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Chapter 1

Introduction

This thesis is part of the ongoing Creol [26, 24] research project at the
Precise Modeling and Analysis (PMA) group at the Department of Inform-
atics, University of Oslo. Creol is an acronym for Concurrent Reflective
Object-oriented Language, and is focused towards programming constructs
and reasoning control with regards to the development of open distributed
systems. An interpreter for (a subset of) the Creol language [3] has been
developed in the rewriting logic tool Maude [7].

1.1 Problem domain

In this thesis, we will consider objects that communicate asynchronously
through message passing. Objects and messages are represented by a global
state called a configuration. The configuration is a multiset that models
a highly non-deterministic system with concurrent objects. This model is
well suited for both standard object based Maude specifications and Creol
programs executed in Maude by the Creol interpreter.

The messages that the objects send, can be recorded by an external ob-
server in a communication history. By specifying predicates on this history,
we can define invariants for an object’s behavior, as well as an object’s as-
sumptions with regards to the behavior of its surrounding environment.

1.1.1 Maude

All the specifications that we will be considering in this thesis are written
in Maude, either as standard Maude code, or as Maude representations of
Creol code. Maude is a powerful high-level programming and specification
language based on rewriting logic [32]. Rewriting logic is a logic in which con-
current change and non-deterministic problems can be specified in a natural
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way, and this fits well with our focus on concurrent distributed objects.1

Furthermore, since rewriting logic is reflective [9], Maude specifications
can be used to examine, modify, execute and reason about other Maude
specifications. This is known as meta-programming, or programming at the
meta-level. In this thesis, we will make extensive use of Maude’s meta-level
capabilities.

1.1.2 Creol

The Creol language focuses on open distributed systems, and employs an
object model in which every object is seen as having its own processor, and
its own thread (or threads) of execution.

Creol objects communicate synchronously or asynchronously through me-
thod calls. The language supports black box specification of objects in terms
of their observable behavior, as defined in their respective interfaces.

The operational semantics of Creol is formally defined in rewriting logic.

1.2 Motivation

The Creol interpreter, running on top of Maude, can execute Creol programs
represented in Maude as Creol Machine Code [3]. An important part of Creol
interfaces, is assumption-guarantee specifications [28]. Such specifications
are expressed as predicates on a communication history. These predicate
specifications, however, are ignored by the current interpreter. Hence, much
of the motivation for this thesis stems from a desire to experiment with
these features. For this purpose, we will devise a mechanism for recording
a communication history from an executing specification, and constructs for
specifying predicates on the history. We will also consider how the predicates
can be used to control the execution of specifications.

Another motivating factor was the desire to develop a strategy that allows
for a fairer execution of the Creol programs executed with the interpreter.
In [3], we see that using Maude’s built-in rew and frew rewrite strategies for
executing non-deterministic problems results in skewed and unfair results.

Since both the interpreter and the Creol language itself are under con-
tinuous development, it would be advantageous if the mechanisms discussed
above were implemented separately, instead of changing the actual inter-
preter code.

Due to the fact that the Creol interpreter executes on top of Maude, we
have chosen to not limit the concepts introduced in this thesis to Creol only,
but instead provide a general framework for executing object based Maude

1However, rewriting logic specifications of non-deterministic problems cannot as easily
be executed in a satisfying manner in Maude, which is a deterministic tool. We will get
back to this in the following chapters of this thesis.
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specifications, and to make the necessary adaptations to account for Creol
as well.

1.3 Goals

The main goal for this thesis is to develop a framework for executing spe-
cifications modeling distributed systems, that can record and utilize a com-
munication history. With this in mind, we can rephrase the goal as several
more specific questions:

• How can we execute Maude specifications and transparently, in the
sense that the original specification remains unchanged, build a com-
munication trace as the execution proceeds?

• How can we define predicates on this trace, and use such predicates to
control and test the behavior of objects?

• How can these techniques be applied to the Creol language, and more
specifically, to the Creol interpreter developed in Maude?

• How can we execute models of highly non-deterministic concurrent sys-
tems, such as Creol programs, in the deterministic rewrite tool Maude?

In the following chapters of this thesis, solutions to the problems presen-
ted above will be developed, and we will get back to the specific questions
in the conclusion in Chapter 11.

1.4 Contents of this thesis

A brief summary of the contents of the individual chapters of this thesis is
given below:

• In Chapter 2 we take a look at the languages Maude and Creol, to
provide necessary background information for the concepts that will
be introduced in the following chapters.

• In Chapter 3, we consider communication histories at a generalized
level. Furthermore, we discuss how the recording of such histories
should be done.

• The implementation of the concepts from Chapter 3 is discussed in
Chapter 4. A rewrite strategy that records a communication history
during run-time is developed in Maude.

• Predicates on communication histories are introduced in Chapter 5.
The predicates are used by the rewrite strategy from the previous
chapter to control the execution.

3



• In Chapter 6 we look at how regular expressions can be used in pre-
dicates on communication histories.

• Some examples of how the mechanisms developed in the preceding
chapters can be used, are considered in Chapter 7.

• In Chapter 8, some additional predicate constructs are considered. Fur-
thermore, we discuss how the Creol interpreter can be integrated with
the rewrite strategy that we have developed up till this point.

• A rewrite strategy that uses a pseudo-random number generator to
provide fair rewriting suitable for highly non-deterministic problem
domains is introduced in Chapter 9.

• In Chapter 10, we discuss how Maude can be extended with socket
support, and how this can be used together with the framework we
have developed.

• Finally, in Chapter 11, we summarize the most important concepts and
results from this thesis.

1.5 Results

A framework containing a non-deterministic meta-level rewrite strategy, a
communication history logger and a predicate parsing and checking engine
has been developed and is executable in the Maude rewriting logic tool. The
framework supports both standard Maude specifications and Creol specific-
ations executed by the Creol interpreter. The source code for the framework
is included in Appendix A.

Results from this thesis have contributed to two scientific papers, Toward
Reflective Application Testing in Open Environments [4] and A Run-Time
Environment for Concurrent Objects with Asynchronous Method Calls [24].
Both papers are included in Appendix B.
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Chapter 2

Background

In this chapter, we will take a look at some properties of the languages Maude
and Creol. We will focus on the aspects that will be of importance to us in
the rest of this thesis; this is in other words not a general overview of any of
the languages.

2.1 Maude

Maude [7] is a high level programming and specification language, based on
rewriting logic [32]. It is highly expressive, due to a syntax that is entirely
user definable, and can be used as a tool for modeling both deterministic and
concurrent non-deterministic problem domains. Maude contains a functional
sublanguage based on the OBJ3 language [17] for equational specifications,
and extends OBJ3 by providing rewrite rules that capture concurrent change.

2.1.1 Functional Maude

The functional modules in Maude are theories in membership equational lo-
gic [7, 6] that satisfy some additional properties. Such a module consists
of sort declarations and equations. Terms are reduced by using the equa-
tions in the module on a given term until a canonical normal form is found
and no equations can be applied. Hence, the extra requirement for equa-
tions in functional modules is that they should be Church-Rosser (there is a
unique normal form for every term), terminating and sort-decreasing [7, 6]
(even if a given specification does not satisfy these properties, Maude will
not complain, but the results from computations may be undesirable). All
reductions and rewrites can be performed modulo associativity, commutativ-
ity and identity, if the attributes assoc, comm and id are specified for the
equations, respectively.

Below we will take a closer look at the components of a functional module.
The definitions are from [38, 32, 7]:

5



A sort is declared in a Maude module by using the sort keyword, e.g. sort
Nat.

Definition 1 (Sorts). The sorts in a specification are defined by a set S of
sorts (or sort names).

Note that the sorts are just names, it is the function symbols that define
the values of each sort. So, in the example above, the sort Nat is just an
arbitrary name, it has no associated values yet.

A signature consists of sorts and function (or operator) symbols.

Definition 2 (Signature). A many-sorted signature (S,Σ) consists of a
set S of sorts and an S∗ × S-sorted family {Σw,s|w ∈ S∗, s ∈ S} of function
symbols.

It is conventional to write f : w → s ∈ Σ for f ∈ Σw,s. A function symbol
for which w is the empty list is called a constant.

The values in a specification are made from ground terms, which are
constructed from function symbols.

Definition 3 (Ground terms). Given a many-sorted signature (S,Σ), the
ground terms of any sort s ∈ S is denoted TΣ,s, and is defined inductively as
follows:

1. Σε,s ⊆ TΣ,s; that is, every constant of sort s is a ground term of sort s.

2. If f ∈ Σs1...sn,s, and t1 ∈ TΣ,s1 , ..., tn ∈ TΣ,sn, and n ≥ 1 then
f(t1, ..., tn) ∈ TΣ,s. That is, a function symbol applied to ground terms
of the correct sort gives another ground term.

3. In addition, each set TΣ,s is the smallest set satisfying the above condi-
tions. That is, only “things” which can be built from constants and the
application of function symbols to ground terms of the right sorts are
ground terms.

4. Finally, the ground terms TΣ of the many-sorted signature (S,Σ) are
defined by TΣ = {TΣ,s|s ∈ S}.

A term is is constructed in a sort-correct manner from variables and
ground terms.

Definition 4 (Variables). Given a many-sorted signature (S,Σ), a variable
set X is an S-sorted family X = {Xs | s ∈ S} of pairwise disjoint sets
(meaning that no variable has two different sorts: s 6= s′ ⇒ Xs ∩Xs′ = ∅),
also disjoint from Σ (that is, nothing can be both a variable and a function
symbol).
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Definition 5 (Terms). Given a many-sorted signature (S,Σ) and a variable
set X = {Xs | s ∈ S}, the S-sorted set of terms TΣ(X) = {TΣ,s(X) | s ∈ S}
is defined inductively by the following conditions:

1. Xs ⊆ TΣ,s(X) for s ∈ S; that is, a variable of sort s is also a term of
sort s.

2. Σε,s ⊆ TΣ,s(X) for s ∈ S; that is, a constant of sort s is also a term of
sort s.

3. f(t1, ..., tn) ⊆ TΣ,s(X) if f ∈ Σs1...sn,s and ti ∈ TΣ,si(X) for each
1 ≤ i ≤ n.

4. TΣ,s(X) is the smallest S-sorted set satisfying the above conditions.

Functions declared in a signature are defined recursively by equations.

Definition 6 (Equations). Given a many-sorted signature (S,Σ) (without
subsorts), a (Σ)-equation is a triple (X, t, t′), written (∀X)t = t′, where X is
an S-sorted variable set disjoint from Σ, and t and t’ are terms of the same
sort.

Finally, we are ready to define many-sorted equational specifications,
which correspond to Maude modules.

Definition 7 (Many-sorted equational specifications). A many-sorted
equational specification is a tuple (S,Σ, E) where (S,Σ) is a many-sorted
signature and E is a set of Σ-equations and conditional Σ-equations.

As an example of a functional module, we take a closer look at the module
BOOLEAN :1

fmod BOOLEAN is
sort Boolean .

op true : -> Boolean .
op false : -> Boolean .

op _and_ : Boolean Boolean -> Boolean
[assoc comm prec 55 id: true] .

op _or_ : Boolean Boolean -> Boolean
[assoc comm prec 59 id: false] .

op _xor_ : Boolean Boolean -> Boolean
1Note that this is not the same module as the built-in BOOL module, which will be

used later on. The BOOLEAN module is only meant to exemplify the concepts in this
section.
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[assoc comm prec 57] .
op not_ : Boolean -> Boolean [prec 53] .
op _implies_ : Boolean Boolean -> Boolean

[prec 61] .

vars A B C : Boolean .

eq true and A = A .
eq false and A = false .
eq A and A = A .
eq false xor A = A .
eq A xor A = false .
eq A and (B xor C) = A and B xor A and C .
eq not A = A xor true .
eq A or B = A and B xor A xor B .
eq A implies B = not (A xor A and B) .

endfm

In this module, only one sort is defined, the sort Boolean. There are two
constants defined of this sort, true and false. Furthermore, there are four
binary operators (and, or, xor and implies) and one unary operator (not)
defined by equations. We also have the three Boolean variables that are used
in the equations, A, B and C.

For the operators, various attributes are specified, such as associativity
(assoc), commutativity (comm), identity (id: id-element) and precedence
(prec n). For the latter, the operator with the lowest n takes precedence for
terms with several possible parse trees.

Maude supports a so-called mixfix syntax, meaning that arguments for
an operator can be placed at user-defined positions. Argument placement is
indicated by an underscore (_), as in the _and_ operator above, or the built-
in if_then_else_fi operator. If no underscores are supplied in an operator
declaration, arguments are placed in parenthesis behind the operator in a
traditional manner.

Several useful built-in modules are supplied with Maude, below are a few
examples:

• The BOOL module closely resembles our BOOLEAN module from
above, and provides the constants true and false and all the standard
boolean operators. This module is imported into all other modules
unless you explicitly state that it should not be.

• For representing integers, the INT module is used.

• QID is another built-in module, and contains a sort Qid, which is the
sort of the so-called quoted identifiers. A quoted identifier is a string
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(that cannot contain whitespace) with a quote as its first character, e.g.
’hello-world. This sort, although not very common in other languages,
is an integral part of Maude, and Qids are useful in many situations,
as we shall see several examples of later on.

2.1.2 Rewriting logic in Maude

Rewriting logic [32] is a logic of concurrent change, that in a natural way can
model highly non-deterministic problem domains. In Maude, specifications
in rewriting logic are contained within so-called system modules.

In functional modules, all the equations should, as mentioned, be ter-
minating and confluent. This is not, however, the case when it comes to
general rewrite rules. In rewriting logic, it is allowed for specifications to be
both non-terminating and non-confluent. That is, infinite rewrite paths and
divergent rewriting paths that may never again meet are fully acceptable.

In an equational specification, the equations represent equality. In a
rewriting logic specification, the rewrite rules are interpreted as local state
transitions [7]. This means that a rule of the form t→ t′ is not symmetric,
it can only be applied in one direction, as opposed to the equation t =
t′. Furthermore, a given transition can take place independently of and
concurrently with any other non-overlapping local state transition in the
system.

Definition 8 (Rewrite Theory). A rewrite theory R is a 4-tuple (Σ, E,
L, R), in which Σ is an equational signature, E is a set of Σ-equations, L is
a set of labels and R is a set of labeled rewrite rules.

System modules are the most general form of Maude modules. A system
module specifies a rewrite theory. As an example, consider the module in
Figure 2.1 on the following page, which models the process of a person aging
one year at the time. It should be clear that this process cannot be captured
by a symmetric equation.

In this figure, the signature Σ consists of all the sorts, subsort relations
and operator declarations in the modules INT and QID as well as the sort
Person and the declarations for the operators person and init. E is the
equations in the modules INT and QID together with the equation for the
init operator in the figure. Since both INT and QID are functional modules,
they contain no rule labels or rules, hence the set L consists only of the label
age, and the set of rules, R, consists of only the rule that is labeled age.

Given a set E of Σ-equations, TΣ,E represents the equivalence class of
terms {[t]E | t ∈ TΣ}. The E-equivalence class of t is conventionally denoted
[t]E , or just [t].

Given a rewrite theory R, the sequent R ` [t] → [e] holds if and only if
[t]→ [e] can be deducted by application of the following rules:2

2In the same way as in [32], the unsorted case is treated. Many-sorted and order-sorted
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mod AGING is
protecting INT .
protecting QID .
sort Person .

op person : Qid Int -> Person [ctor] .
op init : -> Person .

*** John Doe is 30 years old:
eq init = person(’JohnDoe, 30) .

var NAME : Qid .
var AGE : Int .
rl [age] :

person(NAME, AGE) => person(NAME, AGE + 1) .
endm

Figure 2.1: A module in which the rewrite rule age models the aging of John
Doe, one year at the time

Definition 9 (Deduction rules of rewriting logic).

1. Reflexivity: For every [t] ∈ TΣ,E(X)

[t]→ [t]

2. Congruence: For every function symbol f ∈ Σn

[t1]→ [t′1]...[tn]→ [t′n]
[f(t1, ..., tn)]→ [f(t′1, ..., t

′
n)]

3. Replacement: For each rewrite rule r : [t(x1, ..., xn)] → [t′(x1, ..., xn)]
in R

[w1]→ [w′1]...[wn]→ [w′n]
[t(w/x)]→ [t′(w′/x′)]

where x represents variables x1, ..., xn, w represents terms w1, ..., wn,
and w/x is the substitution of w for x.

4. Replacement for conditional rewrite rules: For each rewrite rule

cases can be treated similarly.
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r : [t(x)]→ [t′(x)] if [u1(x)]→ [v1(x)] ∧ ... ∧ [uk(x)]→ [vk(x)] in R

[w1]→ [w′1]...[wn]→ [w′n]
[u1(w/x)]→ [v1(w/x)]...[uk(w/x)]→ [vk(w/x)]

[t(w/x)]→ [t′(w′/x′)]

where x represents variables x1, ..., xn, w represents terms w1, ..., wn,
and and w/x is the substitution of w for x.

5. Transitivity:

[t1]→ [t2] [t2]→ [t3]
[t1]→ [t3]

Note that equational logic (modulo a set of axioms) can be obtained from
rewriting logic by adding the symmetry rule:

[t1]→ [t2]
[t2]→ [t1]

Maude comes with two built-in deterministic rewrite strategies, imple-
mented by the commands rew and frew. Both strategies rewrite terms in a
specification according to the specification’s rewrite rules modulo its equa-
tions.

The rewrite command rew rewrites terms using a leftmost outermost
approach to applying the rewrite rules. This will in many cases provide a
very skewed result, and will often leave some rewrite rules unused.

The fair rewrite command frew attempts to be fairer than rew by using a
depth-first position-fair strategy for applying rewrite rules. Even though the
strategy implemented by this command is arguably fairer than frew, it is not
fair enough for specifications that model concurrent, highly non-deterministic
problem domains, as we shall see examples of later on. In Chapter 9 a
strategy that uses a pseudo-random number generator for applying rules is
proposed.

In addition to the rewrite strategies, Maude also provides a command
red for reducing terms using equations only.

2.1.3 Maude’s Meta-level

A meta-program can, informally, be seen as a program that takes a rep-
resentation of another program as input, or returns a representation of a
program as its output, or both. Hence, a meta-program can be used to
manipulate, reason about, examine and execute other programs, provided a
sensible representation of such programs can be given.
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In this area, Maude excels. Any valid Maude program can quite easily
be represented at the meta-level using standard Maude syntax, and as such
it can also be manipulated using standard Maude mechanisms.

To provide it’s meta-programming capabilities, Maude makes use of the
fact that rewriting logic is reflective [9]. This implies, quoting [10], that

there is a finitely presented rewrite theory U that is universal
in the sense that we can represent any finitely presented rewrite
theory R (including U itself) (...) in U .

The meta-representation of a term t is conventionally denoted t, and the
meta-representation of a module R is likewise denoted R. Using this nota-
tion, we have the following equivalence [10]:

(†) R `t→ t′ ⇔ U ` 〈R, t〉 → 〈R, t′〉

In other words, if a term t can be rewritten to a term t′ in a rewrite
theory R, then the meta-representation of t in R, 〈R, t〉 can be rewritten to
the meta-representation of t′ in R, 〈R, t′〉, in the universal rewrite theory U ,
and vice versa.

Furthermore, since U is universal, it can represent itself. This means that
a term t inR, meta-represented in U as 〈R, t〉, can be meta-meta-represented

in U as 〈U , 〈R, t〉〉, and meta-meta-meta-represented as 〈U , 〈U , 〈R, t〉〉〉 and
so on. Hence, any term can be meta-represented an arbitrary number of
times.

Meta-representing terms in Maude

Terms are represented at the meta-level by a data type Term. This data
type is made up of several operators, each corresponding to different types
of terms. The presentation below is based on [7, 8, 38].

Variables Since variables can only have one sort in any given module, they
can be represented simply by a quoted identifier. Hence, it is sufficient to
declare the sort Qid a subsort of Term to be able to meta-represent variables.
Thus, a variable X is meta-represented as ’X.

