
UNIVERSITY OF OSLO
Department of Informatics

A denotational
model for
component-based
risk analysis

Research report 363

Gyrd Brændeland

Atle Refsdal

Ketil Stølen

ISBN 82-7368-321-4
ISSN 0806-3036

February 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A denotational model for component-based risk analysis

Gyrd Brændelanda,b, Atle Refsdala, Ketil Stølena,b

aSINTEF ICT, Oslo, Norway
bDepartment of Informatics, University of Oslo, Norway

Abstract

Risk analysis is an important tool for developers to establish the appropriate pro-
tection level of a system. Unfortunately, the shifting environment of components and
component-based systems is not adequately addressed by traditional risk analysis meth-
ods. This report addresses this problem from a theoretical perspective by proposing
a denotational model for component-based risk analysis. In order to model the prob-
abilistic aspect of risk, we represent the behaviour of a component by a probability
distribution over communication histories. The overall goal is to provide a theoretical
foundation facilitating an improved understanding of risk in relation to components and
component-based system development.

Key words: Risk analysis, component-based development, denotational semantics

2

Contents

1 Introduction 5
1.1 Outline of report . 6

2 An informal explanation of component-based risk analysis 7
2.1 Risk analysis . 7
2.2 Components and interfaces . 8
2.3 Component-based risk analysis . 9
2.4 Behaviour and probability . 9
2.5 Observable component behaviour . 11

3 Denotational representation of interface behaviour 12
3.1 Sets . 12
3.2 Events . 12
3.3 Sequences . 13
3.4 Traces . 16
3.5 Probabilistic processes . 17
3.6 Probabilistic interface execution . 18

3.6.1 Constraints on interface behaviour 19

4 Denotational representation of an interface with a notion of risk 20
4.1 Assets . 21
4.2 Incidents and consequences . 21
4.3 Incident probability . 21
4.4 Risk function . 22
4.5 Interface with a notion of risk . 22

5 Denotational representation of component behaviour 22
5.1 Probabilistic component execution . 23
5.2 Trace sets of a composite component . 24
5.3 Conditional probability measure of a composite component 25
5.4 Composition of probabilistic component executions 28

6 Denotational representation of a component with a notion of risk 28

7 Hiding 29

8 Related work 31
8.1 Security modelling . 31
8.2 Probabilistic components . 32
8.3 Component models . 33

9 Conclusion 33

3

A Auxiliary definitions 36
A.1 Sets . 36
A.2 Logic . 37
A.3 Probability theory . 37

B Proofs 39
B.1 Measure theory . 39
B.2 Probabilistic component execution . 41
B.3 Conditional probability measure of a composite component 48
B.4 Hiding . 93

4

1. Introduction

The flexibility offered by component-based development techniques, such as Sun’s
Enterprise JavaBeans (EJB) [39] and Microsoft’s .NET [36], and the potential for re-
ducing production costs through reuse, has lead to an increased preference for such
techniques. With strict time-to-market requirements for software technology, products
such as cars, laptops, smart phones and mobile devices in general are increasingly sold
with upgradeable parts. The flexibility offered by component-based development facili-
tates rapid development and deployment, but causes challenges for risk analysis that are
not addressed by current methods.

An important question for users and developers of component technology is whether
to trust a new component to be integrated into a system. This is especially true for
systems that handle safety and security-critical tasks such as flight-control systems, or
accounting systems [30, 11]. Output from traditional risk-analysis methods is, however,
difficult to apply to modern software design. Furthermore, few traditional risk analysis
methods take into account that the risk level towards component-based systems may
change, given changes in the environment of the systems [53, 33].

There are many forms and variations of risk analysis, depending on the application
domain, such as finance, reliability and safety, or security. In finance risk analysis is
concerned with balancing potential gain against risk of investment loss. In this setting a
risk can be both positive and negative. Within reliability and safety or security, which
are the most relevant for component-based development, risk analysis is concerned with
protecting existing assets from harm. We focus upon the latter type of risk analysis,
referred to in the following as asset-driven risk analysis. In asset-driven risk analysis,
the analysis of threats, vulnerabilities and incidents are driven by the identified assets.
An asset may be anything of value to the client of the risk analysis, such as information,
software, hardware, services or human life. Assets may also be purely conceptual, such
as for example the reputation of an organisation.

The purpose of asset-driven risk analysis is to gather sufficient knowledge about vul-
nerabilities, threats, consequences and probabilities, in order to establish the appropriate
protection level for assets. It is important that the level of protection matches the value
of the assets to be protected. If the protection level is too low, the cost from risks will
be too high. If the protection level is too high, it may render a service inconvenient for
users. A certain level of risk may be acceptable if the risk is considered to be too costly
or technically impossible to rule out entirely. Hence, a risk is part of the behaviour of a
system that is implicitly allowed but not necessarily intended. Based on this observation
we define a component model that integrates the explicit representation of risks as part
of the component behaviour and provides rules for composing component risks. We also
explain how the notion of hiding can be understood in this component model. We define
a hiding operator that allows partial hiding of internal interactions, to ensure that in-
teractions affecting the component risk level are not hidden. We are not aware of other
approaches where the concept of risk is integrated in a formal component semantics.

An advantage of representing risks as part of the component behaviour, is that the
risk level of a composite component, as well as its behaviour, is obtained by composing
the representations of its sub-components. That is, the composition of risks corresponds
to ordinary component composition. The component model provides a foundation for
component-based risk analysis, by conveying how risks manifests themselves in an un-

5

derlying component implementation. By component-based risk analysis we mean that
risks are identified, analysed and documented at the component level, and that risk
analysis results are composable. The objective of component-based risk analysis is to
support development of components that are both trustworthy and user friendly by aid-
ing developers in selecting appropriate protection levels for component assets and develop
components in accordance with the selected protection level.

Understanding risks in a component-based setting is challenging because the concept
of risk traditionally incorporates some knowledge about how the environment behaves.
In order to define a formal foundation for component-based risk analysis, we must de-
cide which risk concepts to include at the component level, without compromising the
modularity of our components. In conventional risk analysis external threats are often
included and their likelihoods are analysed as part of the overall analysis. The rationale
is that the likelihood of an incident is determined from various factors, including the
motivation and resources of a potential threat. In a component-based setting, however,
we cannot expect to have knowledge about the environment of the component as that
may change depending on the platform it is deployed in. Moreover, it is a widely adopted
requirement to components that they are separated from their environment and other
components, in order to be independently deployable. This distinction is provided by
a clear specification of the component interfaces and by encapsulating the component
implementation [6]. In order to obtain a method for component-based risk analysis, cur-
rent methods must be adapted to comply with the same principles of modularity and
composition as component-based development.

1.1. Outline of report
The objective of Section 2 is to give an informal understanding of component-based

risk analysis. Risk is the probability that an event affects an asset with a given conse-
quence. In order to model component risks, we explain the concept of asset, asset value
and consequence in a component setting. In order to represent the behavioural aspects
of risk, such as the probability of unwanted incidents, we make use of an asynchronous
communication paradigm. The selection of this paradigm is motivated as part of the
informal explanation of component-based risk analysis. We also explain the notions of
observable and unobservable behaviour in a component model with assets. The informal
understanding introduced in Section 2 is thereafter formalised in a semantic model that
defines:

– The denotational representation of interfaces as probabilistic processes (Section 3).

– The denotational representation of interface risks including the means to represent
risk probabilities (Section 4). Interface risks are incorporated as a part of the
interface behaviour.

– The denotational representation of a component as a collection of interfaces or sub-
components, some of which may interact with each other (Section 5). We obtain
the behaviour of a component from the probabilistic processes of its constituent
interfaces or sub-components in a basic mathematical way.

– The denotational representation of component risks (Section 6).

– The denotational representation of hiding (Section 7).
6

We place our work in relation to ongoing research within related areas in Section 8.
Finally we summarise our findings and discuss possibilities for future work in Section 9.

2. An informal explanation of component-based risk analysis

In this section we describe informally the notion of component-based risk analysis
that we aim to formalise in the later sections of this report. In Section 2.1 we explain
the concepts of risk analysis and how they relate in a conceptual model. In Section 2.2
we explain the conceptual component model, and in Section 2.3 we explain how the two
conceptual models relate to each other. In Section 2.4 we motivate the selection of com-
munication paradigm and explain the behaviour of probabilistic component interfaces.
In Section 2.5 we explain which behaviour should be observable in a component with
assets, and which should be hidden.

2.1. Risk analysis
Risk analysis is the systematic process to understand the nature of and to deduce

the level of risk [48]. We explain the concepts of risk analysis and how they are related
to each other through the conceptual model, captured by a UML class diagram [40] in
Figure 1. The risk concepts are adapted from international standards for risk analysis
terminology [48, 18, 17]. The associations between the elements have cardinalities spec-
ifying the number of instances of one element that can be related to one instance of the
other. The hollow diamond symbolises aggregation and the filled composition. Elements
connected with an aggregation can also be part of other aggregations, while composite
elements only exist within the specified composition.

Figure 1: Conceptual model of risk analysis

We explain the conceptual model as follows: Stakeholders are those people and or-
ganisations who are affected by a decision or activity. An asset is something to which a
stakeholder directly assigns value and, hence, for which the stakeholder requires protec-
tion. An asset is uniquely linked to its stakeholder. An event refers to the occurrence
of a particular circumstance. An event which reduces the value of at least one asset is

7

referred to as an incident. A consequence is the reduction in value caused by an incident
to an asset. It can be measured qualitatively by linguistic expressions such as “minor”,
“moderate”, “major”, or quantitatively, such as a monetary value. A vulnerability is a
weakness which can be exploited by one or more threats. A threat is a potential cause
of an incident. It may be external (e.g., hackers or viruses) or internal (e.g., system fail-
ures). Furthermore, a threat may be intentional, i.e., an attacker, or unintentional, i.e.,
someone causing an incident by mistake. Probability is a measure of the chance of occur-
rence of an event, expressed as a number between 0 and 1. Conceptually, as illustrated
by the UML class diagram in Figure 1, a risk consists of an incident, its probability, and
its consequence with regard to a given asset. There may be a range of possible outcomes
associated with an incident. This implies that an incident may have consequences for
several assets. Hence, an incident may be part of several risks.

2.2. Components and interfaces
Intuitively a component is a standardised “artefact” that can be mass-fabricated and

reused in various constellations. According to the classical definition by Szyperski, a
software component

... is a unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed indepen-
dently and is subject to composition by third parties [49].

That a component is a unit of independent deployment means that it needs to be well
separated from its environment and other components. A component, therefore, encap-
sulates its constituent parts. A third party is one that cannot be expected to have access
to the construction details of the components involved. A component therefore needs to
be sufficiently self-contained.

Components interact through interfaces. An interface is often seen as a contract,
specifying what it will provide given that the environment fulfils certain conditions or
assumptions. Cheesman and Daniels [4] distinguish between usage and realisation con-
tracts. According to their component definition a component is a realisation contract
describing provided interfaces and component dependencies in terms of required inter-
faces. A provided interface is a usage contract, describing a set of operations provided
by a component object.

Our component model is illustrated in Figure 2. To keep the component model simple
and general we do not distinguish between usage and realisation. A component is simply

Figure 2: Conceptual component model

a collection of interfaces some of which may interact with each other. Interfaces interact
by the transmission and consumption of messages. We refer to the transmission and
consumption of messages as events.

8

2.3. Component-based risk analysis
Figure 3 shows how the conceptual model of risk analysis relates to the conceptual

component model. To ensure modularity of our component model we represent a stake-

Figure 3: Conceptual model of component-based risk analysis

holder by the component interface, and identify assets on behalf of component interfaces.
Each interface has a set of assets. Hence, the concept of a stakeholder is implicitly present
in the integrated conceptual model, through the concept of an interface1. A vulnerability
may be understood as a property (or lack thereof) of an interface that makes it prone
to a certain attack. It may therefore be argued that the vulnerability concept should
be associated to the interface concept. However, from a risk perspective a vulnerability
is relevant to the extent that it can be exploited to harm a specific asset, and we have
therefore chosen to associate it with the asset concept. The concept of a threat is not
part of the conceptual model, because a threat is something that belongs to the environ-
ment of a component. We cannot expect to have knowledge about the environment of
the component as that may change depending on the where it is deployed. An event that
harms an asset is an incident with regard to that asset. An event is as explained above
either the consumption or the transmission of a message by an interface. Moreover, a
consequence is a measure on the level of seriousness of an incident with regard to an
asset.

2.4. Behaviour and probability
A probabilistic understanding of component behaviour is required in order to mea-

sure risk. We adopt an asynchronous communication model. This does not prevent
us from representing systems with synchronous communication. It is well known that
synchronous communication can be simulated in an asynchronous communication model
and the other way around [16].

1Note that there may be interfaces with no assets; in this case the stakeholder corresponding to the
interface has nothing to protect.

9

An interface interacts with an environment whose behaviour it cannot control. From
the point of view of the interface the choices made by the environment are non-determinist-
ic. In order to resolve the external non-determinism caused by the environment we use
queues that serve as schedulers. Incoming messages to an interface are stored in a queue
and are consumed by the interface in the order they are received. The idea is that, for a
given sequence of incoming messages to an interface, we know the probability with which
the interface produces a certain behaviour. For simplicity we assume that an interface
does not send messages to itself.

A component is a collection of interfaces some of which may interact. For a component
consisting of two or more interfaces, a queue history not only resolves the external non-
determinism, but also all internal non-determinism with regard to the interactions of its
sub-components. The behaviour of a component is the set of probability distributions
given all possible queue histories of the component.

Figure 4 shows two different ways in which two interfaces n1 and n2 with queues q1
and q2, and sets of assets a1 and a2, can be combined into a component. We may think

Figure 4: Two interface compositions

of the arrows as directed channels.

– In Figure 4 (1) there is no direct communication between the interfaces of the
component, that is, the queue of each interface only contains messages from external
interfaces.

– In Figure 4 (2) the interface n1 transmits to n2 which again transmits to the
environment. Moreover, only n1 consumes messages from the environment.

Initially, the queue of each interface is empty; its set of assets is fixed throughout an
execution. When initiated, an interface chooses probabilistically between a number of
different actions (as described in Figure 5). An action consists of transmitting an arbi-
trary number of messages in some order. The number of transmission messages may be
finite, including zero which corresponds to the behaviour of skip, or infinite. The storing
of a transmitted message in a queue is instantaneous: a transmitted message is placed in
the queue of the recipient, without time delay. There will always be some delay between
the transmission of a message and the consumption of that message. After transmitting
messages the interface may choose to quit or to check its queue for messages. Messages
are consumed in the order they arrive. If the queue is empty, an attempt to consume

10

while true do
begin

probabilistic choice(action1, . . . , actionm);
if done then break;
blocking consume(message);

end

Figure 5: Pseudo-code for the input-output behaviour of an interface

blocks the interface from any further action until a new message arrives. The consump-
tion of a message gives rise to a new probabilistic choice. Thereafter, the interface may
choose to quit without checking the queue again, and so on.

A probabilistic choice over actions never involves more than one interface. This can
always be ensured by decomposing probabilistic choices until they have the granularity
required. Suppose we have three interfaces; die, player1 and player2 involved in a game
of Monopoly. The state of the game is decided by the position of the players’ pieces on
the board. The transition from one state to another is decided by a probabilistic choice
“Throw die and move piece”, involving both the die and one of the players. We may
however, split this choice into two separate choices: “Throw die” and “Move piece”. By
applying this simple strategy for all probabilistic choices we ensure that a probabilistic
choice is a local event of an interface.

The probability distribution over a set of actions, resulting from a probabilistic choice,
may change over time during an execution. Hence, our probabilistic model is more general
than for example a Markov process [54, 34], where the probability of a future state given
the present is conditionally independent of the past. This level of generality is needed to
be able to capture all types of probabilistic behaviour relevant in a risk analysis setting,
including human behaviour.

The behaviour of a component is completely determined by the behaviour of its
constituent interfaces. We obtain the behaviour of a component by starting all the
interfaces simultaneously, in their initial state.

2.5. Observable component behaviour
In most component-based approaches there is a clear separation between external

and purely internal interaction. External interaction is the interaction between the com-
ponent and its environment; while purely internal interaction is the interaction within
the components, in our case, the interaction between the interfaces of which the compo-
nent consists. Contrary to the external, purely internal interaction is hidden when the
component is viewed as a black-box.

When we bring in the notion of risk, this distinction between what should be ex-
ternally and only internally visible is no longer clear cut. After all, if we blindly hide
all internal interaction we are in danger of hiding (without treating) risks of relevance
for assets belonging to externally observable interfaces. Hence, purely internal interac-
tion should be externally visible if it may affect assets belonging to externally visible
interfaces. Consider for example the component pictured in Figure 6. In a conventional
component-oriented approach, the channels i2, i3, o2 and o3 would not be externally ob-
servable from a black-box point of view. From a risk analysis perspective it seems more

11

Figure 6: Hiding of unobservable behaviour

natural to restrict the black-box perspective to the right hand side of the vertical line.
The assets belonging to the interface n1 are externally observable since the environment
interacts with n1. The assets belonging to the interfaces n2 and n3 are on the other hand
hidden since n2 and n3 are purely internal interfaces. Hence, the channels i3 and o3 are
also hidden since they can only impact the assets belonging to n1 indirectly via i2 and
o2. The channels i2 and o2 are however only partly hidden since the transmission events
of i2 and the consumption events of o2 may include incidents having an impact on the
assets belonging to n1.

3. Denotational representation of interface behaviour

In this section we explain the formal representation of interface behaviour in our
denotational semantics. We represent interface behaviour by sequences of events that
fulfil certain well-formedness constraints. Sequences fulfilling these constraints are called
traces. We represent probabilistic interface behaviour as probability distributions over
sets of traces.

3.1. Sets
We use standard set notation, such as union A∪B, intersection A∩B, set difference

A \ B, cardinality #A and element of e ∈ A in the definitions of our basic concepts
and operators. We write {e1, e2, e3, . . . , en} to denote the set consisting of n elements
e1, e2, e3, . . . , en. Sometimes we also use [i..n] to denote a totally ordered set of numbers
between i and n. We introduce the special symbol N to denote the set of natural numbers :

N
def= {0, 1, 2, 3, . . . , n, n+ 1, . . . }

and N+ to denote the set of strictly positive natural numbers:

N+ = N \ {0}

3.2. Events
There are two kinds of events: transmission events tagged by ! and consumption

events tagged by ?. K denotes the set of kinds {!, ?}. An event is a pair of a kind and
a message. A message is a quadruple 〈s, tr, co, q〉 consisting of a signal s, a transmitter

12

tr, a consumer co and a time-stamp q, which is a rational number. The consumer in the
message of a transmission event coincides with the addressee, that is, the party intended
to eventually consume the message.

The active party in an event is the one performing the action denoted by its kind.
That is, the transmitter of the message is the active party of a transmission event and
the consumer of the message is the active party of a consumption event.

We let S denote the set of all signals, P denote the set of all parties (consumers and
transmitters), Q denote the set of all time-stamps, M denote the set of all messages and
E denote the set of all events. Formally we have that:

E def= K ×M
M def= S × P × P ×Q

We define the functions

k. ∈ E → K tr. , co. ∈ E → P q. ∈ E → Q

to yield the kind, transmitter, consumer and time-stamp of an event. For any party
p ∈ P , we use Ep to denote the set of all events in which p is the active part. Formally

Ep def= {e ∈ E | (k.e =! ∧ tr.e = p) ∨ (k.e =? ∧ co.e = p)}(1)

For a given party p, we assume that the number of signals assigned to p is a most count-
able. That is, the number of signals occurring in messages consumed by or transmitted
to p is at most countable.

We use E�
p to denote the set of transmission events with p as consumer. Formally

E�

p
def= {e ∈ E | k.e =! ∧ co.e = p}

3.3. Sequences
For any set of elements A, we let A ω , A∞, A ∗ and An denote the set of all sequences,

the set of all infinite sequences, the set of all finite sequences, and the set of all sequences
of length n over A. We use 〈〉 to denote the empty sequence of length zero and 〈1, 2, 3, 4〉
to denote the sequence of the numbers from 1 to 4. A sequence over a set of elements A
can be viewed as a function mapping positive natural numbers to elements in the set A.
We define the functions

∈ A ω → N ∪ {∞} � ∈ A ω ×A ω → Bool(2)

to yield the length, the nth element of a sequence and the prefix ordering on sequences2.
Hence, #s yields the number of elements in s, s[n] yields s’s nth element if n ≤ #s, and
s1 � s2 evaluates to true if s1 is an initial segment of s2 or if s1 = s2.

2The operator × binds stronger than → and we therefore omit the parentheses around the argument
types in the signature definitions.

13

For any 0 ≤ i ≤ #s we define s|i to denote the prefix of s of length i. Formally:

| ∈ A ω ×N → A ω(3)

s|i def=

{
s′ if 0 ≤ i ≤ #s, where #s′ = i ∧ s′ � s

s if i > #s

Due to the functional interpretation of sequences, we may talk about the range of a
sequence:

rng. ∈ A ω → P(A)(4)

For example if s ∈ A∞, we have that:

rng.s = {s[n] |n ∈ N+}
We define an operator for obtaining the sets of events of a set of sequences, in terms of
their ranges:

ev . ∈ P(A ω) → P(A)(5)

ev .S def=
⋃
s∈S

rng.s

We also define an operator for concatenating two sequences:

� ∈ A ω ×A ω → A ω(6)

s1� s2[n] def=

{
s1[n] if 1 ≤ n ≤ #s1
s2[n− #s1] if #s1 < n ≤ #s1 + #s2

Concatenating two sequences implies gluing them together. Hence s1 � s2 denotes a
sequence of length #s1 + #s2 that equals s1 if s1 is infinite and is prefixed by s1 and
suffixed by s2, otherwise.

The filtering function S© is used to filter away elements. By B S© s we denote the
sequence obtained from the sequence s by removing all elements in s that are not in the
set of elements B. For example, we have that

{1, 3} S© 〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉
We define the filtering operator formally as follows:

S© ∈ P(A) ×A ω → A ω(7)

B S© 〈〉 def= 〈〉

B S© (〈e〉� s) def=

{
〈e〉� B S© s if e ∈ B

B S© s if e
∈ B

For an infinite sequence s we need the additional constraint:

(B ∩ rng.s) = ∅ ⇒ B S© s = 〈〉
14

We overload S© to filtering elements from sets of sequences as follows:

S© ∈ P(A) × P(A ω) → P(A ω)

B S©S
def= {B S© s | s ∈ S}

We also need a projection operator Πi.s that returns the ith element of an n-tuple s
understood as a sequence of length n. We define the projection operator formally as:

Π . ∈ {1 . . . n} ×An → A

[] ∈ A ω ×N+ → A

The projection operator is overloaded to sets of index values as follows.

Π . ∈ P({1 . . . n}) \ ∅ ×An →
⋃

1≤k≤n
Ak

ΠI .s
def= s′

where ∀j ∈ I : Πj .s = Π#{i∈I | i≤j}.s′ ∧ #s′ = #I

For example we have that:

Π{1,2}.〈p, q, r〉 = 〈p, q〉

For a sequence of tuples s, ΠI .s denotes the sequence of k-tuples obtained from s, by
projecting each element in s with respect to the index values in I. For example we have
that

Π{1,2}.〈〈a, r, p〉, 〈b, r, p〉〉 = 〈Π{1,2}.〈a, r, p〉〉� 〈Π{1,2}.〈b, r, p〉〉 = 〈〈a, r〉, 〈b, r〉〉

We define the projection operator on a sequence of n-tuples formally as follows:

Π . ∈ P({1 . . . n}) \ ∅ × (An) ω →
⋃

1≤k≤n
(Ak) ω

ΠI .s
def= s′

where

∀j ∈ {1 . . .#s} : ΠI .s[j] = s′[j] ∧ #s = #s′

If we want to restrict the view of a sequence of events to only the signals of the events,
we may apply the projection operator twice, as follows:

Π1.(Π2.〈!〈a, r, p, 3〉, !〈b, r, p, 5〉〉) = 〈〈a〉, 〈b〉〉

Restricting a sequence of events, that is, pairs of kinds and messages, to the second
elements of the events yields a sequence of messages. Applying the projection operator
a second time with the subscript 1 yields a sequence of signals.

15

3.4. Traces
A trace t is a sequence of events that fulfils certain well-formedness constraints re-

flecting the behaviour of the informal model presented in Section 2. We use traces to
represent communication histories of components and their interfaces. Hence, the trans-
mitters and consumers in a trace are interfaces. We first formulate two constraints on
the timing of events in a trace. The first makes sure that events are ordered by time
while the second is needed to avoid Zeno-behaviour. Formally:

∀i, j ∈ [1..#t] : i < j ⇒ q.t[i] < q.t[j](8)
#t = ∞ ⇒ ∀k ∈ Q : ∃i ∈ N : q.t[i] > k(9)

For simplicity, we require that two events in a trace never have the same time-stamp. We
impose this requirement by assigning each interface a set of time-stamps disjoint from
the set of time-stamps assigned to every other interface. Every event of an interface is
assigned a unique time-stamp from the set of time-stamps assigned to the interface in
question.

The first constraint makes sure that events are totally ordered according to when they
take place. The second constraint states that time in an infinite trace always eventually
progress beyond any fixed point in time. This implies that time never halts and Zeno-
behaviour is therefore not possible. To lift the assumption that two events never happen
at the same time, we could replace the current notion of a trace as a sequence of events,
to a notion of a trace as a sequence of sets of events where the messages in each set have
the same time-stamp.

We also impose a constraint on the ordering of transmission and consumption events in
a trace t. According to the operational model a message can be transmitted without being
consumed, but it cannot be consumed without having been transmitted. Furthermore,
the consumption of messages transmitted to the same party must happen in the same
order as transmission. However, since a trace may include consumption events with
external transmitters, we can constrain only the consumption of a message from a party
which is itself active in the trace. That is, the ordering requirements on t only apply to the
communication between the internal parties. This motivates the following formalisation
of the ordering constraint:

let N = {n ∈ P | rng.t ∩ En
= ∅}(10)
in ∀n,m ∈ N :

let i = ({?} × (S × n×m×Q)) S© t

o = ({!} × (S × n×m×Q)) S© t

in Π{1,2,3}.(Π{2}.i) � Π{1,2,3}.(Π{2}.o) ∧ ∀j ∈ {1..#i} : q.o[j] < q.i[j]

The first conjunct of constraint (10) requires that the sequence of consumed messages
sent from an internal party n to another internal party m, is a prefix of the sequence
of transmitted messages from n to m, when disregarding time. We abstract away the
timing of events in a trace by applying the projection operator twice. Thus, we ensure
that messages communicated between internal parties are consumed in the order they are
transmitted. The second conjunct of constraint 10 ensures that for any single message,
transmission happens before consumption when both the transmitter and consumer are
internal. We let H denote the set of all traces t that are well-formed with regard to
constraints (8), (9) and (10).

16

3.5. Probabilistic processes
As explained in Section 2.4, we understand the behaviour of an interface as a proba-

bilistic process. The basic mathematical object for representing probabilistic processes is
a probability space [14, 47]. A probability space is a triple (Ω,F , f), where Ω is a sample
space, that is, a non-empty set of possible outcomes, F is a non-empty set of subsets of
Ω, and f is a function from F to [0, 1] that assigns a probability to each element in F .

The set F , and the function f have to fulfil the following constraints: The set F must
be a σ-field over Ω, that is, F must be not be empty, it must contain Ω and be closed
under complement3 and countable union. The function f must be a probability measure
on F , that is, a function from F to [0, 1] such that f(∅) = 0, f(Ω) = 1, and for every
sequence ω of disjoint sets in F , the following holds: f(

⋃#ω
i=1 ω[i]) =

∑#ω
i=1 f(ω[i]) [12].

The last property is referred to as countably additive, or σ-additive.
We represent a probabilistic execution H by a probability space with the set of traces

of H as its sample space. If the set of possible traces in an execution is infinite, the
probability of a single trace may be zero. To obtain the probability that a certain
sequence of events occurs up to a particular point in time, we can look at the probability
of the set of all extensions of that sequence in a given trace set. Thus, instead of talking
of the probability of a single trace, we are concerned with the probability of a set of traces
with common prefix, called a cone. By c(t,D) we denote the set of all continuations of t
in D. For example we have that

c(〈a〉, {〈a, a, b, b〉, 〈a, a, c, c〉}) = {〈a, a, b, b〉, 〈a, a, c, c〉}
c(〈a, a, b〉, {〈a, a, b, b〉, 〈a, a, c, c〉}) = {〈a, a, b, b〉}

c(〈b〉, {〈a, a, b, b〉, 〈a, a, c, c〉}) = ∅
We define the cone of a finite trace t in a trace set D formally as:

Definition 3.1 (Cone). Let D be a set of traces. The cone of a finite trace t, with
regard to D, is the set of all traces in D with t as a prefix:

c ∈ H × P(H) → P(H)

c(t,D) def= {t′ ∈ D | t � t′}
We define the cone set with regard to a set of traces as:

Definition 3.2 (Cone set). The cone set of a set of traces D consists of the cones with
regard to D of each finite trace that is a prefix of a trace in D:

C ∈ P(H) → P(P(H))

C(D) def= {c(t,D) |#t ∈ N ∧ ∃t′ ∈ D : t � t′}
We understand each trace in the trace set representing a probabilistic process H as a
complete history of H . We therefore want to be able to distinguish the state where an
execution stops after a given sequence and the state where an execution may continue
with different alternatives after the sequence. We say that a finite trace t is complete
with regard to a set of traces D if t ∈ D. Let D be a set of set of traces. We define the
complete extension of the cone set of D as follows:

3Note that this is the relative complement with respect to Ω, that is if A ∈ F , then Ω \A ∈ F .

17

Definition 3.3 (Complete extended cone set). The complete extended cone set of
a set of traces D is the union of the cone set of D and the set of singleton sets containing
the finite traces in D:

CE ∈ P(H) → P(P(H))

CE(D) def= C(D) ∪ {{t} ⊆ D |#t ∈ N}

We define a probabilistic execution H formally as:

Definition 3.4 (Probabilistic execution). A probabilistic execution H is a probabil-
ity space:

P(H) × P(P(H)) × (P(H) → [0, 1])

whose elements we refer to as DH , FH and fH where DH is the set of traces of H,
FH is the σ-field generated by CE(DH), that is the intersection of all σ-fields including
CE(DH), called the cone-σ-field of DH , and fH is a probability measure on FH .

If DH is countable then P(DH) (the power set of DH) is the largest σ-field that can be
generated fromDH and it is common to define FH as P(DH). If DH is uncountable, then,
assuming the continuum hypothesis, which states that there is no set whose cardinality is
strictly between that of the integers and that of the real numbers, the cardinality of DH

equals the cardinality of the real numbers, and hence of [0, 1]. This implies that there
are subsets of P(DH) which are not measurable, and FH is therefore usually a proper
subset of P(DH) [9]. A simple example of a process with uncountable sample space, is
the process that throws a fair coin an infinite number of times [37, 10]. Each execution
of this process can be represented by an infinite sequence of zeroes and ones, where 0
represents “head” and 1 represents “tail”. The set of infinite sequences of zeroes and
ones is uncountable, which can be shown by a diagonalisation argument [5].

3.6. Probabilistic interface execution
We define the set of traces of an interface n as any well-formed trace consisting solely

of events where n is the active party. Formally:

Hn
def= H∩ En ω

We define the behavioural representation of an interface n as a function of its queue
history. A queue history of an interface n is a well-formed trace consisting solely of
transmission events

〈!m1, . . . , !mk〉

with n as consumer. That a queue history is well formed implies that the events in the
queue history are totally ordered by time. We let Bn denote the set of queue histories of
an interface n. Formally:

Bn def= H∩ E�

n
ω

18

A queue history serves as a scheduler for an interface, thereby uniquely determining
its behaviour [44, 7]. Hence, a queue history gives rise to a probabilistic execution of
an interface. That is, the probabilistic behaviour of an interface n is represented by a
function of complete queue histories for n. A complete queue history for an interface
n records the messages transmitted to n for the whole execution of n, as opposed to a
partial queue history that records the messages transmitted to n until some (finite) point
in time. We define a probabilistic interface execution formally as:

Definition 3.5 (Probabilistic interface execution). A probabilistic execution of an
interface n is a function that for every complete queue history of n returns a probabilistic
execution:

In ∈ Bn → P(Hn) × P(P(Hn)) × (P(Hn) → [0, 1])4

Hence, In(α) denotes the probabilistic execution of n given the complete queue history
α. We let Dn(α),Fn(α) and fn(α) denote the projections on the three elements of the
probabilistic execution of n given queue history α. I.e. In(α) = (Dn(α),Fn(α), fN (α)).

In Section 2 we described how an interface may choose to do nothing. In the denota-
tional trace semantics we represent doing nothing by the empty trace. Hence, given an
interface n and a complete queue history α, Dn(α) may consist of only the empty trace,
but it may never be empty.

3.6.1. Constraints on interface behaviour
The queue history of an interface represents the input to it from other interfaces.

In Section 2.4 we described informally our assumptions about how interfaces interact
through queues. In particular, we emphasised that an interface can only consume mes-
sages already in its queue, and the same message can be consumed only once. We also
assumed that an interface does not send messages to itself. Hence, we require that any
t ∈ Dn(α) fulfils the following constraints:

let i = ({?} ×M) S© t(11)
in Π{1,2}.(Π{2}.i) � Π{1,2}.(Π{2}.α) ∧ ∀j ∈ {1..#i} : q.α[j] < q.i[j]

∀j ∈ [1..#t] :k.t[j]
= co.t[j](12)

The first conjunct of constraint (11) states that the sequence of consumed messages in
t is a prefix of the messages in α, when disregarding time. Thus, we ensure that n only
consumes messages it has received in its queue and that they are consumed in the order
they arrived. The second conjunct of constraint (11) ensures that messages are only
consumed from the queue after they have arrived and with a non-zero delay. Constraint
(12) ensures that an interface does not send messages to itself.

A complete queue history of an interface uniquely determines its behaviour. However,
we are only interested in capturing time causal behaviour in the sense that the behaviour
of an interface at a given point in time should depend only on its input up to and
including that point in time and be independent of the content of its queue at any later
point.

4Note that the type of In ensures that for any α ∈ Bn : rng.α ∩ ev .Dn(α) = ∅
19

In order to formalise this constraint, we first define an operator for truncating a trace
at a certain point in time. By t↓k we denote the timed truncation of t, that is, the prefix
of t including all events in t with a time-stamp lower than or equal to k. For example
we have that:

〈?〈c, q, r, 1〉, !〈a, r, p, 3〉, !〈b, r, p, 5〉〉↓4 =〈?〈c, q, r, 1〉, !〈a, r, p, 3〉〉
〈?〈c, q, r, 1〉, !〈a, r, p, 3〉, !〈b, r, p, 5〉〉↓8 =〈?〈c, q, r, 1〉, !〈a, r, p, 3〉, !〈b, r, p, 5〉〉

〈?〈c, q, r, 1
2 〉, !〈a, r, p, 3

2 〉, !〈b, r, p, 5
2 〉〉↓3

2
=〈?〈c, q, r, 1

2 〉, !〈a, r, p, 3
2 〉〉

The function ↓ is defined formally as follows:

↓ ∈ H ×Q → H(13)

t↓k def=

⎧⎪⎨
⎪⎩
〈〉 if t = 〈〉 ∨ q.t[1] > k

r otherwise where r � t ∧ q.r[#r] ≤ k

∧ (#r < #t⇒ q.t[#r + 1] > k)

We overload the timed truncation operator to sets of traces as follows:

↓ ∈ P(H) ×Q → P(H)

S↓k def= {t↓k | t ∈ S}

We may then formalise the time causality as follows:

∀α, β ∈ Bn : ∀q ∈ Q :α↓q = β↓q ⇒ (Dn(α)↓q = Dn(β)↓q)∧
((∀t1 ∈ Dn(α) : ∀t2 ∈ Dn(β)) : t1↓q = t2↓q) ⇒

(fn(α)(c(t1↓q, Dn(α))) = fn(β)(c(t2↓q, Dn(β))))

The first conjunct states that for all queue histories α, β of an interface n, and for all
points in time q, if α and β are equal until time q, then the trace sets Dn(α) and Dn(β)
are also equal until time q. The second conjunct states that if α and β are equal until
time q, and we have two traces in Dn(α) and Dn(β) that are equal until time q, then
the likelihoods of the cones of the two traces truncated at time q in their respective trace
sets are equal. Thus, the constraint ensures that the behaviour of an interface at a given
point in time depends on its queue history up to and including that point in time, and
is independent of the content of its queue history at any later point.

4. Denotational representation of an interface with a notion of risk

Having introduced the underlying semantic model, the next step is to extend it with
concepts from risk analysis according to the conceptual model in Figure 3. As already
explained, the purpose of extending the semantic model with risk analysis concepts is to
represent risks as an integrated part of interface and component behaviour.

20

4.1. Assets
An asset is a physical or conceptual entity which is of value for a stakeholder, that

is, for an interface (see Section 2.1) and which the stakeholder wants to protect. We let
A denote the set of all assets and An denote the set of assets of interface n. Note that
An may be empty. We require:

∀n, n′ ∈ P :n
= n′ ⇒ An ∩ An′ = ∅(14)

Hence, assets are not shared between interfaces.

