View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by NORA - Norwegian Open Research Archives

University of Oslo
Department of Informatics

Dynamic Coupling
Measurement for
Object-Oriented
Software

Audun Foyen

Cand. Scient. Thesis

29th January 2004

https://core.ac.uk/display/30827605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

A major goal of software engineering research is to develop techniques, meth-
ods and tools that may improve software quality. This thesis contributes to
that goal.

It is possible to assume two different views on quality as it relates to
software products. In the external view, quality is determined based on how
well a product performs in practise, i.e., maintainability and usability. In
the internal view, quality is derived from attributes inherent in the software
product, e.g., structural properties such as coupling, cohesion and size.

Much research related to software quality models has focused on estab-
lishing relationships between structural properties and external quality at-
tributes. The ultimate goal of this research is to develop quality prediction
models, which may aid in making informed decisions concerning, for example,
refactoring or program design.

Regardless of the structural properties considered, most quality predic-
tion models have so far been based on static analysis of source code or
designs. Such models have proven to be fairly accurate on some occasions.
However, in the context of object-oriented systems, static coupling measures
may not always be accurate, thus resulting in unreliable prediction models.
Due to polymorphism and dynamic binding, static coupling measures do
not always reflect the actual coupling taking place between classes, as this
can only be determined at run-time. In addition, static measurements of
coupling may be inaccurate when obtained from systems containing “dead”
code.

In an attempt to overcome these problems, twelve dynamic coupling
measures have been proposed. They differ from static coupling measures
in that they are based on analysis of the actual messages exchanged between
objects at run-time. The twelve measures are therefore referred to as “dy-
namic coupling measures”. To collect the dynamic coupling measures, a
tool called Jdissect was developed. Jdissect collects data from running Java
programs to calculate dynamic coupling.

There are three objectives for the investigation of the proposed coup-
ling measures. The measures need to be theoretically validated, that is, one
needs to assess their theoretical properties and validity as coupling measures.
Furthermore, it is important to determine whether they provide data over
and above what can be collected through static measures such as size and
static coupling. Finally, to demonstrate practical usefulness of the dynamic
coupling measures, they must be evaluated as predictors of external quality.
In the case study presented in this thesis, the external quality attribute con-
sidered for the evaluation is change proneness, which is an indirect measure
of software maintainability.

The results indicate that some of the dynamic coupling measures are
strong indicators of change proneness and that they complement existing
static measures. The resulting prediction models may, for example, be useful
to focus restructuring efforts on those parts of the software that are predicted
to be the most likely to undergo future changes.

ii

Acknowledgements

First of all, I am grateful to my supervisor Erik Arisholm for his guidance
and enthusiasm. Our many long meetings and brainstorming sessions have
taught me a lot. Furthermore, the opportunity to take part and assist in his
research inspired me to no end.

I also wish to thank Lionel Briand for his help and for some very inter-
esting discussions during the course of this project.

Additionally, there are a number of people who have provided assistance
by taking the time to read and debate my thesis. In no particular order, I
wish to thank Hilde Skjevling, Jgrn Grotnes, Ragnar Nicolaysen, Christian
Brinch and Christian Herzog.

Oslo, January 2004
Audun Fgyen

iii

v

Contents

1 Introduction

1.1

1.2

1.3

14

1.5

1.6

1.7

1.8
1.9

1.10

1.11

1
Software Engineering L. 2
1.1.1 Empirical Software Engineering 2
Research Methods 3
1.2.1 Empirical Methods 4

1.2.2 Criticism of Empirical Research in Software Engineering 5
Software Quality L. 7
1.3.1 External and Internal Software Quality 7
1.3.2 Example Definitions of Software Quality 9

1.3.3 Comparison of Definitions 11
Software Metrics 13
1.4.1 Overview 13
1.4.2 Software Complexity 14
Measures for Object-Oriented Software 15
1.5.1 Static versus Dynamic Structural Measures 18
Dynamic Coupling Measures 19
1.6.1 Classification of Coupling Measures 19
Research Objectives and Methodology 20
1.7.1 Formal Definitions, 20
1.7.2 Tool Support 21
1.73 Evaluation. 22
Contributiono 24
Related Work 24
1.9.1 Coupling Measures 24
1.9.2 Similar Tools 25
1.9.3 Other Case Studies 25
Future Work 26
1.10.1 Defining New Measures 26
1.10.2 Tool Expansion 26
1.10.3 Possible Case Studies 27
Thesis Overview 27

2 Dynamic Coupling Measurement for Object-Oriented Soft-

ware 35
2.1 Imtroduction 36
2.2 Dynamic Coupling Measurement 38
2.2.1 Classifying Coupling Measures 39
2.2.2 Definitions 40
2.2.3 Analysis of Properties 48
2.2.4 Using UML Models for Data Collection 51
23 CaseStudy 52
2.3.1 Objectives and Methodology 52
2.3.2 Tool Support 54
2.3.3 Code Coverage 55
2.3.4 Descriptive Statistics 55
2.3.5 Principal Component Analysis 55
2.3.6 Relationships between Change Proneness and Dynamic
Coupling 56
2.3.7 Prediction Model of Change Proneness 58
2.4 Related Works 60
25 Conclusion. 62

3 Jdissect - a Dynamic Coupling Tracer for Object-Oriented

Systems 69
3.1 Overview 69
311 Java 69
3.1.2 Jdissect 71
3.1.3 Data - Aggregation and Filtering 71
3.2 Design 74
3.2.1 Overview 74
3.22 CoreModel 75
3.2.3 The ModelBuilder Class 78
3.2.4 The SetContainer Class 79
3.3 Jdissect - Collecting and Analysing Data 80
3.3.1 Collecting Data - 1ibjdissect 80
3.3.2 Data Analysis-mcalc 83
3.3.3 Configuring mcalc 84
3.4 Verification of Jdissecto 87
3.4.1 Store/load/store Test 87
3.4.2 Manual Verification 88
3.4.3 Symmetry 88
3.5 Study of Velocity 89
3.5.1 Velocity 89
3.5.2 Measuring Code Coverage 91
3.6 Technical Choices 92
3.6.1 Separation of Data Collection and Analysis 92

vi

3.6.2 Data Storage 93

3.6.3 The Java Interface 94
3.7 Summary 98
Appendices to Chapter 2 101
A.1 Definition of the Size Measures 101
A.2 Informal Definitions of the Static Coupling Measures 102
A.3 Descriptive Statistics 103
A.4 Principal Component Analysis for the Dynamic Coupling Meas-

UTES . o o v e e e e 104
A.5 Principal Component Analysis for All Measures 105
Technical Details 109
B.1 Set Implementation 109
B.2 MethodInvocation, 111
B.3 The Profiling Interface - JVMPI. 114
B.4 The Debug and Native Interfaces 116
B.5 Threads and Locking issues 120
B.6 Storing Data 122
B.7 Reading Data 124
B.8 Implementing the Measures 126
B.9 Future Work 129
Extra material, source code and configuration 135
C.1 Polymorphism and Coupling 135
C.2 Taxonomy of Software Metrics. 136
C.3 Downloading Versions from the Velocity CVS Repository . . . 137
C.4 XSLT Stylesheet used to Transform testcases.xml for each

Velocity Version 138
C.5 filter.conf used to analyse Velocity 139
C.6 JVMPI events used by libjdissect.so 140
C.7 Intermediate storage file format 141

vii

viii

Chapter 1

Introduction

Just four decades ago the concept of large scale software development pro-
jects was practically unheard of. Reports on the complexity of such projects
started appearing in the ’70s with works such as Brooks’ “The Mythical Man
Month” [BJ95], receiving widespread readership and distribution. The prob-
lems reported by Brooks’ are still relevant, as seen in the Chaos Report,
published in 1994 [SG94|. Software projects still tend to take more time and
cost more money than estimated. That is, if they ever finish at all. The
economic ramifications for both companies and organisations are potentially
severe.

Consequently, a major goal of software engineering research is to develop
and evaluate methods, tools and techniques that will improve the quality of
software while reducing the cost commonly associated with it. This chapter
describes the context, motivation and the main contributions of this thesis,
thus explaining how we contribute to that goal.

Overview

The first part of this chapter is organised as follows: Section 1.1 provides
some motivation for empirical research in software engineering. Common
approaches to research in this field are presented in Section 1.2, followed by
a summary of frequently seen forms of criticism against them. Together,
the discussion of empirical research methods and the summary of frequent
threats to validity motivates careful choice and use of research method. In
Section 1.3, internal and external software quality is explained. Addition-
ally, some example definitions of quality are presented in order to show how
this term can represent a number of things depending on context. Having
shown definitions of software quality from both the internal and external
perspective, the concept of measuring software quality is treated in Section
1.4. Some structural properties of object-oriented (OO) software frequently
employed in efforts to build models for estimating quality are described in

Section 1.5. The structural properties used in these models are often based
on static analysis of source code. The shortcomings of static coupling ana-
lysis are debated in Section 1.6, followed by an introduction to the twelve
dynamic coupling measures which are the focus of this thesis.

The latter part of this chapter describes the research into how dynamic
coupling measures work. In Section 1.7 we state the objectives of our re-
search, and elaborate on the methodology used to achieve them. Next, in
Section 1.8, we explain how attaining these goals contribute to furthering the
understanding of the measures. Related and possible future work is outlined
in Sections 1.9 and 1.10, respectively.

1.1 Software Engineering

The late ’60s saw the inception of what was then called the “software crisis”.
Previously, hardware constraints had limited development of software to an
extent where large-scale projects were nearly impossible. As these limita-
tions were gradually set aside, a crisis emerged. The problem was that large
projects often had trouble completing their work, using more time and re-
sources than anticipated. The cause of these difficulties was thought to be
that many techniques used in small-scale development could not be scaled
up to meet the needs of larger projects. The solution, many felt, was to
apply principles commonly found in more traditional engineering disciplines
to software development. Hence, the term “software engineering” was coined
during the famous 1968 NATO conference in Garmisch, Germany [NR68].

In general, the application of engineering principles can be taken to mean
an attempt at structured and gradual improvement of theories, methods,
processes and tools (e.g., [PWC95]). Since the 1968 NATO conference, many
new software engineering methods have been proposed. Unfortunately, they
frequently have little or no properly documented success.

1.1.1 Empirical Software Engineering

The ideal way of establishing new approaches to software engineering is
through research and practical small-scale application [FPG94]. This mo-
tivates the term empirical software engineering, in which software engin-
eering methods are evaluated through empirical methods such as controlled
experiments, surveys and case studies.

Fenton et al. [FPG94] describe how the software engineering industry is
fraught with unsubstantiated claims of improvement. The authors refer to
vendors advertising 250% productivity gain and maintenance effort reduced
by 80%. Any rational development organisation will seek evidence of such
claims to efficacy before applying new methods or new technology.

Per definition, research should be based on empirical findings, and not
on hearsay or anecdotal evidence. Using empirical techniques can often help

researchers substantiate their results, increasing the likelihood that they are
taken seriously by industry representatives and by each other.

As a research discipline, software engineering often has to deal with prob-
lems more commonly associated with research in psychology, medicine and
the social sciences. The common denominator in these fields is that they
involve people, and the fact that quantifying people’s perceptions and reac-
tions is difficult. Using an empirical approach is widely believed to be the
best way of dealing with ambiguities often encountered in such settings.

1.2 Research Methods

There are a number of ways to conduct research in software engineering. For
example, Adrion proposes categorising research based on the method used
[Adr93|:

e The scientific method — Observe the world, propose a model or
theory of behaviour, measure and analyse, validate hypothesis of the
model or theory, and if possible: repeat.

e The engineering method (evolutionary paradigm) — Observe exist-
ing solutions, propose better solutions, build or develop, measure and
analyse, repeat until no further improvements are possible.

e The empirical method (revolutionary paradigm) — Propose a model,
develop statistical or other methods, apply to case studies, measure and
analyse, validate the model, repeat.

e The analytical method — Propose a formal theory or set of axioms,
develop a theory, derive results, and if possible compare with empirical
observations.

The scientific, analytical and engineering approaches can be difficult to
use in practical software engineering. The engineering method relies on the
improvement of existing solutions. In a recent research field such as software
engineering there are often no solutions to improve, partly due to the rapid
pace of the industry and partly because of incomplete or unsubstantiated
previous research [FPG94].

Both the scientific and the analytical method are based on subjecting a
proposed model or theory to validation. This can sometimes be problematic
in software engineering research, for a number of reasons. First, researchers
often lack sufficiently accurate theories and models on which to base their
investigations. This might in part be due to a lack of previous studies and
material. Furthermore; forming theories and building models which corres-
pond to a phenomenon’s behaviour require understanding of the basic prin-
ciples involved. This is often difficult as software engineering is closely tied

to how humans understand and represent abstract concepts [Cas02]. With
software engineering itself relying on human cognition to such an extent, it
is no wonder that research in the field is difficult [Her99]. Such research is
founded, in essence, on abstract models and theories meant to represent the
abstract process of creating software. “Abstracting an abstraction” might be
one way to describe it.

The empirical approach has more room for exploratory analysis, and does
not require the same amount of up-front theories and axiomatic models as
the other three methods. It is therefore often better suited to conducting
theory-creating research [JarO1]. Furthermore, if statistical prescriptions are
followed [KPPT02], and if data is made available, this method lends itself
well to replication.

1.2.1 Empirical Methods

Jarvinen |Jar01] divides empirical studies into two categories:

e Theory-testing — Attempt to determine if a hypothesis can be con-
firmed or falsified based on data from case studies, experiments or
surveys. A prerequisite for theory-testing studies is some knowledge or
data.

e Theory-creating — Seeks a theory that can be used to explain obser-
vations. This approach is suitable if there is no prior knowledge related
to a phenomenon.

There are several methods to choose from in empirical software engin-
eering. The suitability of the various methods is ultimately determined by
such things as the availability of existing theories, resources and the purpose
of the research itself. The following list describes some common approaches
to research in empirical software engineering:

e Controlled experiments — Controlled experiments are often used
to evaluate relationships between phenomena found during initial ex-
ploratory case studies [And03|. This design isolates a phenomenon
and controls conditions in an artificial setting. Usually, this can only
be accomplished on a limited scale, which is why Kitchenham calls
controlled experiments “research in the small” [KPP95|. While it is
possible to obtain very specific information by using controlled exper-
iments, they often suffer from problems related to realism [SAAT02].
As a consequence, results are not necessarily applicable outside the
experimental setting [And03, KPP95].

A controlled experiment begins by defining research goals, and the
formulation of a hypothesis based on them. It proceeds by the devel-
opment of needed material, such as forms and examples, setting up

required tools, and so on. The treatments prescribed in the experi-
mental design should be applied to two or more groups of subjects,
followed by statistical analysis of the obtained data. Evaluation of the
results, possibly in light of previous knowledge, should yield a conclu-
sion.

Surveys — Surveys can be employed when aiming for an overview
or the state of practise on a large scale. Kitchenham [KPP95| call
surveys ‘research in the large”. This empirical research method com-
bines some of the advantages of formal experiments with those of case
studies. Because surveys are conducted on a large scale the problems
often associated with replication of case studies are avoided (as in con-
trolled experiments). Furthermore; as surveys are not conducted in an
experimental setting their results are often directly applicable to real-
world scenarios (as in case studies). However, according to Kitchenham
[Kit96a], surveys should only be used to demonstrate association, not
causality.

Empirical surveys are usually conducted by posing structured pre-
defined questions to a population sample [JarO1l]. One problem re-
lated to this method is that there might be discrepancies between how
researcher and research subject interpret the meaning of various ques-
tions and answers [Ari01].

Case studies — Case studies provide researchers with the possibility
of evaluation in a real-world setting without the scientific rigour of ex-
periments and surveys. While findings in controlled experiments are
sometimes difficult to apply outside the context of the research setting,
results from case studies are often directly applicable. However, it is
sometimes difficult to interpret such results, and they can not neces-
sarily be applied in settings or environments outside the context of the
study.

Kitchenham call case studies “research in the typical” and proposes
guidelines for how they should be conducted and evaluated [KPP95].

1.2.2 Criticism of Empirical Research in Software Engineer-

ing

Empirical software engineering has been criticised on a wide range of issues
related both to conducting controlled experiments and application of statist-
ical methods. Many objections to the current state of the art can be placed
in the following categories:

e Lack of empirical verification — If research in software engineering is
to have an impact within the industry it is vital that theories are backed

by solid empirical work. According to Fenton [FPG94], far too much
published material can be described as “analytical advocacy research”,
proposing theories and deriving potential analytically, without con-
ducting empirical investigations. Glass assumes a similar view [Gla94].
Zelkowitz and Wallace examined 619 papers published in the highly
acclaimed IEEE Transactions on Software Engineering in 1985, 1990
and 1995 [ZW98]. They found no evidence of empirical validation in
36%, 29% and 19% of the papers, respectively.

Lack of realism in empirical studies — Unfortunately, empirical
studies in themselves do not guarantee correctness. Zelkowitz and
Wallace state that “All too often the experiment is a weak example fa-
vouring the proposed technology over alternatives. Sceptical scientists
would have to view these experiments as potentially biased.“ [ZW9S].
Fenton et al. [FPG94| distinguishes between “toy” and “real” studies,
and argue that although “toy” studies (i.e., using student subjects) are
less expensive their prevalence influence findings.

Sjsberg et al. [SAAT02] defines the concept of “mundane realism” as
the resemblance of the experimental condition to the real world, and
state that this is a requirement in order to apply research results in
an industrial setting. They define three prerequisites for such realism;
realistic tasks, realistic subjects and realistic environments.

Although many of these statements are found in papers related to con-
ducting studies involving people, they are still relevant for the wider
context of empirical studies in general.

Errors in use of statistical methods — There is some concern over
current application of statistical techniques in software engineering re-
search. Kitchenham et al. make this clear, and refer to similar prob-
lems in medical journals as proof of their point [KPP*02]. They also
propose guidelines for how statistical methods should be applied in six
different areas; experimental context, experimental design, conducting
experiments and data collection, analysis, presentation of results and
interpretation of results.

Lack of replication — Yet another matter of concern is the lack of
replication in software engineering research. In [BDM 95| the authors
state that “without the confirming power of external replication, results
in experimental software engineering should only be provisionally ac-
cepted, if at all”. Miller notes three potential problems facing empirical
software studies: “low statistical power, large number of potential cov-
artates with the treatment variable and verification of the process and
products of the study.“ [Mil|. His conclusion is that these limitations
can be overcome by more frequent replication of studies.

e Lack of operational definitions — Some software measures require
additional interpretation by the person responsible for applying them
in practise. This introduces a possible source of misinterpretation, as
people will inevitably understand the measures differently.

An operational definition does not need additional interpretation in
order to be used in practise [BDW98|. Pickard et al. argue that it is
vital to “define all software measures fully, including the entity, attrib-
ute, unit and counting rules” [KPP102]. Operational definitions are
vital in preventing subjective, and thereby differing, interpretations of
software measures’.

Briand et al. have criticised lack of operationality in relation to co-
hesion and coupling measures [BDW98, BDW99|. Kitchenham makes
similar observations regarding the operationality of the ISO software
quality model (ISO-9126, from 1992) [Kit96b)].

1.3 Software Quality

Software quality is an intangible attribute in itself, as it can be a num-
ber of different things depending on context. A software product might be
perceived as “low quality” from, for example, a maintenance perspective,
while at the same time being of “high quality” from the perspective of users.
The definitions of software quality given by Boehm et al. [BBL76] and the
ISO/IEC 9126-1 [IC01] represent compartmentalised notions of quality. Each
compartment and its associated sub-characteristics describe a fairly coher-
ent aspect of quality. For example, in ISO/IEC 9126-1 [IC01] “reliability”
depends on “maturity”, “fault tolerance” and “recoverability”.

1.3.1 External and Internal Software Quality

Software quality attributes can be divided into two groups; external and
internal attributes. The former are external in the sense that they are most
easily observed after software has been put into use [Som98, p. 624]|. For
example, [ISO/IEC 9126-1 states that “reliability” can be measured externally
by recording the number of failures during a specified period of execution
[ICO1].

In contrast, internal quality attributes can be measured directly from
the software product itself. These attributes are more closely related to the
structural properties of a software product than the external attributes, and
can to some extent capture and quantify information about the design of a
program.

1Systems of related measures that facilitate quantification of some particular charac-
teristic are also commonly referred to as “metrics” in software engineering literature.

Product perspective
External Attributes

Internal Attributes

Structural Properties
- coupling
- cohesion
- size

Figure 1.1: Relationship between external /internal attributes and structural
properties of software

In the context of ISO/IEC 9126-1 [IC01], “reliability” is called an external
quality indicator, while its sub-characteristics are referred to as internal in-
dicators. Kitchenham and Sommerville do not include internal quality at-
tributes in their models, as their emphasis is on explanation rather than
operationality.

It is assumed that there exists a relation between specific external and
internal quality attributes (see Figure 1.1). ISO/IEC 9126-1 [IC01, pp. 14]
specifies that: “The internal attributes are said to be indicators of the external
attributes”. It should therefore be possible to build empirical models which
can be used to assess external quality based on internal attributes.

Once established, such models can be employed to predict the external
quality of software systems before they are put into use. This might enable
developers to focus design and development efforts in a manner likely to
better the external aspects of software quality related to structure and design
[BWO02]. For example, if “reliability” is found to be influenced by one or more
internal attributes, one might be able to predict possible rates of failure early
in the development cycle. If the predicted values are excessive, steps can be
taken to remedy the situation. This can possibly result in a lower rate of
failure once the software product is put into use.

What remains is the question of exactly how it is possible to measure
the internal quality attributes themselves. One method of obtaining such
estimates is by examining the structural properties of the software product.
Figure 1.1 outlines the relationship between external /internal quality attrib-
utes and structural properties. However, there are a number of different
structural properties to consider, and determining which ones are suitable
often requires a number of empirical studies.

Kitchenham lists three conditions which must be satisfied if an internal
attribute is to be considered a useful predictor of external quality [Kit90].

1. The internal attribute must be measured accurately.

2. A relationship must exist between what we can measure and the ex-
ternal behavioural attribute.

3. This relationship must be understood, and it must be possible to ex-
press it in terms of a formula or model.

1.3.2 Example Definitions of Software Quality

Commonly seen definitions of quality range from fairly abstract to more
technical, depending on context. Some authors view software predominately
from an engineering perspective, and focus on the product itself, while others
tend to view the software product as a part of the organisation which creates
and maintains it.

It is possible to divide the different definitions of software quality into
two categories based on their level of detail. Some definitions, like those
given by Kitchenham and Sommerville [Som98, Kit96b|, are quite abstract.
In contrast, the definitions given by Boehm et al. [BBL76|, and by ISO/IEC
9126-1 [ICO1] go further in defining the various sub-characteristics which
constitute the more abstract definitions of quality.

Kitchenham

Kitchenham divides software quality into three different perspectives [Kit96b].

e User perspective — The extent to which the software product meets
the needs and requirements of users.

e Manufacturing perspective — Associated with the cost of mainten-
ance, extendability and other properties of software in the context of
users, organisations and developers.

e Product perspective — Characteristics of the software product itself
(e.g., internal structural properties).

Sommerville

Sommerville distinguishes between four different quality perspectives in [Som98,
p. 6]. Each perspective holds different sub-characteristics, although Som-
merville does not state them explicitly. Sommerville’s definitions of software
product quality attributes are somewhat similar to those used by Kitchen-
ham [Kit96b].

e Maintainability — It should be possible to change software to meet
new requirements.

e Dependability — Software should not cause economic or physical
damage.

e Efficiency — Good software should not waste system resources.

e Usability — It is important for software to have an appropriate user
interface and documentation.

Boehm et al.

In a classic paper on quantitative assessment of software quality, Boehm
assembles an hierarchical structure of quality characteristics [BBL76]. The
structure contains four layers of detail. The third layer is interesting as
there are parallels to it in Sommerville’s work. The following list contains
the characteristics at level three of the hierarchy, followed by the attributes
they depend on (from level four). Some level three characteristics depend on
the same level four attributes.

1. Portability — Device independence, self-containedness

2. Reliability — Self-containedness, accuracy, completeness, robustness/in-
tegrity, consistency

3. Efficiency — Accountability, device efficiency, accessibility

4. Human engineering - Robustness/integrity, accessibility, communic-
ativeness

5. Testability — Accountability, accessibility, communicativeness, self-
descriptiveness, structuredness

6. Understandability — Consistency, self-descriptiveness, structured-
ness, conciseness, legibility

7. Modifiability — Structuredness, augumentability

Item 5 to 7 are prerequisites for the characteristic “maintainability”.

ISO/IEC 9126-1

One of the more recent additions to the body of quality definitions is the
new ISO/IEC 9126-1 [IC01]. Published in 2001, it replaced the older ISO
9126 from 1992. The hierarchy of quality attributes presented in the ISO
standard resembles the definitions used by Boehm et al. [BBL76].

The ordering of the attributes used in the ISO standard has been changed
to highlight the similarity to Boehm’s hierarchical definition of quality. Bold-
face text represents external quality attributes. Each external attribute de-
pends on the internal quality attributes which follow it.

10

1. Portability — Adaptability, installability, co-existence and replaceab-
ility

2. Reliability — Maturity, fault tolerance and recoverability
3. Efficiency — Time behaviour and resource utilisation

4. Usability — Understandability, learnability, operability and attract-
iveness

5. Functionality — Suitability, accuracy, interoperability and security

6. Maintainability — Analysability, changeability, stability and testabil-
ity

1.3.3 Comparison of Definitions

The difference between the definitions of software quality presented by Kit-
chenham and Sommerville manifests itself in that Kitchenham’s definitions
do not include anything specific about efficiency. Sommerville’s focus seems
to be more on the engineering aspect, describing attributes related to the
software product itself. Kitchenham separates the product and its attributes
from the process used to create it, and from the user perspective.

The definitions of quality given by Boehm et al. and in ISO 9126-1
differ from the other two definitions in their level of detail. This is probably
because the definitions in both works are meant to be applied in practise.
In contrast, Kitchenham and Sommerville do not concern themselves with
practical application. Instead, they focus on presenting readers with an
overview of different aspects of quality.

Both Boehm and the ISO model present sub-characteristics perceived to
be related to the various external aspects of software quality. Their aim is
that the various quality characteristics should be as orthogonal as possible.
Boehm argues that it is therefore often pointless to combine different char-
acteristics into overall measures of quality [BBL76], as such measures would
not properly account for the various sub-characteristics. For example, highly
portable and reliable software with low usability might be rated as having
overall “good quality”. Fenton has later used similar arguments [Fen94|.

Kitchenham [Kit96b| and Arisholm [Ari01] criticise the choice of depend-
ent characteristics in the ISO model, and point out that the choice of sub-
characteristics sometimes seems arbitrary. For example, Kitchenham asks
why portability is a top-level characteristic while interoperability is a sub-
characteristic of functionality.

As the definitions of quality given by Boehm/ISO 9126-1 are meant to be
usable in efforts to determine software quality, it would seem likely that the
definitions they present are operationally defined. However, this is not the
case |Kit96b|. Instead, the ISO/IEC 9126-1 recommends that the attributes

11

are measured directly on a software product, but gives no indication of how
this should be done. It only suggests that if an attribute can not be measured
directly, a related attribute should be measured instead. The ISO standard
does not provide operational definitions, and does not follow the guidelines
put forth in [KPPT02|. This makes practical application of the standard
problematic.

ISO/IEC 9126-2 and 9126-3: External and Internal Metrics

While critique of lacking operational definitions was justified in relation to
the old version of ISO 9126, this is not necessarily still the case. Since 1992
the ISO 9126 has been revised and is now called ISO 9126-1 [IC01|. In
addition it has been augmented by two new standards. ISO/IEC 9126-2
“External metrics” [IC03al and ISO/IEC 9126-3 “Internal metrics” [IC03b].
The internal metrics are intended for measurement of the software product
itself, while the external metrics are meant to measure the behaviour of a
computer-based system that includes software.

The two new standards are mainly composed of measurement defini-
tions related to the quality sub-characteristics presented in ISO/IEC 9126-
1. Although the perspective of the measures in the standards are different
(external and internal, respectively), they are meant to estimate the same
attributes, and the names of the measures themselves are the same.

The ISO committee seems to have considered recent debates regarding
the use of measurement theory [FPG94] in literature on empirical software
engineering when defining the two new standards. Definitions of the various
measures in [[C03a] and [IC03b] carefully state which scales are used (e.g.,
nominal /interval /absolute /ratio/ordinal). They also provide formulae for
calculating measurement values and specify what “good” values are.

However, there still seems to be a number of problems related to the
standards. The most evident problem is that calculating the individual
measures still depends on the subjective opinion of the person applying them
(i.e., they are not operational). For example, the formula for calculating the
external quality measure “functional compliance” is:

X=1-A/B

A = Number of functionality compliance items specified that have not
been implemented during testing.

B = Total number of functionality compliance items specified.

[IC03a)

The problem inherent in this definition is that ISO/IEC 9126-2 does not
define what a “functionality compliance item” actually constitutes. There-
fore, the previously mentioned critique of ISO 9126 (from 1992) made by
Kitchenham [Kit96b] is still relevant.

12

The relationship between the various measures used to estimate indi-
vidual sub-characteristics also seems problematic. There are, for example,
four external and four internal measures for estimating “suitability”. How
these should be combined, and how estimates of multiple sub-characteristics
might be made into an overall measure of a main characteristic like “func-
tionality” seems to be an open question.

The standard only recommends that the relationship between external
and internal metrics be as strong as possible, and goes on to state that it is
often difficult to design a rigorous theoretical model in which this relationship
is clear. It explains that a hypothetical model, such as the one proposed by
the standards, may contain ambiguities. ISO 9126-1 concludes that resolving
such ambiguities might require that the relationship between external and
internal attributes be modelled statistically in the course of using the metrics.

1.4 Software Metrics

Sommerville divides metrics into two broad categories based on their use
[Som98]. Control metrics are applied in conjunction with tasks related to
management of software projects. Typical examples of such measures are
elapsed time, work effort and error density. The other category is referred
to as internal predictor metrics. Predictor metrics are employed to measure
product attributes, and can be used to assess product quality.

Goodman defines software metrics as:

“the continuous application of measurement-based techniques
to the software development process and its products to supply
meaningful and timely management information, together with
the use of those techniques to improve that process and its products”

[Go093]|

The definition provided by Goodman coincides with Sommerville’s di-
vision into two categories. Both authors see metrics as tools that can be
applied both to process and product.

This thesis is primarily concerned with metrics related to software products.
Control metrics, and metrics related to improving the software development
process fall outside our scope.

Establishing the relationship between internal structural properties and
external quality attributes can be used in models for early prediction of soft-
ware quality. Metrics are commonly used to quantify these internal structural
properties. The remainder of this section will examine various measures for
assessing the structural properties of software, and their relation to software
product quality.

13

1.4.1 Overview

Many early works on software measurement focus on Lines Of Code (LOC or
KLOC for thousand lines of code) as a measure of productivity, complexity
and quality. Productivity can be derived by examining LOC per program-
mer/month. Quality might be related to defects per KLOC, and complexity
can maybe be inferred directly from KLOC.

In the mid-1970’s researchers started to recognise what was perceived to
be problems related to using KLOC as a surrogate measure for complexity,
effort and productivity. The perceived problem was at least partially that
the expressive power of various programming languages varied widely. As
different high-level languages came into use it was difficult to compare results
across projects [FN99|.

This led to an increased interest in other methods of quantifying software
properties. McCabe’s cyclomatic complexity [McC76] was a new method of
identifying complexity based on analysing a program’s decision structure.
Albrecht [Alb79] pioneered function points as a measure of size independent
of programming language. Halstead defined what has since been known
as the Halstead Software Science metrics in [Hal77|, attempting to derive
programming effort, estimated number of defects and program size from the
number of total and unique operators and operands found in a program.

1.4.2 Software Complexity

Some internal attributes are concerned with determining aspects of software
complexity. Complexity is perceived to be important because software is ul-
timately created and maintained by people. If software is complex it is likely
that its creators and maintainers will have more difficulty understanding and
predicting the effects of the work they do on the product. That complexity
has a confounding effect on developers and maintainers is assumed in several
articles on the subject of software measurements [BW02, BDW99, CK91].
This assumption might in part be traced back to a 1972 paper by Parnas
on decomposing systems into modules in order to increase comprehensibil-
ity and flexibility [Par72]. However, Parnas does not present any empirical
evidence to support the claim.

There are some problems related to quantifying complexity. First, it
should be made clear that complexity as it relates to software can be any
number of different things. It is not possible to find a real-valued combined
measurement which does justice to such diverse attributes as maintainability,
reliability and changeability at the same time. The problem, according to
Fenton [Fen94], is that such a combined measure will eventually have to sat-
isfy conflicting aims. Fenton’s example is “quality” of people. If two people,
a and b, are characterised by 1) physical strength and 2) intelligence, it is
not possible to find a single measure M which satisfies both M (a) > M (b)

14

(when a is stronger than b) and M(a) > M(b) (when a is more intelligent
than b). This is because these two “attributes” of people are not in any way
related.

Another problem related to quantifying a program’s complexity is the
question of who it is complex for. Perceptions of complexity vary widely and
are highly subjective. Arisholm and Sjgberg conducted an experiment, using
both student and professional subjects, in which they examined differences
in maintenance effort for two different types of OO program design [ASO03].
One of the designs was based on delegation of control, while the other had a
centralised control structure. Delegated functionality is often referred to as
good OO design, while centralised structures are in many cases accused of
being reminiscent of traditional procedural programming styles. Arisholm
and Sjgberg found that junior developers used more time performing main-
tenance tasks on the delegate design than they did on the centralised one.
For senior developers the exact opposite was the case; they spent more time
maintaining applications with a centralised design than they did on main-
taining a delegate structure. This indicates the extent to which perceptions
of complexity depend on individuals and their level of experience.

As aresult of the observations made by Fenton and Arisholm et al., we are
not concerned with determining overall complexity. Instead we attempt to
measure and explore the relationship between a software product’s structural
properties and a single internal characteristic.

1.5 Measures for Object-Oriented Software

One way of making the internal attributes of a software product into op-
erational definitions is by establishing their relationship to the product’s
structural properties. Figure 1.1 shows how specific structural properties
might be related to internal, and ultimately, external attributes in a product
perspective. However, heeding the discussion of complexity in Section 1.4.2,
it is not necessarily possible to establish a direct relationship between in-
ternal and external attributes, or even between internal attributes and the
structural properties themselves.

