can be reviewed in Chapter 6.

4.3 Parallel algorithm – Communication time

It is vital to minimize communication, especially if your cluster is connected
through a slow network, e.g., Ethernet. We will examine some communica-
tion models related to the application written for this thesis.

The total message volume for a two-dimensional decomposition for each
update of the ghost cells per sub-domain is:

vold = (nx + 2L) · (ny + 2L) − nx · ny = 2L · (nx + ny + 2L),

while the message volume for each time-step using the GCE method is:

vnew = (2L + 2e) · (nx + ny + 2L + 2e)/(e + L)

We divide by e + L since ghost cells only are updated every e + L time-
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step. If we compare these volumes, we get:

vnew

vold

=
(2L + 2e) · (nx + ny + 2L + 2e)

2L · (nx + ny + 2L) · (e + L)
≃ L + e

L(e + L)

This is true because in most cases we will have nx + ny ≫ L + e. The
total communication volume per exchange will of course increase when using
this method.

In addition to the message volume, we also need to investigate the com-
munication time for updating the ghost cells in each time-step, tcomm. A
simple, generic communication time model may look like this:

tcomm(n) = T +
v

B
,

where tcomm is the total time used for communication, v is the message
volume, and T is the startup overhead of setting up the communication
(opening a socket etc.), i.e., the latency. B is the bandwidth of the net-
work. Without GCE this gives us the following communication time for our
problem:

told =
2L · (nx + ny + 2L)

B
+ 4T .

With the new method, we remember that ghost cell updates only occurs
every e + 1 time-step, and that gives us this model:

tnew =

(

(2L + 2e) · (nx + ny + 2L + 2e)

B
+ 4T

)

/(e + L).

Suppose we have a global domain of size 1024 × 1024, a scheme where
L = 1, and that we are using 50 ghost cells. If we ignore the latency this
gives us the following (scaled) numbers told = 41 and tnew = 22 on a fast
Ethernet (100 Mbit) network. When we at the same time realize that the
network latency cost of tnew is 51 times smaller than that of told, we would
expect significant savings. The speedups recorded by using GCE for this
thesis can be seen in Section 6.2 in Chapter 6.

4.4 Upload and readback of textures

One of the possible bottlenecks issued in this thesis is the readback from
the GPU. Since the traditional use of the GPU, namely for gaming, does
not require fast readback, it has not been a priority for the card manufac-
turers. In fact, most computer games do not use readback at all, and this
has resulted in a very slow readback on GPUs [Göd06]. Uploading of tex-
tures on the other hand, is much faster, since this is done in most computer
games. This means that not only is it important to minimize communic-
ation between nodes, but also between the GPU and the CPU, and then
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especially readback. One possible extension that could hide some of the cost
of uploading and reading back textures and network communication, is asyn-
chronous upload and readback. This is possible since a large portion of the
computational domain can be evolved without using the boundary and ghost
cell values, allowing for uploading and readback while computing a reduced
computational domain, and then computing the remaining grid cells after
the ghost cell exchange has been completed.

4.5 Profiling

The type of application written in this thesis is somewhat difficult to debug
and profile. The combination of parallel execution and multiple program-
ming languages is the reasons for this. For debugging C++ code, the Visual
Studio 8 debugger has been used. The parallel parts of the code have also
been debugged in Visual Studio by running the program as a single pro-
cess. Trial and error has also been necessary to debug communication errors
between multiple processes. The shader programs have been debugged by
printing out compile errors using the Shallows [SIN05] library, and manually
by trial and error. Profiling of the parallel execution has been done with the
Jumpshot application described in Chapter 2. A screen shot of Jumpshot
in action can be seen in Figure 4.4. Each bar in the figure represents the
timeline of one process. By examining the states of the different processes
throughout the execution one can identify possible idle periods in a process
or a group of processes. This makes it much easier to find bottlenecks in the
parallel algorithm.
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Figure 4.4: Jumpshot profiling tool.



Chapter 5
Using the GPU to solve systems of

hyperbolic PDEs

“It is impossible to exaggerate the extent to which modern applied
mathematics has been shaped and fueled by the general availability of fast

computers with large memories. Their impact on mathematics, both applied
and pure, is comparable to the role of the telescopes in astronomy and

microscopes in biology.”

— Peter Laxa, Siam Rev. Vol. 31 No. 4

aPeter Lax was awarded the Abel Prize in 2005.

This chapter describes how the equations presented in Section 1.3 in
Chapter 1 are simulated on a GPU cluster. The chapter is divided into two
parts: The first part contains general information about how to build a GPU
cluster. The last part discusses the software and the algorithms used to solve
the three hyperbolic PDEs.

5.1 Hardware

We previously discussed that there are many types of parallel systems. Some
classifications are based on hardware, some on network, and others on soft-
ware. While some parallel technologies are closely related to the underlying
hardware, the MPI package does not have this relation. A cluster that will
run MPI-applications can be assembled using ordinary desktop computers,
and connected through a regular Ethernet network. The hardware on each
node will, of course, have a direct influence on how the cluster performs as
a whole. There are, however, no special specifications needed to allow exe-
cution of parallel programs. Each node needs the standard components; a
CPU, a motherboard, memory, a hard drive, and a network adapter. You

47
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Table 5.1: Price table for a gigabit node with and without graphics adapter.

Component Description Price

CPU Intel Pentium 4 641 3.2GHz Socket
LGA775, 2MB, BOXED w/fan

750 NOK

Memory Crucial DDR2 PC4200 2048MB CL4
Kit w/two matched DDR2 PC4200
1024MB CL4

1095 NOK

Motherboard ECS P965T-A, P965, Socket-775,
SATAII, GbLAN, DDR2, ATX, 2x
PCI-Ex16

729 NOK

Hard drive Samsung SpinPoint T166 500GB
SATA2 16MB 7200RPM

1150 NOK

Network adapter Built-in gigabit LAN on motherboard –

Graphics adapter XFX GeForce 7900GS 525M 256MB
GDDR3, XT-X, PCI-Express,
525/1550 Mhz, 2x DVI

1699 NOK

Sum – 5423 NOK
Sum w/o gfx adapter – 3724 NOK

Table 5.2: Price table for gigabit network components for 16-nodes cluster.

Component Description Price

Switch GB SMC EZ Switch GS16 16P gigabit 1895 NOK

Cables Patch cable UTP CAT 5E Grey 10 m
RJ-45/RJ-45, AWG24

109 NOK × 16
= 1744 NOK

Sum for a 16-nodes cluster 3639 NOK

may also need some sort of removable storage drive, like a CD-ROM or USB-
pen for installation purposes. Table 5.1 shows a typical node, with prices
collected from a Norwegian web shop [Kom]. In large quantities, each node
would probably cost even less than this. This is not the configuration of
the GPU-nodes used for benchmarking in this thesis, but only an example
chosen with regards to price and efficiency to prove the attractive FLOPS/-
dollar ratio of a GPU cluster. In addition to the nodes, the other essential
part of the cluster is the network that binds the nodes together. Some prices
and specifications are shown in Table 5.2. Altogether, this gives a total price
of 90407 NOK for a 16-node gigabit cluster. Furthermore, we will examine
what components are important for good performance of our application,
and the reasons why.

The most important factor is the network, since this is almost always
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the limiting factor, and because fast communication between nodes are vi-
tal. The second most important components for performance are the CPU
and the graphics adapter, since these parts will be performing the computa-
tions. RAM and harddrive are important for storing simulation data. Dif-
ferent methods for storing simulation data were discussed in Section 2.5.2 in
Chapter 2, and different hardware configurations should be carefully chosen
with respect to the implementation. For instance, if data are to be stored
on one single node, this node will need a very large harddrive and probably
also a large amount of RAM. If the data are to be saved on each node, every
node will need a relatively large harddrive.

One major advantage with GPU clusters is that they are very inexpensive
compared to traditional clusters with regards to FLOPS per dollar. The node
in Table 5.1 has a theoretical capacity of 24.6 GFLOPS [Gee05], but with
the added FLOPS capacity of the graphics adapter (144 GLOPS [Com]) we
get over 500% increase in efficiency spending only 1699 NOK extra (which is
less than 50% increase in price). Harvesting these extra FLOPS to the full
extent is, however, not a straightforward task, as this thesis demonstrates.
It should also be noted that these numbers are theoretical, and as we will see
there are many other factors that will have an impact on the performance
of the GPU cluster. However, they are very encouraging for further research
into possible uses of the GPU. The costs per FLOP for the CPU- and the
GPU-version of the cluster presented here are 160.5 NOK and 33.5 NOK,
respectively.

5.2 Application

In this section we will examine the application that has been written for
this master thesis. It is written in C++ using MPICH2 for message passing
between processes and nodes. GLSL is used in the shader programs. The
Shallows library [SIN05] is also used for setting up a GPGPU-programming
environment. In addition to standard C++, the STL library and the Boost
C++ libraries [Boo] have also been used. All code is compiled with the
Microsoft VS 8 C++ compiler, cl.exe. The other software and languages
used, have already been described in Chapters 2 and 3. This includes MPI-2,
OpenGL, and GLSL.

Boost Boost is a large C++ library that has a broad variety of uses.
In this application, shared pointers is the only class used. Shared pointers
feature atomic reference counting and automatic deletion of the object when
no more shared_ptrs are pointing to it.
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5.2.1 Domain decomposition

The application in this thesis allows for an arbitrary decomposition of a
random rectangular grid in two spatial dimensions. To achieve this, the
MPI_Cart-class of MPI-functions is used:

1. MPI_Dims_create calculates the dimensions of the process grid based
on the number of processes available, and what spatial dimension we
want the grid to have.

2. MPI_Cart_create creates a new communicator with the nodes distrib-
uted according to the dimensions calculated in Step 1.

3. MPI_Cart_map makes each process aware of its own rank in the new
communicator.

4. MPI_Cart_coords fetches the coordinates of the process in the new
communicator, based on the position of the process in the two-dimensional
grid of processes.

In this thesis the initial conditions of each sub-domain are set using
simple if-tests on the process rank, after the logical distribution of the global
domain. If the simulation is based on some measured initial condition data,
one must also transfer those data to the appropriate sub-domains after the
global domain has been decomposed. Figure 1.2 in Chapter 1 shows an
example of a two-dimensional domain decomposition. The sub-domains do
not need to be squares, but they will always be rectangular when using the
algorithm described above.

5.2.2 Domain recomposition

In the application written for this thesis the sub-domains are not recomposed
into the original domain before the simulation results are to be visualized.
The visualization application reads each sub-domain from file and places
it correctly in the global domain, and in the correct time-step. The visu-
alization application is covered in Section 6.1.2 in Chapter 6. Figure 5.1
illustrates the domain recomposition process.

