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Abstract

The Bagadus system has been introduced as an automated soccer analysis tool, and
consists of an analysis subsystem, tracking subsystem and video subsystem. By au-
tomating the integration of these subsystems, Bagadus allows for simplified soccer
analysis, with the goal of improving athletes’ performance. The system is currently
installed at Alfheim stadium in Tromsø, Norway. A part of the video subsystem is
the generation of panorama videos from four HD cameras. However, the pipeline for
panorama video generation in the first version of the system did not manage to do this
online and in real-time.

In this thesis, we present how to build an improved panorama stitcher pipeline that
is able to stitch video from four HD cameras into a panorama video online and in real-
time. We describe in detail the architecture and modules of this pipeline, and analyze
the performance, where we demonstrate real-time, live capture, processing and storage
of four individual camera feeds and generation of a panorama video on a single ma-
chine. In addition, we focus on how background subtraction can be used to improve
the pipeline. As part of this, we discuss how we can utilize player position data to im-
prove the background subtraction process, and also discuss in detail how to optimize
the background subtraction process on CPU and GPU.
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Chapter 1

Introduction

1.1 Background

Today, many large sports clubs use a lot of resources for analyzing and improving
the performance of their players. This kind of analysis is done either manually or
by use of automatic systems. The goal is to improve player performance, strategies
and planning in the most effective way. Soccer is a sport where such analysis systems
are important, and examples of existing systems are Interplay [4], ProZone [5], STATS
SportVU Tracking Technology [6] and Camargus [7]. These systems provide data like
player speed, heart rate, fatigue, fitness graphs, etc.

Such systems all contain several subsystems, such as video subsystems and event
annotation subsystems, but these all require manual steps to successfully integrate
with each other. For instance, in Interplay, video streams are manually analyzed by
trained operators that mark events, such as goals, offsides, and penalties. In com-
parison, SportsVU uses cameras to automatically locate players, which is then used
for analysis. However, using video for automatic player localization requires lots of
resources and is inaccurate. Another way to locate players at all times would for in-
stance be to use a sensor-based system, like the tracking system by ZXY Sport Track-
ing [8] (ZXY), where players’ location, speed, heart rate, etc. are sampled several times
per second during matches or training sessions, by use of antennas and sensor belts on
the players.

A common subsystem and tool in such analysis systems is video, which allows
coaches to replay important events. The videos can then be shown to the relevant
players, which in turn can see the situations themselves to understand what needs to
be improved. There are several solutions for integrating video, such as having dedi-
cated camera personel per player tracking him/her during a match. This is expensive,
however, both in respect to equipment, processing, and human resources, and is not
very accurate. A solution becoming more and more common today, is the use of several
cameras to record everything that happens in the field concurrently, meaning all possi-
ble events get recorded. This makes it easier to retrieve information from the footage,
and allows for creation of stitched panorama videos of the whole field. However, the
creation of such panorama videos requires a lot of processing power. Camargus is a
good example of such a system, where they use 16 cameras to capture the whole field,
and provide a stitched panorama video of matches. Nevertheless, Camargus does not
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directly integrate with an annotational system for tagging events.
As stated, existing systems contain many manual steps for integrating the different

subsystems used for analysis. To address these shortcomings, we present Bagadus [2,
9,10]. Bagadus is a system that targets to automate all of these steps, and therefore inte-
grates a camera array for video capture, a sensor system for retrieving player statistics,
and a system for human expert annotations. System events can both be tagged by an
expert, or automatically tagged by analyzing data from the sensor system. Either way,
this allows users to playback events automatically. Furthermore, by use of the sensor
subsystem, Bagadus knows the positions of the players at all times, which allows for
accurate video tracking of specific players. When viewing video footage, users are able
to switch between the different cameras, in addition to viewing a stitched panorama
video. The generation of this panorama video is supposed to be done in real-time and
online, but the current Bagadus implementation [2, 9, 10] does not contain an optimal
stitcher pipeline for fulfilling these requirements, and the resulting panorama video
contains several visual artifacts.

1.2 Problem Definition

A goal is to increase the performance of the Bagadus panorama stitching pipeline.
There exist a lot of work done on panorama stitching, such as [11–15]. Another good
example is Camargus [7], which we mentioned above. However, there are issues with
these systems that make them unfitting for our needs, such as the use of expensive and
specialized equipment, reduced visual quality, closed and/or commercial source, and
lacking real-time performance.

In this thesis, we investigate how we can improve the old Bagadus panorama stitcher
pipeline, both in performance and visual results. For the visual improvements part,
we will emphasize the use of background subtraction. To improve the stitcher per-
formance, we research how the existing architecture can be restructured, and how we
can split the task of image stitching into several sub modules running in a pipelined
fashion. As part of this, we will also investigate the possibilities of boosting the per-
formance by use of heterogeneous processing architectures for massive parallelism.
The goal is to create a pipeline for stitching frames from four cameras online and in
real-time, while it at the same time processes and stores the four individual streams.
Furthermore, to improve the visual results of the panorama stitcher pipeline, we will
research adding new modules and algorithms. This includes investigating the need
for implementing new algorithms and architecture changes. The end result should be
a subjectively better looking panorama video consisting of fewer visual artifacts. To
further improve the visual quality, we will emphasize the use of background subtrac-
tion as a tool in the pipeline (while others emphasize other parts), and must therefore
investigate background subtraction in detail to determine the usability in this scenario.
We must thus look into different background subtraction algorithms, important as-
pects and parameters, general performance optimizations, performance on different
architectures, and the possibilities of utilizing the knowledge about player positions to
improve accuracy and performance.
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1.3 Limitations

The selection of algorithms for stitching images to a large panorama has already been
discussed in [2, 9, 10]. We will therefore not investigate other algorithms, but use the
one selected here, i.e., investigate means for improving performance. This also means
that we will not go into the details on how the stitching algorithms work, because
that is beyond the scope of this thesis. However, this does not limit the possibilities of
researching how we can modify the existing implementation to make it both faster and
more visually pleasing.

1.4 Research Method

In this thesis, we design, implement and evaluate a prototype for the improved panorama
stitcher pipeline of the Bagadus system. The prototype is deployed in a real life sce-
nario at Alfheim stadium in Tromsø, where the actual users are able to interact with
it. The research method utilized is based on the Design methodology described by the
ACM Task Force on the Core of Computer Science [16].

1.5 Main Contributions

The main contribution of this thesis has been to install the new and improved panorama
stitcher pipeline as part of the Bagadus system at Alfheim stadium in Tromsø. This in-
cludes installing a web interface for scheduling recordings. The new and improved
pipeline performs fast enough to fulfill the real-time requirements needed for the sys-
tem, and stores both non-stitched and stitched footage. All of this is done on a single,
inexpensive computer with commodity hardware. In addition to an increase in perfor-
mance, we have also improved the visual quality of the panorama. A part we espe-
cially focus on is how we can use background subtraction to improve the panorama.
However, to further improve the visual results, we need to change to a more optimal
camera setup.

By improving this pipeline, we have shown how it is possible to design a pipeline
for processing large amounts of video to generate a video panorama, all of this in real-
time, by use of external processing units, such as GPUs.

In addition, we have been able to submit and publish a poster at the GPU Technol-
ogy Conference 2013, which described how it is possible to build a pipeline for creat-
ing panorama videos in real-time using GPUs [17]. We have also submitted a paper to
ACM Multimedia 2013 [18], where the pipeline is presented.

1.6 Outline

In the remainder of this thesis, we continue in Chapter 2 by describing the existing
Bagadus system in more detail. This means looking at the goals of the system, the
different subsystems and their tasks, limitations, and improvements for the existing
implementation. We especially look into how the old, off-line panorama video stitcher
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pipeline works. Before looking deeper into the improvements of the old Bagadus
stitching pipeline, we will explain Nvidia CUDA, a framework for utilizing the power
of GPUs for parallel processing tasks, in Chapter 3. Then, in Chapter 4, we will describe
in detail the new and improved Bagadus panorama stitcher pipeline. This includes de-
scribing the goals, the general architecture, the different modules and components,
and design choices of the new pipeline. In addition, we investigate the performance,
scalability, and also the web interface for scheduling new recordings. Following this, in
Chapter 5, we start investigating background subtraction, and how this image analysis
tool is implemented. This includes comparison of different algorithms, optimization
techniques both on CPU and GPU, and how we can modify the background subtractor
to utilize the knowledge of player positions, which are provided by the use of sensor
data. Furthermore, we investigate different applications for background subtraction
in the Bagadus system, such as depth map calculation and dynamic seam stitching.
Finally, in Chapter 6, we summarize the findings in this thesis, draw conclusions on
our results, and discuss some future works.



Chapter 2

Bagadus

In this chapter we start by discussing the basic idea behind the Bagadus system. We
continue by discussing the important subsystems, such as the video capture part of the
video subsystem, the analytics system, the tracking subsystem, and the first panorama
stitcher prototype. Finally we discuss how all of these systems are integrated in the
demo player created for the Bagadus system, and highlight what needs to be improved.

Figure 2.1: Bagadus architecture

2.1 The basic idea

As mentioned in section 1.1 and discussed in [2, 9, 10] (from now on referred to as the
old Bagadus version), current soccer analysis systems, like Camargus and SportVU,
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usually consist of several subsystems, such as a video subsystem for recording video
footage from matches and training sessions, and annotation subsystem for marking
and describing events. The problem with these systems is that they contain manual
steps for integrating the subsystems and components to one large system. In addition
to being more error prone than automation, manual labor leads to processing times so
high that it is not possible to provide output from the system during half-times, which
limits the usability of the system.

The basic idea of the Bagadus system is therefore to integrate the subsystems and
components needed in such a soccer analysis system, and automate the process of
integration between them. To be able to automate all of this, Bagadus contains three
main subsystems: the analytical system, which is responsible for tagging and storing
events; the tracking subsystem, which is responsible for tracking player positions and
storing player data and statistics; and the video subsystem, which records, processes
and stores video footage from the whole field. The general Bagadus architecture can
be seen in figure 2.1. Here we can see the video subsystem consisting of several video
cameras covering the whole field, plus pipelines for storing stitched and non-stitched
videos. The tracking subsystem can be seen as antennas around the field that collect
player data from sensor belts the players are wearing. The analytical subsystem with
annotations can be seen where the coach is using his mobile device to mark events
during a session.

One of the goals of the Bagadus system is to provide the coaches with processed
footage so fast that they can access it and play it back during the break between pe-
riods. This means that the end-to-end delay of the system needs to be as small as
possible, so that the coaches can view all the footage from the previous period and
provide detailed feedback to the players before the next period.

2.2 Video capture

An important part of the video subsystem is the recording of frames. Without video
footage, we would not be able to provide the viewer with video that corresponds to
events and tracking data, which makes the system way less useful, and not providing
anything new.

2.2.1 Camera setup

One of the goals in the Bagadus system has been to be able to use relatively inexpensive
and common hardware, especially excluding any expensive special purpose hardware.
This is reflected in the hardware setup, including on the camera side. The cameras used
are four Basler acA1300 - 30gc [19] industrial Ethernet-based cameras, with 1/3-inch
imageing sensors supporting 30 fps and a max resolution of 1294×964 pixels.

The cameras output videos in the YUV color space, using the YUV 4:2:2 pixel for-
mat. In YUV, Y is the luminance and U and V are the chroma/color components. More
precisely, U is the difference Blue− Y and V is difference Red− Y. Humans are more
sensitive to differences in luminance, so the color components can be compressed by
subsampling. In YUV 4:2:2, the sample rate of the two chroma components are halved
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in the horizontal dimension, reducing the bandwidth requirements by 1/3. In YUV
4:2:0, the sample rate of the chroma components are halved in both the horizontal and
vertical directions, leading to a reduction in bandwidth requirements of 50%. Fig-
ure 2.2 shows an example of YUV 4:2:0. More information about YUV and chroma
subsampling can be found in [1] and [20].

Figure 2.2: Example of YUV 4:2:0 [1]

The cameras are mounted with Kowa 3.5 mm wide angle lenses, and were con-
nected to two computers, i.e. two cameras per computer. Due to the wide angle lenses,
which gives the cameras a field-of-view of about 68 degrees, we are able to cover the
complete field with these four cameras. The setup can be seen in figure 2.3.

Figure 2.3: Camera setup at Alfheim stadium.

2.2.2 Frame synchronization

An important step when recording frames is the synchronization of frames between the
recording cameras. We want to stitch the images, so it is therefore important that all the
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corresponding frames are recorded at the same time. In the original implementation,
several machines were used to record, and these machines were not connected to the
internet. A trigger box created by Simula were used to trigger the camera shutters at
the correct frequencies. The trigger box schematics and firmware can be found at [21].
The use of several machines and no NTP connection made synchronization between
frames from different cameras difficult. The camera-synchronization was in this case
secured by use of TimeCodeServer, a server passing messages between the machines
to synchronize the cameras.

2.3 Analytics subsystem

One goal of the Bagadus system is to allow coaches to tag events during matches or
training sessions, and then be able to retrieve these events later to review and ana-
lyze them. This is done by integrating Bagadus with the Muithu system [22]. Muithu
is a lightweight, non invasive and mobile system for notational analysis. During a
match or training session, coaches use a mobile phone with Windows Phone 7.5 and
a specially designed application for marking events. The application contains several
sets of tiles, where the user interacts with the tiles in a drag-and-drop fashion. This is
considered fast and intuitive, and can be configured with different input tiles and hi-
erarchies. The root level contains an overview of the players, like in figure 2.4(a). The
second level contains a set of tiles for different events the players can be part of, such
as scoring a goal. Here the user drags a player onto an event to mark it in the system,
which stores the event in a database for later retrieval. Figure 2.4(b) shows an example
of this.

An important aspect of using such an event system, is to synchronize events with
the corresponding recorded video frames. The accuracy needed is not as high as for
the synchronization between frames and ZXY data samples, but the requirement is still
there. This level of synchronization for events and frames can be ensured by connect-
ing to a common NTP server.

2.4 Tracking subsystem

The tracking subsystem is responsible for tracking players by use of a sensor network,
and to be able to provide player positions as pixel coordinates in the recorded videos.

2.4.1 ZXY sensor system

ZXY Sports Tracking [8] (ZXY) is a company that delivers sports tracking solutions
to sports clubs and others. ZXYs system uses wireless radio technologies over the
2.45 GHz and 5.2 GHz bands, with several antennas installed on stadiums using the
system. The players then wear a ZXY sensor chip that registers data such as position,
speed, heart rate, etc. All of this data is sent to and stored in a relational database.
ZXY reports a sampling rate of up to 40 Hz, with an estimated error margin of ±0.5
meters [23] on the newest sensors. There is a version of the system currently installed
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(a) Selecting a player. (b) Dragging player to event
type.

Figure 2.4: Muithu event tagging

at Alfheim Stadium, belonging to Tromsø IL, but this is an older version that only
supports a sampling rate of up to 20 Hz, with a maximum error margin of ±1 meter.

2.4.2 Video frame - ZXY data synchronization

One very important aspect when discussing the player tracking, is the need for syn-
chronization between every video frame recorded and the corresponding ZXY data
samples. If we have a time difference and/or time drift here, we will quickly see that
the tracking fails by lagging behind or being ahead of the video. In the old version of
the Bagadus system, this synchronization was done by hand.

It is also important to note that, as mentioned above, the max sampling rate of the
ZXY system currently installed at Alfheim is 20 HZ, while the cameras record at a rate
of 30 frames per second. This means that we do not have a 1:1 mapping between ZXY
data samples and frames. The relationship is 2:3, so this was solved by simply reusing
the previous ZXY data sample every third frame. This has proved to be a sufficient
solution.

2.4.3 Sensor coordinate to pixel mapping

Before we can properly use the ZXY coordinate data, we need to map the real-world
ZXY coordinates into pixel positions. This is done by first finding a transformation
matrix, which is a 3x3 matrix that describes how to translate between the ZXY and
image planes, and is found by using OpenCV. When this homography has been found,
we can use it to warp between these two planes. More details about this process can
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be found in the old Bagadus version.
With such a mapping between pixels and sensor coordinates, the tracking subsys-

tem allows for many scenarios. For instance it allows the viewers to digitally zoom
onto players and follow these, in addition to selecting cameras automatically if a tracked
player moves out of one camera and into another.

2.5 First stitching pipeline prototype

One of the goals of the Bagadus system is to provide a stitched panorama video to the
viewers, consisting of a panorama generated with the footage from all four cameras.
To be able to deliver this, Bagadus needs a pipeline as part of the video subsystem for
stitching the recorded frames into a single panorama video. The reason for building
a pipeline, is that this pattern of chained tasks passing data to the next task, fits the
stitcher pattern of several distinct, consecutive steps well. The stitching pipeline of the
first Bagadus prototype is described in this section.

2.5.1 Important libraries

There exist many free image processing libraries and toolkits that can be utilized, and
in the Bagadus system, we utilize several libraries to make implementation easier and
faster.

OpenCV

In the old Bagadus version, and in this thesis, OpenCV is used to solve several of the
tasks at hand. OpenCV [24] is an open source computer vision library, released under
BSD license, supporting Windows, Linux, Mac OS, iOS and Android. It focuses on
real-time applications, and is implemented in C and C++. OpenCV contains a lot of
modules and functionality for computer vision tasks, such as stitching, warping, image
representations and viewing.

NorthLight

Another image processing library used is the NorthLight library. NorthLight is de-
veloped by the Verdione project at Simula Research Laboratory [25]. It is a library
that aims at being a common interface between the most popular open source im-
age processing libraries. The Verdione project has high performance and real-time
requirements, so its requirements align well with Bagadus’. We therefore utilize much
of the functionality implemented in this project, for instance by using NorthLight’s
VideoFrame-objects to represent frames, using it to access Baslers camera SDK [26],
using it to encode video with x264 [27], and to convert between image formats with
ffmpeg [28].
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2.5.2 Pipeline steps

As part of the video subsystem, in addition to viewing single camera videos, we want
coaches, players, etc. to be able to view a stitched video panorama that combines all the
cameras as a single, large video. To be able to do this, a panorama stitcher pipeline was
created in the old Bagadus version. Here, different algorithms and implementations for
doing this are discussed, with advantages and disadvantages. In the end, the pipeline
seen in figure 2.5, was described. We will now describe this pipeline shortly.

Figure 2.5: The old Bagadus stitching pipeline

Reading and first conversion steps

The frames from the cameras were recorded and stored as raw YUV frames. The
first step in this pipeline is therefore to read these files from disk. Operations such
as debarelling are color space agnostic, so we could use YUV internally in the whole
pipeline, but it was rather decided that the internal pixel representation format should
be RGB, due to RGB being somewhat easier to understand and work with. The follow-
ing step is therefore to convert from YUV to RGB.

Debarreling step

When recording frames with a wide angle lens, the recorded frames suffer from bar-
rel distortion. In an image suffering from barrel distortion, the image magnification
decreases when moving away from the optical center of the image, leading to the dis-
tortion pattern we see in figure 2.6. Before we can do anything with the images, this
distortion must be removed, which is done in this step. There are mathematical for-
mulas for this, and there exist many implementations. In the old Bagadus version, the
debarrelling function in OpenCV is used.

To be able to debarrel the images, we need to know a set of barrel distortion coeffi-
cients for all the camera lenses, which will be parameters for the debarreling function.
This calibration is done by use of a board with a chess pattern [29], using OpenCVs
functions for calculating the coefficients. Even though the lenses we use are equal,
they are not 100% identical, so we need to calibrate all the cameras to retrieve the de-
barrel coefficients for each of them. This, however, were never done. This is because,
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Figure 2.6: Original and rectilinear image vs. barrel distorted version [2]

even though it should be done for every camera, the results were good enough for
the purpose of building this pipeline when the coefficients for only one of the cameras
were retrieved. The coefficients were therefore reused on all the cameras. This is a step
that should be properly followed when installing the system outside the lab. For more
details about barrel distortion, see the old Bagadus version.

Warping step

To be able to stitch the four cameras, we need to do a 2D transformation of the cam-
era frames, so that these are aligned, transformed, and ready for being stitched onto a
common panorama plane. This 2D transformation based stitching algorithm (named
Homography-based stitching in the old Bagadus version) was selected due to the good
performance compared to OpenCVs auto stitchers. The transformation part of this
stitching algorithm is to first select one of the cameras as the primary, or reference, pro-
jection/plane. The goal is then to transform the other cameras to fit the same plane as
the reference camera. This means that for the rest of the cameras, we need to find the
homography, i.e. the transformation relationship, between the current camera plane
and the primary camera plane. This can be done during system setup, because the
camera positions are static. To calculate such a homography, we need to find common
points in the different camera-pairs, such as field corners, goal posts, lines, etc. When
sent as parameters to an OpenCV function, these common positions result in a trans-
formation matrix per camera. The transformation matrix is a 3x3 matrix that explains
how each pixel should be moved to transform the frame to the target plane, i.e. of
the reference camera. The transformation matrix of the reference plane is an identity
matrix, in other words one that tells the warper not to move any pixels.

When these homographies have been found, we can use them to warp between
the projections. This means that the warper warps all the cameras but the primary
camera to fit the projection of the primary one, leading to an easy task for the stitching
step itself. An important part of this warping is selecting an interpolation algorithm.
Pixel interpolation is necessary every time pixels are remapped, and is caused by pixel
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values being remapped to positions that are not precisely mapped to a pixel. This
happens because pixel locations are discrete, with limited precision, so when pixel
values are moved to pixel positions not precisely mapped, we need to evaluate the
new pixel values of the nearby pixels. Interpolation therefore works by using known
data, in our case pixel values, to estimate values at unknown points, i.e. at mapped
pixel positions. The interpolation algorithm used in the old Bagadus version is, due to
performance, nearest neighbor. A more detailed explanation about interpolation can
also be found here.

The warper implementation used is based on OpenCV.

Figure 2.7: The stitching process.

Stitching step

By selecting such a transformation-based stitching algorithm, implementation of the
stitching step itself is fairly straight forward. At this point, all frames have been
warped to fit the projection of the reference camera, which can be considered as the
common panorama plane. At the camera setup in section 2.2.1, it was made sure that
there was a decent amount of overlap between the cameras. The next step in the old
pipeline is then to calculate the seams in the overlapping areas between cameras 1
and 2, 2 and 3, and 3 and 4. These seams determine what camera each pixel in the
panorama frame will be copied from. The seams in the the original pipeline are calcu-
lated manually by finding an offset per overlap where we can draw a straight, vertical
line through the overlapping area, and these seams are completely static.
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When the seams have been determined, the next step is to create the actual panorama.
This is done by first creating an empty frame, large enough to contain the whole
panorama. The stitcher then loops through all pixels for all the cameras, and copies
the pixels between the seams to the right and left for that camera into the correct po-
sition in the panorama buffer. When all cameras have been processed, the resulting
panorama is cropped to remove empty, black areas in the image. Figure 2.7 shows the
process of copying the four warped camera frames into a single, large panorama frame.
The highlighted areas are regions where the cameras overlap. The resulting panorama
can be seen in figure 2.9.

Advantages of using static seams are that the seam calculation is basically free,
and can be calculated before running the pipeline. On the downside however, the
static seam is not optimal, and we are able to see clear, visual artifacts in the generated
panorama image. This is especially an issue when players are crossing a seam, as we
can see in figure 2.8, which results in ghosting effects.

Figure 2.8: Artifact caused by player crossing stitch seam

Second conversion step

RGB is used internally in the pipeline, and the encoder in the storage step requires
YUV 4:2:0, so the next step of the pipeline therefore converts the panorama output
from RGB to YUV.
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Figure 2.9: Example panorama with static seams

Storage step

The last step is to store the resulting panorama frames. An important aspect of the
system is the format in which we want to store the data. There are several possibilities,
such as dumping raw YUV data to disk, or encoding and storing the frames as H.264.
In the old Bagadus version, this is discussed in detail. When selecting a format, there
is a trade-off between image quality, storage size requirements and compression ratio,
encoding time, and writing time. The image quality and compression ratio should be
as high as possible, while the writing time and encoding time should be as small as
possible, but this proves to be difficult to achieve. The solution selected is to write
the resulting video streams to disk by encoding the frames as lossless H.264 and then
write them in blocks of 90 frames per file. This means that each H.264 file is no longer
than 3 seconds. H.264 does not support custom metadata, so the timestamp of the first
frame in each 90-frame-file is part of the filename. This allows us to search in the video
streams both forwards and backwards, and also allows us to synchronize ZXY data,
Muithu event data, and video frames on the player side of the Bagadus system.

2.5.3 Performance

The performance of the first prototype of the stitcher pipeline is affected by the fact
that it was meant to be a proof-of-concept for integration between the different sub-
systems. The performance is therefore unoptimized. When run on DevBox 1, with the
specifications in table C.1, the performance numbers can be seen in table 2.1. It is quite
clear that the most resource demanding operations are done in the primary stitching
steps, which consists of the warping and the stitching itself, so an optimized stitcher
pipeline would have to focus especially on speeding up these operations. It is obvious
that this stitching pipeline is not real-time, and it therefore has to be run off-line.

Mean time (ms)
YUV⇒ RGB 4.9
Debarreling 17.1
Primary stitching 974.4
RGB⇒ YUV 28.0
Storage 84.3
Total 1109.0

Table 2.1: Old pipeline performance
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2.6 The Bagadus demo

In the old Bagadus version, to demonstrate the total integration of the video, tracking
and analysis subsystems, a Bagadus player was created. The player can be seen in fig-
ure 2.10. On the left side, marked in red, we can see a list of all the players. All player
names here are retrieved from the ZXY database. By pressing one or more of the player
names, the application starts tracking the players. This tracking is done by drawing a
square around every tracked player. In addition, when tracking players, we are able to
digitally zoom onto the tracked players by enabling zooming, marked in blue. When
tracking players, we can also activate automatic camera selection in the purple panel.
This makes the application switch between the different camera streams, based on the
camera that shows the largest number of players. In the yellow panel, we have the
camera selector, which allows the user to switch between the different camera streams
manually. If the user presses the button in the cyan panel, the application switches
to the stitched panorama video, which of course supports tracking and zooming onto
players. Marked in green, in the lower left, we have the list of events. When pressing
one of them, the player jumps to the corresponding time in the video, and starts track-
ing the players being a part of the event. A video demonstration of the Bagadus demo
can be found at [30].