Structural properties of OO software can take a number of different forms.
Some structural properties constitute a common theme in many of the papers
which propose techniques for assessment of software product quality:

e Size — Size is perhaps the most commonly used structural property. It
has been employed in conjunction with both procedural and object-
oriented programming languages. It is often measured in LOC or
KLOC. Generally, it is thought that large programs are more diffi-
cult to understand and maintain. By referring to Kitchenham [Kit90],
Sommerville [Som98| claims that size can often be used to detect anom-
alous components with as much success as other, more sophisticated,

15

measures.
There are problems related to using size as a measure. Fenton [Fen94|
comments on what appears to be a problem in predicting quality
based on size by referring to the works of Tian et al. and Wey-
uker [TZ92, Wey88|. Weyuker’s fifth property holds that for any
two program bodies P, and a measure M, M(P) < M(P;Q) and
M(Q) < M(P;Q). This property is consistent with a view of com-
plexity being related to size. However, it is not consistent with a view
of complexity as being related to comprehensibility. The reason is that
according to Tian et al. [TZ92|, comprehensibility is sometimes in-
creased as size increases. Thus, Fenton concludes that a “size” type
complexity measure M can satisfy Weyuker’s fifth property, while a
“comprehensibility” type complexity measure M can not.

Cohesion — In the context of software development, cohesion is often
defined as the extent to which different elements of a module belong
together. The exact scope of a module varies. In programming lan-
guages like Java and C++, a module can be a package, a namespace or
even a class. Cohesion is the extent to which the various functions con-
tained in a module contribute to one common task. Modules with high
cohesion are hypothesised to be easier to develop, reuse and maintain.
They are also believed to be less fault-prone [BDWO9S8|. There exists
some empirical evidence to support this claim [CPM85, CCA86]. The
concept of cohesion appears to have been introduced in conjunction
with structured development techniques (structured programming) by
Stevens et al. [SMCT74|. Some of the theories regarding cohesion may
even be traced back to a classic paper from 1972 on decomposing sys-
tems into modules |[Par72|.

Various researchers have proposed measures based on cohesion. Briand
et al. present an overview of 13 cohesion measures and a framework
for classifying them [BDW9S|.

Coupling — In 1974, Stevens, Myers and Constantine introduced the
concept of using the amount of association between modules in a sys-
tem as an indicator of poor design [SMCT74|. Their idea was that mod-
ule interdependence makes it difficult to 1) understand and change a
system, and 2) gives rise to “ripple effects” which propagate errors and
changes in one module to others.

According to Briand et al. [BDW99|, these principles were migrated
to the context of object-oriented design by Coad and Yourdon [CY91].
However, in relation to object-oriented systems, coupling seems to be
more complex as there are several mechanisms which can influence it.
Coupling can occur between classes, objects, methods and as an effect
of inheritance. Assessing the strength of various types of coupling is

16

at best difficult.

Briand et al. describe a comparative study of 30 different coupling
measures defined in literature on software metrics [BDW99|. The pro-
posed framework goes some way towards providing common criteria
which can be used to classify and evaluate different coupling measures.

Large size, high coupling and low cohesion are generally thought to be
indicators of complexity.

While size-based measures are good indicators of quality in many in-
stances, they suffer from problems in others. Briand and Wiist recommend
using size-related properties in conjunction with measures of coupling and
inheritance [BW02]. Another problem related to size-based measures is the
widely varying expressive power of various programming languages (see Sec-
tion 1.4.1). The effect is that experiences from studies based on size measures
are difficult to generalise outside the context of a specific language.

Cohesion measures have also been reported as difficult to use in practise.
Briand and Wiist give two reasons for this in [BW02, p. 152]: The current
understanding of the attribute is weak, and it is difficult to measure through
static analysis of source code.

Among these structural properties, coupling has seen more interest than
cohesion- and size-based measures. Measures based on coupling indicate how
an object-oriented system’s individual components use and depend on each
other. High levels of coupling are generally thought to indicate complex
systems, and are often associated with poor external quality, for example,
low reliability and high maintenance effort [BDW99|.

Example Measures for Object-Oriented Software: The C&K Met-
rics

The early '90s saw widespread adoption of the object-oriented (OO) pro-
gramming paradigm in both commercial and academic software engineering
communities. Most measures created up to that point were focused on es-
timating properties of software based on procedural (non-OO) languages. In
1991, Chidamber and Kemerer (often referred to as C&K) published their
initial paper on measures for OO systems [CK91]|, followed by a more com-
prehensive study of the same measures in 1994 [CK94]. In principle their
work was founded on two notions related to that period’s state of the art
software measures:

1. Most measures at the time were designed for procedural languages and
problem solving strategies, and were therefore unsuitable in the context
of OO systems.

2. Software measures were often without a solid theoretical basis, some-
times lacking important mathematical properties, consequently failing
to display what might be termed normal predictable behaviour.

17

As suggested by the names of the various C&K measures, they are specific
to object-oriented systems.

e WMC — Weighted methods per class.
e DIT — Depth of inheritance tree.

e NOC — Number of children.

CBO - Coupling between objects.
e RFC — Response for a class.

e LCOM - Lack of cohesion in methods.

Chidamber and Kemerer specify different “viewpoints” for each of these
measures. These viewpoints seem to be based on arguments in favour of
the measures, and on suggested actions in cases where excessive values are
found. For example, in [CK94|, LCOM has four viewpoints. The first two
read:

1. Cohesiveness of methods within a class is desirable, since it
promotes encapsulation.

2. Lack of cohesion implies classes should probably be split
into two or more subclasses.

Since their initial publication, the C&K measures have been debated
and criticised on grounds ranging from an absence of operational definitions
[BDW98, BDW99] to a lacking focus on measurement theoretical principles
[HM96]. Kitchenham et al. mention how Chidamber and Kemerer use Wey-
uker’s properties [Wey88| as an example of how new measures are sometimes
justified based on disputed criteria [KPF95]. Morasca et al. later refuted
this claim [MBB*97].

1.5.1 Static versus Dynamic Structural Measures

The most common method of obtaining coupling, cohesion or size measures is
based on parsing an application’s source code, rather than its actual run-time
behaviour. Gathering measurement data from source code is called “static
analysis” and the resulting measures are referred to as “static measures”
[EEO1].

For example, Chidamber and Kemerer’s measure definitions [CK91, CK94|
are based on analysing source code. Their proposed measures are, in other
words, static. This method of obtaining data is used both in subsequent
refinements of their work, and in a majority of the measurement frameworks
which have been developed.

18

It is also possible to gather measurement data from a running program.
This approach is usually called “dynamic analysis”, and the resulting meas-
ures are called “dynamic measures”. Dynamic measures are less frequently
used than static measures. There are two possible reasons for this. First,
gathering data from a running application is usually more difficult than ana-
lysing relatively well-structured source code. Secondly, dynamic measures
are less well-suited for use early in a development process when many soft-
ware components are a long way from completion [EEO01].

1.6 Dynamic Coupling Measures

Most coupling measures are static, i.e., based on analysing source code.
However, because object-oriented applications often employ dynamic bind-
ing (polymorphism) it can be debated whether measurements obtained by
parsing source code (“static analysis”) give accurate results [Ari02].

Polymorphism will often make it seem like coupling occurs between classes
high in an inheritance hierarchy, while actual coupling in fact takes place
between descendants of abstract parent classes. The resulting measurements
will often indicate that abstract classes, without any true functionality, are
tightly coupled to a number of other classes. Examine Appendix C.1 for a
example of how this occurs.

Using dynamic measures solves some of the problems related to static
analysis, by obtaining data from a running program. The issues related
to polymorphism become irrelevant, as it is always possible to determine
exactly which class an object is instantiated from by inspecting it.

Unused or “dead code” occurs in almost all applications. It consists of
classes and methods which are not in use, but that have not been removed
from the source tree. Tools for obtaining static measures will read all the
code presented to them, so unless the person performing the analysis knows
the code base well and manually filters out unused code, the measurements
can become inaccurate.

Dynamic analysis is based on the execution profile of an actual program.
Because unused code is never executed, it does not become part of the data
material. Dynamic coupling measures are therefore resistant to dead code.

The challenges posed by “dead” code and polymorphism lead Arisholm to
develop dynamic coupling measures as a part of his doctoral thesis [Ari01].
He continued this effort in [Ari02].

1.6.1 Classification of Coupling Measures

The twelve coupling measures proposed by Arisholm [Ari01, Ari02] describe
coupling according to the entity being measured, the coupling direction and
the strength of the relation. These three elements distinguishes the measures
from each other.

19

All of the measures have descriptive names. The format used is zC _zx,
where C' stands for Coupling and x represents wild-cards. Wild-cards can be
any value allowed in that position of the measure name. For example, the
first = indicates coupling direction; it can be either E (export) or I (import).

It is important to distinguish between different directions of measure-
ment. The two entity types (described below) can both import and export
functionality. Consequently, a distinction is made between import and export
coupling. Import coupling represents method calls to external (non-local) en-
tities, while export coupling represents method calls made to an entity by
external classes or objects. Measures of import coupling are always named
IC _zz, and measures of export coupling are called EC'_xz.

In an OO system relying on inheritance it is possible to view interac-
tions as occurring at either the class or the object level. The names of the
various coupling measures indicate which entity is being measured. Object
level measures are denoted by xC' Oz, while measures at the class level are

denoted xC'_C.

The final distinction between the measures is their strength criteria.
Coupling strength is used to quantify the amount or “closeness” of associ-
ation between entities. Strength can be seen as having three different levels
of granularity. In more practical terms, the strength criteria indicate which
types of entity associations are to be counted as coupling.

e Distinct classes — Accounts for interactions between distinct entit-
ies at the highest level. Exchange of one or more messages is coun-
ted as coupling. However, if two distinct entities exchange more than
one message this does not increase the measured coupling. Denoted
xzC _zC.

e Distinct methods — At this level of granularity interactions between
distinct methods of entities are counted. Multiple calls from/to the
same entities/methods does not increase the counted coupling. De-
noted xC_zM.

e Dynamic messages — This is the most fine-grained level of coupling
measurement. Message uniqueness is based on source/target class/-
method and the line number which the method call originates from.
Denoted zC'_zD.

A more exhaustive discussion of the various strength definitions and their
implications when measuring coupling can be found in both Chapter 2 and
Appendix B.8.

20

1.7 Research Objectives and Methodology

In this section we will define the objectives set for this research project.
Additionally, we will report on the methodology used to attain them.

1.7.1 Formal Definitions

The first objective of this research was to:
e Formally define fully operational dynamic coupling measures.

Arisholm provides good textual descriptions and examples of how the
various dynamic coupling measures are calculated [Ari01, Ari02]. However,
formal definitions based on set theory and first order logic provide additional
benefits. First of all they will, to some degree, ascertain the operationality
of the dynamic coupling measures. Lack of operational definitions has been
criticised by different authors (see Section 1.2.2). Furthermore, the availab-
ility of operational definitions will make replication of any empirical studies
we undertake easier, as there will be less uncertainty about how the prescrip-
tions for applying the measures should be interpreted.

Another good reason for formally defining the various coupling measures
is that we are implementing a tool for collecting them. Creating such a tool
is a time consuming task, and as anyone that has been involved in creating
software knows, there are plenty of pitfalls in the transition from specifica-
tion to product. The formal specification will aid us both in implementing
the measures, and in verifying that the implementation complies with the
specification.

1.7.2 Tool Support

The second objective of this research can be summarised as follows:

e Create a fully working tool for collecting the defined dynamic coupling
measures.

One way of verifying to what degree the formal definitions really are
operational is by implementing them. This will uncover most ambiguities and
possibilities for misunderstanding inherent in the definitions of the measures.

Many research papers have been criticised for lacking empirical verifica-
tion. In the case of software quality measures, such criticism is best avoided
by implementing the proposed measures, and subjecting them to empirical
validation in one or more studies.

The software engineering community have acknowledged that more fre-
quent replication of empirical studies is desirable. A working implementa-
tion of the coupling measures enables independent parties to replicate our

21

research. Replication can be beneficial in several different ways: 1) It can
help us establish with even greater certainty that the formal definitions of
the coupling measures are really correct. 2) Replication may confirm that
the implementation of the formal definitions are free of errors. 3) Because a
working tool is available, any empirical studies we undertake can be repeated
in order to establish our findings with greater certainty.

The coupling measures proposed by Arisholm [Ari01]| were originally col-
lected from a system written in SmallTalk. While SmallTalk is well-suited
for collecting such measures because of its advanced run-time introspection
features, it has one major drawback: It is not in widespread use, and is
considered by many to be a rather academic programming language. This
impacts the availability of candidate systems, and limits the usefulness of
being able to collect data from SmallTalk.

Because of the drawbacks associated with using SmallTalk we have to
consider collecting data from systems written in other OO programming
languages. There are many possibilities, however, Java is an obvious choice
for several reasons. It has been adopted by developers from business, aca-
demic and open-source communities. Consequently, there are many systems
available for analysis. Furthermore, most Java implementations provide ac-
cess to their internal APIs (application programming interfaces). Thus, as in
SmallTalk, it is relatively easy to write tools which can access the internals
of programs while they are executing.

The desire to obtain coupling measures from Java applications led to
the development of Jdissect. Jdissect is a tool developed using C++ and
its Standard Template Library (STL). The tool interfaces directly with the
Java Virtual Machine (JVM), to collect data from a running Java application.
This data can subsequently be analysed by Jdissect to obtain the coupling
measures defined by Arisholm.

Implementation of the tool allows us to see how well the formal definitions
work in practise, and possibly to uncover any ambiguities inherent in their
definitions. It also provide means with which we can collect data for empirical
validation of the measures.

1.7.3 Evaluation

The final objective of this project was to:

e Conduct a case study to investigate whether the proposed dynamic
coupling measures provide data over and above what can be collected
through use of static measures, by investigating their relation to change
proneness and their practical usefulness as predictors of external qual-
ity.

It is quite common for different software product measures to be influ-
enced by the same structural properties. Hence, it is important to determine

22

whether the various measures are really necessary, or if some of them actu-
ally capture the same information. If this is the case, it will be possible to
eliminate the duplicate measures from future studies.

There are already numerous static coupling measures. In [BDW99] the
authors compare 30 different such measures. Assessing whether our twelve
dynamic coupling measures provide information in addition to static meas-
ures and class size is therefore an important goal.

As reported by Fenton, quality is not a tangible attribute which is easily
summarised by any one single number [Fen94|. Consequently, we have to
investigate just one aspect of quality, preferably one which can be quantified
unambiguously. Change proneness was chosen after some deliberation, as
this aspect of quality can be determined by examining two or more versions
of a system.

In order to investigate the dynamic coupling measures and their relation
to change-proneness it is necessary to determine which research method is
best suited for the task. Clearly, a survey is not possible as there is little ex-
isting literature on the topic of dynamic coupling measures and their relation
to change-proneness. Conducting a formal experiment is not ideal either, as
we do not have enough data to properly formulate a theory. Furthermore,
it is important that our results be applicable to situations outside the ex-
perimental context. The conclusion is that the evaluation of the dynamic
coupling measures will have to take the form of a case study.

There are several important considerations to take into account when
choosing candidate systems for this case study. Initially, there are two pos-
sibilities, 1) cooperate with a corporation or an institution in evaluating one
of their existing Java systems, or 2) perform the evaluation of the measures
on an open-source project. Cooperating with industry often introduces its
own set of unique problems and constraints [Ari01]|. It is often difficult to
get companies to devote time and resources, and defining goals in which they
too have vested interests.

While there are problems in relation to investigating open-source pro-
jects as well, they have some characteristics which make them very attract-
ive. First, they usually keep source code revisions available to the public, a
trait we deemed important as we were to investigate change-proneness. Ad-
ditionally, some of these projects have been active for a long time, going back
as far as 1998. This is positive, as there are a lot of revisions to examine.
Second, there are a large number of projects to choose from. For example,
there are over 22 Java tools, applications and frameworks organised under
the umbrella of the Apache Jakarta project. Working with a company or
corporation would possibly have meant a choice between only two or three
applications.

Our case study examines Velocity, a template rewriting engine which has
been actively maintained since March 2001. When we conducted our case
study (May 2003) the project had released 17 versions. There was, in other

23

words, ample amounts of realistic data on which to base our study.

In performing this evaluation we indirectly address two frequent forms of
criticism towards research in software engineering: 1) Research often lacks
empirical verification, and 2) when empirical studies are in fact undertaken
they often suffer from a lack of realism. The question of realism will not be
settled by the fact that a case study is to be conducted, but rather by the
exact nature of the system we choose to investigate. Velocity is a system in
active use, and is therefore a good candidate with respect to realism.

1.8 Contribution

The overall contribution of this thesis can be summarised as follows.

Firstly, we provide formal and operational definitions of twelve dynamic
coupling measures for object-oriented systems. These measures are meant to
complement existing coupling measures based on static analysis. Because the
twelve dynamic measures account precisely for inheritance, polymorphism,
dynamic binding and “dead” code, we hope they will enable the design of
better decision and prediction models.

Secondly, we describe a tool built to collect the proposed dynamic coup-
ling measures. This goes some way towards ensuring the operationality of
the measures and allows us to validate them in an empirical study. The tool
might also enable independent parties to replicate our research.

Finally, our case study contributes to the understanding of the proposed
dynamic coupling measures on three accounts. 1) The study shows that the
information inherent in the measures is not redundant with respect to pre-
viously defined static measures. 2) The dynamic coupling measures capture
information in addition to effects that can be attributed to size, e.g., the
size of a program or class in an object-oriented system does not represent
the same information as the new measures. 3) Our results indicate that the
dynamic measures are good predictors of change proneness. Thus, predic-
tion models based on these measures may be useful in focusing restructuring
of re-engineering work on components in a program which seem likely to
undergo future change.

1.9 Related Work

In this section we provide a brief overview of some research projects related
to coupling measurement, tools and case studies. This is not meant to be
a comprehensive list, but rather an overview of material which might be
interesting in relation to our work.

24

1.9.1 Coupling Measures

The most famous works in the area of measuring structural properties of OO
software are possibly the papers by Chidamber and Kemerer [CK91, CK94].

Briand et al. has collected a number of measures related to both coup-
ling [BDW99] and cohesion [BDW9S8|. These articles propose common formal
frameworks and definitions for explaining cohesion and coupling measures.
In cases where the original measures are ambiguous or otherwise not opera-
tionally defined, Briand et al. attempt to find the most likely unambiguous
and operational definition. These two papers are at once both excellent
references and provide an overview of the field.

Yacoub et al. propose three different dynamic measures for object-
oriented software in [YAR99|. Two of them are coupling measures, while
the third is a measure of operational complexity based on ROOMcharts?
and McCabe’s cyclomatic complexity [McC76].

1.9.2 Similar Tools

It appears that much of the work in the field of dynamic program analysis
is related to program understanding, reverse engineering and visualisation.
There are however a number of tools for performing static analysis of source
code.

Brooks and Buell [BB94| implemented a subset of the measures proposed
by Chidamber and Kemerer in [CK91]. Their tool measured programs writ-
ten in C++. The measures implemented at the class level were depth of
inheritance tree (DIT), class coupling (CC), response for a class (RFC) and
number of children (NOC). At the system level their tool supports calculat-
ing the number of class hierarchies. The authors conclude that if such tools
are ever to be widely used in industrial settings gathering the measurement
data should be as non-intrusive as possible.

Shimba is a tool for goal driven static/dynamic reverse engineering of
Java systems created by Systa et al. [SKMO1]|. In [SYMOO|, the authors
describe how they have implemented the full suite of measures proposed by
Chidamber and Kemerer [CK91|. The authors show that the measures can
be applied in the context of decorating dependency graphs of a system. They
suggest that this will be useful in locating areas which should be considered
for refactoring and re-engineering efforts.

Cahill, Hogan and Thomas describe a tool for collecting a wide range of
measures from Java programs [CHT02|. Their tools performs static analysis
of source code. What is interesting is that the system is founded on the
notion of different measures as plug-ins. This supposedly makes the process

2Basically, UML state charts extended for use in real-time object modelling and simu-
lation.

25

of implementing new measures much easier, as a complete set of scaffolding
does not have to be developed by each independent researcher.

1.9.3 Other Case Studies

Munson and Hall studied the correlation between four different aspects of
software complexity and test effectiveness [MH96]. They partitioned the
complexity domain into static and dynamic aspects, arguing that dynamic
measurements could better account for the extent of execution activity,
thereby providing a better basis for estimation of test effectiveness.

Wilkie and Kitchenham investigate if one of the measures proposed by
Chidamber and Kemerer, CBO (Coupling Between Object), can be used to
predict ripple effects in C++ applications [WKO00|. Their study is based on
changes made to an application over 2 1/2 years. The authors conclude that
CBO can be used to locate change-prone classes, but that the measure is too
coarse to serve as a successful predictor of ripple effects.

In [YAROO|, Yacoub et al. perform a case study of how the measures
defined in [YAR99] can be used for early risk assessment at an architectural
level. They claim that their approach yields four results; 1) it enables iden-
tification of architectural components which will require significant develop-
ment resources, 2) it can be used to estimate risk based on the connections
between components, 3) it can also quantify uncertainty in aggregated risk
factors for system components and 4) it can be used to determine uncertainty
in aggregated risk factors for connections in a system.

Briand et al. perform a very interesting study of fault-proneness models
in [BWWO02]. They investigate whether such models, based on design meas-
urements from one system can be applied to another. Their conclusion is
that using fault-proneness models in this manner is far from straightforward.

1.10 Future Work

In the course of a research project such as this it is only natural to become
aware of the need for, or possibility of, related topics and natural extensions
of the work. In a broad sense, these improvements and extensions can be
split into three categories. The first mostly deals with extending the meas-
ure definitions. The second category deals with technical improvements to
Jdissect, while the third deals with possibilities for other case studies.

1.10.1 Defining New Measures

Although Chapter 2 concludes that some of the proposed coupling measures
are not completely orthogonal, neither with respect to each other nor to static
measures, there are still combinations of coupling attributes which have not
been investigated. The Jdissect framework can easily be adapted to measure

26

other coupling-related properties of Java applications. Alternative coupling
measures can be related to class-level attributes or static methods, or simply
use new message uniqueness definitions (strength criteria).

1.10.2 Tool Expansion

In our case study much time was spent examining source code in order to
create Jdissect filters (see Section 3.3.3), to ensure the desired level of code
coverage. High levels of coverage are not necessarily needed for the measures
to accurately represent an application. It might be interesting to discover the
level of coverage needed for our coupling measures to be meaningful. Every
application is, of course, different. So attempting to find some universal level
of coverage would be meaningless. However, more research into this could
perhaps give some insight into the power inherent in data collected from, for
example, tests covering 70-80% of an application’s source code.

There are a number of other improvements which can be made to the
Jdissect tool. However, many of these improvements are very technical in
nature, and as such they are better explained in the context of the im-
plementation and design of the Jdissect tool. The remainder of suggested
improvements to the tool are therefore located in Section B.9.

1.10.3 Possible Case Studies

At present, Jdissect has only been used to analyse one real-world applica-
tion. It is possible that analysis of other applications will produce different
results. Furthermore, analysing other applications will give results which can
be compared to the Velocity study. This might make it possible to 1) verify
the results and 2) see if other applications show the same coupling measures
to be orthogonal.

In the case study described in Chapter 2 Jdissect is used to determine
class change-proneness. However, other uses can be found for the coupling
measures. They might be useful in trying to establish complexity as it relates
to ripple-effects, error-proneness or other aspects of software quality. It is
also possible that the measures can be employed in identifying sections of
code that should be candidates for refactoring efforts. The only way to
determine if other uses can be found for the tool and the proposed measures
is by conducting other case studies.

1.11 Thesis Overview

Chapter 1 (this chapter) of the thesis introduces empirical methods, software
quality and the use of quality measures in the wider context of software
engineering. It is meant to provide an introduction to the concepts treated
in-depth in Chapter 2.

27

Table 1.1: Overview of chapters and their content

Chapter | Focus Contents

1 Introduction Provides the context for the two
remaining chapters.

2 Theory and case study Presents the theoretical founda-
tion for the coupling measures
and results from the case study
of Velocity.

3 Tool and implementation | Contains a description of the
software created in accordance
with the specifications lain out
in Chapter 2. It also provides
a more detailed presentation of
the methods used to collect data
for the case study presented in
Chapter 2.

Chapter 2 formally defines the dynamic coupling measures which are
investigated. It also describes a case study examining the relation between
change proneness and the proposed coupling measures. This chapter has
previously been published as a Simula Technical report [ABF03|. A revised
version of this work is due to appear in IEEE Transactions on Software
Engineering [ABFar].

Chapter 3 gives a more detailed account of the tool implemented to collect
the dynamic coupling measures. This chapter starts with an overview of how
data can be collected from an executing Java application. Next, an account
of the basic design of the tool is provided. Before collecting data for the
case study described in Chapter 2 it was necessary to ensure the validity
of the implementation. The steps taken to ensure validity are outlined in
turn. Chapter 3 ends with a description of how data was collected from the
Velocity application, and a look at the technical choices made in the design
of the tool.

The somewhat unorthodox structure of this thesis is largely due to the
inclusion of Simula Technical Report TR 2003-5 [ABF03], in its entirety, as
Chapter 2. This was necessary because the material in the report is closely
linked to the remainder of this thesis.

28

References

|[ABF03]

[ABFar]

[Adr93|

[AIb79]

[And03|

[Ari01]

[Ari02]

[AS03)

E. Arisholm, L. C. Briand, and A. Fgyen. Dynamic coupling
measurement for object-oriented software. Technical report,
Simula Research Laboratory, TR 2003-5/Carleton University,
Canada, TR SCE-03-18, 2003.

E. Arisholm, L. C. Briand, and A. Fgyen. Dynamic coupling
measurement for object-oriented software. IEEE Transactions
on Software Engineering, To Appear.

W. R. Adrion. Research methodology in software engineering,
summary of the Dagstiihl workshop on future directions in soft-
ware engineering. ACM SIGSOFT Software Engineering Notes,
18(1):35-48, January 1993.

A. J. Albrecht. Measuring application developement. pages 83—
92, Monterey CA, 1979. Proceedings of IBM Application De-
velopement joint SHARE/GUIDE Symposium.

B. Anda. Empirical Studies of Contruction and Application of
Use Case Models. PhD thesis, Faculty of Mathematics and Nat-
ural Sciences, University of Oslo, 2003.

E. Arisholm. Empirical Assessment of Changability in Object-
Oriented Software. PhD thesis, University of Oslo, Oslo, 2001.

E. Arisholm. Dynamic coupling measures for object-oriented
software. In proc. 8th IEEE Symposium on Software Metrics
(METRICS’02), pages 33-42. IEEE Computer Society, 4-7 June
2002.

E. Arisholm and D. I. K. Sjgberg. A controlled experiment with
professionals to evaluate the effect of a delegated versus central-
ized control style on the maintainability of object-oriented soft-
ware. Technical Report TR 2003-6, Simula Research Laboratory,
6 2003.

29

[BBY4|

[BBL76|

[BDM+95]

[BDWOS|

[BDW9Y]

[BJ95)

[BW02

[BWW02

[Cas02]

[CCAS6]

[CHTO02]

C. L. Brooks and C. G. Buell. A tool for automatically gathering
object-oriented metrics. volume 2 of Proceedings of the IEEE
1994 National Aerospace and Electronics Conference, pages 835—
838. IEEE, NAECON, 23-27 May 1994.

B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evalu-
ation of software quality. Proceedings of the Second International
Conference on Software Engineering, pages pp. 592-605. IEEE,
1976.

A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood. Replica-
tion of experimental results in software engineering. Technical
Report EFoCS-17-95, ISERN-96-10, Livingstone Tower, Rich-
mond Street, Glasgow G1 1XH, UK, 1995.

L. C. Briand, J. W. Daly, and J. K. Wiist. A unified framework
for cohesion measurement in object-oriented systems. Empirical
Software Engineering, 3(1):65-117, 1998.

L. C. Briand, J. W. Daly, and J. K. Wiist. A unified frame-
work for coupling measurement in object-oriented systems. I[EEE
Transactions on Software Engineering, 25(1):91-121, Jan./Feb.
1999.

F. P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition. Addison Wesley Longman,
Reading, Massachusetts, U.S.A., 1995.

L. C. Briand and J. K. Wiist. Empirical studies of quality models
in object-oriented systems. Advances in Computers, 59:97-166,
2002.

L. C. Briand, M. L. Walcelio, and J. K. Wiist. Assessing the ap-
plicability of fault-proneness models across object-oriented soft-

ware projects. [EEE Transactions on Software Engineering,
28(7):706-720, July 2002.

F. Castel. Theory, theory on the wall. Communications of the
ACM, 45(12):25-26, December 2002.

D. N. Card, V. E. Church, and W. W. Agresti. An empirical
study of software design practices. IEEE Transactions on Soft-
ware Engineering, 12(2):264-271, 1986.

J. Cahill, J. M. Hogan, and R. Thomas. The Java metrics re-
porter - an extensible tool for OO software analysis. Ninth Asia-
Pacific Software Engineering Conference, pages 507-516. IEEE,
4-6 Dec. 2002.

30

[CK91]

[CK4]

[CPMS5|

[CY91]

[EE01]

[Fen94]

[FN99]

[FPG94]|

[Gla9g4|

[Goo93|

[Hal77]

[Her99)

[HMO96)|

S. R. Chidamber and C. F. Kemerer. Towards a Metrics Suite
for Object Oriented Design. In Proceedings of the OOPSLA
91 Conference on Object-oriented Programming: Systems, Lan-
guages and Applications, volume 26, pages 197-211. SIGPLAN
Notices, Oct. 1991.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object-
oriented design. IEFEE Transactions on Software Engineering,
20(6):476-493, 1994.

D. N. Card, G. T. Page, and F. E. McGarry. Criteria for soft-
ware modularization. IEEE Eighth International Conference on
Software Engineering, pages 372-377. IEEE, 1985.

P. Coad and E. Yourdon. Object Oriented Design. Prentice Hall,
1st edition, 1991.

K. El-Emam. A methodology for validating software product
metrics, 2001.

N. Fenton. Software measurement: A necessary scientific basis.
IEEE Transactions on Software Engineering, 20(3):199-206,
March 1994.

N. Fenton and M. Neil. Software metrics and risk. FESMA 99 -
2nd European Software Measurement Conference, October 1999.

N. Fenton, S. L. Pfleeger, and R. L. Glass. Science and substance:
A challenge to software engineers. IEEE Software, 11(4):88-95,
1994.

R. L. Glass. The software-research crisis. [IEFEE Software,
11(6):42-47, Nov. 1994.

P. Goodman. Practical Implementation of Software Metrics. Mc-
Graw Hill, London, 1993.

M. H. Halstead. Elements of Software Science. Elsevier North-
Holland, New York, June 1977.

J. D. Herbsleb. Metaphorical representation in collaborative soft-
ware engineering. Proceedings of the international joint confer-
ence on Work activities coordination and collaboration, pages
117-126. ACM, February 1999.

M. Hitz and B. Montazeri. Chidamber and Kemerer’s metrics
suite: A measurement theory perspective. [IEEE Transactions
on Software Engineering, 22(4):267-271, 1996.

31

[1C01]

[IC03a]

[ICO3b]

[Jar01]

[Kit90]

[Kit96a]

[Kit96b)

[KPF95)

[KPP95|

[KPP+02]

[MBB*97]

[McC76)

JTC 1-SC 7 ISO Commitee. ISO/IEC 9126-1:2001 - software
engineering - product quality - part 1: Quality model. Technical
report, ISO/IEC, 2001.

JTC 1/SC 7ISO Commitee. ISO/IEC 9126-2:2003 - software en-
gineering - product quality - part 2: External metrics. Technical
report, ISO/IEC, 2003.

JTC 1/SC 7 ISO Commitee. ISO/IEC 9126-3:2003 - software
engineering - product quality - part 3: Internal metrics. Technical

report, ISO/IEC, 2003.

P. Jarvinen. On Research Methods. Tiedekirjakauppa TAJU,
2001.

B. A. Kitchenham. Measuring Software Development. Software
Reliability Handbook. Elsevier Press, 1990.

B. A. Kitchenham. Evaluating software engineering methods
and tool part 1: The evaluation context and evaluation meth-
ods. ACM SIGSOFT Software Engineering Notes, 21(1):11-15,
January 1996.

B. A. Kitchenham. Software Metrics: Measurement for Software
Process Improvement. Blackwell, 1996.

B. A. Kitchenham, S. L. Pfeelger, and N. Fenton. Towards a
framework for software measurement validation. IEEE Transac-
tions on Software Engineering, 21(12):929-944, 1995.

B. A. Kitchenham, L. Pickard, and S.L. Pfleeger. Case studies
for method and tool evaluation. IEEE Software, 12(4):52-62,
July 1995.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,
D. C. Hoaglin, K. El-Emam, and J. Rosenberg. Preliminary
guidelines for empirical research in software engineering. IFEE
Transactions on Software Engineering, 28(8):721-734, August
2002.

S. Morasca, L. C. Briand, V. R. Basili, E. J. Weyuker, and M. V.
Zelkowitz. Comments on “Towards a framework for software
measurement validation”. IFEE Transactions on Software En-
gineering, 23(3):187-188, 1997.

T. J. McCabe. A complexity measure. [EEE Transactions on
Software Engineering, 2(4):308-320, December 1976.

32

[MH96]|

[Mil]

[NR68)]

[Par72]

[PWC95)

[SAAT02]

[SG4

[SKMO1]

[SMC74]

[Som98|

[SYMOO]

[TZ92]

J. C. Munson and G. A. Hall. Estimating test effectiveness with
dynamic complexity measurement. FEmpirical Software Engin-
eering, (1):279-305, 1996.

J. Miller. Replicating software engineering experiments: A
poisoned chalice or the holy grail. Draft.

P. Naur and B. Randell, editors. Software Engineering - Re-
port of a conference sponsored by the NATO Science Committee,
Garmisch, Germany, 7-11 Oct. 1968. Scientific Affairs Division,
NATO.

D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1052-1058,
December 1972.

M. C. Paulk, C. V. Weber, and B. Curtis. The Capability Ma-
turity Model: Guidelines for Improving the Software Process.
Carnegie Mellon University / Software Engineering Institute /
Addison-Wesley, Reading Mass., 1995.

D. I. K. Sjgberg, B. Anda, E. Arisholm, T. Dyba, M. Jgrgensen,
A. Karahasanovic, E. F. Koren, and M. Vokac. Conducting real-
istic experiments in software engineering. Proceedings of the

2002 International Symposium on Empirical Software Engineer-
ing. IEEE, 2002.

The Standish Group. The chaos report. Technical report, The
Standish Group, 1994.

T. Systé, K. Koskimies, and H. Miiller. Shimba - an environment
for reverse engineering Java software systems. Software Practice
& Experience, (31):371-394, Feb. 2001.