For clarity and readability, though, it may still be convenient to have the
variable’s sort immediately available with the representation of the variable.
Maude makes this possible by allowing the sort of a variable to follow its
name, separated by a colon, and a variable X of sort Bool may be meta-
represented as ’X:Bool.
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Constants As opposed to variables, a constant declaration may be over-
loaded in a given module. For example, the constant none may very well be
declared as being of both sort Configuration and GenericMultiSet ; in other
words, the declarations

op none : -> Configuration .

and

op none : -> GenericMultiSet .

are perfectly legal in the same module. For this reason, constants are meta-
represented by their quoted version followed by their sort.3 For example, the
constant none of sort Configuration is meta-represented as

’none.Configuration

Compound Terms The meta-representation of a compound term

f(t1, . . . , tn)

(in which each of the subterms t1 to tn may also be a compound term) is
defined by an operator

op _[_] : Qid TermList -> Term .

The sort of the second argument of this operator, a TermList, is defined as
follows:

subsort Term < TermList .
op _,_ : TermList TermList -> TermList [assoc] .

Mixfix symbols such as the built-in + and if then else are meta-represented
in their prefix form as ’_+_ and ’if_then_else_, respectively.

To illustrate this concept, we use an example from [10]; the term s(s(0))+
s(0) in the built-in module NAT is meta-represented in the following way:

’_+_[’s[’s[’0.Nat]], ’s[’0.Nat]].

3In versions of Maude prior to 2.0, a slightly more involved notation for constants was
used, utilizing the following operator signature: op {_}_ : Qid Qid -> Term.
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Objects Maude provides support for object oriented specification. In this
thesis, we will to some extent be using Maude’s standard notion of objects
communicating by means asynchronous message passing

An object in Maude is a compound term, and as such it will be meta-
represented according to the rules stated above. However, since an object
may be quite complex, with quite a few attributes, its meta-representation
may look rather “ugly” to the human eye. As we will be seeing quite a lot
of these later in this thesis, we will look at an example here to familiarize
ourselves with their appearance.

Consider a simplified object representing a philosopher, from the well-
known dining philosophers problem (for now, just consider the object, we
will get back to the problem in detail in Section 7.2):

< ’Socrates : Philosopher | hungry : true, leftstick: false,
rightstick: false >

As we can see, the philosopher object has an identifier of the built-in sort
Qid (for quoted identifier), ’Socrates, and three boolean attributes indicating
whether he is hungry or not and whether he is currently in possession of his
left and right chopstick, respectively. Below is the meta-representation of
this simple object:

’<_:‘Philosopher‘|‘hungry:_‘,leftstick:_‘,rightstick:_>
[’’Socrates.Qid,’true.Bool,’false.Bool,’false.Bool]

Note the use of the back quote (‘) as an escape code for characters with
special meaning in Maude, such as whitespace and comma. This should not
be confused with the standard forward quote (’) which is used for quoted
identifiers (Qids).

Messages In the same way as objects, Maude’s conventional representa-
tion of messages are as compound terms. Hence, given a standard object-
level message with contents M from ’A to ’B,

msg M from ’A to ’B

we have the following meta-level representation:

’msg_from_to_[’M.Msg, ’’A.Qid, ’’B.Qid].

Meta-representing modules in Maude

A module specification consists of several distinct parts. Below, we will look
at the two (from our point of view) most interesting of them; equations and
rewrite rules, before we look at how to meta-represent an entire module. The
interested reader may always consult the Maude manual [11] for a detailed
description of all the parts.
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Equations An equation is meta-represented as a term of sort Equation,
and may be constructed from one of two operators; there is one operator for
unconditional equations and one for conditional equations:

op eq_=_[_]. : Term Term AttrSet -> Equation [ctor] .
op ceq_=_if_[_]. : Term Term EqCondition AttrSet ->

Equation [ctor] .

As we can see, the operators use terms as defined above to construct the
equations. As an example, consider one of the simple equations for the
exclusive or operator, xor, from the built-in module BOOL:

eq false xor A = A .

Below is the meta-representation of this equation:

eq ’_xor_[’false.Bool, ’A:Bool] = ’A:Bool [none] .

Rewrite rules A rewrite rule is represented in much the same way as an
equation. There are two constructors, one for the unconditional case and
one for the conditional case, respectively:

op rl=_[_]. : Term Term AttrSet -> Rule [ctor] .
op crl=_if_[_]. : Term Term Condition AttrSet -> Rule [ctor] .

Modules The representation of modules at the meta-level closely follows
the standard Maude syntax for modules; the perhaps most important dif-
ference (apart from the fact that all rules, equations etc. must be meta-
represented as well) is that the different declarations must be given in a
specific order, as opposed to the quite liberal approach taken by the stand-
ard Maude syntax with regards to this.

The constructor for a meta-level system module is defined as follows:

op mod_is_sorts_._____endm :
Qid ImportList SortSet SubsortDeclSet
OpDeclSet MembAxSet EquationSet RuleSet -> Module .

Although the syntactic details are not of highest importance to us at this
point, we note that equations and rules as defined above are gathered in sets
of sort EquationSet and RuleSet respectively. These sets, and the rest of the
sets used in the declaration, are defined as is standard in Maude: with an
infix constructor that is associative and commutative and with an identity
element none.

As an example, we will look once more at the module aging from Fig-
ure 2.1 on page 10, which models the process of a person aging one year at
the time. Below is the meta-representation of this module:
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mod ’AGING is
protecting ’BOOL .
protecting ’QID .
protecting ’INT .
sorts ’Person .
none
op ’init : nil -> ’Person [none] .
op ’person : ’Qid ’Int -> ’Person [ctor] .
none
eq ’init.Person = ’person[’’JohnDoe.Qid,

’s_^30[’0.Zero]] [none] .
rl ’person[’NAME:Qid, ’AGE:Int] =>

’person[’NAME:Qid, ’_+_[’AGE:Int,
’s_[’0.Zero]]] [label(’age)] .

endm

As mentioned, due to the fact that rewriting logic is reflective, the meta-
representation of terms can be iterated an arbitrary number of times. Hence,
even the meta-representation of sort Module above can be meta-meta-repre-
sented as a compound term of sort Term, as shown below:

’mod_is_sorts_._____endm[
’’AGING.Qid,
’__[’protecting_[’’BOOL.Qid], ’protecting_[’’QID.Qid],

’protecting_[’’INT.Qid]],
’’Person.Qid,
’none.SubsortDeclSet
’__[’op_:_->_‘[_‘].[’’init.Qid, ’nil.TypeList,

’’Person.Type,’none.AttrSet],
’op_:_->_‘[_‘].[’’person.Qid, ’__[’’Qid.Type,

’’Int.Type], ’’Person.Type,
’ctor.Attr]],

’none.MembAxSet,
’__[’eq_=_‘[_‘].[’’init.Person.Term,

’’person‘[’’JohnDoe.Qid‘,’s_^30‘[
’0.Zero‘]‘].Term, ’none.AttrSet]]

’__[’rl_=>_‘[_‘].[’’person‘[’NAME:Qid‘,’AGE:Int‘].Term,
’’person‘[’NAME:Qid‘,’_+_‘[’AGE:Int‘,
’s_‘[’0.Zero‘]‘]‘]‘[label(’age)‘].Term]]

]
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Descent-functions

Maude allows not only for programs to be represented at the meta-level;
meta-modules can also be executed as were they standard object-level mod-
ules, through the use of the so-called descent functions.

A descent function is, in general, a function that given a meta-level re-
write theory R and a term t in R, rewrites the term in accordance with a
given strategy, and returns the meta-representation of the resulting term [7].

Descent functions in Maude exploit the equivalence (†) presented earlier
in this section in order to perform meta-level computations at the object
level in a systematic way. This allows for efficient rewrites even for terms
that are meta-represented several times [7]. In other words, when a meta-
level computation is to take place, the equivalence (†) is used to lower the
reflective level as far as possible, preferably all the way down to the object
level, before the actual rewrites are performed.

A general descent function d can be expressed in terms of a general
sequential interpreter function I for rewriting logic [7]. I is a partial function,
and takes three arguments: a finitely presented rewrite theory R, a term t
and a deterministic strategy S. I satisfies the correctness requirement

(‡) I(R,t, S) = t’ ⇒ R `t→t’ [7].

The function d : Module × Term × Parameters → Term can then be
defined by an equation

d(R, t, p) = I(R, t ,Sd (p))

where Sd is a deterministic strategy with a single free variable p of sort
Parameters (which may in fact be a list of parameters).

Maude comes with several built-in descent functions that are provided in
the module META-LEVEL. Below we will look at a selection of these.

metaReduce The function metaReduce : Module × Term → ResultPair
is a descent function that provides the same functionality at the meta-level
as the red command provides at the object level. In other words, it al-
lows for terms at the meta-level to be reduced to their meta-level normal
form. Hence, the interpreter function for metaReduce is Maude’s internal
interpreter function:

metaReduce(R, t) = IMaude(R, t , red) [10].

The result returned by metaReduce is a pair containing the meta-repre-
sentation of the reduced term, and the meta-representation of its sort.
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metaRewrite Corresponding tometa-reduce, the descent functionmetaRe-
write : Module × Term × Int → ResultPair provides the functionality of
the Maude’s rew command at the meta-level, allowing for a specification to
be rewritten according to its rewrite rules modulo its equations:

metaRewrite(R, t,n) = IMaude(R, t , rewrite [n]) [10]

where n is a positive integer specifying the maximum allowed number of
applications of the rewrite rules in R. If the value 0 is given for n, the
rewriting will continue until the execution terminates according to the rules
in the specification (meaning that no rule or equation is applicable), or if the
specification is non-terminating, infinitely (at least in theory).

metaXapply The (partial) operation metaXapply allows for more fine-
grained control over the rewriting at the meta-level, compared to the afore-
mentioned functions. Taking as arguments the meta-representation of a
module, the meta-representation of a term, the meta-representation of a
rule label, the meta-representation of a possibly empty set of assignments (a
partial substitution), a natural number and a value of sort Bound represent-
ing a lower and upper bound for the position in the term where the rewrite
may be applied, respectively, and finally another natural number represent-
ing a solution number, metaXapply(R, t, l, σ, n, b, m) makes it possible
to control which rewrite rule is applied to a given term at a given position
within a module [11].

As an example, consider the following simple Maude rewrite specification
for a population of three people, John Doe, Jane Doe and little Jonathan
Doe, that are all aging through the application of the age rewrite rule, and
die when the die rewrite rule is applied:

mod AGING-2 is
protecting INT .
protecting QID .

sorts Person Configuration .
subsort Person < Configuration .

op __ : Configuration Configuration -> Configuration
[ctor assoc comm id: none] .

op person : Qid Int -> Person [ctor] .
op none : -> Configuration .
op init : -> Configuration .

eq init = person(’JohnDoe, 30) person(’JaneDoe, 28)
person(’JonathanDoe, 4) .
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var NAME : Qid .
var AGE : Int .
rl [age] :

person(NAME, AGE) => person(NAME, AGE + 1) .
rl [die] :

person(NAME, AGE) => none .
endm

From the initial state init, the rewrite rule age may be applied once at three
different positions within the term; John can age one year, Jane can age one
year, or Jonathan can age one year. Also, either one of the persons may
die. Which of these rewrites that will actually take place, is in rewriting
logic non-deterministic. Maude, however, is a deterministic tool running on
a deterministic machine, and will always choose the same solution. Using
metaXapply, we are able to control this by specifying the rule label l (’age)
and the solution number m (2) ourselves, as shown below:

red metaXapply([’AGING-2], ’init.Configuration,
’age, none, 0, unbounded, 2)

The result returned from a successful application of metaXapply is a four-
tuple consisting of the rewritten term, the type of the term, a substitution
and a context that shows where in the term the rewriting took place. Each
of the components of the tuple is available through the use of the following
functions [11]:

op getTerm : Result4Tuple -> Term .
op getType : Result4Tuple -> Type .
op getSubstitution : Result4Tuple -> Substitution .
op getContext : Result4Tuple -> Context .

So, to conclude our example, the resulting term from the application of the
age rule at position 2 using metaXapply shown above, can be found using
getTerm as follows:

red getTerm(metaXapply([’AGING-2], ’init.Configuration,
’age, none, 0, unbounded, 2))

and the result is shown in standard meta-level syntax:

’__[’person[’’JaneDoe.Qid,’s_^28[’0.Zero]],
’person[’’JohnDoe.Qid,’s_^30[’0.Zero]],
’person[’’JonathanDoe.Qid,’s_^5[’0.Zero]]]

19



Strategies

A specification in rewriting logic may be both non-terminating and non-
confluent, in addition to being non-deterministic. This clearly makes the
question of how to execute such a specification on a deterministic machine
non-trivial.

Maude provides two basic strategies, namely those implemented by the
rew and frew commands. Apparently, and as we shall see later in this thesis,
these are not satisfactory for a number of problems.

The point of defining a strategy is to complement or replace Maude’s
internal strategy. Using meta-level descent-functions such as metaXapply, a
strategy for a rewriting logic specification can be defined in rewriting logic,
because rewriting logic is reflective [9].

For example, a specification of an unreliable network would probably
contain a rule for modeling that a message is lost during transmission due
to a network failure of some kind. However, using one of Maude’s internal
strategies, we risk that this rule will be applied too often, perhaps every time
it is applicable, meaning that every message will be lost(!). This is clearly
not the desired behavior. The solution is to define our own strategy. Below
we will look at a small yet illustrative example.

We assume that the rule for loosing a message is labeled loose-msg, and
that we want this rule to fire at most once for every hundred rule applications.
To achieve this, we define the following strategy:

fmod LOOSE-STRAT is

protecting META-LEVEL .
protecting INT .

op loose-strat : Module Term Int -> Term .
op loose-strat : Module Term Int Int Int -> Term .

op remove-rule : Module RuleLabel -> Module .

vars I J K : Int .
var M : Module .
var T : Term .
var L : Qid .
var MODNAME : QID .
var IL : ImportList .
var SS : SortSet .
var SDS : SubSortDeclSet .
var ODS : OpDeclSet .
var MAS : MembAxSet .
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var ES : EquationSet .
var RS : RuleSet .

eq loose-strat(M, T, K) = loose-strat(M, T, 1, 0, K) .
eq loose-strat(M, T, I, J, K) =

if J > K then
T

else
if I >= 100 then

if metaXapply(M, T, ’loose-msg, none, 0,
unbounded, 0) =/= failure then

loose-strat(M, getTerm(metaXapply(
M, T, ’loose-msg, none, 0,
unbounded, 0)), 0, J + 1, K)

else
loose-strat(M, getTerm(metaRewrite(remove-rule(

M, ’loose-msg), T, 1)), I + 1, J + 1, K)
fi

else
loose-strat(M, getTerm(metaRewrite(remove-rule(

M, ’loose-msg), T, 1)), I + 1, J + 1, K)
fi

fi .

eq remove-rule(mod MODNAME is IL . SS SDS ODS
MAS ES (L RS) endm, L) =
(mod MODNAME is IL . SS SDS ODS
MAS ES RS endm) .

endfm

The strategy defined above allows the user to specify a module M, a term T
and an integer K, the latter corresponding to the number of rewrites to be
performed.

Making use of the auxiliary function remove-rule : Module × RuleLabel
→ Module, this strategy rewrites the term T in module M with the ’loose-
msg rule removed, using Maude’s standard rewrite strategy, until the variable
I is equal to or greater than 100. When this is the case, the ’loose-msg rule is
tried, and if applied successfully, the counter I is reset to 0 and the rewrites
will be performed according to Maude’s internal strategy for at least 100
more iterations.
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2.2 Creol

The Creol project is an ongoing research project at the University of Oslo,
Norway. Creol is an acronym for Concurrent Reflective Object-oriented Lan-
guage. The goal of the project is, quoting [12], to

develop a formal framework and tool for reasoning about dynamic
and reflective modifications in object-oriented open distributed
systems, ensuring reliability and correctness of the overall system.

The syntax of the language is designed to appear familiar to programmers
with little or no formal background, and is inspired by such languages and
technologies as Simula [13], Java [18] and Corba [5]. It includes standard
object-oriented mechanisms such as inheritance, interfaces, method calls etc.

The operational semantics of Creol is defined in rewriting logic, and based
on this an interpreter has been defined in Maude, that can execute Creol
specifications. In the following, we will look at some important aspects of
the language that are central to our work. For a more detailed description,
the reader is referred to the references that can be found on the Creol web
page [12]. The information below is mainly based on [24, 26].

2.2.1 Classes and objects

From a programming point of view, attributes (object variables) and method
declarations are organized in classes in a standard way. Objects are dynam-
ically created instances of classes, and a new object is created with the new
keyword. Creol supports multiple inheritance of both classes and interfaces.
The attributes of an object are encapsulated and can only be accessed from
the outside via the object’s methods.

2.2.2 Interfaces

Creol objects are typed by interfaces (as opposed to being typed by classes,
which is common in many other languages), and the methods an object
offers to its environment may be specified through a number of interfaces.
All interaction with an object happens through the methods of its interfaces.
That is, any method that is not declared in an interface is considered internal
to the object.

A method can be restricted to be callable only by objects implementing a
certain interface using the with <interface> construct. If the interface follow-
ing with is any, which is the super-interface of all interfaces, the method(s)
in question can be called by any object.

An interface may also include both an invariant and an assumption. The
assumption is a predicate on the communication history describing the expec-
ted behavior of an object’s surrounding environment. The invariant is also
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a predicate on the communication history, that describes (and enforces) the
required behavior of any object that implements the interface. The invariant
is guaranteed to always hold as long as the assumption on the environment
holds.

2.2.3 Method calls

Creol supports both synchronous and asynchronous method calls, regardless
of whether the calls are local or remote. The caller decides whether an
invocation is synchronous or asynchronous. This provides a very flexible
communication model.

In the synchronous setting, the caller is blocked until the call has com-
pleted at the callee, and the result is ready.

In the asynchronous setting, method calls can always be emitted, because
the receiving object cannot block communication. The caller can proceed
with its activity until the return value of the call is needed, and must then
wait in the event that it has not yet arrived. Method overtaking is allowed
in the sense that if methods offered by an object are invoked in one order,
the object may react to the invocations in another order.

Since an object may have several pending calls, a unique label is used
to identify each asynchronous call for which a reply is wanted. If the caller
does not specify a label for an asynchronous call, it is not interested in the
return value, even though the method may have out parameters.

Let m be a method name, in and out be (possibly empty) lists of in
and out parameters, respectively, l a label and o an object reference. The
different mechanisms for method calls can then be summarized as follows:

• m(in;out):
local synchronous call

• l!m(in):
local asynchronous call with label

• !m(in):
local asynchronous call without label

• o.m(in;out):
synchronous call to remote method

• l!o.m(in):
asynchronous call to remote method with label

• !o.m(in):
asynchronous call to remote method without label

• ?l(out):
request for return values of an asynchronous call
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Method calls are implemented by a message pair of an invocation mes-
sage and a completion message. This makes for a very natural concept of
asynchronicity.
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Chapter 3

Communication Histories

In the object oriented programming paradigm, a common way to view an
object is as a black box. This means that the programmer using the object
in principle needs to know nothing of its implementation. As opposed to the
so-called glass box view, the object’s internal state is hidden and hence not
directly available neither for inspection nor modification by its surrounding
environment during execution, and the values of the object’s attributes can
only be changed through method calls. This is known as encapsulation, and
allows an object to maintain full control of its internal variables and data
structures.

Instead of resorting to the actual implementation, in the black box view
an object can be described in terms of its observable behavior. The observ-
able behavior of an object is, informally, its interaction patterns with other
objects in the environment that can be observed by an external observer
without any prior knowledge of the object’s implementation.

In many object oriented languages that are popular in the computing
industry, such as Java [18] and C] [20], observable interaction takes the form
of method calls and/or events. A common way to specify which methods
and events a class exposes is through an interface definition.

