
University of Oslo
Department of Informatics

Traffic Engineering
And Supporting
Quality of Service

Shamshirgaran,
Mohammad Reza

Cand. Scient Thesis

February 2003

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

This thesis is written as a part of my graduate studies within the field of communication
systems, Informatics.

I would like to start by expressing my gratitude towards professor Pål Spilling for his
guidance and collaboration, making it possible for me to advance and extend my
knowledge within the field of communication systems. I would also like to thank Boning
Feng for his time and insightful comments on this thesis.

Also, the people at UNIK – University Graduate Centre for Technology and department
of Informatics at University of Oslo deserve my gratitude for their cooperation. During
my time spent there, they provided the right equipment for simulation use.

Last but not least, warm thanks goes to my girlfriend and family for excusing my absence
of present spending time with them, because of the much-spent time on this thesis.

 2

ABSTRACT

T

raffic Engineering describes techniques for optimising network performance
by measuring, modelling, characterizing and controlling Internet traffic for
specific performance goals [11]. This is a comprehensive definition. Traffic
engineering performance goals typically fall into one of two categories. The

first one is traffic related performance objectives such as minimizing packet loss,
lowering end-to-end delay, or supporting a contracted Service Level Agreement (SLA).
The second category is efficiency related objectives, such as balancing the distribution of
traffic across available bandwidth resources. Traffic related performance goals are set in
order to meet contracted service levels and offer competitive services to customers.
Efficiency related goals, are required by the service provider to minimize the cost of
delivering services, especially the cost of utilizing expensive network resources.

The objective of this thesis is to present a description of Multi Protocol Label
Switching (MPLS) architecture and its functionality to achieve a tool for performing
traffic engineering and QoS support. We simulate traffic engineering with MPLS on a
simple network and measure its performance. We analyse measurements related to
queuing delay, throughput and other traffic related issues. We then move on fine- tuning
the MPLS-TE network to also take into consideration QoS support when aggregating
flows through a single label- switching path. We combine differentiated services with
MPLS architecture in order to support QoS requirements. The simulation tool used in this
thesis is called OPNET Modeler version 8.11.

1 OPNET Modeler 8.1 is a network simulation tool OPNET Technologies Inc.

 3

 4

CONTENTS

ABSTRACT 3

1 INTRODUCTION 9

2 SHORTEST PATH ROUTING PRINCIPLE 11

2.1 Shortest path routing within an Autonomous System 11

2.2 Shortest path routing principle and its drawbacks 12

2.3 Summary over shortest path routing principle 15

3 TRAFFIC ENGINEERING & QOS SUPPORT WITH MPLS 17

3.1 MPLS 17
3.1.1 MPLS functionality 17

3.2 Traffic engineering with MPLS 20
3.2.1 Distribution of network statistical information 20
3.2.2 Path Selection 20
3.2.3 Signalling for path establishment 21
3.2.4 Packet forwarding 24
3.2.5 Rerouting 24

3.3 Quality of Service support with MPLS 25
3.3.1 Integrated Services 25
3.3.2 IntServ implementation with MPLS 26
3.3.3 IntServ scalability drawbacks 26
3.3.4 Differentiated Services 27
3.3.5 Per-Hop Behaviour (PHB) 28
3.3.6 DiffServ implementation with MPLS 30
3.3.7 Aggregation of traffic flows with MPLS and Diffserv 31

3.4 Summary over MPLS Traffic Engineering and QoS Support 33

 5

4 INTRODUCTION TO SIMULATION 34

4.1 Simulation tool 34

4.2 Network topology 34

4.3 General experimental conditions regarding all simulation scenarios 35

5 SIMULATION EXPERIMENT USING OSPF 37

5.1 Analysing and discussing experimental results 37
5.1.1 Throughput 37
5.1.2 Queuing delay 40

5.2 Concluding remarks 41

6 SIMULATION EXPERIMENT USING MPLS -TE 42

6.1 MPLS Traffic engineering configurations 42

6.2 Analysing and discussing experiential results 44
6.2.1 Throughput 44
6.2.2 Queuing delay 48

6.3 Concluding remarks 50

7 SIMULATION EXPERIMENT USING MPLS-TE AND DIFFSERV 51

7.1 MPLS-TE and QoS support configuration 51

7.2 Analysing and discussing experiential results 53
7.2.1 WFQ delay and buffer usage 53
7.2.2 Flow Delay 54
7.2.3 Throughput 55

7.3 Concluding remarks 56

 6

8 CONCLUSION 58

8.1 Conclusion made from shortest path routing principle 58

8.2 Conclusion made from MPLS traffic engineering 59

8.3 Conclusion made from MPLS traffic engineering with QoS support 60

8.4 Further need for research 62

9 APPENDIX 63

9.1 Dijkstras Algorithm 63

9.2 Shortest Path Routing configuration details within OPNET 64
9.2.1 Application configuration 64
9.2.2 Profile configuration 68
9.2.3 Workstations and Server configuration 68
9.2.4 Router configuration 69
9.2.5 Simulation configuration attributes 71

9.3 MPLS-TE configuration details within OPNET 72
9.3.1 Application configuration 72
9.3.2 Profile configuration 76
9.3.3 Workstations and Server configuration 76
9.3.4 Creating LSPs 77
9.3.5 MPLS configuration 78
9.3.6 Router configuration 79
9.3.7 Simulation configuration attributes 82

9.4 MPLS-TE-QoS supported flows config. details within OPNET 82
9.4.1 Application configuration 82
9.4.2 Profile configuration 82
9.4.3 Creating LSPs 83
9.4.4 MPLS configuration 83
9.4.5 QoS Configuration attributes 84
9.4.6 Workstations and Server configuration 84
9.4.7 Router configuration 85
9.4.8 Simulation configuration attributes 85

10 REFERENCES 86

 7

 8

1 INTRODUCTION

Rapid growth of the Internet has made a huge impact on what type of
services requested from consumers and what kind of performance they demand
from the services they wish to use. Consequently as service providers encourage
businesses on to the Internet, there has been a requirement for them to develop,
manage and improve IP- network infrastructure in terms of performance.
Therefore, the interest of traffic control through traffic engineering has become
important for ISP’s.

Today’s networks often function with well-known shortest path routing

protocols. Shortest path routing protocols as their name implies, are based on the
shortest path forwarding principle. In short, this principle is about forwarding IP-
traffic only through the shortest path towards their destination. At one point, when
several packets destined from different networks start using the same shortest
path, this path may become heavily loaded. This will result in congestion within
the network. Various techniques have been developed to cope with the shortest
path routing protocols shortcomings. However, recent research has come up with
another way to deal with the problem. With traffic engineering, one can engineer
traffic through other paths than the shortest path. The network carries ip-traffic,
which flows through interconnected network elements, including response
systems such as protocols and processes. Traffic engineering establishes the
parameters and operating points for these mentioned elements. Internet traffic
leads to control problem. Therefore a desire and need for better control over the
traffic may be accomplished with help of traffic engineering.

The main purpose of traffic engineering is to achieve a certain performance

in large IP networks. High quality of service, efficiency, and highest possible
utilization of network resources are all driving forces behind the need and desire
for traffic engineering. Traffic engineering requires precise control over the
routing functionality in the network. To compute and establish forwarding path
from one node to another is vital to achieve a desired flow of traffic. Generally,
performance goals can be traffic- and/or resource oriented. Traffic oriented
performance is usually related to QoS in the network, which concerns prohibit
packet loss and delay. Resource oriented performance is related to efficient
utilization of network assets. Efficient resource allocation is needed to achieve
performance goal within the net. Congestion control is another important goal of
traffic engineering. Congestion typically arises under the circumstances such as
when network resources are insufficient or inadequate to handle offered load. This
type of congestion can be addressed by augmenting network capacity, or
modulating, conditioning, or throttling the demand so that traffic fits onto the
available capacity using policing, flow control, rate shaping, link scheduling,
queue management and tariffs [2]. Other circumstances where congestion appears
are when traffic is inefficiently mapped onto resources, causing subset of
resources to become over utilized while others remain under utilized. This
problem can be addressed by increasing the efficiency of resource allocation. An
example would be to route some traffic away from congested resources to
relatively under utilized ones [2].

 9

Other purposes with traffic engineering are also reliable network operation
and differentiated services, where traffic streams with different service
requirements are in contention for network resources. QoS is thus important for
those who have signed up for a certain service level agreement (SLA). It is
therefore needed to control the traffic so that certain traffic flows can be routed in
a way that the required QoS is given. When traffic engineering flows with
different QoS requirements, one may want to assign certain flows to a certain
path. Since several flows often take the same path to a certain destination,
aggregation of traffic flows may reduce number of resource allocations needed
[38], reserving resource for each aggregated traffic flow. This gives the
opportunity to traffic engineer aggregated traffic flows while at the same time
supporting QoS to each of them with minimum overhead for reservation of
resources along a certain path.

In order to outline the performance achieved by traffic engineering, we felt it

was necessary to starts by giving a description of the shortest path routing
principle and its drawbacks. Then, we present the architecture of Multi protocol
label switching and differentiated services. Highlighting their functionality and
the way they can interact to support quality of service while traffic engineering.

After giving a description of the technologies itself, we move on to our

simulation networks to measure their performance. First out, we configure a
network to run shortest path routing protocol OSPF. To measure performance
outbreaks, we generate TCP and UDP traffic to measure their treatment under a
heavily loaded network. Then, we use the same network with its traffic once
again, this time installing multi protocol label switching to engineer the flows to
separate paths. Results collected from the both networks are then compared. Later
we also show of the possibility of traffic engineering, while at the same time
taking QoS aspects into consideration. Here, we only compare the QoS support
given to flows that are engineered through the same label-switching path.

 10

2 Shortest Path Routing Principle

In this chapter, a description of routing within an autonomous system (AS)
based on the shortest path routing principle is given. This chapter concentrates
only on the Intra-domain shortest path routing principles within an AS of a service
provider’s network. We start with a description of an exemplary backbone
architecture belonging to an Internet Service Provider (ISP). Furthermore, giving
a description of shortest path routing principle and its drawbacks.

2.1 Shortest path routing within an Autonomous System

Ever since the deployment of ARPANET, the forerunner of the present-day

Internet, the architecture of the Internet has been constantly changing. It has
evolved in response to advances in technology, growth, and offerings of new
services. The internet today consists of multiple service providers network
connected to each other, forming a global network communication infrastructure.
This infrastructure enables people around the world to communicate with each
other through interconnected network devices. These devices are set up to process
any data that traverse through them. These devices or nodes are often formed in
logical and hierarchical way. With customers networks connected to a node or a
router often called customer edge router (CE) at one end, and to an Internet
service provider’s (ISP) network edge router, which is referred to as provider edge
router (PE) at the other end. The core routers within the provider’s network form
the inner routers forwarding packets a step closer to its destination. These often
smaller autonomous systems (AS) are then connected to more powerful
networking area referred to as the backbone. The backbone often carries the
extensive amount of traffic that is to be transmitted or/and received between AS’s.
An example over such architecture is given in the below figure.

Figure 2.1 Illustrate architecture over backbone of an ISP.

 11

Figure 2.2 Illustrate an exemplary architecture over an autonomous system.

Zooming in on our precedence figure, we look at a single clouded area
running a shortest path routing protocol as its routing protocol. An AS may look
like the one illustrated in figure 2.2. The way an AS handles its traffic using
shortest path routing principle is a sophisticated engineering detail that we don’t
look into. But we thereby give a simple description of its functionality. In order
to make right delivery of packets received from the customer’s networks, routers
must exchange information with each other. The exchange of this information is a
complex topic, which we will not get into in this thesis. But in short, the routing
and forwarding mechanism is primarily divided into three processes. The first
process is mainly responsible for exchanging topology information. This is
needed for the second part of the process, which is the calculation of routes.
Calculation happens independently within each router to build up a forwarding
table. The forwarding table enables processing incoming packets to be forwarded
towards its destination. The forwarding table is used when a packet is being
forwarded and therefore must contain enough information to accomplish the
forwarding function.

Within an AS, routing is based on Interior Gateway Protocols (IGPs) such

as Routing Information Protocol (RIP) [27], Open Shortest Path First (OSPF) [13]
and Intermediate System-Intermediate System (IS-IS) [28]. RIP is based on the
distance vector algorithm and always tries to find the minimum hop route.
Routing protocols such as OSPF and IS-IS are more advanced in the sense that
routers exchange link state information and forward packets along shortest path
based on Dijkstra’s algorithm [12]. In short, Dijkstras algorithm computes the
shortest path from every node to every other node in the network that it can reach.
This is of course a highly simplified description. A complete coverage over the
Dijkstras algorithm can be found in appendix 9.1. With help of Dijkstras
algorithm, every node can compute the shortest path tree to every destination [12].

2.2 Shortest path routing principle and its drawbacks

The shortest path routing principle imposes some drawbacks within the
routing area. A description of these drawbacks is described here. The scenario in
Figure 2.3 illustrates the forwarding of packets based on the shortest path

 12

algorithms. Looking at the below figure, imagining the routers 1,2,3, and 4
forming a smaller piece of a larger AS or backbone. Traffic is coming in from
both network A and C and destined for the same terminating network through
router 4. The interesting part here is that congestion may appear after a while
between router1 and router2 since all the packets are sent over the minimum cost
(high bandwidth) path to its destination. It uses only one path per source–
destination pair, thereby potentially limiting the throughput of the network [12].

To give an example of the impacts this may appose in the network consider

this: It is known that TCP connections intend to lower their transfer rate when
signs of congestion appears, consequently making more room for UDP traffic to
fill up the link and suppress the TCP flows [15]. This will cause the UDP traffic
sent by one of the sources suppress the TCP flows sent by the other sources.
Clearly, this situation can be avoided if the TCP and UDP traffic choose different
non-shortest paths to achieve a better performance.

Congestion in the network is caused by lack of network resources or uneven

load balancing of traffic. The latter one is the one that can be remedied by traffic
engineering, which is the intention of this thesis to simulate in the coming
chapters. If all packets sent from customers use the same shortest path to their
destination, it may be difficult to assure some degree of QoS and traffic control.
There are of course ways to support every single traffic flow with different
technologies to assure QoS. In [39] for example, a signalling protocol is used to
reserve resources for a certain flow travelling through the network, but this is only
per-flow basis and when many of these are configured it makes it unacceptable for
an ISP to manage and administer, since it isn’t a scalable solution [36]. This can
be proven by a simple formula, which states that if there exist N routers in the
topology and C classes of services, it would be needed (N* (N-1) * C) –trunks
containing traffic flows [36]. We will not further discuss this issue here, but later
show that with another technology this can be reduced to C * N or even N traffic
trunks.

Figure 2.3 Forwarding based on shortest path (minimum cost)

 13

The other problem mentioned with the shortest path routing protocols is

the lack of ability to utilize the network resources efficiently [2]. This is not
achieved by the shortest path routing protocols since they all just depend on the
shortest path [2]. This is illustrated in the below figure, where packet from both
network A and C traverse through the path with minimum cost, leaving other
paths under utilized. Its capability to adapt to changing traffic conditions is
limited by oscillation effects. If the routers flood the network with new link state
advertisement messages based on the traffic weight on the links, this could result
in changing the shortest path route. At one point, packets are forwarded along the
shortest path, and suddenly right after exchange of link states advertisement
choosing another “shortest” path through the network. The result may again be
poor resource utilization [12]. This unstable characteristic has more or less been
dealt with in the current version of OSPF, but with the side effect of been less
sensitive to congestion and speed of response to it [12].

Figure 2.3 Illustrates under utilized paths in the backbone

Looking at figure 2.4, one can see that a more balanced network is taken place
when traffic from network A and C starts using the under utilized paths in the
above figure.

Figure 2.4 Illustrates optimised backbone link utilization

 14

The shortest path routing principle cause uneven distribution of traffic, as a result
of the shortest path algorithm they depend upon. Various techniques have
emerged to cope with the traffic- balancing problem. For example, the equal-cost
multipath (ECMP) option of OSPF [13] is useful in distributing load to several
equal shortest paths. But, if there is only one shortest path, ECMP does not help.
Another method for load-share balancing is the unequal-cost load balancing. In
order to enable OSPF unequal-cost load balancing, one can manipulate the link
speed of an interface. Since this manipulation doesn’t really represent the actual
speed of the link, it can be used to manipulate how data is load-shared over
different links with varying speeds. This can be done by for example setting the
same value across some links. The physical throughput however is unchanged.

For example, in figure 2.5 there are three ways for router A to get to network
10.0.0.1/24 after manipulating two links to the same value:

• A-F-G with a path cost of 84
• A-D-E-G with a path cost of 31
• A-B-C-G with a path cost of 94

Figure 2.5 OSPF Unequal-Cost Load Balancing

For simple networks, it may be possible for network administrators to manually
configure the cost of the links so that traffic can be more evenly distributed.
Clearly, for complex ISP networks, this becomes a difficult task to administrate in
a larger ASs of a service providers network since they have little or no low-level
control over the basic mechanisms responsible for packet scheduling, buffer
management, and path selection [7].

2.3 Summary over shortest path routing principle

In summary, making a forwarding decision actually consists of three sets of

processes. The routing protocols, routing table and the actual process which

 15

makes the forwarding decision and switches packets. These three sets of processes
are illustrated, along with their relationship, in figure 2.6.

Figure 2.6 Illustrates the three components that describe the routing and forwarding process.

The longest prefix match always wins among the routes actually installed in the
routing table, while the routing protocol with the lowest administrative distance
always wins when installing routes into the routing table. This is known as
shortest path routing principle. As mentioned, the downside of the shortest path
routing is its drawbacks when it comes to efficient network utilization and to
being able to handle traffic flows in a way so that bottlenecks are avoided within
the network. This infer because packets seems to only be forwarded using the
shortest path to a certain destination, and as stated in [5], the shortest paths from
different sources overlap at some links, causing congestion on those links. As an
example we mentioned what impact this had on TCP flows that got suppressed
when signs of congestion appeared in the network. This allowed more room for
the UDP traffic, thus made it even worst for the TCP traffic.

Before going any further, we summarize the problems concerning the shortest
path based routing principles that we will try to simulate and address.

As described earlier, when all packets sent from different sources only
utilises the shortest path between a pair of ingress and egress routers,
the shortest path will become congested. As an example, we mentioned
the impact of this on TCP and UDP traffic under heavy load conditions.
Thus, our first problem is related to managing to engineer some traffic
away from using the shortest path through the network topology. By this
way, we aim to avoid congestion and bottlenecks within the network.
Furthermore, we will try to address the shortest path routing principle’s
lack of ability to engineer traffic flows so that a more balanced and
efficient utilized network is achieved.

In the following chapter, MPLS is illustrated as a tool for performing traffic
engineering and provisioning QoS. It is further to be seen whether MPLS based
traffic engineering and QoS can deal with the mentioned shortest path routing
principle drawbacks.