W. Stevens, G. Myers, and L. L. Constantine. Structured design.
IBM Systems Journal, 13(2):115-139, 1974.

I. Sommerville. Software Engineering. Addison-Wesley, 1998.

T. Systd, P. Yu, and H. Miiller. Analyzing Java software by
combining metrics and program visualization. In Proceedings
of the 4th European Conference on Software Maintenance and
Reengineering (CSMR’2000), Zurich, Switzerland, March 2000.

J. Tian and M. V. Zelkowitz. A formal program complexity
model and its application. Journal of Systems Software, 17:253—
266, 1992.

33

[Wey88|

[WKO0]

[YAR99)

[YARO0|

[ZW9s]

E. Weyuker. Evaluating software complexity measures. [EEFE
Transactions on Software Engineering, 14(9):1357-1365, Septem-
ber 1988.

F. G. Wilkie and B. A. Kitchenham. Coupling measures and
change ripples in C++ application software. J. Syst. Softw.,
52(2-3):157-164, 2000.

S. M. Yacoub, H. H. Ammar, and T. Robinson. Dynamic metrics
for object-oriented designs. pages 60—61, 1999.

S. M. Yacoub, H. H. Ammar, and T. Robinson. A methodology
for architectural-level risk assessment using dynamic metrics. In
proc. 11th International Symposium on Software Reliability En-
gineering, pages 210-221, 2000.

M. V. Zelkowitz and D. R. Wallace. Experimental models for
validating technology. Computing Practices, pages 23-31, May
1998.

34

Chapter 2

Dynamic Coupling
Measurement for
Object-Oriented Software

Erik Arisholm!, Lionel C. Briand? and Audun Fgyen'

!Simula Research Laboratory 2Software Quality Engineering Laboratory
Lysaker, Norway Computer and Systems Engineering
erika@simula.no; audunf@ifi.uio.no Carleton University, Ottawa, Canada

briand@sce.carleton.ca

This chapter has previously been published as Simula Technical report TR-
2003-5 and Carleton TR SCE-03-18 [ABF03]. A revision has been submitted
for review to IEEE Transactions on Software Engineering [ABFar|

Abstract

The relationships between coupling and external quality factors of object-
oriented software have been studied extensively for the past few years. For
example, several studies have identified clear empirical relationships between
class-level coupling and class fault-proneness. A common way to define and
measure coupling is through structural properties and static code analysis.
However, because of polymorphism, dynamic binding, and the common pres-
ence of unused ("dead") code in commercial software, the resulting coupling
measures are imprecise as they do not perfectly reflect the actual coupling
taking place among classes at run-time. For example, when using static ana-
lysis to measure coupling, it is difficult and sometimes impossible to determ-
ine what actual methods can be invoked from a client class if those methods
are overridden in the subclasses of the server classes. Similarly, static ana-
lysis is not a fully appropriate tool to account for dead code. Coupling
measurement has traditionally been performed using static code analysis,

35

because most of the existing work was done on non-object oriented code and
because dynamic code analysis is more expensive and complex.

This paper describes how coupling can be defined and precisely measured
on the basis of dynamic analysis or equivalent dynamic models of the sys-
tem. We refer to this type of coupling as dynamic coupling. A first empirical
evaluation of the proposed dynamic coupling measures is reported in which
we study the relationship of these measures with the change proneness of
classes. Data from maintenance releases of a large Java system are used for
this purpose. Preliminary results suggest that some dynamic coupling meas-
ures are strong indicators of change proneness and that they complement
existing coupling measures based on static analysis.

2.1 Introduction

In the context of object-oriented systems, research related to quality mod-
els has focused mainly on defining structural metrics (e.g., capturing class
coupling) and investigating their relationships with external quality attrib-
utes (e.g., class fault-proneness) [BW02a|. The ultimate goal is to develop
predictive models that may be used to support decision making, e.g., de-
cide which classes should undergo more intensive verification and valida-
tion. Regardless of the structural attribute considered, most metrics have
been so far defined and collected based on a static analysis of the design or
code [AS00, BS98, BW02a, BDM97, BDW99, BeA95, CS00, CK94, CDK98,
HHL90, LH93]. They have proven on many occasions to be accurate predict-
ors of external quality attributes, such as fault-proneness [BWO02al, ripple
effects after changes [BWL99, CKK™00|, and changeability [Ari01, AS00,
CKK™100]. However, as reported by several authors [BW02a, CS00, CDK98,
DBM™96, DSWR02, HCN98|, many of the systems that have been studied
showed little inheritance and, as a result, limited use of polymorphism and
dynamic binding.

As the use of object-oriented design and programming matures in the
industry, we observe that inheritance and polymorphism are used more fre-
quently to improve internal reuse in a system and facilitate maintenance,
e.g., in open source projects, application frameworks, libraries. The problem
is that the static, coupling measures that represent the core indicators of
most reported quality models [BW02a], lose in precision as more intensive
use of inheritance and dynamic binding takes place. This is expected to
result in poorer predictive accuracy of the quality models that make use of
static coupling measurement.

Let us take an example, as illustrated in Figure 2.1, to clarify the issue
at hand. Due to inheritance, the class of the object sending or receiving
a message may be different from the class implementing the corresponding
method. For example, let object a be an instance of class A, which is inher-

36

class-level
/// coupling

object-level

coupling

Figure 2.1: Class-level versus object-level coupling

ited from ancestor A’ (Figure 2.1). Let A’ implement the method mA’. Let
object b be an instance of class B, which is inherited from ancestor B’. Let
B’ implement the method mB’. If object a sends the message mB’ to object
b, the message may have been sent from the method source mA’ implemen-
ted in class A" and processed by a method target mB’ implemented in class
B’. Thus, in this example, message passing caused two types of coupling:
(1) object-level coupling between class A and class B (i.e., coupling between
instances of A and B), and class-level coupling between class A’ and B’. The
code may very well show statements where an object of type A invokes from
mA’ method mB’ on an object of type B. However, to assume, through
static code analysis, that there is class-level coupling between A and B as a
result, is simply inaccurate. Both types of coupling, at the class and object
levels, need to be captured accurately to address certain applications and
must be investigated.

We propose here a set of coupling measures (referred to as dynamic coup-
ling measures) that is defined on the basis of an analysis of what interactions
are actually taking place between objects at run-time. They can be collec-
ted on the basis of a dynamic analysis of the code (Section 2.3.2) that is, by
executing the code and saving information regarding the messages that are
being sent among objects at run time. It is also, a priori, conceivable that
dynamic design models (e.g., UML interaction diagrams [BRJ98|) could be
used to collect such measures but, as discussed in Section 2.2.4, this presents
a number of issues and practical challenges. Our objective in this report
is therefore two-fold: (1) provide a precise definition of dynamic coupling
measures and analyse their mathematical properties, (2) perform an empir-
ical validation of the proposed measures by showing that dynamic coupling
measures are useful indicators of a relevant quality attribute.

37

Even though dynamic coupling can be measured at the class level, just
as static coupling can, it is important to note that they may result in sig-
nificantly different measurements. For example, when the code shows that
a method mA invoking, from an object of type A, a method mB on an ob-
ject of type B, not only it may be the case (as in the example above) that
the two methods are defined in ancestors of classes A and B, respectively,
but they may actually be executed, at run time, on descendants of A and
B. Static coupling inaccurately results in accounting such invocations as
contributing to the coupling between classes A and B. On the other hand,
dynamic coupling may result in class-level coupling between an ancestor of
A and an ancestor of B, as well as object-level coupling between descendants
of A and B, respectively.

Further evidence suggests that dynamic coupling could be of strong in-
terest. For example, according to the results of a controlled experiment con-
ducted in [ASJO1], static coupling measures may sometimes be inadequate
when attempting to explain differences in changeability (e.g., change effort)
for object-oriented designs. A related study indicates that the actual flow
of messages is often traced systematically by professional developers when
attempting to understand and change object-oriented software [BAJO01|. Fur-
thermore, dynamic coupling is more precise than static coupling for systems
with dead (unused) code. Coupling between classes that are never executed
is not likely to be of high interest in most situations.

The remainder of this paper is organised as follows. Section 2.2 describes
12 dynamic coupling measures and highlights the ways in which they differ
from static measures. These dynamic coupling measures differ in terms of
the entity they measure and their scope and granularity, and are classified
accordingly. They are defined in an informal, intuitive manner but also
using a formal framework based on set theory and first-order logic. The
main reason is to ensure that the definitions are precise and unambiguous
to allow precise discussions of the measure properties and the replication
of empirical studies. Section 2.3 presents a case study as a first empirical
evaluation of the proposed dynamic coupling measures. Section 2.4 describes
related research. Section 2.5 concludes and outlines future research.

2.2 Dynamic Coupling Measurement

We first distinguish different types of dynamic coupling measures. Then,
based on this classification, we provide both informal and formal definitions,
using a working example to illustrate the fundamental principles. Using a
published axiomatic framework [BDW99|, we then discuss the mathematical
properties of the measures we propose. Our measures were designed so as to
fulfil five properties that we deem very important for any coupling measure
to be well formed. In order to define measures in a way that is programming

38

Table 2.1: Dynamic Coupling Classification

Entity Granularity Scope
(Aggregation level) | (Include/Exclude)
Object Object Library objects
Class Framework objects

(set of) Scenario(s) | Exceptional use cases
(set of) use case(s)

System
Class Class Library classes
Inheritance Hierarchy Framework classes
(set of) subsystem(s)
System

language independent, we refer to a generic data model defined with a UML
class diagram.

2.2.1 Classifying Coupling Measures

There are different ways to define dynamic coupling, all of which can be
justified, depending on the application context where such measures are to
be used. First, since dynamic coupling is based on dynamic code analysis,
coupling may be measured for a class or one of its instances. The entity of
measurement may therefore be a class or an object.

Next, regardless of the entity of measurement, dynamic coupling meas-
urement can be aggregated at different levels of granularity. With respect to
dynamic object coupling, measurement can not only be performed at the ob-
ject level, but also be aggregated at the class level, i.e., the dynamic coupling
of all instances of a class is aggregated. In practise, even when measuring
object coupling, the lowest entity of measurement is likely to be the class,
as it is difficult to imagine how the coupling measurement of objects could
be used. In a similar way, all the dynamic coupling of objects involved in
a scenario! can be aggregated. We can also measure the object dynamic
coupling in entire use cases (i.e., sets of scenarios), sets of use cases, or even
an entire system (all objects of all use cases).

In the case where the entity of measurement is a class, the aggregation
scale is different as we can aggregate dynamic class coupling across an in-
heritance hierarchy, a subsystem, a set of subsystems, or an entire system.

Another important source of variation in the way we can measure dy-
namic coupling is the scope of measurement. This determines which objects

!We use the term scenario here as it is used in a UML sequence diagram [6]: the
sequence diagram models possible interactions in a use case and a particular path through
the diagram represents a possible use case scenario.

39

Attribute

—name

1% 1| «| descendants
MethodInvocation Class [- Object
1. 2 —id
1 * —name
h 1 2 {ordered}
{ordered} 1.* 1.%
2
Method > - Message

—name —-loc

1.*

{ordered} Message.alllnstances
* ->forAll (mel, me2 | mel.target = me2.targe

and mel.source = me2.source
Parameter implies mel.loc <> me2.loc)
—type
—name
| InputParameterl | OutputParameter | | InOutParameterl

Figure 2.2: Class diagram capturing a data model of the dynamic analysis
information

or classes, depending on the entity of measurement, are to be accounted for
when measuring dynamic coupling. For example, we may not want, depend-
ing on the application context, to account for library and framework classes
(e.g., classes from the SWING library in Java). At the object level, we may
not want to account for certain use cases modelling exceptional cases (usu-
ally modelled as extended use cases [BRJ98|) or objects that are instances of
library or framework classes. At the very least, we may want to distinguish
the different types of coupling taking place in these different categories.

The choices we make regarding the entity, granularity, and scope of meas-
urement depend on how we intend to apply dynamic coupling. Such choices
form a classification of dynamic coupling measures that is summarised in
Table 2.1.

2.2.2 Definitions

Before defining dynamic coupling measures, we introduce below the formal
framework that will allow us to provide precise and unambiguous definitions.
Not only do such definitions ensure that the reader understands the measures
precisely, but they are also easily amenable to the analysis of their properties
and facilitate the development of a dynamic analyser by providing precise

40

specifications. We provide a set of generic definitions that are based on
the data model in Figure 2.2, which models the type of information to be
collected. Each class and association in the class diagram corresponds to a
set and a mathematical relation, respectively. The inheritance relationship
corresponds to a set partition. Based on this, we define the measures using
set theory and first order logic.

A few details of the class diagram in Figure 2.2 need to be discussed.
Most role names are not shown, to avoid unnecessary cluttering of the class
diagram. The meaning of associations is quite clear from the source and
target classes. For example, methods are defined in a class, method invoc-
ations consist of a caller method in a source class and a callee method in
a target class. Some of the key attributes are shown. One notable detail
is that the line number where the target method is invoked is an attribute
of a message that serves to uniquely identify it, as specified by the OCL
[WK99| constraint shown in the class diagram. This is necessary, because
the same target method may be invoked in different statements and con-
trol flow paths in the same source method. Message bearing those different
invocations are considered distinct, because they are considered to provide
different contexts of invocation for the method. As expected, method invoc-
ations between classes are differentiated from messages between objects.

Sets

The first step is to define the basic sets on which to build our definitions.
These sets are derived from the data model in Figure 2.2.

e (: Set of classes in the system. C' can be partitioned into the subsets
of application classes (AC), library classes (LC), framework classes
(FC). Some of these subsets may be empty, C = AC' U LC U FC and
AC N LC N FC = @. Distinguishing such subsets may be important
for defining the scope of measurement, as discussed above.

e O: Set of objects instantiated by the system while executing all scen-
arios of all use cases.

e M: Set of methods in the system (as identified by their signature).

e Lines of code are defined on the set of natural numbers (N).

Relations

We now introduce mathematical relations on the sets that were defined above
that will be fundamental to the definition of our measure.

e D and A are relations onto C' (C C x C). D is the set of descendant
classes of a class and A is the set of ancestors of a class.

41

e MFE is the set of possible messages in the system: ME C O x M x
N x O x M. Indicated by the domain of M FE, a message is described
by a source object and method sending the message, a line of code (N),
and a target object and method.

e JV set of possible method invocations in the system: IV C M Xx
C x M x C. An invocation is characterised by the invoking class and
method and the class and method being invoked.

e Other binary relations will be used in the text and their semantics can
be easily derived from their domain and are denoted Rpomain. For
example, Ry;c € M x C refers to methods being defined in classes, a
binary relation from the set of methods to the set of classes.

Consistency Rule

The relations IV and M E play a fundamental role in all our measures. In
practise, an analysis of sequence diagrams or a dynamic analysis of the code
allows us to construct M E. From that information, IV must be derived, but
this is not trivial as polymorphism and dynamic binding tend to complicate
the mapping. The consistency rule below specifies the dependencies between
the two relations and can be used to develop algorithms that derive IV from

ME.

(F(o1,¢1), (02,¢2) € Roc)(3l € N)(01,m1,l,00,m3) € ME =
(3c) € A(cr) U {e1}, cy € Ae) U{cal)
((m1,c}) € Rue A (Ve € Aer) = {c)})(ma, ¢f) € Rue = cf € A(c))))A
((ma2,ch) € Rye A ((Vey € A(ez) = {ch})(ma, c5) € Ry = ¢ € A(c)))A
(my,cy,mo,chy) € IV (2.1)

Working Example

We now use a small working example, as shown in Figure 2.3, to illustrate
the definitions above. Though it is assumed that our measures are collected
through code static and dynamic analysis, we use UML to describe a ficti-
tious example, because it is more legible than pseudocode. This example is
designed to illustrate the subtleties arising from polymorphism and dynamic
binding. Other aspects, such as method signatures, have been intentionally
kept simple to focus on polymorphism and dynamic binding. The following
sets can be derived from Figure 2.3:

42

+m () =

+m' () :

Figure 2.3: Working class diagram example (UML notation)

1:c 2:ct 3:c2'
T T T
—L | | 1:c 2:¢
| | | —
) -
| | . | 1]m |
| 12:1m'() »I
| | | : :
| |
' 13 > —L L
| | |
| |
[[[| .
1 | |
SD1 SD2

Figure 2.4: Two hypothetical sequence diagrams related to Figure 2.3

C={cd,d c,cdy}
M = {m(),m/(),m"()}
Ryc = {(m,c),(m',d),(m", ")}

In order to derive other relevant sets and relations, let us introduce the
sequence diagrams in Figure 2.4, where each message is numbered. Objects
are referred to by using the sequence diagram number where they appear and
their own identification number (i.e., SD; : ID). O and Roc, the relation
that shows which instances are created for each class in the class diagram,
can be derived from Figure 2.3:

43

0= {SDl : 1,SD1 : 2,5’D1 Z3,SD2 : 1,SD2 : 2}
Roc = {(SD1:1,¢),(SDy :2,¢,),(SDy : 3,c,),(SDsy : 1,¢),(SD3 : 2,c")}

Definitions of Measures

The measures are all defined as cardinalities of specific sets. Those sets are
defined below and are given self-explanatory names, following the notation
summarised in Table 2.2. First, as mentioned above, we differentiate the
cases where the entity of measurement is the object or the class. Second, as
in previous static coupling frameworks [BDM97, BDW99|, we differentiate
import from export coupling, that is the direction of coupling for a class or
object. Furthermore, orthogonal to the entity of measurement and direction
of coupling considered, there are at least three different ways in which the
strength of coupling can be measured. First, we provide definitions for im-
port and export coupling when the entity of measurement is the object and
the granularity level is the class. Phrases outside and between parentheses
capture the situations for import and export coupling, respectively.

e Dynamic messages. Within a run-time session, it is possible to count
the total number of distinct messages sent from (received by) one object
to (from) other objects, within the scope considered. That information
is then aggregated for all the objects of each class. Two messages are
considered to be the same if their source and target classes, the method
invoked in the target class, and the statement from which it is invoked
in the source class are the same. The latter condition reflects the fact
that a different context of invocation is considered to imply a different
message. In a UML sequence diagram, this would be represented as
distinct messages with identical method invocations but different guard
conditions.

e Distinct method invocations. A simpler alternative is to count the num-
ber of distinct methods invoked by each method in each object (that
invoke methods in each object). That information is then aggregated
for all the objects of each class.

e Distinct classes. It is also possible to only count the number of distinct
server (client) classes a method in a given object uses (is used by). That
information is then aggregated for all the objects of each class.

If we now look at where the calling and called methods are defined and

implemented, the entity of measurement is the class and we can provide sim-
ilar definitions. We then count the number of distinct messages originating

44

from (triggering the executions of) methods in the class, the number of dis-
tinct methods invoked by (that invoke) the class methods, and the number of
distinct classes that the class is using methods from (that uses its methods).

Table 2.2 shows the formal set definitions of the measures when the gran-
ularity is the class, and the scope is the system. We provide an intuitive
textual explanation only for the first set: IC' _ OM(c). Other sets can be
interpreted in a similar manner.

IC _OM(c): A set containing all tuples (source method, source class,
target method, target class) such that there exists an object o instanti-
ating ¢ (whose coupling is being measured) that sends a message to at
least one instance of the target class in order to trigger the execution of
the target method. The corresponding metric is simply the cardinality
of this set. Note that the source class must be different from the target
class (¢ #), because we are focusing on dependencies that contribute
to coupling between classes, not their cohesion (as further discussed in
[BDW98, BDW99]). Reflexive method invocations are therefore excluded.

Higher Granularities

If we want to measure dynamic coupling at higher levels of granularity, this
can be easily defined by performing the union of the coupling sets of a set
of classes or objects, depending on the entity of measurement. For example,
if the entity of measurement is the class and the level of granularity is the
subsystem, then to each subsystem S5 there corresponds a subset of classes
that it contains, SC € 2¢, and we can define:

Ic_cMm(sS)= |J 1¢_cm(c)
VeeSC

To take a further example, when the entity of measurement is the object:
To each use case UC' there corresponds a set of participating objects SO € 29
and we can define:

Ic_cMUe)= |J IC_CM(o)
YoeSO

Similar definitions can be provided for all levels of granularity.

Example

Returning to our working example in Figure 2.3 and Figure 2.4, we provide
below all the non-empty coupling sets. Though, as a matter of convenience,
our fictitious example is represented with UML diagrams, we refer to the

45

Table 2.2: Summary and acronyms for dynamic coupling measures (granu-
larity=class, scope=system)

Direction | Entity of Strength | Set Definition
Measurement
Import Object Dynamic | IC_OD(c) = {(m,c,I,m’,)]
Coupling Message | (V(o,¢) € Roc(3(d,c') € Roc,l € N)
(

c#c A(o,m,l,0',m)GME}
Distinct IC_OM(c) = {(m,c,m’,)]
Methods | (V(o,c) € Roc(3(d',c') € Roc,l € N)
c#c A(o,m,l,0',m)GME}
Distinct IC _OC(c) =

{(m, c,)]
Classes (V(o0,¢) € Roc(3(0',c') € Roc,l € N)
c#c A(o,m,l,0)GME}
Class Dynamic | IC _CD(c) = {(m e, l,m’,)|

Messages | (3(o1,c¢1), (02,¢2) € Roc)

(3 € N)c# ' A(o1,m,l,02,m") € MEA

(Fece A(c1)U{c1}, ¢ € A(c2) U{c2})

((m,c) € Rmc A ((Vc'l € Alcr) — {c})

(m,ci) € Ruc = c1 € A(c))A

((m', ') € Rare A ((Vez € Ale2) —{'})

(m/,ch) € Rue = 3 € A(C)))A

(m,e,m’,c') € IV)}

Distinct | IC_CM(c) = {(c,m,c,m")]

Methods | (3(m,c), (m’,c') € Ruc)

c#cd AN(m,e,m’,c) eIV}

Distinct | IC_CC(c) = {(m,c,)]

Classes (3(m,c),(m’,c) € Ruc)

c#cd AN(m,e,m',c) eIV}

Export Object Dynamic | EC_OD(c) = {(m/,c,l,m,c)]|

Coupling Messages | (V(o,c) € Roc(3(d',c') € Roc,l € N)

c#c AN(d,m',l,0,m) € ME}

Distinct | EC_OM(c) = {(m’,c’,m,c)]

Methods | (V(o0,¢) € Roc(3(0,c') € Roc,l € N)
c#c AN(d,m',l,0,m) € ME}

Distinct | EC_0OC(c) = {(m’,, c)]

Classes (V(o,¢) € Roc(3(d',¢') € Roc,l € N)

c#c A(o,m',o,m,l) € ME}

Class Dynamic | EC_CD(c) = {(m/,c,l,m,c)]

Messages | (3(o1,c1), (02,02) € Roc)

(e N)c£cd A (02,m J,00,,m) € MEA

(Fc € A(er) U{er}, ¢ € Alez) U {e2})

((m,c) € Ryc A ((Vcl € A(c1) — {c})

(m, Cl) € Rye =) € A(e))A

(!) —)

(m',c') € Rume A ((VCQ € Alc
m’ Cg) € Rye = ch € Alc)))
(m',d',m,c) € IV)}

Distinct | EC_CM(c) = {(m’,c’,m,c)]
Methods | (3(m,c), (m',c') € Ruc)

c#d AN(m',cd,;m,c)e IV}
Distinct | EC_CC(c) = {(m’,c,)]
Classes (3(m,c),(m’,) € Ruc)

c#d AN(m',cd,;m,c)e IV}

46

line of code of the method invocation in message tuples, that we represent
as l(messageid). In the example, we assume that the line of code of the

method invocations m’() in messages SDy : 1.1, SDy :

1.2 and SDq : 1.3 are

different. When the entity of measurement as well as the granularity is the
class, we obtain the following import and export coupling sets:

IC _CD(c) {(m,c,1(SDy : 1.1),m’, '), (m, ¢, 1(SD1 : 1.2),m’,),
(m,c, l(SD1) m’,), (m,c,1(SD2 : 1.1),m", ")}

IC _CM(c) {(m e,m’,), (m e,m”,c")}

IC _CC(e) {(m,c,c),(m,c, c”)}

EC_CD(c) {(m, ¢, l(SD1 1.1),m’,), (m,c,1(SDy : 1.2),m’,),
(m,c, l(SD1 :) m’, ')}

EC _CM() {(m ce,m’)}

EC _CC(d) {(m,c,c)}

EC_CD(c") | {(m,c,l SDQ :1.1),m"”, ")}

EC _CM(") | {(m,c,m”,c")}

EC _CCO(") | {(m,cc)}

When the entity of measurement is the object, and the granularity is the

class, we obtain the coupling sets below:

IC _OD(c) {(m, ¢, 1(SD> : Ll),m/,cl), (m, ¢, l(SDQ 1.2),m’, ch),
(m,c,1(SD2 : 1.3),m’ 02) (m,c, l(SDg 1 1.1),m", ")}

IC_OM(e) {(m,c,m’,c), (m c,m’,ch), (m e,m”)}

IC _0C(c) {(m,¢c,ch), (m,c,), (m,c,c”)}

EC_OD(cl") | {(m,c,1(SDy:1.1),m/,c})}

EC_OM(cl") | {(m,c,m’,c})}

EC_0C(cl") | {(m,c,ci)}

EC _OD(c?") | {(m,c,1(SD2:1.2),m’,ch),(m,c,l(SD2 : 1.3),m’, c5)}

EC_OM(c2") | {(m,c,m’,ch)}

EC_0C(c2") | {(m,c,ch)}

EC_OD(c") | {(m,c,1(SD2:1.1),m", ")}

EC_OM(c") | {(m,e,m”,c")}

EC_0C(d") {(m,c,c")}

The export coupling sets for ¢ as well as the import coupling sets for

d,d" d) and ¢, are empty.

To gain a better insight into the impact of polymorphism on coupling, let
us change the class diagram in Figure 2.3 by adding a new implementation
of method m/() in ¢, : Rye = {(m,c),(m',d),(m',cy), (m”, ")}, while
keeping the sequence diagrams in Figure 2.4 unchanged. The new method
implementation results in significantly changed import coupling sets for class
¢ (removed elements are bold, whereas new elements are underlined):

IC CD(c) | {(m,c,l(SD2:1.1),m ’),
(mcl(SDl. 2),m’,), (m,c,1(SD; : 1.3), m’,),
(m,c,1(SDy : 1.2),m/ 02),
(m,c,1(SDy : 1.),m’ 02), (m,c,1(SD2 : 1.1),m" ")}
IC _CM(c) | {(m,c,m/,c),(m,c,m’,ch), (m,c,m”, "
IC_CC(c) | {(m,c,c),(m,c,cy),(m,c,c’)}

47

Adding a new implementation of an existing method in a subclass has
resulted in increased import coupling for class ¢. This is because class ¢
now imports from one additional class (¢}), one additional method (m/() in
c5), and one additional distinct method invocation. However, object import
coupling (IC'_Ouz(c)) remains unchanged, as at the object level, instances
of ¢ were already importing from c}.

In a similar way, the export coupling of class ¢}, has increased:

EC_CD(d) {(m,c,1(SDy : 1.1),m/, '), (m,c,1(SD1 : 1.2),m’, c’),
(m,c,1(SD1 : 1.3), m’,c)}
EC_CM(d) {(m,c,m’,)}

EC_CC(c) {(m,c,c)}

EC_CD(") | {(m,c,1(SD2: 1.1),m", ")}

EC_CM(") | {(m,c,;m”, ")}

EC_CC(") | {(m,c, ")}

EC _CD(c2") | {(m,c,1(SD1 :1.2),m’,c5), (m,c,1(SD1 : 1.3),m’, c5)}
EC_CM(c2) | {(m,c,m’,c5)}

EC_CC2)) | {(m,c,ch)}

2.2.3 Analysis of Properties

We show here that the five coupling properties presented in [BDW99| are
valid for our dynamic coupling measures. The motivation is to perform
an initial theoretical validation by demonstrating that our measures have
intuitive properties that can be justified. We use IC__ OM and IC _CM at
the lowest granularity level (object, class) and system level as examples, but
the demonstrations? below can be performed in a similar way for all coupling
measures, at all levels of granularity.

Non-negativity

It is not possible for the dynamic coupling measures to be negative because
they measure the cardinality of sets, e.g., IC'_OM returns a set of pairs
(m,c) e M x C.

Null values

At the system level, if S is the set that includes all the objects that participate
in all the use cases of the system, IC' _OM(S) is empty (and coupling equal
to 0) if and only if the set of messages in S is empty:

ME =2 < IC_OM(S)=2

2These demonstrations are admittedly rather informal. We adopted a level of formality
that we deemed sufficient to convince the reader these properties did indeed hold, without
making the discussion unnecessarily terse.

48

This is consistent with our intuition as this should be the only case where
we get a null coupling value. Since ME = @ < IV = & (consistency rule),
we also have:

ME=g & IC_CM(S)=o

At the object level, for IC_OM/(o), we have:

(Voe O,m e M,leN,o’ € O,m' € M)(o,m,l,0',m") ¢ ME
< IC OM(o) =2

Again, this is intuitive, as we should only obtain a null value if and only
if object o does not participate to any message. Similarly, at the class level,
we obtain:

(Vo€ O,ce C,(o0,¢) € Roe)IC_OM(0) =< IC _CM(c) =9

(consistency rule)

Monotonicity

If a class ¢ is modified such that at least one instance o sends/receives more
messages, its import /export coupling can only increase or stay the same, for
any of the coupling measures defined above.

If object 0 € O sends an additional message (0,m,l,0',m') € ME, this
cannot reduce the number of pairs (method, class) € Rp;c that are part
of the sets IC_OM/ (o) or IC _OM(S). The same can be said for export
coupling if object o € O receives an additional message.

Adding a message to M E may or may not lead to a new method invoca-
tion in IV. But even if this is the case, the sets IC_ CM(c) and IC_CM(S)
cannot possibly lose any element.

Similar arguments can be provided for all coupling measures, at all levels
of granularity. To conclude by adding messages and method invocations in
a system, object and class coupling measures cannot decrease, respectively,
thus complying with the monotonicity property.

Impact of merging classes

Assuming ¢’ is the result of merging c¢; and ¢y, thus transforming system S
into S’, for any Coupling measure, we want the following properties to hold
at the class and system levels:

49

Coupling(cy) + Coupling(ca) > Coupling(c')
Coupling(S) > Coupling(S")

Taking IC _CD as an example, we can easily show this property holds:
All instances of ¢; and co in IV’s tuples are substituted with C’. If there
exist tuples of the type (mq, c1,ma, c2) in IV, then they are transformed into
tuples of the form (mq,c,mg,c'). For IC Cx measures, since we exclude
reflexive method invocations because they do not contribute to coupling
(Section 2.2.2), then tuples of the form (mq,c’,ma,) disappear because of
the merging. Hence:

|IC_CD()| < [IC_CD(c1)| + [IC_CD(c2)|

This property also holds for all other coupling measures.

Merging uncoupled classes

Following reasoning similar to that above, if two classes ¢1, ¢y do not have
any coupling, that means there is no tuple of the type (my,ci,mo,c2) in
1V. If we merge them into one class, we therefore cannot obtain tuples of
the type (m1,c,ma,). Then, we can conclude IC _CD fulfils the following

property:

|IC_CD()| = [IC_CD(c1)| + [IC_CD(c2)|

This property also holds for all other coupling measures.

Symmetry between export and import coupling

By symmetry, for all class level dynamic coupling measures, we infer that
the following property holds:

U EC Cz(c) = U IC Cz(c)

VeeC VeeC

This stems from the fact that for any (m,c,m’,¢’) € IV, there is al-
ways a | € N such that (m,c,l,m',d) € EC_CD(c) and (m,c,l,m’,c) €
IC _CD(c). Along the same lines, for each (m,c,m’,c) € IC_CM(c) and
(m,c,d) € IC_CC(c), there is a corresponding (m, c,m’,c) € EC_CM(c)
and (m,c,d) € EC_CC(), respectively.

Following a similar argument when the entity of measurement is the
object, we obtain:

50

U EC Ozx(o) = U IC Ozx(c)

YoeO YoeO

The symmetry property is intuitive, because anything imported by a
class or object has to be exported by another class or object, respectively.
This condition applies at all levels of granularity.

Based on the property analysis above, we can see that our coupling meas-
ures seem to exhibit intuitive properties that would be expected when meas-
uring coupling. This constitutes a theoretical validation of the measures.
The next section focuses on their empirical validation, using project data.

2.2.4 Using UML Models for Data Collection

So far, we have assumed that dynamic coupling data are collected through
dynamic analysis of the code. It was also suggested that using UML models
presented a number of practical and technical challenges. However, meas-
uring coupling on early design artifacts would be of practical importance
because one could use that information for early decision making. For ex-
ample, one could derive test cases and compute the dynamic coupling asso-
ciated with each of the test cases based on UML diagrams. Test cases with
high coupling could be exercised first, as they would be expected to uncover
more faults and, therefore, the test plan would provide an order in which to
run test cases based on dynamic coupling information.

The main problem lies with UML interaction diagrams. If we resort
to UML diagrams for dynamic coupling measurement, we have to find a
substitute for the line of code where the invocation is located to distinguish
messages (in M E) and compute zz_xD measures. A natural substitute is
the guard condition, which corresponds to different contexts of invocations.

An identical method on two messages with two distinct guard conditions
must correspond to different invocation statements in the code. However, one
guard condition on a message does not have to correspond to one invocation
statement in the code. For example, one may have a guard of the form [A
or B] that triggers the invocation of m(), and the corresponding code may
show two distinct invocations statements for m(), each of them being in the
body of an if statement with conditions A and B, respectively.

What this implies is that if xx _xD measures are collected from UML
interaction diagrams, coupling will tend to be underestimated, because dis-
tinct elements of M E will not be distinguishable using UML interaction
diagrams. However, the question is whether, in practise, this makes any sig-
nificant difference. The advantages of using dynamic coupling measures on
early UML artifacts may outweigh the drawbacks that are due to their lower
precision. Furthermore, zx xC and xx _xM measures are not affected by
the use of UML interaction diagrams. If empirical investigation finds these

51

latter measures to be strongly correlated with xx x D, it is doubtful the
data collection inaccuracy discussed above will have any practical effect.

2.3 Case Study

This section presents the empirical results of a case study whose objectives
are to provide a first empirical validation of the dynamic coupling measures
presented above. The first subsection explains in more detail our objectives,
the study settings, and the methodology we follow. In subsequent sections
quantitative results are presented and interpreted.

2.3.1 Objectives and Methodology

To evaluate the dynamic coupling measures, an open-source software system
called Velocity was used as a case study. Velocity is part of the Apache
Jakarta Project [ASF04]. Velocity can be used to generate web pages, SQL,
PostScript and other outputs from templates. It can be used either as a
standalone utility for generating source code and reports, or as an integrated
component of other systems. The system is implemented in Java and consists
of more than 100 core application classes in addition to library classes. A
total of 17 consecutive versions (versions 1.0bl to version 1.3.1) of Velocity
were available for analysis. The versions were released within a time span of
approximately two years.

