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Theories are our own inventions, our own ideas; they are not forced upon  
us, but are our self-made instruments of thought: this has been clearly seen  
by the idealist. But some of these theories of ours can clash with reality;  
and when they do, we know that there is a reality; that there is something to  
remind us of the fact that our ideas may be mistaken. And this is why the  
realist is right. 

 - Karl Popper 
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Abstract

The aim of this master thesis is to make a convincing argument that scientific progress can be 
spoken of in objective terms. In order to make this argument I will propose a philosophical theory 
of scientific progress. Two concepts will be constructed with this aim in mind, both which are types  
of strength measures on scientific theories. 

The first  concept,  that of logical strength,  pertains to the way a theory may exclude,  or 
permit  less,  model  classes  compared  to  another  theory.  The  second  concept,  that  of  empirical 
strength, pertains to an objective measure of the informational content of data models, defined in 
terms of Kolmogorov complexity. This latter idea stems from communication and computational 
theory. Scientific progress is then defined as the interaction, or the stepwise increases, of these two 
strength measures.

Central for the conception of a scientific theory is the philosophical framework known as 
The Semantic View of Scientific Theories. This view can briefly be characterized as an empirical 
extension of Tarskian model-theory. Another central notion for this theory of scientific progress is 
the  philosophical  or  metaphysical  thesis  called  structural  realism.  Both  will  accordingly  be 
explained and argued for.

Finally, as a test on this proposed theory of scientific progress, it will be applied to two 
examples of theory transition from the history of physical theory.  I conclude that the proposed 
theory handles these two cases well. 
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1. Introduction

Whether we can talk stringently about scientific progress or not is a question that cuts to the very 

bone  of  fundamental  philosophical  problems,  like  objective  knowledge  and  truth.  If  objective 

knowledge is achievable anywhere it should be reflected in the methodology and results of science, 

which is the very enterprise of, and institution for, epistemological pursuit. 

Science is in flux. Now, how can that which changes point to truth? If science were not  

merely changing but evolving, not only in a state of flux but also developing with an inherent 

direction,  then  maybe  the  pursuit  were  approaching  truth.  But  one  common  and  influential 

philosophical view has it that scientific theories are too paradigm dependent to allow any objective 

standard in terms of which scientific progress could be determined. Nevertheless, I believe this view 

to be wrong. Scientific progress does occur. And in this thesis I propose a philosophical theory of 

what such progress consists of.

The logical positivists aimed to construct a unified account of scientific theories, in close 

accordance with scientific methodology itself. They sought also to explain the progress of science. 

But  their  philosophy was  haunted  by  their  adherence  to  inductivist  doctrines  of  confirmation. 

Neither did their accounts of theory progression by way of theory reduction succeed any better. Karl 

Popper  vigorously  criticized  the  perceived  central  role  of  induction  in  scientific  methodology, 

arguing that the mark of scientific attitude is rather conjectural about truth (but certain as to falsity), 

with the corresponding emphasis on falsification of theories  rather than their  confirmation.  But 

neither his conjectures and verisimilitude concept could give an acceptable explication of scientific 

progress.

The overarching focuses in the philosophy of science then shifted. More emphasis was given 

to  the  history  and  the  sociology  of  science,  and  to  the  psychology  and  idiosyncrasies  of  the 

paradigm.  Another  closely related  shift  was  towards  more  pragmatic  philosophical  attitudes.  A 

common enumerator being an increasing distance from the original aims and aspirations of the 

logical positivists. Correspondingly, the project of constructing a concept of scientific progress, in 

objective and paradigm independent terms, seeming ever more hopeless, ever less attainable. 
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However, the project of giving a unified analysis and account of scientific theories did not,  

or has not, become extinct. I will argue that The Semantic View of Scientific Theories is a most 

viable alternative.  Not only does this  view succeed in accounting for the structure of scientific 

theories. It also delivers a philosophical-mathematical framework on the background of which a 

theory of scientific progress can be constructed. That construction is the goal of this master thesis.

The  semantic  view of  scientific  theories  coheres  well  with  another  philosophical  thesis 

which will be explained and defended. This thesis is called  structural realism and holds that the 

important  features  of  what  scientific  theories convey are  structural  properties,  or  the  relational 

aspects, of empirical reality. As we will see, once this thesis is incorporated in our more general 

philosophical  framework,  issues  posed  as  problems  for  the  conception  of  science  as  an 

accumulative enterprise dissolve, or at least become problems we are able to overcome.

This master thesis has one main ambition:

To develop and give a philosophical theory of scientific progress.

This proposed theory has the aspirations of both being objective and enjoying a high degree of 

generality.

In order to provide and defend a philosophical theory of scientific progress I will complete 

the following tasks in consecutive order.  

1. First, a philosophical account of scientific theories must be in place. This will be done by 

closely studying two such conceptions. One of which will be rejected, the other one will be 

used as framework for giving an account of what a scientific theory is, which is needed in 

order to tackle the question of scientific progress.  

2. The  philosophical  (or  metaphysical)  thesis  of  structural  realism  will  be  explained  and  

defended, a thesis which establishes the continuity across scientific change. And in addition 

to cohering well with the framework of the semantic view adopted here, structural realism 

functions as yet another building block needed in order to construct the proposed theory of 

scientific progress.

3. My proposed theory of scientific progress will be given.

4. The theory of  scientific  progress will  be applied to  and evaluated against  two cases of  

theory transitions  from the history  of  physics.  And as  will  be argued for,  the theory of 

scientific progress handles these two cases in a satisfactory way. 
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Here follows an overview of the parts and chapters of this thesis. 

The  first  part  will  deal  with  philosophical  frameworks  for  scientific  theories.  The  first 

chapter  of  this  part,  chapter  2,  will  go  through the  logical  positivists'  conception  of  scientific 

theories, called The Syntactic View of Scientific Theories, or The Received View. It has here been 

devoted a whole chapter due to two reasons. The syntactic view share certain relevant features with 

the  other  framework  we  will  adopt.  And  much  of  its  philosophical  legacy still  exist  in  much 

contemporary analytical philosophy.

The third chapter will give an account of the semantic view of scientific theories. I explain 

how this view shares some commonalities with the syntactic view but differs in other important 

ways, and how the semantic view is more apt as an adequate conception of scientific theories. We 

will bring with us this framework all the way to the end of the thesis. 

The fourth chapter first sums up the discussion so far, then gives an explicit account (or 

meta-theory) of what a scientific theory is. This chapter ends the first part of the thesis, as we now 

have an account of scientific theories in place, ready to embark on our project's next step. 

The second part of the thesis, dealing with scientific progress, is also the part where the 

original contribution is provided and presented. First, in the fifth chapter, a serious problem for a 

realist conception of the historical continuity of scientific theories will be explained. Then the thesis 

of structural realism will be presented as solution to this particular problem. After having argued for 

theoretical continuity and theory retention via structural realism, we present our theory of scientific 

progress, accounting for the cumulative aspect in addition to the continuous one. This proposed 

theory accounts  for  both logical  and empirical  strength increments  (to  be defined)  enjoined by 

scientific theories, which are the two components constituting scientific progress. 

In the sixth chapter I discuss two examples of theory transition from the history of physics. 

The first example will demonstrate an increase in logical strength, dealing with two versions of 

Newtonian mechanics.  The second example will  demonstrate  an increase in  empirical  strength, 

dealing with the transition from Newtonian mechanics to the special theory of relativity.

Ultimately, in the seventh chapter, the thesis is concluded by taking a look at what lays 

ahead. I propose concrete suggestions for future research and gives some remarks about the 

generality of this account. Ultimately I make some reflections within a broader intellectual context 

about the philosophy here propounded. 
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Part 1

Philosophical Frameworks for Scientific Theories
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2. The Syntactic View of Scientific Theories

Although the [Syntactic] View continued to enjoy wide acceptance after logical positivism had been 

rejected, it is the product of logical positivism and cannot be understood if divorced from the tenets of  

that movement.

Frederick Suppe, The Structure of Scientific Theories 

The syntactically defined relationships are simply the wrong ones.

Bas van Fraasen, The Scientific Image

The  logical  positivists  failed  in  their  attempt  to  give  a  satisfactory  account  or  an  adequate 

philosophical theory of the structure of scientific theories. Their view is known as the Syntactic 

View,  or  the  Received  View,  of  Scientific  Theories  (henceforth  called  the  syntactic  view  of 

scientific theories, or simply the syntactic view). In this chapter we will look at the origins of this  

view, the actual contents of this view, and the problems pertaining to it which ultimately led to its 

demise.  As we will  see,  the main source of problems was its  particular emphasis on linguistic  

analysis, which mainly focuses on the syntactical properties of theories at the expense of meaning 

and semantics. Three related problems distinguish themselves: (1) The limits of axiomatization in 

first-order logic; (2) a problematic bifurcation of the language of science into one theoretic and one 

empirical part; and (3) the intended role of so-called correspondence rules connecting these two 

language parts.  

The  comprehensive  and  classic  account  of  the  syntactic  view  of  scientific  theories  is 

Frederick Suppe's contribution to  The Structure of Scientific Theories (1977). The present chapter 

leans heavily on his account, but is complemented with some works of the founders of the view 

themselves, e.g., Rudolf Carnap and Ernest Nagel. 

The  chapter  is  divided  as  follows.  In  the  first  section  I  will  present  the  historical  and 

ideological context relevant for the rise of logical positivism and its view of science. Then in the 

second  section  a  closer  look  at  the  syntactic  view  of  scientific  theories  and  some  of  the 

modifications made through its development. In the third and last section I turn to problems leading 

to the fall of both logical positivism generally and the syntactic view specifically.
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2.1 The Syntactic View and Logical Positivism

The  Syntactic  View  of  Scientific  Theories  cannot  be  seen  in  isolation  from the  philosophical 

movement from which it was spawned, namely logical positivism. This movement or philosophical 

school  was  developed  during  the  first  decades  of  the  20th century  in  Germany by a  group of 

philosophers and scientists known as the Vienna Circle. Some of its prominent figures were Hans 

Hahn, Moritz Schlick, Hans Reichenbach (and his Berlin School), Otto Neurath, and for later times 

maybe the two most influential ones, Rudolf Carnap and Ludwig Wittgenstein. 

Characteristic  of  this  group  and  for  our  concerns  was  the  mixture  of  philosophers, 

mathematicians and logicians, and scientists, composing this group and developing its particular 

philosophies. They were generally highly skilled in contemporary science and mathematics, being 

both aware of and working on different problems pertaining to the different disciplines. This in turn 

influenced their philosophical views in obvious ways, allowing this school of thought to be dubbed 

as scientific philosophy. Now, these decades being as revolutionary as they were in both science and 

mathematics, it makes less wonder why this philosophical movement came to be as radical as it 

was. Furthermore, not only was it radical but also greatly influential of later philosophy, being in 

some ways the backbone itself of the whole analytical tradition. We will now look more closely at 

some  of  the  ways  events  and  developments  in  science  and  mathematics  motivated  the  logical 

positivists to conceive of the syntactic view of scientific theories.

What's in a name? asked Shakespeare. The two component names of ‘logical positivism’ 

pay due to the remarkable synthesis of ideas and attitudes constituting this philosophy. And the 

syntactic view has clear and direct traces from both. We will start with positivism, and then in turn 

look at the logic part. 

Contemporary Science Reinforcing the Verifiability Principle

Positivism was the philosophical school of thought extending a strict empiricist attitude beyond 

natural science to the relatively young social sciences, and is commonly associated with Auguste 

Comte.  Empiricism is the more general attitude. (The later phase of the movement is often called 

logical empiricism.) As empiricists the logical positivists were intellectual heirs of David Hume, 

holding on to the conviction that the only true source of knowledge is the senses. Whatever bit of 

our knowledge that cannot be shown traceable back to empirical origins must be tossed to  the 

flames, ˝for it can contain nothing but sophistry and illusion.˝ (In Ariev and Watkins 2009; Hume, 

Enquiry, section 7, part 3). This verificationist imperative evolved into one of logical positivism's 

central  ideas,  the  verificationist  principle,  and is  an essential  part  of  the  specific  philosophical 
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framework within  which  their  view of  scientific  theories  was conceived (Godfrey-Smith  2003, 

chapter 2). Let us now look at how some significant events pertaining to physical theory can be seen 

as both vindicating and reinforcing the empiricist emphasis.

Newtonian mechanics was until the turn of the 20th century regarded as an essentially true 

theory of physical nature.  Although there was some philosophical  controversy dealing with the 

concept  of  action-at-a-distance  inherent  in  Newton's  theory,  breaking  with  Cartesian  vortex 

mechanics of contiguous contact, it is safe to say that, generally, the theory was philosophically 

intuitive. The theoretical framework postulates a three-dimensional (infinite) Euclidean space and 

an independent linear time dimension (Friedman 1983, pages 12 and 18). A telling example of how 

this  framework is  said to  be intuitive is  how Kant  could conceive of  this  physical  framework, 

indeed, even the laws or axioms themselves, in a purely a priori fashion. Newtonian theory could 

thereby be seen as a precondition for empirical reality itself. No wonder then the controversy and 

widespread initial reluctance to acknowledge it when a competing theory claimed this framework to 

be essentially wrong. 

Now, the important point here is how it was shown to be wrong. In 1919 the physicist Arthur 

Eddington and his team conducted a fairly simple experiment during a lunar eclipse commonly 

taken as establishing the truth of Einstein's revolutionary relativistic mechanics over the Newtonian 

one.  As a  consequence,  mainstream philosophical  conceptions  of  space  and time needed to be 

discarded.  A posteriori  results  falsifying  a priori  conceptions.  A solid  victory of  the empirical-

scientific approach over armchair philosophizing. This moral was taken to the heart by the logical 

positivists.

Another  field  of  physics  where  crucial  research  and discoveries  were  made  during  this 

epoch,  and having even more revolutionary philosophical  implications  than  relativity theory,  is 

quantum mechanics. What quantum theory did in an even more thorough way than relativity theory 

is  forcing  the  abandonment  of  the  idea  that  a  conceptual  framework for  the  theory should  be 

intelligible or intuitive.  This statement is maybe too weak since quantum theory not only have 

unintelligible concepts but contra-intuitive ones, and, some may say, even contradictory physical 

consequences (e.g., particles being neither wholly present nor wholly absent.) The moral that was 

drawn  from  this  and  the  attitude  it  provoked,  not  only  for  the  logical  positivists  but  for  the 

community of physicists more generally, was to pragmatically disregard intelligibility (If you think  

you understand quantum mechanics, then you don't understand quantum mechanics,  as Richard 

Feynman  allegedly  said)  as  long  as  the  mathematical  formalism  worked,  i.e.,  gave  the  right 

measurable predictions1. It needed in addition no form of conceivable interpretation. And as to the 

1 This attitude is characterized as the agnostic position, and has been widespread among physicists and philosophers 
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way the formalism worked, quantum mechanics is, after all, the mensural validated science  par 

excellence.

Combining the lessons to be learned from the groundbreaking events related to the advent of 

the two new theories in fundamental physics, we see how these events can constitute a push toward 

a more thorough empiricist attitude, and one which is more pragmatically oriented when it comes to 

theories having less intuitive and conceivable concepts and consequences. What is more, since one 

could argue also that philosophical preconceptions even delayed progress in physical theory,  by 

delaying their  acceptance due to philosophical concerns, this motivated a rejection of a goal of 

philosophy being to explain what the theories are about, beyond the scope of mere measurement, 

prediction  and  observation.  A step  towards  a  deflationary  and  a  more  pure  empiricism.  As  it 

happens, something analogous was happening in the disciplines of logic and mathematics and the 

role of pure syntax, as we will see, now as we turn to the logic part of our movement's name.

Logicism and Formalism in Contemporary Formal Sciences – The Expulsion of Meaning

Developments in the formal sciences were also highly influential of how the logical positivists came 

to view what a scientific theory ideally is or should be. Their focus on, and high esteem of, logic 

must  be  seen  together  with  the  rise  of  a  new  type  of  logic,  symbolic  or  mathematical  logic, 

stemming  mainly  from Gottlob  Frege's  analyses  on  language  and  mathematics.  With  this  new 

logical toolbox, serious attempts were made at formulating all of classical mathematics in first order 

logic (although not completely successful); in other words, the reduction of mathematics to logic. 

This was the project of the Principia Mathematica by Alfred North Whitehead and Bertrand Russell 

from 1910. As had been the case with physical theorizing, with physical theories not cohering too 

well with some of our preconceptions, similar issues or paradoxes existed in the fields of pure 

mathematics. Now, with the apparent (at the time) reduction of mathematics to logic, less focus and 

attention  was  given  to  the  alleged  meaning of  mathematical  terms  and  statements,  and 

correspondingly more was given to strictly formal or syntactical aspects, and to consistency rather 

than truth, traditionally conceived. The view that mathematical statements were devoid of meaning, 

that they were nothing but 'mere' logic and reducible to it, was called  logicism  and gained much 

ground and respectability during this epoch when much attention was turned to foundational issues 

in mathematics and logic2.

Another  important  and  relevant  development  happened  in  the  field  of  geometry,  which 

alike. Another popular orientation was (and still is) the orthodox or Copenhagen interpretation. But when these 
latter are hard pressed on realist issues, they usually fall back on the agnostic position. (See Griffiths 1995, pages 3-
4.) 

2 See chapters 5 and 6 in Shapiro, 2000.
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further prompted the step from focusing on meaning to focusing on mere syntax. And in addition to 

this, development in geometry, together with the work in mathematical logic, paved the way for the 

logical positivists to hold the view that scientific theories should be axiomatizable. For millennia, 

actually, geometry was equivalent to Euclidean geometry; there were no other. And a trait most 

distinctive of Euclidean geometry, influencing also much philosophical theorizing, even mimicking 

it,  like  Descartes,  was  the  axiomatic  character  of  it.  But  it  wasn't  until  the  19 th century,  when 

mathematicians first started questioning the axioms of Euclid, nearly taken as givens since the days 

of antiquity,  and as a result  developing and working on alternative systems of geometries,  that 

axiomatization itself became a focus of research. This it did by highlighting the axiomatization's 

role  in  formulating,  determining,  and  constraining  the  alternative  geometries.  (This  work  also 

inspired the ideas of model theory, a subdicipline in mathematical logic, which we will return to 

many times throughout this thesis. (See van Fraassen 1980, page 41)) This way we see how the 

development of non-Euclidean geometries did more than just prepare the geometries needed for 

relativity theory in physics; it also gave rise to elaborating on axiomatization and on what it is to be 

a theory and a model, mathematically speaking. And questions of axiomatization in turn became a 

central topic in mathematical logic and proved to be a most fruitful approach there.

But why did the work on alternative geometries further prompt the step from meaning to 

mere  syntax?  Because,  in  order  to  be  able  to  develop  these  geometries  many  preconceptions 

pertaining to the meaning of geometrical terms, like straight lines and triangles, had to be exorcised 

or thoroughly nullified3. Pasch, working on the foundation of geometry, wrote that ˝... if geometry is 

to  be  really  deductive,  the  deduction  must  everywhere  be  independent  of  the  meaning  of 

geometrical concepts..˝ (Quoted in Suppes 1988, page 82).  These intuitive geometrical terms lost 

their presumed meaning, the familiar concept, once they were implicitly defined in various different 

axiom systems,  and what  was instead  considered  important  and interesting  was  what  logically 

followed from the axioms and questions of consistency. This work in geometry was a special case 

of the more general strategy known as the Hilbert program, after the famous mathematician David 

Hilbert. In the philosophy of mathematics, Hilbert is known for his adherence to formalism, a view 

that it is the merely syntactic features of logical systems, like deducibility and consistency, which 

really matters. The parallel to  logicism  when it comes to a kind of abandonment of semantics is 

obvious, and once again we have arguments  against meaning considerations and arguments  for 

focusing on purely syntactical features or symbol manipulation; pure syntax.

We  have  now  traced  some  of  the  philosophical  and  scientific  reasons  motivating  the  two 

3 See the section Alternative Geometries and Their Interrelations, chapter 9, Nagel 1979.
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fundamental  doctrines  characterizing  logical  positivism.  We  see  one  push  towards  a  strict 

verificationist  attitude  where  all  meaning  is  empirical  meaning,  together  with  the  other  push 

towards  purely  formal  considerations  when  dealing  with  logical,  mathematical,  and  theoretical 

frameworks  more  generally.  It  is  the  peculiar  application  of  the  combination  of  these  two 

approaches to empirical sciences that is the syntactic view.  

2.2 A Presentation of the Syntactic View of Scientific Theories

First of all,  the Syntactic View is not intended as a descriptive account of the structure and the 

practice of actual scientific theories and scientific work. It is rather a prescriptive or a normative 

account, meant to give a canonical formulation of the general features that make scientific theories 

earn their status as such (Frederick Suppe 1977, page 62). It is not necessary that actual scientific 

theories be thus formulated,  although they should in principle be able to be reconstrued in this 

canonical way. What are these general features? 

First,  the theory should be axiomatized (or formalized; see also page 37), in a specified 

language  L (paradigmatically,  first  order  logic)  associated with a logical  calculus.  The relevant 

scientific laws are treated as a set of sentences or axioms, called the theory T (often mathematical 

equations). 

Secondly,  this  language  L is  strictly  bifurcated  into  two  sublanguages,  the  theoretical 

language,  LT, and the observational language,  LO. Pertaining to each of these sublanguages is the 

corresponding  class  of  terms,  theoretical  terms,  t-terms,  and  observational  terms,  o-terms.   A 

sentence  in  LT would  be  one whose  terms  are  exclusively theoretical,  and we will  call  such a 

sentence a t-sentence; and correspondingly for sentences whose terms are exclusively observational, 

we will call  o-sentences. A scientific law, like (the mathematical formulation of) Newton's law of 

gravitation, would typically be a t-sentence while a statement expressing an experimental outcome 

would typically be an o-sentence. It is important to note that the whole theoretical vocabulary, by 

implication also the scientific laws formulated in it, have by themselves, or viewed independently,  

no meaning. ˝Before the C-rules [see next paragraph] are given,  LT, with the postulates  T and the 

rules of deduction is an uninterpreted calculus.˝ (Carnap 1956, pages 46-47). They are only symbols 

following the syntactic rules given in the logical calculus.

Thirdly, in order to provide the t-terms with meaning they need to be somehow connected to 

the observational language. In accordance with the verificationist principle only LO can be said to 

have meaning, or be empirically meaningful (which is equivalent on this view.) Therefore, in order 

to provide the theoretical vocabulary with meaning, it is necessary to have a set of mixed sentences,  
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that is, sentences containing both t-terms and o-terms, so that we can use our logical calculus in an 

empirically meaningful  and useful way.  These sentences are  called  correspondence rules (or c-

rules) and they are what incorporate the verificationist principle into the framework of the syntactic 

view.  An  example  could  be  sentences  establishing  the  correspondence  between  the  theoretical 

entities  termed 'electron'  and certain  traces  in  a  Wilson cloud chamber.  Another  one  would be 

sentences  connecting  the  theoretical massive  bodies  of  Newtonian  theory  with,  say,  empirical  

celestial and massive bodies like the Moon.

Definition of a Scientific Theory, Prediction and Explanation, and Empirical Truth

The theory T, when taken in conjunction with the set of correspondence rules C, the conjunct TC, is 

what constitutes a specific scientific theory. By making the requisite observations and by use of the 

c-rules we can provide our theory with initial conditions, then via the logical calculus, and back to 

the  empirical  realm  once  again  through  the  c-rules,  we  get  empirical  predictions  as  logical 

consequences. This resembles the Covering Law Model associated with, e.g.,  Carl Hempel (and 

most adherents of that model were also adherents to the syntactic view.) According to that model 

prediction and explanation are formally equivalent, so we also get the tools for (or a conception of) 

scientific explanation by the use of TC (Suppe 1977, page 28). 

We can further provide a definition of the empirical truth of a scientific theory TC. If we let 

E0 be the class of all observational consequences of TC, then a necessary condition for the empirical 

truth of  TC  is that  E0 be true of the actual world (somehow conceived). This is not a sufficient 

condition, though, since the conjunction of a different component theory T' with C, or the same T 

with another set of c-rules C', or of T' and C', would on this account be a different scientific theory 

although it could still have the same class of observational consequences E0. This would make the 

two theories empirically equivalent, conditioned precisely on having this same EO class (ibid, page 

29). What would constitute a sufficient condition for empirical truth, or whether such a condition is 

even attainable, is dependent on more general epistemological and metaphysical considerations and 

interpretations, like the schism between realism and instrumentalism in the philosophy of science 

(More on this in section 5.1). A realist could say that what would constitute a sufficient condition 

for the empirical truth of TC, in addition to E0 being true of the actual world, is that the scientific 

laws in T be empirically true generalizations about the behavior of the relevant entities (especially 

the unobservable ones); while an instrumentalist, on the other hand, would characteristically avoid 

the question of truth altogether and rather say that TC is but a tool for making true observations, and 

if all the relevant true observations is included in E0, then TC is empirically adequate, and that is as 

good as it gets.
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We have now briefly gone through the three essential features of a scientific theory according to the 

syntactic view. To repeat, this was the axiomatization or formalization of the scientific theory in a 

first order language (together with a logical calculus); that this language be strictly bifurcated into 

two parts: an observational sublanguage and a theoretical sublanguage; and lastly, that these two 

language parts are connected with each other through correspondence rules, thus providing meaning 

to the theoretical terms and statements (or sentences). All three of these are problematic, some more 

than others. The first one will be given some comments in the next chapter (see section 3.2). The 

second is closely connected to the notorious problem of the observational/theoretical dichotomy, as 

we will see below, and also to the analytic/synthetic distinction. But it was issues concerning the 

third  feature,  the  correspondence  rules,  that,  more  than  the  other  two  features,  generated 

modifications and changes with profound ramifications during the development of the Syntactic 

View. And it is to these we first turn.