5.2.3 Shaders

The background material on shader programs can be found in Chapter 3,
and this section will cover implementation specific details. A description of
the shaders used to solve the linear wave equation is included in Section 5.3.
The shaders for the shallow-water equations and the Euler equations will
not be described in detail; however, the two shaders used to simulate the
shallow-water equations are included in Appendix B. All shaders used for
the Euler equations are written at SINTEF by Hagen et al. [HHHL07].
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...

Sub-domain 1 Sub-domain 2 Sub-domain 3 Sub-domain 4

Time-step 0 Time-step 1

...

Sub-domain 1

t = 0

t = 1

t = 2

t = 3

...
..
.

Global domain

Figure 5.1: Domain recomposition from saved simulation data. The simu-
lation data are saved in four files, one file for each of the four channels, R,
G, B and A. Each file, and each channel, contains one quantity. All files are
recomposed like this figure illustrates, before the visualization process can
start. The time-steps of the simulation is organized in ascending order in
each file, and within each time-step we have all the sub-domains of the global
domain, also organized in ascending order. This recomposition is similar for
each file.
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1 // declare variables

boost:: shared_ptr <shallows :: OffScreenBuffer > fb;

boost:: shared_ptr <shallows :: GLProgram > shader;

boost:: shared_ptr <shallows :: RenderTexture2D > rt;

5
// initialize variables

int nx=10, ny =10;

shallows :: init_shallows ();

fb.reset(new OffScreenBuffer (nx , ny ));

10 rt=fb -> createRenderTexture2D ();

shader.reset( new GLProgram );

// load shader from file and set input/output

shader -> useNormalizedTexCoords();

15 shader -> readFile ("C:/ shaders /example.shader");

shader -> setFrameBuffer (fb);

shader -> setParam2f ("dXY", 1.0/ nx , 1.0/ ny);

shader -> setInputTexture ("someLabelInShader ", someTexture );

shader -> setOutputTarget ( 0, rt );

20
// run the shader

shader ->run ();

Listing 5.1: A Shallows example

One important thing to notice is that the three different equations have
different number of unknowns; the linear wave equation has one, the shallow-
water equations three, and the Euler equations four. Since the GPU operates
on vectors of length four, one would expect a much higher speedup for the
Euler equations, than for the linear wave equation. However, it is possible
to pack several unknowns of the same variable into one fragment, and this
is discussed in Section 7.1 in Chapter 7.

Shallows has been used in my application as a layer on top of OpenGL.
Some places it was easier to use OpenGL and GLSL directly, to get the
degree of control I wanted, but in most cases Shallows proved to be a fast
and easy way of performing GPGPU tasks. It was primarily used for easy
texture- and shader handling throughout my application.

To compile, load, and run a shader with Shallows, it is sufficient to
execute the code in Listing 5.1. For this example to work, it is necessary to
include the Shallows classes used, and the Boost library. The example code
will read its input from someTexture and write the results to rt.

5.3 The linear test-case

We will now present and examine the test-cases considered, starting with
the linear wave equation. In two spatial dimensions the linear wave equation
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∆y

∆x

Figure 5.2: The computational molecule for the linear wave equation in 2D.

can be discretized as:

un+1
i,j = ∆t2

(

un
i+1,j − 2un

i,j + un
i−1,j

∆x2
+

un
i,j+1 − 2un

i,j + un
i,j−1

∆y2

)

+ 2un
i,j − un−1

i,j , (5.1)

where un+1
i,j ≈ u(i∆x, j∆y, n∆t).

Equation (5.1) is derived from a higher-order (second-order) approxima-
tion of the derivatives, either by using the Taylor series (5.2) directly, or by
combining a forward (5.3) and a backward (5.4) approximation.

f(x ± h) ≈ f(x) ± hf ′(x) +
h2

2
f ′′(x) ± h3

6
f (3)(x) + O(h4) (5.2)

f ′(x) ≈ f(x + h) − f(x)

h
(5.3)

f ′(x) ≈ f(x) − f(x − h)

h
(5.4)

The computational molecule for the linear wave equation in two spatial
dimensions is illustrated in Figure 5.2. The white-colored values are taken
from the current time step, un

i,j, while the red value is from both the current

and the previous time step, un−1
i,j .

Listing 5.2 shows the full GLSL source code of the shader used to solve
the linear wave equation. Line 1 and 21 shows how to tell Shallows which is
the vertex shader and which is the fragment shader. texcoord holds the tex-
ture coordinates, which is interpolated over the rendering area. texCurrent
is the texture containing the current time-step and texLast holds the previ-
ous time-step. dXY is a vector of size two which holds the spatial resolution
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1 [Fragment shader]

varying vec4 texcoord ;

5 uniform sampler2D texCurrent ;

uniform sampler2D texLast ;

uniform vec2 dXY;

void main (void ) {

10 vec4 texC = texture2D (texCurrent , texcoord .xy);

vec4 texE = texture2D (texCurrent , texcoord .xy + vec2(dXY.x, 0.0));

vec4 texW = texture2D (texCurrent , texcoord .xy - vec2(dXY.x, 0.0));

vec4 texN = texture2D (texCurrent , texcoord .xy + vec2 (0.0, dXY.y));

vec4 texS = texture2D (texCurrent , texcoord .xy - vec2 (0.0, dXY.y));

15 vec4 texL = texture2D (texLast , texcoord .xy);

gl_FragColor = (0.5 * ((tex0 -2.0*tex+tex1 + tex2 -2.0*tex+tex3 ))

+ 2.0* tex - texL );

}

20
[Vertex shader]

varying vec4 texcoord ;

25 void main (void ) {

texcoord = gl_MultiTexCoord0 ;

gl_Position = ftransform ();

}

Listing 5.2: The linear wave equation solver.

in each dimension. Lines 10-15 extracts the vectors holding the actual values
from the textures, using the texture coordinates according to the computa-
tional molecule (Figure 5.2) of the scheme. The values are then used in the
computational scheme and written to gl_FragColor as vectors of size four
again, which is rendered to the chosen output texture. Remember that in the
case of the linear wave equation we only use one value in each four-vector.
It does not matter which channel we use (R, G, B or A), as long as it is
done consistently, all channels are computed anyway. Input textures and
parameters, and output rendertexture are set like in Listing 5.1.

Boundary-conditions For the linear wave equation reflective boundaries
are used:

∇u · n = 0 (5.5)

They are implemented in a very simple manner, by drawing a frame of ghost
cells around the computational domain and shifting the texture coordinates
one pixel in. This is illustrated in Figure 5.3.
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Figure 5.3: Boundary conditions for the linear wave equation in 2D. The
yellow frame is copied one pixel outwards.

The linear wave equation is stable under the following CFL-condition:

∆t

h
<

1

2
, (5.6)

where h = ∆x = ∆y. This means that the length of each time-step is limited
by the spatial resolution.

5.4 Finite-volume schemes

Classical high-order schemes tend to generate unwanted oscillations that res-
ults in errors near discontinuities. Low-order schemes have another problem,
they introduce numerical diffusion, and the solutions become inaccurate.
Two such classical schemes are the diffusive first-order Lax-Friedrich and the
oscillatory second-order Lax-Wendroff scheme. One way of controlling the
oscillations introduced by the Lax-Wendroff scheme is to combine it with
the Lax-Friedrich scheme in a composite scheme. Such a scheme is used
to solve the shallow-water equations. This is the simplest possible high-
resolution scheme, and consists of e.g., three steps Lax-Wendroff, followed
by one Lax-Friedrich step. Since the second-order Lax-Wendroff scheme in-
troduces spurious oscillation, we use one first-order Lax-Friedrich step to
smoothen the solution. This is possible since numerical dissipation occurs in
the Lax-Friedrich scheme.

In the following derivations the paper “How to solve systems of conser-
vation laws numerically using the graphics processor as a high-performance
computational engine” [HHHL07] is used as a guide. It should be noted that
this is a somewhat unusual derivation of these schemes, that in the men-
tioned article was motivated by the need to derive similar high-resolution
schemes used for the Euler equations. Both Lax-Friedrich and Lax-Wendroff
use finite-volumes as basic building blocks:

Qi(t) =
1

|Ωi|

∫∫

Ωi

Q(x, y, t)dxdy. (5.7)
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This is a approximation to the cell-average of Q within the cell Ωi. What we
want to find now is a equation for the evolution of these cell-averages over
time. If we use the conservation law on integral form, (1.3), with the grid
cell definition Ωi = [xi− 1

2

...xi+ 1

2

, yj− 1

2

...yj+ 1

2

], we get:

d

dt

xi+1/2
∫

xi−1/2

yj+1/2
∫

yj−1/2

Qi,j(x, y, t)dxdy =

yj+1/2
∫

yj−1/2

(F (Q(xi−1/2, y, t)) − F (Q(xi+1/2, y, t)))dy+

xi+1/2
∫

xi−1/2

(G(Q(x, yj−1/2, t)) − G(Q(x, yj+1/2, t)))dx. (5.8)

We then obtain the following semi-discrete ODE from (5.8):

d

dt
Qi,j(t) = − 1

∆x

(

Fi+1/2,j(t) − Fi−1/2,j(t)
)

− 1

∆y

(

Gi,j+1/2(t) − Gi,j−1/2(t)
)

, (5.9)

where the numerical approximation to the fluxes are given by

Fi±1/2,j ≈ 1

∆y

yj+1/2
∫

yj−1/2

F (Q(xi±1/2, y, t))dy, (5.10)

Gi,j±1/2 ≈ 1

∆x

xi+1/2
∫

xi−1/2

G(Q(x, yj±1/2, t))dx. (5.11)

To derive a numerical scheme from this, we need to discretize (5.9) and
evaluate the fluxes (5.10) and (5.11) along the cell boundaries. We use
the midpoint rule to approximate the integrals in (5.10) and (5.11). The
midpoints of the edges are estimated by averaging the one-sided values in
each direction:

F (Q(xi+1/2,j , yj, n∆t)) =
1

2

(

F (Qn
i,j) + F (Qn

i+1,j)
)

, (5.12)

etc. A similar approximation is used in the y-direction.