 16

3 Traffic Engineering & QoS Support With MPLS

In this chapter, a description of the architecture that is believed to deal with

the need of traffic engineering and QoS provisioning is given. This technology is
called MPLS and a complete coverage of it is to be found under the following
subchapters. Furthermore, we describe other technologies that are to be
complementing the MPLS architecture for QoS provisioning.

3.1 MPLS

MPLS stands for Multi Protocol Label Switching and is basically a packet

forwarding technique where the packets are forwarded based on an extra label
attached in front of the ordinary payload. With this extra label attached, a path
controlling mechanism takes place and a desired route can be established.
Although MPLS is a relatively simple technology, it enables sophisticated
capabilities far superior to the traffic engineering function in ordinary IP network.
When MPLS is combined with differentiated services and constraint based
routing, they become powerful and complementary tools for quality of service
(QoS) handling in IP networks [2].

3.1.1 MPLS functionality

The functional capabilities making MPLS attractive within traffic
engineering in IP networks are described in this section. MPLS functionality can
be described by demonstrating the forwarding mechanism in its domain. Starting
with its header and how it is constructed, we can slowly but clearly work us
through the technology and describe the MPLS functionality. The figure below
shows the format of this label, also called the MPLS header. It contains a 20bit
label, a 3bit field for experimental use, a 1bit stack indicator, an 8bit time to live
field. Each entry consists of 4 octets in a format depicted below [1]. The label
field indicates the actual value of the MPLS label. The EXP field was ment for
experimental purpose, and has been used in connection with QoS /CoS support.
The stack bit implements MPLS label stacking, wherein more than one label
header can be attached to a single IP packet [3]. The stack bit is set to 1 in order to
indicate the bottom of the stack. All other stack bits are set to 0. Packet
forwarding is accomplished using the label values of the label on the top of the
stack. The TTL field is similar to the time-to-live field carried in the IP header.
The MPLS node only processes the TTL field in the top entry of the label stack.
The IP TTL field contains the value of the IPv4 TTL field or the value of the IPv6
Hop Limit field. Since MPLS nodes don’t look at the IP TTL field, the IP TTL
field is copied into the MPLS label.

Label Exp S TTL Label-stack

0 20 23 24 32 4 octets

Figure 3.1 The MPLS header format

 17

A MPLS header is inserted for each packet that enters the MPLS domain.
This header is used to identify a Forwarding Equivalence Class (FEC). The same
FEC is associated to packets that are to be forwarded over the same path through
the network. FECs can be created from any combination of source and destination
IP address, transport protocol, port numbers etc. Labels are assigned to incoming
packets using a FEC to label mapping procedure at the edge routers. From that
point on it is only the labels that dictate how the network will treat these packets,
such as what route to use, what priority to assign, and so on.

Within a domain, a label switching router (LSR) will use the label as the
index to look up the forwarding table of the LSR. The packet is processed as
specified by the forwarding table entry. The outgoing label replaces the incoming
label, and the packet is switched to the next LSR. Before a packet leaves a MPLS
domain, its MPLS header is removed [5]. Figure 3.2 illustrates the mentioned
scenario so far. A fundamental concept in MPLS is that two LSRs must agree on
the meaning of the labels used to forward traffic between and through them. This
common understanding is achieved by using a set of procedures, called a label
distribution protocol (LDP), by which one LSR informs another of label bindings
it has made [29,30]. Labels are maps of the network layer routing to the data link
layer switched paths. LDP helps in establishing an LSP by using a set of
procedures to distribute the labels among the LSR peers.

LDP provides an LSR discovery mechanism to let LSR peers locate each other
and establish communication. It defines four classes of messages:

• DISCOVERY messages run over UDP and use multicast HELLO
messages to learn about other LSRs to which LDP has a direct connection.
It then establishes a TCP connection and an eventual LDP session with its
peers. The LDP sessions are bi-directional. The LSR at either end can
advertise or request bindings to or from the LSR at the other end of the
connection.

• ADJACENCY messages run over TCP and provide session initialisation
using the INITIALISATION message at the start of LDP session
negotiation. This information includes the label allocation mode, keep
alive timer values, and the label range to be used between the two LSRs.
LDP keep alive are sent periodically using KEEP ALIVE messages.
Teardown of LDP sessions between peer LSRs results if the KEEP ALIVE
messages are not received within the timer interval.

• LABEL ADVERTISEMENT messages provide label-binding
advertisements using LABEL MAPPING messages that advertise the
bindings between FECs and labels. LABEL WITHDRAWAL messages
are used to reverse the binding process. LABEL RELEASE messages are
used by LSRs that have received label- mapping information and want to
release the label because they no longer have a need for it.

• NOTIFICATION messages provide advisory information and also signal
error information between peer LSRs that have a LDP session established
between them.

 18

Figure 3.2 Illustrating the label-switching path scenario

MPLS allows routing control capabilities introduced in IP networks. These
capabilities support connection control through explicit label- switched paths
(LSPs). An explicit LSP is determined at the ingress LSR. This kind of connection
control permits explicit routes to be established which are independent of the
destination based IP shortest path routing mechanism [2]. Once an explicit route is
determined, a signalling protocol is then used to set up the path. LDP as described
earlier can be used for signalling purpose. A complete coverage of the signalling
process is described later in chapter 3.2.3.

In MPLS networks, traffic trunks are set up in the network topology through

the selection of routes for explicit LSPs. The terms LSP tunnel [3] and traffic-
engineering tunnel (te-tunnel) [4] are commonly used to refer to the combination
of traffic trunk and explicit LSPs in MPLS [2]. LSP tunnels are useful when
dealing with the congestion problem mentioned. Multiple LSP tunnels can be
created between two nodes, and traffic between them can be divided among the
tunnels according to some local policy. Figure 3.3 illustrates a scenario where
LSP tunnels are configured to redistribute traffic to address congestion problems
caused by shortest path IGPs described in chapter 2.

Figure 3.3 Traffic trunks with LSPs

 19

3.2 Traffic engineering with MPLS

The challenge of traffic engineering is how to make the most effective use of

the available bandwidth in a large IP backbone of an Internet Service Provider’s
network. MPLS traffic engineering routes IP traffic flows across a network based
on the resources the traffic flow requires and the resources available in the
network. This is unlike the shortest path routing protocols, which routes packets
based on the shortest path to their destination. The main functional components
for performing traffic engineering over MPLS are the distribution of network
statistical information, path selection, path signalling and finally the packet
forwarding mechanism. In this section, each of these components is described, to
illustrate how MPLS can be used to perform traffic engineering.

3.2.1 Distribution of network statistical information

To achieve optimised traffic engineering, it is very important having access

to up to date topology information. Therefore, distribution of network topology
information is central for the remaining components of the functional parts of the
MPLS control plane. This component is implemented as an extension to the
conventional IGPs, so that link attributes are included as part of each router’s link
state advertisement. The standard flooding algorithm used by the link state IGP
ensures that link attributes are distributed to all routers in the routing domain.
Each LSR maintain network link attributes and topology information in a
database. This database is used by the path selection component to compute a
desired route. Some of the traffic engineering extensions added to the IGP link
state advertisement is maximum link bandwidth, maximum reserve-able
bandwidth, current bandwidth reservation, current bandwidth usage, link
colouring and interface IP address [8].

3.2.2 Path Selection

The next step in the process of traffic engineering by MPLS is to use the
distributed information made by the flooding procedure of the IGP to compute
and select the wanted paths. The information needed for this part of the
component is collected from the database mentioned in the distribution of network
statistical information component. Each LSR uses this database to calculate the
paths for its own set of LSPs within the routing domain. The path for each LSP
can be constructed either based on strict or loose explicit route. This allows the
path selection process to work more freely whenever possible, but to be
constrained when necessary.
Path selection must also take in consideration the constrained imposed by
administrators of the domain. These constrained are usually related to the
topology and resource usability. The path calculated by the path selection
component may differ from the shortest path calculated by an IGP. The path
selection component may consider several kind of information as input, such as
topology link state information learned and stored in the database. Also attributes
that consider the state of network resources such as total link bandwidth, reserved
link bandwidth, and available link bandwidth are factors that it may consider
important for its path selection calculation. Other considered information

 20

attributes may be administrative related and is required to support traffic
traversing the proposed LSP such as bandwidth requirements, maximum hop
count and administrative policy requirements that are obtained from user
configuration.

The result of the path selection is a route consisting of a sequence of LSR
addresses that provides the shortest path through the network that meets the
constraints. This calculated route is then used by the signaling component which
then establishes forwarding state in the LSRs along the LSP.

The path selection component plays a very important role in traffic
engineering. Both on-line and off-line calculation can be used for path selection.
On-line calculation takes resource constraints into account and calculates one LSP
at a time. It can calculate path quickly and adaptive to the change of the topology
and resource information. Off-line planning and analysis tool simultaneously
examines each link’s resource constraints and the requirements of each ingress- to
-egress LSP. It performs an over all calculations, compares the results of each
calculation, and then selects the best solution for the network as a whole.

3.2.3 Signalling for path establishment

 Path selection component described above computes a path that is thought

to take into consideration some constraints appointed. However, the path is not
operational until the LSP is actually installed by the signalling component. There
are two options for the label distribution protocol. These two signalling protocols
are defined as Resource Reservation Protocol (RSVP-TE) [34,37] with traffic
engineering extensions and Label Distribution Protocol with constrained based
extensions (CR-LDP) [31,32].

The first one relies on a number of extensions to the Resource Reservation
Protocol (RSVP). The objective of extending RSVP is not only to support the
establishment of explicit LSP tunnels with resource reservation, but also to
support such attributes as reselecting and sustaining LSP tunnels [6]. It also
watches out for loop detection [9]. It can automatically select the path and avoid
the congested points and bottlenecks in the network. Three objects are used in this
signalling protocol. The Explicit Route Object (ERO) allows an RSVP PATH
messages to traverse a sequence of LSRs that is independent of conventional
shortest path IP routing. The Label Request Object (LRO) permits the RSVP
PATH message to request that intermediate LSRs provide a label binding for the
LSP that it is establishing. The Label Object (LO) allows RSVP to support the
distribution of labels without having to change its existing mechanisms. Because
the RSVP RESV message follows the reverse path of the RSVP PATH message,
the Label Object supports the distribution of labels from downstream to upstream
nodes.

 21

Figure 3.3.2. Illustrates the RSVP-TE functionality

In this example, having used BGP to discover the appropriate egress LER to route
the traffic to another autonomous system (AS), the ingress LER initiates a PATH
message to egress LER through each downstream LSR along the path. Each node
receives a PATH message to remember this flow is passing, thus creating a “path
state” or session. The egress LER uses the RESV message to reserve resources
with traffic and QoS parameters on each upstream LSR along the path session.
Upon receipt at the ingress LER, a RESV confirm message is returned to the
egress LER confirming the LSP setup. After the loose ER-LSP has been
established, refresh messages are passed between LERs and LSRs to maintain
path and reservation states. It should be noted that, none of the downstream,
upstream or refresh messaging between LER and LSRs is considered to be
reliable, because UDP is used as the communication protocol.

TE-RSVP features are robust and provide significant capabilities to provide
traffic- engineering functions to MPLS.
These includes:

• QoS and traffic parameters – for traffic management.
• Failure alert – when failing to establish an LSP or loss of an existing one,

will trigger an alert message.
• Failure recovery – “make before break” when rerouting.
• Loop detection – required for loosely routed LSPs only, also supported

for re-path establishing.
• Multi Protocol support - supports any type of protocol.
• Management – LSP ID identifies each LSP, thereby allowing ease of

management to discrete LSPs.
• Record Route Objects – Provide the ability to describe the actual setup

path to interested parties.
• Path Pre-emption – The ability to “bump” or discontinue an existing path

so that a higher priority tunnel may be established.

 22

 The second signalling protocol, which is called the CR-LDP, is specifically
designed to facilitate constrained based routing of LSPs [10]. Like Label
Distribution Protocols (LDP), it uses TCP sessions between LSR peers and sends
label distribution messages along the sessions. If we review figure 3.2, but this
time illustrate how the forwarding labels where engineered in the first place, we
can understand the functionality behind CR-LDP. Figure 3.4 illustrates the CR-
LDP scenario.

Figure 3.4 Illustrating the CR-LDP scenario

As figure 3.4 illustrates, the ingress LER determines that it needs to set up
a LSP to egress LER. The traffic parameters required for the session or
administrative policies for the network enable LER to determine that the route for
the wanted LSP should go through LSR1 and LSR2. The ingress LER builds a
label request message with an explicit route of {LSR1, LSR2, LER} and details of
the traffic parameters requested for the route. The ingress LER reserves the
resources it needs for the LSP, and the forward the label request to LSR1. When
LSR1 receives the label request message, it understands that it is not the egress for
this LSP and makes the necessary reservation before it forwards the packet to the
next LSR specified by the message. The same processing takes place at the LSR2,
which is the next LSR along the wanted LSP. When the label request message
arrives at the egress LER, the egress LER determines that it is the egress for this
LSP. It performs any final negotiation on the resources, and makes the reservation
for the given LSP. It allocates a label to the new LSP and distributes the label
message to the last know LSR2 where the message arrived from. This label is
packed in a message called the label- mapping message, which contains details of
the final traffic parameters reserved for the LSP. LSR2 and LSR1, respectively
receives the label mapping message and matches it to the original request using

 23

the LSP ID contained in both the label request and label mapping messages. It
finalizes the reservation, allocates a label for the LSP, sets up the forwarding table
entry, and passes the label to ingress LER in a label- mapping message. The
processing at the ingress LER is similar, beside that it does not have to allocate a
label and forward it to an upstream LSR or LER since it is the ingress for the LSP.

CR-LDP traffic engineering extensions to LDP feature set is comprehensive and
is fairly well defined.
These includes:

• QoS and Traffic Parameters – the ability to define edge rules and per hop
behaviours based upon data rates, link bandwidth and weighting given to
those parameters.

• Path pre-emption – the ability to set prioritisation to allow or not allow
pre-emption by another LSP.

• Path re-optimisation – allows for the capability to re-path loosely routed
LSPs based upon traffic pattern changes and includes the option to use
route pinning.

• Failure alert – upon failure to establish a LSP, alert is provided with
supporting failure codes.

• Failure recovery – mapping policies to automatic failure recovery at each
device supporting a LSP.

• Management – LSP ID identifies each LSP, thereby allowing ease of
management to discrete LSPs.

3.2.4 Packet forwarding

This component is responsible of forwarding packets. It forwards packets
based on the decisions that the path selection and path- signalling component have
made. Here, traffic is allocated to established LSP tunnels. This functional
component consists of a partitioning function and an apportionment function. The
partitioning function partitions ingress traffic according to some principle of
division and the apportionment function sends the partitioned traffic to established
LSP tunnels according to some principle of allocation [2]. In this way one can
achieve load sharing. I refer again to figure 3.2 where forwarding of packets is
illustrated. Packets entering the MPLS domain gets assigned MPLS labels while
they are switched form one LSR to another, following an established LSP path
before they leave the domain with their original destination network layer address.

3.2.5 Rerouting

In a traffic- engineered network, one must expect the network to be able to
respond to changes in the network topology and maintain certain stability. Any
link or node failure should not disrupt high-priority network services, especially
the higher classes of service. Fast routing is a mechanism that minimizes service
disruptions for traffic flows affected by an incident, and optimised rerouting re-
optimises traffic flows affected by a change in topology.

 24

In MPLS, splicing and stacking techniques are utilized to enable local repair
of LSP tunnels. In the splicing technique, an alternative LSP tunnel is pre-
established to the destination, from the point of protection via a path that bypasses
the downstream network elements being protected. When detecting a failure at a
link or a node, the forwarding entry of the protected LSP tunnel is updated to use
the label and interface of the bypass LSP tunnel. The stacking technique creates a
single alternative LSP tunnel, acting as the replacement for the failed link. It
bypasses the protected link. The local router maintains a label that represents the
bypass tunnel.

3.3 Quality of Service support with MPLS

Although the original idea behind the development of MPLS was to
facilitate fast packet switching, currently its main goal is to support traffic
engineering and provide quality of service (QoS). The goal of traffic engineering
is to facilitate efficient and reliable network operations, and at the same time
optimise the utilization of network resources. MPLS support this goal and
enhance traffic oriented performance characteristics. For example, non-shortest
paths can be chosen to forward traffic. Multiple paths can also be used
simultaneously to improve performance from a given source to a given
destination. Since it uses label switching, packets of different flows can be
labelled differently and thus receiving different forwarding, and hence different
quality of service.

Specific flows of traffic can then become aggregated to achieve a more

scalable way to perform QoS support in the backbone of a service provider’s
network [36]. There are 3 bits dedicated for the QoS in the MPLS header. With
these bits set in the header, LSRs can make the proper decision for provisioning
QoS. MPLS has actually no functional method for assuring QoS, but it can be
combined with Integrated Services or Differentiated Services to become
complementing.

3.3.1 Integrated Services

IntServ, as it is also referred to, provides for an end-to-end QoS solution by

way of end-to-end signalling [17]. IntServ specifies a number of service classes
designed to meet the needs of different application types. RSVP [22] is an IntServ
signalling protocol that is used to make requests for QoS using the IntServ service
classes. The IntServ model [17] proposes two services classes in addition to best-
effort services. The first one is guaranteed service [18] for applications requiring
fixed delay bounds. The second one is controlled-load services [19] for
applications requiring reliable and enhanced best-effort service. These service
classes can be requested with help from the RSVP signalling protocol.

 25

3.3.2 IntServ implementation with MPLS

MPLS can be enabled on LSRs by associating labels with flows that have

RSVP reservations. Packets for which a RSVP reservation has been made can be
considered belonging to one FEC. A label can identify each FEC. Bindings
created between labels and the RSVP flows must be distributed among the LSRs.
Figure 3.5 illustrates the scenario, where on receipt of an RSVP PATH message,
the host respond with a standard RSVP RESV message. LSR3 recieves the RESV
message and allocates a label and sends out an RESV message with a label object
and the value of the label 7 to LSR2. The other LSRs in turn assign their label
information associated with the FEC. As the RESV message precede, the LSRs
and LSP is established along the RSVP path, making it possible for each LSR to
associate QoS resources with the LSP.

Figure 3.5 MPLS PATH and RESV message flow

3.3.3 IntServ scalability drawbacks

The IntServ RSVP per-flow approach to QoS described is clearly not

scalable and leads to complexity of implementation. The philosophy of the
IntServ model is that there is inescapable requirement for routers to be able to
reserve resources in order to provide special QoS for specific user packet flows
[16]. A problem with IntServ is the amount of state information stored in each
router, which increases proportionally with the number of flows. This places a
huge storage and processing overhead on the routers, thus not scaling well in the
Internet core.

RSVP is referred to as a “soft state” protocol. After an initial LSP set-up
process, refresh messages must be exchanged between peers periodically to notify
the peers that the connection is still desired. If the refresh messages are not
exchanged, a maintenance timer senses the connection as unwanted to continue

 26

and deletes the state information, returns the label and reserved bandwidth to the
resource pool and notifies the effected peers. The “soft state” approach can be
viewed as a self –cleaning process since all expired resources eventually are freed.