4.2. Incidents and consequences
As explained in Section 2.3 an incident is an event that reduces the value of one

or more assets. This is a general notion of incident, and of course, an asset may be
harmed in different ways, depending on the type of asset. Some examples are reception of
corrupted data, transmission of classified data to an unauthorised user, or slow response
to a request. We provide a formal model for representing events that harm assets. For
a discussion of how to obtain further risk analysis results for components, such as the
cause of an unwanted incident, its consequence and probability we refer to [2].

In order to represent incidents formally we need a way to measure harm inflicted upon
an asset by an event. We represent the consequence of an incident by a positive integer
indicating its level of seriousness with regard to the asset in question. For example, if
the reception of corrupted data is considered to be more serious for a given asset than
the transmission of classified data to an unauthorised user, the former has a greater
consequence than the latter with regard to this asset. We introduce a function

cvn ∈ En ×An → N(15)

that for an event e and asset a of an interface n, yields the consequence of e to a if e is
an incident, and 0 otherwise. Hence, an event with consequence larger than zero for a
given asset is an incident with regard to that asset. Note that the same event may be an
incident with respect to more than one asset; moreover, an event that is not an incident
with respect to one asset, may be an incident with respect to another.

4.3. Incident probability
The probability that an incident e occurs during an execution corresponds to the

probability of the set of traces in which e occurs. Since the events in each trace are
totally ordered by time, and all events include a time-stamp, each event in a trace is
unique. This means that a given incident occurs only once in each trace.

We can express the set describing the occurrence of an incident e, in a probabilistic
execution H , as occ(e,DH) where the function occ is formally defined as follows:

occ ∈ E × P(H) → P(H)(16)

occ(e,D) def= {t ∈ D | e ∈ rng.t}
The set occ(e,DH) corresponds to the union of all cones c(t,DH) where e occurs in t (see
Section 3.5). Any union of cones can be described as a disjoint set of cones [43]. As de-
scribed in Section 3, we assume that an interface is assigned at most a countable number

21

of signals and we assume that time-stamps are rational numbers. Hence, it follows that
an interface has a countable number of events. Since the set of finite sequences formed
from a countable set is countable [25], the union of cones where e occurs in t is countable.
Since by definition, the cone-σ-field of an execution H , is closed under countable union,
the occurrence of an incident can be represented as a countable union of disjoint cones,
that is, it is an element in the cone-σ-field of H and thereby has a measure.

4.4. Risk function
The risk function of an interface n takes a consequence, a probability and an asset

as arguments and yields a risk value represented by a positive integer. Formally:

rfn ∈ N × [0, 1]×An → N(17)

The risk value associated with an incident e in an execution H , with regard to an asset
a, depends on the probability of e in H and its consequence value. We require that

rfn (c, p, a) = 0 ⇔ c = 0 ∨ p = 0

Hence, only incidents have a positive risk value, and any incident has a positive risk
value.

4.5. Interface with a notion of risk
Putting everything together we end up with the following representation of an inter-

face:

Definition 4.1 (Semantics of an interface). An interface n is represented by a quadru-
ple

(In,An, cvn , rfn)

consisting of its probabilistic interface execution, assets, consequence function and risk
function as explained above.

Given such a quadruple we have the necessary means to calculate the risks associated
with an interface for a given queue history. A risk is a pair of an incident and its risk
value. Hence, for the queue history α ∈ Bn and asset a ∈ An the associated risks are

{rv | rv = rfn(cv (e, a), fn(occ(e,Dn(α))), a) ∧ rv > 0 ∧ e ∈ En}

5. Denotational representation of component behaviour

A component is a collection of interfaces, some of which may interact. We may
view a single interface as a basic component. A composite component is a component
containing at least two interfaces (or basic components). In this section we lift the notion
of probabilistic execution from interfaces to components. Furthermore, we explain how
we obtain the behaviour of a component from the behaviours of its sub-components. In
this section we do not consider the issue of hiding; this is the topic of Section 7.

22

In Section 5.1 we introduce the notion of conditional probability measure, conditional
probabilistic execution and probabilistic component execution. In Section 5.2 we charac-
terise the trace set of a composite component from the trace sets of its sub-components.
The cone-σ-field of a probabilistic component execution is generated straightforwardly
from that. In Section 5.3 we explain how to define the conditional probability measure
for the cone-σ-field of a composite component from the conditional probability measures
of its sub-components. Finally, in Section 5.4, we define a probabilistic component exe-
cution of a composite component in terms of the probabilistic component executions of
its sub-components. We sketch the proof strategies for the lemmas and theorems in this
section and refer to Appendix B for the full proofs.

5.1. Probabilistic component execution
The behaviour of a component is completely determined by the set of interfaces it

consists of. We identify a component by the set of names of its interfaces. Hence, the
behaviour of the component {n} consisting of only one interface n, is identical to the
behaviour of the interface n. For any set of interfaces N we define:

EN def=
⋃
n∈N

En(18)

E�

N
def=

⋃
n∈N

E�

n(19)

HN
def= H ∩ EN ω(20)

BN def= H ∩ E�

N
ω(21)

Just as for interfaces, we define the behavioural representation of a component N as a
function of its queue history. For a single interface a queue history α resolves the external
nondeterminism caused by the environment. Since we assume that an interface does not
send messages to itself there is no internal non-determinism to resolve. The function
representing an interface returns a probabilistic execution which is a probability space.
Given an interface n it follows from the definition of a probabilistic execution, that for
any queue history α ∈ Bn, we have fn(α)(Dn(α)) = 1.

For a component N consisting of two or more sub-components, a queue history α
must resolve both external and internal non-determinism. For a given queue history α
the behaviour of N , is obtained from the behaviours of the sub-components of N that are
possible with regard to α. That is, all internal choices concerning interactions between
the sub-components of N are fixed by α. This means that the probability of the set of
traces of N given a queue history α may be lower than 1, violating the requirement of
a probability measure. In order to formally represent the behaviour of a component we
therefore introduce the notion of a conditional probability measure.

Definition 5.1 (Conditional probability measure). Let D be a non-empty set and
F be a σ-field over D. A conditional probability measure f on F is a function that
assigns a value in [0, 1] to each element of F such that; either f(A) = 0 for all A in F ,
or there exists a constant c ∈ 〈0, 1]5 such that the function f ′ defined by f ′(A) = f(A)/c
is a probability measure on F .

5We use 〈a, b〉 to denote the open interval {x | a < x < b}.
23

We define a conditional probabilistic execution H formally as:

Definition 5.2 (Conditional probabilistic execution). A conditional probabilistic ex-
ecution H is a measure space [14]:

P(H) × P(P(H)) × (P(H) → [0, 1])

whose elements we refer to as DH , FH and fH where DH is the set of traces of H, FH
is the cone-σ-field of DH , and fH is a conditional probability measure on FH.

We define a probabilistic component execution formally as:

Definition 5.3 (Probabilistic component execution). A probabilistic execution of
a component N is a function IN that for every complete queue history of N returns a
conditional probabilistic execution:

IN ∈ BN → P(HN) × P(P(HN)) × (P(HN) → [0, 1])

Hence, IN (α) denotes the probabilistic execution of N given the complete queue history
α. We let DN (α),FN (α) and fN (α) denote the canonical projections of the probabilistic
component execution on its elements.

5.2. Trace sets of a composite component
For a given queue history α, the combined trace sets DN1(E�

N1
S©α) and DN2(E�

N2
S©α)

such that all the transmission events from N1 to N2 are in α and the other way around,
constitute the legal set of traces of the composition ofN1 andN2. Given two probabilistic
component executions IN1 and IN2 such that N1∩N2 = ∅, for each α ∈ BN1∪N2 we define
their composite trace set formally as:

DN1 ⊗DN2 ∈ BN1∪N2 → P(HN1∪N2)(22)

DN1 ⊗DN2(α) def=

{t ∈ HN1∪N2|EN1
S© t ∈ DN1(E�

N1
S©α) ∧ EN2

S© t ∈ DN2(E�

N2
S©α)∧

({!} × S ×N2 ×N1 ×Q) S© t � ({!} × S ×N2 ×N1 ×Q) S©α∧
({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α}

The definition ensures that the messages from N2 consumed by N1 are in the queue his-
tory of N1 and vice versa. The operator ⊗ is obviously commutative and also associative
since the sets of interfaces of each component are disjoint.

For each α ∈ BN1∪N2 the cone-σ-field is generated as before. Hence, we define the
cone-σ-field of a composite component as follows:

FN1 ⊗FN2(α) def= σ(CE(DN1 ⊗DN2(α)))(23)

where σ(D) denotes the σ-field generated by the set D. We refer to CE(DN1 ⊗DN2(α))
as the composite extended cone set of N1 ∪N2.

24

5.3. Conditional probability measure of a composite component
Consider two components C and O such that C ∩O = ∅. As described in Section 2,

it is possible to decompose a probabilistic choice over actions in such a way that it
never involves more than one interface. We may therefore assume that for a given
queue history α ∈ BC∪O the behaviour represented by DC(E�

C
S©α) is independent of

the behaviour represented by DO(E�

O
S©α). Given this assumption the probability of a

certain behaviour of the composed component equals the product of the probabilities of
the corresponding behaviours of C and O, by the law of statistical independence. As
explained in Section 3.5, to obtain the probability that a certain sequence of events t
occurs up to a particular point in time in a set of traces D, we can look at the cone of t
in D. For a given cone c ∈ CE(DC ⊗DO(α)) we obtain the corresponding behaviours of
C and O by filtering c on the events of C and O, respectively.

The above observation with regard to cones does not necessarily hold for all ele-
ments of FC ⊗ FO(α). The following simple example illustrates that the probability of
an element in FC ⊗ FO(α), which is not a cone, is not necessarily the product of the
corresponding elements in FC(E�

C
S©α) and FO(E�

O
S©α). Assume that the component C

tosses a fair coin and that the component O tosses an Othello piece (a disk with a light
and a dark face). We assign the singleton time-stamp set {1} to C and the singleton
time-stamp set {2} to O. Hence, the traces of each may only contain one event. For
the purpose of readability we represent in the following the events by their signals. The
assigned time-stamps ensure that the coin toss represented by the events {h, t} comes
before the Othello piece toss. We have:

DC(〈〉) = {〈h〉, 〈t〉}
FC(〈〉) = {∅, {〈h〉}, {〈t〉}, {〈h〉, 〈t〉}}

fC(〈〉)({〈h〉}) = 0.5
fC(〈〉)({〈t〉}) = 0.5

and
DO(〈〉) = {〈b〉, 〈w〉}
FO(〈〉) = {∅, {〈b〉}, {〈w〉}, {〈b〉, 〈w〉}}

fO(〈〉)({〈b〉}) = 0.5
fO(〈〉)({〈w〉}) = 0.5

Let DCO = DC ⊗DO. The components interacts only with the environment, not with
each other. We have:

DCO(〈〉) = {〈h, b〉, 〈h,w〉, 〈t, b〉, 〈t, w〉}
We assume that each element in the sample space (trace set) of the composite component
has the same probability. Since the sample space is finite, the probabilities are given by
discrete uniform distribution, that is each trace in DCO(〈〉) has a probability of 0.25.
Since the traces are mutually exclusive, it follows by the laws of probability that the
probability of {〈h, b〉} ∪ {〈t, w〉} is the sum of the probabilities of {〈h, b〉} and {〈t, w〉},
that is 0.5. But this is not the same as fC(〈〉)({〈h〉, 〈t〉}) · fO(〈〉)({〈b〉, 〈w〉})6, which is 1.

6We use · to denote normal multiplication.

25

Since there is no internal communication between C and O, there is no internal
non-determinism to be resolved. If we replace the component O with the component R,
which simply consumes whatever C transmits, a complete queue history of the composite
component reflects only one possible interaction between C and R. Let DCR = DC⊗DR.
To make visible the compatibility between the trace set and the queue history we include
the whole events in the trace sets of the composite component. We have:

DCR(〈!〈h,C,R, 1〉〉) ={〈!〈h,C,R, 1〉, ?〈h,C,R, 2〉〉}
DCR(〈!〈t, C,R, 1〉〉) ={〈!〈t, C,R, 1〉, ?〈t, C,R, 2〉〉}

For a given queue history α, the set EC S©DCR(α) is a subset of the trace set DC(E�

C
S©α)

that is possible with regard to α (that EC S©DCR(α) is a subset of DC(E�

C
S©α) follows

from Lemma B.21 which is shown in Appendix B). We call the set of traces of C that
are possible with regard to a given queue history α and component R for CTC−R(α),
which is short for conditional traces.

Given two components N1 and N2 and a complete queue history α ∈ BN1∪N2 , we
define the set of conditional traces of N1 with regard to α and N2 formally as:

CTN1−N2(α) def=
{
t ∈ DN1(E�

N1
S©α) | ({!} × S ×N1 ×N2 ×Q) S© t �(24)

({!} × S ×N1 ×N2 ×Q) S©α
}

Lemma 5.4. Let IN1 and IN2 be two probabilistic component executions such that N1∩
N2 = ∅ and let α be a queue history in BN1∪N2 . Then

CTN1−N2(α) ∈ FN1(E�

N1
S©α) ∧CTN2−N1(α) ∈ FN2(E�

N2
S©α)

Proof sketch: The set CTN1−N2(α) includes all traces in DN1(E�

N1
S©α) that are

compatible with α, i.e., traces that are prefixes of α when filtered on the transmission
events from N1 to N2. The key is to show that this set can be constructed as an element
in FN1(E�

N1
S©α). If α is infinite, this set corresponds to the union of (1) all finite traces

in DN1(E�

N1
S©α) that are compatible with α and (2) the set obtained by constructing

countable unions of cones of traces that are compatible with finite prefixes of α|i for all
i ∈ N (where α|i denotes the prefix of α of length i) and then construct the countable
intersection of all such countable unions of cones. If α is finite the proof is simpler, and
we do not got into the details here. The same procedure may be followed to show that
CTN2−N1(α) ∈ FN2(E�

N2
S©α).

As illustrated by the example above, we cannot obtain a measure on a composite
cone-σ-field in the same manner as for a composite extended cone set. In order to define
a conditional probability measure on a composite cone-σ-field, we first define a measure
on the composite extended cone set it is generated from. We then show that this measure
can be uniquely extended to a conditional probability measure on the generated cone-σ-
field. Given two probabilistic component executions IN1 and IN2 such that N1 ∩N2 = ∅,
for each α ∈ BN1∪N2 we define a measure μN1 ⊗ μN2(α) on CE(DN1 ⊗DN2(α)) formally
as follows:

μN1 ⊗ μN2 ∈ BN1∪N2 → (CE(DN1 ⊗DN2(α)) → [0, 1])(25)

μN1 ⊗ μN2(α)(c) def= fN1(E�

N1
S©α)(EN1

S© c) · fN2(E�

N2
S©α)(EN2

S© c)

26

Theorem 5.5. The function μN1 ⊗ μN2(α) is well defined.

Proof sketch: For any c ∈ CE(DN1 ⊗ DN2(α)) we must show that (EN1
S© c) ∈

FN1(E�

N1
S©α) and (EN2

S© c) ∈ FN2(E�

N2
S©α). If c is a singleton (containing exactly one

trace) the proof follows from the fact that (1): if (D,F , f) is a conditional probabilis-
tic execution and t is a trace in D, then {t} ∈ F [37], and (2): that we can show
EN1

S© t ∈ DN1(E�

N1
S©α)∧EN2

S© t ∈ DN2(E�

N2
S©α) from Definition 3.3 and definition (22).

If c is a cone c(t,DN1 ⊗DN2(α)) in C(DN1 ⊗DN2(α)), we show that CTN1−N2(α),
intersected with c(EN1

S© t,DN1(E�

N1
S©α)) and the traces in DN1(E�

N1
S©α) that are com-

patible with t with regard to the timing of events, is an element of FN1(E�

N1
S©α) that

equals (EN1
S© c). We follow the same procedure to show that (EN2

S© c) ∈ FN2(E�

N2
S©α).

Lemma 5.6. Let IN1 and IN2 be two probabilistic component executions such that N1 ∩
N2 = ∅ and let μN1 ⊗ μN2 be a measure on the extended cones set of DN1 ⊗DN2 as
defined by (25). Then, for all complete queue histories α ∈ BN1∪N2

1. μN1 ⊗ μN2(α)(∅) = 0

2. μN1 ⊗ μN2(α) is σ-additive

3. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) ≤ 1

Proof sketch: We sketch the proof strategy for point 2 of Lemma 5.6. The proofs
of point 1 and 3 are simpler, and we do not go into the details here. Assume φ is a
sequence of disjoint sets in CE(DN1 ⊗DN2(α)). We construct a sequence ψ of length #φ
such that ∀i ∈ [1..#φ] :ψ[i] = {(EN1

S© t, EN2
S© t) | t ∈ φ[i]} and show that

⋃#ψ
i=1 ψ[i] =

EN1
S©

⋃#φ
i=1 φ[i] × EN2

S©
⋃#φ
i=1 φ[i]. It follows by Theorem 5.5 that (EN1

S©
⋃#φ
i=1 φ[i]) ×

(EN2
S©

⋃#φ
i=1 φ[i]) is a measurable rectangle [14] in FN1(E�

N1
S©α) × FN2(E�

N2
S©α). From

the above, and the product measure theorem [14] it can be shown that fN1(E�

N1
S©α)(EN1

S©⋃#φ
i=1 φ[i]) · fN2(E�

N2
S©α)(EN2

S©
⋃#φ
i=1 φ[i]) =

∑#φ
i=1 fN1(E�

N1
S©α)(EN1

S©φ[i]) · fN2(E�

N2
S©α)

(EN2
S©φ[i]).

Theorem 5.7. There exists a unique extension of μN1⊗μN2(α) to the cone-σ-field FN1⊗
FN2(α).

Proof sketch: We extend CE(DN1⊗DN2(α)) in a stepwise manner to a set obtained by
first adding all complements of the elements in CE(DN1⊗DN2(α)), then adding the finite
intersections of the new elements and finally adding finite unions of disjoint elements.
For each step we extend μN1 ⊗μN2(α) and show that the extension is σ-additive. We end
up with a finite measure on the field generated by CE(DN1 ⊗DN2(α)). By the extension
theorem [14] it follows that this measure can be uniquely extended to a measure on
FN1 ⊗FN2(α).

Corollary 5.8. Let fN1 ⊗ fN2(α) be the unique extension of μN1 ⊗ μN2(α) to the cone-
σ-field FN1 ⊗FN2(α). Then fN1 ⊗ fN2(α) is a conditional probability measure on FN1 ⊗
FN2(α).

Proof sketch: We first show that fN1⊗fN2(α)(DN1⊗DN2(α)) ≤ 1. When fN1⊗fN2(α)
is a measure on FN1 ⊗FN2(α) such that fN1 ⊗ fN2(α)(DN1 ⊗DN2(α)) ≤ 1 we can show
that fN1 ⊗ fN2(α) is a conditional probability measure on FN1 ⊗FN2(α).

27

5.4. Composition of probabilistic component executions
We may now lift the ⊗-operator to probabilistic component executions. Let IN1 and

IN2 be probabilistic component executions such that N1 ∩N2 = ∅. For any α ∈ BN1∪N2

we define:

IN1 ⊗ IN2(α) def= (DN1 ⊗DN2(α),FN1 ⊗FN2(α), fN1 ⊗ fN2(α))(26)

where fN1⊗fN2(α) is defined to be the unique extension of μN1⊗μN2(α) to FN1⊗FN2(α).

Theorem 5.9. IN1 ⊗ IN2 is a probabilistic component execution of N1 ∪N2.

Proof sketch: This can be shown from definitions (22) and (23) and Corollary 5.8.

6. Denotational representation of a component with a notion of risk

For any disjoint set of interfaces N we define:

AN
def=

⋃
n∈N

An

cvN
def=

⋃
n∈N

cvn

rfN
def=

⋃
n∈N

rfn

The reason why we can take the union of functions with disjoint domains is that we un-
derstand a function as a set of maplets. A maplet is a pair of two elements corresponding
to the argument and the result of a function. For example the following set of three
maplets

{(e1 �→ f(e1)), (e2 �→ f(e2)), (e2 �→ f(e2))}
characterises the function f ∈ {e1, e2, e3} → S uniquely. The arrow �→ indicates that the
function yields the element to the right when applied to the element to the left [3].

We define the semantic representation of a component analogous to that of an inter-
face, except that we now have a set of interfaces N , instead of a single interface n:

Definition 6.1 (Semantics of a component). A component is represented by a quadru-
ple

(IN , AN , cvN , rfN)

consisting of its probabilistic component execution, its assets, consequence function and
risk function, as explained above.

We define composition of components formally as:

Definition 6.2 (Composition of components). Given two components N1 and N2

such that N1 ∩N2 = ∅. We define their composition N1 ⊗N2 by

(IN1 ⊗ IN2 , AN1 ∪AN2 , cvN1 ∪ cvN2 , rfN1 ∪ rfN2)

28

7. Hiding

In this section we explain how to formally represent hiding in a denotational semantics
with risk. As explained in Section 2.5 we must take care not to hide incidents that affect
assets belonging to externally observable interfaces, when we hide internal interactions.
An interface is externally observable if it interacts with interfaces in the environment.
We define operators for hiding assets and interface names from a component name and
from the semantic representation of a component. The operators are defined in such a
way that partial hiding of internal interaction is allowed. Thus internal events that affect
assets belonging to externally observable interfaces may remain observable after hiding.
Note that hiding of assets and interface names is optional. The operators defined below
simply makes it possible to hide e.g. all assets belonging to a certain interface n, as well
as all events in an execution where n is the active party. We sketch the proof strategies
for the lemmas and theorems in this section and refer to Appendix B for the full proofs.

Until now we have identified a component by the set of names of its interfaces. This
has been possible because an interface is uniquely determined by its name, and the
operator for composition is both associative and commutative. Hence, until now it has
not mattered in which order the interfaces and resulting components have been composed.
When we in the following introduce two hiding operators this becomes however an issue.
For example, consider a component identified by

N
def= {c1, c2, c3}

Then we need to distinguish the component δc2 :N , obtained from N by hiding interface
c2, from the component

{c1, c3}.

To do that we build the hiding information into the name of a component obtained with
the use of hiding operators. A component name is from now one either

(a) a set of interface names,

(b) of the form δn :N where N is a component name and n is an interface name,

(c) of the form σa :N where N is a component name and a is an asset, or

(d) of the form N1 ++N2 where N1 and N2 are component names and at least one of N1

or N2 contains a hiding operator.

Since we now allow hiding operators in component names we need to take this into consid-
eration when combining them. We define a new operator for combining two component
names N1 and N2 as follows:

N1 �N2
def=

{
N1 ∪N2 if neither N1 nor N2 contain hiding operators
N1 ++N2 otherwise

(27)

By in(N) we denote the set of all hidden and not hidden interface names occurring in
the component name N . We generalise definitions (18) to (21) to component names with

29

hidden assets and interface names as follows:

Eσa :N
def= EN Eδn :N

def= Ein(N)\{n}(28)

E�

σa :N
def= E�

N E�

δn :N
def= E�

in(N)\{n}(29)

Hσa :N
def= H ∩ Eσa :N

ω Hδn :N
def= H∩ Eδn :N

ω(30)

Bσa :N
def= BN Bδn :N

def= ((Ein(N) \ E�

n) ∪ Ein(N)) S©BN(31)

Definition 7.1 (Hiding of interface in a probabilistic component execution). Given
an interface name n and a probabilistic component execution IN we define:

δn : IN (α) def= (Dδn :N (α),Fδn :N (α), fδn :N (α))

where Dδn :N (α) def= {Eδn :N S© t | t ∈ DN (δn :α)}
Fδn :N (α) def= σ(CE(Dδn :N (α))) i.e., the cone-σ-field of Dδn :N (α)

fδn :N(α)(c) def= fN (δn :α)
({t ∈ DN (δn :α) | Eδn :N S© t ∈ c})

δn :α def=
(
(Ein(N) \ E�

n) ∪ Ein(N)

)
S©α

When hiding an interface name n from a queue history α, as defined in the last line of
Definition 7.1, we filter away the external input to n but keep all internal transmissions,
including those sent to n. This is because we still need the information about the internal
interactions involving the hidden interface to compute the probability of interactions it
is involved in, after the interface is hidden from the outside.

Lemma 7.2. If IN is a probabilistic component execution and n is an interface name,
then δn : IN is a probabilistic component execution.

Proof sketch: We must show that: (1) Dδn :N (α) is a set of well-formed traces; (2)
Fδn:N (α) is the cone-σ-field of Dδn :N (α); and (3) fδn :N (α) is a conditional probabil-
ity measure on Fδn :N (α). (1) If a trace is well-formed it remains well-formed after
filtering away events with the hiding operator, since hiding interface names in a trace
does not affect the ordering of events. The proof of (2) follows straightforwardly from
Definition 7.1.

In order to show (3), we first show that fδn :N (α) is a measure on Fδn :N (α). In
order to show this, we first show that the function fδn :N is well defined. I.e., for
any c ∈ Fδn :N (α) we show that

{
t ∈ DN(δn :α) | Eδn :N S© t ∈ c

} ∈ FN(δn :α). We
then show that fN (δn :α)(∅) = 0 and that fN(δn :α) is σ-additive. Secondly, we show
that fδn :N (α)(Dδn :N (α)) ≤ 1. When fδn :N (α) is a measure on Fδn :N (α) such that
fδn :N (α)(Dδn :N(α)) ≤ 1 we can show that fδn :N (α) is a conditional probability mea-
sure on Fδn :N (α).

Definition 7.3 (Hiding of component asset). Given an asset a and a component

30

(IN , AN , cvN , rfN) we define:

σa :(IN , AN , cvN , rfN) def= (IN , σa :AN , σa : cvN , σa : rfN)

where σa :AN
def= AN \ {a}

σa : cvN
def= cvN \ {(e, a) �→ c | e ∈ E ∧ c ∈ N}

σa : rfN
def= rfN \ {(c, p, a) �→ r | c, r ∈ N ∧ p ∈ [0, 1]}

As explained in Section 6 we see a function as a set of maplets. Hence, the consequence
and risk function of a component with asset a hidden is the set-difference between the
original functions and the set of maplets that has a as one of the parameters of its first
element.

Theorem 7.4. If N is a component and a is an asset, then σa :N is a component.

Proof sketch: This can be shown from Definition 7.3 and Definition 6.1.
We generalise the operators for hiding interface names and assets to the hiding of sets

of interface names and sets of assets in the obvious manner.

Definition 7.5 (Hiding of component interface). Given an interface name n and
a component (IN , AN , cvN , rfN) we define:

δn :(IN , AN , cvN , rfN) def= (δn : IN , σAn :AN , σAn : cvN , σAn : rfN)

Theorem 7.6. If N is a component and n is an interface name, then δn :N is a com-
ponent.

Proof sketch: This can be show from Lemma 7.2 and Theorem 7.4.
Since, as we have shown above, components are closed under hiding of assets and

interface names, the operators for composition of components, defined in Section 5, are
not affected by the introduction of hiding operators. We impose the restriction that
two components can only be composed by ⊗ if their sets of interface names are disjoint,
independent of whether they are hidden or not.

8. Related work

In this section we place our work in relation to ongoing research within related areas
such as security modelling and approaches to representing probabilistic components. We
also relate our component model to a taxonomy of component models [28].

8.1. Security modelling
There are a number of proposals to integrate security requirements into the require-

ments specification, such as SecureUML and UMLsec. SecureUML [32] is a method
for modelling access control policies and their integration into model-driven software
development. SecureUML is based on role-based access control and specifies security
requirements for well-behaved applications in predictable environments. UMLsec [19]
is an extension to UML that enables the modelling of security-related features such as

31

confidentiality and access control. Neither of these two approaches have particular focus
on component-oriented specification.

Khan and Han [22] characterise security properties of composite systems, based on
a security characterisation framework for basic components [23, 20, 21]. They define a
compositional security contract CsC for two components, which is based on the compati-
bility between their required and ensured security properties. They also give a guideline
for constructing system level contracts, based on several CsCs. This approach has been
designed to capture security properties, while our focus is on integrating risks into the
semantic representation of components.

8.2. Probabilistic components
In order to model systems that are both reactive and probabilistic the external nonde-

terminism caused by the environment must be resolved. Our idea to use queue histories
to resolve the external nondeterminism of probabilistic components is inspired by the use
of schedulers, also known as adversaries, which is a common way to resolve external non-
determinism in reactive systems [8, 44, 7]. A scheduler specifies how to choose between
nondeterministic alternatives.

Segala and Lynch [44, 43] use a randomised scheduler to model input from an external
environment and resolve the nondeterminism of a probabilistic I/O automaton. They
define a probability space [9] for each probabilistic execution of an automaton, given a
scheduler.

Alfaro et al. [7] present a probabilistic model for variable-based systems with trace
semantics similar to that of Segala and Lynch. They define a trace as a sequence of states,
and a state as an assignment of values to a set of variables. Each component has a set of
controlled variables and a set of external variables. Alfaro et al. represent a system by a
set of probability distributions on traces, called bundles. They use schedulers to choose
the initial and updated values for variables. Unlike the model of Segala and Lynch, their
allows multiple schedulers to resolve the nondeterminism of each component. The key
idea is to have separate schedulers for the controlled and external variables to ensure
that variable behaviours are probabilistically independent. According to Alfaro et al.
this ensures so called deep compositionality of their system model.

In a system model with deep compositionality the semantics of a composite system can
be obtained from the semantics of its constituents. In contrast, shallow compositionality
provides the means to specify composite components syntactically [7]. The semantics of
a composite specification is obtained from the syntactic composite specification, but the
semantics of this composition is not directly related to that of its constituents.

Seidel uses a similar approach in her extension of CSP with probabilities [45]. Internal
nondeterministic choice is replaced by probabilistic choice. A process is represented by a
conditional probability measure that, given a trace produced by the environment, returns
a probability distribution over traces.

An alternative approach to handle external nondeterminism in probabilistic, reactive
systems is to treat the assignment of probabilities of alternative choices as a refinement.
This approach is used for example in probabilistic action systems [46, 52], where non-
deterministic choices are replaced by probabilistic choices. A nondeterministic action
system is transformed to a (deterministic) probabilistic system through the distribution
of probabilistic information over alternative behaviours.

32

Our decision to use a cone-based probability space to represent probabilistic systems
is inspired by the work on probabilistic I/O automata [44, 43] by Segala and Lynch and
probabilistic sequence diagrams (pSTAIRS) [38, 37] by Refsdal. Segala uses probability
spaces whose σ-fields are cone-σ-fields to represent fully probabilistic automata, that is,
automata with probabilistic choice but without non-determinism. In pSTAIRS [37] the
ideas of Segala and Lynch is applied to the trace-based semantics of STAIRS [15, 42, 41].
A probabilistic system is represented as a probability space where the σ-field is generated
from a set of cones of traces describing component interactions. In pSTAIRS all choices
(nondeterministic, mandatory and probabilistic) are global, that is, the different types
of choices may only be specified for closed systems, and there is no nondeterminism
stemming from external input.

Since we wish to represent the behaviour of a component independently of its environ-
ment we cannot use global choice operators of the type used in pSTAIRS. We build upon
the work of pSTAIRS and extend its probabilistic model to open, reactive components.
We define probabilistic choice at the level of individual component interfaces and use
queue histories to resolve external nondeterminism. Hence, we represent a probabilistic
component execution as a function of queue histories, instead of by a single probability
space.

8.3. Component models
Lau and Wang [28] have surveyed current component models and classified them

into a taxonomy based on commonly accepted criteria for successful component-based
development [28]. According to the criteria components should be pre-existing reusable
software units which developers can reuse to compose software for different applications.
Furthermore components should be composable into composite components which, in
turn, can be composed with (composite) components into even larger composites, and
so on. These criteria necessitate the use of a repository in the design phase. It must be
possible to deposit and retrieve composites from a repository, just like any components.

Lau and Wang [28] divide current component models into four categories based on
their facilities for composition during the various phases of a component life cycle. Ac-
cording to their evaluation, no current component model provides mechanisms for com-
position in all phases. They propose a component model with explicitly defined compo-
nent connectors, to ensure encapsulation of control, thereby facilitating compositionality
during all phases of development.

Our component model is purely semantic. It can be used to represent component
implementations. We have at this point not defined a syntax for specifying components.
The purpose of the presented component model is to form the necessary basis for building
applied tools and methods for component-based risk analysis. Current approaches to
specifying probabilistic components, discussed in Section 8.2, can be used as a basis for
a specification language needed in such a method.

9. Conclusion

We have presented a component model that integrates component risks as part of
the component behaviour. The component model is meant to serve as a formal basis
for component-based risk analysis. To ensure modularity of our component model we

33

represent a stakeholder by the component interface, and identify assets on behalf of com-
ponent interfaces. Thus we avoid referring to concepts that are external to a component
in the component model

In order to model the probabilistic aspect of risk, we represent the behaviour of a
component by a probability distribution over traces. We use queue histories to resolve
both internal and external non-determinism. The semantics of a component is the set of
probability spaces given all possible queue histories of the component.

We define composition in a fully compositional manner: The semantics of a composite
component is completely determined by the semantics of its constituents. Since we
integrate the notion of risk into component behaviour, we obtain the risks of a composite
component by composing the behavioural representations of its sub-components.

The component model provides a foundation for component-based risk analysis, by
conveying how risks manifests themselves in an underlying component implementation.
By component-based risk analysis we mean that risks are identified, analysed and docu-
mented at the component level, and that risk analysis results are composable.

Our semantic model is not tied to any specific syntax or specification technique.
At this point we have no compliance operator to check whether a given component
implementation complies with a component specification. In order to be able to check
that a component implementation fulfils a requirement to protection specification we
would like to define a compliance relation between specifications in STAIRS, or another
suitable specification language, and components represented in our semantic model.

We believe that a method for component-based risk analysis will facilitate the inte-
gration of risk analysis into component-based development, and thereby make it easier
to predict the effects on component risks caused by upgrading or substituting sub-parts.

Acknowledgements
The research presented in this report has been partly funded by the Research Council

of Norway through the research projects COMA 160317 (Component-oriented model-
based security analysis) and DIGIT 180052/S10 (Digital interoperability with trust), and
partly by the EU 7th Research Framework Programme through the Network of Excellence
on Engineering Secure Future Internet Software Services and Systems (NESSoS).

We would like to thank Bjarte M. Østvold for creating lpchk: a proof analyser for
proofs written in Lamport’s style [27] that checks consistency of step labelling and per-
forms parentheses matching, and also for proof reading and useful comments.

References

[1] V. I. Bogachev. Measure theory, volume 1. Springer, 2007.
[2] G. Brændeland and K. Stølen. Using model-driven risk analysis in component-based development.

In Dependability and Computer Engineering: Concepts for Software-Intensive Systems. IGI Global,
2011.

[3] M. Broy and K. Stølen. Specification and development of interactive systems – Focus on streams,
interfaces and refinement. Monographs in computer science. Springer, 2001.

[4] J. Cheesman and J. Daniels. UML Components. A simple process for specifying component-based
software. Component software series. Addison-Wesley, 2001.

[5] R. Courant and H. Robbins. What Is Mathematics? An Elementary Approach to Ideas and Meth-
ods. Oxford University Press, 1996.

[6] I. Crnkovic and M. Larsson. Building reliable component-based software systems. Artech-House,
2002.

34

[7] L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for probabilistic systems. In
CONCUR ’01: Proceedings of the 12th International Conference on Concurrency Theory, pages
351–365. Springer-Verlag, 2001.

[8] C. Derman. Finite state Markovian decision process, volume 67 of Mathematics in science and
engineering. Academic Press, 1970.

[9] R. M. Dudley. Real analysis and probability. Cambridge studies in advanced mathematics. Cam-
bridge, 2002.

[10] Probability theory. Encyclopædia Britannica Online, 2009.
[11] D. G. Firesmith. Engineering safety and security related requirements for software intensive systems.

International Conference on Software Engineering Companion, 0:169, 2007.
[12] G. B. Folland. Real Analysis: Modern Techniques and Their Applications. Pure and Applied

Mathematics. John Wiley and Sons Ltd (USA), 2nd edition, 1999.
[13] P. Halmos and S. Givant. Introduction to Boolean Algebras, chapter Infinite operations, pages

45–52. Undergraduate Texts in Mathematics. Springer, 2009.
[14] P. R. Halmos. Measure Theory. Springer-Verlag, 1950.
[15] Ø. Haugen and K. Stølen. STAIRS – Steps to Analyze Interactions with Refinement Semantics. In

Proceedings of the Sixth International Conference on UML (UML’2003), volume 2863 of Lecture
Notes in Computer Science, pages 388–402. Springer, 2003.

[16] J. He, M. Josephs, and C. A. R. Hoare. A theory of synchrony and asynchrony. In IFIP WG 2.2/2.3
Working Conference on Programming Concepts and Methods, pages 459–478. North Holland, 1990.

[17] ISO. Risk management – Vocabulary, 2009. ISO Guide 73:2009.
[18] ISO/IEC. Information Technology – Security techniques – Management of information and commu-

nications technology security – Part 1: Concepts and models for information and communications
technology security management, 2004. ISO/IEC 13335-1:2004.

[19] J. Jürjens, editor. Secure systems development with UML. Springer, 2005.
[20] K. M. Khan and J. Han. Composing security-aware software. IEEE Software, 19(1):34–41, 2002.
[21] K. M. Khan and J. Han. A process framework for characterising security properties of component-

based software systems. In Australian Software Engineering Conference, pages 358–367. IEEE
Computer Society, 2004.