More on Correspondence Rules

Correspondence rules were to serve three functions: ˝[F]irst, they define theoretical terms; second, 

they guarantee the cognitive significance [or empirical meaning] of theoretical terms; third, they 

specify the admissible experimental procedures for applying a theory to phenomena.˝ (Suppe 1977, 

page  12).  Exactly  how  they  came  to  serve  these  functions  changed  considerably  over  its 

development, but according to Suppe's account, in the original formulations of the syntactic view, of 

circa 1930, correspondence rules were supposed to be explicit definitions, of the form:

Tx ≡ Ox

where 'T'  is a theoretical term and 'O' is an observational one (ibid,  page 12). Explicit definitions 

give both necessary and sufficient conditions for an identity or equivalence but this requirement in 

turn proved to be too strong and wrongheaded for its requisite function. We cannot go in detail into 

the problems with identifying theoretical  entities or properties  with observational  ones  here,  or 

merely their equivalence, but will list and briefly explain some of them. First of all, even if explicit  

definitions of the theoretical vocabulary in terms of an observational vocabulary did actually work 

(which is not the case), then all of the theoretical vocabulary would thereby be substitutable with 

the observational  one,  and thus  in  principle  eliminable,  making the whole theoretical  part  of  a 

scientific  theory  superfluous4.  A strange  consequence  indeed,  given  that  the  explicit  definition 

4 Here Craig's Theorem is relevant. This is a theorem meant to show the possibility of replacing a formal linguistic 
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requirement  is  demanded  in  a  framework  whose  theoretical  part  of  language  is  seen  as  both 

essential and indispensable. 

Explicit  operational definitions  were  also  attempted  for  correspondence  rules  but  had 

equally severe problems. On this account a theoretical concept, like temperature, is identified with, 

or is synonymous to, the corresponding unique set of mensural operations. Two problems with this 

view is that, firstly, there are typically many different experimental ways of measuring the same 

theoretical  magnitude,  generating the unwelcome consequence of  ending up with just  as  many 

distinct concepts. The second problem is that operational definitions are given in a modal language. 

Like dispositional terms (see below, section 2.3), operational definitions need to be counterfactually 

expressed, and modal notions are notoriously difficult and apparently impossible to accommodate 

in the language of first order logic (Suppe 1977, page 19). Material implication will not do, as  

modal notions are typically expressed as counterfactual conditionals. Now this problem pertaining 

to the limitations of first order logic is a more general one, especially as to how scientific laws are 

to be interpreted, since laws expressed in first order logic are purely extensional, lacking modality. 

Yet another important issue generated the same problem of the lack of expressibility in first order 

logic: Dispositional terms, like the chemical property of being soluble in water, are widespread in 

scientific  terminology  and,  as  with  theoretical  magnitudes,  cannot  be  explicitly  defined  in 

observational terms with the use of this limited logical apparatus.

These  problems  with  correspondence  rules  as  explicit  definitions  gave  rise  to  two 

modifications in the original version of the syntactic view. The most important modification was the 

step  from correspondence  rules  as  explicit  definitions  to  something  called  Carnap's  reduction 

sentences (see next section). Reduction sentences did not require necessary and sufficient conditions 

but  merely  sufficient  test  conditions  for  the  theoretical-observational  correspondence,  and  they 

mimicked modal logic while still being formulated in first order logic. This was simultaneously a 

step from correspondence rules completely defining theoretical terms to providing only a  partial 

definition, since more than one reduction sentence can define the same theoretical term (Suppe 

1977, page 22). The theoretical terms were then said to have been given a partial interpretation in 

terms  of  observational  language.  When  taken  into  consideration  with  the  second  function  of 

correspondence rules given above, to guarantee empirical meaning, it seems reasonable that this 

modification  from  complete  definition  to  partial  interpretation  must  have  important  semantic 

implications. This will be further inquired in the next section. The second modification was a more 

positive attitude towards modal logic, thereby making a step away from the strict first order logic 

system containing theoretical expressions by another system having no theoretical terms yet having the same 
empirical content. It is dubious, though, whether this works with actual (and finite) theories. See Nagel 1979, pages 
133-137).  
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requirement.  Whether  this  step makes the syntactic  view more plausible  or less  so will  not  be 

discussed here.

Presentation of the Complete Schema

We can now present the final version in detail of the Syntactic View of Scientific Theories, as of 

circa 1960, as it is summed up in Frederick Suppe 1977 (pages 50-51): 

1. There is a first-order language L (possibly augmented by modal operators) in terms of which 

the theory is formulated, and a logical calculus K defined in terms of L.

2. The non-logical or descriptive primitive constants (that is, the ˝terms˝) of L are bifurcated 

into two classes:

(a) VO which contains just the observation terms;

(b) VT which contains the nonobservation or theoretical terms.

3. The language L is divided into the following sublanguages, and the calculus K is divided 

into corresponding subcalculi (the specification of the latter will not be relevant to our 

purposes): 

(a) The observation language, LO, is a sublanguage of L which contains no quantifiers or 

modalities, and contains the terms of V0 but none from VT;

(b) The logically extended observation language, LO', contains no VT terms and may be 

regarded as formed from LO by adding the quantifiers, modalities, and so on, of L.

(c) The theoretical language, LT, is that sublanguage of L which does not contain VO terms.

4. LO and its associated calculi are given a semantic interpretation which meets the following 

conditions:

(a) The domain of interpretation consists of concrete observable events, things, or thing-

moments; the relations and properties of the interpretation must be directly observable.

(b) Every value of any variable in LO must be designated by an expression in LO.

We may construe interpretations of LO (and the corresponding subcalculus) as being partial 

semantic interpretations of L and K, and we require that L and K be given no observational 

semantic interpretation other than that provided by such partial semantic interpretations.

5. A partial interpretation of the theoretical terms and of the sentences of L containing them is 

provided by the following two kinds of postulates: the theoretical postulates T (that is, the 

axioms of the theory) in which only terms of VT occur, and the correspondence rules or 

postulates C which are mixed sentences (sentences containing terms from both VO and VT). 

The correspondence rules C must satisfy the following conditions:
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(a) The set of rules C must be finite.

(b) The set of rules C must be logically compatible with T.

(c) C contains no extralogical term that does not belong to VO or VT.

(d) Each rule in C must contain at least one VO term and at least one VT term essentially or 

nonvacuously. 

We can now consider the modifications more specifically. Where (1) originally, or initially, had a 

strict first order logic requirement, it is now possibly augmented with modal logic. Where (4) had 

originally simply said that the (observational) terms of  VO be ˝interpreted as referring directly to 

physical objects or directly observable attributes of physical objects˝ (Suppe 1977, page 16), they, 

or the whole sublanguage of LO, are now to be given a semantic interpretation. And, finally, where 

(5) originally had required correspondence rules to be explicit definitions, they are now  partial  

interpretations. 

These modifications are illustrative. A significant difference between first order logic and 

modal  logic is  the latter's  need for a special  type of  semantics to  evaluate  its  truth conditions, 

paradigmatically a  possible worlds-semantic framework, where the first is in no such need, being 

wholly syntactic. And when we consider this modification together with the other two, they make 

vivid a developmental tendency from pure syntactics to a more elaborate emphasis on semantics, 

foreshadowing the other great view of scientific theories, the one we will turn to in the next chapter, 

The  Semantic  View  of  Scientific  Theories.  But  now we  need  to  dig  deeper  into  the  inherent 

problems  of  the  syntactic  view,  which  ultimately  led,  or  at  least  contributed,  to  its  generally 

acknowledged demise.

2.3 Problems and Demise

We saw in the last section that correspondence rules as explicit definitions were given up and came 

to  be  replaced  by  reduction  sentences.  Two  motivations  for  this  were  adduced.  The  trouble 

pertaining to requiring a necessary condition for the definition of theoretical terms, because there 

are entirely different observational or experimental ways of handling the same theoretical concept; 

and secondly,  limitation  problems pertaining  to  first  order  expressibility  led  to  the  creation  of 

reduction  sentences  mimicking  the  counterfactual  or  subjunctional  character  of  modal  notions. 

Problematic issues concerning this use of a pseudo modal logic will not be further pursued. But we 

will pursue the step taken from complete to partial definition of the theoretical terms.
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The Problematic Reduction Sentence

To make our inquiry more vivid, we will give an example of a reduction sentence, and illustrate the 

difference between such a sentence and an explicit definition (in first order logic) for a familiar  

dispositional property, which is in this respect sufficiently analogous to theoretical terms in general. 

In the previous  section the chemical  property of being soluble in  water  was mentioned.  As an 

explicit definition it would be rendered thus5:

x is soluble in water if and only if, if x is immersed in water at t, then x dissolves at t,

where 'soluble' (S) is the dispositional property, and 'immerse' (I) and 'dissolve' (D) are taken as 

straight forward observable properties. Thus, schematically:

Sx ≡ (t) (Ixt ⊃ Dxt).

The trouble with this explicit definition is that it follows that every item not immersed in water is 

soluble in water (simple consequence of the material  implication on the right  hand side of the 

biconditional.) The corresponding reduction sentence would be:

For any x and t, if x is immersed at t, then (x dissolves at t if and only if x is soluble),

or schematically:

(x)(t) [Ixt  (⊃ Dxt ≡ Sx)].

We see that  on the reduction sentence version,  the immersion of  x  in water  is  not a necessary 

condition, only a sufficient (test) condition. And it does not have the unwanted consequence of all  

items not immersed in water being soluble in water.  The general form of a  bilateral reduction  

sentence  partially  defining  a  theoretical  term  Q3 in  terms  of  observational  terms  (or  logical 

combinations thereof) Q2 (the test condition) and Q3 (the relevant consequence) is simply:

 Q1  (⊃ Q2 ≡ Q3). 

Even though reduction sentences solved some of the problems pertaining to explicit definitions, and 

5 This is an alternative variant of the example given in Frederick Suppe 1977, pages 19-21.
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disregarding  the  question  of  modality,  they  nevertheless  brought  problems  on  their  own  as 

candidates for the role of correspondence rules.

First of all, there was the question if theoretical terms are in fact introduced into science in 

this way, and if they in principle can be. This came to be seriously doubted. For example, the ψ-

function  figuring  in  the  Schrödinger  wave equation  in  quantum mechanics  ˝do  not  even  seem 

amenable to definition by reduction sentences.˝ (Suppe 1977, page 23). Furthermore, due to the 

merely partial definition provided by reduction sentences, the  VT terms could not be completely 

introduced singularly (in lack of a complete observational definition), but had to be introduced by 

chains of these reduction sentences. Nevertheless, the chains of reduction sentences did not seem 

able even to introduce more familiar  ˝metrical theoretical  concepts such as 'mass',  'rigid body',  

'force', 'absolute temperature', 'pressure', 'volume', 'Carnot process', 'electron', 'proton', etc.˝ ( ibid). It 

seems, then, that neither singular reduction sentences nor chains of them can introduce relevant 

theoretical concepts in the requisite way. Carl Hempel wrote about the theoretical terms that,

Terms of this kind are not introduced by definition or reduction chains based on observables; in fact 

they are not introduced by any piecemeal process of assigning meaning to them individually. Rather, 

the constructs used in a theory are introduced jointly, as it were, by setting up a theoretical system 

formulated in terms of them and by giving this system an experimental interpretation, which in turn 

confers empirical meaning on the theoretical constructs. [Quoted in Suppe 1977, page 23].

Hempel further argues that it is not simply that these terms happen not to be introduced into science 

in this way, but rather that they cannot be introduced this way. 

Secondly, we remember that one of the functions of the correspondence rules is to fix and 

guarantee the empirical meaning (or cognitive significance) of the theoretical terms. As has been 

anticipated in the previous paragraph, the syntactical 'entity' intended as sufficient to provide the 

theoretical  terms  with  meaning  did  steadily  enlarge.  These  steps  from,  first,  singular  explicit 

definitions to partial interpretation, through chains of reduction sentences; then the second step, 

from these latter  chains  of reduction sentences  to  the whole theory  T regarded as a  unit,  both 

changed  the  criterion  of  empirical  meaningfulness  in  profound  ways.  If,  as  first  proposed, 

theoretical terms are introduced one by one and completely defined by the correspondence rules, 

there is no problem as to how empirical meaning is supposed to be bestowed on them (given that it 

works, so to speak). But as to partial interpretation, there arises both the how question and questions 

of to what degree it leaves the meaning of t-terms underdetermined and, more interestingly, what 

account is to be given about whence the remainder of the meaning of t-terms is to be imported from, 

when the meaning cannot presumably be wholly observational. 
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Turning Towards Semantics

A third and important question becomes pressing: Can this partial interpretation be done in a way 

compatible with the central doctrines of the syntactic view? According to some of the syntactic 

view's critics, e.g., Achinstein and Putnam, the notion of partial interpretation cannot be formulated 

in a precise way compatible with the requirements of the view (ibid, page 87). If we again turn to 

Carnap, ˝All interpretation (in the strict sense of the term, i.e. observational interpretation) that can 

be given to LT is given in the C-rules...˝ (Carnap 1956, page 46). But as the problems with reduction 

sentences, or chains of them, showed, it is not at all clear how the c-rules do this job. This problem 

does not get any better by saying the whole theory T as a unit together with C provide the partial 

interpretation. This kind of semantic 'holism', ˝The unit of empirical significance is the whole of 

science˝, inevitably pushes the whole project in a more pragmatic direction, away from the tenets of 

logical positivism, alá Quine's6 (as was the trend in this philosophical tradition in the 1960's and 

1970's).  And  the  ones  holding  the  'whole'  unit  approach,  often  ended  up  giving  up  the 

analytic/synthetic distinction, which, in effect, is denying the c-rules their strict role (as we'll come 

back to below). But if TC by itself cannot convincingly be said to give a partial interpretation in any 

meaningful way, what else is needed? 

Again, it is a stronger commitment to semantics. Ernest Nagel, a central figure in the later 

epoch of  the  Syntactic  View,  extended  his  view of  scientific  theories,  beyond  being  a  logical 

calculus  having  its  terms  provided  with  meaning  via  correspondence  rules,  with  the  further 

requirement that scientific theories were given ˝an interpretation or model˝ (Nagel 1979, page 90). 

Carl  Hempel  wrote  that  the  theoretical  part  of  a  scientific  theory  could  be  given  a  semantic 

interpretation  in  a  suitable  metalanguage,  providing  them with  the  normal  meanings  they  are 

assumed to have in natural though scientific language (Suppe 1977, page 91). And Hilary Putnam 

proposed partially interpreting LT with the use of a class of intended models. These uses of 'models', 

and especially the latter two's allusions to model-theoretic notions, will be further studied in chapter 

3. And, as with the stronger emphasis given to semantics in general, alluded to in the end of the 

previous  section,  the  increased  focus  on  model  theory  also  anticipates  the  semantic  view  of 

scientific theories.

But, to repeat the last question from above, how compatible is this step towards a richer 

semantics with the basic framework of the syntactic view? Not much. Let us repeat the basics, now 

in the words of Van Fraasen: ˝A theory is to be conceived as what logicians call a deductive theory,  

hence, a set of sentences (the theorems), in a specified language.˝ (Van Fraassen 1980, page 55). 

6 As the conclusion of Two Dogmas of Empiricism bears witness to. The preceding citation is from the same article, 
page 42 (Quine, 1953). 
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Letting  a  scientific  theory be  dependent  on  a  specific  (logical)  language  in  this  way severely 

constrains how we can conceive of what the theory says. This view, strictly speaking, confines what 

one can say about a theory to its syntactical relationships, like deducibility and consistency, because 

it puts the syntactic entity, and the focus on it, as fundamental and logically prior to any semantic  

concern. Instead, on the semantic approach of Van Fraasen, one identifies a theory with a class of  

models, and this in a way that is independent of a specific language (ibid, page 44). The models are 

entities, mathematical structures, describable in a variety of ways, in a variety of languages. This is,  

among  other  things,  ˝...  important  for  the  comparison  and  evaluation  of  theories,  and  is  not 

accessible to the syntactic approach.˝ (ibid.). 

It seems, then, that the flirtation with semantics during the later phases of the syntactic view 

is problematic relative to its  specific logical language requirement, (1) on page 19, and definitely 

breaking with its motivation for having a pure logico-syntactical core.

The Problem with Individuating Scientific Theories, and Scientific Practice

Before  we  preceed  with  the  problems  of  language  bifurcation  there  is  yet  one  problem with 

correspondence rules that must be mentioned. We remember that a specific scientific theory on the 

syntactic  view  is  constituted  by  TC,  the  theoretical  postulates  together  with  the  set  of 

correspondence rules. Accordingly, a change in the set  C gives a new scientific theory. The third 

function of correspondence rules was given above as to specify the admissible experimental ways 

of applying a theory to phenomena. 

What, then, if some new technology, e.g., some new measuring apparatus, makes possible 

new ways of experimentally testing our scientific theory? (Suppe 1977, pages 103-104). It follows 

that we are then dealing with another or a new scientific theory, since the set  C is now changed. 

This is a strong argument for not letting the set of c-rules be an essential part of a scientific theory.  

We have seen, then, that the presumed role and form of correspondence rules generates several 

problems, not all of which have been dealt with here. 

We will end this discussion on correspondence rules by adducing the general observation, 

given by Patrick Suppes, one of the founding fathers of the Semantic View, that the account of 

correspondence rules is ˝far too simple˝. Further, 

The kind of coordinating definitions [correspondence rules], often described by philosophers, have 

their place in popular philosophical exposition of theories, but in actual scientific practice of testing 

scientific theories, a more elaborate and more sophisticated formal machinery for relating a theory to 

data is required. [Quoted in Frederick Suppe 1977, page 106.; emphasis added]
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Thus, problems with language, logic, and meaning notwithstanding, the account of correspondence 

rules as given in the syntactic view seems inadequate also from the perspective of actual scientific  

practice. 

Problems with the Language Bifurcation

Another consequence of this logico-puritanical motivation, as we have seen, was bifurcating the 

relevant language into two parts, one theoretical and one observational, where the theoretical part 

was  itself  devoid  of  meaning,  but  was  assigned  empirical  meaning  by  being  coupled  with 

observational language through correspondence rules. This bifurcation of the language terms is 

closely  connected  to  the  observable/unobservable  dichotomy  of  objects  and  properties  but  is 

nevertheless a separate dichotomy. (It is not clear that what we would classify as  theoretical  is 

identical with what we would classify as unobservable.) First of all, when semantics is taken into 

the account, from which it was initially banned, and the theoretical terms have some meaning after 

all (though presumably not individually), the language bifurcation seem less warranted, and even 

less so when seen together with the role of correspondence rules. Remember, the bifurcation was a 

demarcation of meaning, and c-rules the meaning guarantor of the t-terms. So, with the inclusion of 

semantics,  do  we  then  have  a  kind  of  theoretical meaning  in  addition  to  empirical  meaning, 

corresponding to the language bifurcation? Maybe it is better to drop the theoretical/observational 

language bifurcation altogether.

The  language  bifurcation  is  intimately  connected  to  the  analytic/synthetic  distinction, 

together with the logical positivists' doctrines of meaning more generally, including verificationist 

principles we've looked at above. These doctrines of meaning have been severely criticized. Most 

notably, maybe, by Quine (1953) in his Two Dogmas of Empiricism, where he argued that what he 

called the dogma of reductionism (the verificationist principle) is at root identical with the dogma 

of the analytic/synthetic distinction (ibid., page 41). Even though it is controversial whether Quine 

has shown this distinction to be completely untenable, still it is safe to say that no account has so 

far been given as to how to characterize the distinction in a way that  is  sufficiently clear  and 

unproblematic.  Especially  not  in  way  that  would  somehow  ground  the  strict  bifurcation  of 

language, which after all is axiomatic on the syntactic view. To the extent verificationist principles 

and the analytic/synthetic distinction are problematic, so is the bifurcation of language requirement. 

And if no clear boundary can be drawn between the theoretical part and the observational part of 

language, in ways correlative with, or at least intricately connected to, the absence of a strict a 

general  analytic/synthetic  distinction,  which  again  cast  doubts  on  verificationist  principles,  the 
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central role of correspondence rules is lost. One of their essential functions was to connect the two 

language parts; another function was to incorporate the verificationist principle. If the language 

(ideally used in science) is not really bifurcated this way, the connecting function is made obsolete.  

And if the verificationst principle does not work for individual statements but necessitates at the 

very least whole scores of auxiliary statements (hypotheses), if not the whole of science, then yet  

another function of correspondence rules is made obsolete. 

We now turn to one last issue dealing with the bifurcation of language. Above we focused 

on the term dichotomy and found serious problems pertaining to the theory of meaning underlying 

the split of our relevant language into two parts, one of which is essentially devoid of any empirical 

meaning. But what about that other dichotomy, the entity and attribute dichotomy? The one that 

divides nature into two classes, one of which is directly observable and the one which is not? Are 

there more substantial reasons from the observability and non-observability of our ontology for 

holding a correlative bifurcation in language? This is a very complex issue, and we will restrain the 

discussion so as to comment only on the question's implications for the syntactic view. The notion 

of direct observability is central to the syntactic view and was kept up till the final version, as a 

necessary requirement for the use of the observation language (see (4a) above). But when it comes 

to the delineation,  no clear  boundary can be drawn here either.  Carnap concedes this  in  1966, 

˝There is a continuum which starts with direct sensory observations and proceeds to enormously 

complex,  indirect  methods  of  observation.  Obviously  no  sharp  line  can  be  drawn  across  this 

continuum; it is a matter of degree.˝ (From Philosophical Foundations of Physics,  quoted Suppe 

1989, page 56). 

Suppe summarizes the problems pertaining to this distinction thus, worth quoting at length.

If  we  require  that  an  attribute's  presence  always  must  be  ascertainable  in  principle  by  direct 

observation in order for it to qualify as directly observable, then the paradigmatic ones (such as the  

property of being blue) fail to qualify. Further, if we require only that their presence sometimes be so 

ascertainable, then paradigmatic non-directly observables (such as the property of being a gas) become 

directly observables.

The  problems  encountered  in  attempting  to  draw  a  line  between  observable  and  non-

observable properties, and so forth, stem from the fact that many attributes of scientific relevance have  

both directly observable and nondirectly observable occurrences, which makes any natural division … 

impossible. [Suppe 1989, page 59]

 

Still,  the language bifurcation,  assumed to be co-extensive with the observable distinction,  was 

maintained, though somewhat pragmatically during the later phases, by referring to the scientists 
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own usages of the distinction. No longer was the language bifurcation correlated directly with the 

observability distinction but  rather  indirectly through a referral  to standard usages  in  scientific 

English. The theoretical/observable term dichotomy was to be drawn on the basis of ordinary usage 

in natural scientific language (ibid, page 57). 

But  where  a  natural  dichotomy  between  entities  and  attributes  relative  to  their  direct 

observability seem next to impossible, can the allusion to scientific English under normal scientific 

usage fare any better with creating the desired term dichotomy? Suppe concludes that if we base the 

distinction  on  normal  usage,  then  the  term dichotomy will  not  match  the  entity  and  attribute 

dichotomy. The remaining option would be a rather artificial and arbitrary distinction, necessitating 

a terminology where directly or nondirectly observable occurrences of properties prescribes where 

to draw the line, that is, by artificially dividing every property into two classes according to the  

observability  (or  not)  of  their  occurrences.  But  this  strategy seems to  be  riddled  with  no  less 

problems on its own terms (ibid, pages 59-60).

We can safely conclude that there seems to be no pressing reasons for us to adopt a strict 

bifurcation of our language when it comes to what is directly observable and what is not. From 

early  empiricism,  what  was  deemed  to  be  directly  observable  was  taken  to  be  unproblematic 

relative  to  questions  of  truth.  This  epistemological  concern  was  the  original  motivation  for  a 

language bifurcation.  But as with the continuum pertaining to direct observability, it being a matter 

of  degree,  so  it  is  with  confirmation  of  scientific  hypotheses  and theories.  No strict  linguistic 

boundary between what is empirically meaningful and not, or no method to syntactically isolate 

empirical meaning units, seem either possible or necessary.  Of course, this does not imply that the 

question of what is observable and not is not an interesting and important one. And one can still 

think the syntactic view wrong when it comes to the bifurcation of language, though holding on to 

the observable/unobservable distinction more generally, as does, e.g., Bas van Fraasen (1987, pages 

56-57).

To sum up this section and chapter. We have seen how the basics of the framework of the Syntactic 

View, especially the requirements of a specific logical language  L,  the strict bifurcation of this 

language into two components, and the form and assigned role of the correspondence rules, give 

rise to several serious problems. And, further, the proposed solutions for these problems did not 

cohere  too well  with these mentioned requirements,  thus  indicating or  suggesting some of  the 

Syntactic View's presuppositions to be flawed or at least to be inadequate and inappropriate to give 

a satisfactory account of the structure of scientific theories. As we saw in the introducing chapter 

this does not show the attempt of giving such an account to be ill adviced or a non-starter, although 
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considerably less focus was given to the relationship strictly between scientific theories and nature 

or reality as logical empiricism collapsed [must check if I can argue for this in the Intro]. Now, 

within  the  same  tradition  there  was  another  approach  developing,  the  semantic  approach  to 

scientific theories, which we in the next chapter will turn to.

28



3. The Semantic View of Scientific Theories

... the semantic approach, as developed by Suppes, van Fraassen, Giere and Suppe 

himself, does have the distinction of being one of the very few – perhaps the only –  

global analyses of science in these philosophically fractured, post-Kuhnian times.