An interface definition for a Java or C] object is, however, quite lim-
ited, in the sense that it only specifies which operations are available (along
with their respective type information), but nothing regarding the possible
relationship between method invocations and ordering of them.

For example, consider a server object that provides services for reading
from and writing to a shared resource, and that requires a connection to be
opened in either read mode or write mode and the client to be authenticated
before further requests can be made. In Java, a public interface for this
server might look like the code in Figure 3.1 on the following page.

If we have access to the interface of the object, we can tell which methods
the server offers, and may perhaps be able to make a qualified guess regarding
the order in which they are supposed to be invoked, but apart from this the
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public interface SimpleServer
{

ConnectionHandle connect(int clientID, char mode);
void close(ConnectionHandle conn);
Data read(ConnectionHandle conn);
void write(ConnectionHandle conn, Data data);

}

Figure 3.1: A simple server interface in Java

interface tells us little about how interaction with the object should proceed.
For example, a common requirement is that when a connection is opened
for writing, requests to open other connections must be either delayed or
declined. Unfortunately, there is no way to express this in a Java interface
(without resorting to comments), to know this we must have access to the
actual implementation of the server.

Furthermore, the interface does not specify what active behavior an ob-
ject may have. In other words, a Java/C] interface for a given object specifies
what observable behavior other objects may perform on the object to which
the interface belongs, and not the other way around.

Observable behavior can, however, be expressed in many ways that com-
plement a standard interface definition consisting only of signatures (as
shown in the example in Figure 3.1). One way is through a history [14]
(or finite trace [21]) that is recorded as the object (and its environment) per-
forms observable behavior. If all the manipulation of a given object happens
through observable behavior, such a history can be considered an abstract
representation of the object’s state, and the object’s behavior can be specified
by a function on its history [27].

Using a history of observable behavior to specify the interactions with the
server, we can for example express that in order to read, a client must first
establish a connection, and then close it again after it has finished reading.
This kind of specification is often referred to as a safety specification, stating
that “nothing wrong will happen” [2]. An example is the following predicate:

P(H, x) = H / from(x) prs (connect read* close)*

The predicate above uses a part of the global history (referred to as H ), by
utilizing a projection (/) that spans over only the messages originating from
a given object x. Furthermore, the prs operator states that this projection
of the history must be a prefix of the sequence specified by the regular
pattern (connect read* close)*. Hence, we have effectively specified that
an object must open a connection before it can perform zero or more read
operations, and that it must close the connection again before a new sequence
of operations is started (for brevity, we have skipped the fact that an object
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may also perform write operations etc).
The mechanisms used above will be discussed in further detail in Chapter 5,

this little example is just meant as a motivation for what follows.
In the object-based Maude (and Creol) specifications that we will con-

sider in this thesis, observable interaction takes place in the form of an
exchange of messages between the objects. Hence, the history of observable
behavior can be narrowed down to a history of messages; a communication
history.

We shall now move on to consider some questions regarding important
design choices for how communication histories can be integrated in the
executable object environment provided by Maude.

3.1 Extending Maude specifications with histories

Messages and objects will be defined in a form resemblant of the style used
in Full Maude [16]:

Object: < O : C | att1, ..., attk >
Message: msg M from P to Q

where O, P and Q are object identifiers, C is a class, att1 through attk are
attributes and M is the actual contents of the message (possibly containing
some additional data such as parameters).

Hence, the communication history H that will be built during execution,
will be a list of such messages as defined above.

The implementation-level details concerning how to record the actual
communication history will be delayed to the next chapter, where we will
look closer at an implementation using Maude’s meta-level. However, before
we get that far, there are some important questions we need to address:

3.1.1 Where are the histories stored?

When it comes to storing the history during runtime, we have two choices:

1. each object can store its local history

2. a separate object can be used to store a global history

At first glance, it may seem that option number one is the better solution
here, since it seemingly fits nicely into the object oriented programming man-
tra that each object should know of and be responsible for its own behavior
and state. There are some problems with this approach, however:

First of all, if we want each object to store its history, each object needs
some attribute for storing such a list of messages. This might not seem like
a major problem, but as we shall see in section 3.1.3, we do not really want
to modify the original specification, and since we cannot assume that the
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objects in the original specification contain such attributes, we would have
to add them.

Secondly, we can recreate each local history by using a projection on the
global history (see Chapter 5 for more on this), but the same is not true of
the opposite — it is not always possible to correctly recreate a global history
from several local histories in a non-deterministic system, as the order in
which the messages are to be interleaved is not known.

A final argument against encapsulating the communication history in
the individual objects is that is does not really make sense to encapsulate
information that to begin with is meant to be observable by an external
observer.

Hence, we choose to create a global history of messages sent from the
objects in a specification, and will provide the means to extract the local
histories from the global history using projections.

3.1.2 When do we record message events in the history?

We consider an asynchronous communication model in which objects emit
messages into a global state, and the messages may (or may not) eventually
arrive at their destination. In this setting, there are basically three options
when it comes to the time of recording of messages in the history. The
logging can occur

1. when the message is sent

2. when the message is received

3. both of the above

In this thesis, we will use option number one; we will record messages in
the history when they are sent. There are several reasons for this:

• Our communication history is a history of observable behavior, and for
an external observer, it is clear that the action of an object sending
a message can easily be observed. However, when it comes to the
reception of a message, it is not obvious that this is indeed, from a
conceptual point of view, observable by the environment at the exact
time that it happens.

• We strive for simplicity rather than complexity. Using communication
histories with messages recorded at the time of sending, we are, as
we shall see later on, able to express quite sophisticated predicates
in a quite easy and straightforward way. If we were to use option
three, and record messages both at the time of sending and reception,
the complexity would obviously increase significantly, arguably without
adding much in terms of power of expression.
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• By using option number two or three instead of one, the amount of
possible states that can be reached from a given initial state will most
certainly increase significantly because of the fact that a message can
be received by an object at any point in time (due to the fact that an
asynchronous network model may introduce an arbitrary delay between
the time of sending and reception of a given message). A significant in-
crease of reachable states makes searching (using Maude’s search com-
mand) more demanding in terms of computational power, if not for all
practical purposes impossible.

• In the Creol language, the point in code at which a message is emitted
is easily located, however, no such point exists for the reception of a
message, again due to the asynchronous communication model. Hence,
when specifying communication properties for a given Creol program,
the point at which a message is sent is a lot more usable than the point
at which it is received.

Based on these arguments, we choose to record messages in the history
at the time they are sent.

3.1.3 How do we build such a history during execution?

There are many ways in which we can make a Maude specification record
a communication history of the messages that are sent between objects.
Amongst our choices are:

1. the specification can be changed/reprogrammed so that each rewrite
rule that sends a message also records that message in the history.

2. we can develop a compiler that will transform a standard specification
into a specification that records messages in the history.

3. we can make use of Maude’s meta-level to develop a strategy that
records the messages in the history as it executes the specification.

What we will do is to use option number three, to make use of Maude’s
meta-programming capabilities. However, let us first look a little bit closer
at the other two options.

Option number one, while clearly being a possible solution, is obviously
the least desirable of the three, as it involves manual changes to every spe-
cification (an example of such a change is shown in figures 3.2 and 3.3 on
the following page). As we know, manual change introduces many potential
problems to a system:

• there is always the possibility that the programmer changing the spe-
cification makes an error that in some way breaks an already well-
functioning application.
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rl [send]:
< ’S : Sender | Reciever : ’R >

=>
< ’S : Sender | Reciever : ’R >
msg ’M from ’S to ’R .

Figure 3.2: A rewrite rule that sends a message ’M from ’S to ’R

rl [send]
< ’S : Sender | Reciever : ’R >
< ’H : History | messages : MLIST >

=>
< ’S : Sender | Reciever : ’R >
< ’H : History | messages : MLIST ++

(msg ’M from ’S to ’R) >
msg ’M from ’S to ’R .

Figure 3.3: A new version of the rewrite rule from Figure 3.2 that makes use
of an object ’H that maintains a global history of messages

• it is easy to forget to change certain parts of a specification, and such
errors lead to an incomplete history, which in turn may lead to an
incorrect result when checking a predicate/invariant.

• it is obviously time-consuming to make manual changes, and with a
large code-base it would require a substantial effort from the develop-
ment team, hence it is also expensive.

On the positive side, one might claim that manual changes may allow for
a fine-grained approach to the problem that suites each case perfectly and
that may outperform a generic solution. However, it seems clear that the
negative sides to a manual change outweigh the positive.

So, let us move on to option number two; to develop a compiler that
transforms a standard Maude specification into a Maude specification that
builds a communication history while executing.

This option is more or less an automated version of option one (so the
transformation of the code in Figure 3.2 to the code in Figure 3.3 would
happen automatically in the compilation process), though without the pos-
sibility of a “tailor-made” solution for each specific problem. However, the
manual work is also gone, which invalidates that part of the criticism of
option one.

The biggest problem with this approach is probably the complexity in-
volved in creating such a compiler, for several reasons:
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• the syntax in Maude is entirely user-definable [7], which means that
writing such a compiler would approach the complexity of writing a
full parser for the Maude language.

• we want to be able to support a wide range of specifications, ran-
ging from standard Maude specifications to Creol programs that are
executed by the interpreter available from [12] (more on this later).

While creating a compiler is a viable solution, we have, as mentioned,
chosen option three; to make a meta-level program that is able to execute an
object-level specification, and recognize when an object in this specification
sends a message, and record this message in its global history.

The main criticism of this approach is probably the performance over-
head, which might be substantial, and we will look into this in closer detail
in Chapter 4. However, since our main focus is on prototyping and testing,
performance is perhaps not the most critical of aspects.

On the positive side, using a meta-level approach to this problem makes
the solution completely transparent, in the sense that the original specifica-
tion remains unchanged, and the meta-level may be plugged in only in the
situations needed.

Furthermore, using a meta-level strategy opens up for several other pos-
sibilities in addition to just recording a communication history; as we shall
see in later chapters the strategy will be extended to handle predicates on
the history, as well as implement a pseudo-random rule selection scheme, and
the latter would be very hard if not impossible to do using just a compiler
from one object-level specification to another.
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Chapter 4

A Meta-Level Rewrite Strategy
for Recording the
Communication History

In this chapter, we will introduce a meta-level Maude strategy for executing
object-level Maude specifications. In addition to being able to execute a
specification, the strategy should also be able to recognize, respond to and
record an object’s observable behavior.

The general idea is to keep track of the current state, and between each
rewrite check the state to see whether any object initiated some observable
behavior, as illustrated in Figure 4.1 on the next page.

Following the conclusions we made in Chapter 3, the strategy should be
completely transparent with respect to the module that is executed, in the
sense that no change should be needed in this module. Furthermore, the
kind of observable behavior we are looking at is communication in the form
of an exchange of messages.

The current state is represented as a configuration, which is a multi-set
containing messages and objects. The configuration itself is represented as a
compound term (see Section 2.1.3) at the meta-level. Our goal is to be able to
recognize when an object sends a message to another object, and to record
this message in a global communication history (the history will be used
in Chapter 5, in which we will define predicates on a finite communication
history).

In order to achieve this goal, we need some mechanism for keeping track
of the current state, the communication trace, and a concrete strategy that
is able to decide which rewrite rule to apply next. This mechanism will be
developed in a Maude module called META-ENGINE, utilizing two objects,
an Engine object and a History object.

The rationale behind using two separate objects for this is that they
provide for quite different functionality, as we shall see in the following sec-
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input:
module M, term t

?

Start

?
rewrite t → t′ in M

Compare t to t′, any
observable behavior?

@@Yes No
?

Log behavior
in history

� Set t = t′

Figure 4.1: Outline of the rewrite strategy

tions. Furthermore, we want to be able to “plug” in and out the History
object without changing the Engine object, should the need arise.

We start out by introducing a sort EngineObject, of which both our
objects will be. EngineObject is a subsort of EngineConfig, which is a multi-
set of engine objects. Such an object will keep track of data that is needed for
our strategy (or that we want to store for other reasons) between consecutive
rewrites.

In this thesis, we will only look at situations where there is exactly one
Engine object, and at most one History object. However, extending this to
allow for more than one engine could perhaps be an interesting study.

4.1 The Engine object

To keep track of the current state, we will make use of an object called Engine
of sort EngineObject. This object keeps track of data that is needed by our
strategy in order to perform the rewrites. In a sense this object corresponds
to the data maintained by Maude’s default internal strategy. It is defined as
follows:

op Engine[curTerm:_, curModule:_, labels:_,
failedRules:_, numRules:_] :
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Term Qid QidList QidList Int -> EngineObject [ctor] .

As we see, the Engine object contains several attributes:

• The curTerm attribute contains the entire state of the system (to which
we are applying our rewrite strategy), which typically would be a multi-
set of objects and messages of sort Configuration, meta-represented as
a term of sort Term.

• The name of the current module (in which the equations and rewrite
rules that define the operations and transitions allowed on the term
stored in curTerm are contained) is stored as a quoted identifier (Qid)
in the attribute curModule.

• A module in rewriting logic has a (possibly empty) set of rewrite rules.
In Maude, each of the rules has a label that is used as an identifier.
These labels are meta-represented as a term of sort Qid, and as such
they can easily be gathered in a list of sort QidList and stored in the
labels attribute.

• Whenever the application of a given rule is attempted on a given meta-
representation of a configuration, the outcome may be one of two:
either the rule can be applied (it is enabled in the configuration) , and
the term resulting from the application is returned. Otherwise, if the
rule is not enabled, the application will fail, and the descent function
will return failure (see Section 2.1.3 for more information on descent
functions). The failedRules attribute keeps track of the rules that have
failed up till now for the current term.

• The numRules attribute contains the number of rules in the module
whose name is contained in curModule, for efficiency reasons (we could
easily have calculated this each time we needed it from the labels list).

We now introduce a first strategy to illustrate meta-level programming
(we will look at different ways to extend and improve this strategy in the
following chapters). The rules will be applied in a round robin fashion, using
the labels list attribute. We try to apply the rule that is at the head of this
list to the term in the curTerm attribute. If the rule application succeeds, the
rule is moved to the back of the list, curTerm is replaced with the resulting
term from the application, the list of failed rules is reset to the empty list
(nil) and the next rule is tried. If, on the other hand, the rule application
fails, the rule is moved to the list of failed rules, and the current term remains
unchanged. This is handled by the conditional rewrite rule exec, as shown
in Figure 4.2 on the following page.

Since the rule in Figure 4.2 is conditional, the execution will terminate
when the length of the list of failed rules is equal to the number of rules in
the module, since no rule is applicable.
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crl [exec]:
Engine[curTerm: T, curModule: MOD, labels: LABEL LABELS,

failedRules: FAILEDRULES, numRules: NUMRULES]
=>

if metaXapply([MOD], T, LABEL, none, 0, unbounded, 0) =/=
failure

then
Engine[curTerm: getTerm(metaXapply([MOD], T, LABEL, none,

0, unbounded, 0)), curModule: MOD, labels: LABELS LABEL,
failedRules: nil, numRules: NUMRULES]

else
Engine[curTerm: T,

curModule: MOD, labels: LABELS LABEL, failedRules:
FAILEDRULES LABEL, numRules: NUMRULES]

fi
if length(FAILEDRULES) < NUMRULES .

Figure 4.2: A rewrite strategy that applies rewrite rules in a round robin
fashion

As mentioned in Section 2.1, Maude provides two built-in basic rewriting
strategies, implemented by the rew and frew commands. The rew command
will perform rewrites using a leftmost and outermost strategy for applying
rules and reduce the whole term by equations after each successful rule re-
write [11]. This means that on subsequent rewrites, the same rule(s) will
always be tried first, possibly yielding a very skewed result.

The frew command, on the other hand, tries to be position fair by making
a number of depth-first traversals of the term. Each position is rewritten
only once per traversal. Furthermore, only the subterm that was rewritten
is reduced using the equations in the module, allowing other subterms to
rewritten further down the traversal.

The strategy presented in Figure 4.2 lies somewhere in-between those
implemented by rew and frew. Since it tries rules in a round robin fashion,
it will in many cases avoid the typically skewed results that rew produces.
Our strategy is fair when it comes to the rule applications. On the other
hand, as opposed to frew it is not position fair, the first position applicable
for a given rule will always be tried first.

In Chapter 9 we will look at how we can make the rewrite strategy fairer
by using a non-deterministic approach based on random numbers.
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4.2 The History object

In order to build a communication history, we need to know when a new
message is sent from one object to another (meaning that it is put into the
configuration via some rule application), and we need a means of storing the
communication history between rewrite steps.

To store the history, we introduce a new object, History of sort Engine-
Object :

op History[h:_] : MsgList -> EngineObject [ctor] .

This object has only one attribute: h. This attribute will contain the
actual communication trace during the execution of a given specification,
represented by a message list of sort MsgList, which is defined as follows:

fmod MSG-LIST is
sort MsgList .
subsort Msg < MsgList .

op nil : -> MsgList [ctor] .
op _@_ : MsgList MsgList -> MsgList [ctor assoc id: nil] .

endfm

We note that the concatenation operator for message lists is the @ oper-
ator.

To build the communication trace, we need to check the current term
for new messages between each successful rule application, hence we need to
make some changes to the exec rewrite rule:

• The History object needs to be included in the left hand side of the
rule, this is a trivial change.

• If the rule application fails, the history object remains unchanged.

• If the rule application succeeds, the history objects needs to be updated
with any new messages created by the last rule application, if any.

Clearly, the main issue is the last bullet, how to update the history with
new messages, and to achieve this there are two specific problems that need
to be addressed:

1. How do we recognize a message in a meta-level representation of an
entire configuration?

2. How do we separate the messages that were created by the current rule
application (which are the ones we want to add to the history) from
those created by previous rule applications that may still be present in
the configuration?
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Addressing problem number one first, we know that a configuration by
definition is a multiset of messages and objects. In Maude, it is conventional
to construct such multisets using the “invisible” constructor operator __,
which is defined as being both associative and commutative with none as the
identity element. Knowing this, we also know that the meta-representation
of a given configuration would be a compound term, as described in Section
2.1.3. For instance, a meta-representation of a configuration containing two
simple objects with no attributes, ’A and ’B, and one message from ’A to
’B could look something like this:

’__[’<_:´ Object>[’’A.Qid], ’<_:´ Object>[’’B.Qid],
’msg_from_to_[’M.Msg, ’’A.Qid, ’’B.Qid]]

To find out which of the subterms within the compound term are mes-
sages, we need to iterate through them and check them one by one. This
functionality could be implemented in several ways, we choose to make use
of Maude’s built-in function wellFormed : Module × Substitution → Bool,
that returns true if a given substitution is valid within a given module, and
false otherwise. To simplify things a bit, we define an auxiliary function
isMetaMessage that takes a term and the name of a module, and returns
true if the term is a valid meta-level representation of a message:

op isMetaMessage : Term Qid -> Bool .
eq isMetaMessage(T1, MOD) = wellFormed([MOD], ’M:Msg <- T1) .

Using this function we can check each subterm of the configuration re-
cursively to decide whether it is a message or not.

Having found a way to decide which parts of a given meta-representation
of a configuration are actually messages, we can move on to our second
problem from above — how do we tell new messages from old ones?

Given that a configuration might contain several identical messages, and
that each rewrite rule might produce or consume an arbitrary number of mes-
sages, we need to use a counting scheme to figure out whether a meta-level
message in a given meta-level configuration is new or not. For this purpose,
we introduce a function countGroundTerms, which counts the number of
ground terms in a ground term list that are equal to a given ground term:

op countGroundTerms : GroundTerm GroundTermList -> Int .
op countGroundTerms : GroundTerm GroundTermList Int -> Int .
vars GT1 GT2 : GroundTerm .
var GTL2 : GroundTermList .
var I : Int .

eq countGroundTerms(GT1, GTL2) =
countGroundTerms(GT1, GTL2, 0) .
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eq countGroundTerms(GT1, GT2, I) =
if GT1 == GT2 then 1 else 0 fi .

eq countGroundTerms(GT1, (GT2, GTL2), I) =
if GT1 == GT2 then

1 + countGroundTerms(GT1, GTL2, I + 1)
else

if I > 0 then
0

else
countGroundTerms(GT1, GTL2, 0)

fi
fi .