Several types of data were collected from the system. First, change data
(i.e., using a class-level source code diff) was collected for each application
class. Based on the change data, the amount of change (in SLOC added and
deleted) of each class within a given set of consecutive versions was computed.
Second, to collect the dynamic coupling measures, test cases provided with
the Velocity source code was used to exercise each version of the system.
Each test case was executed while a dynamic coupling tracer tool (Section
2.3.2) developed by the authors computed the dynamic coupling measures.
Third, size and a comprehensive set of static coupling measures (defined
in Appendix A.1 and A.2, respectively) were collected using a static code
analysis tool. The scope of measurement was the application classes (AC')
of Velocity. Thus, coupling to/from library and framework classes were not
included (for further details, see Section 2.2.1).

One objective of the case study was to determine whether the dynamic
coupling measures capture additional dimensions of coupling when compared
with static coupling measures. Once this was verified, a subsequent object-
ive was to obtain empirical evidence that dynamic coupling measures are
indicators of external quality attributes and are complementary to existing
static measures.

Following the methodology described in [BW02a], we first analysed the
descriptive statistics of the dynamic coupling measures (Section 2.3.4). The

52

motivation was to determine whether they show enough variance and whether
some of the properties we expected were visible in the data. The next step
was to perform a principal component analysis (PAC) [Dun98|, the goal of
which was to identify what structural dimensions are captured by the dy-
namic coupling measures and whether these dimensions are at least partly
distinct from static coupling measures. It is usual for software product meas-
ures to show strong correlations and for apparently different measures to cap-
ture similar structural properties. PAC also helps to interpret what measures
actually capture and determine whether all measures are necessary for the
purpose at hand. In our case, recall that we want to determine whether
all zz_xC zx _axM, and zx_xD measures are necessary, that is, to what
extent they are redundant.

In order to investigate their usefulness as quality indicators, we invest-
igate whether dynamic coupling measures are statistically related to change
proneness, that is, the extent of change across the versions of the system
we used as a case study. To do so, we analysed the changes (lines of code
added and deleted) across classes of four subsequent sub-releases (called re-
lease candidates in Velocity) within one major release of the Velocity system
(1.2). The dependent variable (Change) in this study is the total amount
of change (source lines of code added and deleted) that has affected each of
the 136 application classes participating in the test case executions across
the 4 sub-releases of Velocity 1.2. Since none of these classes were added or
deleted during the making of the successive releases, the variable Change is a
measure of the change proneness of these classes, that is, of their tendency to
change. Other possible dependent variables could have been selected, such
as the number of changes, but we wanted our dependent variable to some-
how reflect the extent of changes as well as their frequency. This assumes
that there is a cause-effect relationship between coupling and change prone-
ness, something which is intuitive because classes that strongly depend on
or provide services to other classes are more likely to change, through ripple
effects, as a result of changes in the system [BWL99|. Predicting the change
proneness of a class can be used to aid design refactoring (e.g., removing
"hot-spots"), choosing among design alternatives or assessing changeability
decay [Ari01, AS00]. Change proneness has also been used in other studies
as an indicator of maintenance effort [LH93|.

One important issue is that not only do we want our measures to relate to
change proneness in a statistically significant way, but we want the effect to
be additional or complementary to that of static coupling measures and class
size [BW02a, EEBGRO1]. If some of the dynamic coupling measures remain
statistically significant covariates when the static coupling measures and size
measures are included as candidate covariates, this subset of dynamic coup-
ling measures is deemed to significantly contribute to change proneness. We
consider this to be empirical evidence of the causal effect between dynamic
coupling and change proneness, of their practical usefulness, and hence we

53

consider it to provide an initial empirical validation of the dynamic coupling
measures. More details are provided in Section 2.3.7.

2.3.2 Tool Support

It is a matter of some concern how to collect dynamic coupling data in a
practical and efficient manner. A sophisticated tool was developed to collect
the dynamic coupling data from Java programs. The tool separates the col-
lection and analysis of dynamic coupling data into two phases. In the first
phase, data from a running Java program is gathered and stored. This is
accomplished by having the Java Virtual Machine (JVM) load a library of
routines that are called whenever specified internal events occur. The inter-
faces used for communication between the JVM and the library are called
JVMPI (Java VM Profiling Interface) and JVMDI (Java VM Debugging
Interface). Most of the data is collected from the profiling interface. The
JVMDI is used to obtain information about from which unique line number
a method call originates (to obtain the information needed to calculate the
xx_xD measures). During the data collection phase, the tool populates a
data structure as specified in Figure 2.2. This data is then stored in a flat
file structure.

In the second phase, the data is analysed. Another executable, sharing a
great deal of code with the library, reads the flat files into a data structure
identical to that used by the library. This structure is analysed to obtain the
dynamic coupling measures. The analysis tool traverses the data structure in
Figure 2.2 and computes the sets specified in Section 2.2.2. Each measure is
then computed simply by counting the number of elements in each set. Raw
data from several run-time sessions can be merged by the analysis tool, such
that accumulated dynamic coupling data can be calculated. This merging
capability enables the collection of coupling data for Java systems for which
several concurrent instances of the JVM are used, such as large, distributed
or component-based systems.

Our coupling tool uses the Java Virtual Machine to collect the message
traces and other information specified in Figure 2.2. Another possible ap-
proach would be to instrument the source code to collect the needed run-time
information. Such an approach would essentially modify the existing Java
code to incorporate the data collection software within each application. Our
approach provides several advantages over instrumentation. First, our tool
does not require the Java source code to collect the dynamic coupling meas-
ures. This is a great advantage, for example, when analysing the coupling
to library classes for which the source code may not be available. Another
advantage is performance. Since our data collection tool is written in C++
and dynamically linked with the JVM at run-time, there is less performance
overhead compared with an instrumentation approach in which the data col-
lection software would have to be written in Java and then interpreted by the

54

Java VM along with the application source code. As performance overhead
increases, the behaviour of concurrent software is more likely to be affected
by the data collection process and it is important to minimise the chances
of such a problem occurring.

2.3.3 Code Coverage

One practical drawback of using dynamic analysis is that one has to ensure
that the code is sufficiently exercised to reflect in a complete manner the
interactions that can take place between objects. To obtain accurate dynamic
coupling data, the complete set of test cases provided with Velocity were
used to exercise the system. Though this test suite was supposed to be
complete, as it is used for regression test purposes, we used a code coverage
tool and discovered that only about 70 percent of the methods were covered
by the test cases. A closer inspection of the code revealed that a primary
reason for this apparent low coverage was that a large number of classes
were "dead" code. In addition, there were many occurrences of alternative
constructors and error checking code that were never called. Fortunately,
such code does not contribute to coupling. After removing the dead code
and filtering out alternative constructors and error checking code, the test
cases covered approximately 90 percent of the methods that might contribute
to coupling among the application classes in Velocity. Consequently, the code
coverage seems to be sufficient to obtain fairly accurate dynamic coupling
measures for the 136 "live" application classes of Velocity 1.2.

2.3.4 Descriptive Statistics

This section discusses the descriptive statistics of the coupling and class size
measures provided in Appendix A.3. These statistics are based on the first
sub-release of the studied release (1.2) of Velocity. The first thing to notice is
that the mean values for dynamic import coupling measures (e.g., IC _OC)
are always equal to the mean values of their corresponding dynamic export
coupling measure (e.g., EC'_OC). This confirms the symmetry property
discussed in Section 2.2.3. For most measures, there are large differences
between the lower 25! percentile, the median, and the 75" percentile, thus
showing strong variations in import and export coupling across classes. Many
of the measures show a large standard deviation and mean values that are
larger than the median values, with a distribution skewed towards larger
values. Two of the static coupling measures show (almost) no variation and
are not considered in the remainder of the analysis.

2.3.5 Principal Component Analysis

Principal Component Analysis (PCA) [Dun98| was used to analyse the cov-
ariance structure of the measures and determine the underlying dimensions

95

they capture. PCA usually generates a large number of Principal Com-
ponents, which are usually retained or discarded based on the amount of
variance they explainl. Appendix A.4 provides the results of PCA when
accounting for dynamic coupling measures only. Appendix A.5 provides the
results of PCA when considering all measures. When considering dynamic
coupling measures in isolation it becomes obvious that all zx xC,xx zM,
and xx xD measures belong to identical components and capture similar
properties. This implies that it may not be necessary to collect all of these
measures, and in particular, the xxz xD measures that cannot be collected
on UML diagrams and require dynamic code analysis. It is interesting to
note that this confirms the results in an earlier case study on a Smalltalk
system [Ari02].

In the PCA involving all measures, two principal components (PC5 and
PCT7) clearly capture export dynamic coupling and import dynamic coupling,
mostly at the object level (i.e., object-level show higher weights), respect-
ively. As for all PCA results when many measures are included, some of the
principal components are difficult to interpret. The first one, for example,
captures most size measures and some import static coupling measures, but
also, to a lesser extent, import dynamic coupling at the class level. As has
been observed in past studies [BW02b, BWIL99|, size may be to some extent
related to some of the coupling measures. With respect to dynamic coupling,
results show that class-level measures are moderately correlated with some
of the size and static coupling measures, but overall, the PCA analysis seems
to indicate that our dynamic coupling measures (especially when the entity
of measurement is the object) are not redundant with existing static coup-
ling and size measures. The next sections go even further in this respect by
providing evidence that dynamic coupling measures are also useful quality
indicators.

2.3.6 Relationships between Change Proneness and Dynamic
Coupling

The goal of this section is to evaluate the extent to which each of the dynamic
coupling measures are related to our dependent variable, change proneness
(see Section 2.3.1). However, since the size (SLOC) of a class is an ob-
vious explanatory variable of Change (SLOC added + deleted), it may be
more insightful to determine whether a coupling measure is related to change
proneness independently of class size. We therefore tested whether the dy-
namic coupling measures are significant additional explanatory variables,
over and above what has already been accounted for by size. The under-
lying assumptions are that the larger the export coupling, the more likely
a class is to be changed, because it has to adjust to the evolving needs of
many classes. Similarly, the larger the import coupling, the more likely a
class is to be changed, because it depends on many other classes that may

56

Table 2.3: Relationships between change proneness and dynamic coupling

Regression Coefficient | p-value | Coefficient p-value R-Sq | R-Sq (adj)
Covariates Size Size Coupling | Coupling

CS1 0.068 0.000 N/A N/A | 12.8% 12.1%
CS1, IC_0OC 0.067 0.000 0.123 0.778 12.8% 11.5%
CS1, IC_OM 0.067 0.000 0.085 0.769 12.8% 11.5%
CS1, IC_OD 0.068 0.000 0.010 0.971 12.8% 11.5%
CS1, IC_CC 0.059 0.001 1.038 0.151 14.1% 12.8%
CS1, IC_CM 0.059 0.001 0.748 0.165 14.0% 12.7%
CS1, IC_CD 0.063 0.000 0.314 0.473 13.1% 11.8%
Cs1, EC_OC 0.064 0.000 1.656 0.001 | 20.1% 18.9%
CS1, EC_OM 0.065 0.000 0.899 0.009 17.2% 16.0%
Cs1, EC_OD 0.065 0.000 0.830 0.002 | 19.0% 17.7%
Cs1, EC_CC 0.061 0.000 1.758 0.000 | 20.6% 19.4%
CS1, EC_CM 0.064 0.000 0.736 0.017 16.5% 15.2%
CS1, EC_CD 0.065 0.000 0.469 0.024 16.1% 14.8%

themselves change, thus triggering ripple effects.

To achieve this, we systematically performed a multiple linear regression
involving class size (SLOC) and each of the dynamic coupling measures and
then determined whether the regression coefficient for the coupling measure
was statistically significant (using a standard statistical t-test [FW98]). This
resulted in 12 coupling measures and one size measure being tested for sig-
nificance and with that many tests, the discovery of empirical relationships
by chance becomes more likely [CG93]. Consequently, the significance level
(alpha-level) was set to o = 0.05/13 = 0.004, following the Bonferroni pro-
cedure {Christensen, 1996 #152}. Regression coefficients were considered
significant if the t-test p-value was smaller than 0.004. However, the Bon-
ferroni procedure is conservative and the reader may choose to be less strict
when interpreting the actual p-values in Table 2.3.

The results (Table 2.3) show strong support for the hypotheses that three
of the dynamic export coupling measures are clearly related to change prone-
ness, in addition to what can be explained by size in SLOC (CS1). On the
other hand, dynamic import coupling measures do not seem to explain ad-
ditional variation in change proneness, compared to size alone. Once again,
this confirms the results obtained in an earlier case study on a Smalltalk
system [Ari02].

The coefficients of determination (R-Sq) are not high, but that is to be ex-
pected, because we only include size and one coupling measure at a time and,
as a result, a large portion of the variance is still not accounted for. A few
observations had very large residuals that contributed to the low coefficients
of determination and, thus, the underlying regression model assumption of
normally distributed residuals is violated due to these outliers. Removing
them significantly improved the model fit while still confirming the results of

o7

the models in Table 2.3. This indicates that the model violations are of little
practical consequence with regards to the results of the hypotheses tests.
The following section evaluates the extent to which the dynamic coupling
measures are useful predictors when building the best possible models by us-
ing size, static coupling, and dynamic coupling measures as possible model
covariates.

2.3.7 Prediction Model of Change Proneness

Throughout this section, the dependent variable is change proneness (see Sec-
tion 2.3.1). The independent variables include the size and static coupling
measures (defined in Appendix A.1 and A.2, respectively), and our proposed
12 dynamic coupling measures. Ordinary Least-Squares regression (includ-
ing outlier analysis) is used to analyse and model the relationship between
the independent and dependent variables, that is, between the size/coupling
measures of the first sub-release and the amount of changes in the subsequent
sub-releases. In order to select covariates in our regression model, we use
a mixed selection heuristic [FW98] so as to allow variables to enter, but
also to leave, the model when below/above a significance threshold. Though
other procedures have been tried (e.g., backward procedure based on vari-
ables with highest loadings in principal components), the one we report here
yielded models with significantly higher fit.

Recall that the objective of this regression analysis is to determine whether
dynamic coupling measures help to explain additional variation in change
proneness, compared to class size and static coupling alone (see Section
2.3.1). In other words, we want to determine whether these measures help
to obtain a better model fit and, therefore, an improved predictive model.
To achieve this objective we proceeded in two steps. First we analysed the
relationship between Change and CS + Static coupling measures in order
to generate a multivariate regression model that would serve as a baseline
of comparison. We then continued by performing multivariate regression,
using as candidate covariates all size, static coupling, and dynamic coupling
measures. If the goodness of fit of the latter model were significantly better
than the former model we would be able to conclude that dynamic coupling
measures are useful, additional explanatory variables of change proneness.

The first multivariate model we obtained when using size and static coup-
ling measures as candidate covariates is presented in Table 2.4 4. After re-
moving one outlier that is clearly over-influential on the regression results
(with an extremely large Change value), we obtained a model with three size
measures and nine static coupling measures for covariates (for 135 observa-
tions). Around 79% of the variance in the data set is explained by size and
static coupling measures and we obtained an adjusted R? of 0.77 (i.e., ad-
justed for the number of covariates [FW98]). We do not attempt to discuss
the regression coefficients, because such models are inherently difficult to

58

Table 2.4: Regression model using size and static coupling measures as can-
didate covariates

Covariate Coefficient | Std Error t | Prob > |t|
Ratio
Intercept 14.246195 4.085184 3.49 0.0007
CBO 2.8096468 | 0.787344 3.57 0.0005
PIM_ EC 1.4540822 0.22098 6.58 < .0001
DAC’ 18.873312 | 4.379724 4.31 < .0001
OCAEC -5.362183 | 2.456952 -2.18 0.0310
ACMIC -26.6476 | 6.442303 -4.14 < .0001
OCMIC -12.6526 1.017126 | -12.44 < .0001
OMMIC 4.2143694 | 0.507107 8.31 < .0001
DMMEC -2.996934 | 0.583487 | -5.14 < .0001
OMMEC -1.4191 | 0.344409 -4.12 < .0001
NMD -1.066682 | 0.288966 -3.69 0.0003
NumPara 4.2301027 | 0.389313 | 10.87 < .0001
CS2 (semi) -0.373677 | 0.037926 -9.85 < .0001

interpret since it is common to see some degree of correlation (as shown by
the PCA) and interaction between covariates. Smaller, less accurate models
(e.g., where covariates are selected based on principal components) would
have easier to interpret but recall that our goal was to demonstrate the
usefulness of dynamic coupling measures as predictors of change proneness.
Furthermore, the analysis in Section 2.3.6 has shown that, when signific-
ant, the relationships are in the expected direction for our dynamic coupling
measures.

When including, in the set of candidate covariates, the dynamic coup-
ling measures, we obtain a very different model (Table 2.5). Four dynamic
coupling measures, as well as nine static coupling measures and four size
measures, were included as covariates in the model (we retained, as for the
other model, all covariates with p-values below 0.1). The model explains 87%
of the variance in the data set and shows an adjusted R? of 0.85. There-
fore, even when accounting for the difference in number of covariates, the
coefficient of determination (R?) increased by 8% or 35% of the unexplained
variance (from 0.77 to 0.85) when using dynamic coupling measures as can-
didate covariates. This is an indication that some of the dynamic coupling
measures are complementary indicators to static coupling and size measures
as far as change proneness is concerned.

It is also interesting to note that three out of the four dynamic coupling
measures capture export coupling. One import coupling measure is neverthe-
less selected, but is clearly less significant. One explanation is that, from the
PCA in Section 2.3.5%, we can see that class-level dynamic coupling measure

3Simple correlation analysis indicated the same phenomena, though for the sake of
brevity, this is not reported here.

59

Table 2.5: Multivariate regression model using all measures as candidate
covariates

Covariate Coefficient | Std Error t | Prob> [t|
Ratio
Intercept 8.1297083 3.629 2.24 0.0270
EC_OC 4.3269164 1.082985 4.00 0.0001
EC_OM -7.701119 1.59995 -4.81 < .0001
EC_OD 5.0275368 | 0.999278 5.03 < .0001
IC_CC -1.144599 | 0.522802 -2.19 0.0306
CBO 2.842625 | 0.707569 4.02 0.0001
RFC 1 0.6700376 | 0.183078 3.66 0.0004
RFC -0.058428 | 0.017346 -3.37 0.0010
OCAIC 19.390073 | 4.236142 4.58 < .0001
OCMIC -10.37291 | 0.951485 | -10.90 < .0001
OMMIC 4.373865 | 0.553446 7.90 < .0001
DMMEC -1.170562 | 0.425857 | -2.75 0.0069
OMMEC -1.462298 0.25477 | -5.74 < .0001
AMAIC 6.0653471 1.98776 3.05 0.0028
NMI 4.386547 | 0.982219 4.47 < .0001
NMpub -1.868996 | 0.589443 -3.17 0.0019
NumPara 2.6044268 | 0.738117 3.53 0.0006
CS1 (SLOC) -0.226613 | 0.023067 | -9.82 < .0001

tend to be more correlated to size and static coupling and, similarly, dy-
namic export coupling measures tend to be less correlated to size measures
than their import counterpart. A likely reason is that it is easy to imagine
small classes providing services to many other methods and therefore hav-
ing a large export coupling. Large import coupling classes though, are more
likely to be large, because they use many features from other classes. Results
in our earlier study on a Smalltalk system [Ari02] also showed that dynamic
export coupling is a stronger indicator of change proneness. Though the
context, programming language, and application domain were different, it is
interesting to note that the result obtained in the two studies are consist-
ent, thus suggesting our results can be generalised to a large proportion of
systems.

2.4 Related Works

Dynamic object-oriented coupling measures were first proposed in [YAR99].
The authors proposed two object-level dynamic coupling measures, Export
Object Coupling (FOC) and Import Object Coupling (/OC), based on
executable Real-Time Object-Oriented Modelling (ROOM) design models.
The design model used to collect the coupling measures is a special kind of
sequence diagram that allows execution simulation.

10C and FOC' count the number of messages sent between two distinct

60

objects 0; and o; in a given ROOM sequence diagram z, divided by the
total number of messages in x. Thus, the result is a percentage that reflects
the "intensity" of the interaction of two objects related to the total amount
of object interaction in x. For example, in a simple scenario x1 where 01
sends two messages (ml and m2) to o2 and o0y sends one message (m3) to
o1, then IOCy1(01,02) = 100 % 2/3 = 66% and 1OC,1(02,01) = 100 % 1/3 =
33%. Based on these basic measures, the authors also derive measures at the
system level using the probability of executing each sequence diagram as a
weighting factor. In a different paper, a methodology for architecture-level
risk assessment based on the dynamic measures is proposed [YAROO].

There are several important differences between the measures presented
in [YAR99] and the coupling measures described in this paper:

e The dynamic coupling measures in [YAR99| do not adhere to the coup-
ling properties described in [BDW99]. This is not necessarily a problem
in the application context of that particular piece of work, but it would
very likely be a problem in many other situations (see [BDW99] for a
detailed discussion).

e The measures described in this paper differentiate between many differ-
ent dimensions of coupling, in addition to import and export coupling.
Most importantly, we account for inheritance and polymorphism by
distinguishing between dynamic class-level and object-level measures.
In our opinion, the ability to measure coupling precisely for systems
with inheritance and dynamic binding represents one of the primary
advantages of dynamic coupling over static coupling. This is supported
by the results presented in the previous section.

e Our measures are collected from analysing message traces from sys-
tem executions (Section 2.3.2) or from UML diagrams (Section 2.2.4).
The dynamic coupling measures in [YAR99| are collected from ROOM
models.

Another important addition to [YAR99] is that we perform an empirical
validation of our dynamic coupling by showing they are complementary to
simple size measures and static coupling measures. Furthermore, their rela-
tionship to an external quality indicator (change proneness) is investigated.

The measures proposed and validated in this paper are based on an ini-
tial study described in [Ari02|. Initially the dynamic coupling measures were
described informally, and an initial validation was performed on a SmallTalk
system. In the current paper, this research has been extended in several im-
portant ways. The dynamic coupling measures have been defined formally
and precisely, in an operational form. As part of this process, we discovered
that some of the measures proposed in [Ari02] did not fully adhere to the
coupling properties described in [BDW99|. The measures proposed in this

61

paper are shown to be theoretically valid, at least based on a widely refer-
enced axiomatic framework. The empirical validation in this paper is also
considerably more comprehensive than in [Ari02]. In the current paper,
the dynamic coupling measures are compared with size and static coupling
measures. Such a comparison was not possible for the SmallTalk system
investigated in [Ari02] because static measures could not be collected. This
paper clearly confirms the initial empirical evaluation described in [Ari02];
both in terms of Principal Component Analysis and evaluation of the dy-
namic coupling measures as predictors of change proneness. Thus, the two
studies provide a strong body of evidence that the proposed dynamic coup-
ling measures (especially export coupling) are useful indicators of change
proneness and capture different properties than do static coupling measures.
Results were found to be very similar (despite some differences in measure-
ment) across two separate application domains (commercial CASE tool and
open-source web software, respectively) and programming languages (Small-
Talk and Java, respectively).

2.5 Conclusion

The contribution of this paper can be summarised as follows. Firstly, we
provide formal, operational definitions of dynamic coupling measures for
object-oriented systems. The motivation for those measures is to comple-
ment existing measures that are based on static analysis by actually meas-
uring coupling at run-time in the hope of obtaining better decision and pre-
diction models, because we account precisely for inheritance, polymorphism
and dynamic binding. Secondly, we describe a tool whose objective is to
show how to collect such measures for Java systems effectively and, finally
yet importantly, we perform a thorough empirical investigation using open
source software. The objective was three-fold: (1) Demonstrate that dy-
namic coupling measures are not redundant with static coupling measures,
(2) Show that dynamic coupling measures capture different properties than
simply size effects, (3) Investigate whether dynamic coupling measures are
useful predictors of change proneness. Admittedly, many other applications
of dynamic coupling measures can be envisaged. However, investigating
change proneness was used here to gather initial but tangible evidence of the
practical interest of such measures.

Our results show that dynamic coupling measures indeed capture differ-
ent properties than static coupling measures, though some degree of correla-
tion is visible, as expected. Export coupling measures were shown clearly to
be strongly related to change proneness, in addition to that which can be ex-
plained by size effects alone. Lastly, some of the dynamic coupling measures,
especially the export coupling ones, appear to be useful, complementary in-
dicators of change proneness when combined with size and static coupling

62

measures. Some of these results confirm those obtained on an earlier study
[Ari02] of a SmallTalk system. Though no comparison with static coupling
and size measures could be performed in this earlier study, those combined
results constitute strong evidence that dynamic export coupling measures
are strong indicators of change proneness.

Future work will include investigating other applications of dynamic
coupling measures (e.g., test case prioritisation), and the cost-benefit analysis
of using change proneness models such as the ones presented in the current
work. These models may be used for various purposes, such as focusing
supporting documentation on those parts that are more likely to undergo
change, or make use of design patterns to better anticipate change.

Acknowledgements

Many thanks to Magne Jorgensen, Vigdis By Kampenes, Amela Karahas-
anovic, Dag Sjgberg, Kristin Skoglund, Ray Welland and Jiirgen Wiist for
valuable contributions to the research presented in this paper. Lionel Briand
was partly funded by an NSERC operational grant and a Canada Research
Chair.

63

64

References

|[ABF03]

[ABFar]

[Ari01]

[Ari02]

[AS00]

[ASF04]

[ASJO1]

[BAJO1]

[BDMY7]

E. Arisholm, L. C. Briand, and A. Fgyen. Dynamic coupling
measurement for object-oriented software. Technical report,
Simula Research Laboratory, TR 2003-5/Carleton University,
Canada, TR SCE-03-18, 2003.

E. Arisholm, L. C. Briand, and A. Fgyen. Dynamic coupling
measurement for object-oriented software. IEEE Transactions
on Software Engineering, To Appear.

E. Arisholm. Empirical Assessment of Changability in Object-
Oriented Software. PhD thesis, University of Oslo, Oslo, 2001.

E. Arisholm. Dynamic coupling measures for object-oriented
software. In proc. 8th IEEE Symposium on Software Metrics
(METRICS’02), pages 33-42. IEEE Computer Society, 4-7 June
2002.

E. Arisholm and D. I. K. Sjgberg. Towards a framework for
empirical assessment of changeability decay. The Journal of
Systems and Software, 53(1):3-14, 2000.

The Apache Software Foundation. The Apache Jakarta project.
http://jakarta.apache.org/, 2004.

E. Arisholm, D. I. K. Sjgberg, and M. Jgrgensen. Assessing
the changeability of two object-oriented design alternatives - a
controlled experiment. Empirical Software Engineering, 6:231—
277, 2001.

L. Bratthall, E. Arisholm, and M. Jgrgensen. Program under-
standing behaviour during estimation of enhancement effort on
small Java programs. In proc. PROFES 2001 (3rd International
Conference on Product Focused Software Process Improvement),
2001.

L. C. Briand, P. Devanbu, and W. L. Melo. An investigation
into coupling measures for C++. In proc. 19th International

65

[BDWOS]

[BDW99)

[BeA95|

[BRJOS|

[BS98]

[BW02a|

[BW02b)|

[BWIL99)

[BWLYY]

[CDKO8)|

[CGO3]

Conference on Software Engineering (ICSE’97), pages 412-421,
1997.

L. C. Briand, J. W. Daly, and J. K. Wiist. A unified framework
for cohesion measurement in object-oriented systems. Empirical
Software Engineering, 3(1):65-117, 1998.

L. C. Briand, J. W. Daly, and J. K. Wiist. A unified framework
for coupling measurement in object-oriented systems. IFEFE
Transactions on Software Engineering, 25(1):91-121, Jan./Feb.
1999.

F. Brito e Abreu. The MOOD metrics set. In proc. ECOOP’95
Workshop on Metrics, 1995.

G. Booch, J. Rumbaugh, and 1. Jacobson. The Unified Modeling
Language Users Guide. Addison-Wesley, 1998.

A. B. Binkley and S. R. Schach. Validation of the coupling de-
pendency metric as a predictor of run-time failures and main-

tenance measures. In proc. 20th International Conference on
Software Engineering (ICSE’98), pages 452-455, 1998.

L. C. Briand and J. K. Wiist. Empirical studies of quality mod-
els in object-oriented systems. Advances in Computers, 59:97—
166, 2002.

L. C. Briand and J. K. Wiist. The impact of design properties on
developement cost in object-oriented systems. Technical Report
TR-99-16, ISERN, 2002.

L. C. Briand, J. K. Wiist, S. V. Ikonomovski, and H. Lounis.
Investigating quality in object-oriented designs: an industrial
case study. In proc. 21st International Conference of Software
Engineering (ICSE’99), pages 345-354, 1999.

L. C. Briand, J. K. Wiist, and H. Lounis. Using coupling meas-
urement for impact analysis in object-oriented systems. In proc.
International Conference on Software Maintenance (ICSM’99),
pages 475-482, 1999.

S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Managerial
use of metrics for object-oriented software: An exploratory ana-
lysis. IEEE Transactions on Software Engineering, 24(8):629—
637, 1998.

R. E. Courtney and D. A. Gustafson. Shotgun correlations in
software measure. Software Engineering Journal, pages 5—13,
Jan. 1993.

66

[CK4]

[CKK*00]

[CS00]

[DBM*96]

[DSWR02]

[Dun9s|

[EEBGROL]

[FWOg)

[HCNOS|

[HHLO9O|

[LHO3]

[WK99]

S. R. Chidamber and C. F. Kemerer. A metrics suite for object-
oriented design. IEEE Transactions on Software Engineering,
20(6):476-493, 1994.

M. A. Chaumun, H. Kabaili, R. K. Keller, F. Lustman, and
G. Saint-Denis. Design properties and object-oriented soft-
ware changeability. In proc. Fourth FEuromicro Working Confer-
ence on Software Maintenance and Reengineering, pages 45-54,
2000.

M. Cartwright and M. Shepperd. An empirical investigation
of an object-oriented software system. IEEFE Transactions on
Software Systems, 26(8):786-796, 2000.

J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. Evaluat-
ing inheritance depth on the maintainability of object-oriented
software. Empirical Software Engineering, 1(2):109-132, 1996.

I. S. Deligiannis, M. Shepperd, S. Webster, and M. Roumeli-
otis. A review of experimental investigations into object-
oriented technology. Empirical Software Engineering, 7(3):193—
232, 2002.

G. Dunteman. Principal Component Analysis. SAGE publica-
tions, 1998.

K. El-Emam, S. Benlarbi, N. Goel, and S. N. Rai. The
confounding effect of class size on the wvalidity of object-
oriented metrics. IEFEE Transactions on Software Engineering,
27(7):630-650, 2001.

R. J. Freund and W. J. Wilson. Regression Analysis: statistical
modelling of a response variable. Academic Press, 1998.

R. Harrison, S. J. Counsell, and R. V. Nithi. An investiga-
tion into the applicability and validity of object-oriented design
metrics. Empirical Software Engineering, 3(3):255-273, 1998.

S. Henry, M. Humphrey, and J. Lewis. Evaluation of the main-
tainability of object-oriented software. In proc. IEEE Region 10
Conference on Computer and Communication Systems (TEN-
CON’90), pages 404-409, 1990.

W. Li and S. Henry. Object-oriented metrics that predict main-
tainability. Journal of Systems and Software, 1993.

J. Warmer and A. Kleppe. The Object Constraint Language.
Addison-Wesley, 1999.

67

[YAR99]

[YAROO]

S. M. Yacoub, H. H. Ammar, and T. Robinson. Dynamic met-
rics for object-oriented designs. pages 60-61, 1999.

S. M. Yacoub, H. H. Ammar, and T. Robinson. A methodology
for architectural-level risk assessment using dynamic metrics.
In proc. 11th International Symposium on Software Reliability
Engineering, pages 210-221, 2000.

68

Chapter 3

Jdissect - a Dynamic Coupling
Tracer for Object-Oriented
Systems

This chapter describes Jdissect, the tool created to obtain the coupling meas-
ures presented in Chapter 2. The first section gives an overview of the
coupling tracer and its relation to Java. Having treated the basic outline
of Jdissect, we move on to provide a more detailed account of its design.
Following the section on design is a short tutorial on practical use, and a
description of the Velocity case study. The chapter ends with a discussion
of various technical choices and trade-offs made during the implementation
of Jdissect.

3.1 Overview

One of the goals of this research project is to investigate how coupling im-
pacts change-proneness in software. The previous chapter describes twelve
measures which can be used to quantify coupling in most object-oriented
programming languages. The approach used differs from traditional meth-
ods in that we want to explore dynamic coupling, i.e., coupling data from a
running program.

The tool which collects dynamic execution information and determines
coupling is called Jdissect. Jdissect interfaces with a running Java program
and registers its execution history. This data can later be employed to cal-
culate the proposed dynamic coupling measures.

3.1.1 Java

Before we go on to portray the workings of Jdissect in detail, it is necessary
to explain some of the fundamental properties of Java which enable gathering

69

Table 3.1: Java interfaces to native code

Acronym | Name Use
JNI Java Native Interface Interfacing with native lib-
raries.
JVMPI Java Virtual Machine Profil- | Creating Java profilers using
ing Interface native code.
JVMDI Java Virtual Machine De- | Creating Java debuggers us-
bugging Interface ing native code.

dynamic execution information.

Computer programs are usually created by writing source code in some
programming language. There are many popular languages, such as C, C+-+
and Java. Source code in these languages needs to be compiled before it
can be executed. Compilation involves translating the relatively abstract
source code representation of a program into machine code understood by
a computer’s CPU (Central Processing Unit). This is often referred to as
“native code”, as it is directly comprehensible to the native CPU of the
computer. Interfacing with, and collecting information from, an executing
native code program is difficult. It requires a deep understanding of what
goes on inside the CPU itself. Furthermore, different CPU types use widely
varying machine code, and have very different capabilities.

Java is not like most ordinary programming languages. The initial steps
to create an executable application are similar to those of C and C++.
However, the similarity ends when the program is compiled. Instead of
translating source code into native machine code during compilation, the
Java compiler transforms source code into byte code. In short, byte code is
very similar to machine code, except for the fact that it is not tied to any
specific CPU type or model. Byte code represents an artificial instruction
set, much like that used in the MIX and MMIX machine languages presented
by Knuth [Knu97|. To execute programs in byte code format, a separate
program is required. In the case of Java, this program is called the Java
Virtual Machine (JVM). The JVM emulates a processor supporting the byte
code instruction set.