Steven French and James Ladyman, Reinflating the Semantic Approach

A model consists, formally speaking, of entities and relations among those entities.

Bas van Fraassen, Laws and Symmetry

In the last chapter we saw how the Syntactic View of Scientific Theories is seriously flawed. This 

chapter will present an alternative view, The Semantic View of Scientific Theories. We will argue 

for both its virtues as a philosophical theory of the structure of scientific theories, and especially 

how this view can be seen as advantageous vis-à-vis the syntactic view. The most important way in 

which they differ is how the syntactic view give central importance to the role of pure linguistic  

analysis, while the semantic view offers a more language independent analysis, with an emphasis on 

scientific theories as defining mathematical structures and how these structures are mathematically, 

not linguistically, related to empirical reality. This difference is partly explained by the semantic 

view's model-theoretic foundation, in contradistinction to the syntactic view's foundation in first-

order logic. By placing semantics and mathematics center stage and not language per se, I will show 

how the semantic view can give a more satisfactory account of the structure of scientific theories. 

The  chapter  is  divided  as  follows.  In  the  first  section  an  account  of  the  origins  of  the 

semantic  view  will  be  presented,  showing  its  close  relationships  with  model-theory  and 

foundational works in the sciences, and its role in the broader philosophical context. Then in section 

two I will look more closely at the content of this view, particularly at its concepts of theory and 

model. Finally, in the third section, I will explain how the abstract models are related to empirical 

reality, through a hierarchy of connected models, and how the concept of truth is conceived of or 

understood  on  this  view.  In  all  three  sections,  differences  with  the  syntactic  view  will  be 

highlighted. 
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3.1 Origins of the Semantic View

The logical positivists did their philosophy with close attention to problems in science. They saw 

themselves as following a strict adherence to scientific method, and wanted their own philosophy to 

be, in a way, scientific. Nevertheless, their project of representing the structure of science was ill-

founded due to certain untenable tenets, as we have seen in the previous chapter. During the Second 

World  War  the  Dutch  philosopher  and  logician  Evert  Beth  complained  about  the  "increasing 

discrepancy  between  science  and  philosophy"  and  proposed  as  remedy  that  "a  philosophy  of 

science, instead of attempting to deal with speculations on the subject matter of science, should 

rather attempt a logical analysis – in the broadest sense of this phrase – of the theories which form 

the actual  content  of the various sciences."  (quoted in  Frederick Suppe 1989,  page 6).  Logical 

positivism, and their syntactic view, had to force scientific theories into a frame which form was ab 

initio strongly dictated by their views on logic and verificationism. The broad analysis suggested by 

Beth  was  meant  to  counter  this  tendency  of  forcing  scientific  theories  into  a  philosophical 

straightjacket.  And  the  appropriate  means  of  this  analysis  was  to  be  the  Semantic  Method 

introduced by the great Polish logician Alfred Tarski as early as the 1930's (ibid.).

Tarski's work on formal semantics has been of great influence to philosophy (see Patrick 

Suppes'  survey  Philosophical  Implications  of  Tarski's  Work,  1988).  In  particular,  his  original 

contribution to the theory of truth for formalized languages, which grounds the concept of truth in 

terms of the concept of satisfaction, is probably the best known (Suppes 1988, page 86). This theory 

was key to the development of the subsequent (mathematical) theory of models, which is essential  

to the semantic view and will concern us a great deal later on. Tarski's model-theory distinguishes 

two related elements: the sentences or axioms, called the theory, on the one hand, and the models in 

which the sentences are satisfied, on the other. In a way there are here two entities (or aspects) of 

theories, where on the syntactic view there is only one. In the logical perspective of the latter, there 

is  only  the  theory  (set  of  axioms)  with  its  deductive  closure  (the  logical  implications  of  the 

sentences,  syntactically  defined.)  While  on  model-theory,  "the  central  thrust  ...  is  to  study the 

mutual relations between sentences of formalized theories and nonlinguistic mathematical systems 

in  which  the  sentences  of  the  theory hold."  (ibid.,  emphasis  added).  This  is  an  important  and 

significant change of perspective, and will be further elaborated in the next section. 

What Beth saw and wanted to exploit, was the potential this view could have for scientific 

(or empirical) theories. He combined the semantic techniques of Tarski (and other later developers, 

like Carnap) with the work of von Neumann on the foundations of quantum mechanics, and made 

some  suggesting  proposals  for  semantic  analyses  of  both  classical  and  quantum  mechanics 
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(Frederick Suppe 1989, page 6).  Beth did not carry this  new project  very far,  but  others  soon 

followed and did just that. The next main developer, now in the 1960's, and presumably the most 

important one, was Patrick Suppes. He believed that Tarskian model-theory gave the unifying and 

correct concept of model to be used in an adequate description of the structure of scientific theories 

(see, for instance, his  A Comparison of the Meaning and Uses of Models in Mathematics and the  

Empirical Sciences,  1960, page 289). Further, scientific theories were to be axiomatized in set-

theoretic terms (a mathematical theory which coheres well with model-theory), thus making explicit 

and clear all the important relations and structures within the theory. This specific axiomatization, 

i.e., in set-theoretic terms, is not necessary for the semantic view, as we will see below. Equally 

important  to  these  abstract  and purely theoretic  points  was his  insistence  on  being true  to  the 

complexities involved in experimental work in science. Consequently, he inquired into the nature of 

experimental methodology and made an account of how these lower layers of experimental research 

is connected with the higher and more theoretical layers, through a hierarchy of models. (More on 

this in subsequent sections, especially section 3.3.)

While Patrick Suppes'  version of the semantic view is  rather neutral  to the realism/anti-

realism  controversy  about  scientific  theories,  Frederick  Suppe  has  developed  a  scientific 

(quasi)realist version, as given in his 1989 book, and Bas van Fraassen has developed his anti-

realist, constructive empiricist, version through many of his works (1980, 1990, 2008). This shows 

the  generality  of  the  semantic  approach  in  terms  of  its  independence  from  ontological  and 

metaphysical  positions  in  the philosophy of  science.  Also,  the resurgence  in  the last  couple  of 

decades  of  structuralist positions  in  the  philosophy of  science,  especially in  the philosophy of 

physics and the philosophy of mathematics7 , often go hand in hand with the semantic approach. The 

foundation of the semantic view is particularly well fitted to explicate and make clear just what is 

meant by the term 'structure' – the exact meaning of which is often somewhat elusive.

Back in section 2.1 we went through some of the historical and ideological context in which 

the school of logical positivism with its syntactic view established itself. The semantic view has 

both some continuities and some discontinuities or divergences from that former tradition. Both use 

theories and conceptual frameworks from contemporary logic and mathematics as foundations for 

their  respective views on scientific  theories.  Both have as  aim giving a  unified account  of  the 

structure (form and content) of scientific theories, and to explicate in an objective way, and one 

independent of factors strictly extrinsic to the content of the theory (like the sociology of science), 

the relation between scientific theories (as such) and empirical reality. Among the discontinuities, 

7 Some of these are known as structural (epistemic or ontic) realism and scientific structuralism, associated with, for 
example, John Worrall, Steven French, James Ladyman, and Bas van Fraassen. For more, see section 5.1. 

31



perhaps the most significant is its view of language. As we have seen, on the syntactic view the 

language (as such) in which theories are formulated was (is) an essential part of their constitution 

and gehalt. And as we will see, on the semantic view, the idea of describing the content of theories 

in a way independent of the specific language used, is as essential on their view as the language 

specificity  dependence is  for  the  syntactic  view.  Another  less  important  though  interesting 

indication of discontinuity, is how the main developers of the semantic view consistently did not 

pay  much  attention  to  positivistic  philosophy during  their  formative  years,  instead  concerning 

themselves with actual science (Suppe 1989, page 16)8.

3.2 Theories and Models

The semantic view will here be presented more formally. This will be done in slow, successive 

stages in effort to make the presentation clear and intuitive. The primary division of the account will 

follow  Ronald  Giere's  own  compact  nutshell  formulation  of  the  semantic  view,  as  "a)  the 

theoretical definition, which defines a certain class of systems;  b) a  theoretical hypothesis, which 

assert that certain (sorts of) real systems are among (or related in some way to) members of that 

class" (quores in van Fraassen 1990, page 222). Thus we will start with the purely abstract in this 

section, the theories and models, and then move on to their relation to empirical reality in the next. 

Although this account leans heavily on, and draws much from, the different authors mentioned and 

referred to, the selection and the consequent synthesis is my own.

Conceptualizing the Semantic View

Where the syntactic view wanted to dispell meaning from consideration and focus solely on logico-

syntactic  properties  of  expressions  and  formulations  (or  sentences),  the  semantic  view  re-

emphasizes, naturally, the semantics 'behind' the former purely linguistic entities. In a quite intuitive 

way, the focus is not on the logico-syntactic form of linguistic expressions but rather on what they 

stand for; what they are meant to present or convey to us; what they, as symbols, are symbols for. Or 

said in another way, we now focus on what is described rather than the description itself.  The 

8 It is my contention that the semantic view is both important to the philosophy of science and that it has not been  
given the attention it deserves in the philosophical literature. Generally, this may be a consequence of the fall of 
logical  positivism  and  the  subsequent  popularity  of  the  Weltacnhuung  approaches,  with  the  corresponding 
negligence of a close study of the theory/empirical reality relation.

The semantic view or approach is highly mathematical in nature, and must be that way given its model-
theoretic  framework (see Patrick Suppes 1967,  page  57).  Now, if  Galileo was right  in that  mathematics  is  the 
language without which it is impossible to understand this Grand book (the Universe), it may also be that way when 
it comes to proper understanding of what scientific theories, describing and representing this Universe, are and what  
they convey. If that is the case, a highly mathematized philosophy of science may be required for an adequate  
representation of science, at least of certain parts of it. 
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semantic view incorporates the fact that we can convey or describe the same thing in different ways 

– a trivial fact when it comes to natural languages; this thesis might have just as well been written 

in  Norwegian  –  a  point  mentioned  earlier  in  connection  with  its  emphasis  on  language 

independence. But this many-to-one relationship between descriptions and 'thing described' does 

not pertain merely to  natural  languages,  but also to  formal  and exact  ones,  like mathematics – 

language of science sine qua non.

When it comes to both scientific and purely mathematical theories, what is described by way 

of theory are abstract models. To illustrate this thought, and distinguish it from the syntactic view,  

we will look at a geometrical example given by van Fraassen (1980, pages 41-44). Consider the 

following (jointly contradictory) axioms:

A1 For any two lines, there is at most one point that lies on both.

A2 For any two points, there is exactly one line that lies on both.

A3 On every line there lie at least two points.

A4 There are only finitely many points.

A5 On any line there lie infinitely many points. 

From these axioms we can make theories and explore them as on the syntactic view. Let  T0 have 

axioms A1-A3;  T1 have A1-A4 (or,  T0 plus A4); and  T2 have all  axioms minus A4. By modern 

symbolic logical analysis (the essential and 'only' tool for the syntactic view) some consequences 

immediately follow. "Each of the three theories is  consistent:  no contradiction can be deduced. 

Secondly, T1 and T2 are inconsistent with each other: a contradiction can deduced if we add A5 to T1. 

Thirdly,  T1 and  T2 each  imply T0: all theorems of  T0 are clearly also theorems of the other two." 

(ibid.,  page 42). These are of course very important results. But does these logical conclusions 

exhaust what is implied by the axioms? Van Fraassen continues and draws our attention to this: 

"Yet, it will also be noticed that these logical notions have counterparts in relations expressible in 

terms of what the theory says, what  it is about, and what it could be interpreted as being about." 

(ibid.,  emphasis  added.)  Let  us,  then,  examine this  counterpart.  Here is  a  depiction  of  a  finite 

geometrical structure, the so-called Seven Point Geometry (Figure 1, below). 
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[Figure  1.  The  Seven  Point  Geometry.  Source:  http://gmfbrown.blogspot.no/2010/03/rational-

abstraction.html. Visited 26.08.13.]

This structure consists of seven basic elements, the 'points' 0, 1, 2, 3, 4, 5, 6, and the seven lines  

(though not necessarily straight, obviously) connecting these. Further, this is a structure of which 

axioms  A1-A4 are  true;  in  the  language  of  model-theory,  this  structure  satisfies  the  theory  T1 

(axioms A1-A4) and is therefore considered as a  model  of that theory. And since a contradiction 

cannot  be  true  of  anything,  the  (abstract)  existence  of  a  model  implies  consistency  of  its 

corresponding  theories (theory-model relationship admits a many-to-one relation, analogous with 

the relation between descriptions and the thing described, referred to above.) T0 is also a theory for 

this model, but not T2. More generally it seems fair to argue that the theory-model relation is, in a 

way, a many-to-many relation, since a theory actually picks out not one model but a class of models 

(the class of models satisfying the theory); and, conversely, a model (or a class of such) constrains 

in a determinate way its many possible theory-formulations. We see here the two entities 'doing 

work, instead of only one, as indicated in section 3.1. And it is this model-theoretic framework that 

enables the semantic view to transgress the tight limitations of the syntactic view, in the following 

way.

How The Semantic View Goes Beyond The Syntactic View

We could prove consistency of the theories by providing a model for them, as we saw, which is 

often simpler (ibid., page 43) than demonstrating consistency purely syntactically. With the notions 

of model and truth, which belongs to semantics, van Fraassen reminds us, we can go further than 
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logic. Logic tells us that the theories T1 and T2 are inconsistent, "and there is the end to it". (ibid.). 

But thinking about these theories in terms of mathematical structures, we can say more. That the 

first theory is only satisfied by finite structures, the latter theory only by infinite structures. And 

further,  the finite Seven Point Geometry structure can obviously be represented on a Euclidean 

plane surface (as with the figure depicted above), showing the interesting property that this structure 

can be embedded in another structure. The (finite) Seven Point geometry is a sub-structure of the 

(infinite)  Euclidean  plane  structure.  These  embedding  relations  are  mathematical  morphism 

relationships, and will be further explained below. 

By studying models with a broader mathematical tool set, instead of studying theories only 

within the narrow confines of logic, we see that we can compare and evaluate theories in ways not  

accessible to the syntactic view (ibid., page 44). The change in focus is encapsulated in Patrick 

Suppes' simple idea, that "to present a theory, we define its class of models directly, without paying 

any attention to axiomatizability,  in any special  language," (quoted in van Fraassen 1990, page 

222), and is further shown in the practice of modern mathematics. Today's presentations of, say, 

Euclidean  geometry,  is  not  so  much  focused  on  Euclid's  axioms,  as  on  the  Euclidean  spaces 

themselves, directly (ibid). Neither is this restricted to pure mathematics. A similar shift can be seen 

in Suppes'  work on reformulating the foundations of Newtonian mechanics, replacing Newton's 

axioms with the definition of a Newtonian mechanical system (class of models) (ibid). 

This shift in focus, corresponding to the shift from the syntactic view to the semantic view, 

can also be viewed as distinguishing an intrinsic from an extrinsic characterization of scientific 

theories. "The formulation of a theory as a logical calculus ... gives an intrinsic characterization." 

(Suppes 1967, page 60). We have already seen some of the limitations with this characterization. 

Even  in  the  context  of  logic,  questions  such  as  whether  a  theory  can  be  given  a  first-order 

axiomatization require "some extrinsic way of characterizing the theory" (ibid). This latter way, as 

we have seen, defines instead its models directly. In order to do this, one first designates a particular 

model and then characterizes "the entire class of models of the theory" (we return to how this is 

done  below).  This  latter  characterization  pertains  to  properties  extrinsic to  a  particular  model, 

properties connecting it with other models, while the former is confined to work with properties 

intrinsic to a particular model (i.e., "formulate[s] a set of axioms that will characterize this class of 

models without referring to the relation between models.") (ibid). The question of axiomatizability 

can then be posed quite simply as the possibility of stating "a set of axioms such that the models of  

these axioms are precisely the models in the defined class." 

Let us see another example which shows how the semantic view goes beyond the syntactic 

view. This time an example from science, from classical particle mechanics, with important general 

35



results.

The axioms for classical particle mechanics are ordinarily stated in such a way that a co-ordinate  

system, as a frame of reference, is tacitly assumed. 

One effect of this is that relationships deducible from the axioms are not necessarily invariant 

with respect to Galilean transformations. We can view the tacit assumption of a frame of reference as 

an extrinsic aspect of the familiar characterizations of the theory. From the standpoint of the models of 

the theory, the difficulty in the standard [first order]  axiomatizations of mechanics is that  a large  

number of formally distinct models may be used to express the same mechanical facts. Each of these 

different  models  represents  the  tacit  choice  of  a  different  frame  of  reference,  but  all  models  

representing  the same mechanical  facts  are  related by  Galilean  transformations.  [ibid.,  page  61, 

emphasis added.]  

This  specific  equivalence  class  of  the  relevant  models  is  on  the  intrinsic  characterization  not 

afforded any theoretical significance, yet it represents the Galilean relativity principle9, precursor of 

Einstein's  theory  and  maybe  the  most  important  concept  in  the  history  of  physics.  That  is, 

considerations extrinsic to the theory (extrinsic to the axiomatic framework of particle mechanics) 

are required in order to distinguish what is special about this class of models. Suppes comments on 

this that,

It  is  certainly possible  from a  philosophical  standpoint  to  maintain  that  particle  mechanics  as  a 

scientific theory should be expressed only in terms of Galilean  invariant relationships, and that the 

customary  formulations  [intrinsic  characterization]  are  defective  in  this  respect.  [ibid.,  page  62, 

emphasis added].

More generally, from a scientific standpoint we can definitely appreciate the fruitfulness for modern 

physics of describing theoretical invariants, together with the closely related concept of symmetry. 

Group theory in mathematics is especially apt for studying this kind of invariant structure.  The 

theory of groups was conceived by way of generalizing the concept  of symmetry in  geometry, 

where one sought to formulate the invariant,  structural properties pertaining to these as such.  As 

these invariants started popping up in fundamental physics, a deep connection between group theory 

and physics was revealed (see Ian Stewart 2008, Why Beauty is Truth – The history of Symmetry). 

An analogous example is  given by the Lorentz invariants in Einstein's  special  theory of 

9 That this class of models (or class of reference frames) representing the same mechanical facts are related by 
Galilean transformations is equivalent to the Galilean relativity principle, stating the requirement that all the laws of 
physics have the same form in all admissible frames of reference. (In Newtonian theory, only inertial frames of 
reference. In Einsteinian theory, even  gravitationally accelerated ones (the general theory of relativity.). See also 
section 6.1.
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relativity. Also in quantum mechanics, similar relationships are of profound importance. This is not 

a result attributable to the semantic view. But the latter is particularly well suited to explain or make 

explicit  just  why  these  invariants  matter,  elucidating  the  theoretical  significance  of  certain 

mathematical relationships in ways the syntactic view could not. 

Theoretical invariants also have significance of a more philosophical nature, pertaining to 

objectivity,  by  locating  and  describing  what  is  constant  over  varying  contexts,  aspects,  and 

perspectives.  (Suppes  2002,  chapter  4;  James Ladyman and Don Ross  2007,  section 3.3).  This 

consideration is important both for explicating specific scientific theories and the nature of their 

(theoretical)  ontology  (at  least  on  structuralist  approaches),  and  also  important  to  a  proper 

evaluation of theory change and theory preservation over the history of science, especially during 

scientific revolutions. The latter is a topic we dive into in chapters 5 and 6. 

Formalization, Models, and Mathematics

The semantic view places no less emphasis on formalization in dealing with scientific theories than 

the Syntactic View did on axiomatization. Although these notions are often used interchangeably, it 

will  here  be  constructive  to  clarify  and  distinguish  them.  "Axiomatization consists  in  the 

establishment of an axiomatic calculus, and thus consists in an essentially syntactic formalization. 

Formalization  encompasses  both  the  syntactical  techniques  of  axiomatization  and the  semantic 

techniques of model theory." (Frederick Suppe 1979, page 113. Emphasis added). Among the many 

advantages (to the philosophy of science) pertaining to formalization, according to Patrick Suppes, 

one is to bring out the meaning of a connected family of concepts in an explicit fashion; a second is  

to provide a degree of objectivity impossible without it (ibid., pages 111-112). In the context of the 

semantic view, we could say that formalization is a means to make explicit and clear the concept of 

model. A concept which is ubiquitous and presumably indispensable in scientific thinking. And it is 

here the formal sciences come to our aid, through model theory and mathematics more generally.

The overly mathematical way of dealing with models as used in science, characteristic of the 

semantic view, has received criticism for not being able to provide an adequate and unitary account 

of the diverse uses of models in scientific theorizing and practice (e.g., Downes, 1992). We will be 

lead astray if we go too deeply into this, but it will be illustrative to our purposes here to view some  

of the response given (Steven French and James Ladyman 1999; Bas van Fraassen 2008, pages 309-

311).  Some of  the  criticism betrayes  a  certain  confusion  by treating  mathematics  and (formal) 

semantics  as  subject  matter instead  of  useful  vehicles  for  communicating abstract  patterns  and 

relationships. 

The  use  of  iconic  models  are  well  known in  science.  These  are  heuristics,  visualizable 
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thought devices meant to shed light on something not known, by way of analogy to something that 

is  better  known (Frederick  Suppe  1979,  pages  96-97;  French  and  Ladyman  1999,  page  107). 

Consider, for example, the model of gas atoms as small colliding billiard balls. This iconic model 

has both positive, negative, and neutral analogies to what we know about gas atoms. Now, the ways 

in which these models are used do not at all suggest that they are mathematical models. The same 

can also be said of material models, like scale models in engineering or DNA-models in biology 

classrooms. These models are not 'semantic' models. But the issue here is rather if the  relevant  

function  of these uses of models,  qua models, can be appropriately captured within the semantic 

view.  On the latter's  conception  of  models  this  function,  which is  to  represent  through certain 

similarities,  is  captured  with  mathematical  precision  and  explicability  (through  partial 

isomorphisms, see below). "What these models represent is the structure of the entity concerned...," 

(French and Ladyman 1999, page 109) and the structure is on this account something abstract and 

objective, transgressing what is merely visualizable to us (as on the iconic use). And the upshot of 

the argument is that these different uses of models can indeed be captured in model-theoretic terms; 

in particular, in set-theoretic descriptions. We will now look formally at abstract models and their 

inner relationships.

Formalizing Scientific Theories in Set Theory

Suppes' set theoretic view on formalizing scientific theories ('axiomatize' in his vocabulary –  we 

continue with ours) is the simplest and most general way within the semantic approach10. We start 

our  formal  exposition  with  the  general  way of  defining  a  mathematical  structure.  Basically,  it 

consists of a set of elements A and a set of relations R defined in terms of the elements, conjoindly 

denoted <A,  R>. Relations are also sets (or, strictly speaking, subsets of cartesian products on the 

set of elements11) but where the elements have an ordering. Such ordered sets are also called tuples, 

where  n-adic  relations  consist  of  n-tuples.  One  important  type  of  relation  is  the  common 

mathematical  function,  here  denoted  f.  This  simple  schema,  entities  and  their  relations,  has 
10 There is no set-theory fundamentalism inherent to the semantic view. If the objection is made that the semantic view 

reduces science to set theory in a vicious way as did the syntactic view with a logical calculus, an important point is 
overlooked. On the semantic view the theory is not identified with its syntactic apparatus of formulation. The 'thing 
described' is in focus, not the specific description. First of all, there are several different set theories which one may 
use to describe the same structures (French and Ladyman, 1999, page 116). Secondly, other mathematical theories 
may be equally appropriate; for example category theory (Landry, Shared Structure Need not be Shared Set-
Strucure, 2007).

11 A cartesian product is a mathematical operation which returns a set from multiple sets. That is, for sets A and B, the 
Cartesian product A × B is the set of all ordered pairs (a, b) where a  A and b  B.∈ ∈  
(http://en.wikipedia.org/wiki/Cartesian_product, entered 01.09.13.) 

Let us make an example for a mathematical structure.  Let the set of elements on which we define the 
relations be the real numbers . A cartesian product ×   (the real numbers 'crossed with themselves') can then beℝ ℝ ℝ  
represented as the familiar (cartesian) coordinate system (x,y). Relations defined on this product picks out subsets of 
it, e.g., subsets of points x and y defined by a mathematical function (or formula.)
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tremendous  general  expressivity.  Further,  describing  in  a  clear  way  any  subject  matter 

fundamentally means describing some entities and relations.12

Mathematical structures describes the pattern of relationships holding between the members 

of its set. What the members are qua individuals does not matter. As such, the ontology of A is very 

liberal. It can be a discrete set of objects, like genes, or it can be continuous, like the real numbers; 

it  can  be  finite  or  infinite.  It  can  be  any  manifold  whose  constituents  can  be  structurally  

characterized – like the notion of a spacetime or a quantum field .

Then we proceed to theories. Here we will consider group theory as an example, as given in 

(Suppes  2002,  pages  31-32.) This  is  a very simple theory,  and in  standard formulation usually 

presented as the three axioms, where ○ is a binary operator (a function),  e is the identity element 

and  ] ˡ the inverse operator (another function).

B1: x ○ (y ○ z) = (x ○ y) ○ z ; (The function is associative.)

B2: x ○ e = x ; (The function has an identity element.)

B3: x ○ x ] ˡ = e ; (Every variable has an inverse.)