Using the forward Euler method on (5.9), and the approximated fluxes,



5.4 Finite-volume schemes 57

we get the following scheme:

Qn+1
i,j = Qn

i,j −
1

2

∆t

∆x

(

F (Qn
i+1,j) − F (Qn

i−1,j)
)

− 1

2

∆t

∆y

(

G(Qn
i,j+1) − G(Qn

i,j−1)
)

. (5.13)

This scheme, however, is notoriously unstable. By adding artificial dif-
fusion β(Qxx + Qyy) (where β is the diffusion coefficient) and discretising
it by a central difference, we obtain a more stable scheme; the first-order
Lax-Friedrichs scheme:

Qn+1
i,j =

1

4

(

Qn
i+1,j + Qn

i−1,j + Qn
i,j+1 + Qn

i,j−1

)

− 1

2

∆t

∆x

(

F (Qn
i+1,j) − F (Qn

i−1,j)
)

− 1

2

∆t

∆y

(

G(Qn
i,j+1) − G(Qn

i,j−1)
)

, (5.14)

where Qn
i,j = Q(x, y, n∆t) = Qi,j(n∆t) is piecewise constant inside each grid

cell.
If we use the midpoint rule for integrating (5.9) instead of the forward

Euler method, we get the second-order Lax-Wendroff scheme:

Qn+1
i,j = Qn

i,j −
∆t

∆x

(

F (Q
n+1/2
i+1/2,j) − F (Q

n+1/2
i−1/2,j)

)

− ∆t

∆y

(

G(Q
n+1/2
i,j+1/2) − G(Q

n+1/2
i,j−1/2)

)

, (5.15)

where we need to solve a one-dimensional conservation law along the grid-cell
boundaries:

Q
n+1/2
i+1/2,j =

1

2

(

Qn
i+1,j + Qn

i,j

)

− 1

2

1

∆y

(

Fn
i+1,j − Fn

i,j

)
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These schemes can also be derived by using finite-differences, with a
different interpretation of the unknown quantities. One of the strengths
of the finite-volume interpretation over finite-difference, is that it is easily
extendible to more complex grids. A more thorough derivation of these
schemes can be found in [HHHL07].

Boundary-conditions The shallow-water equations are also equipped
with reflective boundaries, implemented in the same manner as for the linear
wave equation. However, in addition to copying the water height we also need
to reverse the sign of the velocity component in the direction parallel to the
normal of the boundary.
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CFL-condition Both Lax-Friedrich and Lax-Wendroff are stable provided
that:

∆t

h
max

ik
|λF

k (Qi)| ≤
1

2
, (5.18)

where h = ∆x = ∆y and λF
k is the eigenvalues of the Jacobian matrix of the

flux function F .

5.5 High-resolution schemes

In 1983, Ami Harten [Har97] introduced a new class of schemes called high-
resolution schemes. These schemes were introduced to overcome the prob-
lems of oscillations and other errors introduced when using traditional high-
order schemes. To solve the Euler equations, a more complex high-resolution
scheme than the simple composite scheme for the shallow-water equations
is used. I will not give a derivation of these schemes, but they are also
based on finite-volumes, using cell-averages as approximations. This gives
us the evolution equation (5.9) derived in the last section. But instead of
using the midpoint method to approximate the fluxes, we use a Gaussian
quadrature. To evaluate the flux across the interfaces, we use the central-
upwind flux [KNP01]. For integrating the time-dependent ODE for the cell-
averages, we use a second-order Total variation diminishing (TVD) [Shu88]
Runge-Kutta method:

Q
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where Ri,j is the right-hand side of (5.9).

The process of computing Ri,j(Q) involves many steps and has a very
high arithmetic intensity, which makes this scheme ideal as a test-problem
for the GPU; arithmetic intensity being the strength of the GPU. Without
going through all details, this is the process in short:

1. Reconstruct a piecewise linear Q.

2. Compute point-values.

3. Compute eigenvalues.

4. Compute fluxes.

A thorough derivation of these schemes can be found in “How to solve
systems of conservation laws numerically using the graphics processor as a
high-performance computational engine” [HHHL07] and “Solving the Euler
equations on graphics processing units” [HLN06].
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Boundary-conditions For the Euler equations, an outflow Dirichlet bound-
ary condition is used. This simply means that all quantities are simply advec-
ted out of the computational domain when reaching the boundary. Another
way of looking at it is that the boundary absorbs the conserved quantities.
This is achieved by copying values from within the computational domain
onto the boundary, in the same manner as for the shallow-water equations,
but this time without reversing the sign of the velocity components.

CFL-condition The disturbances may travel at most one half grid cell
per time-step:

max(a+,−a−)∆t ≤ ∆x

2
, (5.21)

where

a+ = max(0, λ+(QL), λ+(QR)),a− = min(0, λ−(QL), λ−(QR)), (5.22)

and similarly for the y-direction. QL and QR are the left- and right-sided
point value at each integration point and λ±(Q) are the slow and fast eigen-
values of dF/dQ.





Chapter 6
Results

“If something’s hard to do,
then it’s not worth doing.”

— Homer J. Simpson

This chapter describes how the simulation data has been stored and
visualized, with screenshots of the visualizations. The benchmarks that were
used are then presented together with the results. The conclusions based on
these results, and the master thesis as a whole, are presented in Chapter 7.

6.1 Visualization and animation of simulation data

To visualize the simulation data from each of the three equations, a separ-
ate application has been written. This application reads the file(s) output-
ted from the simulation application and visualizes them using OpenGL and
GLSL.

6.1.1 Storing simulation data

The simulation data are collected on one node at the end of each time-step.
All data are then stored in one huge array on the collecting node, and then
written to file(s) all at once when the simulation is finished. This limits
disk access during execution, but it also eats away memory which could
influence the execution time of the simulations. This also poses another
problem; what happens if there is generated more simulation data than can
be stored in memory on one single node? One solution here is, of course,
to have a master node with much more memory than the other nodes, the
other solution is to change the way data is stored. The different methods
of storing data to disk were presented in Section 2.5.2 in Chapter 2. The
reason behind the choice of this somewhat naïve storing strategy is that it

61



62 Results

is simple, and I do not need to store the simulation data for other purposes
than making screenshots and animations. If the application were to be run
as production code and save simulations on a daily basis, we would have to
employ one of the more complex and efficient storing strategies.

Another issue that is important to notice, is how the use of GCE limits
the opportunity to store simulation data. If we have a GCE-level of 50, this
means that the GPU can perform 50 time-steps without any data being read
back to the CPU. By extension, this means that we are only able to store
each 50th time-step. This is not the only drawback associated with storing;
it also forces us to read back the complete computational domain, and not
just the ghost cells. The conclusion is, the fewer time-steps we need to store,
the faster the simulation will run.

Data The only values stored when simulating the linear wave equation and
the shallow-water equations are the water height. It is stored at each spatial
grid point for each time-step. This is sufficient information to visualize the
propagating wave. To properly visualize the Euler equations we need to
store more than one variable. Actually, we could just store the pressure and
visualize that, but a more advanced visualization is used here. In this case
we end up with four files, one file for each variable. These files are equivalent
to the R, G, B and A-channels collected for each time-step from the texture
the variables are stored in.

6.1.2 Visualizing on the GPU

There are two different shader programs used to visualize the data, both
written by Hagen et al. The first one is based on the reflection law from
physics, and uses the water height to determine how the light from some
light source is reflected off the water surface over some background. This
makes the background appear to be the bottom of a body of water, with
the simulated wave on top. Figures 6.1 and 6.2 show screenshots from the
visualizations of the linear wave equation, and Figure 6.3 and 6.4 shows
screenshots from the visualization of the shallow-water equations. The initial
conditions for both cases are a small collection of elevated values somewhere
in the computational domain. This simulates a drop of water onto a still-
water surface.

The other type of visualization, used for the Euler equations, are Schlieren
gradients. Schlieren imaging [Wik07c] is really a photo-optical technique for
visualizing the flow of fluids of different densities. This technique is imitated
here by depicting (1− |∇ρ|/max |∇ρ|)p for p = 15 as a grey-map. Schlieren
imaging is frequently used for studying shock-phenomena. Screenshots from
this visualization can be seen in Figures 6.5 and 6.6. The air is initially at
rest with a circle of low density (ρ = 0.1) that is hit by a shock in the air
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Figure 6.1: Screenshots from the visualization of the linear wave equation,
using only one sub-domain. (Time-steps t = 10, 100, 200, 300)

Figure 6.2: Screenshots from the visualization of the linear wave equation,
using four sub-domains. (Time-steps t = 10, 100, 200, 300)
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Figure 6.3: Screenshots from the visualization of the shallow-water equa-
tions, using only one sub-domain. (Time-steps t = 10, 100, 200, 300)

Figure 6.4: Screenshots from the visualization of the shallow-water equa-
tions, using four sub-domains. (Time-steps t = 10, 100, 200, 300)
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Figure 6.5: Screenshots from the visualization of the Euler equations, using
only one sub-domain. (Time-steps t = 10, 400, 800, 1200)

propagating from left to right in the x-direction. The pressure p behind the
shock is 10.

6.2 Benchmarking and considerations

Hagen et al. showed in “How to solve systems of conservation laws nu-
merically using the graphics processor as a high-performance computational
engine” [HHHL07] that hyperbolic conservation laws have a significant spee-
dup on a single GPU compared to a single-CPU reference implementation.
This does not, however, guarantee that a cluster of GPU-nodes will be ef-
fective. There are a number of factors that influence the efficiency of this
cluster, where the two most important are inter-node communication over
the network and communication between the CPU and the GPU. The rest
of this section will describe the node setup, the different benchmarks, and
the results obtained from these.

6.2.1 Setup

This section covers the benchmarking setup. The configuration described
here was used in all testing and for all visualization screenshots in this
chapter. It is the minimal configuration needed to test the application in
two spatial dimensions. The main reason for this is that no more nodes were
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Figure 6.6: Screenshots from the visualization of the Euler equations, using
four sub-domains. (Time-steps t = 20, 800, 1600, 2400)

available. However, this setup will still demonstrate some of the strengths
and weaknesses of a GPU cluster.

Physical setup

The physical setup of the GPU cluster can be seen in Figure 4.1 in Chapter 4.
Each node in the cluster had the following configuration:

CPU: Intel Pentium 4 with 3GHz (with HT technology)

System memory (RAM): 2GB

Graphics adapter (GPU): NVIDIA GeForce 7800GT with 256MB memory
on a PCI-Express bus

Network adapter: Broadcom NetXtreme Gigabit Ethernet

The nodes were connected through a Fast Ethernet switch.

The graphics adapter was tested using GPUBench [BFH04a], and the
results of the readback test can be seen here:

Fixed Hostmem GL_RGBA Mpix/sec: 193.71 MB/sec: 738.95

Fixed Hostmem GL_ABGR_EXT Mpix/sec: 201.50 MB/sec: 768.66

Fixed Hostmem GL_BGRA Mpix/sec: 220.11 MB/sec: 839.66
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This tells us that the network should prove to be the biggest bottleneck,
because of its low bandwidth compared to the PCI-Express bus.

Application setup

All benchmarks were run with the configuration below, if not stated other-
wise. Variable values in the benchmark tables supersede these configurations.

Number of time-steps: 1000

Number of nodes: 4

Number of processes: 4

Number of expanded ghostcells: Tweaked to obtain the best possible
result

Total number of ghostcells: Dependent on scheme.