Since we know that Maude sorts the subterms in the resulting term
between each rewrite, we can stop counting when the two terms differ and
we have already counted to one or more, as shown in the code above.

Closing in on the solution to this problem, we are now ready to define
a function getNewMessages, that returns a list of messages that are new
in one meta-level configuration compared to another. The method that we
will use is, as described above, to iterate through all the terms in the new
configuration, and for each term check whether it is a message or not, and
whether it is new in this configuration or not, using the auxiliary functions
defined above.

The definition of getNewMessages is as follows:1

op getNewMessages : Term Term Qid -> MsgList .

var GT2 : GroundTerm . vars GTL1 GTL2 : GroundTermList .
var MOD : Qid .

eq getNewMessages(’__[GTL1], ’__[GT2, GTL2], MOD) =
if isMetaMessage(GT2, MOD) and countGroundTerms(GT2, GTL1) <

countGroundTerms(GT2, (GT2, GTL2))
then

groundTermToMessage(GT2) @
getNewMessages(’__[GTL1], ’__[GTL2], MOD)

else
getNewMessages(’__[GTL1], ’__[GTL2], MOD)

fi .

1This code shows the general idea, but actual implementation is a bit more involved,
seeing as we have to take into consideration that either of the two configurations may be
empty or consist of only one term etc. The interested reader may consult the source code
in Appendix A for the full details.
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As shown above, getNewMessages makes use of yet another auxiliary
function; groundTermToMessage : GroundTerm → Message. This function
returns an object-level message from its meta-level representation, since mes-
sages will be stored in their object-level form in the communication history.

The code for getNewMessages and the auxiliary countGroundTems func-
tions may seem inefficient. Since Maude sorts the subterms within a term,
we should be able to perform the check for new messages with one tra-
versal through both ground term lists at the same time, as shown in the
non-executable code below:

eq getNewMessages(’__[GT1, GTL1], ’__[GT2, GTL2], MOD) =
if GT1 == GT2

getNewMessages(’__[GTL1], ’__[GTL2], MOD)
else

if GT1 MaudeSort< GT2 then
getNewMessages(’__[GTL1], ’__[GT2, GTL2], MOD)

else
groundTermToMessage(GT2) @

getNewMessages(’__[GT1, GTL1], ’__[GTL2], MOD)
fi

fi .

The problem with this code, is that we do not have access to Maude’s
internal sorting algorithm, and hence we cannot define the MaudeSort< re-
lational operator that returns true if its left argument is smaller than its
right according to this algorithm.2

Another possible objection to our strategy can be illustrated by the fol-
lowing example: suppose we have a configuration in which there is an object
A, and a message M in transit from A to A:

< A | ... > msg M from A to A

If, in the next rewrite, A consumes the message and, in the same rewrite,
sends out an identical message, our strategy would not be able to capture
the fact that a new message is sent, since the states before and after the
rewrite are identical.

However, we focus on observable behavior, and since there is no observ-
able change in the state before and after the rewrite, it can be argued that
the two states are essentially the same. Hence, any such rewrite steps are not

2When looking at the results produced by Maude, the sort order appears to be alpha-
betical. However, there is no easy way in Maude today to alphabetically compare two
terms. Writing an algorithm that turns two terms into strings and compares them with
the built-in < operator might be worth considering, but we will not pursue this idea any
further in this thesis.
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visible to an external observer, and sending of messages that do not result
in a state change should not be included in the history.

As we shall see in Chapter 8, none of this is a problem when dealing with
Creol messages, as every such message has a unique identifier attached to it.

We are now ready to define our entire rewrite strategy; in Figure 4.3 we
have the exec-history conditional rewrite rule, which is a modified version
of the exec rule presented in Figure 4.2 on page 36. This strategy builds a
communication trace as the execution proceeds.

crl [exec-history]:
Engine[curTerm: T, curModule: MOD, labels: LABEL LABELS,

failedRules: FAILEDRULES, numRules: NUMRULES]
History[h: ML]

=>
if metaXapply([MOD], T, LABEL, none, 0, unbounded, 0) =/=

failure
then

Engine[curTerm: getTerm(metaXapply([MOD], T, LABEL, none,
0, unbounded, 0)), curModule: MOD, labels: LABELS LABEL,
failedRules: nil, numRules: NUMRULES]

History[h: ML @ getNewMessages(T, getTerm(metaXapply(
[MOD], T, LABEL, none, 0, unbounded, 0)), MOD, ML)]

else
Engine[curTerm: T,

curModule: MOD, labels: LABELS LABEL, failedRules:
FAILEDRULES LABEL, numRules: NUMRULES]

History[h: ML]
fi

if length(FAILEDRULES) < NUMRULES .

Figure 4.3: A rewrite strategy which records a communication history as the
execution proceeds

The first thing that happens in the exec-history rule, is as before that
a rule application is tried. If it succeeds, the Engine object is updated so
that the current term is now the resulting term from the rule application
performed by metaXapply, and the rule label is placed at the back of the
labels list. Furthermore, the list of failed rules is reset to nil, seeing as every
rule may be applicable after a successful rewrite.

The History object needs to be updated as well, and this is done by
concatenating the message list in h (using the @ concatenation operator)
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with the new messages found by getNewMessages. If there are several new
messages, the order in which they are added to the history is arbitrary; we
use the order provided by Maude’s internal sorting algorithm.

If, on the other hand, the rule application fails, the History object re-
mains unchanged, while the rule label of the failed rule is placed in the
failedRules list of the Engine object.

In order to make the strategy easier to use, we define a function start :
Qid × Term → EngineConfig that takes the name of a module and a term,
and returns an Engine object and a History object with the correct values
in their respective properties:

eq start(MOD, T) =
Engine[curTerm: T, curModule: MOD, labels:

getRuleLabels(MOD), failedRules: nil,
numRules: length(getRuleLabels(MOD))]

History[h: nil] .

The getRuleLabels auxiliary function returns, as its name implies, a list
of rule labels for a given module.

4.3 Performance

When we introduce meta-level computation, there is obviously some over-
head involved compared to standard object-level computation. First, there
is the fact that in order to perform meta-level rewrites, Maude lowers the
term that is to be rewritten all the way down to the object level before any
rewrites are performed, and then raises the resulting term to the appropriate
meta-level representation again when the computation is completed. Maude
does this in order to increase the performance of meta-level computing.

In addition to the actual lowering and raising of terms, there is also
overhead involved with our strategy in general; rewrites must be performed
to decide which meta-level rewrite rules that are to be applied, etc.

Furthermore, perhaps the heaviest operation (in terms of computational
power required) is to check whether any new messages have been sent, and
if so to add them to the history.

To test the performance overhead, we will establish a test suite of small
Maude specifications, and perform some simple tests:

• The test in Figure 4.4 on the facing page has only one object, a counter,
that will add one to the counter value per rewrite, until the counter
has reached a value of one hundred thousand. We will use this test to
measure the performance overhead for “raw” term rewriting - there are
no messages being sent, and there is only one rule which will always
be applicable until the execution terminates.
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• When a specification has a high number of rules that are not applicable
at any given point, it is natural to suspect that our rewrite strategy will
perform worse than in situations where most of the rules are applicable,
since we actually have to try a given rule to see if it fails or not, and
this will clearly be expensive with a lot of failures. The code in Figure
4.5 on page 44 is a variation of the one in 4.4, only this time there are
ten rules that increase the counter, but only one is applicable at any
given time.

• For the final test in this suite we will consider a specification in which
there will be a number of objects that send messages to each other.
The sending is organized in such a way that the messages will be sent in
a ring between the objects. The main purpose of this test is to see how
the history enabled strategy performs when there are many messages
in transit. Figure 4.6 on page 45 shows the code for the specification.

mod COUNTER-TEST is

protecting OBJ .
protecting QID .
protecting INT .

op <_: Counter | i:_ > : Qid Int -> Obj .

op init : -> Configuration .
eq init = < ’C : Counter | i: 0 > .

var I : Int .

crl [add-one] :
< ’C : Counter | i: I >

=>
< ’C : Counter | i: I + 1 >

if I < 100000 .
endm

Figure 4.4: Counter performance test

4.3.1 Test results

Below we will look at some results from running the tests suite defined above.
When executing a specification, Maude returns three numbers of interest:
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mod NON-APPLICABLE-TEST is

protecting OBJ .
protecting QID .
protecting INT .

op <_: Counter | i:_ > : Qid Int -> Obj .

op init : -> Configuration .
eq init = < ’C : Counter | i: 0 > .
var I : Int .

crl [add-one-0] :
< ’C : Counter | i: I > =>
< ’C : Counter | i: I + 1 >

if I rem 10 == 3 and I < 100000 .

crl [add-one-1] :
< ’C : Counter | i: I > =>
< ’C : Counter | i: I + 1 >

if I rem 10 == 6 and I < 100000 .

crl [add-one-2] :
< ’C : Counter | i: I > =>
< ’C : Counter | i: I + 1 >

if I rem 10 == 2 and I < 100000 .

*** rules 3 - 8 are similar

crl [add-one-9] :
< ’C : Counter | i: I > =>
< ’C : Counter | i: I + 1 >

if I rem 10 == 7 and I < 100000 .
endm

Figure 4.5: Counter performance test with only one applicable rule out of
ten

44



mod MESSAGE-TEST is

protecting OBJ .
protecting QID .
protecting INT .

op <_: SenderAndReciever | sendTo: _ > : Qid Qid -> Obj .
op <_: Counter | i:_ > : Qid Int -> Obj .

op init : -> Configuration .
eq init =

< ’A : SenderAndReciever | sendTo: ’B >
< ’B : SenderAndReciever | sendTo: ’C >
< ’C : SenderAndReciever | sendTo: ’D >
< ’D : SenderAndReciever | sendTo: ’E >
< ’E : SenderAndReciever | sendTo: ’A >
< ’Counter : Counter | i: 0 > .

vars O1 O2 O3 C : Qid . var I : Int .

crl [send] :
< O1 : SenderAndReciever | sendTo: O2 >
< ’Counter : Counter | i: I >

=>
< O1 : SenderAndReciever | sendTo: O2 >
(msg ’Test from O1 to O2)
< ’Counter : Counter | i: I + 1 >

if I < 100000 .

crl [recv] :
< O1 : SenderAndReciever | sendTo: O2 >
(msg ’Test from O3 to O1)
< ’Counter : Counter | i: I >

=>
< O1 : SenderAndReciever | sendTo: O2 >
< ’Counter : Counter | i: I + 1 >

if I < 100000 .
endm

Figure 4.6: Performance test specification containing a configuration of ob-
jects that send messages in a ring
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• the number of rewrites that were performed,

• the number of milliseconds of CPU-time that the execution took,

• and finally, the number of milliseconds of real elapsed time the execu-
tion took.

Of these three numbers, the first one, the number of rewrites performed,
is probably the most interesting, since CPU speed varies from machine to
machine, and depends on many factors beyond our control, hence it is not
easy to get accurate results, especially when it comes to actual time elapsed.

However, the number of milliseconds of CPU-time may in some cases be
interesting in order to see how much work Maude does internally compared
to the number of rewrites performed.

Counter test We test the specification presented in Figure 4.4 on page 43:

1. Maude’s rew command:

Maude> rew in COUNTER-TEST : init .
rewrite in COUNTER-TEST : init .
rewrites: 300002 in 1230ms cpu (1330ms real)

(243904 rewrites/second)
result Obj: < ’C : Counter | i: 100000 >

2. Our strategy without the history object:

Maude> rew in META-ENGINE : start(’COUNTER-TEST,
’init.Configuration) .

rewrite in META-ENGINE : start(’COUNTER-TEST,
’init.Configuration) .

rewrites: 1100022 in 9820ms cpu (10630ms real)
(112018 rewrites/second)

result EngineObject: Engine[curTerm: ’<_:‘Counter‘|‘i:_>[
’’C.Qid,’s_^100000[’0.Zero]],curModule: ’COUNTER-TEST,
labels: ’add-one,failedRules: ’add-one, numRules: 1]

3. Our strategy with the history object:

Maude> rew in META-ENGINE : start(’COUNTER-TEST,
’init.Configuration) .

rewrite in META-ENGINE : start(’COUNTER-TEST,
’init.Configuration) .

rewrites: 2200022 in 16290ms cpu (17760ms real)
(135053 rewrites/second)

result EngineConfig: History[h: nil] Engine[curTerm:
’<_:‘Counter‘|‘i:_>[’’C.Qid,’s_^100000[’0.Zero]],
curModule: ’COUNTER-TEST,labels: ’add-one,
failedRules: ’add-one,numRules: 1]
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From these tests, we see that when using our strategy without the history,
Maude must perform approximately 3.66 times more rewrites than when
using the plain built-in rew command. This is not really surprising, seeing
as for each rewrite that is to be performed at the object level, at least one
rewrite must be performed at the meta-level only to execute the metaXapply
function.

When plugging in the history object as well, the strategy requires approx-
imately 7.33 times the number of rewrites that Maude’s internal command
does, or about twice as much as our strategy without the history. However,
it is worth noting at this point that there is only one object in this test, and
it does not send any messages.

Counter test with only one applicable rule out of ten We test the
specification presented in Figure 4.5 on page 44:

1. Maude’s rew command:

Maude> rew init .
rewrite in NON-APPLICABLE-TEST : init .
rewrites: 3199817 in 4280ms cpu (4280ms real)
(747620 rewrites/second)

result Obj: < ’C : Counter | i: 100000 >

2. Our strategy without the history object:

Maude> rew in META-ENGINE : start(’NON-APPLICABLE-TEST,
’init.Configuration) .

rewrite in META-ENGINE : start(’NON-APPLICABLE-TEST,
’init.Configuration) .

rewrites: 9839531 in 26400ms cpu (26480ms real)
(372709 rewrites/second)

result EngineObject: Engine[curTerm: ’<_:‘Counter‘|‘i:_>[
’’C.Qid,’s_^100000[’0.Zero]],curModule:
’NON-APPLICABLE-TEST,labels: ’add-one-2 ’add-one-3
’add-one-4 ’add-one-5 ’add-one-6 ’add-one-7
’add-one-8 ’add-one-9 ’add-one-0 ’add-one-1,
failedRules: ’add-one-2 ’add-one-3 ’add-one-4
’add-one-5 ’add-one-6 ’add-one-7 ’add-one-8
’add-one-9 ’add-one-0 ’add-one-1,numRules: 10]

3. Our strategy with the history object:

Maude> rew in META-ENGINE : start(’NON-APPLICABLE-TEST,
’init.Configuration) .

rewrite in META-ENGINE : start(’NON-APPLICABLE-TEST,
’init.Configuration) .
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rewrites: 10939443 in 33210ms cpu (33220ms real)
(329402 rewrites/second)

result EngineConfig: History[h: nil] Engine[curTerm:
’<_:‘Counter‘|‘i:_>[’’C.Qid,’s_^100000[’0.Zero]],
curModule: ’NON-APPLICABLE-TEST,labels:’add-one-2
’add-one-3 ’add-one-4 ’add-one-5 ’add-one-6
’add-one-7 ’add-one-8 ’add-one-9 ’add-one-0
’add-one-1,failedRules: ’add-one-2 ’add-one-3
’add-one-4 ’add-one-5 ’add-one-6 ’add-one-7
’add-one-8 ’add-one-9 ’add-one-0 ’add-one-1,
numRules: 10]

Looking at the results from this test, they are actually quite surprising.
The suspicion that our strategy would be very inefficient compared to Maude
when a number of the rewrite rules are not applicable seems to be wrong,
judging from these results. A mere 3.42 times more rewrites than Maude’s
internal engine performed is what resulted from the test run without the
history object. Note that this is actually better than in the previous test.
When considering CPU usage, however, we see that our solution uses about
six times the CPU time that Maude does.

When the history object is plugged in, we see that Maude is approxim-
ately 3.42 times more efficient than our strategy, which is about the same
as for the case without the history, so in this situation, the checking for new
messages is clearly not a dominating factor.

Test with objects sending messages to each other in a ring We test
the specification presented in Figure 4.6 on page 45.

1. Maude’s rew command:

Maude> rew in MESSAGE-TEST : init .
rewrite in MESSAGE-TEST : init .
rewrites: 300006 in 1730ms cpu (1740ms real)

(173413 rewrites/second)
result Configuration:

< ’A : SenderAndReciever | sendTo: ’B >
< ’B : SenderAndReciever | sendTo: ’C >
< ’C : SenderAndReciever | sendTo: ’D >
< ’D : SenderAndReciever | sendTo: ’E >
< ’E : SenderAndReciever | sendTo: ’A >
< ’Counter : Counter | i: 100000 >

2. Our strategy without the history object:

Maude> rew in META-ENGINE : start(’MESSAGE-TEST,
’init.Configuration) .
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rewrite in META-ENGINE : start(’MESSAGE-TEST,
’init.Configuration) .

rewrites: 1100040 in 15850ms cpu (16080ms real)
(69403 rewrites/second)

result EngineObject: Engine[curTerm: ’__[
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’A.Qid,’’B.Qid],
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’B.Qid,’’C.Qid],
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’C.Qid,’’D.Qid],
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’D.Qid,’’E.Qid],
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’E.Qid,’’A.Qid],
’<_:‘Counter‘|‘i:_>[’’Counter.Qid,’s_^100000[’0.Zero]]],
curModule: ’MESSAGE-TEST,labels: ’send ’recv,
failedRules: ’send ’recv,numRules: 2]

3. Our strategy with the history object:

Maude> rew in META-ENGINE : start(’MESSAGE-TEST,
’init.Configuration) .

rewrite in META-ENGINE : start(’MESSAGE-TEST,
’init.Configuration) .

rewrites: 28199907 in 67760ms cpu (68310ms real)
(416173 rewrites/second)

result EngineConfig: History[h: (msg ’Test from ’A to ’B) @
(msg ’Test from ’A to ’B) @ (msg ’Test from ’A to ’B) @
(msg ’Test from ’A to ’B) @ (msg ’Test from ’A to ’B) @
(msg ’Test from ’A to ’B) @ (msg ’Test from ’A to ’B) @
. . .

(msg ’Test from ’A to ’B)] Engine[curTerm: ’__[
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’A.Qid,’’B.Qid],
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’B.Qid,’’C.Qid],
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’C.Qid,’’D.Qid],
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’D.Qid,’’E.Qid],
’<_:‘SenderAndReciever‘|‘sendTo:_>[’’E.Qid,’’A.Qid],
’<_:‘Counter‘|‘i:_>[’’Counter.Qid,’s_^100000[’0.Zero]]],
curModule: ’MESSAGE-TEST,labels: ’send ’recv,
failedRules: ’send ’recv,numRules: 2]

Our strategy without the history compared to Maude’s rew command
is slower in this test than it has been before, the number of rewrites are
approximately 6.34 times higher. This indicates that a lot of objects and
messages leads to more meta-level computation, and hence will have a slight
negative impact on the performance of our strategy.

Moving on to the strategy with the history, the first thing to note is
that the result shown in the listing number three above is severely shortened
compared to the actual output from Maude, due to the fact that the history
after this execution contained in the order of several tens of thousands of
messages. This is also something to keep in mind when we consider the
performance results.
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The strategy with the history recording needs approximately 25 times as
many rewrites as the strategy without the history, however, it does actually
do quite a lot more as well.
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Chapter 5

Predicates on Finite
Communication Histories

In Chapter 4, we looked at a meta-level rewrite strategy that enabled us to
build a communication history when executing a Maude specification. We
did not, however, make any use of this history; that is the scope of this
chapter. We will develop mechanisms to specify predicates, and mechanisms
to check whether a given communication history is in concordance with a
given predicate in-between rewrites. These mechanisms will be used actively
by our rewrite strategy to select which rules to apply to the current config-
uration, in order to ensure that a given specification is executed according
to a given predicate.