Suppes comments that 

The difficulty with these axioms, taken in isolation, is that one does not quite understand how they are 

related to other theories, or exactly how they are related to mathematical objects themselves. These 

uncertainties are easily cleared up by recognizing that in essence the axioms are part of a definition,  

namely, the definition of the predicate 'is a group'. The axioms ... tell us the most important properties  

that must be possesed by a mathematical object which satisfies the predicate 'is a group', or in other  

words, by a mathematical object that is a group. [Suppes 2002, page 31]

The first thing to notice here is that – in addition to the limitations pertaining to viewing theories  

axiomatically, or instrinsically, when it comes to explicating relationships between mathematical 

objects (outside of what is logically contained within the theory at hand, its deductive closure) – 

also  inter-theoretic relationships stand in the same need. The second point concerns an  extrinsic  

way adequate  for  these  concerns,  namely the  definition  of  a set-theoretic  predicate,  which  on 

Suppes' view is the correct way of formalizing scientific theories. 

In this more general framework, not confined to the deductive closure of its axioms, adding 

12 This schema also incorporates the possibility of naming some of the elements; these are called the constants, 
denoted c. In number theory this can be the numeral '0', in theories of measurement it can be some appropriately 
selected points (like freezing and boiling temperature on the Celsius temperature scale). This fixes a certain order of 
the structure, but is not necessary in every structure.
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the axioms of set theory to the framework of elementary logic, and with emphasis on the models  

rather on the axioms, we can describe the theory of groups by defining the class of its models 

directly as follows. Let U be a structure, and we give this set-theoretic predicate: 

U is a group if and only if there exists a nonempty set A, a binary operation ○ on A, an element e of A 

and an inverse operation on A such that U = <A,○, ] ˡ,e,> and for every x, y, and z in A the three  

axioms given above are satisfied. [ibid.]

Every structure satisfying this predicate is a model for group theory. And as is clear in the definition 

above, when we formally describe the relevant properties pertaining to (or constituting) the model, 

we define a whole class of models; all and precisely those models with the sought properties – the  

same type of structure.

Sameness or similarity of structure between models can be clearly and rigourosly defined by 

way of mathematical  morphism relationships.  Suppes writes that  "one of the most  general  and 

useful  set-theoretic  notions  that  can  be  applied  to  a  theory  is  the  concept  of  two  models  or 

structures of a theory being isomorphic." (ibid., page 54). The intimate connection between group 

theory and fundamental physics has been mentioned earlier. For example, one particular symmetry 

group,  called  the  Lorentz  group,  corresponds  perfectly  to  the  transformations  of  frames  of 

references, in special relativity, which leaves both the kinematical laws of that theory, Maxwell's 

field equations in the theory of electromagnetism, and Dirac's equation in the theory of the electron, 

all  invariant.  This  holds  by virtue  of  the mathematical  structure (or  models)  of  the  coordinate 

transformations and of the group being isomorphic to each other. We see here that theorizing about 

structures, at a more general or higher level, so to speak, permits us to connect entirely different,  

though structurally similar, theories in a most fruitful way13.

Now, how are these morphism relationships established? They are established by so-called 

representation theorems.  Simply put, given two structures, one finds a function which maps the 

constants, if any, and all the relations (including functions) of the one into the other. Let the two 

structures be 

α = < A, Rα, cα > and  β = < B, Rβ , cβ >. 

Let f  be a function with domain A and range (co-domain) B, and for any element picked out by a 

13 Above we emphazised the importancy of the specific-langauge independence on the Semantic View; here we see 
also how this approach can be said to be specific-theory independent. It shows the unifying character of model-
theory by handling metascientific analyses.
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constant cα in A, f(cα) = cβ (the constant pick out a corresponding element in B); for each relation R 

and set a of elements in A, if a ∈ Rα , then f(a) ∈ Rβ. This mapping is then a homomorphism from α 

to β (Hodges 1997, page 5). All the structure in α has a structural-identical counterpart in β (but not 

necessarily the other way around). A stronger relation is given by a function which has the same 

properties but is also  injective  (or one-to-one), then the function is an  embedding from α to  β.  A 

function which is also surjective  (bijective: one-to-one and onto) gives an  isomorphism. The two 

structures  are  then  said  to  be  isomorphic,  meaning  they  are,  in  a  sense,  identical;  they  are 

structurally or mathematically indistinguishable. Although their basic sets (A and B  here) may be 

different, their relations are identical. The weaker morphisms are also called partial isomorphisms.  

The Mathematical Landscape

Now, by the very act  by which one has  characterized a  structure or model,  one 'peaks'  into a 

mathematical landscape or a logical space consisting of all possible models, delineating the scope 

of  classes  of  models  bearing  these  morphism relations  to  it  and  excluding  all  the  rest.  More 

concretely, by giving a representation theorem for a theory, Suppes writes that,

[a] certain class of models of a theory, distinguished for some intuitively clear conceptual reason, is 

shown to exemplify within isomorphism every model of the theory. More precisely, let M be the set 

of all models of a theory, and let B be some distinguished subset of M. A representation theorem for 

M with respect to B would consist of the assertion that given any model m in M there exist a model 

in B isomorphic to m. In other words, from the standpoint of the theory every possible variation of 

model is exemplified within the restricted set B. [ibid., page 57].

All  theoretical  models,  then,  bears  certain  relations  to  one  another,  both  logically  and 

mathematically.  And these relations  indicate  some of  the  ways we can  reason about  them and 

compare them. This approach of inquiry into and generalizing over models of theories does seem 

promising  as  a  perspective  for  the  philosophy of  science.  What  is  more,  conceptualizing  and 

reflecting  on  the  totality  of  possible  theoretical  models,  and  how  this  complex  whole  must 

somehow be (meta-)structured, is a tantalizingly interesting thought.

Admittedly, this model- and set-theoretic foundation may seem distant to the structure and 

content  of  our  familiar  scientific  theories  and  the  ways  they  model  the  phenomena.  But  the 

foundation needs to be as abstract as it is in order to cover the general pattern of scientific modeling 

in  all  its  variety.  One of  the most  common ways is  to portray a  system developing over time 

(dynamical systems). Parameters of same and/or different dimensions of the system are related by 

certain  equations  as  functions  of  time,  viewed continuously or  discreetly.  Mathematically,  this 
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defines a class of different trajectories in an abstract space of all possible system states, a so-called 

state space, a space of as many dimensions as the number of independent variables (parameters). 

On this conception there is nothing special about the time; the equations could instead be functions 

of spatial dimensions, pressure, temperature, or parameters from economic theory. The essence is 

the interconnections between the parameters, the structures imposed on this space by the equations. 

The relevant point for us here is that the partitioning of the phase space by all possible solutions is 

equivalent to set-theoretic partitions, thus fitting perfectly with the above foundation. The different 

solutions correspond to different classes of models for the theory, and here the state space view 

offers a way of conceptualizing some of their connections to one another.14

Scientific Laws on The Semantic View

An account of laws has been conspicuously absent, considering its high esteem and importance 

with respect to scientific inquiry and discovery. This has been intentional; laws do not have an 

inherently important status on the semantic view. This is due to the fact that laws are inescapably 

theory relative (though  objective). Their  formulation  and exact form is dependent on the broader 

theoretical  framework,  both  linguistically  and  semantically.  Newton's  mechanical  laws,  for 

instance, are not properly expressible without the differential calculus constructed by himself and 

Leibniz in the 18th century.  We can compare these laws with Aristotelian physics in retrospect – a 

comparison in principle not open to Aristotle – which demonstrates this asymmetry.

This does not mean the central role of laws in science is in any way diminished, only that 

they are secondary relative to  theories.  As we will  see in  the next  section,  good theories map 

successfully (though partially) onto the structures of empirical reality;  and some aspects of this 

structure  we may,  if  we so  choose,  call  laws.  Considering  forms  of  state  spaces  from above, 

Frederick Suppe writes that,

... various configurations can be imposed on that space, such as trajectories, subspaces, probability 

measures, and the like. In particular, we can impose configurations on the points of such a space 

which correspond to laws of succession, laws of coexistence, and laws of interaction. [Suppe 1989, 

page 106. Emphasis added.]

These imposed configurations are indeed important. Laws of coexistence are laws which typically 

prescribe  certain  equilibria  or  possible  states  of  a  system (restrict  possible  positions  in  a  state 

14 Neither is the Semantic View restricted to sciences representable in this state space approach. Frederick Suppe has 
shown its applicability to problems in Biological Speciation and Taxonomy (1989, chapter 7) Considering, as 
explained initially, that this semantic framework fundamentally is about making explicit and systematizing relations 
between entities, the high degree of universality of its applicability should come as no surprise.
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space),  like  Boyle's  ideal  gas  law  PV  =  rT;  laws  of  succession  correspond  to  the  state  space 

trajectories of temporal evolution described above, like Newton's laws of motion or the laws of 

population  genetics;  laws  of  interaction  correspond  to  the  mathematics  describing  interacting 

systems. 

But which mathematical relations we decide to call laws are mathematically arbitrary. In the 

absence of successful, unified and objective criteria for what constitute laws, what distinguishes the 

particular relations so chosen, as laws, is the pragmatic significance they may have for us (and may 

often be the result of historical coincidences.) The status of law is something 'imposed' by us, not 

something inherent to nature. Van Fraassen writes about laws that, all the while they are "important 

features by which models may be described and classified", nevertheless, "[t]he distinction between 

these features [which we call laws] and others that characterize the model equally well is in the eye  

of the theoritician; it does not, to my mind, correspond to any division in nature." (van Fraassen 

1990, page 223).  The latter  is  admittedly somewhat  instrumentalist  in attitude,  nevertheless,  as 

explained above in section 3.1, the semantic view does not presuppose such an attitude but also 

admits of views with more realist inclinations. The point to be stressed, though, is that in evaluating 

theories  on  this  view,  what  matter  is  how  (good)  the  theories  as  such  relate  to  empirical 

investigations.  And  that  this  evaluation  should  be  done  without  any  metaphysical  bias  or 

preconception as to the form of, or any special place for, so-called  laws of nature. Mathematical 

measures of fit between different models are what matters. That is after all what gives science its 

objectivity. 

In this long section we've seen the central aspects of theories and models on the semantic 

view,  along  with  some  elaborations  on  formalization  and  on  what  models  are,  and  briefly 

commented on the role of the traditionally important notion of law. In the next and shorter section 

we will complete the presentation of the semantic view by connecting the abstract models with 

empirical reality, thus making them ontologically relevant (See also section 4.2). 

3.3 Theories and Empirical Reality

We have now come to Giere's second component, the  theoretical hypothesis,  which asserts that 

certain real systems are among, or somehow related to, members of the class of models pertaining 

to the theory at hand. What does this mean? Or maybe we would like to ask, What makes a theory 

true according to the semantic view? Simply though inaccurately put, a theory is true if the world, 

or at least a part of it, is identical to one of its models. This section will elaborate on this assertion, 

explaining the relation between theory and world more accurately.
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First of all, we need to dispense with some of the connotations to the concept of truth (or 

knowledge,  depending  on  differing  philosophical  conceptions).  As  the  semantic  view  can  be 

considered as an empirical extension of Tarskian model theory, the concept of truth is defined in 

terms of satisfaction (see 3.1) through the existence of abstract models. For a concept of empirical  

truth  we add to the theory-model satisfiability conditions, the condition of connecting models of 

theory with models of empirical data. As we will see, this concept of 'truth' is both constituted and 

constrained  by  the  very  methodology  and  form  of  scientific  research.  In  a  slogan,  scientific  

methodology  is  epistemology  enough.  And  the  limits  of  scientific  knowledge  and  truth  is 

isomorphism of structure (see the ultimate subsection of this chapter).

Empirical Structure and the Models of our Theories

Let us give another example from van Fraassen (1980, pages 45-46) illustrating two things. First, it 

shows the basic idea of empirical structures being related to models of theory. Second, it clearly 

demonstrates how theories can contain structure which is superfluous. Newton, in his theory of 

mechanics, conceptually distinguished between true and apparent motion, relative to a postulated 

absolute space (We will come back to this example in section 6.2). True motion is motion relative to 

this  absolute  space;  apparent  motion  is  motion  as  observed,  motion  relative  to  the  observer. 

However,  relative  motion  could  in  principle  always  be  identified  as  differences  between  true 

motions. When we measure and record celestial apparent motion by measuring relative distances, 

time intervals, and angles of separation, we form data as relational structures. In the vocabulary of 

van Fraassen, these are called appearances. 

For Newton's theory to be empirically adequate, the theory must have some model such that 

all actual appearances are identifiable with (isomorphic to) true motions in that model. Thus, by 

interpreting or properly configuring the apparent motions, translating them onto the general model 

space of the theory (an inertial frame of reference), so that they can be evaluated in accordance with 

Newton's general equations of motion, we can compare the structures of the two. (That is actually 

the general way data is said to corroborate the theory. More on this below.) 

There is a sense in which the class of mathematical structures constituting the models for 

Newton's theory is larger than the class of structures of appearances, which we will call empirical  

structures.  When this  class  matches  in  the  requisite  way a  model  of  the  theory,  the  empirical 

structure can be embedded in the larger theory structure. When this happens, the empirical structure 

is called an empirical substructure of the theory (ibid., page 43). 

In  attempting  'to  save  the  phenomena' Newton  made  a  theory  hoping  to  make  all 

appearances  be  empirical  substructures  of  his  theory.  And as  we know it  was  for  a  long time 
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successful at this. What challenged it later on was discordances between empirical structures (data) 

and the theory's models. But, not only does discordances between theoretical and empirical model 

influence  theory  construction  and  modification;  superfluous  theory  structure  indicates  what  is  

theoretically arbitrary from an empirical point of view, and consequently what may be scientifically 

dispensable. Newton was challenged by his contemporaries as to the notion of absolute space, most 

notably by Leibniz.  The notion did not make sense because it,  in  principle,  did not  make any 

(empirical) difference. It can be shown that Newton's theory is empirically equivalent for the center 

of the universe having an arbitrary constant motion in any direction (ibid., page 46). These model 

universes are all structurally identical15.

The models of a scientific theory, then, stand to trial in at least two types of ways having to 

do with empirical considerations. The first and direct way has to do with failure of structural fit  

between  models  of  the  theory  and  actual models  of  data.  The  second,  indirect  and  almost 

transcendental way has to do with considerations about whether possible empirical structure would 

constitute any theoretical difference (empirical equivalence defined structurally). Both ways narrow 

down the class of acceptable models, sharpen our theories. (We return to this in discussing our 

theory of scientific progress in chapter 5.2.) The structural fit between theory and data and the 

notion of a hierarchy of models will be the object of inquiry for the rest of this chapter. 

The Hierarchy of Models

Patrick Suppes introduces the concept of a hierarchy of models in two seminal papers (1960, 1962). 

We've mentioned earlier the spectrum of this hierarchical ordering as from purely abstract  models 

to empirical models of data. We will designate the abstract models or pure theory as the higher end,  

empirical models as the lower. Although theory construction pertains to the whole hierarchy (the 

lower levels are also thoroughly theory-laden), there are still some essential differences dividing the 

hiearchy in a pure theory part  and a data part  (see figure 2 on page 47 below for a  graphical 

depiction.). 

Theories of data always pertain to measurement, where a measurement, in the words of van 

Fraassen, essentially

... is a physical interaction, set up by agents, in a way that allows them to gather information. The  

outcome of measurement provides a representation of the entity (object, event, process) measured, 

selectively,  by  displaying  values  of  some  physical  parameters  that  –  according  to  the  theory 

15 This type of consideration, completed by Mach and Einstein, expelled all superfluous theory structure in mechanics 
with respect to motion (See, for instance, Hans Reichenbach 1958, §34). So we see once again the implicit 
importance of invariance of theory structure in further developing and sophisticating mechanics, guided by the 
principle of relativity. (For further discussion, see sections 6.1 and 6.2)
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governing this context – characterize that object. [van Fraassen 2008, pages 179-180].  

At the level of data, then, we are already soaked in theory. In a more compact formulation, "by 

measuring we assign an item in a logical space." (ibid., page 172). This space may be some scale 

appropriate for the magnitude in question, like a weight or temperature scale, or a more complex 

coordinate system of location or magnitudes. Further, they are always finite and discrete. More 

importantly,  as  we saw in  the  quote,  the  outcome or  result  are  (theoretical)  representations  of 

physical interactions. These can typically be considered as the dots on a graph or some relative 

frequency – what we would simply call the data. The relevant theory of measurement and the data 

collected, somewhat misleadingly called  model  of data, constitute a model of a  different logical 

type than the model-theoretic type (Suppes 1960, page 253). The data model does not satisfy, in the 

logic-technical  sense of the term, the theory of data,  but  rather  represents (or presents)  it  in a 

different way.

In contradistinction to the data or measurement part, the theoretical part is ordered model-

theoretically.  These  models  are  the  mathematical  structures  we've  been  studying.  Completely 

abstract  and  independent  of  any  empirical  relations;  inter-related  by  morphisms;  often  with 

functions being infinite and/or continuous; satisfying or realizing the corresponding theories (logic-

technically.) 

How, then, are these two types related to each other? The specifics will vary considerably 

from different scientific inquiries, and the number of theories related may be arbitrarily large; but 

this is the general schema: In addition to the lowest data level and highest theoretical level, we have 

intermediate levels, both theoretical and experimental.  We can think of the highest level as the 

general  theory,  i.e.,  the  general  principles  and equations.  Below that,  the  theory  of  experiment 

defines surface models. (The surface models is where theory meet the data from below.) These, the 

surface models or experimental models, are connected to the higher level models by morphism 

relationships, as explained earlier. When the high level theory is constrained to the experimental 

set-up, the theory of experiment is defined and constructed (together with its models). This stage is 

analagous to providing initial and boundary conditions; conditions constituted by the particularities 

of the experimental set-up. On our imagined data model from above, the dotted graph, the surface 

models would define certain curves on it.  Or from our Newtonian example, the surface models 

would define certain trajectories relative to a specific frame of reference (while the graph dots or 

the data model will here correspond to the concrete observed positions over time). 

Now we can finally connect theory with empirical reality – the surface models will meet the 

data models from below. Here we use the machinery of statistical methods to compare goodness of  
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fit between, say, the dots and the curves (ibid., page 256). Formulated more generally, goodness of 

fit is compared between the data collected and appropriately represented in data models, and the 

theoretical-structural expectations, that is, the theory models.

The above paragraph is a simplification, of course, and did in addition portray the process 

'from above'. That is, starting from the theoretical level and moving downwards. But the influence 

runs both ways. It may be that the data as collected cannot simply be represented 'as dots on a 

graph' ready to be compared with theory, but needs to be further structured and extrapolated before 

a comparison and evaluation can be made. For example,  by going from relative frequencies to 

probability measures, which in effect is to extrapolate a surface model from a greater number of 
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[Figure 2. A graphical depiction of the hierarchy of models. The design is by the author. Thanks to Natale Hugvik for  

the graphical presentation.]

data models (van Fraassen 2008, pages 169-170). The relevant theory guiding the extrapolation 

would  define  a  class  of  models,  corresponding  to  empirical  structures,  which  will  be  sought 

embedded in higher level theory structures. 

It could also be the case that the relevant contiguous, higher level theory still was under 

construction,  or  even  non-existent.  These  empirical  structures  would  then  both  suggest  and 

constrain  theory  construction  at  higher  levels  'from  below'.  New  technology  giving  better 

instruments,  improved experimental  design (including statistical  methods)  would also influence 

this,  further  constraining  the  class  of  models  fitting  the  data.  Considering  this  two-way,  or 

reciprocal, theory construction influence, van Fraassen comments that,

... reflection on the possible forms of structures definable from joint experimental outcomes yields 

constraints on the general form of the models of the theories 'from below'; that class of models can 

then be narrowed down by the imposition of postulated general laws, symmetry constraints, and the 

like, 'from above'. [van Fraassen 1990, page 228].

Formal Vertical Path as Correspondence Principle

It is the existence of a certain formal,  vertical path through layers of models, from the highest 

theory to lower data models, which bestows empirical relevance to our scientific theories. (This 

marks a clear distinction from the syntactic view and its problem ridden correspondence rules.) The 

formal path is constituted by the similarity connections the models of each two (in the hierarchy)  

adjacent  theories bear  to  each other;  either  by mathematical  morphism relations  when the two 

theories are of the same, appropriate logical type, or else by measures of statistical fit. Theoretical 

models  which  are  not  connected  down to  the  data  level  in  this  way,  are  just  that  –  abstract, 

theoretical models with no empirical relevance. On the other hand, the class of theoretical models 

which do have a formal path down to the data says something about the structure of reality, or our 

ontology. (These models distinguish empirical theories, see section 4.2). Exactly what this formal 

path, implying structural similarity, says, depends on the kind of theory they are models of. But the 

essential point here is the nature of this connection and what it connects. 

Implications for Empirical Truth

We end with some implications. In science, we cannot assert something about empirical reality 

without stating it within some theoretical or conceptual framework. Within the semantic view there 
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is no way of talking about truth of theories but through structural match between the models and 

the empirical structures our best scientists can present us with [footnote: abstract truth]. So we see 

that the concept of truth and scientific methodology, at least for scientific theories, conflate. There 

is no way to evaluate (empirical) truth claims but relative to a theory the models of which coheres  

well  with  the  structures  of  empirical  investigations,  i.e.,  that  the  claim coheres  well  with  our 

knowledge acquired by following scientific methodology. 

And now we are finally in a position to elaborate on the identity relation mentioned initially, 

namely that a true theory has a model identical to, or at least to a part of, the world. Our scientific 

theories determines their  models only up to isomorphism. No matter how much empirical data 

structure we attain, or no matter the level of precision of our representations of this structure, our 

theories will always be underdetermined up to isomorphism. True theories, in some absolute sense, 

and for us to know that they are true in this way, is therefore principally impossible. But this fact 

gives no reason to despair. There seems to be no upper limit to how sharply our theories can grasp  

the structure of reality, empirical and instrumental constraints notwithstanding. 

This concludes our account of the semantic view. We have seen how the semantic view with its 

different attitude towards linguistic analysis as such, as compared with the syntactic view, and with 

its  model-theoretic  foundation,  does  not  get  entangled  up  in  the  difficulties  pertaining  to  the 

limitations from first-order logic and the troublesome language bifurcation. Further, we saw how 

the requirement of a vertical path through the hierarchy of models is parallel, although superior, to 

the  correspondence  rules  of  the  syntactic  view.  But  must  importantly,  we  have  a  promising 

framework for an adequate philosophical theory of the structure of scientific theories.
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4. What is a Scientific Theory?

Science is the final arbiter of truth.

W. V. O. Quine, Two Dogmas of Empiricism

This chapter will function as a bridge connecting the two parts of this thesis, where Part 1 is of a 

philosophical-historical character concerned with the structure of scientific theories, while Part 2 

will be of a more theoretical character concerned with scientific progress and will contain what is 

my  original  contribution.  In  order  to  tackle  the  question  of  scientific  progress  an  account  of 

scientific theories must first be provided. Such an account was sought for in the preceding chapters;  

here we present our findings. That is the function of this chapter. 

The chapter is divided as follows. In the first section I present an overview of our present 

position in the thesis, both what we have gone through up to now and what lays ahead. In the 

second section I present explicitly a working concept of a scientific theory, following the semantic 

view presented in the previous chapter.  This is  necessary groundwork for what is to follow on 

scientific progress along the rest of this thesis. 

4.1 Overview of our Current Position
Looking back

In chapters 2 and 3 we have looked thoroughly at two distinct conceptions of what a scientific 

theory is. Although there are in some ways radical differences between them, they can also be seen 

as two somewhat overlapping programs within the same philosophical tradition, having the same 

overarching goal of trying to establish and explain the relationship between scientific theories (as 

such) and empirical reality.

First, in chapter 2, we went through the conception of scientific theories associated with the 

logical  empiricism  (or  logical  positivism),  called  The  Syntactic  View  or  The  Received  View. 
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Strongly influenced by contemporary mathematical logic, with its deflationary or reductive stance 

with  respect  to  non-linguistic, abstract  entities,  like  mathematical  and  theoretical  objects,  the 

syntactic  view  concerned  itself  heavily  with  technical  analysis  of  language  and  with  the 

construction of formal, artificial languages (like first order logic), with a special emphasis on the 

syntactical properties of the languages. A theory was seen as a collection of sentences, the axioms, 

together with the deductive closure of these axioms, i.e., all sentences logically implied by them. At 

this juncture, this is a mere logical calculus (with inference rules defined), without connection to the 

empirical  world.  In  order  to  connect  the  logical  calculus  to  the  empirical  world  the  logical 

empiricists, guided by the verification principle, construed correspondence rules, that is, sentences 

connecting the theoretical vocabulary with an empirical vocabulary, in order to bestow empirical 

significance on the theory. This was highly problematic, as we saw. Nevertheless, one can argue that 

this project of reducing philosophical analysis of scientific theories to linguistics and mathematical 

logic was successful in the important sense of showing the limits of the purely syntactic approach. 

Its failure demonstrated how philosophy of science is more than philosophy of language.

Then,  in  chapter  3,  we  looked  at  another  conception  of  scientific  theories  called  The 

Semantic  View,  or  as  it  is  sometimes  called,  for  good  obvious  reasons,  The  Model-Theoretic 

Conception of Scientific Theories. Tarskian model-theory is a discipline within mathematical logic 

concerned with the classification of structures, and the relationships between theories and models 

(which are structures satisfying the theory at hand), mathematically speaking. As a form of, or a 

discipline  within,  mathematical  logic,  model-theory  distinguishes  itself  in  its  focus  on  extra-

linguistic  entities,  that  is,  mathematical  entities,  as  opposed  to  the  more  syntactically  focused 

disciplines.  Not meta-mathematics but mathematics, as Patrick Suppes declared (paraphrase from 

van Fraassen 1980, page 65). The semantic view is based on an empirical analogy to or empirical  

extension of model-theory. 