Figure 2.10: The Bagadus demo player
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2.7 Summary

We have in this chapter looked at how the first Bagadus prototype is structured. The
primary goal is to automate the integration between different subsystems needed to
create a completely automated soccer analysis system, with possibilities for other users
to access this footage later. Bagadus consists of three subsystems: The video subsys-
tem is responsible for recording and storing frames, while also generating a stitched
panorama video from the recorded frames. The analytics subsystem, based on Muithu,
provides possibilities for annotating events during a match or training session. The
tracking system is realized by use of ZXY’s sensor system, and provides us with func-
tionality for knowing the exact positions for all players in the videos at all times.

The Bagadus demo application shows us how all of these systems are integrated to
provide the experience we want to deliver. The demo is able to play both ordinary and
stitched video provided by the video subsystem. The tracking subsystem allows us to
track one or more players in the videos, while Muithu provides functionality for event
annotation, and then lets us playback such events with the click of a button.

However, there is lot of room for improvements. First, the performance of the
stitcher pipeline is far too low to allow for online and real-time panorama video cre-
ation. One of the goals is that the coaches should be able to show situations to the
players during half-time, so approximately 1 fps like in the first prototype is not fast
enough. In addition, the generated panorama contains lots of visual artifacts, such as
color differences between the cameras and ghosting effects when players cross a static
cut. The performance and the visual results are the issues we are focusing on solving
in this thesis.

To speed up the performance of the stitcher pipeline, we want to use graphics pro-
cessing units (GPUs). This is because GPUs are excellent for executing tasks in par-
allel, and image processing is generally massively parallelizeable, meaning we would
potentially see a large performance increase. We therefore continue in Chapter 3 by
looking into Nvidia CUDA, which we will use for the GPU implementations of several
components described in Chapter 4.
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Chapter 3

Nvidia CUDA

Compute Unified Device Architecture [31] (CUDA) is a platform and programming
model for parallel computing, developed by Nvidia, which makes it easy to write code
that runs on the massively parallel graphical processing units (GPU). With the help
of CUDA, it is possible to speed up parallel applications by an order of magnitude or
more. However, this is not trivial for all applications, and depends a lot on the nature
of the problem, especially on how parallelizable the problem is.

CUDA is designed to let tasks be parallelized, and then to execute the parallelized
version on a GPU by use of thousands of threads. This is data parallelism. In addition,
CUDA allows for task parallelism, where it is possible to run several different tasks
concurrently on a GPU, even though each individual task is running serialized. To
be able to do this, CUDA threads are extremely lightweight, with very little overhead
compared to CPU threads [32]. For the programmer, GPU execution is issued by cre-
ating and launching a kernel for the parallel part of the application. Kernels are then
run on the GPU. Furthermore, by moving execution tasks from the CPU to the GPU
we offload the CPU, which can result in CPU based tasks executing faster.

3.1 The Fermi architecture

Nvidia has several GPU architectures, and the latest architecture supported by CUDA
is the Kepler architecture. However, when we started working on this system, Fermi
was the newest architecture available, and is therefore the architecture we will focus on
in this thesis. The Fermi architecture was launched in the spring 2010, with the GF100
chipset and Geforce 400-series GPUs. The numbers differ from one GPU architecture
to the other, but the general GPU architecture and terms are somewhat similar, so the
description of the Fermi architecture also explains a bit of Nvidia’s GPUs in general.

The basic processing unit on the Nvidia GPUs is the Stream Multiprocessor (SM),
marked in red in figure 3.1, and in more details in figure 3.2. On Fermi, a GPU consists
of up to 16 SMs, located around a common L2 cache. Each SM contains 32 Stream Pro-
cessors (SP), also called CUDA cores, which are responsible for executing instructions.
The SPs within a SM all execute the same instruction at a time. Each SP contains a fully
pipelined ALU and FPU. Furthermore, each SM contains 16 load/store units, which are
used for calculating source and destination addresses for 16 threads per clock. Each SM
also contains 4 Special Function Units (SFU), which are used for special operations,
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Figure 3.1: The Fermi architecture [3]
An example Stream Multiprocessor (SM) marked in red.

such as trigonometric functions. Each SM schedules groups of 32 parallel threads in
what is called a warp. Instructions are then issued per warp. To do this, each SM
contains two warp schedulers, which can schedule, issue and execute two warps in
parallel. The Fermi architecture can, by use of very fast context switching, have up to
48 active warps per SM, which equals 1536 threads.

As we can see in [3], Fermi also contains several new features that are improve-
ments from earlier architectures. One of these features is an improved thread sched-
uler that allows for running different kernels concurrently. This can greatly improve
performance of an application consisting of different kernels. Fermi also introduced
L1 cache for each SM and a L2 cache, which help increase performance quite a bit.
Furthermore, Fermi implements a unified address space that unifies the three types of
address space, namely thread private local, block shared, and local. This allows for
easier pointer implementation, where one for instance does not need to know what
memory space a pointer points to at compile time, and it also enables support for true
C++ programs.
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Figure 3.2: A Fermi Stream Multiprocessor [3]

3.2 The CUDA execution model

When writing CUDA applications, the programmer needs to create a kernel. Kernels
are executed by a grid of thread blocks. A grid is just a collection of completely in-
dependent blocks. A block however, is a collection of threads that can communicate
within the block. Therefore, when launching a kernel, one basically starts execution of
concurrent and independent thread blocks. Instructions are then issued per warp.
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3.3 Compute capability

The term compute capability is used to describe the capabilities of different Nvidia
CUDA enabled GPUs. The existing capabilities are 1.0, 1.1, 1.2, 1.3, 2.0, 2.1, 3.0 and
3.5, where the number describes the capabilities and properties that the GPU has. The
first number is the generation, while the second number equals the revision within that
generation. All the different compute capabilities have different properties, but gener-
ally the higher the number, the better. Of course, compute capabilities are backwards
compatible, so for instance GPUs of compute 2.0 can execute CUDA applications writ-
ten for compute 1.3.

3.4 The memory model

Nvidia GPUs have several different types of memory, spread over three different ad-
dress spaces, located on-chip and off-chip, designed for different kind of uses and ac-
cess patterns. The memory types are host memory, global memory, constant memory,
texture memory, shared memory, local memory, and registers. We can see a table sum-
mary of the different memory types in table 3.1.

Memory type Location Cached Speed Access scope Data lifetime

Global Off-chip No 100x All threads Alloc⇒dealloc
Texture Off-chip Yes 1-100x All threads Alloc⇒dealloc
Constant Off-chip Yes 1-100x All threads Alloc⇒dealloc
Shared On-chip - 1x Threads within block Block
Registers On-chip - 1x Single thread Thread
Local Off-chip No 1-100x Single thread Thread

Table 3.1: CUDA memory types

3.4.1 Host memory

The host (CPU) memory is the main memory in the computer, which is controlled by
the CPU. The access times to this memory from the device are high, and is limited
by both the bandwidth of the PCI Express (PCIe) interface, which for the PCIe x16
3.0 standard is 16 GB/s in each direction [33], and the latency of commands on the
PCIe bus, which in [34] was found to be approximately 10 µs. The programmer should
therefore avoid transferring unnecessary data back and forth between the host and the
device. In addition, this memory is not directly accessible from the GPU threads, other
than when using pinned memory.

3.4.2 Global memory

Global memory is the largest memory on the GPU, located off-chip in the device DRAM
(see figure 3.1), and is globally accessible by all the threads on the device, in addition to
the CPU. This, however, comes at the price of access time. Due to the size of the global
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memory, it is slower than other types of GPU memory. However, on newer devices of
compute 2.x and higher, global memory can be cached in a L2 cache of limited size.
This makes global memory more convenient for the programmer to use, compared to
before, because the advantages of other cached memory types, such as texture and con-
stant memory, are not as big as they used to, while global memory also remains easier
to use. Nevertheless, it is important to not rely on GPU caches like you would for CPU
caches, because there are too many threads per cache. The lifetime of data in global
memory is from it is allocated in the host code until it is deallocated here.

3.4.3 Texture memory

Texture memory is another kind of global memory located off-chip, accessible by every
thread. In comparison to ordinary global memory, it has several different properties.
First of all, it is accessed by the threads in a read only manner, meaning the threads
cannot write to the texture memory. Furthermore, texture memory is cached, which
can increase performance. However, the texture memory is designed for spatial access
patterns, which means that the caching is optimized for this. Texture memory also
has other nice properties, such as hardware supported filtering and interpolation as
part of the read process. As with global memory, data lifetime is from allocation to
deallocation in the host code.

3.4.4 Constant memory

Constant memory is a limited amount of memory, located off-chip, accessible by every
thread, meant to store shared constants used by the threads. The constant memory
is cached, so the access to it is very fast. On the current versions of CUDA and GPU
architectures, the constant memory is of size 64 KB [35]. The data lifetime is also here
from allocation to deallocation in host code.

3.4.5 Shared memory

Shared memory is a limited amount of memory shared between the threads of a block.
Shared memory allows threads of a thread block to cooperate by sharing a common
memory space. However, this memory is only shared among the threads of that block,
other blocks have their own shared memory space. Shared memory is located on-chip,
and has approximately the same access speed as registers, making it very fast, and
preferred for repeated accesses and writes. The data lifetime here, however, is equal to
the block lifetime.

Note, however, that the programmer needs to be careful here to avoid memory
bank conflicts. Basically, shared memory is split into equally sized memory modules,
named banks. This means that memory accesses of n addresses that spread over n
banks can be serviced in parallel. However, if more than one of these addresses access
the same bank, the accesses need to be serialized, which can affect performance quite a
bit. This means that the effective bandwidth of the transfer is reduced by a factor equal
to the number of separate memory requests. There is one exception however, which
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is when all memory requests are for the same address. In this case the requests can be
fulfilled by a single broadcast.

It is interesting to note here that in older architectures, there was only 16 KB shared
memory per SM. However, on Fermi (compute 2.0) and onwards, each SM has a total
of 64 KB register memory that can be configured to be 16 KB of L1 cache and 48 KB of
shared memory, or vice versa.

3.4.6 Registers

The registers are the fastest kind of memory. They are located on-chip, and are accessed
per thread. A SM contains a limited amount of registers that are shared between the
threads of that SM. In other words, the more threads per SM, the less registers per
thread. Register memory is for instance used for storing single, local variables for a
thread, and the data lifetime is therefore equal to the thread lifetime.

3.4.7 Local memory

Local memory is private local memory for a single thread. Even though it is private for
each thread, it is located off-chip, physically in the device DRAM. It is therefore slower
than for instance shared memory. Local memory is used by the compiler instead of
registers, when the amount of register space is used up. However, we can prevent this
by decreasing the amount of threads per SM, which increases the amount of registers
available per thread, like we saw in the previous section. The data lifetime of local
memory is equal to the thread lifetime.

3.5 Memory coalescing

When loads and stores to global memory are coalesced, the memory of one warp in
compute 2.x and half-warp in compute 1.x can be sent in one single transfer, or possibly
2 in some cases, which can substantially increase memory access performance. This
means that we must be very careful when considering the access patterns to global
memory in our code. The requirements for coalesced memory transfers differ a bit
between the different compute capabilities, but we focus on the Fermi architecture,
and therefore only discuss this for compute 2.x. In compute 2.x, the requirements for
coalesced memory accesses are: "the concurrent accesses of the threads of a warp will
coalesce into a number of transactions equal to the number of cache lines necessary to
service all of the threads of the warp" [36, p. 24].

An example of coalesced global memory access in the L1 cache can be seen in fig-
ure 3.3. Here we see that the threads access a single cache line, aligned to 128 bytes,
leading to coalesced memory access, and only one 128 byte memory transfer, marked
in red. In figure 3.4, we see an example of unaligned and sequential addresses, leading
to uncoalesced access and two 128 byte L1 transfers, both marked in red.

For information about memory coalescing and different patterns for coalesced mem-
ory access in older compute capabilities, see Alexander Ottesens masters thesis [37].
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Figure 3.3: Coalesced access

Figure 3.4: Uncoalesced access

3.6 Occupancy

To be able to achieve the theoretical memory bandwidth, we need to have enough
active transactions to hide latencies. To be able to measure this, we use occupancy.
Occupancy is simply a measure of how well the GPU is utilized at a given time. More
precisely, occupancy is the ratio between the number of active warps and the maximum
number of possible active warps, i.e. occupancy = activewarps/maximumactivewarps

One might think that the occupancy should be close to 1 at all times, but this is
not always possible. Many developers report that an occupancy of 0.66 is optimal,
while the authors of the Zivkovic algorithm on GPU [38] report that, through testing,
they found 0.5 to be optimal. There are several reasons for this. First of all, we saw
in sections 3.4.6 that a single SM has a limited amount of register space to share for
all of its threads. Therefore, if the threads typically are computationally heavy and
contain a lot of calculations, they require more registers for this than what stupid and
small threads with many memory accesses do. This means that the block size should
be smaller when the threads require more registers, leading to a lower occupancy, but
can be larger if the register usage is small, leading to a higher occupancy.

Furthermore, as mentioned earlier, shared memory and L1 cache share a pool of 64
KB of memory per SM. This pool can be divided into 16 kB of shared memory and 48
KB of L1 cache, or vice versa. In other words, in threads using lots of L1 cache, we
should dedicate the larger part of the memory pool to the L1 cache. If not, occupancy
will decrease because there is not enough cache space available. In comparison, if the
threads use much shared memory, it is smart to dedicate the most of this memory pool
to shared memory. If not, occupancy will decrease because of too little shared memory
being available.

In addition, each SM can only have 8 active blocks at a time, so if we select a too
small block size, we do not utilize the SMs very well, and the occupancy will therefore
drop.
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3.7 Summary

In this chapter, we have discussed the CUDA framework used for executing computa-
tional tasks in parallel on GPUs. We started by discussing the Fermi architecture and
the CUDA execution model. Next, we explained compute capability, and what this
means in practice, both for functionality and performance.

To be able to properly understand how to optimize CUDA applications, it is neces-
sary to have a good understanding of the memory architecture, so this was explained
next. An important part of this is also the act of structuring the code and data to en-
sure coalesced memory accesses. Finally, we discussed the occupancy measurement,
and how the optimal occupancy level depends on the application.

In the next chapter, we will describe how we have been able to create an improved
Bagadus panorama stitcher pipeline, which is able to process frames in real-time. As
we will see, CUDA has been a great tool for realizing this.



Chapter 4

The improved Bagadus Panorama
Stitcher Pipeline

4.1 Motivation

As we have seen, one of the goals of the Bagadus system is to generate panorama im-
ages in real time when recording from the cameras. So far, as we can see in Chapter 2,
the creation of these panoramas has been done off-line, and far from real time. We
therefore have to find a way to speed things up. There exist a lot of research and im-
plementations for panorama stitching pipelines, so the next step is to look at these, and
see if anyone is fitting for our needs, or if we need to build such a pipeline ourselves.

4.2 Related work

Real-time panorama image stitching is becoming more common. For example, many
have proposed systems for panorama image stitching (e.g., [11–15]), and modern op-
erating systems for smart phones like Apple iOS and Google Android support gen-
eration of panorama pictures in real-time. However, the definition of real-time is not
necessarily the same for all applications, and in this case, real-time is similar to “within
a second or two”. For video, real-time has another meaning, and a panorama picture
must be generated in the same speed as the display frame rate, e.g., every 33 ms for a
30 frames-per-second (fps) video in our scenario.

One of these existing systems is Camargus [7]. The people developing this system
claim to deliver high definition panorama video in real-time from a setup consisting
of 16 cameras (ordered in an array), but since this is a commercial system, we have no
insights to the details. Another example is the system Immersive Cockpit [39] which
aims to generate a panorama for tele-immersive applications. They generate a stitched
video which capture a large field-of-view, but their main goal is not to give output with
high visual quality. Although they are able to generate video at a frame rate of about
25 fps for 4 cameras, there are visual limitations to the system, which makes the system
not well suited for our scenario.

Moreover, Baudisch et al. [40] present an application for creating panoramic im-
ages, but the system is highly dependent on user input. Their definition of real time is
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"panorama construction that offers a real-time preview of the panorama while shoot-
ing", but they are only able to produce about 4 fps, which is far below our 30 fps re-
quirement. A system similar to ours is presented in [41], which computes stitch-maps
on a GPU, but the presented system produces low resolution images, and is limited
to only two cameras. The performance is within our real-time requirement, but the
timings are based on the assumption that the user accepts a lower quality image than
the cameras can produce.

Haynes [42] describes a system by the Content Interface Corporation that creates
ultra high resolution videos. The Omnicam system from the Fascinate [43, 44] project
also produces high resolution videos. However, both these systems use expensive and
specialized hardware, and also require bulky recording equipment and personnel pres-
ence at all times. The system described in [42] also makes use of static stitching. A
system for creating panoramic videos from already existing video clips is presented
in [45], but it does not manage to create panorama videos within our real-time defini-
tion. As far as we know, the same issue of real-time is also present in [40, 46–48].

In summary, existing systems (e.g., [39, 45–48]) do not meet our demand of being
able to generate the video in real-time, and commercial systems (e.g., [7, 42]) as well
as the systems presented in [43, 44] do often not fit into our goal to create a system
with limited resource demands. The system presented in [41] is similar to ours, but
we require high quality results from processing a minimum of four cameras streams
at 30 fps. Thus, due to the lack of a low-cost implementations fulfilling our demands,
we have implemented our own panorama video processing pipeline which utilize pro-
cessing resources on both the CPU and GPU. An overview and an evaluation of our
proposed system is presented in the next sections.

Figure 4.1: The panorama stitcher pipeline

4.3 Improved setup

There are a few changes in the general setup of the Bagadus system in this version.
First of all, in the previous version, we had two cameras per computer when recording,
and none of these were connected to the internet. We also had one trigger box, shared
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by these computers and cameras. This led to some problems, such as difficulties of
synchronizing the frame timestamps between the machines. This was solved by use of
a separate TimeCodeServer, which used message passing to synchronize the recording
clocks on the computers, see section 2.2.2. In addition, there was a rare case where the
trigger box would drift slightly due to temperature differences, so that a frame would
drop now and then, potentially leading to a small frame drift. In the newest version of
the system, we use only one machine for recording from all four cameras, connected
to the internet, with one trigger box for camera shutter synchronization. All frame
sets are then given a NTP-based time-stamp to mark when they were recorded. This
ensures synchronization between the cameras without the need for any extra code. The
use of only one trigger box and one computer also solves the slight trigger box-drift
problem.

Furthermore, in the old version, the synchronization between the ZXY data and the
video frames was done by hand, but we want it to be automatic. We have solved this
by configuring the camera recorder and the ZXY database to use the same NTP server.
The maximum possible time difference is then so small that we can consider the ZXY
data and video frames properly and automatically synchronized.

4.4 Architecture

Due to the performance of modern GPUs for image processing, we decided to utilize
this, and therefore wanted as much of the pipeline as possible to be running on a GPU.
This decision has affected our architecture quite a lot, and explains why the pipeline
contains two parts; one part executing on the CPU and one part on the GPU, as seen
in figure 4.1. This decision also explains the motivation behind some of the modules,
such as the Downloader found in section 4.5.11 and Uploader found in section 4.5.5. In
addition to the choice of using GPUs, we made several other decisions that are reflected
in the architecture.

4.4.1 Pipeline startup and initialization

The startup of the pipeline is straight forward. First of all, we need to parse the input
parameters. Currently, the pipeline takes the startup time-stamp and recording length
as input arguments. If the startup time has not yet occurred, the pipeline waits. When
the time has come, the pipeline initializes CUDA, and selects a CUDA device for pro-
cessing. Currently it selects the CUDA device with the highest number of CUDA cores.
When this is done, it initializes the pipeline by creating a new PanoramaPipeline object,
and then launches it. The reason for waiting until the startup time before initializing
everything, is to be able to schedule several pipeline recordings at the same time. This
means that several pipeline processes should be able to wait at the same time, as long
as their recording schedules do not overlap. If we did not do it this way, only the first
scheduled pipeline would be allowed to run, due to the CUDA resources then being
locked by this process. The extra startup time from recording start to actual recording
start caused by this is mitigated by launching the pipeline when there are 30 seconds
left until scheduled recording start. We found this to be a decent solution, because it is
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always better to record some extra frames, than lose some, and 30 seconds proved to
be more than enough.

4.4.2 The Controller

The pipeline needs some sort of central controller component to make sure that all
modules are synchronized and can cooperate on the same task, errors are caught and
handled, buffers and resources are initialized, etc. Without such a component, we
would not be able to reach the same level of synchronization. One interesting point
here, is how the modules are cooperating and communicating. In short: they do not
communicate directly with each other. The only component of the pipeline that all
the modules are communicating with, is the controller. The general inter-component
communication is done by use of signaling, mutexes, barriers, flags, etc. The controller
then uses its state and all of its available information to decide what to do next.

Controller implementation

The general pattern of the controller execution is as follows:

1. Initialize all modules. This is done by creating new module objects, which results
in internal module initialization in the constructors. Note that currently, the con-
troller is responsible for initializing all buffers for the Debarreler and Converter
itself.

2. For as long as the pipeline is running, loop:

(a) Wait until the CamReader module has retrieved the next set of frames

(b) Get the next set of frames from the CamReader

(c) For all modules, 0 to M, transfer data from the output buffers of module
N, to the input buffers of module N + 1. When possible, this is done by
swapping buffer pointers, which means that no memory is copied (except
the pointer), saving processing time. If the source (output) buffer and tar-
get (input) buffer are of different size, this must be done by memory copies
(for instance cudaMemcpy2D()). Overall though, this is possible with pointer
swapping, which drastically increase controller performance.

(d) Check for and handle potential pipeline frame drops

(e) Broadcast a signal to all modules (except the reader) to make them process
the new data located in the input buffer.

(f) Wait for all modules to finish processing by use of a barrier

3. Cleanup and provide safe pipeline termination

In other words, we can see that the controller is the component responsible for
transferring frames and data through the pipeline, and at the same time control the
execution of the modules. Note that when modules are finished processing and pro-
gram control is returned to the controller component, all module data remain in their
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buffers. The output data is then either copied to the next module’s input buffers, or
the buffers themselves are passed to the next module by use of pointer swapping, as
described above.

It is important to remember that when looking at the module processing times, es-
pecially compared to the real-time constraint, we need to add the controller processing
times to each module, because the modules need to wait for the main controller be-
fore they can process a new frame. The controller is therefore a common overhead
in all modules (except the CamReader module), and it is therefore important that the
controller is as lightweight as possible.

4.4.3 General module design

All the modules follow a common design. First of all, all modules contain a mod-
ule controller. This thread is the one responsible for communicating with the main
controller thread. This is done by use of locks, barriers, signals and counters. Each
module controller generally follow these steps:

1. Loop until the pipeline stops

(a) Wait for a signal from the main controller

(b) Increase the internal module frame counter

(c) Execute the module’s processing tasks, either by signaling module subthreads
to do the processing, by launching CUDA kernels, or by executing the tasks
by itself

(d) Wait for all module threads to finish by use of a barrier

This is a simplification of the general pattern the module controllers follow. Note
that in the execution step, there are three different cases of how the processing is exe-
cuted. In the cases of the CPU-based modules consisting of a single thread, this module
controller also executes the processing tasks itself. However, when it is a CPU-based
module containing several slave processing threads, the module controller simply sig-
nals the slave threads to execute, much in the same way as the main controller signals
the module controllers. The last case is for GPU-based modules, where the module
controller simply launches a set of CUDA kernels, which then executes on the GPU.

Module buffers

Generally, all modules have two sets of buffers: one or more input buffers, and one or
more output buffers. Exceptions to this are the end-modules, such as the CamReader
and the writers, where the reader does not have any input buffers, and the writers do
not have any output buffers, as long as we do not count the disk itself as a large buffer.
Detailed information about the input and output buffers can be seen in table 4.1. The
general pattern here is that all the CPU-based modules, i.e. the blue modules in figure
4.1, have their buffers located in ordinary system RAM on the CPU side, located on the
heap. The GPU modules, however, have their buffers located on the GPU, in global
device memory. The Uploader and Downloader are exceptions, due to them being
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responsible for transferring data between the CPU and the GPU, and therefore need
buffers on both sides. The Uploader also needs an extra set of buffers on the GPU, due
to it using double buffering when transferring data. This design leads to a relatively
common processing pattern of reading input data from the input buffer, processing the
data, then writing the processed data to the output buffer. After a module has finished
executing an iteration, data remains in the buffers so that the Controller can pass data
between the modules. As long as new modules follow this same interface, it is fairly
easy to add, re-implement, modify, and remove modules, without having to rewrite
any other code than a few lines in the main controller, in addition to the module itself.

Module Host (CPU) Device (GPU)

Reader
In: 4 x raw camera stream
Out: 4 x YUV frame -

Converter
In: 4 x YUV frame
Out: 4 x RGBA frame -

Debarreler
In: 4 x RGBA frames
Out: 4 x RGBA frames -

SingleCamWriter In: 4 x RGBA frame -

Uploader In: 4 x RGBA frame
Out: 2 x 4 x RGBA frame
Out: 2 x 4 x bytemap

BGS -

In: 4 x RGBA frame
In: 4 x bytemap

Out: 4 x RGBA frame (unmodified)
Out: 4 x bytemap

Warper -

In: 4 x RGBA frame
In: 4 x bytemap

Out: 4 x warped RGBA frame

Out: 4 x warped bytemap

Color-correcter -

In: 4 x warped RGBA frame

In: 4 x warped bytemap

Out: 4 x color-corrected RGBA frame
Out: 4 x color-corrected bytemap

Stitcher -

In: 4 x color-corrected RGBA frame
In: 4 x color-corrected bytemap

Out: 1 x stitched RGBA frame

YuvConverter -
In: 1 x stitched RGBA frame
Out: 1 x stitched YUV frame

Downloader Out: 1 x stitched YUV frame In: 1 x stitched YUV frame
PanoramaWriter In: 1 x stitched YUV frame -

Table 4.1: Pipeline module buffers

4.4.4 The frame delay buffer

There is a short delay of approximately 2 seconds before ZXY coordinate data is ac-
cessible from the database during a match [49]. In addition, the time for querying the
database for tracking data takes some time (approximately 600-700 ms, as we can see
in section 4.7). As we will see in section 4.5.6, the BackgroundSubtractor needs ZXY
coordinate data to execute optimally. However, the time from a frame entering the
pipeline until it reaches the BackgroundSubtractor is way less than these ~3 seconds.
To prevent unwanted drift between frames and the corresponding ZXY data, we need
a way to handle this. This is why the pipeline also contains a frame delay buffer, so that
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we are sure to have retrieved the corresponding ZXY data from the database before the
frames arrive to be processed. We decided to put this buffer between the Debarrel and
Uploader modules, because we wanted it to be as close to the BackgroundSubtractor
as possible, while we at the same time wanted it to stay on the CPU for an easier im-
plementation. The size of this buffer is 150 * 4 frames. This gives us a buffer containing
1
30

seconds
f rame × 150 f rames = 5 seconds of frames. The buffer size can easily be modified if

necessary.