A predicate is, in general, a statement that evaluates to true or false
for some input of the correct type. We define a history predicate to be a
statement that evaluates to either true or false for any given finite sequence of
messages of sort Msg. The communication histories recorded by our strategy
from Chapter 4 are such sequences.

The predicates that we will define in Maude in this Chapter are based
on the concepts introduced in [25, 27].

In order to express predicates on the communication history, it would be
convenient if we could use basic list functions, like for example length(H) and
isEmpty(H), where H is a communication history. Furthermore, we would
like to use standard boolean operators like and and or etc.

At first glance, it would be tempting to define these aforementioned func-
tions directly in Maude, for a message list H and a single message M , in the
standard way, e.g.

op length : MsgList -> Int .
eq length(nil) = 0 .
eq length(M @ H) = 1 + length(H) .

and
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op isEmpty : MsgList -> Bool .
eq isEmpty(nil) = true .
eq isEmpty(H) = false [otherwise] .

and then use them in an appropriate expression as a parameter to our meta-
rewriting engine.

However, if one were to try this, the problems with this approach would
soon become apparent. Assume that we try to modify the start function
defined at the end of Section 4.2, so that we could specify a predicate in
addition to a term and a module. We could then, for example, try to put
restrictions on the length of the history in the following way, for a given
natural number N :

start(Term, Module, length(H) <= N) .

What would happen here? First of all, H needs to be a message list that
is available at the time of the call to start (otherwise, Maude will not know
what to do with it). Second, assuming H is available, the predicate would
immediately be reduced to either true or false, depending on the contents
of H at the time of the call, because Maude performs all rewriting modulo
equations, as described in Section 2.1.

Since we want to check the predicate in-between each rewrite during
runtime, it becomes clear that we need some way of constructing the predic-
ates such that

1. we do not need to have access to the history H at the time of the call,
and

2. the predicates are not immediately reduced by Maude’s rewrite engine.

5.1 Data structures for predicate construction

In order to make the predicate specification as easy as possible for the user, it
is important that we maintain a “natural” syntax. At the same time, we need
something that can be easily parsed, as we will have to parse it ourselves (at
least partly), in order to avoid instant reduction by Maude to either true or
false.

We start out by introducing a new module in Maude, called PRED. In
this module we define a sort Pred, of which our predicate specifications will
be.

The first requirement that needs to be addressed, is that we need some
way of referring to the communication history without actually having access
to it at the time of the call. For this we introduce the sort History, and the
constant H that will be used as a placeholder for the actual communication
history:

52



sort History .
op H : -> History [ctor] .

We may now refer to H in place of the real history, and are now able to
define constructors for e.g. the length of the history in the following way:

op length : History -> Pred [ctor] . (1)

Notice how this definition differs from the one that we introduced at the
start of this chapter, shown again below:

op length : MsgList -> Int . (2)

What we are doing here in our topmost definition (1), is that we are
creating a length operator that, contrary to our previous definition (2), does
not actually return the length of a history, but instead constructs an expres-
sion of sort Pred, that is not further reducible in its current form. We will,
in other words, have to parse expressions of this kind later on, and hence we
can control when and how the reductions are performed.

To structure our functions in a clearer manner, we introduce two new
sorts, BoolExp and IntExp, and let them denote expressions (or parts of
predicates) that when parsed and further reduced are supposed to return
integer and boolean values, respectively. We make both these sorts subsorts
of the general sort Pred, and refine our length signature (1) to be of sort
IntExp instead of just Pred, since the length of a history is assumed to be
an integer.

Now we are able to define other desirable predicate operators quite easily,
e.g. the boolean and and or operators:

op _and_ : BoolExp BoolExp -> BoolExp [ctor] .
op _or_ : BoolExp BoolExp -> BoolExp [ctor] .

and binary relation operators equal, less than or equal and greater than or
equal for integer expressions:1

op _eq_ : IntExp IntExp -> BoolExp [ctor] .
op _lte_ : IntExp IntExp -> BoolExp [ctor] .
op _gte_ : IntExp IntExp -> BoolExp [ctor] .

Furthermore, we state that an integer is also an IntExp by using Maude’s
subsort feature:

subsort Int < IntPred .
1Due to conflicts with predefined modules in Maude, we are unable to use = for equality,

<= for less than or equal, etc.
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5.2 Projections on the history

To make our predicates more fine-grained, it would be nice to have the
ability to define predicate expressions ranging over only a certain part of the
history, as opposed to the entire history at once. To achieve this, we define
projections.

For communication histories H and H ′, a projection is a function P
such that P (H) = H ′. For every message mi in H ′, mi must also be in
H. Furthermore, for every pair of messages mj and mk in H ′, if mj comes
before mk in H, mj must also come before mk in H ′. A projection P on a
history H is conventionally denoted H/P .

To define projections in Maude, we start out by introducing a new sort,
Projection, and a projection constructor operator / :

sort Projection .
op _/_ : History Projection -> History [ctor] .

Since the objects that we are considering (both in Maude and Creol) have
explicit and unique identities, and these identities are contained within the
messages they send, we can define projections that span messages originating
from or destined for a single object:

op from : Qid -> Projection [ctor] .
op to : Qid -> Projection [ctor] .

As in the previous section, these constructor operators have no real func-
tionality yet, but they enable us to express predicates on the history (we will
get to the implementation of the actual functionality shortly).

The projections enable us to specify properties concerning only one ob-
ject, as shown below:

H / from(’myObject) .

Since the projection operator / is of sort History, projections can be
combined with other operators that we have already introduced, e.g. in an
imaginary scenario with only two objects, ’myObject sending messages ex-
clusively to ’myObject2, the following predicate should be a system invariant:

length(H / from(’myObject)) eq length(H / to(’myObject2)) .

Furthermore, we can also combine two or more projections. For example
if we wish to look only at messages from a given object ’A to an object ’B,
we can use the following construct:

H / from(’A) / to(’B)
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Intuitively, the projection shown above is logically equivalent to the follow-
ing:

H / ( from(’A) and to(’B) )

However, what if we in a similar way wish to define an operator or :
Projection × Projection → Projection? This actually forces us to take into
consideration something we have gently skipped up till now; should the pro-
jections happen at the element level, or at the list level? In other words,
should a projection such as from(’A) be applied to a list of messages, or
should it be applied to each element/message in the list?

At first glance, those two options might seem to be the same, however
if we look at our example with the or operator, we see that this is not the
case. Consider the following example:

Say we have a message list ML looking like this:

(msg ’M from ’A to ’B) @ (msg ’M from ’B to ’C) @
(msg ’M from ’C to ’A) @ (msg ’M from ’A to ’C)

Suppose now we want to check some property with regards to messages
that are sent from ’A or destined for ’A. If we do the projection at the list
level, we would do the following (assuming functions from and to are defined
for message lists):

ML / from(’A) or ML / to(’A)

This would result in the following list:

(msg ’M from ’A to ’B) @ (msg ’M from ’A to ’C) @
(msg ’M from ’C to ’A)

On the other hand, using a projection on the element level, we would
have this construct

ML / ( from(’A) or from(’B) )

and the resulting list would be

(msg ’M from ’A to ’B) @ (msg ’M from ’C to ’A) @
(msg ’M from ’A to ’C)

As we see, in the second list, the original internal order of the list is
preserved, and for this reason, it is clear that projections should be applied
at the element level instead of at the list level.

In addition to the projections defined above, other projections can be
defined in a similar manner, for example

• msgType - spanning only messages of a given type

• not From - spanning only messages that are not from a given object

and so on.
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5.3 Parsing and checking the predicates

In the previous section we built predicates from constructor operators. To
make use of the predicates, we need to be able to parse them and check them
against our real communication history at any given time. For this purpose
we introduce a new operator:

op CheckPredicate : Pred MsgList -> Bool .

The operator CheckPredicate takes a predicate as defined in the previous
sections, and a message list, which is the sort our communication history
will be of, and returns a boolean value true if the history is in compliance
with the predicate, and false otherwise.

The CheckPredicate operator cannot, however, just perform a simple
check and return true or false. In order to compute its desired boolean re-
turn value, it will have to parse the predicate and call appropriate auxiliary
functions to check the different parts it consists of.

CheckPredicate will be recursively defined, with one equation for each
outermost predicate operator. As an example, consider the equation for the
case in which the outermost operator is the binary constructor and as defined
in the previous section

vars P1 P2 : Pred . var ML : MsgList .
eq CheckPredicate(P1 and P2, ML) = CheckPredicate(P1, ML)

and CheckPredicate(P2, ML) .

The equation above uses the built-in boolean and operator together with
recursive calls to CheckPredicate to compute the result of the equation.
Note how the built-in and operator differs from the predicate constructor
and ; the former takes two boolean arguments, and returns a boolean value,
while the latter takes two arguments of the sort BoolExpr and returns an
expression of the same sort.

In a similar manner, equations for the operators eq, lte and so on, can be
defined:

vars IP1 IP2 : IntExp . var ML : MsgList .
eq CheckPredicate(IP1 eq IP2, ML) =

ReduceIntExp(IP1, ML) == ReduceIntExp(IP2, ML) .

In the equation above, the auxiliary ReduceIntExp is used to reduce an
integer expression to an integer that can be compared with the built in
equality operator ==. The signature for ReduceIntExp is defined as follows:

op ReduceIntExp : IntExpr MsgList -> Int .
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ReduceIntExp is recursively defined. The base case in which the IntExp
argument is just a an integer is straightforward:

eq ReduceIntExp(I, ML) = I .

However, in the general situation, a term of sort IntExp will consist of a
function f (e.g. length), applied to a term of sort History (for example
the placeholder H or a projection). Regarding the function f, it would be
desirable to avoid having to write separate equations for each such defined
function, and rather have a generic equation for arbitrary functions of the
correct sort and arity. For this we would need higher order functions. This
is unfortunately not available in Maude at the time being, so we will have to
settle for the less desirable approach: write one ReduceIntExp equation for
each function.

So, as an example, consider the equation for the length function:

var ML : MsgList . var HIST : History .
eq ReduceIntExp(length(HIST), ML) =

length(ParseProjection(HIST, ML)) .

The outermost length function to the right of the equals operator (=) is
the one defined in the beginning of this chapter; it takes an actual message
list and returns an integer equal to the number of elements in the message
list. The length function on the left hand side of the equation, on the other
hand, is a predicate constructor function. Also note that we have introduced
a new operator ParseProjection, that takes a history and a message list, and
returns a message list. This function applies the projection to the message
list representing our communication history. It is defined as follows (the
equations are numbered from one to three):

op ParseProjection : History MsgList -> MsgList .

var ML : MsgList . var HIST : History .
var M : Msg . var PROJ : Projection .

eq ParseProjection(H, ML) = ML . (1)
eq ParseProjection(HIST / PROJ, nil) = nil . (2)

eq ParseProjection(HIST / PROJ, M @ ML) = (3)
Project(ParseProjection(HIST, M), PROJ)
@ ParseProjection(HIST / PROJ, ML) .

The first equation substitutes the history placeholder H for the real re-
corded communication history in the message list ML.
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The second equation states that any projection applied to an empty
message list (communication history) is the empty list.

The final equation is a bit more complex, and the first thing we note is
that the second argument to ParseProjection, the message list, is expanded
in the equation’s left hand side, so that we now have a single message M, and
the rest of the message list ML. Hence, the third line in equation three is a
tail recursive call for processing the rest of the list (ML). In the second line,
the message M is processed, and since projections happen at the element
level, a call to the Project function (which we have not yet defined) is made.
The reason for the recursive call to ParseProjection within the call to Project
is that the projection itself may be projected (e.g. as in H / PROJ1 / PROJ2,
for a history H and projections PROJ1 and PROJ2 ).

Moving on to the final function of this section, the Project function has
the following signature:

op Project : Msg Projection -> MsgList .

The task of this function is to check whether a given message is included
in a given projection, and if so return this message (we remember that a
single message is also a message list consisting of one element), otherwise
return the empty list (nil).

Depending on the actual projection that is used, the Project function calls
auxiliary functions. For example, if the from projection is used (spanning
only messages from a given object), we have the following:

eq Project(M, from(Q1)) = from(Q1, M) .

The from function checks whether a given message was sent by a given
object:

op from : Qid Msg -> MsgList .
eq from(Q1, (msg M from Q2 to Q3) @ ML) =

if Q1 == Q2 then
(msg M from Q2 to Q3)

else
nil

fi .

Other projection functions, e.g. to that returns messages sent to a given
object, can now be defined in the same way as we did with from, by providing
another equation for Project and implementing the to function correspond-
ingly.
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5.4 Integrating predicates with the rewrite strategy

To be able to use the mechanisms that we have defined in this chapter, we
must integrate them with the rewrite strategy that we initially defined in
Chapter 4.

First of all, since our predicates are functions on the communication
history, it seems natural to store the predicate in the History object (from
Section 4.2). We add an extra attribute pred to its definition in the following
way:

op History[h:_ , pred:_] : MsgList Pred -> EngineObject .

Furthermore, in order to make use of a given predicate, we must be able
to check whether it is violated by the current communication history or not.
The way we will approach this, is to have the rewrite strategy check whether
a given rewrite will result in a state that is in violation of the predicate, and
if so, choose not to execute that rewrite rule at that point. The code for this
strategy is shown in Figure 5.1 on the following page.

The main change from our previous strategy from Figure 4.3 on page 41
is that we in lines 12–14 now perform a check against the predicate in the
history object using the CheckPredicate function we defined earlier in this
chapter. If this check fails, the rule is not applied and the rule label is added
to the list of failed rules.

In other words, what we are doing with this code is to force the specifica-
tion to behave in accordance with our predicate. Later on, in Section 8.3, we
will look at another approach; instead of forcing the specification to behave,
we will halt the execution in the event that it attempts to do something
illegal.
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1. crl [exec-pred] :
2. Engine[curTerm: T, curModule: MOD, labels: LABEL LABELS,
3. failedRules: FAILEDRULES]
4. History[h: ML, pred: PRED]
5. =>
6. if metaXapply([MOD], T, LABEL, none, 0, 1, 0) == failure
7. then
8. Engine[curTerm: T, curModule: MOD, labels:
9. LABELS LABEL, failedRules: FAILEDRULES LABEL]
10. History[h: ML, pred: PRED]
11. else
12. if CheckPredicate(PRED, ML @
13. getNewMessages(T, getTerm(metaXapply([MOD],
14. T, LABEL, none, 0, 1, 0))))
15. then
16. Engine[curTerm: getTerm(metaXapply([MOD], T, LABEL,
17. none, 0, 1, 0)), curModule: MOD, labels:
18. LABELS LABEL, failedRules: nil]
19. History[h: ML @
20. getNewMessages(T, getTerm(metaXapply([MOD], T,
21. LABEL, none, 0, 1, 0))), pred: PRED]
22. else
23. Engine[curTerm: T, curModule: MOD, labels:
24. LABELS LABEL, failedRules: FAILEDRULES LABEL]
25. History[h: ML, pred: PRED]
26. fi
27.
28. fi
29. if length(FAILEDRULES) < length(LABEL LABELS) .

Figure 5.1: A rewrite strategy that checks whether rewrites will lead to a
state that violates the predicate
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Chapter 6

Regular Expressions in
Predicates

Regular expressions are well known and widely used in computer science to
describe patterns of various kinds. In this chapter we will develop mechan-
isms that allow us to use regular expressions in predicates on communication
histories [25, 27], and integrate these mechanisms with the rewrite strategy
we defined in the preceding chapter. This will enable us to take full advant-
age of the expressiveness that regular expressions inherently provide when
specifying predicates.

6.1 Data structures for regular expressions

In order to implement regular expressions in Maude, we will make extensive
use of so-called finite automata.

Our strategy will be as follows:

1. Define a data structure for specifying the regular expressions them-
selves.

2. Define a module for a non-deterministic finite automaton (NFA), and
transform the regular expression into an NFA using Thompson’s ε-
algorithm [35, 29].

3. Define a module for a deterministic finite automaton (DFA), and trans-
form our NFA to a DFA using the well-known subset construction al-
gorithm [29].

It may seem odd that we go through the trouble of first defining an
NFA and then transforming this automaton to a DFA. The reason for this is
two-fold: first, the algorithm for transforming a regular expression directly
to a DFA is substantially more complex than the corresponding algorithm
for transforming a regular expression to an NFA, while the algorithm for
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transforming an NFA to a DFA is quite tractable. Second, as we shall see in
Section 8.4, the NFA itself will be useful later on.

6.2 Regular patterns

We will now define constructors for regular patterns in Maude. We start
by introducing a new module PATTERN with a sort Pattern. Furthermore,
since our regular expressions will be dealing with a communication history
consisting of messages, we define the sort Msg to be a subsort of Pattern.
We can now in a quite natural syntax define the pattern constructors:

op _::_ : Pattern Pattern -> Pattern [ctor assoc prec 54] .
op _* : Pattern -> Pattern [ctor prec 53] .
op _+ : Pattern -> Pattern [ctor prec 53] .
op _? : Pattern -> Pattern [ctor prec 53] .
op _|_ : Pattern Pattern -> Pattern [ctor prec 55] .

Note that the :: operator is used for concatenating patterns (just a blank
cannot be used in our Maude specification due to conflicts with previously
defined modules). The other operators should be self-explanatory. One final
thing to take note of is the precedence that is used; choice (|) binds weaker
than concatenation (::), which in turn binds weaker than the rest of the
operators (*, + and ?). This is in compliance with standard rules for regular
expressions.

6.3 Non-deterministic finite automata

In this section we will show how to transform a regular expression into a
non-deterministic finite automaton.

Definition 10 (Non-deterministic finite automaton). An NFAM con-
sists of an alphabet Σ, a set of states S, a transition function T : S × (Σ ∪
{ε})→ ℘(S), a start state s0 from S, and a set of accepting states A from S.
℘(S) is the power set of S. The language accepted by M is the set of strings
c1 :: c2 :: ... :: cn where ci ∈ (Σ ∪ {ε}) such that there exists states s1 in
T (so, c1), s2 in T (s1, c2), ..., sn in T (sn−1, cn) with sn ∈ A.

Thompson’s ε-algorithm For transforming a regular expression to an
NFA, we will be using Thompson’s ε-algorithm. This algorithm uses so-
called ε-transitions to “glue together” sub-automata constructed from the
individual parts of a regular expression. An ε-transition is a transition by
which no input is consumed.

A basic regular expression is of the form a, ε or φ, where a represents a
match of a single token from the alphabet, ε a match of the empty string,
and φ a match of no strings.
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An NFA for the the regular expression a is shown in Figure 6.1. Note
that an accepting state is indicated by a double border.

a

Figure 6.1: An NFA for the regular expression a

For a regular expression r :: s, we assume that the sub-automata for r and
s have already been constructed, and we can then construct the automaton
for r :: s by joining them with an ε-transition, as shown in Figure 6.2.

... ...
ε

sr

Figure 6.2: An NFA for the concatenation of the regular expressions r and s

Note how the accepting state of r has now been connected to the start
state of s, and that the accepting state of s is now the accepting state for
the entire automaton. This shows the key point in the ε-algorithm; sub-
automata are constructed for the individual pieces of a regular expression
(without any knowledge of the internals of any other sub-automata), and
joined together by ε-transitions. For a more thorough presentation of the
algorithm, the reader is referred to [35, 29].

Implementation in Maude We start out by defining a module NFA. In
this module, we introduce the sort NFA. A general NFA consists of one or
more states, as well as zero or more transitions between the states. Terms of
the sort NFA will be constructed from a subsort NFA-State. For each state
in our NFA, we will need to store at least two pieces of information:

• an identifier of some kind, so that we can refer to any given state in
an easy manner, and

• a flag stating whether the state is an accepting state or not.

In addition, we choose to store the transitions from a given state A to
another given state B as a property of state A, in the same manner as the
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identifier and accepting flag are stored. This, as we will see, will ease our
computation later on. We can now define a state object in the following
manner:

op {State:_, Accepting:_, Transitions:_} :
String Bool TransitionSet -> NFA-State .

