
UNIVERSITY OF OSLO

Department of Informatics

Wavelet transforms

and efficient

implementation on the

GPU

Master thesis

Hanne Moen

May 2, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1. Introduction 1

1.1. Research questions . 1
1.2. Gathering seismic data . 2
1.3. Thesis outline . 3

2. Introduction to Wavelets and Wavelet Transforms 5

2.1. Wavelets and Wavelet Transforms 6
2.2. Applications . 7
2.3. The Fourier Transform . 7
2.4. The Short-Time Fourier Transform (STFT) 9
2.5. The Wavelet Transform . 10

3. Wavelets 15

3.1. Examples of wavelets . 16
3.2. Requirements of a wavelet . 18

4. Wavelet Transforms 21

4.1. Wavelet systems . 22
4.1.1. A family of wavelets 26

4.2. The Wavelet Transform . 26
4.2.1. The Continuous Wavelet Transform (CWT). 28
4.2.2. Time-Frequency Map from CWT (TFCWT) 30
4.2.3. The Discrete Wavelet Transform (DWT). 31
4.2.4. Stationary Wavelet Transform (SWT) 36
4.2.5. Transform overview 37

4.3. Matching Pursuit with Time-Frequency Dictionaries 38
4.3.1. Time-Frequency Atomic Decomposition 38
4.3.2. The Matching-Pursuit algorithm 39

4.4. Instantaneous Spectral Analysis 40
4.5. Overview . 42

i

5. The GPU and programming tools 43
5.1. Development of the CPU versus the GPU 44
5.2. GPU programming . 44

5.2.1. Graphics pipeline. 45
5.2.2. Before writing a program. 47
5.2.3. OpenGL Shading Language 48
5.2.4. CUDA . 49
5.2.5. RapidMind . 52

6. Implementation 55
6.1. Implementation model . 56
6.2. Implementation using C++ 58
6.3. Implementation using GLSL 58
6.4. Implementation using CUDA 61
6.5. Implementation using RapidMind 63
6.6. Result . 65

6.6.1. Summary of the implementations. 69

7. Conclusion and further work 73
7.1. Further work . 74

A. Convolution in C++ 77

Bibliography. 77

ii

List of Figures

1.1. Boat gathering seismic data 2
1.2. Seismic data gather . 3
1.3. Seismic data example . 4

2.1. A sine wave at 440 Hz, and its Fourier transform. 6
2.2. A noise input signal, and corresponding Fourier transform. . 9
2.3. Spectrogram of STFT example. 11
2.4. Wavelet Transform Plot . 12
2.5. CWT of example signal. 13

3.1. A sinusoid wave versus a Mexican hat wavelet. 15
3.2. Two example wavelets . 17

4.1. Denoised signal . 24
4.2. Example of a wavelet convolved with a sinusoid 25
4.3. Example of dilation and translation 27
4.4. The idea behind windowing. 28
4.5. Quadrature mirror filter. 32
4.6. Filter bank for DWT . 33
4.7. Filter bank for SWT . 37
4.8. An ISA example . 41

5.1. Simplified graphics pipeline. 45
5.2. Organization in CUDA. 49
5.3. Cuda Memory Model. 50
5.4. Gathering and scattering data. 51

6.1. Butterfly for FFT. 56

iii

iv

Abstract

Wavelets and wavelet transforms can be applied to various problems con-
cerning signals. The ability to transform the signal into something rep-
resenting frequencies and to see when the frequencies occurred, can be
used in numerous fields. The calculation can be computationally expen-
sive when applied to large datasets. By taking advantage of the computa-
tional power of a GPU when implementing a wavelet transform, the time
of the computation can be substantially reduced. The goal is to make the
application fast enough to solve a problem interactively. This thesis in-
troduces the wavelet transform and addresses differences between some
GPU toolkits, looking at development and code efficiency.

v

vi

Preface

This thesis was written over a period of 18 months, reflecting one years
worth of work. The work of the thesis has mainly been theoretical, learn-
ing about wavelets and wavelet transforms, and GPU background, but
also about programming on the GPU with various toolkits. I would like
to thank my supervisors Knut-Andreas Lie and Trond Runar Hagen who
pretty much let me do whatever I found most interesting, answering all
my questions and helped me stay focused on the task. I will also thank
everyone at Hue AS, my friends and family who have helped me with op-
timistic suggestions whenever it was necessary. A special thanks to my
partner Morgan, who always supported me and helped me throughout
the project.

vii

viii

Chapter 1

Introduction

My thesis focuses on wavelets and wavelet transforms, and how to imple-
ment a wavelet transform with different GPU toolkits.

The idea behind using the GPU for general purpose computing is that
the GPU is built in order to efficiently do parallel programming, meaning
that it can perform the same computation on multiple data at the same
time. When transferring this idea to a large computational problem you
can get the result in a fraction of the time the same problem is computed
on a CPU, where every problem has to be computed sequentially.

Even though I am not using seismic data when testing my implementa-
tions, that is the intensional use for the stationary wavelet transform, and
is why I am explaining gathering seismic data in Section 1.2.

1.1 Research questions

Some questions I want to answer in this thesis are:

• What are wavelets and wavelet transforms?

• How can wavelets and wavelet transforms be applied to signals?

• How to use the GPU as a computational processor?

• What are the difference between some GPU toolkits (when imple-
menting a specific wavelet transform)?

1

Chapter 1: Introduction 2

1.2 Gathering seismic data

Seismic data is often first represented as a gather of "‘shots"’, see Figure 1.2.
Time is located on the y-axis starting on the top, while the offset of the shot
goes from left to right. It is called shots because they can be produced by
an air gun placed for example on a boat as in Figure 1.1, which shoots so
that a sound signal is sent to the ocean floor, and the reflection is gathered
by numerous microphones situated behind the boat. With the cannon on
the boat shooting every 30 seconds, and the boat moving very slowly in
a grid to cover all of the ocean floor, the datasets grow rapidly. Each shot
is recorded by multiple microphones, and all the data is kept for future
analysis. The gathered reflected signals is calculated with averaging algo-
rithms to remove noise before the image in Figure 1.3 appears. It is not
obvious to everyone what that is supposed to represent, and at this point
the wavelet transform can be applied in order to easier see what the seis-
mic data represents.

Figure 1.1: Boat gathering seismic data

3 1.3 Thesis outline

Figure 1.2: Seismic data gather

1.3 Thesis outline

The thesis has two main parts. The first part contains a literature study of
wavelets and wavelet transforms, and the second parts contains a discus-
sion of some GPU toolkits and implementation of the stationary wavelet
transform. Chapter 2 introduces the wavelet and wavelet transforms. More
about wavelets is found in Chapter 3, and Chapter 4 presents more details
about some wavelet transforms. Chapter 5 contains some basics about the
GPU and GPU toolkits, while I have written about my implementations
in Chapter 6. A summary of the thesis together with a conclusion and
suggestions for further work is presented in Chapter 7.

Chapter 1: Introduction 4

Figure 1.3: Seismic data example

Chapter 2

Introduction to Wavelets and
Wavelet Transforms

Wavelets are used to transform the signal under investigation
into another representation which presents the signal informa-
tion in a more useful form. [Add02, page 2]

When working with signals, the signal itself can be difficult to inter-
pret. Therefore the signal must be decomposed or transformed in order
to see what the signal actually represents. A common method here is to
use the Fourier transform described in Section 2.3. The problem with the
Fourier transform is that it can not give a precise estimate of when a fre-
quency happens. Either you get the information about the frequencies of
the signal or the time, not both simultaneously. When you want to know
both what frequencies the signal consist of, and when the frequencies oc-
curred, you should rather use the wavelet transform instead of the Fourier
transform.

The continuous wavelet transform is the most general wavelet trans-
form. The problem is that a continuous wavelet transform operates with
a continuous signal, but since a computer is digital, it can only do com-
putations on discrete signals. The discrete wavelet transform has been
developed to accomplish a wavelet transform on a computer.

This thesis is about the difference between toolkits, but also about how
they are used on a specific problem; in my case the stationary wavelet
transform. There exist numerous different wavelet transforms, and why
I chose to work with the SWT is a question that needs to be answered. I
have briefly written about some of the wavelet transforms in Section 2.5,
and more detail are given in Chapter 4; this in order to give a picture of
what exists, but also to get an idea of the differences.

5

Chapter 2: Introduction to Wavelets and Wavelet Transforms 6

2.1 Wavelets and Wavelet Transforms

Wavelets and wavelet transforms are used to analyze signals. The trans-
formed signal is a decomposed version of the original signal, and can be
converted back to the original signal. No information is lost in the process.

When studying a musical tone, one of the features that is interesting
is the frequency. The frequency for a clean A is 440Hz, see top plot in
Figure 2.1. To determine the frequency of the signal one must measure the
period of each wave, and calculate the frequency. The period of one wave
is the time it takes from it is at one point in the wave, until it reaches the
same position again. For example the time between two wave tops.

0 0.005 0.01 0.015 0.02
−1

−0.5

0

0.5

1
A sine signal at 440 Hz

time (seconds)

0 100 200 300 400 500
0

20

40

60

80

100
Frequency content of above signal

frequency (Hz)

Figure 2.1: A sine wave at 440 Hz, and its Fourier transform.

Using different transforms, the signal can be transformed into other
representations. For this example, instead of having amplitude as a func-
tion of time, it would be better to have the amplitude as a function of
frequency. This can be done by using the Fourier transform. Once one
knows what frequencies are present, one can easily determine which tones
the signal consists of, in the case of a musical signal.

The bottom part of Figure 2.1 shows that it is easy to determine that the
signal in the upper part of Figure 2.1 actually is an A when you perform
the Fourier transform. Wavelet transforms can do the same, but they can
also tell you when the tone A appeared in time, effectively giving you
amplitude, time and frequency, all in one. More about this later.

7 2.2 Applications

2.2 Applications

Wavelets and wavelet transforms have many fields of application. In the
case of music, the frequencies tell us what tones are represented. In the
case of seismic data, the frequencies can tell us what the ground is made
up of, what types of rock there are, and whether the rock contains oil or
not.

It is appropriate to use wavelets and wavelet transform in all cases
where you are looking for a given frequency/waveform and you also
want to know what time it appears. Wavelet transforms are widely used
in for example submarine sonars, to determine distances, speed, position
and other information on other waterborne vessels and animals. Wavelets
are also very good at removing noise from signals, detecting discontinu-
ities breakdown points and self-similarity, and wavelet play an important
part in compressing images. As an example [Gra95], the FBI in USA uses
wavelet transforms to compress fingerprint images to 1/26 of the original
size, thereby reducing the need for storage space from 200 Terabyte to just
under 10 Terabyte. Wavelets are also used in fields like, but not limited to,
astronomy, acoustics, nuclear engineering, sub-band coding, signal and
image processing, neurophysiology, music, magnetic resonance imaging,
speech discrimination, optics, fractals, turbulence, earthquake-prediction,
radar, human vision, and pure mathematics applications.

2.3 The Fourier Transform

The wavelet transform is very similar to the Fourier transform, and know-
ing the Fourier transform can therefore be helpful when learning the wavelet
transform.

The Fourier transform is a way of transforming a signal from time do-
main to frequency domain. If one can determine what frequencies a signal
is composed of, and one knows the context of the signal, one can read
much out of it.

Both the wavelet transform and the Fourier transform decomposes the
signal into a sum of basis functions, but the basis functions are more com-
pact with wavelets.

When computing a Fourier transform, coefficients are used to trans-
form time-domain into frequency domain. The equation for a Fourier
transform is written:

Chapter 2: Introduction to Wavelets and Wavelet Transforms 8

X̂(f) =
∫ ∞

−∞
x(t)e−i(2π f)t dt. (2.1)

The resemblance to the wavelet transform can be seen by comparing (2.1)
with (2.4), where the frequencies also are placed in time providing the
ability to know when the frequency occurred.

The Fourier transform (2.1) can also be described as the inner product
of a signal x(t) with a basis function e−iωt:

X̂(f) =< x(t), e−i(2π f)t
>=

∫ ∞

−∞
x(t)e−i(2π f)tdt. (2.2)

The Fourier transform is used on many things outside the scope of this
thesis. I will therefore only present an example to help establish the con-
nection with wavelet transforms.

Let us say you are wondering if there are any whales in the sea close to
where you live. You place an underwater microphone in the water and
start recording. The received signal can be like the one in Figure 2.2.
There is not very much you can tell about the signal by just looking at
it. Nearby boats, waves hitting the shore, rocks rolling on the ocean floor,
maybe even rain, will affect the signal, and you really have no clue what
the signal actually represents. Then you perform a Fourier transform to
see which components the signal is made of, as in the bottom part of Fig-
ure 2.2. Now we can see that there are two strong signals in all of this noise.
One is 50 Hz, the other is 120 Hz. Knowing that toothless whales use low
frequency sounds for communication, and toothed whales use high fre-
quency sounds for echolocation and communication, this could very well
indicate the presence of whales in the area.

The Fourier transform has the drawback that it does not place the fre-
quencies in time. Therefore we do not know when the sounds in question
happened. If they are continuous sounds, it would more probably come
from a constantly rotating propeller from a ship or a nearby boat. With
what we currently know, there is no way of telling. However, we are much
closer to our goal than we where with the original signal. The next section
describes a transform which tries to place frequencies in time, by using
preset window sizes.

The Fourier transform maps a signal from time domain to frequency
domain, but only knowing what frequencies a signal consist of is not enough
when working with seismic data. You also need to know at what time
the different frequencies occurred. That is why the wavelet transform is
a more appropriate tool to use when working with data that needs to be
located both in time and frequency. The Fourier transform needs a lot of

9 2.4 The Short-Time Fourier Transform (STFT)

0 0.1 0.2 0.3 0.4 0.5 0.6
−5

0

5
Signal Corrupted with Zero−Mean Random Noise

time (seconds)

0 100 200 300 400 500
0

20

40

60

80
Frequency content of above signal

frequency (Hz)

Figure 2.2: A noise input signal, and corresponding Fourier transform.

components in order to form a sharp corner as it uses sinusoids. When
working with wavelets it can be seen that many have sharp corners them-
selves, and therefore do not need as many components to represent the
same corner. Very briefly described, a wavelet is a wave that only oscil-
lates for a finite period of time and is close to zero outside this period.
Some examples of wavelets and more details can be found in Chapter 3.

2.4 The Short-Time Fourier Transform (STFT)

The short-time Fourier transform uses preset window sizes to better place
frequency in time. Including time dependence can be done by taking short
segments of the signal and then do the Fourier transform to get local fre-
quency information. This method is called STFT, and the result is also

Chapter 2: Introduction to Wavelets and Wavelet Transforms 10

called a spectrogram1:

STFT(ω, τ) =< x(t), φ(t − τ)e−iωt
>=

∫

x(t)φ̄(t − τ)e−iωtdt, (2.3)

at time τ and frequency ω. Here x(t) is the time-domain seismograph,
φ(t − τ) is the window function centered at time t = τ, and φ̄ is the com-
plex conjugate of φ. The Fourier kernel is written e−iωt. If the window
is a band-pass filter, small variations in frequency will be detected, while
small changes in time will be washed out because of averaging over a long
time duration. A window function over short time will not find rapid vari-
ations in frequency, but can detect short-lived changes in time.