4.4.5 Handling frame drops

Another important part of the pipeline is how it is designed to handle frame drops. In
our pipeline, there are two kinds of frame drops; drops on the camera side, and drops
in the pipeline itself.

Camera frame drops

The drops on the camera side happen when the camera drivers in the CamReader
module (section 4.5.1) fail to return a frame. This can happen for several reasons, such
as transient camera errors, trigger box timing errors, or an overloaded CPU. The way to
solve this is to simply reuse the previously read frame, like we can see in section 4.5.1.
This is a very non-intrusive way of handling errors, and is very hard to notice with few
dropped frames.

Pipeline frame drops

The pipeline needs to handle frames that are dropped when it uses more than the real
time threshold on the previous iteration. This can for instance happen due to a gener-
ally overloaded CPU, OS interrupts, or file access interrupts. The camera reader mod-
ule puts new frame sets into a 4x1 frame buffer, by overwriting the previous frames.
This means that if the pipeline uses too long to process a frame, the frame it was meant
to process next is overwritten by the next one. This will in the long run lead to a visible
drift in the frames compared to their proper recording time.

We handle this by having the reader module increase its frame counters on each
read. Then, when the Controller is to retrieve the next frame set from the reader output
buffer, it also checks this counter. If it is the next to be read, everything is processed
normally. However, if the counter is higher than expected, we know that we have lost
one or more frame sets, and we must therefore properly handle this. To do this, all
the modules contain a drop counter buffer. The controller then pushes the current,
lost frame number into all the modules’ drop counter buffers. On every iteration, each
module starts by checking its drop counter buffer to see what the first number in this
buffer is. If this number equals the module’s current frame counter, it knows that
this frame is to be skipped, and therefore pops the front of the buffer and returns at
once. If the frame is not to be skipped, it processes the new frame correctly. The writer
modules are a bit different, because they at the skip frame-case write the previous
frame (which is cached) directly to disk, instead of returning immediately. Using these
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drop counter buffers allows us to drop frames safely in a pipeline fashion by reusing
the last successfully processed frame.

4.4.6 Pipeline execution pattern

It is important to note the execution pattern of the pipeline, where the modules are
executed in a pipelined fashion. This means that it executes using the same pattern
as, for instance, a CPU instruction pipeline. In other words, the different operations
are executing in parallel, but do not process the same input data at the same time,
where the data is moved one step further in the pipeline for each time unit. For us, this
means that the modules all execute in parallel, but the modules process different frame
sets concurrently. The only exception is the SingleCamWriter and Uploader modules,
which, when ignoring the frame delay buffer, process the same frame concurrently.

We find a visualization of this in figure 4.2. Here we see that as soon as the modules
receive an input frame set, they execute in parallel with the other modules. However, a
module never processes the same frame at the same time as another module, except for
the SingleCamWriter and Uploader. Note that the frame delay buffer has been hidden
in the figure, because it does not affect the execution pattern, and only makes the figure
more complex. This pattern means that, when analyzing the performance, as long as
each module operates within the real-time requirement of 33 ms, while processing in
parallel with the other modules, the whole pipeline can be considered to operate in
real-time. We will look at the performance in section 4.7.

Figure 4.2: The improved pipeline execution pattern
The frame delay buffer is hidden to minimize figure complexity.

4.4.7 Optimizing x264 storage settings

In section 2.5.2 we saw that the processed videos are encoded and stored as 3 second
long H.264 files, with the time-stamp of the first frame in the file name. However, there
were some x264 encoder settings that were not explored. A few different x264 presets
were tested in [2], but not in detail. Due to the strict performance requirements in this
pipeline, we had to be sure that our encoder settings were optimal. When selecting
these settings, it is important to be aware of the general trade-offs of encoding speed,
compression ratio and visual quality. We optimally want very fast encoding speeds,
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large compression ratios, and lossless image quality, but this is not possible in real-life.
For instance, when increasing the compression ratio, the encoding speed generally
lowers, and the image quality might lower, depending on the settings. Furthermore, if
we want lossless image quality, we cannot compress the video as much without either
losing visual quality and/or increasing the encoding speed. We generally want to
store the videos lossless, with fast encoding, which comes at the cost at not so optimal
compression ratios and therefore larger storage requirements.

The settings we found to result in the best encoding performance while retaining
the best resulting image quality, was to use the same x264 profile mentioned in [2],
but in addition lower the bit-rate requirements. By lowering the bit-rate requirements
slightly, the resulting 3 second files became smaller, the encoding time was lowered
by a substantial amount, while the visual quality remained close to lossless. In addi-
tion, we activated x264 frame slicing to improve encoding times. X264 frame slicing
is targeted at low-latency encoding, such as in our pipeline. A detailed description of
x264 slicing can be found in [50], but it basically consists of slicing a frame into several
sub-frames, and dedicating one thread for encoding each slice. We found the optimal
amount of threads dedicated to slicing to be four per frame.

4.5 Pipeline module details

To properly understand how the panorama stitcher pipeline works, we need to take a
look at all the modules, how they work, what they do, and how they cooperate.

Figure 4.3: The CamReader module

4.5.1 Retrieving frames from the source - The CamReader module

The first module is one of the most important of all the modules: The camera reader.
The CamReader module is the one responsible for retrieving frames from the con-
nected cameras so that these can be processed in the pipeline. The frame source, i.e.
the cameras, is the component that decides the real time requirements that the pipeline
needs to fulfill. Our cameras output frames at a speed of 30 frames per second. This
means that the pipeline has a deadline of processing a frame of 1/30th of a second,
i.e approximately 33 ms. If each module consume less time than this to process each
frame, and each processed frame is stored to disk every 33 ms, the whole pipeline can
be considered real-time.
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Module implementation

This module is located and executed on the CPU, and runs as one dedicated thread per
camera, i.e. four threads in our scenario. As input it takes the direct frame streams from
the cameras. Meanwhile, the output is provided as four YUV 4:2:2 frames (formatted as
YUYV) of the correct resolution. As we can see from the camera specifications [19], the
maximum supported frame size is 1294 x 964 pixels. However, this is slightly limited
by the Basler Pylon camera drivers, which results in a maximum retrievable frame size
of 1280 x 960 pixels.

During development, we implemented a mock-up PanoramaReader that read YUV
files stored on disk, which worked well for a small time period. Eventually, this reader
was replaced by the proper CamReader that retrieves actual, live frames from the cam-
eras. This shows us that it is easy to re-implement and replace modules, without hav-
ing to make large changes to the pipeline. This means that we could replace the cur-
rent reader with a new reader that for instance would read from cameras from another
manufacturer.

When concerning the access to the camera drivers, the NorthLight library contains a
wrapper around the drivers, which makes driver- and camera-interaction in the Cam-
Reader module rather straightforward and easy.

The CamReader has an execution pattern where each reader thread consists of a
while-loop that loops for as long as there is a functioning connection to a camera, or
as long as the whole pipeline is running. The general execution for each thread is as
follows:

1. For as long as all CamReader threads are retrieving frames and the pipeline is
still active

(a) Try to retrieve a frame, with a timeout of 34 ms

(b) On frame retrieval timeout, clone the previous frame, but update its time-
stamp to now

(c) On frame retrieval success, store the new frame in the output buffer, with a
time-stamp set to now

(d) Wait for the other reader threads before continuing

The synchronization between the four cameras is secured by the trigger box. The
trigger box is set to synchronize the camera shutters at a frequency of 30 Hz, i.e. the
same frame-rate as the maximum supported FPS for the cameras.

Figure 4.4: The Converter module
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4.5.2 Converting frames to correct format - The Converter module

Before we can start processing the frames in the pipeline properly, we need to convert
them to a format that is easier to handle and process than YUV. The Converter module
is therefore responsible for converting from YUV 4:2:2 read by the CamReader module,
into the format used in the rest of the pipeline. We decided that we want to use the
RGBA color format for internal frame representation in the pipeline. First of all, RGB
is simpler to work with than YUV and is conceptually easier to understand, in addition
to that RGB is the color format needed by for instance the color corrector module. The
main reason for using RGBA and not just plain RGB, is the same as mentioned in [38],
i.e. that by using RGBA, we promote coalesced memory access on the GPU, which
improves memory access times, and therefore kernel execution times on the GPU. The
converter therefore converts all the frames from YUV format to RGBA format. The
Converter module can be seen in 4.1, numbered as module 2.

Module implementation

The converter is also located on the CPU, takes four YUV4:2:2 frames as input from
the cameras, and provides four RGBA frames as output. The performance of the con-
version process is so good that we did not need to parallelize the converter into one
thread per camera. It therefore consists of a single thread only, sequentially converting
a frame for each camera per iteration. The implementation is based on the NorthLight
library, which again relies on ffmpeg and swscale for converting frames. The execution
is simplified as follows:

1. For all cameras 0 to N

(a) Convert the input frame for camera n from YUV 4:2:2 (YUYV) to YUV 4:2:0

(b) Convert this frame from YUV 4:2:0 to RGBA

The conversion from YUV 4:2:2→ RGBA is done in two steps due to limitations in
the NorthLight frame converter. This means that we must convert to YUV 4:2:0 first,
before converting to RGBA. However, swscale is highly optimized, so, as we will see
later, the performance is still good enough. This could also have been done using SSE
instructions, but is not done because the runtime gain would have been very small and
is not required.

Figure 4.5: The Debarreler module
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4.5.3 Removing barrel distortion - The PanoramaDebarreler

As we have seen earlier in Chapter 2, the frames provided by the cameras are barrel
distorted due to the wide angle lenses. Before we can do anything more with these
images, we need to remove this barrel distortion. Our scenario is of a soccer field, so
the visual impact of the barrel distortion is extra visible due to the straight lines on the
field, and it is therefore extra important to debarrel the frames. This is the responsibility
of the Debarreler module.

Module implementation

Like the previous modules, this module is running on the CPU. As input it takes four
barrel distorted RGBA frames, and provides four debarreled RGBA frames as output.
Like in the old Bagadus system, the debarreler needs a set of barrel distortion coeffi-
cients for each camera, but these are calculated as part of the configuration steps before
running the pipeline. Like in the old pipeline, the current debarreling function is pro-
vided by OpenCV. This debarreling implementation is so slow that it does not fulfill
the real-time constraints when run sequentially for all the cameras. We therefore had
to parallelize it by assigning a dedicated debarreler thread per camera stream, and let
this thread run the debarreling function for a single frame. This practically cuts the
debarreling time by a factor of four. In addition, we selected nearest neighbor as inter-
polation algorithm, due to performance [2]. Each Debarreler-thread therefore executes
the following pseudo code:

1. Run OpenCVs debarreling function, with the correct debarreling coefficients, for
the current frame

OpenCVs debarreling function is slow, but as we will see later, fast enough for our
pipeline. However, to offload the CPU and have a larger margin for processing spikes,
it is desirable to improve this module by replacing OpenCVs debarrel function with a
faster implementation.

Figure 4.6: The SingleCamWriter module

4.5.4 Writing the original camera frames to disk - The SingleCamWriter

module

In addition to creating a stitched panorama video based on the four cameras, we want
to store the original recorded frames, and we therefore need the SingleCamWriter mod-
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ule. We want to write these frames to disk just after the debarreler, and not before,
because barrel distorted videos are not really useful, so we might as well debarrel the
frames before storing the videos.

Module implementation

The SingleCamWriter takes four debarreled RGBA frames as input, and writes sequen-
tial frames to video files on disk. It runs on the CPU, and consists of a dedicated thread
per camera. As seen in section 2.5.2, we encode the frames as 3 second long H.264
files and store them on disk, with the file number and time stamp in the file name.
The different cameras are separated on disk by writing to a folder per camera. Each
SingleCamWriter-thread therefore executes as follows:

1. Convert from RGBA to YUV 4:2:0, needed in our H.264 encoder.

2. If we have written 3 seconds of frames to the same file, close the current file
stream and open a new one, with updated time-stamp and counters.

3. Use the H.264-encoder in NorthLight to encode the frame

4. Write H.264 encoded data

The conversion, encoding and writing parts are logically three different operations,
and could therefore be separated into different pipeline modules. However, the con-
version and writing to disk parts are negligible compared to the encoding bit, so there
is in practice no point in separating these into separate modules. The conversion op-
eration is based on the NorthLight library, which again relies on ffmpeg and swscale,
which is highly optimized, for converting frames. The performance is therefore very
good.

Figure 4.7: The Uploader module
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4.5.5 Transferring frames to the GPU - The Uploader module

From here on in the pipeline, most of the modules are executing on the GPU. To be
able to do this, we need to transfer the required input to the GPU. This is the task
of the Uploader module. However, as we will see below, the BackgroundSubtractor
module has a part running on the CPU, calculating some byte maps needed on the
GPU. Therefore, the Uploader has currently also the responsibility of executing this
part of the BackgroundSubtractor, and then transfer the resulting byte map to the GPU.

Module implementation

The Uploader is running as a single thread on the CPU, and transfers data to the GPU.
It takes four debarreled RGBA frames as input from the CPU, and provides four RGBA
frames and four byte maps as output on the GPU. When transferring data to the GPU,
we have several choices: We can use the synchronous cudaMemcpy() function to trans-
fer the data sequentially, or we can use the asynchronous cudaMemcpyAsync() func-
tion to copy the data asynchronously and in parallel with CUDA streams. In addition,
when using asynchronous transfers with pinned host memory, we can utilize dou-
ble buffering. Double buffering and asynchronous transfers have several advantages,
where the most important advantage is better interleaving with kernel execution, data
transfers and CPU execution. We therefore implemented the Uploader to use this,
which results in it needing twice the buffers for transferring to the GPU, as we can see
in table 4.1.

In addition to the transfers, the BackgroundSubtractor contains a CPU part, where
some byte maps are calculated. This calculation is currently executed by the Uploader,
and the resulting byte maps are then transferred to the device in the same way as the
corresponding RGBA frames.

The execution flow of the Uploader is therefore:

1. If a BackgroundSubtractor module exists, calculate the player pixel byte maps

2. For all cameras 0 to M

(a) Begin asynchronous transfer of frame for camera N

(b) If there was a BGS module, begin asynchronous transfer of byte map for
camera N

4.5.6 Executing background subtraction - The BackgroundSubtractor

module

We will go much more into detail on background subtraction in Chapter 5, but we will
provide a small summary here. First of all, background subtraction is the process of
analyzing a video stream and determining what pixels are considered background, and
which pixels are considered foreground. This is a useful tool, as it can provide us with
pixel precise information about where the players on the field are. This information can
later be used for several things, as we will see, such as improving the stitcher module
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Figure 4.8: The BackgroundSubtractor module

(section 5.8.1), and improving the performance and accuracy of depth map creation
(section 5.8.2). Due to this, we want to add a background subtraction component to
our pipeline, and this analysis is executed by the BackgroundSubtractor module.

In our scenario, due to us having statically positioned cameras, and knowing the
coordinates of the players, we also know the approximate player pixel positions. By
utilizing this knowledge, we can improve our background subtractor, both in perfor-
mance and precision. This is done by translating player positions into pixel positions,
and then only process pixels close to these location, while automatically classifying the
rest as background. These player pixels, including a safety margin, are set to 1 in a
player pixel lookup map, for later use during the BGS analysis.

Module implementation

The BackgroundSubtractor module is running partially on the CPU and partially on
the GPU. The part running on the CPU is the one responsible for calculating the player
pixel lookup maps. To get the data from the database containing the ZXY data for
the players, we have a dedicated thread that retrieves ZXY samples from the database
when needed. The actual creation of these byte maps is currently executed by the
Uploader module, but could easily be split into a separate module.

The GPU part of the BGS module is the part actually running the background
subtraction. It takes four RGBA frames and four corresponding player pixel lookup
maps as input, and provides the unmodified RGBA frames and the corresponding
foreground masks as output. All of these buffers are located in global CUDA memory.

The implementation described in Chapter 5 has been modified and refactored to
properly fit into the pipeline. This means several changes, for instance adding better
use of C++ objects, and adding support for analyzing several images (one from each
camera) in parallel. In addition, the module has a fall-back mode for situations where
there is no ZXY data available. In this fall-back mode, the BGS module simply pro-
cesses the whole field, instead of using ZXY data to limit the amount of pixels to be
processed.
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A simplification of the ZXY data retriever thread is:

1. Retrieve ZXY session start

2. Retrieve player information

3. While the pipeline is active:

(a) If the ZXY data cache size in memory is below a certain threshold, retrieve a
chunk of data from the ZXY database.

The execution of the player pixel lookup map creation is:

1. Create empty byte map of size 1280 * 960

2. Retrieve and remove the sample belonging to the current frames’ time-stamp
from the local ZXY cache.

3. For all the players:

(a) Translate the ZXY coordinate to pixel data

(b) In the new byte map, set the translated pixel position, including a margin at
all sides, to 1

4. Return the byte map

The execution of the GPU side of the BGS module is:

1. For all cameras 0 to M

(a) For every pixel, if the pixel is 0 in the player pixel lookup map, mark it as
background at once. Else, calculate the pixel status to either background,
foreground or shadow.

Figure 4.9: The Warper module

4.5.7 Warping the frames to fit the panorama - The Warper module

The Warper module is the module responsible for warping the camera frames to fit
the stitched panorama image. By warping, we mean twisting, rotating and skewing
the images to fit the common panorama plane. This is necessary because the stitcher
will assume that the input images are perfectly warped and aligned to be stitched to
a large panorama. The warper also warps the foreground masks provided by the BGS
module. This is because the Stitcher module will use the masks at a later point, and
expects the masks to fit perfectly to the corresponding warped camera frames.
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Module implementation

This module is running only on the GPU, and takes four RGBA camera frames and
four foreground masks as input. As output it provides four warped RGBA frames and
four warped foreground masks, all of these of a new resolution. Due to the use of the
Nvidia Performance Primitives (NPP) library [51], this function is rather simple. The
most important part of the module is the warp parameters needed, in other words the
interpolation algorithm and the set of transformation matrices. The interpolation algo-
rithm used is the same as in the Debarreler, i.e. nearest neighbor, selected due to the
performance. The transformation matrices have been generated on system setup, and
are used here. As soon as we have these arguments, the NPP library makes implemen-
tation easy for us:

1. For all cameras 0 to M

(a) Warp the input camera frame for camera n by using nppiWarpPerspective_8u_C4R()

(b) Warp the foreground mask for camera n by using nppiWarpPerspective_8u_C4R()

Figure 4.10: The ColorCorrector module

4.5.8 Correcting color differences - The ColorCorrector module

When recording frames from our four cameras, we let the cameras adapt to the light-
ning individually, due to the different lighting conditions between them. This means
that, for us to generate the best looking panorama video, we need to correct the colors
of all the frames to remove the inter-camera color disparities. In the stitched output
videos of the original pipeline, color disparities between the cameras, and therefore
seams, are clearly visible, which we can see in figure 4.12(a). However, with a color-
corrector (CC) module, these color differences can be limited by a large margin. In
figure 4.12(c), we see the results of using a dynamic stitching seam (which we will ex-
plain in section 4.5.9) without any color correction; the seam is clearly visible because
of color differences. However, in figure 4.12(d), we use the same seam, only with color
correction this time. The results in this example are great; with the color correction it is
near impossible to see where the seam is going.

Module implementation

The CC module takes four warped RGBA frames and four warped foreground masks
as input. As output it provides four color corrected and warped RGBA frames, in addi-
tion to the unmodified, warped foreground masks. The foreground masks are simply
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sent through the module to be used by later modules. To begin with, we must find
the overlapping regions between the cameras. This can be done during initialization
of the system, and is currently done manually. Furthermore, to be able to correct the
color differences, each camera has a corresponding set of correction coefficients. The
correction coefficient sets are arrays of three RGB values, one for each channel, and
describes the color differences between overlapping cameras. The current algorithm
is relatively simple, and corrects color differences in the cameras sequentially from the
left to the right. Due to its simplicity, it does not remove all color differences, and strug-
gles to provide a good output during difficult lighting conditions. The pseudo-code of
the color-corrector is:

1. Select the leftmost camera, camera 1, as the primary camera, i.e. set its correction
coefficients to 1. This means that camera 1 will be used as the baseline for color
adjustment, and will therefore not have any colors modified.

2. For the remaining cameras, 2 to M:

(a) Calculate the color correction coefficients for the current camera, n, by com-
paring a subset of its region overlapping with camera n− 1 with the same
subset from camera n− 1

(b) Color-correct the frame for the current camera, n, by applying its color cor-
rection coefficients.

More details about color correction can be found in the master’s thesis of Mikkel
Næss [52].

Figure 4.11: The Stitcher module

4.5.9 Stitching the frames together - The Stitcher module

The next GPU module, the Stitcher, is the module where the panorama stitching actu-
ally takes place. It is based on the original Bagadus stitcher, where we use 2D trans-
formations and create seams between the overlapping camera frames, and then copy
pixels from the images based on these seams. These frames need to fit the same pro-
jection/plane, which is why we need the warper in the previous step. The old stitcher
used fixed, straight cuts for seams, which means that fixed, rectangular areas from each
frame were copied directly to the output panorama frame. These static cut panoramas
are generally very fast to create, but contains lots of graphical errors, such as in fig-
ure 4.12(a), where we can see a player being cut by the straight cut, resulting in visual
artifacts. We want to create better seams for better visual results, and therefore in-
troduce a dynamic cut stitcher. The goal of the dynamic cut stitcher is to calculate
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dynamic cuts for each frame, so that the seam is as invisible as possible, while also
avoiding cutting through players to reduce the amount of visual artifacts. An exam-
ple of how the final seam can look is seen in figure 4.12(b). A dynamic seam without
color-correction can be seen in figure 4.12(c), while such a seam with color-correction
is found in figure 4.12(d).

Module implementation

The Stitcher is executing on the GPU, and takes four warped foreground masks and
four corresponding, warped and color corrected RGBA camera frames as input. As
output it provides a single, stitched RGBA panorama frame.

The dynamic cut stitcher starts by calculating the seams between the frames. This
is done by first creating a rectangle of adjustable width over the static seam areas.
All pixels within this seam area are then treated as graph nodes, where the graph is
directed from the bottom to the top and each pixel points to the three adjacent pix-
els/nodes above. The left-most and right-most pixels only point to the two adjacent
pixels available. The weight of these edges are calculated by a custom weight function
that compares the absolute color differences between the corresponding pixels in each
of the frames we are currently trying to stitch. The weight function also checks the
value of the corresponding foreground mask, to see if there are currently any players
in that pixel. If so, the weight of that edge is set to a high weight to prevent seams
passing through players. This has the effect of making the edges between nodes where
the color differs or players are present have much larger weights.

The next step is then to run Dijkstra’s algorithm [53] on the resulted pixel graphs
to find the minimal cost routes from the bottom of the seam cut areas to the top. The
graph is directed upwards, which means that we can only traverse the graph directly
upwards or diagonally upwards, and therefore only get one node per horizontal po-
sition. When we loop through the graphs in this way, we get the new cut offsets by
adding the node’s horizontal position to the base offset. In total, this results in the dy-
namic seams, which we can then use for copying pixels to create the panorama frame.
The pseudo-code of the stitcher can be summarized as:

1. Calculate pixel edge weights, as described above

2. Calculate the best dynamic seams by using Dijkstra on the graphs from the step
1, as described above.

3. For all cameras 0 to M

(a) Copy pixels from the warped camera frame to the corresponding location in
the target frame buffer, based on the dynamic seams.

The performance of stitching frames from four cameras together is found in ta-
ble 4.2. We can see that the performance is very good, and it is interesting to note that
the CPU version is currently slightly faster than our GPU version. This is caused by
searches and branches often being more efficient on traditional CPUs. However, fur-
ther optimization of the CUDA code will likely improve this GPU performance. In
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addition, when running on the GPU, we can avoid adding unnecessary transfers be-
tween the GPU and CPU in the middle of our pipeline, which would have increased
the load on the PCIe bus and potentially lowered the whole pipeline performance.
Note that the low minimum times on GPU are caused by the frame drop handling de-
scribed in 4.4.5, while the maximum is caused by the first frame set taking longer to
process than the others. More details about this dynamic stitching can be found in the
master’s thesis of Espen Helgedagsrud [54].

Min Max Mean

CPU (Intel Core i7-2600) 3.5 4.2 3.8
GPU (Nvidia Geforce GTX 680) 0.0 23.9 4.8

Table 4.2: Dynamic stitching (ms).
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(a) The original stitch pipeline in [10] and [2]: a
fixed cut stitch with a straight vertical seam, i.e.,
showing a player getting distorted in the seam.

(b) The new stitch pipeline: a dynamic stitch with
color correction, i.e., the system search for a seam
omitting dynamic objects (players).

(c) Dynamic stitch with no color correction. In the
left image, one can see the seam search area be-
tween the red lines, and the seam in yellow. In
the right image, one clearly see the seam, going
outside the player, but there are still color differ-
ences.

(d) Dynamic stitch with color correction. In the
left image, one can see the seam search area be-
tween the red lines, and the seam in yellow. In
the right image, one cannot see the seam, and
there are no color differences. (Note that the seam
is also slightly different with and without color
correction due the change of pixel values when
searching for the best seam after color correction).

Figure 4.12: Stitcher comparison - improving the visual quality with dynamic seams
and color correction.

Figure 4.13: The YuvConverter module
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4.5.10 Converting the frame format back to YUV - The YuvConverter

module

Before storing the stitched panorama image, we need to, like in the SingleCamWriter
module, convert the image back from RGBA to YUV 4:2:0, which is the required for-
mat in the H.264 encoder. The reason for having a dedicated module on the GPU for
this, is that the converter is not fast enough on the CPU, even with the relatively fast
ffmpeg/swscale implementation in NorthLight. Converting between video formats is a
massively parallelizable task, so using the GPU for this is natural.