One advantage of using the JVM is that it supports interfacing with
external libraries during execution of Java programs. The intention behind
this capability is to allow inspection of a running program. This makes it
possible to create efficient debugging and profiling tools. In addition, the
JVM has an interface which enables developers to call libraries containing
native code from within Java programs.

Jdissect needs to obtain information on what happens inside a Java pro-
gram as it executes. For large and long running programs the amount of
information collected is potentially huge. In order not to impact perform-

70

Coupling
measures

Java javac .cl.ass Java VM libjdissect Data files mcalc
source file

N
\

D>
>

Figure 3.1: Data flow — from Java source file to coupling measures

ance too severely (see Section 3.6.3), and because of the relatively easy access
to information, Jdissect employs the native code interfaces provided by the
JVM. Table 3.1 lists the interfaces used, and the tasks they were originally
intended for.

3.1.2 Jdissect

Jdissect consists of a library and an executable program, both written in
C+-+. The Jdissect library, libjdissect.so, collects data from the Java
Virtual Machine by using the three interfaces shown in Table 3.1. The
process of calculating coupling from the data stored by libjdissect.so
is performed by a program named mcalc.

Figure 3.1 depicts the flow of information from source code to calculated
coupling measures. Arrows symbolise information flow, while boxes represent
stored information. The triangles denote user interaction and configuration.

The first phase of the process involves compiling the source code (. java
files) of the applications which is to be examined into executable byte code
form (.class files). Next, the application is executed by the Java VM.
The JVM sends information to the Jdissect library with details of significant
events. For instance, method calls and class instantiation. During this phase
the user has the opportunity to “tag”’ sections of the execution history, using
a separate program called Scalpel, described in Section 3.3.1. Tagging can
be employed to mark messages as occurring in specific use-cases or during
use of certain functional units. Once the Java application terminates the
collected information is stored on disk.

The coupling measures are calculated in the second phase of the analysis
process. First, mcalc loads the data stored during one or more Java VM
sessions. The loaded data is then filtered according to the rules found in the
filter.conf configuration file. Finally, the coupling measures described in
Chapter 2 are calculated and displayed.

3.1.3 Data - Aggregation and Filtering

Data starts out as collections of files representing the execution history of an
application in one or more instances of the Java VM (marked “data files” in
Figure 3.1). The Jdissect data collection library, 1ibjdissect.so, does not

71

| Test-cases

Filtered data

D

>

Aggregated coupling data

Data from unit-tests / JVM sessions

I

Figure 3.2: Data aggregation and filtering

remove any of this information as it is stored on disk. Determining exactly
what data should be retained when the dynamic coupling measures are cal-
culated is therefore up to mcalc. As a result, mcalc is more complicated and
requires more in the way of configuration than libjdissect.so.

The steps in the process of reading and filtering data can be seen as
a series of conceptual layers which information passes through before the
coupling measures are calculated. There are four such layers, illustrated in
Figure 3.2. While the layers themselves hold data at various stages, the
transition from one layer to another, (tg---t2), is where active steps can
be taken to manipulate and filter the data. This enables users of mcalc to
focus on calculating coupling for specific components, libraries, frameworks
or functional units of the application being analysed.

What follows is a description of the layers, and what occurs during the
transitions between them.

Aggregation - t;

In most usage scenarios, an entire Java application can not be tested in a
single session with the JVM. This is because exercising an application to
obtain satisfactory degrees of code coverage, as described in Section 3.5.2,
frequently requires executing multiple unit-tests. Each such test is usually
executed in a separate instance of the Java Virtual Machine, and will leave
its own dataset stored on disk.

The first transition, ¢y, occurs as mcalc loads one or more datasets. If
more than one dataset is loaded, the aggregated data will represent the union
of all the specified execution histories. This allows aggregation of data from
separate executions, or even completely unrelated applications.

72

Filtering - t;

The next transition, t1, makes it possible to focus on specific areas of an
aggregated dataset. Applications often make extensive use of external lib-
raries and frameworks. In many instances this information will distort the
perspective sought by the user.

For example, starting any Java application, no matter how small, will
result in massive amounts of data concerning coupling to, and between, sys-
tem library classes. This might make it difficult to discern coupling between
important core classes of an application from coupling to the system libraries.
By providing mcalc with a filter configuration, the user can determine which
libraries and classes should be accounted for when coupling is calculated.

Grouping Based on Functional Unit - ¢

An application is composed of functional units; entities capable of accom-
plishing a specified purpose. Operations like “save customer to file” and “load
customer from file” are typical examples of functional units.

The exact level of detail used in the definition of functional units is
decided by the user. They can for example represent a single UML use-case,
or an arbitrary set of operations perceived to be related. In some instances
it is desirable to group data according to functional units, and to examine
coupling data for one such unit at a time. Java, however, has no concept
of what a functional unit consists of, and does not recognise, for example,
UML use-cases. Users of libjdissect.so will therefore have to add this
information by “tagging” sections of execution history as a test-case. This
process is described in Sections 3.1.2 and 3.3.1.

A user might, for example, tag the “load customer from file” operation and
examine coupling within the confines of that single functional unit. The tag-
ging operation results in meta-information being added to the data collected
by libjdissect.so. This test-case meta-information can later be employed
to locate specific functional units within an application’s execution history.

However, when calculating coupling, the transitions ¢y and ¢; do not
enable mcalc to group data according to test-cases. The last transition,
to, solves this problem. When data has been aggregated and filtered (¢¢ and
t1), the remaining data undergoes one last transition; ¢5. During this process
the user can choose to remove any parts of an application’s execution history
which has not been tagged with the appropriate test-case meta-information.
For example, if a user has tagged the functional unit “load customer from file”
during data collection, mcalc can be instructed to only calculate coupling
for this part of the execution history.

73

3.2 Design

This section explains some of the deliberations behind the design of Jdissect.
First, we focus on why and how the same core data structure is reused in both
libjdissect.so and mcalc. Next, some arguments in favour of Jdissect’s
data model are presented. The section ends with an explanation of two
classes which are important in assembling and retaining the data structure.

3.2.1 Overview

On the surface, 1ibjdissect.so and mcalc may seem to perform wholly
unrelated tasks. The library is responsible for collecting and storing data,
while mcalc calculates coupling. However, if the various functions performed
by the two programs are broken down into smaller pieces and compared, a
number of similarities appear.

Both components need the following functionality:

1. Initialise data structure based on some source.
2. Access the structure in a consistent manner.

3. Use the data in the structure to perform some action.

On account of these similarities, a substantial amount of code is shared
between the two seemingly separate tools. Most important is the fact that
they use the same structure to retain data. Consequently, both programs
reuse not only the implementation of the structure itself, but also the mech-
anisms used to access and update it.

There are important benefits to be had from reusing code in this manner.
Creating one common interface instead of two separate ones saves time with
respect to implementation. In addition, if errors are discovered in the shared
functionality, corrections will only have to be applied once.

Figure 3.3 shows the relationship between the two programs using UML
notation. ModelBuilder and SetContainer are classes in the “Set utilit-
ies” package. The library and analysis application are depicted as packages
[ANO02]. The package called “core data-model” represents the class diagram
presented both in Chapter 2 and in Figure 3.4.

The two classes are shared between the packages containing the spe-
cialised functionality of the two programs. Both the data collection library
and mcalc assemble the data model by utilising the functionality in Model-
Builder. They subsequently use the methods in SetContainer to access the
information in a manner which is consistent with the definitions of sets in
Chapter 2.

74

| libjdissect.so |

Set utilities |

mcalc |

+JvmpiController

+ModelBuilder

+DataFileController

+Visitor +SetContainer +DataMerger
+FileStorageVisitor - -> <- - 4 +Filter
+Metric

Core data model |

+Attribute
+StaticAttribute
+MethodInvocation
+Class

+Method
+Parameter
+InputParameter
+OutputParameter
+InOutParameter
+Object

+Message
+TestCase

Figure 3.3: Classes and subsystems

3.2.2 Core Model

In Chapter 2, we explained how an object-oriented program and its ex-
ecution history can be represented by set-theory elements. For example,
a message between two objects is uniquely defined by the binary relation
ME C O xMxN xO x M, where MFE is the set of all such relations.
The implementation of the coupling measures is based on analysing these
sets and the relations between their elements.

Figure 3.4 presents the class diagram of the core data model employed
by Jdissect in more detail. It is worth noting that some class names differ
slightly from the names used in the previous chapter.

The model is not specific to Java. It can be used to represent the execu-
tion of almost any object-oriented program. However, doing so would require
small changes to some of the multiplicities in the UML class diagram and to
the source code. For example, to support a language where multiple inher-
itance is possible (e.g., C++), the multiplicity of the ancestor relationship
used in the definition of Class would need to be changed from 1 to 0..x.

Justification

The data structure presented in Figure 3.4 may seem overly complex in
comparison to the task it is used to accomplish. For example, none of the
coupling measures presented in Chapter 2 use Parameter or Attribute in
their definition. The same argument can be made against many of the re-
lationships between classes in the model; they are not actively employed to

5

Attribute
aid: long

1 ancestors

descendants

Class

cid: long
name: string
objects: object_set

attributes: attribute_set

type: string
name: string
classes: class_set

StaticAttribute

methods: method_set
ancestors: class_set
descendants: class_set

exportMethodInvocations: method_inv

Object

1 *| oid: long

instanceOf: Class™*

exportMsg: message_set

ocation_se importMsg: message_set

Methodlnvocation

mi_id: long

location: long
exportClass: Class?*
importClass: Class?*
exportMethod: Method*
importMethod: Method*

importMethodInvocations: method_invocation_se >
2 1.5
1. 1.%
Method Message
methodId: long mid: long
> signature: string 2 « | location: long
classes: class_set threadName: string
parameters: parameter_set systemImport: bool
exportMsg: message_set exportObj: Object*
importMsg: message_set importObj: Object*
exportMethod: Method*
*
1. importMethod: Method*
. *
Parameter .
pid: long
type: string TestCase
name: string tid: int
methods: method_set name: string
D messages: message_set
InputParameter OutputParameter InOutParameter

t.

1ssec

Core data model used in Jdi

Figure 3.4

76

determine coupling, and are therefore redundant. A less complicated struc-
ture would mean decreased memory consumption, and possibly an increase
in execution speed.

There are, however, several good reasons for retaining this model. One
of the primary arguments is that the model is already very close to the the-
oretical definitions used in the coupling measures. This has the advantage
of making implementation of the defined measures trivial once the theory
is understood, hence increasing the likelihood of a correct implementation.
It also makes incorporating changes and corrections in the theoretical defin-
itions much easier, as the relationship between the conceptual and actual
model is one-to-one.

Another argument in favour of this model, in its present generic form, is
that creating new measures is easy. The model implementation stores nearly
all the data it receives from the Java VM. Had the design been optimised
solely for the measurement definitions presented in Chapter 2, new measures
might have required re-implementing large sections of the model and the
surrounding logic. As the model is currently defined, implementing new
measures only requires slightly different analysis methods.

The flexibility of the core model turned out to be an advantage on two
occasions during work on this case study and the resulting paper.

1. During the implementation of Jdissect work on the measurement defin-
itions was still ongoing. At one point we found that our original defin-
ition of a message (M E C O x M x O x M) was not adequate. We had
not recognised the importance of the line number from which a method
call originates. The correct binary relationis M E C Ox M x N xOx M
instead. Making the necessary changes was more a problem of obtain-
ing the needed data from the underlying Java APIs, than of changing
the model itself.

2. After the completion of the case study and article, the IEEE review
committee suggested a number of improvements. One of these involved
documenting the number of overridden methods and inheritance rela-
tionships in Velocity. Performing this count manually would have been
both time consuming and prone to errors. Instead, a new type of meas-
ure was implemented. Creation and verification of the new measure
within the existing framework took only one hour. This shows that the
core data structure, in combination with the surrounding framework,
is both versatile and flexible.

The TestCase Class

It is sometimes desirable to examine data pertaining to specific operations
within a given time interval. This is typically the case if we want to examine

7

coupling in specific UML use-cases, independent subsystems, and in general;
anytime we wish to analyse specific functional units by themselves.

One way of accomplishing this is by restarting the data collection pro-
cedure for each use-case or feature. However, this does not work well in
situations where multiple use-cases or features depend on each other. Addi-
tionally, restarting an entire Java application to gather data from individual
features is a tedious task.

TestCase represents meta-information which can be used to group mes-
sages according to criteria specified by the user. The class is dissimilar to
the other classes in the core model in that it does not directly represent any
part of a running program. It is rather an attempt at adding a notion of
functional units to the execution history of a program.

All instances of the Message class are related to one or more TestCases.
This enables us to, for example, add a new test-case each time we start
executing a new feature or use-case. It is subsequently possible to obtain
independent sets of coupling measures from each specific test-case.

3.2.3 The ModelBuilder Class

The core model plays a central role in both data collection and subsequent
analysis. In the course of obtaining and analysing coupling data it is as-
sembled no less than three times from various sources. The following list
shows where the model is populated.

1. 1ibjdissect.so — Created based on data received from the Java Vir-
tual Machine during a session.

2. mcalc — Reconstructed from files stored by libjdissect.so.

3. mcalc — Assembled from data stored during multiple Java sessions.

In mcalc the model is used twice. First as data is read from disk, and
then a second time to merge the newly loaded model with one representing
data from multiple JVM sessions (see Section 3.1.3).

Unfortunately, populating the model with data is not trivial. This is
caused by the fact that relationships between classes are bi-directional, and
that there are many inter-class dependencies which must be upheld when new
data is added to the model. For example, adding a new Attribute requires
the model to already hold the Class containing it. The Class must add a
reference to the Attribute in its attribute_set, and vice versa.

Had Jdissect only initialised its core data model in one place, the com-
plexity of these relationships might not have been a cause for a more elab-
orate design. However, as the core model is assembled from three different
sources, it is important to encapsulate and reuse the procedure.

78

The class made responsible for assembling the core model is called Mod-
elBuilder. 1t is reminiscent of the “builder” pattern presented in [GHJV94].
The stated purpose of this pattern is to “separate the construction of a com-
plex object from its representation so that the same construction process can
create different representations” [GHIV94, p. 97].

The builder pattern is often used to create different representations of an
underlying structure. For example, to read a text document in one format
and output a wide range of others. Jdissect needs the opposite of this, namely
to build the exact same structure from different sources.

ModelBuilder deviates from the pattern definition in that it does not cre-
ate “different representations” of the data. The class does, however, decouple
assembly of the core model from the parts used in its construction.

3.2.4 The SetContainer Class

Chapter 2 introduced five sets which were subsequently used as building
blocks in defining the coupling measures. These sets were C' (classes), O
(objects), M (methods) , M E (messages) and IV (method invocations). In
addition, “lines of code” was defined on the set of natural numbers, N.

While these sets are the only ones needed to describe the coupling meas-
ures, six additional sets are defined in correspondence with the other classes
in the core model.

e P - The set of function parameters (as identified by their name and
type). P can be partitioned into the three subsets I,OU, IO, with
P=TUOUUIO and INOUNIO = @.

— I, the set of input parameters.
— OU, the set of output parameters.
— 10, the set of input /output parameters (e.g., references in C+-+).

e A - The set of class attributes in the system (identified by their name).

e SA - The set of static class attributes in the system (identified by their
name).

There are several requirements relating to accessing the sets and elements
of the core model. First, implementation of the coupling measures relies on
convenient access to the different sets. Next, storing the core model to
disk requires functionality for traversing the structure in order. In addition,
calculating some of the coupling measures requires access to derived sets like
1V.

Adding this functionality to ModelBuilder would have given it more than
one role. It would have become responsible for building the structure, tra-
versing it and accessing both derived and ordinary sets. Giving a class

79

many different roles would have gone against the principle of only assigning
strongly related responsibilities and functions to a class (cohesion).

Instead of delegating these functions to ModelBuilder we created SetCon-
tainer. It is responsible for access to all the sets and for providing some of
the functionality needed to traverse the core model. Derived sets, like IV,
are accessed in the same manner as any other sets. The process of deriving
them is completely encapsulated in SetContainer.

3.3 Jdissect - Collecting and Analysing Data

This section explains how Jdissect is used to obtain and analyse data. It
starts with an overview of the different options needed to ensure that the
library is loaded by the Java Virtual Machine. Next follows a description of
the data analysis program mcalc. The usage-tutorial ends with a discussion
of the format and rules employed in the configuration file used by mcalc.

3.3.1 Collecting Data - 1ibjdissect

In order to collect data from a Java application the JVM must load the
Jdissect library on starting. Otherwise, the Java program will execute nor-
mally, and no data will be collected. Given that an application named
MyJavaApplication is compiled in the directory /tmp/jdissect, this can
be accomplished with the following commands in a Unix shell like bash or
sh. This command invokes a version of the Java VM located in the directory
specified by $JAVA_HOME. The four different options are explained in turn.

Listing 3.1: Starting a Java application with Jdissect

export LD LIBRARY PATH=SLD LIBRARY PATH: /tmp/jdissect

$JAVA HOME/ bin/java —Xrunjdissect:/tmp/jdissect /data \
—Xdebug —Xnoagent —Xjava.compiler=NONE \
/tmp/jdissect /MyJavaApplication

The backslash (\) means that the command continues on the next line.
This character is removed by the shell prior to execution.

The -Xrun Option

The -Xrun option is used to load debugging or profiling libraries meant to
interface with the VM. While Jdissect does not belong in either category,
it depends on using both profiling and debugging functionality in the Java
APIs.

The exact format of the -Xrun option is:

Listing 3.2: The -Xrun option

—Xrun<library name>[:<options>]

80

The first part of the argument, indicated by the characters <’ and ">,
is required. Everything enclosed in ’[" and ’|” is optional, including the colon.
However, if the colon is included, arguments are expected. The library name
argument is automatically given the prefix “lib” and the suffix “.s0”. So, even
though the argument in the above example is only jdissect, it will cause
Java to attempt locating a library called 1ibjdissect.so.

If loading Jdissect is to be successful the operating system’s dynamic link-
ing loader must be able to locate the library. On Linux systems the loader
starts by searching paths indicated by the environment variable LD_LIBRARY_PATH.
If the library is not found in any of these directories, the loader continues to
search the standard library paths, usually /1ib, and /usr/lib. It is com-
mon practise to put small and highly specialised libraries such as Jdissect in
their own directories, instead of cluttering the system-wide library paths. In
Listing 3.1 the library is located in /tmp/jdissect.

Everything after the colon character is passed unmodified to the library
as an argument. Jdissect requires only one argument, specifying where it
should store data. In this example invocation of Java, Jdissect will store its
data files in /tmp/jdissect/data.

Other -X Options

The last three options to the Java VM are related to the setup of debugging
and execution. The user should feel free to experiment with different set-
tings and options depending on the Java version and implementation vendor.
These settings have been found to function best with Java implementations
from IBM, versions 1.3.1 and 1.4.

One of the arguments against Java is that it interprets its own virtual ma-
chine code instructions (byte codes), rather than using the native instruction
set of the architecture it runs on directly. This results in somewhat slower ex-
ecution and higher overhead than applications compiled into native machine
code.

In an attempt to speed up execution many Java implementations now
include what is called a Just-In-Time (JIT) compiler. A JIT compiler trans-
lates Java byte codes into native instructions as a program executes, storing
the native machine code for later use. The effect is that the second time a
block of code executes, it is quicker. However, this creates problems for lib-
raries such as Jdissect because some of the translated code does not trigger
the usual debugging and profiling events. This leads to loss of information. In
some instances it even causes Jdissect to crash. It is therefore not a good idea
to leave the JIT optimisations turned on. So in order to capture the best pos-
sible data we add the options -Xdebug -Xnoagent -Xjava.compiler=NONE.
The -Xjava.compiler option turns off JIT compilation, while the other two
options configure debugging.

81

Collecting Data in Practise

Listing 3.1 shows how to collect data from a single program. It is not a
particularly realistic example as most applications have hundreds of features
and options which often require some form of user input or interaction.

If the collected data is to be an accurate representation of an applica-
tion, it is important that as much as possible of the application’s code is
executed. We refer to this as “code coverage”. Typically we aim for levels of
coverage above 90% when collecting data in practise. The most convenient
way to accomplish this is by using unit- or regression-tests written during
development of the application.

Such tests are often only small fragments of code, each designed to exer-
cise a small subset of functionality or a specific feature. When analysing an
application we want the opportunity to examine the whole, not just separate
parts.

One method of using unit-tests to collect data is by executing each of
them in turn, while storing the obtained data in separate directories. At a
later stage in the analysis process this information can be merged by mcalc.

Larger Java projects often employ such frameworks as JUnit in combina-
tion with Ant [ASF04a|. JUnit [GB04] is a framework for creating automatic
unit-tests, while Ant is a build tool written in Java. If tools such as these
are used, and the unit-tests are available, it is often possible to modify the
build-file used to execute the tests to include Jdissect. An example of an
XSLT stylesheet used to modify the execution environment of the Velocity
unit-tests can be found in Appendix C.4.

Scalpel - Adding Test-cases Interactively

As the Jdissect data collection library starts, it attempts to open a network
socket on port 9898 of the computer it is running on (localhost). If a server
socket is found, the library establishes a communication channel with the
host program.

This socket can be used to interactively add test-cases to the data that is
gathered from an executing Java program. Test-cases can be used to group
data according to application features (functional units), according to UML
use-cases or based on individual unit-tests.

Included with the distribution of Jdissect is a small Java-based server
called Scalpel. Scalpel has only two functions; “tag” and “quit”. The “quit”
function ends the program, while “tag” adds a new TestCase to the collected
data. When the user has typed in a new tag, all subsequent messages (in
practise; instances of the class Message) are associated with the new test-
case.

This functionality was given much attention in the initial design of Jdis-
sect. However, as deadlines approached and we found that this function

82

would not be used in the analysis of Velocity, it lost priority. The result is
that 1ibjdissect.so supports the feature, while mcalc at present does not.

3.3.2 Data Analysis - mcalc

Running a Java program with libjdissect.so will leave 17 different data
files in the directory specified by the [:<option>] part of the -Xrun argu-
ment (see Listing 3.1). These files have little value before they are processed
with mcalc. The mcalc application performs three important functions.

1. Merge data gathered from one or more unit- or regression-tests into
one large in-memory data model (aggregation, t).

2. Remove superfluous information (filtering, ;).
3. Group information according to test-cases, if any (grouping, t2).

4. Calculate coupling measures based on the remaining data.

Running mcalc

The only input needed by mcalc is command line arguments specifying where
it should attempt to locate data files. It also needs a configuration file called
filter.conf in the same directory as the executable itself. A more detailed
description of this file is given in Section 3.3.3.

Output from mcalc is divided into two different streams. One stream
shows execution progress and is directed to stderr. The other stream is
directed to stdout and contains the coupling measurement data.

If data from 10 different unit-tests are located in directories named
/tmp/jdissect/dataX, where X = 1---10, and the goal is to measure all
these data sets, one would execute the following command:

Listing 3.3: Analysing 10 data sets with mcalc

./mcalc /tmp/jdissect /datax >measures

The example in Listing 3.3 redirects measurement data (stdout) to the
file measures, while status messages are printed to the console. This enables
the user to monitor execution progress, while leaving the measurement data
in a file for further manipulation and analysis.

mcalc Output

Output to stdout from mcalc has a very simple structure. Each type of
measure is calculated in turn for each class. The names of the different
measures are included on every line in order to make further processing using
a script or spreadsheet easy. Following the name of the measure is the class
name, and finally the counted coupling for that measure/class combination.

83

Listing 3.4 shows the specification for the output format, while Listing
3.5 is an excerpt of data obtained from a small test program containing the
classes foo, bar and tst. In Listing 3.4 \t refers to the tab character (ASCII
0x08), while \n means linefeed (ASCII 0x0A).

Listing 3.4: Format specification

‘<Measure name>\t<Class name>\t<Measured coupling>\n

Listing 3.5: Excerpt of output to stdout

IC_OC tst 3
IC_OC bar 1
IC_OC foo 0
IC OM tst 5
IC OM bar 2
IC_ OM foo 0

Listing 3.6 shows output written to stderr as data is loaded and pro-
cessed. The program displays detailed information about the size of the
various sets for debugging purposes before attempting to calculate coupling.

Listing 3.6: Output written to stderr during mcalc execution

Merging data from path ’/tmp/jdissect/’
Creating method invocation set

size (M) 1991

size (C) 303

size (O) 143

size (ME) 1618

size (IV) 624

Calculating metrics...

3.3.3 Configuring mcalc

The Jdissect library collects data under the assumption that every class,
object and message is of importance. Consequently, the data files contain
some information that is not needed and which might obscure interesting or
important facts.

The superfluous information will often consist of classes from the Java
standard libraries, classes provided by frameworks and classes used to im-
plement unit-tests. These are typically components and messages which are
not part of the core application itself. Some of this information is clearly
irrelevant, and should be removed before coupling is calculated.

However, gathering data is potentially a time consuming process, and
it is not always know in advance exactly what to remove. It is therefore
best to postpone removal of any information for as long as possible. This is
one of the reasons why filtering is done in the mcalc application and not in

84

the Jdissect library. Performing the filtering at a late stage enables easier
experimentation with various settings without having to regenerate data.

filter.conf

There are two filters available in mcalc. The first type is called the “display
filter”, and controls program output. The display filter can be used to prevent
coupling from being calculated for certain classes. For example, if the entire
java.lang class-path is excluded by the display filter, no classes from this
package will show up in the output from mcalc. However, while classes
excluded by the display filter are not shown, they are still part of the data
and as such they still contribute to coupling.

The second filter type is called the “count filter”, and can be used to
exclude both classes and whole class-paths from being counted when coupling
is calculated.

Both filters are controlled from a file called filter.conf, located in the
same directory as the mcalc executable.

Filter Example

As an example, consider a class A that is part of the package test.app. A
is coupled to 6 other classes from the same package, and 10 classes from
system libraries. For instance, classes in java.io. As we are not interested
in seeing coupling data for the 10 classes which are not part of the test.app
hierarchy, these are removed using the display filter. The result is that while
the classes in java.io are not displayed they are still part of the coupling
data for both A and the other classes in the test.app package. In other
words; even if a class is prevented from being shown by the display filter, it
is still counted when calculating coupling.

In some instances it might be useful to prevent a class from being counted.
Continuing the example of A; if a user wants to measure its coupling, but
does not want to count relations to any of the java.io classes, this can be
accomplished by using the count filter.

The two filter types do not depend on each other. Thus, to prevent
classes in java.io from being reported and counted, both filter types will
need to be configured with the same exclusions.

Filter Configuration Format

The configuration files used by mcalc have a structure based on keywords
with POSIX.2 [Ste93, pp. 26] style regular expressions as arguments. There
is a total of four different keywords, two for each filter type.

The display filter is controlled using the keywords include and exclude.
These keywords control the output from mcalc. The count filter is controlled

85

N o oA W N e

by the keywords include_count and exclude_count. These keywords con-
figure mcalc to exclude or include various classes when measuring coupling.
The configuration files can also contain comments. Lines starting with a
hash-mark (#) are ignored, as are empty lines and lines containing only
whitespace.

Each keyword can be repeated throughout the configuration file to ex-
clude multiple system libraries and testing frameworks. The only limitation
is that only one keyword can be used per line. It is common to find that the
same classes should be excluded from being displayed and counted by using
both filter types with the same argument strings.

As an example, consider excluding all classes from the Java system lib-
raries with the exception of java.util.Vector. In other words, we do not
want to see any coupling data for classes in packages starting with the prefix
java., with the exception of java.util.Vector. Neither do we want these
same classes to influence calculated coupling for the rest of our application.
Consequently, both the count and display filters must be employed. Listing
3.7 shows how this can be accomplished.

Listing 3.7: Practical configuration example

Example which excludes the entire Java class hierarchy ,
except java.util.Vector

exclude javal\..x

exclude count java\..x

include java\.util\.Vector
include count java\.util\.Vector

It is worth noting that a small shortcut was taken to enhance usability in
the filter implementation. The regular expressions entered as arguments are
prepended with the characters ’.*’. In regexp syntax this means “match any
character, zero or more times”. Therefore, to exclude a class called Vector
using the display filter, all the user needs to write in the configuration file is
exclude Vector. The alternative would have been to prepend the argument
with the whole class-path of Vector, or explicitly writing .*Vector.

It is also worth paying attention to the fact that nothing is ever appended
to keyword arguments. Hence, if the desired effect is to exclude an entire
package, contained in some class-path, it is necessary to explicitly specify
the package name followed by ’.*’. For example, exclude java\..*

Precedence Rules

Both filters are controlled using one keyword for inclusion and another for
exclusion. It might be prudent to discuss the precedence rules used by mcalc
to match class names against the configuration data.

If mcalc is given an empty configuration file its default behaviour is to
include every class it encounters. This seems to be the most reasonable

86

default behaviour, as it does not presume anything about what the user
wants to accomplish.

Given a configuration that contains both inclusions and exclusions, a
precedence rule is needed to determine which expression are more important.
The rule is simple; inclusions have precedence. Classes are therefore always
included if they match an inclusion, even if they are excluded by another
expression.

In Listing 3.7 there are exclusions which target the entire java hier-
archy (lines 3 and 4). This means that no classes in that top-level package
or any of its sub-packages are included. Further along in the configura-
tion there are lines (6 and 7) including any class called java.util.Vector.
The result of these two seemingly contradictory configuration instructions is
that all classes in the java hierarchy are excluded, ezcept the class called
java.util.Vector

This precedence rule is the same for both the display and the count filter
configurations. Although each type is independent of the other.

3.4 Verification of Jdissect

Before gathering data from Velocity we had to verify that Jdissect worked
according to specification. Three different strategies were used to ensure
conformance to the specifications and to locate possible errors and inconsist-
encies.

1. Store/load/store.
2. Manual verification.

3. Inter-measure symmetry properties.

These tests will be explained in turn.

3.4.1 Store/load/store Test

The first verification scheme checks if Jdissect can load and store data in a
consistent manner. The rationale underlying this test is that the mechanisms
involved in loading and storing data function according to specification if
Jdissect can load and store the same data multiple times without introducing
inconsistencies.

The first step in this test is to obtain and store data from a small test
program written in Java. Subsequently, a program not dissimilar to mcalc
is used to load the stored data, rebuild the core data model in memory, and
then store it again in another directory. The result of these operations is
two directories. Each supposedly containing the same data. The next step
of this test is to compare the two instances of the test data contained in the

87

two separate directories. If there are discrepancies between them it can be
concluded that Jdissect either does not build the model correctly, or that
there is something wrong with the components responsible for storing data.

Performing this test we concluded that the data stored in the two direct-
ories was exactly the same. We then progressed by attempting to run the
same test, but with four consecutive load/store operations. The first and
last data sets were still equal. This led us to conclude that the mechanisms
used to load and store data conformed to the specifications.

3.4.2 Manual Verification

The second test also starts with a Java test program. However, instead of
obtaining coupling measures or data by using tools, we compute the different
measures for all classes manually. Subsequently, Jdissect is used to obtain
coupling measures from the test program. The two sets of measures can then
be compared to see if there are any differences between them.

The test was positive as we concluded that the manual measurements
were equal to those obtained by Jdissect.

3.4.3 Symmetry

Our third test is based on the observation that there are symmetry relations
between coupling measures on both the class and the object level. These
properties are intuitive. They basically state that any export coupling will
be mirrored by import coupling at the same level (either class or object).

U EC_Cx(o)| = | | IC_Cu()|,x € {C, M, D} (3.1)
VeeC VeeC
J EC_0x(0)| = | | IC_Ox(0)|,= € {C, M, D} (3.2)
YoeO YoeO

These formal expression can be used to verify inter-measure consistency.
Property 3.1 can be used to determine coupling measurement integrity at
the class entity level, while 3.2 has the same function at the object level.

To perform this test in practise we obtained coupling data from Velocity
release 1.2-rcl, and imported it into a spreadsheet. We then calculated the
sum of coupling in each direction (import/export) and at each entity level
(class/object).

The results in Table 3.5 show that the sum of import and export coupling
is equal for both class- and object-level measures. The success of this test
leads us to conclude that the measurements obtained by Jdissect are correct.

88

Measure | Total coupling | Sum
IC_0OC 964

IC_OM 1331 3817
IC_OD 1522

EC_OC | 964

EC OM | 1331 3817
EC _OD | 1522

IC_CC 728

IC_CM 968 2912
IC_CD 1216

EC _CC 728

EC _CM | 968 2912
EC _CD | 1216

Figure 3.5: Sum of coupling measurements for Velocity 1.2-rcl

3.5 Study of Velocity

This section contains a description of the Velocity case study. It starts by
giving a short description of what Velocity is, and continues with a look at
how data is collected and analysed. The section ends with an overview of
the mcalc configuration used, and the tool used to determine code coverage.

3.5.1 Velocity

Velocity [ASF04c]| is a template rewriting engine written in Java. It allows
methods and variables from a surrounding Java execution environment (e.g.,
EJB or JSP) to be accessed from within template definitions. Data from
the environment can be used in simple decision making, or merged with the
template document itself. Velocity can, amongst others, be used to generate
PostScript documents, web pages and SQL. It is usually employed either as
a standalone utility or as an integrated component in other systems. The
template specification language itself is very simple. The syntax allows only
simple if-else constructs, for-each loops and variables.

Velocity is part of an ongoing effort in the Jakarta [ASF04b| community
to create tools that support the MVC (Model-View-Controller) design pat-
tern [HDFWO03, p.31]. In this context, Velocity is meant to provide the
functionality needed for the view.

Why Velocity?

There are several reasons why Velocity is a good candidate system for study-
ing the relationship between dynamic coupling and change-proneness.

89

It is an open-source project under the Jakarta umbrella. This means
that all source code revisions are freely available.

. Velocity is a mature product. It has gone from version 1.0b2 released

in 2001, to 1.3.1 released in 2003. All versions can be retrieved from
an on-line version control system (CVS).

The project includes unit-tests using the JUnit [GB04] framework.

Case Study Tasks

Our case study of Velocity consists of several carefully planned phases. What
follows is a summary of the different steps involved. The text in parenthesis
after each task indicates the tools used to accomplish it.

1.

10.

Download the 17 different versions, from version 1-bl to 1.3.1-rc2 from
the Jakarta CVS repository. (Perl)

Compile the different versions and unit-tests. (Perl, Ant)

Perform a coverage analysis to see if the unit-tests exercised the differ-
ent versions sufficiently. (Clover, Ant)

Determine which classes can be deemed to be “dead” code based on
coverage analysis and reading the source code. (Manual)

Locate classes which are only used when interfacing to other systems
(e.g., EJB and JSP) based on coverage, documentation and source
code. (Manual, Perl, diff, grep)

Modify unit-test invocation for all Velocity versions so that they are
executed with the options required by the Jdissect library, as described
in section 3.3.1. Make sure data is kept in separate directories for each
Velocity version. (Perl, xsltproc)

Run unit-tests with modified invocations to obtain data.
(Perl, 1ibjdissect.so)

Create filter.conf configuration file based on the results of the “dead
code” and interface-class analysis. (Manual)

Analyse data using the mcalc application with the configuration cre-
ated in step 8. Store the results for each Velocity version. (Manual,
mcalc)

Rewrite mcalc output to row/column order, which is more convenient
for statistical analysis. (Perl)

The majority of this work is straightforward and very simple. Only item
3 and 8 require some additional mention. They will be explained in turn.