It is stated in [35], that the RSVP Refresh overhead is seen as a fundamental
weakness in the protocol and therefore not scalable. This issue rises when
supporting numerous small reservations on high bandwidth links, since the
resource requirements on a router increases proportionally. Extensions are made
to the RSVP to try to overcome this problem with defined RSVP objects that are
sent inside standard RSVP messages. To reduce the volume of exchanged
messages between two nodes, an RSVP node can group a number of RSVP
refresh messages into a single message. This message is sent to the peer router
where it is disassembled and each refresh message is processed. In addition, the
MESSAGE_ID and MESSAGE_ID_ACK objects have also been added to the
protocol. These objects are used to hold sequence numbers corresponding to
previously sent refresh messages. While the peer router receives a refresh message
with a non-changing MESSAGE_ID, it assumes that the refresh state is identical
to the previous message. Only when the MESSAGE_ID value changes does the
peer router have to check the actual information inside the message and act
accordingly. To further enhance the summarization process, sets of
MESSAGE_ID’s can be sent as a group to the peer router in the form of
“summary messages”. While this strategy will substantially decrease the time
spent exchanging information between the peer routers, it does not eliminate the
computing time required to generate and process the refresh messages them-
selves. Time must still be spent checking timers and querying the state of each
RSVP session. In short, the scalability issues of RSVP has some how been
addressed, but not fully.

3.3.4 Differentiated Services

DiffServ as it is also referred too emerged because of the drawbacks
mentioned with the IntServ model and RSVP. In the Differentiated Service model
[21], IPv4 header contains a Type of Service (ToS) byte. In the standard ToS
based QoS model, packets are classified at the edge of the network into one of
eight different classes. This is accomplished by setting three precedence bits in the
ToS (Type of Service) field of the IP header. The three precedence bits are mainly
used to classify packets at the edge of the network into one of the eight possible
categories listed in table 3.2.

Number Name IP Precedence DSCP
0 Routine IP precedence 0 DSCP 0
1 Priority IP precedence 1 DSCP 8
2 Immediate IP precedence 2 DSCP 16
3 Flash IP precedence 3 DSCP 24
4 Flash override IP precedence 4 DSCP 32
5 Critical IP precedence 5 DSCP 40
6 Internet control IP precedence 6 DSCP 48
7 Network control IP precedence 7 DSCP 56

Table 3.2 IP Precedence values Table 3.3 IP Precedence to DSCP Mapping

 27

However, choices are limited. Differentiated Services defines the layout of
the ToS byte (DS field) and a basic set of packet forwarding treatments (per-hop
behaviours) [20]. Marking the DS fields of packets differently and handling
packets based on theirs DS fields; one can create several differentiated service
classes. A 6-bit differentiated service code point (DSCP) marks the packet’s class
in the IP header. The DSCP is carried in the ToS byte field in the IP header. 6-bit
can result in the implementation of 64 different classes. As shown in table 3.3, IP
precedence levels can be mapped to fix DSCP classes. [20,21], define the
DiffServ architecture and the general use of bits within the DS field. This
supersedes the IPv4 ToS octet definitions of [25].

In order for a customer to receive differentiated services from its Internet

Service Provider (ISP), it must have a service level agreement (SLA) with its ISP.
An SLA is a specification of the service classes supported and the amount of
traffic allowed in each class. It can be static or dynamic. Static ones are negotiated
on a monthly/yearly basis. If dynamic, a signalling protocol such as RSVP must
be used to request services on demand.

Differentiated services are significantly different from integrated services.

First, there are only a limited number of service classes indicated by the DS field.
This makes it more scalable, since the amount of state information is proportional
to the number of classes rather than the number of flows. Second, sophisticated
classification, marking, policing, and shaping operations are only needed at the
boundary of the networks. ISP core routers need only to have behaviour aggregate
classification. Therefore, it is more scalable to implement and deploy
differentiated services.

3.3.5 Per-Hop Behaviour (PHB)

As illustrated in figure 3.6, network elements or hops along the path
examine the value of the DSCP field and determine the QoS required by the
packet. This is known as per-hop behaviour (PHB). Each network element has a
table that maps the DSCP found in a packet to the PHB that determines how the
packet is treated. The DSCP is a number or value carried in the packet, and PHBs
are well-specified behaviours that apply to packets. A collection of packets that
have the same DSCP value, and crossing a network element in a particular
direction, is called a Behaviour Aggregate (BA). PHB refers to the packet
scheduling, queuing, policing, or shaping behaviour of a node on any given packet
belonging to a BA.

 28

Figure 3.6 PHB based on DSCP value

Four standard PHB implementations of DiffServ are available:

Default PHB
The default PHB results in a standard best-effort delivery of packets. Packets
marked with a DSCP value of 000000 get the traditional best-effort service from a
DS-compliant node. Also, if a packet arrives at a DS-compliant node and its
DSCP value is not mapped to any of the available PHBs, it is mapped to the
default PHB.

Class-Selector PHB
In order to preserve backward compatibility with ToS based IP QoS schemes,
DSCP values of the form xxx000 are defined (where x equals 0 or 1). Such code
points are called class-selector codepoints. The default code point 000000 is a
class-selector codepoint. The PHB associated with a class-selector code point is a
class-selector PHB. These PHBs retain almost the same forwarding behaviour as
nodes that implement IP QoS classes based on the ToS classification and
forwarding. As an example, packets that have a DSCP value of 101000 (IP ToS =
101) have a preferred forwarding treatment as compared to packets that have a
DSCP value of 011000 (IP ToS = 011). These PHBs ensures that DS-compliant
nodes can coexist with IP ToS-based aware nodes.

Expedited Forwarding (EF) PHB
The DSCP marking of EF, results in expedited forwarding with minimal delay
and low loss of packets. These packets are prioritised for delivery over others. The
EF PHB in the DiffServ model provides for low packet loss, low latency, low
jitter and guaranteed bandwidth service. EF can be implemented using priority
queuing, along with rate limiting on the class. According to [38], the
recommended DSCP value for EF is 101110.

Assured Forwarding (AF) PHB
The DSCP marking of AF packets specifies an AF class and drop preference for
IP packets. Packets with different drop preference within the same AF class are
dropped based on their relative drop precedence values within the AF class [26].
Also [26] recommends 12 AF PHBs representing four AF classes with three drop-
preference levels in each.

 29

The Assured Forwarding PHB defines a method by which BAs can be given
different forwarding assurance. The AFxy PHB defines four classes: AF1y, AF2y,
AF3y and AF4y. Each class is assigned a certain amount of buffer space and
interface bandwidth, dependent on the customer’s SLA with its service provider.
Within each AFx class, it is possible to specify three-drop precedence values. If
there is congestion in a DiffServ enabled network element on a specific link, and
packets of a particular AFx class need to be dropped, packets are dropped such
that dp(AFx1)<=dp(AFx2)<=dp(AFx3), where dp(AFxy) is the probability that
packets of the AFxy class will be dropped. The subscript y in AFxy denotes the
drop precedence within an AFx class. For example, packets in AF23 get dropped
before packets in AF22 and before packets in AF21. Table 3.4 shows the DSCP
values for each class, and drop precedence. According to [26], an AFx class can
be denoted by the DSCP xyzab0, where xyz is 001, 010, 011 or 100, and ab
represents the drop precedence bits.

Drop Precedence Class 1 Class 2 Class 3 Class 4
Low drop precedence (AF11) (AF21) (AF31) (AF41)
 001010 010010 011010 100010
Medium drop precedence (AF12) (AF22) (AF32) (AF42)
 001100 010100 011100 100100
High drop precedence (AF13) (AF23) (AF33) (AF43)
 001110 010110 011110 100110

Table 3.4 Diffserv AF codepoint table

3.3.6 DiffServ implementation with MPLS

MPLS LSRs do not examine the contents of the IP header and the value of
its DSCP field as required by DiffServ. This means that the appropriate PHB must
be determined from the label value. The MPLS shim header has a 3-bit field
called EXP. It was originally defined for experimental use. This field supports
eight different values and is used for MPLS support of up to eight DiffServ
classes. As illustrated in figure 3.7, the IP precedence bits from the ToS field or
the first 3-bits of the DSCP field are copied into the MPLS EXP field at the
ingress router. Each LSR along the LSP maps the EXP bits to a PHB. The service
provider can also set an MPLS packet’s CoS to a different value, as determined by
a service offering. This feature allows the service provider to set the MPLS EXP
field instead of overwriting the value in the customer’s IP ToS or DSCP field.
This leaves the IP header intact and available for the customer’s use. The
customer configured CoS is not changed as the packet travels through the MPLS
configured network. The LSPs created this way are known as E-LSPs or explicit-
LSPs. E-LSPs are established before any traffic gets to use it. E-LSPs can support
up to eight PHBs per LSP.

 30

Figure 3.7 MPLS E-LSP

As illustrated in Figure 3.8, if more than 8 PHBs are needed in the MPLS
network, L-LSPs (Label LSPs) are used, in which case the PHB of the LSR is
inferred from the label. The label to PHB mapping is signalled. Only one PHB per
L-LSP is possible, except for DiffServ AF. In the case of DiffServ AF, packets
sharing a common PHB can be aggregated into a FEC, which can be assigned to
an LSP. This is known as a PHB scheduling class. The drop preferences are
encoded in the EXP bits of the shim header, as illustrated in figure 3.8.
E-LSPs are more efficient than L-LSPs, because the E-LSP model is similar to the
standard DiffServ model. Multiple PHBs can be supported over a single E-LSP.
The total number of LSPs created can be limited, thus saving label space.

Figure 3.8 MPLS L-LSP

3.3.7 Aggregation of traffic flows with MPLS and Diffserv

Traffic flows are referred to as unidirectional stream of packets [36].

Typically a flow has very fine granularity and reflects a single interchange
between hosts that communicates. An aggregated flow is a number of flows that
share forwarding state and a single resource reservation along a sequence of
routers.

 31

With MPLS and differentiated services, packets get classified and forwarded

through established LSPs. Traffic classes are separated based on the service level
agreements. Priority traffic is likely to come in many flavours, depending on the
application. Particularly flows may require bandwidth guarantees, jitter
guarantees, or upper bounds on delay. For the purpose of this thesis, we will not
distinguish the subdivision of priority traffic. All priority traffic is assumed to
have an explicit resource reservation. When flows are aggregated according to
their traffic class and then the aggregated flow is placed inside a LSP, we call the
result a traffic trunk, or simply a trunk. Many different trunks, each with its own
traffic class, may share an LSP if they have different traffic classes.

As described, packets may fall into a variety of different traffic classes. For ISP
operations, it is essential that packets be accurately classified before entering the
ISP backbone and that it is very easy for a ISP ingress router to determine the
traffic class for a particular packet. The traffic class of MPLS packets can be
encoded in the three bits reserved for experimental use within the MPLS label. In,
addition, traffic classes for IP packets can be classified via the ToS byte, possibly
within the three precedence bits within that byte.

As, described above, traffic of a single traffic class that is aggregated into a single
LSP is called a traffic trunk, or simply a trunk. Trunks are very useful within the
architecture because they allow the overhead in the infrastructure to be decoupled
from the size of the network and the amount of traffic in the network [36]. While
the size of the traffic scales up, the amount of traffic in the trunks increases, but
the number of trunks doesn’t. In a given network topology, the worst case would
be to have a trunk for every traffic class from each ingress router to each egress
router. If there exist N routers in the topology and C classes of service, this would
be (N* (N-1) * C) -trunks. To make this more scalable its stated in [36], that
trunks with a single egress point which share a common internal path can be
merged to form a single tree. Since each sink tree created touches each router at
most once and there is one sink tree per egress router, the result is N * C sink
trees. Also the number of sink trees can be reduced if multiple sink trees for
different classes follow the same path. This works because the traffic class of a
sink tree is orthogonal to the path defined by its LSP. This makes it possible for
two trunks with different traffic classes to share a label for any part of the
topology that is shared and ends in the egress router. This again forces out that the
entire topology can be overlaid with N trunks.

MPLS and diffserv are actually very complementing in the process of
supporting traffic trunks by aggregating traffic flows and placing these in LSPs
established. MPLS can thus make the route for the flows of packet entering a
service provider’s network. Diffserv in other hand can decide which treatment a
packet will get while travelling between routers along the LSPs. Therefore, flows
with different CoS can be aggregated and engineered through the backbone by the
MPLS and diffserv architecture.

 32

3.4 Summary over MPLS Traffic Engineering and QoS Support

Multi protocol label switching (MPLS) is an emerging technology that aims
to address many of the existing issues associated with packet forwarding in
today’s Internetworking environment. As stated in this chapter, it can be used to
engineer traffic, and also combined with diffserv assure QoS support to traffic.

MPLS traffic engineering mechanism takes place by establishing LSPs that

can carry traffic through desired path. Packets get classified when entering the
ingress router at the edge of the MPLS enabled network. When classified, they are
assigned a MPLS header by their FEC class, which helps them to get engineered
through the network. When traffic is engineered, the flowspec configured governs
the traffic characteristic and requested class of service implied to it. These
flowspecs govern the type of class, amount of traffic allowed to enter, and other
details of traffic imposed to the ingress router to be engineered through a LSP.
Figure 3.9 illustrates the way flowspecs function through a LSP. Combined with
differentiated services, one can achieve traffic engineering with QoS support.
LSPs are first configured between each ingress-egress pair. For each traffic class,
a flowspec may be installed. As the number of transmitting flow increases, the
number of flows in each LSP increases. But the number of LSPs or flowspecs
does not need to increase.

Figure 3.9 Flows within a LSP

Traffic engineering is the process of arranging traffic flows through the
network so that congestion caused by uneven network utilization can be avoided.
Avoiding congestion and providing graceful degradation of performance in
congestion are complementary. Traffic engineering therefore complements
differentiated services. In summary MPLS will set up a route for a flow and at the
same time govern the amount of traffic allowed into the network, it specify the
next hop for a packet, while differentiated services will specify the treatment of a
packet waiting to make that next hop.

 33

4 Introduction to simulation

To begin with we did an experiment with a network configured to run
shortest path routing protocol OSPF. We considered this necessary in order to
gain experience with the simulation tool and to highlight some of the shortest path
routing principal as mentioned earlier in this thesis. However, we chose not to
elaborate the results extensively because of the focus of this thesis on traffic
engineering topic and the available time to us. Furthermore, we experimented
with MPLS architecture to experience its features of traffic engineering. Intention
was to investigating the treatment of this protocol on flows of traffic getting
engineered. We then move on fine-tuning the MPLS configured network to also
take into consideration the QoS aspects of traffic flows within a traffic-
engineered path.

4.1 Simulation tool

Optimised Network Performance (OPNET) [14] is a discrete event
simulation tool. It provides a comprehensive development environment
supporting the modelling and simulation of communication networks. This
contains data collection and data analysis utilities. OPNET allows large numbers
of closely spaced events in a sizeable network to be represented accurately. This
tool provides a modelling approach where networks are built of nodes
interconnected by links. Each node’s behaviour is characterized by the constituent
components. The components are modelled as a final state machine. We have
chosen to use OPNET as our simulation tool. Details of OPNET Modeler 8.1 can
be found in [23,24]

Our objective with using this simulation tool for our experiments, were to gain a
better understanding of its use for further research and simulation of
communication systems. We therefore used a lot of time and energy
understanding using it as a simulation tool. The time and energy spent on leaning
to master the tool did however not have anything to do with the software user
friendliness, contrary it is quite well arranged to provide and represent all the
functionality it beholds.

4.2 Network topology

Figure 4.1 illustrates our networking topology. The network topology used
in our experiments was designed to be simple. This was chosen due to the time
consuming simulation. The network topology cannot be said to be a realistic
operational network. However, our intention was to create a networking
environment, which could represent a part of an overall network topology of an
ISP network. The model suite supported workstations, servers, routers, and link
models. We used access routers at the edge of the network where the traffic was
transmitted to or received from the sites. The core routers were configured to

 34

handle traffic from the edge routers. We used DS1 links between all networking
devices, meaning that the maximum throughput was set to 1,544,000 bits/sec. The
sites were actually workstations and server transmitting or/and-receiving data. We
have chosen to call them sites, because they could have behaves as theirs own
networking environment connected to a service provider edge router.

Figure 4.1 Overview of the experiential network model.

4.3 General experimental conditions regarding all simulation

scenarios

We configured applications, which used TCP and UDP as their transport
protocol. With these applications generating traffic, our intention was to measure
the treatment of these traffic types when shortest path routing, MPLS-TE and
MPLS-TE with QoS support is implied. Since most of the traffics getting
transmitted in today’s Internet use TCP or UDP as transport protocols, these
protocols were the right choice for experiments within our simulations.

We gave the network approximately two minutes before traffic generation

was triggered. This was done to make sure the routers had enough time to
exchange topology information and building up their routing tables. Of course, we
knew that this was not necessary in a small networking environment as the one we
configured. However, we did not managed to get the software simulation program
to start generating traffic earlier than 100 seconds. From the second minute, file
transfer application was triggered to start, making TCP to transport its packets
through the network. TCP traffic intensity was set to 1,5 Mbytes/sec of files
uploaded to the server. This gave us the intensity of 1,500,000 bits/sec. The other
application was set to start one second later transporting its packets with UDP
transfer protocol. There were configured five application of this sort, with exactly
same configuration triggered to start one second after each other. The reason for
this was that we wanted to cautiously each time increase the same UDP traffic
intensity to measure its impact on TCP traffics. UDP packets were set to 37500

 35

bytes/sec. This gave us the traffic intensity of 300,000 bits/sec multiply by five
applications achieving 1,500,000 bits/sec of traffic intensity.

The maximum transmission unit (MTU) was set to the Ethernet value of

1500 bytes. The MTU specify the IP datagram packet that can be carried in a
frame. When a host send an IP datagram, therefore, it can choose any size that it
wants. A reasonable choice is the MTU of the network to which the host is
directly attached. Then a fragmentation will only be necessary if the path to the
destination includes a network with a smaller MTU. Should the transport protocol
that sits on top of IP give IP a packet larger than the local MTU, however, then,
the source host must fragment it. The packets sent from the file transfer
application, was set to 1,5 Mbytes. However, we configured the interfaces on
routers and workstations to segment the file in Ethernet values. This was a
realistic thing to do, since uploading raw IP packets of such large sizes would not
be very realistic. The maximum massage size of TCP was set to auto assigned,
meaning that the IP value would be used. For a complete, detail coverage of the
TCP configuration parameter we refer to appendix 9.2.

 Referring to figure 4.1, site1 was to communicate with site5 using the file
transfer application, meaning it would start generating the TCP traffic intensity
described above at the second minute. Site2 in other hand, were to use the video
conferencing application, thus making it to generate UDP traffic one second later.
The UDP traffic was transmitted to site4, which accepted video conferencing
related UDP traffic. Table 4.1 summarize the traffic intensity configured for use
within all simulation experimentations made within this thesis.