The three PDE test-cases will be abbreviated as LWE, SW and EE,
which refers to the linear wave equation, the shallow-water equations, and
the Euler equations, respectively. N is the global grid size.

Parameters As can be clearly seen in the two last paragraphs, we have
a large number of parameters that can be adjusted. It has been a challenge
to construct informative benchmarks, and the focus has been on showing
trends that can be used in further research on GPU clusters. In addition to
the variables already presented, it is also possible to have several GPUs per
CPU-node, as discussed in Section 7.1 in Chapter 7.

6.2.2 Benchmarks

Benchmarking of the application written for this thesis is a fairly complex
issue, since it utilizes both the CPU and the GPU, and in the same time is
distributed on multiple nodes. Since one of the main concerns is to detect
possible bottlenecks in the application, it was necessary to benchmark several
parts of the application. All benchmarks have been run without storing
simulation data. The following areas were benchmarked:

• Overall execution time and performance

• Impact of GCE

• GPU shaders

• GPU-uploading and -readback

• Inter-node communication
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Table 6.1: Overall execution times.

- Equation

Nodes N LWE SW EE

1

256 1.46425 1.69143 11.35120
512 2.87217 3.02078 24.43520
1024 7.91547 8.76265 84.83230
2048 27.7595 27.8843 336.01203

4

256 4.91324 4.60230 19.2864
512 6.86207 5.29687 25.2825
1024 13.2893 8.05684 47.3395
2048 26.6323 18.5888 207.3422

MPI’s MPI_Wtime() was used in all five benchmarks.

The reasons behind the choice of exactly these benchmarks are that they
are naturally segmented in the application, and because they are likely to
reveal where the bottleneck of the cluster can be found.

Overall execution This benchmark simply measures the execution time
of the application as a whole, only excluding the writing of simulation data
to disk. The results can be seen in Table 6.1 and Figure 6.7. We can see
that all the equations eventually perform better on the GPU cluster than on
a single GPU, when increasing the global domain size. We also see that the
equations that require the most arithmetic intensity have more to gain from
the GPU cluster than the ones with lower arithmetic intensity.

Impact of GCE This benchmark measures the impact different levels
of GCE have on total execution time. These execution times are for the
linear wave equation, however, the two other equations have similar trends.
Results are found in Table 6.2 and Figure 6.8.

Determining on optimal GCE level has proven to be somewhat difficult.
The optimal GCE level depends on static and dynamic network paramet-
ers, the computational molecule of the scheme, and the size of the local
sub-domain. Nevertheless, GCE has proven to reduce the cost of network
communication and the total execution time significantly. Partly by elimin-
ating much of the overhead associated with network latency, and partly by
allowing several time-steps to be performed on the GPU before a readback
to the CPU is necessary.

GPU shaders The results from the execution of the shader programs
can be viewed in Table 6.3. This shows that the execution time grows with
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Figure 6.7: Plot of overall execution times. N is global domain size. (a)
The linear wave equation. (b) The shallow-water equations. (c) The Euler
equations.

Table 6.2: Impact of GCE on total execution time of the LWE.

- N

GCE level 256 512 1024 2048

1 8.56322 11.4503 21.6686 52.2775
2 6.33932 8.61161 15.6966 33.9080
4 5.30109 7.33385 13.4487 31.9056
8 4.91378 6.83736 12.8738 26.1673
16 3.98509 6.48395 12.2361 25.7829
32 5.95926 8.13920 12.5027 27.5297
64 6.11298 8.16748 14.8376 28.4251
128 7.43962 9.69644 16.0252 -



70 Results

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

GCE level

t (
se

c)

 

 
N=256
N=512
N=1024
N=2048

Figure 6.8: Plot of GCE-level impact on overall execution time for the linear
wave equation. N is global domain size.

the size of the computational domain and the arithmetic intensity of the
computational scheme, as expected.

GPU-uploading and -readback Before a ghost-cell exchange can oc-
cur, the values to be exchanged need to be read from the GPU. After the
exchange, the new values need to be uploaded to the GPU. The level of
ghost cell expansion together with the size of the domain determine how
much time this takes. This benchmark measures the time used on these
operations. Readback is slower than upload due to reasons discussed in
Section 4.4 in Chapter 4. The results can be seen in Table 6.4.

Inter-node communication This benchmark measures the time used on
inter-node communication, meaning the exchanging of ghost cells between
nodes. The initial broadcasting of sub-domain size and other one-time broad-
casts are ignored, since these contributions are minimal and constant. They
are, however, included in the overall execution benchmark. The results can
be seen in Table 6.5, and they clearly shows that the network is the biggest
bottleneck, just as expected.
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Table 6.3: Shader benchmarks.

Equation N Time

LWE

256 0.57063
512 1.79228

1024 2.08224
2048 23.1243

SWE

256 1.04674
512 2.28828

1024 6.75697
2048 25.0086

EE

256 10.4211
512 22.0435

1024 80.0092
2048 325.8762

Table 6.4: GPU-CPU communication benchmarks for the LWE.

N Upload Readback

256 0.06397 0.15794
512 0.10979 0.36200
1024 0.22813 1.03398
2048 0.47758 3.34950

Table 6.5: Inter-node communication benchmarks for the LWE.

N Time

256 4.18286
512 5.74454
1024 10.9581
2048 22.9631





Chapter 7
Conclusions

“Do not say a little in many words but a great deal in a few.”

— Pythagoras

This thesis has been about fusing traditional parallel programming with the
power of GPGPU-programming. This chapter sums up the experiences and
results from this experiment. I will give answers to the research questions
posed in Chapter 1, extract the important points from the text, and discuss
possible extensions beyond this thesis.

This thesis is supported on a great deal of research fanned over several
scientific areas. To use a GPU cluster it is therefore necessary to have a
broad background, and knowledge of both traditional parallel programming,
GPGPU-programming, networking, and, of course, detailed knowledge of the
computations you wish to perform. For inherently parallel problems, how-
ever, the potential gain in efficiency could very well be worth the cost. Even
without a speedup in comparison with a single-GPU implementation, a GPU
cluster would still be attractive. This is because it allows you to solve almost
arbitrary sized problems (limited by the number of nodes) much faster than
a standard CPU-cluster is able to. This is supported in my results by the
fact that most of the communication overhead is in the network traffic, not in
the GPU-CPU communication, and the network communication would also
be necessary on a CPU-cluster. When also considering that a single-GPU
implementation significantly outperforms a single-CPU implementation, the
rest follows.

Accomplishments The main accomplishment of this master thesis is
the demonstration of a working GPU cluster. This demanded the use of
message-passing, GPGPU-programming, ghost-cell expansion, and domain
decomposition. I also had to come up with a reasonable algorithm for storing
the simulation data, and then recompose them before visualizing them. In
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addition, the linear wave equation, the shallow-water equations and the Euler
equations all have been simulated in two spatial dimensions as test-cases for
the GPU cluster. Much of the GPGPU work is based on earlier code and
work performed at SINTEF ICT, Oslo.

Efficiency As can be clearly seen from the results, the GPU cluster needs
to work on domains of some size before it becomes effective in comparison
with a single-GPU run of the same global domain size. The graphics adapters
in the test-cluster had only 256MB, which limited the texture size to ∼
2048 × 2048. However, already on this size, the GPU cluster outperformed
the single-GPU solution. In fact, on the Euler equations, the GPU cluster
outperformed a single-GPU node on a 1024 × 1024 global grid. More video
memory and larger textures would further improve the efficiency of the GPU
cluster. The GCE level has also proven to be critical for the performance
of the GPU cluster, and needs to be adjusted according to grid size and the
nature of the computations. The GPU cluster has also proven to be more
effective on problems with a high arithmetic intensity than problems with
less arithmetic intensity, as expected.

Accuracy Though the floating-point accuracy only extends to single-
precision, this is sufficient for the problems considered in this thesis. Double-
precision floating point representation will also soon be available, making
accuracy an obsolete problem. The arrival of double-precision will open the
GPGPU-scene for problems that require a higher degree of accuracy than
the test-cases presented in this thesis.

7.1 Further research and extensions

There are many aspects in this thesis that deserve further work, and several
alternative configurations of the GPU cluster that may improve efficiency.
Testing and benchmarking with gigabit and infiniband networks would have
been the next natural thing to do, since the network has proven to be the
biggest bottleneck in the cluster.

The linear wave equation and the shallow-water equation do not use
the full per-fragment vector. It would increase efficiency to use a packing
scheme on the unknowns, such that all the GPU pipelines are utilized to
the maximum, e.g., one could pack four grid cells into each fragment when
simulating the linear wave equation.

Another possible extension is to have several GPUs per physical node,
which would eliminate some of the communication need and thereby lessen
execution time. This could be done by using NVIDIA’s Scalable Link Inter-
face (SLI) [NVId, Wik07b] or ATI’s CrossFire [ATIa, Wik07a]. By cluster-
ing interfacing sub-domains on one SLI-node, the cost of ghost cell transfer
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would be significantly reduced compared to using MPI for ghost cell ex-
changes between the same sub-domains, if located on different nodes. SLI
offers data transfer directly through the PCI-Express bus without the costly
readback to the CPU, i.e. the GPUs could share the workload without go-
ing through the CPU. Asynchronous execution of computations, CPU-GPU
communications, and network communications like discussed in Section 4.4
in Chapter 4 could also help to hide some of the cost of ghost cell transfers.

Further benchmarking with additional nodes would have been preferable,
as this could reveal further details of interest concerning GPU clusters. Un-
fortunately, I did not find a suitable site with more than four GPU nodes
since most freely available clusters have poor graphics adapters at best.

This thesis have in some sense been about “assembling the puzzle”. I
can only now, at the time of writing a conclusion, claim to have a good
overview of all the components used in the thesis, and a good code platform
for performing computations on a GPU cluster. This thesis has hopefully
taken you to the starting line of GPU cluster computations, and given some
impressions of its usability. And surely, the many new exciting languages
and technologies (PeakStream, CUDA, new generations of graphics adapters
etc.) will make the use of the GPU and its like, increasingly important in
the future.
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Appendix A
The Top 500 project

The parallel PLU project is a cooperation between André R. Brodtkorb,
Trygve Fladby and myself. The original idea was to run the application
at The Gathering (TG) [KAN], the worlds largest computer party. Time
constraints, and other issues (e.g., security), prevented us from reaching our
original goal. We have completed the project, despite that we were unable
to run the application at TG, and reported our findings in the following
white-paper.