The problem is that the window has the same size throughout the en-
tire computation. And you have to choose whether you want a good time
resolution or a good frequency resolution. Figure 2.3 illustrates the out-
put after computing the STFT of the input signal from Figure 2.2. The
color spectrum goes from blue to red, where red indicates a high output
value and blue a low output value. A high output value means that the
frequency is present. It can be observed that the signal is continuous at
50 Hz, and periodically a frequency at 120 Hz is also present. The time
resolution is in this case quite good, but as you can see, the frequency res-
olution could be better. So still, this solution is not good enough when
accuracy in both frequency and time is demanded.

2.5 The Wavelet Transform

When doing a wavelet transform, the signal is convolved with a wavelet.

x(t) =
1

Cg

∫ ∞

−∞

∫ ∞

0
T(σ, τ)ψ

(

t − τ

σ

)

dσdτ

σ2 . (2.4)

With convolution, the wavelet is shifted across the signal, and multiplied
at each step. A large output at a step shows that the wavelet fits well, while
a low output indicates that the wavelet is not similar with the signal at the
current position. This process is computed with a wavelet which is scaled
and translated, creating an output plot where every output is placed ac-
cording to the current scale and translation of the wavelet. The continuous
wavelet transform, Section 4.2.1, calculates the wavelet transform on an
infinite signal. Wavelets at all scales and translations are convolved along

1A spectrogram is a graphic representation of a spectrum. In this case the result after
calculating the frequency spectrum of the windowed frames of the signal.

11 2.5 The Wavelet Transform

Time

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

400

450

500

Figure 2.3: Spectrogram of STFT example.

the signal, creating a wavelet transform plot, Figure 2.4. With the example
signal, the output looks like in Figure 2.5. The color scale is the same as for
the STFT. Blue means that the frequency is not present at that time, while
red means that the frequency is definitely in the signal at current time. The
example input signal contains a lot of noise, which is why the output is a
bit blurry.

Another wavelet transform is the discrete wavelet transform (DWT),
which calculates the wavelet transform on a signal with finite length. The
discrete wavelet transform performs one convolution with a high-pass fil-
ter, and one convolution with a low-pass filter at each step. Each step
represents one line of the output plot. The result from the convolution
with the low-pass filter is used in the next step, while the output from the
convolution with the high-pass filter is saved. Section 4.2.3 describes how
to find the filters and also explains more about the computation of the dis-
crete wavelet transform. The output at each step in the discrete wavelet
transform is down-sampled, so that the output from the two convolutions
together have the same length as the input. The down-sampling process
gives a result that is not accurate, as you would get different result if you
keep every even or every odd value. This is where the stationary wavelet
transform (SWT), Section 4.2.4, is presented.

The difference between the stationary wavelet transform and the dis-
crete wavelet transform is that the stationary wavelet transform skips the

Chapter 2: Introduction to Wavelets and Wavelet Transforms 12

Figure 2.4: Wavelet Transform Plot

down-sampling. For every step, two outputs of the same length as the
input are produced, providing an accurate but redundant result.

Section 4.3 describes a different method to decompose the signal. The
matching pursuit method uses a dictionary of wavelets to one step at a
time, reduce the signal with the best fitting wavelet until the signal is com-
pletely decomposed.

13 2.5 The Wavelet Transform

time (seconds)

fr
eq

ue
nc

y
(H

z)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

300

350

400

450

500

Figure 2.5: CWT of example signal.

Chapter 2: Introduction to Wavelets and Wavelet Transforms 14

Chapter 3

Wavelets

This chapter gives a short introduction to some of the most known wavelets,
and Section 3.2 lists some of the requirements needed for a function to be
a wavelet. The wavelet theory is a field in constant development, and the
most useful wavelets were not seen until the late 1980’s. But what exactly
is a wavelet, and why use them?

A wavelet has a wave form concentrated in time, in other words a
short wave. This is illustrated in Figure 3.1, where the sinusoid on the
left extends infinitely in time, while the wavelet on the right is approxi-
mately zero outside the wave. A function which is continuous in time or
space, like for example a sinusoid, can be described as a wave since it is
oscillating. The word wavelet comes from the fact that small waves in-
crease and decrease in size over short time periods. The idea that a small
wave changes is transferred to the wavelet transform, see Section 4.1.1, as
a wavelet easily is translated and dilated before applied to a problem.

Figure 3.1: A sinusoid wave versus a Mexican hat wavelet.

Wavelets are very useful when it comes to representing functions. Not
only because of their ability to place the signal properties both in time

15

Chapter 3: Wavelets 16

and frequency, but also because this can be done effectively and accu-
rately when using wavelets. Almost any function can be approximated
accurately with wavelets, because there exist many different wavelets and
there usually is a wavelet that has some similar properties as the function.
The sinusoids used in the Fourier transform are of infinite length, and it
is therefore more complicated to approximate a function property like a
sharp edge. The wavelets used for the wavelet transform are smaller and
shorter, and can be started and stopped wherever or whenever you would
prefer. A sharp corner can therefore more easily be matched.

A few examples of wavelets are discussed in Section 3.1 to give an idea
of the differences between various wavelets.

More information about wavelets can be found in [BGG98] and [Add02].

3.1 Examples of wavelets

There are many different wavelets, like the Haar wavelet, the Mexican hat
wavelet, the Morlet wavelet, and the Daubechies’ wavelet [I. 92], among
others. Wavelets can be a very powerful tool if used properly, as they
are very effective when decomposing signals. The different wavelets have
different properties. Some are good for signals with sharp edges, while
others are better for smooth signals. Which wavelet you should use de-
pends on the problem you are facing. This section gives an example of
some of the wavelets that exist. More details can be found in [Add02].

The Haar wavelet

The Haar wavelet in Figure 3.2 is the simplest orthonormal wavelet, and
can be defined as a step function ψ(t):

ψ(t) =











1 0 ≤ t < 1/2,
−1 1/2 ≤ t < 1,
0 otherwise.

(3.1)

The Haar mother wavelet1 can be described as two unit block pulses
next to each other, where one of the blocks is inverted. The Haar wavelet
has compact support, since it is zero outside the unit interval. This also
means that it has a finite number of scaling coefficients. More about scaling
functions in Section 4.2.3.

1A mother wavelet is the basis wavelet function, which can be translated and dilated
to form a family of wavelets.

17 3.1 Examples of wavelets

−1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Haar wavelet

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

real part
imaginary part

(b) Morlet wavelet

Figure 3.2: Two example wavelets

The Mexican hat wavelet

All derivatives of the Gaussian distribution function e−
t2
2 can be used as

wavelets, but normally only the first and the second are used in practice.
The Mexican hat wavelet seen in Figure 3.1, is Gauss’ second derivative,
and is the Gaussian derivative most commonly used as a wavelet. The
equation for the Mexican hat wavelet is:

ψ(t) = (1 − t2)e−
t2
2 . (3.2)

The Morlet wavelet

The Morlet wavelet is the most frequently used complex wavelet, and is
defined:

ψ(t) = π− 1
4 ei2π f0te

−t2
2 , (3.3)

where f0 is the central frequency while the factor π− 1
4 ensures that the

wavelet has unit energy. Using a complex wavelet makes it possible to
separate the phase and amplitude in the signal, [Add02, page 35]. The
complex transform values that result from performing the wavelet trans-
form with the Morlet wavelet on a signal, show that the imaginary part
is phase shifted2 by one quarter of a cycle. In other words, the imaginary
part has the best match with the signal one quarter of a cycle later because
the imaginary part is inverted when doing the wavelet transform. This
ability makes it easier to find discontinuities in the signal. (More about

2Phase is the current position in a cyclic changing signal, while phase shift is the con-
stant difference between two existing phases.

Chapter 3: Wavelets 18

the wavelet transform can be found in Section 4.2.) The Morlet wavelet
has proved to work well with problems like audio and image enhance-
ments [HRMS04]. The Morlet wavelet in Equation (3.3) can also be de-
scribed as the real part

ψ(t) = π− 1
4 e

−t2
2 cos(2π f0t), (3.4)

and the imaginary part

ψ(t) = π− 1
4 e

−t2
2 sin(2π f0t). (3.5)

An example of the Morlet wavelet can be seen in Figure 3.2.

3.2 Requirements of a wavelet

Addison [Add02, page 9] writes that three requirements have to be met in
order for a function to be a wavelet:

1. First of all, a wavelet needs to have finite energy:

E =
∫ ∞

−∞
|ψ(t)|2dt < ∞, (3.6)

where E is the energy of a function equal to the integral of its squared
magnitude and the vertical brackets |.| represent the modulus oper-
ator which gives the magnitude of ψ(t). If ψ(t) is a complex function
the magnitude must be found using both its real and complex parts.

2. The second criteria is that if ψ(t) has the Fourier transform3 ψ̂(f)

ψ̂(f) =
∫ ∞

−∞
ψ(t)e−i(2π f)tdt, (3.7)

then the following must hold:

Cg =
∫ ∞

0

|ψ̂(f)|2
f

d f < ∞. (3.8)

The wavelet has no zero frequency component, ψ̂(0) = 0, which
means that the wavelet ψ(t) must have zero mean. Equation (3.8) is
known as the admissibility condition and Cg is called the admissibil-
ity constant. The value of Cg depends on the chosen wavelet, and is
equal to π for the Mexican hat wavelet given in Equation (3.2).

3See Section 2.3 for more about the Fourier transform.

19 3.2 Requirements of a wavelet

3. An additional criterion that must hold for complex wavelets is that
the Fourier transform must both be real and vanish for negative fre-
quencies.

These criteria should be followed if an appropriate result is to be expected.
A function is infinite in time if the first criterion is not followed, and hence
not a wavelet. It is possible not to follow these criteria strictly, but in those
cases extra caution is recommended as unpredicted results may appear.
Wilson [Wil02] has an example where a proper result is computed even
though the requirements are only followed loosely.

Wavelets satisfying (3.8) are bandpass filters. A bandpass filter lets
through signal components within a finite range of frequencies, and tries
to discard the components outside the range. The range is decided by an
upper and a lower cutoff frequency value, where the bandwidth of the
filter is the difference between the two cutoff frequencies. Figure 4.5 illus-
trates how a bandpass filter can be created using a high-pass and a low-
pass filter. The low-pass lets low frequencies through, while the high-pass
lets high frequencies through. Combining these two, results in a bandpass
filter.

Chapter 3: Wavelets 20

Chapter 4

Wavelet Transforms

This chapter describes some of the different wavelet transforms. The wavelet
transform is similar to the Fourier transform in Section 2.3, but the wavelet
transform uses a family of wavelets, described in Section 4.1, instead of si-
nusoids. A kind of approximation to the wavelet transform is explained
in Section 2.4 with the short-time Fourier transform (STFT). The STFT de-
composes the signal using a constant window size, but with better time
resolution than the Fourier transform, and therefore provides a transform
which lies between the Fourier transform and the wavelet transforms.

My thesis is about the stationary wavelet transform (SWT), but as SWT
is an enhancement of other wavelet transforms, some background infor-
mation on other wavelet transforms is required to get a proper under-
standing of the method. First comes the continuous wavelet transform
(CWT), Section 4.2.1, which does the wavelet transform on a continuous
signal. The time-frequency map from CWT in Section 4.2.2 is an improve-
ment of the CWT.

Computing the continuous wavelet transform can not be done on a
computer, and the discrete wavelet transform (DWT) provides a transform
which can be computed on a discrete signal. The SWT is very similar to
the DWT, but is said to be more accurate as it does not down-sample1 the
result as with the DWT.

Another wavelet-based method uses a selected dictionary of wavelets
it convolves with the signal to find where they best match. Then the
residue signal is convolved with another wavelet, and so on until the sig-
nal is decomposed. This method is called matching-pursuit. The matching
pursuit method is used with different dictionaries like Gabor and Morlet,

1When down-sampling a signal, the signal is shortened by for example only keeping
every second sample, leaving a result that may have lost important information.

21

Chapter 4: Wavelet Transforms 22

and is described in Section 4.3.
When decomposing a signal, each part of the signal is divided into a

selection of frequencies, which helps interpret the data. Section 4.4 gives
an example of how this is done.

Some notation used in this section : The space L2(R) is the Hilbert
space of complex-valued functions with a well defined integral of the square
of the modulus of the function:

||x||2 =
∫ +∞

−∞
|x(t)|2dt < +∞. (4.1)

The inner product of < x, g >∈ L2(R)2 is defined by:

< x, g >=
∫ +∞

−∞
x(t)ḡ(t)dt, (4.2)

where ḡ(t) is the complex conjugate of g(t). The Fourier transform of
x(t) ∈ L2(R) is written X̂(ω), and is defined as:

X̂(ω) =
∫ +∞

−∞
x(t)e−iωtdt. (4.3)

4.1 Wavelet systems

Before computing the wavelet transform, at least two decisions have to
be made; which wavelet, and what kind of wavelet transform. Which
wavelet to use depends on the signal, and on what you would like to ac-
complish with the transform. The requirement of a wavelet described in
Section 3.2 should be followed when choosing the function to be used as
the wavelet. Section 4.2 represents some of the properties for a handful of
different wavelet transforms that can be considered when defining which
wavelet transform to choose.

For a continuous signal, the wavelet transform is defined as

T(σ, τ) = ω(σ)
∫ ∞

−∞
x(t)ψ̄

(

t − τ

σ

)

dt, (4.4)

where the weighting function ω(σ) typically is set to 1/
√

σ for energy con-
servation reasons, and ψ̄ denotes the complex conjugate. Doing a cross-
correlation (4.5) of a signal with a set of wavelets with various widths,
is another way to explain how to perform the wavelet transform. Cross-
correlation is like convolution (4.6) without reversing the wavelet function

23 4.1 Wavelet systems

g. Instead the wavelet function is just shifted across the signal x generating
an output at every step.

(x ? g)(i)
def
=

∫

¯x(t) g(i + t)dt, (4.5)

(x ∗ g)(i) =
∫

x(t)g(i − t)dt. (4.6)

The wavelet transform can be reversed by doing an inverse transform to
get back to the original signal. The inverse wavelet transform is written:

x(t) =
1

Cg

∫ ∞

−∞

∫ ∞

0
T(σ, τ)ψ

(

t − τ

σ

)

dσdτ

σ2 . (4.7)

Where Cg is the admissibility constant from Equation 3.8. Another thing
that should be noted in the inverse wavelet transform is 1

σ2 . The coeffi-
cients which are multiplied with the wavelet functions to reconstruct the
signal x, are the wavelet coefficients divided by the square root of σ. Each
contribution from ψ in the reconstruction of x, are given by T(σ, τ)/|σ|2.
In other words, T(σ, τ)/|σ|2 provides information on how much of each
component ψ exist in the signal x. Integrating over all scales and locations,
σ and τ, recreates the original signal. By limiting the scale over a range,
the original signal gets filtered, which is illustrated in Figure 4.1. The coef-
ficients above 150 Hz are set to zero, leaving an output where some of the
noise is truncated from the original signal.