Site Supported Protocol Start End time Traffic-intensity

Site1 TCP 2m:00s 2m: 06s 1,500,000 bits/sec
Site2 UDP 2m:01s 2m: 06s 300,000 bits/sec
Site2 UDP 2m:02s 2m: 06s 300,000 bits/sec
Site2 UDP 2m:03s 2m: 06s 300,000 bits/sec
Site2 UDP 2m:04s 2m: 06s 300,000 bits/sec
Site2 UDP 2m:05s 2m: 06s 300,000 bits/sec
Site4 UDP N/A N/A N/A
Site5 TCP N/A N/A N/A

Table 4.1 A summarization over the traffic configuration

 Beside these general configurations made, each simulation experiment is
also configured with its own set of specific configurations. These simulation
specific configuration details are outlined within each simulation experiment
chapter. For more detail regarding all simulation scenarios with their respective
configuration details within OPNET Modeler, we refer to appendix [9.2-9.4].

 36

5 Simulation experiment using OSPF

The first scenario was created to obtain experience with the simulation tool,
while at the same time highlight some of the shortest path routing principal as
mentioned in chapter 2.2. Specifically, we aimed to investigate throughput and
queuing delay issues, when traffic flows compete for scarce resources under
overloaded situations. In this scenario, there were not given any quality of service
guarantee to neither of the traffic types. Therefore, no traffic entering the network
would be given any quality of service support. The type of service field of the
packets was therefore set to (0) precedence class, which qualify for the best effort
service class. All the routers were configured using only Open Shortest Path First
(OSPF) as their routing protocol. Details over configurations of network nodes
and traffic implementations within OPNET can be reviewed in appendix 9.2.

5.1 Analysing and discussing experimental results

The results collected from within OPNET, is shown below. From our
experimentation, statistical data were collected concerning throughput and
queuing delay measured from the simulated network. Our objective here is to
analyse and discuss the results gathered from measurements registered. We are
not going to elaborate these results extensively since our focus is concentrated
around the traffic engineering part of this thesis and the time available to us was
unfortunately scarce.

5.1.1 Throughput

As recalled, site1 was configured to generate TCP traffic from the second
minute. The amount of this traffic was 1,500,000 bits/sec. Observing collected
statistics from figure 5.1, we witnessed that this value was reached. A second later
site2 started generating UDP traffic of size 300,000 bits/sec, and each second after
this intensity was been increased with 300,000 bits/sec. Keeping in mind that both
traffic utilised their links towards the ingress router, we registered that the UDP
traffic intensity had a tremendous effect on the TCP traffic intensity. These effects
were registered between sites and the ingress router PE1 every time UDP- traffic
intensity was increased. Figure 5.1, shows that the TCP throughput starts falling,
when the UDP traffic starts generating traffic. This force’s the TCP throughput
fall down below 750,000 bits/sec from its originating 1,500,000 bits/sec within the
time frame of this simulation. The UDP traffic does not care about congestion
within the network, continuing transmitting its traffic regardless of packets
managing to arrive at the intended destination. The UDP traffic starts consuming
resources and stabilizes not before it has reached its maximum traffic intensity at
1,500,000 bits/sec.

Figure 5.2 shows the amount of packets sent from the clients towards the

server. Observing the registered result we witnessed that each times UDP- traffic
increases its traffic intensity; the TCP traffic intensity lowers its intensity equally.

 37

However, some increase was registered right after such incidents. We believe that
these increases of intensity made by TCP after each decreases are related to the
fast retransmit option of TCP RENO implementation. Since TCP registers that it
after an intensity decrease manages to receive acknowledgements for some of its
transmitted packets, its immediate reaction is to starts transmitting more packets
again. Also, there were registered some slightly decrease amount of packets sent
from the UDP generating site. This was interesting since we imagined that UDP
traffic wouldn’t decrease its traffic intensity under overload conditions. However,
these decreases is considered to be very small and takes place under a second each
time. More time and effort is needed to investigate this phenomenon in more
details. Each time such decreases take place we witness some increase from the
TCP generator. It all happens in a matter of mille seconds. It would be interesting
to investigate the TCP congestion window details and fast retransmit option of it
in more details. Unfortunately, we didn’t have the time to elaborate further on this
issue since our work was to be concentrated on the traffic engineering and QoS
aspect of the MPLS architecture. The results presented here should be kept in
mind when results from MPLS traffic engineering are presented later on, to be
able to acknowledge the performance benefits of traffic engineering.

Figure 5.1 TCP and UDP Throughput (bits/sec) Figure 5.2 TCP and UDP Throughput (packets/sec)

The other QoS statistical related result gathered from our simulation were

the throughput measured from paths between routers that handled the traffic
flows. Figures 5.3 and 5.4 below, shows the results gathered from our simulation.
We observed that the throughput between routers combining one path (PE1
P1 P3 PE2), were unutilised, while the other path (PE1 P2 PE2) were
fully utilised. To us, this indicated weakness of the protocol functionality, when it

 38

came to load balance the traffic. We observed that one path’s throughput is
nothing compared with the other one, which obviously needs more capacity. From
the below figures, we observed that the non-shortest path had a stable amount of
zero throughput. The shortest path however, had a throughput of maximum
1,544,000 bits/sec that its links allowed it to carry. From figure 5.4 below, we
observed a slightly drop off value between the 121 and 122 seconds. We don’t
know whether this was related to the simulation software or not. However, we
find it little interesting to elaborate further on this registered result. If it were to
exactly strike at the 121 second, we could have been related it to the time when
UDP traffic starts generating traffic. Nevertheless, this could still be related to the
registered result, only a fraction of mille second late. The overall picture that we
aimed to show here was the fact that the routing protocol did not utilise the
network resources efficiently at times were traffic load conditions are heavy,
utilising only the shortest path between any pair of ingress and egress routers.
With this functionality implied, bottlenecks arise and congestion takes place
within the network. If the network topology were more complex and other traffic
was forwarded from other routers and utilised this path towards some destination,
the results may have been even worst from the ones we registered. In the real
world of ISP networks, different traffic types may end up utilising the same
shortest path, making it possible to achieve the same negative results at any point
between any routers that gets to become part of a shortest path. This force out
congestion points and bottlenecks within a network configured with a shortest
path routing protocol.

Figure 5.3 Throughput(bits/sec) PE1 P1 P3 PE2 Figure 5.4 Throughput(bits/sec) PE1 P2 PE2
 (non-shortest path) (shortest path)

 39

5.1.2 Queuing delay

 We also collected some statistics concerning queuing delay and throughput
from the edge and core routers. From figure 5.5 we registered no activities taking
place between routers combining the non-shortest path. This is not a surprising
result since this path is never been utilised within the simulation time. In the other
hand, the queuing delay from PE1 P2 grows every time the UDP traffic starts
increasing its traffic intensity. The first increase occurs at the 121 second when
the UDP traffic starts generating 300,000 bits/sec. Here we witness a small
increase of queuing delay value. Each time the UDP traffic increases its intensity;
there were registered a higher queuing delay value. This is of course reasonable
result since the amount of traffic that exceeds the amount of capacity limit
imposed by the links increases each second from the time UDP traffic is
generated.

Another explanation for this heavy queuing is that we chose not to

implement early packet dropping. However, implementing this would have given
other results. Since these traffics are best effort class related they could have been
dropped. From figure 5.6 shows that the queuing is much heavier between the
ingress router and the first router along the path. From the second router and after,
the queuing delay has a stable value of 0.008 seconds, which is lower compared
with the earlier queuing along the path. This indicates that heavy queuing only
occurs between the first routers along the shortest path. This is quit reasonable
since the ingress router forwards enough packets that the link connected to the
first core router can carry. Since every other links along the path has the same
capacity, extensive queuing is not necessary any more. Therefore we believe that
the queuing value registered between the core router P2 and the egress router
keeps a normal value when forwarding enough traffic that the links directly
attached to it is able to carry.

 Figure 5.5 Queuing delay path PE1 P1 P3 PE2 Figure 5.6 Queuing delay path PE1 P2 PE2

 40

5.2 Concluding remarks

After observing and analysing the results collected from the simulation, we
did manage to simulate some of the problems concerning the shortest path routing
principal highlighted earlier in this thesis. The simulation showed that UDP traffic
tends to suppress TCP traffic when a shortest path configured network becomes
heavily loaded. In matter of a few mille second, the UDP traffic out conquers the
TCP traffic. The simple answer to this behaviour is that the TCP protocol senses
congestion and are bound to its flow control mechanism, therefore slowing down
transmitting traffic into the network. It does this even when UDP traffic doesn’t
have a higher QoS support granted from the network service provider. In our
simulation, both traffic flows was set to use best effort service class, but this
didn’t stop the UDP to just make the network become congested and suppress the
TCP traffic flow.

The negative effect on the queuing delay between PE1 P2 takes place
because of the traffic that struggles only to use the shortest path to its destination.
Under heavily loaded conditions, this looks like not to be a good choice. The
queuing delay grows for one path, while the other path have plenty capacity to
deal with traffic and are unutilised. The queuing delay causes the outbreak of the
delay growth for both TCP and UDP traffic. Although UDP traffic doesn’t
understand and don’t register whether its packets reaches its destination or not, it
continues to keep its traffic intensity high. The TCP traffic intensity does the
opposite, suffering from its flow control mechanism making it to become the
looser when competing with the UDP traffic. One interesting aspect of queuing
that is worthwhile mentioning is that we only observed heavy queuing between
the first two routers along the shortest path. After these two routers, packets get to
travel normally through the other routers along the path. If we possessed a more
complex topology, we could have registered this effect between any ingress and
first core router along a shortest path computed path. This could also be the case
between any core routers being part of any shortest path carrying traffic path. This
shows that if we had a more complex topology, we would need a very precise and
fast route computation routing protocol in order to manage to have the right
information about the cost of each link at any time. It has not been an easy task to
come up with such a shortest path routing protocol. We would still get the
oscillation effect even if this were available. We therefore conclude that this is a
major flaw with the current shortest path routing protocol.

Also, the shortest path routing comes short when it comes to load balancing

traffic in a efficient way. We are of course aware of the load balancing options of
OSPF, but as stated in the beginning of this thesis, it cares for much
administration and can get awfully complicated in a more complex networking
environment. Shortest path routing doesn’t imply efficient load balancing of
traffic so a more efficient utilized networking environment can take place. The
routing protocol is to be blamed, not being intelligent enough to sense when to use
under utilized paths when forwarding traffic.

 41

6 Simulation experiment using MPLS -TE

In this chapter, we experiment with traffic engineering with help of MPLS.

After the presentation of the architecture itself, our aim was to investigate its
performance and treatment of the flows it traffic engineer. We aimed to engineer
flows of traffic in a way to secure a more efficient utilized network, while
avoiding at the same time bottlenecks within the network. As the preceding
experiment, no quality of service support was given to traffic entering the MPLS
domain. Traffic engineering was only implied based on which protocol traffics
used. Measurements were taken to investigate its performance features concerning
delay and throughput between nodes within the network.

6.1 MPLS Traffic engineering configurations

Figure 6.1 illustrates the MPLS traffic- engineering scenario. The preceding
network model was copied and the only changes made were the red and blue
coloured stretched arrows combining label- switching paths through the
experiential network. Below, details over the MPLS traffic engineering related
configurations are presented. For a complete and more detail specifications over
this experiential network, we refer to appendix 9.3

Figure 6.1 Overview of the MPLS experiential network model

In order to be able to traffic engineer flows of traffic, label-switching paths

(LSPs) had to be installed. With RSVP, which is outlined in chapter 3.2.3, we
reserved resources combining the paths for label switching. Static LSPs were
established, in order for us to have a more precise control over the path a flow was
to use. Flowspecs governed by the ingress router for traffics injected into the
network were also specified. Table 6.1 below outlines the two separable parts to

 42

the flowspec, TSpec and RSpec. Flowspec1 for traffic entering the red LSP and its
traffic characteristics TSpec was configured with maximum bit rate of 1,544,000
bits/sec, average bit rate of 1,500,000 bits/sec, maximum burst size of 64,000
bits/sec, and its RSpec was best effort service class. A copy of this flowspec were
made and configured for the blue LSP. Table 6.1 summarizes the flowspec
configuration table. Since we traffic engineered by means of transport protocol
type, traffic entering the LSP without the right type of protocol was discarded.

Flows Max. Bit rate (bits/sec) Average Bit Rate (bits/sec) Max. Burst Size (bits) Out of profile action

Flowspec1 1,544,000 1,500,000 64,000 Discard
Flowspec2 1,544,000 1,500,000 64,000 Discard

Table 6.1 Flowspec Configuration Table

The LSPs were installed between the pair of ingress and egress routers

called the LER1 and LER2. These routers played a very important role, since they
governed and controlled the mappings of the three important MPLS configuration
elements called the forwarding equivalence class (FEC), flowspec, and LSP
usage. One FEC class was given to one type of flow, in our case the TCP traffic,
and the other FEC class was given to our second traffic type, the UDP traffic.
Since we had configured traffic flows entering the network from left to right,
meaning that site1 and site2 generating traffic towards site4 and site5, ingress
router (LER1) interfaces had to be configured right. This meant that LER1 had to
be configured to assign FECs based on which interfaces and what kind of traffic
that was transmitted to it. Also, in order to assign FECs, other information
gathered from incoming packets was inspected too at ingress router LER1. Based
on the information, FECs was assigned from governing rules outlined in table 6.2.

FEC name Protocol used Destination address LSP Usage

TCP Traffic TCP 192.0.13.2 (Site5) Blue LSP
UDP Traffic UDP 192.0.11.2 (Site4) Red LSP

Table 6.2 FEC specification table

At the ingress router LER1, packets was categorized and assigned an
appropriate FEC. The FECs were then mapped to the right flowspec, which used a
certain LSP. This way, the incoming traffic was engineered based on some
administrative rule. Since our intention was to remedy the drawbacks experienced
with the shortest path experiential network, our MPLS-TE configuration had the
objective to measure the performance achieved by traffic engineering TCP traffic
and UDP traffic to separate paths within the network. UDP-traffic was therefore
configured to utilise the red LSP, while TCP-traffic was to utilise the blue LSP.

 43

6.2 Analysing and discussing experiential results

The statistics collected from within OPNET, is shown below. From our
experimentation, we collect statistics concerning MPLS traffic engineering. Our
objective here is to analyse and discuss the results gathered from measurements
registered. By this, we aim to investigate the MPLS traffic engineering
architecture and its benefits. Below, various measurements concerning our
findings are analysed and discussed.

6.2.1 Throughput

As recalled, site1 was configured to generate TCP traffic from the second

minute. The amount of this traffic was 1,500,000 bits/sec. And as we observed
from the result shown in figure 6.2, we witnessed that this value was reached and
was stable until the UDP traffic started making some activities. A second later
after the TCP traffic generation UDP started generating traffic. Keeping in mind
that both traffic utilised their own link towards the ingress router, we registered
that the UDP traffic intensity had some effect on the TCP traffic intensity. These
effects did take place every time UDP- traffic intensity was increased. There were
registered transient values between 1,544,000 bits/sec, which is the maximum
capacity and all the way down to 1,250,000 bits/sec. These transients values
registered may have been taken place because of combination of several factors.
Below we outline two factors that we believe might be the cause of values
registered.

First, TCP acknowledgements did travelled from the server back towards the

client along the shortest path. With this shortest path being severely busy handling
the UDP traffic, this would make it difficult for the ack packets to get transmitted
when heavy UDP traffic was competing with it for the same shortest path
resources. The UDP traffic was guaranteed the bandwidth for its use by the
unidirectional LSP, which utilised the same shortest path that the server would be
using for transmitting acknowledgment packets towards the FTP client. We found
this very interesting since this issue was not been referred to by all the related
work we came over to study. It’s obvious that the FTP client would suffer, not
receiving its acknowledgements in time. It’s difficult to point out every single
event that could reveal the transient values of both traffic types, even though both
traffic types get to use separate paths towards their destination. But when it comes
to the TCP traffic, we point out that one of the reasons is the missing in time
acknowledgements expected from the sender. When configuring the experiential
network, we didn’t take this issue in consideration, but it’s worth exploiting
further to measure its impact on TCP traffic. When traffic engineering TCP
traffic, one might take into consideration the path an acknowledgment packet
might take towards the transmitter side. Of course, this is not relevant when
enough bandwidth is available. We are also fully aware of the fact that the ack
packets are relatively small in size, and the links we used were duplex ones.
Therefore, we cannot be sure of whether this issue has an impact when it comes to
the TCP –traffic intensity drop offs values registered. In our case it was enough
bandwidth available to cope with both the UDP traffic and the TCP ack packets
until the UDP traffic, which uses the shortest path reached its maximum traffic

 44

intensity at its last traffic intensity increase. It is then when we registered the
lowest achieved TCP throughput. After a fraction of a second the throughput
however manages to struggle back to its maximum traffic intensity. This jump
back does actually occur each time a drop off takes place. We believe that this fast
retransmit of traffic is done with help of TCP RENO implementation details.
Because of short available time, we did not manage to investigate this issue any
further. We let this be an open issue for further research.

 Figure 6.2 TCP and UDP throughput towards LER1 Figure 6.3 Only TCP throughput towards LER1

Second, we turn to another factor that is related to the ingress router, which is
responsible for the forwarding of traffic transmitted to it. Packets intended to be
traffic engineered must follow the policy of and reservation of the label- switching
path that it’s going to use. When utilising a LSP, the router must keep track of
which flowspec established for the LSP the packets gets to use. LER1 which is the
ingress router must then govern the amount of average bit rate allowed by the
flowspec defined for each LSP. The flowspec which was defined and used by
TCP traffic, allowed only an average bit rate of 1,500,000 bits/sec. With TCP
traffic exceeding at some points the average bit rate traffic intensity, some
queuing at the ingress router had to be taken place to govern the amount of
average bit rate limit configured. Figure 6.7, shows the amount of queuing delay
between the ingress router LER1 and the first router along the path. The queuing
delay has some direct impact on the TCP protocol. TCP protocol would register
the delay and lower its intensity, thus causing the traffic intensity drop off values
registered. With TCP protocol sensing some delay for acknowledgements, it
suffers from its flow control mechanism, thus lowering its transfer intensity. We
believe that this is the major factor for this incident. Observing the registered
result presented, we noticed that each time the UDP traffic increases its activity its

 45

activity is affected on the queuing delay between ingress and first core router
along the path. Consequently, this is again reflected on TCP throughput between
the source and ingress router. Every increase of UDP traffic intensity, mark a fall
on TCP traffic intensity. It’s important to establish that more investigation is
needed to exactly point out the reason for this incident. With shortage of time
available to us, we believe more research is needed in this area. However, we are
amazed by our discoveries and encourage further investigation of the MPLS
traffic engineering and its treatments of traffic when engineering them.