In  model-theory  a  set  of  mathematical  axioms  or  equations  relates  to,  or  'picks  out',  a 

corresponding class of models. The project of the semantic view is to handle scientific theories in 

the same way. Where the theories in pure mathematics deal with models equally mathematically 

pure, scientific theories deal with models which, their abstract nature notwithstanding, still  bear 

relationships to empirical phenomena. And the nature of this relationship is of utmost importance 

for distinguishing the semantic view from the syntactic view. On the linguistic framework of the 

latter, the theoretical content of a scientific theory were to be linked to the empirical world by 

connecting  their  respective  languages  in  a  formal  way.  On the  other  hand,  the  semantic  view 

considers  language  to  be  of  secondary  importance.  Parts  of  the  theory  are  not  linguistically 

connected to experience or experiment, as on the syntactic view. Rather, the theory as a whole is 
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mathematically  evaluated against empirical reality,  through the morphism relations explained in 

chapter  3.  This  fact  removes from the domain of  the philosophy of  science many conundrums 

pertaining to technicalities of linguistic analysis. That is a virtue.

I find the model-theoretic approach to scientific theories to be attractive and on the right 

track. Further, I find it promising as a framework not just for giving an account of what a scientific 

theory is per se, but also as a broader framework in which questions of philosophy of science may 

be formulated in a way receptive of much constructive work – and maybe even answers. 

Looking ahead

For the rest of the thesis we will concern ourselves with issues relevant for thinking about scientific  

progress.  It  is my contention,  or conjecture,  that this model-theoretic framework suggests some 

ways in which we can talk clearly and objectively about scientific progress. Our route to scientific 

progress is via a theory of scientific progress presented in chapter 5, building on two important 

concepts that we will develop in sections 5.2.1 and 5.2.2: logical strength and empirical strength. 

Having these two concepts defined we conclude the presentation by explaining the interaction of the 

two concepts relative to scientific progress. In chapter 6 we will evaluate if and how we can talk 

meaningfully about scientific progress by going through two case studies of theory transitions from 

the  history of  physics  and see  what  is  implied  by the  theory change relative  to  our  theory of  

scientific progress. Any theory or concept of scientific progress stands trial to many challenges from 

the philosophy of science. Constructing a proper theory of scientific progress would accordingly be 

of great philosophical value. Chapter 5 can be seen as a prolegomena towards that end. 

Before that, however, we will need to state more clearly what our working concept of a 

scientific theory is. The following section concludes Part 1 of the thesis, being the last component  

needed in order to begin on Part 2, where we evaluate our concept of a scientific theory against real 

cases of theory transition relative to a suggested conception of scientific progress.  

4.2 Our Working Concept of a Scientific Theory
First we will explicate our notion of theory together with the closely associated notion of models.  

This will first be done in a purely theoretical setting before we take empirical considerations into 

account. Theory and scientific theory will be distinguished in a way analogous to how the logical  

positivists distinguished between theory and scientific theory: A theory was considered a scientific 

theory once it was connected to empirical phenomena through correspondence rules. Here, once a 

theory becomes empirically relevant, it will be called a scientific theory. This is a divergence from 

ordinary use of the concept of a scientific theory. Nevertheless, it does fit our purposes and that is 
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what  counts,  as  this  account  is  more  a  suggested  theoretical  construction  than  an  conceptual 

analysis of ordinary or paradigmatic use. More on this below.  

An explicit definition of theory will not be given, but we will instead say something about 

its role vis-a-vis other closely related concepts. A theory defines a class of models. In order to do 

this a theory must have some (structural) semantic content in terms of which the relevant class of 

models can be said to satisfy the requirements given by that content. This is a necessary condition 

for  some  set  of  sentences  and  mathematical  expressions  being  called  a  theory.  Otherwise  the 

candidate  theory  is  simply  too  vague  to  be  of  any  use.  For  a  theory  to  recognized  as  such 

(technically speaking) this requirement of defining a class of models is also sufficient.  On our 

account a theory is not to be identified with the associated class of models. It is preferable to keep 

these two entities,  theory and class  of  models,  separated due  to  their  different  natures  and the 

different  ways  we  use  them.  Theories  describe and  prescribe,  models  are  and  obey.  The  two 

manifest the distinction between the properties to  describe  and be described.  Now, if models are, 

what are they?

As we saw in section 3.2, models are mathematical structures, still it is important to separate 

the two concepts. What distinguishes them is that models are models correlative to, or co-defined 

by, a theory (or a set of theories). In the previous paragraph we started with a theory and referred to 

the  class  of  models  defined  by  it.  The  converse  characterization  is  also  possible,  and  may 

sometimes be more appropriate. We could construct or discover (depending on our metaphysical 

stance on mathematics) some interesting mathematical structures and then, in turn, try to formulate 

theories having these particular mathematical structures as their class of models. Another important 

way in which we talk about theories and models where we emphatically cannot identify them is  

when we find that theories, although being different, still define the same class of models. This 

feature  of  theories  tells  us  that  they  have  interesting  structural  properties  in  common.  The 

commonality  may  suggest,  for  example,  that  they  are  different  aspects  of  a  larger  theory 

incorporating both. A third consideration for keeping theory and classes of models distinct is the 

occasional need for talking about hypothetical theories or models, respectively, without invoking its 

counterpart.  We  may  theorize  meaningfully  about  models  of  the  world  in  contexts  where 

considerations pertaining to a theory of the world as such would be irrelevant. Maybe we have in 

mind a theory governing only a part of the world-model (though, of course, being consistent with 

the hypothetical world-model as a whole.) On the other hand we may talk about a hypothetical 

theory.  As  an  example,  we  may reflect  on  a  theory  of  everything,  pondering  the  hypothetical 

relations holding between it and General Relativity, say, without considering the hypothetical class 

of models defined by a (hypothetical, assumed) theory of everything. Consequently, theories and 
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models are appropriately and accordingly distinguished and separated. 

A theory can be logically and mathematically related to other theories. Both these, relations 

and the related theories, can be interesting to study for purely theoretical purposes. For theories to 

be scientifically interesting they need to either themselves be amenable to empirical testing or they 

need to be formally connected to other theories amenable to empirical testing. In both the purely 

theoretical  context  and  in  the  scientific  one,  formally  related  theories  constitute  a  systematic 

hierarchical structure. In a corresponding way the classes of models defined by formally related 

theories constitute a hierarchy of models, as we explained in section 3.3. When a theory has models 

either amenable to comparison with empirical structures or formally connected to models which are 

amenable to comparison with empirical structures, then the theory at hand has the property of being 

empirically relevant. A theory which has the property of being empirically relevant, or simply put, 

is empirically relevant, we call a scientific theory16. Here we see the analogy mentioned initially in 

this section: the formal connection between the classes of models in the hierarchy of models for  

empirically  relevant  theories,  has  a  similar  role  on  this  account  of  scientific  theories  as 

correspondence rules has on the syntactic view.

The nature of these formal inter-theory connections was explained in 3.3 (and see figure on 

page 47) as consisting of both mathematical morphism relations between the corresponding classes 

of models, and the different type of relationship, statistical fit, between the surface models (lowest 

level theory-models in the hierarchy) and data models (empirical structure).

When  it  comes  to  assessing  the  scientific  virtue  of  a  scientific  theory  we  will  confine 

ourselves with a measure or desiderata (the only?) that compels the belief that a given theory is a 

true representation of some domain of the world 'out there'. This is the virtue of a scientific theory 

being empirically adequate. As we recall (see page 44), a theory is empirically adequate when all 

16 The reader may understandably find this condition puzzling. First, is it sufficient for a theory being empirically 
relevant for it to be a scientific theory? Wouldn't that include too much, i.e., include all kinds of pseudo science,  
provided only they have some empirical consequences? In that sense our concept would differ in important ways  
from standard use. But this fear is ungrounded. For one, our concept of a scientific theory is primarily a technical  
one, constructed for some specific philosophical purposes. Neither is the condition very liberal. The way we have 
grounded our concept of theory in model-theory, that is, in a way that poses certain mathematical requirements, will  
exclude most pseudo science gibberish. Nor is the condition too conservative. It is a virtue that our concept of a  
scientific theory does include both new untested, empirically relevant theories as scientific theories, and old and/or  
false empirically relevant theories. 

Secondly,  wouldn't  treating  empirical  relevance  as  a  necessary condition  for  being a  scientific  theory 
exclude  theories  of  which  science  communities  treat  as  serious  scientific  theories,  although  they do  not  have 
empirically testable consequences, like string theory? Whether this is in fact a vice or a virtue is itself a controversial 
scientific  and philosophical  question. (The physicist  Lee  Smolin argues powerfully that  string theory is indeed 
unscientific in his The Trouble with Physics (2007)). That string theory or any other untestable theory would not be 
called scientific on my account should not be understood as of any derogatory significance. The theory is simply 
treated as on a par with other mathematical theories. The motivation for defining scientific theory via empirical  
relevance is to have a general and objective notion as independent as possible of contingent facts about the beliefs 
and attitudes of scientists and scientific communities. 
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the  data  models  of  our  up-to-date  scientific  research,  that  class  of  empirical  structures,  are 

embeddable in the theory's models (equivalently, in the structures of our theory); and in that case 

the former are called  the empirical substructure of  the latter. The reason why empirical adequacy 

should compel our belief that a theory is a true representation of empirical reality is the objective 

coincidence  (literally  speaking)  between  structural  features  of  our  theoretical  models  and  the 

structural features of empirical reality (represented by the data models). 

Does our criterion of empirical adequacy for commanding adherence to a scientific theory, 

or  to  the  belief  that  the  theory  is  a  true  representation  of  the  world,  imply  a  sort  of  radical  

empiricism? No. It  rather  indicates  a  form of a sound verificationism in the sense that,  to  use 

Quine's  dictum,  science  is  the  final  arbiter  of  truth.  To  make  my  point  clearer,  we  should 

reformulate: Experimental science is the final arbiter of truth. With this qualification and emphasis 

on experimentation I want to forestall a possible objection that this leads to a view where all that 

scientifically counts is getting the actual data right and that the underlying theory does not have any 

value or significance beyond being instrumental at this enterprise. One could argue that science can 

and does say more than this, e.g., that it explains counterfactual relations and dependencies beyond 

mere empirical regularities. And further, that this is what experimental science essentially helps to 

uncover,  almost  by definition.  Experimental  design seeks  to  unravel  and establish the complex 

network of dependencies that is empirical reality, from everyday laboratory testing to impressive 

particle  accelerator  collisions.  Data models  emerging from experimental  research,  then,  already 

incorporate modal relations going beyond strict empiricism17.

There is  another  consideration by way of  which  our  account  can be said  to  go beyond 

empiricism.  Even though our  concept  of  a  scientific  theory is  constructed  by use  of  empirical 

notions like empirical relevance and empirical  adequacy,  one can still  embed this  concept in a 

stronger metaphysical background framework. One such framework that is here assumed (but will 

be  explained and argued for  in  the  next  chapter)  and previously mentioned (in  section  3.1)  is 

structural realism. Given two empirically adequate and empirically equivalent theories, that is, both 

theories having the same empirical substructure, would that imply there is nothing more to be said 

about the theories modulo which describe reality most truthfully? Structural realism goes further. It 

is not as if the purely abstract component of a theory is independent to and separable from the 

empirical part. The two parts are mathematically and logically connected. And there is a specific 

sense in which two equivalent theories must share some common structure in terms of which they 

have, and beyond their simply having, the same empirical substructure. That structure which they 

17 This is a point I will not argue for. Neither must one hold such a view on modality while adhering to the semantic  
view. Nevertheless, there are good reasons why one should incorporate modality, thereby going beyond empiricism. 
For a thorough discussion of this, see chapter 2 in Ladyman and Ross (2007).
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have in common beseeches realistic acknowledgment. Importantly, this is true only of that shared 

structure which is necessarily connected to the shared empirical substructure. In that sense, it is only 

to  the  extent  to  which  theory  structure  can  embed  empirical  structure  that  they  command 

commitment  of  any  realism.  (Now,  how  to  interpret  this  theory  structure  metaphysically  or 

ontologically is a question outside the scope of this thesis.) 

After having summed up the two philosophical views on the structure of scientific theories in the 

previous chapters and formulated our working concept of a scientific theory, we are now ready for 

the second part of this thesis. The second part includes accounting for the problem of scientific 

progress, proposing a theory for scientific progress, and lastly, applying this theory to two examples 

of theory transition from the history of physics. 
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Part 2

Scientific Progress
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5. A Theory of Scientific Progress

         There was continuity or accumulation in the shift, but the continuity is one of form 

or structure, not of content. 

John Worrall, Structural Realism – The Best of Both Worlds?

It seems that the principle of the shortest code length is about as fundamental and 

objective as any criterion can be.

J. Rissanen, Complexity of Models.

In this chapter the theory of scientific progress will be presented. This will be done in section 5.2, 

where we will first explicate our two concepts of a theory's strength, logical strength and empirical 

strength  (5.2.1  and  5.2.2,  respectively).  After  that,  in  5.2.3,  we  will  explain  and  account  for 

scientific progress in terms of the interaction of these strength concepts. 

But before we can take on scientific progress we need to turn to a problem for the notion of 

theoretical continuity over transitions in the history of science. The reason why we need to account 

for this before giving our theory is twofold. First, our theory must overcome and transgress, and can 

be  seen  partly  as  a  response  to,  this  problem.  Second,  the  problem  of  theoretical  continuity 

motivates  the philosophical  thesis  of  structural  realism as  solution.  The solution  of  which  is  a 

precondition to the theory of scientific progress to be given, and a thesis  which is  an essential 

building block for the same theory. The first section will accordingly deal with this problem and the 

proposed solution.

5.1 The Problem of Scientific Progress and Structural Realism

To explain the more or less obvious progress of science while keeping an attitude of realism has 

proved  to  be  surprisingly  difficult.  Surprising  because,  before  one  encounter  the  problems 

pertaining to realism and progress, most of us have an impression of science as a more or less 

steady cumulative enterprise. Not just in engineering aspects and technology, but also of a lasting, 

continuous growth of knowledge about how the world  really is. Although the development is not 

without some transitions, for this naive view this does not pose a challenge. Our scientific theories 
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presumably answer questions such as: How does the world work? What is it made up of, what are 

nature's fundamental constituents? Further, these descriptions, given by our scientific theories, are 

getting better and better at describing the ontological inventory of the reality wherein we reside. 

And these scientific theories are characterized as being at least approximately true.

Now, philosophically there has been a severe tension between two approaches to describing 

the enterprise of science. On the one hand we have the systematic approach in the philosophy of 

science, where the study is of how our contemporary scientific theories, or how scientific theories in 

general, relate to empirical reality. This approach has epistemological concerns as its central aim. 

Logical positivism with its syntactic view and its successor the semantic view are instances of this  

approach.  The  other  approach,  with  the  works  of  Thomas  Kuhn  as  the  paradigm example,  is 

characterized by its emphasis on the historical study of the scientific enterprise, with a particular 

focus on scientific revolutions. The trouble with combining the two approaches has generated much 

of the debate pertaining to the philosophy of science for the latter half of the last century.

Any successful philosophy of science must be able to account for scientific revolutions, or 

radical  theory  change,  in  a  satisfactory  way.  The  problem  of  radical  theory  change  can  be 

characterized as follows. How can we explain both the success of science, demonstrated by our 

cumulative ability to predict and explain phenomena, and the fact that our theories change from 

time to time, sometimes in radical ways? Especially, can we explain this seeming paradox without 

having to abandon realism?

The realism in question here is scientific realism. Scientific realism is the view that our 

scientific theories are essentially correct. Not just in getting the empirical facts right, or saving the 

phenomena, but that they correctly describe how the world is. It asserts that "the nature of things is 

correctly described by the metaphysical and physical content of our best theories." (Ladyman and 

Ross 2007, page 93). This could be described as a full-blown scientific realism. A more modest 

view is that we ought to believe that our best current scientific theories are  approximately true.  

Scientific  realism  also  claims  that  the  central  theoretical  terms  of  our  current  best  theories 

successfully refer to the unobservable entities they posit (ibid., page 68). 

The No-Miracle Argument

Scientific realism has a very strong argument supporting it. This is called the no-miracle argument. 

If our scientific theories were not true descriptions of the world, i.e., if they were false, how could 

they still  be so successful  as scientific theories? In the words of Hillary Putnam: "The positive 

argument for [scientific] realism is that it is the only philosophy that doesn't make the success of 

science a miracle."(ibid., page 69). This argument is an inference to the best explanation. And as 
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such it has both local and global versions. If we look at a particular theory and consider its success 

in explaining and predicting phenomena, scientific realism is used as the explanans for the success. 

It is in terms of the scientific theory being an approximately true description of our world that the  

theory is so successful. 

An  especially  impressive  form  of  prediction  is  the  theoretical  prediction  of  novel 

phenomena. Newton used the irregularities (relative to his theory) of Uranus's observed trajectory to 

predict  the existence of a hitherto unknown planet,  and also inferred exactly where it could be 

found. Astronomers pointed their  telescopes where Newton's deductions dictated,  and there was 

Neptune. How could this be the case if Newton's theory were not true? This is an instance of the 

local version. The global version looks at the scientific enterprise as a whole, marvels at its long list  

of achievements, and asserts that the best explanation for this long successful career is that scientific 

theories are approximately true.

The Challenge From History

Enter the skeptic. Or rather, the instrumentalist or anti-realist. They claim the history of science 

shows this view to be untenable. Superficially, the realist may get away with certain instances of 

significant theory change. There are intuitive senses of how Newton's theory 'approximates'  the 

theory  of  Einstein.  The  development  of  science  has  been  essentially  cumulative  and  that  "the 

deposed theories themselves, and not just their successful empirical consequences, have generally 

lived on, albeit in a 'modified form', after the 'revolution.'" (Worrall 1989, page 105). This attempt at 

securing scientific realism stands on shaky grounds. It relies on vague notions like 'approximate' 

and 'essentially', and on 'maturity' (as on the post-hoc maneuver of trying to differentiate mature 

scientific theories from precisely the ones that are problematic.) Nevertheless, the vagueness of the 

notions notwithstanding, the problem goes deeper. 

There are theory transitions in the history of science where the content of the succeeding 

theory represents a radical break with the preceding theory, and cannot be said to approximate it. If 

theory  T is approximately true and theories  T and  T'  are radically at odds with each other on the 

theoretical level, then how can T be said to approximate T'? At the theoretical and ontological level 

there are radical shifts from Newton's theory to Einstein's. In Newton's theory space is infinite and 

Euclidean, time and simultaneity are absolute, and the inertial mass of a body is constant. While on 

Einstein's  theory  space  is  finite  (though  unbounded),  time  and  simultaneity  are  not  generally 

absolute, and the mass of a body increases with its velocity (ibid., page 109). At the theoretical 

level, then, it seems nothing "essential" is preserved. 

The  radical  shift  in  ontology is  especially  vivid  in  the  history  of  optics.  According  to 
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Newtonian optics light consists of rectilinear streams of light particles obeying geometrical rules. 

After the 18th Century light was most certainly not considered as particles but as waves, according 

to Fresnel's wave theory of light. These waves propagate through an all evasive mechanical medium 

called  the  Ether.  This  was  the  theory  Maxwell  perfected;  the  electromagnetic  field  theory, 

containing the four fundamental equations bearing his name. He tried in vain to base these field 

properties in the properties of the Ether. Then came Einstein's electrodynamics and the Ether was 

exorcised. Not only did the medium disappear, now light was again seen as particles, as photons. 

The empirical facts of particle behavior did not suddenly disappear (of course), so through the 

development of quantum mechanics, light was seen as some strange synthesis between particle, a 

discrete entity, and 'a smeared out object' having wave properties. How could we reconcile the view 

that scientific theories describe how the world is, in terms that they are approximately true, with 

these instances of radical and fundamental theory change?

The Pessimistic Meta-Induction

This challenge to scientific realism is known as the pessimistic meta-induction. Through the history 

of science we have believed several successful theories to be (approximately) true that subsequently 

were shown to be false. Especially, their theoretical terms do not refer to anything real, according to 

later  theories.  But  our  contemporary scientific  theories  do not  differ  in  kind from these earlier 

theories. Then, by induction, we have no good reasons for believing that the current best theories 

will fare any better. Consequently, we should not believe in scientific theories’ approximate truth. 

The attempts of trying to qualify or distinguish certain theories by maturity and so forth have not  

been  successful  (ibid.,  page  113). As  we  mentioned,  these  notions  are  too  vague  and  their 

applications  seem  entirely  post-hoc.  To  state  the  argument  against  the  no-miracle  argument 

precisely: 

P1) Successful reference of its central theoretical terms is a necessary condition for 

the approximate truth of a theory.

P2) There are examples of theories that were mature and had novel predictive success 

but whose central theoretical terms do not refer. 

Then, from P2 and modus tollens by P1, we get,

C1) So there are examples of theories that were mature and had novel predictive 

success but which are not approximately true. 
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And what simply follows from P2,

C2) Approximate truth and successful reference of central theoretical terms is not a 

necessary condition for the novel-predictive success of scientific theories. [Ladyman 

and Ross 2007, page 84.]

The no-miracle argument is undermined. We see that a scientific theory's ability to predict novel 

phenomena does not presuppose approximate truth and successful reference of its central theoretical 

terms. The latter is then clearly not the best explanation of the former. Are we then doomed to be 

radical empiricists or instrumentalists?

Structural Realism

John Worrall,  in  his  article  Structural  Realism –  The Best  of  Both  Worlds? (1989),  set  out  to 

establish a way of retaining a kind of realism, thereby not making the success of science a miracle, 

yet being able to account for, or explain, radical theory change. Is there an account of science that  

manages  to  overcome  this  difficulty  and  'have  the  best  of  both  worlds'?  Structural  realism is 

supposedly, and arguably, such a position. In the words of Worrall,

There was an important element of continuity in the shift from Fresnel to Maxwell – and this was  

much more than a simple question of carrying over the successful empirical content into the new  

theory. At the same time it was rather less than a carrying over of the full theoretical mechanisms 

(even  in  the  'approximate'  form)  ...  There  was  continuity  or  accumulation  in  the  shift,  but  the  

continuity is one of form or structure, not of content. [1989, page 117]

The important clue here for what kind of view structural realism is is the emphasis on  form  or 

structure over content. The content of a scientific theory, meaning its description of how the world 

is  constituted,  its  ontology,  may  be  changed  to  the  unrecognizable  in  a  succeeding  theory. 

Nevertheless  there  can  be  similarities  in  the  form of  the  theories,  retention  of  some structural 

features  they have  in  common18.  Much  philosophy of  science's  almost  exclusive  focus  on  the 

meaning and reference of the theory's theoretical terms has occluded what are truly the relevant 

features of theory change. 

Imagine a big tree with many branches filled with green leaves. Although the leaves may 

18 The form of a theory is not something contrary to or fully independent of its content. Retention of form also means  
partly retention of content,  only content at a less superficial level,  i.e.,  the relational  or structural  aspect  of the 
content.
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change form and color from spring to fall, the trunk and the branches look the same. Well actually, 

they may grow some from one year to the next but always retaining the overall form. Borrowing a  

paleontological term, the trunk and the branches have grown homologically, meaning they grow 

continuously without abrupt change from the time it breaches the ground to the day it  dies. In 

describing the tree as such would the varying size and color of the leaves be of primary importance? 

This would be to fail to to see the tree for its leaves. In the same way, to explain or account for our 

theories and their development, the structural properties are more important than their particular 

inventory of theoretical terms. 

What is structural realism? Worrall traces the origins of this view back to Henry Poincaré 

and Bertrand Russell, though arguing that the first was less a conventionalist than is often assumed. 

Van Fraassen adds Rudolf Carnap to this list (van Fraassen 2008, chapter 10). There are differing 

accounts but some features are common for them.

Intuitively, the structural features of a scientific theory are to be contrasted with its ontology, where 

structure is understood broadly as the relations between elements. In the mathematical sciences, 

structure is often described as the relations that are captured in the theory's equations. So, rather than 

being committed to the existence of electrons (the ontology of the theory), the structural realist is  

committed to the reality of the relations between electronic phenomena [or real patterns, see 5.2.2] 

that are described by Maxwell's relations,  and arguably those relations are preserved in the move  

from classical electrodynamics to quantum electrodynamics.  [Bokulich and Bokulich et.al. 2011, 

page xi, emphasis added.]

Worrall's important achievement for our concerns is using this view to overcome the problem of 

scientific progress. 

But first let us take a closer look at this structuralist view. It distinguishes itself by placing 

an  emphasis  on  structural,  mathematical  relations  over  ontology,  at  least  ontology  as  it  is 

traditionally  conceived.  The  nature  or  the  constitution  of  the  things  that  exist  are  of  minor 

importance relative to the structural properties underlying, or manifesting themselves through, our 

epochally changing ontological inventory of things that exist. What matter are the interrelationships 

systems of objects show forth or even constitute. Focusing on a thing’s nature, or simply on what 

we call it, is to focus on something transient, if not illusory. A rose by any other name would smell  

as sweet, as says Juliet. The converse is as commonplace in science. The meaning of 'atom' changes 

as the theoretical framework changes, and today's meaning is something completely different from 

the time of Democritus. The same can be said of the electron – what matter are the “relations 

between electronic phenomena.” And although phenomena as registered and formulated by science 
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may vary over time and over technological advance, their relations are remarkably invariant.

Retention of Structure Over Radical Theory Change

To take a concrete example, let us again turn to the history of optics. Here we saw the ontology 

going through the most radical of changes. The type of thing light was went from particle to wave 

and back to particle again before metamorphosing into some kind of synthesis between the two. 

The background ontology changed no less. An all-permeating mechanical substance, the ether, went 

from existence to non-existence. Was there anything cumulative or invariant over all this change? 