Module implementation

The YuvConverter module is running on the GPU. The input is a single stitched panorama
frame in RGBA format, and the output is a stitched panorama frame in YUV 4:2:0 for-
mat. In this module we utilize the NPP library to first convert the input from RGBA
to YUV 4:4:4. The NPP library does not have a converter function for converting from
YUV 4:4:4 to YUV 4:2:0, so this part must be done manually in CUDA. The execution
is therefore:

1. Convert the input frame from RGBA to YUV 4:4:4 by use of nppiRGBToYCbCr_8u_AC4P3R()

2. Copy the resulting Y-channel directly to the Y-channel of the target buffer

3. For all samples in the U channel:

(a) If this sample is supposed to be a sample in the YUV 4:2:0 U channel, copy
the value to the target buffer U channel, at the correct position

4. For all samples in the V channel:

(a) If this sample is supposed to be a sample in the YUV 4:2:0 V channel, copy
the value to the target buffer V channel, at the correct position

Note that the conversion from RGBA to YUV 4:2:0 can be done in one step, by writ-
ing the whole conversion in CUDA ourselves, using known formulas. However, for
the sake of getting this module to work quickly, we implemented it first using the cur-
rent solution. Like we will see later in section 4.7, the performance of the YuvConverter
with this non-optimal solution, proved to be fast enough, so we did not prioritize im-
plementing the more optimal solution of direct RGBA⇒ YUV 4:2:0 conversion. This
is therefore future work.

4.5.11 Transferring the panorama frames back to the CPU - The Down-

loader module

Now that we are done with the stitching itself, we need to transfer the panorama out-
put back to the host, i.e. the CPU memory. This is done by the Downloader module.



49

Figure 4.14: The Downloader module

Module implementation

The Downloader is running as a single thread on the CPU, and transfers a stitched
panorama frame from the GPU to the CPU. As input it takes a stitched YUV 4:2:0
panorama frame located on the GPU, and the provided output is a stitched YUV 4:2:0
panorama frame on the CPU. The Downloader is much simpler than the Uploader. For
instance, it does not need to calculate any player pixel lookup maps, and it only has to
transfer a single frame. This is reflected in the execution:

1. Copy the panorama frame from the GPU to the CPU by use of cudaMempcy()

As we can see, the Downloader module is transferring the frame synchronously.
We could have used double buffering and asynchronous transfers like in the Uploader,
but the Downloader has no other tasks, so using a simple synchronous cudaMemcpy()
is more than good enough.

Figure 4.15: The PanoramaWriter module

4.5.12 Storing the panorama images - The PanoramaWriter module

We finally get to the last step in the pipeline, which is to store the stitched panorama
frames as video to the disk. This is the responsibility of the PanoramaWriter module.
The results of the PanoramaWriter are video files stored on disk, that are possible to
playback on any kind of video player that supports H.264-decoding.

Module implementation

This module is running on the CPU, as a single thread, and only access CPU memory.
As input it takes a stitched YUV 4:2:0 panorama frame, and the provided output are
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H.264 encoded panorama frames on disk. As with the SingleCamWriter, we want to
encode and store frames in 3 second long video files, with a filename consisting of a
file number and time-stamp. The execution is relatively equal to the SingleCamWriter,
except that we do not need to convert from RGBA to YUV 4:2:0, as this has already
been done in the YuvConverter module:

1. If we have written 3 seconds of frames to the same file, close the current file
stream and open a new one, with updated time-stamp and counters.

2. Use the H.264-encoder in NorthLight to encode the frame

3. Write H.264 encoded data

The resulting 3 second files are stored in a folder separate from the single camera
video files. Note that the encoding and writing parts are logically different modules,
and could therefore be separated. However, as we will see below, the writing to disk
part is negligible compared to the encoding bit, so there is in practice no point in sepa-
rating these tasks.

4.6 Improved panorama pipeline visual results

A screenshot of the output of the improved pipeline compared to the old pipeline
can be seen in figure 4.16, with examples of different camera settings. We can in fig-
ure 4.16(b), figure 4.16(c) and figure 4.16(d) see the dynamic seams between the cam-
eras avoiding players and minimizing the visibility of the cuts. The results are good,
where for instance the white lines in the field are cut perfectly, without causing any dis-
tortion, and players are avoided. In addition, the warping in the improved panorama
is much better than before, where we for instance can see that the bottom line is now
connected without warping errors. The only warping errors are seen in the stands area,
which is unimportant, and is caused by imperfect system calibration. This can easily be
fixed by calibrating the system carefully, or by cropping the result more aggressively.
Furthermore, by using color correction, the color differences between the cameras are
reduced. However, the color differences, and therefore cuts, are still visible. This is
caused by too large color differences, which in turn is caused by too different cam-
era exposure times. By improving and synchronizing the camera exposures, the color
correction would work better, leading to even better seams.

Note that the colors and brightness of the improved panorama is currently not per-
fect. In figure 4.16(b), the standard exposure times are too high, and the white balance
is set on startup, meaning that the panorama is too bright with slightly wrong white
balance. In figure 4.16(c), we use the same exposure times, but enable automatic white
balance. The exposure time problem is an issue currently being investigated, where we
can see the current, experimental work on auto exposure enabled in figure 4.16(d). It is
also very important to note that the old pipeline output in figure 4.16(a) were recorded
in the fall, while the improved pipeline output were recorded in the spring, leading
to dramatically different lighting conditions. Nevertheless, even with these imperfect
camera settings, figure 4.16 still proves that the technical parts, i.e. the warping, cut
calculations and color correction, improve the visual results of the panorama.
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(a) Old pipeline output

(b) Improved pipeline output, locked exposure times, locked white balance.

(c) Improved pipeline output, locked exposure times, automatic white balance.

(d) Improved pipeline output, experimental auto exposure enabled, locked white balance

Figure 4.16: Old vs. improved pipeline output
Note that the old pipeline output were recorded in the fall, while the improved

pipeline output were recorded in the spring, leading to dramatically different lighting
conditions.

4.7 Panorama stitcher pipeline performance

We have seen that the old pipeline was not performing fast enough to process the
frames in real-time. The new and improved pipeline is supposed to run in real-time,
and it is therefore important to measure the total performance. In figure 4.17, we can
see the overall performance of all the modules when running the new pipeline on the
computer DevBox 2, with specifications seen in table C.2. CPU modules are marked
in blue, and GPU-based modules in green. Note that, as we have seen earlier, the Up-
loader executes both on CPU and GPU, but we have chosen to mark it in blue here.
Even with the controller overhead, we can see that when executing the whole pipeline,
all modules perform well below the real-time threshold. However, these module mea-
surements do not prove whether the whole pipeline executes in real-time or not. We
therefore have to add new measurements for this.
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Figure 4.17: Overall pipeline performance

4.7.1 Write difference times

To prove that the pipeline is performing in real-time, we added two new measurements
to the benchmark: the difference between the single camera writes and the difference
between the panorama writes (marked in yellow in figure 4.17). These numbers mea-
sure the difference from when the previous write finished to when the next write fin-
ished. These differences are generally controlled by two factors: the camera frame rate
and the pipeline performance. The camera frame rate sets the ideal mean times that
the pipeline should fulfill. When performing fast enough, the whole pipeline must
on each iteration wait for a new frame before continuing, and the mean write differ-
ences are then maintained at the real-time threshold. However, on slow iterations, the
writer modules are not interrupted, and are allowed to finish. This means that the av-
erage write differences increase in these cases. We can from this see that the pipeline
increase the mean write difference times when performing bad, but will not decrease
these times below the real-time constraint when performing good enough. In other
words, bad performance leads to a high pipeline frame drop rate, and affects the mean
write differences directly by increasing the mean times. This is a good indication of
whether the pipeline is performing in real time or not, because we need to have a new
frame written to disk every 33 ms to keep up, which means that the write differences
should be equal to the CamReader times. If any modules perform worse than this, the
average write differences are quickly affected.

In figure 4.18, we can see the write differences of a 1000 frames run. According to
this and figure 4.17, the average write differences are exactly 33 ms, which means that
the new pipeline is performing in real time on this configuration.

4.7.2 Old vs. new

A comparison with the old pipeline can be seen in figure 4.19 and table B.2. The in-
teresting modules to compare are the stitcher, warper and RGB to YUV converter. The
remaining modules are not available for comparison either because the old pipeline
does not contain such a module, or because both the old and new pipeline use the
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Figure 4.18: Pipeline write differences, 1000 frames run
Note that the delayed start of panorama writes is caused by the frame delay buffer described in

section 4.4.4

same CPU implementation, such as the Debarreler. What we see is that all the compa-
rable modules gain massive performance in the new pipeline by moving them to the
GPU. The RGB/RGBA to YUV 4:2:0 converter has a performance increase of a factor of
2.7. At the same time, the main stitching operations, i.e. the warper and stitcher, have
impressive performance gains of 8.8x and 106x respectively. Note also that the stitcher
in the new pipeline is the improved and more advanced stitcher with a dynamic seam,
while still having such good performance. These results can be explained by these
modules having a larger degree of potential parallelism, due to the non-optimized,
sequential iteration of pixels on huge frames in the old implementations. The Con-
verter already uses the well optimized ffmpeg library, so even though it increases in
performance, it is not with such a high factor. Like excepted, the overall performance
increases massively compared to the old pipeline.

4.7.3 End-to-end frame delay

As mentioned in section 2.1, the time from an event or frame is recorded to when it is
accessible on the system should be as low as possible. This pipeline frame delay, i.e.
the end-to-end delay for a frame, is as low as 5.33 seconds in our improved pipeline, as
long as the pipeline performs according to the real-time threshold. This number can be
explained by frames moving through the pipeline one sequential module at a time. In
addition to the ordinary modules, we have the frame delay buffer from section 4.4.4,
of 150x4 frames. This means that a frame needs to be moved through 10 sequential
modules, plus 150 steps in the buffer. As long as the pipeline performs according to
the real-time constraint, frames are moved to the next step every 33rd ms. This gives
us

(10 + 150)× 0.033seconds = 5.33seconds.
This can safely be considered to be short enough for coaches to be able to use the
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Figure 4.19: Old vs. new pipeline

system during half-time. Note that if the pipeline performs below the real-time thresh-
old, this transforms into:

(10 + 150)×max(avg. SingleCamWriter diffs, avg. PanoramaWriter diffs)
i.e. we use the maximum average write differences.

4.8 GPU comparison

When investigating the performance numbers, it is interesting to see what the results
are for different architectures and generations of GPUs. We have therefore run perfor-
mance benchmarks on DevBox 2, with different high end GPUs from different genera-
tions, for the sake of comparison. The results can be seen in figure 4.20 and table B.3.
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Figure 4.20: GPU performance comparison
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There are few surprises in these results. We can see that the more powerful the GPU;
the higher the performance. This is primarily caused by the increased frequencies,
increased number of CUDA cores, and improved architectures. In addition, the GTX
680 and GTX Titan utilize PCI Express (PCIe) 3.0, compared to the GTX 280, GTX 480
and GTX 580 using PCIe 2.0, and some of the improved performance is also caused
by this. However, we would expect a more noticeable performance increase when
moving from PCIe 2.0 to 3.0, but this is not the case. This tells us that the PCIe bus,
i.e the transfers between host and device, is not the bottleneck in the system. To verify
this, the actual bandwidth usage can be calculated precisely. For the Uploader, the
bandwidth usage is:

bandwidthusage = ((1280× 960
pixels

f rame
× 4

byte

pixel
× 4)

+ (1280× 960× 4
byte

f rame
)) ∗ 30

f rames

second

= 737280000
byte

second

= 737
MB

s

(4.1)

For the Downloader, the bandwidth usage is:

bandwidthusage = 6742× 960
pixels

f rame
× 1.5

byte

pixel
× 30

f rames

second

= 291254400
byte

s

= 291
MB

s

(4.2)

We mentioned in section 3.4.1 that the PCIe 3.0 bandwidth is 16 GB/s in each di-
rection. In other words, we see that the PCIe bus is nowhere near being the bottleneck,
having approximately 15.3 GB/s spare bandwidth for the Uploader and 15.7 GB/s
spare bandwidth for the Downloader.

We can clearly see that when running on a GTX 480, 580, 680 or Titan, the perfor-
mance is good enough to fulfill the real-time requirements. However, we see that as
soon as we move from a GTX 480 to a GTX 280, the performance decreases greatly,
and is nowhere near real-time. This is because the GTX 480 and higher, of compute
2.0 or better, support concurrent kernel execution, as described in section 3.1. The
GTX 280, however, uses compute 1.3, which does not support this. This means that
only one CUDA kernel can be executed at a time, meaning that all kernel calls must
be serialized, which greatly affects performance. Compute 1.3 cards are therefore too
slow for the pipeline. Luckily, these are old cards, dating back to 2009 and earlier, and
newer ones all support compute 2.0 or higher. In addition, it is interesting to note that
the performance increase diminishes when using more powerful GPUs. This indicates
that the load on the GPUs are not high enough for maximum GPU utilization.
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4.9 CPU core count scalability

Another interesting topic when analyzing the performance of the pipeline, is to see
how the performance scales with the number of CPU cores. When developing the
pipeline, we had access to a server with the specifications in table C.4. As we can see
from the specifications, it has 16 physical CPU cores, and was therefore very useful
when analyzing the core scalability. By use of the taskset [55] command, we were able
to test how the pipeline performed on a varying number of cores. We used a set of 4,
6, 8, 10, 12, 14 and 16 cores in our benchmark.

From the results in figure 4.21, we can see that the pipeline scales very well with
the number of CPU cores. By increasing the number of cores from 4 to a maximum of
16, the mean processing times of each module seem to drop in a negative exponential
fashion. In other words, it appears to be a practical maximum number of CPU cores,
where adding more cores to the pipeline, does not increase performance noticeably. In
the current setup on this computer, this number appears to be 12 cores. It is also inter-
esting to note what modules are most affected by the increase in core number. From
figure 4.21, we see that the modules gaining the most from the core count increase, is
the Debarreler, the Uploader, and the writer-modules. This can easily be explained by
the use of CPU threads. The Debarreler utilizes one thread per camera, the Uploader
utilizes several threads due to the asynchronous, double buffered transfers, and both
the Writer-modules contain an encoding part that massively utilizes threads.

The processing times of the BackgroundSubtractor’s ZXY coordinate fetcher thread
is not so interesting, due to it executing in a separate thread from the controlled module
threads in the pipeline. In addition, the numbers here are not very surprising. No mat-
ter the CPU core count, the bottleneck of the thread appears to be the actual fetching of
the data from the database. In other words: the BGS ZXY fetcher thread is bottlenecked
by the performance of the ZXY database.

Note that GPU modules are irrelevant in these benchmarks, because they are not
executing on the CPU. Also note that the performance of the controller is considerably
worse on this computer than on DevBox 2 (approximately 4 ms vs 2 ms with all cores
activated). This is primarily because of the CPU core frequencies. On the 16 core-
server, the CPU has a core frequency of 2.00 GHz, while DevBox 2 runs at a CPU
frequency of 4.4 GHz. The Controller is running as a single thread, so it does not scale
well with the core count, but it scales very well with the CPU core frequency, as we can
see from these results.

Another important aspect of these measurements, is the rate of frame drops in the
CamReader module. When using 4 cores, we can from table 4.3 see that the camera
driver drops 75 of 1000 frames, in other words 7.5%. However, as soon as we increase
the number of cores slightly, the drop rate drops quickly until it stabilizes at 6-8 per
1000 frames at 8 cores and more. The average CamReader processing times are still 33
ms in every configuration due to the trigger box.

The pipeline frame drop rate is even more interesting. We can see that with 4 cores,
when processing 1000 frames, the pipeline misses as much as 749 frames, i.e. 74.9%!
This leads to a massive frame drift in the resulting video. The drop rate drops quickly
when increasing the core count, until it stabilizes at 0-6 frames per 1000 for 10 cores and
more. These few cases probably happen due to spikes caused by OS- and IO-interrupts.
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Figure 4.21: CPU core count scalability

4 cores 6 cores 8 cores 10 cores 12 cores 14 cores 16 cores
Camera frame drops 75 26 7 9 6 8 8
Pipeline frame drops 729 327 67 0 6 3 3

Table 4.3: CPU core count scalability, without frame drop handling, frame drops per
1000 frames processed

4.9.1 Write difference times

It is also important to notice the mean write difference times, as explained in sec-
tion 4.7.1. From figure 4.22 based on the write difference times, we can see that the
pipeline performs too slow with 4, 6 and 8 cores. However, when reaching 10 cores
and more, the write differences reach real-time levels.

4.9.2 HyperThreading performance

In table B.5 and the corresponding figures 4.23 and 4.24, we can see the effect of Hyper-
Threading on the performance. When using a lower number of cores, we get a massive
performance gain in the modules consisting of many threads, such as the writer mod-
ules (due to the H.264 encoders). The other modules generally perform worse or equal
to the HT-disabled counterparts. However, note the amount of frame drops, seen in
table 4.4. When running 4 cores without HT, the pipeline drops an astounding 1203
frames when processing 1000 frames. This means that more than every second frame
read is never processed, and the frame drift becomes extreme. The camera frame drop
rate is also rather high, at 223 out of 1000 frame sets. When using 4 cores with HT, both
frame drop rates decrease by a large margin. However, when increasing the number of
cores, the performance increase caused by HT diminishes. When running 16 cores, the
performance is overall decreased with HT enabled, where the only module that really
gains anything is the PanoramaWriter. It therefore seems like it is better to disable HT
when running more than 8 cores on this architecture.
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Figure 4.22: CPU core count scalability, write difference times
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Figure 4.23: HyperThreading scalability

4 cores,
no HT

4 cores,
HT

8 cores,
no HT

8 cores,
HT

16 cores,
no HT

16 cores,
HT

Camera frame drops 223 75 54 7 5 8
Pipeline frame drops 1203 729 477 67 3 3

Table 4.4: HyperThreading scalability, without drop handling, frame drops per 1000
frames processed
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Figure 4.24: HyperThreading scalability, write difference times

By looking at these results, especially the mean write difference times, we see that
running 4, 6 or 8 cores on this setup, with or without HyperThreading, is not a feasible
solution. We can see that we should at least utilize 10 cores, and from the pattern
in figures 4.23 and 4.24, we should optimally disable HyperThreading when using so
many cores.

4.10 Frame drop handling performance

So far we have not benchmarked with the pipeline frame drop handling, described
in section 4.4.5, activated. This is because this functionality affects the performance
of the pipeline modules drastically when the CPU is overloaded. We generally want
benchmarks with this function deactivated, because this gives us a better picture of
the actual performance and processing times of each module, without direct interfer-
ence from other components other than the load on the CPU and GPU. However, the
pipeline will be installed in the real world with this function activated, so it is very in-
teresting to look at this performance. The effect of enabling frame drop handling when
looking at the CPU core count scalability, can be seen in table B.6 and figure 4.25.

The numbers are quite a bit different here than with the drop handling deactivated.
First of all, we can see that the average processing times when running on few CPU
cores has decreased by a big margin. Especially executing on 4 cores see a huge av-
erage performance boost. The mean performance then decreases when increasing the
core count, but increases again after we have reached 8 cores. This might seem like
an unexpected result, but is very logical. Like we have seen in section 4.4.5, when a
module is supposed to skip a frame, it just ignores all processing for that frame. This
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means that with an increasing amount of frame drops, the modules will more often re-
turn immediately. This of course, leads to the mean processing times decreasing. When
running few cores, we can see that the amount of frame drops are huge, with up to 343
frames per 1000 dropped for 4 cores, due to the CPU being overloaded, leading to a sit-
uation where the pipeline needs to skip frames frequently. However, compared to the
case with frame drop handling disabled, we see that this function reduce the amount
of frame drops by approximately 50% in the worst cases, in addition to eliminating
frame drifting. By increasing the core count, we offload the CPU, which decreases the
frame drop rate. When reaching 10 cores, the frame drop rate stabilizes close to 0, and
the performance now increases due to the increasing number of cores. This means that
even though the average processing times are relatively low for 4 cores, this comes
at the cost of video quality, which is severely degraded due to the need for reusing
frames.
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Figure 4.25: Frame drop handling performance

4 cores 6 cores 8 cores 10 cores 12 cores 14 cores 16 cores
Camera frame drops 41 33 7 4 3 4 4
Pipeline frame drops 343 177 37 6 2 7 3

Table 4.5: CPU core count scalability, with frame drop handling, frame drops per 1000
frames processed

4.10.1 Write difference times

Note in figure 4.26 that the mean differences between when each frame has been writ-
ten to disk, is, like with frame drop handling disabled, too high when running 4, 6, and
8 cores, even when skipping frames. We saw in section 4.9 that the pipeline frame drop
rate affects the writer difference times negatively, while a good performing pipeline can
not bring the mean write difference times below the real-time threshold. This is also
valid for when we have frame drop handling activated. This is because when dropping
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frames, there is first an iteration with high mean processing times, followed by one or
more faster iterations. However, these fast iterations, like we have seen, does not de-
crease the mean time below the real-time threshold, while the slow iteration increases
it. However, compared to the benchmarks run with frame drop handling disabled,
we can see that with it enabled, the mean write differences are closer to the real-time
threshold, due to the drop handling potentially decreasing the amount of slow per-
forming iterations.
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Figure 4.26: Frame drop handling, write difference times

4.11 CPU core speed comparison

In addition to analyzing the scalability of the pipeline with different number of CPU
cores, we also want to test the performance at different CPU core frequencies. As we
can see from table C.2, the machine installed at Alfheim, i.e. DevBox 2, contains an i7-
3930K CPU, which runs by default at a core frequency of 3.2 GHz. By overclocking, we
benchmarked the pipeline running on a CPU at 3.2 GHz, 3.5 Ghz, 4 GHz and 4.4 GHz.
The module performance can be seen in figure 4.27. Here we see a linear decrease in
processing times when increasing the frequency. Interestingly enough though, the con-
troller does not gain much. When looking at the write difference times in figure 4.28,
all configurations are performing according to the real-time constraint. However, due
to the performance increase when overclocking, we decided to run the CPU on this
machine at 4.4 GHz to both minimize the impact of processing spikes and generally
provide larger margins.

4.12 The Bagadus web interface

The users of the recording pipeline are not supposed to have a very high computer
understanding. In other words, the act of starting the panorama stitcher pipeline by
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Figure 4.27: CPU frequency comparison
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Figure 4.28: CPU frequency comparison, write difference times

use of a command line interface is not a realistic and user friendly alternative. This
means that we need a better interface for administrating recording sessions. This is
why we created a Bagadus web interface, for having a user friendly front end to the
panorama pipeline.

The requirements for such a web interface can be summarized as:

• Users should be able to schedule a new recording session ahead of time. Param-
eters for such a recording should be:

– The start of the recording, with minute precision

– The length of the recording, specified in minutes

• The user should be provided with a list of scheduled recording sessions. The
columns of this list should be:

– The process ID (PID)

– The time-stamp of when the recording was scheduled by a user
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– The time-stamp of when the recording is scheduled to start

– The scheduled duration

• The user should be able to cancel and stop scheduled and active sessions

• The web interface should for the sake of client portability utilize standard web
technologies

• The design should be logical and fairly modern

These requirements lead us to the web interface seen in figure 4.29. As we can see
from the screenshots, users are able to specify the recording start and duration of a
new recording session. When pressing the "Schedule" button, a PHP script launches
a new PanoramaPipeline session, with the specified parameters. In addition, the user
is provided with a list of active and scheduled sessions, with the columns specified in
the requirements. An example can be seen in figure 4.29(a). This list is retrieved by use
of the ps [56] and grep [57] commands, and then parsed in PHP. On every row in this
list, the user is also provided with a "Stop"-button. When pressing this button, PHP
sends a sigterm signal by use of the kill command [58]. This signal is captured by the
corresponding pipeline process, which then terminates. An example of the result after
stopping a scheduled recording can be seen in figure 4.29(b).

The implementation of this web interface use only common web technologies. We
use Apache [59] as web server, running on the same machine as the panorama pipeline,
and PHP for server side scripting. We utilize ordinary bash commands to retrieve and
execute commands on the server. The client side only consists of HTML 5 pages and
CSS to view the pages.

The design requirement must be viewed subjectively, but in the group working on
the pipeline, we all agreed that the design was currently good enough for its purpose,
and provided an easy to use interface for administrating recordings.

4.13 Issues and improvements

There are several issues and improvements in the new pipeline. First of all, the BGS’s
CPU part is executing as part of the Uploader. This means that the Uploader does
tasks for two modules, which can lead to performance issues. A better solution would
be to add a new BGS-based CPU module executing before the Uploader, and then pass-
ing its output to the Uploader. Another improvement is to add better configurability.
Currently, the pipeline contains some hard coded values and parameters, but in the
future, this should really be provided in XML files, or something equal. In addition,
we currently only support four cameras, and want to support more in the future. We
also want to use higher resolution cameras in the future, such as 2K and 4K cameras.
This, however, leads to a large increase in the amount of data to process. Next, as
mentioned in section 4.5.3, we still utilize the debarrel function provided by OpenCV.
This implementation, however, is relatively slow, so a goal is therefore to re-implement
the Debarreler with SSE3 to make it faster. It is currently fast enough, but if we could
speed it up, we would be able to offload the CPU somewhat, which will lead to bet-
ter processing times, and would be extra helpful when moving to larger data loads.
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(a) Example of several recordings scheduled

(b) Result of stopping a scheduled recording

Figure 4.29: The Bagadus Scheduler web interface

This would also result in larger margins for processing spikes, potentially leading to
fewer frame drops. Furthermore, the pipeline currently contains a 50:50 amount of
GPU-based and CPU-based modules. However, many of the tasks currently done on
the CPU can be moved to the GPU for better performance, such as the H.264 encoding
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and YUV 4:2:2 to RGBA converter.
In addition, as part of making the pipeline more scalable to larger processing loads,

we want to explore the possibilities of using multiple GPUs. One way of doing this
is to split the modules between different GPUs. Then the data could be transferred
between the GPUs via GPUDirect. Another way would be to splice all the frames
into n number of slices, and then process these on n different GPUs. To reduce the
need for inter-GPU-communication, we would need to cut the frames horizontally.
There would be some issues here, though, such as for the dynamic stitching, where
we would have to communicate between the GPUs to ensure that the dynamic cut
ends and starts at the correct pixels when going from one slice to the next. A quick
and naive solution for this, would be to run the modified Dijkstra-algorithm internally
within every frame slice, and not globally for that frame. The start and end pixel of the
algorithm within each slice would be selected on system setup. This has weaknesses,
however. For instance, if a player is located in one of these pixels, the seam would have
to cut through him/her.

It would also be interesting to modify the pipeline using expansion cards delivered
by Dolphin Interconnect Solutions [60], which allows for cheap and easy distribution
of the processing load to several computers.