But the overall intention was to make the TCP traffic not to suffer from
UDP traffic injected into the network, by engineer it to a separate path apart from
the UDP traffic. In the beginning of this thesis we explained the suppression the
TCP traffic would achieve when competing with the UDP traffic for the same
shortest path resources. This was also simulated in the precedent chapter. Since
TCP have a flow control mechanism, it would lower its traffic intensity when
signs of congestion appear in the network. UDP traffic in other hand doesn’t
suffer from this flow control mechanism, making it to become the winner of the
two protocols under heavy load conditions. Since we traffic engineered these
flows to separate paths with MPLS-TE, both traffic types kept growing almost to
the maximum available bandwidth capacity. This shows that even with some
degradation of TCP traffic intensity registered from the sources towards the
ingress router, the TCP- and UDP traffic comes out with an acceptable
performance. Achieving almost full utilisation of available network resources

Other results gathered from our MPLS-TE experimentation were the
throughput measured from paths between routers that handle the traffic flows.
Figures 6.4 and 6.5, shows the results gathered from our simulation. We registered
that the throughput between routers combining the shortest path and non- shortest
path, were more balanced compared with the shortest path configured network
simulated earlier. However, we witnessed some interesting results form
measurements taken. From figure 6.4, we witnessed the TCP traffic throughput
travelling through the blue coloured LSP. Here, the throughput starts climbing to
its intended 1,500,000 bits/sec. Thereafter, registering unstable throughput values
which occurs approximately each second. Each second, the throughput gets
decreased, and then jumps back up to its maximum throughput intensity. Our
interpretation of this behaviour is a combination of issues discussed below.
However, here we sense a more strongly relation between TCP- and UDP traffic
intensity. Each time the amount of UDP traffic intensity is increased, we get to
witness its impact on TCP traffic intensity. To recapitulate, we increased the UDP
traffic intensity each second within our experimentation. The TCP throughput
drop offs takes place approximately at the same times when UDP traffic intensity
is increased. This is not a very dramatic effect since the throughput retains its
original high throughput right after registering the UDP traffic intensity increase.

From these results registered, we have to confirm that the non-shortest path

was more efficiently utilised with the traffic engineering capabilities of MPLS.
With no traffic engineering, we had probably witnessed no throughput activity
along the non-shortest path as simulated in the preceding chapter. TCP traffic
would have then suffered a lot more when competing with its rival UDP traffic
along the shortest path.

 46

Figure 6.4 Throughput(bits/sec) LER1 P1 P3 LER2 Figure 6.5 Throughput(bits/sec) LER1 P2 LER2
 (Blue LSP) (Red LSP)

From figure 6.5, we witnessed the throughput intensity from path
combining routers (LER1 P2 LER2) through the red coloured LSP. The
UDP traffic throughput was less interesting. However, here too we registered
slightly unstable throughput activity. But these are so small that we find it little
relevant and interesting to investigate. In other hand, path utilisation along the
shortest path was stepwise utilised relative to the adaptive increase of the UDP
traffic in time. Since UDP traffic gets to utilise this path alone, we manage to
avoid congestion and bottlenecks within the network. If shortest path routing were
configured, we would have over utilised this path, making both traffic streams to
suffer from congestion within the network.

We also collected statistical results from traffic amount that tried to enter

and the actual amount of traffic managed to exit the LSPs. Figure 6.6 and 6.7
shows the plotted results. From figure 6.6, which shows the amount of traffic
entering and exiting the blue coloured LSP, we registered the treatment TCP
traffic achieved within this LSP. The black colour line within the graph shows the
amount of traffic entering the LSP, while the green colour line indicates the
amount of traffic managing to exit the LSP. From the left figure below, we
witness that traffic imposed on the LSP is treated well and shows that the same
amount of traffic gets to be forwarded using the LSP. Of course, some differences
were registered between the two graphs plotted. However, the amount of traffic
heading out of the LSP was not registered being lower than the amount of traffic
entering the LSP until the two last drop offs registered. These drop offs are
however small and neither important nor relative enough to be elaborated further
on. The same goes for UDP traffic and its utilisation of the red colour LSP. Here
too the amount of traffic entering and exiting the LSP was equal.

 47

Figure 6.6 Throughput(bits/sec) In &Out Figure 6.7 Throughput(bits/sec) In &Out
 (Blue LSP) (Red LSP)

6.2.2 Queuing delay

We also collected some statistics concerning queuing delay from the edge and

core routers, which was related to QoS. From figures 6.8 and 6.9, we can observe
that the queuing delay is more balanced between the both paths comparing it with
the shortest path routing scenario. The most interesting discoveries were done at
the ingress router LER1. Here, queuing delay value some how jumped to a higher
value each time the amount of UDP traffic passing through the ingress router
LER1 were increased. The queuing delay value did each time increase, and then
went back to its normal value. Also the amount of this sudden increase was
related with the amount of UDP traffic getting increased. Each time the UDP
traffic increased its traffic intensity with 300,000 bits/sec the queuing delay was
affected with higher value on the TCP traffic queuing delay time. A reasonable
reason for this effect may be the fact that the ingress router that gets to handle
both traffic-types become busier forwarding traffic. This undesired effect takes
place even when both traffic types get to use separate paths towards the egress
router within the MPLS domain.

UDP traffic, which utilises the path LER1 P2 LER2, seems to have a
lower queuing delay values than the TCP traffic. This is the case until UDP traffic
intensity starts closing in to the maximum link capacity available to it. It keeps a
steady value approximately at 0.0075 seconds, until its last additive increase of
300,000 bits/sec, achieving 1,200,000 + 300,000 = 1,500,000 bits/sec. Then it
starts sensing its maximum and average bit rate amount allowed by the flowspec
defined for traffic intended to utilise the red coloured LSP. It’s then when the
value starts growing to 0.0125 second at the end of simulation time. Another

 48

interesting detail of it is the slightly queuing delay drop offs at each second along
the simulation time. This drop off is related to the time when traffic intensity is
increased with 300,000 bits/sec. This could be implementation issue concerning
the software simulation tool. However, it isn’t a very significant transient value.

 The other interesting result registered, were the fact that almost all-
significant queuing appeared between the first two routers along both paths.
Thereafter, the values kept stable queuing delay values between other routers
along the forwarding path. We have a very simple explanation to this
phenomenon. Since all the major queuing takes place between the ingress and first
router along the path and the queuing values aren’t very high, we get a very stable
queuing value between other routers along the path. The amount of traffic
between these routers are more predictable since the second router along the path
get the right amount of traffic that it can forward further closer towards some
destination. It’s the first router that gets to queue the heavy amount of traffic that
the links can’t cope to carry immediately.

However our objective wasn’t to investigate TCP and UDP characteristics in
depth. We were interested to investigate the amount of performance gain from
traffic engineering compared with a plain shortest path configured network.
Comparing these results with the earlier result from the shortest path routing
configured network, the queuing delay keep a much less queuing delay value
between the ingress router and the first router along the shortest path, than the
shortest path routing scenario.

Figure 6.8 Queuing delay path LER1 P1 P3 LER2 Figure 5.9 Queuing delay path LER1 P2 LER2
 (Blue LSP) (Red LSP)

 49

6.3 Concluding remarks

Our experimentation and analysis of it revealed to us the performance
features of MPLS-traffic engineering outlined in the beginning of this thesis,
stating that bottlenecks within the network might be avoided by traffic
engineering flows through other paths than the shortest path between any ingress
and egress routers. By using MPLS technology, traffic engineering can be
deployed and performance gains in terms of queuing delay, throughput and path
utilisation can be achieved. We are not going to here discuss the technology it self
since a complete coverage of it were given in the earlier chapters. However, we
can verify that the theoretic assumptions made earlier, stating that it would be a
technology worth exploiting to overcome the shortcomings of the shortest path
routing protocols were in line with our investigation of the protocol.

The throughput was registered to be of an acceptable value for the TCP

traffic in the MPLS-TE scenario. The TCP traffic didn’t need to lower its traffic
intensity since it didn’t compete with the UDP traffic for network resources. We
measured TCP traffic throughput between source and ingress router and routers
among. We witnessed some TCP throughput drop offs between the sender and the
ingress router. An interpretation of these drop offs was given. We stated that two
factors combined could be the reason of the throughput result registered.
Nevertheless, we think of the throughput outcome registered for the TCP traffic
positively, knowing that if traffic engineering was not implemented, TCP traffic
would have been suffered competing with UDP traffic for the same shortest path
resources. Improvements were also shown in the case of path utilization. Our
findings made it clear to us that by traffic engineering one can achieve more
efficient network resource utilisation. The simulated network topology didn’t
represent a service provider’s network, but it clearly shows what possibilities
MLPS-TE can introduce when it comes to utilizing network resources more
efficiently. Service providers can engineer certain traffic flows, by some local
administrative policy to utilize its resources more efficiently. We have not
investigated any of the positive economic impact of this, but it may be worthwhile
further research.

When it comes to queuing delay, lower delay time was registered because

flows used both paths available between the ingress and egress routers. Thereby,
striking more balanced traffic intensity between paths available towards the egress
router. However, we discovered that even with two distinct paths being utilised
for UDP and TCP traffic, the UDP traffic intensity increase had some effect on
TCP traffic queuing delay and throughput. Our measurements reviled to us that
with even traffic engineering TCP traffic through a separate label- switching path,
some degradation of performance did take place whenever UDP traffic made
some activities. However, we found that the queuing values registered for both
traffic types showed a performance gain compared with the shortest path scenario.

 50

7 Simulation experiment using MPLS-TE and
Diffserv

After our experimentation with the pure protocol based traffic engineering

simulation, we now move forward simulating traffic engineering with quality of
service support. Our objective was now to engineer flows of traffic and support
QoS with help of differentiated services. Here, we traffic engineer both generated
traffics outlined earlier through the same label-switching path. By assigning
generated traffics different CoS, we were able to measure performance issues
imposed by MPLS-TE and diffserv. Details over configurations of network and
traffic implementations within OPNET Modeler can be reviewed in appendix 9.4.

7.1 MPLS-TE and QoS support configuration

Figure 7.1 illustrates the MPLS traffic- engineering with QoS support
scenario. The preceding network topology used earlier was copied and the only
change made was the utilisation of one of the LSPs configured earlier. The blue
coloured stretched arrow is the LSP combining label- switching path configured
to be utilised by both generated traffics with different CoS.

Figure 7.1 Overview of the MPLS QoS experiential network model.

In this experiential network, some changes had to be made to secure a traffic
engineering networking environment with QoS support. The LSP was to handle
two flowspecs governed by the ingress router. Table 7.1 below outlines these two
separable parts of the flowspec; TSpec and RSpec. EF_flowspec for traffic
entering the blue LSP and its traffic characteristics (Tspec) was configured with
maximum bit rate of 1,544,000 bits/sec, average bit rate of 1,000,000 bits/sec,
maximum burst size of 64,000 bits/sec, and its RSpec was EF service class. The
other flowspec that were to be governed by the ingress router was the
AF11_flowspec. This flowspec’s traffic characteristic (TSpec) was configured

 51

with maximum bit rate of 1,544,000 bits/sec, average bit rate of 500,000 bits/sec,
maximum burst size of 64,000 bits/sec, and its RSpec was AF11 service class.
The EF_flowspec was configured to take care of EF CoS traffic and discard traffic
other than this particular traffic type entering the LSP. The other flowspec,
AF11_flowspec was configured to take care of AF11 CoS traffic and discard
traffic other than this particular traffic type entering the LSP. Table 7.1
summarizes the flowspec configuration table.

Flows Max. Bit rate (bits/sec) Average Bit Rate (bits/sec) Max. Burst Size (bits) Out of profile action Traffic class

EF_ flowspec 1,544,000 1,000,000 64,000 Discard EF
AF11_flowspec 1,544,000 500,000 64,000 Discard AF11

Table 7.1 Flowspec Configuration Table

One FEC class was given to one type of flow, in our case the TCP traffic

with EF CoS, and the other FEC class was given to our second traffic type UDP
traffic with AF11 CoS. Since we had configured traffic flows entering the
network from left to right, meaning that site1 and site2 generating traffic towards
site4 and site5, LER1 interfaces had to be configured right. LER1 had to be
configured to assign FECs based on which interface that was handling the
incoming traffic, plus other information gathered from the incoming packed
header information. In our case FECs was assigned from governing rules outlined
in table 7.2.

FEC name DSCP Protocol used Destination address

Site1 EF TCP 192.0.13.2 (Site5)
Site2 AF11 UDP 192.0.11.2 (Site4)

Table 7.2 FEC specification table

At the ingress router LER1, packets was categorized and assigned an
appropriate FEC. The FECs was then mapped to the right traffic trunk, which
used a certain LSP. This way, the incoming traffic was engineered based on an
administrative rule. Since our intention was to measure the treatment of these two
traffic flows with different QoS requirement, our MPLS-TE was now been
configured to exploit the QoS architecture of differentiated services. We used
diffserv`s Weighted Fair Queuing (WFQ) combined with the DSCP code mapping
to govern QoS requirement by the flows. A higher WFQ value was given to the
EF CoS traffic over the AF11 CoS traffic. EF CoS traffic was given the weight
value of 55 and the opportunity to use the low latency queue, while the AF11 CoS
traffic was with its weight value of 5 configured to use the default queue. To
measure the performance outcome of this configuration, we collected data from
WFQ delay, WFQ buffer usage, flow throughput and flow delay measured from
both traffic flows.

 52

7.2 Analysing and discussing experiential results

The statistics collected from within OPNET, is shown below. From this

experimentation, we collected statistics concerning MPLS traffic engineering
combined with differentiated services WFQ quality of service support. Our
objective here is to analyse and discuss the data collected to explore the benefits
of the MPLS traffic engineering architecture and its QoS support. Below, we have
discussed various measurements concerning our findings.

7.2.1 WFQ delay and buffer usage

Statistical data was collected concerning Weighted Fair Queuing delay from

the interface output of the ingress router. We wanted to investigate how much
time the AF11 CoS traffic gets to be queued compared with the EF CoS traffic.
The results are shown in figure 7.1, where EF CoS traffic achieved a WFQ delay
of below 0.025 seconds. Registering its unstable values, it still kept a much lower
values, even with its transient values. AF11 CoS traffic, in other hand kept an
overall irregular but higher value. It achieves a very sparse WFQ delay values
within the simulation time. With its highest one time registered value of
approximately close to 0.125 seconds, it holds an overall higher sparse values than
the EF CoS traffic. This is an expected result, since the AF11 differentiated
services code point was configured with a lower priority value than its rival.

Figure 7.1 WFQ delay on LER1 output interfaces Figure 7.2 WFQ buffer usage on LER1 output interfacs

Figure 7.2 shows the WFQ buffer usage by the two types of flows described.
The blue colour graph represents as earlier the EF CoS traffic, while the red
colour graph represents the AF11 CoS traffic. The blue graph shows that the EF
CoS packets achieves a desired queuing delay time. Here, the EF CoS packets

 53

gets to utilise the low latency queue at the router, while the AF11 CoS packets
were to utilise the default queue. The low latency queue was configured being
processed before any other queue. This meant that any packet residing in this low
latency queue were to be processed first and forwarded before packets residing in
the default queue. Therefore, we observe from the above figure that no more than
one EF CoS packet resided within the queue before getting processed. The down
side of this effect is affected on the AF11 CoS packets, which achieves a value of
between one and six packets been queued at the ingress router.

7.2.2 Flow Delay

Flow delay values describe the amount of delay imposed to flows getting
transmitted through the LSP configured. Figure 7.3, shows the result from flow
delay measurements gathered from the simulation. Each flow travelling through
the LSP got imposed to certain amount of delay. This delay was taken place
because of the QoS support that was given to each of the flows getting
engineered. Since the AF11 CoS traffic were given a lower QoS support, it was
imposed a higher flow delay value than the EF CoS traffic. The EF CoS possessed
an almost stable delay value of 0,025 seconds. The AF11 CoS traffic kept an
overall higher flow delay value. The graph shows that it’s more difficult to
achieve a stable flow delay value with the AF11 CoS, because this kind of traffic
utilises the default queue at the routers. However, other types of queues can be
configured to have a more precise and calculated queuing policy.

These values were somehow expected from the results interpreted earlier.

The effect of WFQ option of differentiated services imposes a better QoS support
to the EF CoS traffic, thus achieving a better flow delay for this class of service
traffic. AF11 CoS isn’t delay sensitive like the EF CoS traffic, therefore residing
and spending more time within the queue. These results were therefore in line
with results expected to achieve with WFQ implemented within this simulated
network.

 Figure 7.3 Flow delay within the blue LSP

 54

7.2.3 Throughput

The other QoS related results registered from the MPLS-TE
experimentation were the throughput measured from traffic entering, and the
amount that exited out of the LSP. Since we had installed a separate flowspec for
each of the two types of flows, we were interested to observe their throughput in
this simulation when getting engineered through the same LSP. We allowed the
EF flowspec to cope with an average bit rate of 1,000,000 bits/sec. The AF11
flowspec was to cope with an average bit rate of 500,000 bits/sec. These amounts
equalled a value of 1,500,000 bits/sec, which is almost the maximum amount of
link capacity of each link along the path. Both flowspecs were configured with a
maximum bit rate of 1,544,000 bits/sec, and maximum burst size value of 64,000
bits/sec.

Figures 7.4 and 7.5 below, shows the results gathered from our simulation.

We registered that the throughput of the entering traffic was almost exactly the
same throughput exiting from the LSP. Our configurations allowed only fixed
amounts of traffic to flow through the LSP. The preceding queuing measurements
outlined earlier revealed that not all of the traffics imposed to the ingress router
were allowed to enter the LSP immediately. The ingress router manages to queue
up extensive amount of traffic transmitted to it because of link capacities and the
LSP with its respective capacity limit. The ingress router transmits only the
amount of traffic that the LSP are configured to process. Figure 7.4, shows that
the EF CoS traffic which is represented with the blue coloured graph, has an
approximate bit rate average of 1,000,000 bits/sec. While the AF11 CoS traffic,
which is represented with the red coloured graph, possesses an approximate
average bit rate of 500,000 bits/sec. These bit rate values takes place because of
the average bit rate limitation configured by the flowspecs. However, several
transient values were registered which indicated that the router couldn’t exactly
calculate to govern the capacity limit of the average bit rate values imposed by the
flowspecs. The first traffic intensity degradation by the TCP EF CoS traffic takes
place at the same time the UDP traffic exceeds its average bit rate limit governed
by the AF_flowspec. This indicates that the UDP has some slightly impact on
TCP traffic once both flows starts getting engineered through the same LSP with
different CoS. It also seemed being easier for the ingress router to keep the
average bit rate value governed by the flowspecs when it came to UDP traffic than
the TCP traffic. UDP traffic keeps a more stable value around its flowspec
average bit rate value of 500.000 bits/sec.

Figure 7.5 shows, the amount of traffic managing to exit the trunk.

Comparing both figures, we observed that they are almost exactly the same. This
indicated to us that the amount of traffic heading in and out of the LSP was
approximately equal. The figure also shows that the EF CoS throughput keeps a
higher average bit rate value compared with the AF11 CoS traffic. This takes
place because of the fact that the flowspec of EF CoS traffic was due to utilise and
entitled a higher throughput capacity limit. The overall picture indicates that flows
with different CoS can with help of flowspecs become controlled not to over
utilise the network resources while at the same time be given different quality of
service.