[22] K. M. Khan and J. Han. Deriving systems level security properties of component based composite
systems. In Australian Software Engineering Conference, pages 334–343, 2005.

[23] K. M. Khan, J. Han, and Y. Zheng. A framework for an active interface to characterise compositional
security contracts of software components. In Australian Software Engineering Conference, pages
117–126, 2001.

[24] A. N. Kolomogorov and S. V. Fomin. Introductory real analysis. Prentice-Hall, 1970.
[25] P. Komjáth and V. Totik. Problems and theorems in classical set theory. Problem books in

mathematics. Springer, 2006.
[26] H. Kooka and P. W. Daly. Guide to LaTeX. Addison-Wesley, 4th edition, 2003.
[27] L. Lamport. How to write a proof. American Mathematical Monthly, 102(7):600–608, 1993.
[28] K.-K. Lau and Z. Wang. Software component models. IEEE Transactions on software engineering,

33(10):709–724, 2007.
[29] K. T. Leung and D. L. C. Chen. Elementary set theory. Hong Kong University press, 8th edition,

1991.
[30] N. G. Leveson. Safeware: System Safety and Computers. ACM Press, New York, NY, USA, 2001.
[31] B. Liu. Uncertainty Theory. Studies in fuzziness and soft computing. Springer, 2nd edition, 2007.
[32] T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A UML-based modeling language for

model-driven security. In Proceedings of the 5th International Conference, UML 2002 – The Unified
Modeling Language, volume 2460 of Lecture Notes in Computer Science, pages 426–441. Springer,
2002.

[33] G. McGraw. Sofware security: Building security in. Software Security Series. Adison-Wesley, 2006.
[34] S. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
[35] S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press, 2001.
[36] D. S. Platt. Introducing Microsoft .NET. Microsoft Press International, 2001.
[37] A. Refsdal. Specifying Computer Systems with Probabilistic Sequence Diagrams. PhD thesis, Fac-

ulty of Mathematics and Natural Sciences, University of Oslo, 2008.
[38] A. Refsdal, R. K. Runde, and K. Stølen. Underspecification, inherent nondeterminism and prob-

ability in sequence diagrams. In Proceedings of the 8th IFIP International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS’2006), volume 4037 of Lecture
Notes in Computer Science, pages 138–155. Springer, 2006.

35

[39] E. Roman, R. P. Sriganesh, and G. Brose. Mastering Enterprise JavaBeans. Wiley, 3rd edition,
2006.

[40] J. Rumbaugh, I. Jacobsen, and G. Booch. The unified modeling language reference manual.
Addison-Wesley, 2005.

[41] R. K. Runde. STAIRS - Understanding and Developing Specifications Expressed as UML Inter-
action Diagrams. PhD thesis, Faculty of Mathematics and Natural Sciences, University of Oslo,
2007.

[42] R. K. Runde, Ø. Haugen, and K. Stølen. The Pragmatics of STAIRS. In 4th International Sympo-
sium, Formal Methods for Components and Objects (FMCO 2005), volume 4111 of Lecture Notes
in Computer Science, pages 88–114. Springer, 2006.

[43] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis,
Laboratory for Computer Science, Massachusetts Institute of Technology, 1995.

[44] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of
Computing, 2(2):250–273, 1995.

[45] K. Seidel. Probabilistic communicationg processes. Theoretical Computer Science, 152(2):219–249,
1995.

[46] K. Sere and E. Troubitsyna. Probabilities in action system. In Proceedings of the 8th Nordic
Workshop on Programming Theory, 1996.

[47] A. V. Skorokhod. Basic principles and application of probability theory. Springer, 2005.
[48] Standards Australia, Standards New Zealand. Australian/New Zealand Standard. Risk Manage-

ment, 2004. AS/NZS 4360:2004.
[49] C. Szyperski and C. Pfister. Workshop on component-oriented programming. In M. Mülhauser,

editor, Special Issues in Object-Oriented Programming – ECOOP’96 Workshop Reader, pages 127–
130. dpunkt Verlag, 1997.

[50] A. J. Townsend. Functions Of A Complex Variable. BiblioLife, 2009. First published by Cornwell
University Library in 1915.

[51] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge tracts in theoretical
computer science. Cambridge University Press, 2nd edition, 2000.

[52] E. Troubitsyna. Reliability assessment through probabilistic refinement. Nordic Journal of Com-
puting, 6(3):320–342, 1999.

[53] D. Verdon and G. McGraw. Risk analysis in software design. IEEE Security & Privacy, 2(4):79–84,
2004.

[54] E. W. Weisstein. CRC Concise Encyclopedia of Mathematics. Chapmand & Hall/CRC, 2nd edition,
2002.

A. Auxiliary definitions

Here is a summary of the definitions we use to prove the results in Appendix B.

A.1. Sets
We use N to denote the set of natural numbers :

N
def= {0, 1, 2, 3, . . . , n, n+ 1, . . . }

and N+ to denote the set of strictly positive natural numbers:

N+ = N \ {0}

The cross product of two sets A and B, denoted A×B, is the set of all pairs where the
first element is in A and the second element is in B. Formally,

A×B
def= {(a, b) | a ∈ A, b ∈ B}(32)

36

A.2. Logic
We sometimes use let statements in order to make substitution in logical formulas

more readable. Any let statement is on the following form

let v1 = e1

...
vn = en

in P

where v1, . . . , vn are logical variables, e1, . . . , en are expressions, and P is a formula. We
require that the variables are distinct

j
= k ⇒ vj
= vk

and that vj is not free in the expression ek if k ≤ j. The let statement can be understood
as a shorthand for the formula

∃v1, . . . , vn : v1 = e1 ∧ · · · ∧ vn = en ∧ P

We often use where to introduce auxiliary identifiers v1, . . . , vn. The where statement is
of the form

P1 where v1, . . . , vn so that P2

where v1, . . . , vn are logical variables and P1, P2 are formulas. It can be understood as a
shorthand for the formula

∃v1, . . . , vn :P1 ∧ P2

A.3. Probability theory
We introduce some basic concepts from measure theory [14, 12, 9, 31] that we use to

define probabilistic executions.

Definition A.1 (Countable set). A set is countable if its elements can be arranged
into a finite or infinite sequence [25].

Definition A.2 (Countably additive function). A function f on a set D is count-
ably additive (also referred to as σ-additive) if for every sequence ω of disjoint sets in D
whose union is also in D we have

f(
#ω⋃
i=1

ω[i]) =
#ω∑
i=1

f(ω[i])

Definition A.3 (Field). Given a set D, a collection F ⊂ P(D) is called a field if and
only if ∅ ∈ F , D ∈ F and for all A and B in F , we have A∪B ∈ F and B\A ∈ F . A field
generated by a set of subsets C of D, denoted by F (C), is the smallest field containing
C, that is, the intersection of all fields containing C.

37

Definition A.4 (Sigma field (σ-field)). A field F with regard to a set D is called a
σ-field if for any sequence ω of sets in F we have

⋃#ω
i=1 ω[i] ∈ F .

A σ-field generated by a set C of subsets of D is denoted by σ(C).

Definition A.5 (Measurable space). Let D be a non-empty set, and F a σ-field over
D. Then (D,F) is called a measurable space, and the sets in F are called measurable
sets.

Definition A.6 (Measure). Let D be a non-empty set and F be a σ-field over D. A
measure μ on F is a function that assigns a non-negative real value (possibly ∞) to each
element of F such that

1. μ(∅) = 0

2. μ is σ-additive

The measure μ is finite if μ(D) < ∞. It is σ-finite if and only if D can be written as⋃#φ
i=1 φ[i], where φ[i] ∈ F and μ(φ[i]) <∞ for all i.

Definition A.7 (Probability measure). Let D be a non-empty set and F be a σ-field
over D. A probability measure μ is a measure on F such that

μ(D) = 1

Definition A.8 (Measure space). A measure space is a triple (D,F , f), where (D,F)
is a measurable space, and f is a measure on (D,F).

Definition A.9 (Probability space). A probability space is a triple (D,F , f) where
(D,F) is a measurable space, and f is a probability measure on F .

Definition A.10 (Measurable rectangle). Let F1 and F2 be σ-fields over D1 and
D2. Let D be the cartesian product of D1 and D2; D1 ×D2. A measurable rectangle in
D is a set A = A1×A2, such that A1 ∈ F1 and A2 ∈ F2. The smallest σ-field containing
all measurable rectangles of D is called the product σ-field, denoted by F1×F2

7.

Definition A.11 (Extensions of a set). Let C be a set of subsets of a non-empty set
D. We define a stepwise extension of C as follows:

1. F1(C) def= C ∪ {∅} ∪ {D \A |A ∈ C}

2. F2(C) def= {⋂n
i=1 Ai | ∀i ∈ [1..n] :Ai ∈ F1(C)}

3. F3(C) def= {⋃n
i=1 Ai | ∀i ∈ [1..n] :Ai ∈ F2(C) ∧

∀j,m ∈ [1..n] : j
= m⇒ Aj ∩Am = ∅}

7The product σ-field of F1 and F2 is commonly denoted by F1 × F2, but we use F1×F2 to avoid
confusion with the cross product of F1 and F2

38

B. Proofs

In this section we state all the lemmas and theorems and provide proofs for the ones
that are not directly based on other sources. All proofs are written in Lamport’s style for
writing proofs [27]. This is a style for structuring formal proofs in a hierarchical manner
in LaTeX [26], similar to that of natural deduction [51, 35]. As observed by Lamport
the systematic structuring of proofs is essential to getting the results right in complex
domains which it is difficult to have good intuitions about. We have had several iterations
of formulating operators for component composition, attempting to prove them correct
and then reformulating them when the structured proof style uncovered inconsistencies.
These iterations where repeated until the definitions where proven to be correct.

The following tables give the page number for each theorem, lemma and corollary. If
a theorem, lemma or corollary is used in proofs of other results we also include references
to the results using it.

Result Page Used in proof of
Proposition B.1 Page 39 T 5.7
Lemma B.2 Page 41 T 5.7
Theorem B.3 Page 41 T 5.7,C 5.8
Theorem B.4 Page 41 L B.27

Table 1: List of results in Section B.1

Result Page Used in proof of
Lemma B.5 Page 41 C B.6
Corollary B.6 Page 41 L B.14
Corollary B.7 Page 42 L B.29
Lemma B.8 Page 42 L 5.6,L B.34,C 5.8
Lemma B.9 Page 42 C B.10,L B.11,L B.12
Corollary B.10 Page 43 L B.26,L B.35,L B.36
Lemma B.11 Page 43 L B.12,C B.13
Lemma B.12 Page 45 C B.13
Corollary B.13 Page 47 L B.14,C B.29
Lemma B.14 Page 47 C B.29,L B.38

Table 2: List of results in Section B.2

B.1. Measure theory
In the following we present some basic results from measure theory that we use in

the later proofs. These are taken from other sources [9, 14, 24, 31, 1], and the proofs can
be found there.

Proposition B.1. Let C be a set of subsets of a non-empty set D and extend C to a
set F3(C) as defined in Definition A.11. Then C ⊆ FOCUS1(C) ⊆ F2(C) ⊆ F3(C) and
F (C) = F3(C), that is F3(C) is the field generated by C.

39

Result Page Used in proof of
Lemma B.15 Page 49 L B.16
Lemma B.16 Page 49 L 5.5
Lemma B.17 Page 49 C B.18
Corollary B.18 Page 50 L B.26,L B.35,L B.36
Observation B.19 Page 50 L 5.4
Lemma B.20 Page 52 L 5.4
Lemma 5.4 Page 53 L B.26
Lemma B.21 Page 60 L B.24,L B.26
Lemma B.22 Page 60 L B.28,L B.23
Lemma B.23 Page 64 L B.24
Lemma B.24 Page 67 L B.26
Lemma B.25 Page 69 L B.26, L 5.6,L 5.6
Lemma B.26 Page 70 T 5.5
Theorem 5.5 Page 72 L B.28,L 5.6
Lemma B.27 Page 72 L B.28
Lemma B.28 Page 73 L 5.6,L B.29
Lemma 5.6 Page 77 T 5.7,C 5.8,L B.29
Lemma B.29 Page 78 L B.32,T 5.7
Lemma B.30 Page 82 C B.31
Corollary B.31 Page 83 L B.32
Lemma B.32 Page 84 L B.33,T 5.7
Lemma B.33 Page 89 T 5.7
Theorem 5.7 Page 90 C 5.8
Lemma B.34 Page 91 C 5.8,L B.39
Corollary 5.8 Page 92 T 5.9
Theorem 5.9 Page 93

Table 3: List of results in Section B.3

Result Page Used in proof of
Lemma B.35 Page 93 C B.37
Lemma B.36 Page 95 C B.37
Corollary B.37 Page 97 L B.38
Lemma B.38 Page 97 L 7.2
Lemma 7.2 Page 102 T 7.6
Theorem 7.4 Page 102 T 7.6
Theorem 7.6 Page 102

Table 4: List of results in Section B.4.

40

Lemma B.2. Let C be a set of subsets of a non-empty set D. Then σ(C) = σ(F (C)).

Theorem B.3 (Extension theorem). A finite measure μ on a field F has a unique
extension to the σ-field generated by F . That is, there exists a unique measure μ′ on
σ(F) such that for each element C of F , μ′(C) = μ(C).

Theorem B.4 (Product Measure Theorem). Let (D1,F1, μ1) and (D1,F1, μ1) be
two measure spaces where μ1 and μ2 are σ-finite. Let D = D1 ×D2 and F = F1 × F2.
Then there is a unique measure μ on F , such that

μ(A1 ×A2) = μ1(A1) · μ2(A2)

for every measurable rectangle A1 × A2 ∈ F . The measure μ is called the product of
μ1, μ2 and the triplet (D,F , μ) is called the product measure space.

B.2. Probabilistic component execution
In the following we state and prove some lemmas that we use to prove the main result

in Section B.3; namely that we can construct a conditional probability measure on the
cone-σ-field generated by the cone set obtained from the parallel execution of the trace
sets of two probabilistic component executions.

Lemma B.5. (Adapted from Lemma 4.2.4 in Segala [43, p. 54]). Let IN be a
probabilistic component execution as defined in Definition 5.3 and let α be a complete
queue history α ∈ BN . Then

∀t1, t2 ∈ DN (α) : t1 � t2 ⇒ c(t2, DN (α)) ⊆ c(t1, DN (α))(1)
∀t1, t2 ∈ DN (α) : t1
� t2 ∧ t2
� t1 ⇒ c(t2, DN(α)) ∩ c(t1, DN (α)) = ∅(2)

Proof. Follows from Definition 3.1. �

Corollary B.6. Let IN be a probabilistic component execution as defined in Defini-
tion 5.3 and let α be a complete queue history α ∈ BN . Then

∀c1, c2 ∈ CE(DN (α)) : c1 ∩ c2
= ∅ ⇒ c1 ⊆ c2 ∨ c2 ⊆ c1

Proof:
〈1〉1. Assume: c1 ∈ CE(DN (α)) ∧ c2 ∈ CE(DN (α))

Prove: c1 ∩ c2
= ∅ ⇒ c1 ⊆ c2 ∨ c2 ⊆ c1
〈2〉1. Assume: c1 ∩ c2
= ∅

Prove: c1 ⊆ c2 ∨ c2 ⊆ c1
〈3〉1. Case: c1 ∈ CE(DN (α)) \ C(DN (α)) ∨ c2 ∈ CE(DN (α)) \ C(DN (α))
〈4〉1. Q.E.D.

Proof: By assumption 〈3〉1 and Definition 3.3 it follows that at least one of
c1 or c2 contains only one trace. Since it is also the case, by assumption 〈2〉1,
that c1 and c2 shares at least one element, the required result follows from
elementary set theory.

〈3〉2. Case: c1 ∈ C(DN (α)) ∧ c2 ∈ C(DN (α))
〈4〉1. ∃t1 ∈ H : ∃t2 ∈ H : c1 = c(t1, DN(α)) ∧ c2 = c(t2, DN (α))

41

Proof: By assumption 〈3〉2 and Definition 3.1.
〈4〉2. Let: t1 ∈ H, t2 ∈ H such that c1 = c(t1, DN (α)) ∧ c2 = c(t2, DN(α))

Proof: By 〈4〉1.
〈4〉3. c(t1, DN (α)) ⊆ c(t2, DN (α)) ∨ c(t2, DN(α)) ⊆ c(t1, DN(α))
〈5〉1. t1 � t2 ∨ t2 � t1

Proof: By assumption 〈2〉1, 〈4〉2 and Lemma B.5 (2).
〈5〉2. Case: t2 � t1
〈6〉1. Q.E.D.

Proof: By assumption 〈5〉2 and Lemma B.5 (1) (c(t1, DN (α)) ⊆ c(t2, DN (α)))
and ∨-introduction.

〈5〉3. Case: t1 � t2
〈6〉1. Q.E.D.

Proof: By assumption 〈5〉3 and Lemma B.5 (1) (c(t2, DN (α)) ⊆ c(t1, DN (α)))
and ∨-introduction.

〈5〉4. Q.E.D.
Proof: By 〈5〉1, 〈5〉2, 〈5〉3 and ∨ elimination.

〈4〉4. Q.E.D.
Proof: By 〈4〉2, 〈4〉3 and the rule of replacement [51].

〈3〉3. Q.E.D.
Proof: By assumption 〈1〉1, the cases 〈3〉1 and 〈3〉2 are exhaustive.

〈2〉2. Q.E.D.
Proof: ⇒-introduction.

〈1〉2. Q.E.D.
Proof: ∀-introduction.

Corollary B.7. Let IN be a probabilistic component execution as defined in Defini-
tion 5.3 and let α be a complete queue history α ∈ BN . Then any union of elements
in CE(DN (α)) can be described as a disjoint union of elements in CE(DN (α)).

Proof. Follows from Corollary B.6.

Lemma B.8. Let IN be a probabilistic component execution as defined in Definition 5.3
and let α be a complete queue history α ∈ BN . Then

∀A,B ∈ FN(α) :A ⊆ B ⇒ fN (α)(A) ≤ fN (α)(B)

Proof. Since A ⊆ B we have B = A∪ (B ∩ (DN (α) \A)) where A and B∩ (DN (α) \A)
are disjoint. Therefore fN (α)(B) = fN (α)(A) + fN (α)(B ∩ (DN (α) \A)) ≥ fN (α)(A).

Lemma B.9. Let IN be a probabilistic component execution as defined in Definition 5.3,
let α be a complete queue history α ∈ BN , and let S be a non-empty set of finite prefixes
of traces in DN (α). Then⋃

t∈S
c(t,DN(α)) is a countable union of elements in C(DN (α))

Proof:
〈1〉1. Assume: S
= ∅ ∧ ∀t ∈ S : ∃t′ ∈ DN (α) : t � t′ ∧ #t ∈ N

Prove:
⋃
t∈S c(t,DN (α)) is a countable union of elements in C(DN (α)).

42

〈2〉1. ∀t ∈ S : c(t,DN (α)) ∈ C(DN (α))
Proof: By assumption 〈1〉1 and Definition 3.3.

〈2〉2. (#S = ℵ0 ∨ #S ∈ N), that is, S is countable.
〈3〉1. ∀t ∈ S : #t ∈ N

Proof: By assumption 〈1〉1.
〈3〉2. Q.E.D.

Proof: By 〈3〉1, since time-stamps are rational numbers and we assume that in-
terfaces are assigned a countable number of signals, we have a countable number
of events, and the set of finite sequences formed from a countable set is count-
able [25].

〈2〉3. Q.E.D.
Proof: By 〈2〉1 and 〈2〉2.

〈1〉2. Q.E.D.
Proof: ⇒-introduction.

Corollary B.10. Let IN be a probabilistic component execution as defined in Defini-
tion 5.3, let α be a complete queue history α ∈ BN , and let S be a (possibly empty) set
of finite prefixes of traces in DN(α). Then⋃

t∈S
c(t,DN(α)) ∈ FN (α)

Proof:
〈1〉1. Assume: ∀t ∈ S : ∃t′ ∈ DN(α) : t � t′ ∧ #t ∈ N

Prove:
⋃
t∈S c(t,DN (α)) ∈ FN (α).

〈2〉1. Case: S = ∅
〈3〉1. Q.E.D.

Proof: By Definition 5.2 and Definition 5.3.
〈2〉2. Case: S
= ∅
〈3〉1. ∀t ∈ S : c(t,DN1(E�

N1
S©α)) ∈ FN1(E�

N1
S©α)

〈4〉1. ∀t ∈ S : c(t,DN1(E�

N1
S©α)) ∈ CE(DN1(E�

N1
S©α))

Proof: By assumption 〈1〉1 and Definition 3.3.
〈4〉2. Q.E.D.

Proof: By 〈4〉1 since CE(DN1(E�

N1
S©α)) ⊆ FN1(E�

N1
S©α)

〈3〉2.
⋃
t∈S c(t,DN (α)) is a countable union of elements.

Proof: By assumption 〈1〉1, assumption 〈2〉2 and Lemma B.9.
〈3〉3. Q.E.D.

Proof: By 〈3〉1 and 〈3〉2 since FN1(E�

N1
S©α) is closed under countable union.

〈2〉3. Q.E.D.
Proof: The cases 〈2〉1 and 〈2〉2 are exhaustive.

〈1〉2. Q.E.D.
Proof: ⇒-introduction.

Lemma B.11. Let IN be a probabilistic component execution as defined in Definition 5.3
and let α be a complete queue history α ∈ BN . Then

∀t1 ∈ (H ∩ E ∗) : c(t1, DN (α)) ∈ C(DN (α)) ⇒
DN(α) \ c(t1, DN (α)) is a countable union of elements in CE(DN (α)).

43

Proof:
〈1〉1. Assume: t1 ∈ (H∩ E ∗)

Prove: c(t1, DN (α)) ∈ C(DN (α)) ⇒
DN (α) \ c(t1, DN (α)) is a countable union of elements in CE(DN (α)).

〈2〉1. Assume: c(t1, DN (α)) ∈ C(DN (α))
Prove: DN (α) \ c(t1, DN (α)) is a countable union of elements in CE(DN (α)).

〈3〉1. Let: S = {t ∈ H|∃t2 ∈ DN (α) : t � t2 ∧ #t ≤ #t1 ∧ t
= t1}
〈3〉2. Case: S = ∅
〈4〉1. DN(α) \ c(t1, DN (α)) = ∅
〈5〉1. Assume: DN (α) \ c(t1, DN (α))
= ∅

Prove: ⊥
〈6〉1. ∃t ∈ DN (α) : t
∈ c(t1, DN (α))

Proof: By assumption 〈5〉1.
〈6〉2. Let: t ∈ DN(α) such that t
∈ c(t1, DN (α))

Proof: By 〈6〉1.
〈6〉3. t1
� t

Proof: By 〈6〉2 and Definition 3.1.
〈6〉4. ∃t′ ∈ H : t′ � t ∧ #t′ ≤ #t1 ∧ t′
= t1

Proof: By 〈6〉3 and definition (2).
〈6〉5. Let: t′ ∈ H such that t′ � t ∧ #t′ ≤ #t1 ∧ t′
= t1

Proof: By 〈6〉4.
〈6〉6. t′ ∈ S

Proof: By 〈3〉1, 〈6〉2 and 〈6〉5.
〈6〉7. S
= ∅

Proof: By 〈6〉5 and 〈6〉6.
〈6〉8. Q.E.D.

Proof: By assumption 〈3〉2, 〈6〉7 and ⊥ introduction.
〈5〉2. Q.E.D.

Proof: Proof by contradiction.
〈4〉2. DN(α) = c(t1, DN (α))

Proof: By 〈4〉1 and elementary set theory.
〈4〉3. Q.E.D.

Proof: By assumption 〈2〉1, 〈4〉2 and the rule of replacement [51].
〈3〉3. Case: S
= ∅
〈4〉1. DN(α) \ c(t1, DN (α)) =

⋃
t∈S c(t,DN(α))

〈5〉1.
⋃
t∈S c(t,DN (α)) ⊆ DN (α) \ c(t1, DN(α))

〈6〉1. Assume: t2 ∈ ⋃
t∈S c(t,DN(α))

Prove: t2 ∈ DN(α) \ c(t1, DN (α))
〈7〉1. t2 ∈ DN (α) ∧ t2
∈ c(t1, DN (α))
〈8〉1. t2 ∈ DN (α)

Proof: By assumption 〈6〉1, 〈3〉1 and Definition 3.1.
〈8〉2. t2
∈ c(t1, DN(α))
〈9〉1. t1
� t2
〈10〉1. ∃t ∈ H : t � t2 ∧ #t ≤ #t1 ∧ t
= t2

Proof: By assumption 〈6〉1 and 〈3〉1.
〈10〉2. Q.E.D.

Proof: By 〈10〉1 and definition (2).
44

〈9〉2. Q.E.D.
Proof: By 〈9〉1 and Definition 3.1.

〈8〉3. Q.E.D.
Proof: By 〈8〉1 and 〈8〉2 and ∧-introduction.

〈7〉2. Q.E.D.
Proof: By 〈7〉1 and elementary set theory.

〈6〉2. Q.E.D.
Proof: By 〈6〉1 and ⊆-rule [29]

〈5〉2. DN(α) \ c(t1, DN (α)) ⊆ ⋃
t∈S c(t,DN(α))

〈6〉1. Assume: ∃t2 ∈ H : ∈ DN (α) \ c(t1, DN(α)) ∧ t2
∈ ⋃
t∈S c(t,DN (α))

Prove: ⊥
〈7〉1. Let: t2 be a trace such that t2 ∈ DN (α) \ c(t1, DN(α)) ∧

t2
∈ ⋃
t∈S c(t,DN (α))

Proof: By 〈6〉1.
〈7〉2. t1
� t2

Proof: By Definition 3.1 and the first conjunct of 〈7〉1 which implies
t2
∈ c(t1, DN(α))

〈7〉3. ∃t ∈ H : #t ≤ #t1 ∧ t � t2 ∧ t
= t1
Proof: By 〈7〉2 and definition (2).

〈7〉4. t2 ∈ ⋃
t∈S c(t,DN (α))

Proof: By 〈7〉3 and 〈3〉1.
〈7〉5. Q.E.D.

Proof: By 〈7〉1, 〈7〉4 and ⊥-introduction.
〈6〉2. Q.E.D.

Proof: Proof by contradiction.
〈5〉3. Q.E.D.

Proof:By 〈5〉1, 〈5〉2 and =-rule for sets [29].
〈4〉2.

⋃
t∈S c(t,DN (α)) is a countable union of elements in CE(DN (α)).

〈5〉1.
⋃
t∈S c(t,DN (α)) is a countable union of elements in C(DN (α))

Proof: By assumption 〈1〉1, 〈3〉1, assumption 〈3〉3 and Lemma B.9.
〈5〉2. Q.E.D.

Proof: By 〈5〉1, since C(DN (α)) ⊆ CE(DN (α)).
〈4〉3. Q.E.D.

Proof: By 〈4〉1, 〈4〉2 and the rule of replacement [51].
〈3〉4. Q.E.D.

Proof: The cases 〈3〉2 and 〈3〉3 are exhaustive.
〈2〉2. Q.E.D.

Proof: By ⇒-introduction
〈1〉2. Q.E.D.

Proof: By ∀-introduction

Lemma B.12. Let IN be a probabilistic component execution as defined in Definition 5.3
and let α be a complete queue history α ∈ BN . Then

∀t1 ∈ (H ∩ E ∗) :{t1} ∈ CE(DN (α)) \ C(DN (α)) ⇒
DN (α) \ {t1} is a countable union of elements in CE(DN (α))

Proof:
45

〈1〉1. Assume: t1 ∈ (H∩ E ∗)
Prove: {t1} ∈ CE(DN (α)) \ C(DN (α)) ⇒

DN (α) \ {t1} is a countable union of elements in CE(DN (α))
〈2〉1. Assume: {t1} ∈ CE(DN (α)) \ C(DN (α))

Prove: DN (α) \ {t1} is a countable union of elements in CE(DN (α))
〈3〉1. #t1 ∈ N

Proof: By assumption 〈2〉1 and Definition 3.3.
〈3〉2. t1 ∈ DN (α)

Proof: By assumption 〈2〉1 and Definition 3.3.
〈3〉3. DN(α) \ c(t1, DN (α)) is a countable union of elements in CE(DN (α)).

Proof: By 〈3〉1 and Lemma B.11.
〈3〉4. Let: S = {t ∈ H|#t = #t1 + 1 ∧ ∃t′ ∈ c(t1, DN (α)) : t � t′}
〈3〉5. Case: S = ∅
〈4〉1. c(t1, DN (α)) = {t1}

Proof: By 〈3〉4 and assumption 〈3〉5.
〈4〉2. Q.E.D.

Proof: By 〈4〉1, 〈3〉3 and the rule of replacement [51].
〈3〉6. Case: S
= ∅
〈4〉1. (DN (α)\c(t1, DN (α)))∪(

⋃
t∈S c(t,DN(α))) is a countable union of elements

in CE(DN (α)).
〈5〉1.

⋃
t∈S c(t,DN (α)) is a countable union of elements in CE(DN (α))

〈6〉1.
⋃
t∈S c(t,DN(α)) is a countable union of elements in C(DN (α))

Proof: By assumption 〈1〉1, assumption 〈2〉1, 〈3〉4, assumption 〈3〉6 and
Lemma B.9.

〈6〉2. Q.E.D.
Proof: By 〈6〉1, since C(DN (α)) ⊆ CE(DN (α)).

〈5〉2. Q.E.D.
Proof: By 〈5〉1, 〈3〉3 and elementary set theory.

〈4〉2. DN(α) \ {t1} = (DN (α) \ c(t1, DN (α))) ∪ (
⋃
t∈S c(t,DN (α)))

〈5〉1. c(t1, DN (α)) \ {t1} =
⋃
t∈S c(t,DN (α))

〈6〉1. c(t1, DN (α)) \ {t1} ⊆ ⋃
t∈S c(t,DN (α))

〈7〉1. Assume: t′ ∈ c(t1, DN (α)) \ {t1}
Prove: t′ ∈ ⋃

t∈S c(t,DN(α))
〈8〉1. t′ ∈ DN (α)

Proof: By assumption 〈7〉1 and Definition 3.1.
〈8〉2. ∃t′′ ∈ S : t′′ � t′

〈9〉1. t′ ∈ c(t1, DN(α))
Proof: By 〈7〉1.

〈9〉2. t1 � t′

Proof: By 〈9〉1 and Definition 3.1.
〈9〉3. t1
= t′

Proof: By assumption 〈7〉1.
〈9〉4. #t′ > #t1

Proof: By 〈9〉2 and 〈9〉3.
〈9〉5. ∃t′′ ∈ H : #t′′ = #t1 + 1 ∧ t′′ � t′

Proof: By 〈9〉4, 〈9〉1 and Definition 3.1.
〈9〉6. Let: t′′ be a trace such that #t′′ = #t1 + 1 ∧ t′′ � t′

46

Proof: By 〈9〉5.
〈9〉7. t′′ ∈ S

Proof: By 〈3〉4, 〈9〉6 and 〈9〉1.
〈9〉8. Q.E.D.

Proof: By 〈9〉6, 〈9〉7 and ∃-introduction.
〈8〉3. Q.E.D.

Proof: By 〈8〉1, 〈8〉2 and Definition 3.1.
〈7〉2. Q.E.D.

Proof: ⊆-rule [29].
〈6〉2.

⋃
t∈S c(t,DN(α)) ⊆ c(t1, DN(α)) \ {t1}

〈7〉1.
⋃
t∈S c(t,DN(α)) ⊆ c(t1, DN(α))

Proof: By 〈3〉4, Lemma B.5 and elementary set theory.
〈7〉2. t1
∈ ⋃

t∈S c(t,DN (α))
Proof: By 〈3〉4 and Definition 3.1.

〈7〉3. Q.E.D.
Proof: By 〈7〉1 and 〈7〉2.

〈6〉3. Q.E.D.
Proof: By 〈6〉1, 〈6〉2 and =-rule for sets [29].

〈5〉2. DN(α) \ {t1} = (DN (α) \ c(t1, DN (α))) ∪ (c(t1, DN(α)) \ {t1})
〈6〉1. {t1} ⊆ c(t1, DN (α))

Proof: By 〈3〉2 and Definition 3.1.
〈6〉2. c(t1, DN (α)) ⊆ DN(α)

Proof: By Definition 3.1.
〈6〉3. Q.E.D.

Proof: By 〈6〉1, 〈6〉2 and elementary set theory.
〈5〉3. Q.E.D.

Proof: By 〈5〉1, 〈5〉2 and the rule of transitivity [51].
〈4〉3. Q.E.D.

Proof: By 〈4〉1, 〈4〉2 and the rule of replacement [51].
〈3〉7. Q.E.D.

Proof: The cases 〈3〉5 and 〈3〉6 are exhaustive.
〈2〉2. Q.E.D.

Proof: ⇒-introduction
〈1〉2. Q.E.D.

Proof: ∀-introduction

Corollary B.13. Let IN be a probabilistic component execution as defined in Defini-
tion 5.3 and let α be a complete queue history α ∈ BN . Then

∀c ∈ CE(DN (α)) :DN(α) \ c is a countable union of elements in CE(DN (α)).

Proof. Follows from Lemma B.11 and Lemma B.12.

Lemma B.14. Let IN be a probabilistic component execution as defined in Definition 5.3
and let α be a complete queue history α ∈ BN . Then

∀A ∈ FN(α) :A is a countable union of elements in CE(DN (α)).

Proof:
47

〈1〉1. Assume: A ∈ FN(α).
Prove: A is a countable union of elements in CE(DN (α)).

Proof sketch:By induction on the construction of A.
〈2〉1. Case: A ∈ CE(DN (α)) (Induction basis)
〈3〉1. Q.E.D.

Proof: By assumption 〈2〉1.
〈2〉2. Case: A = DN(α) \B (induction step)
〈3〉1. Assume: B is a countable union of elements in CE(DN (α)). (induction hy-

pothesis)
Prove: DN (α) \B is a countable union of elements in CE(DN (α)).

〈4〉1. Let: φ be a sequence of elements in CE(DN (α)) such that B =
⋃#φ
i=1 φ[i]

Proof: By 〈3〉1 and Definition A.1.
〈4〉2. DN(α) \ ⋃#φ

i=1 φ[i] =
⋂#φ
i=1(DN (α) \ φ[i])

Proof: By the infinite version of De Morgan’s laws (2.7) for sets [13].
〈4〉3.

⋂#φ
i=1(DN (α) \ φ[i]) is a countable union of elements in CE(DN (α)).

〈5〉1. ∀i ∈ [1..#φ] :
⋂#φ
i=1(DN (α) \ φ[i]) ⊆ (DN (α) \ φ[i])

Proof: By elementary set theory [29].
〈5〉2. ∀i ∈ [1..#φ] :DN (α) \φ[i] is a countable union of elements in CE(DN (α))

Proof: By 〈4〉1 and Corollary B.13.
〈5〉3. Q.E.D.

Proof: By 〈5〉1 and 〈5〉2, since the subset of a countable set is countable.
〈4〉4. Q.E.D.

Proof:By 〈4〉2, 〈4〉3 and the rule of replacement [51].
〈3〉2. Q.E.D.

Proof: Induction step.
〈2〉3. Case: A is a countable union of elements in FN(α)

〈3〉1. Assume: All elements in A are countable unions of cones.
(induction hypothesis)
Prove: A is a countable union of elements in CE(DN (α)).

〈4〉1. Q.E.D.
Proof: By the induction hypothesis (〈3〉1), since the union of countably many
countable sets is countable [24].

〈3〉2. Q.E.D.
Proof: Induction step.

〈2〉4. Q.E.D.
Proof: By induction over the construction of A with 〈2〉1 as basis step and 〈2〉2
and 〈2〉3 as induction steps.

〈1〉2. Q.E.D.
Proof: ∀-introduction.

B.3. Conditional probability measure of a composite component
This subsection contains the proofs of all the theorems and lemmas in Section 5. We

prove that our definition of a measure on a composite extended cone set (definition (25))
is well defined and σ-additive. We also show how this measure can be uniquely extended
to a measure on the cone-σ-field generated by a composite extended cone set. The proof
strategy for this result is inspired by Segala [43, p. 54-55], but the actual proofs differ

48

from his since we have a different semantic model. Finally we show that our components
are closed under composition.

Lemma B.15. (Adapted from Lemma 27 in Refsdal [37, p. 285]). Let IN be
a probabilistic component execution as defined in Definition 5.3 and let α be a complete
queue history α ∈ BN . Then

∀t ∈ DN (α) : {t} ∈ FN (α)

Lemma B.16. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩N2 = ∅, let α be a queue history in BN1∪N2 and let μN1 ⊗ μN2(α) be a measure on
CE(DN1 ⊗DN2(α)) as defined in (25). Then

∀t1 ∈ H ∩ E ∗ :{t1} ∈ CE(DN1 ⊗DN2(α)) \ C(DN1 ⊗DN2(α)) ⇒
(EN1

S© {t1}) ∈ FN1(E�

N1
S©α) ∧ (EN2

S© {t1}) ∈ FN2(E�

N2
S©α)

Proof:
Assume: t1 ∈ H ∩ E ∗

Prove: {t1} ∈ CE(DN1 ⊗DN2(α)) \ C(DN1 ⊗DN2(α)) ⇒
(EN1

S© {t1}) ∈ FN1(E�

N1
S©α) ∧ (EN2

S© {t1}) ∈ FN2(E�

N2
S©α)

〈2〉1. Assume: {t1} ∈ CE(DN1 ⊗DN2(α)) \ C(DN1 ⊗DN2(α))
Prove: (EN1

S© {t1}) ∈ FN1(E�

N1
S©α) ∧ (EN2

S© {t1}) ∈ FN2(E�

N2
S©α)

〈3〉1. t1 ∈ DN1 ⊗DN2(α)
Proof: By assumption 〈2〉1 and Definition 3.3.