Furthermore, we would like to investigate the effects of changing the internal pixel
representation in the pipeline from RGBA to RGB. We currently use RGBA to promote
coalesced memory accesses on the GPU, but this comes at the cost of 33% more data
to be transferred over the PCI Express (PCIe) bus. As we saw in section 4.8, the PCIe
bus is currently not the bottleneck. However, for better utilization of the PCIe bus,
it is interesting to investigate the effects of changing to a more compact representa-
tion. Related to this, it would be interesting to investigate the possibilities of using
YUV 4:2:0 as the internal pixel representation. YUV 4:2:0 is more compact than RGBA,
but research must be done to discover how much code that need to be rewritten, and
what the impact on CUDA kernel performance would be. This must either way be
investigated when increasing the camera resolution to 2K, because of changes in pixel
representation in the cameras.

Furthermore, in section 4.5.10 we shortly discussed that converting from RGBA to
YUV 4:2:0 in two steps is inefficient, and an improvement of the pipeline is therefore to
reimplement this to do this conversion in one step. Lastly, the camera setup currently
in use is not optimal, and results in lots of artifacts, such as parallax errors (see [2]
for a description) and inaccuracies when debarreling and warping images. If we could
improve the camera setup, parallax errors would be reduced, and we could possibly
cover the field with not as wide angle lenses, which would result in less barrel distor-
tion, which again would lead to better debarreling, warping and stitching results.

4.14 Summary

In this chapter, we have seen how we were able to create a pipeline for generating
stitched panorama videos in real-time for the Bagadus system. As part of this, we
started by discussing how we have improved the old setup, and explained the general
architecture of our pipeline, including initialization, in depth analysis of the controller,
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general module design, frame drop handling, and more. We continued by going into
details about every module in the pipeline, from the CamReader responsible for cap-
turing frames, to the Writer modules, responsible for writing videos as H.264 encoded
files to disk. The next step was to analyze the performance of the pipeline, where we
discussed the general performance, the scalability in respect to both CPU speed and
CPU core count, and compared the performance on different generations of GPUs. To
make the pipeline more usable for end-users, we explained how we designed and de-
veloped a web interface for managing recording of sessions. This all makes the pipeline
completely automatic, with small and inexpensive hardware, and recording can easily
be started by a single user using the web interface. We rounded up the chapter by
discussing current issues and future improvements.

In the next chapter, we will go much more into detail about background subtraction,
which we use as a tool in the improved pipeline.



Chapter 5

Background Subtraction

5.1 What is Background Subtraction?

Background substraction (BGS) is a tool in image analysis and processing, used for
extraction of the background from a series of sequential image frames so that we know
what pixels can be considered as part of the foreground, and what is the background.
BGS applications take video frames as input, and then provides foreground masks
that tell whether a pixel is foreground or background as output. BGS is for instance
very useful for surveillance applications where there might be installed CCTV cameras
to monitor an area. By use of BGS, the system is able to know what is part of the
background, such as trees, houses, and pavement, while it also knows what is part
of the foreground, such as cars, moving persons, etc. This can for example be used
for systems that alert security if there are observed objects of a certain size, such as a
human, which can reduce the need for manual surveillance of CCTV footage.

5.2 Related work

There have been done a lot of work on background subtraction, and the past years,
many new BGS methods have been developed, all with their own characteristics, ad-
vantages and disadvantages. There exist several types of BGS models, where the most
basic type is the frame difference model, which calculates the difference in pixels be-
tween the current and the previous frame to classify pixels as foreground or back-
ground. This is a relatively weak model, however, and is not considered very robust.
Another type of model is the mean filter model, where the background is the mean of
the n previous frames. An example of such a model is [61]. Next, we have the me-
dian filter-based model, where we instead of using the mean of the previous frames,
use the median of the previous frames. An example is [62]. These models are fairly
simple, and much work has been done on researching better ones. Examples of more
advanced BGS models are Gaussian Mixture-based models, like [63] [64] and [65], non-
parametric models such as [66] and [67], kernel density estimator models [68], models
using Eigenbackgrounds [69], and codebook-based models, such as [70] [71].

As we can see, there exist a huge variety of BGS models of different classifications,
and comparing all of them to find their strengths and weaknesses is a big task. Such
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a comparison was done by Brutzer, et. al. in [72], where they compare several of the
modern background subtraction models, and discuss how they perform in different
scenarios under varying lighting and noise conditions. We will use this paper as a
basis for our evaluation and selection of BGS model for use in this thesis.

5.3 Background Subtraction Challenges

Brutzer, et. al. refer in [72] to several challenges that makes it harder for a BGS model
to return the correct results. These challenges are important to be aware of for us, so
that we can pick the most fitting model for our scenario. Therefore, let’s take a look at
these challenges, and their importance.

• Gradual illumination changes: We want the BGS model to be able to handle
gradual changes in illumination, such as how the lighting changes during the
day outside. This challenge is important in our case, due to the stadium being
outside with difficult lighting conditions in Tromsø. Our BGS model must there-
fore handle this well.

• Sudden illumination changes: There might be cases where the BGS model needs
to handle sudden changes in illumination. This means that the model needs to
properly handle sudden lighting changes, such as when turning of a light in a
room. This challenge is not that important for our scenario, because the sun is
the major factor in our case, and the stadium lights will be on during a whole
match, which means that large changes in lighting will in the most cases happen
gradually. We need to be aware of this of course, but there are more important
challenges.

• Dynamic background: Another problem is the possibility of having a dynamic,
i.e. changing and moving background. This could be the case with trees moving
in the wind, escalators, etc, which should not be considered as foreground, even
when they are moving. This challenge, however, is not very important for us. The
football field is very static, and the grass on the field is so short that it does not
sway in the wind. There is some movement on the stands, but they are not a part
of the field, and can luckily be solved quite easily, as we will see later, by simply
ignoring everything but the field itself when doing the background subtraction.
However, a challenge rather equal to this is changing weather conditions (see
below).

• Camouflage: There might be situations where players wear shirts with approx-
imately the same color as the field itself, or possibly the lines in the field. This
will give us problems when trying to subtract a player from the background. We
therefore need to be aware of this problem when selecting a BGS model.

• Shadows: Shadows are an important challenge. When subtracting the back-
ground to retrieve the players, we do not want to mark the player’s shadows
as foreground. It is therefore optimal to select a model that ignores shadows, or
possibly marks shadows as a separate value in the foreground mask.
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• Bootstrapping: Bootstrapping is in BGS the action of getting the system to prop-
erly understand what the "empty" background looks like, i.e. how the back-
ground looks without any foreground subjects. In a busy scenario, for instance
when monitoring a highway, this is difficult, because we cannot simply initialize
the system with a photo without any cars. In our scenario however, this is very
easy, because we can easily record frames of the empty field, due to it not being
busy all the time.

• Video noise: Video noise, such as compression artifacts, sensor differences, etc,
might provide challenges. However, according to [72], this is not really a prob-
lem, but rather the opposite. Brutzer, et. al. noticed that video noise actually
made some BGS models work better than they originally did. This is generally
not a problem in our scenario.

In addition to these, we would like to add another challenge, which might be an
issue in our case:

• Weather conditions: In our case, weather conditions might give us many chal-
lenges. Weather conditions such as snow, rain, thunderstorms, etc., will result in
different lighting conditions, color changes, changing lighting conditions, noise,
etc., and needs to be taken care of. Some of this might be solved by providing
several initialization frames for the different conditions, such as with snow on
the field, but this does not cover everything, for instance moving snow.

5.4 Selecting a BGS model

The Zivkovic-model from [65], by Zoran Zivkovic and F. van der Heijden, is mentioned
in [72] as one of the most promising BGS models, and when studying the challenges
mentioned above, it seems very suitable for our scenario. It is a Mixture of Gaussians
(MOG) model, also called Gaussian Mixture Model (GMM), and is implemented as
part of OpenCV, named BackgroundSubtractorMOG2.

As we can see explained in [73], in MOG-based models (many models, such as
Zivkovic, are based on the paper by Stauffer and Grimson [63]), each pixel is modeled
as a mixture of adaptive Gaussians. On each iteration of the model, i.e. for each frame,
these Gaussians are considered belonging to the background as long as they are the
ones with the least variance, while also having the most supporting evidence. Pixels
not matching any of these background Gaussians are classified as foreground pixels.
MOG-based models also contain a history of these Gaussians, and when a pixel is not
considered part of the background, the least probable Gaussian, i.e. the one with the
highest variance/least supporting evidence, is replaced with a new one.

There is another MOG based BGS model implemented in OpenCV. This is the
model by KaewTraKulPong and Bowden [74], named BackgroundSubtractorMOG in
OpenCV. The KaewTraKulPong-model is not mentioned in [72], but because it is also
a MOG-based model, together with the fact that it is implemented in OpenCV, which
means that it is easy to test, we want to compare this one to the Zivkovic model to to
see which one is best in our scenario.
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There are several other BGS models of different classifications already implemented
in OpenCV, but the documentation in most of these are non-existent. In addition, be-
cause Zivkovic is a GMM and performed so well in [72], we want to compare it to
another GMM, in case MOG based models prove to perform well in our scenario, plus
that the parameters are very equal, making direct comparison easier. We therefore only
compare these two models in this thesis.

(a) Input frame, camera 2

(b) Initial Zivkovic model results (c) Initial KaewTraKulPong model results

Figure 5.1: Initial BGS model comparison

In figure 5.1(b), we can see the initial results of the Zivkovic-based implementation.
Black pixels are background, while the white pixels are the foreground. We can see that
the results are quite accurate. First of all, approximately all player pixels are marked
as foreground. Secondly, we see that it supports shadows, where the shadows are
marked in gray, which in addition seems to be correct. However, there is some noise
in the image, especially in the stands.

The first results of the KaewTraKulPong implementation can be seen in figure 5.1(c).
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The results are not very impressive, especially when compared to the Zivkovic results.
There is not much noise in the frame, but this comes at the cost of only a small part
of the player pixels being classified as foreground, which basically makes the default
parameters useless for the KaewTraKulPong implementation.

5.4.1 Parameter selection

As we can see, the initial results with the default parameters need to be improved
to properly be able to compare between the models and select one. The next step is
therefore to tweak the parameters of the algorithms to get better results.

Zivkovic model

To look at the parameters selected, we have to briefly describe the steps of the Zivkovic
GMM algorithm. The first step of such a GMM algorithm, is to classify each new

sample −→x (t) as foreground or background. The sample is considered background if

p(−→x (t)|XT, BG) > Cthr (5.1)

where XT is the history of previous samples, BG is the background, and Cthr is the
background threshold. This is approximated to be

p̂(−→x (t)|XT, BG) ∼
B

∑
m=1

π̂mN(−→x ; −̂→µ m, σ2
m I) (5.2)

where −̂→µ m are estimates of the mean values, σ2
m are estimates of the variances, π̂m are

the weights and I is the identity matrix. The formula for B is

B = arg min
b

(
b

∑
m=1

π̂m > (1− C f )) (5.3)

where C f is a measure of the maximum portion of the data that can belong to the
foreground without affecting the background model.

The next step, is then to update the density model of both foreground and back-
ground. This is done by

p̂(−→x (t)|XT, FG + BG) ∼
M

∑
m=1

π̂mN(−→x ; −̂→µ m, σ̂2
m I) (5.4)

where M is the number of components. The weight, π̂m, is the amount of the data
belonging to the mth component. It is updated using the formula

π̂m ← π̂m + α(o
(t)
m − π̂m)− αcT (5.5)

where the alpha is α = 1/T. T is here the reaction time, in frames, we want on changes

in the samples. o
(t)
m denotes the ownership of the sample, i.e. what component it be-

longs to.
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To update −̂→µ m, the following equation is provided:

−̂→µ m ←
−̂→µ m + o

(t)
m (α/π̂m)

−→
δ m (5.6)

where
−→
δ m = −→x (t) − −̂→π m

The equation for updating σ̂2
m is:

σ̂2
m ← σ̂2

m + o
(t)
m (α/π̂m)(

−→
δ T

m
−→
δ m − σ̂2

m) (5.7)

The last step is to update the background model, i.e. p(−→x (t)|XT, BG). This is done
by using equation 5.3 to select the components of the GMM that belong to the back-
ground

One of the most important parameters in these equations, is the alpha, which we
saw in equation 5.5. As mentioned in [65], the alpha detemines the update speed
when pixels change. The alpha should be as small as possible to ensure stability in
the model, resulting in less noise in the result, but it should also be high enough to
react fast enough on sudden changes. As stated, Zivkovic provides the formula for
alpha calculation as alpha = 1/T. T is here the reaction time we want on sudden
changes, measured in frames. If the alpha is too high, players in the field standing still
would quickly fade into the background until they start moving again. This is clearly
unwanted, as it is not uncommon for players to stand still. However, if the alpha is
too low, sudden changes in light, such as lightning strikes, will result in lots of un-
necessary noise. However, as we mentioned in section 5.3, in our case, there are few
sudden changes, so we want the alpha to be fairly low. Empirically, we found a T of
500 frames, and therefore alpha of 0.002, to be sufficient.

Next, we need to select the threshold for what is considered background. This is
the Cthr parameter in equation 5.1. If the background model calculation for a pixel
gives us a value higher than Cthr, the pixel is considered background. I.e. the higher
the threshold, the more pixels are considered foreground, and vice versa. We arrived
empirically at 0.1 being a good threshold.

Another important parameter is the threshold on the squared Mahalanobis distance
used to decide if a pixel is well described by the background model. The squared dis-

tance from the mth component is given by D2
m(
−→x (t)) =

−→
δ T

m
−→
δ m/σ̂2

m. Here we stick
with the typical value 4σ, i.e. 4× 4, which works well. We also need to set the threshold
on the squared Mahalanobis distance used to decide sample ownership when they are
close to existing components. If there are no existing components nearby, a new one
is created. A small threshold results in generation of more, small components, while a
larger threshold leads to fewer but larger, possibly too large, components. The imple-
mentation of the model suggests using 3σ, i.e. 3× 3. By tweaking we also found this
to be sufficient.

Next, we need to set the initial standard deviation for newly generated compo-
nents. Empirically, we found that a variance of 30, and therefore standard deviation
of approximately 5.5 worked best. The next parameter, CT from equation 5.5, concerns
complexity reduction. It is related to the number of samples needed to accept that a
component exists. Here we have found that the value of 0.05 which is used in the exist-
ing implementation, works well. When selecting the maximum number of gaussians,
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we stick to the default number from the paper and implementations, i.e. 5 gaussians,
which proves to be sufficient. We also want to select the maximum number of modes
in the model. This parameter is not the most important one, and we just use the default
value from the implementation, i.e. 4, which proves to be good enough for us.

The last parameters concerns shadow detection. We want to use shadow detection,
so first of all, we need to enable this in the model by setting bShadowDetection to 1
on initialization. Next, we want to modify the shadow threshold, named tau in the
implementation. Tau is a threshold of how much darker the shadow can be before it is
considered to not be a shadow any more, based on [75]. For example, taken from the
implementation, 0.5 means that the shadow can be up to 2 times darker. With a too high
threshold, all of the pixels not considered background will be classified as foreground,
even though some of them actually are shadows. Selecting a too low threshold will
classify actual foreground pixels as shadows. We therefore had to test and tweak this
value, and found that the optimal value for us was 0.2.

A list of the final parameters can be seen in table 5.1. The results of tweaking the
parameters can be seen in figure 5.2(a). The improvement is not that big, but that is
because the Zivkovic model performed rather well with default parameters.

Model Zivkovic
α 0.002 (T = 500)
Cthr 0.1
Initial variance 30
Max gaussians 5

CT 0.05
Mahalanobis thr. (well described) 4x4
Mahalanobis thr. (ownership) 3x3
Max modes/components 4
bShadowDetection 1
Shadow threshold 0.2

Table 5.1: Tweaked Zivkovic model parameters

KaewTraKulPong model

As mentioned, the KaewTraKulPong model [74] is also a GMM, so it therefore uses
many equal equations and has many of the same parameters as the Zivkovic model.
The main difference between the models are how they are updated on each new sam-
ple. However, we will not go into details about the equations in the model here, be-
cause the general parameters are equal.

To begin with, the window size parameter is the size of the history, i.e. the max-
imum number of frames that the model needs to remember when calculating new
foreground masks. This is related to the alpha value in the Zivkovic model, where the
T in the alpha formula is equal to the window size in the KaewTraKulPong model. In
other words, the larger the window size, the more stable the model stays, while the
lower the window size, the faster it responds to sudden changes. For our scenario,
we found a window size/history of 10, which equals an alpha of 0.1, to be good. This
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differs quite a bit from the T value we found for the Zivkovic model, but increasing
the window size resulted in less accurate foreground masks.

As for the Zivkovic model, a maximum number of gaussians of 5, which is the de-
fault, proved to be sufficient. The background threshold selected, differs a bit from the
background threshold from the Zivkovic model, i.e. Cthr. In the KaewTraKulPong
model, we found 0.3 to be the optimal value, which resulted in a low amount of
noise, at the same time as marking enough of the players as foreground. Lowering
the threshold resulted in a substantial increase of noise. The initial variance was found
to optimally be 5, while the standard deviation threshold used for deciding whether a
sample is part of the BG model or not, was best at 3.5. These are also somewhat differ-
ent from what we found to be optimal for the Zivkovic model. The initial weight was
found to be 0.05. Finally, the KaewTraKulPong implementation has a parameter named
minArea. This parameter sets the minimum allowed bounding box of connected pixels
classified as foreground. However, it proved to not have any effect on the results, and
was therefore set to 1.

The parameters are summarized in table 5.2. As we can see, even though both the
Zivkovic and KaewTraKulPong models are GMMs, the KaewTraKulPong implemen-
tation in OpenCV does not allow for parameter selection as detailed as for the Zivkovic
implementation. This limits the strength of the model somewhat.

Model KaewTraKulPong
α 0.1 (T = 10)
Cthr 0.3
Initial variance 5
Max gaussians 5

Initial weight 0.05
Std. dev. threshold 3.5
minArea 1

Table 5.2: Tweaked KaewTraKulPong model parameters

The tweaked parameters gave us a much more accurate result, like we can see in
figure 5.2(b). All the players are now very visible, including the shadows. We can also
see that there is some noise from the white lines, and the stands and sides of the field.
Note, however, that optimally, the initial background image should be a clean frame
without any foreground objects, but the results seen here are the results of an initial
background image containing foreground objects, i.e. players.

5.4.2 Background subtraction model comparison

The comparison of the two BGS algorithms is shown in figure 5.2. The KaewTraKulPong-
algorithm is shown in figure 5.2(b), while the Zivkovic algorithm is shown in fig-
ure 5.2(a). As we can see, both algorithms are fairly accurate, with some noise in both
cases.

The most significant difference, is the shadows. In the Zivkovic algorithm, we can
see that the shadows are marked as shadows by use of the gray color, while in the
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KaewTraKulPong-algorithm, shadows are always marked as foreground. The origi-
nal KaewTraKulPong-model contains shadow detection, but the version implemented
in OpenCV does not support this. This is a huge advantage in the Zivkovic-based
solution, because we can then choose to ignore or accept the shadow as foreground,
depending on later stages in the Bagadus pipeline. However, we can also see that the
Zivkovic algorithm has some more noise and errors in the shadowy areas, especially
in the cases where the shadow of a player crosses the line of the field. Here we can see
that the KaewTraKulPong-algorithm has less noise. Zivkovic here notices parts of the
shadow, but does not mark it as a shadow, which it should have. This is, however, not
that important, because we are more interested in the foreground than the shadows.

Overall, the Zivkovic model results in a bit more noise, but it is not by a huge mar-
gin, and is primarily in the stands area. Furthermore, it is interesting to note that the
general accuracy of the Zivkovic algorithm is higher than that of the KaewTraKulPong-
algorithm. We can especially see this when looking at the players. We can see that
KaewTraKulPong marks less of the players as foreground, while the Zivkovic one
marks approximately 100% of each player as foreground. Furthermore, due to the
small window size of the KaewTraKulPong-solution, reaction times are so short that
the model can potentially mark players as background when they are standing still for
short amounts of time. However, when we increased the window size, the amount of
noise increased substantially, so this is not optimal. This greatly pushes the selection
of algorithm in favor of Zivkovic.

We are also interested in comparing the performance of the algorithms. During this
whole chapter, we will be using DevBox 3, with the specifications seen in table C.3, for
performance comparison. The results of a benchmark consisting of 9000 frames, i.e. 5
minutes of play can be seen in table 5.3.

Model KaewTraKulPong Zivkovic
Min 39.998 50.444
Max 66.423 106.808
Mean 48.947 79.345
Standard deviation 2.793 4.946
Variance 0.008 0.0245

Table 5.3: BGS model performance (ms)

We can see that the Zivkovic solution is substantially slower than the KaewTraKulPong
solution, at an average of 61.7%, with a higher variance and standard deviation. This
is quite a bit, but neither of the algorithms are currently real-time in the initial imple-
mentation (both are using longer than 33 ms per frame). However, if we could get both
algorithms to perform in real time, the Zivkovic algorithm would be the preferred one
due to the better BGS accuracy, including shadow detection. We therefore select the
Zivkovic solution as our starting point. We will look into performance optimization,
and see how we can make Zivkovic run in real-time by use of ZXY tracking data, while
reducing the amount of noise and maintaining accuracy.
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(a) Parameter tweaked Zivkovic model results

(b) Parameter tweaked KaewTraKulPong model results

Figure 5.2: Parameter tweaked BGS model comparison

5.5 Optimization of the BGS process by use of ZXY player

data

We have looked at how we can implement a background subtractor quickly, by using
one of several existing algorithms. However, like we saw in the previous section, the
performance is far from real-time, and the visual results contain a substantial amount
of noise in certain areas. We therefore have found a way to exploit the knowledge we
have about player positions in our scenario.
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5.5.1 The idea

The basic idea of this BGS optimization is to exploit the fact that we know all the play-
ers’ positions at all times, due to the ZXY sensor belts. In [2], a mapping and translation
between the coordinate system of the ZXY sensor data and the camera and panorama
planes were discussed. By using this translation, we can convert the real world ZXY co-
ordinates into pixel coordinates in the panorama plane. When using these coordinates,
we will for every frame know the pixel location of each player. We know that humans
have a limited maximum size, so by knowing their positions, we can simply ignore
processing pixels that do not belong to a player, including a safety margin at each side
of a player. This means that we can reduce the amount of pixels to be processed by a
substantial amount. In addition, it allows us to reduce the amount of noise, such as
in the stands area, which we have seen in earlier sections contains lots of noise. An-
other advantage of using this modification, is on sudden light changes, for instance on
lightning strikes. In many BGS models, this sudden change in lighting conditions will
be interpreted as foreground, which means that the whole frame suddenly is marked
as foreground. With the ZXY modification, only the areas around the players will be
affected, while the rest of the frames correctly remain classified as background.

For easier reference, we name our optimization the ZXY Background Subtractor
(ZXY BGS). The general code structure can be explained by the following pseudo code:

Loop through all Y pixels (y = 0⇒ y = f rameheight)

Loop through all X pixels for the current y (x = 0⇒ x = f ramewidth)

If pixel [x, y] is close to a ZXY player position, analyse the pixel using
Zivkovic,

else mark the pixel as background

5.5.2 First, naive ZXY BGS implementation

As stated earlier, we have selected the Zivkovic algorithm for basis of our modification.
The first version of our ZXY BGS is a relatively naive solution. Here we loop, like in
the Zivkovic algoritm, through all pixels. Then, on each pixel, we loop for all players
through the corresponding coordinate samples. If the pixel is within one of the player
frames with a static safety margin of 100 pixels, we process it, else we mark it as back-
ground immediately and continue with the next pixel, without any more processing.

The result is both good and bad. The good part is that it works fairly well, like
we can see in figure 5.3, where we see that we now only analyze the area around each
player, which reduces the amount of noise by a fair amount. However, the implemen-
tation is much slower than the unmodified Zivkovic implementation. The naive first
implementation gives us the performance results seen in table 5.4.

The performance is approximately ten times slower than that of the KaewTraKulPong
algorithm. By use of Intel VTune [76], we find that the cause of this is the new pix-
elIsPlayer() function. This function basically loops through all corresponding player
coordinates that have been retrieved from the database and cached, and then checks
whether a specified pixel is equal to one of these pixels, +/- the safety margin. This
function therefore loops 20 times (once per player with a sensor) per pixel, giving huge
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Figure 5.3: Visual results of first, naive ZXY BGS

Min 368.965
Max 462.543
Mean 417.946
Standard deviation 18.688

Table 5.4: Performance of first, naive ZXY BGS with static margins (ms)

amounts of unnecessary processing, of a O(n) complexity. This is clearly not an optimal
way to do it, so we search for a better solution.

5.5.3 Optimization of ZXY BGS by use of bitmaps

The problem with the previous attempt, was that we iterated a heavy loop 20 times per
pixel per frame. We therefore had to find a way to improve this. The solution found
is to use a lookup map with the same resolution as the frames, to mark what pixels
are to be processed or not. In this case, we are able to calculate this lookup map only
once per frame, and then do a lookup for each pixel to see if it is to be processed.
On this calculation, we set the player pixels in the lookup map, including the safety
margins, to 1. The rest of the pixels remain 0. Then, when executing the BGS process
itself, we simply do a lookup on every pixel, and process it if the value is 1, or mark
it as background at once and ignore its processing if the value is 0. This lookup has a
complexity of O(1), which is a huge improvement.

In this lookup version, the player pixel lookup map is a bitmap, and the safety mar-
gin is statically 100 pixels. The classification accuracy is not affected by this optimiza-
tion, but the performance is affected a lot. The new performance is seen in table 5.5

As we can see, we have improved it to be approximately equal to the unmodified
Zivkovic solution. There are however some artifacts that need to be fixed, and we are
still not executing in real-time. The bottleneck at this point is the playerPixels-test, i.e.
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Min 44.740
Max 94.023
Mean 65.343
Standard deviation 8.089

Table 5.5: Performance of ZXY BGS with bitmap, static margins (ms)

the player pixels lookup, even with the low O(1) lookup complexity. This is because
the lookup is done so often that it affects performance.

5.5.4 Optimization of ZXY BGS by use of dynamic player frame sizes

To further improve the algorithm, we can implement a dynamic player frame size for
use in the algorithm. This means that each player frame is larger when closer to the
camera, and smaller when further away. This has several consequences. The first is
that there is much less data to process. This is because we now, depending on the depth
multiplier used to calculate the margin size, have smaller frames in the background,
which results in substantially fewer pixels being processed in the BGS algorithm. Fur-
thermore, we get substantially less noise in the image, because we filter out more of the
noisy parts. We can see the resulting foreground mask in figure 5.4. The performance
improved noticeably, and can be seen in table 5.6.