The state identifier is, as we can see from the definition above, of sort
String. One might think it more natural to use e.g. an integer as identi-
fier instead, however, as we will see later on, this would not be as easy to
accomplish as one might expect.

With our definition of an NFA-State well in hand, we need to define
the second important part of our NFA; the transitions. A transition can be
seen as a tuple (O, T, D), where O is the state from which the transition
originates, D is the destination state, and T is the token that must match
the next item in the input if a transition is to be allowed from O to D. The
sort Msg is a subsort of the sort Token.

Since, as mentioned above, we keep the outgoing transitions from a given
state inside the state itself, the value of O is implicit, and we do not need to
keep this piece of information in the transition itself. Hence, we will define
a transition in the following manner:

op _->_ : Token String -> Transition .

Assuming S1 and S2 are state names in an NFA, and T1 is a token, a
transition from state S1 to state S2 over T1, would be represented as follows

T1 -> S2

and be contained within state S1. State S1 would therefore be represented
in the following manner:

{State: S1, Accepting: B, Transitions: (T1 -> S2) TS}

where B is a boolean value indicating whether S1 is accepting or not, and
TS is a (possibly empty) set containing other transitions from S1.

Now that we have defined the basic structure for an NFA, we can move
on to our main goal in this section; to transform regular patterns defined
with the constructs introduced in Section 6.2 to an NFA. To achieve this, we
will make use of Thompson’s ε-algorithm, as described above.

To begin with, we introduce an operator MakeNFA : Pattern → NFA,
that will serve as our starting point for building the NFA from a specified
pattern. Second, we introduce an auxiliary operator that overloads the one
we just defined: MakeNFA : Pattern × String × String → NFA. This func-
tion is the one that actually builds the NFA, and we will take a closer look
at its implementation below.
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Our second signature for MakeNFA takes two strings in addition to the
pattern as its parameters. The first string parameter is the name of the
state to be constructed, and will be passed in from the caller (which will
be another instance of the same function, since it is recursive, as we will
see). The reason the name is passed in from the calling function, is that the
calling function needs to know the name of the new state in order to create
a transition leading to it.

Any given regular pattern will either be a single token, or have an outer-
most operator, like for example repetition (*) or concatenation (::). Hence,
we can define one equation for each case:

• 0 or more repetitions:

eq MakeNFA(P1 *, NAME, NEXTSTATE) = ...

• Concatenation:

eq MakeNFA(P1 :: P2, NAME, NEXTSTATE) = ...

• Choice:

eq MakeNFA(P1 ?, NAME, NEXTSTATE) = ...

and so on.
Let us now take a closer look at the equation in which the operator for

0 or more repetitions, the Kleene star *, is the outermost operator:

1. eq MakeNFA(P1 *, NAME, NEXTSTATE) =
2. {State: NAME + "1", Accepting: false, Transitions:
3. (epsilon -> NAME + "3")
4. (epsilon -> NAME + "21")
5. }
6. MakeNFA(P1, NAME + "2", NAME + "3")
7. {State: NAME + "3", Accepting: NEXTSTATE == "",
8. Transitions: (epsilon -> NAME + "1")
9. if NEXTSTATE =/= "" then
10. (epsilon -> NEXTSTATE)
11. else
12. emptyTransitionSet
13. fi
14. } .

P1 is of sort Pattern, as is P1 *, and NAME and NEXTSTATE are of sort
String.
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First, in lines 2–4 an NFA state named NAME + “1” is constructed,
meaning that this is the first state constructed by this particular function
call (“1”). This number is concatenated with the string already present in
the parameter NAME. In other words, if this state is the first state in the
entire NFA, it will be named “1” (the NAME parameter would be empty).
If, on the other hand, it is for example the first state in the third outermost
operator, it might be given a name like “221”.

In lines 3 and 4, we create two new transitions to other states. The
transition in line 3 is an ε (epsilon) transition to the last state in the sub-
NFA created by this call to MakeNFA (this state is created in lines 7–13).
This transition represents a choice of zero repetitions of the pattern P1.

The transition in line 4 is an ε-transition to the “internals” of the pattern
P1 *, namely P1, which will be constructed by a recursive call to MakeNFA
in line 6. It is worth noting in line 6 the third parameter in the call, NAME
+ “3”. This is the name of the state that comes after the last state of the as
of yet not created sub-NFA from pattern P1.

In lines 7–13 we create the last state of this NFA. We note that the
accepting flag is true only if this state has no successors, and in the opposite
situation, an ε-transition is created to the succeeding state as specified in
the parameter NEXTSTATE.

The observant reader may have wondered why the identifiers/names of
the states are represented as strings and not for example integers, and why
they are concatenated in such a way, e.g. “2321” etc in stead of just a
standard incremental number. In other words, why are the states not just
named 1, 2, 3, ..., n? There are two main reasons for this:

• First, when the NFA of a pattern like P1 * is constructed, we need to
create both the state leading to the sub-NFA constructed from P1, and
the state succeeding it, as well as the transitions between these states,
and we need to know their names to be able to do this. If we were to
use incremental integers, we would have to know how many states that
would be created from P1, and this is clearly not a trivial problem.

• Second, there is no simple way to construct a function that returns
successive integers in Maude, without having to pass the previous in-
teger as a parameter, and that would defy the entire purpose of using
such a function.

An example In this paragraph, we will look at an example of a regular
expression, and how the NFA that can be created from this expression will
look. The regular expression that we will consider, is the following:

(a | b)∗ :: c
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This expression corresponds to strings consisting of the zero or more a’s and
b’s followed by a c. For example, the following would be valid strings:

aaaaaac, abaabac, bc, c

while the following strings are not valid:

a, b, ca, aaaba

By using the MakeNFA equation, we can turn the regular expression into
an NFA by using Thompson’s ε-algorithm. A Maude representation of the
resulting automaton is show in Figure 6.3.

{State: "1", Accepting: false, Transitions: (epsilon ->"21")}
{State: "21", Accepting: false, Transitions:
(epsilon ->"221") (epsilon -> "23")}

{State: "221", Accepting: false, Transitions:
(epsilon -> "2221") (epsilon -> "2231")}

{State: "2221", Accepting: false, Transitions: (a -> "2222")}
{State: "2222", Accepting: false, Transitions: (epsilon -> "224")}
{State: "2231", Accepting: false, Transitions: (b -> "2232")}
{State: "2232", Accepting: false, Transitions: (epsilon -> "224")}
{State: "224", Accepting: false, Transitions: (epsilon -> "23")}
{State: "23", Accepting: false, Transitions:
(epsilon -> "21") (epsilon -> "3")}

{State: "3", Accepting: false, Transitions: (epsilon -> "41")}
{State: "41", Accepting: false, Transitions: (c -> "42")}
{State: "42", Accepting: false, Transitions: (epsilon -> "5")}
{State: "5", Accepting: true, Transitions: emptyTransitionSet}

Figure 6.3: A Maude representation of an NFA for the regular expression
(a | b)∗ :: c.

We note how the first state, state 1, has an ε-transition to the second
state, 21. The second state marks the beginning of the sub-pattern (a | b)∗.
It has one transition to the internals of this pattern, (a | b), and one to the
next state after the entire pattern, which is state 23. Following the transition
directly to state 23 allows for zero repetitions of (a | b).

State 221 is the first state of the sub-pattern (a | b). It has one ε-transition
to each of its sub-patterns, a and b, which starts with states 2221 and 2231,
respectively.

In state 23, we note how one ε-transition leads back to the start of the sub-
pattern (a | b)∗, allowing for more than one repetition, and one ε-transition
leads to the beginning of the pattern c, in state 3.

Finally, we note how state 5 is the only state with the Accepting flag set
to true, and that there are no transitions originating from it.

67



6.4 Deterministic finite automata

Now that we have the data structures and equations needed to create an
NFA from a regular pattern, we can move on to create the corresponding
deterministic finite automaton.

Definition 11 (Deterministic finite automaton). A DFA M consists of
an alphabet Σ, a set of states S, a transition function T : S×Σ→ S, a start
state s0 ∈ S, and a set of accepting states A from S. The language accepted
by M is the set of strings c1 :: c2 :: ... :: cn where ci ∈ Σ such that there exists
states s1 = T (so, c1), s2 = T (s1, c2), ..., sn = T (sn−1, cn) with sn ∈ A.

Subset construction algorithm To construct a DFA from an NFA, we
will be using the subset construction algorithm. What we are trying to
achieve in this algorithm, is to remove all ε-transitions from the automaton,
and eliminate multiple transitions over a single token from a given state.

The algorithm makes use of ε-closures. An ε-closure for a given state s
is the set of states reachable by following zero or more ε-transitions from s.
This set is conventionally denoted s (even though the notation is identical,
this should not be confused with the meta-representation of a term t, denoted
t in Chapter 2).

For a set of states S, the ε-closure of this set, S, is defined as the union
of the ε-closures of each state s in S.

The subset construction algorithm is defined as follows (the definition
is from [29]): Given a set S of NFA states and a token a, compute the set
S′a = {t| for some s in S there is a transition from s to t on a }. Then,
compute S ′a, the ε-closure of S ′a. This defines a new state in the subset
construction, together with a new transition S

a→ S′a. Continue with this
process for every state s in S, until no new states or transitions are created.
Mark as accepting those states constructed in this manner that contain an
accepting state from the NFA. This will construct a DFA from an NFA.

Implementation in Maude We start out by defining an appropriate data
structure for DFA states and transitions. The states are represented as
follows:

op {State:_, Accepting:_, Transitions:_} :
StateSet Bool TransitionSet -> DFA-State .

We note that the state name/identifier is of sort StateSet. This is because
a DFA state may represent several states from the NFA. (The state set does
not, however, contain the actual NFA states themselves, but rather their
names.)

The representation of a DFA transition is pretty straightforward and
resembles that of an NFA transition.
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op _->_ : Token StateSet -> DFA-Transition .

In the same way as for NFA states, the DFA states will contain the
transitions leading from them, and there is therefore no need to maintain
information concerning the originating state’s name in the DFA transition.

To create a DFA from a given NFA, we will use the subset construction
algorithm, as described above.

Our algorithm for creating an NFA made extensive use of ε-transitions.
Such transitions are not allowed in a deterministic automaton. We also
need to get rid of any two transitions leading from one state over the same
token to different destination states, as there can be only one transition over
any token from a given DFA state (otherwise, the automaton would not be
deterministic). This involves creating a closure with regards to the token.

However, before we delve any deeper into the intricacies of implementing
the subset construction, we start out by defining an operator MakeDFA :
NFA → DFA. This will be the interface to the “outside”, or in other words,
this will be the function that is called from modules using our DFA module.

We then move on to look at the perhaps most important part of the
algorithm, the part that implements the ε-closures. For this, we define a
function eClosure : String NFA → StateSet. The string parameter is the
name of the state for which we want to create the closure, and the parameter
of sort NFA is an NFA as created with the aid of the constructs introduced
in section 6.3. The return value is of sort StateSet, and contains the names
of the states reachable by following one or more transitions over ε from the
state given in the first parameter (i.e., it returns the ε-closure).

The implementation of this algorithm in Maude is (unfortunately) not all
that straightforward. What we need to do, basically, is to check ε-transitions
recursively, and at the same time keep track of the states included in the
closure up till the current call, in order to avoid infinite recursion. To be
able to keep track of our progress, we overload our eClosure function, adding
a third parameter for the result so far:

op eClosure : String NFA StateSet -> StateSet .

Furthermore, we let our first eClosure signature call the latter, with
the third parameter emptyStateSet (since this is the first time we call the
function, and our result so far is thus empty):

eq eClosure(S1, {State: S1, Accepting: B,
Transitions: TS} NFA) =
eClosure(S1, {State: S1, Accepting: B,
Transitions: TS} NFA, emptyStateSet) .

Now we are ready to look at the implementation of the second equation
for the eClosure function. We start with the non-recursive case first:
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eq eClosure(S1, {State: S1, Accepting: B, Transitions:
emptyTransitionSet} NFA, SS) = S1 .

The equation above states that the ε-closure of a state with no transitions,
is the state itself.

The recursive case, on the other hand, is somewhat more involved:

1. eq eClosure(S1, {State: S1, Accepting: B,
2. Transitions: (T -> S2) TS} NFA, SS) =
3. S1,
4. if T == epsilon then
5. if not S2 in SS, S1 then
6. S2, eClosure(S2, ({State: S1, Accepting: B,
7. Transitions: (T -> S2) TS} NFA), (SS, S1, S2))
8. else
9. emptyStateSet
10. fi
11. else
12. emptyStateSet
13. fi,
14. eClosure(S1, {State: S1, Accepting: B,

Transitions: TS} NFA, SS,
15. S1,
16. if T == epsilon then
17. if not S2 in SS, S1 then
18. S2, eClosure(S2, ({State: S1, Accepting: B,
19. Transitions: (T -> S2) TS} NFA), (SS, S1, S2))
20. else
21. emptyStateSet
22. fi
23. else
24. emptyStateSet
25. fi
26. ) .

In line 3, which is the first line of the right hand side of the equation,
we state that any given state is part of its own ε-closure. In lines 4–13, we
check to see if the first transition (T -> S2) in the state’s transition set is
an ε-transition. If so, we check in line 5 whether we have already included
state S2 in our closure. If either of these checks fail, we add nothing to
our closure (or, in other words, we add an empty state set). Otherwise, we
add S2 to our closure (in line 6), and call recursively, this time for state S2
(as there might be ε-transitions going from S2 as well). Note how the third
parameter, the result so far, now has become (SS, S1, S2 ).
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Moving on to the second half of the function, lines 14–26 contains a
recursive call for state S1, having removed the transition (T -> S2) that
we have already processed. As the observant reader may have noticed, lines
3–13 are actually equal to lines 15–25. This is due to the fact that the first
lines contain the result from the current call to the function, and hence this
needs to be included in the result so far in the recursive call.

As we stated above, removing ε-transitions is not our only task. We also
need to deal with states that contain more than one transition over a given
token T . Realizing that T might be ε as well as any other token, we may
define a function that returns the ε-closure for all states that can be reached
by following transitions over T from a given state S. Hence we define a
function eClosures : Token × TransitionSet × NFA → StateSet, that will
make use of our already defined function eClosure in the following manner:

eq eClosures(T, emptyTransitionSet, NFA) = emptyStateSet .
eq eClosures(T, (T2 -> S1) TS, NFA) =

if T == T2 then eClosure(S1, NFA) else emptyStateSet fi,
eClosures(T, TS, NFA) .

As we have now defined the necessary functions for creating the closures,
we move on to looking at our main function, namely SubsetConstruction. Its
task will be to create DFA states with the aid of our closure functions. It is
defined as follows:

op SubsetConstruction : NFA -> DFA .
eq SubsetConstruction(NFA) = SubsetStart(NFA)

Subset2(SubsetStart(NFA), NFA, SubsetStart(NFA)) .

As we can see, this function is a wrapper for the auxiliary functions
SubsetStart and Subset2. The SubsetStart : NFA → DFA function creates
the first state in our DFA. The interested reader may look up its full definition
in the source code in Appendix A, as its details are not vital to the rest of
this discussion.

The Subset2 function, on the other hand, is a bit more involved. It has
the following signature: Subset2 : DFA-State × NFA × DFA → DFA. Its
first parameter is the current DFA state (the very first state is constructed
using the SubsetStart function mentioned above). The second parameter is
the NFA from which we are constructing our DFA, and the third is the result
so far.

The Subset2 function is defined in the following manner:

1. eq Subset2({State: SS, Accepting: B, Transitions:
2. (T -> S1) TS}, NFA, RESULT-SO-FAR) =
3. if MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA)
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in RESULT-SO-FAR
4. then
5. emptyDFA
6. else
7. MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA)
8. fi
9. Subset2({State: SS, Accepting: B, Transitions: TS},
10 NFA, RESULT-SO-FAR
11 MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA))
12 if MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA)
13 in RESULT-SO-FAR
14 then
15 emptyDFA
16 else
17 Subset2(MakeDFAState(eClosures(T, (T -> S1) TS,

NFA), NFA),
18 NFA, RESULT-SO-FAR
19 MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA))
20 fi .

The first thing we note about the above algorithm, is its use of the
function MakeDFAState. All this function does, as its name implies, is to
create a valid DFA state from its parameters, a state set (containing as we
remember the names of NFA states), and an NFA. Again, the interested
reader might look up its full definition in the source code.

Other than that, we see that the Subset2 function follows a pattern
similar to some of our previous function definitions; the first part (lines 3–8)
checks to see whether the state we are about to create already exists, and if
so does nothing, the second part (lines 9–11) does a recursive call excluding
the transition we have already processed (T -> S1), and finally the third
part (lines 12–20) does essentially the same as the first part, except that it
makes a recursive call with the newly created state as the current one.

Having come this far, we have almost completed our goal of this section,
to transform an NFA to a DFA. Only some “glue” remains, in order to make
the separate pieces work well together, as well as some necessary auxiliary
functions. We will settle for taking a final look at the MakeDFA function,
our interface to the outside, as defined in the beginning of this section. We
are now ready to understand its equational specification:

eq MakeDFA(NFA) = RenameTransitions(
{State: "START", Accepting: false, Transitions:
start -> "1"} SubsetConstruction(NFA), NFA) .

The first thing to note is the RenameTransitions function that wraps
around the rest of the right hand side of the equation. This function takes
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care of a problem that we have overlooked this far; the transition within
a DFA state needs to lead to the ε-closure of the NFA states they were
originally leading to. The full definition of this function can be found in
Appendix A.

Second, we create a START state to ease our checking later, allowing us
easy access to the start of the automaton. Finally, we make a call to the
SubsetConstruction function.

An example We will now consider a DFA created from the NFA that we
looked at in the example in the previous section. This NFA was made from
the regular expression (a | b)∗ :: c, and can be found in Figure 6.3 on
page 67.

By utilizing the subset construction algorithm explained above, a DFA
can be made from this NFA in the following manner:

red MakeDFA(MakeNFA((a | b) * :: c)) .

The resulting DFA is shown in Figure 6.4.

{State: "START",
Accepting: false,
Transitions: start -> "1","21","221","2221","2231","23","3","41"}

{State: "1","21","221","2221","2231","23","3","41",
Accepting: false,
Transitions: (a -> "21","221","2221","2222","2231","224","23","3","41")

(b -> "21","221","2221","2231","2232","224","23","3","41")
(c -> "42","5")}

{State: "21","221","2221","2222","2231","224","23","3","41",
Accepting: false,
Transitions: (a -> "21","221","2221","2222","2231","224","23","3","41")

(b -> "21","221","2221","2231","2232","224","23","3","41")
(c -> "42","5")}

{State: "21","221","2221","2231","2232","224","23","3","41",
Accepting:false,
Transitions: (a -> "21","221","2221","2222","2231","224","23","3","41")

(b -> "21","221","2221","2231","2232","224","23","3","41")
(c -> "42","5")}

{State: "42","5",
Accepting:true,
Transitions: emptyTransitionSet}

Figure 6.4: A Maude representation of a DFA for the regular expression
(a | b)∗ :: c.

We note that this automaton has only five states (including the start
state), as opposed to the NFA which had thirteen states. There are no ε-
transitions, and there is at most one transition over any given token in any
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given state. Furthermore, we see that the states have names that are sets of
NFA state names, as mentioned above. This is also the reason for why the
special START state is useful — we have no easy way of knowing what the
name of the actual start state (in this case "1", "21", "221", "2221", "2231",
"23", "3", "41") will be.

This concludes our discussion with regards to creating a DFA from an
NFA. As mentioned before; the most important issues are explained, but
there are still some details that are skipped for the sake of conciseness, which
can be looked up in Appendix A.

6.5 Putting the regular expressions to work in pre-
dicates

Up to this point in this chapter, we have looked at how to create automata
that can be used to check regular expressions, but we have not integrated
this with the rest of the predicates — that is what we will look at below.