 55

Figure 7.4 Traffic into LSP Throughput(bits/sec) Figure 7.5 Traffic out of LSP Throughput(bits/sec)

7.3 Concluding remarks

Our experimentation and analysis with the MPLS traffic engineering
combined with differentiated services WFQ revealed to us the possibilities and
performance gains achieved when traffic engineering flows with different QoS
requirements. These two architectures combined offer a comprehensive traffic
control and QoS support. MPLS traffic engineering governs the amount of traffic
imposed on the network resources, and controls the path different kind of traffic is
to take towards its destination. While weighted fair queuing with help of DSCP of
differentiated services governs the QoS requirements of flows getting traffic
engineered. We are not going to here discuss the technology it self since a
complete coverage of it were given in the earlier chapters. However, we can verify
that the theoretic assumptions made earlier, stating that these technologies
combined together can perform traffic engineering with QoS support was inline
with our results registered from experiments conducted in this chapter.

Results gathered from our simulation showed that a higher priority CoS

traffic managed to get a better quality of service from the resources along its path.
EF CoS traffic did achieved a lower flow delay time, than the AF11 CoS traffic.
This had to do with the fact that the AF11 CoS traffic wasn’t delay sensitive as its
competitor EF CoS traffic. It did also utilise the low latency queue rather than the
default queue of which AF11 CoS packets was forced into. This low latency
queue was configured being processed before any other queues were processed.
Therefore, we registered no more than a single EF CoS packet residing in this
queue at any time during the simulation. Since we used Weighted Fair Queuing to

 56

manage the quality of service treatment of packets, higher priority or weight were
given to the EF CoS traffic at the routers. Packets with EF differentiated service
code points were given a higher weight, thus residing less time in the queues.
Both WFQ delay and WFQ buffer usage values were lower for the EF CoS traffic,
indicating that the time EF CoS packets spent in queues at the routers were less
than the AF11 packets used. Less time spending in queues helps arriving at the
final destination faster. This gives a faster recognition from ack packets to make
the sender keep high traffic intensity. Thus, making the EF CoS transmitter to
keep a high throughput. However, we registered some directly impact of AF11
CoS UDP traffic upon the EF CoS TCP traffic. The impact was not as much as if
they were going to compete directly with each other for the same network
resources as simulated earlier in this thesis. Nevertheless, its worthwhile
mentioning that with both flows engineered through the same LSP, small impact
are eminent not to occur. The values we registered was however not alarming.

The amount of traffic imposed on the network was governed by the

flowspec specifications for flows getting engineered through the LSP. In this way,
no more traffic was been able to get into the core network than allowed. By traffic
engineering traffic through a LSP, we managed to control the amount of traffic
intensity throughput within the MPLS domain, while at the same time supporting
quality of service to traffic getting forwarded with help of differentiated services.

 57

8 CONCLUSION

We hereby, give our conclusion based on the experimentations and analysis
of the simulations made within this thesis and the theoretic description of
technological architectures presented. In this thesis, we have simulate three
experiential networks. We experimented with shortest path routing, MPLS- traffic
engineering and MPLS traffic engineering combined with differentiated services
to support QoS. Below, we give a comprehensive conclusion of each of these
experiments combined with the technologies presented.

8.1 Conclusion made from shortest path routing principle

Shortest path routing principal in short is based on routing traffic through
the shortest path known towards any destination. The routing protocol is not to
take into consideration other under utilised non-shortest paths when forwarding
traffic. In times where several sources use the same shortest path, that path may
eventually become congested. Congestion may appear at some ingress router,
which gets to handle all the traffic destined to some destination beyond a single
egress router. With this approach introduced by the routing protocol, lack of
efficient network resource utilisation is difficult to avoid. Non-shortest paths will
at time be under utilised while shortest path will become over utilised.

To highlight these mentioned drawbacks, we simulated a network to run

shortest path routing protocol OSPF. This protocol is basically designed to route
traffic using only the shortest path to forward traffic through the network. It
computes routes based on the link states on the routers and calculate the minimum
cost or metric towards any known destination. From our simulation, we managed
to measure performance issues concerned with queuing delay, throughput and link
utilisation. The results were, as we imagined quite poor, making the traffic to
suffer from the shortcomings of the routing protocol. We registered that the
routing protocol without purpose treated the UDP traffic better than the TCP
traffic under heavy load conditions. This was the case because the TCP have a
flow control mechanism and senses the appearance of congestion, making it to
lower its traffic intensity. Even though both traffic types were configured with
equal best effort service class, the UDP traffic came out with better performance
treatment in the shortest path configured network. We measured their queuing
delay, throughput and link utilization. From these results, we confirmed that the
shortest path under heavy load conditions wasn’t as “short” as the routing protocol
might believe. The shortest path was over utilised and the performance registered
from both traffic types were to show that the shortest path routing protocol didn’t
impose them any good performance. Worthwhile mentioning that the TCP traffic
did suffer most compared with the UDP traffic basically in all measured
performance issues. These negative registered results were related to the fact that
all traffic was routed through the shortest path between the ingress and egress
router. The non-shortest path was left unutilised. Unfortunately even in the case of
being able to achieve better performance by using a non-shortest path when the
shortest path is under heavy load condition, the routing protocol continued
forwarding traffic through the shortest path.

 58

As described earlier in this thesis, there are ways to engineer traffic in IP-

networks to cope with the load-balancing problem of shortest path routing
protocols. A way to traffic engineer is to manipulate the link metrics that is
presented to the link-state IGPs such as OSPF. But this mechanism potentially
leads to several problems. First, by changing the link’s metric can force changing
the path of all packets traversing the link. Second, this does not make any room
for dynamic redundancy and do not consider the characteristics of offered traffic
and network capacity constraints when making routing decisions. Last but not
least, one can imagine how much administration this will cause and making room
for human failure.

Traffic Engineering is difficult with IGP in large networks for the following
reasons:

1. Between the Equal-Cost Multi-Path (ECMP) from a source, every

path will have an equal share of load. This equal ratio cannot be
changed. Therefore, one of the paths may end up carrying
significantly more traffic than other paths because it also carries
traffic from other sources.

2. Load sharing cannot be done among multiple paths of different
cost, without a lot of administration and manual link metric
manipulation.

We did however not conduct these techniques within our simulation, knowing that
a new emerging technology called multi protocol label switching has been
developed to cope with the difficulties of shortest path routing protocols when it
comes to traffic engineering. With the shortcomings simulated within this thesis,
we moved forward using multi protocol label switching, which is to be the future
solution to traffic engineering Internet traffic. We give a conclusion of this
technology alongside with our simulation experience below, comparing its
performance issues with the shortest path routing simulation.

8.2 Conclusion made from MPLS traffic engineering

Traffic Engineering is the process of controlling how traffic flows through
one’s network so as to optimise resource utilisation and network performance.
Traffic Engineering is needed in the Internet mainly because current IGPs always
use the shortest path to forward traffic. Using shortest paths conserves network
resources, but it may also cause the following problems:

1. The shortest paths from different sources overlap at some links,

causing congestion on those links.
2. The traffic from a source to a destination exceeds the capacity of the

shortest path, while a longer path between these two routes is under-
utilised.

 59

MPLS is an advanced forwarding scheme. It extends routing with respect to
packet forwarding and path controlling. MPLS traffic engineering remedies these
insufficient by allowing any label-Switched Path (LSP) to be dynamically shifted
from a congested path to an alternative path. This allows the ISPs to operate their
network at much higher capacity under normal circumstances, knowing that when
congestion is about to occur the network will look for alternatives to avoid
congestion. It also replaces the need to manually configure the network devices to
set up explicit routes. Instead, one can rely on the MPLS traffic engineering
functionality to understand the network topology and the automated signalling
process.

In our case however, we choose to use the static option of the MPLS LSP

establishment. Meaning, that we mapped explicitly the two different traffic types
experimented with within the earlier shortest path routing experiment to their
separate paths. We made the TCP flow to take the non-shortest path while letting
the UDP traffic consume the shortest path resources. Then, we compared the
results gathered with the shortest path routing experiment, comparing queuing
delay, throughput and link utilization. We registered that both traffic types gained
performance when getting traffic engineered to separate paths towards their
destination. This made TCP flow to keep up its traffic intensity without facing
suppression from the UDP traffic. However, there were registered some traffic
intensity degradation with TCP throughput from the transmitter towards the
ingress router. This was not to be blamed on MPLS-TE and its protocol
behaviour, but the fact that the ingress router became busier forwarding more
packets. Also, in the case of efficient resource utilization, the results were much
more satisfying. Both paths between the ingress and egress router were now
utilized compared with the shortest path routing scenario. This verified to us that
with several paths available between any pair of ingress and egress routers, traffic
engineering could be done with MPLS to avoid bottlenecks and congestion within
the network. It can also help utilising network resources more efficiently by
utilising other paths than the shortest path. The simulation network we
experimented on was a small and simple network, but it could represent any part
of a larger part of any autonomous system. Therefore, we believe that the results
presented in this thesis are representative.

From experimentations conducted with MPLS, we believe traffic

engineering can be supported in order to control the traffic to utilise desired paths
through a network. With this control, it can expect to deliver a more accurate
service level agreement to its customer and minimize the cost of delivering
services, especially the cost of utilizing expensive network resources.

8.3 Conclusion made from MPLS traffic engineering with QoS

support

The default service offering associated with the Internet is characterized as a
best-effort variable service response. Within this service profile the network
makes no attempt to actively differentiate its service response between the traffic

 60

streams generated by concurrent users of the network. As the load generated by
the active traffic flows within the network varies, the network's best effort service
response will also vary.

The objective of various Internet Quality of Service (QoS) efforts is to augment
this base service with a number of selectable service responses. These service
responses may be distinguished from the best-effort service by some form of
superior service level, or they may be distinguished by providing a predictable
service response which is unaffected by external conditions such as the number of
concurrent traffic flows, or their generated traffic load.

Any network service response is an outcome of the resources available to
service a load, and the level of the load itself. To offer such distinguished
services there is not only a requirement to provide a differentiated service
response within the network, there is also a requirement to control the service-
qualified load admitted into the network, so that the resources allocated by the
network to support a particular service response are capable of providing that
response for the imposed load. As a general observation of QoS architectures, the
service load control aspect of QoS is perhaps the most troubling component of the
architecture. While there are a wide array of well understood service response
mechanisms that are available to IP networks, matching a set of such mechanisms
within a controlled environment to respond to a set of service loads to achieve a
completely consistent service response remains an area of weakness within
existing IP QoS architectures.

This is where MPLS technology gets to be combined with differentiated

services to offer this control. MPLS will set up a route for a flow and specify a
next hop, while differentiated services will specify the treatment of a packet
waiting to make that next hop. MPLS can therefore be the one to control the
amount of traffic imposed on a router by its trunk reservation capability, admitting
no more traffic within each trunk as there are assumed to be resources in the
network to handle the traffic load.

In our last experiential network, we took advantage of the positive outcomes
of MPLS traffic engineering to combine it with the QoS architectural abilities of
differentiated service. This time, we aimed to assure QoS to flows of traffic,
which demanded some level of QoS at the same time, as they were traffic
engineered through a LSP. The two flowspecs were to take care of the EF CoS
traffic and AF11 CoS traffic. We managed to configure the MPLS-TE network to
cooperate with diffserv’s weighted fair queuing to administer the QoS aspect of
the network. By assigning a higher weight value to the EF CoS traffic, we found
out how different CoS flows were treated while they were traffic engineered. The
registered measurements revealed that the amount of queuing delay, queuing
buffer usage, flow- delay and throughput of these different CoS traffic flows
differed in favour of the higher CoS traffic. The higher priority flow received in
all measurements a better QoS support compared with the lower valued CoS flow.
Also, if further flows of traffic with the same CoS were imposed to the ingress
router, no further trunks would be needed. Traffics with the same CoS would
become aggregated to use the same CoS traffic trunk.

 61

We conclude that the MPLS-TE and differentiated services architecture
combined is a useful tool for performing traffic engineering with quality of
service support. Allowing a service provider to control the path a flow would use,
plus the amount of traffic allowed into the network and at the same time providing
it with the level of quality it requires.

8.4 Further need for research

We leave two areas related to our simulation of MPLS traffic engineering
and QoS support with diffserv to be further investigated. First, failures within the
network should be researched on to see how MPLS tackles them. We know that
MPLS rerouting option is available to help with using backup LSPs configured.
However, one should examine the impact of failures within the network to
measure the impact on the traffic that are being engineered. It would be useful to
research on the amount of timing and other interesting matters of the shifting of
traffic from one LSP to another.

Furthermore, it would be interesting to do some more research on traffic

aggregation capability of the MPLS and diffserv. Even though we managed to
traffic engineer flows with QoS support, we wanted to do some more extensive
and concentrated research on this area, but the shortage of time made us to
concentrate upon the discoveries outlined. This is definitely one of the most
important areas of concern for network service providers.

Other areas left out from our work, but related to MPLS are VPN and

Multicast. Both of these are subject to be functional with MPLS. For the
interested ones, these are also subject to be further elaborated on to measure their
performance.

 62

9 APPENDIX

9.1 Dijkstras Algorithm

The general method to solve the single-source shortest-path problem is
known as Dijkstra’s algorithm. This thirty-year old solution is a prime
example of a greedy algorithm. Greedy algorithm, generally solve a problem
in stages by doing what appears to be the best solution at each stage. At each
stage, Dijkstra’s algorithm selects a vertex v, which has the smallest distance
dv among all the unknown vertices, and declares that the shortest path from
the source node to v is known. The reminder of a stage consists of updating
the values for the distance dw. The value of dw gets lower if shorter path is
discovered, thus setting dw = dv + Cv,w if this new value for dw would be an
improvement. To put it simply, the algorithm decides whether or not it is a
good idea to use v on the path to w. The original cost, dw, is the cost without
using v; the cost calculated above is the cheapest path using v (and only
known vertices and not ∞). We therefore set dw = dv +1 if dw = ∞. The below
figure illustrates the stages of Dijkstra’s algorithm when executed from node
v1. The figure graphically shows how edges are narked known and vertices
updated during Dijkstra’s algorithm.

v 1 v 2

v 4 v 5

v 7v 6

v 3

1

1

2

4

104

2

2

3

685

∞

∞
∞

∞ ∞

∞
0

v 1 v 2

v 4 v 5

v 7v 6

v 3

1

1

2

4

2

2

3

8

∞

∞
∞

∞

0

v 1 v 2

v 4 v 5

v 7v 6

v 3

1

1

2

4

10

2

2

3

685

v 1 v 2

v 4 v 5

v 7v 6

v 3

1

1

2

4

2

2

3

8

0

v 1 v 2

v 4 v 5

v 7v 6

v 3

1

1

2

4

10

2

2

3

685

v 1 v 2

v 4 v 5

v 7v 6

v 3

1

1

2

4

2

2

3

8

v 1 v 2

v 4 v 5

v 7v 6

v 3

1

1

2

4

10

2

2

3

685

v 1 v 2

v 4 v 5

v 7v 6

v 3

1

1

2

4

2

2

3

8

5

4

44

4

4 4

4

6

10

6

6

6

10

10

5

5

10

1

2

1

2

3

5
9

3

0

1

2

3

5
8

3

3

0

1

2

3

5
9

3

0

1

2

3

5
6

3

0

1

2

3

5
6

3

0

1

2

3

59

3

Figure 9.1 Illustrates stages of Dijkstra’s algorithm.

 63

9.2 Shortest Path Routing configuration details within OPNET

9.2.1 Application configuration

In order to generate TCP and UDP traffic within our simulation, we chose file
transfer and video conferencing as application. File transfer was a good choice in
our simulation due to the fact that we were able to define how large the file/packet
size, which was going to be uploaded, would be. We therefore defined a traffic
intensity of the one stated in the below table. The traffic intensity was 1,5 Mbytes
of packets being uploaded every second. This was done to keep the pipe almost
fully busy. The table below gives a description of the FTP configuration
parameters.

Attribute Value Details

Command Mix (Get/Total) 0% Only uploading.
Inter Request Time (seconds) Constant (1) Constant every second
File Size (bytes) Constant (187500) 1,5 Mbytes file size
Symbolic Server Name FTP Server
Type of Service Best Effort (0)

Table 9.1 FTP Table configuration parameters

TCP Parameters table:

MSS: Auto assigned

Maximum Segment Size (MSS) that the underlying network can carry without
any fragmentation. Used to determine the size of segments sent by TCP. If "Auto-
Assigned", TCP will calculate this parameter based on the MTU size of the first
IP interface on the surrounding node. In case of more than one interfaces, it will
compute the MSS based on the first interface type.

Received buffer (bytes): 8760

Size of the buffer holding received data before it is forwarded to the higher layers
(e.g. applications). Note that the advertised window is the amount of space
available in the receive buffer. When set to "Default", this parameter is set to at
least four times the "negotiated" MSS, with a maximum size of 64 KB unless a
window scaling option is in effect.

Transceiver buffer usage threshold: 0.0

Threshold used to determine the limit on the usage of receive buffer before
transferring segments out to the socket buffer.
Setting this value to 0.0 is equivalent to modelling a TCP implementation in
which the receiver always advertises a constant receive buffer size (e.g., some
versions of BSD)

 64

Delayed ack mechanism: segment/clock

Specifies the scheme used to generate dateless ACKs:

1. Clock Based: TCP sends a dateless ACK if no data is sent for "max_ack_delay"
time interval.

2. Segment/Clock Based: Generates an ACK every other received segment, or
every "max_ack_delay" time interval, if two segments are not received within this
interval.

Note that for most Sun implementations, it should be set to "Clock Based",
whereas for "Miscrosoft Windows" implemetations, it should be set to "Segment/
Clock Based."

Maximum ACK Delay (sec): 0.200

Maximum time the TCP waits after receiving a segment before sending an ACK.
Note that the acknowledgment may be piggybacked on a data packet. For most
SUN systems implementations, it value is 50 msec (configurable) whereas for
Windows TCP implementation it is set to 200 msec.

Show-start initial Count (MSS): 1

Specifies the number of MSS-sized TCP segments that will be sent upon slow-
start. This also represents the value of the initial congestion window (or "cwnd").
RFC-2414 upper bounds this initial window as:
min[4*MSS,max(2*MSS,4380bytes)]

ECN Capability : Disabled

Specifies if TCP implementation supports explicit congestion notification (ECN).
Both sides must exchange support for ESN before making use of this feature
(documented in details in RFC-3168).

Fast Retransmit Enabled

RENO

Fast Recovery: Disabled

Indicates whether this host uses Fast Retransmir Algorithm as described in RFC
2001. If "Disabled" then slow start and congestion control algorithm along with
Fast Retransmit (if enabled) will be executed. If set to "Reno", fast retransmit as
defined in RFC 2001 will be executed once the node receives n-th duplicate
acknowledgement. If set to "New Reno", fast retransmit as described in RFC 2001
will be executed with the two modifications to the algorithm- fast retransmit will
never be executed twice within one window of data- if a partial acknowledgement
(acknowledgement advancing snd_una) is received, the process will immediately
retransmit the next unacknowledget segment.