90

3.5.2 Measuring Code Coverage

When a Java application is executed with Jdissect all events related to load-
ing classes, instantiating objects and calling methods are passed on to, and
registered by, the Jdissect library. In itself this is not enough to create an
accurate picture of what goes on inside the program.

The problem is that any application contains a multitude of logical
branches. Some of them are in use quite often, while others, perhaps dealing
with uncommon situations or errors, are seldom executed. If our data is
to be representative of Velocity it must cover as many of these branches as
possible. This is referred to as “exercising” the code to obtain a set amount
of “code coverage”.

To exercise code involves using as many features of a program as possible.
If the application to be analysed does not include a suite of automated tests
this might pose a problem, as exercising the code manually is both time
consuming and error prone. Comparing results from two different versions
of the same application would, for example, require using the exact same
features in each version.

When dealing with open-source Java projects exercising the code manu-
ally is often not necessary, as many of them seem to have embraced auto-
matic testing. This has perhaps been fuelled by initiatives such as the JUnit
framework [GBO04]. In the case of Velocity there are automatic unit-tests
available.

However, automatic unit-tests are far from perfect. We need to be as-
sured that they provide a satisfactory level of code coverage before we may
claim that our study is representative of Velocity.

Deciding if an application has been properly exercised is nearly impossible
without using special tools, as there are just too many variables to measure
manually. Luckily, there are both commercial and open-source tools available
for this job. The coverage tools output percentages showing how much code
is covered by individual, or combinations of, unit-tests at the package, class
and method levels. These tools can be used to check whether automated
unit-test actually cover the required amount of source code and functionality.

Clover

We decided to use a coverage measurement tool called Clover. It is a tool
written in Java by the Australian company Cortex. Clover was chosen both
for its availability and maturity.

The process of achieving the desired level of code coverage started by
running the Velocity unit-tests with Clover. Unfortunately, the initial level
of code coverage was not satisfactory; only around 54% for Velocity version
1.2-rcl.

This lead us to examine the Velocity source code more closely. We sought

91

to determine whether the unit-tests were not good enough, or if the low
coverage was due to some other cause. We found that there were four primary
reasons for the low initial coverage.

e Dead code due to restructuring/refactoring.
e Unused exception handling code.
e Unused convenience methods (e.g., get/set methods for class variables).

e Presence of classes meant for interfacing Velocity with other tools and
frameworks (e.g., Tomcat and Struts) .

In addition we did not want to include any of the classes related to the
JUnit testing framework itself.

Clover employs a filter much like to one used in mcalc. So that whenever
a class was found to have no coupling to the rest of Velocity it was filtered out
of the coverage analysis. After some iterations of excluding classes, running
Clover and reading source code the level of coverage was above 90%.

The filter configuration used by Clover was subsequently rewritten to
conform with the format used by mcalc. The complete filter.conf file
used in the analysis of Velocity can be found in Appendix C.5.

3.6 Technical Choices

Work on Jdissect started in January 2002. Since then we have created four
different revisions of the system. However, a large amount of the source code
has remained constant. The differences between the versions have mostly
been due to alternative data storage solutions.

In the course of this work we have made a number of choices regarding the
technology and methods used to implement Jdissect. This section contains
a brief survey of the choices and the reasoning behind them.

3.6.1 Separation of Data Collection and Analysis

The first draft designs of Jdissect contained only the library component,
and no separate tool for computing coupling. It seemed as if separating the
processes of gathering and analysing data would only lead to unnecessary
overhead and complications.

This idea was dismissed because it required data to be collected each
time a program was analysed. Data collection is time consuming, especially
if the analysis target is feature rich or if data must be collected from many
consecutive versions of the same system.

92

On examining some actual Java applications we realised that most of
them employ unit- or regression-tests which are executed in separate run-
time instances of the Java VM. This means that data from multiple unit-
tests must be merged in order to compute coupling measures for an entire
application. Being able to merge data from multiple tests requires some form
of intermediate storage.

These two factors led us to separate the data collection mechanism from
the part of the program which performs data analysis.

3.6.2 Data Storage

There were several possibilities with regard to how Jdissect was to store
data. The original idea was to use an Object Database Management Sys-
tem (ODBMS) supporting Object Query Language (OQL). Data storage
could have been handled by the database, while calculation of the coupling
measures could be performed using OQL instead of writing specialised C++
code.

We soon found it impossible to use an ODBMS, and proceeded with
an attempt to use an ordinary Relational Database Management System
(RDBMS) instead. Unfortunately, this approach turned out to be too slow
for our requirements.

In the end we settled for a data storage solution based on flat text files.
This provided benefits both with regard to performance and debugging.

ODBMS

Using an object database seemed like an elegant solution in theory. However,
in practise we uncovered two major obstacles.

The first problem we encountered was that storing data in the ODBMS
was slow. Starting a small Java program which does next to nothing will
generate more than 10000 messages, load around 250 system classes contain-
ing over 1600 different methods and instantiate approximately 3500 objects.
Each of these entities is represented by a separate object in the core data
model. In theory it should be possible to store this amount of data in any
database relatively quickly. The problem we found was at least partially due
to the fact that many of the classes in the core data model reference each
other. Storing this information, including the references between the differ-
ent objects, while maintaining indexes and database integrity is very time
consuming. In fact, even for rather small Java programs, the time required
to store the core data model approached 15 minutes.

The second obstacle in using the ODBMS was that it did not imple-
ment the mechanisms we needed to use it efficiently. We believed, based on
claims made by the database vendor, that the object database we selected
conformed to and supported the entire OQL standard. This would have

93

enabled implementation of the dynamic coupling measures entirely in OQL.
The reason for wanting to use OQL to implement the measures was two-fold:
1) Changing the measures if errors were found would be easy, and 2) new
measures could be implemented rapidly.

However, implementing the calculation of the measures in an efficient
manner would have meant sending single queries to the database, letting it
handle traversal and selection from the core data model. Using single queries
would have required the database to support selection from multiple tables;
so-called “joins”. However, the ODBMS we selected, based on claimed con-
formance to OQL, turned out to not support this operation. The database
vendor advised using collection classes instead. Heeding this advice would
have meant building the queries incrementally, selecting from one table at a
time, and using external code (i.e., C++) to assemble the query results.

After some attempts to work around this limitation we decided against
using an ODBMS.

RDBMS

Not entirely willing to give up on using a database we turned our attention
to using a relational database management system (RDBMS).
We choose to experiment with MySQL, as it is generally considered
quicker than other databases for single-user and non-concurrent scenarios.
Unfortunately, MySQL turned out to be another disappointment. While
it performed significantly better than the object database, storing data gen-
erated by a small Java application took close to 4 minutes.

Flat-file Structure

In the end what seemed simplest and quickest was to implement data storage
using a structure based on flat text files. This solution turned out to perform
significantly better, as the entire execution history generated by a small
program could be stored in under a second.

Additionally, the use of text files made debugging significantly easier
since it was possible to manually inspect the stored data.

3.6.3 The Java Interface

Prior to implementing Jdissect we evaluated alternative methods for col-
lecting data from a running program. We found that there were several
important issues which should be considered.

1. It should be possible to reuse much of the Jdissect source code if we
decided to analyse applications written in different programming lan-

guages.

94

Java Virtual Machine

Back-end (JVMDI) JVMPI JNI
Comm-channel (JDWP)

Front-end (JDI) User Interface Native Code

User Interface

Debugger Profiler : Native library/application

Figure 3.6: JPDA/JVMPI/JNI architecture

2. The interface to the running program should provide us with the in-
formation needed to populate the core model.

3. As data collection happens while the system is running, possibly inter-
actively, speed and responsiveness are important.

The following section contains a short explanation of the various pro-
gramming interfaces we could have used to collect run-time data from a
Java application. Arguments for and against using the different interfaces
are presented in turn.

Java Architecture

The Java Platform Debugger Architecture (JPDA) consists of three inter-
faces for use by debuggers.

The Java Debug Interface (JDI) is a high level Java API providing in-
formation useful for debuggers and similar systems which require access to
the running state of a Virtual Machine. It defines information and requests
at the user code level. It is a Java-only interface, and is recommended by
Sun for both stand-alone debugging-tools and integration with developer
environments. The JDI is the “highest” (e.g., most abstract) layer of the
JPDA.

The Java Debug Wire Protocol (JDWP) defines the format used in in-
formation and requests transferred between the process being debugged (the
JVM) and the debugger front end. Because of the JDWP it is possible to
debug Java applications from remote computers.

The Java Virtual Machine Debug Interface (JVMDI) defines services
which a VM can provide for debugging at a low level. It is a two way in-
terface which enables clients to both monitor an application through events
and querying it by using functions. The JVMDI is the lowest layer within
the Java Platform Debugger Architecture.

95

The Java Virtual Machine Profiling Interface (JVMPI) is not yet part
of the Java standard, but rather an experimental feature. Controlling and
querying the JVMPI functions much like in the JVMDI. As the JVMPI is
still experimental it does not yet have an interface from Java itself.

The Java Native Interface (JNI) is a standard programming interface
for accessing native code from Java and for embedding the Java virtual
machine into native applications. One of the goals of the interface is to
enable application programmers to access the internals of the Java VM from
native code on any given platform.

JDI

The JDI provides a high level Java interface to the internals of the Virtual
Machine. Using it as the interface between Java and Jdissect requires Jdis-
sect to be implemented entirely in Java. This is beneficial with respect to
portability. If the JDI is used, Jdissect can be used on any platform where
Java is deployed.

However, implementing Jdissect entirely in Java might involve comprom-
ises we are not prepared to accept. There are three issues which should be
considered; efficiency, extensions of Jdissect and the availability of required
information.

As discussed in Section 3.1.1 Java programs are byte code interpreted. In
other words, execution of a Java program will in most instances be slightly
slower than running similar programs compiled directly into native machine
code. Implementing Jdissect entirely in Java might therefore incur perform-
ance penalties.

The class Message in the core model represents a method call. If the
coupling measures are to be calculated correctly, this class needs to contain
not only source/target method and object, but also the line number in the
source method from which the target method is called. Unfortunately the
information regarding line number of the dispatch from the source method
is not easily obtainable from the JDI.

One of the goals we set for Jdissect is that it should be extensible. Im-
plementing support for gathering data from other object-oriented programs
should therefore be made as easy as possible. A pure Java implementation
of Jdissect will retain a dependency on the Java VM, even if a new data
harvesting mechanism was devised.

JavaCC

JavaCC is a completely different approach to gathering data. JavaCC reads a
description of a programming language (’grammar’) and generates a parser
in Java. The parser blueprint must be modified to take various actions
depending on the language constructs it encounters.

96

The reason why this approach is different from using any of the direct-
interface strategies is that it requires source code instrumentation. The
instrumentation process re-writes the source code of the application which is
to be analysed. For example, every class must call a function registering it
with the core model. Similarly, each method call must register itself. When
the source code has been changed by the parser generated by JavaCC, the
entire Java application must be recompiled.

There are two principal arguments against using this approach to collect
data. Firstly, the instrumentation process requires access to the source code
of the application which is to be analysed. Secondly, the functions inserted
in the source code to register, for example, method calls with Jdissect will
have to be implemented in the same language as the source code being ana-
lysed. In itself this is not a problem. The core functionality of Jdissect might
still be implemented in a language other than Java, thereby avoiding pos-
sible performance penalties. However, this solution requires a bridge, or an
adaptor layer, between Jdissect and the re-written source code. The adaptor
itself must be implemented in the same language as the re-written source
code, thereby possibly incurring any performance overhead associated with
Java.

BCEL

The Byte Code Engineering Library (BCEL) is a Java based framework for
modifying byte code files. In essence, BCEL can accomplish the same as
JavaCC, but at a different level. While JavaCC can instrument source code,
BCEL can be used to instrument compiled Java executables.

A solution using BCEL will possibly suffer the same problems as an
implementation employing JavaCC with regard to using an adaptor layer
between Java and Jdissect. Furthermore, the task of instrumenting Java
classes at the byte code level was deemed too complex for use in Jdissect.

JVMPI/JVMDI

Considering the issues listen in at the beginning of Section 3.6.3, none of
the data collection mechanisms presented so far seem ideal. They do not
provide the information required to populate the core data model, are too
complicated or suffer from possible performance issues.

There remains only three alternatives. Using the JVMPI, the JVMDI or
JNI. However, none of these interfaces provide all the information required
to populate Jdissects core data model by themselves. The solution is to use
a combination of the alternatives.

These interfaces (JVMPI/JVMDI/JNI) are meant to be used directly
with either C or C++. Thus, any concerns regarding performance can be set
aside, as these languages ensure that the programming language (or rather

97

the compiled code) used to implement Jdissect is not an obstacle in achieving
speed and responsiveness.

We choose to use C++ rather than C to implement Jdissect. This choice
is motivated by the fact that the core data model is an object structure.
Using C+-+ will make it relatively easy reuse most of the source code if we
at some point decide to expand Jdissect to analyse programs written in other
OO languages. That is, if the language we decide to analyse can interface
with C or C++. Fortunately, C and C++ are both very common languages.

3.7 Summary

In this chapter we have described a tool which can be used to calculate the
dynamic coupling measures proposed in Chapter 2. The tool is implemented
in C++, and interfaces with the Java Virtual Machine by way of Java’s pro-
filing (JVMPI), debugging (JVMDI) and native (JNI) APIs. Data collected
by libjdissect.so is stored on disk as a collection of text files. These files
can be analysed using mcalc.

We have also described some of the steps taken to verify that the im-
plementation of Jdissect functions according to the specifications laid out in
Chapter 2.

In Section 3.5 we described how data was collected and analysed to gather
data for the Velocity case study. The study itself, and its conclusions, can
be found in Chapter 2.

98

References

[AN02|

[ASF04al

[ASFO4b]

[ASF04c|

[GB04]

[GHIV4]

[HDFW03]

[Knu97]|

[Ste93]

J. Arlow and I. Neustadt. UML and the Unified Process: Prac-
tical Object-Oriented Analysis and Design. Pearson Education
Limited, Edinburgh Gate, Harlow CM20 2JE, 2002.

The Apache Software Foundation. The Apache Ant project.
http://ant.apache.org/, 2004.

The Apache Software Foundation. The Apache Jakarta project.
http://jakarta.apache.org/, 2004.

The Apache Software Foundation. The Apache Velocity project.
http://jakarta.apache.org/velocity/, 2004.

E. Gamma and K. Beck. Junit - regression testing framework.
http://www.junit.org/index.htm, 2004.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pat-
terns: Elements of Reusable Object-Oriented Software. Addison
Wesley, One Jacob Way, Reading, Massachusetts 01867, 1994.

T. Husted, C. Dumoulin, G. Franciscus, and D. Winterfeldt.
Struts in Action. Manning, 2003.

D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of
Computer Programming. Addison Wesley Longman, 3rd. edition,
1997.

W. R. Stevens. Advanced Programming in the UNIX Environ-
ment. Addison-Wesley, 1993.

99

100

Appendix A

Appendices to Chapter 2

A.1 Definition of the Size Measures

Some of the size measures in the text are frequently used in publications and
available tools, and no definite source or author can be given for them.

Table A.1: Definition of the Size Measures

Name Definition
NAI The number of non-inherited attributes in a class
NAD The number of inherited attributes in a class
NA The total number of attributes in a class. NA = NAI + NAD
NMI The number of methods implemented in a class
(non-inherited or overriding methods)
NMD The number of inherited methods in a class, not overridden
NM The number of all methods (inherited, overriding, and non-inherited)

methods of a class. NM = NMI + NMD

NMpub The number of public methods implemented in a class.

NMnpub The number of non-public (i.e., protected or private)

methods implemented in a class.

NumPara | Number of parameters. The sum of the number of parameters of
the methods implemented in a class.

CS1 The number of source lines of code in a class

CS2 The number of declarations and statements (semicolons) in a class

101

A.2 Informal Definitions of the Static Coupling Meas-
ures

Table A.2: Informal Definitions of the Static Coupling Measures

Name Definition Source
CBO Coupling between object classes. According to the definition of this [CK94]
measure, a class is coupled to another, if methods of one class use
methods or attributes of the other, or vice versa. CBO is then defined
as the number of other classes to which a class is coupled. This includes
inheritance-based coupling (coupling between classes related via inheritance).
CBO’ Same as CBO, except that inheritance-based coupling is not counted. CK91
RFC Response set for class. The response set of a class consists of CK91
the set M of methods of the class, and the set of methods directly or
indirectly invoked by methods in M. In other words, the response set
is the set of methods that can potentially be executed in response to
a message received by an object of that class. RFC is the number of
methods in the response set of the class.
RFC 1 Same as RFC, except that methods indirectly invoked by methods [CK94]
in M are not included in the response set.
MPC Message passing coupling. The number of method invocations in a class. LH93
DAC Data abstraction coupling. The number of attributes in a class that LH93
have another class as their type.
DAC’ The number of different classes that are used as types of attributes [LH93|
in a class.
(01 Information-flow-based coupling. The number of method invocations [LLWW95]
in a class, weighted by the number of parameters of the invoked
methods.
IH-ICP As ICP, but counts invocations of methods of ancestors of classes [LLWW95]
(i.e., inheritance- based coupling) only.
NIH-ICP | As ICP, but counts invocations to classes not related through [LLWW95]
inheritance.
PIM Polymorphically invoked methods. The number of invocations of
methods of a class ¢ by other classes (regardless of the relationship
between classes). Same as ICP, except that no weighting by the number
of parameters is performed.
PIM_EC | Export coupling version of PIM. The number of invocations of
methods of a class ¢ by other classes (regardless of the relationship
between classes).
ACAIC These coupling measures are counts of interactions between classes. [BDM97]
OCAIC The measures distinguish the relationship between classes (friendship,
DCAEC inheritance, none), different types of interactions, and the locus of
OCAEC impact of the interaction. The acronyms for the measures indicates what
ACMIC interactions are counted: The first or first two letters indicate the
OCMIC relationship (A: coupling to ancestor classes, D: Descendants, O: Others,
DCMEC i.e., none of the other relationships). The next two letters indicate
OCMEC the type of interaction: CA: There is a Class-Attribute interaction
AMAIC between classes ¢ and d, if ¢ has an attribute of type d. CM: There is a
DMAIC Class-Method interaction between classes ¢ and d, if class ¢ has a method
AMMIC with a parameter of type class d. MM: There is a Method-Method
OMMIC interaction between classes ¢ and d, if ¢ invokes a method of d,
DMMEC | or if a method of class d is passed as parameter (function pointer) to a
OMMEC | method of class c. The last two letters indicate the locus of impact:

IC: Import coupling, the measure counts for a class c all interactions
where c uses another class. EC: Export coupling: count interactions
where class d is the used class.

102

A.3 Descriptive Statistics

Table A.3: Descriptive Statistics

Variable N | Mean | Median | Minimum | Maximum | Q1 Q3
IC_OC 136 6.95 1 0 108 0 6
1C_OM 136 9.59 2 0 144 0 7
IC_OD 136 10.93 2 0 182 0 9
EC OC 136 6.95 3 0 79 0 7
EC_OM 136 9.59 4 0 101 0 11
EC _OD 136 10.93 4 0 117 0 12
I1C_CC 136 5.21 1 0 108 0 5
IC_CM 136 6.93 1 0 144 0 7
IC_CD 136 8.69 1 0 182 0 9
EC _CC 136 5.21 2 0 64 0 5
EC _CM 136 6.93 3 0 138 0 5
EC _CD 136 8.69 3 0 221 0 6
CBO 136 4.13 2 0 43 1 5
CBO’ 136 3.62 2 0 43 1 4
RFC 1 136 45.29 23 0 186 4 98
RFC oo 136 | 290.90 31 0 792 4 | 718
MPC 136 6.26 2 0 116 0 8
PIM 136 14.90 3 0 126 0 28
PIM_ EC 136 14.90 4 0 211 1 19
ICP 136 30.65 6 0 256 0 53
IH-ICP 136 3.84 0 0 174 0 2
NIH-ICP 136 26.81 6 0 256 0 43
DAC 136 0.47 0 0 9 0 1
DAC 136 0.43 0 0 6 0 1
ACAIC 136 0.10 0 0 3 0 0
OCAIC 136 0.38 0 0 9 0 0
DCAEC 136 0.10 0 0 3 0 0
OCAEC 136 0.38 0 0 14 0 0
ACMIC 136 0.13 0 0 4 0 0
OCMIC 136 3.18 2 0 36 0 4
DCMEC 136 0.13 0 0 6 0 0
OCMEC 136 3.18 0 0 88 0 2
AMMIC 136 1.24 0 0 15 0 1
OMMIC 136 5.03 1 0 116 0 3
DMMEC 136 1.24 0 0 80 0 0
OMMEC 136 5.03 0 0 98 0 2
AMAIC 136 0.91 0 0 40 0 1
OMAIC 136 0.01 0 0 1 0 0
DMAEC 136 0.91 0 0 40 0 0
OMAEC 136 0.01 0 0 1 0 0
NA 136 9.65 6 0 133 1 10
NAI 136 3.59 1 0 68 0 4
NAD 136 6.06 0 0 107 0 10
NM 136 16.90 12 0 161 3 29
NMImp 136 9.12 4 0 161 2 8
NMD 136 7.78 0 0 36 0 24
NMpub 136 14.96 10 0 50 2 29
NMnpub 136 1.94 0 0 113 0 0
NumPara 136 10.31 6 0 146 2 9
CS1 (SLOC) 136 | 126.50 46 1 3766 25 98
CS2 (#semicolon) | 136 56 15 0 1747 9 46

103

A.4 Principal Component Analysis for the Dynamic
Coupling Measures

Table A.4: Descriptive Statistics
Variable PC1 PC2 PC3 PC4
IC_OC 0.311 | 0.275 | 0.892 | 0.121
IC_OM 0.236 | 0.290 | 0.918 | 0.110
IC_OD 0.209 | 0.374 | 0.897 | 0.078

I1C_CC 0.169 | 0.909 0.235 0.258
IC_CM 0.144 | 0.912 0.318 0.203
IC_CD 0.126 | 0.912 0.346 0.115

EC OC 0.911 0.180 0.196 0.286
EC _OM 0.884 0.167 0.301 0.302
EC _OD 0.855 0.097 0.338 0.359
EC_CC 0.507 0.271 0.065 | 0.804
EC _CM 0.305 0.200 0.108 | 0.923
EC CD 0.215 0.146 0.117 | 0.956

104

A.5 Principal Component Analysis for All Meas-

ures
Table A.5: Descriptive Statistics
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PCS8 PC9 PC10 PCi11
IC_0OC 0.381 -0.007 -0.144 | -0.034 0.370 -0.071 -0.786 | -0.021 -0.055 -0.034 -0.005
IC_OM 0.335 0.001 -0.097 | -0.041 0.333 -0.079 | -0.829 | -0.014 -0.025 -0.047 0.033
IC_OD 0.428 -0.007 -0.097 | -0.031 0.284 -0.064 | -0.819 | -0.002 -0.037 -0.037 0.030
EC OC 0.315 -0.031 -0.310 -0.010 0.778 0.012 -0.319 0.002 -0.205 0.036 -0.031
EC _OM 0.215 -0.013 -0.287 | -0.026 0.827 0.003 -0.364 | -0.005 -0.083 0.107 0.004
EC _OD 0.163 0.010 -0.205 -0.038 0.883 -0.023 -0.335 -0.006 -0.033 0.114 0.017
IC_CC 0.610 0.112 -0.179 0.026 0.170 -0.014 | -0.551 0.032 -0.337 0.092 0.185
IC_CM 0.592 0.091 -0.173 0.025 0.142 -0.013 | -0.613 0.043 -0.313 0.078 0.179
IC_CD 0.628 0.061 -0.181 0.024 0.108 -0.001 -0.621 0.048 -0.257 0.072 0.152
EC CC 0.054 0.533 -0.081 -0.075 0.751 -0.106 -0.049 0.061 -0.111 0.168 0.161
EC_CM 0.034 | 0.682 | -0.019 | -0.060 | 0.615 | -0.155 | -0.090 | 0.084 | -0.102 | 0.245 | 0.114
EC _CD 0.017 0.737 0.009 -0.056 0.552 -0.174 -0.082 0.087 -0.092 0.232 0.077
CBO 0.069 0.378 -0.141 0.262 -0.057 | -0.766 -0.030 -0.031 -0.079 0.101 0.228
CBO’ 0.080 0.376 -0.060 0.270 -0.073 -0.780 -0.018 -0.028 -0.092 0.025 0.216
RFC 1 0.277 0.082 -0.886 | -0.057 0.129 0.023 -0.204 | -0.016 0.003 0.076 0.157
RFC -0.001 0.112 -0.819 | -0.117 0.111 0.103 -0.179 -0.006 -0.001 0.168 0.297
MPC 0.781 -0.041 -0.125 -0.014 0.089 0.028 -0.363 0.030 -0.232 0.085 0.342
PIM 0.574 0.168 -0.310 -0.067 0.027 0.041 -0.426 0.093 -0.036 0.244 0.484
PIM_ EC 0.002 0.602 -0.091 0.086 0.480 -0.496 0.043 0.008 -0.105 0.137 0.149
ICP 0.436 0.244 -0.323 -0.063 0.010 0.021 -0.451 0.092 -0.176 0.200 0.557
IH-ICP -0.020 0.849 -0.212 -0.011 0.005 -0.131 -0.029 0.101 -0.110 0.360 0.011
NIH-ICP 0.481 -0.044 -0.275 -0.064 0.009 0.070 -0.480 0.063 -0.152 0.087 0.601
DAC 0.451 0.286 0.070 -0.014 0.176 -0.113 -0.182 0.065 -0.720 0.269 0.075
DAC’ 0.390 0.223 0.107 | -0.046 0.216 -0.107 -0.114 0.061 -0.723 0.271 0.133
ACAIC -0.013 0.250 0.024 | -0.004 0.148 -0.070 0.041 -0.016 -0.140 0.885 0.006
OCAIC 0.507 0.212 0.068 -0.014 0.133 -0.095 -0.219 0.079 -0.741 -0.079 0.081
DCAEC -0.049 0.250 0.097 | 0.896 | -0.067 -0.090 0.037 | -0.047 0.052 -0.031 -0.003
OCAEC 0.031 -0.065 0.073 -0.033 0.000 -0.801 -0.006 0.110 -0.036 0.084 -0.147
ACMIC -0.004 0.491 0.007 | -0.016 0.090 -0.088 0.055 0.004 -0.146 0.793 -0.018
OCMIC 0.272 0.099 -0.145 0.038 0.164 -0.371 0.031 -0.120 -0.101 -0.024 0.665
DCMEC -0.038 0.015 0.079 0.913 -0.007 -0.027 0.038 -0.025 0.080 -0.033 0.024
OCMEC 0.177 -0.120 -0.093 0.663 | -0.021 -0.416 -0.054 0.044 -0.211 0.055 -0.093
AMMIC -0.077 0.037 -0.475 -0.019 0.270 0.055 -0.135 0.015 0.115 0.684 0.179
OMMIC 0.810 | -0.049 -0.029 -0.010 0.034 0.017 -0.341 0.028 -0.259 -0.055 0.310
DMMEC -0.007 | 0.866 0.005 0.352 -0.105 -0.215 0.030 0.041 -0.089 0.059 0.006
OMMEC 0.006 0.254 0.172 0.047 0.278 -0.789 -0.123 -0.028 0.036 -0.098 0.057
AMAIC 0.553 -0.112 -0.117 0.086 0.063 0.000 -0.527 0.009 -0.474 -0.061 -0.032
DMAEC -0.062 0.452 0.039 -0.025 -0.101 -0.099 0.070 0.691 -0.149 -0.005 -0.093
NA 0.778 -0.055 -0.143 -0.030 0.156 0.029 -0.149 0.438 -0.155 -0.079 0.117
NAI 0.346 -0.017 0.177 | -0.029 0.116 0.005 -0.055 0.838 0.017 0.017 0.029
NAD 0.783 | -0.061 | -0.300 | -0.021 | 0.127 0.034 | -0.157 | 0.024 | -0.211 | -0.113 | 0.132
NM 0.751 0.023 -0.543 0.043 0.200 -0.145 -0.167 | -0.067 -0.144 -0.025 -0.007
NMI 0.885 0.050 -0.003 0.054 0.146 -0.234 -0.126 -0.034 -0.247 0.001 0.084
NMD -0.111 -0.040 | -0.921 -0.012 0.111 0.120 -0.087 | -0.060 0.143 -0.043 -0.143
NMpub 0.264 0.073 -0.826 0.023 0.263 -0.217 0.010 -0.135 -0.058 -0.027 0.092
NMnpub 0.912 -0.044 0.033 0.043 0.033 0.004 -0.278 0.041 -0.167 -0.010 -0.111
NumPara | 0.737 0.084 0.008 -0.071 0.104 -0.302 0.257 | -0.063 0.229 -0.015 0.367
CS1 0.967 0.027 0.055 -0.014 0.047 -0.010 -0.150 0.071 0.050 0.026 -0.021
CS2 0.961 0.007 0.055 0.007 0.041 -0.021 -0.194 0.076 0.003 0.013 -0.041

105

106

References

[BDM97]

[CK91]

[CK94]

[LHO3]

[LLWWO95]

L. C. Briand, P. Devanbu, and W. L. Melo. An investigation
into coupling measures for C++. In proc. 19th International
Conference on Software Engineering (ICSE’97), pages 412-421,
1997.

S. R. Chidamber and C. F. Kemerer. Towards a Metrics Suite for
Object Oriented Design. In Proceedings of the OOPSLA °91 Con-
ference on Object-oriented Programming: Systems, Languages
and Applications, volume 26, pages 197-211. SIGPLAN Notices,
Oct. 1991.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object-
oriented design. IFEE Transactions on Software Engineering,
20(6):476-493, 1994.

W. Li and S. Henry. Object-oriented metrics that predict main-
tainability. Journal of Systems and Software, 1993.

Y. S Lee, B. S. Liang, S.F. Wu, and F. J. Wang. Measuring
coupling and cohesion of object-oriented programs based on in-
formation flow. In proc. International Conference on Software
Quality, 1995.

107

108

Appendix B

Technical Details

This section contains more detailed descriptions of the algorithms and tech-
nology used in the development of Jdissect.

The first few sections are devoted to the relation between theoretical sets,
like ME and IV, and their implementation. This is followed by explana-
tions of how various Java programming interfaces are used, and how Jdissect
saves/loads its core data structure.

B.1 Set Implementation

This section explains how each set is maintained within the SetContainer
class. The structures and methods discussed are also used to maintain the
relations between the different classes in the core model.

The Standard Template Library

Jdissect is implemented using C++. The reasons behind the choice of pro-
gramming language are examined in-depth in section 3.6. But in order to
explain the data structures used to implement sets and relationships in the
core mode we have to briefly introduce the STL (Standard Template Lib-
rary), which is closely related to C-+-+.

The STL was developed at Hewlett-Packard Labs by Alexander Stepanov
and Meng Lee [SL94|. Their work was based on earlier papers by Stepanov
and Musser. For an historical overview and complete reference, see [PSLMO1].
The STL is now part of the ANSI/ISO C++ standard. But the standard
itself is not suitable as documentation. [Str97] is both readable and follows
the ISO standard.

The standard template library is meant to make developers more pro-
ductive by providing standardised components. This saves time on both
development and testing. Such standardisation also makes programs easier

109

[A

to read for someone who did not develop them, as everyone knows the mean-
ing of names and functions in the standard.

Nearly all STL code falls into one of three categories; algorithms, iterators
and containers [PSLMO01, MDSO01]. In this section we are mostly concerned
with describing containers.

The STL set Class

Implementing efficient object containers from scratch in C++ usually re-
quires a lot of effort. The STL provides a host of different container struc-
tures. One of these structures is called ’set’. It resembles the mathematical
definition of a set, and supports the use of operations like union, intersection
and difference. It is ideal for use in implementing both inter-class relations
and the containers in SetContainer. Worst case performance for looking
up an object contained in a set is O(log N). The speed is required, as the
container will often be used to hold very large amounts of data.

A set<Key, Compare> stores unique elements of type Key. Elements in
the set are ordered using the functor (function object) Compare, which must
induce a strict weak ordering on the elements. For a precise definition of this
requirement see [MDSO01, p. 411].

Using sets might seem daunting at first, especially the rules governing
insertion and removal of elements. Meyers provides more elaborate insights
into both sets and the STL in [Mey01].

The Compare functor is used both for ordering elements and comparisons
during lookup. This template argument has a default value of less<Key>.
This function object uses the less-than (’<’) operator to compare two ele-
ments. If the two elements being compared are values a simple numerical
comparison is made. But if the elements are objects instantiated from classes
that have had their less-than operator (operator<()) overridden, this func-
tion is used instead. The less-than operator is often to used to implement
more complicated comparisons based on various class attributes.

In the Jdissect core data model all references to other objects are pointers.
Therefore all instances of set use a modified version of the less<Key> functor
called ptr_less.

Listing B.1: ptr_less definition

template <typename T>
struct ptr_less : public binary function<T, T, bool> {
bool operator () (const T& pl, const T& p2) const {
return (xpl) < (*p2);
}

}s

The only difference between the default less<Key> and the definition in
listing B.1 is that the latter dereferences its two arguments before attempting
to apply the less-than (<) operator. If we had omitted dereferencing the

110

functor arguments the pointer values would have been compared instead of
the object contents. This would leave elements ordered according to location
in memory, instead of according to element content.

All the sets used in the core model, and in SetContainer, are based on
STL sets. To create a more consistent programming interface we created
type-definitions (typedef’s) for each kind of element. The set for storing in-
stances of the class Message is defined in listing B.2. Similar type definitions
exists for all classes in the core data model.

Listing B.2: message_set type-definition
typedef set<Message*, ptr_ less<Messagex> > message set;

Uniqueness

This preoccupation with describing the STL set stems from the need for a
container class which stores unique elements. Uniqueness is required to pre-
vent duplicate data from being stored in SetContainer and in the inter-class
relationships in the core model. Failure to control the set container would
mean invalidating the theoretical definitions from chapter 2, and ultimately
jeopardising the integrity of the coupling measurements.