Yes: The mathematical relationships in each theory stage. Maxwell equations in electrodynamics, 

the fundamental  equations  for  that  discipline  of  science,  are  identical  both pre-  and post-ether 

(Worrall  1989, page 119).  A laser beam, although its  objects  are now taken as quantum wave-

particles, still obeys Newton's laws of geometrical optics. The same goes for the mathematics of the 

wave phenomena. It is in the attitude of structural realism to regard the structural-mathematical 

level of analysis as the real and profound one, while the traditional 'thing ontology' is something 

superficial.  At this structural level conspicuously much invariance presents itself  over scientific 

revolutions.

The  cumulative  aspect,  in  addition  to  the  invariant  aspect,  is  indicated  mathematically 

through  asymptotic  relationships  between  succeeding  theories  in  physics.  We  will  extend  and 

substantiate this cumulative notion model-theoretically below (see section 6.3, especially pages 92-

93).  The new theory 'reduces'  to the previous theory when we consider  limit  values of certain 

physical parameters. When this is the case for two theories we say they obey a  correspondence  

principle. 

We  will  briefly  explain  two  such  instances.  The  special  theory  of  relativity  (STR) 

asymptotically approaches Newtonian mechanics (NM) in the following way. In describing and 

analyzing any system of objects we need to use a frame of reference. But all frames of reference  

describe the same physics (Galilean relativity principle), provided we use some specified set of 

rules or schema transforming one frame of reference to another. In STR this transformation schema 

is dependent on the relative velocity in a way fundamentally different from NM – especially, the 

time coordinate is frame-dependent on STR while not on NM. Nevertheless, if we let the relative 

velocity  v between  two  frames  of  reference  approach  zero,  the  transformation  schema,  and 

consequently most  of  the physics,  become asymptotically identical.  And their  time coordinates 

coincide and become identical (congruent). 

The  second  instance  concerns  quantum  mechanics  and  classical  statistical  mechanics. 

Quantum phenomena display themselves when we observe small systems on a small scale, i.e., 
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systems of a (relatively) small number of 'particles'  N. At this level the two theories are radically 

and fundamentally different. Particles do not have a specific location or velocity. The number of 

particles may even vary.  Still,  if  we let  N,  the number of particles,  increase,  the mathematical 

formalism asymptotically approaches that of classical statistical  mechanics (Ladyman and Ross 

2007,  page  95).  As  with  relativity  theory,  the  two  sets  of  theories  become  empirically  

indistinguishable,  i.e.,  empirically  equivalent  at  certain  segments  of  the  relevant  scope  and  

resolution. (More on this below and in the next chapter.)

Structural Realism as the Solution to the Problem of Progress

We can now outline why structural realism solves the problem of scientific progress. That is, how 

this view does not make the success of science a miracle and how it can explain, or at least be 

consistent  with,  radical  theory  change.  First  the  no-miracle  argument.  According  to  structural 

realism  our  scientific  theories  are  successful  because  these  theories  describe  the  structural  

properties  and  relations of  empirical  reality.  More  concretely,  successful  reference  of  central 

theoretical terms does not matter inasmuch as the theoretical role the object terms have makes sure 

the theory as a whole is empirically adequate (or the systematic relationships they stand in, relative 

to other object terms, in the broader theoretical framework.) The emphasis on successful reference 

of theoretical terms is akin to the expected role of the correspondence rules on the syntactic view as 

given in chapter 2 (see section 2.2 on correspondence rules). And similarly, how the alternative 

structural way of emphasis is reminiscent of the semantic view from chapter 3. (We will return to 

the latter connection directly below.) 

Instead  of  talking  vaguely  about  theories  being  'approximately  true',  we  would  on  the 

semantic  view  say  our  scientific  theories  latches  onto  empirical  reality  by  being  partially  

isomorphic  to it (see section 3.3). By substituting approximate truth with partial isomorphism to 

empirical  reality  the  pessimistic  meta-induction  argument  is  undermined.  By  the  retention  of 

successful theory structure, i.e., preserving theory structure isomorphic to empirical reality, radical 

theory change does not prompt the abandonment of realism. Rather, the continuity and cumulativity 

of the structural aspect of scientific theories could be said to once again force the acceptance of 

realism by a resurgence of the no-miracle argument. 

Now, structural realism is a version of philosophical realism, a metaphysical thesis. And the 

semantic  view of  scientific  theories,  as  accounted  for  in  chapter  3,  is  a  broader  philosophical 

framework in which structural realism fits aptly. Structural realism highlights the mathematical-

structural  aspects of scientific  theories as the important  ones,  and the semantic  view builds its 

framework  on  and  around  the  mathematical  notion  of  a  structure.  This  sameness  of  focus  or 
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emphasis makes them highly commensurable. And as we have seen, structural realism shows great 

promise  as  a  philosophical  view  of  science  with  respect  to  overcoming  the  problem  of  the 

pessimistic meta-induction.  It  is within this pair of philosophical views, the semantic view and 

structural realism, that we will present our theory of scientific progress. 

5.2 Our Theory of Scientific Progress 

This section, giving our theory of scientific progress, is divided into three subsections. The first two 

gives the strength concepts to be used in the third part, where we provide our final theory. In each 

of the two first subsections the definitions are not given immediately. The theoretical content of 

each concept must first be motivated and thoroughly explained along with their construction.

5.2.1 Logical Strength

Our concept of logical strength (to be given) is an attempt to cash out our intuitive notion of how 

strong a theory is. It makes sense saying that theories can differ in how strong they are (or maybe,  

rather, how strict they are.) As a first approximation we can look at how this measure is used in 

mathematical and propositional logic.  A theory is here seen as a set or collection of axioms or 

sentences,  with their  deductive closure.  A straight forward candidate  measure is  the number of 

independent axioms. The more axioms, the stronger the theory. But as this measure says nothing 

about the content of the axioms, we will reject it as superficial and insufficient as to explicate or  

adequately represent the theoretical content. 

When we take the semantic or model-theoretic perspective another candidate presents itself. 

Corresponding to a set of (non-contradictory) axioms viewed as a theory  T within mathematical 

logic,  a  class  of  models  M is  defined (although not  thereby being explicitly given.)  It  follows 

immediately that by adding an (independent) axiom to this theory, the new theory being called T', 

some model in the set  M is no longer a model for  T'.  The size of the set of models defined by a 

theory, or the cardinality of the set (a measure of a set's size in set theory), is then inversely related 

to some particular property of the theory. Let us call this property logical strength. 

Above we discarded the number of axioms being the measure of a theory's strength. There is 

an interesting relation between this property of a theory, logical strength, and the size of the class of  

models defined by it, but this property is not given by the number of axioms. In accordance with the 

semantic view we reject the latter measure due to the language-specificity pertaining to a particular 

formalization determining the number of axioms (see sections 3.1 and 3.2). Formalized differently 
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the  number  of  axioms  may vary.  Consequently,  in  accordance  with  the  pronounced  language-

independence of the semantic view, it is something other than the number of axioms that determines 

this relation (theory's strength/size of class of models). We will now try to further characterize our 

concept of logical strength.

Karl Popper's Notions of Range and Logical Content

We have seen that within our semantic framework, beyond the confines of mathematical logic, a 

theory is something else and more than a set of axioms. But a theory is neither a set of propositions 

on this  account.  Nevertheless,  a  model-theoretic  approach to  propositional  semantics  (or  logic) 

displays an analogous concept or measure of logical strength worth taking a look at. Karl Popper, in 

his classic  The Logic of Scientific Discovery, introduces a concept he calls 'range', defined in this 

way: "The class of basic statements permitted by a statement p may be called its 'range'. The 'range' 

which a statement allows to reality is, as it were, the amount of 'free play' (or the degree of freedom) 

which it allows to reality." (Popper 2002, page 108).  

As we see, Popper deals with  propositions. Basic statements are observational reports as 

propositions. The truth maker is here regarded as the constitution of reality (the set of all facts, or 

something similar). Let p be the trajectory of the Earth around the Sun is an ellipse. The range of p 

includes the (hypothetical) basic statement q stating the trajectory of the Earth around the Sun is a  

circle. If we instead regard the range of q, then the converse does not hold, i.e., the trajectory of the  

Earth around the Sun is a circle is not compatible with the trajectory of the Earth around the Sun is  

an ellipse since any ellipse is not a circle while a circle is an ellipse. q is then not included in the 

range of p. It then follows that the range of p is greater than the range of q. q is in a sense a stronger  

statement than p (ibid., page 106). 

In propositional logic a theory is a set of propositions, or the conjunction of them. To any 

given theory, in Popper's sense, corresponds a set of (potential) falsifiers, that is, observation reports 

contradicting the theory.  Let the size of this set of potential falsifiers be denoted as the  logical  

content19 of  the  theory.  Consequently,  the  stronger  the  theory,  the  less  range  it  has.  And 

symmetrically, the stronger the theory, the more possible falsifiers it has. We see that 'range' and 

logical content are inversely related. So we define, as does Popper, our  logical strength  to be the 

inverse of range. Popper's logical content and our logical strength are then analogous. 

19 Popper defines first empirical content of a proposition p as the class of its potensial falsifiers, then he defines logical  
content as the concequence class of p. (Popper 1959, page 103). 
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Our Versions of Popper's Notions

Let us then try to formulate Popper's concepts model-theoretically. Range could then be: The class  

of models permitted by theory T may be called its 'range'. The 'range' which a theory allows to  

reality is, as it were, the amount of 'free play' (or degree of freedom) which it allows to reality. And 

logical  strength is  taken as its  inverse also on this  model-theoretic  reading.  Remember that  on 

Popper's version reality, interpreted as something like the set of all facts, is the truth maker. But on 

our version of the semantic view there is no way to refer directly to reality, our counterpart would 

have to be specified model-theoretically, combined with empirical constraints (see below, and also 

section 3.3).  Also,  the first  clause,  "the class of  models  permitted by theory may be called its 

'range'" does not work well model-theoretically, since a theory simply  defines a class of models 

irrespective of the logical strength of the theory. And we do not want our concept of logical strength 

be  the  number  of  models  defined  by a  theory  simpliciter. Range,  then,  must  be  relativized  to 

something  extrinsic  to  the  theory.  This  something  will  be  some  specified  (class  of) empirical 

structure.

Popper, as we saw, relativized his notion of range to reality qua truthmaker. Our counterpart 

will  be to demand of a scientific theory that it  is  empirically adequate, relative to the relevant 

empirical structure. Consequently we would get:  The class of models permitted by an empirically  

adequate theory may be called its 'range'. The 'range' which a theory allows to (a part of) empirical 

reality is, as it were, the amount of 'free play' (or degree of freedom) which it allows to (a part of)  

empirical reality. Our concept of a scientific theory's logical strength will be related to the inverse 

of this notion of range. But we also want our strength concept to be comparative, that is, a relational  

property between two theories T and T'. Therefore we require that the empirical structure relative to 

which we will  compare the theories'  respective logical  strengths,  is  shared by both theories as 

empirical substructures. The relevant empirical structure is embeddable in both theories. 

Our Definition of Logical Strength

We finally get:

Definition 1: A scientific theory T' is logically stronger than another scientific theory T, relativized  

to some shared empirical structure, if and only if T' permits less models than does T.  When this  

holds for T' relative to T, we denote this as T <L T'.

The relativization to  shared empirical  structure is  essential  to  isolate  what  is  meant  by  logical  

strength  in  contradistinction  to  empirical  strength  (the  latter  to  be  explicated  below).  This 
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relativization does not imply that the theories so compared must be empirically equivalent – the 

theories may just as well be empirically non-equivalent, relative to any given empirical structure. 

However, what is implied, and in itself important to notice, is that logical strength thus defined is 

relative to some specified set of structures and not an intrinsic property of the theory as such. 

An interesting special case must briefly be discussed. Another way we could have defined 

'logically stronger than' would be to require that all  the models of one of the theories be a proper 

subset of the models of the other theory. Consequently, the first theory has strictly fewer models 

than the second theory, thus it would be regarded as the logically stronger theory. This is a special 

case of our concept, since, if we let the relativizing class of structures be the (empirical) models of 

one of the theories, then that theory is the logically stronger one, according to our definition. The 

reason why we did not choose this definition is precisely its lesser degree of generality. Further, if  

we translate our concept into this way of formulation, we would say that some subset of theory Ts 

(empirical) models is a  proper subset of some subset  of theory T's (empirical) models. So we see 

that not only is our concept more general, in not restricting comparison to all and only the models of 

one of the theories compared, but our formulation is arguably also simpler. 

To proceed we need to clarify what is here meant by empirical reality. That is a step which 

leads naturally to our next strength concept, empirical strength. 

5.2.2 Empirical Strength

Our informational source to reality, or to empirical reality, is experimental science. Through careful 

experimental design, and theories of experiment and measurement, science generates data models of 

empirical reality (see section 3.3). These models are sometimes called surface models, adequately 

highlighting the edge where theoretical abstraction meets raw empirical stimuli or impingement. 

These data models are some times the correctives for existent higher level theories, other times 

inspirational hints for theories yet to be discovered and constructed. The measure of logical strength 

is attributed to these higher level theories. But we equally need a measure on the content and the 

quality, in some sense the strength, of these data models, or empirical structure.

We will describe our measure of empirical strength in objective terms. Evidently our ability 

to gather in and articulate empirical structure of increased strength (alternatively, content) is closely 

tied  to  technological  constraints.  As  technology  progresses,  so  does  our  ability  to  make 

measurements increase, both in scope and in fineness of grain. One could plausibly argue that given 

our universe's temporal arrow and gradient of technology, empirical strength increases almost by 

necessity. This is indeed a lucky fact for science, and the highly exponential rate of technological 
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development has made the topic of the limits of science practically relevant20.  For our concern, 

which  is  how to  describe  progress  in  science  objectively,  we  need  some way to  measure  the 

comparative empirical strength of different sets of empirical structure. This measure must grasp 

several moments and combine them adequately:  the amount of data collected,  the scope of the 

measurement  (width),  and  the  resolution  of  the  measurement  (depth),  together  with  a  non-

redundancy measure, to be explained below.

Dimensionality and Data Content

In chapter 3 (pages 45-46) we followed van Fraassen and characterized measurement as assigning 

an item in a logical space. The outcome of a measurement provides a representation of the entity 

measured  by displaying some (physical)  parameters  that  characterize that  object  relative to  the 

theory of measurement. Further, data collected by measurements are necessarily discrete and finite, 

making them practically quantifiable.  The logical  space wherein  the measurement's  outcome is 

determined has a dimensionality. Dimensionality is the number of parameters needed to pick out an 

element in the data set. This could be a point in an  n-dimensional geometry. The dimensionality 

would  then  simply be  n.  Or imagine  a  weather  report  giving  today's  different  temperatures  at 

different  locations,  say,  the  capital  cities  of  Europe.  Here  we assign  (attribute  temperature)  to 

different items (Europe's capitals). The logical space is here simply the cross product between the 

set of capitals and temperature (an appropriate section of the real numbers). This data set expressed 

formally (a  simple  empirical  structure)  has  dimensionality  2.  A measurement  element,  say,  23 

degrees Celsius in Oslo, is given by two parameters: (city, temperature). 

We could  expand the  logical  space  in  the  following way.  Imagine  a  grid  or  coordinate 

system laid  out  on  the  map  of  Europe  and that  every city  measured  its  temperature  (at  some 

arbitrary  time.  The  temporal  dimension  not  to  be  included  –  yet).  This  data  set  would  have 

dimensionality 3: two spatial parameters (longitude and latitude) and temperature assigned to each 

city. Expanding further, we could bring in measurements of pressure, precipitation, wind strength 

and direction, and we could measure all these parameters over time (yet another parameter.) When 

viewing the moving picture of the weather forecast over the weekend to come we are observing a 

data set with at least dimensionality 4: two spatial parameters, one temporal, and, say, pressure or 

temperature. This, I hope, has illustrated what is dimensionality.

Data content given by measurement can then in general be partly quantified in terms of the 

product of the dimensionality D with the number of objects N measured, like the capitals above, or 

20 Some authors have called this technological development 'the law of accelerated returns'. See for instance Ray 
Kurzweil 2006, The Singularity is Near, chapter 2. 
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with the parameter scales used (like a grid or coordinate system) – depending on the measuring 

context.  The parameter  scale  used factor  in both scope  s and resolution  r;  that  is,  every given 

'dimension' (parameter scale) has a certain scope and resolution. Call this product d. 

Scope and Resolution, and Redundant Information

Technological advances of measurement apparatus increase both the scope and the resolution of the 

corresponding logical space. Scope and resolution, like the reach of our telescopes in astronomy, 

and the level of detail visible in cells through the microscopes in microbiology, are involved in 

partly determining the measure of empirical strength of empirical structures, as we said above. Now 

we need to explain why d is not the measure we look for. There is a sense in which increases in 

scope or resolution need not be relevant to a measure of empirical strength. Altitudinal measures of 

the moon's craters should not increase the empirical strength of the data models relative to a theory 

of celestial mechanics. This information is redundant. More obviously, neither should an arbitrary 

increase  in  the  dimensionality  –  adding  in  color  as  a  dimension is  also  redundant  in  celestial  

mechanics.  

How can we adjudicate what information is to be considered redundant? Can we minimize d 

while  not  loosing  valuable  information?  The  question  of  dimensionality  is  (relatively)  straight 

forward.  The (measurable)  parameters  in  the  data  models  should  correspond to  the  number  of 

parameters used in the higher theory. It is somewhat trickier with scope and resolution. How do we 

proceed to establish the most adequate compromise between increasing scope and resolution on the 

one hand, and relevant information on the other? And can this be done in a general and objective 

way? It seems it can.

Real Patterns and Algorithmic Compressibility

Keeping our metaphysical presuppositions at a minimum, and continuing within a structural realist  

approach, we can say without much controversy that what measurements generally are intended to 

discover or uncover are patterns. In explaining what is meant here by patterns we will make use of 

Ladyman  and  Ross'  (2007)  information-theoretic  elaboration  on  Daniel  Dennett’s  account  of 

'patternhood' in his Real Patterns (1991). 

In recording data we search for informative data that is often enmeshed in uninformative 

data  (or  noise).  This  problem is  identical  to  the  problem of  extracting  a  signal  from noise  in 

information and communication theory,  and we can therefore attack it using the same methods. 

Intuitively, a signal is meaningful while noise is just randomness. Claude E. Shannon, an American 

mathematician  and  engineer  –  known  as  "the  father  of  information  theory"  –,  devised  a 
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mathematical theory accomplishing the separation of signal from noise (Floridi 2010, chapter 3). 

What is informative, or meaningful in this context, is what is not (mathematically) random. While 

this technique was designed for dynamical signal detection in radio communication, it applies also 

to  abstract,  static  mathematical  objects  like  data  sets  or  models.  In  the  latter  case  algorithmic 

compression techniques is used to eliminate what is random instead of recourse to probabilities, as 

in the former (Zurek 1990, page 74.) By algorithmically compressing data models, that is, encoding 

information using fewer bits than in the original representation, two important ends are achieved: 1) 

We get rid of uninformative noise in the data; 2) We get an objective measure for the information 

content called the Kolmogorov complexity (also called logical depth). 

Let us take a step back to patterns and measurements, and connect these with the notions 

from the above paragraph and to the problem of adequate scope and resolution. Patterns, then, is the 

subject of measurement. Patterns are to the experimental scientist, or the philosopher of science, 

what signals are to the communication theorist. We will let the patterns experimental science seeks 

to  uncover  constrain  our  data  models  by  the  following  two  criteria  for  being  a  real  pattern, 

following Ladyman and Ross (2007, page 233):

A pattern p (any function from data to a model of data) is real iff

1. it is projectible;

2. it has a model that carries information about at least a pattern P in an encoding that has an 

algorithmic compressibility higher than the bit-map encoding of  P21,  and where P is not 

projectible  by  a  physically  possible  device22 computing  information  about  another  real 

pattern of higher algorithmic compressibility than p.

This  definition  needs  some  clarification.  The  first  criterion  establishes  an  objective  modality 

intrinsic to the pattern at hand: A projectible pattern support counterfactuals. This excludes mere 

coincidental regularities. The target has been located. The second is an implementation of Occam's 

razor, which secures that the selection of scope and the resolution is thorough enough to include all 

relevant (real pattern) information,  but only to that extent, preventing the inclusion of redundant 

21 A bit-map encoding is simply the copy of every information bit from source C to representation C'. For example, a 
bit-map encoding of a picture would be the copy of every pixel, even within larger patches with the same color. A 
representation with some degree of compression would instead copy whole same colored patches as to reduce the 
total amount of data (simply a description of the area and the color code), since the copy of every equi-colored pixel 
in an equi-colored area would be redundant data.

22 A simple projection could be to make a regression analysis over some data points and extrapolate with the given best 
mathematical function describing the relevant data pattern. Any projection is a form of computation, and as such a 
projectible pattern needs a computer to be projected. The qualification 'physically possible device' is made to 
exclude restrictions coming from our here-and-now technological capabilities, leaving the only relevant constraints 
be the more abstract and general ones from mathematics and physics. (See Ladyman and Ross 2007, page 208.)
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information.  Also,  although not relevant to our concerns but still  interesting,  the second clause 

restricts ontological commitment to only that which is required for an empirically adequate science 

(ibid., pages 233-234).

The Strength Measure on Empirical Structure

Now we will relate the constraints on the data, defined through real patternhood, to the objective 

measure for empirical strength. We will henceforth postulate that our actual data models (empirical 

structure) are constrained by real patternhood, or something very similar to it, being the result of an  

actually existing pragmatic heuristic,  which partly defines and constitutes experimental  science. 

This fixes the appropriate size of data models in a non-arbitrary way, which we will now explain 

how to quantify. 

Given  the  fact  that  data  collected  by  measurements  are  finite  and  discrete,  they  are 

quantifiable.  Data  sets  for  measurements  have  dimensionality  D,  depending  on  the  theoretical 

context. Our measurements are directed at a certain number N of objects (or patterns). Depending 

on our technological situation, the scope s and the resolution r may vary arbitrarily within a certain 

interval (we do not have the appropriate scope and resolution at this juncture). The content of a data 

set  d is  directly related to  s  and  r.  We then propose  a  formula  for  the measure of  the  (as  yet 

uncompressed) data content of an arbitrary data set, d:

d ≈ N × D ×  [ s1 r1 (D1) × s2 r2 (D2) … × sn rn (Dn) ]

The content of the brackets is the product of the scope and resolution pertaining to each dimension 

(parameter). 

To  compress  the  data  in  order  to  remove  redundant  information,  thereby  fixing  the 

appropriate scope and resolution, and restricting our targets of research to modal patterns, we apply 

the real pattern constraints. First, N is now devoid of coincidental correlation patterns. Second, by 

algorithmically compressing our data sets, variable with respect to scope and resolution, we end up 

with  the  appropriate  data  set.  We call  this  algorithmically  compressed  data  set,  AC(d).  It  is  a 

straightforward procedure to apply this compression to tensors (a tensor can be represented as a 

multi-dimensional array of numerical values). The procedure is defined for strings of symbols. An 

array or vector is a string of numbers. A higher dimensional tensor can be represented simply as a 

set  of greater dimensionality of strings which are equally compressible (Zurek 1990, page 78.) 

Finally we can get  a  measure of the data  set,  the  Kolmogorov complexity  K,  given as the set-

theoretic "length" of AC(d):
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K(d) = |AC(d)|23

We now translate  this  back  to  our  semantic  view framework.  Henceforth  when we talk  about 

empirical  structure  we  mean  data  models  constructed  and  compressed  in  this  way.  Empirical 

strength is then defined as follows: 

Definition2:  Empirical  strength of  a  theory  T  is  the  Kolmogorov  complexity  of  the  theory's  

empirical substructure. 

Recall, the empirical substructure of a theory T is the empirical structure embeddable in the theory's 

models. A quantifiable strength notion is then adequately defined for each scientific theory. 

It  is  often desirable  to  compare two theories  relative to,  or in  terms of,  their  empirical 

strength,  when the  empirical  substructures  of  the  theories  are  model-theoretically  related.  This 

could be when there is some overlap in the data models, e.g., if the empirical substructure of one 

theory is  a  proper  subset  of the  empirical  substructure  of  another.  This  relation  is  given as  a 

theorem, with a useful corollary, inspired by Van Fraassen:

Theorem 224: If, given two theories T and T', for every model M of T there is a model M' of T' such  

that all empirical substructures of M are isomorphic to empirical substructures of M', then T has  

empirical strength of equal or stronger degree than does T'. We denote this as T' <=E T.

From this it follows that:

Corollary 2: If the above holds, i.e., T is empirically at least as strong as T', but the converse does  

not hold, i.e., T' is not empirically at least as strong as T, then T is strictly empirically stronger than 
23 The algorithmically compressed data set is then a minimally redundant data set of the real pattern information. The 

Kolmogorov complexity, defined as the length of this data set, is the number of bits required in the shortest possible 
description of the informational content. "Algorithmic information content of a binary sequence s is defined as the 
size of the minimal program ... which computes s on the universal computer" (Zurek 1990, p 76). 

A qualifying remark may here be wanted. Any inherent feature of a description is necessarily dependent on 
the langauge used. Nevertheless, there is an invariance theorem stating that the Kolmogorov complexity of any data 
compression is nearly always insignificantly dependent on the specific language used. The numerical contribution of 
the specific langauge used to the final value is just an additive constant, while the compressed description length is  
usually of a much higher order. (See Zurek 1990, p 76; en.wikipedia.org/wiki/Kolmogorov_complexity (01.08.13)).