With wavelet analysis, the set of windows2 used when decomposing
the signal quickly decays to zero, because the windows have compact
support3 in time [CO95]. A broad time domain gives an overview of the
signal structure, while a narrow analysis window shows more detailed
characteristics. How the wavelet changes according to how the window
size varies for some different methods is illustrated in Figure 4.4. As it
can be seen, only the wavelet transform uses windows with various sizes,
thereby creating good frequency resolution for low frequencies, and good
time resolution for high frequencies. This helps detecting rapid changes,
which are the fact when high frequencies are represented, and changes
over time as with low frequencies. According to [BGG98, page 3] there are
three general properties that can be used to identify a wavelet system:

1. A wavelet system is a collection of basis functions that together can
represent any signal or function. The set of wavelets is written ψj,k(t)

2A window can be represented by a wavelet, where a narrow window represents good
time resolution, and a wide window gives good frequency resolution.

3Compact support means that the function is non-zero in a finite time space.

Chapter 4: Wavelet Transforms 24

0 0.1 0.2 0.3 0.4 0.5 0.6

−400

−300

−200

−100

0

100

200

300

400

500

Signal Corrupted with Zero−Mean Random Noise

time (seconds)

(a) Original signal with noise.

time (seconds)

fr
eq

ue
nc

y
(H

z)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

300

350

400

450

500

(b) Cut frequencies above 150 Hz.

0 0.1 0.2 0.3 0.4 0.5 0.6
−100

0

100

200

300

400

500

(c) Reproduced signal.

Figure 4.1: Denoised signal

for j, k = 1, 2, ..., which for a set of coefficients aj,k has a linear expan-
sion x(t) = ∑k ∑j aj,kψj,k(t). For a class of one- (or higher) dimen-
sional signals, the wavelet system is a two-dimensional expansion
set.

2. The wavelet expansion provides a time-frequency localization of the
signal, as a few coefficients aj,k can represent most of the signal en-
ergy.

3. The coefficients can be calculated efficiently since many wavelet trans-
forms are calculated with O(N) operations. The general wavelet
transforms needs O(N log(N)) operations, which is the same as what
the Fast Fourier Transform uses.

A wavelet system is really just another word for a wavelet transform, but
while the word transform usually is associated with only the function, the

25 4.1 Wavelet systems

wavelet system includes the whole package with the function, wavelet
and coefficients.

Mathematically, the wavelet transform is a convolution of the signal
with the wavelet function. A large value is returned from the transform if
the wavelet matches the signal, otherwise, a low value is produced. Fig-
ure 4.2 gives an example of how the wavelet transform works. A Mexican
hat wavelet is convolved with the signal, which in this case is a sinusoid.
It can be seen from the figure that the wavelet correlates well at location
wletA, but very poorly at wletB. The ’+’ and ’-’ indicates if positive or neg-
ative values are produced.

−15 −10 −5 0 5 10 15

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

x(
t)

, ψ
σ,

 τ
(t

)

signal
wletA
wletB

− +

+
+− −

+ − −+

Figure 4.2: Example of a wavelet convolved with a sinusoid

Why wavelet analysis is effective

Burrus et al [BGG98, page 6] use the following properties to explain why
wavelet analysis is effective.

1. Wavelets are very effective in signal and image compression, denois-
ing, and detection, because the size of the wavelet expansion coeffi-
cients decreases quickly.

2. The wavelet expansion provides a more accurate local description
and separation of signal characteristics than the Fourier coefficients.
A Fourier coefficient is a component that does not change, and tem-
porary events have to be described by a phase characteristic that al-
lows cancellation or reinforcement over large time periods. A wavelet
expansion coefficient component is local and easy to interpret, and

Chapter 4: Wavelet Transforms 26

also allows a separation of components of a signal to overlap in both
time and frequency.

3. Wavelets can be created to fit individual applications, since there ex-
ist many different wavelets, that are all adjustable and adaptable.
Wavelets are therefore very useful for adaptive systems that adjust
themselves to suit the signal.

4. When generating a wavelet and calculating the discrete wavelet trans-
form, only multiplications and additions are used. This means that
only operations that are basic to a digital computer are applied, which
makes wavelets efficient for computer programs.

These properties are explained in the following sections.

4.1.1 A family of wavelets

In a wavelet transform, a family of wavelets is created in order to com-
pute the wavelet transform. A function ψ(t) ∈ L2(R) in both time and
frequency with a zero mean, is the definition of a wavelet. A family of
wavelets is made by dilating (scaling) and translating a mother wavelet
ψ(t):

ψσ,τ(t) =
1√
σ

ψ

(

t − τ

σ

)

, (4.8)

where σ, τ ∈ R, σ 6= 0 is the dilation parameter and τ the translation pa-
rameter. When making a wavelet family, you first choose which mother
wavelet to use, and then use (4.8) to create a family of wavelets. An exam-
ple can be seen in Figure 4.3, where the Mexican hat mother wavelet (4.9)
is dilated and translated in order to create a family of wavelets,

ψ

(

t − τ

σ

)

=

(

1 −
(

t − τ

σ

)2
)

e−
(t−τ

σ)
2

2 . (4.9)

4.2 The Wavelet Transform

Chakraborty et al [CO95] and Castagna et al [SRAC05] write about spec-
tral decomposition of seismic data with the continuous wavelet transform.

27 4.2 The Wavelet Transform

−5 0 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

normal
dilated
located

Figure 4.3: Example of dilation and translation

The continuous wavelet transform (CWT), Section 4.2.1, makes a time-
scale map called a scalogram4 instead of a spectrogram. Dilation and
translation of wavelets, as with for example the CWT, produces the scalo-
gram describing the time-scale map, while the spectrogram describes the
time-frequency map calculated with a fixed time-frequency resolution. Both
Abry et al[AGF93] and Hlawatsch et al [HBB92] explain methods that rep-
resent the scalogram as a time-frequency map by saying that scale is in-
versely proportional to the center frequency of the wavelet.

Another method to map the scalogram into a time-frequency map is
called time-frequency CWT (TFCWT) is described in Section 4.2.2. The
time-frequency continuous wavelet transform gives a high frequency reso-
lution at low frequencies and high time resolution at high frequencies. The
TFCWT can reconstruct the original signal as long as the inverse wavelet
transform exists. It is also a fast computational process in Fourier domain,
as usually only the forward transform is needed.

The discrete Fourier transform approximates the continuous compu-
tation by calculating with discrete functions. The same can be done in
wavelet transformation using the discrete wavelet transform described in
Section 4.2.3 to approximate the CWT. Section 4.2.4 introduces the station-
ary wavelet transform, which is an extension to the DWT.

4A plot of E(σ, τ) = |T(σ, τ)|2, and highlights the dominant energetic features of the
signal at the representative scale and dilation[Add02, page 29]

Chapter 4: Wavelet Transforms 28

Figure 4.4: The idea behind windowing.

4.2.1 The Continuous Wavelet Transform (CWT).

The continuous wavelet transform is seen as the convolutions you get
from:

T(σ, τ) =
1√
σ

∫

x(t)ψ̄

(

t − τ

σ

)

dt, (4.10)

where σ is the scale and τ the translation. The bandwidth of the window
is narrow when the scale index is low. When the scale index increases, the
bandwidth of the window increases, and the time-domain width becomes
narrow.

The CWT works similar to the STFT as they both make a 2D space
from a 1D signal, but the CWT has better frequency resolution for low
frequencies, and it provides better time resolution for higher frequencies
as illustrated in Figure 4.4.

The modulated Gaussian defined in Morlet et al [JG82] is one example

29 4.2 The Wavelet Transform

of a kernel wavelet:

ψ(t) =
∫

eivte
−t2

2 dt < ∞, (4.11)

where

v ≥ 5,

and the requirements of the wavelet in Section 3.2 are met.

Step-by-step calculating the CWT

Calculation of the continuous wavelet transform can be described by the
following steps:

1. A wavelet at scale σ = 1 is placed at the beginning of the signal.

2. The wavelet function at σ = 1 is multiplied by the signal and inte-
grated over all times. Then multiplied by 1/

√
σ.

3. Shift the wavelet to t = τ, and get the transform value at t = τ and
σ = 1.

4. Repeat the procedure of Steps 2 and 3 until the wavelet reaches the
end of the signal.

5. Increase scale σ by a sufficiently small value, and repeat the above
procedure for all σ.

6. Each computation for a given σ fills a single row of the time-scale
map.

7. CWT is obtained when all values of σ are calculated.

These steps should not be too hard to follow, but as this is computed on
a continuous signal, and therefore with an infinite number of steps, the
computations can not be followed directly when calculating with a com-
puter. Section 4.2.3 presents the discrete wavelet transform, which can be
used when calculating the wavelet transform on a discrete signal.

Chapter 4: Wavelet Transforms 30

4.2.2 Time-Frequency Map from CWT (TFCWT)

With the CWT, changes in frequency is supported in time because of the
way the wavelets dilate. Time resolution increases while frequency reso-
lution decreases and the other way around, as described in Castagna et al
[SRAC05].

Recall Equation (4.8) for a wavelet family. The continuous wavelet
transform is the inner product of a family of wavelets ψσ,τ(t) with the
signal x(t):

T(σ, τ) =< x(t), ψσ,τ(t) >=
∫ ∞

−∞
x(t)

1√
σ

ψ̄

(

t − τ

σ

)

dt, (4.12)

where ψ̄ is the complex conjugated of ψ. We use Calderon’s identity [I. 92]
to reconstruct the signal x(t) from the wavelet transform and get:

x(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
T(σ, τ)ψ

(

t − τ

σ

)

dσ

σ2
dτ√

σ
. (4.13)

To be able to find the inverse transform, the analyzing wavelet has to sat-
isfy the admissibility condition in Equation (3.8).

A scale represents a frequency band, so some different approaches have
to be used to interpret the time-scale map into a time-frequency map.
The easiest approach is to just stretch the scale to fit the equivalent fre-
quency, but a better way is to use the wavelet as an adaptive window to
find the spectrum of a signal. We can look at the frequency content at
different times, because of the translation characteristic. This provides a
time-frequency map, which is adaptive to seismic signals, by computing
the Fourier transform of the inverse continuous wavelet transform. Math-
ematically this can be described by first substituting x(t) from (4.13) into
(2.2):

X̂(ω) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
σ2
√

σ
T(σ, τ)ψ

(

t − τ

σ

)

e−iωtdσdτdt. (4.14)

Then use the scaling and shifting theorem of the Fourier transform:
∫ ∞

−∞
ψ

(

t − τ

σ

)

e−iωtdt = σe−iωτψ̂(σω), (4.15)

and interchange the integrals and substituting (4.15) into (4.14):

X̂(ω) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞

1
σ2
√

σ
T(σ, τ)σψ̂(σω)e−iωτdσdτ, (4.16)

31 4.2 The Wavelet Transform

where ψ̂(ω) is the Fourier transform of the mother wavelet. The last step
is to remove the integration over τ and replace X̂(ω) with X̂(ω, τ) to get a
time-frequency map:

X̂(ω, τ) =
1

Cψ

∫ ∞

−∞
T(σ, τ)ψ̂(σω)e−iωτ dσ

σ
3
2

. (4.17)

The time-frequency spectrum can be found from the continuous wavelet
transform (TFCWT) of a signal. The time summation of (4.17) is the Fourier
transform of the signal. There are two steps involved to reconstruct the
signal. First time summation of the TFCWT, and then inverse Fourier
transform of the resultant sum.

4.2.3 The Discrete Wavelet Transform (DWT).

To get an approximated result of the CWT when computing wavelet trans-
forms, the discrete wavelet transform (DWT) can be used like the dis-
crete Fourier transform is used when computing an approximation to the
Fourier transform. The equation for a discrete approximation to the signal
x(t) is written

x(t) = ∑
j,k

aj,kψj,k(t), (4.18)

where the coefficients aj,k are called the DWT of the signal x(t). The idea
behind the DWT is the same as with the CWT, but the methods are differ-
ent.

The CWT convolves the wavelet directly with the signal, while the
DWT convolves the input signal simultaneously with a low-pass and a
high-pass filter. The two filters are related and satisfies the criteria for the
quadrature mirror filter (QMF) presented in the next paragraph. Figure
4.5 illustrates the idea behind the QMF. A low-pass filter is mirrored to
make a high pass filter. Combining the two creates a bandpass filter to let
through only certain frequencies.

The QMF [NS] is constructed by using a low pass filter, defined by a
sequence gn, where there is typically only a few non-zero values. Then a
high-pass filter with the sequence hn is built by using the low-pass values
as

hn = (−1)ng1−n. (4.19)

Both filters satisfy the internal orthogonality

∑
n

hnhn+2j = 0, (4.20)

Chapter 4: Wavelet Transforms 32

Figure 4.5: Quadrature mirror filter.

for all integers j 6= 0, and have the sum of squares

∑
n

h2
n = 1. (4.21)

The mutual orthogonality relation

∑
n

hngn+2j = 0 (4.22)

for all integers j must also be satisfied.
The length of each filter is half the length of the signal. After convolv-

ing both filters with the signal, both outputs are down-sampled by a fac-
tor of two. The two outputs combined have the length of the input signal.
The output after doing the high-pass filtering is called detail coefficients,
and the output after the low-pass filtering is called approximation coeffi-
cients. The process is seen in Figure 4.6. The figure shows a filter bank,

33 4.2 The Wavelet Transform

which is a tree-structured array of filters that separates the input signal
into several components. The output components at each level can be fil-
tered further, leading to the tree-structured figure. The decomposition can
be repeated to increase the frequency resolution. The approximation coef-
ficients is the input for the next decomposition level, and the calculations
can be repeated until the output is of length one. The initial low-pass filter
is constructed using the scaling function described later.

Figure 4.6: Filter bank for DWT

A wavelet function with dilation σ and translation τ is defined in Equa-
tion (4.8). Sample the parameters σ and τ with a logarithmic discretization
of the dilation σ. Then link to the translation parameter τ, by moving in
discrete steps to each τ, which is proportional to the dilation σ, to get a
discretized wavelet function:

ψm,n(t) =
1

√

σm
0

ψ

(

t − nτ0σm
0

σm
0

)

, (4.23)

where σ0 > 1 and τ0 > 0, and dilation and translation are determined by m
and n. Then the wavelet transform with discrete wavelets of a continuous
signal x(t) is defined:

Tm,n =
∫ ∞

−∞
x(t)

1
√

σm
0

ψ(σ−m
0 t − nτ0)dt. (4.24)

The discrete wavelet transform values Tm,n, also called wavelet coefficients
or detail coefficients, are given on a dilation-translation grid over m, n. The
inverse discrete wavelet transform is formulated

x(t) =
∞

∑
m=−∞

∞

∑
n=−∞

Tm,nψm,n(t). (4.25)

Chapter 4: Wavelet Transforms 34

Dyadic grid scaling

The dyadic grid [Add02, page 67] is one of the simplest and most efficient
discretization for practical cases, and it is therefore also the most com-
monly used method to construct an orthonormal wavelet basis. You get a
dyadic grid by choosing the discrete wavelet parameters to be σ0 = 2 and
τ0 = 1. Equation (4.23) can then be written as the dyadic grid wavelet

ψm,n(t) =
1√
2m

ψ

(

t − n2m

2m

)

, (4.26)

or more compact:
ψm,n(t) = 2

−m
2 ψ(2−mt − n). (4.27)

Then we can write the Discrete Wavelet Transform with the dyadic grid
wavelet (4.26) as

Tm,n =
∫ ∞

−∞
x(t)ψm,n(t)dt. (4.28)

Since we are now using an orthonormal wavelet basis, the inverse discrete
wavelet transform with wavelet coefficients Tm,n is defined:

x(t) =
∞

∑
m=−∞

∞

∑
n=−∞

Tm,nψm,n(t). (4.29)

The scaling function

Orthonormal dyadic discrete wavelets are linked with scaling functions
and their dilating equations [Add02, page 69]. The DWT can be obtained
by relating it to the scaling equation and the wavelet equation. A scal-
ing function is built at one scale from a number of scaling equation from
the previous scale. The scaling function is convolved with the signal to
produce the approximation coefficients that are used when computing
the next step of the discrete wavelet transform. This chapter presents the
properties of the scaling function, while the scaling equation is described
in more detail in the next section.