My contribution in this white-paper is mainly the parts that concerns
communication and message-passing (MPI-2). The PLU algorithms are writ-
ten by Fladby and Brodtkorb, and my role in these algorithms is limited to
advising and discussions.
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PLU Factorization on a Cluster of GPUs Using
Fast Ethernet

André Rigland Brodtkorb, Martin Lilleeng Sætra and Trygve Fladby

13th July 2007

Abstract In this white paper, we present a novel approach to solve linear
systems of equations on a cluster using the PLU factorization. We use the
graphics processing unit (GPU) as the main computational engine at each
node, and a block-cyclic data distribution to solve the system. The local
computation is a new way of solving the PLU factorization on the GPU. It
utilizes the full four-way vectorized arithmetic found in most GPUs, and a
new pivoting strategy. The global algorithm uses the message passing inter-
face (MPI) for communication between nodes. We show that our algorithm
is highly efficient on the local nodes, but bounded by the relatively slow
network. A faster network will eliminate this bottleneck, and the speed of
the local computations show promising results.

A.1 Introduction

This paper explores the field of general purpose computation on graphics
processing units (GPGPU). We specifically target the PLU factorization of
a large system of linear equations on a cluster of nodes. Solving large linear
systems of equations using dense algorithms is used extensively as a bench-
mark for clusters and supercomputers. The High Performance LINPACK
benchmark (HPL) [PWDC] which computes the PLU factorization, is the
standard way of benchmarking and ranking the fastest 500 supercomputers
in the world [UUN]. This benchmark, however, has been criticized for neg-
lecting the importance of faster inter-node communication. This is because
the HPL benchmark can run the benchmark with different parameters that
compensate for slow network communication by letting each node execute
extra computations (e.g., look-ahead).

While the HPL benchmark uses the CPU to compute partial results
on each node, we utilize the graphics processing unit (GPU) as the main
computational engine to solve the same problem. The GPU is a massively
parallel processor with vast amounts of processing power [OLG+07]. Current
GPUs have a theoretical peak of 400 GFLOPS [Neo07], compared to 90
GFLOPS [Neo07] for current high-end CPUs. When comparing the price1

per FLOP, the GPU comes out ahead as well with approximately $1.50 per
GFLOP, compared to the CPU that costs approximately $18 per GFLOP.

During the last years, we have seen an enormous development in 3D-
graphics. The demand for more powerful programmable graphics processing
units (GPU) from for example the gaming industry has led to increased
flexibility in the processors. The rapid evolution in speed and flexibility has
made the GPU interesting for scientific purposes as well. The field of general-
purpose computation on GPUs (GPGPU) has emerged as a new and exiting
research area [OLG+07]. Even though the GPU is a far more powerful and
cost-effective processor than the CPU, there is another price. While the CPU
has complex logic for branch prediction, cache management, and instruction
pipelining, most of the transistors on the GPU are used for pure floating-
point operations. There is another architectural difference as well. The CPU

1Prices are from the Norwegian web shop komplett.no 2007-04-23.
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is designed to operate on sequential code, such as word processing where each
character is entered and processed sequentially. The GPU on the other hand,
is designed to simultaneously compute all the pixels that together make up
the screen image. In addition, the GPU could traditionally only be accessed
via a graphics API, such as OpenGL [SWND05] or DirectX [Mic07]. The
architectural differences, and the need to access the GPU through a graphics
API require new algorithms and techniques to be employed when the GPU
is to be used for general-purpose computing.

A.2 Background

The Top 500 project [UUN] was started in 1993 to provide a reliable basis for
tracking and detecting trends in the field of high-performance computing.
It is a list of the 500 most powerful supercomputers, which is updated twice
per year. The ranking of the supercomputer sites is determined by how well
they perform on the LINPACK benchmark. A parallel version of LINPACK
named HPL [PWDC] was introduced by Dongarra, for this purpose. HPL is
short for High-Performance LINPACK Benchmark for Distributed-Memory
Computers. HPL utilizes the Message Passing Interface (MPI) and the
Basic Linear Algebra Subprograms (BLAS). The algorithm used by HPL
implements a two-dimensional block-cyclic data distribution. In addition a
look-ahead strategy and bandwidth reducing swap-broadcast algorithm is
used to increase performance. The complete operation count sums up to
O(2

3
n3) + O(n2).
LU factorization on the GPU has previously been implemented by Galoppo

et al. [GGHM05]. One of their main contributions was index-pair stream-
ing, which uses texture coordinates to make a cache-oblivious algorithm.
The index-pair streaming technique sets texture coordinates from the CPU
in order for the GPU to pre-fetch data, in contrast to computing them
on the fly on the GPU. This data pre-fetch resulted in about 25% speed
increase [GGHM05]. They also reported their algorithm as faster than AT-
LAS, but the benchmark was highly synthetic.

To run our application in parallel on multiple nodes, we have utilized
the Message Passing Interface 2.0 (MPI-2) [MPI]. MPI-2 is a C/C++ and
Fortran interface for message passing between multiple processes spread over
any number of nodes. It can be used in many different setups, e.g., supercom-
puters, distributed memory clusters, and shared memory clusters. Several
implementations of MPI-2 exist, where we have chosen MPICH2 [Argc] for
our application. The most important uses of MPI-2 in our application are
the automatic generation of a block-cyclic Cartesian grid of processes and
broadcast of data to groups of processes.

There are two concepts related to our use of MPI-2 that require some
explanation; communicators, and blocking- and non-blocking calls. A com-
municator in MPI is a collection of processes. Many functions in MPI-2
take a communicator as argument and perform the requested operation on
all processes in that communicator. A call to the broadcast function in
MPI, for example, can look like this: MPI_Bcast(buf, 10, MPI_FLOAT, 0,
MPI_COMM_WORLD). This call will broadcast ten elements of the array buf to
all processes in the MPI_COMM_WORLD communicator. The other processes in
the communicator must also call the MPI_Bcast function to receive these
elements. The MPI_COMM_WORLD communicator is a special communicator
that contains all processes, and it is initialized automatically by MPI. When
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1 MPI_Init (&argc , &argv );

if(processId == 0) {

MPI_Recv (buf , 10, MPI_INT , 1, 101, MPI_COMM_WORLD , &status );

5 MPI_Send (buf , 10, MPI_INT , 0, 100, MPI_COMM_WORLD );

} else( processId == 1) {

MPI_Recv (buf , 10, MPI_INT , 0, 100, MPI_COMM_WORLD , &status );

MPI_Send (buf , 10, MPI_INT , 1, 101, MPI_COMM_WORLD );

}

10
MPI_Finalize ();

Listing A.1: Example on a deadlock in an MPI-2 program

an MPI function is called on all processes within a communicator (or group)
it is referred to as a collective operation. MPI_Bcast is a collective operation.

A blocking call will make the application wait for the call to complete
before continuing execution. In this way you will know if the call has finished
successfully or aborted due to some error. This also means that the applica-
tion may get deadlocked, where two or more processes have called competing
blocking functions that are circularly dependent on each other [CES71]. For
example, if we have two processes that execute the code in Listing A.1, it
will result in a deadlock. Both processes are waiting for the other to send
data, thus blocking program execution. A non-blocking call on the other
hand, will not cause the application to wait for the call to return. In this
way it is possible to call a function and continue executing the application
before the function returns. Collective operations in MPI-2, however, are
always blocking.

A.3 Algorithm

The LU factorization of a matrix A can be written as LU = A, where L
and U are lower and upper triangular respectively. Using the Doolittle al-
gorithm, we can construct the upper triangular matrix U using Gaussian
elimination. The lower triangular matrix is constructed from the multipli-
ers used to reduce A to an upper triangular form. For our algorithm to be
numerically stable, we also permute the rows of A. This is known as partial
pivoting, and ensures that the row we are eliminating with creates smaller
perturbations of the result than would normally occur. With the permuta-
tion of the rows in A, our factorization takes the form A = P T LU , where P
is the permutation matrix that permutes rows of A.

Our algorithm has two layers, the global and the local computation. The
global algorithm solves the PLU factorization of the matrix spread over all
the nodes, shown in Figure A.1(b), whilst the local algorithm is what each
node needs to compute for the global algorithm to be correct.

Each node in the computation receives a block-cyclic part of the matrix,
as shown in Figure A.1(b). Then, all the processors compute what type of
operation they need to compute. Our algorithm splits the computation into
four distinct operations: pivot, normalize, eliminate and reduce, as shown in
Figure A.1(a). The operation computed on each node depends on the global
position of the pivot operation. All processors that hold elements in the
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Figure A.1: PLU decomposition on a cluster of nodes: (a) the four different
parts of the LU factorization. (b) the block-cyclic distribution of data on
four nodes, 0, 1, 2 and 3.

same row as the pivot operation need to compute the normalize operation,
and similarly all nodes with elements in the same column as the pivot oper-
ation need to compute the eliminate operation. All remaining nodes need to
compute the reduction operation. In Figure A.1(b) this means that process
0 is the pivot, process 1 executes normalize, process 2 eliminate, and process
3 reduce. The pivot node shifts one down along the diagonal for each global
pass.

A.3.1 Global algorithm

Computing the PLU factorization is an almost embarrassingly parallel oper-
ation. However, vanilla implementations demand a lot of data to be trans-
ferred between nodes, which is a very costly operation. In addition, many
nodes would simply idle as we reach the end of the computation.

To reduce the idling, we distribute the matrix A block cyclically in the
same fashion as the HPL algorithm [PWDC]. Figure A.1(b) shows this
distribution, where all nodes have a part of the matrix to process throughout
the whole factorization, except for the very last block. The last block is
computed by the last node in an extra pass. For each pass in the global
domain, we compute the result of one row of blocks, and one column of
blocks. In the following, we refer to these as block-row and block-column
respectively.

To lessen the amount and number of transfers between nodes, we use par-
tial pivoting within in-core memory, thus eliminating the need to transfer
rows between processors. It is trivial to create examples where partial pivot-
ing fails, but sufficient accuracy is attainable in practice. This also holds for
our pivoting, which pivots in a subset of the regular pivot candidates.
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In order to compute one pass in the global domain, we have to execute the
four different operations pivot, normalize, eliminate and reduce. It should be
mentioned that this data distribution, and splitting into different operations
per node allows for multiple nodes, not only four as shown in this example.
In the third pass of this algorithm, we have the following situation (see also
Figure A.2):

Pivot: The pivot position (process 0) must compute the PLU factorization
of the current active pivot block in its local domain. The block size
is subsize × subsize. In addition, it has to reduce the rest of the local
matrix according to the computed L and U . These blocks belong
elsewhere in the global domain (see Figure A.1(b)). In each global
pass, there is always only one pivot node.

Normalize: The normalize operation (process 1) needs to compute U ac-
cording to the P and L computed by the pivot operation. It will also
have to reduce all remaining elements in the local matrix, which again
belong elsewhere in the global domain. There are s − 1 nodes that
compute the normalize operation in each global pass, where s is the
width and height of the processor grid.