24 This theorem is essentially identical to a theorem given in Van Fraassen (1990, p 67.) The original formulation is as 
follows: "If for every model M of T there is a model M' of T' such that all empirical substructures of M are 
isomorphic to empirical substructures of M', then T is empirically at least as strong as T'." An important difference 
being that Van Fraassen only gives a relative, model-theoretic ordering of strength, not any absolute value as given 
by our Kolmogorov complexity. (See definition2.)
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T'. We denote this as T' <E T. 

Proof: Let R be any partial ordering relation on a set, an antisymmetric relation (and reflexive and 

transitive) A ≤R B, where A is either equal to B or A is strictly ordered relative to B . If the converse 

relation does hold, i.e., B ≤R A, then A = B. If the converse does not hold, i.e., it is not the case that 

B ≤R  A, then it follows that B is strictly 'greater than' A, that is,  A <R  B.(A strict partial ordering is 

irreflexive, transitive and antisymmetric.) (Suppes 1957, § 10.3) ■

To complete our theory of scientific progress we must now combine these two strength 

concepts in the requisite way. 

5.2.3 Empirical Minimality – Logical and Empirical Strength Interaction

Above in the first section we found an objective, that is, mathematically demonstrable, criterion for 

a theory being logically stronger than another theory. A transitive relation given by: A theory which  

permits less models than another theory, relativized to some structure or class of models, is the  

logically stronger theory. For scientific theories this criterion is relativized to empirical structure or 

classes of  data  models. In the second section we constructed a quantifiable concept of empirical 

strength of scientific theories. Empirical strength was defined as: Empirical strength of a theory T is  

the Kolmogorov complexity of the theory's empirical substructure. We are now ready to formulate 

the upshot of our argument, a theory of scientific progress. 

The same kind of twofold logic that was used in constraining our data sets (include as much 

as necessary yet no more) will be repeated, this time at the higher, inter-theory level. Science can be 

characterized as the endeavor of having empirically adequate theories. There are times we have 

empirically  adequate  theories  and  times  we do  not.  The  lack  of  empirically  adequate  theories 

stimulates the search for them. Kuhn's anomalies are one form this lack may take. But at any time t  

in a given field there is (usually) some theory or theories which are accepted as the dominant ones. 

This is a mere sociological fact. Nevertheless, a scientific community can in fact be in error of 

which theory or theories are the best ones, known at a given time. 

A scientific community is right if they prefer the theory or theories that combine empirical 

strength with logical strength in the following way.  In a  given field let's  say we have a set  of 

theories T1, T2,... Tn. Relative to these theories and the field of research we have the corresponding 

(minimally redundant) empirical structure or data models. If one of these theories is the empirically 

stronger  one,  it  is  the theory closest  to  empirical  adequacy and therefore the most  correct  and 
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preferable theory. If two or more of these empirically strongest theories are empirically equivalent 

(consequently having identical empirical strength) another consideration must be applied. Which of 

these empirically equivalent theories is the logically stronger one? If one theory is logically stronger 

than the rest, then this is the theory to be preferred. A scientific theory meeting these requirements 

we partly follow Van Fraassen and call empirically minimal.

Definition 325:  A scientific  theory  is  empirically minimal  if  it  is  equal  or  stronger  in  terms of  

empirical strength to all logically stronger theories.

Which implies:

An  empirically  minimal  theory  cannot  increase  its  logical  strength  without  losing  empirical  

strength. 

The preference for empirically minimal theories is due to the fact that it minimizes superfluous 

theory structure (see below and pages 55-56 in chapter 4). This makes explicit our scientifically 

motivated  aim  of  having  theories  that  save  the  phenomena  without  making  theoretically 

unnecessary metaphysical claims. 

Further, if two or more theories are both empirically and logically equivalent, i.e., they have  

both the same empirical and logical strength (they have the same class of models and empirical  

substructure), then there is no method or desideratum for selecting the preferable, most correct  

theory at time t. Let this be a formulation of our verifiability principle.

What About Scientific Progress, Then? 

This is our theory:

Definition 4: Scientific progress consists  in either an increase of empirical strength in a given  

theory (an existent or a new) or an increase in logical strength due to theoretical innovation.

And an alternative formulation with focus on empirical minimality:

Scientific  progress  consists  in  the  stepwise  endeavor  towards  attaining  empirically  minimal  

25 Van Fraassen (1990, p 68.) formulated this as follows: "We may call a theory empirically minimal if it is empirically 
non-equivalent to all logically stronger theories – that is, exactly if we cannot keep its empirical strength the same 
while discarding some of the models of this theory." (Remember that Van Fraassen does not use our concept of 
empirical strength, but another one, less explicit than ours.
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theories; that is, a zigzag progression of logical and empirical strength increments driven by the  

quest for empirical minimality.

Empirical Strength in Scientific Practice

What in scientific practice increases empirical strength? This happens either by measuring some 

newly discovered  phenomena,  or  if  by measuring  a  known field  only with  increased  scope or 

resolution,  something not previously registered is thereby unraveled.  Then we establish what is 

known  as  a  scientific  novelty.  Relative  to  previous  empirical  structure  or  data  models,  the 

incorporation of this novelty in empirical structure increases the Kolmogorov complexity of the 

enhanced or extended empirical structure26. This extended empirical structure is either embeddable 

in contemporary theory, or it is not. If it is embeddable in a theory  T, this increases the theory's 

empirical  strength.  If  it  does  not,  this  novelty generates  no  effect  on  the  strength  of  our  best 

theories.  Only when a new theory  T' which  can  embed it  (as  empirical  substructure)  does  the 

empirical strength increase. This constitutes one of the two ways in which science progresses. 

Logical Strength in Scientific Practice

Theoretical innovation, on the other hand, happens on the theoreticians' desk. Relative to the same 

empirical structure we may have, as we have seen, several empirically adequate, or empirically 

most  adequate, theories. Let us say we have one best, empirically adequate theory  T. This theory 

then has the entire scientific field's empirical structure as a substructure in the theory's models. A 

theory always has some theoretical structure over and above its empirical structure27. This purely 

theoretical structure we call surplus structure. (Not to be confounded with superfluous structure – 

surplus need not be superfluous.) Comparatively, theories may have more or less surplus structure. 

More  surplus  structure  translates  into  the  theory having more  models,  and is  consequently the 

logically weaker theory, given our definition. Let us then say an ingenious scientist comes up with a 

new theory  T' which is empirically equivalent to  T  but demonstrably has less models (i.e.,  less 

surplus structure,  surplus structure which is now  superfluous),  then this new theory is logically 

stronger. 

Should we therefore prefer it? Yes, this we did say some sections above. But since it would 

be ontological frivolity or bias to infer that the simpler (logically stronger) theory is therefore more 

truthful, we will not draw that inference. As naturalists we must deny the underlying presupposition 

26 The inclusion and representation of a novel phenomena in a data set is non-redundant information, and as such 
increases necessarily the Kolmogorov complexity. If the phenomena represented was redundant, it would either not 
be real (nothing) or not novel. 

27 This is the case even if we cannot sharply separate and distinguish the strictly empirical from the strictly theoretical 
part. (See section 2.3 on the discussion of the observational/non-observational distinction.)
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in  question.  Now,  we  could  argue  that  the  theory  with  less  surplus  structure  enjoys  greater 

probability of being true since its theoretical postulations are fewer or thinner. But, logically, the 

logically weaker theory may still be true. What is more important is that the logically stronger 

theory tends to be more general and as such more amenable to further theory construction28. (An 

example is how the relativization of space in Newtonian mechanics with Galilean spacetime is 

theoretically more similar to relativistic mechanics than is the Newtonian version with absolute 

space.)

As we saw in chapter 4 (pages 55-56), what we can say is that the two empirically adequate 

theories are both tracking the truth as far as they both can embed the relevant empirical structure. A 

new and empirically stronger theory may be more similar to the one or the other (often to the 

logically stronger theory) or it may be completely different to both. But what we can be certain of is  

that the new theory must also embed this particular empirical structure, in addition to the inclusion  

of the novel empirical structure.  Although a theory T being logically stronger does not imply it is 

the one closest to the truth, we will still characterize  the discovery of a new alternative theory as 

scientific progress. Having more theories or theory formulations increase our theoretical knowledge 

the same way further  mathematical  development  does.  It  just  may not point  towards  empirical 

truthfulness. Still, there is scientific progress.

We  now  conclude  the  presentation  of  the  theory  of  scientific  progress.  We  have  argued  that 

empirical strength is quantifiable and that comparative logical strength is demonstrable. Therefore, 

this theory delivers an objective measure of the progress of science. And the way any set of theories 

in  a  given  field  may  be  compared  in  terms  of  logical  and  empirical  strength  establishes  its 

generality. In the following chapter we will apply this theory to two examples of (radical) theory 

transitions from the history of physics. 

28 I would like to thank Anders Strand for directing my attention to this. 
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6. Two Examples of Scientific Progress

In this chapter we will apply (or test) our theory of scientific progress on two examples from the 

history of mechanics. Both the theoretical framework and results used and obtained stem in large 

parts  from Michael  Friedman's  book  Foundations  of  Space-Time  Theories  (1983),  which  is  a 

classical and authoritative text on the subject, at least in its purely mathematical parts. What our 

chapter  provides  is  the  connection  between  Friedman's  and  ours  theoretical  and  philosophical 

contents, and the application of this synthesis on the two examples chosen.

In the first section we will explain why the examples were chosen from mechanics and why 

they  are  important.  A  mathematical  framework  and  some  explanations  needed  for  the 

demonstrations  will  also be  given.  Then in  the  second section  I  go  through the  first  example,  

demonstrating an increase in logical strength.  Ultimately,  in the third section,  I  go through the 

second example, demonstrating an increase in empirical strength. 

6.1 Why Mechanics Matter

Mechanics is the branch of science concerning the behavior of physical bodies when subjected to 

forces or displacements. As such, the field of study is as general as is conceivable – the scope is 

universal and of unrestricted jurisdiction, at least in terms of spacetime. An ideal, true mechanics 

would prescribe precisely how matter moves in space and time. Some notion of what space and 

time  are,  and how they relate  to  matter  and its  properties  (or  objects  generally,  or  bundles  of 

properties  and  relations),  are  therefore  included  in  mechanics  as  presuppositions,  that  is,  as  a 

necessary part  in any theory of mechanics.  Mechanics,  then,  is  not  only general to  the highest 

degree but also fundamental in being presupposed by any other theory of natural science.  This is 

one of the reasons why mechanics was the subject chosen on which to apply and evaluate our 

theory of scientific progress. A second reason is that although spacetime theories of mechanics are 

quite abstract and difficult subjects, they are still relatively simple as theories. A third and related 

reason  is  that  these  theories  are  particularly  amenable  to  model-theoretic  formulations  and 
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considerations.

The history and development of mechanics in all its diversity, from Newton's classical and 

original theory as formulated in his  Principia to Einstein's relativistic theories and the quantum 

revolution, offer a well of insights pertaining to key philosophical concepts such as progress and 

objectivity. In addition, a whole range of metaphysical and ontological concepts. From Newton's 

theory with absolute conceptions of space and time, and classical electrodynamics (essentially the 

same mechanics extended to electrically charged bodies), onwards with Maxwell's unification of 

electronic and magnetic theories, and further to the radical shift to the special theory of relativity, 

dispensing with the Ether together with the absolute conceptions of space and time; and ending, for 

now, with the curving of  the very spacetime fabric  according to the field equations  of  general 

relativity. This history is philosophically rich.

We will restrict our focus to two important theory transitions. The first will be the transition 

from Newtonian kinematics (disregarding gravity for the sake of simplicity) with absolute space to 

the  Newtonian  kinematics  without  absolute  space,  having  instead  a  Galilean  spacetime.  This 

example will demonstrate an increase in logical strength. The second will be the transition from the 

latter theory to the special relativistic theory of kinematics. This second example will demonstrate 

an increase in empirical strength. Finally we will see how the conjunction of these transitions can be 

seen as being propelled towards empirical minimality. 

Relativity Principles

Through these theory transitions we will also see how the philosophically motivated principle of 

relativity was guiding the development in mechanics. In addition to being interesting in themselves, 

the  relativity principles  (there  are  various  versions)  used  in  physics  have  interesting  and close 

connections to  our concepts of logical  and empirical strength,  as we will  see.  In chapter 3 we 

mentioned the Galilean relativity principle and expressed it in footnote 2 as: All the laws of physics  

have the same form in all admissible frames of reference (page 36 ). Below we will further work out 

the exact meaning of this, and in addition correct it by giving two more precise versions.

Also, in chapter 3 (page 37), we mentioned the connection between the relativity principle, 

with  its  emphasis  on  what  is  theoretically  invariant,  with  the  broader  philosophical  notion  of 

objectivity. There we expressed this connection  as locating and describing what is constant (or  

invariant)  over  varying contexts,  aspects,  and perspectives.  This  formulates  at  least  one of the 

meanings objectivity is normally understood as having. Formulated as the opposite of subjective we 

see that what is objective is what is constant inter-subjectively,  or independent of the particular 

subject.  This  sense  of  objectivity  gets  an  exceptionally  clear  and  explicit  meaning  in  the 
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mathematical framework of physics. Here the subject may be taken as an observer in the form of a 

frame of reference. We would not count as objective what would vary arbitrarily from one frame of 

reference to another. Rather, that which demonstrates or manifests the opposite property, namely 

invariance over different frames of reference, we  would  count as objective (on this meaning). As 

relativity principles in physics values or accentuates what is invariant over all frames of reference of 

some specified, admissible class of frames, we see the inherent strive for this sense of objectivity in 

the notion of relativity. Invariance relationships have also similar connections to objectivity in other 

sciences than physics, though that will fall outside our current scope. Objectivity and relativity in 

physics, then, both  concern and tend toward what is less and less, or not at all, arbitrary. 

Theoretical Framework for Our Examples

We  start  with  explaining  the  mathematical  framework  we  will  use.  The  general  schema  for 

characterizing spacetime theories is given following Friedman (ibid., page 48). A spacetime theory 

of mechanics T picks out a class of (dynamically possible) models:

< M, Φ1, Φ2,... Φ N, TC >

As we recall from chapter 3 (page 38), the form of this schema is in accordance with the standard 

way of defining mathematical structures (or models) in model-theory. The first element,  M, is the 

set of entities (which can be either finite or infinite).  M is here a four dimensional (structureless) 

differential29 manifold. A manifold is a kind of primitive term in spacetime physics – think of it as  

an amorphous and abstract kind of primordial 'fabric'. This manifold of spacetime has a topology, 

which means that for any point p in spacetime we have the notion of a neighborhood of all points 

'close' to p. Further, the space time is coordinatizable by the set of all quadruples of real numbers, 

i.e., we can define and use coordinate systems: "Such a coordinate system enables us to translate 

statements  about  geometrical  entities  into  statements  about  real  numbers:  for  example,  we can 

describe curves in space-time by numerical equations." (ibid., page 33). 

 The  Φs  are  the  different  geometrical  objects  postulated  by  T  and  obeying  T's  field 

equations30,  and are defined on the manifold31 In order for a spacetime to have a geometry the 

29 In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a linear space to 
allow one to do calculus. (http://en.wikipedia.org/wiki/Differentiable_manifold, entered 23.08.13.)

30 Field equations describe mathematically how the geometrical objects and other objects are interacting. An example: 
A mass density, mass spread out in spacetime, are represented by source variables. This defines a gravitational field 
which is represented by field variables. Further, field equations relate the source varibles with the field variables. 
Equations of motion define trajectories of other objects in terms of the field variables. (Friedman 1983, page 44.)

31 Set-theoretically or model-theoretically these objects are constructed by relations.
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manifold must have sufficient structure imposed on it. This is given via the geometrical object of an 

affine  connection  (ibid.,  page  39). An  affine  connection  gives  'directions'  to  the  manifold. 

Essentially, the affine connection prescribes which lines are to be considered as straight. Now that  

we know which directions, or lines, are straight and which are not straight, we need some measure 

of distance. A metric provides just that. In addition to this, we have some curves TC, usually particle 

trajectories, defined on M, which obey the equations of motion of T. 

We now have sufficient machinery to describe our spacetime theories (ibid., page 44). But 

first let us summarize: A spacetime theory T postulates some geometrical objects on a manifold M, 

gives field equations imposing satisfaction requirements on the geometrical objects,  and finally, 

equations of motion particle trajectories must satisfy (ibid., page 48).  

Newtonian Mechanics with Absolute Space – An Example

These abstract  notions will  become somewhat  clearer  as we give a concrete  example.  We will 

choose  the  spacetime  probably  closest  to  our  (non-physicist)  intuitions:  Newtonian  spacetime 

theory with absolute space (which is also the first spacetime we will study in the next section.) As in 

any spacetime here considered, it consists of a four dimensional manifold M. The first geometrical 

object imposed on this manifold is a flat affine connection, denoted C. First considering only the 

spatial part of the manifold, the flat affine connection corresponds to the intuitive three dimensional 

Euclidean space. The three spatial directions (dimensions) orthogonal on each other always and 

anywhere32. And for each time instant  t, the length between two points is given by a Euclidean 

distance function (obeying the Pythagorean Theorem) or metric, denoted as  m. Where the spatial 

part of the manifold is flat, we say that the temporal part dt is linear. The d before the t means the 

difference of t – there is no absolute position, only durations between two relative instants. That is, 

any temporal interval is implicitly defined for, and independent of, all reference frames (equivalent 

to the property of absolute simultaneity). 

To achieve or to rig the absoluteness of space we need a further geometrical object, a three 

dimensional vector space  V, without which  absolute rest  and  absolute motion  cannot be defined. 

Any vector space has a defined zero vector. All reference frames with zero velocity relative to this  

vector  space  are  then  by definition  at  rest.  Newtonian  spacetime  theory  T of  kinematics,  with 

absolute space, (NMAbs), is then associated with the following class of models:

Models for NMAbs = < M, D, dt, m, V  >

32 This means that the spacetime derivative of the affine connection is zero. It is flat and isotropic. 
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Following  our  schema  from  above  we  would  also  include  a  set  of  curves  TC..  However,  for 

characterizing a spacetime theory as such this is not necessary to do explicitly. We are then dealing 

with models at a higher level of generality: This class of spacetime models includes all the models  

of the normal and lower level of generality, that is, the distinct models corresponding to all the 

possible  and  different  particle  curves  defines  on  them.  (Think  of  the  curves  as  giving  initial  

conditions. Distributions of masses and so forth, considered together with the specific spacetime, 

constitute boundary conditions.) Since we are excluding gravity for the sake of simplicity, thereby 

having merely a kinematic and not a dynamic theory (a flat spacetime), there are no masses in this  

'universe', i.e., no mass density functions, and hence no gravitational fields (nor any other force 

fields.) Our particles are mass- and charge less33.

Models and Frames of Reference

We will now consider how models are related to frames of reference. First we need to dispense with 

a common inaccuracy and source of confusion. Although it is more a terminological issue than a 

logical one, frames of reference are occasionally equated with models34. This is not the case here. In 

the framework we use,  corresponding to a model (of a particular spacetime theory) there is an 

infinite set  of possible reference frames.  Different frames of reference may 'belong' to different 

models, or they may not. A frame of reference and a coordinate system are coextensional in this 

context of physics. A specific frame of reference, relative to a spacetime theory of the above form, 

corresponds to a coordinate system. The particular kind of coordinate system depends on the theory 

at hand, i.e., depends on the properties of the particular spacetime. As such, whole sets of coordinate 

systems, or whole sets of reference frames, corresponds to each model of the theory. 

Now, relative to a specific theory and its associated models, there are certain inherent rules 

determining  classes  of  privileged  or  admissible  reference  frames,  such  as  rest  frames,  inertial  

frames, and geodesic frames. These classes are determined by the theory, given by exactly the set of 

transformations, from one frame to another, which satisfy certain  invariance  conditions. The first 

class corresponds to the class of all reference frames that are at rest relative to some absolute space.  

The second to frames  of  reference  having a  constant,  relative  velocity.  The third,  having only 

33 This simplification will not affect our examples and arguments. Mass converges as does the other parameters as the 
different theories are asymptotically compared.

34 Patrick Suppes (1967) sometimes writes in this way, e.g., in the quote in chapter 3 (page 36): "We can view the tacit 
assumption of a frame of reference as an extrinsic aspect of the familiar characterizations of the theory. From the 
standpoint of the models of the theory, the difficulty in the standard axiomatizations of mechanics is that a large 
number of formally distinct models may be used to express the same mechanical facts.  Each of these different 
models represents the tacit choice of a different frame of reference, but all models representing the same mechanical 
facts are related by Galilean transformations."  In our terminology and framework we would in the last clause rather  
say that  all frames of reference, within one and the same model or across different models, representing the same  
mechanical facts, are related by Galilean transformations.    
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gravitational acceleration. These classes are theory and model dependent; still, there are infinitely or 

arbitrarily many of them. And what makes them special, what distinguishes them, as we will further 

explain in the following sections, is that the laws of each theory is such that all reference frames in 

these classes are rendered physically equivalent. Yet they are different, i.e., not identical according 

to its corresponding theory. This means a principle of relativity would hold; the laws would have the 

same form.

Frames of reference may also be empirically equivalent, as may different theories. Again, as 

with theories, it is important to specify relative to what they are empirically equivalent. Different 

reference frames in one and the same theory may be empirically equivalent, and different reference 

frames pertaining to  different theories  may be empirically equivalent,  relative to some but maybe  

not all possible empirical structure. When relevant, this information will henceforth be explicitly 

given.  Empirical  equivalence  between  frames  of  reference  means  that  there  is  no  mechanical 

experiment by which one could tell the one from the other (ibid., pages 151-152). Simply speaking, 

in these reference frames everything looks the same.

Frames of Reference, Equivalences and Group Theory

Finally we will make some comments about group theory and frames of reference. Group theoretic 

considerations  will  be  included  in  presenting  our  two  examples  of  scientific  progress.  This  is 

because group theory articulates  what  is  relevant  and important  in  these examples and for  our 

concerns, and it simplifies our ways of talking about them. We spoke above of transformations of 

reference  frames  having  certain  properties.  We  can  reformulate  that  with  increased  clarity.  To 

compare what is going on from the vantage point of different reference frames we must be able to  

switch from a particular reference frame to a particular other. This switching we call an operation. A 

mathematical group consists of a set of specified operations defined on a set of elements, obeying 

certain  requirements  (See  chapter  3,  page  39).  In  our  context,  the  frames  of  reference  are  the 

elements while the set of operations are the different ways in which we can transform one reference 

frame to another. 

Let  where you now sit  be  a  reference frame.  All  you see around you have  coordinates 

relative  to  that  reference  frame.  We  will  look  at  three  types  of  transformations.  If  you  walk 

anywhere else and sits down, that reference frame is given by a translation relative to the first. It is 

simply moved to another place. Your previous position has definite coordinates relative to your new 

position.  All  possible  translations  correspond to a  certain group, the group of translations.  The 

second group consists of rotations. Imagine suddenly your office gets tilted 45 degrees clockwise 

for  you.  That  is  also  a  transformation  of  reference  frame,  which  transforms  the  coordinates 
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systematically. The third group is the group of velocity boosts. You now leave your office building 

and immediately enter  the  tram,  which  is  moving with  a  constant  velocity.  The way this  new 

reference frame of yours, the tram, is connected to the first, is by a velocity transformation in a 

certain direction. These three groups exhaust all possible, non-accelerating reference frames.

Above  we  mentioned  classes  of  reference  frames  that  were  physically  equivalent  and 

empirically equivalent. We will now connect these notions to group theoretic notions. But first of 

all, we need to explain how they differ. The class of reference frames that are physically equivalent 

means  all  those  reference  frames  that  are  equivalent  according to  the  relevant  theory.  It  is  an 

intrinsic  property  of  the  theory  at  hand.  This  class  of  physically  equivalent  reference  frames 

corresponds to  the symmetry group of  the theory  (Freedman 1983,  page 56 and 154).  And the 

symmetry group is precisely the set of those transformations that leave physics invariant, i.e., the set 

of transformations which leaves reference frames physically equivalent. We will explain what the 

symmetry group is for every theory we work with in the sections to come. The second class of  

reference frames, the ones who are empirically equivalent, correspond to a group we will call the 

indistinguishability  group  (ibid.,  page  154). This  group  is  not  determined  by theory  alone,  in 

contradistinction to the symmetry group. The content of the group is theory relative but partly, yet 

essentially, determined by empirical reality. The 'gehalt' of an indistinguishability group is not a 

matter of pure mathematical construction, but also a contingent fact.

We will  see that the more general aim of science to render theories that are empirically 

minimal  is  in  the  context  of  mechanics  equivalent  to  making  theories  such  that  the 

indistinguishability group is contained within the symmetry group. More on this below. The quest 

for empirical minimality is also intimately linked to the exact role of relativity principles driving the 

development from classical mechanics to special  relativity.  (ibid.,  section IV.5, especially pages 

158-159). We now turn to our two examples. 

6.2 Loosing Absolute Space – Gaining Logical Strength

Our first example regards the transition from Newtonian mechanics with a conception of absolute 

space to a Newtonian mechanics without such an absolute conception. But first a few words about 

the history of this transition. In Newton's own formulation, his theory included both absolute time 

and absolute space. As we saw in chapter 3, Newton made a fundamental distinction between true 

and apparent motion. True motion was motion relative to space itself, while apparent motion was 

motion as observed relative to an observer. Acute thinkers did point out from the very beginning, as 

did Leibniz,  how this  absolute  sense of  space was both unverifiable,  'speculative',  and anyway 
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unnecessary. Newton conceded the unverifiability of absolute space, but stood by it as a postulate 

nonetheless. 