Figure 5.4: Visual results of ZXY BGS with dynamic player frame size

5.5.5 Optimization of ZXY BGS by use of a hashmap for lookup

Because most of the time was spent doing the lookup of the active player pixels, we
need to find a faster way to do lookups. The next step is therefore to change structure
for storing the player pixel lookup map. A hashmap was therefore the next lookup
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Min 33.775
Max 88.559
Mean 49.071
Standard deviation 8.357

Table 5.6: Performance of ZXY BGS with bitmap, dynamic margins (ms)

structure to be tried, due to hashmaps also having an O(1) lookup time. This however,
did not result in higher speeds, but rather much worse performance than the bitmap
version. The performance can be seen in table 5.7.

Min 926.429
Max 1186.116
Mean 1007.862
Standard deviation 602.772

Table 5.7: Performance of ZXY BGS with bytemap, dynamic margins (ms)

No surprise, Vtune shows us that the bottleneck is the lookup. We see clearly that
the lookup of a hashmap is way too slow for this use. This can be easily explained. The
reasons for this is that hashmaps are built by use of lots of pointers, and on lookup, we
need to follow several pointers to find the wanted lookup value. The O(1) lookup time
is only based on the data structural/algorithmic time of retrieving values. Hashmaps
are very good for use in cases with a dynamic number of data, but in our case, all
the frames are of the same size, and it is therefore much better to use a static data
structure for the lookups. We can clearly see this in practice in the benchmarks, where
this hashmap solution is way slower than even the first, naive implementation.

5.5.6 Optimization of ZXY BGS by use of an integer map

Another way to improve the performance, would be to change from a bitmap to an
integer map. This should be somewhat faster, because integers are the standard word
length in the architecture (64 bits on the x86_64 architecture), and the CPU should
therefore be better optimized for this word length. In addition, bitmaps result in lots of
bit-shifting operations, which add a lot of overhead. The downside of an integer map
would be a much higher memory consumption for the lookup map, due to us need-
ing to use a whole integer for storing the same as one bit. I.e. we need 64 times the
memory to store the same amount of data. This means that the integer map alone
would consume width ∗ height ∗ sizeo f (integer) bytes. This means that, for frames
of size 1280x960, and an integer size of 64 bit, the memory consumption will be 9.4
megabytes.

Even though this is 64 times the size of the bitmap, the size is still not daunting, so
we can accept this amount of memory consumption, as long as the speedup is good
enough. Fortunately, as we can see from table 5.8, the speedup proved to be so high
that the ZXY BGS now runs in real-time, i.e. with average processing times of less than
33 ms.
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Min 17.816
Max 56.112
Mean 28.888
Standard deviation 6.576

Table 5.8: Performance of ZXY BGS with intmap, dynamic margins (ms)

The maximum time per frame is as we can see higher than 33 ms, which it optimally
should not have been. There might be several reasons for this. There might be reasons
such as other tasks on the PC needing CPU cycles, certain combinations as part of the
BGS algorithm, etc. In addition, the standard deviation and variance is higher than
the previous, unmodified BGS versions. This can be explained quite easily. This is
because, when doing our analysis, the amount of processing to be done varies greatly
depending on where the players are. The further away the players are from the camera,
the smaller the frames become, and the fewer pixels we need to analyze. In addition, if
all the players are outside the whole video frame, there will virtually be no processing,
only a quick if-test per pixel. The worst case considering processing time, would be
when all the players are closest to the side line near the camera. Then the frames would
be of the maximum size, resulting in the most processing. This would, however, still
not cover much of the video frame in total, still resulting in much less processing than
in the unmodified implementation.

As we can see from the Vtune analysis, the largest bottleneck is still the lookup of
player pixels, but the speed has now dramatically increased (the lookup is no longer
the only hot-spot factor). However, if we could speedup the lookup even more, the
algorithm would be even faster, making the maximum running time smaller, which
prevents lag spikes in the processing, and lowers the chances of missing the real time
deadline.

5.5.7 Optimization of ZXY BGS by cropping frames

We currently limit the number of pixels to be processed by use of the ZXY tracking
data. This means that we can do a quick lookup to find out if we are to process a
specific pixel or not, effectively limiting the processing by a substantial amount, which
we have already seen. However, this requires a lookup for each pixel, and we have seen
that the lookup is the bottleneck in the implementation so far. Therefore, if we find a
way to limit the amount of data to be looked up, we can improve the performance
even more. Because we have static cameras, and a static soccer field, we know the
boundaries of where players are allowed to move. Therefore, we can simply crop the
image on the outer borders, to remove these pixels from the BGS analysis, ie. these
pixels are totally ignored.

Lookup-based cropping

When executing the algorithm, we know which camera we are currently processing
frames for, and we can therefore specify maximum and minimum values for the X and
Y pixels. Due to the cameras covering different angles of the field, we need to calculate
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the pixels that should be allowed or not, and create a cropping lookup map of what
pixels are supposed to be analyzed, much in the same way as the lookup map for the
player pixel frames. The creation and calculation of this cropping lookup map is done
on creation of the BGS object. Then, when iterating through all the pixels of each frame,
we do a lookup to see if the respective pixel is valid for analysis or not, meaning that it
is simply ignored if it is marked as invalid. This cropping supports diagonal cuts, and
in this benchmark, we have run the algorithm for camera 1, i.e. for the one to the left.
The reason for this is that this camera has an angle that results in diagonal soccer field
lines, which provides lots of variation with respect to the cropping.

We can see how this cropping works by looking at figure 5.5, where we in fig-
ure 5.5(a) see the input frame, in figure 5.5(b) see the corresponding foreground mask
without any cropping enabled, and in figure 5.5(c) see corresponding foreground mask
with lookup based cropping enabled. In this figure, the gradient areas are the cropped
ones ignored by the BGS. There is really no noise reduction here, because the ZXY data
always reduces noise more than the cropping, however, the amount of pixels needed
to be analyzed is reduced.

The performance of the un-cropped version for camera 1 is seen in table 5.9. We
can see that the algorithm is a bit faster on camera 1 than on camera 2, which can be
explained by there being fewer frames with many players on the camera, which results
in fewer pixels to process. The performance of the lookup-based cropping can also be
found in table 5.9. The performance is rather disappointing, but can be explained. The
reason for the worse performance is because we now are doing a lookup in a second
lookup map. This means that, for most of the pixels, we need to do two lookups, and
not only one.

Crop version No crop Lookup Calculation
Min 14.377 20.001 14.374
Max 54.367 63.990 52.629
Mean 27.984 33.441 27.857
Standard deviation 6.826 6.921 6.810

Table 5.9: Performance of ZXY BGS, cropping comparison, camera 1 (ms)

Calculation-based cropping

We can also try to avoid using a lookup for the cropping, and rather for each pixels
calculate whether it should be analyzed or not. This can be done by doing this evalu-
ation within the second for-loop, i.e. when iterating over the X-pixels. We then have
a few choices: We can decide to calculate borders for both the X-direction and the Y-
direction, or we can select one of them. The choice leading to the highest reduction in
pixels processed would be cropping in respect to both directions, so we try this. The
visual illustration of how the cropping looks is equal to the one for lookup-based crop-
ping, see figure 5.5(c) for a reference. The performance can be seen in table 5.9. As
we can see, this performance is equal to the no-crop version. Here we have basically
replaced one lookup per pixel with some few extra calculations. The largest hot-spot
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(a) Input frame, camera 1

(b) ZXY BGS without lookup-based cropping, cam-
era 1

(c) Visual illustration of ZXY BGS with lookup-
based cropping, camera 1

Figure 5.5: Initial BGS model comparison

is still the lookup of player pixels, but we now also have a fair hot-spot in the calcu-
lation and testing of the cropping. When compared to the lookup-based cropping, it
is easy to believe that the calculation-based cropping would be slower, as it actually
access as many or more memory locations than the lookup-based one, in addition to
doing calculations in both the for-loops. However, the lookup-based one access differ-
ent memory locations on each pixel (the lookup map), while the calculation-based one
generally only access the same ones on each pixel (these are common values, such as
a multiplier specifying the angle of the diagonal cropping lines). Due to the access of
the same addresses, it is plausible to believe that these are cached, so the CPU does not
need to access memory, which results in higher performance.
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Straight, horizontal cropping

What we can see from this, is that these cropping implementations are not great perfor-
mance optimizations, as they either maintain the same performance, or actually result
in longer processing times. However, this is only the case for cropping that results in
lots of processing and many memory accesses, such as cropping with diagonal lines,
as described above. This is caused by all of the calculation and look ups happening in
the innermost for-loop seen in the pseudo code in section 5.5.1.

There is one type of cropping we can attempt that is extremely straight forward,
limited, and naive. This cropping exploits the fact about the cameras placed on the
long side of the rectangular field. This means that the most of the cropping will be
done in the horizontal dimension, i.e. left to right. Let us therefore simply crop by
setting static, straight lines in the horizontal dimension, and ignore pixels outside these
straight lines. By doing it this naive way, we will not need any calculations for each
pixel; we simply ignore all the pixels in each row outside the specific margins at the
top and bottom of the frames. This will not result in an optimal cropping of the images,
but will still limit the amount of pixels to be iterated substantially. What we do is to
set a margin width at the top and a margin width at the bottom of each camera, 0
pixels wide if necessary, and then ignore whole pixel rows by use of these margins.
The pseudo code then looks like this:

Loop through all Y pixels accepted by the margins (y = MINY ⇒ y = MAXY)

Loop through all X pixels for the current y (x = 0⇒ x = f ramewidth)

If pixel [x, y] is close to a ZXY player position, analyse the pixel using
Zivkovic,

else mark the pixel as background

As we can see, the crop-check is only done in the outer for-loop, i.e. only for the
Y-pixels. This lowers the amount of lookups and calculations needed to be done by a
substantial amount compared to the previous cropping solutions.

Note that there are no diagonal lines in this cropping implementation, so we there-
fore switch back to camera 2 for a more interesting performance comparison. Figure 5.6
illustrates how such a straight cut reduces the amount of pixels to be processed, where
the area marked with a gradient is never processed. The performance of this imple-
mentation for camera 2 with 75 pixels margin at the bottom and 100 pixels margin at
the top, compared to the un-cropped version, can be seen in table 5.10. We can see
that we save approximately 2.2 ms, which is not very much, but it is basically a free
optimization with almost no need for change in the implementation.

5.5.8 Optimization of ZXY BGS by use of a byte map

We have now seen that diagonal cropping in all dimensions does not really improve
the performance, while straight, horizontal cropping gives a small performance boost.
Note however, that the player pixels lookup map is still the primary hot-spot. We
therefore want to look at another way to improve these lookup times. In the previous
optimization for this map, we changed it from a bitmap to an integer map, due to
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Crop version No crop Straight, horizontal crop
Min 17.816 14.346
Max 56.112 56.062
Mean 28.888 26.683
Standard deviation 6.576 6.984

Table 5.10: Performance of ZXY BGS, no crop vs straight horizontal crop, camera 2 (ms)

Figure 5.6: Visual illustration of ZXY BGS with straight, horizontal cropping, camera 2

integers being of the native word length of the CPU architecture. There was one thing
we did not try at this point, however, and that was to test a byte map. This means that
we try to use an ordinary char-map instead of int-map, and see how that performs.
The performance of the byte map solution can be seen compared to the integer map
solution, both with straight cropping, in table 5.11.

Crop version Int-map Byte-map
Min 14.346 9.661
Max 56.062 50.431
Mean 26.683 21.711
Standard deviation 6.984 7.213

Table 5.11: Performance of ZXY BGS, integer map vs. byte map, with cropping, camera
2 (ms)

As we can see, this is much faster than the integer map implementation. There
might be several reasons for this, but the most prominent one of these is caused by
caching. Because the integer map is so large, the cache is not used as efficiently as for a
byte map, which is 1/4th the size of the integer map. This means more cache hits, and
therefore less memory access, which speeds up the process.

We therefore have a tradeoff between the three different maps, i.e bitmap, bytemap
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and intmap. In the case of the bitmap, we can store it very compactly, and use the
cache efficiently. However, the bitmap needs lots of bitwise operations, which together
makes the performance rather slow, even with the more efficient caching. In the case of
the integer map, we have more efficient processing and calculations, due to the native
word length. However, due to the much larger size, the cache is not used as efficiently,
and we see more cache misses, and therefore memory accesses. This is a performance
hit, but it is still faster than the bitmap solution. We then have the byte-map solution,
which is in between. The word length is not as optimal as for an int-map, but due to a
much more compact map, we use the cache much more efficiently.

Also, if we take a look at the Vtune analysis, we can see that we no longer have
a single hot-spot. The lookup hot-spot is still the largest, but no longer dominating.
In the analysis of this implementation, with a run of 9000 frames, the amount of time
spent on the playerPixels-lookup, i.e. the use of the byte-map, is 41.066 seconds in
total. The next hot-spot is the calculations in the X-pixel for loop, which is 32.868
seconds in total. The third hot-spot is setting the mask of the current pixel to true,
i.e. background, if the pixel was not a player pixel. This task takes 10.723 seconds. In
other words, the three largest hot-spots has a ratio of approximately 4/3/1. We have
in other words really improved the lookup time, and therefore the performance of the
implementation.
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Figure 5.7: Performance of CPU based ZXY BGS implementations, camera 2 (ms)
Note that the lookup- and calculation-based cropping versions are excluded, because

they were tested on camera 1.
The bar of the naive (mean = 417.946) and hashmap-based (mean = 1007.862)

implementations are cut due to size.

5.5.9 ZXY BGS CPU performance summary

The performance of the different CPU based ZXY BGS implementations is found in fig-
ure 5.7. Note that the lookup- and calculation-based cropping versions are excluded,
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because they were tested on camera 1, while the rest were tested on camera 2. Never-
theless, from this figure and the previous version tables, it is clear that the last version,
i.e. the byte map-based with horizontal cropping, is the fastest one, while performing
in real-time.

Figure 5.8: Example of ZXY BGS inaccuracy

5.6 ZXY inaccuracy

There are several cases where the frame around the players are not accurate enough,
so that the players drift outside of them, and are therefore not completely considered
as foreground. An example can be seen in figure 5.8. There are many reasons for this,
and several ways to solve these. The main five reasons for this inaccuracy are:

5.6.1 Debarelling parameters

As described in earlier sections, the debarelling function needs some debarelling coeffi-
cients as parameter. We calibrated the cameras we had in the lab at that time to retrieve
these, and then used these coefficients as parameter for removing the barrel distortion
from all the cameras. This, however, gives us some small problems, which is due to
the fact that no lenses are completely equal; there are always some small differences.
In addition, the cheaper the lens, the larger the differences. This means that the param-
eters we are using in the debarelling function are not 100% correct for the cameras we
use at Alfheim, which leads to small errors in the debarelling result, especially in the
corners of the frames. This leads to inaccurate tracking, especially when the players
are at the frame corners.

The way to solve this is to calibrate and retrieve the parameters for each camera
stationed at Alfheim, and then use these for the individual camera debarellings. This
would correct these small errors, and therefore result in more accurate mapping be-
tween ZXY coordinates and pixels, which means that the tracking would become more
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accurate. Because this is not critical for the sake of this thesis, calibration and correction
of these parameters have been ignored.

5.6.2 ZXY sensor inaccuracy

The current version of the ZXY player tracking system installed at Alfheim has an
accuracy of ±1 meter. This can result in quite visible inaccuracies when finding the
correct coordinate and pixel of a player. 1 meter is relatively high amount of inaccuracy
for our scenario, and we can clearly see the result of this several places. There are for
instance cases where a player is standing still, but the tracking frame is drifting back
and forth, with the player inside or a bit outside. This can even happen when players
are standing still in the middle of the frame, i.e. the cause of this large drift is not due
to the debarelling inaccuracies.

As we saw in section 2.4.1, according to ZXY, the newest version of the tracking
system has an accuracy of ±0.5 meters. Therefore, the solution for this problem would
simply be to upgrade the system to the newest version. This, however, is not feasible
to do within the time frame of this thesis, and therefore has to be ignored for now.

5.6.3 Time drift

A third possible cause of inaccuracy in the tracking, is time drift. There can be time
drift several places in the system, and these are important to be aware of. For instance,
it is important that the ZXY tracking system and the frame capture system are synchro-
nized with respect to time, as described in section 2.4.2. If they are not, we can have
a situation where the timestamps of the corresponding frames and tracking samples
are not correct. This can lead to severe cases of time drift, where whole matches can
have out-of-sync tracking and frames. This can make the tracking within that time slot,
possibly whole match, totally worthless.

There are ways to minimize the chances of this happening. First of all, by config-
uring the ZXY system and the storage/panorama pipeline to use the same, local NTP
server (as described in section 4.3), we minimize the amount of possible time drift be-
tween the systems to a minimum. Also, this makes sure that the systems are kept in
sync for as long as they are connected to the same NTP server, and is the preferred
solution. Another way to combat this problem, is, if the problem has already occurred,
to try to manually shift either the frame timestamps or the ZXY time stamps, so that
they are again aligned and in sync. This, however, is not a good solution, and can only
be viewed as a backup solution, if bad time drift occurs.

5.6.4 Dropping frames

Another source of tracking inaccuracy is if frames are dropped on capture or in the
panorama stitcher pipeline, as described in section 4.4.5. As mentioned here, it is pos-
sible that frames are dropped when we are capturing video, for instance due to signal-
ing delays, timing delays in the trigger boxes, and more, and the pipeline might drop
frames when performing too slowly. This is solved by reusing the previous frame, both
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in the CamRecorder and in the pipeline itself. However, this means that there is a pos-
sibility that we process a frame several times in a row. However, the ZXY data is not
tied to the capture of frames, so in this case, the sampling of player positions would
still continue, even with the same frame several times in a row. Therefore, when trying
to track players, we can have cases where it looks like the players are standing still
while the ZXY positions are still updating. This lasts until a new frame is recorded
where everything goes back to normal. In practice, this is not really a problem, be-
cause the rate of frame drops is very low as long as the stitcher pipeline performs fast
enough, and the synchronization between frames and ZXY data is still synchronized,
so drifting does not occur.

5.6.5 Sampling interval

The highest sampling interval of the ZXY system installed at Alfheim is 20 Hz. In
comparison, the frame-rate is of frequency 30 Hz. As we can see, we have a mismatch
here. This mismatch is solved by reusing the previous sample each time we reach a
third frame, i.e. when ( f rameCounter%sampleCounter == 2). In theory, this results in
a small ZXY → f rame mismatch for that frame, but this is such a small inaccuracy that
we can safely ignore it.

5.7 GPU implementation

We already have the implementation running in real time on one thread, for one cam-
era. Nevertheless, we need it to be much more scalable. Why is this? Why is this not
good enough, as we only have four cameras, and already have four cores on the CPU?
First of all, in our case, we have enough CPU for processing four cameras in parallel
by use of four cores on the CPU. However, the BGS is only a smaller part of a large
processing pipeline. This pipeline needs lots of CPU power, and we can therefore not
rely on having one core per camera dedicated to BGS processing. In addition, we want
the system and implementation of this module to be as scalable as possible. Primarily,
we want to be able to use more than four cameras in the future.

Both of these arguments tell us that we must find a better way to process this. This
is where the GPU optimization comes in. Image processing is in general a very parallel
task, and in the Zivkovic BGS algorithm, all pixels are viewed and processed indepen-
dently. Therefore, if we can get the BGS algorithm to run on the GPU, we will possibly
get a huge performance boost and also a more scaleable solution that should be much
more optimal for our scenario.

5.7.1 The GPU hardware

The cards we are using when testing and benchmarking the background subtraction
implementation on GPU, are the very low end Nvidia Quadro NVS 295 (G98), the for-
mer high end Nvidia Geforce GTX 280 (GT200), and former high end Nvidia Geforce
GTX 480 (GF100), running on DevBox 3. The GPU specifications can be found in ta-
ble C.6. All of these cards are several generations old. The newest one, the GTX 480, is
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1 generation old, but it has most of the important CUDA functionality, and is therefore
representative of newer high end cards, which are the types of cards we want to use in
the Bagadus system.

5.7.2 The existing Zivkovic GPU implementation

As we can see from [38], there already exists a GPU implementation of the Zivkovic
algorithm, based on CUDA, which needs both CUDA and OpenCV to run.

First of all, we need to decide which version of the Zivkovic GPU implementa-
tion we want to base our modification on. In the article, they explain several levels
of optimizations, and implement a CUDA kernel for each of these. In the source code
provided, they only provide two of these kernels, plus one extra. The first kernel they
provide is kernel 3, which is the one with a Structure of Array pattern, memory coa-
lescing on the Gaussian parameters and pinned memory. The second kernel is kernel 4,
which is the one with all the previous optimizations plus asynchronous memory trans-
fers. The last implementation, kernel 5, is a kernel with all the previous optimizations,
in addition to templates for easier programming. Kernel 5 is not purely a performance
optimization, and is not mentioned in the article, so we do not base our implementa-
tion on this one. The one we want to base our implementation on, is kernel 4. The
reason is the same as mentioned in [38], i.e. that the kernel uses interleaving of mem-
ory transfer, GPU execution and CPU execution. Because our background subtraction
is to be a small part of a much larger pipeline, this interleaved execution makes it much
more attractive, as the BGS-module in this case can more flexibly process at the same
time as other modules.

The performance of this implementation running on our hardware can be seen in
table 5.12. Here we can see that the NVS 295 is so weak that it is not able to run the BGS
in real-time. However, we did get a small speedup compared to the unmodified, CPU-
based version, with a factor of 79.345ms

53.605ms = 1.48. We can see that the kernel execution
time is the dominant part of the total execution time, while the transfer to and from
the GPU is a marginal part, which tells us that the NVS 295 is computationally limited.
This means that the NVS 295 is too weak for us to use, and it is therefore not interesting
to test more on this card, which means that we ignore it from now on.

In comparison, both the GTX 280 and GTX 480 are more than fast enough to per-
form in real-time, with approximately 5.3 ms total processing time, which tells us that
these cards are limited by the transfer between GPU and CPU. This is a speedup of
almost 15 times. In addition, we see that the kernel executes 20% faster on the GTX 480
compared to the GTX 280, which is really no surprise, considering that the GTX 480
has many more and faster cores.

Nvidia has published a best practices guide [36] (from now on referred to as the
BPG) for optimizing CUDA applications, which focuses on the most important steps in
finding bottlenecks, and finding ways to remove these from an application. In the end,
what they produce, is a prioritized list of steps to follow when profiling and optimizing
CUDA applications. A high priority step in the BPG, is to use the effective bandwidth
of the application, i.e. the throughput, for measuring performance and optimization
gains. In table 5.13, we see that the GTX 480 has a 0.9 GB/s higher throughput than the
GTX 280.
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GPU NVS 295 GTX 280 GTX 480
Total 53.605 5.326 5.365
Kernel 52.508 1.076 0.812

Table 5.12: Performance of unmodified BGS on GPU, mean times (ms)

GPU Average Minimum Maximum
GTX 480 6.20 GB/s 5.82 MB/s 130.47 GB/s
GTX 280 5.30 GB/s 1.88 MB/s 63.78 GB/s

Table 5.13: Throughput of unmodified implementation

Another important aspect of the BPG, is to maintain a high enough occupancy to
hide latency from register dependencies. We discussed occupancy in section 3.6, and
in the unmodified Zivkovic GPU implementation, an occupancy of 0.5 was found to
be optimal. Connected to this in the BPG, it is stated that to facilitate coalescing and
provide optimal computing efficiency, block sizes should be a multiple of the warp
size, often between 128 and 256 threads. This is solved in the Zivkovic GPU imple-
mentation by limiting the amount of threads per block by making each thread process
several pixels. In the following implementations, we maintain this solution.

5.7.3 ZXY optimization of Zivkovic on the GPU

The ZXY optimization of the the Zivkovic GPU algorithm is fairly straight forward, in
the same way as the one for the CPU. There are, however, several things to consider.
First of all, we need to be aware of the limitations and characteristics of the CUDA
architecture, where many of these have been explained in Chapter 3. Furthermore,
as stated in the BPG, it is important to analyze the old application to find ways to
parallelize sequential code. This has already been done for the Zivkovic algorithm
itself in [38]. However, we need to do this for the ZXY part too. To begin with, we
found that the generation of the player pixel lookup map was not very parallelizable,
and therefore decided to keep it sequential on the CPU. However, when accessing the
lookup map, we only access each pixel once, and never modify it, meaning that the
access to this lookup map could easily be parallelized.

The ZXY optimized solution is therefore to first, on each frame, create the player
pixel lookup byte map on the CPU, in the same way as for the CPU implementation.
Then we copy this lookup map to the GPU memory, together with the corresponding
frame. The ZXY BGS kernel is then launched, where each GPU thread loops through a
limited amount of pixels, and for each pixel the thread does a lookup on that pixel to
see if it is supposed to be processed or not. If not, it marks that pixel as background,
and continues on the next pixel. This should in theory improve processing times. The
pseudo code can be seen here:

Calculate the player pixel lookup map

Transfer the lookup map to GPU

Launch the ZXY BGS CUDA kernel, with m threads.
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All threads: Loop through n number of unique pixels

If playerPixels[currentPixel] is set, process the pixel

else mark the pixel as background

When testing different implementations to find the best optimizations, we use the
Nvidia Visual Profiler [77] to profile the application to determine the bottlenecks and
hotspots that need to be improved.

Global memory implementation

The first version of the ZXY optimization is implemented by storing the playerPixel
lookup map in global GPU memory. Global memory is located off-chip, and is not
cached, but it is large, and more than large enough to store the playerPixels lookup
map. When implementing it, we had to be very careful to ensure that the accesses
to the lookup map in global memory was coalesced whenever possible. Coalesced
memory access was described in section 3.5, and is mentioned as an important step in
the BPG. We ensure this by making sure the lookup map is aligned properly, and that
threads access the map in a coalesced pattern. Furthermore, we do not introduce any
__syncthreads() operations, so we avoid using these inside divergent code, which we
can see from the BPG is highly discouraged. This is because __syncthreads() works like
a barrier for CUDA threads, meaning that if it is used within divergent code, it can
lead to errors and deadlocks.

GPU GTX 280 GTX 480
Total 5.479 5.526
Kernel 0.499 0.328

Table 5.14: Performance of ZXY BGS on GPU, global memory, mean times (ms)

The performance of the global memory-based implementation can be seen in ta-
ble 5.14. As we can see, the kernel performance on the GTX 480 and GTX 280 are much
better on the ZXY modified version than the original BGS implementation, with factors
higher than 2 times. However, when we look at the total processing time per frame, we
see that the GTX 480 and GTX 280 have approximately the same performance. These
numbers all make sense, and can be explained by the bottlenecks on the cards. As
mentioned in section 5.7.2, for the NVS 295, the bottleneck is the processing itself due
to fewer processing cores, which is why it is not used. However, on the faster GPUs,
we are limited by the memory transfer between the GPU and CPU. From this we can
see that the optimization using the ZXY player data does not provide a substantial de-
crease in total processing time, but actually a slight increase. The reason for this is that
we now need to transfer more data between the host and device than before, because
we also need to transfer the playerPixels lookup map.