The scaling functions have two main properties. The first property is
that the scaling function φ(t) and its integer translates φ(t + j) forms an
orthonormal set in L2 for all j. The second is that φ can be written as a
linear combination of half-integer translates of itself at double scale. The
smoothing of the signal associated with the scaling functions is written
like the wavelet form:

φm,n(t) = 2
−m

2 φ(2−mt − n), (4.30)

35 4.2 The Wavelet Transform

with the property
∫ ∞

−∞
φ0,0(t)dt = 1. (4.31)

The function φ0,0(t) = φ(t) can sometimes be called the father scaling
function. The scaling function is orthogonal to translations of itself, but
not to dilations of itself. Convolving the scaling function with the signal
produces approximation coefficients

Sm,n =
∫ ∞

−∞
x(t)φm,n(t)dt. (4.32)

The signal can, with a smooth, scaling-dependent version of the signal x(t)
at scale m, have a continuous approximation:

xm(t) =
∞

∑
n=−∞

Sm,nφm,n(t). (4.33)

This can be used when representing x(t) as a series expansion, where both
the approximation coefficients and the wavelet coefficients are used at an
arbitrary scale m0 like

x(t) =
∞

∑
n=−∞

Sm0 ,nφm0,n(t) +
m0

∑
m=−∞

∞

∑
n=−∞

Tm,nψm,n(t), (4.34)

which with Equation (4.33) can be shortened to

x(t) = xm0(t) +
m0

∑
m=−∞

dm(t), (4.35)

where

dm(t) =
∞

∑
n=−∞

Tm,nψm,n(t) (4.36)

is the signal detail at scale m.

The scaling equation

To connect the scaling function to the wavelet equation, we write the scal-
ing equation which describes the scaling function φ(t):

φ(t) = ∑
k

ckφ(2t − k). (4.37)

Chapter 4: Wavelet Transforms 36

The changed version φ(2t − k) of φ(t) is shifted by an integer along the
time axis, and multiplied by a scaling coefficient ck. The scaling coeffi-
cients must fulfill the constraint

∑
k

ck = 2, (4.38)

and following equation has to be satisfied to be able to create an orthogo-
nal system

∑
k

ckck+2k′ =

{

2 if k′ = 0,
0 otherwise.

. (4.39)

The scaling coefficients ck are used in reverse with alternate signs, as ex-
plained with the QMF, when creating the associated wavelet equation

ψ(t) = ∑
k

(−1)kcNk−1−kφ(2t − k). (4.40)

The orthogonality property between the wavelet and scaling function is
by this guaranteed. The coefficients used in the wavelet equation (4.40)
can more compactly be written bk = (−1)kcNk−1−k. With a wavelet with
compact support, the finite number of scaling coefficients is denoted Nk.

The DWT calculation

The Discrete Wavelet Transform is a method that convolves the signal with
a low-pass filter and a high-pass filter according to certain criteria, to ex-
pand to a digital signal. Redundant coefficients are removed with down-
sampling at each step to get the outputs, the scaling coefficients ck and the
detail coefficients dk. The process is illustrated in Figure 4.6, where the
scaling coefficients are the input for the next level. This process makes
sure that the number of coefficients output at each level is the same as the
number of coefficients used as input. Down-sampling the output at each
level can in some cases remove important information, and this is where
the stationary wavelet transform discussed in Section 4.2.4 differs from the
DWT.

4.2.4 Stationary Wavelet Transform (SWT)

The stationary wavelet transform (SWT) [NS] is as already mentioned an
improvement of the discrete wavelet transform. Figure 4.7, illustrating
the process of the SWT is very similar to Figure 4.6 describing the DWT

37 4.2 The Wavelet Transform

process. The only difference is that the SWT does not perform down-
sampling after every filtering step, and instead up-samples the filters at
every step. Since the outputs do not get down-sampled,the SWT produces
two outputs with the same amount of coefficients as components in the in-
put signal at each step. This gives an redundant result where no valuable
information is lost, which can be necessary for sensitive data. The sta-
tionary wavelet transform has many different names, as many developed
the same idea of not down-sampling the output. Some examples are the
redundant wavelet transform [CW06], the translation invariant wavelet
transform [BW98], the shift invariant wavelet transform [GLOB95], the
overcomplete discrete wavelet transform [ZLBN96], and undecimated dis-
crete wavelet transform [LGO+96].

Figure 4.7: Filter bank for SWT

4.2.5 Transform overview

Various transforms have now briefly been described in previous sections.
It may be hard to clearly visualize the differences between the different
transforms. Like how the Fourier transform works compared to the wavelet
transform, or how the short-term Fourier transform differ from the stan-
dard Fourier transform. All the transforms use some kind of a window
to filter the signal. Figure 4.4 illustrates the window sizes of the different
transforms. It can be seen that while the Fourier transform and the STFT
use a constant window size, the wavelet transform change the window
size to better place the signal properties. Interpreting what the signal rep-
resents is easier when the signal properties are placed properly according
to frequencies and time.

Chapter 4: Wavelet Transforms 38

4.3 Matching Pursuit with Time-Frequency Dic-

tionaries

The matching-pursuit (MP) algorithm was first presented by Mallat and
Zhang [MZ93]. When using the matching-pursuit method, any signal is
decomposed to wavelets according to a given dictionary of wavelet func-
tions. The signal has to be decomposed into something that is flexible
enough for the signal to be rebuilt without any information loss.

Fourier bases are limited when it comes to representing a decomposed
signal well localized in time, and wavelet bases have problems with Fourier
transforms that support a narrow high frequency. The information is thinned
out over the bases with both approaches, which makes it hard to find the
signal patterns. High variation in time and frequency makes it especially
important to have a flexible decomposition of the signal. To get proper
results, the signal has to be decomposed into time-frequency atoms ac-
cording to local structures. Matching pursuit selects waveforms from the
given dictionary, as described in Section 4.3.2, that best match the structure
of the signal. Convergence is guaranteed since it preserves the energy.

The matching-pursuit decomposition sub-decomposes the signal if nec-
essary to get a good correlation with the dictionary at hand. The best
adapted approximation is always chosen, making matching pursuit a greedy
algorithm.

Section 4.3.1 contains some of the requirements when adapting the
time-frequency decomposition to the signal structure, while the matching-
pursuit algorithm is described in Section 4.3.2, with references to examples
using Morlet and Gabor wavelets.

4.3.1 Time-Frequency Atomic Decomposition

Scaling, translating, and modulating a single window function g(t) ∈
L2(R) can produce a general family of time-frequency atoms5. Say that
g(t) is real and continuously differentiable. Also assume that ||g|| = 1,
that

∫

g(t) 6= 0, and g(0) 6= 0. For any scale σ > 0, frequency modulation
ξ, and translation τ, set γ = (σ, τ, ξ) and define:

gγ(t) =
1√
σ

g

(

t − τ

σ

)

eiξt. (4.41)

5Each atom define one member of the dictionary.

39 4.3 Matching Pursuit with Time-Frequency Dictionaries

By selecting a countable subset of atoms (gγn(t))n∈N with γn = (σn, τn, ξn),
one is able to represent any function x(t) as:

x(t) =
+∞

∑
n=−∞

angγn(t). (4.42)

The window Fourier transform uses a constant scale σn = σ0 for all the
atoms gγn(t), which means that it can only describe structures near the
size σ0.

Wavelets, on the other hand, decompose signals over time-frequency
atoms with varying sizes, which is necessary to analyze structures of dif-
ferent forms. Frequency parameter ξn = ξ0

σn
, where ξ0 is a constant, is used

to build a wavelet family. Still this is not a very precise estimate of the fre-
quency content, because it is not possible to define appropriate scale and
modulation parameters a priori, but in this case it is good enough.

4.3.2 The Matching-Pursuit algorithm

A dictionary is defined as a family D = (gγ)γ∈Γ of vectors in H (Hilbert
space), with ||gγ|| = 1. The closed linear span of the dictionary vectors is
called V, and is complete if V = H.

Theorem 4.1. [FKK02] If D is a complete dictionary and if x ∈ H, then

x =
∞

∑
k=0

< Rkx, gγk
> gγk

(4.43)

and

||x||2 =
∞

∑
k=0

| < Rkx, gγk
> |2. (4.44)

The linear expansion of x is approximated over a set of selected vectors
from D with orthogonal projections on D’s elements, to best match x ∈ H
structures. With gγ0 ∈ D, the vector x can be decomposed to:

x =< x, gγ0 > gγ0 + Rx. (4.45)

Here Rx is the vector that is left after locating x in the gγ0 direction. gγ0 is
orthogonal to Rx, so

||x||2 = | < x, gγ0 > |2 + ||Rx||2, (4.46)

Chapter 4: Wavelet Transforms 40

where | < x, gγ0 > | has to be as large as possible to minimize ||Rx||. The
"best" vector gγ0 can be found with:

| < x, gγ0 > | = max
γ∈Γα

| < x, gγ > | ≥ α sup
γ∈Γ

| < x, gγ > |. (4.47)

The next step is to approximate Rx as was done with x, and so on, until a
preset threshold is reached. The equation we get is:

x =
m−1

∑
n=0

< Rnx, gγn > gγn + Rmx, (4.48)

where R0x = x, which means that we do the decomposition up to order m.
It is evident when looking at the above equation that reconstruction of the
signal is not dependent of the order of elements. In finite space, Equation
(4.48) can be written:

x =
m−1

∑
n=0

< Rnx, gγn > gγn. (4.49)

Examples of the Matching Pursuit algorithm used with Gabor dictio-
naries are described in [MZ93] and[FKK02]. The MP algorithm with Mor-
let wavelets can be found in [LM05] and [JG82].

4.4 Instantaneous Spectral Analysis

Castagna et al [JPCS03] describe the instantaneous spectral analysis (ISA).
ISA achieves excellent time and frequency localization by using a continu-
ous time-frequency analysis technique that for each time-sample of a seis-
mic trace provides a frequency spectrum. Castagna et al [JPCS03] have
divided the ISA method into the three following steps:

1. Decompose the seismogram into constituent wavelets using wavelet
transform methods such as Mallat’s [MZ93]6 Matching Pursuit De-
composition.

2. Sum the Fourier spectra of the individual wavelets in the time-frequency
domain to produce “frequency gathers”.

3. Sort the frequency gathers to produce common (constant) frequency
cubes, sections, time slices, and horizon slices.

41 4.4 Instantaneous Spectral Analysis

(a) A synthetic input signal. (b) Result when computing ISA.

Figure 4.8: An ISA example

There exists a number of different spectral decomposition methods.
Most of the methods produce slightly different results, but none of the
methods give a truly unique result. It is therefore important to use a
method that captures the essential features. Castagna et al [JPCS03] found
the most important criterions to be:

1. The sum of the time-frequency analysis over frequency should ap-
proximate the instantaneous amplitude of the seismic trace.

2. The sum of the time-frequency analysis over time should approxi-
mate the spectrum of the seismic trace.

3. Distinct seismic events should appear as distinct events on the time-
frequency analysis. In other words, the vertical resolution of the time
frequency analysis should be compared to the seismogram. The time
duration of an event on the time-frequency analysis should not differ
from the time duration on the seismogram.

4. Side lobes of events on the seismogram should not appear as sepa-
rate events on the time-frequency analysis.

5. The amplitude spectrum of an isolated event should be undistorted.
The spectrum should not be convolved with the spectrum of the win-
dow function.

6. There should be no spectral notches related to the time separation of
resolvable events.

6Mallat’s [MZ93] matching pursuit decomposition is described in Section 4.3.

Chapter 4: Wavelet Transforms 42

The ISA technique is designed to meet Criteria (1) and (2). The ISA meth-
ods also meet Criteria (3) to (6) quite well, since the method does not
involve windowing7 of the seismogram. The best time-frequency repre-
sentation is provided when using the most appropriate selection of the
wavelet dictionary. Using an inappropriate selection of the wavelet dictio-
nary will cause the method to fail meeting Criteria (3) and (4).

Figure 4.8 is an illustration on the result when computing the ISA. It
can be seen in the figure how the frequencies of the input signal are placed
according to when they occurred.

4.5 Overview

Many of the articles I considered concluded that matching pursuit is the
most accurate method to represent time-frequency resolution. Methods
like STFT and CWT are not capable of computing the same resolution as
MP, since they are more restricted on choosing window size. Preset values
for window size eliminate what parts of the input signal the method is able
to represent properly. In CWT, high-frequency components are missing,
while STFT is badly resolved in time. The matching-pursuit method finds
the best approximation to the provided dictionary by finding the maxi-
mum | < x, gγ0 > | at each decomposition step. The articles presented
two different dictionaries that were used with matching pursuit, Gabor
and Morlet. Morlet can be used to find anomalies in the signal, while Ga-
bor just decomposes the signal. The problem with the matching pursuit
algorithm is that it can be computationally expensive, which is why the
wavelet transform can be more popular to use when decomposing large
datasets like seismic data.

Now that I have presented an overview of various wavelets and wavelet
transforms the next step is to put some of it into practice. The next chap-
ter explains some background information about the GPU and different
toolkits that can be used. While Chapter 6 describes my implementation
of the stationary wavelet transform.

7A window is convolved with the signal to find where the window matches the signal

Chapter 5

The GPU and programming tools

The graphics processing unit (GPU)1 is computer hardware dedicated to
graphics rendering. The GPU is either integrated on the motherboard or
on the video card. The GPU is, as the name suggests, most commonly
used to process graphics. A modern GPU has a parallel structure mak-
ing it efficient for various complex algorithms. The central processing unit
(CPU) has usually been used for computing algorithms, but now also the
GPU can be used for the same purpose. Exerting the GPU’s strengths, like
its highly parallel structure, can solve complex problems in a fraction of
the time the same problem can be solved using the CPU. For example, the
peak computational performance of a high-end dual core Pentium IV pro-
cessor is 25.6 GFLOPS2, while the peak performance of a NVIDIA GeForce
7800 GTX (Already last generation.) is 313 GFLOPS [GGKM06].

The development of the GPU to simulate the physics of light for com-
puter graphics, has resulted in the discovery that the GPU also can be
used for general purpose programming. General-Purpose computation
on GPUs (GPGPU) is a field which has recently been addressed [GPG,
OLG+05, DHH05] and means solving equations for other purposes than
rendering computer graphics. The GPUs arithmetic ability is well suited
for applications like signal processing, which I am addressing, image pro-
cessing, partial differential equations (PDEs), visualization and geometry.