 65

Window scaling: Disabled

Indicates whether this host sends the Window Scaling enabled option in its SYN.
If the option is both sent and received, Window Scaling will proceed as detailed in
RFC 1323.

Selective ACK (SACK): Disabled

Indicates whether this host sends the Selective Acknowledgement Permitted
option in its SYN. If the option is both sent and received, SACKs will be sent as
detailed in RFC 2018.

Segment send treshold: Byte Boundary

Determines the segment size, and granularity of calculation of slow start threshold
(ssthresh) variable. When set to "Byte Boundary":- a segment with any size
allowed by the segment send algorithm can be sent, and- during fast
retransmission slow start threshold will be set to half of the congestion window
When set to "MSS Boundary":- a segment is sent only if its size equals the
maximum segment size except when it is the last segment, and- the granularity of
slow start threshold is one maximum segment size. Thereby, the ssthresh value
after fast-recovery will be set to "((int) (cwnd/2)) * mss"

Nagle's SWS Avoidance: Disabled

Enables or disables use of Nagle's algorithm for sender-side Silly Window
Syndrome (SWS) avoidance.

Karn's Algorithm: Enabled

Enables or disables the use of Karn's Algorithm for calculating retransmission
timeout (RTO) values.

Retransmission Thresholds: Attempts based

Specifies the criteria used to limit the time for which retransmission of a segment
is done.

Initial RTO (sec): 1.0

Retransmission timeout (RTO) value used before the RTO update algorithms
come into effect.

Minimum RTO (sec): 0.5

Lower bound on the retransmission timeout (RTO) value.

 66

Maximum RTO (SEC): 64

Upper bound on the retransmission timeout (RTO) value.

RTT Gain: 0.125

Gain used in updating the round trip time (RTT) measurement.

Deviation Gain: 0.25

Gain used to update the mean round trip deviation.

RTT Deviation Coefficient : 4.0

Coefficient used to determine the effect of mean deviation on the final calculated
retransmission timeout (RTO) value.

Timer Granularity (sec): 0.5

Represents TCP slow timer duration (used to handle all timers except maximum
ACK delay timer). Timer events are scheduled at multiples of the value assigned
to this attribute.

Persistent Timeout (sec) : 1.0

Duration of the persistence timeout. This allows the local socket to receive a
window update when the receiver window is very small.

 The other application we specified in our simulation was the video
conferencing. This application was specifically chosen because of its use of UDP
as transfer protocol. The frame size was set to constant value of 3750 bytes. This
gives us the traffic intensity of 3750 bytes x 10 frames/sec = 37500 bytes/sec,
which gives the value of 37500 x 8 = 300,000 bits/sec. Which again multiplied
with five such applications equals 1,500,000 bits/sec.

Attribute Value Details

Frame Interval Time Information 10 frames/sec Constant
Frame size Information 3750 bytes Constant
Symbolic Destination Name Video Destination
Type of Service Best Effort (0)
RSVP Parameters None
Traffic Mix (%) All Discrete

Table 9.2 Video Conferencing table configuration parameters

 67

9.2.2 Profile configuration

 In order to use the applications installed, we configured two profiles. The
first profile was named TCP generator, set to use the file transfer application from
the second minute. The profile was to start only once and the duration was set to
the end of the simulation. The start time was set to constant distribution with the
value of 120 (starting from the 2 min). The second profile was named UDP
generator and was configured to start using the video conferencing one second
later. Then, each second executing one extra video conferencing application.
Executing total number of 5 applications. Table 9.3 and 9.4 summarizes.

Profile Name Applications Operation-mode Start-time(sec) Duration(sec) Repeatability

TCP generator (…) Serial(ordered) constant(120) end of sim. Once at start
UDP generator (…) Simultaneous constant(121) end of sim. Once at start

Table 9.3 Profile Configuration Table

Name Start Time Offset Duration (seconds) Repeatability

File Transfer (heavy) No Offset end of profile Once at start
Video conf. (heavy) No Offset end of profile Once at start
(UDP generator executes 5x video conf with 1 sec between each)

Table 9.4 Applications Table

9.2.3 Workstations and Server configuration

 In order to generate TCP and UDP traffic to measure their impact within the
network, we configured file transfer service between site1 and site5. Site1 was set
to use engineer1 as its profile, meaning that everything that we have described
under the profile configuration section was now being used by site1. Site5 is a
server, which accepts the uploaded traffic destined from site1. This means that
site1 which is a workstation initiates an upload to site5. Site5 was configured to
only respond to file transfer application. Site2 were configured to use engineer2 as
its profile. It was configured to send video conferencing traffic to site4. Site4,
were only configured to accept the traffic. This was done to control the traffic
from one end of the network to another. Both, the file transfer and video
conferencing services are based on best effort service, meaning that their ToS-
values in the IP header were set to best effort (0) precedence. To summarize, table
9.5 shows the sites with their respective configuration.

 68

Site Supported Protocol Start End time Traffic-intensity ToS
Site1 TCP 2m:00s 10m:00s 1,500,000 bits/sec Best effort(0)
Site2 UDP 3m:00s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 3m:45s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 4m:30s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 5m:15s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 6m:00s 10m:00s 300,000 bits/sec Best effort(0)
Site4 UDP N/A N/A N/A N/A
Site5 TCP N/A N/A N/A N/A

Table 9.5 A summarization over the traffic configuration

We assigned IP-address in order to let the FEC- classes function.

Site IP-Address Subnet Mask

Site1 192.0.1.2 255.255.255.0
Site2 192.0.2.2 255.255.255.0
Site4 192.0.11.2 255.255.255.0
Site5 192.0.13.2 255.255.255.0

Table 9.6 IP addressing of sites

9.2.4 Router configuration

The ethernet2_slip8_gtwy node model represents an IP-based gateway supporting
up to two Ethernet interfaces and up to 8 serial line interfaces at a selectable data
rate. IP packets arriving on any interface are routed to the appropriate output
interface based on their destination IP address. The Routing Information Protocol
(RIP) or the Open Shortest Path First (OSPF) protocol may be used to
automatically and dynamically create the gateway's routing tables and select
routes in an adaptive manner. This gateway requires a fixed amount of time to
route each packet, as determined by the "IP Forwarding Rate" attribute of the
node. Packets are routed on a first-come-first-serve basis and may encounter
queuing at the lower protocol layers, depending on the transmission rates of the
corresponding output interfaces.

Protocols:

RIP, UDP, IP, Ethernet, Fast Ethernet,
Gigabit Ethernet, OSPF

Interconnections:

1) 2 Ethernet connections at a data rate of 10 Mbps, 100 Mbps, or 1000 Mbps.
2) 8 Serial Line IP connections at a selectable data rate

 69

Attributes:

"IP Forwarding Rate": specifies the rate (in packets/second) at which the gateway
can perform a routing decision for an arriving packet and transfer it to the
appropriate output interface.

IP Processing information:
Datagram switching rate:500,000

Rate at which the traffic is switched at this node. Note that switching is only done
for labeled packets (MPLS). All other packets are routed and undergo the IP
Forwarding delay

Datagram forwarding rate: 50,000
Number of packets or bytes that are processed by the "forwarding processor" in
one second. The unit associated with this value is specified in the Forwarding
Rate Units attribute.

Forwarding rate units: packets/second

Memory size (bytes): 16MB

IP slot info:
Processor speed: 5000
This attribute sets the processing (forwarding) capacity of this slot's processor in
packets or bits per second, depending on the value of the "Forwarding Mode"
attribute. Alternatively, it can be thought of as the "service rate" of this slot's
processor.

Processing mode: packet/second

Input and output buffer capacity: 8MB (shared)

Attribute Value
Router ID Auto Assigned
Autonomous System Number Auto Assigned
Interface Information (…)
Loopback Interfaces (…)
Default route Auto Assigned
Load Balancing Options Destination-Based
Administrative Weights Default

Table 9.7 IP Routing Parameters Table

 70

Name Status Address Subnet-mask MTU(bytes) Metric-info Routing-Protocol QoS-info

IF0 Active Auto Auto Ethernet Default OSPF None
IF1 Active Auto Auto Ethernet Default OSPF None
IF2 Active Auto Auto Ethernet Default OSPF None
IF3 Active Auto Auto Ethernet Default OSPF None
IF4 Active Auto Auto Ethernet Default OSPF None
IF5 Active Auto Auto Ethernet Default OSPF None
IF6 Active Auto Auto Ethernet Default OSPF None
IF7 Active Auto Auto Ethernet Default OSPF None
IF8 Active Auto Auto Ethernet Default OSPF None
IF9 Active Auto Auto Ethernet Default OSPF None

Table 9.8 Interface Information Table

Attribute Value

Start Time uniform (5.0, 10.0)
Interface Information (…)
Area Summarization No Address Aggregation
Routing Table Interval (seconds) 60
SPF Calculation Parameters Periodic

Table 9.9 OSPF parameters Table within the routers

9.2.5 Simulation configuration attributes

The following simulation attributes were modified in addition to those listed
in chapter 9.2.5. The ones listed below are related to the MPLS experimentation
scenario.

Attribute Value
Duration 126 sec
Values per Statistic 1000
IP Dynamic routing protocol Default
IP Interface addressing mode Auto Assigned

Table 9.10 Simulation configuration attributes

 71

9.3 MPLS-TE configuration details within OPNET

9.3.1 Application configuration

In order to generate TCP and UDP traffic within our simulation, we chose file
transfer and video conferencing as application. File transfer was a good choice in
our simulation due to the fact that we were able to define how large the file/packet
size, which was going to be uploaded, would be. We therefore defined a traffic
intensity of the one stated in the below table. The traffic intensity was 1,5 Mbytes
of packets being uploaded every second. This was done to keep the pipe almost
fully busy. The table below gives a description of the FTP configuration
parameters.

Attribute Value Details

Command Mix (Get/Total) 0% Only uploading.
Inter Request Time (seconds) Constant (1) Constant every second
File Size (bytes) Constant (187500) 1,5 Mbytes file size
Symbolic Server Name FTP Server
Type of Service Best Effort (0)

Table 9.11 FTP Table configuration parameters

TCP Parameters table:

MSS: Auto assigned

Maximum Segment Size (MSS) that the underlying network can carry without
any fragmentation. Used to determine the size of segments sent by TCP. If "Auto-
Assigned", TCP will calculate this parameter based on the MTU size of the first
IP interface on the surrounding node. In case of more than one interfaces, it will
compute the MSS based on the first interface type.

Received buffer (bytes): 8760

Size of the buffer holding received data before it is forwarded to the higher layers
(e.g. applications). Note that the advertised window is the amount of space
available in the receive buffer. When set to "Default", this parameter is set to at
least four times the "negotiated" MSS, with a maximum size of 64 KB unless a
window scaling option is in effect.

Transceiver buffer usage threshold: 0.0

Threshold used to determine the limit on the usage of receive buffer before
transferring segments out to the socket buffer.

 72

Setting this value to 0.0 is equivalent to modelling a TCP implementation in
which the receiver always advertises a constant receive buffer size (e.g., some
versions of BSD)

Delayed ack mechanism: segment/clock

Specifies the scheme used to generate dateless ACKs:

1. Clock Based: TCP sends a dateless ACK if no data is sent for "max_ack_delay"
time interval.

2. Segment/Clock Based: Generates an ACK every other received segment, or
every "max_ack_delay" time interval, if two segments are not received within this
interval.

Note that for most Sun implementations, it should be set to "Clock Based",
whereas for "Miscrosoft Windows" implemetations, it should be set to "Segment/
Clock Based."

Maximum ACK Delay (sec): 0.200

Maximum time the TCP waits after receiving a segment before sending an ACK.
Note that the acknowledgment may be piggybacked on a data packet. For most
SUN systems implementations, it value is 50 msec (configurable) whereas for
Windows TCP implementation it is set to 200 msec.

Show-start initial Count (MSS): 1

Specifies the number of MSS-sized TCP segments that will be sent upon slow-
start. This also represents the value of the initial congestion window (or "cwnd").
RFC-2414 upper bounds this initial window as:
min[4*MSS,max(2*MSS,4380bytes)]

ECN Capability : Disabled

Specifies if TCP implementation supports explicit congestion notification (ECN).
Both sides must exchange support for ESN before making use of this feature
(documented in details in RFC-3168).

Fast Retransmit Enabled

RENO

Fast Recovery: Disabled

Indicates whether this host uses Fast Retransmit Algorithm as described in RFC
2001. If "Disabled" then slow start and congestion control algorithm along with
Fast Retransmit (if enabled) will be executed. If set to "Reno", fast retransmit as
defined in RFC 2001 will be executed once the node receives n-th duplicate
acknowledgement. If set to "New Reno", fast retransmit as described in RFC 2001

 73

will be executed with the two modifications to the algorithm- fast retransmit will
never be executed twice within one window of data- if a partial acknowledgement
(acknowledgement advancing snd_una) is received, the process will immediately
retransmit the next unacknowledget segment.

Window scaling: Disabled

Indicates whether this host sends the Window Scaling enabled option in its SYN.
If the option is both sent and received, Window Scaling will proceed as detailed in
RFC 1323.

Selective ACK (SACK): Disabled

Indicates whether this host sends the Selective Acknowledgement Permitted
option in its SYN. If the option is both sent and received, SACKs will be sent as
detailed in RFC 2018.

Segment send treshold: Byte Boundary

Determines the segment size, and granularity of calculation of slow start threshold
(ssthresh) variable. When set to "Byte Boundary":- a segment with any size
allowed by the segment send algorithm can be sent, and- during fast
retransmission slow start threshold will be set to half of the congestion window
When set to "MSS Boundary":- a segment is sent only if its size equals the
maximum segment size except when it is the last segment, and- the granularity of
slow start threshold is one maximum segment size. Thereby, the ssthresh value
after fast-recovery will be set to "((int) (cwnd/2)) * mss"

Nagle's SWS Avoidance: Disabled

Enables or disables use of Nagle's algorithm for sender-side Silly Window
Syndrome (SWS) avoidance.

Karn's Algorithm: Enabled

Enables or disables the use of Karn's Algorithm for calculating retransmission
timeout (RTO) values.

Retransmission Thresholds: Attempts based

Specifies the criteria used to limit the time for which retransmission of a segment
is done.

Initial RTO (sec): 1.0

Retransmission timeout (RTO) value used before the RTO update algorithms
come into effect.

 74

Minimum RTO (sec): 0.5

Lower bound on the retransmission timeout (RTO) value.

Maximum RTO (SEC): 64

Upper bound on the retransmission timeout (RTO) value.

RTT Gain: 0.125

Gain used in updating the round trip time (RTT) measurement.

Deviation Gain: 0.25

Gain used to update the mean round trip deviation.

RTT Deviation Coefficient : 4.0

Coefficient used to determine the effect of mean deviation on the final calculated
retransmission timeout (RTO) value.

Timer Granularity (sec): 0.5

Represents TCP slow timer duration (used to handle all timers except maximum
ACK delay timer). Timer events are scheduled at multiples of the value assigned
to this attribute.

Persistent Timeout (sec) : 1.0

Duration of the persistence timeout. This allows the local socket to receive a
window update when the receiver window is very small.

 The other application we specified in our simulation was the video
conferencing. This application was specifically chosen because of its use of UDP
as transfer protocol. The frame size was set to constant value of 3750 bytes. This
gives us the traffic intensity of 3750 bytes x 10 frames/sec = 37500 bytes/sec,
which gives the value of 37500 x 8 = 300,000 bits/sec. Which again multiplied
with five such applications equals 1,500,000 bits/sec.

Attribute Value Details

Frame Interval Time Information 10 frames/sec Constant
Frame size Information 3750 bytes Constant
Symbolic Destination Name Video Destination
Type of Service Best Effort (0)
RSVP Parameters None
Traffic Mix (%) All Discrete

Table 9.12 Video Conferencing table configuration parameters

 75

9.3.2 Profile configuration

 In order to use the applications installed, we configured two profiles. The
first profile was named TCP generator, set to use the file transfer application from
the second minute. The profile was to start only once and the duration was set to
the end of the simulation. The start time was set to constant distribution with the
value of 120 (starting from the 2 min). The second profile was named UDP
generator and was configured to start using the video conferencing one second
later. Then, each seconds executing one extra video conferencing application.
Executing total number of 5 applications. Table 9.13 and 9.14 summarizes.

Profile Name Applications Operation-mode Start-time(sec) Duration(sec) Repeatability

TCP generator (…) Serial(ordered) constant(120) end of sim. Once at start
UDP generator (…) Simultaneous constant(180) end of sim. Once at start

Table 9.13 Profile Configuration Table

Name Start Time Offset Duration (seconds) Repeatability

File Transfer (heavy) No Offset end of profile Once at start
Video conf. (heavy) No Offset end of profile Once at start
(UDP generator executes 5x video conf with 45 sec between each)

Table 9.14 Applications Table

9.3.3 Workstations and Server configuration

 In order to generate TCP and UDP traffic to measure their impact within the
network, we configured file transfer service between site1 and site5. Site1 was set
to use engineer1 as its profile, meaning that everything that we have described
under the profile configuration section was now being used by site1. Site5 is a
server, which accepts the uploaded traffic destined from site1. This means that
site1 which is a workstation initiates an upload to site5. Site5 was configured to
only respond to file transfer application. Site2 were configured to use engineer2 as
its profile. It was configured to send video conferencing traffic to site4. Site4,
were only configured to accept the traffic. This was done to control the traffic
from one end of the network to another. Both, the file transfer and video
conferencing services are based on best effort service, meaning that their ToS-
values in the IP header were set to best effort (0) precedence. To summarize, table
9.5 shows the sites with their respective configuration.

 76

Site Supported Protocol Start End time Traffic-intensity ToS
Site1 TCP 2m:00s 10m:00s 1,500,000 bits/sec Best effort(0)
Site2 UDP 3m:00s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 3m:45s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 4m:30s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 5m:15s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 6m:00s 10m:00s 300,000 bits/sec Best effort(0)
Site4 UDP N/A N/A N/A N/A
Site5 TCP N/A N/A N/A N/A

Table 9.15 A summarization over the traffic configuration

We assigned IP-address in order to let the FEC- classes function.

Site IP-Address Subnet Mask

Site1 192.0.1.2 255.255.255.0
Site2 192.0.2.2 255.255.255.0
Site4 192.0.11.2 255.255.255.0
Site5 192.0.13.2 255.255.255.0

Table 9.16 IP addressing of sites

9.3.4 Creating LSPs

The journey of a MPLS based packet starts and ends within a LSP. We

therefore had to first install LSPs in our MPLS based experiential scenario. A full
description of how this was done is given below. We start by explaining some of
the important LSP attributes described below. Most of these attributes may also be
configured through the LSP browser in OPNET. The update LSP Details
operation creates traffic profiles and forward equivalence class (FECs) for the
LSPs, which one can modify later as one fine tune the model. Both static and
dynamic LSPs are supported in the MPLS module within OPNET. In our
experiment, we did not however use dynamic LSPs, since the network model was
not very large and we were interested to have a better control over the LSP
establishment. This made it easier for us to have a better control over the network.
We therefore defined by clicking on different routers, drawing our static LSPs
between LERs.