〈3〉2. EN1
S© t1 ∈ DN1(E�

N1
S©α) ∧ EN2

S© t1 ∈ DN2(E�

N2
S©α)

Proof: By 〈3〉1 and definition (22).
〈3〉3. Q.E.D.

Proof: By 〈3〉2 and Lemma B.15.
〈2〉2. Q.E.D.

Proof: ⇒-introduction
〈1〉1. Q.E.D.

Proof: ∀-introduction.

Lemma B.17.

∀t ∈ H : ∀S ⊆ E : #(S S© t) ∈ N ⇒
S S© t|1 = S S© t ∨ ∃i ∈ N :S S© t|i
= S S© t ∧ S S© t|i+1 = S S© t

Proof:
〈1〉1. Assume: t ∈ H ∧ S ⊆ E

Prove: #(S S© t) ∈ N ⇒
S S© t|1 = S S© t ∨ ∃i ∈ N :S S© t|i
= S S© t ∧ S S© t|i+1 = S S© t

〈2〉1. Assume: #(S S© t) ∈ N

Prove: S S© t|1 = S S© t ∨ ∃i ∈ N :S S© t|i
= S S© t ∧ S S© t|i+1 = S S© t
〈3〉1. Assume: S S© t|1
= S S© t ∧ ∀i ∈ N :S S© t|i
= S S© t⇒ S S© t|i+1
= S S© t

Prove: ⊥
〈4〉1. S S© t
= S S© t

49

Proof: By 〈3〉1 and the principle of mathematical induction.
〈4〉2. Q.E.D.

Proof: By 〈4〉1 and ⊥-introduction.
〈3〉2. Q.E.D.

Proof: Proof by contradiction.
〈2〉2. Q.E.D.

Proof: ⇒-introduction.
〈1〉2. Q.E.D.

Proof: ∀-introduction.

Corollary B.18.

∀t ∈ H : ∀S ⊆ E : #(S S© t) ∈ N ⇒ ∃t′ ∈ H ∩ E ∗ :S S© t′ = S S© t

Proof. Follows from Lemma B.17.

Observation B.19. Let IN1 and IN2 be two probabilistic component executions such
that N1 ∩N2 = ∅ and let α be a queue history in BN1∪N2 . Then

∀t ∈ DN1(E�

N1
S©α) :

(({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α) ⇒
(#t ∈ N ⇒ ∃i ∈ N :({!} × S ×N1 ×N2 ×Q) S© t =

(({!} × S ×N1 ×N2 ×Q) S©α)|i)∧
(#t = ∞ ⇒ ∀i ∈ N : ∃t′ ∈ HN1 ∩ E ∗ : t′ � t∧

({!} × S ×N1 ×N2 ×Q) S© t′ = (({!} × S ×N1 ×N2 ×Q) S©α)|i)
Proof:
〈1〉1. Assume: t ∈ DN1(E�

N1
S©α)

Prove: ({!} × S ×N1 ×N2 ×Q) S© t �
({!} × S ×N1 ×N2 ×Q) S©α⇒
(#t ∈ N ⇒ ∃i ∈ N :({!} × S ×N1 ×N2 ×Q) S© t =
(({!} × S ×N1 ×N2 ×Q) S©α)|i) ∧
(#t = ∞ ⇒ ∀i ∈ N : ∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧
({!} × S ×N1 ×N2 ×Q) S© t′ =
(({!} × S ×N1 ×N2 ×Q) S©α)|i)

〈2〉1. Assume: ({!} × S ×N1 ×N2 ×Q) S© t �
({!} × S ×N1 ×N2 ×Q) S©α

Prove: (#t ∈ N ⇒ ∃i ∈ N :({!} × S ×N1 ×N2 ×Q) S© t =
(({!} × S ×N1 ×N2 ×Q) S©α)|i) ∧
(#t = ∞ ⇒ ∀i ∈ N : ∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧
({!} × S ×N1 ×N2 ×Q) S© t′ =
(({!} × S ×N1 ×N2 ×Q) S©α)|i)

〈3〉1. #t ∈ N ⇒ ∃i ∈ N :({!} × S ×N1 ×N2 ×Q) S© t =
(({!} × S ×N1 ×N2 ×Q) S©α)|i

〈4〉1. Assume: #t ∈ N

Prove: ∃i ∈ N :({!} × S ×N1 ×N2 ×Q) S© t =
(({!} × S ×N1 ×N2 ×Q) S©α)|i

50

〈5〉1. Q.E.D.
Proof: By assumption 〈4〉1, assumption 〈2〉1 and definition (2).

〈4〉2. Q.E.D.
Proof: ⇒-introduction.

〈3〉2. #t = ∞ ⇒ ∀i ∈ N :∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧
({!} × S ×N1 ×N2 ×Q) S© t′ =
(({!} × S ×N1 ×N2 ×Q) S©α)|i

〈4〉1. Assume: #t = ∞
Prove: ∀i ∈ N : ∃t′ ∈ H ∩ EN1

∗ : t′ � t ∧
({!} × S ×N1 ×N2 ×Q) S© t′ =
(({!} × S ×N1 ×N2 ×Q) S©α)|i

〈5〉1. Assume: i ∈ N

Prove: ∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧
({!} × S ×N1 ×N2 ×Q) S© t′ =
(({!} × S ×N1 ×N2 ×Q) S©α)|i

〈6〉1. Assume: ∀t′ ∈ HN1 ∩ E ∗ : t′ � t⇒
({!} × S ×N1 ×N2 ×Q) S© t′
=
(({!} × S ×N1 ×N2 ×Q) S©α)|i

Prove: ⊥
〈7〉1. (({!} × S ×N1 ×N2 ×Q) S© t)|i
=

(({!} × S ×N1 ×N2 ×Q) S©α)|i
〈8〉1. ∃j ∈ N :({!} × S ×N1 ×N2 ×Q) S© t|j =

(({!} × S ×N1 ×N2 ×Q) S© t)|i
〈9〉1. Case: i = 0
〈10〉1. ({!}×S×N1×N2×Q) S© t|0 = (({!} × S ×N1 ×N2 ×Q) S© t)|i

Proof: By assumption 〈9〉1.
〈10〉2. Q.E.D.

Proof: By 〈10〉1 and ∃-introduction.
〈9〉2. Case: i
= 0
〈10〉1. ∃j ∈ N : t[j] =

(({!} × S ×N1 ×N2 ×Q) S© t)|i[#
((

({!} × S ×N1 ×N2 ×Q) S© t
)|i)]

Proof: By assumption 〈4〉1, assumption 〈9〉2 and definition (7).
〈10〉2. Let: j ∈ N such that t[j] =

(({!} × S ×N1 ×N2 ×Q) S© t)|i[#
(
(({!} × S ×N1 ×N2 ×Q) S© t)|i

)
]

Proof: By 〈10〉1.
〈10〉3. (({!} × S ×N1 ×N2 ×Q) S© t|j) = (({!} × S ×N1 ×N2 ×Q) S© t)|i

〈11〉1. i = #(({!} × S ×N1 ×N2 ×Q) S© t|j)
Proof: By 〈10〉2

〈11〉2. Q.E.D.
Proof: By 〈11〉1.

〈10〉4. Q.E.D.
Proof: By 〈10〉3 and ∃-introduction.

〈9〉3. Q.E.D.
Proof: The cases 〈9〉1 and 〈9〉2 are exhaustive.

〈8〉2. Let: j ∈ N such that ({!} × S ×N1 ×N2 ×Q) S© t|j =
(({!} × S ×N1 ×N2 ×Q) S© t)|i

Proof: By 〈8〉1.
51

〈8〉3. t|j � t
Proof: By 〈8〉2, definition (2) and definition (3).

〈8〉4. ({!} × S ×N1 ×N2 ×Q) S© t|j
=
(({!} × S ×N1 ×N2 ×Q) S©α)|i

Proof: By assumption 〈6〉1, 〈8〉3 and ∀ elimination.
〈8〉5. Q.E.D.

Proof: By 〈8〉2, 〈8〉4 and the rule of replacement [51].
〈7〉2. (({!} × S ×N1 ×N2 ×Q) S© t)
�

(({!} × S ×N1 ×N2 ×Q) S©α)
Proof: By assumption 〈4〉1, assumption 〈5〉1, 〈7〉1 and definition (2).

〈7〉3. Q.E.D.
Proof: By assumption 〈2〉1, 〈7〉2 and ⊥-introduction.

〈6〉2. Q.E.D.
Proof: Proof by contradiction. Note that this holds even when #α ∈ N,
since by definition (3) α|i = α when i > #α.

〈5〉2. Q.E.D.
Proof: ∀-introduction.

〈4〉2. Q.E.D.
Proof: ⇒-introduction

〈3〉3. Q.E.D.
Proof: By 〈3〉1, 〈3〉2 and ∧-introduction.

〈2〉2. Q.E.D.
Proof: ⇒-introduction.

〈1〉2. Q.E.D.
Proof: ∀-introduction.

Lemma B.20. Let s and t be two infinite sequences of events. Then

s
= t⇒ ∃i ∈ N : s|i = t|i ∧ s|i+1
= t|i+1

Proof:
〈1〉1. Assume: s
= t

Prove: ∃i ∈ N : s|i = t|i ∧ s|i+1
= t|i+1

〈2〉1. s|1
= t|1 ∨ (∃i ∈ N : s|i = t|i ∧ s|i+1
= t|i+1)
〈3〉1. Assume: s|1 = t|1 ∧ (∀i ∈ N : s|i = t|i ⇒ s|i+1 = t|i+1)

Prove: ⊥
〈4〉1. s = t

Proof: By 〈3〉1 and the principle of mathematical induction
〈4〉2. Q.E.D.

Proof: By assumption 〈1〉1, 〈4〉1 and ⊥-introduction.
〈3〉2. Q.E.D.

Proof: Proof by contradiction.
〈2〉2. Case: s|1
= t|1

〈3〉1. s|0 = t|0
Proof: By assumption 〈2〉2, and the fact that s|0 = 〈〉 ∧ t|0 = 〈〉.

〈3〉2. Q.E.D.
Proof: By assumption 〈2〉2, 〈3〉1 and ∃ introduction, since we assume that 0 ∈ N.

〈2〉3. Case: ∃i ∈ N : s|i = t|i ∧ s|i+1
= t|i+1

52

〈3〉1. Q.E.D.
Proof: By assumption 〈2〉3.

〈2〉4. Q.E.D.
Proof: By 〈2〉1, 〈2〉2, 〈2〉3 and ∨ elimination.

〈1〉2. Q.E.D.
Proof: ⇒-introduction.

Lemma 5.4 Let IN1 and IN2 be two probabilistic component executions such that N1 ∩
N2 = ∅ and let α be a queue history in BN1∪N2 . Then

CTN1−N2(α) ∈ FN1(E�

N1
S©α) ∧CTN2−N1(α) ∈ FN2(E�

N2
S©α)

Proof:
〈1〉1. CTN1−N2(α) ∈ FN1(E�

N1
S©α) ∧ CTN2−N1(α) ∈ FN2(E�

N2
S©α)

〈2〉1. CTN1−N2(α) ∈ FN1(E�

N1
S©α)

〈3〉1. Case: CTN1−N2(α) = ∅
〈4〉1. Q.E.D.

Proof: By assumption 〈3〉1, since ∅ ∈ FN1(E�

N1
S©α) by Definition 5.2 and

Definition 5.3.
〈3〉2. Case: CTN1−N2(α)
= ∅
〈4〉1. Case: #({!} × S ×N1 ×N2 ×Q) S©α ∈ N

〈5〉1. Let: S = {t ∈ HN1 ∩ E ∗ | ∃t′ ∈ DN1(E�

N1
S©α) : t � t′ ∧

({!} × S ×N1 ×N2 ×Q) S© t = ({!} × S ×N1 ×N2 ×Q) S©α}
〈5〉2. Let: S′ = {t ∈ HN1 ∩ E ∗ | ∃t′ ∈ DN1(E�

N1
S©α) : t � t′ ∧

#({!} × S ×N1 ×N2 ×Q) S© t =
#(({!} × S ×N1 ×N2 ×Q) S©α) + 1}

〈5〉3.
⋃
t∈S c(t,DN1(E�

N1
S©α)) \ ⋃

t∈S′ c(t,DN1(E�

N1
S©α)) ∈ FN1(E�

N1
S©α)

〈6〉1.
⋃
t∈S c(t,DN1(E�

N1
S©α)) ∈ FN1(E�

N1
S©α)

Proof: By, 〈5〉1 and Corollary B.10.
〈6〉2.

⋃
t∈S′ c(t,DN1(E�

N1
S©α)) ∈ FN1(E�

N1
S©α)

Proof: By, 〈5〉2 and Corollary B.10.
〈6〉3. Q.E.D.

Proof: By 〈6〉1 and 〈6〉2, since FN1(E�

N1
S©α) is closed under set difference.

〈5〉4.
⋃
t∈S c(t,DN1(E�

N1
S©α)) \ ⋃

t∈S′ c(t,DN1(E�

N1
S©α)) = CTN1−N2(α)

〈6〉1.
⋃
t∈S c(t,DN1(E�

N1
S©α)) \ ⋃

t∈S′ c(t,DN1(E�

N1
S©α)) ⊆ CTN1−N2(α)

〈7〉1. Assume: t ∈ ⋃
t′∈S c(t

′, DN1(E�

N1
S©α)) \ ⋃

t′∈S′ c(t′, DN1(E�

N1
S©α))

Prove: t ∈ CTN1−N2(α)
〈8〉1. t ∈ DN1(E�

N1
S©α)

Proof: By assumption 〈7〉1, 〈5〉1 and Definition 3.1.
〈8〉2. ({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α
〈9〉1. ∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧ ({!} × S ×N1 ×N2 ×Q) S© t′ =

({!} × S ×N1 ×N2 ×Q) S©α
Proof: By assumption 〈7〉1 and, which implies that S
= ∅.

〈9〉2. Let: t′ ∈ HN1 ∩ E ∗ such that t′ � t ∧
({!} × S ×N1 ×N2 ×Q) S© t′ =
({!} × S ×N1 ×N2 ×Q) S©α

Proof: By 〈9〉1.

53

〈9〉3. ¬∃i ∈ [#t′..#t] : k.t[i] =! ∧ tr.t[i] = N1 ∧ co.t[i] = N2

〈10〉1. Assume: ∃i ∈ [#t′..#t] : k.t[i] =!∧ tr.t[i] = N1 ∧ co.t[i] = N2

Prove: ⊥
〈11〉1. Let: i ∈ [#t′..#t] such that

k.t[i] =! ∧ tr.t[i] = N1 ∧ co.t[i] = N2

Proof: By 〈10〉1.
〈11〉2. #({!} × S ×N1 ×N2 ×Q) S© t ≥

#({!} × S ×N1 ×N2 ×Q) S©α+ 1
Proof: By 〈9〉2 and 〈11〉1.

〈11〉3. ∃t′′ ∈ HN1 ∩E ∗ : t′′ � t∧#({!}×S×N1×N2×Q) S© t′′ =
#({!} × S ×N1 ×N2 ×Q) S©α+ 1

Proof: By assumption 〈4〉1 and 〈11〉2.
〈11〉4. Let: t′′ ∈ HN1 ∩ E ∗ such that

t′′ � t ∧ #({!} × S ×N1 ×N2 ×Q) S© t′′ =
#({!} × S ×N1 ×N2 ×Q) S©α+ 1

Proof: By 〈11〉3.
〈11〉5. t′′ ∈ S′

Proof: By 〈11〉4, 〈8〉1 and 〈5〉2.
〈11〉6. t ∈ c(t′′, DN1(E�

N1
S©α))

Proof: By 〈11〉4, 〈8〉1 and Definition 3.1.
〈11〉7. t ∈ ⋃

t′∈S′ c(t′, DN1(E�

N1
S©α))

Proof: By 〈11〉5, 〈11〉6 and elementary set theory.
〈11〉8. Q.E.D.

Proof: By assumption 〈7〉1, 〈11〉7 and ⊥ introduction.
〈10〉2. Q.E.D.

Proof: Proof by contradiction.
〈9〉4. ({!} × S ×N1 ×N2 ×Q) S© t|#t′ = ({!} × S ×N1 ×N2 ×Q) S© t

Proof: By 〈9〉3 and definition (7).
〈9〉5. Q.E.D.

Proof: By 〈9〉2, 〈9〉4 and the rule of replacement [51].
〈8〉3. Q.E.D.

Proof: By 〈8〉1, 〈8〉2 and definition (24).
〈7〉2. Q.E.D.

Proof: ⊆ rule.
〈6〉2. CTN1−N2(α) ⊆ ⋃

t∈S c(t,DN1(E�

N1
S©α)) \ ⋃

t∈S′ c(t,DN1(E�

N1
S©α))

〈7〉1. Assume: t ∈ CTN1−N2(α)
Prove: t ∈ ⋃

t′∈S c(t
′, DN1(E�

N1
S©α)) \ ⋃

t′∈S′ c(t′, DN1(E�

N1
S©α))

〈8〉1. t ∈ DN1(E�

N1
S©α)

Proof: By assumption 〈7〉1 and definition (24).
〈8〉2. ({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α

Proof: By assumption 〈7〉1 and definition (24).
〈8〉3. ∃i ∈ N :({!} × S ×N1 ×N2 ×Q) S© t|i =

({!} × S ×N1 ×N2 ×Q) S©α
Proof: By assumption 〈4〉1, 〈8〉2 and Corollary B.18.

〈8〉4. Let: i ∈ N such that ({!} × S ×N1 ×N2 ×Q) S© t|i =
({!} × S ×N1 ×N2 ×Q) S©α

54

Proof: By 〈8〉3.
〈8〉5. t ∈ ⋃

t′∈S c(t
′, DN1(E�

N1
S©α))

〈9〉1. t|i ∈ S
Proof: By 〈8〉1, 〈8〉4 and 〈5〉1.

〈9〉2. t ∈ c(t|i, DN1(E�

N1
S©α))

Proof: By 〈8〉1 and Definition 3.1.
〈9〉3. Q.E.D.

Proof: By 〈9〉2, 〈9〉1 and elementary set theory.
〈8〉6. t
∈ ⋃

t′∈S′ c(t′, DN1(E�

N1
S©α))

〈9〉1. Assume: t ∈ ⋃
t′∈S′ c(t′, DN1(E�

N1
S©α))

Prove: ⊥
〈10〉1. ∃j ∈ [i+ 1..#t] :k.t[j] =! ∧ tr.t[j] = N1 ∧ co.t[j] = N2

〈11〉1. ∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧#({!} × S ×N1 ×N2 ×Q) S© t′ =
#(({!} × S ×N1 ×N2 ×Q) S©α) + 1

Proof: By assumption 〈9〉1 and 〈5〉2.
〈11〉2. Let: t′ ∈ HN1 ∩ E ∗ such that t′ � t ∧

#({!} × S ×N1 ×N2 ×Q) S© t′ =
#(({!} × S ×N1 ×N2 ×Q) S©α) + 1

Proof: By 〈11〉1.
〈11〉3. Let: j = #(({!} × S ×N1 ×N2 ×Q) S© t′)
〈11〉4. j ∈ [i+ 1..#t] ∧ k.t[j] =! ∧ tr.t[j] = N1 ∧ co.t[j] = N2

Proof: By 〈8〉4, 〈11〉2 and 〈11〉3.
〈11〉5. Q.E.D.

Proof: By 〈11〉3, 〈11〉4 and ∃ introduction.
〈10〉2. Let: j ∈ [i+ 1..#t] such that

k.t[j] =! ∧ tr.t[j] = N1 ∧ co.t[j] = N2

Proof: By 〈10〉1.
〈10〉3. ({!} × S ×N1 ×N2 ×Q) S© t
�

({!} × S ×N1 ×N2 ×Q) S©α
Proof: By 〈8〉4, 〈10〉2 and definition (2).

〈10〉4. Q.E.D.
Proof: By 〈8〉2, 〈10〉3 and ⊥ introduction.

〈9〉2. Q.E.D.
Proof: Proof by contradiction.

〈8〉7. Q.E.D.
Proof: By 〈8〉5, 〈8〉6 and elementary set theory.

〈7〉2. Q.E.D.
Proof: ⊆ rule.

〈6〉3. Q.E.D.
Proof: By 〈6〉1, 〈6〉2 and the =-rule for sets [29].

〈5〉5. Q.E.D.
Proof: By 〈5〉3, 〈5〉4 and the rule of replacement [51].

〈4〉2. Case: #({!} × S ×N1 ×N2 ×Q) S©α = ∞
〈5〉1. Let: S =

{
t ∈ DN1(E�

N1
S©α) ∩ E ∗ | ({!} × S ×N1 ×N2 ×Q) S© t �

(({!} × S ×N1 ×N2 ×Q) S©α)
}

〈5〉2. ∀i ∈ N

55

Let: S′
i =

{
t′ ∈ HN1 ∩ E ∗ | ∃t ∈ DN1(E�

N1
S©α) : t′ � t ∧

({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α ∧
({!} × S ×N1 ×N2 ×Q) S© t′ = (({!} × S ×N1 ×N2 ×Q) S©α)|i

}
〈5〉3. ∀i ∈ N

Let: Gi =
⋃
t∈S′

i
c(t,DN1(E�

N1
S©α))

〈5〉4. S ∪ ⋂∞
i=1Gi ∈ FN1(E�

N1
S©α)

〈6〉1. S ∈ FN1(E�

N1
S©α)

〈7〉1. ∀t ∈ ⋃
t′∈S{t′} :{t} ∈ F

Proof: By 〈5〉1 and Lemma B.15.
〈7〉2. (#S = ℵ0 ∨ #S ∈ N), that is, S is countable.
〈8〉1. ∀t ∈ S : #t ∈ N

Proof: By 〈5〉1.
〈8〉2. Q.E.D.

Proof: By 〈8〉1, since the set of finite sequences formed from a count-
able set is countable [25].

〈7〉3. Q.E.D.
Proof: By 〈7〉1 and 〈7〉2, since FN1(E�

N1
S©α) is closed under countable

union.
〈6〉2.

⋂∞
i=1Gi ∈ FN1(E�

N1
S©α)

〈7〉1. ∀i ∈ N :Gi ∈ FN1(E�

N1
S©α)

Proof: By 〈5〉2 and Corollary B.10.
〈7〉2. Q.E.D.

Proof: By 〈7〉1, since FN1(E�

N1
S©α) is closed under countable intersec-

tion.
〈6〉3. Q.E.D.

Proof: By 〈6〉1 and 〈6〉2, since FN1(E�

N1
S©α) is closed under countable

union.
〈5〉5. S ∪ ⋂∞

i=1Gi = CTN1−N2(α)
〈6〉1. S ∪ ⋂∞

i=1Gi ⊆ CTN1−N2(α)
〈7〉1. Assume: t ∈ S ∪ ⋂∞

i=1Gi
Prove: t ∈ CTN1−N2(α)

〈8〉1. Case: t ∈ S
〈9〉1. Q.E.D.

Proof: By 〈5〉1 and definition (24).
〈8〉2. Case: t ∈ ⋂∞

i=1Gi
〈9〉1. ∀i ∈ N : t ∈ Gi

Proof: By assumption 〈8〉2.
〈9〉2. #t = ∞
〈10〉1. Assume: #t ∈ N

Prove: ⊥
〈11〉1. t ∈ G#t+1

Proof: By assumption 〈10〉1, 〈9〉1 and ∀ elimination.
〈11〉2. ∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧ ({!} × S × N1 × N2 × Q) S© t′ =

(({!} × S ×N1 ×N2 ×Q) S©α)|#t+1

Proof: By 〈11〉1, 〈5〉3 and 〈5〉2.
〈11〉3. Let: t′ ∈ HN1 ∩E ∗ : t′ � t∧({!}×S×N1×N2×Q) S© t′ =

56

(({!} × S ×N1 ×N2 ×Q) S©α)|#t+1

Proof: By 〈11〉2.
〈11〉4. #t′ >= #t+ 1
〈12〉1. #t′ >= #({!} × S ×N1 ×N2 ×Q) S© t′

Proof: By definition (7).
〈12〉2. #(({!} × S ×N1 ×N2 ×Q) S© t′) =

#((({!} × S ×N1 ×N2 ×Q) S©α)|#t+1)
Proof: By 〈11〉3 and the rule of equality between func-
tions [51].

〈12〉3. #(({!} × S ×N1 ×N2 ×Q) S©α)|#t+1 = #t+ 1
Proof: By assumption 〈4〉2.

〈12〉4. Q.E.D.
Proof: By 〈12〉2, 〈12〉3, 〈12〉1 and the rule of transitiv-
ity [51].

〈11〉5. t′
� t
Proof: By 〈11〉4 and definition (2).

〈11〉6. Q.E.D.
Proof: By 〈11〉3, 〈11〉5 and ⊥ introduction.

〈10〉2. Q.E.D.
Proof: Proof by contradiction.

〈9〉3. Assume: t
∈ CTN1−N2(α)
Prove: ⊥

〈10〉1. t ∈ DN1(E�

N1
S©α)

Proof: By assumption 〈8〉2, 〈5〉2, 〈5〉3 and Definition 3.1.
〈10〉2. ({!} × S ×N1 ×N2 ×Q) S© t
�

({!} × S ×N1 ×N2 ×Q) S©α
Proof: By 〈10〉1, assumption 〈9〉3 and definition (24).

〈10〉3. ({!} × S ×N1 ×N2 ×Q) S© t
=
({!} × S ×N1 ×N2 ×Q) S©α

Proof: By 〈10〉2 and definition (2).
〈10〉4. ∃i ∈ N : (({!} × S ×N1 ×N2 ×Q) S© t)|i =

(({!} × S ×N1 ×N2 ×Q) S©α)|i ∧
(({!} × S ×N1 ×N2 ×Q) S© t)|i+1
=
(({!} × S ×N1 ×N2 ×Q) S©α)|i+1

Proof: By 〈9〉2, assumption 〈4〉2, 〈10〉3 and Lemma B.20.
〈10〉5. Let: i ∈ N such that (({!} × S ×N1 ×N2 ×Q) S© t)|i =

(({!} × S ×N1 ×N2 ×Q) S©α)|i ∧
(({!} × S ×N1 ×N2 ×Q) S© t)|i+1
=
(({!} × S ×N1 ×N2 ×Q) S©α)|i+1

Proof: By 〈10〉4.
〈10〉6. t ∈ Gi+1

Proof: By 〈10〉5, 〈9〉1 and ∀ elimination.
〈10〉7. ∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧ ({!} × S × N1 × N2 × Q) S© t′ =

(({!} × S ×N1 ×N2 ×Q) S©α)|i+1

Proof: By 〈10〉6, 〈5〉3 and 〈5〉2.
〈10〉8. Let: t′ ∈ HN1 ∩ E ∗ : t′ � t ∧ ({!} × S ×N1 ×N2 ×Q) S© t′ =

(({!} × S ×N1 ×N2 ×Q) S©α)|i+1

57

Proof: By 〈10〉7.
〈10〉9. (({!} × S ×N1 ×N2 ×Q) S© t)|i+1 = (({!} × S ×N1 ×N2 ×Q) S©α)|i+1

〈11〉1. (({!} × S ×N1 ×N2 ×Q) S© t)|i+1 =
({!} × S ×N1 ×N2 ×Q) S© t′

〈12〉1. #((({!} × S ×N1 ×N2 ×Q) S© t)|i+1) =
#(({!} × S ×N1 ×N2 ×Q) S© t′)

〈13〉1. #((({!} × S ×N1 ×N2 ×Q) S© t)|i+1) = i+ 1
Proof: By 〈9〉2 and definition (2).

〈13〉2. #(({!} × S ×N1 ×N2 ×Q) S© t′) = i+ 1
〈14〉1. #(({!} × S ×N1 ×N2 ×Q) S© t′) =

#((({!} × S ×N1 ×N2 ×Q) S©α)|i+1)
Proof: By 〈10〉8 and the rule of equality between func-
tions [51].

〈14〉2. #((({!} × S ×N1 ×N2 ×Q) S©α)|i+1) = i+ 1
Proof: By assumption 〈4〉2 and definition (2).

〈14〉3. Q.E.D.
Proof: By 〈14〉1, 〈14〉2 and the rule of transitivity.

〈13〉3. Q.E.D.
Proof: By 〈13〉1, 〈13〉2 and the rule of transitivity.

〈12〉2. Q.E.D.
Proof: By 〈10〉8 (t′ � t), 〈12〉1 definition (2) and definition
(7).

〈11〉2. Q.E.D.
Proof: By 〈10〉8, 〈11〉1 and the rule of transitivity [51].

〈10〉10. Q.E.D.
Proof: By 〈10〉5, 〈10〉9 and ⊥-introduction.

〈9〉4. Q.E.D.
Proof: Proof by contradiction.

〈8〉3. Q.E.D.
Proof: By assumption 〈7〉1, the cases 〈8〉1 and 〈8〉2 are exhaustive.

〈7〉2. Q.E.D.
Proof: ⊆ rule.

〈6〉2. CTN1−N2(α) ⊆ S ∪ ⋂∞
i=1Gi

〈7〉1. Assume: t ∈ CTN1−N2(α)
Prove: t ∈ S ∪ ⋂∞

i=1Gi
〈8〉1. t ∈ DN1(E�

N1
S©α) ∧ ({!} × S ×N1 ×N2 ×Q) S© t �

({!} × S ×N1 ×N2 ×Q) S©α
Proof: By assumption 〈7〉1 and definition (24).

〈8〉2. Case: #t ∈ N

〈9〉1. t ∈ S
Proof: By 〈8〉1, assumption 〈8〉2 and 〈5〉1.

〈9〉2. Q.E.D.
Proof: By 〈9〉1 and elementary set theory.

〈8〉3. Case: #t = ∞
〈9〉1. t ∈ ⋂∞

i=1Gi
〈10〉1. Assume: t
∈ ⋂∞

i=1Gi
Prove: ⊥

58

〈11〉1. ∃i ∈ N : t
∈ Gi
Proof: By assumption 〈10〉1.

〈11〉2. Let: i ∈ N such that t
∈ Gi
Proof: By 〈11〉1.

〈11〉3. ¬∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧ ({!} × S ×N1 ×N2 ×Q) S© t′ =
(({!} × S ×N1 ×N2 ×Q) S©α)|i

〈12〉1. Assume: ∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧
({!} × S ×N1 ×N2 ×Q) S© t′ =
(({!} × S ×N1 ×N2 ×Q) S©α)|i

Prove: ⊥
〈13〉1. Let: t′ ∈ HN1 ∩ E ∗ : t′ � t ∧

({!} × S ×N1 ×N2 ×Q) S© t′ =
(({!} × S ×N1 ×N2 ×Q) S©α)|i

Proof: By 〈12〉1.
〈13〉2. t′ ∈ S′

i

Proof: By 〈8〉1, 〈13〉1 and 〈5〉2.
〈13〉3. t ∈ Gi

Proof: By 〈8〉1, 〈13〉1, 〈13〉2, Definition 3.1 and 〈5〉3.
〈13〉4. Q.E.D.

Proof: By 〈11〉2, 〈13〉3 and ⊥ introduction.
〈12〉2. Q.E.D.

Proof: Proof by contradiction.
〈11〉4. ∃t′ ∈ HN1 ∩ E ∗ : t′ � t ∧

({!} × S ×N1 ×N2 ×Q) S© t′ =
(({!} × S ×N1 ×N2 ×Q) S©α)|i

Proof: By 〈8〉1, assumption 〈8〉3, Observation B.19 and ∀ elim-
ination.

〈11〉5. Q.E.D.
Proof: By 〈11〉3, 〈11〉4 and ⊥-introduction.

〈10〉2. Q.E.D.
Proof: Proof by contradiction.

〈9〉2. Q.E.D.
Proof: By 〈9〉1 and elementary set theory.

〈8〉4. Q.E.D.
Proof: The cases 〈8〉2 and 〈8〉3 are exhaustive.

〈7〉2. Q.E.D.
Proof: ⊆ rule.

〈6〉3. Q.E.D.
Proof: By 〈6〉1, 〈6〉2 and the =-rule for sets [29].

〈5〉6. Q.E.D.
Proof: By 〈5〉4, 〈5〉5 and the rule of replacement [51].

〈4〉3. Q.E.D.
Proof: The cases 〈4〉1 and 〈4〉2 are exhaustive.

〈3〉3. Q.E.D.
Proof: The cases 〈3〉1 and 〈3〉2 are exhaustive.

〈2〉2. CTN2−N1(α) ∈ FN2(E�

N2
S©α)

Proof: Symmetrical to 〈2〉1.
59

〈2〉3. Q.E.D.
Proof: By 〈2〉1, 〈2〉2 and ∧ -introduction.

〈1〉2. Q.E.D.

Lemma B.21. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩N2 = ∅ and let α be a queue history in BN1∪N2 . Then

∀t1 ∈ H ∩ E ∗ : c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α)) ⇒
EN1

S© c(t1, DN1 ⊗DN2(α)) ⊆ c(EN1
S© t1, DN1(E�

N1
S©α))

Proof:
〈1〉1. Assume: t1 ∈ H ∩ E ∗

Prove: c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α)) ⇒
EN1

S© c(t1, DN1 ⊗DN2(α)) ⊆ c(EN1
S© t1, DN1(E�

N1
S©α)

〈2〉1. Assume: c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α))
Prove: EN1

S© c(t1, DN1 ⊗DN2(α)) ⊆ c(EN1
S© t1, DN1(E�

N1
S©α)

〈3〉1. Assume: t′ ∈ EN1
S© c(t1, DN1 ⊗DN2(α))

Prove: t′ ∈ c(EN1
S© t1, DN1(E�

N1
S©α))

〈4〉1. ∃t′′ ∈ c(t1, DN1 ⊗DN2(α)) : t′ = EN1
S© t′′

Proof: By assumption 〈3〉1 and definition (7).
〈4〉2. Let: t′′ ∈ c(t1, DN1 ⊗DN2(α)) such that t′ = EN1

S© t′′

Proof: By 〈4〉1.
〈4〉3. t′ ∈ DN1(E�

N1
S©α)

〈5〉1. EN1
S© t′′ ∈ DN1(E�

N1
S©α)

Proof: By 〈4〉2, definition (22) and Definition 3.1.
〈5〉2. Q.E.D.

Proof: By 〈4〉2, 〈5〉1 and the rule of replacement [51].
〈4〉4. EN1

S© t1 � t′

〈5〉1. EN1
S© t1 � EN1

S© t′′

〈6〉1. t1 � t′′

Proof: By 〈4〉2 and Definition 3.1.
〈6〉2. Q.E.D.

Proof: By 〈6〉1 and definition (7).
〈5〉2. Q.E.D.

Proof: By 〈5〉1, 〈4〉2 and the rule of replacement [51].
〈4〉5. Q.E.D.

Proof: By 〈4〉3, 〈4〉4 and Definition 3.1.
〈3〉2. Q.E.D.

Proof: By 〈3〉1 and ⊆-rule [29].
〈2〉2. Q.E.D.

Proof: ⇒-introduction.
〈1〉2. Q.E.D.

Proof: ∀-introduction.

Lemma B.22. Let IN1 and IN2 be two probabilistic component executions such that

60

N1 ∩N2 = ∅ and let α be a queue history in BN1∪N2 . Then

∀t ∈ H ∩ E ∗ : c(t,DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α)) ⇒
(∀t1, t2 ∈ H : t1 ∈ EN1

S© c(t,DN1 ⊗DN2(α)) ∧ t2 ∈ EN2
S© c(t,DN1 ⊗DN2(α))) ⇒

(∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1
S© t′ = t1 ∧ EN2

S© t′ = t2)

Proof:
〈1〉1. Assume: t ∈ H ∩ E ∗

Prove: c(t,DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α)) ⇒
(∀t1, t2 ∈ H : t1 ∈ EN1

S© c(t,DN1 ⊗DN2(α)) ∧
t2 ∈ EN2

S© c(t,DN1 ⊗DN2(α))) ⇒
(∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1

S© t′ = t1 ∧ EN2
S© t′ = t2)

〈2〉1. Assume: c(t,DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α))
Prove: ∀t1, t2 ∈ H : t1 ∈ EN1

S© c(t,DN1 ⊗DN2(α)) ∧
t2 ∈ EN2

S© c(t,DN1 ⊗DN2(α))) ⇒
(∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1

S© t′ = t1 ∧ EN2
S© t′ = t2)

Proof sketch: By induction over the length of t.
〈3〉1. Case: t = 〈〉 (induction basis)
〈4〉1. Assume: t1 ∈ H ∧ t2 ∈ H

Prove: t1 ∈ EN1
S© c(t,DN1 ⊗DN2(α))∧t2 ∈ EN2

S© c(t,DN1 ⊗DN2(α)) ⇒
∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1

S© t′ = t1 ∧ EN2
S© t′ = t2

〈5〉1. Assume: t1 ∈ EN1
S© c(t,DN1 ⊗DN2(α)) ∧ t2 ∈ EN2

S© c(t,DN1 ⊗DN2(α))
Prove: ∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1

S© t′ = t1 ∧ EN2
S© t′ = t2

〈6〉1. c(t,DN1 ⊗DN2(α)) = DN1 ⊗DN2(α)
Proof: By assumption 〈3〉1 and Definition 3.1.