This chapter introduces the ideas behind GPU programming and a
couple of toolkits: GLSL [Ros06], CUDA [NVI07b], and RapidMind [Rap],
that can be used when writing a GPU application. I will give a short
overview of the different toolkits, while further details can be found in

1ATI refers to their GPU as the visual processing unit (VPU).
2FLOPS is an acronym for floating operations per second, while GFLOPS is short for

gigaFLOPS.

43

Chapter 5: The GPU and programming tools 44

the referenced material.

5.1 Development of the CPU versus the GPU

The CPU is built for high performance on sequential code, and have tran-
sistors dedicated for tasks like caching and branch prediction instead of
only computational power. The GPU is optimized for parallel computing,
and can with the same amount of transistors perform higher number of
arithmetic operations. Graphics rendering uses a compute-intensive and
highly parallel computation like what the GPU is specialized for. On a
GPU more transistors are used for data processing instead of data caching.
However, the data flow between the GPU and other units can be slow.

The evolution of the GPU has gone considerably faster than for the
CPU the last couple of years, making the GPU a very powerful compu-
tational tool. While the floating-point operations for the CPU only has
increased according to Moores law, doubling the number of transistors ev-
ery second year [Gee05], the GPU has evolved more rapidly driven by the
gaming industry’s goal to make as realistic graphics as possible. Gamers
throughout the world have requested this development, which has driven
the creation of very efficient and cheap GPUs to produce high-end pic-
tures. The new games have to be played with a powerful GPU, and the
popularity of these devices has made the prices low compared to perfor-
mance. As a result, a GPU is cheaper and more efficient than an equivalent
CPU, when the problem has a parallel solution model. The average guy
can use this to his advantage, and make efficient GPU applications on his
off the shelf graphics card. Earlier, GPU programming was very limited
and complicated, but now this way of thinking has expanded into easier
programming with tools like NVIDIA’s CUDA [NVI07b].

5.2 GPU programming

Various programming methods for general purpose programming on the
GPU have developed the last years. In the beginning, GPU programming
could only be done through assembly, thereby making it hard to develop
a program. Being able to develop a GPU program through graphics APIs
has made the process easier. I will start with explaining the graphics
pipeline to briefly explain the idea behind programming on the GPU.

45 5.2 GPU programming

5.2.1 Graphics pipeline.

The graphics pipeline in Figure 5.1 illustrates the traditional work-flow on
the GPU. Input data and execution follows a preset path. The output of
each stage cannot be sent to the next stage until that stage has finished its
computations. The slowest stage is called a bottleneck, which can stall the
other parts of the pipeline, thus determining the speed of the program.

Figure 5.1: Simplified graphics pipeline.

The simplified pipeline in Figure 5.1 starts with an application stage.
The application stage is purely software on the CPU giving the developer
full control. This stage outputs the geometry of the points, lines or at-
tributes the developer wants to render on the screen.

The vertex transformation stage sets the vertex attributes like location
in space, color and texture coordinates amongst others. Vertex position
transformation, per vertex lighting computations, generation and trans-
formation of texture coordinates are some of the operations performed by
the fixed functionality at this stage.

The inputs to primitive assembly and rasterization are the transformed
vertex and connectivity information. The connectivity information tells
the pipeline how the vertex connect to form each primitive3. This stage

3A primitive is a point, line, triangle, quad, etc.

Chapter 5: The GPU and programming tools 46

is also responsible for clipping primitives against the view frustum4. The
rasterization stage determines the fragments5 and pixel positions of the
primitives. A fragment defines the data that will be used to update a pixel
at a specific location in the frame buffer. A fragment contains not only
color, but also normals and texture coordinates that are used to find the
pixel’s color. This stage has two outputs. The position of the fragments
in the frame-buffer and the interpolated values calculated in the vertex
transformation stage.

Fragment texturing and coloring uses the interpolated fragment at-
tributes as input. The color and texture coordinates were defined in pre-
vious stage and in the fragment texturing and coloring stage the color of
the fragment can be combined with a texel6. If wanted, fog can be ap-
plied during this stage. Usually, the fragment texturing and coloring stage
outputs a color value and depth for each fragment.

The raster operations receive the pixel locations, depth and color value
of the fragments and then perform a series of tests on the fragments before
they are written to the frame buffer. Some of the tests are the scissor test,
the alpha test, the stencil test and the depth test. The pixel’s value is up-
dated with the fragment information according to the current blend mode
if the fragment passes all the tests. Blending can only be done at this stage
because only the raster operations have access to the frame buffer.

In newer graphic cards the vertex transformation stage can be replaced
by vertex shaders, and the fixed fragment texturing and coloring stage
can be replaced by fragment shaders. Both stages are then programmable
and can be used for GPGPU programming. The vertex shader operates on
the vertex, letting the developer do overall adjustments to the data. The
fragment shader can define operations on each fragment. Most operations
to be performed when performing on a general purpose calculation are
defined in the fragment shader.

Textures

A texture can be seen as a picture. This picture can either be displayed as
a normal square picture like in a picture frame, or it can be displayed by
for example wrapping it around a ball. When wrapping the square picture
around the round ball, the picture can look stretched out in some places,
and compressed in others. Each texel is placed on the ball according to

4Removing everything outside the box defining what is visible to the viewer.
5A fragment is the name of the pixel before it is written to a frame buffer.
6Texture element.

47 5.2 GPU programming

the texture coordinates, making it fit perfectly. Realistic graphics can be
produced by rendering a texture onto a surface. Textures are stored on the
GPU reducing the cost of memory reads. With GLSL [Ros06], a texture can
be processed with something called a shader.

Shaders

A shader is a program which can be run on the GPU. It makes it easier
to create exactly what you like, or even calculate algorithms. Graphics of
moving water can for example be calculated directly with algorithms on
the GPU instead of generating a series of textures. One catch with using
shaders is that when you write the code it looks like C++, but still it is
restricted to certain operations. Another problem is that there are few well
working debugging programs. In some cases when you write something
wrong you will get an error, but you are not told where it is. Sometimes
not even a warning is displayed, but you fail to get a proper result. As an
example I can mention one thing I experienced: I wanted to have a for-loop
in the shader. I did not get any error messages and the program seemed to
run as it should, but the result was wrong. After a while I figured out that
on my computer a for-loop in a shader had the maximum length 256, but
if the for-loop was longer the GPU just exited the for-loop after 256 steps
and continued the rest of the computations in the shader as if nothing had
happened.

5.2.2 Before writing a program.

When programming on a GPU, a couple of things need to be kept in mind.
First of all, the computations are performed in parallel and therefore extra
caution should be exercised. That the computations are performed in par-
allel means that the current dataset is computed in a fashion where many
values are computed at the same time. You should use at least two buffers
while computing. One read only buffer holding the current dataset, and
another buffer to store the computed values. Reading and writing using
the same buffer can cause artifacts, because of data-dependencies between
parallel operations.

Another thing is that the data should be represented as floating point
values. The GPU can not represent integer values, and will in those cases
use an approximated floating point value. Up until now, only single pre-
cision values have been supported, but even though this most likely will
change within 2007 [NVI07a] along with the support for integers, some
restrictions to the accuracy of the computations should be expected.

Chapter 5: The GPU and programming tools 48

To write an efficient GPU program, detailed knowledge of how the
GPU works is essential. More information about efficient GPU program-
ming can be found in [Fer04] and [PF05].

The OpenGL shading language(GLSL) [Ros06] in Subsection 5.2.3 was
developed as an extension to the OpenGL API [OSW+05], which is used
for graphics. The OpenGL shading language allows the user to write pro-
grammable shaders to more easily perform complex computations. Other
GPU languages similar to GLSL that should be mentioned are the High
Level Shading Language (HLSL) [SL05] and C for graphics (Cg) [FK03].

Developers familiar with OpenGL can quickly write a GPU program
with GLSL. For others, the threshold for learning to use OpenGL was still
quite large compared to developing a C++ application. Other program-
ming models, which came after GLSL, provided programming more sim-
ilar to C++. Development platforms like RapidMind, Section 5.2.5, and
PeakStream (not discussed here) [Pea], lets the programmer write C++
code and then the platform generates GPU-specific code like GLSL or
other multiprocessor languages.

Very recently, two new toolkits have been developed by ATI and NVIDIA.
They have two very different approaches, but both toolkits can be used
to directly write General-Purpose computation on GPUs (GPGPU). ATI
developed an assembly-like programming language called Close To the
Metal (CTM) [ATI06], which exposes the GPU hardware, letting you im-
plement whatever you want, but the code can be very tedious to write.
The Compute Unified Device Architecture (CUDA), further described in
Section 5.2.4, from NVIDIA is a higher-level language similar to C++, and
can therefore be easier to write. On the other hand, expertly written as-
sembly will probably prove more efficient.

5.2.3 OpenGL Shading Language

OpenGL [OSW+05] is one of the main languages used for graphic pro-
gramming. First of all used as a tool to program the graphics to be dis-
played on the screen. An OpenGL program can be written in a C++ like
programming language, where calls provided by the OpenGL package
give the proper graphics commands. Other programming languages like
Java and Python also have support for OpenGL. The OpenGL API was ex-
panded with the OpenGL Shading Language (GLSL) [Ros06], which lets
you do some of your computations directly on the GPU. This programma-
bility has given more flexibility in what you can calculate on a GPU. With
traditional OpenGL the developer had to follow the fixed pipeline, only

49 5.2 GPU programming

giving calls in the application stage. With GLSL the developer is less re-
stricted and is allowed to follow a partly fixed pipeline. The data follows
the same pipeline, but the shaders makes it possible to program the vertex
transform and fragment processing stages.

5.2.4 CUDA

CUDA [NVI07b] is the latest GPU programming toolkit provided by NVIDIA.
It was released for developers in November 2006, and then for the public
in February 2007. CUDA is a very C like language, where you can de-
cide what parts of the code you would like to compute on the CPU and
what parts you would like to do on the GPU, by using the CPU as a host,
and the GPU as a device. It is a new way of thinking when it comes to
GPGPU programming, and is therefore still partly under construction. Its
purpose is to make it easier to use the GPU as a device for general purpose
computing.

Figure 5.2: Organization in CUDA.

CUDA uses the GPU as a data-parallel computing device without map-
ping to graphics. Multitasking mechanisms in the operating system man-

Chapter 5: The GPU and programming tools 50

age the access to the GPU by several CUDA and graphics applications
running simultaneously. The CUDA API extends the C++ programming
language making it easier for new developers.

CUDA can only be run on NVIDIA G80 cards and newer, but it is pos-
sible to run the program on computers with older graphic cards using Em-
ulation mode. During Emulation mode the program will be processed on
the CPU. The application will run quite slow when run on the CPU, but
while debugging that is not a problem. It should be noted that you have
to define that you want to run the application in Emulation mode, because
if you do not, the application will fail when trying to run on something it
expects to be a G80 card.

Figure 5.3: Cuda Memory Model.

The part of your program you would like to run on the GPU is writ-
ten in a function called a kernel. A kernel roughly corresponds to a GLSL
shader. Portions of data that can be computed independently are calcu-
lated simultaneously within the kernel. The part of the code you would
like to run as a kernel is declared with CUDA keywords, but looks like
any C code. A batch of threads is organized as a grid of thread blocks.
Each grid is divided into blocks, and then threads within the blocks as
illustrated in Figure 5.2. The amount of threads within one block is lim-

51 5.2 GPU programming

ited, but with a grid of blocks, this number can be larger. Letting more
threads be run with the same kernel. The expense is less thread coopera-
tion, because threads from different blocks can not communicate directly
with each other. The data can be computed in parallel very efficiently us-
ing this structure on the GPU.

The structure of CUDA programs fits well with the new G80 GPUs
from NVIDIA. The GPU is divided into multiprocessors where each mul-
tiprocessor is physically 8 ALUs7 wide, and logically 16 ALUs wide work-
ing in the same manners as Intel’s Hyper-Threading Technology8. The
GPU contains 128 scalar ALUs as opposed to the last generation GPUs
which uses fewer 4-vector units. This change is making it more efficient
when working on scalar data, and easier to optimize.

Both device and host uses their own dynamic random access memory
(DRAM) called device memory and host memory, respectively. Data can
be copied between the two using optimized API calls that exploit the de-
vice’s high-performance Direct Memory Access (DMA) engines. Threads
share data with each other through parallel data cache or on-chip memory
featured by CUDA with fast read and write access. Figure 5.3 describes
the memory model for a grid. To get an efficient program the developer
should minimize memory calls outside each block.

Figure 5.4: Gathering and scattering data.

When working on a dataset, two methods should be possible. Scatter-
ing and gathering. Figure 5.4 illustrates that with gathering, more than
one data value is used to produce one output value. Or in other words,

7ALU is an arithmetic logic unit, and is the part of the processor performing the cal-
culations.

8See Wikipedia for a good introduction on hyper-threading.

Chapter 5: The GPU and programming tools 52

you collect data from different positions in the dataset to calculate one out-
put that is written to current position. Addition of two points is just one
example of gathering. Scattering means to write to one or more memory
locations other than the one you are currently at. Some examples of scat-
tering are quick-sort, hashing and histograms. Before CUDA, only gather-
ing was possible on the GPU, but with CUDA also scattering is possible9.

5.2.5 RapidMind

RapidMind is a software development platform for multi-core and stream
processors like GPUs and the Cell Broadband Engine (Cell BE)10. It inte-
grates with the existing C++ standard and therefore requires no new tools,
compilers or preprocessors.

RapidMind differs from the other toolkits I have discussed with the fact
that it is built on top of another language. That is done in order to maintain
a known environment for the developer. As C++ is usually well known,
implementing a program using RapidMind should not be too much trou-
ble. RapidMind is still under evaluation by developers and not released
to the public, but more information can be found at [Rap].

The programmer can write the code once and then RapidMind maps
it to be run in parallel on any available computational resource supported
by RapidMind.

RapidMind is presented as a library, but is used similar to a high-level
programming language. Types and operations for data parallel program-
ming are added to the existing C++ code using standard C++ features,
making RapidMind easy to use within existing development projects.

The RapidMind platform can be used for both shaders and general pur-
pose programming on the GPU. RapidMind enables the GPU to be used
as a high-performance numerical co-processor when using general pur-
pose mode. A shader is a special case of the general purpose mode and
provides the full power of C++ for data abstraction.

What you do when developing a program in RapidMind, is that you
write the usual C++, and then for the parts you would like to have com-
puted on the GPU, you write a method in a manner that is recognized by
RapidMind. These methods use RapidMind specific variables.

The developer can choose between three different backends: GLSL11,

9Scattering was possible earlier, but only with complicated emulation by the use of
vertex shaders.

10The Cell Broadband Engine supports nine processor cores on one chip, and is a spe-
cialized unit which for example is used in the Sony Playstation 3.

11When wanting to use the GPU.

53 5.2 GPU programming

Cell BE or CC12. If no specific backend is set, RapidMind will use the best
backend available.

12CC can be used when you have multi-core CPU’s.

Chapter 5: The GPU and programming tools 54

Chapter 6

Implementation

So far, the thesis has given a survey of the wavelet transform, some GPU
background and GPU programming languages. This chapter describes
how I implemented the stationary wavelet transform with different GPU
toolkits. I will give an overview of what I have done with some details.
Experiences I gained and some difficulties I ran into along the way are also
mentioned.