Eliminate: Eliminate (process 2) calculates the multipliers needed to for-
ward substitute one block by using the computed U ’s from pivot. In
addition, it has to reduce the rest of the local matrix, according to the
computed U . In each global pass, the number of eliminate nodes is
also s − 1.

Reduce: The reduce operation simply reduces the local matrix according
to the L and U computed in eliminate and normalize respectively. All
remaining processes compute this operation, s×s−2(s−1)−1 nodes.

As stated in the list of operations, the different processes depend on
data from other processes. This dependency is not static, but varies with
the operation the current node is set to execute. Figure A.2 shows how
the data is sent in the already used example. The nodes waiting for data
cannot continue before they have received the data. This effectively limits
the computational speed to the slowest node. The HPL [PWDC] algorithm
uses look-ahead to remedy this somewhat. As this chart shows, there is
still quite a lot of idling for the four nodes. The pivot node, for example,
computes its result and then waits until all other nodes have completed their
computations.

A.3.2 Local algorithm

The local algorithm includes four stages pivot, eliminate, normalize and
reduce, but first we will introduce the matrix representation. The data
is row-wise represented in four-wide vectors [Mor03]. This is to utilize as
much computational power and bandwidth as possible, since most GPUs
can execute one MAD instruction on four-long vectors per clock cycle. The
advantage of this packing scheme is that it does not require restructuring
of the data in main memory before it is sent to the GPU2. Another reason
for this choice is that it fits well with the solution we have for pivoting.
In addition to storing the matrix, we add an extra column leftmost in the

2Assuming its width is divisible by four.
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Figure A.2: Data send patterns for PLU decomposition using four nodes in
the third global pass (corresponds to the situation in Figure A.1(b)). The
shaded areas represent the part of the matrix we already have computed.

matrix, as shown in in Figure A.3(a). This column is used to speed up the
calculation of the next pivot element, explained later. Because the result of
writing to the same buffer as we read from is explicitly undefined in OpenGL,
we have to use an extra texture. The two textures are used as one virtual
matrix, but we alternate between reading / writing and writing / reading
to the front and back textures, respectively. This technique is referred to as
ping-ponging in the field of GPGPU.

Pivot

The pivot procedure computes the PLU factorization of A, but stops when
one block-row and one block-column has been computed (see Figure A.1(b)).
It can roughly be split into two tasks: multiplier calculation, and reduction,
each explained below. To compute a single row and column, we start by
permuting the first column simultaneously as we compute the multipliers.
Then, we reduce the rest of the matrix, whilst permuting the rows here as
well.

To compute one column of multipliers, we read from the correct location
in the source texture, and write to the leftmost column in the destination,
as shown in Figure A.3(a). The top element is rendered at the position of
the pivot element. Because the multiplier for the top row always is one, we
do not need to compute it. In addition to computing the multipliers, we
also compute the values of the column to the right of the pivot position and
store in one of the other color channels (see Figure A.3(b)).

When the computation is complete, we transfer the multipliers and the
reduced next column to the CPU using a pixel buffer object (PBO). The
PBO uses asynchronous read-back to the CPU, allowing both the CPU and
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Figure A.3: Data representation on the GPU: (a) Row interchange of the
multipliers (leftmost column) and the rest of the matrix (cyan part). (b)
The leftmost column of the texture, with both the multiplier, and the re-
duced next column in the PLU factorization. The multiplier is stored in the
red color channel, and the reduced next column is stored in the blue color
channel.

the GPU to continue execution. When the whole leftmost column has been
transferred to the CPU, the next pivot element is found by the CPU. Simul-
taneously as the data is copied, and the CPU searches for the pivot element,
the GPU subtracts the multiplier times the top row throughout the rest of
the matrix. The top and pivot row are also interchanged simultaneously in
the same manner as in the first column. In addition, we employ the index
pair streaming technique to increase performance [GGHM05]. When the
computation is complete, the top row is copied to the CPU, again using a
PBO. The algorithm continues until we have computed the whole block-row
of U , and block-column of L.

Normalize

The normalize step computed on the local domain executes as follows: The
L matrix from this global time-step’s pivot node is uploaded to the GPU
as a texture. Then, we execute a for-loop that sequentially computes one
row of U at a time. First, the current top row and pivot row are swapped,
simultaneously as we eliminate using the multipliers in L. Because we are
using two buffers, we read back the pivot row simultaneously using PBO’s,
and store them in main memory. When all rows in the block-row have
been computed, U is sent to all nodes in the same column for the reduction
operation.
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1 /* Set up row communicators */

MPI_Cart_sub (origcom , {0, 1}, &rowcom );

/* Set up column communicators */

5 MPI_Cart_sub (origcom , {1, 0}, &colcom );

Listing A.2: Setting up row- and column-communicators

Eliminate

The elimination procedure calculates multipliers. Normalized rows (U) are
sent from the current time-step’s pivot node, and the multipliers are calcu-
lated using these. The elimination step follows much of the same procedure
as the pivot step, but it is a simpler case since there is no complications with
row interchanges. This is again because the pivot node only pivots within
in-core memory.

Reduce

The reduction step is trivial on the local node. Using a for-loop, we se-
quentially reduce the whole remaining sub-matrix by looking up one row
from U and one column from L, and calculating the reduced A as Ai,j :=
Ai,j − Li,k · Uk,j.

Sending of data

This section describes how data is sent between different nodes. The use of
MPI-2 for this inter-node communication will also be explained in detail.

Based on the algorithm discussed in Section A.3.1 we have the following
communication scenarios:

1. Sending data to all processes in the same row as active process (to
normalize and reduce).

2. Sending data to all processes in the same column as active process (to
eliminate and reduce).

For broadcasting data to all processes in the same row as the active process,
the broadcast function in MPI, MPI_Bcast, is used. This function takes
a communicator, a pointer to the data, and a count of data elements as
arguments. When called, it broadcasts the data to all processes within that
communicator. Broadcasting data to the same row as yourself is done by
calling MPI_Bcast with the row communicator.

To broadcast to columns we use the column communicator instead of the
row communicator.

Since the MPI_Bcast function is collective, it needs to be called in every
process within the current communicator. This implies that each process
needs to know a priori from which node it will receive the next broadcast. In
our application we have a function dedicated to calculate this. This function
bases the calculation on which global pass the process is currently in, and
which type it currently is (pivot, normalize, eliminate or reduce). This
method is fairly complicated, but can be briefly explained as follows: The
normalize nodes will always receive a broadcast from the pivot node, which
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Figure A.4: Overview of physical setup of nodes.

is the diagonal element in its row communicator. Eliminate is similar, but
will receive from the diagonal element in its column communicator. Finally,
reduce will receive data from normalize, which is the node with the same
column index as the current node, and the same row index as the current
pivot node. Reduce also receives data from eliminate, which is computed in
a similar fashion.

To facilitate the communication needed by our algorithm, row- and
column-wise communicators are set up. Listing A.2 shows the code used
to create these communicators. In this listing, the array sent as the second
parameter sets which dimension we wish to keep in the new communicators.
When we create the row communicators we keep the y-dimension intact, and
when creating the column communicators we do the opposite and keep the
x-dimension. When the code is executed, each process will set up a row com-
municator called rowcom and a column communicator called colcom relative
to the process’ location in the grid.

A.4 Results

The cluster which we benchmarked our application on consists of four one-
CPU, one-GPU nodes as shown in Figure A.4. The nodes were all equipped
were Intel Pentium 4 processors with Hyper-Threading Technology (HTT)
and 2 GB of RAM. All nodes had an NVIDIA GeForce 7800 GT graphics
adapter on a PCI-Express 16× slot.

A.4.1 Benchmark

Benchmarking of our algorithms showed that it gives sufficiently accurate
results considering that all computation is executed on single precision hard-
ware.

When benchmarking the algorithm, we have varied several variables to
identify possible bottlenecks. The variables we have varied are:

1. Number of nodes.

2. Number of processes.

88



Table A.1: Variation of the subsize parameter, as well as the impact of
several nodes. The number of processes is 4, and the times are in seconds.

- Nodes

n Subsize 1 2 3 4

128

8 0,20607 0,14006 0,13756 0,28482
16 0,23247 0,11918 0,14593 0,28739
32 0,19208 0,10213 0,11030 0,27609
64 0,13572 0,09238 0,08232 0,24506

512

32 0,54457 0,25811 0,28454 1,11726
64 0,49388 0,24161 0,26360 0,78500

128 0,32307 0,23648 0,24194 0,64518
256 0,24012 0,20242 0,21688 0,36138

2048

128 3,17257 2,43952 2,95311 3,19620
256 3,07729 2,43028 2,95513 3,15248
512 2,88925 2,41467 2,87859 3,05907

1024 2,59612 2,39955 2,68849 2,93310

4096

256 13,76410 13,03520 14,77890 15,26550
512 13,70820 13,18710 14,74090 15,78910

1024 13,59550 13,59640 14,73430 16,26440
2048 14,62520 14,45370 14,50600 16,66760

3. The size of the block to factorize in each global pass (subsize).

4. The total size of the problem matrix (n).

In addition, we have benchmarked the pivot operation on a single node
executed on the full matrix, as well as only network communication. This
gives us performance results for our network setup, the local algorithm, as
well as the global algorithm, enabling analysis of the limiting factor.

Table A.1 shows the time used to compute the PLU factorization while
varying the number of nodes, size of the matrix, and the block size. The max-
imum achieved performance is 3.5 GFLOPS (for n = 4096 on two nodes),
and the general trend seems to suggest that using only two nodes is faster
than using four. This can somewhat be explained by interprocess communic-
ation being faster with two processes per node, than one process per node,
as this eliminates a lot of network communication.

Table A.2 shows the time used to compute the PLU factorization while
varying the number of processes on four nodes. As the table shows, the
speed of the algorithm can be greatly influenced by tuning this parameter.
However, the optimal number of processes seems to vary with the size of the
matrix. The maximum achieved performance achieved was now increased
to 4.2 GFLOPS (16 processes on four nodes). We also timed the network-
communication, and measured the percentage of the total time used for
network communication. The percentages show that there is a substantial
time used to send and receive data alone.

To analyze the impact of the network, we ran the network communication
while varying the number of nodes. Table A.3 shows the time of the network
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Table A.2: Variation of the number of processes. The number of nodes is
four, and the times are in seconds.

Procs Subsize Time Network time %

4

256 97,78950 42
512 98,19350 36

1024 99,65560 31
2048 102,98800 30

16

256 86,30310 37
512 88,69330 35

1024 89,53110 35
2048 95,1656 33

64

128 122,72900 24
256 124,48000 23
512 120,79000 23

1024 124,32000 21

Table A.3: The time spent transmitting data. The number of processes is
four and the problem size is 2048, while the number of nodes is varied. This
shows the impact of the network communication.