〈6〉2. ∃t′′, t′′′ ∈ DN1 ⊗DN2(α) : EN1
S© t′′ = t1 ∧ EN2

S© t′′′ = t2
Proof: By assumption 〈5〉1, 〈6〉1 and definition (7).

〈6〉3. Let: t′′, t′′′ ∈ DN1 ⊗DN2(α) such that EN1
S© t′′ = t1 ∧ EN2

S© t′′′ = t2
Proof: By 〈6〉2

〈6〉4. t1 ∈ DN1(E�

N1
S©α) ∧ t2 ∈ DN2(E�

N2
S©α)

〈7〉1. t1 ∈ DN1(E�

N1
S©α)

〈8〉1. EN1
S© t′′ ∈ DN1(E�

N1
S©α)

Proof: By 〈6〉3 and definition (22).
〈8〉2. Q.E.D.

Proof: By 〈6〉3, 〈8〉1 and the rule of replacement [51].
〈7〉2. t2 ∈ DN2(E�

N2
S©α)

Proof: Symmetrical to 〈7〉1.
〈7〉3. Q.E.D.

Proof: By 〈7〉1, 〈7〉2 and ∧-introduction.
〈6〉5. rng.t1 ⊆ EN1 ∧ rng.t2 ⊆ EN2

Proof: By 〈6〉4, Definition 5.3, definition (20) and definition (5).
〈6〉6. ({!} × S ×N1 ×N2 ×Q) S© t1 � ({!} × S ×N1 ×N2 ×Q) S©α ∧

({!} × S ×N2 ×N1 ×Q) S© t2 � ({!} × S ×N2 ×N1 ×Q) S©α
〈7〉1. ({!} × S ×N1 ×N2 ×Q) S© t1 � ({!} × S ×N1 ×N2 ×Q) S©α
〈8〉1. ({!} × S ×N1 ×N2 ×Q) S© t′′ � ({!} × S ×N1 ×N2 ×Q) S©α

Proof: By 〈6〉3 and definition (22).

61

〈8〉2. ({!} × S ×N1 ×N2 ×Q) S© EN1
S© t′′ �

({!} × S ×N1 ×N2 ×Q) S©α
Proof: By 〈8〉1 and definition (7).

〈8〉3. Q.E.D.
Proof: By 〈6〉3, 〈8〉2 and the rule of replacement [51].

〈7〉2. ({!} × S ×N2 ×N1 ×Q) S© t2 � ({!} × S ×N2 ×N1 ×Q) S©α
Proof: Symmetrical to step 〈7〉1

〈7〉3. Q.E.D.
Proof: By 〈7〉1, 〈7〉2 and ∧ -introduction.

〈6〉7. ((∀i, j ∈ [1..#t1] : i < j ⇒ q.t1[i] < q.t1[j]) ∧
#t1 = ∞ ⇒ ∀k ∈ Q : ∃i ∈ N : q.t1[i] > k) ∧
(∀i, j ∈ [1..#t2] : i < j ⇒ q.t2[i] < q.t2[j] ∧
#t2 = ∞ ⇒ ∀k ∈ Q : ∃i ∈ N : q.t2[i] > k)

〈7〉1. (∀i, j ∈ [1..#t1] : i < j ⇒ q.t1[i] < q.t1[j]) ∧
(#t1 = ∞ ⇒ ∀k ∈ Q :∃i ∈ N : q.t1[i] > k)

〈8〉1. ∀i, j ∈ [1..#t′′] : i < j ⇒ q.t′′[i] < q.t′′[j] ∧
#t′′ = ∞ ⇒ ∀k ∈ Q :∃i ∈ N : q.t′′[i] > k

Proof: By 〈6〉3 and definition (22).
〈8〉2. ∀i, j ∈ [1..#EN1

S© t′′] : i < j ⇒ q.EN1
S© t′′[i] < q.EN1

S© t′′[j] ∧
#EN1

S© t′′ = ∞ ⇒ ∀k ∈ Q : ∃i ∈ N : q.EN1
S© t′′[i] > k

Proof: By 〈8〉1, definition (7), and constraints (8) and (9), since the
filtering of a trace with regard to a set of events does not change the
ordering of the remaining events in the trace.

〈8〉3. Q.E.D.
Proof: By 〈6〉3, 〈8〉2 and the rule of replacement [51].

〈7〉2. ∀i, j ∈ [1..#t2] : i < j ⇒ q.t2[i] < q.t2[j] ∧
#t2 = ∞ ⇒ ∀k ∈ Q : ∃i ∈ N : q.t2[i] > k

Proof: Symmetrical to step 〈7〉1
〈7〉3. Q.E.D.

Proof: By 〈7〉1, 〈7〉2 and ∧ -introduction.
〈6〉8. {q.t1[i] | i ∈ [1..#t1]} ∩ {q.t2[j] | j ∈ [1..#t2]} = ∅

Proof: By the assumption that each interface, and hence each compo-
nent, is assigned a set of time-stamps disjoint from the set of time-stamps
assigned to every other interface or component.

〈6〉9. Π{1,2}.(Π{2}.(({?} ×M) S© t1)) � Π{1,2}.(Π{2}.(E�

N1
S©α))

Proof: By 〈6〉4 and constraint (11).
〈6〉10. Π{1,2}.(Π{2}.(({?} ×M) S© t2)) � Π{1,2}.(Π{2}.(E�

N2
S©α))

Proof: By 〈6〉4 and constraint (11).
〈6〉11. ∃t′′′ ∈ H : EN1

S© t′′′ = t1 ∧ EN2
S© t′′′ = t2

Proof: By 〈6〉7 t1 and t2 fulfil well-formedness constraints (8) and (9)
with regard to time. By 〈6〉8 their sets of time-stamps are disjoint. Hence,
it is possible to interleave the events of t1 and t2 in such a way that the
well-formedness constraints (8) and (9) are fulfilled. Furthermore, by 〈6〉9
the sequence of consumed messages in t1 is a prefix of the messages in
E�

N2
S©α when disregarding time, and vice versa for t2 by 〈6〉10. By 〈6〉6

the sequence of messages transmitted from N1 to N2 in t1 is a prefix of the
messages transmitted from N1 to N2 in α, and vice versa for t2. Hence, it is

62

possible to interleave the events of t1 and t2 in such a way that the sequence
of consumed messages sent from N1 to N2, is a prefix of the sequence of
transmitted messages from N1 to N2, and vice versa, when disregarding
time, fulfilling constraint (10).

〈6〉12. Let: t′′′ ∈ H such that EN1
S© t′′′ = t1 ∧ EN2

S© t′′′ = t2
Proof: By 〈6〉11.

〈6〉13. t′′′ ∈ HN1∪N2

Proof: By 〈6〉12, 〈6〉5 and elementary set theory.
〈6〉14. ({!} × S ×N2 ×N1 ×Q) S© t′′′ � ({!} × S ×N2 ×N1 ×Q) S©α ∧

({!} × S ×N1 ×N2 ×Q) S© t′′′ � ({!} × S ×N1 ×N2 ×Q) S©α
〈7〉1. ({!}×S ×N1×N2 ×Q) S© EN1

S© t′′′ � ({!}×S ×N1×N2 ×Q) S©α∧
({!} × S ×N1 ×N2 ×Q) S© EN2

S© t′′′ � ({!} × S ×N1 ×N2 ×Q) S©α
Proof:By 〈6〉12, 〈6〉6 and the rule of replacement [51].

〈7〉2. Q.E.D.
Proof:By 〈7〉1 and definition (7).

〈6〉15. EN1
S© t′′′ ∈ DN1(E�

N1
S©α) ∧ EN2

S© t′′′ ∈ DN2(E�

N2
S©α)

Proof: By 〈6〉12, 〈6〉4 and the rule of replacement.
〈6〉16. t′′′ ∈ DN1 ⊗DN2(α)

Proof: By 〈6〉13, 〈6〉14, 〈6〉15 and definition (22).
〈6〉17. Q.E.D.

Proof: By 〈6〉16, 〈6〉12 and ∃ -introduction.
〈5〉2. Q.E.D.

Proof: ⇒-introduction.
〈4〉2. Q.E.D.

Proof: ∀-introduction
〈3〉2. Case: t = t′′′� 〈e〉 (induction step)

〈4〉1. Assume: (∀t1, t2 ∈ H ∩ E ∗ : t1 ∈ EN1
S© c(t′′′, DN1 ⊗DN2(α)) ∧

t2 ∈ EN2
S© c(t′′′, DN1 ⊗DN2(α))) ⇒

(∃t′ ∈ c(t′′′, DN1 ⊗DN2(α)) : EN1
S© t′ = t1 ∧ EN2

S© t′ = t2)
(induction hypothesis)

Prove: (∀t1, t2 ∈ H : t1 ∈ EN1
S© c(t,DN1 ⊗DN2(α)) ∧

t2 ∈ EN2
S© c(t,DN1 ⊗DN2(α))) ⇒

(∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1
S© t′ = t1 ∧ EN2

S© t′ = t2)
(induction step)

〈5〉1. Assume: t1 ∈ H ∧ t2 ∈ H
Prove: (t1 ∈ EN1

S© c(t,DN1⊗DN2(α))∧t2 ∈ EN2
S© c(t,DN1⊗DN2(α))) ⇒

∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1
S© t′ = t1 ∧ EN2

S© t′ = t2
〈6〉1. Assume: t1 ∈ EN1

S© c(t,DN1⊗DN2(α))∧t2 ∈ EN2
S© c(t,DN1⊗DN2(α))

Prove: ∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1
S© t′ = t1 ∧ EN2

S© t′ = t2
〈7〉1. Assume: ¬∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1

S© t′ = t1 ∧ EN2
S© t′ = t2

Prove: ⊥
〈8〉1. ∃t′ ∈ c(t′′′, DN1 ⊗DN2(α)) : EN1

S© t′ = t1 ∧ EN2
S© t′ = t2

〈9〉1. t1 ∈ EN1
S© c(t′′′, DN1⊗DN2(α))∧t2 ∈ EN2

S© c(t′′′, DN1⊗DN2(α))
〈10〉1. c(t,DN1 ⊗DN2(α)) ⊆ c(t′′′, DN1 ⊗DN2(α))

Proof: By assumption 〈3〉2 and Lemma B.5.
〈10〉2. Q.E.D.

63

Proof: By assumption 〈6〉1, 〈10〉1, definition (7) and elementary
set theory.

〈9〉2. Q.E.D.
Proof: By 〈9〉1 and the induction hypothesis (assumption 〈4〉1).

〈8〉2. Let: t′ ∈ c(t′′′, DN1 ⊗DN2(α)) such that
EN1

S© t′ = t1 ∧ EN2
S© t′ = t2

Proof: By 〈8〉1.
〈8〉3. t′
∈ c(t,DN1 ⊗DN2(α))

Proof: By 〈8〉2 and assumption 〈7〉1.
〈8〉4. t
� t′

Proof: By 〈8〉3 and Definition 3.1.
〈8〉5. t � t′

〈9〉1. EN1
S© t � t1 ∧ EN2

S© t � t1
Proof: By assumption 〈6〉1, Definition 3.1 and definition (7).

〈9〉2. EN1
S© t � EN1

S© t′ ∧ EN2
S© t � EN2

S© t′

Proof: By 〈9〉1, 〈8〉2 and the rule of replacement [51].
〈9〉3. rng.t = EN1 ∪ EN2

Proof: By 〈8〉2, Definition 3.1, definition (22) and definition (20).
〈9〉4. rng.t′ = EN1 ∪ EN2

Proof: By assumption 〈2〉1, Definition 3.1, definition (22) and def-
inition (20).

〈9〉5. Q.E.D.
Proof: By 〈9〉2, 〈9〉3, 〈9〉4 and constraint (8) which ensures that
events in a trace are totally ordered by time.

〈8〉6. Q.E.D.
Proof: By 〈8〉5, 〈8〉4 and ⊥-introduction.

〈7〉2. Q.E.D.
Proof: Proof by contradiction

〈6〉2. Q.E.D.
Proof: ⇒-introduction.

〈5〉2. Q.E.D.
Proof: ∀-introduction.

〈4〉2. Q.E.D.
Proof: Induction step.

〈3〉3. Q.E.D.
Proof: By induction over the length of t with 〈3〉1 as basis step and 〈3〉2 as
induction step.

〈2〉2. Q.E.D.
Proof: ⇒-introduction.

〈1〉2. Q.E.D.
Proof: ∀-introduction.

Lemma B.23. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩N2 = ∅ and let α be a queue history in BN1∪N2 . Then

∀t1 ∈ H∩E ∗ :(c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α))
∧ ∃t ∈ H :({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α

64

∧ t ∈ c(EN1
S© t1, DN1(E�

N1
S©α)) ∧ t
∈ EN1

S© c(t1, DN1 ⊗DN2(α))) ⇒
(#t > #(EN1

S© t1) ∧ q.t[#(EN1
S© t1) + 1] < q.t1[#t1])

Proof:
〈1〉1. Assume: t1 ∈ H ∩ E ∗

Prove: (c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α))
∧ ∃t ∈ H :({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α
∧t ∈ c(EN1

S© t1, DN1(E�

N1
S©α))∧t
∈ EN1

S© c(t1, DN1⊗DN2(α))) ⇒ (#t >
#(EN1

S© t1) ∧ q.t[#(EN1
S© t1) + 1] < q.t1[#t1])

〈2〉1. Assume: c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α))
∧ ∃t ∈ H :({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α
∧ t ∈ c(EN1

S© t1, DN1(E�

N1
S©α)) ∧ t
∈ EN1

S© c(t1, DN1 ⊗DN2(α))
Prove: #t > #(EN1

S© t1) ∧ q.t[#(EN1
S© t1) + 1] < q.t1[#t1]

〈3〉1. Let: t ∈ H such that ({!} × S ×N1 ×N2 ×Q) S© t �
({!}×S ×N1 ×N2 ×Q) S©α∧ t ∈ c(EN1

S© t1, DN1(E�

N1
S©α))∧ EN1

S© t
∈
EN1

S© c(t1, DN1 ⊗DN2(α))
Proof: By assumption 〈2〉1.

〈3〉2. Assume: #t ≤ #(EN1
S© t1) ∨ q.t[#(EN1

S© t1) + 1] ≥ q.t1[#t1]
Prove: ⊥

〈4〉1. EN1
S© t1 � t

Proof: By 〈3〉1 (t ∈ c(EN1
S© t1, DN1(E�

N1
S©α))) and Definition 3.1.

〈4〉2. ∃t′ ∈ c(t1, DN1 ⊗DN2(α)) : t = EN1
S© t′

〈5〉1. ∃t′ ∈ c(t1, DN1 ⊗ DN2(α)) : ∃t′′ ∈ DN1 ⊗ DN2(α) : EN2
S© t′′ = EN2

S© t′ ∧
EN1

S© t′′ = t
〈6〉1. t ∈ EN1

S© (DN1 ⊗DN2(α))
〈7〉1. t ∈ DN1(E�

N1
S©α)

Proof: By 〈3〉1 (t ∈ c(EN1
S© t1, DN1(E�

N1
S©α))) and Definition 3.1.

〈7〉2. Q.E.D.
Proof: By 〈3〉1 (({!} × S ×N1 ×N2 ×Q) S© t �
({!} × S ×N1 ×N2 ×Q) S©α), 〈7〉1 and definition (22).

〈6〉2. ∀t ∈ c(t1, DN1 ⊗DN2(α)) : EN2
S© t ∈ EN2

S© (DN1 ⊗DN2(α))
〈7〉1. ∀t ∈ c(t1, DN1 ⊗DN2(α)) : t ∈ (DN1 ⊗DN2(α))

Proof: By Definition 3.1.
〈7〉2. ∀t ∈ (DN1 ⊗DN2(α)) : EN2

S© t ∈ EN2
S© (DN1 ⊗DN2(α))

Proof: By definition (22).
〈7〉3. Q.E.D.

Proof: By 〈7〉1 and 〈7〉2.
〈6〉3. Q.E.D.

Proof: By 〈6〉1, 〈6〉2, Lemma B.22 and ∃ introduction.
〈5〉2. Let: t′ ∈ c(t1, DN1 ⊗DN2(α)) such that ∃t′′ ∈ DN1 ⊗DN2(α) : EN2

S© t′′ =
EN2

S© t′ ∧ EN1
S© t′′ = t

Proof: By 〈5〉1.
〈5〉3. Let: t′′ ∈ DN1 ⊗DN2(α) such that EN2

S© t′′ = EN2
S© t′ ∧ EN1

S© t′′ = t
Proof: By 〈5〉2.

〈5〉4. t′′ ∈ c(t1, DN1 ⊗DN2(α))
〈6〉1. t1 � t′′

〈7〉1. ∀k ∈ [0..q.t1[#t1]] : t′′↓k = t1↓k
65

〈8〉1. ∀k ∈ [0..q.t1[#t1]] :EN1
S© t′′↓k = EN1

S© t1↓k
〈9〉1. Case: #t ≤ #(EN1

S© t1)
〈10〉1. EN1

S© t′′ = EN1
S© t1

〈11〉1. t = EN1
S© t1

Proof: By 〈4〉1 and assumption 〈9〉1.
〈11〉2. Q.E.D.

Proof: By 〈11〉1, 〈5〉3 and the rule of replacement [51].
〈10〉2. Q.E.D.

Proof: By 〈10〉1.
〈9〉2. Case: q.t[#(EN1

S© t1) + 1] ≥ q.t1[#t1]
〈10〉1. Assume: ∃k ∈ [0..q.t1[#t1]] : EN1

S© t′′↓k
= EN1
S© t1↓k

Prove: ⊥
〈11〉1. ∀i, j ∈ [1..#t1] : i < j ⇒ q.t1[i] < q.t1[j]

Proof: By assumption 〈1〉1 and requirement (8).
〈11〉2. q.EN1

S© t′′[EN1
S©#t1 + 1] ≥ q.t1[#t1]

Proof: By assumption 〈9〉2 and 〈5〉3.
〈11〉3. ∀k ∈ [0..q.EN1

S© t1[#(EN1
S© t1)]] : EN1

S© t′′↓k = EN1
S© t1↓k

〈12〉1. EN1
S© t1 � EN1

S© t′′

Proof: By 〈5〉3, 〈4〉1 and the rule of replacement [51].
〈12〉2. Q.E.D.

Proof: By 〈12〉1.
〈11〉4. Let: k ∈ [0..q.t1[#t1]] such that EN1

S© t′′↓k
= EN1
S© t1↓k

Proof: By assumption 〈10〉1.
〈11〉5. q.EN1

S© t1[#(EN1
S© t1)] < k ≤ q.t1[#t1]

Proof: By 〈11〉1, 〈11〉2, 〈11〉3 and 〈11〉4.
〈11〉6. q.EN1

S© t′′[EN1
S©#t1 + 1] < q.t1[#t1]

Proof: By 〈11〉4 and 〈11〉5.
〈11〉7. Q.E.D.

Proof: By 〈11〉2, 〈11〉6 and ⊥ introduction.
〈10〉2. Q.E.D.

Proof: Proof by contradiction.
〈9〉3. Q.E.D.

Proof: The cases 〈9〉1 and 〈9〉2 are exhaustive.
〈8〉2. ∀k ∈ [0..q.t1[#t1]] :EN2

S© t′′↓k = EN2
S© t1↓k

〈9〉1. ∀k ∈ [0..q.t1[#t1]] :EN2
S© t′↓k = EN2

S© t1↓k
〈10〉1. t1 � t′

Proof: By 〈5〉2 and Definition 3.1.
〈10〉2. Q.E.D.

Proof: By 〈10〉1, since otherwise t′ would not be well-formed.
〈9〉2. Q.E.D.

Proof: By 〈5〉3, 〈9〉1 and the rule of replacement.
〈8〉3. rng.t′′ ⊆ EN1 ∪ EN2

Proof: By 〈5〉3, Definition 5.3, definition (20) and definition (5).
〈8〉4. rng.t1 ⊆ EN1 ∪ EN2

Proof: By assumption 〈2〉1, Definition 3.1, Definition 5.3, defini-
tion (20) and definition (5).

〈8〉5. Q.E.D.
66

Proof: By 〈8〉1, 〈8〉2, 〈8〉3 and 〈8〉4.
〈7〉2. Q.E.D.

Proof: By 〈7〉1.
〈6〉2. Q.E.D.

Proof: By 〈5〉3, 〈6〉1 and Definition 3.1.
〈5〉5. Q.E.D.

Proof: By 〈5〉3, 〈5〉4 and the rule of replacement
〈4〉3. ¬∃t′ ∈ c(t1, DN1 ⊗DN2(α)) : t = EN1

S© t′

Proof: By 〈3〉1 and definition (7).
〈4〉4. Q.E.D.

Proof: By 〈4〉2, 〈4〉3 and ⊥ introduction.
〈3〉3. Q.E.D.

Proof: Proof by contradiction.
〈2〉2. Q.E.D.

Proof: ⇒ introduction.
〈1〉2. Q.E.D.

Proof: ∀ introduction.

Lemma B.24. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩N2 = ∅ and let α be a queue history in BN1∪N2 . Then

∀t1 ∈ H ∩ E ∗ :#t1 > 1 ∧ c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α)) ⇒
(c(EN1

S© t1, DN1(E�

N1
S©α)) ∩ CTN1−N2(α)) \

⋃
t∈T

c(t,DN1(E�

N1
S©α)) =

EN1
S© c(t1, DN1 ⊗DN2(α))

where T = {t ∈ H |#t = #(EN1
S© t1) + 1 ∧ ∃t′ ∈ DN1(E�

N1
S©α) : t � t′∧

q.t[#(EN1
S© t1) + 1] < q.t1[#t1]}

Proof:
〈1〉1. Assume: t1 ∈ H ∩ E ∗ ∧ #t1 > 1

Let: T = {t ∈ H |#t = #(EN1
S© t1) + 1 ∧ ∃t′ ∈ DN1(E�

N1
S©α) : t � t′ ∧

q.t[#(EN1
S© t1) + 1] < q.t1[#t1]}

Prove: c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α)) ⇒
(c(EN1

S© t1, DN1(E�

N1
S©α))∩CTN1−N2(α))\⋃

t′′∈T c(t
′′, DN1(E�

N1
S©α)) =

EN1
S© c(t1, DN1 ⊗DN2(α)))

〈2〉1. Assume: c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α))
Prove: (c(EN1

S© t1, DN1(E�

N1
S©α))∩CTN1−N2(α))\⋃t′′∈T c(t

′′, DN1(E�

N1
S©α)) =

EN1
S© c(t1, DN1 ⊗DN2(α))

〈3〉1. EN1
S© c(t1, DN1 ⊗DN2(α)))

⊆ (c(EN1
S© t1, DN1(E�

N1
S©α)) ∩ CTN1−N2(α)) \ ⋃

t′′∈T c(t
′′, DN1(E�

N1
S©α))

〈4〉1. Assume: t ∈ EN1
S© c(t1, DN1 ⊗DN2(α))

Prove: t ∈ (c(EN1
S© t1, DN1(E�

N1
S©α))∩CTN1−N2(α))∧t
∈ ⋃

t′′∈T c(t
′′, DN1(E�

N1
S©α))

〈5〉1. ∀t ∈ EN1
S© c(t1, DN1 ⊗DN2(α)) :

({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α
〈6〉1. ∀t ∈ c(t1, DN1 ⊗DN2(α)) :

({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α

67

〈7〉1. ∀t ∈ c(t1, DN1 ⊗DN2(α)) : t ∈ DN1 ⊗DN2(α)
Proof: By assumption 〈2〉1 and Definition 3.1.

〈7〉2. ∀t ∈ DN1 ⊗DN2(α) :
({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α

Proof: By definition (22).
〈7〉3. Q.E.D.

Proof: By 〈7〉1 and 〈7〉2.
〈6〉2. Q.E.D.

Proof: By 〈6〉1 and definition (7).
〈5〉2. EN1

S© c(t1, DN1 ⊗DN2(α)) ⊆ c(EN1
S© t1, DN1(E�

N1
S©α))

Proof: By assumption 〈1〉1, assumption 〈2〉1 and Lemma B.21.
〈5〉3. t ∈ c(EN1

S© t1, DN1(E�

N1
S©α)) ∩ CTN1−N2(α)

Proof: By 〈5〉1, definition (24) and 〈5〉2.
〈5〉4. t
∈ ⋃

t′′∈T c(t
′′, DN1(E�

N1
S©α))

〈6〉1. Assume: t ∈ ⋃
t′′∈T c(t

′′, DN1(E�

N1
S©α))

Prove: ⊥
〈7〉1. ∃t′ ∈ c(t1, DN1 ⊗DN2(α)) : t = EN1

S© t′

Proof: By assumption 〈4〉1 and definition (7).
〈7〉2. Let: t′ ∈ c(t1, DN1 ⊗DN2(α)) such that t = EN1

S© t′

Proof: By 〈7〉1.
〈7〉3. t′ ∈ H

Proof: By 〈7〉2 and Definition 3.1.
〈7〉4. t1 � t′

Proof: By 〈7〉2 and Definition 3.1.
〈7〉5. q.EN1

S© t′[#(EN1
S© t1) + 1] < q.t′[#t1]

〈8〉1. t′[#t1] = t1[#t1]
Proof: By 〈7〉4 and definition (2).

〈8〉2. q.EN1
S© t′[#(EN1

S© t1) + 1] < q.t1[#t1]
〈9〉1. q.t[#(EN1

S© t1) + 1] < q.t1[#t1]
Proof: By assumption 〈6〉1 and assumption 〈1〉1.

〈9〉2. Q.E.D.
Proof: By 〈9〉1, 〈7〉2 and the rule of replacement.

〈8〉3. Q.E.D.
Proof: By 〈8〉1, 〈8〉2 and the rule of replacement [51].

〈7〉6. ∃j ∈ [#t1 + 1..#t′] : t′[j] = EN1
S© t′[#(EN1

S© t1) + 1]
〈8〉1. #(EN1

S© t′) > #(EN1
S© t1)

Proof: By assumption 〈6〉1, assumption 〈1〉1, 〈7〉2 and the rule of
replacement.

〈8〉2. Q.E.D.
Proof: By 〈7〉4, 〈8〉1 and 〈7〉3, since by constraint (8) any event in
rng.t′ ∩ EN1 not in rng.t1 must occur after t′[#t1] in t′.

〈7〉7. Let: j ∈ [#t1 + 1..#t′] such that t′[j] = EN1
S© t′[#(EN1

S© t1) + 1]
Proof: By 〈7〉6

〈7〉8. q.t′[j] < q.t′[#t1]
Proof: By 〈7〉5, 〈7〉7 and the fact that every event in a trace is unique,
due to the total ordering of events by time (constraint (8)).

68

〈7〉9. t′
∈ H
Proof: By 〈7〉7, 〈7〉8 and constraint (8).

〈7〉10. Q.E.D.
Proof: By 〈7〉3, 〈7〉9 and ⊥-introduction.

〈6〉2. Q.E.D.
Proof: Proof by contradiction.

〈5〉5. Q.E.D.
Proof: By 〈5〉3, 〈5〉4 and ∧-introduction.

〈3〉2. (c(EN1
S© t1, DN1(E�

N1
S©α)) ∩CTN1−N2(α)) \ ⋃

t′′∈T c(t
′′, DN1(E�

N1
S©α)) ⊆

EN1
S© c(t1, DN1 ⊗DN2(α))

〈4〉1. Assume: t ∈ (c(EN1
S© t1, DN1(E�

N1
S©α))∩CTN1−N2(α))\⋃t′′∈T c(t

′′, DN1(E�

N1
S©α))

Prove: t ∈ EN1
S© c(t1, DN1 ⊗DN2(α))

〈5〉1. Assume: t
∈ EN1
S© c(t1, DN1 ⊗DN2(α))

Prove: ⊥
〈6〉1. ({!} × S ×N1 ×N2 ×Q) S© t �

({!} × S ×N1 ×N2 ×Q) S©α
Proof: By assumption 〈4〉1 (t ∈ CTN1−N2(α)) and definition (24).

〈6〉2. (#t > #(EN1
S© t1)) ∧ (q.t[#EN1

S© t1 + 1] < q.t1[#t1])
Proof: By assumption 〈1〉1, assumption 〈2〉1, assumption 〈4〉1, assump-
tion 〈5〉1, 〈6〉1 and Lemma B.23.

〈6〉3. t ∈ ⋃
t′′∈T c(t

′′, DN1(E�

N1
S©α))

Proof: By 〈6〉2 and 〈1〉1.
〈6〉4. Q.E.D.

Proof: By assumption 〈4〉1, 〈6〉3 and ⊥-introduction.
〈5〉2. Q.E.D.

Proof: Proof by contradiction.
〈4〉2. Q.E.D.

Proof: ⊆ rule.
〈3〉3. Q.E.D.

Proof: By 〈3〉1, 〈3〉2 and the =-rule for sets [29].
〈2〉2. Q.E.D.

Proof: ⇒-introduction.
〈1〉2. Q.E.D.

Proof: ∀-introduction.

Lemma B.25. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩N2 = ∅ and let α be a queue history in BN1∪N2 . Then

DN1(E�

N1
S©α) ∩ CTN1−N2(α) = EN1

S© (DN1 ⊗DN2(α))

Proof:
〈1〉1. DN1(E�

N1
S©α) ∩ CTN1−N2(α) = EN1

S© (DN1 ⊗DN2(α))
〈2〉1. DN1(E�

N1
S©α) ∩ CTN1−N2(α) ⊆ EN1

S© (DN1 ⊗DN2(α))
〈3〉1. Assume: t ∈ DN1(E�

N1
S©α) ∧ t ∈ CTN1−N2(α)

Prove: t ∈ EN1
S© (DN1 ⊗DN2(α))

〈4〉1. Q.E.D.
Proof: By assumption 〈3〉1, definition (22), definition (24) and definition (7).

69

〈3〉2. Q.E.D.
Proof: ⊆ rule.

〈2〉2. EN1
S© (DN1 ⊗DN2(α)) ⊆ DN1(E�

N1
S©α) ∩ CTN1−N2(α)

〈3〉1. Assume: t ∈ EN1
S© (DN1 ⊗DN2(α))

Prove: t ∈ DN1(E�

N1
S©α) ∧ t ∈ CTN1−N2(α)

〈4〉1. ∃t′ ∈ DN1 ⊗DN2(α) : t = EN1
S© t′

Proof: By assumption 〈3〉1 and definition (7).
〈4〉2. Let: t′ ∈ DN1 ⊗DN2(α) such that t = EN1

S© t′

Proof: By 〈4〉1.
〈4〉3. EN1

S© t′ ∈ DN1(E�

N1
S©α)

Proof: By assumption 〈3〉1, 〈4〉2 and definition (22).
〈4〉4. EN1

S© t′ ∈ CTN1−N2(α)
Proof: By assumption 〈3〉1, 〈4〉2 and definition (24).

〈4〉5. Q.E.D.
Proof: By 〈4〉3, 〈4〉4 and ∧ -introduction.

〈3〉2. Q.E.D.
Proof: ⊆ rule.

〈2〉3. Q.E.D.
Proof: By 〈2〉1, 〈2〉2 and the =-rule for sets [29].

〈1〉2. Q.E.D.

Lemma B.26. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩N2 = ∅ and let α be a queue history in BN1∪N2 . Then

∀t1 ∈ H ∩ E ∗ :c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α)) ⇒
(EN1

S© c(t1, DN1 ⊗DN2(α))) ∈ FN1(E�

N1
S©α)∧

(EN2
S© c(t1, DN1 ⊗DN2(α))) ∈ FN2(E�

N2
S©α)

Proof:
〈1〉1. Assume: t1 ∈ H ∩ E ∗

Prove: c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α)) ⇒
(EN1

S© c(t1, DN1 ⊗DN2(α))) ∈ FN1(E�

N1
S©α) ∧

(EN2
S© c(t1, DN1 ⊗DN2(α))) ∈ FN2(E�

N2
S©α)

〈2〉1. Assume: c(t1, DN1 ⊗DN2(α)) ∈ C(DN1 ⊗DN2(α))
Prove: (EN1

S© c(t1, DN1 ⊗DN2(α))) ∈ FN1(E�

N1
S©α) ∧

(EN2
S© c(t1, DN1 ⊗DN2(α))) ∈ FN2(E�

N2
S©α)

〈3〉1. (EN1
S© c(t1, DN1 ⊗DN2(α))) ∈ FN1(E�

N1
S©α)

〈4〉1. Case: EN1
S© c(t1, DN1 ⊗DN2(α)) = ∅

〈5〉1. Q.E.D.
Proof: Since ∅ ∈ FN1(E�

N1
S©α) by Definition 5.2 and Definition 5.3.

〈4〉2. Case: EN1
S© c(t1, DN1 ⊗DN2(α))
= ∅

〈5〉1. c(EN1
S© t1, DN1(E�

N1
S©α)) ∈ FN1(E�

N1
S©α)

〈6〉1. ∃t′ ∈ DN1 ⊗DN2(α) : EN1
S© t′ ∈ DN1(E�

N1
S©α) ∧ EN1

S© t1 � EN1
S© t′

〈7〉1. ∀t ∈ c(t1, DN1 ⊗DN2(α)) : t ∈ DN1 ⊗DN2(α) ∧ t1 � t
Proof: By assumption 〈2〉1, Definition 3.2 and Definition 3.1.

〈7〉2. ∀t ∈ DN1 ⊗DN2(α) : EN1
S© t ∈ DN1(E�

N1
S©α)

70

Proof: By definition (22).
〈7〉3. Let: t ∈ c(t1, DN1 ⊗DN2(α))
〈7〉4. t ∈ DN1 ⊗DN2(α) ∧ EN1

S© t ∈ DN1(E�

N1
S©α) ∧ EN1

S© t1 � EN1
S© t

Proof: By 〈7〉1, 〈7〉2, 〈7〉3 and ∀ elimination.
〈7〉5. Q.E.D.

Proof: By 〈7〉4 and ∃-introduction.
〈6〉2. Q.E.D.

Proof: By 〈6〉1 and Definition 3.1.
〈5〉2. Case: EN1

S© c(t1, DN1 ⊗DN2(α)) = c(EN1
S© t1, DN1(E�

N1
S©α))

〈6〉1. Q.E.D.
Proof: By 〈5〉1 and assumption 〈5〉2.

〈5〉3. Case: EN1
S© c(t1, DN1 ⊗DN2(α))
= c(EN1

S© t1, DN1(E�

N1
S©α))

〈6〉1. CTN1−N2(α) ∈ FN1(E�

N1
S©α)

Proof: By Lemma 5.4.
〈6〉2. c(EN1

S© t1, DN1(E�

N1
S©α)) ∩ CTN1−N2(α) ∈ FN1(E�

N1
S©α)

Proof: By 〈5〉1 and 〈6〉1, since FN1(E�

N1
S©α) is closed under countable

intersection.
〈6〉3. Case: t1 = 〈〉
〈7〉1. c(EN1

S© t1, DN1(E�

N1
S©α))∩CTN1−N2(α) = EN1

S© c(t1, DN1⊗DN2(α))
〈8〉1. c(t1, DN1 ⊗DN2(α)) = DN1 ⊗DN2(α)

Proof: By assumption 〈6〉3 and Definition 3.1.
〈8〉2. c(EN1

S© t1, DN1(E�

N1
S©α)) = DN1(E�

N1
S©α)

Proof: By assumption 〈6〉3, definition (7) and Definition 3.1.
〈8〉3. Q.E.D.

Proof: By 〈8〉1, 〈8〉2 and Lemma B.25.
〈7〉2. Q.E.D.

Proof: By 〈6〉2, 〈7〉1 and the rule of replacement [51].
〈6〉4. Case: t1
= 〈〉

〈7〉1. Let: T = {t ∈ H |#t = #(EN1
S© t1) + 1 ∧ ∃t′ ∈ DN1(E�

N1
S©α) :

t � t′ ∧ q.t[#(EN1
S© t1) + 1] < q.t1[#t1]}

〈7〉2. (c(EN1
S© t1, DN1(E�

N1
S©α))∩CTN1−N2(α))\⋃t∈T c(t,DN1(E�

N1
S©α)) =

EN1
S© c(t1, DN1 ⊗DN2(α))

Proof: By assumption 〈1〉1 assumption 〈2〉1, 〈7〉1 and Lemma B.24.
〈7〉3. (c(EN1

S© t1, DN1(E�

N1
S©α))∩CTN1−N2(α))\⋃t∈T c(t,DN1(E�

N1
S©α)) ∈

FN1(E�

N1
S©α)

〈8〉1.
⋃
t∈T c(t,DN1(E�

N1
S©α)) ∈ FN1(E�

N1
S©α)

Proof: By assumption 〈1〉1, 〈7〉1 and Corollary B.10.
〈8〉2. Q.E.D.

Proof: By 〈6〉2 and 〈8〉1, since FN1(E�

N1
S©α) is closed under set-

difference.
〈7〉4. Q.E.D.