In this scenario, we have chosen to keep the traffic intensity as the shortest
path scenario. The only change we imposed in the model was that we forced TCP
flows between site 1 and 5 use the red coloured LSP, while we force UDP flows
between site 2 and 4 to use the blue coloured LSP. That is, we completely
separate the TCP and UDP flows between ingress and egress routers along their
path to destination sites. Figure 9.2 illustrates this. Our objective as stated earlier,
were now to try to utilize the network resources more efficient while trying to
impose a better chance for the TCP traffic to keep up its throughput while
transmitting traffic.

 77

Figure 9.2 LSPs from LER1 LER 2

The traffic is configured as before between sites, with the same intensity and type
of service. Here we don’t take into consideration any quality of service
requirements, since our objective here is only to engineer traffic. Later we also
take the QoS requirements into consideration when we engineer traffic, to
measure its performance within the network.

9.3.5 MPLS configuration

Traffic engineering bindings governs how packets are labelled and

forwarded in a network, by using FECs and traffic trunks to classify packets.
These two important MPLS configuration attributes configured are described
below. The first one, which is called FEC specifies the Forwarding Equivalence
Class (FEC). FECs classify and group packets so that all packets in a group are
forwarded in the same way. FECs are defined based on any of the IP header fields
such as ToS, protocol, source address range, destination address range, source
port, and destination port. When defining a FEC in the FEC details table, you can
use any combination of IP header field configuration. We assigned four types of
FECs based on destination address and protocol type used. Table 9.10 below
describes the FEC configuration.

FEC name Protocol used Destination address

Site1 TCP 192.0.13.2
Site2 UDP 192.0.11.2

Table 9.17 FEC specification table

 78

The traffic trunk profile attributes specifies out-of-profile actions and
traffic classes for traffic trunks in the network. Traffic trunks capture traffic
characteristics such as peak rate, average rate, and average burst size. To function
correctly, the model requires that at least one default traffic trunk be configured.
Additional trunks can be configured to handle prioritised flows. Two different
traffic trunks were defined in our experiment. This was done to separate and apply
equally amount of resources to the flows travelling through the MPLS configured
network.

Flow Max. Bit rate (bits/sec) Average Bit Rate (bits/sec) Max. Burst Size (bits) Out of profile action

Flow1 1,544,000 1,500,000 64,000 Discard
Flow2 1,544,000 1,500,000 64,000 Discard

Table 9.18 Trunk Configuration Table

We only assigned IP-address in order to let the FEC- classes function.

Site IP-Address Subnet Mask

Site1 192.0.1.2 255.255.255.0
Site2 192.0.2.2 255.255.255.0
Site4 192.0.11.2 255.255.255.0
Site5 192.0.13.2 255.255.255.0

Table 9.19 IP addressing of sites

9.3.6 Router configuration

The ethernet2_slip8_gtwy node model represents an IP-based gateway supporting
up to two Ethernet interfaces and up to 8 serial line interfaces at a selectable data
rate. IP packets arriving on any interface are routed to the appropriate output
interface based on their destination IP address. The Routing Information Protocol
(RIP) or the Open Shortest Path First (OSPF) protocol may be used to
automatically and dynamically create the gateway's routing tables and select
routes in an adaptive manner. This gateway requires a fixed amount of time to
route each packet, as determined by the "IP Forwarding Rate" attribute of the
node. Packets are routed on a first-come-first-serve basis and may encounter
queuing at the lower protocol layers, depending on the transmission rates of the
corresponding output interfaces.

Protocols:

RIP, UDP, IP, Ethernet, Fast Ethernet,
Gigabit Ethernet, OSPF

 79

Interconnections:

1) 2 Ethernet connections at a data rate of 10 Mbps, 100 Mbps, or 1000 Mbps.
2) 8 Serial Line IP connections at a selectable data rate

Attributes:

"IP Forwarding Rate": specifies the rate (in packets/second) at which the gateway
can perform a routing decision for an arriving packet and transfer it to the
appropriate output interface.

IP Processing information:
Datagram switching rate:500,000

Rate at which the traffic is switched at this node. Note that switching is only done
for labeled packets (MPLS). All other packets are routed and undergo the IP
Forwarding delay

Datagram forwarding rate: 50,000
Number of packets or bytes that are processed by the "forwarding processor" in
one second. The unit associated with this value is specified in the Forwarding
Rate Units attribute.

Forwarding rate units: packets/second

Memory size (bytes): 16MB

IP slot info:
Processor speed: 5000
This attribute sets the processing (forwarding) capacity of this slot's processor in
packets or bits per second, depending on the value of the "Forwarding Mode"
attribute. Alternatively, it can be thought of as the "service rate" of this slot's
processor.

Processing mode: packet/second

Input and output buffer capacity: 8MB (shared)

Attribute Value
Router ID Auto Assigned
Autonomous System Number Auto Assigned
Interface Information (…)
Loopback Interfaces (…)
Default route Auto Assigned
Load Balancing Options Destination-Based
Administrative Weights Default

Table 9.20 IP Routing Parameters Table

 80

Name Status Address Subnet-mask MTU(bytes) Metric-info Routing-Protocol QoS-info

IF0 Active Auto Auto Ethernet Default OSPF None
IF1 Active Auto Auto Ethernet Default OSPF None
IF2 Active Auto Auto Ethernet Default OSPF None
IF3 Active Auto Auto Ethernet Default OSPF None
IF4 Active Auto Auto Ethernet Default OSPF None
IF5 Active Auto Auto Ethernet Default OSPF None
IF6 Active Auto Auto Ethernet Default OSPF None
IF7 Active Auto Auto Ethernet Default OSPF None
IF8 Active Auto Auto Ethernet Default OSPF None
IF9 Active Auto Auto Ethernet Default OSPF None

Table 9.21 Interface Information Table

Attribute Value

Start Time uniform (5.0, 10.0)
Interface Information (…)
Area Summarization No Address Aggregation
Routing Table Interval (seconds) 60
SPF Calculation Parameters Periodic

Table 9.22 OSPF parameters Table within the routers

The routers had to be configured to function properly in the MPLS capable

networking environment. The edge routers specially had to be configured. The
traffic engineering configuration attribute specifies bindings between FECs and
LSPs. Each traffic engineering binding specifies the FEC, traffic trunk, and LSP
that is applied to the label of the incoming packet. When an unlabeled packet
arrives at the ingress LER, the following sequence occurs to determine the
appropriate label for the packet:

1. The TE binding is selected based on the packet’s FEC and the

incoming interface.
2. The packet is checked to make sure that its traffic characteristics

conform to those specified for the TE binding’s traffic trunks.
3. The packet is then assign a label and sent through the primary LSP

specified for the TE binding.

Each of the two FECs was mapped to their own traffic trunks. This was a very
easy task within OPNET. This task would probably consume much more time in
the real world of router configuration. After creating the LSPs, FECs and traffic
trunks, we created TE bindings that governed which packets would be sent to
which LSPs. Table 9.13, shows the configuration of the MPLS parameters table
within the LER1 router. It shows how the interface to FEC, trunk and LSP
combination are established within the ingress router.

 81

Interface In FEC Traffic flow LSP

0 FEC Site 1 flow 1 Red
1 FEC Site 2 flow 2 Blue

Table 9.23 LER1 MPLS parameter table

9.3.7 Simulation configuration attributes

The following simulation attributes were modified in addition to those listed
in chapter 9.2.5. The ones listed below are related to the MPLS experimentation
scenario.

Attribute Value
Duration 125sec
Values per Statistic 1000
IP Dynamic routing protocol Default
IP Interface addressing mode Auto Assigned
LSP Routing Protocol IGP
LSP Signaling Protocol RSVP
LSP Start Time 90

Table 9.24 Simulation configuration attributes

9.4 MPLS-TE-QoS supported flows config. details within

OPNET

9.4.1 Application configuration

Applications used in this experiment, differs not from the ones used in our
earlier shortest path and MPLS-TE experiment. The only changes we made were
to assign them better class of service. We therefore refer to earlier description of
application used in the shortest path routing configured experimentation for
further details on the applications themselves.

9.4.2 Profile configuration

The same goes for the profile configuration. Here too, we have chosen to use
our earlier defined profiles configured in the shortest path routing and MPLS-TE
experiential network.. Table 9.25 and 9.26 outlines the configuration made.

 82

Profile Name Applications Operation-mode Start-time(sec) Duration(sec) Repeatability

TCP generator (…) Serial(ordered) constant(120) end of sim. Once at start
UDP generator (…) Simultaneous constant(121) end of sim. Once at start

Table 9.25 Profile Configuration Table

Name Start Time Offset Duration (seconds) Repeatability

File Transfer (heavy) No Offset end of profile Once at start
Video conf. (heavy) No Offset end of profile Once at start
(UDP generator executes 5x video conf with a second between each)

Table 9.26 Applications Table

9.4.3 Creating LSP

Referring to the MPLS-TE Creating LSPs section 9.3.3.

Only this time establishing one of those LSPs installed in the MPLS-TE network.

Figure 9.3 LSPs from LER1 LER 2

9.4.4 MPLS configuration

Referring to the MPLS-TE MPLS configuration section 9.3.4.

The changes on FECs and traffic trunk concerned QoS support.

FEC name DSCP Protocol used Destination address

EF TCP EF TCP 192.0.13.2
AF11 UDP AF11 UDP 192.0.11.2

Table 9.27 FEC specification table

 83

Flow Max. Bit rate (bits/sec) Average Bit Rate (bits/sec) Max. Burst Size (bits) Out of profile action Traffic class

EF flow 2,000,000 1,000,000 64,000 Discard EF
AF11flow 1,000,000 500,000 64,000 Discard AF11

Table 9.28 Trunk Configuration Table

EXP PHB
0 AF11
6/7 EF

Table 9.29 EXP to PHB mappings

9.4.5 QoS Configuration attributes

To configure Weighted Fair Queuing (WFQ), we present the table below.

Weight Max queuing classification scheme queuing category

5 100 AF11 Default Queue
55 500 EF Low Latency queuing

Table 9.30 Weighted Fair Queuing details

Weight is only applicable for WFQ. Weights are attributed to each queue. The
weight indicates the allocated bandwidth for the queue. A higher weight indicates
larger allocated bandwidth and shorter delays. If a queue is configured as a Low
Latency Queue the Weight attribute of this queue is not used and the WFQ
scheduler will ignore the value. Max queuing controls the maximum number of
packets per queue. Used when the interface is congested (when the total number
of buffered packets in all the queues is reached). Classification scheme compare
DSCP values, source/destination addresses, protocols and incoming interface
values to combine the right weight and queue with the packet. The Queue
Category attribute determines whether the queue has the Default Queue and/or
Low Latency Queue property. Low Latency Queuing introduces strict priority into
WFQ. The Low Latency Queue enables use of a single, strict priority queue for
delay-sensitive traffic. Traffic in this queue gets the highest priority, and only if
this queue is empty, are other queues allowed to send traffic according to the
traditional WFQ mechanism. The Default Queue receives all traffic that does not
match the classification criteria of any of the existing queues. Only one Default
Queue can be configured for the given queuing environment. If an incoming
packet doesn't comply with any of the user-defined criteria, it is put in the default
queue (0: Best-Effort).

9.4.6 Workstations and Server configuration

Referring to the MPLS-TE Workstation and server configuration section
9.3.5.

 84

Site Supported Protocol Start End time Traffic-intensity ToS
Site1 TCP 2m:00s 10m:00s 1,500,000 bits/sec Best effort(0)
Site2 UDP 3m:00s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 3m:45s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 4m:30s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 5m:15s 10m:00s 300,000 bits/sec Best effort(0)
Site2 UDP 6m:00s 10m:00s 300,000 bits/sec Best effort(0)
Site4 UDP N/A N/A N/A N/A
Site5 TCP N/A N/A N/A N/A

Table 9.31 A summarization over the traffic configuration

Site IP-Address Subnet Mask
Site1 192.0.1.2 255.255.255.0
Site2 192.0.8.2 255.255.255.0
Site4 192.0.11.2 255.255.255.0
Site5 192.0.13.2 255.255.255.0

Table 9.32 IP addressing of sites

9.4.7 Router configuration

Referring to the MPLS-TE Router configuration section 9.3.6, we modified
the FECs and their respective flowspec and LSP usage. Also, the routers
interfaces had to be configured to be aware about the per- hop behaviour of the
packets travelling through them. Therefore, QoS information attribute was been
enabled. The below tables highlights these modifications made.

Interface In FEC Traffic flow LSP

0 EF TCP EF flow Blue
4 AF11 TCP AF11 flow Blue

Table 9.33 LER1 MPLS parameter table

Buffer size(bytes) Queuing Scheme Queuing Profile

100000 WFQ DSCP based

Table 9.34 Every routers interface QoS information configuration

9.4.8 Simulation configuration attributes

Referring to the MPLS-TE simulation configuration attributes section 9.3.7.

 85

10 REFERENCES

[1] E. Rosen, A. Viswanathan, R. Callon, ” Multi Protocol Label Switching
Architecture” RFC 3031, January 2001.

[2] Daniel O. Aweduche, “MPLS and Traffic Engineering in IP Networks,”
IEEE Communication Magazine December 1999, UUNET (MCI
Worldcom).

[3] E. Rosen, D. Tappen, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li, A.
Conta, ” MPLS Label Stack Encoding”, RFC 3032, January 2001.

[4] N. Shen and H. Smit, “Calculating IGP Routes over Traffic Engineering
Tunnels,” IETF Internet draft, work in progress, June 1999.

[5] Xipeng. Xiao, Alan. Hannan, Brook Bailey, Lionel M. Ni, “Traffic
Engineering with MPLS in the Internet,” IEEE Network March/April 2000,
GlobalCenter inc., Michigan State University.

[6] D. Aweduche et al., ”Requirements for Traffic Engineering over MPLS,”
RFC 2702, Sept. 1999.

[7] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, and
Jennifer Rexford, et al. “NetScope: Traffic Engineering for IP Networks”,
IEEE Networks, March/April 2000.

[8] Hang Lu, Ruifeng Wang, Yugeng Sun, “An Architecture of Traffic
Engineering,” IEEE 2000, 0-7803-6253-5/00.

[9] D Aweduche, L Berger, D Gan, T Li, G Swallow and V Srinivasan,
“RSVP-TE: Extensions to RSVP for LSP Tunnels”, RFC 3209, December
2001.

[10] Byeongsik Kim, Woojik Chun, Jaeho Yoo, ”Constraint-based LSP
Setup by Message Reversing of CR-LDP”, IEEE 2001, 0-7695-0951-7/01

[11] Aweduche, et al., IEEE Communications, 12/1999, 42-47.

[12] D Bertsekas & R Gallager, “Data Networks”, Second Edition, Prentce
Hall 1992.

[13] J. Moy,”OSPF version 2”, RFC 2328, Ascend Communications Inc.
April 1998.

[14] OPNET Online Manual, www.opnet.com

 86

http://www.opnet.com/

[15] Wei Sun, Praveen Bhaniramka, Raj Jain, ”Quality of Service using
Traffic Engineering over MPLS: An analysis”, IEEE 2000, 0-7695-0912-
6/00.

[16] Xipeng Xiao and Lionel M. Ni, ”Internet QoS: A Big Picture,”
Michigan State University, IEEE Network, March/April 1999.

[17] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the
Internet Architecture: An Overview,” Internet RFC 1633, June 1994.

[18] S. Shenker, C. Partridge and R. Guerin, ”Specification of Guaranteed
Quality of service,” RFC 2212, Sept. 1997.

[19] J. Wroclawski, “Specification of the controlled-Load Network Element
Service,” RFC 2211, Sept. 1997.

[20] K. Nichols et al., “Definition of the Differentiated Services Field (DS
field) in the IPv4 and IPv6 Headers,” RFC 2474, Dec. 1998.

[21] S. Blake et al., ”An Architecture for Differentiated Services,” RFC
2475, Dec. 1998.

[22] R. Braden et al., ”Resource Reservation Protocol (RSVP) – Version 1,
Functional specification,” RFC 2205, September 1997.

[23] OPNET Technologies Inc., "OPNET Modeler Modeling Manual",
Bethesda, MD, release 8.0.c, June 2001

[24] OPNET Technologies Inc., "OPNET Protocol Model Documentation",
Bethesda, MD, release 8.0.c, June 2001

[25] P. Almquist, “Type Of Service in the Internet protocol suite”, RFC
1349, July 1992.

[26] J. Heinanen, F. Baker,Weiss, W. And J. Wrocklawski, ” Assured
Forwarding PHB Group”, RFC 2597, June 1999.

[27] C. Hedrick,”Routing Information Protocol”, RFC 1058, Rutgers
University, June 1988.

[28] D. Oran, “OSI IS-IS Intra-domain Routing Protocol”, RFC 1142,
Digital Equipment Corp., February 1990.

[29] L. Andersson, P. Doolan, N. Feldman, A. Fredette, B. Thomas, ” LDP
Specification”, RFC 3036, January 2001.

[30] B. Thomas, E. Gray, “LDP Applicability”, RFC 3037, January 2001.

 87

[31] B. Jamoussi et al., ”Constraint-Based LSP Setup Using LDP”, RFC
3212, January 2002.

[32] J. Ash, M. Girish, E. Gray, B. Jamoussi, G. Wright, “Applicability
Statement for CR-LDP”, RFC 3213, January 2002.

[33] J. Ash, Y. Lee, P. Ashwood- Smith, B. Jamoussi, D. Fedyk, D.
Skalecki, L Li, “LSP Modification Using CR-LDP”, RFC 3214, January
2002.

[34] D. Awduche, A. Hannan, X. Xiao, “Applicability Statement for
Extensions to RSVP for LSP-Tunnels”, RFC 3210, December 2001.

[35] A. Mankin et al., ” Resource Reservation Protocol (RSVP) Version 1
Applicability Statement Some Guidelines on Deployment”, RFC 2208,
September 1997.

[36] T. Li, Y. Rekhter, ”A Provider Architecture for Differentiated Services
and Traffic Engineering (PASTE) ” RFC 2430, October 1998.

[37] D Aweduche, L Berger, D Gan, T Li, G Swallow and V Srinivasan,
“RSVP-TE: Extension to RSVP for LSP Tunnels”, RFC 3209, December
2001.

[38] V. Jacobson, K. Nicholes, K. Poduri, “An Expedited Forwarding
PHB”, RFC 2598, June 1999.

[39] A. Apostolopoulos, R. Guerin, S. Kamat, Orda, T. Przygienda, and D.
Williams, “QoS Routing Mechanisms and OSPF Extensions”, RFC 2676,
August 1999.

 88

Department of Informatics
University of Oslo, Norway
Gaustadalleen 23
Postboks 1080 Blindern
0316 Oslo
Norway

UNIK – University Graduate Centre of
Technology
P.O BOX 70
N-2007 Kjeller
Norway

01-03

 89