I chose to do an implementation of the stationary wavelet transform,
not only because it was suggested, but also because I found wavelet trans-
forms fascinating. For example, as I have mentioned earlier, wavelets and
wavelet transforms are very useful when working on seismic data. Hav-
ing a huge dataset also requires that the algorithm applied is efficient, so
that you do not have to wait too long to get the result you want. On a
GPU the data can be processed efficiently, giving you the result in near
real-time. Of course, a cluster of CPU’s could do the same, but when com-
paring one GPU with one CPU, the GPU has the advantage when it comes
to efficiently processing the data in parallel.

In this part of my thesis I compare different programming toolkits for
the GPU when applied to a specific problem. I decided to start with an
implementation in C++ to have a reference dataset that could be used to
verify that the calculations computed on the GPU were correct, and get-
ting an overview of the problem at hand with a well known programming
language. I thought an implementation using GLSL would be appropriate
because that is one of the must common GPU languages. I implemented
the algorithm in GLSL with the use of Shallows [cit], which is a library to
make GPGPU programming with GLSL easier. Both CUDA and Rapid-
Mind are toolkits I heard about after I started on my thesis. The reasons to
why I chose to do the implementation with those toolkits are that CUDA
is a very promising toolkit introducing a new way of programming on

55

Chapter 6: Implementation 56

the GPU, while RapidMind is intended to be a toolkit anyone with a C++
background should be able to use.

I will look at similarities and differences, and also how easy or difficult
it is to implement SWT using the different toolkits. Then I will present a
comparison of the efficiency of the implemented stationary wavelet trans-
form and discuss how my way of thinking had to change when imple-
menting with the different toolkits.

6.1 Implementation model

When implementing the stationary wavelet transform, two different ap-
proaches can be used. Either do the convolution directly between filters
and signal or use the Fourier transform. Computing the convolution can
be very expensive and does not collaborate well with a GPU application. A
convolution involves many array multiplications and additions between
the filter and the signal. The number of elements multiplied and added
differs throughout the calculation, but for computing on a GPU all the
passes and the changes in which elements to multiply and add are com-
plicated and do not map well to the GPU hardware.

Figure 6.1: Butterfly for FFT.

57 6.1 Implementation model

� �

1 c a l c u l a t e the two f i r s t f i l t e r s
2 for a l l s teps
3 i f not f i r s t step
4 up−sample both f i l t e r s with zeros
5
6 compute Four ier transform of f i l t e r s
7 for a l l 1D s i g n a l s
8 i f f i r s t step
9 do Four ier transform of the s i g n a l

10
11 mult iply transformed f i l t e r s and s i g n a l
12 s t o r e r e s u l t from the high−pass f i l t e r i n g in one array
13 the low−pass f i l t e r i n g r e s u l t i s used in the next step
14 end
15 end
16 compute the inverse Four ier transform

� �

Listing 6.1: SWT pseudo-code

The fast Fourier transform (FFT) is the Fourier transform most com-
monly implemented on computers. The butterfly figure in Figure 6.1 il-
lustrates how the FFT is calculated for a signal with length 8. The variable
WR

N = e−i(2πR
N) is called the twiddle factor. The number of passes with

the FFT is log2 N1, where N is the length of the signal. In each pass, ev-
ery element is added with one other element which has been multiplied
with a value. The number of passes makes it a better choice to calculate
the Fourier transform of the filter and the signal, and then multiply those
outputs when calculating on the GPU. An inverse Fourier transform will
then produce the result of the stationary wavelet transform.

When using the Fourier transform, both filters and the signal has to
be Fourier transformed. Then the transformed filter and signal are multi-
plied element-wise and the output inverse Fourier transformed to get the
result of the first step of the SWT. Listing 6.1 describes the pseudo code
for the stationary wavelet transform with Fourier transform, and applies
to all my implementations. When wanting to perform more than one step,
the inputs are Fourier transformed before the first multiplication. The out-
put from the high-pass filtering is written to memory, while the output
from the low-pass filtering is used as input signal in the next stage. The
filters used in previous stage are up-sampled to create two filters with ze-
ros between every element. The calculations can continue until the filters
contain only zeros.

1N = 2log2 N

Chapter 6: Implementation 58

� �

1 for (i n t i =0 ; i < SIGNALLENGTH; ++i , ++tmp , ++ df tS igna l ,
2 ++ d f t F i l t e r) {
3 tmp−>Re = (df tS igna l −>Re ∗ d f t F i l t e r −>Re)
4 − (d f tS igna l −>Im ∗ d f t F i l t e r −>Im) ;
5 tmp−>Im = (df tS igna l −>Re ∗ d f t F i l t e r −>Im)
6 + (df tS igna l −>Im ∗ d f t F i l t e r −>Re) ;
7 }

� �

Listing 6.2: Complex multiplication with C++

6.2 Implementation using C++

I implemented both methods in C++. First I implemented with convolu-
tion to get a result which I could use to verify the computations in the
other implementations. The convolution method is the easiest to imple-
ment. Then I implemented with Fourier transform to get an application I
could use as a base when implementing with the GPU toolkits.

My C++ implementation with convolution is pretty much straight for-
ward. The signal is directly convolved with the filter, and I could then
easily verify if the result was correct. Since this is the only implementation
where I performed a convolution, I could not base my other implementa-
tions directly on the code. The code I used for the convolution is presented
in Appendix A.

Implementing the stationary wavelet transform with C++, but with the
Fourier transform was a bit more tricky. The signal and the filter is mul-
tiplied after being Fourier transformed, and then inverse Fourier trans-
formed to finish the stationary wavelet transform. The Fourier transform
produces a complex output, therefore complex multiplication. The code
for the complex multiplication with C++ is written in Listing 6.2.

6.3 Implementation using GLSL

The most difficult part when implementing the SWT with GLSL was to
implement the Fourier transform. I implemented the fast Fourier trans-
form (FFT), which is said to be efficient when computed on the GPU. The
general FFT implementation uses bit-shifting, which can not be calculated
on the GPU. Instead I made a lookup table containing the bit-shift on the
CPU and then used that table when calculating the transform. This oper-
ation also required that I used one shader for the first calculation in the
butterfly, and then I could use another shader for the rest. The inverse

59 6.3 Implementation using GLSL

� �

1 / / −∗−C++−∗−
2
3 [Vertex shader]
4
5 void main ()
6 {
7 g l _ P o s i t i o n = gl_ModelViewProjectionMatrix ∗ gl_Vertex ;
8 gl_TexCoord [0]= gl_MultiTexCoord0 ;
9 }

10
11 [Fragment shader]
12 uniform sampler2D t r a c e ;
13 uniform sampler2D f i l t e r ;
14
15 / / Find t h e m u l t i p l i c a t i o n o f a s i g n a l and a f i l t e r
16 / / For g i v e n f r e q u e n c y−domain i n p u t d a t a I and i n p u t f i l t e r d a t a F ,
17 / / t h e outp ut d a t a D can be w r i t t e n :
18 / /
19 / / D(f) = F (f)∗ I (f) ;
20 / /
21
22 void main ()
23 {
24 vec4 t r a c e F r e q = texture2D (tra ce , vec2 (gl_TexCoord [0] . xy)) ;
25 vec4 f i l t e r F r e q = texture2D (f i l t e r , vec2 (gl_TexCoord [0] . xy)) ;
26 vec4 r e s u l t ;
27 r e s u l t . x = (f i l t e r F r e q . x∗ t r a c e F r e q . x)
28 − (f i l t e r F r e q . y∗ t r a c e F r e q . y) ;
29 r e s u l t . y = (f i l t e r F r e q . x∗ t r a c e F r e q . y)
30 + (f i l t e r F r e q . y∗ t r a c e F r e q . x) ;
31 gl_FragColor = r e s u l t ;
32 }

� �

Listing 6.3: The shader for complex multiplication with GLSL

Chapter 6: Implementation 60

� �

1 / / C r e a t e a t e x t u r e o f t h e s i g n a l a r r a y
2 tra ceTex . r e s e t (new Texture2D (LUMINANCE32F_ARB, SIGNALLENGTH,
3 NUM_TRACES, GL_LUMINANCE, GL_FLOAT, s igna l , f a l s e)) ;
4
5 / / I n i t i a t e complexMult s h a d e r
6 complexMultProg . r e s e t (new GLProgram) ;
7 complexMultProg−>useNormalizedTexCoords () ;
8 complexMultProg−>r e a d F i l e (" . . / convolut ion/complexMult . shader ") ;
9 complexMultProg−>setFrameBuffer (fb) ;

10 complexMultProg−>set InputTexture (" t r a c e " , r tTra ce−>getTexture ())
11 complexMultProg−>setOutputTarget (0 , r t [in]) ;
12 complexMultProg−>run () ;

� �

Listing 6.4: Calls to initiate the shader for complex multiplication with
GLSL

Fourier transform also required one shader for the first computation, and
could then use the second FFT shader for the rest.

After implementing the FFT, I had to make a shader which multiplied
two complex textures. The data in the texture stores the real value in the
red-position and the imaginary value in the green-position, making it easy
to access the data.

Listing 6.3 contains the shader code used to multiply the signal with
the filter. In the implementation the shader code is stored in a separate file
titled complexMult.shader and loaded within the application before it can
be run. The filter and the signal is loaded into textures before being sent
to the shader, so that the shader can calculate with data it understands.

The input data to the shader can be stored in a texture. The data is then
first saved in an array, and then the call traceTex.reset(new Texture2D(....));

creates a texture of the signal array. After the shader is initialized by the
code in Listing 6.4, the call setInputTarget specifies where the shader can
find the texture. An output target needs to be set with setOutputTarget

and finally the shader is run with complexMultProg->run();.
The calls in Listing 6.4 are Shallows specific, and conceals a lot of what

is actually going on. For example run hides that the program runs by
rendering to a framebuffer.

One challenge when implementing with GLSL was to keep track of
which buffer to use. I used a ping-pong technique when calculating the
FFT. The ping-pong technique uses two buffers. The first buffer is used to
read from and the second to write to. In the next calculation their read-
write properties are switched. Using the same two buffers is efficient, be-
cause creating and deleting buffers can be computationally expensive.

61 6.4 Implementation using CUDA

� �

1 / / A l l o c a t e d e v i c e memory f o r s i g n a l
2 Complex∗ d_ s igna l ;
3 CUDA_SAFE_CALL(cudaMalloc ((void∗∗)& d_signal , mem_size)) ;
4 / / Copy h o s t memory t o d e v i c e
5 CUDA_SAFE_CALL(cudaMemcpy (d_signal , h_padded_signal , mem_size ,
6 cudaMemcpyHostToDevice)) ;

� �

Listing 6.5: Copy data from host memory to device memory in CUDA.

� �

1 / / CUFFT p lan
2 cuff tHandle plan ;
3 CUFFT_SAFE_CALL(cuf f tP la n1 d (&plan , new_size , CUFFT_DATA_C2C,
4 ROW_SIZE)) ;
5
6 / / Transform t h e s i g n a l
7 CUFFT_SAFE_CALL(c u f f t E x e c u t e (plan , d_signal , d_signal ,
8 CUFFT_FORWARD)) ;

� �

Listing 6.6: Use the FFT implemented in CUDA.

6.4 Implementation using CUDA

I based my CUDA implementation on one of the provided examples and
rewrote it to fit the SWT algorithm. I chose to use the FFT algorithm pro-
vided with CUDA and then write the code to multiply the transformed
outputs.

I created the signal and filters in arrays stored in host memory. For the
CUDA program to interpret the arrays, the arrays are loaded from host
memory into device memory with the commands in Listing 6.5. The call
CompMul<<<grid, threads>>>(d_signal, d_filter_kernel, 1.0f / SIGNAL_SIZE);
runs the CUDA environment code.

The calls in Listing 6.6 shows how to use the provided FFT implemen-
tation.

The complex multiplication which is run on the device is written in the
kernel in Listing 6.7. The parameters of the current thread and block are
used to calculate the current position in the dataset.

After all calculations are finished, the data is transferred back to host
memory as in Listing 6.8 and can be output to the screen.

The challenge with CUDA was to understand how to divide the data
into blocks, and then how to address them properly. You have to choose
the size of the blocks, and try to maximize the utilization of the available
computing resources. For example, the number of blocks should be at

Chapter 6: Implementation 62

� �

1 / / Complex m u l t i p l i c a t i o n
2 s t a t i c _ _ globa l_ _ void CompMul(Complex∗ a ,
3 const Complex∗ b , f l o a t s c a l e)
4 {
5 i n t t i d x = threadIdx . x ;
6 i n t t idy = threadIdx . y ;
7 i n t bidx = blockIdx . x ;
8 i n t bidy = blockIdx . y ;
9 i n t currentPos = (t i d x + bidx∗BLOCK_SIZE_X) +

10 (t idy + bidy∗BLOCK_SIZE_Y)∗SIGNAL_SIZE ;
11 Complex c ;
12 c . x = a [currentPos] . x ∗ b [t i d x+ bidx∗BLOCK_SIZE_X] . x −
13 a [currentPos] . y ∗ b [t i d x+ bidx∗BLOCK_SIZE_X] . y ;
14 c . y = a [currentPos] . x ∗ b [t i d x+ bidx∗BLOCK_SIZE_X] . y +
15 a [currentPos] . y ∗ b [t i d x+ bidx∗BLOCK_SIZE_X] . x ;
16 a [currentPos] . x = s c a l e ∗ c . x ;
17 a [currentPos] . y = s c a l e ∗ c . y ;
18 }

� �

Listing 6.7: Multiplication with CUDA

� �

1 / / Copy d e v i c e memory t o h o s t
2 Complex∗ h_convolved_signal = (Complex∗) malloc (mem_size) ;
3 CUDA_SAFE_CALL(cudaMemcpy (h_convolved_signal , d_signal , mem_size ,
4 cudaMemcpyDeviceToHost)) ;

� �

Listing 6.8: Transfer the data back to host memory from device memory.

63 6.5 Implementation using RapidMind

� �

1 / / Program f o r Complex M u l t i p l i c a t i o n
2 Program ComplexMult = RM_BEGIN {
3 In <Value2f > aInput ; / / f i r s t i n p u t
4 In <Value2f > bInput ; / / s e c o n d i n p u t
5 Out<Value2f > output ; / / outp ut
6
7 output [0] = ((aInput [0] ∗ bInput [0]) − (aInput [1] ∗ bInput [1])) ;
8 output [1] = ((aInput [0] ∗ bInput [1]) + (aInput [1] ∗ bInput [0])) ;
9 } RM_END;

� �

Listing 6.9: Multiplication with RapidMind

least the same, but preferably more than there are multiprocessors on the
device so that no multiprocessor will be left idle. The multiprocessors have
a Single Instruction, Multiple Data architecture (SIMD)2. A grid of blocks
is executed on the GPU with one or more blocks on each multiprocessor
using time slicing. Each block is divided into SIMD groups containing the
same number of threads, called warps. To have very fast memory access, a
block is processed by only one multiprocessor keeping the shared memory
space in the on-chip memory.