At first glance the core model classes look like little more than collections
of data with get/set methods. They do however share one distinguishing
feature; the less-than operator, <, is overloaded in each class. As previously
described this operator controls the criteria used by sets to determine if an
object is unique or not. If we examine listing B.1 again this operator is
applied to the functor arguments in line 4.

Table B.1 shows which attributes are compared in the overloaded less-
than operator of each core model class. In most cases comparing the at-
tributes is simply a matter of once again employing the less-than operator.
However, this operation should not be attempted directly on pointer attrib-
utes since they might be set to NULL. In this case we first check both sides
of the expression before attempting a direct comparison.

All overloaded less-than operators in the core model return 0, i.e., 'false’,
if the objects compared have only equal values. This fulfils the strict weak
ordering criteria we described previously (see also [Mey01, p. 92].

B.2 MethodInvocation

To describe MethodInvocation we have to explain the relationship between
ME and IV. The set M E contains all instances of the Message class, and is
directly based on all function calls that occur in a Java program. IV, on the
other hand, is what we refer to as a derived set. In other words; it is created
from something else. Instances of MethodInvocation in I'V are created based
on the Messages in M E.

111

Table B.1: Comparisons made in overloaded less-than operator

Class Uniqueness criteria Notes
Attribute type, name Inherited by StaticAt-
tribute
Parameter type, name Inherited by InputPara-
mter, OutputParamter
and InOutParameter
Object oid, instanceOf
TestCase tid, name
Class cid, name
Method signature
Message location, isReflexive(),
systemImport, expor-
tObject, importObject,
exportMethod, import-
Method, threadName
MethodInvocation | location, exportClass,
importClass, export-
Method, importMethod,
isReflexive()

In essence, the difference between a message and a method invocation is
that the invocation refers to class instead of object. But not simply the class
from which an object is instantiated. The invocation instead refers to the
classes in which the methods used were first defined or last overridden.

The concept is perhaps easier to understand based on the algorithm used
to derive IV from M E.

Deriving IV from MFE

In chapter 2, the relationship between M E and IV is defined formally using
a set theory and first order logic. The expression is shown again in equa-
tion B.1 for reference. Although the consistency rule looks complicated, the
corresponding algorithm is far from incomprehensible.

(F(o1,¢1), (02,¢2) € Roc)(3l € N)(01,m1,1,00,m3) € ME =
(3c) € A(cr) U {e1}, ey € Ae) U{cal)
((m1,c1) € Rue A ((Vef € Aler) = {ci})(m1.¢f) € Rue = ¢f € A(c))))A
((ma2,ch) € Rye A ((Vey € A(cz) — {ch})(ma, c3) € Ruc = ¢ € A(c))))A

112

(m1,cy,mo,cy) € IV (B.1)

As explained in B.2 the difference between instances of MethodInvoca-
tion and Message is mainly that messages refer to caller/callee objects and
methods , while method invocations refer to the classes defining the methods
used.

In listing B.3 ME and IV refers to the sets of messages and method invoc-
ations, respectively. The FOR-EACH statements are loops which iterate over
the contents of a set. RecursiveFindClass is a function which accepts Class
and Method as parameters, and returns the Class in which the Method is
defined.

All ’sanity’ checks, such as checking if the call to RecursiveFindClass
returns NULL, have been removed from the pseudo-code for brevity and clar-

ity.

Listing B.3: Algorithm for deriving IV from M F, expressed in pseudo-code
NEW IV

1

2

3 FOREACH Message IN ME

1+ BEGIN

5 NEW MethodInvocation

6 MethodInvocation.location = Message.location;

7 MethodInvocation.importMethod = Message.importMethod;

8 MethodInvocation.exportMethod = Message.exportMethod;

9 MethodInvocation.importClass =

10 RecursiveFindClass(Message.importObject.instanceOf |
11 Message . importMethod) ;

12 MethodInvocation. exportClass =

13 RecursiveFindClass(Message. exportObject . instanceOf |
14 Message . exportMethod) ;

15

16 ADD MethodInvocation TO IV

17 END

19 Class RecursiveFindClass(Class ¢, Method m)

20 BEGIN

21 IF (m IN c.methods)

22 return c;

23 FOR-EACH a IN c.Ancestors

24 BEGIN

25 foundClass = RecursiveFindClass(a, m);
26 IF (foundClass != NULL)
27 RETURN foundClass ;
28 END

29 RETURN NULL;

30 END

Line 1 sees the creation of a new set, IV, to hold MethodInvocations.
Iteration over the set M FE starts in line 3. The contents of the loop mainly
copies the contents of each Message into a corresponding MethodInvocation,

113

except the attributes importObject and exportObject.

The two import/export class attributes are set in lines 8 through 13 by
calling RecursiveFindClass. This function first searches the class it received
as parameter c for a definition of the method m. If m is not defined in this
class, the function continues to search all ancestors of c.

For example, if a class overrides its parents version of a method, or is
itself the first class in the inheritance hierarchy to implement it, a reference
to this class is copied to the MethodInvocation.

However, if a parent class contains the declaration, a reference to the
parent is copied instead. The result is that the MethodInvocation contains
references to the same two Methods, and the same location, as the Message
it is created from. But instead of referring to specific objects involved in a
function call, it has references to the classes declaring the source and target
methods.

B.3 The Profiling Interface - JVMPI

Jdissect has to interface with a running instance of the Java VM to collect
data. libjdissect.so starts the process by registering a callback function
with the VM. All communication from the VM to the library is event-driven,
while the library controls the VM using function calls.

The Java Virtual Machine Profiling Interface (JVMPI) was originally
created by Sun as a programming interface for developing profilers. Although
it does not seem to be part of the Java standard, most implementations now
support it.

Nearly all the information gathered by 1ibjdissect.so originates in the
profiling interface. The remainder is collected from the Java Virtual Machine
Debug Interface (JVMDI) and the Java Native Interface (JNI), which are
discussed in section B.4.

Data Types

Interfacing with Java requires some way of uniquely identifying the various
parts of an object-oriented system. JVMPI refers to entities such as classes,
methods, threads and objects by using different identities, or IDs. Any ID
has both defining and undefining events, and is valid for the period of time
between them. After an undefining event the ID can be reused for other
purposes.

Data types like jobjectID and jmethodID are defined a C header file
which holds definitions required to interface with the JVMPI (jvmpi.h).
These two types are pointers to structures used within the VM. The struc-
tures themselves are of no interest to us. But the way in which they are
declared means that these identity types are actually memory pointers. This

114

Table B.2: JVMPI identity types

Identity name | Data type | Defining event Undefining
event

thread ID JNIEnv * thread start thread end

object ID jobjectID object alloc object free, object
move, and arena
delete

class 1D jobjectID class load class unload and
object move

method 1D jmethodID | defining class load | defining class un-
load

arena ID jint arena new arena delete

JNI global ref ID | jobject global ref alloc global ref free

might however be subject to change, as the Java standard does not prevent
anyone from implementing them differently.

The identities described in table B.2 are not used inside Jdissect, other
than in the interface with JVMPI (everything in the Jumpilnterface.cpp file).
There are two reasons for this decision.

e We can never be certain of how the various IDs are implemented in
different Java versions. Their size and type are subject to change de-
pending on VM version and the machine architectures definition of
pointers. This can lead to unexpected behaviour, even between differ-
ent versions supplied by the same Java vendor.

e Using the identities defined in the JVMPI would make Jdissect de-
pendent on these types, even if another interface for gathering data
was implemented later.

Instead the core model declares IDs that are of type long. Values are
allocated to instances of the core model classes as they are instantiated.

Some of the data types used are specific to the JVMPI, while others
are also found in the JNI (Java Native Interface). More information on
these types and their uses can be found in [Lia99] and Sun’s web-based
documentation of the Java APIs.

Events

One of the first actions of 1ibjdissect.so is to register a call-back function
with JVMPI. The library proceeds by enabling all the events that it needs
to monitor.

115

There is a total of 37 different events in the JVMPI. Jdissect only needs
to monitor 13 of these. In general, the unused events provide even more
detailed information on the run-time state of the virtual machine. But these
detailed events are not required to populate the core model. For a list of
enabled events and their function see appendix C.6.

Each event is accompanied by information pertaining to it. A class-load
event will for example contain identity, class name, source file name, declared
methods and attributes.

Because information is not retransmitted by the JVMPI it is important
to register events when they occur. It is possible to request retransmission
of certain information, but this quickly becomes inefficient. Furthermore,
requesting information only works for defining events such as class load,
thread start and object allocation (see table B.2). Jdissect therefore caches
all information it receives, and never request that events are re-sent.

B.4 The Debug and Native Interfaces

In this section we will look at some of the differences between available and
needed information in the various Java VM interface APIs.

Unfortunately the JVMPI does not provide all the information needed
to populate the core model. In particular there are two areas where we
have to resort to other APIs and methods in order to fulfil the theoretical
requirements described in chapter 2.

Close examination of the xx xD (Dynamic Message) measures reveal
that they require some way of differentiating between multiple calls from
one distinct method to another. This requires a unique number showing the
line in the source code from which the method call originates. We refer to
this number as the ’location’ of the method call.

The location attribute can be seen as the lowest level of information
granularity in messages. It is used both in calculating coupling, and in
checking if messages are unique during updates to the core model.

This information is available from the JVMPI. However, the Java Virtual
Machine Debug Interface (JVMDI) has functionality which can be used to
obtain the stack frame location of each method call. This provides the needed
location reference, and makes it possible to calculate the xx xD measures.

In addition, each Class requires a reference to its immediate ancestor.
The set of ancestor classes, or super-classes, is used when deriving the set of
method invocations, IV, from the set of messages, M F.

Ancestor information can only be obtained though the Java Native In-
terface (JNI) [Lia99]. But only by using data initially received from the
JVMDI.

116

© 0w N O Uk W N

e e =
w N = O

Method Call Locations

It is easy to understand the reasoning behind most attributes in the core
model class Message. The attribute location is an exception. The significance
of location is best illustrated by an example.

Listing B.4: The use of location

class classA {
void methodA () {}
}
class classB {
void methodB () {
classA obj a = new classA ();
obj a.methodA ();
obj a.methodA ();
for(int i=0; i < 10; i++)
obj a.methodA ();
}
}

Listing B.4 shows two classes, classA and classB, and their methods.
The problem lies in determining which method calls should be considered
unique messages, and consequently added to the set ME. As we will see,
the solution is closely linked to the location attribute.

The first call to methodA happens on line 8. As there have been no pre-
vious calls to this method from methodB it should be registered as a message

with the core model. Jdissect stores the combination (classB, methodB, 8, classA, methodA)

as a Message.

Line 9 contains a second call from methodB to methodA. This method call
is equal to the previous one in all but the line number. Even if the methods
involved are the same, the line number is different. So the combination
(classB,methodB,9, classA, methodA) is also stored as a unique Message.

What happens to the ten method calls inside the loop on line 11 is clearly
interesting. The first time line 11 executes (¢ = 0) this method call is re-
gistered, because the combination (classB,methodB,11,classA, methodA)
is not already in M E. However, the method calls in subsequent iterations
of the loop (i =1---9) are not added to M E, as the combination is already
present.

Obtaining Location

There is no way of obtaining any information regarding line numbers, from
the profiling interface (JVMPI). However, the low-level debugging interface
(JVMDI) has functionality which can be employed.

Listing B.5: JVMDI functions used to obtain unique origin of method dis-
patch

117

jvmdiError
GetCallerFrame (jframelID called , jframelID xframePtr);

jvmdiError
GetFrameLocation (jframeID frame, jclass xclassPtr ,
jmethodID xmethodPtr, jlocation xlocationPtr)

The two methods shown in listing B.5 do not provide the source line of
the method dispatch. But the value obtained using GetFrameLocation is
just as good. It provides the location of the instruction that is currently
executing at the time of method dispatch.

If we use these functions on the example code in listing B.4 they provide
us with the needed information. The stack frame locations reported for the
invocations on line 8,9 and 10 are all different. While subsequent iterations
of line 10 all end up with the same location as the first iteration.

Problems with the Profiling Interface

Some features of the JVMDI interface function much like the JVMPI. Most
significantly it makes use of events to signal state changes within the VM.
There are also, however, substantial differences between the two interfaces.

While the profiling interface makes use of data-types like jobjectID and
jmethodID to identify classes, objects and methods, the data types of the
debugging interface are similar to those used by the Java Native Interface
(JNI). JNI refers to objects and classes as having "handles’ of type jobject
and jclass. Most information is gathered from the profiling interface, so
we need a method of linking information from the two other programming
interfaces to it. From listing B.5 it is possible to deduce that the easiest way
of obtaining these handles is by translating the JVMPI identities.

While there exists two functions (see listing B.6) in the JVMPI specific-
ation which are supposed to translate one identity type to the other, these
functions are unusable in practise.

Listing B.6: Unusable functions from the JVMPI
jobject (xjobjectID2jobject)(jobjectID jid);
jobjectID (xjobject2jobjectID)(jobject j);

The JVMPI specification states that the functions in listing B.6 are ex-
perimental and could be removed from future versions of the interface. It
also warns that use of these functions is unsafe and can lead to unreliable
and unstable profilers. Experiments in using them resulted in segmentation
violations and subsequent program crash.

Mapping between the Profiling and Debug Interfaces

There is however another method which can be used to translate identities
into handles. The two interfaces have many similar events. Fortunately,

118

there exists an event called JVMDI_EVENT_METHOD_ENTRY in the JVMDI that
more or less corresponds to the JVMPI event JVMPI_EVENT_METHOD_ENTRY2.
Both events are triggered on execution of a new method. The difference
between the events is that the JVMDI version provides us with data which
contains identifiers of type jclass and jmethodID.

The listings below (B.7 and B.8) show that the two method identifiers are
directly comparable, as they have the exact same type. While the jclass
handle in the event enables us to call JVMDI and JNI functions.

Listing B.7: Information from JVMDI_EVENT_METHOD_ENTRY

typedef struct {
jthread thread;
jclass clazz;
jmethodID method;
jframelD frame;

} JVMDI frame event data;

Listing B.8: Information from JVMPI_EVENT_METHOD_ENTRY2

struct {
jmethodID method id;
jobjectID obj id;

} method entry2;

The only problem is that the events detailing method calls are received
from two different interfaces to the Java Virtual Machine. One is caught by
the event handling (call-back) function set up for the JVMPI and the other
by the function for JVMDI events.

To complicate things even further there is nothing in the Java document-
ation indicating which of these events are sent first. In practise this means
that different Java vendors are free to implement them in whichever way
suits them. In fact, if the vendors want to, their implementations might
send a batch of profiling events before any debugging events are sent.

Jdissect solves this problem by creating a stack of method call inform-
ation in the class JvmpiController. Entries are created based on either
JVMPI or JVMDI events. Subsequent events describing method calls already
existing on the stack are used to update the information. Entries are only re-
moved from the stack, and added to the set of messages, M F, after execution
of a method completes (the JVMPI event JVMPI_EVENT_METHOD_EXIT).

Ancestors

The core model represents each class in a running system with an object of
type Class. In addition to implemented methods and attributes, each Class
contains a reference to its superclass.

Knowledge of ancestor class is vital to the process of deriving the set of
method invocations (IV'), from the messages in M E.

119

JVMPI has no functionality which can be used to retrieve information
about ancestors, and neither has JVMDI. But the Native Interface (JNI)
contains a relevant function, [Lia99.

Listing B.9: JNI function to retrieve superclass

jclass (JNICALL x GetSuperclass)(JNIEnv xenv, jclass sub);

The function shown in listing B.9 requires two arguments; a pointer to
the native Java environment (JNIEnv#*), and a jclass handle to the class in
question. Any event from either the JVMPI or JVMDI interface provides
the needed JNIEnv pointer. But only the debugging interface provides the
needed jclass parameter.

This very much resembles the problem related to obtaining method call
location information. The only difference is that the needed function is
part of the JNI, instead of the JVMDI. Obtaining the appropriate hand-
lers can still be accomplished by using JVMDI events. The class load
event of the JVMPI is mirrored in the debugging API by an event called
JVMDI_EVENT_CLASS_PREPARE.

There is one major difference between the code used to obtain ancestor in-
formation and the code used in registering method call location. Experiments
showed that the JVMPI_EVENT_CLASS_LOAD event is always triggered before
JVMDI_EVENT_CLASS_PREPARE. The event handling code for the JVMDI event
relies on this, and expects class information to be present in the core model
when it is triggered. There are no caching or mechanisms similar to that
used to synchronise information from the two method entry events. Even
though this strategy works in practise, the fact that there is no synchronisa-
tion mechanism is an oversight which should be remedied.

B.5 Threads and Locking issues

Java programs are always multi-threaded. Even programs that never expli-
citly use threads cause 6 threads to be created (using IBM’s Java version
1.4.0, build cxia32140-20020917a). The threads are used for such tasks as
garbage collection, reference handling and program execution.

Both the JVMPI and JVMDI run in the same process as the Java VM.
Events from both APIs are sent in the context of their originating threads.
As, for example, garbage collection and program execution happen in dif-
ferent threads Jdissect needs a locking strategy to prevent threads from at-
tempting to modify shared data at the same time. Failure to lock common
data structures during updates can result in deadlocks and data corruption
[OW99, Lia99|.

120

Locking Strategy

Jdissect deals with synchronisation in a very simple manner. Whenever an
event is received, the call-back function in Jvmpilnterface obtains a lock
in order to ensure consistent updates. This prevents concurrent updates
by other threads until the lock is released. While the call-back function
has the lock it updates the core model through intermediary functions in
JumpiController.

The class Lock is responsible for synchronised data access. It can use one
of two possible strategies.

¢ Raw monitors - Raw monitors are similar to Java monitors (i.e., using
the Java synchronised keyword). The difference is that raw monitors
are not associated with Java objects.

e Pthreads - POSIX threads [But97|. Provides lower-level locking than
raw monitors. The exact level at which locking occurs depend on the
operating system and the Pthread implementation.

Which locking strategy is used depends on the compile-time flag USE_RAW_MONITOR.
If the flag is set, raw monitor locking will be used.
Choosing the correct locking strategy depends on the Java Virtual Ma-
chines thread implementation and the operating system. It seems like raw
monitor locks mostly work under Linux. While Pthread locks should be used
in a Sun Solaris environment.

Updates during Garbage Collection

The locking scheme is enforced for all event-handler code in Jdissect, with
one notable exception related to garbage collection (GC).

During GC Java is in ’thread-suspended mode’. This means that there
are some special restrictions on what the interfacing program is allowed to
do. In particular, memory allocation is not allowed as it might block the
current Java thread. Consequently, all GC related information has to be
cached in pre-allocated buffers and merged into the core model once GC
ends.

To prevent any of the non-GC related events from performing normal
updates in thread-suspended mode the JVMPI_EVENT_GC_START event makes
Jdissect obtain a lock that is not released until garbage collection has been
completed. Only two events are possible during this period. Object move
(JVMPI_EVENT_OBJECT_MOVE), and object free (JVMPI_EVENT_OBJECT_FREE).

Both events operate on data structures (ThreadSuspendCache) which are
allocated when the VM first signals that garbage collection is about to start.
The structures consist of large buffers that can be filled with descriptions of
which objects are moved or deleted during GC. When the VM signals that

121

GC is about to end the lock is released and the buffered data is transferred
to the core model.

Concluding remarks on Locking

While the strategy of locking the entire core model each time an event is
processed can be time consuming it is very simple to implement. Informal
tests concluded that the performance penalty is not great enough to warrant
using ’thread local storage’ or fine grained locking mechanisms aimed at
locking only small parts of the core model at a time. This is at least partially
due to the complex relationships between classes in the core model.

However, if Jdissect is ever to be used for heavily threaded applications it
might be a good idea to re-write the locking mechanism used during method
calls to take advantage of ’thread local storage’.

B.6 Storing Data

Transferring data from libjdissect.so to mcalc requires intermediate stor-
age on disk. The process starts when the Java application being analysed
terminates, and the library receives the JVMPI_EVENT_JVM_SHUTDOWN event.

There are in essence two different aspects of the core model that must
be stored.

e Set contents, for example, the set of all messages, M E.

e Relations between sets, for example from messages to objects and
methods.

Visitor Pattern

The algorithm used to store data is based on the Visitor pattern described
in [GHJV94, p. 331|. Visitor decouples operations on a complex object
structure from the structure itself. Thereby making it possible to implement
new operations on the structure without changing its implementation.

Originally we envisaged applying the Visitor pattern to a wide range of
operations in Jdissect. In addition to storing data, both measurement calcu-
lation and rebuilding the model from stored information were candidates for
using the Visitor pattern. Data storage was the first of these operations to
be implemented. As work progressed on the other two we found the pattern
unsuitable in their cases. But the Visitor implementation remains in the
storage algorithm.

Our implementation of the Visitor pattern contains a slight modifica-
tion related to delegating responsibility for traversing the object structure.
Responsibility for structure traversal can be implemented in one of three
different places. In the object structure, in an iterator or in the visitor itself.

122

4
©
b
o
o
a
©
-
o
b
O

Attribute

| Class H Ci i I—

taticAttribute

Class/Object

Class/Ancestor
Class/Method H Method H Method/Parameter I% OutputParameter

InOutParameter

Object |

InputParameter

Figure B.1: Visitor traversal order

The first two alternatives are similar in that they tend to force traversal in a
specific order [GHJV94, p. 339|. In our case, where we contemplated using
the visitor pattern for many different tasks, this was unacceptable. There
was no way of knowing up-front if the traversal order used when storing data
would lend itself well to the tasks of calculating measurements or rebuilding
the model from stored data.

Traversal order is therefore controlled from the visitor implementation.
This modification is described in [GHJV94, p. 339], albeit with a warning
that it will lead to duplicating the traversal algorithm in each concrete visitor
type for each aggregate element in the structure.

Storage Order

Figure B.1 shows the order in which the core model is traversed and stored to
disk. The process is split into two parts. The first starts by saving TestCase,
while the second begins with Class.

Boxes containing two names, for example TestCase/Message, represents
storage of object relations.

File Structure

libjdissect.so stores data in 16 different files. 10 of them contain data
from the sets of objects in the core model, while the remaining 6 files store
relationships between classes. A complete description of the various files and
their formats can be found in appendix C.7.

The convention used to name the files is straightforward. Any filename
that does not contain an underscore character (* ') stores a set of objects
from the core model. Any file name containing an underscore stores the
relation from the class named before the underscore to the one named after
it.

Messages are a special case in that they do not contain sets of references
to other core model classes. They refer to specific instances instead. As a

123

result, there are no files describing relations to or from the set of messages.
All information regarding relations between instances of Message and the
contents of other sets is stored directly in the file message.

B.7 Reading Data

In section 3.3.1 we explained how data is often collected from more than one
unit- or regression-test, each executed in its own Java session. Data for each
such test is always stored in separate directories.

Sometimes it might be interesting to analyse each data-set in turn. But
we are usually interested in the result of summing up the measurements and
analysing an entire application.

This requires some method of combining an unknown number of data-sets
from different Java VM sessions pertaining to one application.

Reading Data - Naive Solution

An obvious solution would be merging the data stored in each Java VM
session into one large core model. In some respects this would create an
exact representation of what happens in the different unit-tests. But if we
examine the data from the perspective of the VM there is a serious problem
inherent in this approach.

As long as data has been collected from only one application nearly all
the classes in the core model will remain constant between Java sessions. In
fact, this observation is true for all sets in the core model except messages
(ME) and objects (O). For example, the contents of the set of methods (M)
will remain close to identical amongst the sessions.

ME and O are problematic because their content is closely tied to the
execution of an application, rather than being tied to the application itself.
As we will see, attempting to merge the contents of either set is infeasible.

An object within the Java VM is always unique, distinguished from other
instances only by its allocated identity. When merging data there is no
information that allows us to determine if two Java objects were created as
a result of the exact same code-paths and conditions, so there is no way of
comparing instances of Object across sessions. Consequently, the contents
of O can only be concatenated, and never truly merged. This means that if
we attempt to combine data from two sessions each containing 100 Object
instances the resulting set O will have a cardinality of 200.

Because of the uniqueness criteria used in Message (see table B.1) the
inability to properly merge Object data has the unfortunate side-effect of
making each Message unique across sessions as well. Considering the many
bi-directional references between Message and other classes in the core model
it is evident that this solution will use far too much memory.

124

We attempted to merge data generated by 17 unit-tests from the Velocity
application in an early experiment to see how large the ensuing in-memory
representation of the core model would become. This approach rapidly filled
1 GB of memory and caused mcalc to crash with an 'out of memory’ error.

Reading Data - Solution

If we examine the definitions of the measures (see Chapter 2) it is clear that
none of them ever count distinct objects. On the contrary, all the measure-
ments filter out unique Object instances and examine the class from which
they were instantiated instead. For example, the most detailed measure
uniqueness clause can be found in the xx xD measurements, which use the
criteria (¢, m,l, ¢, m’).

This opens the possibility of only importing objects which do not already
exists in the merged core model. In effect this only performs some of the
filtering that would normally occur at an earlier stage.

This strategy for merging Object data solves the problem of duplicate
messages gracefully as well. The result of this approach is actually a merged
core model which is smaller than we could ever have hoped for if the naive
solution worked.

DataFileController

The DataFileController class is another subclass of Controller. In essence it
performs the same task as JumpiController, in that it gathers and forwards
data to an instance of ModelBuilder. But while JompiController receives
data from the Java VM, DataFileController opens a set of files and reads
data saved by the Jdissect library.

DataMerger

When the mcalc program starts it first creates an instance of the DataMer-
ger class. This, in turn, instantiates DataFileController which proceeds by
reading and re-assembling the saved structure using ModelBuilder. In most
cases there are saved data from several unit-tests which must be merged into
a common structure.

The core models are reassembled by instances of ModelBuilder and Data-
FileController. After each load operation DataMerger performs the selection
of which data is to be merged , while the process of moving data from one core
model representation to another is handled by an instance of ModelBuilder.

In other words, the merge operation uses two instances of the builder
class. One for assembling read data, and one for the merging process.

125

B.8 Implementing the Measures

We shall now examine how the theoretical definitions of measures from
Chapter 2 can be decomposed in order to see their differences more clearly.
An efficient implementation will necessarily be based on these observations.

We will then proceed by explaining some key concepts and then show
how the theoretical measure definitions are implemented.

From Theory to Implementation

The definitions of the twelve different coupling measures are formally presen-
ted in Chapter 2. However, while those definitions are very precise in a the-
oretical sense it might be easier to understand how they can be implemented
from a more practical or technical perspective.

There are three key differences between the various coupling measure-
ments. The following list is an attempt at breaking down the variations into
smaller, more manageable parts. The implementation of the measurements
is based on these observations.

1. Direction - import or export coupling.

(a) Import coupling - calls from a class to other classes. The import-
ing class makes use of functionality defined elsewhere.

(b) Export coupling - calls from other classes to a class. The exporting
class is called from outside its own set of functions.

2. Entity of measurement - object or class level.

(a) ME - the set of all messages. A message is a method call from a
object /method /line tuple to a object/method tuple.

(b) IV - the set of all method invocations. It is derived from ME,
but is different in that elements refer to class instead of object. In
the process of creating IV class is determined based on where the
relevant methods are implemented, instead of being based simply
on which class an object is instantiated from.

3. Strength - which can also be called the “set uniqueness criteria”. Each
actual measure is the cardinality of a set. Each set has its own unique-
ness criteria. For example, IC _OD(c) and IC _CD(c) have unique-
ness defined by (m,c,l,m’,¢). m and ¢ designates importing method
and class, while [is the line in the importing method source code where
the call originates. Target method and class is represented by m’ and
¢’. This naming convention is consistently used for all definitions. Each
type of criteria is the same for two measure types.

126

In addition to the differences between the measures, there is one criteria
they all have in common.

e Non-reflexivity - all the measures specify ¢ # ¢’. In practise this means
that source and target class can never be equal. In other words, if a
class calls its own methods it is not counted as coupling.

Functors and Function Object Composition

Functors are essentially classes containing an overloaded function operator
(operator ()). This makes it possible to use an object as a function call with
state variables.

One of the techniques used in the implementation of the measure classes is
what is known as function object composition [VJ02|. This technique makes
it possible to compose several functors into an expression using templates.
The fact that the composition relies on templates means that the expression
is static. No time is therefore wasted on dynamic class type lookup during
execution.

Example Definitions

Most of the code dealing with the measurement definitions can be found in
the file Metric_Types.h. The definitions generally look like those shown in
listing B.10.

Listing B.10: Example measure definitions

typedef Object Metric<import dir,
constraint <import constraint <C,M,L>,
export constraint<C,M> > > IC_OD;
typedef Object Metric<export dir,
constraint <import constraint <C,M>,
export constraint<C> > > EC_OC;
typedef Class Metric<import dir,
constraint <import constraint <C,M>,
export constraint<C,M> > > IC_CM,;

In the next sections we will give a brief introduction to the meaning of
the various template parameters.

Measure Classes

The template definitions in the example might seem daunting. However,
they are not as complicated as one might assume.

This example shows two object-level measures (xx Ox) acting on the
set of messages M E, and one class-level measure (x Cx) which is used to
analyse IV.

127

Whether IV or M FE is analysed is determined by the class used in the
definition. Object_Metric measures M FE, while Class_Metric does the
same for I'V.

Both classes are descendants of Metric, and they both override the func-
tion
virtual void calculateSingle(Class* c), which calculates coupling for
a single class.

Direction Template Parameter

The first template parameter represents the direction of the measurement.
It can be set to either import_dir or export_dir, depending on whether we
want to measure import or export coupling.

As seen in the example declarations in listing B.10, this parameter does
not depend on whether we are measuring object- or class-level coupling.

The direction parameter corresponds to the first letter of the measure-
ment definition name. Ix xx always means import, while Ex xx always
refers to export coupling.

Constraint Template Parameter

The last parameter controls the uniqueness criteria of the various measure-
ments. It consists of a class constraint, which needs two template paramet-
ers to inherit from. These two parameters should always be set to the values
seen in the example code (import_constraint and export_constraint).

The exact reasons for this complicated syntax is best left unexplained. It
mostly has to do with overcoming limitations in the C++ template syntax.
Interested readers can refer to Vandevoorde and Josuttis and their descrip-
tion of function object composition [VJ02, p. 445].

But explaining the arguments to the import_ and export_constraint
templates is vital. Especially the meaning of the letters C, M and L. It is,
however, easier to understand their significance having compared the C+-+
code in listing B.10 to the theoretical definitions from chapter 2.

IC _OD(c) ={(m,c,1,d,m")|(¥(o,c) € Roc)(3(d,) € Roc,l € N)
c#dc A(o,m,l,0,m") e ME}

(B.2)

EC _0C(c) = {(m/,c,c)|(V(o,c) € Roc)(3(d,c) € Roc,l € N) (B.3)
c#d N(d,m'l,o,m) e ME} '

IC _CM(c) ={(m,c,m’,d)|(3(m,c), (m',c) € Ryc) (B.4)

c#d N(m,e,m') eIV}

128

These equations correspond to the previous C-++ definition. The C, M
and L parameters from listing B.10 can be seen in the first parenthesis of the
formal definitions. Armed with this knowledge it should be relatively easy
to understand the relationship between the formal definitions and the source
code excerpt.

In listing B.10 the letters (C,M,L) represents function objects, which can
be combined to form uniqueness criteria for STL sets. Such sets can be
populated with the contents of either M E or IV, depending on the class
used in the declaration of the measurement.

The numerical value of any coupling measurement is simply the cardin-
ality of the set with uniqueness determined by a combination of the letters.

B.9 Future Work

Most software is created under some form of pressure or time limit. Jdissect
is no exception to this rule. There is still a lot of work remaining before the
application can possibly be called completed.

In this section we will attempt to address some of what we deem to be
the most serious deficiencies.

e Scalpel - the interactive testcase control tool has not been thoroughly
tested with libjdissect.so.

e Testcases - Generating measures based on multiple datasets contain-
ing more than one testcase does not work. In other words, test-cases
are not functional in mcalc.

e Sanity checking event code - Some of the event code in Jdissect
needs sanity checks dealing with event order. Presently tested JVM
implementations have no problem with the existing code. But it is
possible that future implementations will need stricter checks.

e Class load events - Class load events from both the debug and profil-
ing APIs are used. All tested Java versions seem to send the class load
profiling events before they send class prepare debugging event. This
might change. At present there are no caching mechanisms in place to
handle receiving the events out of order.

e Testing with different Java VM implementations - As of now
Jdissect has only been fully tested using two versions IBM’s Java VM.
Build 1.3.1, J2RE 1.3.1 IBM build cxia32131-20021102 and build 1.4.0,
J2RE 1.4.0 IBM build cxia32140-20020917a. Some rudimentary tests
were also done using Sun’s Java implementation (build 1.4.2-b28) on
Solaris.

129

Threads and locking - Using thread local storage as temporary stor-
age for messages data before updating the core model might improve
performance. Especially in the case of heavily multi-threaded applica-
tions.

Performance improvements - Currently, not enough work has gone
into optimisation of Jdissect. Such improvements might make it pos-
sible to collect data from production systems.

Visibility of class variables - Much of the code dealing with access-
ing and protecting class attributes should be cleaned up. At present
many variables are declared public.

Use of typedef - Some core model classes do not use the appropriate
typedef’s for declaring sets of objects. This is due to dependency
problems between the .h files of the Jdissect project. Given some time
it should be possible to fix this.

HybridSetMap - This class performs the functions of both a set and a
map simultaneously. It has a large overhead, as it is implemented using
both STL set and map. The problem of an effective data-structure that
caters to the need for key-based lookup with unique elements is being
investigated by the Boost C++ group. Availability of such a container
would decrease the memory requirements of Jdissect.

Partial data writes - Monitoring a Java application over days or
months using Jdissect is presently impossible due to memory require-
ments. This could be solved by writing M E and parts of O to disk
while an application was executing.

Static methods - At present static methods are not handled by Jdis-
sect. Implementing this could possibly give rise to no less than 30 new
measures. An informal analysis of JBoss (version 3.0.4) showed that
roughly 6static.W henspreadover30newmeasuresthesebout 24553 meth-
ods) will probably not contain much relevant information.

Visitor pattern - Use of the Visitor pattern did not become as wide-
spread as anticipated. A more efficient storage algorithm might be
feasible.

Automated tests - Whenever a modification is made to Jdissect we
have to verify that the implementation still works according to spe-
cification. If the application is to be developed further it would be
economical to include a set of automated tests performing the different
verification steps laid out in section 3.4.

130

e Identity definitions - At present all core model classes have identities
of type long. There will never be a need for using negative numbers as
identifiers, so all identities should be changed to unsigned long. This
will allow even larger amounts of data to be collected.