- Nodes

Subsize 1 2 3 4

128 0,57228 3,18597 5,70082 6,30781
256 0,59500 3,14385 5,72201 5,73072
512 0,62175 3,13140 5,64543 5,65009
1024 0,69741 3,02938 5,37086 5,38025
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Table A.4: The time spent computing using only a single node where subsize
= n. The times are in seconds.

n Time

64 0,0284489
256 0,0491337
1024 0,280545
2048 1,44955
4096 10,051

communication, and the impact of the subsize parameter, as well as the use
of multiple nodes. The subsize parameter seems to have little effect on the
time, whilst the number of nodes has a massive impact. Using two nodes
with four processes is approximately half as expensive as using four nodes.

Finally, we have benchmarked the pivot operation on one node. This is
the most computationally heavy operation, and a limiting factor. Table A.4
shows the time spent to compute a full matrix using the pivot operation.
The peak performance was measured for the largest matrix, 4096 × 4096,
where the algorithm performed 4.6 GFLOPS. As a comparison, we timed
the ATLAS implementation used in MATLAB, which achieved 3.5 GFLOPS
on the same problem size.

A.4.2 Analysis

Our global algorithm had a maximum measured performance of 4.2 GFLOPS
using four nodes, while our local algorithm showed a promising 4.6 GFLOPS.
The network communication could account for at least 20% of the total
runtime. However, because of the way the presented algorithm is executed,
most of the processes simply idle, waiting for data. This is the largest
bottleneck, but there are some solutions.

Using a look-ahead strategy, as used in the HPL [PWDC] algorithm,
will increase the workload per node, and decrease the idling. In addition,
restructuring the computation into smaller parts, so that pivot, eliminate,
normalize and reduce are split into smaller subproblems, will also decrease
the time spent idling per node.

We have not been able to show the full potential of this algorithm, be-
cause we have only have had four nodes at disposal. Having only four nodes
makes almost all the computation execute serially, because we only have one
node per operation at each global time-step. This parallelizes the compu-
tation of normalize and eliminate only. Using more nodes, will parallelize
the reduction step of the algorithm as well, and probably speed up the total
computational speed.

A.5 Conclusions and further research

We have presented a new way of computing the PLU factorization of a
matrix, by using the GPU on a cluster of nodes. We have shown that
the algorithms computed locally are efficient, even outperforming ATLAS.
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Our global algorithm, however, is less efficient. We have pointed to a slow
network link, a lot of idling of nodes, and the use of only four nodes as the
main reasons.

A faster network link will decrease the impact of the network commu-
nication in our algorithm. It is also possible to lessen the issue with idling
of nodes by using techniques such as look-ahead, or splitting up the compu-
tation further.

It is possible to extend our algorithm to include forward and backward
substitution, as the HPL algorithm does. The computation of the forward
substitution will be virtually free, while the backward substitution will re-
quire more global passes. Including the forward and backward substitution
in the algorithm will fulfill the complexity demands for the Top500 bench-
mark [UUN].
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Appendix B
Shader programs

Listings B.1 and B.2 shows the two shaders in the composite scheme used to
simulate the shallow-water equations. Listing B.1 shows the Lax-Friedrich
scheme, and Listing B.2 shows the Lax-Wendroff scheme.
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94 Shader programs

1 [Fragment shader]

varying vec4 texXcoord ;

varying vec4 texYcoord ;

5
uniform sampler2D Q;

uniform float r;

uniform float halfG;

10 vec4 f(in vec4 Q) {

float v = Q.y/Q.x;

float u = Q.y/Q.x;

return vec4 (Q.y, (Q.y*u + halfG*Q.x*Q.x), Q.z*u, 0.0);

15 }

vec4 g(in vec4 Q) {

float v=Q.z/Q.x;

20 return vec4 (Q.z, Q.y*v, (Q.z*v + halfG*Q.x*Q.x), 0.0);

}

void main (void ) {

// extract the values needed in the scheme from the input texture

25 vec4 QE = texture2D (Q, texXcoord .wx);

vec4 QW = texture2D (Q, texXcoord .zx);

vec4 QN = texture2D (Q, texYcoord .xw);

vec4 QS = texture2D (Q, texYcoord .xz);

30 gl_FragColor = 0.25*( QE+QW+QN+QS)

- 0.5*r*(f(QE)-f(QW ))

- 0.5*r*(g(QN)-g(QS ));

}

35 [Vertex shader]

varying vec4 texXcoord ;

varying vec4 texYcoord ;

uniform vec2 dXY;

40
void main (void ) {

texXcoord = gl_MultiTexCoord0 .yxxx + vec4 (0.0, 0.0, -1.0, 1.0) * dXY.x;

texYcoord = gl_MultiTexCoord0 .xyyy + vec4 (0.0, 0.0, -1.0, 1.0) * dXY.y;

45 gl_Position = ftransform ();

}

Listing B.1: The Lax-Friedrich scheme in GLSL.
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1 [Fragment shader]

varying vec4 texXcoord ;

varying vec4 texYcoord ;

5
uniform sampler2D Q;

uniform float r;

uniform float halfG;

10 vec4 f(in vec4 Q) {

float u = Q.y/Q.x;

return vec4 (Q.y, (Q.y*u + halfG*Q.x*Q.x), Q.z*u, 0.0);

}

15
vec4 g(in vec4 Q) {

float v = Q.z/Q.x;

return vec4 (Q.z, Q.y*v, (Q.z*v + halfG*Q.x*Q.x), 0.0);

20 }

void main (void) {

// extract the values needed in the scheme from the input texture

vec4 QC = texture2D (Q, texXcoord .yx);

25 vec4 QE = texture2D (Q, texXcoord .wx);

vec4 QW = texture2D (Q, texXcoord .zx);

vec4 QN = texture2D (Q, texYcoord .xw);

vec4 QS = texture2D (Q, texYcoord .xz);

30 // compute cell -averages

vec4 F = f(Q);

vec4 G = g(Q);

// use midpoint rule on cell -edges

35 vec4 QnhE = 0.5*(QE + QC) - 0.5* r*(f(QE) - F);

vec4 QnhW = 0.5*(QC + QW) - 0.5* r*(F - f(QW ));

vec4 QnhN = 0.5*(QN + QC) - 0.5* r*(g(QN) - G);

vec4 QnhS = 0.5*(QC + QS) - 0.5* r*(G - g(QS ));

40 gl_FragColor = Q - r*(f(QnhE) - f(QnhW )) - r*(g(QnhN ) - g(QnhS ));

}

[Vertex shader]

45 varying vec4 texXcoord ;

varying vec4 texYcoord ;

uniform vec2 dXY;

50 void main (void) {

texXcoord = gl_MultiTexCoord0 .yxxx + vec4 (0.0, 0.0, -1.0, 1.0) * dXY.x;

texYcoord = gl_MultiTexCoord0 .xyyy + vec4 (0.0, 0.0, -1.0, 1.0) * dXY.y;

gl_Position = ftransform ();

55 }

Listing B.2: The Lax-Wendroff scheme in GLSL.





Appendix C
PyShallows

PyShallows is a utility suitable for debugging simple shader programs. It
will try to compile and run the shaders, and then either display an OpenGL
object that these shaders are used on, or display the compilation error(s) if
one or both shaders should fail to compile.

Figure C.1 shows how PyShallows works when the shaders compiles cor-
rectly, and Figure C.2 shows what happens when a shader fails to compile.
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98 PyShallows

Figure C.1: Screenshot of PyShallows in action 1. The brick-shaders com-
piles correctly, and are used on the chosen OpenGL object.

Figure C.2: Screenshot of PyShallows in action 2. The brick-shaders fail to
compile, and the compilation error(s) are displayed.



Bibliography

[App05] Apple Computer. Opengl shader builder / profiler. Online;
http://developer.apple.com/graphicsimaging/opengl/,
2005. [accessed 2007-04-18].

[Arga] Argonne National Lab. DeinoMPI. Online; http://mpi.deino.
net/. [accessed 2007-07-11].

[Argb] Argonne National Laboratory. Jumpshot. Online; http://

www-unix.mcs.anl.gov/perfvis/. [accessed 2007-04-18].

[Argc] Argonne National Laboratory. MPICH2. Online; http://

www-unix.mcs.anl.gov/mpi/mpich2/. [accessed 2007-04-18].

[Argd] Argonne National Laboratory. Upshot. Online; http://

www-fp.mcs.anl.gov/~lusk/upshot/. [accessed 2007-04-18].

[ATIa] ATI. CrossFire. Online; http://ati.amd.com/technology/

crossfire/index.html. [accessed 2007-06-21].

[ATIb] ATI. Torrenza. Online; http://enterprise.amd.com/us-en/
AMD-Business/Technology-Home/Torrenza.a%spx. [accessed
2007-06-12].

[Auta] Autodesk. 3d studio max. Online; http://www.autodesk.com/
3dsmax. [accessed 2007-06-11].

[Autb] Autodesk. Maya. Online; http://www.autodesk.com/maya.
[accessed 2007-06-11].

[Bax05] B. Baxter. The image debugger. Online; http://www.

billbaxter.com/projects/imdebug, 2005. [accessed 2007-04-
18].

99



100 BIBLIOGRAPHY

[BDV94] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster
Environment for MPI. In Proceedings of Supercomputing Sym-
posium, pages 379–386, 1994.

[Beo] Beowulf.org. Beowulf faq. Online; http://www.beowulf.org/
overview/faq.html. [accessed 2007-04-18].

[BFH04a] I. Buck, K. Fatahalian, and P. Hanrahan. Gpubench: Evaluat-
ing gpu performance for numerical and scientific applications.
In ACM Workshop on General-Purpose Computing on Graphics
Processors, pages C–20, August 2004.

[BFH+04b] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hou-
ston, and P. Hanrahan. Brook for GPUs: Stream computing on
graphics hardware. ACM Transactions on Graphics, 23:777–
786, August 2004. Special Issue: Proceedings of the 2004 SIG-
GRAPH Conference.

[Bly06] D. Blythe. The Direct3D 10 system. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, pages 724–734, New York, NY, USA,
2006. ACM Press.

[Boo] Boost.org. Boost c++ libraries. Online; http://www.boost.

org. [accessed 2007-04-18].

[Cen] Ohio Supercomputer Center. XMPI. Online; http://www.

lam-mpi.org/software/xmpi/. [accessed 2007-07-11].

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks.
ACM Comput. Surv., 3(2):67–78, 1971.

[Com] Computer Base. Xfx GeForce 7900 GS 480M extreme.
Online; http://www.computerbase.de/artikel/hardware/

grafikkarten/2006/test_xfx_%geforce_7900_gs_480m_

extreme/drucken/. [accessed 2007-07-02].