Proof: By 〈7〉3, 〈7〉2 and the rule of replacement [51].
〈6〉5. Q.E.D.

Proof: The cases 〈6〉3 and 〈6〉4 are exhaustive.
〈5〉4. Q.E.D.

Proof: The cases 〈5〉2 and 〈5〉3 are exhaustive.

71

〈4〉3. Q.E.D.
Proof: The cases 〈4〉1 and 〈4〉2 are exhaustive.

〈3〉2. (EN2
S© c(t1, DN1 ⊗DN2(α))) ∈ FN2(E�

N2
S©α)

Proof: Symmetrical to 〈3〉1.
〈3〉3. Q.E.D.

Proof: By 〈3〉1, 〈3〉2 and ∧ -introduction.
〈2〉2. Q.E.D.

Proof: ⇒-introduction.
〈1〉2. Q.E.D.

Proof: ∀-introduction.

Theorem 5.5 Let IN1 and IN2 be two probabilistic component executions such that N1∩
N2 = ∅, let α be a queue history in BN1∪N2 and let μN1 ⊗ μN2(α) be a measure on
CE(DN1 ⊗DN2(α)) as defined by (25). Then the function μN1 ⊗ μN2(α) is well defined.
That is:

∀c ∈ CE(DN1 ⊗DN2(α)) :(EN1
S© c) ∈ FN1(E�

N1
S©α) ∧ (EN2

S© c) ∈ FN2(E�

N2
S©α)

Proof. Follows from Lemma B.16 and Lemma B.26.

Lemma B.27. Let (D1,F1, μ1) and (D2,F2, μ2) be measure spaces. Then

∀A1 ∈ F1,A2 ∈ F2 :
(∀φ ∈ (P(D1 ×D2)) ω : ∀i ∈ [1..#φ] :φ[i] ∈ F1×F2

∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)

∧
#φ⋃
i=1

φ[i] = A1 ×A2 ∧
#φ⋃
i=1

φ[i] ∈ F1×F2)

⇒ (μ1(A1) · μ2(A2) =
#φ∑
i=1

μ1({Π1.p | p ∈ φ[i]}) · μ2({Π2.p | p ∈ φ[i]}))8

Proof:
〈1〉1. Assume: A1 ∈ F1 ∧A2 ∈ F2 :

Prove: (∀φ ∈ (P(D1 ×D2)) ω : ∀i ∈ [1..#φ] :φ[i] ∈ F1×F2

∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] = A1 ×A2 ∧
⋃#φ
i=1 φ[i] ∈ F1×F2)

⇒ (μ1(A1) · μ2(A2) =
∑#φ
i=1 μ1({Π1.p | p ∈ φ[i]}) · μ2({Π2.p | p ∈ φ[i]}))

〈2〉1. Assume: φ ∈ (P(D1 ×D2)) ω

Prove: ∀i ∈ [1..#φ] :φ[i] ∈ F1×F2

∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] = A1 ×A2 ∧
⋃#φ
i=1 φ[i] ∈ F1×F2 ⇒

μ1(A1) · μ2(A2) =
∑#φ

i=1 μ1({Π1.p | p ∈ φ[i]}) · μ2({Π2.p | p ∈ φ[i]})
〈3〉1. Assume: i ∈ [1..#φ]

8D1 ×D2 denotes the cartesian product of D1 and D2, and F1×F2 denotes the product σ-field, that
is, is the smallest σ-field containing all measurable rectangles of D1 ×D2, as defined in Definition A.10.

72

Prove: φ[i] ∈ F1×F2 ∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] = A1 ×A2 ∧
⋃#φ
i=1 φ[i] ∈ F1×F2 ⇒

μ1(A1) · μ2(A2) =
∑#φ

i=1 μ1({Π1.p | p ∈ φ[i]}) · μ2({Π2.p | p ∈ φ[i]})
〈4〉1. Assume: φ[i] ∈ F1×F2 ∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)

∧ ⋃#φ
i=1 φ[i] = A1 ×A2 ∧

⋃#φ
i=1 φ[i] ∈ F1×F2

Prove: μ1(A1) ·μ2(A2) =
∑#φ

i=1 μ1({Π1.p | p ∈ φ[i]}) ·μ2({Π2.p | p ∈ φ[i]})
〈5〉1. There is a unique measure μ on F1×F2, such that

μ1(A1) · μ2(A2) = μ(
⋃#φ
i=1 φ[i])

Proof: By assumption 〈1〉1, assumption 〈4〉1 (A1 × A2 =
⋃#φ
i=1 φ[i]) and

Theorem B.4.
〈5〉2. Let: μ be the unique measure μ on F1×F2, such that

μ1(A1) · μ2(A2) = μ(
⋃#φ
i=1 φ[i])

Proof: By 〈5〉1.
〈5〉3. μ(

⋃#φ
i=1 φ[i]) =

∑#φ
i=1 μ1({Π1.p | p ∈ φ[i]}) · μ2({Π2.p | p ∈ φ[i]})

〈6〉1. μ(
⋃#φ
i=1 φ[i]) =

∑#φ
i=1 μ(φ[i])

Proof: By Theorem B.4 μ is a measure on F1×F2, which by Definition A.6
implies that it is countably additive.

〈6〉2. ∀i ∈ [1..#φ] :μ(φ[i]) = μ1({Π1.p | p ∈ φ[i]}) · μ2({Π2.p | p ∈ φ[i]})
〈7〉1. Assume: i ∈ [1..#φ]

Prove: μ(φ[i]) = μ1({Π1.p | p ∈ φ[i]}) · μ2({Π2.p | p ∈ φ[i]})
〈8〉1. φ[i] = {Π1.p | p ∈ φ[i]} × {Π2.p | p ∈ φ[i]}

Proof: By assumption 〈7〉1, assumption 〈4〉1 and definition (32).
〈8〉2. {Π1.p | p ∈ φ[i]} ∈ F1 ∧ {Π2.p | p ∈ φ[i]} ∈ F2

Proof: By assumption 〈7〉1, 〈4〉1 (φ[i] ∈ F1×F2) and definition (A.10).
〈8〉3. Q.E.D.

Proof: By 〈8〉1, 〈8〉2 and Theorem B.4.
〈7〉2. Q.E.D.

Proof: ∀-introduction.
〈6〉3. Q.E.D.

Proof: By 〈6〉1 and 〈6〉2.
〈5〉4. Q.E.D.

Proof: By 〈5〉2, 〈5〉3 and the rule of transitivity [51].
〈4〉2. Q.E.D.

Proof: ⇒-introduction.
〈3〉2. Q.E.D.

Proof: ∀-introduction.
〈2〉2. Q.E.D.

Proof: ∀-introduction.
〈1〉2. Q.E.D.

Proof: ∀-introduction.

Lemma B.28. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩N2 = ∅ and let α be a queue history in BN1∪N2 . Then

∀φ ∈ P(H) ω :(∀i ∈ [1..#φ] :φ[i] ∈ CE(DN1 ⊗DN2(α))
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)

73

∧
#φ⋃
i=1

φ[i] ∈ CE(DN1 ⊗DN2(α)))

⇒ (μN1 ⊗ μN2(α)(
#φ⋃
i=1

φ[i]) =
#φ∑
i=1

μN1 ⊗ μN2(α)(φ[i]))

Proof:
〈1〉1. Assume: φ ∈ P(H) ω

Prove: (∀i ∈ [1..#φ] :φ[i] ∈ CE(DN1 ⊗DN2(α))
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ CE(DN1 ⊗DN2(α)))
⇒ (μN1 ⊗ μN2(α)(

⋃#φ
i=1 φ[i]) =

∑#φ
i=1 μN1 ⊗ μN2(α)(φ[i]))

〈2〉1. Assume: ∀i ∈ [1..#φ] :φ[i] ∈ CE(DN1 ⊗DN2(α))
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ CE(DN1 ⊗DN2(α))
Prove: μN1 ⊗ μN2(α)(

⋃#φ
i=1 φ[i]) =

∑#φ
i=1 μN1 ⊗ μN2(α)(φ[i])

〈3〉1. EN1
S©

⋃#φ
i=1 φ[i] ∈ FN1(E�

N1
S©α) ∧ EN2

S©
⋃#φ
i=1 φ[i] ∈ FN2(E�

N2
S©α)

Proof: By assumption 〈2〉1 and Theorem 5.5.
〈3〉2. ∀i ∈ [1..#φ] : EN1

S©φ[i] ∈ FN1(E�

N1
S©α) ∧ EN2

S©φ[i] ∈ FN2(E�

N2
S©α)

Proof: By assumption 〈2〉1 and Theorem 5.5.
〈3〉3. μN1 ⊗ μN2(α)(

⋃#φ
i=1 φ[i]) =

fN1(E�

N1
S©α)(EN1

S©
⋃#φ
i=1 φ[i]) · fN2(E�

N2
S©α)(EN2

S©
⋃#φ
i=1 φ[i])

Proof: By definition (25) and 〈3〉1.
〈3〉4. fN1(E�

N1
S©α)(EN1

S©
⋃#φ
i=1 φ[i]) · fN2(E�

N2
S©α)(EN2

S©
⋃#φ
i=1 φ[i]) =∑#φ

i=1 fN1(E�

N1
S©α)(EN1

S©φ[i]) · fN2(E�

N2
S©α)(EN2

S©φ[i])
〈4〉1. Case:

⋃#φ
i=1 φ[i] ∈ CE(DN1 ⊗DN2(α)) \ C(DN1 ⊗DN2(α))

〈5〉1. ∃t ∈ (DN1 ⊗DN2(α) ∩ E ∗) :{t} =
⋃#φ
i=1 φ[i]

Proof: By assumption 〈4〉1 and Definition 3.3.
〈5〉2. Let: t ∈ (DN1 ⊗DN2(α) ∩ E ∗) such that {t} =

⋃#φ
i=1 φ[i]

Proof: By 〈5〉1.
〈5〉3. #φ = 1

Proof: By 〈5〉2 and assumption 〈2〉1.
〈5〉4. Q.E.D.

Proof: By 〈5〉3.
〈4〉2. Case:

⋃#φ
i=1 φ[i] ∈ C(DN1 ⊗DN2(α))

〈5〉1. Let: ψ be a sequence in (P(DN1(E�

N1
S©α) ×DN2(E�

N2
S©α))) ω such that

#ψ = #φ ∧ ∀i ∈ [1..#φ] :ψ[i] = {(EN1
S© t, EN2

S© t) | t ∈ φ[i]}
〈5〉2. ∀i ∈ [1..#ψ] :ψ[i] ∈ FN1(E�

N1
S©α)×FN2(E�

N2
S©α) ∧

(∀m, j ∈ [1..#ψ] : j
= m⇒ ψ[j] ∩ ψ[m] = ∅) ∧⋃#ψ
i=1 ψ[i] = EN1

S©
⋃#φ
i=1 φ[i] × EN2

S©
⋃#φ
i=1 φ[i] ∧⋃#ψ

i=1 ψ[i] ∈ FN1(E�

N1
S©α)×FN2(E�

N2
S©α) ⇒

(fN1(E�

N1
S©α)(EN1

S©
⋃#φ
i=1 φ[i]) · fN2(E�

N2
S©α)(EN2

S©
⋃#φ
i=1 φ[i]) =∑#ψ

i=1 fN1(E�

N1
S©α)({Π1.p | p ∈ ψ[i]}) · fN2(E�

N2
S©α)({Π2.p | p ∈ ψ[i]})

74

Proof: By 〈3〉1, 〈5〉1, the assumption that IN1 and IN2 are probabilistic com-
ponent executions, Definition 5.3, Definition 3.4, Lemma B.27 and ∀ elimina-
tion.

〈5〉3. fN1(E�

N1
S©α)(EN1

S©
⋃#φ
i=1 φ[i]) · fN2(E�

N2
S©α)(EN2

S©
⋃#φ
i=1 φ[i]) =∑#ψ

i=1 fN1(E�

N1
S©α)({Π1.p | p ∈ ψ[i]}) · fN2(E�

N2
S©α)({Π2.p | p ∈ ψ[i]})

〈6〉1. ∀i ∈ [1..#ψ] :ψ[i] ∈ FN1(E�

N1
S©α)×FN2(E�

N2
S©α)

〈7〉1. Assume: i ∈ [1..#ψ]
Prove: ψ[i] ∈ FN1(E�

N1
S©α)×FN2(E�

N2
S©α)

〈8〉1. ψ[i] = EN1
S©φ[i] × EN2

S©φ[i]
Proof: By assumption 〈7〉1, 〈5〉1, definition (32) and definition (7).

〈8〉2. EN1
S©φ[i] ∈ FN1(E�

N1
S©α) ∧ EN2

S©φ[i] ∈ FN2(E�

N2
S©α)

Proof: By 〈3〉2, assumption 〈7〉1, 〈5〉1 and ∀ elimination.
〈8〉3. EN1

S©φ[i] × EN2
S©φ[i] ∈ FN1(E�

N1
S©α)×FN2(E�

N2
S©α)

Proof: By 〈8〉2 and Definition A.10.
〈8〉4. Q.E.D.

Proof: By 〈8〉1, 〈8〉3 and the rule of replacement [51].
〈7〉2. Q.E.D.

Proof: ∀ introduction.
〈6〉2. ∀l,m ∈ [1..#ψ] : l
= m⇒ ψ[l] ∩ ψ[m] = ∅

Proof: By assumption 〈2〉1 and 〈5〉1.
〈6〉3.

⋃#ψ
i=1 ψ[i] = EN1

S©
⋃#φ
i=1 φ[i] × EN2

S©
⋃#φ
i=1 φ[i]

〈7〉1.
⋃#ψ
i=1 ψ[i] ⊆ EN1

S©
⋃#φ
i=1 φ[i] × EN2

S©
⋃#φ
i=1 φ[i]

〈8〉1. Assume: p ∈ ⋃#ψ
i=1 ψ[i]

Prove: p ∈ EN1
S©

⋃#φ
i=1 φ[i] × EN2

S©
⋃#φ
i=1 φ[i]

〈9〉1. ∃t ∈ ⋃#φ
i=1 φ[i] : p = (EN1

S© t, EN2
S© t)

Proof: By assumption 〈8〉1 and 〈5〉1.
〈9〉2. Let: t ∈ ⋃#φ

i=1 φ[i] such that p = (EN1
S© t, EN2

S© t)
Proof: By 〈9〉1.

〈9〉3. EN1
S© t ∈ EN1

S©
⋃#φ
i=1 φ[i] ∧ EN2

S© t ∈ EN2
S©

⋃#φ
i=1 φ[i]

Proof: By 〈9〉2 and definition (7).
〈9〉4. Q.E.D.

Proof: By 〈9〉2, 〈9〉3 and definition (32).
〈8〉2. Q.E.D.

Proof: ⊆ rule
〈7〉2. EN1

S©
⋃#φ
i=1 φ[i] × EN2

S©
⋃#φ
i=1 φ[i] ⊆ ⋃#ψ

i=1 ψ[i]
〈8〉1. Assume: p ∈ EN1

S©
⋃#φ
i=1 φ[i] × EN2

S©
⋃#φ
i=1 φ[i]

Prove: p ∈ ⋃#ψ
i=1 ψ[i]

〈9〉1. ∃t1 ∈ (EN1
S©

⋃#φ
i=1 φ[i]) : ∃t2 ∈ (EN2

S©
⋃#φ
i=1 φ[i]) : p = (t1, t2)

Proof: By assumption 〈8〉1 and definition (32).
〈9〉2. Let: t1 ∈ (EN1

S©
⋃#φ
i=1 φ[i]), t2 ∈ (EN2

S©
⋃#φ
i=1 φ[i]) such that

p = (t1, t2)
Proof: By 〈9〉1.

〈9〉3. ∃t ∈ ⋃#φ
i=1 φ[i] : EN1

S© t = t1 ∧ EN2
S© t = t2

〈10〉1. ∃t ∈ H ∩ E ∗ : ∃t′ ∈ DN1 ⊗DN2(α) : t � t′ ∧

75

c(t,DN1 ⊗DN2(α)) =
⋃#φ
i=1 φ[i]

Proof: By assumption 〈4〉2.
〈10〉2. Let: t ∈ H ∩ E ∗ such that ∃t′ ∈ DN1 ⊗DN2(α) : t � t′ ∧

c(t,DN1 ⊗DN2(α)) =
⋃#φ
i=1 φ[i]

Proof: By 〈10〉1.
〈10〉3. ∀t1, t2 ∈ H : t1 ∈ EN1

S© c(t,DN1 ⊗DN2(α)) ∧
t2 ∈ EN2

S© c(t,DN1 ⊗DN2(α))) ⇒
(∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1

S© t′ = t1 ∧ EN2
S© t′ = t2)

Proof: By assumption 〈2〉1, 〈10〉2 the rule of replacement [51]
and Lemma B.22.

〈10〉4. t1 ∈ EN1
S© c(t,DN1⊗DN2(α))∧t2 ∈ EN2

S© c(t,DN1⊗DN2(α))
〈11〉1. EN1

S©
⋃#φ
i=1 φ[i] = EN1

S© c(t,DN1 ⊗DN2(α)) ∧
EN2

S©
⋃#φ
i=1 φ[i] = EN2

S© c(t,DN1 ⊗DN2(α))
Proof: By 〈10〉2 and the rule of equality between functions [51].

〈11〉2. Q.E.D.
Proof: By 〈9〉2, 〈11〉1 and the rule of replacement [51].

〈10〉5. ∃t′ ∈ c(t,DN1 ⊗DN2(α)) : EN1
S© t′ = t1 ∧ EN2

S© t′ = t2
Proof: By 〈10〉3, 〈10〉4 and ∀ elimination.

〈10〉6. Let: t′ ∈ c(t,DN1 ⊗ DN2(α)) such that EN1
S© t′ = t1 ∧

EN2
S© t′ = t2

Proof: By 〈10〉5.
〈10〉7. t′ ∈ ⋃#φ

i=1 φ[i]
Proof: By 〈10〉2, 〈10〉6 and the rule of replacement [51].

〈10〉8. Q.E.D.
Proof: By 〈10〉7, 〈10〉6 and ∃ introduction.

〈9〉4. Let: t ∈ ⋃#φ
i=1 φ[i] such that EN1

S© t = t1 ∧ EN2
S© t = t2

Proof: By 〈9〉3.
〈9〉5. (EN1

S© t, EN2
S© t) ∈ ⋃#ψ

i=1 ψ[i]
Proof: By 〈9〉4 and 〈5〉1.

〈9〉6. Q.E.D.
Proof: By 〈9〉2, 〈9〉4, 〈9〉5 and the rule of replacement [51].

〈8〉2. Q.E.D.
Proof: ⊆-rule.

〈7〉3. Q.E.D.
Proof: By 〈7〉1, 〈7〉2 and the =-rule for sets [29].

〈6〉4.
⋃#ψ
i=1 ψ[i] ∈ FN1(E�

N1
S©α)×FN2(E�

N2
S©α)

〈7〉1. EN1
S©

⋃#φ
i=1 φ[i] × EN2

S©
⋃#φ
i=1 φ[i] ∈ FN1(E�

N1
S©α)×FN2(E�

N2
S©α)

Proof: By 〈3〉1 and Definition A.10.
〈7〉2. Q.E.D.

Proof: By 〈6〉3, 〈7〉1 and the rule of replacement.
〈6〉5. Q.E.D.

Proof: By 〈5〉2, 〈6〉1, 〈6〉2, 〈6〉3, 〈6〉4 and ⇒ elimination.
〈5〉4. ∀i ∈ [1..#ψ] :{Π1.p | p ∈ ψ[i]} = EN1

S©φ[i] ∧ {Π2.p | p ∈ ψ[i]} = EN2
S©φ[i]

Proof: By 〈5〉1.
〈5〉5. Q.E.D.

76

Proof: By 〈5〉3, 〈5〉4 and the rule of replacement.
〈4〉3. Q.E.D.

Proof: By assumption 〈2〉1, the cases 〈4〉1 and 〈4〉2 are exhaustive.
〈3〉5.

∑#φ
i=1 fN1(E�

N1
S©α)(EN1

S©φ[i]) · fN2(E�

N2
S©α)(EN2

S©φ[i]) =∑#φ
i=1 μN1 ⊗ μN2(α)(φ[i])

〈4〉1. ∀i ∈ [1..#φ] :μN1⊗μN2(α)(φ[i]) = fN1(E�

N1
S©α)(EN1

S©φ[i])·fN2(E�

N2
S©α)(EN2

S©φ[i])
Proof: By definition (25) and 〈3〉2.

〈4〉2. Q.E.D.
Proof: By 〈4〉1 and the rule of equality between functions [51].

〈3〉6. Q.E.D.
Proof: By 〈3〉3, 〈3〉4, 〈3〉5 and the rule of transitivity [51].

〈2〉2. Q.E.D.
Proof: By ⇒-introduction.

〈1〉2. Q.E.D.
Proof: By ∀-introduction.

Lemma 5.6 Let IN1 and IN2 be two probabilistic component executions such that N1 ∩
N2 = ∅ and let μN1 ⊗μN2 be a measure on the composite extended cone set of DN1 ⊗DN2

as defined in (25). Then, for all complete queue histories α ∈ BN1∪N2

1. μN1 ⊗ μN2(α)(∅) = 0

2. μN1 ⊗ μN2(α) is σ-additive

3. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) ≤ 1

Proof: (Proof of Lemma 5.6.1.)
〈1〉1. ∀α ∈ BN :μN1 ⊗ μN2(α)(∅) = 0
〈2〉1. Assume: α ∈ BN

Prove: μN1 ⊗ μN2(α)(∅) = 0
〈3〉1. μN1 ⊗ μN2(α)(∅) = fN1(E�

N1
S©α)(∅) · fN2(E�

N2
S©α)(∅)

〈4〉1. EN1
S© ∅ = ∅ ∧ EN2

S© ∅ = ∅
Proof: By definition (7).

〈4〉2. ∅ ∈ FN1(E�

N1
S©α) ∧ ∅ ∈ FN2(E�

N2
S©α)

Proof: By assumption 〈2〉1, definition (21) and Definition 5.3.
〈4〉3. Q.E.D.
Proof: By definition (25), 〈4〉1,〈4〉2 and the rule of replacement.

〈3〉2. fN1(E�

N1
S©α)(∅) = 0

Proof: By the assumption that IN1 is a probabilistic component execution, Def-
inition 5.3, Definition 5.1 and Definition A.6.

〈3〉3. fN2(E�

N2
S©α)(∅) = 0

Proof: By the assumption that IN2 is a probabilistic component execution, Def-
inition 5.3, Definition 5.1 and Definition A.6.

〈3〉4. Q.E.D.
Proof: By 〈3〉1, 〈3〉2, 〈3〉3 and elementary arithmetic.

〈2〉2. Q.E.D.
Proof: ∀-introduction.

〈1〉2. Q.E.D.

77

Proof. (Proof of Lemma 5.6.2.) Follows from Lemma B.28.

Proof: (Proof of Lemma 5.6.3)
〈1〉1. ∀α ∈ BN :μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) ≤ 1
〈2〉1. Assume: α ∈ BN

Prove: μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) ≤ 1
〈3〉1. EN1

S© (DN1 ⊗DN2(α)) ∈ FN1(E�

N1
S©α)∧EN2

S© (DN1 ⊗DN2(α)) ∈ FN2(E�

N2
S©α)

〈4〉1. DN1 ⊗DN2(α) ∈ CE(DN1 ⊗DN2(α))
Proof: By Definition 3.3.

〈4〉2. Q.E.D.
Proof: By 〈4〉1 and Theorem 5.5.

〈3〉2. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) = fN1(E�

N1
S©α)(EN1

S©DN1 ⊗DN2(α)) ·
fN2(E�

N2
S©α)(EN2

S©DN1 ⊗DN2(α))
Proof: By assumption 〈2〉1, 〈3〉1 and definition (25).

〈3〉3. fN1(E�

N1
S©α)(EN1

S©DN1 ⊗DN2(α)) ·
fN2(E�

N2
S©α)(EN2

S©DN1 ⊗DN2(α)) ≤ 1
〈4〉1. fN1(E�

N1
S©α)(EN1

S©DN1 ⊗DN2(α)) ≤ 1
〈5〉1. fN1(E�

N1
S©α)(EN1

S©DN1 ⊗DN2(α)) = fN1(E�

N1
S©α)(DN1(E�

N1
S©α)∩CTN1−N2(α))

〈6〉1. DN1(E�

N1
S©α) ∩ CTN1−N2(α) = EN1

S© (DN1 ⊗DN2(α))
Proof: By Lemma B.25.

〈6〉2. Q.E.D.
Proof: By 〈6〉1 and the rule of equality of functions [51].

〈5〉2. DN1(E�

N1
S©α) ∩ CTN1−N2(α) ⊆ DN1(E�

N1
S©α)

Proof: By definition (24).
〈5〉3. fN1(E�

N1
S©α)(DN1(E�

N1
S©α)) ≤ 1

Proof: By the assumption that IN1 is a probabilistic component execution,
Definition 5.3, and Definition 5.1.

〈5〉4. Q.E.D.
Proof: By 〈5〉1, 〈5〉2, 〈5〉3 and Lemma B.8.

〈4〉2. fN2(E�

N2
S©α)(EN2

S©DN1 ⊗DN2(α)) ≤ 1
Proof: Symmetrical to 〈4〉1.

〈4〉3. Q.E.D.
Proof: By 〈4〉1, 〈4〉2 and elementary arithmetic.

〈3〉4. Q.E.D.
Proof: By 〈3〉2, 〈3〉3 and the rule of transitivity [51].

〈2〉2. Q.E.D.
Proof: ∀-introduction.

〈1〉2. Q.E.D.

Lemma B.29. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩ N2 = ∅, let α be a queue history in BN1∪N2 . Let μN1 ⊗ μN2(α) be a measure on
CE(DN1 ⊗DN2(α)) as defined by (25) and let F1(CE(DN1 ⊗DN2(α))) be an extension of
CE(DN1 ⊗DN2(α)) as defined in Definition A.11. The function μN1 ⊗ μN2

′(α) defined

78

by

μN1 ⊗ μN2
′(α)(c) def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μN1 ⊗ μN2(α)(c) if c ∈ CE(DN1 ⊗DN2(α))
μN1 ⊗ μN2(α)(DN1 ⊗DN2(α))−

μN1 ⊗ μN2(α)(DN1 ⊗DN2(α) \ c)
if c ∈ F1(CE(DN1 ⊗DN2(α))) \ CE(DN1 ⊗DN2(α))

(33)

is a measure on F1(CE(DN1 ⊗DN2(α))).

Proof:
〈1〉1. μN1 ⊗ μN2

′(α)(∅) = 0
〈2〉1. ∅ ∈ F1(CE(DN1 ⊗DN2(α))) \ CE(DN1 ⊗DN2(α))

Proof: By Definition A.11.
〈2〉2. μN1 ⊗ μN2

′(α)(∅) = μN1⊗μN2(α)(DN1⊗DN2(α))−μN1⊗μN2(α)(DN1⊗DN2(α))
Proof: By 〈2〉1 and definition (33)

〈2〉3. Q.E.D.
Proof: By 〈2〉2.

〈1〉2. ∀φ ∈ P(H) ω : ∀i ∈ [1..#φ] :φ[i] ∈ F1(CE(DN1 ⊗DN2(α)))
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ F1(CE(DN1 ⊗DN2(α)))
⇒ μN1 ⊗ μN2

′(α)(
⋃#φ
j=1 φ[j]) =

∑#φ
j=1 μN1 ⊗ μN2

′(α)(φ[j])
〈2〉1. Assume: φ ∈ P(H) ω

Prove: ∀i ∈ [1..#φ] :φ[i] ∈ F1(CE(DN1 ⊗DN2(α)))
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ F1(CE(DN1 ⊗DN2(α)))
⇒ μN1 ⊗ μN2

′(α)(
⋃#φ
j=1 φ[j]) =

∑#φ
j=1 μN1 ⊗ μN2

′(α)(φ[j])
〈3〉1. Assume: ∀i ∈ [1..#φ] :φ[i] ∈ F1(CE(DN1 ⊗DN2(α)))

∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ F1(CE(DN1 ⊗DN2(α)))
Prove: μN1 ⊗ μN2

′(α)(
⋃#φ
j=1 φ[j]) =

∑#φ
j=1 μN1 ⊗ μN2

′(α)(φ[j])
〈4〉1.

⋃#φ
i=1 φ[i] ∈ FN1 ⊗FN2(α)

Proof: By assumption 〈3〉1, Proposition B.1 (F1(CE(DN1 ⊗DN2(α))) ⊆ FN1⊗
FN2(α)) and elementary set theory.

〈4〉2. ∃φ′ ∈ P(H) ω : ∀i ∈ [1..#φ′] :φ′[i] ∈ CE(DN1 ⊗DN2(α))
∧ (∀m, j ∈ [1..#φ′] : j
= m⇒ φ′[j] ∩ φ′[m] = ∅) ∧⋃#φ′

i=1 φ
′[i] =

⋃#φ
i=1 φ[i]

Proof: By 〈4〉1, Lemma B.14 and Corollary B.7.
〈4〉3. Let: φ′ ∈ P(H) ω such that ∀i ∈ [1..#φ′] :φ′[i] ∈ CE(DN1 ⊗DN2(α))

∧ (∀m, j ∈ [1..#φ′] : j
= m⇒ φ′[j] ∩ φ′[m] = ∅)
∧ ⋃#φ′

i=1 φ
′[i] =

⋃#φ
i=1 φ[i]

Proof: By 〈4〉2
〈4〉4. Case:

⋃#φ′

i=1 φ
′[i] ∈ CE(DN1 ⊗DN2(α))

〈5〉1. μN1 ⊗ μN2
′(α)(

⋃#φ
i=1 φ[i]) = μN1 ⊗ μN2(α)(

⋃#φ
i=1 φ[i])

Proof: By assumption 〈4〉4, 〈4〉3, the rule of replacement [51] and defini-
tion (33).

79

〈5〉2. μN1 ⊗ μN2(α)(
⋃#φ
i=1 φ[i]) = μN1 ⊗ μN2(α)(

⋃#φ′

i=1 φ
′[i])

Proof: By 〈4〉3 and the rule of equality of functions [51].
〈5〉3. μN1 ⊗ μN2(α)(

⋃#φ′

i=1 φ
′[i]) =

∑#φ
i=1 μN1 ⊗ μN2

′(α)(φ[i])
〈6〉1. μN1 ⊗ μN2(α)(

⋃#φ′

i=1 φ
′[i]) =

∑#φ′

i=1 μN1 ⊗ μN2(α)(φ′[i])
Proof: By 〈4〉3, assumption 〈4〉4 and Lemma B.28.

〈6〉2.
∑#φ′

i=1 μN1 ⊗ μN2(α)(φ′[i]) =
∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i])

〈7〉1. ∀i ∈ [1..#φ′] :μN1 ⊗ μN2(α)(φ′[i]) = μN1 ⊗ μN2
′(α)(φ′[i])

Proof: By 〈4〉3 and definition (33).
〈7〉2. Q.E.D.

Proof: By 〈7〉1 and the rule of equality between functions.
〈6〉3.

∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i]) =

∑#φ
i=1 μN1 ⊗ μN2

′(α)(φ[i])
Proof: By 〈4〉3 and definition (33), since φ and φ′ are two different parti-
tions of the same set.

〈6〉4. Q.E.D.
Proof: By 〈6〉1, 〈6〉2 〈6〉3 and the rule of transitivity [51].

〈5〉4. Q.E.D.
Proof: By 〈5〉1, 〈5〉2, 〈5〉3 and the rule of transitivity [51].

〈4〉5. Case:
⋃#φ′

i=1 φ
′[i] ∈ F1(CE(DN1 ⊗DN2(α))) \CE(DN1 ⊗DN2(α))

〈5〉1. DN1 ⊗DN2(α) \ ⋃#φ′

i=1 φ
′[i] ∈ CE(DN1 ⊗DN2(α))

Proof: By assumption 〈4〉5 and Definition A.11.
〈5〉2. μN1 ⊗ μN2

′(α)(
⋃#φ
i=1 φ[i]) =

μN1 ⊗μN2(α)(DN1 ⊗DN2(α))−μN1 ⊗μN2(α)(DN1 ⊗DN2(α) \⋃#φ
i=1 φ[i])

Proof: By assumption 〈4〉5, 〈4〉3, the rule of replacement [51] and defini-
tion (33).

〈5〉3. μN1⊗μN2(α)(DN1 ⊗DN2(α))−μN1 ⊗μN2(α)(DN1 ⊗DN2(α)\⋃#φ
i=1 φ[i]) =∑#φ′

i=1 μN1 ⊗ μN2(α)(φ′[i])
〈6〉1. Let: ψ′ = 〈DN1 ⊗DN2(α) \ ⋃#φ

i=1 φ[i]〉� φ′

〈6〉2. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) =
∑#ψ′

i=1 μN1 ⊗ μN2(α)(ψ′[i])
〈7〉1.

⋃#ψ′

i=1 ψ
′[i] = DN1 ⊗DN2(α)

〈8〉1.
⋃#ψ′

i=1 ψ
′[i] =

⋃#φ′

i=1 φ
′[i] ∪DN1 ⊗DN2(α) \ ⋃#φ

i=1 φ[i]
Proof: By 〈6〉1.

〈8〉2.
⋃#φ′

i=1 φ
′[i] ∪ (DN1 ⊗DN2(α) \ ⋃#φ

i=1 φ[i]) = DN1 ⊗DN2(α)
〈9〉1.

⋃#φ
i=1 φ[i] ∪ (DN1 ⊗DN2(α) \ ⋃#φ

i=1 φ[i]) = DN1 ⊗DN2(α)
〈10〉1.

⋃#φ
i=1 φ[i] ⊆ DN1 ⊗DN2(α)

〈11〉1. ∀A ∈ FN1 ⊗FN2(α) :A ⊆ DN1 ⊗DN2(α)
Proof: By Definition A.4 and Definition A.3.

〈11〉2. Q.E.D.
Proof: By assumption 〈3〉1, Proposition B.1 (F1(CE(DN1 ⊗
DN2(α))) ⊆ FN1 ⊗FN2(α)), 〈11〉1 and ∀ elimination.

〈10〉2. Q.E.D.
Proof: By 〈10〉1 and elementary set theory.

〈9〉2. Q.E.D.
Proof: By 〈9〉1 and〈4〉3.

80

〈8〉3. Q.E.D.
Proof: By 〈8〉1, 〈8〉2 and the rule of transitivity [51].

〈7〉2. ∀i ∈ [1..#ψ′] :ψ′[i] ∈ CE(DN1 ⊗DN2(α))
∧ (∀m, j ∈ [1..#ψ′] : j
= m⇒ ψ′[j] ∩ ψ′[m] = ∅)
∧ ⋃#ψ′

i=1 ψ
′[i] ∈ CE(DN1 ⊗DN2(α))

〈8〉1.
⋃#ψ′

i=1 ψ
′[i] ∈ CE(DN1 ⊗DN2(α))

Proof: By 〈7〉1 and Definition 3.3.
〈8〉2. ∀i ∈ [1..#ψ′] :ψ′[i] ∈ CE(DN1 ⊗DN2(α))

Proof: By 〈5〉1, 〈4〉3 and 〈6〉1.
〈8〉3. ∀m, j ∈ [1..#ψ′] : j
= m⇒ ψ′[j] ∩ ψ′[m] = ∅

Proof: By 〈4〉3 and 〈6〉1.
〈8〉4. Q.E.D.

Proof: By 〈8〉1, 〈8〉2, 〈8〉3 and ∧-introduction.
〈7〉3. Q.E.D.

Proof: By 〈7〉1, 〈7〉2 and Lemma 5.6.
〈6〉3. μN1⊗μN2(α)(DN1⊗DN2(α))−μN1⊗μN2(α)(DN1⊗DN2(α)\⋃#φ

i=1 φ[i]) =∑#ψ′

i=1 μN1 ⊗ μN2(α)(ψ′[i]) − μN1 ⊗ μN2(α)(ψ′[1])
〈7〉1. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α) \ ⋃#φ

i=1 φ[i]) = μN1 ⊗ μN2(α)(ψ′[1])
Proof: By 〈6〉1 and the rule of equality between functions [51].

〈7〉2. Q.E.D.
Proof: By 〈7〉1, 〈6〉2 and the rule of replacement [51].

〈6〉4.
∑#ψ′

i=1 μN1 ⊗ μN2(α)(ψ′[i]) − μN1 ⊗ μN2(α)(ψ′[1]) =∑#φ′

i=1 μN1 ⊗ μN2(α)(φ′[i])
〈7〉1.

∑#ψ′

i=1 μN1 ⊗ μN2(α)(ψ′[i]) − μN1 ⊗ μN2(α)(ψ′[1]) =∑#ψ′

i=2 μN1 ⊗ μN2(α)(ψ′[i])
〈8〉1.

∑#ψ′

i=1 μN1 ⊗ μN2(α)(ψ′[i]) ≤ 1
〈9〉1. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) ≤ 1.

Proof: By the assumption that μN1⊗μN2 is a measure on CE(DN1⊗
DN2(α)) as defined by (25) and Lemma 5.6.3.

〈9〉2. Q.E.D.
Proof: By 〈6〉2, 〈9〉1 and the rule of replacement [51].