At the same time, the kernel processing times have decreased substantially. The
main reason for this, is that there are so much data processed in parallel, so when we
exclude the processing of pixels by use of the playerPixels lookup map, we reduce
the amount of data to be processed by a large amount. However, as stated as a high
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priority step in the BPG, we should work on avoiding different execution paths within
the same warp. This is because threads within the same warp share program counters,
meaning these diverging threads need to be serialized, and this can obviously have
a severe impact on performance. In other words, within the warps with divergent
execution paths, we expect that this optimization actually increase execution times. In
our scenario, the kernel code is basically partitioned into two large divergent execution
paths ("process current pixel" and "do not process current pixel"), that are run serialized
within a warp. However, this does not seem to be much of a problem. This is because
one of these paths, the "do not process current pixel" path, is negligible, so it does
not take any extra time to run these instructions after (or before, depending on the
scheduler) the first path has finished.

Furthermore, if all threads within a warp can exclude their pixels, and therefore
follow the same execution path, it will drastically lower the processing time for that
warp. Overall, a substantial amount of the field will not contain players, and will
therefore not be processed. We will therefore have many warps where all threads are
to ignore all pixels, which basically ignores all processing in that warp. In turn, this
makes the warp-threads exit quickly, allowing other threads in other warps to execute.
We can see this from the kernel execution benchmarks, where we see that the overall
kernel execution times has decreased drastically on both GPUs.

The throughput of the GTX 280 and GTX 480 can be seen in table 5.15. Here we
can see that the throughput has decreased slightly, which most likely is caused by the
addition of the player pixel lookup map to the memory transfers.

GPU Average Minimum Maximum
GTX 480 5.96 GB/s 7.95 MB/s 131.78 GB/s
GTX 280 5.28 GB/s 1.95 MB/s 64.14 GB/s

Table 5.15: Throughput of global memory implementation

Time (ms)
Min 0.646
Max 5.682
Mean 1.479

Table 5.16: Player pixel lookup map creation performance

Next, it is also interesting to benchmark the performance of the playerPixels lookup
map creation. The timing results from a benchmark run on the Intel Core i7 960 of De-
vBox 3 can be seen in table 5.16. In other words, we see that a large part of the total
execution time is caused by the creation of the lookup map needed for the ZXY opti-
mization. For instance, with the GTX 480, 1.5 ms of the total 5.5 ms (27%) of processing
time was due to the lookup map generation.

However, even with this lookup map generation cost and the equal total process-
ing times compared to the unmodified version, the ZXY optimization is desired. This
is because when run in a pipeline fashion, i.e. in parallel with other modules, such as
in Chapter 4, the cost of creating this map can be hidden, which basically makes it a
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free operation. Furthermore, when run as part our panorama pipeline, the transfers
between CPU → GPU and GPU → CPU is done only once for all modules per frame,
which means that the cost caused by this transfer will be limited, even with the extra
lookup map transfer. The substantial improvement in kernel processing times is there-
fore a huge advantage. In addition, we also get superior visual results with less noise,
as described and shown in section 5.5. Overall, compared to the CPU based version,
the performance has increased by a factor of approximately 3.9.

Memory optimizations

As mentioned the BPG, memory optimizations are the most important area for perfor-
mance. Therefore, when we see the performance of the global memory implementa-
tion, and how we get a very low memory bandwidth utilization, it is natural that we
focus on the memory performance. In other words, we want to improve the access
times of the player pixels lookup map to optimize the throughput. The unmodified
parts of the implementation has already been optimized by use of coalescing, the SoA
pattern and asynchronous, double buffered transfers, so we focus on optimizing the
access to the player pixels map to begin with. We have already looked at the different
kinds of Nvidia GPU memory in section 3.4, so this is a good place to begin.

Constant memory implementation

What about putting the lookup map in constant memory? We have seen that the con-
stant memory is located off-chip, but it is cached, so the access should be reasonably
fast. There is however one catch: the limited size of the constant memory. As men-
tioned before, the constant memory in Nvidia GPUs is limited to 64 KB. Meanwhile,
in our scenario of a resolution of 1280 × 960 pixels, using a char representation, the
player pixel lookup map size is 1280 ∗ 960 ∗ 1 = 1.17MB. In other words, the amount
of constant memory is not nearly large enough to hold the lookup map (not to speak
of four when integrated in the pipeline with four cameras). It is therefore obvious that
we cannot use constant memory for storing the lookup map for speeding up the access
to it.

Shared memory implementation

As mentioned in the BPG, using shared memory instead of global memory is a good
way to increase an application’s performance. Furthermore, shared memory is use-
ful to avoid redundant transfers from global memory. We therefore want to try using
shared memory to store the player pixels lookup map. This means that we first re-
trieve the lookup map, and temporarily store it in global memory on the device. Then,
on each kernel launch, we transfer the corresponding parts of the lookup map to the
shared memory for that block, which is then accessed and used. The processing times
of this solution can be seen in table 5.17, and the throughput in table 5.18.

We can see that the total processing times are a bit worse than the global memory
implementation for the GTX 480 and GTX 280, the throughput is pretty much equal,
while the kernel execution times are considerably slower. The reasons for this are quite
obvious: To be able to copy the lookup map into shared memory, we first need to copy
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GPU GTX 280 GTX 480
Total 5.568 5.606
Kernel 0.621 0.431

Table 5.17: Performance of ZXY BGS on GPU, shared memory, mean times (ms)

GPU Average Minimum Maximum
GTX 480 5.91 GB/s 8.22 MB/s 130.83 GB/s
GTX 280 5.27 GB/s 1.94 MB/s 63.89 GB/s

Table 5.18: Throughput of shared memory implementation

the data to global memory. Then, on kernel launch, we need to copy the map into
shared memory for that block. This means that we need to copy data to and access
the global memory anyway, and in addition get two extra accesses to shared memory.
Shared memory is fast, but these extra accesses are strictly unnecessary. Furthermore,
because we only access the lookup map once per pixel, and this access is coalesced,
using shared memory for caching is not very suited here.

Pinned memory implementation with zero copying

The next step in the optimizations is to test pinned memory. Pinned memory is a
mechanism for disabling paging for a block of memory on the host. This allows the
GPU to access the memory directly, without the need for the virtual memory overhead.
This drastically increases the effective memory bandwidth, and can therefore speedup
the implementation.

When using pinned memory, one can also use zero copying. It is mentioned in the
BPG as a low priority optimization, targeted at integrated GPUs without dedicated
memory. However, it is easy to implement, so we want to see how it affects perfor-
mance. Zero copying is a feature that allows a device thread to access host memory
directly and use it as if it was ordinary device memory, as long as the memory is non-
pageable (i.e. pinned). This is always a performance boost on integrated devices with
no dedicated device memory, because it saves many unnecessary memory copies when
device and host memory basically is the same. However, it only gives better perfor-
mance on devices with dedicated device memory in a limited amount of cases, because
each instance leads to a PCIe transfer. Transactions should therefore be coalesced. In
most cases it should be faster to transfer the memory to the device first, and then access
it directly on the device itself.

Pinned memory with zero copying is not supported on all GPUs, and does in our
case only work on the GTX 480. The performance can be seen in tables 5.19 and 5.20.
We can see that the average total processing time per frame has increased, and the
average throughput has decreased quite a bit from the global memory implementation,
while the kernel execution time also has increased. This can be explained by what we
have just mentioned, that zero copying is only in rare cases a performance boost on
devices with dedicated device memory, because it is targeted at GPUs without such
memory.
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GPU GTX 280 GTX 480
Total N/A 5.628
Kernel N/A 0.401

Table 5.19: Performance of ZXY BGS on GPU, pinned memory with zero copying,
mean times (ms)

GPU Average Minimum Maximum
GTX 480 5.59 GB/s 5.96 MB/s 131.54 GB/s
GTX 280 N/A N/A N/A

Table 5.20: Throughput of pinned memory implementation with zero copying

Pinned memory and asynchronous memory transfers

Even though zero copying did not work well, we can still try to exploit pinned memory.
Using pinned memory also allows us to transfer memory to the device asynchronously.
This is done by using CUDA streams. A CUDA stream is just a sequence of instructions
to be run in order on the device, and CUDA allows to run several streams in parallel.
Together, this allows for asynchronous transfer.

The way this is implemented is by running several streams, at least one copy stream
and one execution stream, in parallel. The execution stream is responsible for executing
the BGS algorithm itself, while the copy stream is responsible for copying memory to
the device asynchronously and in parallel with the execution stream. This means that
one needs double buffering for the data to be transferred, i.e. in our case two buffers
for storing the player pixels lookup map. The copy stream transfers the next data unit
to one buffer, while the execution stream accesses the current data unit from another,
equally sized buffer. Then, when the copying of the next data unit is done and the
execution on this unit can begin, the copying stream can start transferring a new data
unit to the old buffer, overwriting the old and no longer usable data. This technique
basically interleaves the CPU execution, GPU execution and GPU memory transfers.

This technique is already implemented for the transfer of the input and output
frames, so we want to replicate the same behavior for the player pixels lookup map,
which is the data unit in our case. Since we already have some asynchronous transfer,
we can exploit this and reuse the existing streams. This means that we only need to add
double buffering for the player pixels map, and replace the ordinary cudaMemcpys to
cudaMemcpyAsyncs, i.e. the asynchronous equivalent of cudaMemcpy. Therefore, the
execution stream and copy stream remains the same, i.e. execStream and copyStream. On
the GPU side we use global memory to store the lookup maps, with the same kernel
performance as described in the global memory section.

The performance of this implementation with two streams, i.e. one copy stream
and one execution stream, is seen in tables 5.21 and 5.22. From this, we can see that the
performance for both GTX cards are similar to the global memory implementation. The
throughput of the GTX 480 has slightly increased while the average processing time per
frame has decreased ever so slightly. In comparison, the GTX 280 actually has slightly
worse performance, where the processing time per frame has increased by a small
amount, the average throughput barely has decreased, and the kernel performance is
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equal. These differences can be explained by random fluctuations, so all in all, the
performance can be considered equal, but with the advantage of the execution and
data transfers being interleaved.

GPU GTX 280 GTX 480
Total 5.540 5.501
Kernel 0.499 0.325

Table 5.21: Performance of ZXY BGS on GPU, pinned memory with asynchronous
transfer and 1 copy stream, mean times (ms)

GPU Average Minimum Maximum
GTX 480 6.01 GB/s 5.96 MB/s 131.3 GB/s
GTX 280 5.21 GB/s 1.74 MB/s 63.75 GB/s

Table 5.22: Throughput of pinned memory implementation with asynchronous trans-
fer and 1 copy stream

Another interesting thing to test with the asynchronous transfer, is to use more
than one copy stream. In this case, we add one more copy stream that is dedicated to
transferring the player pixels lookup map, while the original copy stream is dedicated
to copying frames back and forth between GPU and host. The new copy stream is
named copyStream2. The performance can be seen in tables 5.23 and 5.24. As we can
see from these results, performance is equal to the ones for only one copy stream. Due
to this, we rather prefer the previous solution with only one copy stream, as this is
conceptually cleaner, and with theoretically less overhead.

GPU GTX 280 GTX 480
Total 5.546 5.495
Kernel 0.500 0.326

Table 5.23: Performance of ZXY BGS on GPU, pinned memory with asynchronous
transfer and 2 copy streams, mean times (ms)

GPU Average Minimum Maximum
GTX 480 6.01 GB/s 5.96 MB/s 131.54 GB/s
GTX 280 5.20 GB/s 1.74 MB/s 63.72 GB/s

Table 5.24: Throughput of pinned memory implementation with asynchronous trans-
fer and 2 copy streams

Shared and pinned memory implementation

By using the shared memory implementation above, we first need to transfer the player
pixels lookup map from the host to global memory on the device, and then transfer it
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to shared memory later on, which is unnecessary overhead. What we can try to do
instead, is to use pinned memory to directly transfer the lookup map into the shared
memory in a coalesced way. As before, use of pinned memory and zero copying does
not work on the GTX 280, only the GTX 480. The performance results can be seen in
tables 5.25 and 5.26.

We can see that the throughput takes quite a performance hit compared to the
global memory implementation, and ends up at an average of 5.64 GB/s, compared
to the 5.96 GB/s of the global memory version. We can also see that the average total
processing time per frame has increased marginally from the global memory imple-
mentation, 5.53 ms to 5.58 ms, while the kernel processing time has increased substan-
tially from 328 µs to 533 µs. This can be explained by banking conflicts in the shared
memory. The throughput hit can be explained by, as before, zero copying not being
optimal on a dedicated GPU like the GTX 480, except for a very few cases.

GPU GTX 280 GTX 480
Total N/A 5.579
Kernel N/A 0.533

Table 5.25: Performance of ZXY BGS on GPU, shared and pinned memory, mean times
(ms)

GPU Average Minimum Maximum
GTX 480 5.64 GB/s 5.96 MB/s 131.42 GB/s
GTX 280 N/A N/A N/A

Table 5.26: Throughput of shared and pinned memory implementation

Texture memory implementation

The last type of memory we want to test, is texture memory. We have already seen
that texture memory is located off-chip, but is cached, so this caching can result in
lower access times and better performance for us. The caching is optimized for spatial
locality, which means that threads of a warp reading data close to each other will ben-
efit from the cache. In our case, threads of the same warp will read texture addresses
from the player pixels lookup map close to each other, so this should work well. The
performance of this implementation is seen in tables 5.27 and 5.28

We can see that the overall performance remains the same as the global memory
implementation. The total processing times can be considered equal, while the average
throughput remains the same. The kernel execution times are also equal. This can
be explained by texture memory actually being stored in global memory, with some
caching. The effect of the cache is apparently not that effective, which we can see due
to the approximately same performance as the global memory implementation.

Here it is very interesting to use texture memory for also storing and accessing the
input frames, and not only the lookup map. This can hopefully improve performance
for the whole implementation, not only the ZXY optimization part, due to texture
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GPU GTX 280 GTX 480
Total 5.507 5.498
Kernel 0.489 0.333

Table 5.27: Performance of ZXY BGS on GPU, texture memory, mean times (ms)

GPU Average Minimum Maximum
GTX 480 5.96 GB/s 7.95 MB/s 131.18 GB/s
GTX 280 5.28 GB/s 1.94 MB/s 63.58 GB/s

Table 5.28: Throughput of texture memory implementation

caching. When running benchmarks on this improved texture memory implemen-
tation, we get the results from table 5.29 and 5.30.

We can see from the numbers that this implementation is, compared to the first tex-
ture implementation, approximately the same on the GTX 480 and somewhat slower
on the GTX 280. This is most probably because the original global memory implemen-
tation of the input images are made sure to be coalesced. This results in very efficient
access to the input images, making the global memory use not that bad. In addition,
the access patterns to the texture memory is not optimal considering the spatial locality
caching. For instance for the GTX 480, the texture cache hit rate is on average 69%. This
lowers the access times somewhat, leading to approximately the same access times as
global memory, but with some extra overhead.

GPU GTX 280 GTX 480
Total 5.480 5.534
Kernel 0.517 0.334

Table 5.29: Performance of ZXY BGS on GPU, improved texture memory implementa-
tion, mean times (ms)

GPU Average Minimum Maximum
GTX 480 5.96 GB/s 7.95 MB/s 131.3 GB/s
GTX 280 5.27 GB/s 2.02 MB/s 63.89 GB/s

Table 5.30: Throughput of improved texture memory implementation

Lookup map word size

The last few optimizations are concerning the word size used in the lookup map. The
access patterns to the input and output frames are already coalesced, as seen in [38].
Due to the way we have implemented the player pixels lookup map, and the pattern
the kernel process pixels, the memory accesses to the player pixels lookup map are
also coalesced. However, it would still be interesting to test other data types to use for
representing the lookup map, to see if this can further improve performance while re-
taining memory coalescence. In these tests we use the global memory implementation
because of both performance and implementation simplicity.
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Integer representation: The first change of representation is to use integers as the ba-
sic type in the lookup map, instead of the original chars. The results of the benchmarks
are seen in tables 5.31 and 5.32. We can see that the average throughput has drastically
decreased, compared to the original char-lookup-map version. In addition, the total
processing times have increased substantially, which can be explained by the need for
transferring more data from the CPU to the GPU, due to integers resulting in a larger
lookup map. The kernel performance has also decreased, as expected, due to the in-
crease in word length limiting the amount of coalesced memory accesses. It is also
interesting to see that the kernel performance hit on the GTX 280 is much larger than
on the GTX 480. This can be explained by the compute 2.x, and higher, architectures
having looser requirements for memory coalescence, while also having some limited
L2 caching of global memory.

Clearly, using integers for representing the player pixels lookup map does not in-
crease the performance; rather the opposite.

GPU GTX 280 GTX 480
Total 6.661 6.602
Kernel 0.649 0.342

Table 5.31: Performance of ZXY BGS on GPU, global memory with integer representa-
tion of player pixels lookup map, mean times (ms)

GPU Average Minimum Maximum
GTX 480 5.74 GB/s 7.95 MB/s 131.78 GB/s
GTX 280 5.06 GB/s 2.02 MB/s 63.69 GB/s

Table 5.32: Throughput of global memory implementation with integer representation
of player pixels lookup map

Short representation: The last change of representation is to use shorts as the basic
type in the lookup map. The results can be found in tables 5.33 and 5.34. Here we
see a relatively clear drop in throughput for both GTX cards. In addition, the average
total processing times have increased, which is primarily caused by the increased size
of the lookup map, leading to slower transfer to the device. Furthermore, the kernel
processing times have increased, but not as much as for the integer based version.
The reason for the kernel performance decrease, is the same as for the integer version,
i.e. short representation leading to worse memory coalescence. Like for the integer
version, the performance decrease is larger for the GTX 280, for the same reasons, i.e.
no caching and stricter requirements for memory coalescence.

In other words, we see that changing from chars to shorts in the lookup map de-
creases the performance.

5.7.4 ZXY BGS GPU performance summary

The performance of the different GPU based ZXY BGS implementations is found in fig-
ure 5.9. Here we can see mean processing times of the GTX 480 and GTX 280, for both
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GPU GTX 280 GTX 480
Total 5.815 5.782
Kernel 0.522 0.338

Table 5.33: Performance of ZXY BGS on GPU, global memory with short representation
of player pixels lookup map, mean times (ms)

GPU Average Minimum Maximum
GTX 480 5.81 GB/s 7.96 MB/s 130.95 GB/s
GTX 280 4.93 GB/s 2.00 MB/s 63.89 GB/s

Table 5.34: Throughput of global memory implementation with short representation
of player pixels lookup map
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Figure 5.9: Mean performance of ZXY BGS GPU implementations

kernels and total processing. We can see that for the kernels, versions using global and
texture memory, i.e. the ’global memory’ implementation, both ’pinned + asynchronous
transfer’ implementations and both ’texture memory’ implementations, perform the best.
When looking at the total processing times, the unmodified version is the fastest. How-
ever, of the modified versions, the same versions as for the kernel benchmarks perform
the best.
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5.7.5 Remaining "CUDA C Best Practices Guide" optimizations

We have mentioned that the BPG contains several rated steps for optimizing CUDA
applications. We have so far been through most of them, but some have not been
tested. First of all, as a high priority step, we have not tried to minimize the data
transfer between host and device by executing sequential code on the GPU. The PCIe
bus is often the bottleneck, so if we limit the amount of data to be transferred, even
if the task itself is executing sequentially on the GPU, we can potentially increase the
performance. The task in question is the player pixel lookup map generation. A way to
implement this, is to retrieve the next set of player position samples from the database
on the CPU, and then transfer these to the GPU. The amount of data to transfer would
in this case be less than for transferring the whole lookup map. The generation of the
lookup map would then be executed on the GPU. As long as the generation of this
map on GPU is approximately equal to the generation on the CPU, we would see a
performance increase.

There exist many libraries for fast math computing in CUDA. These are already
optimized for their use, but often at the cost of precision. However, if the speed of the
calculation is more important than the precision of the result, to use these libraries is an
easy way to improve performance. Such libraries are of no use for our implementation,
and this step is therefore ignored.

There also exist specialized math functions for some calculations, in addition to the
more general ones. These often have better performance than the general implementa-
tions, due to the fact that these can make use of limitations in the input, size, problem
area, etc, to optimize the performance. Therefore, if a specialized math function exists;
use it. However, as for the fast math libraries, there are no cases where this can be used.

Another step is to use signed integers rather than unsigned integers as loop coun-
ters. The semantics of unsigned integers are well defined in C, which gives the com-
piler little freedom to optimize the use of an unsigned integer. However, signed inte-
gers are not well defined, which means the compiler can optimize a bit more aggres-
sively. Therefore, when using signed instead of unsigned integers as loop counters, the
compiler can optimize more freely, leading to a bit better performance, for very little
programming work. However, we have not spent any time on this, because we did not
add any loops to the unmodified Zivkovic GPU implementation, while the unmodified
implementation already use signed integers for its loop counters.

Division and modulo operations are expensive, but shift operations are very fast.
Therefore, if we want to divide an integer by a multiple of 2, or use modulo by a
multiple of 2, we can rather use shift operations to save processing cycles. However, we
did not implement any division or modulo operations, which made this step pointless
for us.

Furthermore, it is important to avoid automatic conversions between floats and
doubles, which cost processing cycles. This can happen when for instance dividing a
float by 2.0. 2.0 is then treated as a double, which then needs to be converted to a float.
This can be prevented by simply using the f suffix, which forces it to be a float, such as
2.0f. There are not doubles and floats in the ZXY modification, and this step is already
implemented in the Zivkovic GPU code.

We have already discussed that branching and diverging code can decrease the
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overall performance. However, the compiler contains mechanisms for branch predi-
cation to prevent warps from diverging. The programmer can help with this, by for
instance unrolling loops using the "pragma" keyword. We discussed the branch diver-
gence earlier, where we saw that this was not a problem. This step is therefore omitted.

5.7.6 The optimal implementation for a standalone Background Sub-

tractor

When looking at the performance of the implementations, we see that the general bot-
tleneck is the transfer between the CPU and the GPU. As [38] states, asynchronous
transfers allows the execution of CPU execution, GPU transfers and GPU execution to
be interleaved, so we want a solution that exploits this to reduce the cost of CPU⇔GPU
transfers. The optimal solution for a standalone ZXY Background Subtractor is there-
fore the implementation using pinned memory for asynchronous memory transfers
with global memory for storing the lookup map, described in section 5.7.3. In addition
to providing the fastest kernel and the fastest data transfers, this version allows for
asynchronous data transfer between host and device by use of pinned memory and
double buffering.

However, we need to be aware of the nature of double buffered, asynchronous
transfers. This is because that, when we retrieve the next foreground mask from the
BGS, this is the mask for the input frame two frames earlier. This is caused by the new
input frame not being processed directly, but merely being copied to the GPU on the
first step, and processed on the second, then transferred back on the third. Then, on
the second next call for the BGS (with new input frames), we get the corresponding
foreground. One solution would be for the user of the BGS to always cache the two
previous input frames, but this adds some unnecessary complexity for the user.

Another solution would be to let the ZXY BGS kernel copy the input frame that
corresponds to the new foreground mask to a separate GPU buffer, and then transfer it
back to the CPU together with the corresponding foreground mask. Of course, adding
more memory transfers affect performance. The processing times of this solution can
be seen in table 5.35. We can see that the total average processing times per frame have
increased to approximately 8.7 ms per frame on the GTX 480 and GTX 280, both still
safely within the real time constraints.

GPU GTX 280 GTX 480
Total 8.746 8.687
Kernel 0.499 0.325

Table 5.35: Performance of standalone ZXY BGS, with caching of corresponding input
frame on GPU, mean times (ms)

An even better solution, however, would be to cache the two previous input frames
on CPU in the C++ object that wraps around the CUDA kernel. This way we do not
need to transfer anything extra back to the CPU from the GPU, which saves several mil-
liseconds of processing time per frame, and uses less of the limited PCIe bandwidth.
This hides the complexity from the user, in addition to not increasing the total pro-
cessing times of the global memory/asynchronous transfer-implementation described
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in section 5.7.3 by a large margin. The performance of this solution can be found in
table 5.36. We see that the kernel performance is approximately the same, while the
total processing times have increased by 1.7 ms compared to the non-caching solution.
This extra delay is caused by two extra memcpys; one for retrieving the corresponding
frame, and one for storing the new input frame. However, the performance is 1.5 ms
better than the GPU-cache based version. Compared to the fastest CPU version, this is
a speedup factor of 3. This is therefore the variant we use in our standalone ZXY BGS
application, named ZxyBackgroundSubtractorGPU.

GPU GTX 280 GTX 480
Total 7.200 7.204
Kernel 0.525 0.325

Table 5.36: Performance of standalone ZXY BGS, with caching of corresponding input
frame on CPU, mean times (ms)

An example showing the accuracy of the application can be seen in figure 5.10,
where we have replaced the white foreground pixels with the actual video pixels. The
image is cropped to remove the outer areas that, thanks to the ZXY modification, con-
tain no noise. In the resulting image, there is almost no noise, where most of the ex-
isting noise is caused by the bench area being included by the player pixels lookup.
In addition, the accuracy of the players are excellent, where only one player is par-
tially hidden due to ZXY inaccuracies, as explained in section 5.6. The other players,
however, are completely classified as foreground.

Another thing worth mentioning, is the fact that we implemented the ZxyBack-
groundSubtractorGPU to contain a fall-back mode for situations where it does not have
ZXY player data. In this situation, the BGS algorithm degrades into the unmodified
Zivkovic-implementation, which means that the whole field is processed.

5.7.7 The optimal implementation for the Bagadus stitching pipeline

We have now looked at what the optimal solution for a standalone ZXY BGS is. How-
ever, we need to modify the BGS somewhat to make it work as a module in the Bagadus
panorama pipeline. First of all, as part of the pipeline, the BGS module itself no longer
needs to transfer data between the CPU and GPU, because this is done in separate
Uploader and Downloader modules. We can therefore strip the BGS of these tasks.
Therefore, the kernel we use is the global memory-based one, described in section 5.7.3.
Nevertheless, it needs to be slightly modified to support several cameras concurrently,
but this should not affect performance in any way, other than the increased processing
load. In addition, the calculation of the player pixel lookup maps has to be done on
the CPU, so the BGS module ends up with a GPU part and a CPU-part, as described in
section 4.5.3.