6.5 Implementation using RapidMind

The first look I had at some RapidMind examples, led me to believe that
it should be easy to implement. It looked very much like C++ code, but
with some RapidMind specific variables and calls. I decided to start with
my C++ implementation, and then rewrite the parts where I could use
RapidMind.

My first solution was therefore to do the FFT on the CPU, and then
use RapidMind for the multiplication. The source code for the complex
multiplication with RapidMind is presented in Listing 6.9. Before running
the RapidMind specific code, the data to compute has to be in a Rapid-
Mind format. Then all there is to do is to run the RapidMind code with
rm_result = ComplexMult(rm_signal, rm_filter);. To write the result on the
screen, the data is converted back to C++ format with const float* results
= rm_result.read_data();, which forces the completion and stores the result
directly in the specified host memory.

I spent a lot of time trying to get the FFT working with RapidMind
without having much success. I did find an implementation on their web

2Each processor executes the same instruction, but on different data.

Chapter 6: Implementation 64

page near the end of my thesis, which got me hoping that a working ver-
sion of RapidMind would be possible to complete within the given time-
frame. Unfortunately, using the FFT implementation proved to be a chal-
lenge. Looking at the source code for the FFT made me realize that imple-
menting advanced algorithms with RapidMind was not quite as easy as
I first expected. One of the challenges with this FFT implementation was
that it used four values for each element in the array, effectively giving
you room for two complex numbers in each element. This together with
how the arrays in RapidMind work, and no real knowledge nor documen-
tation of the inner workings of the FFT function stopped me from getting
a working version in time. I did however manage to get it running, and
my latest tests suggest that it is working and doing the amount of calcu-
lations it is supposed to. I still get wrong results from the calculation, but
I believe that the problem is in the way that I input data. With this said, I
have provided the timing results in the time tables in Section 6.6.

One of the features of RapidMind that got me confused was the way
the RapidMind array works. Usually when working with arrays, in C++
or other languages, you can set a variable to be two-dimensional. With
C++ you write something like "int foo[3][10]" to get an array with three
rows and ten columns. In RapidMind it is done the opposite way, by using
the first argument as width and the second as height. The reason for doing
it like C++ is that one can easily access a whole row by using "foo[1]",
giving you the second row. The data is organized sequential in the RAM,
first by column, then by row. The element following the last element in
a row is the first element on the next row. In RapidMind it seems that
the arrays are organized in the same way, but you cannot access the data
the same way. You can impose rules and set offsets and slices, as well
as use something called stride and other functions to get the parts of the
data you want. It is however very different from regular C++, and the fact
that the syntax is so similar makes it easy to fall into old habits of C++
programming, resulting in compilations that fail.

Another issue I had with the RapidMind arrays, was that converting
between a row from a two-dimensional array to an one-dimensional array
produced all sorts of compilation errors. With the limited time I had, I
was unable to figure out how to do that operation. The reason for the
restrictions is of course that the underlying hardware cannot work on the
data like a CPU can.

I figured that even though I was not able to implement the SWT as
I wanted with RapidMind, I had already experienced a couple of useful
things. One thing I had learned was that since you write in C++, the
RapidMind specific code you write is transformed into shaders in runtime

65 6.6 Result

when you choose the GLSL backend. For example, letting the RapidMind
specific code get a warm up run before actually calculating the complex
multiplication, reduced the computational time from 600 to 60 millisec-
onds. That improvement shows the importance of doing a warm-up run
when benchmarking. The warm-up run lets the program be compiled in
memory and therefore run efficiently. The same can be done in other pro-
gramming languages, but it was only with RapidMind the difference was
significant.

6.6 Result

In this section, I will compare the run time of each implementation with
different signal-lengths. I have timed the computations with CUDA both
in emulation mode, and when running on a NVIDIA G80 card. The dif-
ference is just tremendous, and is related to the fact that the code is run
in serial mode in emulation mode on the CPU, and in parallel when run
properly on a G80 card.

I have changed the size of the dataset, both in signal length and how
many signals there are in one dataset. I tested with one single input signal
and then with 16, 64 and 512 to see how the applications behaved with
more data to calculate.

Computing the stationary wavelet transform would demand the same
amount of operations independently of the input. I have calculated with
the same input signal multiple times in the cases with more than one input
signal, because that made it easier to verify the result when testing the
efficiency of the implementations. The length of the signal was specifically
chosen to be power-of-two sizes to get a proper result with the GLSL and
RapidMind’s FFT implementations.

The computational efficiency of the RapidMind application seems to
match what I was expecting, even though as I mentioned earlier the com-
putations do not provide the correct results. Please keep in mind the notes
I had regarding RapidMind in Section 6.5 when considering the following
results. The calculation times are in the vicinity of the GLSL version, with
a disadvantage on sizes except the largest datasets. RapidMind is more
efficient at the larger datasets probably because of the fact that the Rapid-
Mind FFT code has doubled the memory efficiency of the GLSL code by
using all four texture color values versus the GLSL version’s two colors.

Tables 6.1 to 6.4 shows the difference in run-time with various sizes
of the input signal. I let the application run 10 times before stopping the
clock and calculated the average time to not risk getting only peak-time.

Chapter 6: Implementation 66

All applications are run on a computer with a NVIDIA GeForce 8800 GTX
graphics card and an Intel Core 2 DUO E6600 CPU, and the timings are
presented in milliseconds.

Signal length 64 256 1024 4096
C++ conv 0.012 0.040 0.154 0.596
C++ FFT 0.039 0.167 0.555 3.514
GLSL 8.850 10.652 10.805 13.106
CUDA G80 0.139 0.164 0.206 0.659
CUDA Emu 8.303 34.399 143.785 948.434
RapidMind 11.478 11.562 11.635 12.204

Table 6.1: Timing of the implementations with a single input signal. (mil-
liseconds)

Signal length 64 256 1024 4096
C++ conv 0.159 0.615 2.374 9.564
C++ FFT 0.216 1.114 5.078 30.389
GLSL 7.808 9.678 11.280 17.047
CUDA G80 0.157 0.202 0.357 1.440
CUDA Emu 23.364 108.030 483.325 4374.110
RapidMind 23.362 23.959 24.753 27.074

Table 6.2: Timing of the implementations with 16 input signals. (millisec-
onds)

The run-time for the C++ application with convolution increases ap-
proximately linearly according to the amount of input data. That reflects
that only the number of calculations influences the run-time. When run-
ning the FFT application in C++ the run-time increased more rapidly, but
still linearly according to the amount of input signals.

The GLSL application represents a more complex run-time picture. With
GLSL you have to add the cost of converting and transferring data to the
GPU. Therefore a certain amount of data needs to be transferred and cal-
culated before you can see an improvement. Compared to the C++ con-
volution you can not see improvement in run-time before the amount of
data has reached 512x256, but above that size the speed of the GLSL im-
plementation is up to twice as fast. Compared to the FFT implementation
with C++, the GLSL application was more efficient for sizes from 256x256,
which is half the size that had to be calculated compared to the convolu-
tion.

67 6.6 Result

Signal length 64 256 1024 4096
C++ conv 0.609 2.605 9.727 40.062
C++ FFT 0.784 4.411 19.8 114.493
GLSL 8.569 10.193 14.585 28.953
CUDA G80 0.203 0.368 0.847 3.853
CUDA Emu 70.812 338.252 1590.721 15316.650
RapidMind 34.924 37.061 38.399 49.424

Table 6.3: Timing of the implementations with 64 input signals. (millisec-
onds)

Signal length 64 256 1024 2048 4096
C++ conv 4.892 19.778 80.184 159.053 318.488
C++ FFT 6.358 36.961 171.931 922.459 2431.53
GLSL 11.350 16.977 43.976 80.249 170.813
CUDA G80 1x1 0.817 2.329 8.663 19.550 39.468
CUDA G80 0.568 1.334 4.960 12.015 24.407
CUDA Emu 511.397 2527.385 11981.309 54429.312 116792.561
RapidMind 58.875 60.635 80.509 108.347 160.284

Table 6.4: Timing of the implementations with 512 input signals. (millisec-
onds)

Chapter 6: Implementation 68

Running SWT with CUDA on the G80 card resulted in generally lower
timings. As with GLSL you have to take into account that the data needs
to be transferred to the GPU before calculating. Only when calculating a
single input signal the convolution on C++ was faster.

Compared to GLSL, CUDA on a G80 is always significantly more effi-
cient, while compared to FFT with C++ slower only with a single signal of
length 64.

CUDA Emulation mode is presented more as a curiosity. With the Em-
ulation mode, the exact same code is used and run on the same computer,
but still it could be up to many thousand times slower than running it as a
proper CUDA application on the GPU. It is clearly meant as a debugging
tool.

With CUDA I also tried with different block sizes, and experienced that
in emulation mode, running with block-size one, was up to twice as fast
as running with more threads and more blocks. That is most likely caused
by it being run in serial mode, and having to work with many calculations
simultaneously just slows down the process. Computing with CUDA on
a G80 on the other hand needs many threads per block to utilize the GPU
properly.

Table 6.4 includes computational times for CUDA both when using
blocks of size one, and blocks with 64 threads. All the other tables uses
blocks with 64 threads, to get the best timings. When only having one
thread per block, the multiprocessors can not use their parallel power, and
is forced to only do one computation at a time. The CUDA implemen-
tation is still quite efficient, because it can make use of that the different
multiprocessors do not have to idle.

I had expected CUDA to be more efficient than GLSL, but I did not
expect the speed-up I got. The reason why there should be a speed-up is
that CUDA is written for the hardware on the G80, but I do also believe
that the CUDA implementation of the FFT is more optimized for the GPU
than my FFT implementation with GLSL.

The computational time of my RapidMind implementation was close
to the timings for the GLSL implementation. Mostly, RapidMind was
slower, which to some extent could be caused by the fact that RapidMind
generates the shader code. A shader code written directly in GLSL could
give a more efficient result. As mentioned, RapidMind’s improved mem-
ory efficiency over my GLSL solution probably gave RapidMind an edge
on large datasets. That RapidMind is still a beta version can also have an
effect on the overall efficiency.

It is worth to point out that RapidMind generates the GLSL shaders on
the fly, making the first round of computation slower than the following

69 6.6 Result

ones using the same code. This makes it unsuited for one-time calcula-
tions, and calculations that constantly changes the program code being
computed. Also noteworthy is the fact that a real-life application should
not implement warm-ups. The warm-up just computes all the functions
with dummy data that are meant to run on the GPU anyway. It is better to
just run it with the correct data, and save one calculation as opposed to do
a warm-up.

I also want to note that I was unable to create a version that could mul-
tiply a single dimension array with all rows in a two dimensional array.
This fact increased the times the FFT was run by about 50%, as I had to
do the FFT on the same number of rows for the filter as for the signal, in-
stead of calculating the FFT only once for the filter. This means that the
efficiency of the RapidMind code is not optimal. Getting it to work prop-
erly would save a lot of computations. I will not be speculating too much
in how much the improvement would be, other than saying that the FFT
is the most computationally demanding part of the application, and that
increasing the number of runs with 50% will have an meassurable impact
on the performance, although not significantly enough to alter the timing
tables noteworthy. The closest opponent to RapidMind performance vice
seems to be the GLSL implementation, and in most places the computation
time differs with more than 50%.

It should also be noted that calculating the FFT for the filters does not
usually increase the times as much as 50%. Especially on small datasets
where transferring data takes most of the time.

6.6.1 Summary of the implementations.

The different implementations all had different challenges. With C++ the
challenge was to figure out how to implement the stationary wavelet trans-
form for the first time. Knowing that the SWT can be solved with the
fast Fourier transform meant learning the FFT in detail. That implied us-
ing time on something I then would know for the next implementation.
On the other hand, since this is more about comparing the different GPU
toolkits, the time I used to implement with C++ is not entirely relevant,
but the C++ implementation made it easier to implement with the GPU
toolkits.

Table 6.5 implies my opinion of my experience when implementing
the various toolkits. All three toolkits I tried were more efficient than the
CPU when calculating the stationary wavelet transform. At least when
computing enough data to make use of the GPUs parallel computational

Chapter 6: Implementation 70

power.
First time implementing something with GLSL can be very trouble-

some if you do not have experience with OpenGL. CUDA is easy to start
with if you begin by rewriting some of the sample code. It has a lot of
similarities with C++, and should therefore be fairly familiar. RapidMind
is easy if you want to compute something very simple. Like adding two
arrays. When facing more complicated calculations, the threshold to im-
plement is high. The implementation time varied for the different toolkits.
GLSL took a long time to get a correct implementation. Implementing
with CUDA went quite fast when rewriting the code, but to get a under-
standing of how to divide the data into threads and blocks required some
time. That understanding was not required to get a correct result, but only
to make the computations more efficient. With RapidMind it was difficult
to figure out exactly how to work with the data. It seemed easy at first, but
required a lot of insight before I knew how to use the RapidMind variables
and calls correctly. The three toolkits I implemented all had documenta-
tion, but GLSL also has books to easier understand the ideas. Both GLSL
and CUDA can be discussed in on-line forums, while RapidMind still only
provides support by e-mailing to the developers.

GLSL CUDA RapidMind
Efficiency vs. CPU Good Very good Good
Beginner threshold High Low Medium
Implementation time Long Short Medium
Documentation Good Good Poor

Table 6.5: Table of GPU toolkit comparison.

Implementing with GLSL required some creative ideas, but as I have
done some implementations with GLSL before, my experience probably
helped me implement faster than if it had been my first GLSL implemen-
tation. With GLSL you have to know when to use the different buffers, and
you have to control most things yourself. It can therefore be complicated
and take time to implement.

CUDA had provided many examples which helped me understand the
idea behind implementing code with CUDA. Also the fact that I did not
have to implement the FFT reduced the implementation time considerably.
I found CUDA easiest to understand.

RapidMind, which I expected to be easiest to apply, proved to be the
most difficult. The reasons for that can be hard to find, but I think that
the most significant reason is that it was hard to figure out how to imple-

71 6.6 Result

ment what I wanted, giving RapidMind a high beginner threshold. An
advantage with RapidMind is that the same application can be used on
various platforms. That implies that you only have to implement once
when wanting to test on the different backends supported by RapidMind.

What I am saying is that it is hard to say exactly how much time I used
implementing with the different toolkits, since I faced different difficulties
and learned more about how to implement the SWT after completing each
implementation. I do believe that GLSL can be the most complicated to
implement even though you have some experience. RapidMind is proba-
bly a lot easier to implement once you have learned how to use it and get
proper documentation, but until then RapidMind can be tedious to work
with.

Chapter 6: Implementation 72

Chapter 7

Conclusion and further work

Wavelets and wavelet transforms is a field with a lot of recent develop-
ment making it difficult to sort out the most useful information. You can
use wavelets to approximate a signal, and a wavelet transform exploits
that ability. It is the user’s responsibility to choose the wavelet and wavelet
transform that best suit the problem.

The properties of the wavelet transform can be used in many fields, for
example on very large datasets that can be computational expensive when
the computing resources are limited. Using the GPU as a tool to calculate
parallel problems can improve the computational power of your computer
substantially.