〈8〉2. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) =
μN1 ⊗ μN2(α)(ψ′[1]) +

∑#ψ′

i=2 μN1 ⊗ μN2(α)(ψ′[i])
Proof: By 〈6〉1, 〈6〉2 and 〈8〉1, since the sum of the terms of a con-
verging series is preserved when regrouping the terms in the same
order [50].

〈8〉3.
∑#ψ′

i=1 μN1 ⊗ μN2(α)(ψ′[i]) = μN1 ⊗ μN2(α)(ψ′[1]) +∑#ψ′

i=2 μN1 ⊗ μN2(α)(ψ′[i])
Proof: By 〈8〉2, 〈6〉2 and the rule of transitivity [51].

〈8〉4. Q.E.D.
Proof: By 〈8〉3 and elementary arithmetic. The possibility to apply
the rules of elementary arithmetic follows from the fact that

∑#ψ′

i=1 μN1⊗
μN2(α)(ψ′[i]) converges to a finite number, by 〈8〉1 and that μN1 ⊗

81

μN2(α)(ψ′[1]) and
∑#ψ′

i=2 μN1 ⊗ μN2(α)(ψ′[i]) also converges to finite
numbers by 〈8〉3.

〈7〉2.
∑#ψ′

i=2 μN1 ⊗ μN2(α)(ψ′[i]) =
∑#φ′

i=1 μN1 ⊗ μN2(α)(φ′[i])
Proof: By 〈6〉1

〈7〉3. Q.E.D.
Proof: By 〈7〉1, 〈7〉2 and the rule of transitivity [51].

〈6〉5. Q.E.D.
Proof: By 〈6〉3, 〈6〉4 and the rule of transitivity [51].

〈5〉4.
∑#φ′

i=1 μN1 ⊗ μN2(α)(φ′[i]) =
∑#φ
i=1 μN1 ⊗ μN2

′(α)(φ[i])
〈6〉1.

∑#φ′

i=1 μN1 ⊗ μN2(α)(φ′[i]) =
∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i])

〈7〉1. ∀i ∈ [1..#φ′] :μN1 ⊗ μN2(α)(φ′[i]) = μN1 ⊗ μN2
′(α)(φ′[i])

Proof: By 〈4〉3 and definition (33).
〈7〉2. Q.E.D.

Proof: By 〈7〉1 and the rule of equality between functions.
〈6〉2.

∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i]) =

∑#φ
i=1 μN1 ⊗ μN2

′(α)(φ[i])
Proof: By 〈4〉3, since φ′ and φ are two different partitions of the same set.

〈6〉3. Q.E.D.
Proof: By 〈6〉1, 〈6〉2 and the rule of transitivity [51].

〈5〉5. Q.E.D.
Proof: By 〈5〉2, 〈5〉3, 〈5〉4 and the rule of transitivity.

〈4〉6. Q.E.D.
Proof: By assumption 〈3〉1 and Definition A.11, the cases 〈4〉4 and 〈4〉5 are
exhaustive.

〈3〉2. Q.E.D.
Proof: ⇒-introduction.

〈2〉2. Q.E.D.
Proof: ∀-introduction.

〈1〉3. Q.E.D.
Proof: By 〈1〉1, 〈1〉2 and Definition A.6.

Lemma B.30. Let IN be a probabilistic component execution as defined in Definition 5.3
and let α be a complete queue history α ∈ BN . Let F1(CE(DN (α))) be an extension of
CE(DN (α)) as defined in Definition A.11. Then

∀B,A ∈ F1(CE(DN (α))) :(B ∩A
= ∅) ⇒ (((DN (α) \B) ∩ (DN (α) \A) = ∅)∨
(((DN (α) \B) ⊆ (DN (α) \A)) ∨ ((DN (α) \A) ⊆ (DN (α) \B))))

Proof:
〈1〉1. Assume: A ∈ F1(CE(DN (α))) ∧B ∈ F1(CE(DN (α)))

Prove: (B ∩A
= ∅) ⇒ (((DN (α) \B) ∩ (DN (α) \A) = ∅) ∨
(((DN (α) \B) ⊆ (DN (α) \A)) ∨ ((DN (α) \A) ⊆ (DN (α) \B))))

〈2〉1. Assume: B ∩A
= ∅
Prove: ((DN (α) \ B) ∩ (DN (α) \A) = ∅) ∨ (((DN (α) \ B) ⊆ (DN (α) \A)) ∨

((DN (α) \A) ⊆ (DN (α) \B)))
〈3〉1. Case: A ∈ CE(DN (α)) ∧B ∈ CE(DN (α))
〈4〉1. A ⊆ B ∨B ⊆ A

82

Proof: By assumption 〈3〉1 and Corollary B.6.
〈4〉2. (((DN (α) \B) ⊆ (DN (α) \A)) ∨ ((DN (α) \A) ⊆ (DN (α) \B)))

Proof: By 〈4〉1 and elementary set theory.
〈4〉3. Q.E.D.

Proof: By 〈4〉2 and ∨ introduction.
〈3〉2. Case: (DN (α) \A) ∈ CE(DN (α)) ∧ (DN (α) \B) ∈ CE(DN (α))
〈4〉1. Q.E.D.

Proof: By assumption 〈3〉2 and Corollary B.6.
〈3〉3. Case: (DN (α) \A) ∈ CE(DN (α)) ∧B ∈ CE(DN (α))
〈4〉1. B
⊆ (DN (α) \A)

Proof: By assumption 〈2〉1 and elementary set theory.
〈4〉2. Case: (DN (α) \A) ⊆ B
〈5〉1. (DN (α) \A) ∩ (DN (α) \B) = ∅

Proof: By assumption 〈4〉2 and elementary set theory.
〈5〉2. Q.E.D.

Proof: By 〈5〉1 and ∨ introduction.
〈4〉3. Case: (DN (α) \A) ∩B = ∅

〈5〉1. (DN (α) \A) ⊆ (DN (α) \B)
Proof: By assumption 〈4〉3 and elementary set theory.

〈5〉2. Q.E.D.
Proof: By 〈5〉1 and ∨ introduction.

〈4〉4. Q.E.D.
Proof: By 〈4〉1, the cases 〈4〉2 and 〈4〉3 are exhaustive.

〈3〉4. Case: A ∈ CE(DN (α)) ∧ (DN (α) \B) ∈ CE(DN (α))
Proof: Symmetrical to step 〈3〉3.

〈3〉5. Q.E.D.
Proof: By assumption 〈1〉1, the cases 〈3〉1, 〈3〉2, 〈3〉3 and 〈3〉4 are exhaustive.

〈2〉2. Q.E.D.
Proof: ⇒ introduction.

〈1〉2. Q.E.D.
Proof: ∀ introduction.

Corollary B.31. Let IN be a probabilistic component execution as defined in Defini-
tion 5.3 and let α be a complete queue history α ∈ BN . Let F1(CE(DN (α))) be an
extension of CE(DN (α)) as defined in Definition A.11. Let

⋂n
i Ai be a non-empty in-

tersection of finitely many elements such that ∀i ∈ [1..n] :Ai ∈ F1(C). Then there is a
finite sequence ψ of disjoint elements in F1(C) such that

#ψ ≤ n ∧
#ψ⋃
i=1

ψ[i] = DN (α) \
n⋂
i=1

Ai

Proof:
〈1〉1. Assume: A1 ∈ F1(CE(DN (α))) ∧ · · · ∧An ∈ F1(CE(DN (α))) ∧ ⋂n

i Ai
= ∅
Prove: ∃ψ ∈ P(HN) ∗ : ∀i ∈ [1..#ψ] :ψ[i] ∈ F1(CE(DN (α)))

∧ (∀m, j ∈ [1..#ψ] : j
= m⇒ ψ[j] ∩ ψ[m] = ∅) ∧ #ψ ≤ n

∧ ⋃#ψ
i=1 ψ[i] = DN (α) \ ⋂n

i=1 Ai
〈2〉1. Let: ψ′ be a sequence in P(HN)n such that ∀i ∈ [1..n] :ψ′[i] = DN (α) \Ai.

83

〈2〉2. ∀i ∈ [1..n] :ψ′[i] ∈ F1(CE(DN (α)))
Proof: By assumption 〈1〉1, 〈2〉1 and Definition A.11.

〈2〉3. ∀j,m ∈ [1..n] : j
= m⇒
((ψ′[j] ∩ ψ′[m] = ∅) ∨ ((ψ′[j] ⊆ ψ′[m]) ∨ (ψ′[m] ⊆ ψ′[j])))

Proof: By assumption 〈1〉1, 〈2〉1 and Lemma B.30.
〈2〉4. ∃ψ ∈ P(HN) ∗ : ∀i ∈ [1..#ψ] :ψ[i] ∈ F1(CE(DN (α))) ∧

∀m, j ∈ [1..#ψ] : j
= m⇒ ψ[j] ∩ψ[m] = ∅ ∧#ψ ≤ #ψ′ ∧⋃#ψ
i=1 ψ[i] =

⋃#ψ′

j=1 ψ
′[j]

Proof: By 〈2〉2 and 〈2〉3 (let ψ be the sequence obtained from ψ′ by filtering away
all elements ψ′[j] such that j ∈ [1..#ψ′] ∧ ∃i ∈ [1..#ψ′] : i
= j ∧ ψ′[j] ⊆ ψ′[i]).

〈2〉5. Let: ψ ∈ P(HN) ∗ such that ∀i ∈ [1..#ψ] :ψ[i] ∈ F1(CE(DN (α))) ∧
∀m, j ∈ [1..#ψ] : j
= m⇒ ψ[j] ∩ ψ[m] = ∅ ∧ #ψ ≤ #ψ′ ∧⋃#ψ
i=1 ψ[i] =

⋃#ψ′

j=1 ψ
′[j]

Proof: By 〈2〉4.
〈2〉6. #ψ ≤ n
〈3〉1. #ψ′ = n

Proof: By 〈2〉1.
〈3〉2. Q.E.D.

Proof: By 〈3〉1, 〈2〉5 (#ψ ≤ #ψ′) and the rule of replacement.
〈2〉7.

⋃#ψ
i=1 ψ[i] = DN(α) \ ⋃n

i=1 Ai

〈3〉1.
⋃#ψ
i=1 ψ

′[i] =
⋃n
i=1(DN (α) \Ai)

Proof: By 〈2〉1.
〈3〉2.

⋃n
i=1(DN (α) \Ai) = DN(α) \ ⋂n

i=1Ai
Proof: By elementary set theory.

〈3〉3. Q.E.D.
Proof: By 〈2〉5, 〈3〉1, 〈3〉2 and the rule of transitivity [51].

〈2〉8. Q.E.D.
Proof: By 〈2〉5, 〈2〉6 〈2〉7 and ∃ introduction.

〈1〉2. Q.E.D.
Proof: ⇒ introduction.

Lemma B.32. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩ N2 = ∅, let α be a queue history in BN1∪N2. Let μN1 ⊗ μN2

′(α) be a measure on
F1(CE(DN1⊗DN2(α))) as defined in (33) and let F2(CE(DN1⊗DN2(α))) be an extension
of F1(CE(DN1 ⊗DN2(α))) as defined in Definition A.11. The function μN1 ⊗ μN2

′′(α)
defined by

(34) μN1 ⊗ μN2
′′(α)(A) def=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μN1 ⊗ μN2
′(α)(A) if A ∈ F1(CE(DN1 ⊗DN2(α)))

μN1 ⊗ μN2
′(α)(DN1 ⊗DN2(α)) − ∑m

j=1 μN1 ⊗ μN2
′(α)(ψ[j])

if A ∈ F2(CE(DN1 ⊗DN2(α))) \ F1(CE(DN1 ⊗DN2(α)))
where B1, . . . Bn ∈ F1(CE(DN1 ⊗DN2(α))) ∧ ψ ∈ (F1(CE(DN1 ⊗DN2(α)))) ∗

so that A =
⋂n
i=1 Bi ∧ ∀m, j ∈ [1..#ψ] : j
= m⇒ ψ[j] ∩ ψ[m] = ∅∧⋃m

j=1 ψ[j] = DN1 ⊗DN2(α) \ ⋂n
i=1Bi

9

is a measure on F2(CE(DN1 ⊗DN2(α))).
84

Proof:
〈1〉1. μN1 ⊗ μN2

′′(α)(∅) = 0
〈2〉1. ∅ ∈ F1(CE(DN1 ⊗DN2(α)))

Proof: By Definition B.1.
〈2〉2. μN1 ⊗ μN2

′′(α)(∅) = μN1 ⊗ μN2
′(α)(∅)

Proof: By 〈2〉1 and definition (34).
〈2〉3. μN1 ⊗ μN2

′(α)(∅) = 0
Proof: By Lemma B.29.

〈2〉4. Q.E.D.
Proof: By 〈2〉2, 〈2〉3 and the rule of transitivity.

〈1〉2. ∀φ ∈ P(H) ω : (∀i ∈ [1..#φ] :φ[i] ∈ F2(CE(DN1 ⊗DN2(α)))
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ F2(CE(DN1 ⊗DN2(α))))
⇒ μN1 ⊗ μN2

′′(α)(
⋃#φ
j=1 φ[j]) =

∑#φ
j=1 μN1 ⊗ μN2

′′(α)(φ[j])
〈2〉1. Assume: φ ∈ P(H) ω

Prove: (∀i ∈ [1..#φ] :φ[i] ∈ F2(CE(DN1 ⊗DN2(α)))
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ F2(CE(DN1 ⊗DN2(α))))
⇒ μN1 ⊗ μN2

′′(α)(
⋃#φ
j=1 φ[j]) =

∑#φ
j=1 μN1 ⊗ μN2

′′(α)(φ[j])
〈3〉1. Assume: ∀i ∈ [1..#φ] :φ[i] ∈ F2(CE(DN1 ⊗DN2(α)))

∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ F2(CE(DN1 ⊗DN2(α)))
Prove: μN1 ⊗ μN2

′′(α)(
⋃#φ
j=1 φ[j]) =

∑#φ
j=1 μN1 ⊗ μN2

′′(α)(φ[j])

〈4〉1.
⋃#φ
i=1 φ[i] ∈ FN1 ⊗FN2(α)

Proof: By assumption 〈3〉1, Proposition B.1 (F2(CE(DN1 ⊗DN2(α))) ⊆ FN1⊗
FN2(α)) and elementary set theory.

〈4〉2. ∃φ′ ∈ P(H) ω : ∀i ∈ [1..#φ′] :φ′[i] ∈ CE(DN1 ⊗DN2(α))
∧ (∀m, j ∈ [1..#φ′] : j
= m⇒ φ′[j] ∩ φ′[m] = ∅) ∧⋃#φ′

i=1 φ
′[i] =

⋃#φ
i=1 φ[i]

Proof: By 〈4〉1, Lemma B.14 and Corollary B.7.
〈4〉3. Let: φ′ ∈ P(H) ω such that ∀i ∈ [1..#φ′] :φ′[i] ∈ CE(DN1 ⊗DN2(α))

∧ (∀m, j ∈ [1..#φ′] : j
= m⇒ φ′[j] ∩ φ′[m] = ∅)
∧ ⋃#φ′

i=1 φ
′[i] =

⋃#φ
i=1 φ[i]

Proof: By 〈4〉2
〈4〉4. Case:

⋃#φ′

i=1 φ
′[i] ∈ F1(CE(DN1 ⊗DN2(α)))

〈5〉1. μN1 ⊗ μN2
′′(α)(

⋃#φ
i=1 φ[i]) = μN1 ⊗ μN2

′(α)(
⋃#φ
i=1 φ[i])

Proof: By assumption 〈4〉4, 〈4〉3, the rule of replacement [51] and defini-
tion (34).

〈5〉2. μN1 ⊗ μN2
′(α)(

⋃#φ
i=1 φ[i]) = μN1 ⊗ μN2

′(α)(
⋃#φ′

i=1 φ
′[i])

9Note that by Definition A.11, if A ∈ F2(CE(DN1 ⊗ DN2(α))) \ F1(CE(DN1 ⊗ DN2(α))), then
A corresponds to the intersection of finitely many elements in F1(CE(DN1 ⊗ DN2(α))). Note also
that there may exist several sequences ψ of disjoint elements in F1(CE(DN1 ⊗ DN2 (α))) such that⋃m

j=1 ψ[j] = DN1 ⊗ DN2(α) \ ⋂n
i=1Bi. However, since μN1 ⊗ μN2

′(α) is a measure, by Lemma B.29,
the sum of the measures of their elements will all be the same.

85

Proof: By 〈4〉3 and the rule of equality of functions [51].
〈5〉3. μN1 ⊗ μN2

′(α)(
⋃#φ′

i=1 φ
′[i]) =

∑#φ
i=1 μN1 ⊗ μN2

′′(α)(φ[i])
〈6〉1. μN1 ⊗ μN2

′(α)(
⋃#φ′

i=1 φ
′[i]) =

∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i])

Proof: By 〈4〉3, assumption 〈4〉4 and Lemma B.29.
〈6〉2.

∑#φ′

i=1 μN1 ⊗ μN2(α)′(φ′[i]) =
∑#φ′

i=1 μN1 ⊗ μN2
′′(α)(φ′[i])

〈7〉1. ∀i ∈ [1..#φ′] :μN1 ⊗ μN2
′′(α)(φ′[i]) = μN1 ⊗ μ′

N2
(α)(φ′[i])

〈8〉1. ∀i ∈ [1..#φ′] :φ′[i] ∈ F1(CE(DN1 ⊗DN2(α)))
Proof: By 〈4〉3 and Definition A.11.

〈8〉2. Q.E.D.
Proof: By 〈8〉1 and definition (34).

〈7〉2. Q.E.D.
Proof: By 〈7〉1 and the rule of equality between functions.

〈6〉3.
∑#φ′

i=1 μN1 ⊗ μN2
′′(α)(φ′[i]) =

∑#φ
i=1 μN1 ⊗ μN2

′′(α)(φ[i])
Proof: By definition (34), 〈4〉3, since φ and φ′ are two different partitions
of the same set.

〈6〉4. Q.E.D.
Proof: By 〈6〉1, 〈6〉2, 〈6〉3 and the rule of transitivity [51].

〈5〉4. Q.E.D.
Proof: By 〈5〉1, 〈5〉2, 〈5〉3 and the rule of transitivity [51].

〈4〉5. Case:
⋃#φ′

i=1 φ
′[i] ∈ F2(CE(DN1 ⊗DN2(α))) \ F1(CE(DN1 ⊗DN2(α)))

〈5〉1. ∃A1, . . . An ∈ F1(CE(DN1 ⊗DN2(α))) :
⋃#φ′

i=1 φ
′[i] =

⋂n
i=1 Ai

Proof: By assumption 〈4〉5 and Definition A.11.
〈5〉2. Let: A1, . . . An ∈ F1(CE(DN1⊗DN2(α))) such that

⋃#φ′

i=1 φ
′[i] =

⋂n
i=1Ai

Proof: By 〈5〉1.
〈5〉3.

⋂n
i=1Ai
= ∅

Proof: By assumption 〈4〉5 and Definition A.11.
〈5〉4. ∃ψ ∈ P(H) ∗ : ∀i ∈ [1..#ψ] :ψ[i] ∈ F1(CE(DN1 ⊗DN2(α)))

∧ (∀m, j ∈ [1..#ψ] : j
= m⇒ ψ[j] ∩ ψ[m] = ∅) ∧ #ψ ≤ n

∧ ⋃#ψ
i=1 ψ[i] = DN1 ⊗DN2(α) \ ⋂n

i=1 Ai
Proof: By 〈5〉2, 〈5〉3 and Corollary B.31.

〈5〉5. Let: ψ ∈ P(H) ∗ such that ∀i ∈ [1..#ψ] :ψ[i] ∈ F1(CE(DN1 ⊗DN2(α)))
∧ (∀m, j ∈ [1..#ψ] : j
= m⇒ ψ[j] ∩ ψ[m] = ∅) ∧ #ψ ≤ n

∧ ⋃#ψ
i=1 ψ[i] = DN1 ⊗DN2(α) \ ⋂n

i=1 Ai
Proof: By 〈5〉4.

〈5〉6. μN1 ⊗ μN2
′′(α)(

⋃#φ
i=1 φ[i]) = μN1 ⊗ μN2

′(α)(DN1 ⊗DN2(α)) −∑#ψ
j=1 μN1 ⊗ μN2

′(α)(ψ[j])
Proof: By assumption 〈4〉5, 〈5〉5, 〈4〉3, the rule of replacement [51] and
definition (33).

〈5〉7. μN1 ⊗ μN2
′(α)(DN1 ⊗DN2(α)) − ∑#ψ

j=1 μN1 ⊗ μN2
′(α)(ψ[j]) =∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i])

〈6〉1. Let: ψ′ = ψ� φ′

〈6〉2.
∑#ψ′

i=1 μN1 ⊗ μN2(α)′(ψ′[i]) = μN1 ⊗ μN2
′(α)(DN1 ⊗DN2(α))

〈7〉1.
⋃#ψ
i=1 ψ

′[i] = DN1 ⊗DN2(α) \ ⋃#φ′

i=1 φ
′[i]

〈8〉1.
⋃#ψ
i=1 ψ

′[i] =
⋃#ψ
i=1 ψ[i]

86

Proof: By 〈6〉1.
〈8〉2.

⋃#ψ
i=1 ψ[i] = DN1 ⊗DN2(α) \ ⋃#φ′

i=1 φ
′[i]

Proof: By 〈5〉2, 〈5〉5 and the rule of replacement [51].
〈8〉3. Q.E.D.

Proof: By 〈8〉1, 〈8〉2 and the rule of replacement [51].
〈7〉2.

⋃#ψ′

j=#ψ+1 ψ
′[j] =

⋃#φ′

i=1 φ
′[i]

Proof: By 〈6〉1.
〈7〉3.

⋃#ψ′

i=1 ψ
′[i] = DN1 ⊗DN2(α)

〈8〉1.
⋃#ψ′

i=1 ψ
′[i] = (DN1 ⊗DN2(α) \ ⋃#φ′

i=1 φ
′[i]) ∪ ⋃#φ′

i=1 φ
′[i]

〈9〉1.
⋃#ψ′

i=1 ψ
′[i] = (

⋃#ψ
i=1 ψ

′[i]) ∪ (
⋃#ψ′

j=#ψ+1 ψ
′[j])

Proof: By 〈5〉5 and 〈6〉1.
〈9〉2. Q.E.D.

Proof: By 〈9〉1, 〈7〉1, 〈7〉2 and the rule of replacement [51].
〈8〉2. (DN1 ⊗DN2(α) \ ⋃#φ′

i=1 φ
′[i]) ∪ ⋃#φ′

i=1 φ
′[i] = DN1 ⊗DN2(α)

Proof: By elementary set theory.
〈8〉3. Q.E.D.

Proof: By 〈8〉1, 〈8〉2 and the rule of transitivity.
〈7〉4. ∀i ∈ [1..#ψ′] :ψ′[i] ∈ F1(CE(DN1 ⊗DN2(α)))

∧ (∀m, j ∈ [1..#ψ′] : j
= m⇒ ψ′[j] ∩ ψ′[m] = ∅)
∧ ⋃#ψ′

i=1 ψ
′[i] ∈ F1(CE(DN1 ⊗DN2(α)))

〈8〉1.
⋃#ψ′

i=1 ψ
′[i] ∈ F1(CE(DN1 ⊗DN2(α)))

〈9〉1.
⋃#ψ′

i=1 ψ
′[i] ∈ CE(DN1 ⊗DN2(α))

Proof: By 〈7〉3, Definition 3.3 and the fact that c(〈〉, DN1⊗DN2(α)) =
DN1 ⊗DN2(α), by Definition 3.1.

〈9〉2. Q.E.D.
Proof: By 〈9〉1, Proposition B.1 (CE(DN1⊗DN2(α)) ⊆ F1(CE(DN1⊗
DN2(α)))) and elementary set theory.

〈8〉2. ∀i ∈ [1..#ψ′] :ψ′[i] ∈ F1(CE(DN1 ⊗DN2(α)))
〈9〉1. ∀i ∈ [1..#φ′] :φ′[i] ∈ F1(CE(DN1 ⊗DN2(α)))

Proof: By 〈4〉3 and Definition A.11.
〈9〉2. Q.E.D.

Proof: By 〈5〉5, 〈9〉1 and 〈6〉1.
〈8〉3. ∀m, j ∈ [1..#ψ′] : j
= m⇒ ψ′[j] ∩ ψ′[m] = ∅

〈9〉1. ∀m, j ∈ [1..#ψ] : j
= m⇒ ψ′[j] ∩ ψ′[m] = ∅
Proof: By 〈5〉5 and and 〈6〉1.

〈9〉2. ∀m, j ∈ [#ψ + 1..#ψ′] : j
= m⇒ ψ′[j] ∩ ψ′[m] = ∅
Proof: By 〈4〉3 and and 〈6〉1.

〈9〉3. (
⋃#ψ
i=1 ψ

′[i]) ∩ (
⋃#ψ′

j=#ψ+1 ψ
′[j]) = ∅

〈10〉1. (DN1 ⊗DN2(α) \ ⋃#φ′

i=1 φ
′[i]) ∩ ⋃#φ′

i=1 φ
′[i] = ∅

Proof: By elementary set theory.
Proof: By 〈10〉1, 〈7〉1, 〈7〉2 and the rule of replacement [51].

〈9〉4. Q.E.D.
Proof: By 〈9〉1, 〈9〉2, 〈9〉3 and elementary set theory.

〈8〉4. Q.E.D.

87

Proof: By 〈8〉1, 〈8〉2, 〈8〉3 and ∧ -introduction.
〈7〉5. Q.E.D.

Proof: By 〈7〉3, 〈7〉4 and Lemma B.29.
〈6〉3. μN1 ⊗ μN2

′(α)(DN1 ⊗DN2(α)) − ∑#ψ
j=1 μN1 ⊗ μN2

′(α)(ψ[j]) =∑#ψ′

i=1 μN1 ⊗ μN2
′(α)(ψ′[i]) − ∑#ψ

i=1 μN1 ⊗ μN2
′(α)(ψ′[i])

Proof: By 〈6〉1 and 〈6〉2.
〈6〉4.

∑#ψ′

i=1 μN1 ⊗ μN2
′(α)(ψ′[i]) − ∑#ψ

i=1 μN1 ⊗ μN2
′(α)(ψ′[i]) =∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i])

〈7〉1.
∑#ψ′

i=1 μN1 ⊗ μN2
′(α)(ψ′[i]) − ∑#ψ

i=1 μN1 ⊗ μN2
′(α)(ψ′[i]) =∑#ψ′

i=#ψ+1 μN1 ⊗ μN2
′(α)(ψ′[i])

〈8〉1.
∑#ψ′

i=1 μN1 ⊗ μN2
′(α)(ψ′[i]) ≤ 1

〈9〉1. μN1 ⊗ μN2
′(α)(DN1 ⊗DN2(α)) ≤ 1.

〈10〉1. DN1 ⊗DN2(α) ∈ CE(DN1 ⊗DN2(α))
Proof: By the fact that c(〈〉, DN1 ⊗DN2(α)) = DN1 ⊗DN2(α),
by Definition 3.1.

〈10〉2. μN1 ⊗ μN2
′(α)(DN1⊗DN2(α)) = μN1 ⊗ μN2(α)(DN1⊗DN2(α))

Proof: By 〈10〉1 and Lemma B.29.
〈10〉3. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) ≤ 1.

Proof: By definition (25) and Lemma 5.6.3.
〈10〉4. Q.E.D.

Proof: By 〈10〉2, 〈10〉3 and the rule of replacement [51].
〈9〉2. Q.E.D.

Proof: By 〈6〉2, 〈9〉1 and the rule of replacement [51].
〈8〉2. μN1 ⊗ μN2

′(α)(DN1 ⊗DN2(α)) =∑#ψ
i=1 μN1 ⊗ μN2

′(α)(ψ′[i]) +
∑#ψ′

i=#ψ+1 μN1 ⊗ μN2
′(α)(ψ′[i])

Proof: By 〈6〉1, 〈6〉2 and 〈8〉1, since the sum of the terms of a con-
verging series is preserved when regrouping the terms in the same
order [50].

〈8〉3.
∑#ψ′

i=1 μN1 ⊗ μN2
′(α)(ψ′[i]) =∑#ψ

i=1 μN1 ⊗ μN2
′(α)(ψ′[i]) +

∑#ψ′

i=#ψ+1 μN1 ⊗ μN2
′(α)(ψ′[i])

Proof: By 〈8〉2, 〈6〉2 and the rule of transitivity [51].
〈8〉4. Q.E.D.

Proof: By 〈8〉3 and elementary arithmetic. The possibility to apply
the rules of elementary arithmetic follows from the fact that

∑#ψ′

i=1 μN1⊗
μN2(α)(ψ′[i]) converges to a finite number, by 〈8〉1 and that μN1 ⊗
μN2(α)(ψ′[1]) and

∑#ψ′

i=2 μN1 ⊗ μN2(α)(ψ′[i]) also converges to finite
numbers by 〈8〉3.

〈7〉2.
∑#ψ′

i=#ψ+1 μN1 ⊗ μN2
′(α)(ψ′[i]) =

∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i])

Proof: By 〈6〉1
〈7〉3. Q.E.D.

Proof: By 〈7〉1, 〈7〉2 and the rule of transitivity [51].
〈6〉5. Q.E.D.

Proof: By 〈6〉3, 〈6〉4 and the rule of transitivity [51].

88

〈5〉8.
∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i]) =

∑#φ
i=1 μN1 ⊗ μN2

′′(α)(φ[i])
〈6〉1.

∑#φ′

i=1 μN1 ⊗ μN2
′(α)(φ′[i]) =

∑#φ′

i=1 μN1 ⊗ μN2
′′(α)(φ′[i])

〈7〉1. ∀i ∈ [1..#φ′] :μN1 ⊗ μN2
′′(α)(φ′[i]) = μN1 ⊗ μN2

′(α)(φ′[i])
〈8〉1. ∀i ∈ [1..#φ′] :φ′[i] ∈ F1(CE(DN1 ⊗DN2(α)))

Proof: By 〈4〉3 and Definition A.11.
〈8〉2. Q.E.D.

Proof: By 〈8〉1 and definition (34).
〈7〉2. Q.E.D.

Proof: By 〈7〉1 and the rule of equality between functions.
〈6〉2.

∑#φ′

i=1 μN1 ⊗ μN2
′′(α)(φ′[i]) =

∑#φ
i=1 μN1 ⊗ μN2

′′(α)(φ[i])
Proof: By definition (34) and 〈4〉3, since φ′ and φ are two different parti-
tions of the same set.

〈6〉3. Q.E.D.
Proof: By 〈6〉1, 〈6〉2 and the rule of transitivity [51].

〈5〉9. Q.E.D.
Proof: By 〈5〉6, 〈5〉7, 〈5〉8 and the rule of transitivity.

〈4〉6. Q.E.D.
Proof: By assumption 〈3〉1, the cases 〈4〉4 and 〈4〉5 are exhaustive.

〈3〉2. Q.E.D.
Proof: ⇒-introduction.

〈2〉2. Q.E.D.
Proof: ∀-introduction.

〈1〉3. Q.E.D.
Proof: By 〈1〉1, 〈1〉2 and Definition A.6..

Lemma B.33. Let IN1 and IN2 be two probabilistic component executions such that
N1 ∩ N2 = ∅, let α be a queue history in BN1∪N2 . Let μN1 ⊗ μN2

′′(α) be a measure
on F2(CE(DN1 ⊗DN2(α))) as defined in Lemma B.32 and let F3(CE(DN1 ⊗ DN2(α)))
be an extension of F2(CE(DN1 ⊗DN2(α))) as defined in Definition A.11. The function
μN1 ⊗ μN2

′′′(α) defined by

μN1 ⊗ μN2
′′′(α)(A) def=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μN1 ⊗ μN2
′′(α)(A) if A ∈ F2(CE(DN1 ⊗DN2(α)))∑n

i=1 μN1 ⊗ μN2
′′(α)(Bi) if A ∈

F3(CE(DN1 ⊗DN2(α))) \ F2(CE(DN1 ⊗DN2(α)))
where B1, . . . Bn ∈ F2(CE(DN1 ⊗DN2(α)))
so that A =

⋃n
i=1 Bi

10

(35)

is a measure on F3(CE(DN1 ⊗DN2(α))).

Proof:
〈1〉1. μN1 ⊗ μN2

′′′(α)(∅) = 0
〈2〉1. ∅ ∈ F2(CE(DN1 ⊗DN2(α)))

10Note that by Definition A.11, if A ∈ F3(CE(DN1 ⊗ DN2 (α))) \ F2(CE(DN1 ⊗ DN2(α))), then A
corresponds to the union of finitely many elements in F2(CE(DN1 ⊗DN2(α))).

89

Proof: By Definition A.11 and Proposition B.1.
〈2〉2. μN1 ⊗ μN2

′′′(α)(∅) = μN1 ⊗ μN2
′′(α)(∅)

Proof: By 〈2〉1 and definition (35).
〈2〉3. μN1 ⊗ μN2

′′(α)(∅) = 0
Proof: By Lemma B.32.

〈2〉4. Q.E.D.
Proof: By 〈2〉2, 〈2〉3 and the rule of transitivity.

〈1〉2. μN1 ⊗ μN2
′′′(α) is σ-additive.

Proof: By definition (35) and Lemma B.32.
〈1〉3. Q.E.D.

Proof: By 〈1〉1, 〈1〉2 and Definition A.6..

Theorem 5.7Let IN1 and IN2 be two probabilistic component executions such that N1 ∩
N2 = ∅, let α be a queue history in BN1∪N2 , and let μN1 ⊗ μN2(α) be a measure on
CE(DN1⊗DN2(α)) as defined in (25). Then, there exists a unique extension fN1⊗fN2(α)
of μN1 ⊗ μN2(α) to the cone-σ-field FN1 ⊗FN2(α).

Proof:
〈1〉1. There exists a unique extension of μN1 ⊗μN2(α) to the cone-σ-field FN1 ⊗FN2(α)
〈2〉1. There exists a unique extension μN1 ⊗ μN2

′′′(α) of μN1 ⊗ μN2(α) to
F (CE(DN1 ⊗DN2(α)))

〈3〉1. There exists a unique extension μN1 ⊗ μN2
′′′(α) of μN1 ⊗ μN2(α) to

F3(CE(DN1 ⊗DN2(α)))
Proof: By Lemma B.29, Lemma B.32 and Lemma B.33.

〈3〉2. F (CE(DN1 ⊗DN2(α))) = F3(CE(DN1 ⊗DN2(α)))
Proof: By Proposition B.1.

〈3〉3. Q.E.D.
Proof: By 〈3〉1, 〈3〉2 and the rule of replacement [51].

〈2〉2. μN1 ⊗ μN2
′′′(α) is finite.

〈3〉1. μN1 ⊗ μN2
′′′(α)(DN1 ⊗DN2(α)) ≤ 1

〈4〉1. DN1 ⊗DN2(α) ∈ CE(DN1 ⊗DN2(α))
〈5〉1. DN1 ⊗DN2(α) = c(〈〉, DN1 ⊗DN2(α))

Proof: By Definition 3.1.
〈5〉2. Q.E.D.

Proof: By 〈5〉1 and Definition 3.3.
〈4〉2. μN1 ⊗ μN2

′′′(α)(DN1 ⊗DN2(α)) = μN1 ⊗ μN2(α)(DN1 ⊗DN2(α))
Proof: By 〈4〉1, Lemma B.29, Lemma B.32 and Lemma B.33.

〈4〉3. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) ≤ 1.
Proof: By definition (25) and Lemma 5.6.3.

〈4〉4. Q.E.D.
Proof: By 〈4〉2, 〈4〉3 and the rule of replacement [51].

〈3〉2. Q.E.D.
Proof: By 〈3〉1 and Definition A.6.

〈2〉3. FN1 ⊗FN2(α) = σ(F (CE(DN1 ⊗DN2(α))))
Proof: By definition (23) and Lemma B.2.

〈2〉4. Q.E.D.
Proof: By 〈2〉1, 〈2〉2, 〈2〉3 and Theorem B.3, define fN1 ⊗ fN2(α) to be the unique
extension of μN1 ⊗ μN2

′′′(α).

90

〈1〉2. Q.E.D.

Lemma B.34. Let D be a non-empty set and F be a σ-field over D and let f be a
measure on f . If f(D) ≤ 1, then f is a conditional probability measure on F .

Proof:
〈1〉1. Assume: f(D) ≤ 1

Prove: ∀A ∈ F : f(A) = 0 ∨ ∃c ∈ 〈0, 1] such that the function f ′ defined by
f ′(A) = f(A)/c is a probability measure on F .

〈2〉1. Case: f(D) = 0
〈3〉1. ∀A ∈ F : f(A) = 0
〈4〉1. ∀A ∈ F :A ⊆ D

Proof: By the fact that F is a σ-field overD, Definition A.4 and Definition A.3.
〈4〉2. Q.E.D.

Proof: By assumption 〈2〉1, 〈4〉1 and Lemma B.8.
〈3〉2. Q.E.D.

Proof: By 〈3〉1 and ∨ introduction.
〈2〉2. Case: f(D) > 0
〈3〉1. ∃c ∈ 〈0, 1] such that the function f ′ defined by f ′(A) = f(A)/c is a probability

measure on F
〈4〉1. ∃n ∈ 〈0, 1] : f(D) = n

Proof: By assumption 〈1〉1, assumption 〈2〉2 and ∃ introduction.
〈4〉2. Let: c ∈ 〈0, 1] such that f(D) = c

Proof: By 〈4〉1.
〈4〉3. Let: f ′(A) = f(A)/c
〈4〉4. f ′ is a probability measure on F .
〈5〉1. f ′(∅) = 0
〈6〉1. f(∅) = 0

Proof: By the fact that f is a measure, and Definition A.6.
〈6〉2. Q.E.D.