[DH01] C. Ding and Y. He. A ghost cell expansion method for reducing
communications in solving PDE problems. In Supercomputing
’01: Proceedings of the 2001 ACM/IEEE conference on Super-
computing (CDROM), pages 50–50, New York, NY, USA, 2001.
ACM Press.

[Fly66] M. J. Flynn. Very high-speed computing systems. In Proceed-
ings of the IEEE, volume 54, pages 1901–1909, December 1966.

[FQKYS04] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU
cluster for high performance computing. In Supercomputing,
2004. Proceedings of the ACM/IEEE SC2004 Conference, pages
47–47, November 2004.



BIBLIOGRAPHY 101

[Gee05] D. Geer. Taking the graphics processor beyond graphics. In
Computer, volume 38, pages 14–16, 2005.

[GFB+04] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lums-
daine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S.
Woodall. Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,
Hungary, September 2004.

[GGHM05] N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha.
LU-GPU: Efficient algorithms for solving dense linear systems
on graphics hardware. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 3, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[GKP96] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. Pvm and
mpi: a comparison of features. Calculateurs Paralleles, 8, 1996.

[GLT99] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2. Massachu-
setts Institute of Technology, 1999.

[Gra05] Graphic Remedy. gdebugger. Online; http://www.gremedy.

com, 2005. [accessed 2007-04-18].

[Göd06] Dominik Göddeke. Gpgpu::fast transfer tutorial. On-
line; http://www.mathematik.uni-dortmund.de/~goeddeke/

gpgpu/tutorial3.html, 2006. [accessed 2007-06-25].

[Har97] A. Harten. High resolution schemes for hyperbolic conservation
laws. J. Comput. Phys., 135(2):260–278, 1997.

[HF] M. T. Heath and J. E. Finger. ParaGraph. Online; http:

//www.csar.uiuc.edu/software/paragraph/. [accessed 2007-
07-11].

[HHHL07] T. R. Hagen, M. O. Henriksen, J. M. Hjelmervik, and K.-A. Lie.
How to solve systems of conservation laws numerically using the
graphics processor as a high-performance computational engine,
pages 211–264. Springer, 2007.

[HLN06] T. R. Hagen, K.-A. Lie, and J. R. Natvig. Solving the euler
equations on graphics processing units. In International Con-
ference on Computational Science, pages 220–227, 2006.

[HOHL] H. Hanche-Olsen, H. Holden, and K.-A. Lie. Conservation
laws preprint server. Online; http://www.math.ntnu.no/

conservation/. [accessed 2007-06-13].



102 BIBLIOGRAPHY

[IBM] IBM. Cell broadband engine architecture. Online;
http://www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/1AEEE1270EA277%6387257060006E61BA/$file/

CBEA_v1.01_3Oct2006.pdf. [accessed 2007-07-12].

[IBT] IBTA. Infinibandta.org. Online; http://www.infinibandta.

org. [accessed 2007-04-18].

[KAN] KANDU. The gathering. Online; http://www.gathering.org.
[accessed 2007-05-01].

[KNP01] A. Kurganov, S. Noelle, and G. Petrova. Semidiscrete central-
upwind schemes for hyperbolic conservation laws and hamilton–
jacobi equations. SIAM J. Sci. Comput., 23(3):707–740, 2001.

[Kom] Komplett.no. komplett.no. Online; http://www.komplett.no.
[accessed 2007-04-18].

[Law] Lawrence Livermore National Laboratory. pyMPI. Online;
http://pympi.sourceforge.net/index.html. [accessed 2007-
07-11].

[LeV02] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems.
Cambridge Texts in Applied Mathematics, Cambridge Univer-
sity Press, 2002.

[LSK+06] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and J. D.
Owens. Glift: Generic, efficient, random-access GPU data struc-
tures. ACM Transactions on Graphics, 25:60–99, January 2006.

[MGAK03] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: a
system for programming graphics hardware in a c-like language.
ACM Transactions on Graphics archive, 22:896–907, July 2003.
Special issue: Proceedings of ACM SIGGRAPH 2003.

[MHJ91] A. D. Malony, D. H. Hammerslag, and D. J. Jablonowski.
Traceview: A trace visualization tool. IEEE Softw., 8(5):19–
28, 1991.

[Mica] Microsoft. About microsoft MPI. Online; http://msdn2.

microsoft.com/en-us/library/bb524831.aspx. [accessed
2007-07-11].

[Micb] Microsoft. Microsoft windows compute cluster server. On-
line; http://www.microsoft.com/windowsserver2003/ccs/

default.mspx. [accessed 2007-04-18].



BIBLIOGRAPHY 103

[Mic05a] Microsoft. Microsoft high-level shading language. On-
line; http://msdn.microsoft.com/library/default.asp?

url=/library/en-us/direct%x9_c/directx/graphics/

reference/hlslreference/hlslreference.asp, 2005. [ac-
cessed 2007-04-18].

[Mic05b] Microsoft. Microsoft visual studio. Online; http://msdn.

microsoft.com/vstudio/, 2005. [accessed 2007-04-18].

[Mic05c] Microsoft. Shader debugger. Online; http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/direct%

x9_c/directx/graphics/Tools/ShaderDebugger.asp, 2005.
[accessed 2007-04-18].

[Mic07] Microsoft. Microsoft DirectX. Online; http://www.microsoft.
com/directx, 2007. [accessed 2007-04-25].

[Moo00] G. E. Moore. Cramming more components onto integrated cir-
cuits, pages 56–59. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2000.

[Mor03] A. Moravánszky. Dense matrix algebra on the GPU. On-
line; http://www.shaderx2.com/shaderx.pdf, 2003. [accessed
2006-05-11].

[MPI] MPI Forum. Mpi documents. Online; http://www.mpi-forum.
org/docs/docs.html. [accessed 2007-04-18].

[NAS] NASA Advanced Supercomputing Division. AIMS. On-
line; http://www.nas.nasa.gov/Resources/Software/

swdescriptions.html#AIMS. [accessed 2007-04-18].

[Neo07] Neoptica. Programmable graphics – the future of in-
teractive rendering. Online; http://www.neoptica.com/

NeopticaWhitepaper.pdf, 2007. [accessed 2007-04-23].

[NVIa] NVIDIA. Cuda. Online; http://developer.nvidia.com/

object/cuda.html. [accessed 2007-06-12].

[NVIb] NVIDIA. Geforce 8 series. Online; http://www.nvidia.com/
page/geforce8.html. [accessed 2007-07-02].

[NVIc] NVIDIA. Nvidia tesla. Online; http://www.nvidia.com/

object/tesla_computing_solutions.html. [accessed 2007-
07-02].

[NVId] NVIDIA. SLIZone Home. Online; http://www.slizone.com/
page/home.html. [accessed 2007-06-21].



104 BIBLIOGRAPHY

[Oak] Oak Ridge National Laboratory. XPVM. Online; http://www.
netlib.org/utk/icl/xpvm/xpvm.html. [accessed 2007-07-11].

[oI] University of Illinois. Pablo. Online; http://wotug.kent.ac.
uk/parallel/performance/tools/pablo/. [accessed 2007-07-
11].

[OLG+05] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell. A survey of general-purpose
computation on graphics hardware. In Eurographics 2005, State
of the Art Reports, August 2005.

[OLG+07] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell. A survey of general-purpose
computation on graphics hardware. Computer Graphics Forum,
26(1):80–113, 2007.

[Pac97] P. S. Pacheco. Parallel programming with MPI. Morgan
Kaufmann Publishers, Inc., 1997.

[PB03] A. J. Preetham and A. Bleiweiss. Ashli - advanced shading
language interface. In Eurographics 2003, 2003.

[Pea] Peakstream Inc. Peakstream. Online; http://www.

peakstreaminc.com/. [accessed 2007-05-03].

[Pie94] P. Pierce. The nx message passing interface. Parallel Comput-
ing, 20(4):463–480, 1994.

[PS03] T. J. Purcell and P. Sen. Shadesmith fragment program de-
bugger. Online; http://graphics.stanford.edu/projects/

shadesmith, 2003. [accessed 2007-04-18].

[PWDC] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. Hpl.
http://www.netlib.org/benchmark/hpl/. [accessed 2007-04-
18].

[RH04] C. Z. Rojas and M. Hoemmen. Communication savings with
ghost cell expansion for domain decompositions of finite differ-
ence grids. May 2004.

[Ros06] R. J. Rost. OpenGL r© Shading Language, Second Edition. Ad-
dison Wesley Professional, January 2006.

[SHF06] S. Sharma, C.-H. Hsu, and W.-C. Feng. Making a case for a
green500 list. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2006)/ Workshop on High Per-
formance - Power Aware Computing, 2006.



BIBLIOGRAPHY 105

[Shu88] C.-W. Shu. Total-variation-dimishing time discretisations. Sci.
Stat. Comput., 9:1073–1084, 1988.

[SIN05] SINTEF. Shallows. Online; http://sourceforge.net/

projects/shallows, 2005. [accessed 2007-04-18].

[SWND05] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL Pro-
gramming Guide, Fifth Edition, The Official Guide to Learning
OpenGL, Version 2. Addison-Wesley, 2005.

[The07a] The Khronos Group. OpenGL Architecture Review Board.
Online; http://www.opengl.org/about/arb/, 2007. [accessed
2007-06-11].

[The07b] The Khronos Group. The Khronos Group, open standards, roy-
altee free, dynamic media technologies. Online; http://www.

khronos.org/, 2007. [accessed 2007-06-11].

[Tre05] D. Trebilco. GLIntercept. Online; http://glintercept.

nutty.org, 2005. [accessed 2007-04-18].

[Ups89] S. Upstill. RenderMan Companion: A Programmer’s Guide to
Realistic Computer Graphics. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1989.

[UUN] University of Mannheim, University of Tennessee, and NER-
SC/LBNL. Top 500 supercomputer sites. Online; http:

//www.top500.org/about. [accessed 2007-04-18].

[Van82] M. Van Dyke. Album of fluid motion, 1982. [accessed 2007-06-
13].

[Wik07a] Wikipedia. ATI CrossFire — wikipedia, the free encyclopedia,
2007. [Online; accessed 21-June-2007].

[Wik07b] Wikipedia. Scalable Link Interface — wikipedia, the free en-
cyclopedia, 2007. [Online; accessed 21-June-2007].

[Wik07c] Wikipedia. Schlieren photography — wikipedia, the free encyc-
lopedia, 2007. [Online; accessed 10-July-2007].

[Wik07d] Wikipedia. Wave equation — wikipedia, the free encyclopedia,
2007. [Online; accessed 21-June-2007].

[XFX] XFX. GeForce 8800 ultra 768MB DDR3 RoHS dual DVI
extreme. Online; http://xfxforce.com/web/product/

listConfigurations.jspa?seriesId=730995%&productId=

1085635. [accessed 2007-05-23].