Concerning the input and output buffer pattern described in chapter 4, we need
to do few modifications. The BGS already has the necessary input buffers, and the
foreground mask as output buffer. We therefore only need to add a video frame output
buffer, because we need to pass the input frames corresponding to the foreground
masks further into the pipeline. The buffers can be seen in table 5.37.
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Figure 5.10: ZxyBackgroundSubtractorGPU accuracy

Input Size (Byte) Output Size (Byte)
Player pixel lookup map pixelcount Foreground mask pixelcount
Input frame 4× pixelcount Corresponding input frame 4× pixelcount

Table 5.37: Background subtractor module input and output

Note, however, that even though we do not transfer from the CPU to the GPU
directly in the BGS module itself, the advantages of the asynchronous transfer we have
discussed earlier are so great, that we choose to use this technique in the Uploader
module, which is responsible for transferring frames and player pixel lookup maps to
the GPU.

5.8 Background Subtractor applications

Now that we have looked in detail into the process of background subtraction, and
how we can optimize it both in accuracy and performance, it is interesting to take a
look at application usage for BGS in our scenario.

5.8.1 Panoramic stitching with dynamic seam calculation

In the old Bagadus version, the visual artifacts created by the static seam stitcher are
quite visible, especially when a player passes through a seam, which we saw an ex-
ample of in figure 2.8. This is why the dynamic seam based stitching algorithm in
section 4.5.9 was introduced.

We have already discussed how this algorithm works. In short, it starts by calcu-
lating a new stitching seam for each overlapping area between two neighbor cameras.
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This is done for every new frame set. Each seam is calculated by going from the bot-
tom of a frame to the top, through this overlapping area, where the seam will follow a
least weighted path. The search area through the overlap has a limited width, and the
pixels within it are treated as graph nodes. The weight of the edges are calculated by
using a custom weight function that compares the absolute color differences between
the corresponding pixels in each of the currently overlapping frames. Dijkstra’s algo-
rithm is then used to find the cheapest path through this overlapping area. To improve
performance and visual results, the search algorithm is not allowed to move to pixels
directly to the left, right or downwards. By using the absolute color value differences
as the edge weights, the search algorithm calculates a seam that goes through the path
in the frames where the difference between the two frames are the smallest. This means
that we find the path leading to the least visible seam. For instance, when the search
algorithm reaches sudden color changes, like for a player pixel, the algorithm finds a
path around the player, without cutting him or her.

However, the algorithm described so far contains a critical flaw; what if some of the
players wear suits of green color? Then there would be possibilities where the cheapest
path found is through a player, due to them also being partially green. This would then
lead to visual artifacts in the seam, similar to what we see in figure 2.8, only that the
seam now cuts differently. An example of this happening is seen in figure 5.11(a),
where the white player is cut due to the white lines. A visualization of the problem
can be seen in figure 5.11(b).

To prevent this, the algorithm is modified to support the use of background sub-
traction. As described in earlier sections, the background subtractor provides fore-
ground masks for each camera as output. In these masks, background, shadows and
foreground are marked with different values. The dynamic seam algorithm can then
use these foreground masks, by increasing the weight of all edges that lead to a pixel
marked as foreground in the masks. The new weight is set to a very high value, which
ensures that the seam never will cross a player pixel, other than in extreme cases, such
as the rare case when player pixels fill the overlapping search area from side to side.
Compared to the case in figure 5.11(b), where the green player was cut by the seam, us-
ing the foreground mask provided by the background subtractor, the seam now avoids
the player, and therefore eliminates visual artifacts. See figure 5.11(c) for a visualiza-
tion.

As usual, when the seam, which is returned as horizontal pixel offsets for each
vertical pixel for each overlap, has been calculated, the stitcher copies pixels from the
correct frames into the correct positions in the new panorama frame. More details
about this dynamic seam stitching algorithm can be found in [54], by fellow master
student Espen Helgedagsrud.

5.8.2 Depth map creation

In parallel with the work on the improved pipeline, Henrik Kjus Alstad, a fellow mas-
ter student at Simula, has been doing research on real-time depth-map estimation in
his master thesis [78], using soccer as a case study. In short, a depth map is an array
or image channel, consisting of a value for each pixel, denoting the distance between
the view point and the surface in the corresponding pixel. The brighter the value, the
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(a) Example of dynamic seam cutting player. The picture
is a bit too bright due to bad auto exposure.

(b) Dynamic stitching seam, camouflaged player,
no BGS usage

(c) Dynamic stitching seam, camouflaged player,
BGS usage

Figure 5.11: Dynamic seam calculation comparison - with and without BGS usage.

farther away the object in that pixel is, and vice versa. The dimensions of a depth map
are therefore the same as for the corresponding input image. An example of an image
with its corresponding depth map, can be seen in figure 5.12. We can here see that the
darker areas are closer to the view point than the lighter areas.

The method to calculate depth maps selected, is to use two cameras viewing the
field from slightly different positions. This is called stereo matching, and is more ac-
curate than using only one camera. For more details about this, see [78]. The pipeline
described can be seen in figure 5.13. The first, off-line step, is to calibrate the cameras,
which needs to be done each time the two cameras are moved. Then, the first on-line
step, is to rectify the images. This means that we transform the images from the two
cameras to project onto a common plane (more details can be found in Henrik’s thesis).
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(a) The original input image [79] (b) The corresponding depth map, visualized as
a gray scale image [80]

Figure 5.12: A depth map

Figure 5.13: The depth map calculation pipeline

The next step is to do color correction. This is currently not done, but a color corrector
has already been implemented for the Bagadus panorama stitcher pipeline (see [52]
and section 4.5.8), and this implementation can be modified to work for the depth map
calculation pipeline.

The next step is where the background subtractor comes into play. The process of
calculating depth maps are computationally very expensive, and to generate them in
real-time at resolutions of 1280x960 pixels is a huge challenge. The goal by using BGS
is to decrease the amount of pixels to be processed during the depth estimation step,
to decrease the total processing load. The ZXY BGS is therefore used to calculate the
depth for only the areas around the soccer players, and then use a simpler depth model
for the remaining image. This leads to both better performance and more accurate
visual results with less noise. The last step is where the depth estimation is executed
and depth maps calculated.

A visual example of the effects of using BGS during depth map calculation can
be found in figure 5.14. In figures 5.14(a) and 5.14(b) we find the input images. In
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figure 5.14(c), we find the disparity map resulting from the calculations. The disparity
is inversely proportional to the depth, meaning that the closer the object in the pixel
is to the cameras, the higher (and therefore brighter) the values are. The result of
applying background subtraction on the disparity map is seen in figure 5.14(e). We see
that BGS greatly decreases the amount of noise.

5.8.3 Visual features during delivery to user

Another area where background subtraction can prove to be useful, is during delivery
of video content to the user. For instance, by using the background subtractor, players
can be emphasized on playback by removing all pixels but the player pixels, and put
the players on a monotone background, such as we did in figure 5.10. In addition, this
can allow for more accurate player tracking, where we can use the foreground masks
to track player pixels and limit inaccuracies in the ZXY sensors, and then use the ZXY
data to lookup what player each foreground pixel belong to.

Furthermore, background subtraction can make the process of visual ball tracking
easier. This is because we can use the foreground masks to filter out irrelevant pixels
from the input frames, potentially leading to better tracking accuracy. Note, however,
that in this case, as long as the ball does not contain any tracking sensors, we can not
use the ZXY modification. This is caused by the ball in many cases being outside the
player pixel boxes, meaning that it would often be marked as background.

5.9 Future works

There are some future works for the ZXY Background Subtractor. First of all, we have
not been able to record footage for and test the current algorithm well enough un-
der some difficult weather conditions, such as snow, rain and lightning. This should
therefore be done. Furthermore, we have only implemented and compared two back-
ground subtraction models, Zivkovic [65] and KaewTraKulPong [74], both Mixture
of Gaussians type of models. An interesting step would therefore be to test different
kinds of models, such as those mentioned in section 5.2, to see how they perform in the
Bagadus scenario, and especially how well they perform with the ZXY optimization.
In addition, as we saw in section 5.7.5, we have not investigated the effects of moving
the player pixel lookup map generation to the GPU, which can be done by first trans-
ferring the coordinate data for all the players to the GPU, and then generate the lookup
maps here.

5.10 Summary

In this chapter, we have gone into detail about the process of background subtraction.
We have seen that background subtraction is the process of extracting the background
from a video, and to create a mask of pixels belonging to the foreground. There are sev-
eral challenges different BGS models need to solve, and we discussed which challenges
are most critical in our scenario. For us, BGS is used as a tool to find the player pixels
in the videos, which can then be used in the panorama pipeline described in Chapter 4.
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(a) Example input image of the left camera (b) Example input image of the right camera

(c) Resulting disparity map, without BGS (d) The corresponding foreground mask for the
left camera

(e) Resulting disparity map, with BGS

Figure 5.14: The effect of using background subtraction during depth map estimation
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As part of this, we evaluated two promising background subtraction models, tweaked
parameters to improve classification accuracy, and finally selected the Zivkovic model
to be used.

After this, we discussed how we could optimize this BGS model, both in classifica-
tion accuracy and performance, by exploiting the knowledge about player positions.
This started by optimizing the ZXY BGS algorithm on CPU, where we went into details
about how to make it perform in real-time, which we managed. The next step was to
move the ZXY BGS to GPU to speed it up even more, which was done by modifying
an existing GPU implementation of the Zivkovic model. We here looked into details
about improving both total performance and the kernel performance even more, and
described the best choices for making a standalone ZXY BGS application, plus how
to modify the existing implementation to fit in a module in the improved panorama
stitcher pipeline.

We have also looked at some different types of applications that can benefit from
background subtraction. We first looked at the dynamic stitching seam algorithm that
is used in the improved panorama pipeline, described in Chapter 4, and how we can
eliminate potential visual artifacts by utilizing the foreground masks provided by the
BGS module. We also saw how BGS can be used to improve the process of depth
map creation. The benefits here are both in visual results and performance. Finally,
we shortly discussed some possible scenarios on the playback side where BGS can be
utilized. In the future, more research should be done on other kinds of applications
that could benefit from the ZXY BGS, especially on the playback side of the Bagadus
system.

We have in summary in this chapter, looked at what BGS is and how to optimize
it with our tracking knowledge, both on CPU and GPU. In the next chapter we will
summarize this thesis, discuss the main contributions, and look at future work.
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Chapter 6

Conclusion

In this chapter, we summarize our work and present our primary contributions. In the
end, we look at future improvements of the work done.

6.1 Summary

In this thesis, we have improved the old panorama stitcher pipeline of the Bagadus
system, which have been described in Chapter 2, to run in real-time on a single com-
modity computer. In addition to increasing the performance, we have also been able
to improve the visual results of the resulting panorama video.

Before we could start discussing the improved pipeline, we had to look at how to
use CUDA for utilizing the power of GPUs for parallel execution tasks. This included
looking at the Fermi architecture, the execution model, and especially the memory
model. This was all described in Chapter 3.

We then discussed the improved pipeline. To be able to improve the performance
of the old pipeline, we had to completely restructure the architecture of the old CPU
based pipeline, reuse very few of the older CPU modules, and add many new ones.
Examples of new modules are a dedicated warper module, dedicated stitching mod-
ule, modules for transferring data between the CPU and the GPU, a color-corrector
module, and a background subtractor module. This improved pipeline was described
in detail in Chapter 4. To get such a large speedup compared to the old pipeline, we
had to utilize the power of GPUs, by use of CUDA. Several modules, such as the Back-
groundSubtractor, ColorCorrector, Warper and Stitcher were therefore built to execute
on the GPU for faster execution. Furthermore, we discussed the performance of the
new pipeline, and how it scaled based on different hardware configurations. We also
looked at the web interface for scheduling and managing session recordings.

The background subtractor was added as a tool to improve the visual results of the
generated panorama video. In this thesis, we have emphasized the details of back-
ground subtraction in Chapter 5, and how we were able to improve both the speed
and accuracy of our BGS algorithm by using player tracking data. The tracking data
was used, because it allows us to limit the amount of pixels to be processed in each
frame. Here, we also went into details about how to optimize this algorithm both on
the CPU and on the GPU. On the CPU, we looked at techniques such as player pixel
lookup maps, dynamic and static cropping. On the GPU, we looked at memory related
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optimizations, such as memory coalescence, different memory types and different rep-
resentations. We have also seen how we can utilize this background subtractor to op-
timize the visual results of the dynamic seam stitcher used in the pipeline, to increase
the performance and visual results of depth map creation, and to use it for different
scenarios on the playback side of the system.

6.2 Main Contributions

We have in this thesis shown how a pipeline can be built to create stitched panorama
videos in real-time from four HD-ready cameras, based on the Bagadus soccer sce-
nario. This pipeline has been installed at Alfheim stadium, and a goal is to use it
this season. We have shown how we can utilize GPUs to increase the performance,
while the resulting panorama is of better visual quality. By doing this, we managed
to get the pipeline to run on a single, inexpensive commodity computer, without any
expensive and specialized hardware. This speedup allows coaches to access the gen-
erated panorama videos and single camera videos 5.3 seconds after a frame has been
recorded, which means that coaches are able to use the system during half-time. As
part of this, we have also installed a web interface at Alfheim for allowing coaches to
schedule new recordings.

We have also analyzed and discussed the process of background subtraction in de-
tail, and especially focused on how it is possible to optimize the BGS process, both
in accuracy and performance. Here we investigated how we could utilize the known
player position data to reduce the processing load, which in turn improved accuracy
and performance. We have also found several examples of applications for this BGS,
and there are more potential applications for using BGS as a tool in the future.

As part of optimizing both the BGS process and the stitching pipeline, we learned
about techniques for optimizing applications, both on the CPU and GPU. For instance,
on the CPU, we learned about increasing performance by reducing hot-spots and bot-
tlenecks, such as by doing lookups instead of calculations, and by modifying the ap-
plication to utilize the CPU caches better. On the GPU, we have learned about writing
and optimizing applications in CUDA. A big part of this has been to learn how to in-
crease GPU memory performance, because this is one of the most important aspects of
CUDA application performance. A valuable lesson here, has been to see how CUDA
application optimizations need to be targeted at specific architectures and GPUs for
the best performance.

Furthermore, we have been able to submit and publish a poster at the GPU Tech-
nology Conference 2013 [17], where we presented the improved pipeline. We have also
submitted a paper to ACM Multimedia 2013 [18], where the pipeline is described.

6.3 Future work

There is some work left as future work. We mentioned some of them for the panorama
stitcher pipeline in section 4.13. A future goal here is to improve the performance of
the pipeline even more. This includes moving more modules to the GPU, executing
the CPU part of the BGS module as a separate module, optimizing existing modules,
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and investigating the effects of changing the internal pixel representation from RGBA
to RGB or YUV. A larger step is to research the possibilities of utilizing more than a
single GPU for better scalability. Other future work is to test the pipeline with more
than four cameras, and to test cameras with higher resolutions, such as 2K- and 4K-
cameras. Furthermore, to support this, the pipeline needs better configurability and
support for configuration-files, which also makes installation of the pipeline easier.

On the background subtraction side of things, future work includes testing the ex-
isting algorithm under more harsh conditions to stress test the ZXY BGS model even
more. It would also be interesting to modify other existing BGS models of other classi-
fications with this ZXY modification to find the ultimate BGS implementation for use
in the Bagadus system. Furthermore, we have seen a couple of applications for the
usability of BGS, and future works would also include research on other applications
in the Bagadus system that could utilize BGS.

The most critical step at this point seen from a system perspective, however, is
to deploy a proper video player that can be used by coaches to access the recorded
sessions, including use of annotated events and tracking data, such as demonstrated
in [2].
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Appendix A

Accessing the source code

The source code for the Bagadus system, including what is described in this thesis, can
be found at https://bitbucket.org/mpg_code/bagadus. To retrieve the code,
run git clone git@bitbucket.org:mpg_code/bagadus.git.
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Appendix B

Extra Tables

Computer DevBox 2
Controller 1.791
Reader 33.285
Converter 13.855
Debarreler 16.302
Uploader 23.892
Uploader, BGS part* 13.202
BGS 8.423
Warper 15.391
Color-corrector 23.220
Stitcher 4.817
YUVConverter 9.938
Downloader 12.814
SingleCamWriter 24.424
PanoramaWriter 19.998
SingleCamWriter, diff 33.339
PanoramaWriter, diff 33.346

BGS, ZXY query† 657.597
Camera frame drops/1000 4
Pipeline frame drops/1000 0

Table B.1: Overall pipeline performance
Mean times (ms)

* Not a separate module, but is a part of the total Uploader time usage
† Not a module affecting the real-time constraint of the pipeline. Is executing separately
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Pipeline Version New (GPU) Old (CPU)
Warper 15.141 133.882
Stitcher 4.912 521.042
Converter 9.676 26.520

Table B.2: Old vs new pipeline
Mean times (ms). DevBox 2.

GPU GTX 280 GTX 480 GTX 580 GTX 680 GTX Titan
Uploader 73.036 27.188 23.269 23.375 22.426
BGS 36.761 13.284 8.193 7.123 7.096
Warper 66.356 19.487 14.251 14.191 13.139
ColorCorrector 86.924 28.753 22.761 21.941 19.860
Stitcher 23.493 8.107 5.552 4.307 4.126
YUVConverter 41.158 13.299 9.544 9.566 8.603
Downloader 53.007 16.698 11.813 11.958 11.452

Table B.3: GPU comparison, mean processing times (ms)

Module 4 cores 6 cores 8 cores 10 cores 12 cores 14 cores 16 cores
Controller 4.023 4.103 3.898 4.107 3.526 3.906 3.717
Reader 32.885 33.132 33.275 33.292 33.287 33.280 33.281
Converter 18.832 16.725 15.170 13.601 12.635 12.874 12.319
Debarreler 27.469 19.226 16.903 14.573 13.171 12.659 12.106
Uploader 35.157 29.914 26.883 24.253 24.422 23.814 22.725
Uploader, BGS part* 18.482 15.865 14.325 13.171 12.474 12.505 11.834
SingleCamWriter 40.752 30.160 26.754 23.776 22.416 21.800 21.173
PanoramaWriter 35.405 23.865 20.119 17.272 15.567 15.084 14.050
SingleCamWriter, diff 46.427 36.563 33.875 33.317 33.355 33.331 33.438
PanoramaWriter, diff 48.629 37.152 33.965 33.320 33.354 33.330 33.320

BGS, ZXY query† 685.404 671.347 660.456 675.240 692.639 639.769 688.503
Camera frame drops/1000 75 26 7 9 6 8 8
Pipeline frame drops/1000 729 327 67 0 6 3 3

Table B.4: CPU core count scalability, without frame drop handling, mean times (ms)
* Not a separate module, but is a part of the total Uploader time usage

† Not a module affecting the real-time constraint of the pipeline. Is executing separately
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4 cores,
no HT

4 cores,
HT

8 cores,
no HT

8 cores,
HT

16 cores,
no HT

16 cores,
HT

Controller 4.257 4.023 4.044 3.898 3.391 3.717
Reader 32.392 32.885 32.947 33.275 33.278 33.281
Converter 14.041 18.832 13.319 15.170 11.164 12.319
Debarreler 24.840 27.469 16.808 16.903 10.453 12.106
Uploader 33.980 35.157 27.818 26.883 21.809 22.725
Uploader, BGS part* 16.417 18.482 13.405 14.325 11.143 11.834
SingleCamWriter 53.313 40.752 31.290 26.754 20.023 21.173
PanoramaWriter 53.544 35.405 29.613 20.119 16.903 14.050
SingleCamWriter, diff 63.642 46.427 38.845 33.875 33.323 33.438
PanoramaWriter, diff 67.494 48.629 39.831 33.965 33.319 33.320

BGS, ZXY query† 680.114 685.404 708.971 660.456 643.523 688.503
Camera frame drops/1000 223 75 54 7 5 8
Pipeline frame drops/1000 1203 729 477 67 3 3

Table B.5: HyperThreading scalability, without drop handling, mean times (ms)
* Not a separate module, but is a part of the total Uploader time usage

† Not a module affecting the real-time constraint of the pipeline. Is executing separately

Module 4 cores 6 cores 8 cores 10 cores 12 cores 14 cores 16 cores
Controller 4.204 3.955 3.694 3.706 3.436 4.094 4.006
Reader 33.037 33.070 33.266 33.290 33.301 33.286 33.277
Converter 10.566 12.614 14.726 13.419 13.544 12.640 12.335
Debarreler 15.015 14.421 15.666 14.458 12.981 12.514 11.891
Uploader 19.857 23.015 26.076 25.008 24.137 23.554 23.487
Uploader, BGS part* 14.859 14.447 14.314 12.913 12.614 12.411 11.644
SingleCamWriter 23.763 23.689 25.607 23.910 21.995 21.792 20.969
PanoramaWriter 20.187 18.908 19.163 17.771 15.286 14.497 13.695
SingleCamWriter, diff 38.070 34.782 33.661 33.352 33.327 33.358 33.324
PanoramaWriter, diff 38.724 35.019 33.715 33.353 33.319 33.366 33.323

BGS, ZXY query† 656.593 679.531 669.598 699.519 641.223 636.265 668.108
Camera frame drops/1000 41 33 7 4 3 4 4
Pipeline frame drops/1000 343 177 37 6 2 7 3

Table B.6: CPU core count scalability, with frame drop handling, mean times (ms)
* Not a separate module, but is a part of the total Uploader time usage

† Not a module affecting the real-time constraint of the pipeline. Is executing separately
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Module No optimizations O2 O3

Controller 4.006 4.045 3.821
Reader 33.277 33.308 33.302
Converter 12.335 12.162 12.576
Debarreler 11.891 12.162 12.100
Uploader 23.487 17.336 17.377
Uploader, BGS part† 11.644 5.644 5.399
SingleCamWriter 20.969 21.659 21.555
PanoramaWriter 13.695 14.695 14.797
SingleCamWriter, diff 33.324 33.327 33.321
PanoramaWriter, diff 33.323 33.323 33.317

BGS, ZXY query* 668.108 694.356 632.797
Camera frame drops/1000 4 2 3
Pipeline frame drops/1000 3 0 0

Table B.7: Compiler optimization comparison, mean times (ms)
* Not a separate module, but is a part of the total Uploader time usage

† Not a module affecting the real-time constraint of the pipeline. Is executing separately



Appendix C

Hardware Specifications

Computer name DevBox 1
CPU Intel Core i7-2600 @ 3.4 GHz
GPU Nvidia Geforce GTX 460
Memory 8 GB DDR3 @ 1600 MHz
Pipeline output storage Local NAS

Table C.1: DevBox 1 specifications

Computer name DevBox 2
CPU Intel Core i7-3930K @ 4.4 GHz
GPU Nvidia Geforce GTX 680
Memory 32 GB DDR3 @ 1866 MHz
Pipeline output storage Samsung SSD 840 Series, 500 GB

Table C.2: DevBox 2 specifications

Computer name DevBox 3
CPU Intel Core i7-960 @ 3.20GHz
GPU Nvidia Geforce GTX 480
Memory 6 GB DDR3 @ 1066 MHz
Pipeline output storage N/A

Table C.3: DevBox 3 specifications

Computer name Server
CPU 2x Intel Xeon E5-2650 @ 2.0 GHz
GPU Nvidia Geforce GTX 580
Memory 64 GB DDR3 @ 1600 MHz
Pipeline output storage Samsung SSD 840 Series, 500 GB

Table C.4: Server specifications
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GPU Quadro NVS 295 Geforce GTX 280 Geforce GTX 480
Code name G98 GT200 GF100
CUDA cores 8 240 480
Graphics clock 540 MHz 602 MHz 700 MHz
Compute capability 1.1 1.3 2.0
Total memory size 256 MB GDDR3 1024 MB GDDR3 1536 MB GDDR5
Memory clock 695 MHz 1107 MHz 1848 MHz
Memory interface 64-bit 512-bit 384-bit
Memory bandwidth 11.2 GB/s 141.7 GB/s 177.4 GB/s

Table C.5: GPU specifications, part 1

GPU Geforce GTX 580 Geforce GTX 680 Geforce GTX Titan
Code name GF110 GK104 GK110
CUDA cores 512 1536 2688
Graphics clock 772 MHz 1006 MHz 837 MHz
Compute capability 2.0 3.0 3.5
Total memory size 1536 MB GDDR5 2048 MB GDDR5 6144 MB GDDR5
Memory clock 4008 MHz 6000 MHz 6008 MHz
Memory interface 384-bit 256-bit 384-bit
Memory bandwidth 192.4 GB/s 192.2 GB/s 288.4 GB/s

Table C.6: GPU specifications, part 2



Appendix D

Improved Panorama Pipeline -
Compiler Optimizations

We analysed and investigated the performance of the improved pipeline on several
levels in Chapter 4. In addition to these tests, it is interesting to see how the GCC
compiler can help to optimize the code. By use of several levels of optimization flags
sent to the compiler, we can hopefully get the pipeline to perform better. We compare
the performance of no compiler optimizations, using the O2 flag, and using the O3
flag. The mean processing times per module can be seen in table B.7 and figure D.1.

The results are quite interesting. We can see that of all the modules, only the Up-
loader gains noticeable performance from running any level of compiler optimization.
This module however, gains a massive performance boost. These results can be ex-
plained rather easily. The controller itself does not gain much, due to it being relatively
simple. The CamReader waits for new frames to be retrievable from the cameras, so
it should therefore always use 33 ms in average. The Converter, Debarreler, Single-
CamWriter and PanoramaWriter all use external libraries, such as ffmpeg, OpenCV
and x264, for the heaviest processing. These libraries are installed on the machines,
and has therefore already been compiled, so they do not gain much. The performance
with and without such optimizations are therefore approximately equal for these mod-
ules. The GPU-based modules are not shown here, because they are executed on the
GPU, and cannot be optimized by GCC. Note however, that the CUDA NVCC com-
piler always run compiler optimizations.

As stated, the only module that really gains anything from this, is the Uploader,
and more specifically the part generating the player pixel lookup maps. This is be-
cause this code is written with almost no external library usage, and barely utilizes the
internal NorthLight library (which is compiled together with our pipeline). In addi-
tion, it contains lots of nested loops and logic for handling ZXY data. This means that
there are lots of potential for GCC to optimize the code. We can see that this halves the
processing times of the lookup map creation, and in total cuts the processing times of
the Uploader module by 25%.
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