Proof: By 〈4〉3, 〈4〉2, 〈6〉1 and elementary arithmetic.
〈5〉2. ∀φ ∈ P(H) ω :(∀i ∈ [1..#φ] :φ[i] ∈ F

∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ F)
⇒ f ′(

⋃#φ
j=1 φ[j]) =

∑#φ
j=1 f

′(φ[j])
〈6〉1. Assume: φ ∈ P(H) ω

Prove: (∀i ∈ [1..#φ] : φ[i] ∈ F
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ F)
⇒ f ′(

⋃#φ
j=1 φ[j]) =

∑#φ
j=1 f

′(φ[j])
〈7〉1. Assume: ∀i ∈ [1..#φ] :φ[i] ∈ F

∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ F
Prove: f ′(

⋃#φ
j=1 φ[j]) =

∑#φ
j=1 f

′(φ[j])

〈8〉1. f(
⋃#φ
j=1 φ[j]) =

∑#φ
j=1 f(φ[i])

Proof: By assumption 〈7〉1, the fact that f is a measure and Defini-
tion A.6.

91

〈8〉2. f(
⋃#φ
j=1 φ[j])/c = (

∑#φ
j=1 f(φ[i]))/c

Proof:By 〈8〉1, 〈4〉2 and elementary arithmetic.
〈8〉3. (

∑#φ
j=1 f(φ[i]))/c =

∑#φ
j=1(f(φ[i])/c)

〈9〉1.
∑#φ
j=1 f(φ[i]) ≤ 1

〈10〉1. f(
⋃#φ
j=1 φ[j]) ≤ 1

〈11〉1.
⋃#φ
j=1 φ[j] ⊆ D

Proof: By assumption 〈7〉1, the fact that F is a σ-field over
D Definition A.4 and Definition A.3.

〈11〉2. Q.E.D.
Proof: By assumption 〈1〉1, 〈11〉1 and Lemma B.8.

〈10〉2. Q.E.D.
Proof: By 〈8〉1, 〈10〉1 and the rule of replacement [51].

〈9〉2. Q.E.D.
Proof: By 〈9〉1 and elementary arithmetic.

〈8〉4.
∑#φ
j=1(f(φ[i])/c) =

∑#φ
j=1 f

′(φ[j])
〈9〉1. ∀i ∈ [1..#φ] : f ′(φ[i]) = f(φ[i])/c

Proof: By 〈4〉3.
〈9〉2. Q.E.D.

Proof: By 〈9〉1 and the rule of equality between functions [51].
〈8〉5. Q.E.D.

Proof: By 〈4〉3, 〈8〉2, 〈8〉3, 〈8〉4 and the rule of transitivity [51].
〈7〉2. Q.E.D.

Proof: ⇒ introduction.
〈6〉2. Q.E.D.

Proof: ∀ introduction.
〈5〉3. f ′(D) = 1

Proof: By 〈4〉2, 〈4〉3 and elementary arithmetic.
〈5〉4. Q.E.D.

Proof: By 〈5〉1, 〈5〉2, 〈5〉3 and Definition A.7.
〈4〉5. Q.E.D.

Proof: By 〈4〉2, 〈4〉3, 〈4〉4 and ∃ introduction.
〈3〉2. Q.E.D.

Proof: By 〈3〉1 and ∨ introduction.
〈2〉3. Q.E.D.

Proof: By assumption 〈1〉1, the cases 〈2〉2 and 〈2〉1 are exhaustive.
〈1〉2. Q.E.D.

Proof: ⇒ introduction.

Corollary 5.8 Let fN1 ⊗ fN2(α) be the unique extension of μN1 ⊗ μN2(α) to the cone-σ-
field FN1 ⊗ FN2(α). Then fN1 ⊗ fN2(α) is a conditional probability measure on FN1 ⊗
FN2(α).

Proof:
〈1〉1. ∀A ∈ FN1 ⊗ FN2(α) : fN1 ⊗ fN2(α)(A) = 0 ∨ ∃c ∈ 〈0, 1] such that the function f ′

defined by f ′(A) = fN1 ⊗ fN2(α)(A)/c is a probability measure on FN1 ⊗FN2(α).
〈2〉1. fN1 ⊗ fN2(α)(DN1 ⊗DN2(α)) ≤ 1
〈3〉1. DN1 ⊗DN2(α) ∈ CE(DN1 ⊗DN2(α))

92

〈4〉1. DN1 ⊗DN2(α) = c(〈〉, DN1 ⊗DN2(α))
Proof: By Definition 3.1.

〈4〉2. Q.E.D.
Proof: By 〈4〉1 and Definition 3.3.

〈3〉2. fN1 ⊗ fN2(α)(DN1 ⊗DN2(α)) = μN1 ⊗ μN2(α)(DN1 ⊗DN2(α))
Proof: By 〈3〉1, the fact that fN1⊗fN2(α) is the unique extension of μN1⊗μN2(α)
to the cone-σ-field FN1 ⊗FN2(α) and Theorem B.3.

〈3〉3. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) ≤ 1.
Proof: By definition (25) and Lemma 5.6.3.

〈3〉4. Q.E.D.
Proof: By 〈3〉2, 〈3〉3 and the rule of transitivity [51].

〈2〉2. Q.E.D.
Proof: By 〈2〉1, the fact that fN1 ⊗ fN2(α) is a measure on FN1 ⊗ FN2(α) by
Theorem 5.7 and Lemma B.34.

〈1〉2. Q.E.D.

Theorem 5.9 Let N1 and N2 be two component such that N1 ∩N2 = ∅. Then IN1 ⊗ IN2

is a probabilistic component execution of N1 ∪N2.

Proof:
〈1〉1. IN1 ⊗ IN2 is a probabilistic component execution of N1 ∪N2

〈2〉1. ∀α ∈ BN1∪N2 : IN1 ⊗ IN2 = (DN1 ⊗DN2(α),FN1 ⊗FN2(α), fN1 ⊗ fN2(α))
Proof: By definition (26).

〈2〉2. Let: α ∈ BN1∪N2

〈2〉3. DN1 ⊗DN2(α) is the trace set of IN1 ⊗ IN2(α).
Proof: By 〈2〉1, 〈2〉2, ∀ elimination and definition (22).

〈2〉4. FN1 ⊗FN2(α) is the cone-σ-field generated by CE(DN1 ⊗DN2(α))
Proof: By 〈2〉1, 〈2〉2, ∀ elimination and definition (23).

〈2〉5. fN1 ⊗ fN2(α) is a conditional probability measure on FN1 ⊗ FN2(α).
Proof: By 〈2〉1, 〈2〉2, ∀ elimination and Corollary 5.8.

〈2〉6. Q.E.D.
Proof: By steps 〈2〉1 to 〈2〉5.

〈1〉2. Q.E.D.

B.4. Hiding
In the following we prove that components are closed under hiding of assets and inter-

face names. That is, we show that hiding assets and/or interface names in a component
yields a new component.

Lemma B.35. The function fδn :N is defined for all elements in CE(Dδn :N (α))\C(Dδn :N (α)).
That is:

∀t1 ∈ (H ∩ E ∗) : {t1} ∈ CE(Dδn :N (α)) \ C(Dδn :N (α)) ⇒{
t ∈ DN(δn :α)|Eδn :N S© t ∈ {t1}

} ∈ FN (δn :α)

Proof:
〈1〉1. Assume: t1 ∈ (H∩ E ∗)

Prove: {t1} ∈ CE(Dδn :N (α)) \ C(Dδn :N (α)) ⇒{
t ∈ DN(δn :α)|Eδn :N S© t ∈ {t1}

} ∈ FN (δn :α)
93

〈2〉1. Assume: {t1} ∈ CE(Dδn :N (α)) \C(Dδn :N (α))
Prove:

{
t ∈ DN(δn :α)|Eδn :N S© t ∈ {t1}

} ∈ FN (δn :α)
〈3〉1. Let: S =

{
t′ ∈ H ∩ E ∗ | ∃t′′ ∈ DN (δn :α) : t′ � t′′ ∧ Eδn :N S© t′ = t1

}
〈3〉2. Let: S′′ =

{
t′ ∈ H ∩ E ∗ | ∃t′′ ∈ DN (δn :α) : t′ � t′′ ∧ t1 � Eδn :N S© t′ ∧

#Eδn :N S© t′ = #t1 + 1
}

〈3〉3.
⋃
t′∈S c(t

′, DN (δn :α)) \ ⋃
t′′∈S′′ c(t′′, DN (δn :α)) ∈ FN (δn :α)

〈4〉1.
⋃
t′∈S c(t

′, DN (δn :α)) ∈ FN (δn :α)
Proof: By 〈3〉1 and Corollary B.10.

〈4〉2.
⋃
t′′∈S′′ c(t′′, DN(δn :α)) ∈ FN(δn :α)

Proof: By 〈3〉2 and Corollary B.10.
〈4〉3. Q.E.D.

Proof: By 〈4〉1 and 〈4〉2, since FN(δn :α) is closed under set-difference.
〈3〉4.

⋃
t′∈S c(t

′, DN (δn :α)) \ ⋃
t′′∈S′′ c(t′′, DN (δn :α)) ={

t ∈ DN (δn :α)|Eδn :N S© t ∈ {t1}
}

〈4〉1.
⋃
t′∈S c(t

′, DN (δn :α)) \ ⋃
t′′∈S′′ c(t′′, DN (δn :α)) ⊆{

t ∈ DN (δn :α)|Eδn :N S© t ∈ {t1}
}

〈5〉1. Assume: t2 ∈ ⋃
t′∈S c(t

′, DN (δn :α)) \ ⋃
t′′∈S′′ c(t′′, DN (δn :α))

Prove: t2 ∈ {
t ∈ DN (δn :α)|Eδn :N S© t ∈ {t1}

}
〈6〉1. Assume: t2
∈ {

t ∈ DN(δn :α)|Eδn :N S© t ∈ {t1}
}

Prove: ⊥
〈7〉1. t2 ∈ DN (δn :α)

Proof: By assumption 〈5〉1, 〈3〉1 and Definition 3.1.
〈7〉2. t1 � Eδn :N S© t2

Proof: By assumption 〈1〉1, 〈3〉1 and assumption 〈5〉1.
〈7〉3. t1
= Eδn :N S© t2

Proof: By assumption 〈6〉1 and 〈7〉1.
〈7〉4. #Eδn :N S© t2 > #t1

Proof: By 〈7〉2 and 〈7〉3.
〈7〉5. ∃t ∈ S′′ : t � t2

Proof: By 〈7〉4 and 〈7〉2 and 〈3〉2.
〈7〉6. t2 ∈ ⋃

t′′∈S′′ c(t′′, DN (δn :α))
Proof: By 〈7〉5 and Definition 3.1.

〈7〉7. Q.E.D.
Proof: By assumption 〈5〉1, 〈7〉6 and ⊥-introduction.

〈6〉2. Q.E.D.
Proof: Proof by contradiction.

〈5〉2. Q.E.D.
Proof: ⊆-rule.

〈4〉2.
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ {t1}

} ⊆⋃
t′∈S c(t

′, DN (δn :α)) \ ⋃
t′′∈S′′ c(t′′, DN (δn :α))

〈5〉1. Assume: t2 ∈ {
t ∈ DN (δn :α)|Eδn :N S© t ∈ {t1}

}
Prove: t2 ∈ ⋃

t′∈S c(t
′, DN (δn :α)) \ ⋃

t′′∈S′′ c(t′′, DN (δn :α))
〈6〉1. t2 ∈ ⋃

t′∈S c(t
′, DN (δn :α))

〈7〉1. t2 ∈ DN (δn :α)
Proof: By assumption 〈5〉1.

〈7〉2. Eδn :N S© t2 = t1

94

Proof: By assumption 〈5〉1
〈7〉3. Q.E.D.

Proof: By 〈7〉1, 〈7〉2 and 〈3〉1.
〈6〉2. t2
∈ ⋃

t′′∈S′′ c(t′′, DN (δn :α))
〈7〉1. Assume: t2 ∈ ⋃

t′′∈S′′ c(t′′, DN(δn :α))
Prove: ⊥

〈8〉1. Eδn :N S© t2 = t1
Proof: By assumption 〈5〉1

〈8〉2. ∃t′ ∈ Dδn :N (α) : t′ � t2 ∧ t1 � Eδn :N S© t′ ∧
#Eδn :N S© t′ = #t1 + 1

Proof: By assumption 〈7〉1 and 〈3〉2.
〈8〉3. Eδn :N S© t2
= t1
〈9〉1. #Eδn :N S© t2 > #t1

Proof: By 〈8〉2.
〈9〉2. Q.E.D.

Proof: By 〈9〉1.
〈8〉4. Q.E.D.

Proof: By 〈8〉1, 〈8〉3 and ⊥-introduction.
〈7〉2. Q.E.D.

Proof: Proof by contradiction.
〈6〉3. Q.E.D.

Proof: By 〈6〉1 and 〈6〉2.
〈5〉2. Q.E.D.

Proof: ⊆-rule.
〈4〉3. Q.E.D.

Proof: By 〈4〉1, 〈4〉2 and the =-rule for sets [29].
〈3〉5. Q.E.D.

Proof: By 〈3〉3, 〈3〉4 and the rule of replacement [51].
〈2〉2. Q.E.D.

Proof: ⇒-introduction.
〈1〉2. Q.E.D.

Proof: ∀-introduction.

Lemma B.36. The function fδn :N is defined for all elements in C(Dδn :N (α)). That
is:

∀t1 ∈ (H∩ E ∗) : c(t1, Dδn :N (α)) ∈ C(Dδn :N (α)) ⇒{
t ∈ DN (δn :α)|Eδn :N S© t ∈ c(t1, Dδn :N (α))

} ∈ FN (δn :α)

Proof:
〈1〉1. Assume: t1 ∈ (H∩ E ∗)

Prove: c(t1, Dδn :N (α)) ∈ C(Dδn :N(α))
⇒ {

t ∈ DN(δn :α)|Eδn :N S© t ∈ c(t1, Dδn :N (α))
} ∈ FN (δn :α)

〈2〉1. Assume: c(t1, Dδn :N (α)) ∈ C(Dδn :N (α))
Prove:

{
t ∈ DN(δn :α)|Eδn :N S© t ∈ c(t1, Dδn :N (α))

} ∈ FN (δn :α)
〈3〉1. Let: S =

{
t′ ∈ H ∩ E ∗ | ∃t′′ ∈ DN (δn :α) : t1 � Eδn :N S© t′′ ∧ t′ � t′′ ∧
Eδn :N S© t′ = t1

}
95

〈3〉2.
⋃
t′∈S c(t

′, DN (δn :α)) ∈ FN (δn :α)
Proof: By 〈3〉1 and Corollary B.10.

〈3〉3.
⋃
t′∈S c(t

′, DN (εn :α)) =
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ c(t1, Dδn :N (α))

}
〈4〉1.

⋃
t′∈S c(t

′, DN (δn :α)) ⊆ {
t ∈ DN (δn :α)|Eδn :N S© t ∈ c(t1, Dδn :N (α))

}
〈5〉1. Assume: t2 ∈ ⋃

t′∈S c(t
′, DN (δn :α))

Prove: t2 ∈ {
t ∈ DN (δn :α)|Eδn :N S© t ∈ c(t1, Dδn :N (α))

}
〈6〉1. t2 ∈ DN (δn :α)

Proof: By assumption 〈5〉1 and Definition 3.1.
〈6〉2. Eδn :N S© t2 ∈ c(t1, Dδn :N (α))
〈7〉1. Eδn :N S© t2 ∈ Dδn :N (α)

Proof: By 〈6〉1 and Definition 7.1.
〈7〉2. t1 � Eδn :N S© t2
〈8〉1. ∃t′ ∈ H : t′ � t2 ∧ Eδn :N S© t′ = t1

Proof: By assumption 〈5〉1 and 〈3〉1.
〈8〉2. Let: t′ be a trace such that t′ � t2 ∧ Eδn :N S© t′ = t1

Proof: By 〈8〉1.
〈8〉3. Eδn :N S© t′ � Eδn :N S© t2

Proof: By 〈8〉2 and definition (7).
〈8〉4. Q.E.D.

Proof: By 〈8〉2, 〈8〉3 and the rule of replacement [51].
〈7〉3. Q.E.D.

Proof: By 〈7〉2, 〈7〉1 and Definition 3.1.
〈6〉3. Q.E.D.

Proof: By 〈6〉1 and 〈6〉2.
〈5〉2. Q.E.D.

Proof: ⊆-rule [29].
〈4〉2.

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ c(t1, Dδn :N (α))

} ⊆⋃
t′∈S c(t

′, DN (δn :α))
〈5〉1. Assume: t2 ∈ {

t ∈ DN (δn :α)|Eδn :N S© t ∈ c(t1, Dδn :N (α))
}

Prove: t2 ∈ ⋃
t′∈S c(t

′, DN (εn :α))
〈6〉1. ∃t ∈ S : t � t2
〈7〉1. t2 ∈ DN (δn :α)

Proof: By 〈5〉1.
〈7〉2. t1 � Eδn :N S© t2
〈8〉1. Eδn :N S© t2 ∈ c(t1, Dδn :N (α))

Proof: By 〈5〉1.
〈8〉2. Q.E.D.

Proof: By 〈8〉1 and Definition 3.1.
〈7〉3. ∃t′′ ∈ H ∩ E ∗ : t′′ � t2 ∧ Eδn :N S© t′′ = t1
〈8〉1. t1 = Eδn :N S© t2|#t1

Proof: By 〈7〉2 and definition (2).
〈8〉2. Eδn :N S© t2|#t1 � Eδn :N S© t2

Proof: By 〈7〉2, 〈8〉1 and the rule of replacement [51].
〈8〉3. #Eδn :N S© t2|#t1 ∈ N

Proof: By assumption 〈1〉1, 〈8〉1 and the rule of replacement [51].
〈8〉4. Q.E.D.

96

Proof: By 〈8〉2, 〈8〉1, 〈8〉3 and ∃-introduction.
〈7〉4. Let: t′′ ∈ H ∩ E ∗ such that t′′ � t2 ∧ Eδn :N S© t′′ = t1

Proof: By 〈7〉3.
〈7〉5. t′′ ∈ S

Proof: By 〈7〉1, 〈7〉2 and 〈7〉4.
〈7〉6. Q.E.D.

Proof: By 〈7〉4, 〈7〉5 and ∃ introduction
〈6〉2. Q.E.D.

Proof: By 〈6〉1 and Definition 3.1.
〈5〉2. Q.E.D.

Proof: ⊆-rule [29].
〈4〉3. Q.E.D.

Proof: By 〈4〉1, 〈4〉2 and the =-rule for sets [29].
〈3〉4. Q.E.D.

Proof: By 〈3〉2, 〈3〉3 and the rule of replacement [51].
〈2〉2. Q.E.D.

Proof: ⇒-introduction.
〈1〉2. Q.E.D.

Proof: ∀-introduction.

Corollary B.37. The function fδn :N is defined for all elements in CE(Dδn :N (α)).
That is:

∀c ∈ P(H) : c ∈ CE(Dδn :N(α)) ⇒{
t ∈ DN(δn :α)|Eδn :N S© t ∈ c

} ∈ FN(δn :α)

Proof. By Lemma B.35 and B.36.

Lemma B.38. The function fδn :N is well defined. That is:

∀c ∈ P(Hδn :N) :c ∈ Fδn :N (α) ⇒{
t ∈ DN (δn :α)|Eδn :N S© t ∈ c

} ∈ FN (δn :α)

Proof:
〈1〉1. Assume: c ∈ P(Hδn :N)

Prove: c ∈ Fδn :N (α) ⇒ {
t ∈ DN(δn :α)|Eδn :N S© t ∈ c

} ∈ FN(δn :α)
〈2〉1. Assume: c ∈ Fδn :N (α)

Prove:
{
t ∈ DN(δn :α)|Eδn :N S© t ∈ c

} ∈ FN(δn :α)
〈3〉1. c is a countable union of elements in CE(Dδn :N (α)).

Proof: By 〈2〉1 and Lemma B.14.
〈3〉2. Let: φ be a sequence of cones in CE(Dδn :N (α)) such that

c =
⋃#φ
i=1 φ[i].

Proof: By 〈3〉1 and Definition A.1.
〈3〉3.

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ ⋃#φ

i=1 φ[i]
} ∈ FN (δn :α)

〈4〉1. ∀i ∈ [1..#φ] :
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

} ∈ FN (δn :α)
Proof: By Lemma B.37.

〈4〉2.
⋃#φ
i=1

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

} ∈ FN(δn :α)

97

Proof: By 〈3〉2 and 〈4〉1, since FN(δn :α) is closed under countable union.
〈4〉3.

⋃#φ
i=1

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

}
={

t ∈ DN (δn :α)|Eδn :N S© t ∈ ⋃#φ
i=1 φ[i]

}
Proof: By definition (7).

〈4〉4. Q.E.D.
Proof: By 〈4〉2, 〈4〉3 and the rule of replacement [51].

〈3〉4. Q.E.D.
Proof: By 〈3〉2, 〈3〉3 and the rule of replacement [51].

〈2〉2. Q.E.D.
Proof: ⇒-introduction.

〈1〉2. Q.E.D.
Proof: ∀-introduction.

Lemma B.39. Let N be a component and let α be a queue history in BN . Then

1. D∃n :N (α) is a set of well-formed traces

2. F∃n:N(α) is the cone-σ-field of D∃n :N (α)

3. f∃n :N (α) is a conditional probability measure on F∃n :N (α)

Proof: (Proof of Lemma B.39.1.)
〈1〉1. Dδn :N (α) is a set of well-formed traces, that is, sequences of events fulfilling well-

formedness constraints (8), (9) and (10).
〈2〉1. Dδn :N (α) = {Eδn :N S© t|t ∈ DN (δn :α)

}
Proof: By Definition 7.1.

〈2〉2. {Eδn :N S© t|t ∈ DN (δn :α)
}

is a set of well-formed traces.
〈3〉1. DN(δn :α) is a set of well-formed traces.

Proof: By definition (26).
〈3〉2. ∀t ∈ {Eδn :N S© t|t ∈ DN (δn :α)

}
:(∀i, j ∈ {1..#t} : i < j ⇒ q.t[i] < q.t[j]) ∧

(#t = ∞ ⇒ ∀k ∈ Q : ∃i ∈ N : q.t[i] > k)
Proof: By 〈3〉1 and definition (7), since the filtering of a trace with regard to a
set of events does not change the ordering of the remaining events in the trace.

〈3〉3. ∀t ∈ {Eδn :N S© t|t ∈ DN (δn :α)
}

: ∀l,m ∈ in(N) \ {n} :
Let: i = ({?} × (S × l ×m×Q)) S© t

o = ({!} × (S × l ×m×Q)) S© t
〈3〉4. ∀j ∈ {1..#i} : q.o[j] < q.i[j]

Proof: By 〈3〉1, 〈3〉3 and definition (7), since the filtering of a trace with regard
to a set of events does not change the ordering of the remaining events in the
trace.

〈3〉5. Π{1,2,3}.(Π{2}.i) � Π{1,2,3}.(Π{2}.o), that is, the sequence of consumed mes-
sages sent from an internal interface l to another internal interface m, is a
prefix of the sequence of transmitted messages from l to m, when disregarding
time.

Proof: By 〈3〉1 this constraint is fulfilled by all traces in DN (δn :α). The new
traces are obtained by filtering away messages consumed by or transmitted from
n. Hence, n is treated as an external interface. The remaining internal commu-
nication is not affected by the filtering of events, so the restriction is fulfilled by
the new traces.

98

〈3〉6. Q.E.D.
Proof: By 〈3〉2, 〈3〉4 and 〈3〉5.

〈2〉3. Q.E.D.
Proof: By 〈2〉1, 〈2〉2 and the rule of replacement [51].

〈1〉2. Q.E.D.

Proof: (Proof of Lemma B.39.2.)
〈1〉1. Fδn:N (α) = σ(CE(Dδn :N (α))) that is, the cone-σ-field of Dδn :N (α).

Proof: By Definition 7.1.
〈1〉2. Q.E.D.

Proof: (Proof of Lemma B.39.3.)
〈1〉1. fδn :N (α) is a conditional probability measure on Fδn :N (α).
〈2〉1. fδn :N (α) is a measure on Fδn :N (α).
〈3〉1. fδn :N (α) is well defined, that is

∀c ∈ P(P(Hδn :N)) : c ∈ Fδn :N (α) ⇒{
t ∈ DN (δn :α)|Eδn :N S© t ∈ c

} ∈ FN (δn :α)
Proof: By Lemma B.38.

〈3〉2. fδn :N (α)(∅) = 0
〈4〉1. fδn :N (α)(∅) = fN(δn :α)(∅)

Proof: By Definition 7.1.
〈4〉2. fN(δn :α)(∅) = 0

Proof: By the fact that N is a component, Definition 6.1 and Definition 5.3.
〈4〉3. Q.E.D.

Proof: By 〈4〉1, 〈4〉2 and the rule of transitivity [51].
〈3〉3. ∀φ ∈ P(H) ω : (∀i ∈ [1..#φ] :φ[i] ∈ Fδn :N (α)

∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ Fδn :N (α))
⇒ fδn :N (α)(

⋃#φ
j=1 φ[j]) =

∑#φ
j=1 fδn :N (α)(φ[j])

〈4〉1. Assume: φ ∈ P(H) ω

Prove: (∀i ∈ [1..#φ] : φ[i] ∈ Fδn :N (α)
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ Fδn :N (α))
⇒ fδn :N (α)(

⋃#φ
j=1 φ[j]) =

∑#φ
j=1 fδn :N (α)(φ[j])

〈5〉1. Assume: ∀i ∈ [1..#φ] :φ[i] ∈ Fδn :N (α)
∧ (∀m, j ∈ [1..#φ] : j
= m⇒ φ[j] ∩ φ[m] = ∅)
∧ ⋃#φ

i=1 φ[i] ∈ Fδn :N (α)
Prove: fδn :N (α)(

⋃#φ
j=1 φ[j]) =

∑#φ
j=1 fδn :N (α)(φ[j])

〈6〉1.
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ ⋃#φ

j=1 φ[j]
} ∈ FN (δn :α)

Proof: By assumption 〈5〉1 (
⋃#φ
j=1 φ[j] ∈ Fδn :N (α)) and Lemma B.38.

〈6〉2. ∀i ∈ [1..#φ] :
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

} ∈ FN (δn :α)
Proof: By assumption 〈5〉1 (∀i ∈ [1..#φ] :φ[i] ∈ Fδn :N (α)) and Lemma B.38.

〈6〉3. fδn :N (α)(
⋃#φ
j=1 φ[j]) =

fN(δn :α)(
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ ⋃#φ

j=1 φ[j]
}
)

Proof: By Definition 7.1 and 〈6〉1.
〈6〉4. fN(δn :α)(

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ ⋃#φ

j=1 φ[j]
}
) =

99

∑#φ
j=1 fN (δn :α)(

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

}
)

〈7〉1.
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ ⋃#φ

j=1 φ[j]
}

=⋃#φ
j=1

{
t ∈ DN(δn :α)|Eδn :N S© t ∈ φ[i]

}
Proof: By definition (7).

〈7〉2. fN(δn :α)(
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ ⋃#φ

j=1 φ[j]
}
) =

fN(δn :α)(
⋃#φ
j=1

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

}
)

Proof: By 〈7〉1 and the rule of equality between functions [51].
〈7〉3. fN(δn :α)(

⋃#φ
j=1

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

}
) =∑#φ

j=1 fN (δn :α)(
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

}
)

〈8〉1.
⋃#φ
j=1

{
t ∈ DN(δn :α)|Eδn :N S© t ∈ φ[i]

} ∈ FN (δn :α)
Proof: By 〈7〉1, 〈6〉1 and the rule of replacement [51].

〈8〉2. ∀j,m ∈ [1..#φ] : j
= m⇒ {
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[j]

}∩{
t ∈

DN(δn :α)|Eδn :N S© t ∈ φ[m]
}

= ∅
〈9〉1. Assume: ∃j,m ∈ [1..#φ] :{

t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[j]
} ∩{

t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[m]
}
= ∅

Prove: ⊥
〈10〉1. Let: j,m ∈ [1..#φ] such that{

t ∈ DN(δn :α)|Eδn :N S© t ∈ φ[j]
} ∩{

t ∈ DN(δn :α)|Eδn :N S© t ∈ φ[m]
}
= ∅

Proof: By assumption 〈9〉1.
〈10〉2. ∃t1 ∈ DN (δn :α) :

t1 ∈ {
t ∈ DN(δn :α)|Eδn :N S© t ∈ φ[j]

} ∧
t1 ∈ {

t ∈ DN(δn :α)|Eδn :N S© t ∈ φ[m]
}

Proof: By 〈10〉1 and elementary set theory.
〈10〉3. Let: t1 ∈ DN(δn :α) such that

t1 ∈ {
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[j]

} ∧
t1 ∈ {

t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[m]
}

Proof: By 〈10〉2.
〈10〉4. Eδn :N S© t1 ∈ φ[j] ∧ Eδn :N S© t1 ∈ φ[m]

Proof: By 〈10〉3.
〈10〉5. φ[j] ∩ φ[m]
= ∅

Proof: By 〈10〉4.
〈10〉6. Q.E.D.

Proof: By assumption 〈5〉1, 〈10〉5 and ⊥-introduction.
〈9〉2. Q.E.D.

Proof: Proof by contradiction.
〈8〉3. Q.E.D.

Proof: By 〈8〉1, 〈6〉2 and 〈8〉2, the fact that N is a component, Defi-
nition 6.1 and Definition 5.3.

〈7〉4. Q.E.D.
Proof: By 〈7〉2, 〈7〉3 and the rule of transitivity.

〈6〉5.
∑#φ
j=1 fN (δn :α)(

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

}
) =∑#φ

j=1 fδn :N(α)(φ[j])

100

〈7〉1. ∀i ∈ [1..#φ] : fδn :N (α)(φ[i]) =
fN(δn :α)(

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ φ[i]

}
)

Proof: By Definition 7.1 and 〈6〉2.
〈7〉2. Q.E.D.

Proof: By 〈7〉1 and the rule of equality between functions [51].
〈6〉6. Q.E.D.

Proof: By 〈6〉3, 〈6〉4, 〈6〉5 and the rule of transitivity [51].
〈5〉2. Q.E.D.

Proof: ⇒ rule.
〈4〉2. Q.E.D.

Proof: ∀-introduction
〈3〉4. Q.E.D.

Proof: By 〈3〉1, 〈3〉2 and 〈3〉3 and Definition A.6.
〈2〉2. fδn :N (α)(Dδn :N (α)) ≤ 1

〈3〉1.
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ Dδn :N (α)

} ∈ FN (δn :α)
〈4〉1. Dδn :N (α) ∈ Fδn :N (α)

Proof: By Definition 7.1 (Fδn :N (α) is the cone-σ-field of Dδn :N (α)).
〈4〉2. Q.E.D.

Proof: By 〈4〉1 and Lemma B.38.
〈3〉2. fδn :N (α)(Dδn :N (α)) = fN(δn :α)(

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ Dδn :N (α)

}
)

Proof: By Definition 7.1 and 〈3〉1.
〈3〉3. fN(δn :α)(

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ Dδn :N (α)

}
) ≤ 1

〈4〉1. fN(δn :α)(DN (δn :α)) ≤ 1
Proof: By the fact that N is a component, Definition 6.1, Definition 5.3 and
Definition 5.2.

〈4〉2. fN(δn :α)(
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ Dδn :N (α)

}
) =

fN(δn :α)(DN (δn :α))
〈5〉1.

{
t ∈ DN (δn :α)|Eδn :N S© t ∈ Dδn :N (α)

}
= DN (δn :α)

〈6〉1. {t ∈ DN(δn :α)|Eδn :N S© t ∈ Dδn :N (α)
}

={
t ∈ DN (δn :α)|Eδn :N S© t ∈ (Eδn :N S©DN (δn :α))}

〈7〉1. Dδn :N (α) = Eδn :N S©DN (δn :α)
Proof: By Definition 7.1 and definition (7).

〈7〉2. Q.E.D.
Proof: By 〈7〉1 and the rule of replacement [51].

〈6〉2.
{
t ∈ DN (δn :α)|Eδn :N S© t ∈ (Eδn :N S©DN (δn :α))

}
= DN (δn :α)

Proof: By definition (7).
〈6〉3. Q.E.D.

Proof: By 〈6〉1, 〈6〉2 and the rule of transitivity [51].
〈5〉2. Q.E.D.

Proof: By 〈5〉1 and the rule of equality between functions [51].
〈4〉3. Q.E.D.

Proof: By 〈4〉1, 〈4〉2 and the rule of transitivity [51].
〈3〉4. Q.E.D.

Proof: By 〈3〉2, 〈3〉3 and the rule of transitivity [51].
〈2〉3. Q.E.D.

Proof: By 〈2〉1, 〈2〉2 and Lemma B.34

101

〈1〉2. Q.E.D.

Lemma 7.2 If IN is a probabilistic component execution and n is an interface name,
then δn : IN is a probabilistic component execution.

Proof. Follows from Lemma B.39.1 to Lemma B.39.3.

Theorem 7.4 If N is a component and a is an asset, then σa :N is a component.

Proof:
〈1〉1. Assume: (IN , AN , cvN , rfN) is a component and a is an asset.

Prove: σa :(IN , AN , cvN , rfN) is a component, that is, a quadruple consisting of
its probabilistic component execution, its assets, consequence function
and risk function according to Definition 6.1.

〈2〉1. σa :(IN , AN , cvN , rfN) = (IN , σa :AN , σa : cvN , σa : rfN)
Proof: By Definition 7.3.

〈2〉2. (IN , σa :AN , σa : cvN , σa : rfN) is a component.
〈3〉1. IN is a component execution.

Proof: By assumption 〈1〉1.
〈3〉2. σa : AN is a set of assets.
〈4〉1. σa : AN = AN \ {a}

Proof: By Definition 7.3.
〈4〉2. AN is a set of assets.

Proof: By assumption 〈1〉1.
〈4〉3. Q.E.D.

Proof: By 〈4〉1 and 〈4〉2.
〈3〉3. σa : cvN is a consequence function in EN × σa :AN → N

〈4〉1. σa : cvN = cvN \ {(e, a) → c|e ∈ E ∧ c ∈ N}
Proof: By Definition 7.3.

〈4〉2. cvN is a consequence function in EN ×AN → N.
Proof: By assumption 〈1〉1.

〈4〉3. Q.E.D.
Proof: By 〈4〉1 and 〈4〉2.

〈3〉4. ∃a : rfN is a risk function in N × [0, 1] × σa :AN → N

〈4〉1. σa : rfN = rfN \ {(c, p, a) → r|c, r ∈ N ∧ p ∈ [0, 1]}
Proof: By Definition 7.3.

〈4〉2. rfN is a risk function in N × [0, 1]×AN → N.
Proof: By assumption 〈1〉1.

〈4〉3. Q.E.D.
Proof: By 〈4〉1 and 〈4〉2.

〈3〉5. Q.E.D.
Proof: By 〈3〉1, 〈3〉2, 〈3〉3, and 〈3〉4.

〈2〉3. Q.E.D.
Proof: By 〈2〉1, 〈2〉2 and the rule of replacement [51].

〈1〉2. Q.E.D.
Proof: ⇒-introduction.

Theorem 7.6 If N is a component and n is an interface name, then δn :N is a compo-
nent.

102

Proof:
〈1〉1. Assume: (IN , AN , cvN , rfN) is a component and n is an interface name.

Prove: δn :(IN , AN , cvN , rfN) is a component.
〈2〉1. δn :(IN , AN , cvN , rfN) = (δn : IN , σAn :AN , σAn : cvN , σAn : rfN)

Proof: By Definition 7.5.
〈2〉2. (δn : IN , σAn :AN , σAn : cvN , σAn : rfN) is a component
〈3〉1. δn : IN (α) is a probabilistic component execution.

Proof: By Lemma 7.2.
〈3〉2. (IN , σAn :AN , σAn : cvN , σAn : rfN) is a component.
〈4〉1. σAn :(IN , AN , cvN , rfN) is a component.

Proof: By assumption 〈1〉1 and Theorem 7.4.
〈4〉2. σAn :(IN , AN , cvN , rfN) = (IN , σAn :AN , σAn : cvN , σAn : rfN)

Proof: By Definition 7.3.
〈4〉3. Q.E.D.

Proof: By 〈4〉1, 〈4〉2 and the rule of replacement.
〈3〉3. σAn :AN is a set of assets,

σAn : cvN is a consequence function in EN × σAn :AN → N and
σAn : rfN is a risk function in N × [0, 1] × σAn :AN → N

Proof: By 〈3〉2 and Definition 6.1.
〈3〉4. Q.E.D.

Proof: By 〈3〉1, 〈3〉3 and Definition 6.1.
〈2〉3. Q.E.D.

Proof: By 〈2〉1, 〈2〉2 and the rule of replacement [51].
〈1〉2. Q.E.D.

Proof: ⇒-introduction.

103