In order for a given deterministic finite automaton to be usable, we clearly
need some way of checking whether a given message list is a sequence that
the automaton accepts. For this purpose, we introduce the function Match:

op Match : TokenList DFA -> Bool .

Match will return true if the list of tokens (which in our case will be a
list of messages) matches the regular pattern from which the DFA is made,
and false otherwise. In order to achieve that, the function must traverse
the DFA recursively using the defined transitions between the automaton’s
states.

As mentioned in section 6.4, the DFA has a special initial state named
START. We make use of this in the match function, to find the first state,
and make a recursive call to start the actual checking of the communication
history in the parameter TL (of sort TokenList):

eq Match(TL, {State: "START", Accepting: B,
Transitions: (start -> SS)} DFA) =
Match(TL, DFA, SS) .

We note that the recursive call to Match makes use of a third parameter,
SS. This parameter is of sort StateSet (which is used as names for DFA
states), and is used to identify the current state. The Match function is, in
other words, overloaded, and has the following signature in addition to the
one presented above:

op Match : TokenList DFA StateSet -> Bool .
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Moving on to the implementation of this function, we have the following
equation:

var T1 : Token . var TL : TokenList . var SS : StateSet .
var B : Bool . var TS : TransitionSet . var DFA : DFA .

eq Match(T1 @ TL, {State: SS, Accepting: B, Transitions: TS}
DFA, SS) =

if FindTransition(T1, TS) =/= emptyStateSet then
Match(TL, {State: SS, Accepting: B, Transitions: TS}
DFA, FindTransition(T1, TS))

else
false

fi .

As we see, this equation checks, with the help of the auxiliary FindTrans-
ition, whether the transition set in the current state (TS ) has a transition
over token T1. If this is the case, a recursive call is made with the state to
which this transition leads now being the current state. Otherwise, false is
returned, meaning that the check failed.

If the communication list is the empty list nil (all tokens have been
checked), the Match function should return true if the current state is an
accepting state, and false otherwise. This can be handled by an equation
as shown below (where the IsAccepting function returns true if the current
state SS is indeed an accepting state, and false otherwise):

eq Match(nil, DFA, SS) = IsAccepting(SS, DFA) .

However, this is in many scenarios not what we want. Rather, we would
want the check to succeed if the recorded history this far is in compliance
with the predicate. In other words, the matching function should return
true if the communication history is a prefix of the sequence defined by the
regular expression. For this, we introduce the prs operator:

op _prs_ : TokenList DFA -> Bool .

Now, we could implement this function in more or less the same way
as we have done with the Match function, but seeing as their functionality
is essentially the same, we instead add a fourth boolean parameter to the
definition of Match, to indicate whether prefix matching is to be used, and
let the prs operator call Match with this parameter set to true:

op Match : TokenList DFA StateSet Bool -> Bool .

eq TL prs DFA = Match(TL, DFA, emptyStateSet, true) .
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All we need to change in the match function now, is the equation for
which the communication history is the empty list. It will now look like this:

eq Match(nil, DFA, SS, PRS) = PRS or IsAccepting(SS, DFA) .

In this way, the Match function will return true if all the input has been
checked and prefix matching is used.

This concludes our discussion on regular expressions in predicates for
now. We have shown how to transform a regular expression to a deterministic
finite automaton via a non-deterministic one, and how to check if a given
message list is accepted by a given automaton. In Section 8.4, we will take a
second look at these mechanisms, as variables are introduced in predicates.
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Chapter 7

Examples

In this chapter, we will take a look at some scenarios in which the mechanisms
that we have developed so far can be put some actual use.

7.1 Simple producer-consumer specification

The example we will be looking at below is a variant of the well-known
producer-consumer problem. Our example specification consists of three
objects; a producer ’P, a buffer ’B, and a consumer ’C. The producer knows
the identity of the buffer, and is hence capable of sending messages to it.
Likewise, the consumer is also aware of the buffer’s identity, whereas the
buffer knows basically nothing about its surroundings.

Our initial state will be as follows:

< ’P : Producer | Buffer: ’B >
< ’C : Consumer | Buffer: ’B >
< ’B : Buffer > .

The producer will send Put -messages to the buffer, in order to put data
into it. The buffer will reply with a PutOk -message to signal to the producer
that it has written the data to its internal data store.

The consumer, on the other hand, will send Get -messages to the buffer,
in order to read the (imaginary) data stored inside of it. The buffer will
then respond with a GetOk -message to the consumer, in order to send the
requested data back. However, since the actual data is irrelevant to the
predicate that we will define, the messages in our example will not contain
any data.

Clearly, the consumer cannot read what the producer has not yet written
to the buffer, and this will be our invariant; the number of PutOk messages
from the buffer to the producer must be equal to or greater than the number
of GetOk -messages from the buffer to the consumer. In order to express
this, we could have written specific conditional rules in the producer and
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consumer to make sure the invariant is never violated, but with the use of
our communication history, we may take another approach. We can define
the rewrite rules as simple as possible, making no assumptions with regards
to the contents of the buffer. For example, the rule where the buffer responds
to the consumer with a GetOk -message, looks like this:

rl [get-ok] :
< B : Buffer >
msg Get from C to B

=>
< B : Buffer >
msg GetOk from B to C .

Now, this would obviously violate our invariant if the buffer was empty,
so we need to prevent this from ever happening. And it is here our predicates
on the communication history comes into play. We may define our invariant
in the following way using the constructs introduced in Chapter 5:

length(H / msgType(’PutOk)) >= length(H / msgType(’GetOk))

Because our meta-rewriting engine always checks whether the predicate
will be violated before applying any given rewrite rule, we have successfully
established our invariant.

We may also use regular expressions in our predicates, as defined in
Chapter 5. To achieve a similar invariant (though with some further restric-
tions on the history as well), we could define our predicate in the following
way:

H prs ((msg ’Put from ’P to ’B) :: (msg ’PutOk from ’B to ’P)
:: (msg ’Get from ’C to ’B) :: (msg ’GetOk from ’B to ’C)) *

This predicate ensures that the messages in the history always are in the
following order: Put, PutOk, Get, GetOk.

7.2 The dining philosophers

In this section we will take a look at a classic synchronization problem in
computer science; the dining philosophers [15].

The example goes as follows: n philosophers, where n > 1, are seated
around a circular table, and in the middle of the table, there is a bowl of
food.

Now, since the guests at our dinner party are philosophers, they spend
most of their time around the table thinking, however, even bright minds
need to eat. So, at some point in time a given philosopher will get hungry
and will hence want eat from the bowl of food on the table. Unfortunately,
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there are only n chopsticks available, and each philosopher will need two
sticks to be able to get hold of any food. Therefore, they cannot all eat at
the same time.

To make the situation worse, once a philosopher has gotten hold of a
chopstick, he will not let go of it until he has gotten hold of the other one,
and finished his eating. So, if all the philosophers pick up their left stick at
the same time (or at least before any of the other philosophers have picked
up their right stick), they will all starve to death(!) waiting for their right
stick. The philosophers’ behavior may in other words give rise to a deadlock
situation.

In Maude, we can represent a philosopher as an object in the following
manner:

op <_: Philosopher | state:_, leftStick:_, rightStick:_ ,
butler:_, seat:_> : Qid State StickState StickState
Qid Nat -> Phil .

Each philosopher sits at a specified seat at the table, indicated by the
seat attribute. The state attribute indicates the activity of the philosopher
at present, and the leftStick and rightStick attributes are boolean flags in-
dicating whether the philosopher is currently in possession of his left and
right chopstick, respectively. Furthermore, since the philosophers are lazy,
they have a butler, James, to hand them the sticks at their request. The
butler is represented as follows:

op <_: Butler | sticks:_ > : Qid IntSet -> Butler .

The butler has a fixed number (n) of chopsticks that are available to
the philosophers, each stick is represented by an integer corresponding to its
position on the table. Chopstick number one is placed to the left of seat one,
chopstick number two to the left of seat two (and to the right of seat one),
and so on.

Below is an initial configuration with n = 5, consisting of the philosophers
Socrates, Plato, Aristotle, Anaximander and Pythagoras, and the butler
James:

< ’Socrates : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: ’James, seat: 1 >

< ’Plato : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: ’James, seat: 2 >

< ’Aristotle : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: ’James, seat: 3 >
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< ’Anaximander : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: ’James, seat: 4 >

< ’Pythagoras : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: ’James, seat: 5 >

< ’James : Butler | sticks: 1 2 3 4 5 > .

To begin with, all the philosophers are thinking, and have acquired no
chopsticks. When a philosopher becomes hungry, he will request sticks from
the butler, one at a time. This can be modeled using the following rewrite
rules:

rl [getting-hungry] :
< P : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: B, seat: I >

=>
< P : Philosopher | state: hungry, leftStick: no,

rightStick: no, butler: B, seat: I > .

rl [req-left-stick] :
< P : Philosopher | state: hungry, leftStick: no,

rightStick: S1, butler: B, seat: I >
=>

< P : Philosopher | state: hungry, leftStick: requested,
rightStick: S1, butler: B, seat: I >

msg RequestStick(I) from P to B .

rl [req-right-stick] :
< P : Philosopher | state: hungry, leftStick: S1,

rightStick: no, butler: B, seat: I >
=>

< P : Philosopher | state: hungry, leftStick: S1,
rightStick: requested, butler: B, seat: I >

msg RequestStick(if I == 5 then 1 else I + 1 fi)
from P to B .

The butler, James, distributes sticks to the philosophers according to the
following rewrite rule:

rl [give-stick] :
< B : Butler | sticks: I IS >
msg RequestStick(I) from P to B

80



=>
< B : Butler | sticks: IS >
msg Stick(I) from B to P .

When a given philosopher has finished eating, he returns his chopsticks
to the butler. The butler, being the polite gentleman he is, replies with a
ThankYou message to acknowledge that he has received the stick, as shown
in the rules finished-eating and get-returned-stick below.

rl [finished-eating] :
< P : Philosopher | state: eating, leftStick: yes,

rightStick: yes, butler: B, seat: I, eatcount: C >
=>

< P : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: B, seat: I, eatcount: C >

(msg Stick(I) from P to B)
(msg Stick(if I == 5 then 1 else I + 1 fi) from P to B) .

rl [get-returned-stick] :
< B : Butler | sticks: IS >
msg Stick(I) from P to B

=>
< B : Butler | sticks: IS I >
msg ThankYou from B to P .

So far, all is well. However, if we try to run this specification in Maude
using the fair rewrite command frew, we end up in a deadlock, that is,
a configuration in which each of the philosophers hold on to exactly one
chopstick, as shown below. (Note that we end up in a deadlock because of
the particular execution strategy that Maude’s frew command makes use of.)

Maude> frew init .

frewrite in DINING-PHILOSOPHERS : init .
rewrites: 189 in 0ms cpu (0ms real) (~ rewrites/second)
result Configuration:

< ’James : Butler | sticks: none >
(msg RequestStick(1) from ’Socrates to ’James)
(msg RequestStick(2) from ’Plato to ’James)
(msg RequestStick(3) from ’Aristotle to ’James)
(msg RequestStick(4) from ’Anaximander to ’James)
(msg RequestStick(5) from ’Pythagoras to ’James)
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< ’Socrates : Philosopher | state: hungry,leftStick:
requested,rightStick: yes,butler: ’James,seat: 1 >

< ’Plato : Philosopher | state: hungry,leftStick:
requested,rightStick: yes,butler: ’James,seat: 2 >

< ’Aristotle : Philosopher | state: hungry,leftStick:
requested,rightStick: yes,butler: ’James,seat: 3 >

< ’Anaximander : Philosopher | state: hungry,leftStick:
requested,rightStick: yes,butler: ’James,seat: 4 >

< ’Pythagoras :Philosopher | state: hungry,leftStick:
requested,rightStick: yes,butler: ’James,seat: 5 >

As we can see, Socrates, Plato, Aristotle, Anaximander and Pythagoras
all cling to their right hand chopstick, and hope that they will soon receive
the left one from James (they have all sent a RequestStick message). Sadly,
as none of them will ever let their right chopstick go, James has no more
sticks to hand out, and they will all starve to death.

So, the question arises: Can we, with the aid of our predicate enabled
meta-rewriting engine, prevent this from ever happening?

The answer to this question is affirmative. We observe that if we are to
avoid a deadlock, we only need to look at the local history for the butler
James. If he only has one chopstick left, he cannot send this chopstick to
a philosopher that does not already possess a stick. However, if this simple
invariant is not broken, there will never be a deadlock in this specification.

Expressed with the predicate constructors from Chapter 5, the invariant
will look as follows:1

if length(H / from(’James) / msgtype(’Stick)) minus
length(H / from(’James) / msgtype(’ThankYou)) eq 5

then
(length(H / from(’James) / msgtype(’Stick) /

to(’Pythagoras)) minus
length(H / from(’James) / msgtype(’ThankYou) /

to(’Pythagoras)) eq 2)
or
(length(H / from(’James) / msgtype(’Stick) /

to(’Anaximander)) minus
length(H / from(’James) / msgtype(’ThankYou) /

to(’Anaximander)) eq 2)
or
(length(H / from(’James) / msgtype(’Stick) /

to(’Aristotle)) minus
1At this point, we will simply ignore the parameter in the RequestStick and Stick mes-

sages at the meta-level, since they are not of any importance to our invariant. Parameters
in predicates will be introduced in Chapter 8.
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length(H / from(’James) / msgtype(’ThankYou) /
to(’Aristotle)) eq 2)

or
(length(H / from(’James) / msgtype(’Stick) /

to(’Plato)) minus
length(H / from(’James) / msgtype(’ThankYou) /

to(’Plato)) eq 2)
or
(length(H / from(’James) / msgtype(’Stick) /

to(’Socrates)) minus
length(H / from(’James) / msgtype(’ThankYou) /

to(’Socrates)) eq 2)
else

TRUE
fi

The first thing that we note about this predicate is that we are only
looking at the local history of the butler, as mentioned above. This is ac-
complished through a projection that spans only messages originating from
this object.

The number of sticks that the butler has left can be found from his
local history by subtracting the number of sticks that has been returned
to him (given by length(H / from(’James) / msgtype(’ThankYou))) from
the number of messages he has sent (given by length(H / from(’James) /
msgtype(’Stick))).

In the same way, we can find how many sticks a given philosopher pos-
sesses at the moment, by subtracting the number of returned sticks from the
number of received sticks.
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Chapter 8

Extensions to the Predicate
Framework

In this chapter we will look at some additional mechanisms for specifying and
using predicates on finite communication histories that we have not covered
in the preceding chapters.

In the first section, we will consider how to implement quantifiers to
increase the expressiveness of our predicates.

In Section 8.2, we take a look at our rewrite strategy from the perspective
of making it work as well as possible with the Creol interpreter, allowing
us to specify predicates for Creol specifications as well as standard Maude
specifications.

In Section 8.3, we consider an alternative approach for executing a spe-
cification in concordance with a predicate. Instead of enforcing an execution
path that is in compliance with the predicate, we will in this section look
at how we can stop the execution and alert the user when the predicate is
violated.

Finally, in Section 8.4, parameters in messages and variables in predicate
specifications are treated.

8.1 Quantifiers

In the previous example with the dining philosophers in Section 7.2, we saw
that in order to express the desired invariant (if the butler James has given
away all his chopsticks, then at least one of the philosophers must have
received two of them) with the constructs we have introduced this far, we
had to write quite a few lines of code:

if length(H / from(’James) / msgtype(’Stick)) minus
length(H / from(’James) / msgtype(’ThankYou)) eq 5

then

85



(length(H / from(’James) / msgtype(’Stick) /
to(’Pythagoras)) minus

length(H / from(’James) / msgtype(’ThankYou) /
to(’Pythagoras)) eq 2)

or
(length(H / from(’James) / msgtype(’Stick) /

to(’Anaximander)) minus
length(H / from(’James) / msgtype(’ThankYou) /

to(’Anaximander)) eq 2)
or
(length(H / from(’James) / msgtype(’Stick) /

to(’Aristotle)) minus
length(H / from(’James) / msgtype(’ThankYou) /

to(’Aristotle)) eq 2)
or
(length(H / from(’James) / msgtype(’Stick) /

to(’Plato)) minus
length(H / from(’James) / msgtype(’ThankYou) /

to(’Plato)) eq 2)
or
(length(H / from(’James) / msgtype(’Stick) /

to(’Socrates)) minus
length(H / from(’James) / msgtype(’ThankYou) /

to(’Socrates)) eq 2)
else

TRUE
fi

From this predicate, we notice that, not considering the individual philosoph-
ers’ names, there are five sub-predicates stating exactly the same thing for
the different philosophers. This kind of redundancy is clearly not desirable.

In order to get around this problem, we need to increase the expressive-
ness of our predicates in such a way that we can refer to a set of objects;
we introduce the quantifiers ∀ and ∃. Having access to these operators, we
can express the sub-predicates above in a shorter and more readable form.
The variable P in the predicate below is implicitly defined to hold object
identifiers:

∃ P : (length(H / from(’James) / msgtype(’Stick) / to(P )) −
length(H / from(’James) / msgtype(’ThankYou) / to(P )) = 2)

Looking at this, it seems like a pretty straightforward feature to implement
in our meta engine, but there are some problems that need to be addressed:

First and foremost, we need some way of knowing which objects we have
in our configuration at any given time in order to be able to check if the
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history of one or all of them satisfy a given condition. One way of achieving
this, is to let the end user hold this responsibility. In other words, the
programmer specifying a predicate that includes a quantifier, will also be
responsible for supplying the set of objects over which the quantifier ranges.
Looking once more at our example from above, we could specify this in the
following manner:

∃ P ∈ {′Socrates,′ Pythagoras,′Anaximander,′ Aristotle,′ P lato} :
(length(H / from(′James) / msgtype(′Stick) / to(P )) −
length(H / from(′James) / msgtype(′ThankY ou) / to(P )) = 2)

This approach has an important advantage in that it allows the programmer
to specify a subset of the objects in a given configuration. An obvious draw-
back is of course that in a dynamic system, most of the time one does not
know which objects are instantiated at any given time. To deal with this
drawback, another approach allowing us to specify the set of objects that
are “alive” at any point during an execution is needed.

In order to implement this, we need some way for our meta engine to
know which objects are present in a configuration. One way to solve this
would be to look at the configuration itself, and use a combined counting
and pattern matching scheme to find the individual object identifiers. We
prefer, however, to analyze the communication history instead:

Since our predicates all revolve around the communication history of an
execution, all we need to do in order to know which objects that are in
existence is to look at all the object identifiers that appear in either the from
or the to field of any message in the history. This will not necessarily give us
every object in the configuration, but with respect to the predicates, objects
that have not sent any messages yet are of no interest to us.1

Moving on to the actual Maude implementation, we start by introducing
two new constructors in our PRED module, corresponding to the first im-
plementation choice discussed above (the user explicitly states the set of
object identifiers):

op forAll_elementOf_|_ : ObjectVariable QidList Pred ->
Pred [ctor] .

op exists_elementOf_|_ : ObjectVariable QidList Pred ->
Pred [ctor] .

1In this discussion, we have gently skipped the problem that an object might be re-
moved from a configuration, and still have messages originating from it or having it as
their destination in the global history. This problem can be resolved by assuming that
objects are sent a delete message from their creator when they are destroyed, or that the
objects themselves send a “going down” message to their creator or to the class from which
they were created. Deleted objects can hence easily be excluded from the set of objects
over which a quantifier ranges.
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Using these constructions, we can now specify our predicate in pure Maude
syntax:2

exists p elementOf
(’Pythagoras ’Anaximander ’Aristotle ’Plato ’Socrates) |
(length(H / from(’James) / msgtype(’Stick) / to(p)) minus
length(H / from(’James) / msgtype(’ThankYou) / to(p)) eq 2)

As the observant reader recalls, the function CheckPredicate : Pred × Msg-
List → Bool does the actual work involved in parsing the predicate and
checking whether the actual communication history (represented as a mes-
sage list of sort MsgList) is in compliance with this predicate.