131

132

References

[But97]

[GHIV94

[Lia99)

[MDS01]

[Mey01]
[OW99]
[PSLMOY]|

[SL94|

[Stra7]

[VJ02]

D. R. Butenhof. Programming with POSIX Threads. Addison-
Wesley, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pat-
terns: Elements of Reusable Object-Oriented Software. Addison
Wesley, One Jacob Way, Reading, Massachusetts 01867, 1994.

S. Liang. The Java Native Interface - Programmer’s Guide and
Spesification. Addison-Wesley, 1999.

David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tutorial
and Reference Guide, 2nd. ed. Addison Wesley, 2001.

S. Meyer. Effective STL. Addison-Wesley, 2001.
S. Oaks and H. Wong. Java Threads, 2nd. ed. O’Reilly, 1999.

P. J. Plauger, A. A. Stepanov, M. Lee, and D. R. Musser. The
C++ Standard Template Library. Prentice Hall, 2001.

A. A. Stepanov and M. Lee. The standard template library. Tech-
nical Report X3J16/94-0095, WG21/N0482, Hewlett-Packard,
1994.

B. Stroustrup. The C++ Programming Language, 3rd. ed. Ad-
dison Wesley, One Jacob Way, Reading, Massachusetts 01867,
1997.

D. Vandevoorde and N. M. Josuttis. C++ Templates - The Com-
plete Guide. Addison-Wesley, 2002.

133

134

Appendix C

Extra material, source code
and configuration

C.1 Polymorphism and Coupling

The source code provided below is an example what might confuse static
coupling analysis tools. The problem with this code is that it will seem
like UsingAbstract is coupled twice to AbstractClass (the argument of the
using_abstract function).

As seen from the code, there is no possible way of knowing which class
cl and c2 will be set to.

Listing C.1: Abstract coupling Java code

import java.lang.Math;

abstract class AbstractClass {
abstract void method ();
}

class ConcreteClassl extends AbstractClass {
void method () {
System.out.println("ConcreteClass_1");

}

class ConcreteClass2 extends AbstractClass {
void method () {
System.out . println (" ConcreteClass_2");

i

class UsingAbstract {
void using_abstract (AbstractClass c) {
c.method ();
}

}

class ConcreteFactory {
public static AbstractClass getConcreteClass () {
if (Math.random () < 0.5)
return new ConcreteClassl ();
else
return new ConcreteClass2 ();

}
}
public class Exec {
public static void main(String|[] argv) {

AbstractClass cl = ConcreteFactory .getConcreteClass ();

135

AbstractClass c¢2 = ConcreteFactory .getConcreteClass ();
UsingAbstract ua = new UsingAbstract();

ua.using abstract (cl);
ua.using abstract (c2);

C.2 Taxonomy of Software Metrics

e Software Metrics

— Requirement Analysis Metrics

* Project/Requirement/Risk Management
x Problem Definition Text Analysis
* Requirement Analysis

— Specification Metrics

« Cost/Effort/Size estimation

* COCOMO

« Function/Object/Process Points
*x Formal Specification

— Design Metrics

% Software Systems,/ Architecture
* Modularization Measurement

x Software Components Measures

x Software Agents Measurement

* Web Measurement

x Pseudocode Measures

« Communication/Interaction Measures
*x Object-Oriented Design Measures

* Review/Inspection/Audits Measures

* Information Measures
— Code Metrics

x Halsteads Software Science

* McCabes Cyclomatic Number

x Source Code Measures

* Formal Analysis and Grammars
x Control Flow Measures

« Data (Flow) Measures

x Hybrid Measures

*x Concurrency Measurement

136

*

Object-Oriented Programming

*

Functional Programming

*

Logical Programming

*

Visual Programming
— Test Metrics
Test Coverage/ OO Testing

Reliability Measurement

*

*

*

Security Measurement

* Performance Measurement

— Maintenance Metrics

*

*

Reusability Measures

*

*

Evaluation/Certification Measures

Modifiability /Portability Measures

Programmers Productivity Measures

Source: http://ivs.cs.unimagdeburg.de/sweng/us/bibliography/bib main.shtml
Originally a bibliography list published by Reiner R. Dumke, at the Institute
for Distributed Systems, Otto-von-Guericke-University of Magdeburg.

C.3 Downloading Versions from the Velocity CVS

Repository

Listing C.2: cvs-snarf.pl
#!/usr/bin/perl

cvs —d :pserver:anoncvs@cwvs.apache.org:/home/cvspublic

my Qv tags = (’VEL_1 3 RC1’,
'VEL_1_3_1 RC2’,
"VEL_1 31 RC1’,

'VEL_1 3" 17,

"VEL 137,
"VEL 1~ 2 RC3’,

VEL 1 2 RC2’,

'VEL_1_2 RC1’,
VEL_1 27,
'VEL_1_1_RC2’,
'VEL_1_1_RC1’,
VEL_1 17,
V_1"0B2’,

my $repository = ’:pserver:anoncvs@cvs.apache.org:/home/cvspublic

my $dir;

foreach $version tag (@v_tags) {
$dir = $version tag;

$dir =~ s /(VEL|V)\ /velocity\—/;

$dir =7 s/_/./g;

$dir =7 s /\.([A-Z]+)(\d+)/$182/;

$dir = lc($dir);

print "Getting_version_$version_tag_from_cvs...\n";

137

s
5

‘cvs —z3 —d $repository co —r $version_ tag jakarta—velocity ;

‘mv jakarta—velocity $dir ;

C.4 XSLT Stylesheet used to Transform testcases.xml
for each Velocity Version

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="xml" indent="no"/>

<!—— output configuration needed for the VM to wuse the library ——>
<xsl:template name="jdissectmacro">

<xsl:param name="version"/>

<xsl:param name="testName" />

<xsl:variable name="path">
<xsl:value—of select="concat(’/tmp/’, $version, '/’ , $testName)"/>
</xsl:variable >

<xsl:element name="jvmarg">
<xsl:attribute name="value">—Xrunjdissect:
<xsl:value —of select="$path"/></xsl:attribute >
</xsl:element >
<xsl:element name="jvmarg">
<xsl:attribute name="value'">-Xdebug</xsl:attribute >
</xsl:element >
<xsl:element name="jvmarg">
<xsl:attribute name="value">-Xnoagent</xsl:attribute >
</xsl:element >
<xsl:element name="jvmarg">
<xsl:attribute name="value">—Djava.compiler=NONE</xsl:attribute >
</xsl:element >
<xsl:element name="env'">
<xsl:attribute name="key">LD LIBRARY PATH</xsl:attribute >
<xsl:attribute name="value">${jdissect.path}</xsl:attribute >
</xsl:element >
</xsl:template>

<!—— the actual document parsing code ——>
<!—— properties for metrics. ——>
<!—— Should be included at top of testcases.xml file ——>

<xsl:template match="

<xsl:copy>
<xsl:copy—of select="@x"/>
<xsl:apply —templates/>
</xsl:copy>
<xsl:element name="property">
<xsl:attribute name="name">jdissect.path</xsl:attribute >
<xsl:attribute name="value'">/home/audunf/hfag/src3</xsl:attribute >
</xsl:element >
<xsl:element name="property">
<xsl:attribute name="name">mcalc.path</xsl:attribute >
<xsl:attribute name="value">
/home/audunf/hfag/src3 /metric_calc
</xsl:attribute >
</xsl:element >
<xsl:element name="property">
<xsl:attribute name="name">mcalc.output.path</xsl:attribute >
<xsl:attribute name="value'">
/home/audunf/velocity —versions /metric_data
</xsl:attribute >
</xsl:element >
</xsl:template>

property [position () = last ()] ">

<!—— add exztra parameters to each java target ——>
<xsl:template match="project/target/java">
<xsl:copy>
<xsl:call —template name="jdissectmacro">
<xsl:with —param name="version'">
${version}
</xsl:with —param>
<xsl:with —param name="testName">
<xsl:value—of select="../@name"/>
</xsl:with —param>
</xsl:call —template>
<xsl:copy—of select="@x"/>

138

<xsl:apply —templates/>

</xsl:copy >

</xsl:template>

<!—— copy all
<xsl:template
<xsl:copy>

<xsl:copy—of
<xsl:apply

</xsl:copy>

default handler
match="x">

—

select="@x" />
—templates/>

</xsl:template>

</xsl:stylesheet >

C.5 filter.conf used to analyse Velocity

Config file for filter

remember — all regexes are padded with .x at the start.

One can therefore write "include Vector" instead of "include
for velocity , exclude all but the core app.

exclude

exclude_count

actual classes right under velocity package

include org/ap
include org/ap
packages

include org/ap
include org/ap
include org/ap
include org/ap
include org/ap
include org/ap
include org/ap
include org/ap
include org/ap
include org/ap
include

include
include
include
include
include
include

actual
include_count
include_count
packages

include count
include:count
include_count
include_count
include_count
include_count
include_count
include_count
include count
include:count
include_count
include_count
include_count
include_count
include_count
include_count
include_count

are excluded

include org/

tasks

but are stil

to exclude:

I HIEHRHRH

classes

that are

ache/velocity /Template
ache/velocity /VelocityContext

ache/velocity /app/.*

ache/velocity /app/event /. x
ache/velocity /app/tools/.x
ache/velocity /context /.x*

ache/velocity /exception/.x
ache/velocity /runtime/.x*

ache/velocity /runtime/configuration/.x*
ache/velocity /runtime/directive/.x
ache/velocity /runtime/exception/.x
ache/velocity /runtime/log/.x*

org/apache/velocity /runtime/parser/.x*
org/apache/velocity /runtime/parser /node/ . x
org/apache/velocity /runtime/resource /.=
org/apache/velocity /runtime/resource /loader/.x*
org/apache/velocity /runtime/visitor /.x
org/apache/velocity /util/.=x
org/apache/velocity /util/introspection/.x*

right under velocity package
org/apache/velocity /Template
org/apache/velocity /VelocityContext

org/apache/velocity /app/.x*
org/apache/velocity /app/event /.x*
org/apache/velocity /app/tools/.x*
org/apache/velocity /context/.x*
org/apache/velocity /exception/.x*
org/apache/velocity /runtime/.x*
org/apache/velocity /runtime/configuration/.
org/apache/velocity /runtime/directive /. x
org/apache/velocity /runtime/exception/.*
org/apache/velocity /runtime/log/.x*
org/apache/velocity /runtime/parser/.x
org/apache/velocity /runtime/parser /node/.x*
org/apache/velocity /runtime/resource/.x*
org/apache/velocity /runtime/resource /loader/.x*
org/apache/velocity /runtime/visitor /.x*
org/apache/velocity /util/.x*
org/apache/velocity /util /introspection/.x*
the

(don’t want to measure coupling for testcases)

org/apache/velocity /test
org/apache/velocity /test /misc

apache/velocity /test/provider/.x*

include_count org/apache/velocity/test/provider/.x

not
1 tests

in the build package,
(the ’oracle’ based tests)

139

.*Vector"

org.apache.velocity.anakia.AnakiaTask

include org/apache/velocity /anakia/Escape

include org/apache/velocity /anakia/Tree

include org/apache/velocity /anakia/NodeList.x
include org/apache/velocity /anakia/TreeWalker
include org/apache/velocity/anakia/OutputWrapper
include org/apache/velocity/anakia/AnakiaJDOMFactory
include org/apache/velocity/anakia/XPathTool
include org/apache/velocity/anakia/AnakiaElement

include org/apache/velocity/anakia/AnakiaTask
include org/apache/velocity/anakia/XPathCache
include count org/apache/velocity /anakia/Escape
include_count org/apache/velocity/anakia/Tree
include count org/apache/velocity /anakia/NodeList.x

include count org/apache/velocity /anakia/TreeWalker
include count org/apache/velocity /anakia/OutputWrapper
include count org/apache/velocity /anakia/AnakiaJDOMFactory
include count org/apache/velocity /anakia/XPathTool

include count org/apache/velocity /anakia/AnakiaElement

include count org/apache/velocity /anakia/AnakiaTask
include_cgunt org/apache/velocity /anakia/XPathCache

to exclude:

org.

apache.velocity .texen.ant.TexenTask

include org/apache/velocity/texen/Generator
include_count org/apache/velocity/texen/Generator

include org/apache/velocity /texen/util/.=x
include_count org/apache/velocity/texen/util/.x

C.6 JVMPI events used by libjdissect.so

JVMPI_EVENT_CLASS_LOAD is sent whenenver a new class is loaded by
the VM.

JVMPI_EVENT_CLASS_UNLOAD is triggered whenever a class is unloaded.
It never seems to occur in practice.

JVMPI_EVENT_GC_START is sent when GC is about to start. The system
goes into thread suspended mode. All memory allocation operations
should be suspended after handling this event. JvmpiController al-
locates large buffer in which to place objects that are deallocated or
moved.

JVMPI_EVENT_GC_FINISH is sent when GC has ended. System goes into
multithreaded mode again. Data cached by JvmpiController is merged
into the core model.

JVMPI_EVENT_JVM_INIT_DONE is issued by the VM when its initializa-
tion is done. Triggers attempt to set up socket for external control.

JVMPI_EVENT_JVM_SHUT_DOWN is sent when the program exits. Triggers
storage of the core model to disk.

JVMPI_EVENT_METHOD_ENTRY?2 is sent when a method is entered.

JVMPI_EVENT_METHOD_EXIT is triggered whenever a method has com-
pleted execution.

JVMPI_EVENT_OBJECT_ALLOC is sent when an object is allocated.

140

e JVMPI_EVENT_OBJECT_FREE is only possible after garbage collection has
started (thread suspended mode). It is sent when an object is freed.

e JVMPI_EVENT_OBJECT_MOVE is only to happen after garbage collection
has started (thread suspended mode). It is sent when an object is
moved in the heap.

e JVMPI_EVENT_THREAD_START Issued whenever a new thread starts.

e JVMPI_EVENT_THREAD_END is triggered whenever a thread is finished
executing.

C.7 Intermediate storage file format

Table C.1: File formats use by Jdissect.

File name Contains Comment

attribute aid of attribute, type, name Storage

class cid, type Storage

class ancestor cid, ancestor cid Relationship

class attribute cid of class, aid of attribute Relationship

class method cid of class, mid of method Relationship

class object cid of class, oid of object Relationship

inoutparam pid of parameter, type, name Storage

inputparam pid of parameter, type, name Storage

message mid of message, isReflexive, loc- | Storage. ExportMethodld,

ation, threadName, exportMetho- | importMethodld and exportOb-
dId, importMethodld, exportOb- | jectld are —1 if method/object
jectld, importObjectld was defined as static. ImportO-
bjectld is —1 when if object is
static, and —2 if importer was the

Java VM.
method mid of method, signature Storage
method parameter | mid of method, pid of parameter Relationship
object oid of object Storage
outputparam pid of parameter, type, name (al- | Storage

ways returnValue)
staticattribute aid of attribute, type, name Storage
testcase tid of testcase, name Storage
testcase message tid of testcase, mid of message Relationship

141

142

Bibliography

[ABF03]

[ABFar]

[Adr93]

[AIb79)

[AN02]

[And03]

[Ari01]

[Ari02]

[AS00]

E. Arisholm, L. C. Briand, and A. Fgyen. Dynamic coupling
measurement for object-oriented software. Technical report,
Simula Research Laboratory, TR 2003-5/Carleton University,
Canada, TR SCE-03-18, 2003.

E. Arisholm, L. C. Briand, and A. Fgyen. Dynamic coupling
measurement for object-oriented software. IEEE Transactions
on Software Engineering, To Appear.

W. R. Adrion. Research methodology in software engineering,
summary of the Dagstiihl workshop on future directions in soft-
ware engineering. ACM SIGSOFT Software Engineering Notes,
18(1):35-48, January 1993.

A. J. Albrecht. Measuring application developement. pages
83-92, Monterey CA, 1979. Proceedings of IBM Application
Developement joint SHARE/GUIDE Symposium.

J. Arlow and I. Neustadt. UML and the Unified Process: Prac-
tical Object-Oriented Analysis and Design. Pearson Education
Limited, Edinburgh Gate, Harlow CM20 2JE, 2002.

B. Anda. Empirical Studies of Contruction and Application
of Use Case Models. PhD thesis, Faculty of Mathematics and
Natural Sciences, University of Oslo, 2003.

E. Arisholm. Empirical Assessment of Changability in Object-
Oriented Software. PhD thesis, University of Oslo, Oslo, 2001.

E. Arisholm. Dynamic coupling measures for object-oriented
software. In proc. 8th IEEE Symposium on Software Metrics
(METRICS’02), pages 33-42. IEEE Computer Society, 4-7 June
2002.

E. Arisholm and D. I. K. Sjgberg. Towards a framework for
empirical assessment of changeability decay. The Journal of
Systems and Software, 53(1):3-14, 2000.

143

[AS03]

[ASF04al

[ASF04b]

[ASFO04c|

[ASJO1]

[BAJO1]

[Bas96|

[BBY4|

[BBL76]

[BDM*95]

E. Arisholm and D. I. K. Sjgberg. A controlled experiment with
professionals to evaluate the effect of a delegated versus cent-
ralized control style on the maintainability of object-oriented
software. Technical Report TR 2003-6, Simula Research Labor-
atory, 6 2003.

The Apache Software Foundation. The Apache Ant project.
http://ant.apache.org/, 2004.

The Apache Software Foundation. The Apache Jakarta project.
http://jakarta.apache.org/, 2004.

The Apache Software Foundation. The Apache Velocity pro-
ject. http://jakarta.apache.org/velocity/, 2004.

E. Arisholm, D. I. K. Sjgberg, and M. Jgrgensen. Assessing
the changeability of two object-oriented design alternatives - a
controlled experiment. Empirical Software Engineering, 6:231—
277, 2001.

L. Bratthall, E. Arisholm, and M. Jgrgensen. Program under-
standing behaviour during estimation of enhancement effort on
small Java programs. In proc. PROFES 2001 (3rd International
Conference on Product Focused Software Process Improvement),
2001.

V. R. Basili. The role of experimentation in software engin-
eering: Past, current and future. volume 18 of Proceedings of
18th International Conference on Software Engineering, pages
442-449. IEEE, March 25-29 1996.

C. L. Brooks and C. G. Buell. A tool for automatically gathering
object-oriented metrics. volume 2 of Proceedings of the IEEE
1994 National Aerospace and FElectronics Conference, pages
835-838. IEEE, NAECON, 23-27 May 1994.

B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative eval-
uation of software quality. Proceedings of the Second Interna-
tional Conference on Software Engineering, pages pp. 592-605.
IEEE, 1976.

A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood. Replic-
ation of experimental results in software engineering. Technical
Report EFoCS-17-95, ISERN-96-10, Livingstone Tower, Rich-
mond Street, Glasgow G1 1XH, UK, 1995.

144

[BDMY7]

[BDW9S|

[BDW9Y]

[BeA95]

[BEEMO96|

[BJ95]

[BJYO01]

[BRJ9S|

[BS98]

[But97]

[BW02a]

[BWO02b]

L. C. Briand, P. Devanbu, and W. L. Melo. An investigation
into coupling measures for C++. In proc. 19th International
Conference on Software Engineering (ICSE’97), pages 412-421,
1997.

L. C. Briand, J. W. Daly, and J. K. Wiist. A unified framework
for cohesion measurement in object-oriented systems. Empirical
Software Engineering, 3(1):65-117, 1998.

L. C. Briand, J. W. Daly, and J. K. Wiist. A unified framework
for coupling measurement in object-oriented systems. I[EEE
Transactions on Software Engineering, 25(1):91-121, Jan./Feb.
1999.

F. Brito e Abreu. The MOOD metrics set. In proc. ECOOP’95
Workshop on Metrics, 1995.

L. C. Briand, K. El-Emam, and S. Morasca. On the application
of measurement theory in software engineering. Empirical Soft-
ware Engineering: An International Journal, 1(1):61-88, 1996.

F. P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition. Addison Wesley Longman,
Reading, Massachusetts, U.S.A.; 1995.

J. M. Bieman, D. Jain, and H. J. Yang. OO design pat-
terns, design structure, and program changes: An industrial
case study. In ICSM, pages 580—, 2001.

G. Booch, J. Rumbaugh, and 1. Jacobson. The Unified Modeling
Language Users Guide. Addison-Wesley, 1998.

A. B. Binkley and S. R. Schach. Validation of the coupling de-
pendency metric as a predictor of run-time failures and main-
tenance measures. In proc. 20th International Conference on
Software Engineering (ICSE’98), pages 452-455, 1998.

D. R. Butenhof. Programming with POSIX Threads. Addison-
Wesley, 1997.

L. C. Briand and J. K. Wiist. Empirical studies of quality mod-
els in object-oriented systems. Advances in Computers, 59:97—
166, 2002.

L. C. Briand and J. K. Wiist. The impact of design properties on
developement cost in object-oriented systems. Technical Report
TR-99-16, ISERN, 2002.

145

[BWIL99)

[BWL99

[BWW02]

[Cas02]

[CCAS6]

[CDKOS]

[CGO3]

[CHTO02]

[CK91]

[CK94]

L. C. Briand, J. K. Wiist, S. V. Ikonomovski, and H. Lounis.
Investigating quality in object-oriented designs: an industrial
case study. In proc. 21st International Conference of Software
Engineering (ICSE’99), pages 345-354, 1999.

L. C. Briand, J. K. Wiist, and H. Lounis. Using coupling meas-
urement for impact analysis in object-oriented systems. In proc.
International Conference on Software Maintenance (ICSM’99),
pages 475-482, 1999.

L. C. Briand, M. L. Walcelio, and J. K. Wiist. Assessing the
applicability of fault-proneness models across object-oriented
software projects. IEEE Transactions on Software Engineering,
28(7):706-720, July 2002.

F. Castel. Theory, theory on the wall. Communications of the
ACM, 45(12):25-26, December 2002.

D. N. Card, V. E. Church, and W. W. Agresti. An empir-
ical study of software design practices. IFEE Transactions on
Software Engineering, 12(2):264-271, 1986.

S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Managerial
use of metrics for object-oriented software: An exploratory ana-
lysis. IEEE Transactions on Software Engineering, 24(8):629—
637, 1998.

R. E. Courtney and D. A. Gustafson. Shotgun correlations in
software measure. Software Engineering Journal, pages 5—13,
Jan. 1993.

J. Cahill, J. M. Hogan, and R. Thomas. The Java metrics
reporter - an extensible tool for OO software analysis. Ninth
Asia-Pacific Software Engineering Conference, pages 507-516.
IEEE, 4-6 Dec. 2002.

S. R. Chidamber and C. F. Kemerer. Towards a Metrics Suite
for Object Oriented Design. In Proceedings of the OOPSLA
’91 Conference on Object-oriented Programming: Systems, Lan-
guages and Applications, volume 26, pages 197-211. SIGPLAN
Notices, Oct. 1991.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object-

oriented design. IEFEE Transactions on Software Engineering,
20(6):476-493, 1994.

146

[CKK*00]

[Con01]

[CPMS8S5]

[CS00]

[CY91]

[DBM*96]

[DSWR02

[Dun9s|

[EE01]

[EEBGROL]

|[Fen94|

[FN99)

M. A. Chaumun, H. Kabaili, R. K. Keller, F. Lustman, and
G. Saint-Denis. Design properties and object-oriented soft-
ware changeability. In proc. Fourth FEuromicro Working Confer-

ence on Software Maintenance and Reengineering, pages 45-54,
2000.

L. L. Constantine. The Peopleware Papers, notes on the human
side of software. Prentice Hall Inc., Upper Saddle River, New
Jersey 07458, U.S.A., 2001.

D. N. Card, G. T. Page, and F. E. McGarry. Criteria for soft-
ware modularization. IEEE Eighth International Conference on
Software Engineering, pages 372-377. IEEE, 1985.

M. Cartwright and M. Shepperd. An empirical investigation
of an object-oriented software system. IEEE Transactions on
Software Systems, 26(8):786-796, 2000.

P. Coad and E. Yourdon. Object Oriented Design. Prentice
Hall, 1st edition, 1991.

J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. Evaluat-
ing inheritance depth on the maintainability of object-oriented
software. Empirical Software Engineering, 1(2):109-132, 1996.

I. S. Deligiannis, M. Shepperd, S. Webster, and M. Roumeli-
otis. A review of experimental investigations into object-
oriented technology. Empirical Software Engineering, 7(3):193—
232, 2002.

G. Dunteman. Principal Component Analysis. SAGE publica-
tions, 1998.

K. El-Emam. A methodology for validating software product
metrics, 2001.

K. El-Emam, S. Benlarbi, N. Goel, and S. N. Rai. The
confounding effect of class size on the wvalidity of object-
oriented metrics. IEEE Transactions on Software Engineering,
27(7):630-650, 2001.

N. Fenton. Software measurement: A necessary scientific basis.
IEEE Transactions on Software Engineering, 20(3):199-206,
March 1994.

N. Fenton and M. Neil. Software metrics and risk. FESMA
99 - 2nd European Software Measurement Conference, October
1999.

147

[FPGO4|

[FWOg)

[GB04]

[GHIV94

[Gla94]

[Goo93|

[Hal77]

[HCNOS|

[HDFWO03]

[Her99|

[HHL9O]

[HM95)

[HMO96)|

N. Fenton, S. L. Pfleeger, and R. L. Glass. Science and sub-
stance: A challenge to software engineers. I[EEE Software,
11(4):88-95, 1994.

R. J. Freund and W. J. Wilson. Regression Analysis: statistical
modelling of a response variable. Academic Press, 1998.

E. Gamma and K. Beck. Junit - regression testing framework.
http://www.junit.org/index.htm, 2004.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pat-
terns: Flements of Reusable Object-Oriented Software. Addison
Wesley, One Jacob Way, Reading, Massachusetts 01867, 1994.

R. L. Glass. The software-research crisis. IEEE Software,
11(6):42-47, Nov. 1994.

P. Goodman. Practical Implementation of Software Metrics.
McGraw Hill, London, 1993.

M. H. Halstead. Elements of Software Science. Elsevier North-
Holland, New York, June 1977.

R. Harrison, S. J. Counsell, and R. V. Nithi. An investiga-
tion into the applicability and validity of object-oriented design
metrics. Empirical Software Engineering, 3(3):255-273, 1998.

T. Husted, C. Dumoulin, G. Franciscus, and D. Winterfeldt.
Struts in Action. Manning, 2003.

J. D. Herbsleb. Metaphorical representation in collaborative
software engineering. Proceedings of the international joint con-
ference on Work activities coordination and collaboration, pages
117-126. ACM, February 1999.

S. Henry, M. Humphrey, and J. Lewis. Evaluation of the main-
tainability of object-oriented software. In proc. IEEE Region 10
Conference on Computer and Communication Systems (TEN-
CON’90), pages 404-409, 1990.

M. Hitz and B. Montazeri. Measuring coupling and cohesion in
object oriented systems. In proc. Int. Symp. Applied Corporate
Computing, 1995.

M. Hitz and B. Montazeri. Chidamber and Kemerer’s metrics
suite: A measurement theory perspective. IEEE Transactions
on Software Engineering, 22(4):267-271, 1996.

148

[Hums9|

[1C01]

[IC03a]

[ICO3b]

[Jar01]

[7502]

[Kit90]

[Kit96a]

[Kit96D)

[Knu97]

[KPF95]

[KPP95]

W. S. Humphrey. Managing the Software Process. Addison-
Wesley, Reading Mass., 1989.

JTC 1-SC 7 ISO Commitee. ISO/IEC 9126-1:2001 - software
engineering - product quality - part 1: Quality model. Technical
report, ISO/IEC, 2001.

JTC 1/SC 7 ISO Commitee. ISO/IEC 9126-2:2003 - software
engineering - product quality - part 2: External metrics. Tech-
nical report, ISO/TEC, 2003.

JTC 1/SC 7 ISO Commitee. ISO/IEC 9126-3:2003 - software
engineering - product quality - part 3: Internal metrics. Tech-
nical report, ISO/TEC, 2003.

P. Jarvinen. On Research Methods. Tiedekirjakauppa TAJU,
2001.

D. R. Jeffery and L. Scott. Has twenty-five years of empirical
software engineering made a difference? In P. Strooper and
P. Muenchaisri, editors, Proceedings of the Asia-Pacific Soft-
ware Engineering Conference, Gold Coast Australia, pages 539—
546. IEEE Computer Society, Dec. 2002.

B. A. Kitchenham. Measuring Software Development. Software
Reliability Handbook. Elsevier Press, 1990.

B. A. Kitchenham. Evaluating software engineering methods
and tool part 1: The evaluation context and evaluation meth-
ods. ACM SIGSOFT Software Engineering Notes, 21(1):11-15,
January 1996.

B. A. Kitchenham. Software Metrics: Measurement for Soft-
ware Process Improvement. Blackwell, 1996.

D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of
Computer Programming. Addison Wesley Longman, 3rd. edi-
tion, 1997.

B. A. Kitchenham, S. L. Pfeelger, and N. Fenton. Towards a
framework for software measurement validation. IEEE Trans-
actions on Software Engineering, 21(12):929-944, 1995.

B. A. Kitchenham, L. Pickard, and S.L. Pfleeger. Case studies
for method and tool evaluation. IEEE Software, 12(4):52-62,
July 1995.

149

[KPP+02]

[LH93a]

[LHI3b]

[Lia99)

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,
D. C. Hoaglin, K. El-Emam, and J. Rosenberg. Preliminary
guidelines for empirical research in software engineering. IEEE
Transactions on Software Engineering, 28(8):721-734, August
2002.

W. Li and S. Henry. Maintenance Metrics for The Object Ori-
ented Paradigm. In Proc. 1st IEEE Int. Software Metrics Sym-
positum, pages 52—60, Baltimore, Md, 1993.

W. Li and S. Henry. Object-oriented metrics that predict main-
tainability. Journal of Systems and Software, 1993.

S. Liang. The Java Native Interface - Programmer’s Guide and
Spesification. Addison-Wesley, 1999.

[LLWWO5] Y. S Lee, B. S. Liang, S.F. Wu, and F. J. Wang. Measuring

[MAS5]

[MBB*97]

[McCT76]

[MDS01]

[Mey01]

[MH96)|

[Mil]

[NR68|

coupling and cohesion of object-oriented programs based on in-
formation flow. In proc. International Conference on Software
Quality, 1995.

Lehman M. M. and Belady L. A. Program evolution: Processes
of software change. 1985.

S. Morasca, L. C. Briand, V. R. Basili, E. J. Weyuker, and
M. V. Zelkowitz. Comments on “Towards a framework for soft-
ware measurement validation”. IEEFE Transactions on Software
Engineering, 23(3):187-188, 1997.

T. J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 2(4):308-320, December 1976.

David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tu-
torial and Reference Guide, 2nd. ed. Addison Wesley, 2001.

S. Meyer. FEffective STL. Addison-Wesley, 2001.

J. C. Munson and G. A. Hall. Estimating test effectiveness with
dynamic complexity measurement. Empirical Software Engin-
eering, (1):279-305, 1996.

J. Miller. Replicating software engineering experiments: A
poisoned chalice or the holy grail. Draft.

P. Naur and B. Randell, editors. Software Engineering - Re-
port of a conference sponsored by the NATO Science Committee,
Garmisch, Germany, 7-11 Oct. 1968. Scientific Affairs Division,
NATO.

150

[OW99]

|[Par72]

[PSLMO1]

[PWCO5]

[SAAT02]

[SDPKO1]

[SGo4]

[SKMO1]

[SL94|

[SMC74]

[Som98|

[Ste93|

[Stra7]

S. Oaks and H. Wong. Java Threads, 2nd. ed. O’Reilly, 1999.

D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1052-1058,
December 1972.

P. J. Plauger, A. A. Stepanov, M. Lee, and D. R. Musser. The
C++ Standard Template Library. Prentice Hall, 2001.

M. C. Paulk, C. V. Weber, and B. Curtis. The Capability Ma-
turity Model: Guidelines for Improving the Software Process.
Carnegie Mellon University / Software Engineering Institute /
Addison-Wesley, Reading Mass., 1995.

D. I. K. Sjgberg, B. Anda, E. Arisholm, T. Dyba, M. Jgrgensen,
A. Karahasanovic, E. F. Koren, and M. Vokac. Conducting
realistic experiments in software engineering. Proceedings of
the 2002 International Symposium on Empirical Software En-
gineering. IEEE, 2002.

G. Sevitsky, W. De Pauw, and R. Konuru. An information
exploration tool for performance analysis of Java programs. In
TOOLS Europe 2001, Zurich, Switzerland, March 2001.

The Standish Group. The chaos report. Technical report, The
Standish Group, 1994.

T. Systéd, K. Koskimies, and H. Miiller. Shimba - an environ-
ment for reverse engineering Java software systems. Software
Practice & FExperience, (31):371-394, Feb. 2001.

A. A. Stepanov and M. Lee. The standard template lib-
rary. Technical Report X3J16,/94-0095, WG21/N0482, Hewlett-
Packard, 1994.

W. Stevens, G. Myers, and L. L. Constantine. Structured
design. IBM Systems Journal, 13(2):115-139, 1974.

I. Sommerville. Software Engineering. Addison-Wesley, 1998.

W. R. Stevens. Advanced Programming in the UNIX Environ-
ment. Addison-Wesley, 1993.

B. Stroustrup. The C++ Programming Language, 3rd. ed. Ad-
dison Wesley, One Jacob Way, Reading, Massachusetts 01867,
1997.

151

[SYMOO]

[T792]

[VJ02|

[Wey88|

[WK99]

[WKO0]

[YAR99]

[YAROO]

[ZW9g]

T. Systd, P. Yu, and H. Miiller. Analyzing Java software by
combining metrics and program visualization. In Proceedings
of the 4th European Conference on Software Maintenance and
Reengineering (CSMR’2000), Zurich, Switzerland, March 2000.

J. Tian and M. V. Zelkowitz. A formal program complexity
model and its application. Journal of Systems Software, 17:253—
266, 1992.

D. Vandevoorde and N. M. Josuttis. C-++ Templates - The
Complete Guide. Addison-Wesley, 2002.

E. Weyuker. Evaluating software complexity measures.
IEEFE Transactions on Software Engineering, 14(9):1357-1365,
September 1988.

J. Warmer and A. Kleppe. The Object Constraint Language.
Addison-Wesley, 1999.

F. G. Wilkie and B. A. Kitchenham. Coupling measures and
change ripples in C++ application software. J. Syst. Softw.,
52(2-3):157-164, 2000.

S. M. Yacoub, H. H. Ammar, and T. Robinson. Dynamic met-
rics for object-oriented designs. pages 60-61, 1999.

S. M. Yacoub, H. H. Ammar, and T. Robinson. A methodology
for architectural-level risk assessment using dynamic metrics.
In proc. 11th International Symposium on Software Reliability
Engineering, pages 210-221, 2000.

M. V. Zelkowitz and D. R. Wallace. Experimental models for
validating technology. Computing Practices, pages 23-31, May
1998.

152