Two  parallel  theories  of  Newtonian  mechanics  were  consequently  elaborated  and 

formulated.  The historical-sociological  details  about  the transition is  irrelevant  to  our purposes, 

what matters is that both theories are clearly formulable and that it is a fact that one of them is 

theoretically  more  similar  to  later  theories  than  is  the  other.  (Later  conventional  theories  of 

mechanics have not re-introduced absolute conceptions of space.) We will  now present the two 

theories. 

Our Two Theories

The first theory, Newtonian mechanics with absolute space, was given in the previous section. We 

repeat the essentials. It consists of a flat spacetime manifold with a vector space 'rigging' the space 

such that  there is some structure in space relative to which objects  may have true rest  or true  

motion. And the temporal duration is the same for all possible reference frames. We then have the 

class of models of this theory T given as

Models for T (NMAbs) = < M, C, dt, m, V  >.

(M is the manifold; C is the affine connection; dt is the temporal duration; m is the metric; V is the 

vector space.) 

Our  next  theory,  Newtonian  mechanics  with  Galilean  spacetime  (NMG),  is  characterized  as 

follows. It is identical in all aspects to the previous theory except the inclusion of a vector space V. 

As a consequence there is no true motion, all motion is relative. Relative here, as is more often the  

case than not in physics, does not mean any loss of objectivity. The absolute notions of  position, 

rest and (true) velocity, have been replaced with the relative counterparts, where the relativization is 

simply to a frame of reference. Any length, relative velocity and acceleration are still  invariant 

measures. It  is the latter  fact which makes possible that NMG has the same laws of motion as 

NMAbs. The spatiotemporal parameters the equations are dependent on are only these reference 

frame relative yet  invariant  ones.  The class of  models  for  Newtonian mechanics with Galilean 

spacetime T' is then given as,

Models for T' (NMG) = < M, C, dt, m >
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The Logically Stronger Theory

We will now demonstrate how this latter theory T' is logically stronger. In order for that we need to 

show how T' permits less models than does T, relative to some empirical structure. In this particular 

example it doesn't matter which empirical structure we pick out for our theory evaluation; we know 

for a (contingent) fact that the two theories are empirically equivalent. This is due to the (again, 

contingent)  fact  that  absolute  space  is  undetectable.  We will  let  the  empirical  structure  be  the 

astronomical  data  before  the  advent  of  relativity  theory,  before  anomalies  in  the  trajectory  of 

Mercury were discovered.  On that  assumption both our  theories  can  be considered  empirically 

adequate.

Here is the proof (all mathematical results from Friedman 1983, pages 152-154). Let f be a 

transformation of reference frames, of the velocity boost kind. Think of  f  as letting everything in 

space have a constant velocity in a given direction. Such a transformation operates on both the 

affine connection and the vector space. Here are the two respective classes of models of NMAbs, 

where the latter is transformed:

Models for T (NMAbs) = < M, C, dt, m, V  >,

 and the transformed class = < M, fC, dt, m, fV >.

The corresponding two classes on NMG are given as follows:

Models for T' (NMG) = < M, C, dt, m >,

and the transformed class = < M, fC, dt, m >.

Now, it can be showed that the affine connection is left invariant over such a velocity 

transformation, such that

fC = C.

Equally demonstrable, this equality relation does not hold for vector spaces, meaning that

fV ≠ V.

Substituting this identity and non-identity into our transformed theory classes, we get, respectively
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Transformed models for T (NMAbs) = < M, C, dt, m, fV  >

and

transformed models for T' (NMG) = < M, C, dt, m >.

We see that the transformed model class for T, < M, C, dt, m, fV  >, is a different model class than 

the  untransformed  class,  <  M,  C,  dt,  m,  V  >.  The  two  model  classes,  although  physically35 

equivalent,    are  theoretically  distinct.  On  the  other  hand,  the  two  model  classes  for  T',  the 

transformed < M, C, dt, m > and the untransformed < M, C, dt, m >, are identical. They are (sets of)  

identical models. 

Models which are distinct on Newtonian mechanics with absolute space are identical on 

Newtonian mechanics with Galilean spacetime. Since the two theories are otherwise identical, it 

follows that T' permits less models than does T:

T (NMAbs) <L T' (NMG).

The  theory  T',  Newtonian  mechanics  with  Galilean  spacetime,  is  logically  stronger  than  T, 

Newtonian mechanics with absolute space. ■

Given our Definition 4 from the last chapter (page 76): Scientific progress consists in either  

an increase of empirical strength in a given theory (an existent or a new) or an increase in logical  

strength due to theoretical innovation.  It follows that this theory transition was one of scientific 

progress.

(This result may appear counter-intuitive. A possible source for this must be explained. One could 

easily think of these theories in mechanics in such a way that to add another theoretical constraint  

by extending the  mathematical  structure  with  yet  another  geometrical  object  would  render  the 

theory stronger and not weaker, which is implicated by the argument. This consideration would be 

analogous to how adding an axiom would make a mathematical theory stronger. Intuitive as this is, 

the analogy is ill-conceived. Remember that in addition to these geometrical objects given in the 

mathematical structure there are also the (field) equations governing the interaction of the theory's  

objects in general. Now, increasing the constraints posed by this set of equations would make the 

theory  stronger,  and  would  be  analogous  to  adding  axioms  to  a  theory.  But  the  mathematical 

structure having more objects defining it, can rather decrease rather than increase logical strength. 

35 Remember, physically equivalent means that the laws of the theories at hand prescribe the same results or 
consequences (trajectories). And as such, physical equivalence is independent of empirical considerations. (See also 
Friedman 1983, page 152.) 
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In this example, by adding the vector space rigging spacetime, whole new classes of models are 

constructed ('created') beyond the original model classes, thereby making the theory, as we saw, 

logically weaker.)

 

The conception and theoretical incorporation of absolute space in Newtonian mechanics is a prime 

example of superfluous theory structure. We have seen how a theory which frees itself of this extra 

structure gains logical strength, according to our theory. Increasing logical strength may also be 

treated as the  result of adhering to and applying some metaphysical principle of parsimony like 

Occams's  Razor36.  There are  close similarities  between our concept  of logical strength and this 

principle.  Nevertheless,  our  constructed  concept  is  model-theoretic,  and the  concrete  form and 

justification are different enough for us to distinguish them (see section 5.2.3, especially pages 77-

78).

Next we will look at the connection between this result and relativity principles and group 

theory.

The Principle of Relativity and Group Theory – An Alternative, More Specific View

As promised in the first section, we will account for how this theory transition, and the next, can be 

seen as the result of the application of philosophically laden principle of relativity, and also see how 

what  we  call  the  quest  for  empirical  minimality  translates,  in  this  context,  to  another,  group 

theoretic notion. 

Our first formulation of the relativity principle stated that the laws of nature are the same (or 

take the same form) in all inertial frames. This we mentioned is inaccurate and we will provide the 

necessary corrections.  Actually there  are  two components  in  what  is  taken to  be  the  relativity  

principle (ibid., pages 149-153). The first is given thus:

(R1) All inertial reference frames are physically equivalent or indistinguishable.

This is the content of a philosophically happy intuition, which drove physicists toward constructing 

theories which did not depend on specific reference frames. On our meaning of objectivity (pages 

80-81 above) this drive toward R1 can also be seen as motivated by considerations on objectivity. 

The second states that:

(R2) If two frames of reference are indistinguishable according to T, theory should be theoretically 

36 I would like to thank Anders Strand for pointing this out.  
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identical according to T. 

This is more of a methodological norm than R1 is; and it implies an increase in logical strength 

when possible. Newtonian mechanics with absolute space satisfies R1 but not R2 (ibid., pages 153-

154). We saw that frames of reference which were both empirically and physically (theoretically) 

equivalent were still  given in non-identical models. On the other hand, the shift to the Galilean 

spacetime version made Newtonian mechanics satisfy both relativity requirements. 

There is a parallel  and interesting group theoretic consideration pertaining to this theory 

transition, increasing logical strength and adhering to the relativity principles above. We explained 

in the previous section how the frames of reference that are physically equivalent are described by 

the  transformations  corresponding  to  the  symmetry  group  of  the  theory.  In  T  (NMAbs)  the 

symmetry group consists of the two groups of all translations and rotations. Nevertheless, the theory 

has  a  different  indistinguishability  group.  A  velocity  transformation,  we  saw,  is  empirically 

undetectable. That means the indistinguishability group consists of the group of velocity boosts in 

addition  to  the  groups  of  translation  and  rotation.  Accordingly,  on  T  (NMAbs)  the 

indistinguishability group is larger than the symmetry group (see ibid., pages 154-155). 

Again, on the other hand, things are different and more 'progressive' on the Galilean version. 

Here the symmetry group of the theory is the product of the groups of translations, rotations, and 

velocity  boosts.  All  these  transformations  generate  physically  equivalent  reference  frames.  The 

indistinguishability group does not change of course (the theories are empirically equivalent), so 

that group is still the same. Accordingly, the two groups are identical; the indistinguishability group 

is contained within the symmetry group (ibid). The identity of these groups implies, relative to our 

theoretical and empirical context, that the logically stronger theory is also the empirically minimal 

theory. We know of no alternative theory which is empirically equivalent yet logically stronger than 

Newtonian mechanics with Galilean spacetime.

We now proceed to our next example.

  

6.3 Loosing Absolute Time – Gaining Empirical Strength

Before turning to the demonstration, some preliminaries must be given about the example's history 

and particularities. 

Some Background for the Transition

The evidential situation underlying the transition from Newtonian mechanics with absolute space to 
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one with Galilean spacetime can be characterized as  negative.  It  was the lack of any evidence 

corresponding to some theory structure, together with the insight that this particular structure was 

both  empirically  and logically  independent  of  the  remaining  theory structure,  which  led  to  its 

abandonment.  As  a  result,  increased  logical  strength  was  achieved.  The  evidential  situation 

underlying the transition from Newtonian mechanics (with Galilean spacetime) to the special theory 

of  relativity (STR),  on the  other  hand,  was  positive.  There  was an accumulation of  systematic 

discrepancies between models of Newtonian theory and data models coming from experimental 

research. 

Evidence  started  making  trouble  for  the  deeply  held  conviction  of  the  validity  of  the 

Galilean principle of relativity. This principle implies that different velocities are additive. If you 

walk inside of a train with a velocity v and the train has a velocity u (in the same direction),  then 

relative to a reference frame at rest by the railroad you have the velocity v + u. This is intuitive but 

strictly false (Taylor and Wheeler 1992, section L7). Since the physical laws of mechanics deals 

with changes in velocity, that is, accelerations, the generality of the laws of physics over all inertial 

frames holds. But trouble ensued when the successful results of measurements of the speed of light 

started  coming  in.  For  one,  the  results  were  not  compatible  with  the  additivity  of  velocities. 

Secondly, and even stranger, the speed of light as recorded was the same no matter the velocity of 

the source of the light emission (ibid., page 60). Was there some privileged rest frame after all? But 

at rest relative to what – absolute space? Actually, many physicists attributed this constancy to the 

ether but all attempted explanations failed.

Einstein managed to save Galilean relativity and explain the apparent constancy of the speed 

of light.  The speed of light  is  indeed constant.  More specifically,  it  is  constant relative  to  any 

inertial reference frame. But this is clearly contradicting Galilean relativity; if you press your laser 

pointer in the direction of the train, then the velocity of the laser beam c, relative to a reference 

frame at rest on the ground, should be the sum of  c  and the velocity  v  of the train! Now, this 

inference is valid but one of the assumptions, albeit tacitly made, is false. The time coordinate is not  

absolute, but is relative to different inertial frames of reference. Any such frame has its distinct time  

flow or duration. 

This theoretic change corresponds to a change of spacetime, from Galilean to Minkowskian. 

Although this spacetime is as flat and four dimensional as Galilean, it has a fundamentally different  

geometry (Friedman 1983, page 127). In Galilean spacetime the geometry is Euclidean and space 

and time dimensions are independent and separable. Not so in Minkowskian spacetime. Here the 

space and time aspects of the spacetime fabric are interwoven, or intertwined. They are mutually 

dependent. Nevertheless, the special theory of relativity has a theoretical framework which makes 
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all distances and durations perfectly objective although frame dependent. The spacetime interval is 

invariant while each of the contributions of the temporal and spatial part  co-vary over reference 

frames.  This  covariation  is  expressed  in  the  transformation  laws  pertaining  to  the  theory.  The 

transformation laws are of the same form as the Galilean, only incorporating the covarying spatial  

and temporal contributions which depend on the relative velocity between two reference frames 

(ibid., chapter IV).

Asymptotic Relations and Model-Theoretic Relatedness

There is a common belief that NM is asymptotically related to STR. We explained this relation with 

respect to the transitions from Newtonian mechanics to special relativity and quantum mechanics in 

chapter  5  (pages  64-65).  And  that  there  is  a  methodological  principle  in  physics  called  the 

correspondence principle, which states that the mathematical solutions to the previous theory should 

be retrievable within the new theory at certain limit values. We explained further that regarding the 

consecutive theories NM and STR this happen when the relative velocity between two reference 

frames approaches zero. For the purpose of demonstrating STR being empirically stronger than 

NM, we will now deliver upon our promise from chapter 5 of giving this asymptotic relation some 

model-theoretic substance.

Asymptotic relation between theories implies isomorphism of some of their respective model  

classes. Whether this implication is general is a question outside the scope of this thesis; here we 

will  argue  for  it  in  this  particular  case,  between NM and  STR.  When transforming frames  of 

reference with respect to a velocity boost, the other spatial directions orthogonal to this velocity 

direction remain identical, both in NM and STR. We will let the velocity be in the (arbitrarily fixed) 

x-direction. Thus, on the Galilean transformation scheme in NM, from x to x', where x' moves with 

velocity v relative to x, we get (Ladyman and Ross 2007, page 94):

t' = t

      x' = x – vt

To follow upon our earlier example, we will let  x  be the coordinate length as measured from the 

ground while  x'  is  the corresponding length measured from inside the train which moves with 

velocity v in the x-direction. The corresponding transformation scheme pertaining to STR, the so-

called Lorentz transformation, is more complicated, given how the temporal and spatial aspects of 

the Minkowski spacetime are interwoven. They are given by
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 t' = γ(v) (t – vx)

 x' = γ(v) (x – vt),

where γ(v) = 
1

√1−v2/c2 . Here the asymptotic relation is readily seen if you put v = 0, implying 

that γ(0) = 1. The Lorentz transformation then 'collapses' into the Galilean. The parameters that 

would otherwise vary in STR but stay constant on NM are on this special case as constant on the 

first as on the latter. The two theories then become physically equivalent. This is not a simple matter 

of  a  mathematical  curiosity.  Actually,  in  STR the spacetime locally for  every inertial  frame of 

reference is also Galilean with Euclidean geometry. "Within any single inertial frame, things look 

precisely as in Newtonian kinematics: there is an enduring Euclidean three-space, and global time, 

and the inertial  law of motion..."  (ibid.,  page 127).  From the Lorentz transformation scheme it 

follows that for two (or more) inertial frames of reference in STR, with no relative velocity, the 

Galilean transformation scheme holds and Newtonian mechanics is valid. This fact makes some of 

the respective theories' model classes isomorphic to each other. The two theories, then, share at least 

one class of models. 

Our Demonstration – Increasing Empirical Strength

Our demonstration consists of two parts. First we will explicate how STR has empirical strength 

absolutely greater than NM (in terms of Kolmogorov complexity), given the fact that the empirical 

substructure of STR has (non-redundantly) greater scope than does NM. Secondly we will show 

how STR is comparatively, in model-theoretic terms, empirically stronger than NM, according to 

our Theorem 2 and Corollary 2 of theory comparison (page 74)

The data models, or empirical structure, in a given field of science is not given and constant 

but  vary  in  accordance  with  the  relevant  mensural  technology.  And  mensural  technology,  or 

measurement generally, always has a margin of error. Up to an extreme point of accuracy NM and 

STR are empirically equivalent for relative velocities more or less below one tenth of the speed of 

light,  c.  Above  that  limit  STR  diverges  from  NM  exponentially.  Let  our  data  models  be  of 

measurements of some physical parameter, dependent on velocity according to STR, pertaining to 

an object moving relative to an observer frame. On trial one we measure this parameter over the 

velocity  interval  between  zero  and 1/10 c.  That  is,  the  scope  of  the  parameter  (dimension) 

velocity, sV, has this velocity interval as its value. According to the empirical equivalence between 

NM and STR mentioned above, it follows that this empirical structure is embeddable in both theory 

models. In trial two we let the velocity interval increase up a certain significant point, relative to the  
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margin of error, over 1/10 c. This second empirical structure is embeddable in the models of STR 

but not NM. All else equal, the empirical substructure of STR has one parameter scope,  sV, of a 

larger interval than does NM. Since the measure of data content d is positively related to the scope 

factors, and this increase in scope is by assumption non-redundant information, it follows that the 

Kolmogorov complexity of STR is greater than the corresponding value of NM. The special theory 

of relativity, then, has greater empirical strength than Newtonian mechanics.

Now we will  give  the  alternative  proof.  Since  the  two  theories  are  model-theoretically 

related, i.e., they share at least one class of models, they are susceptible for this kind of comparative 

evaluation. Theorem 2 says that, 

If, given two theories T and T', for every model M of T there is a model M' of T' such that all  

empirical substructures of M are isomorphic to empirical substructures of M', then T' has empirical 

strength of equal or stronger degree than does T. We denote this as T <=E T'.

Let NM be T and STR be T'. Above we saw that for models where the relative velocity between any 

two objects is zero, the respective theory models are isomorphic, i.e., model-theoretically identical. 

We also saw that for velocities up to one tenth of c the respective models are empirically equivalent. 

In this 'parameter space' where NM is empirically valid is the domain of the empirical substructure 

of  NM.  Given  the  limited  empirical  equivalency  between  the  two  theories,  the  empirical 

substructure of NM is equally embeddable in the models of STR, i.e., the now dually embedded 

structure is one and the same empirical structure, and identity implies isomorphism. It then follows 

that for every model M of NM there is a model M' of STR such that all empirical substructures of M 

are  isomorphic  to  empirical  substructures  of  M',  and  consequently  NM <=E STR;  STR  has 

empirical strength equal to or greater than does NM.

To get the relation to be  strictly  greater, comparative empirical strength, we need to show 

that the converse relation does not hold, according to Corollary 2. This is simple. Pick one model of 

STR  where  the  empirical  substructure  corresponds  to  measurements  with  relative  velocity 

significantly above 1/10  c. This structure is not isomorphic to any empirical substructure in NM. 

Consequently STR <=E NM does not hold. Which finally implies that NM <E  STR. That is, the 

special  theory  of  relativity  is  strictly,  comparatively  empirically  stronger  than  Newtonian 

mechanics.

As was the case in the theory transition accounted for in the previous section, given our 

Definition  4 from the  preceding  chapter:  Scientific  progress  consists  in  either  an  increase  of  

empirical strength in a given theory (an existent or a new) or an increase in logical strength due to  
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theoretical innovation. It follows that also this theory transition was one of scientific progress.

In the alternative formulation of our definition of scientific progress it was stated that, scientific  

progress consists in the stepwise endeavor towards attaining empirically minimal theories; that is,  

a zigzag progression of logical and empirical strength increments driven by the quest for empirical  

minimality  (pages 76-77). Through our two examples we have seen such a stepwise endeavor. In 

the first  case,  with Newtonian mechanics with absolute space,  we had an empirically adequate 

theory. Nevertheless, the theory had superfluous theory structure and another theory, Newtonian 

mechanics  with Galilean spacetime,  came to the scene,  increasing logical  strength and thereby 

negating  the  first  theory  as  empirically  minimal.  This  virtue,  empirical  minimality,  was  then 

enjoyed  by  the  Galilean  version.  After  some  time,  though,  recalcitrant  measurements  were 

registered,  and  empirical  structures  from experimental  science  were  no  longer  embeddable  in 

Newtonian  theory.  Einstein's  theory  of  special  relativity  was  superior  in  this  respect  and 

consequently  empirical  strength  was  increased.  A manifestation  of  the  progression  of  science 

through the zigzag motion between logical and empirical strength increments.
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7. Conclusion

I have argued for and showed how there are two ways in which scientific theories make progress. 

We saw how scientific theories may increase their logical strength relative to some given empirical 

structure  by cutting  down its  model  classes  in  order  to  crystallize  the  similarities  between the 

theory's models and empirical structure. This circumstance, scientific theories becoming one with 

empirical  reality,  as  it  were,  is  both  our  epistemological  goal  and,  in  terms  of  structural 

isomorphism, our epistemological limitation. And we saw how scientific theories grow in empirical 

strength by being able to embed data models containing or expressing a corresponding increase in 

meaningful informational content (in terms of Kolmogorov complexity.)

What lays ahead? 

Much more work, obviously. One special type of scientific progress should be investigated 

within the proposed framework. That is unification of different scientific theories. My contention is 

that these specific cases can be seen as milestones for our theory to be applied and adjudicated. In 

theory  unification  both  model-theoretic  considerations  about  the  respective  theories  and  their 

consequent  synthesis,  and  considerations  pertaining  to  the  Kolmogorov  complexity  of  the 

converging data models, are pertinent. The unification of the theories of electricity and magnetism 

into electromagnetism is a good candidate for such an investigation. And the hypothetical resolution 

of the incompatibilities of relativity theory and quantum mechanics no less so. 

Further, specific examples of the formal connection between high level theory models and 

down to  the  data  models  should  be  sought  explicitly  articulated,  so  as  to  convince  us  of  the 

adequacy of  this  view of  science,  lest  it  be  restricted  only  to  the  most  abstract  philosophical 

analyses. Herein may also lay particular problems which stand in need for philosophical resolution. 

Also, in order to test our theory of scientific progress the Kolmogorov complexity of the empirical 

structure, or data models, of some discipline's research should be sought calculated, albeit not in 

exact terms, for just the same reason. 

Much is gained for philosophy by working closely with science. As is seen in the sequential 

order of this thesis, a thorough and close analysis of what scientific theories are, and an analysis  
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true to scientific practice, is a precondition for philosophical theorizing about scientific progress. 

And while it is more difficult to say what philosophy has to offer, or should offer, to science, apart  

from  how  some  philosophical  literacy  among  scientists  would  be  beneficial  for  both  parts, 

philosophy arguably has much to gain by close collaboration with on-going science.  Given the 

dynamics and progress of science there is always new and ontologically relevant material on which 

philosophy can  be applied,  and for  philosophy to  grow upon.  The semantic  view of  scientific 

theories distinguishes itself as a promising philosophical framework for this assignment. Especially 

vivid is the tendency among philosophers of science most in sync with contemporary fundamental 

physics to  adhere to  the semantic  view,  or  views very similar  to  it.  But  as  I  have argued,  the 

framework of the semantic view is not seem restricted to physics or fundamental physics. 

The great diversity of science poses a challenge for any unified account of it, and here the 

semantic view is no exception. While posing a challenge, the diversity of science should not be seen 

as an obstacle rendering the attempt futile. How general this view of science is and how adequately 

it can represent different types of scientific theories, must be investigated by scientifically well-

informed  philosophy.  Scientific  theories  generating  dynamical  models  for  representing  the 

discipline's  phenomena  or  objects  of  research  are  perfectly  amenable  to  model-theoretic 

articulation. But what about historical sciences, like evolutionary biology and cosmology? Are there 

here superimposed two kinds of classes of models, models of short time span on top of models of a 

much longer time span? Short time span in cosmology would be the mechanics of a certain period, 

defined in terms of the there and then operating physical laws and constants. Long time span would 

be models of the evolution of the universe as a whole, that is, evolution of the physical laws in  

interaction  with  the  boundary  conditions  themselves.  Analogous  considerations  pertain  to 

evolutionary biology. Can we reconcile these two ways of theorizing model-theoretically, or are 

they principally different? 

Another important locus of philosophical research is the extension of the semantic view to 

the social  sciences.  Especially the mathematized sciences  like  economics  and parts  of  political 

science and sociology appear well fitted to this semantic treatment. There are clear ways which 

these sciences  are  not  different  from physical  sciences  with respect  to  the  methodology of  the 

semantic view. The mathematical foundation defines models which are connected to, and tested 

against, models of data stemming from empirical research. But if the physical and social sciences 

still differ in important ways, it would be appropriate to investigate just how they part ways with 

respect to semantic approach. My own contention, and reflecting my own stance on the subject, is 

that to the degree the science in question is well founded  as a science, it is compatible with the 

semantic view. Everything else is story telling. Which of course can be of great value, just not 
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valuable in these scientific terms. 

I will end on a broader and more speculative note. Answering to the motivation for working 

with the question of scientific progress, to embark on this project and discover that we actually have 

some solid ground on which to stand, is a victory vis-à-vis the relativism about objective truth  

inherent or implicated by the Weltanschauung perspective of so much philosophical thinking since 

the time of Kuhn and continuing on with Feyerabend. This is important not just for having a correct 

philosophical attitude towards science and scientific growth and knowledge, but also for other areas 

such as ethics and politics. Philosophical doctrines about science with such relativist consequences 

have  dire  implications  for  our  thinking about  ethics.  Relativism about  truth  and corresponding 

skepticism about, and even hostility to, science, easily leads to relativist attitudes in ethics (as the 

menace of post-modernist thought is the prime example.) Conversely, solid and well-founded belief 

in the objectivity of science and its progress reinforces the conviction of the validity of universalist 

ethical positions, i.e., that there actually are distinctions between right and wrong in the fabric of 

social reality. Of course, the view of science here argued for is not construed in such a way as to  

reflect strongly held ethical convictions. Rather, the connection, in attitude if not in logic, between 

universalist  ethics  and  the  semantic  view  of  science  is  more  a  happy  coincidence  worth 

appreciating, and worth defending. 
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