Programming on the GPU is still in the starting phase. A lot of compa-
nies have opened their eyes for it, seeing how efficiently a GPU can com-
pute a parallel problem compared to a CPU. Many toolkits have recently
been developed and which toolkit to use depends on your intension. Some
toolkits demand that you learn a new programming language. These lan-
guages are closer to the GPUs way of processing, and could prove very
efficient under many circumstances. On the other hand, the toolkits that
resemble C++, which you might already know, will probably reduce the
time it takes to develop the application, and the result will in some cases be
just as quick as the GPU specific languages. It all comes down to what you
need, and as history has shown, someone will always try to squeeze out
the last bit of potential performance where it really matters, whilst others
just want a quick and easy increase in speed.

The OpenGL extension GLSL can be complicated because you have to
control much of the work-flow yourself. A shader program has a shortage
of some things that can easily be done with C++. When working around
those problems, you have to be creative and should know about how the
GPU works to create an efficient result. Much of the required skill and

73

Chapter 7: Conclusion and further work 74

knowledge comes from experience, as GPU programming still is a very
new technology with limited documentation and Internet resources.

CUDA presents a new way of structuring the implementation, but it is
quite easy to get a result which works as expected since it is similar to C++.
The most significant difference is how you have to structure the chunks of
data you want to calculate.

RapidMind is presented as I toolkit anyone with a C++ experience
should be able to understand. My problem was that I found it difficult
to figure out how RapidMind wanted to have the data represented when
implementing a complex problem.

Unfortunately I was not capable of implementing everything I wanted.
I was therefore unable to do much more than to get the different toolkits to
work correctly. The CUDA and the RapidMind implementations are the
first applications I have written with those toolkits, so my experience was
very limited. I found CUDA to be easier to use probably because I had
more than one example program to look at when figuring out how to im-
plement the stationary wavelet transform. I thought that RapidMind was
a lot more troublesome. Not only because I found their documentation
harder to read, but also because I only had a couple of poorly documented
examples to lean on.

It is difficult to find wanted information about RapidMind and CUDA
since they both are pretty new. CUDA was presented publicly in Novem-
ber and released in January, while RapidMind is still in evaluation phase.
CUDA has an online forum which you can use when running into prob-
lems. With RapidMind you currently have to send an email, which makes
the development slower.

The main advantage of using toolkits must be the abstraction that re-
moves the need for OpenGL specific commands. The OpenGL commands
have been a major source of errors and without proper error messages,
also very difficult to locate and solve. Both RapidMind and CUDA have
good error reporting systems, which simplifies the debugging process.

7.1 Further work

I learned the hard way that implementing on the GPU can take a lot more
time then expected. A problem that might seem simple is not as straight-
forward to do when there are calculations you cannot implement directly.
My implementations therefore did not get as far as I wanted. For example,
I only implemented a single pass of the stationary wavelet transform. It
should not be very difficult to expand the implementations to do the full

75 7.1 Further work

transform, but I had to make some choices and thought that it was more
important to get the implementations to work correctly with the different
toolkits. Still my implementation of the stationary wavelet transform with
RapidMind does not output a correct result.

Another thing I was thinking of implementing, was the FFT with CUDA.
Of course that would not be necessary because NVIDIA has already pro-
vided an implementation for CUDA, but having my own implementation
would make the comparison more reliable since I have my own in the C++
and GLSL implementations. Implementing my own FFT with RapidMind
would also be interesting.

Finally it would have been nice to further improve the implementa-
tions. Trying out different ideas is an essential part of getting an efficient
program, so continuing with experimenting would be useful. Getting the
implementations to be even more efficient would therefore be something
that should be explored.

Chapter 7: Conclusion and further work 76

Appendix A

Convolution in C++

� �

1 void convolut ion (f l o a t ∗ s igna l_ in , i n t signalLength ,
2 f l o a t ∗ lowFi l te r , f l o a t ∗ h i g h F i l t e r ,
3 i n t f i l t e r L e n g t h , f l o a t ∗ signal_outlow ,
4 f l o a t ∗ s igna l_ outhigh)
5 {
6 i n t i S i g n a l , j F i l t e r ;
7 f l o a t signalLow , signalHigh ;
8
9 for (i S i g n a l =signalLength ;

10 i S i g n a l < signalLength + f i l t e r L e n g t h −1; ++ i S i g n a l) {
11 s i g n a l _ i n [i S i g n a l] = s i g n a l _ i n [i S i g n a l−signalLength] ;
12 }
13 for (i S i g n a l =0 ; i S i g n a l <signalLength ; ++ i S i g n a l) {
14 signalLow = 0 ;
15 signalHigh = 0 ;
16 for (j F i l t e r =0 ; j F i l t e r < f i l t e r L e n g t h ; ++ j F i l t e r) {
17 signalLow = signalLow +
18 s i g n a l _ i n [j F i l t e r + i S i g n a l]∗ l o w F i l t e r [f i l t e r L e n g t h−1− j F i l t e r] ;
19
20 signalHigh = signalHigh +
21 s i g n a l _ i n [j F i l t e r + i S i g n a l]∗ h i g h F i l t e r [f i l t e r L e n g t h−1− j F i l t e r] ;
22 }
23 signal_outlow [i S i g n a l] = signalLow ;
24 s igna l_ outhigh [i S i g n a l] = signalHigh ;
25 }
26 }

� �

77

Chapter A: Convolution in C++ 78

Bibliography

[Add02] P. S. Addison. The Illustrated Wavelet Transform Handbook. Tay-
lor & Francis, July 2002.

[AGF93] P. Abry, P. Gonçalvès, and P. Flandrin. Wavelet-based spec-
tral analysis of 1/ f processes. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing,
volume 3, pages 237–240, 1993. Minneapolis, MN, USA.

[ATI06] ATI. Ati ctm guide, 2006. Available at http://ati.amd.com/
companyinfo/researcher/documents/ATI_CTM_Guide.pdf.

[BGG98] C. S. Burrus, R. A. Gopinath, and H. Guo. Introduction to
wavelets and wavelet transforms: a primer. Prentice-Hall, pub-
PH:adr, 1998. With additional material and programs by Jan
E. Odegard and Ivan W. Selesnick.

[BW98] K. Berkner and R. Wells. Smoothness estimates for soft-
threshold denoising via translation invariant wavelet trans-
forms, 1998.

[Cas01] J. P. Castagna. Recent advances in seismic lithologic analysis.
Geophysics, 66(1):42–46, 2001.

[cit] Shallows homepage. More information available at http://
shallows.sourceforge.net/.

[CO95] A. Chakraborty and D. Okaya. Frequency-time decomposi-
tion of seismic data using wavelet-based methods. Geophysics,
60(6):1906–1916, 1995.

[CW06] S. Cui and Y. Wang. Redundant wavelet transform in video
signal processing. In IPCV, pages 191–196, 2006.

79

http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf
http://shallows.sourceforge.net/
http://shallows.sourceforge.net/

BIBLIOGRAPHY 80

[DHH05] T. Dokken, T. R. Hagen, and J. M. Hjelmervik. The gpu as a
high performance computational resource. In SCCG ’05: Pro-
ceedings of the 21st spring conference on Computer graphics, pages
21–26, New York, NY, USA, 2005. ACM Press.

[Fer04] R. Fernando. GPU Gems: Programming Techniques, Tips, and
Tricks for Real-Time Graphics. Addison-Wesley Professional,
March 2004.

[FK03] R. Fernando and M. J. Kilgard. The Cg Tutorial: The Defini-
tive Guide to Programmable Real-Time Graphics. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[FKK02] S. E. Ferrando, L. A. Kolasa, and N. Kovačević. Al-
gorithm 820: A flexible implementation of matching pursuit
for gabor functions on the interval. ACM Trans. Math. Softw.,
28(3):337–353, 2002.

[Gee05] D. Geer. Taking the graphics processor beyond graphics. Com-
puter, 38(9):14–16, 2005.

[GGKM06] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Gputera-
sort: high performance graphics co-processor sorting for large
database management. In SIGMOD ’06: Proceedings of the 2006
ACM SIGMOD international conference on Management of data,
pages 325–336, New York, NY, USA, 2006. ACM Press.

[GGM84] P. Goupillaud, A. Grossmann, and J. Morlet. Cycle-Octave and
related transforms in seismic signal analysis. Geoexploration,
23:85–102, 1984.

[GLOB95] H. Guo, M. Lang, J. E. Odegard, and C. S. Burrus. Nonlinear
processing of a shift-invariant DWT for noise reduction and
compression. In Proceedings of the International Conference on
Digital Signal Processing, pages 332–337, Limassol, Cyprus, 26–
28 1995.

[GPG] GPGPU. gpgpu.org. Available at http://www.gpgpu.org.

[Gra95] A. Graps. An introduction to wavelets. IEEE Computational
Sciences and Engineering, 2(2):50–61, 1995.

[HBB92] F. Hlawatsch and G. F. Boudreaux-Bartels. Linear and
quadratic time-frequency signals representations. IEEE Signal
Processing Magazine, ?:21–67, April 1992.

http://www.gpgpu.org

81 BIBLIOGRAPHY

[HRMS04] G. Hernandez, B. Reusch, M. Mendoza, and L. Salinas. Shifta-
bility and filter bank design using morlet wavelet. In QEST
’04: Proceedings of the The Quantitative Evaluation of Systems,
First International Conference on (QEST’04), pages 141–148,
Washington, DC, USA, 2004. IEEE Computer Society.

[I. 92] I. Daubechies. Ten Lectures on Wavelets. SIAM Publications,
1992.

[JG82] J. Morlet, G. Arens, I. Fourgeau and D. Giard. Wave propaga-
tion and sampling theory. Geophysics, 47:203–236, 1982.

[JPCS03] S. Sun J. P. Castagna and R. W. Siegfried. Instantaneous spec-
tral analysis: Detection of low-frequency shadows associated
with hydrocarbons. The Leading Edge, 22(2):120–127, 2003.

[Kai94] G. Kaiser. A Friendly Guide to Wavelets. Birkhauser, August
1994.

[KFG97] P. Kumar and E. Foufoula-Georgiou. Wavelet analysis for
geophysical applications. Review of Geophysics, 35(4):385–412,
1997.

[LGO+96] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O. Wells.
Noise reduction using an undecimated discrete wavelet trans-
form. IEEE Signal Processing Letters, 3(1), 1996.

[LM05] J. Liu and K. J. Marfurt. Matching pursuit decomposition
using morlet wavelets. SEG Technical Program Expanded Ab-
stracts, 24(1):786–789, 2005.

[LZC+06] H. Li, W. Zhao, H. Cao, F. Yao, and L. Shao. Measures of scale
based on the wavelet scalogram with applications to seismic
attenuation. Geophysics, 71(5):V111–V118, 2006.

[Mal99] S. Mallat. A Wavelet Tour of Signal Processing, Second Edition
(Wavelet Analysis & Its Applications). Academic Press, Septem-
ber 1999.

[MZ93] S. Mallat and Z. Zhang. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on Signal Processing,
41(12):3397–3415, 1993.

[NS] G. P. Nason and B. W. Silverman. The stationary wavelet
transform and some statistical applications. pages 281–300.

BIBLIOGRAPHY 82

[NVI07a] NVIDIA. Cuda release notes version 0.8, 2007. Available
at http://developer.download.nvidia.com/compute/cuda/

0_8/NVIDIA_CUDA_SDK_releasenotes_readme_win32_linux.

zip.

[NVI07b] NVIDIA. Nvidia cuda guide, 2007. More information avail-
able at http://developer.nvidia.com/object/cuda.html.

[OLG+05] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell. A survey of general-purpose
computation on graphics hardware. In Eurographics 2005, State
of the Art Reports, pages 21–51, August 2005.

[OSW+05] Opengl, D. Shreiner, M. Woo, J. Neider, and T.Davis.
OpenGL(R) Programming Guide : The Official Guide to Learning
OpenGL(R), Version 2 (5th Edition). Addison-Wesley Profes-
sional, August 2005.

[Pea] PeakStream. Peakstream inc homepage. More information
available at http://www.peakstreaminc.com/.

[PF05] M. Pharr and R. Fernando. GPU Gems 2 : Programming Tech-
niques for High-Performance Graphics and General-Purpose Com-
putation. Addison-Wesley Professional, March 2005.

[Rap] RapidMind. Rapidmind inc homepage. More information
available at http://www.rapidmind.net/.

[Ros06] R. J. Rost. OpenGL(R) Shading Language (2nd Edition). Addison-
Wesley Professional, January 2006.

[She92] M. Shensa. The Discrete Wavelet Transform: Wedding the À
Trous and Mallat Algorithms. In IEEE Transactions on Signal
Processing, volume 40, pages 2464–2482, 1992.

[SL05] S. St-Laurent. The COMPLETE Effect and HLSL Guide. Para-
doxal Press, 2005.

[SRAC05] S. Sinha, P. S. Routh, P. D. Anno, and J. P. Castagna. Spec-
tral decomposition of seismic data with continuous-wavelet
transform. Geophysics, 70(6):P19–P25, 2005.

http://developer.download.nvidia.com/compute/cuda/0_8/NVIDIA_CUDA_SDK_releasenotes_readme_win32_linux.zip
http://developer.download.nvidia.com/compute/cuda/0_8/NVIDIA_CUDA_SDK_releasenotes_readme_win32_linux.zip
http://developer.download.nvidia.com/compute/cuda/0_8/NVIDIA_CUDA_SDK_releasenotes_readme_win32_linux.zip
http://developer.nvidia.com/object/cuda.html
http://www.peakstreaminc.com/
http://www.rapidmind.net/

83 BIBLIOGRAPHY

[Wil02] S.S Wilson. Using a pseudo-random binary sequence as a
mother wavelet in thewavelet-correlation system identifica-
tion method. SoutheastCon, 2002. Proceedings IEEE, pages 58–
61, 2002.

[ZLBN96] R. Zaciu, C. Lamba, C. Burlacu, and G. Nicula. Motion esti-
mation and motion compensation using an overcomplete dis-
crete wavelet transform. In International Conference on Image
Processing, pages I: 973–976, 1996.

	Introduction
	Research questions
	Gathering seismic data
	Thesis outline

	Introduction to Wavelets and Wavelet Transforms
	Wavelets and Wavelet Transforms
	Applications
	The Fourier Transform
	The Short-Time Fourier Transform (STFT)
	The Wavelet Transform

	Wavelets
	Examples of wavelets
	Requirements of a wavelet

	Wavelet Transforms
	Wavelet systems
	A family of wavelets

	The Wavelet Transform
	The Continuous Wavelet Transform (CWT).
	Time-Frequency Map from CWT (TFCWT)
	The Discrete Wavelet Transform (DWT).
	Stationary Wavelet Transform (SWT)
	Transform overview

	Matching Pursuit with Time-Frequency Dictionaries
	Time-Frequency Atomic Decomposition
	The Matching-Pursuit algorithm

	Instantaneous Spectral Analysis
	Overview

	The GPU and programming tools
	Development of the CPU versus the GPU
	GPU programming
	Graphics pipeline.
	Before writing a program.
	OpenGL Shading Language
	CUDA
	RapidMind

	Implementation
	Implementation model
	Implementation using C++
	Implementation using GLSL
	Implementation using CUDA
	Implementation using RapidMind
	Result
	Summary of the implementations.

	Conclusion and further work
	Further work

	Convolution in C++
	