Hence, we need to introduce some new equations for this function in order
to make the quantifiers work. First, we observe that checking a condition
for all objects in the set over which the universal quantifier (∀) ranges, is
the same as checking the condition for each of the objects recursively, and
joining the results with a boolean and operator. Similarly, for the existence
quantifier (∃), we check recursively and join the results with an or operator.

Second, we note that in order to check the predicates against an actual
list of messages (that is, our communication history), we need to substitute
the variable for the real object id in each recursive call to the CheckPredicate
function. Therefore, we need to change the signature of CheckPredicate so
that it can take a third parameter, a substitution list: CheckPredicate : Pred
× MsgList × SubstitutionList → Bool. The substitution list will consist of
elements of the form

(subst X with Q)

where X is of sort ObjectVariable, and Q is of sort Qid (which is the sort
used for object identifiers).

Having established the new signature for CheckPredicate, and a data
structure for substitutions, we can define the additional equations for dealing
with universally quantified predicates as follows:

eq CheckPredicate(forAll X elementOf (Q1 QL) | P1, ML, SL) =
CheckPredicate(P1, ML, (SL, subst X with Q1)) and
CheckPredicate(forAll X elementOf (QL) | P1, ML, SL) .

eq CheckPredicate(forAll X elementOf (nil) | P1, ML, SL) =
true .

and similarly, for existentially quantified predicates:

eq CheckPredicate(exists X elementOf (Q1 QL) | P1, ML, SL) =
CheckPredicate(P1, ML, (SL, subst X with Q1)) or
CheckPredicate(exists X elementOf (QL) | P1, ML, SL) .

eq CheckPredicate(exists X elementOf (nil) | P1, ML, SL) =
false .

2The variable p must be specified in the module as a constant of sort ObjectVariable.
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The actual substitutions of the variable X for a real object identifier will
occur at the deepest recursive level at which the granularity of the predicate
expression being processed is at its smallest, as is the case in the equations
for the projections, e.g.:

var OV1 : ObjectVariable . var M : Msg . var Q1 : Qid .
var SUBST : Subst . var SL : SubstitutionList .

eq Project(M, to(OV1), SL) = to(Subst(OV1, SL), M) .

op Subst : ObjectVariable SubstitutionList -> Qid .
eq Subst(OV1, (subst OV1 with Q1), SL) = Q1 .
eq Subst(OV1, (SUBST, SL)) = Subst(OV1, SL) [otherwise] .

The reason for performing the substitutions at the deepest recursive level
instead of performing them right away in the equation for CheckPredicate
above is two-fold:

• If we were to perform them right away, we would have to write another
recursive function to do this, and that would add unnecessary complex-
ity to our solution and hence further complicate the implementation.

• Secondly, to be able to apply the substitutions, one will either way have
to process the predicate recursively to apply the substitution at the
required places in the predicate expression. Doing a separate recursive
“traversal” will of course affect the efficiency of the solution negatively,
as opposed to performing the substitutions during the same traversal
in which we check the predicate and expand the projections.

As we have now developed the constructs necessary to make the quantifiers
work for a given explicitly specified set of object identities, let us return
to the problem of making them work for the set of all objects that are in
existence in a given configuration at a given point.

We start with the easiest part first; we specify the signatures in our
PRED module with Maude syntax:

op forAll_|_ : ObjectVariable Pred -> Pred [ctor] .
op exists_|_ : ObjectVariable Pred -> Pred [ctor] .

As we see, these are identical to the signatures used when we were dealing
with an explicit set of object identifiers, except for the fact that the third
parameter, the set of object identifiers, is of course not present anymore.

Implementing the functionality for these operators will actually be quite
easy now, as we are able to make use of our existing functionality to make
this work. All we have to do, is to calculate the set of object identifiers
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present in the system at the time the check is to be made, and then do a call
to the function we defined above that dealt with explicit object identities.

Hence, the equation for the ∀ quantifier will be as follows:

eq CheckPredicate(forAll X | P1, ML, SL) =
CheckPredicate(forAll X elementOf (GetObjectIDs(ML)) |
P1, ML, SL) .

Correspondingly, for the ∃ quantifier:

eq CheckPredicate(exists X | P1, ML, SL) =
CheckPredicate(exists X elementOf (GetObjectIDs(ML)) |
P1, ML, SL)

The function GetObjectIDs : MsgList → QidList will return the identi-
fiers of the objects present in the history (represented by the variable ML
in the equations above) at the time of the call. (“Present in the history” is
to be understood as occurring either in the to field or the from field of a
message in the history as recorded at runtime.)

So, using the constructs defined in this section, we can now specify the dining
philosophers invariant by means of the following Maude syntax:

if length(H / from(’James) / msgtype(’Stick)) minus
length(H / from(’James) / msgtype(’ThankYou)) eq 5

then
exists p |
(length(H / from(’James) / msgtype(’Stick) / to(p)) minus
length(H / from(’James) / msgtype(’ThankYou) / to(p)) eq 2)

else
TRUE

fi

As we can see, we have now expressed the same invariant that we had at the
beginning of this section, in a syntax that is considerably easier to both read
and write.

8.2 Adapting the framework for use with the Creol
interpreter

Much of the motivation for writing the meta-level rewrite strategy and pre-
dicate checker introduced in this thesis, was to be able to execute the Creol
interpreter with predicate checking at the meta-level. All the concepts in-
troduced this far, applies in this scenario as well. However, there are some
rather subtle points that need to be dealt with that are specific for Creol
and the Creol interpreter.
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Note that in the following, we show how the meta-level rewrite strategies
that we have defined in the previous chapters can be used with the interpreter
as implemented in [3]. However, since the interpreter is under continuous
development, some changes may need to be done in order to make it work
with the version that is current at the time of reading.

8.2.1 Creol’s message format

Creol method calls are syntactically similar to standard object oriented
method calls, and are given in the form

o.m(in : p1, ..., pn out : q1, ...qn)

where o is an object, m is a method and p1, ...pn and q1, ...qn are (possibly
empty) lists of in and out parameters, respectively. The messages we have
looked at this far in this thesis, have been defined in a way conventional for
Maude specifications:

msg_ from_ to_ .

Messages emitted from the Creol interpreter, on the other hand, look
at bit different. First of all, there are two main categories of messages,
invocation messages and completion messages. An invocation results in a
method call. A completion message is the manner in which the result of
an asynchronous invocation is returned from the callee to the caller. In the
interpreter from [3], the signature of an invocation message is defined as
follows:

op invoc(_,_,_,_,_) : Nat Oid Oid Qid List -> Msg [ctor] .

The first parameter is a natural number which is used as a label for this
call, and provides together with the sender’s identifier, a unique identifier for
any given call. The second and third parameters are the sender and receiver,
respectively, the fourth is the name of the method that is to be invoked, and
the fifth is a list of parameters to the method.

At the completion of a method, a comp message is emitted. It has the
following signature:

op comp(_,_,_) : Nat Oid List -> Msg [ctor] .

As we can see, the parameter list is shorter for the completion message.
We still have the label, the receiver (which in this case equals the original
caller emitting the corresponding invoc message) and a list of return values.
What we do not have, however, is the sender and the name of the method
that was called. This complicates things a bit, as we shall see.
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Since we want our meta-level strategy to work both for standard Maude
specifications as well as Creol programs executed on the interpreter, we will
store the Creol invocation and completion messages in the communication
history in a form that resembles the standard Maude way.

First, we define two operators which allow us to differentiate between
invocation and completion messages:

op invoc_ : Msg -> Msg .
op comp_ : Msg -> Msg .

Furthermore, we define a message that consists of a quoted identifier
representing the name of the method that is called, and a list of parameters:

op _(_) : Qid List -> Msg .

Finally, we extend the standard message definition to include a label for
Creol messages:

op msg_from_to_label_ : Msg Oid Oid GroundTerm -> Msg .

It may seem odd that the label is defined as a GroundTerm. However,
since our message processing will happen at the meta-level, the labels in the
original Creol messages will already be in their meta-level form as ground
terms, and since the only reason for having the label from our point of view
is to use it as part of a unique identifier, the meta-level representation of the
term is just as suitable as the object-level one.

A Creol message in the communication history will be of the following
form:

msg {invoc|comp} M(p1, p2, ..., pn) from A to B label L

where M is a quoted identifier, (p1, p2, ..., pn) is a parameter list as defined
in [3], A and B are object identifiers and L is a ground term.

8.2.2 Completion messages

The completion messages emitted in the Creol interpreter lack, as mentioned
above, both sender and method name. In the interpreter this is not a prob-
lem, since the receiver and label uniquely identifies the message. In the
communication history, however, we want all messages to be in the format
specified above, for consistency and ease of specification. Hence, we need to
compensate for the information that is lacking in the completion messages.
Realizing that a completion message must necessarily come after the cor-
responding invocation message,3 we see that all the information we need to

3In the interpreter as defined in [3], this is a truth with some modifications, as we shall
see a bit later on.
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“fill in the blanks” for these messages is already stored in the communication
history, all we have to do is to retrieve it.

When a completion message is emitted from the interpreter, the meta-
level strategy calls a function GetMsgMethod : GroundTerm × Oid × Msg-
List → Qid. This function recursively backtracks through the communica-
tion history, passed in as a message list, until it finds an invocation message
with a matching label and sender, and returns the name of the method,
which can then be used at the meta-level to fill in the method name for the
completion message. The same technique is used for finding the sender of
the completion message.

Another problem is that in the interpreter, completion messages are sent
for locals calls (since local calls may be asynchronous) even though no invoc-
ation message is emitted into the configuration (the invocation is handled
directly by the interpreter without sending any messages). This leads to a
slight inconsistency in the history, since there will be more completion mes-
sages than invocation messages. Furthermore, we have no way of knowing
what method was called, since completion messages contain no such inform-
ation, and we have no corresponding invocation message in the history with
which we can compare label and sender. Hence, we have no choice but to la-
bel the method as ’localCall, or to disregard it in the communication history
(which in a way makes sense, since this is a local (or internal) call, which is
not directly observable from the outside).4

8.2.3 An example: The dining philosophers in Creol

This example is based on the example from the article A Run-Time Environ-
ment for Concurrent Objects with Asynchronous Methods Calls [24], which
is included in its entirety in Appendix B.

A variant of the dining philosophers example is now considered in Creol,
in which the butler informs a philosopher of the identity of its left neighbor.
A philosopher may borrow and return its neighbor’s chopstick. Interaction
between the philosophers and the butler is restricted by Creol interfaces:

interface Phil interface Butler
begin begin
with Phil with Phil
op borrowStick op getNeighbor(out n:Phil)
op returnStick end

end

In this approach, each philosopher controls one chopstick and must borrow
its neighbor’s chopstick in order to eat (as opposed to the example in 7.2,

4In the latest release of the Creol interpreter at the time of writing, this problem has
been fixed, and local synchronous calls are implemented by message passing both for the
invocation and completion of a method [26].
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in which the butler controlled all the chopsticks). Thus, philosophers have
their internal activity as well as responding to calls from the environment.

The philosophers are active objects, so the Philosopher class will include
a run method, which is defined in terms of several non-terminating internal
methods representing different activities within a philosopher; think, eat, and
digest. In run, the internal methods are invoked asynchronously. All three
methods depend on the value of the internal variable hungry. The think
method is a loop which suspends its own evaluation before each iteration,
whereas eat attempts to grab the object’s and the neighbor’s chopsticks in
order to satisfy the philosopher’s hunger. The philosopher has to wait until
both chopsticks are available. In order to avoid blocking the object pro-
cessor, the eat method is therefore suspended after asking for the neighbor’s
chopstick; further processing of the method can happen once the guard is
satisfied. The digest method represents the action of becoming hungry. The
Philosopher class is defined as follows:

class Philosopher(butler: Butler) implements Phil
begin
var hungry: bool, chopstick: bool, neighbor: Phil
op init == chopstick := true; hungry := false; butler.getNeighbor(;neighbor) .
op run == true −→ !think ||| true −→ !eat ||| true −→ !digest .
op think == not hungry −→ <thinking...>; wait −→ !think .
op eat == var l : label; hungry −→ l!neighbor.borrowStick;

(chopstick ∧ l?()) −→ <eating...>; hungry := false;
!neighbor.returnStick; wait −→ !eat .

op digest == not hungry −→ (hungry := true; wait −→ !digest) .

with Phil
op borrowStick == chopstick −→ chopstick := false .
op returnStick == chopstick := true .

end

The code of the butler class is straightforward and omitted here.
Translating the Creol code to so-called Creol Machine Code, which is

executable by the Creol interpreter in the Maude engine (and hence it can
also be executed by our meta-level strategy), we have the following initial
configuration (the configuration is limited to three philosophers instead of
five for brevity):

eq init =
(new ’Butler (’Butler0.0))
< ’Butler : Cl |
Att: (’this : null), (’p1 : null), (’p2 : null), (’p3 : null),
(’p4 : null), (’p5 : null),

Init: (’p1 := new ’Philosopher(’this)) ;
(’p2 := new ’Philosopher(’this)) ;
(’p3 := new ’Philosopher(’this)), no,
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Mtds:
< ’getNeighbor : Mtdname |
Latt: (’label : null), (’caller : null), (’n : null),
Code: (if (’caller = ’p1) th ’n := ’p2
el (if (’caller = ’p2) th ’n := ’p3
el ’n := ’p1 fi) fi) ;
(end ( ’n )) > ,
Ocnt: 0.0
>

< ’Philosopher : Cl |
Att: (’butler : null), (’hungry : null),

(’chopstick : null), (’neighbor : null),
(’history : null),

Init: (’chopstick := bool(true)) ; (’hungry := bool(false)) ;
(’history := str("")) ;
(’label ! ’butler . ’getNeighbor(nil)) ;
(’label ? (’neighbor)) ; (’run(nil | nil)), (’label : null),

Mtds: < ’think : Mtdname |
Latt: (’label : null), (’caller : null),
Code: not ’hungry --> (’history := (’history cat str("t"))) ;

wait --> ! ’think(nil) ; end(nil) > *
< ’eat : Mtdname |

Latt: (’label : null), (’caller : null), (’l : null),
Code: ’hungry --> (’l ! ’neighbor . ’borrowStick(nil)) ;

(’chopstick & (’l G? (nil))) -->
(’history := (’history cat str("e"))) ;
(’hungry := bool(false)) ;
(! ’neighbor . ’returnStick(nil) ) ;
wait --> ! ’eat(nil) ; end(nil) > *

< ’digest : Mtdname |
Latt: (’label : null), (’caller : null),
Code: wait --> (’hungry := bool(true)) ;

(’history := (’history cat str("c"))) ;
wait --> (! ’digest(nil)) ; end(nil) > *

< ’borrowStick : Mtdname |
Latt: (’label : null), (’caller : null),
Code: ’chopstick --> (’chopstick := bool(false)) ;

end(nil) > *
< ’returnStick : Mtdname |

Latt: (’label : null), (’caller : null),
Code: (’chopstick := bool(true)) ; end(nil) > *

< ’run : Mtdname | Latt: (’label : null), (’caller : null),
Code: ((bool(true) --> ! ’think(nil)) ||

(bool(true) --> ! ’eat(nil)) ||
(bool(true) --> ! ’digest(nil))) ; end(nil) >,

Ocnt: 0.0
> .

To execute this with our strategy, we use the start equation (CODE is
the name of the Maude module in which the Creol Machine Code resides):

95



rew [100] start(’CODE, ’init.Configuration) .

Since this is a non-terminating specification, we restrict the number of
rewrites to 100. Looking at the results, we see from the History object that
several messages have been sent (the Engine object is ignored brevity):

History[h:
(msg invoc (’getNeighbor(nil)) from ’Philosopher0.0 to
’Butler0.0 label (’s_[’0.Zero])) @

(msg invoc (’getNeighbor(nil)) from ’Philosopher1.0 to
’Butler0.0 label (’s_[’0.Zero])) @

(msg invoc (’getNeighbor(nil)) from ’Philosopher2.0 to
’Butler0.0 label (’s_[’0.Zero])) @

(msg invoc (’getNeighbor(nil)) from ’Philosopher3.0 to
’Butler0.0 label (’s_[’0.Zero])) @

(msg invoc (’getNeighbor(nil)) from ’Philosopher4.0 to
’Butler0.0 label (’s_[’0.Zero])) @

msg comp (’getNeighbor(oid(’Philosopher2.0))) from ’Butler0.0 to
’Philosopher1.0 label (’s_[’0.Zero]),

pred: TRUE]

We see that all the philosopher objects have requested their neighbor’s
identity from the butler, and that the butler has responded to one of them,
Philosopher1.0, that his neighbor is Philosopher2.0. Also note that the Creol
messages have been converted to a standard Maude form in the history,
and that the completion message contains both method name, sender and
receiver.

8.3 Component testing and abstract environments

In an environment with several objects communicating (through asynchron-
ous message passing or some other form of communication), the behavior of
a given object can be defined by an assumption-guarantee specification [28].
The assumption is a requirement on the behavior of the object’s surrounding
environment. The object’s own invariant is guaranteed to hold as long as
the assumption on the environment holds.

Both the assumption and the invariant can be specified in terms of ob-
servable behavior, in our case as predicates on different projections of the
communication history.

In the previous chapters of this thesis, we have defined a rewrite strategy
that, given that there is a selection of applicable rules, will force a specifica-
tion to be executed in concordance with the predicate, and only terminate if
there are no applicable rules. This approach can be used to model an envir-
onment that behaves according to a given assumption. If, in addition, the
environment specification itself contains no synchronization code (meaning
that the objects may send messages in an arbitrary order and at arbitrary
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times), we have an abstract environment that is controlled only by the predic-
ate. With an abstract environment, we may actually model several different
environment behaviors just by changing the assumption predicate. Hence
we may test a programmed component, that includes synchronization code
as well as other code, against a variety of environments.

For testing a programmed component, however, we do not want to force
the component to behave according to its invariant specification. Instead,
we want to be alerted if it fails to behave in the specified way, given that the
environment with which our component communicates behaves correctly.

Since the rewrite strategy implemented so far forces an execution path
according to a given predicate, we need to make some changes. The idea is
to allow a (sub-)predicate to be checked in one of two different modes:

• The force mode is the mode that all our predicates have been checked
in previously, and in this mode the strategy will force an execution
path that complies with the specified predicate.

• The fail-stop mode, on the other hand, will terminate the execution
and indicate what went wrong if an object attempts to violate the
predicate.

To implement this in our strategy, we start by introducing a sort Mode,
and two constants of this sort, force and fail-stop. Furthermore, we define
a constructor Mode : Pred × Mode → Pred, that we will use to specify in
which mode a given sub-predicate should be checked during execution. This
allows us to for example specify predicates of the following form:

Mode(P1, fail-stop) and Mode(P2, force)

where P1 and P2 represent sub-predicates. This means that in the same spe-
cification, different projections of the communication history can be checked
in different modes. For example, the history of a given object X (obtained
by using an appropriate projection on the global history) may be checked in
fail-stop mode by predicate P1, whereas the other objects of the specification
are forced to behave according to predicate P2 using the force mode.

To make this work, we need to take the different modes into account
when checking the predicates. First, we once more extend the signature
of the CheckPredicate function that we first introduced in Chapter 5 and
extended with substitutions in Section 8.1. The new signature will allow for
a mode to be passed to the function, that specifies in which of our two modes
the message list passed as the second parameter should be checked against
the predicate passed as the first parameter.

op CheckPredicate : Pred MsgList SubstitutionList Mode ->
BoolAndModeTuple .
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The return value is a tuple (B ; M), where B is a boolean value indicating
whether the predicate check was successful or not, and M is the mode in
which the check was performed. To extract the different components from
the tuple, we define two auxiliary functions:

op bool : BoolAndModeTuple -> Bool .
eq bool( (B ; MODE) ) = B .

op mode : BoolAndModeTuple -> Mode .
eq mode( (B ; MODE) ) = MODE .

Note that the mode function for extracting the mode part of the tuple is
different from the Mode constructor (with a capital M) introduced above.

Let the variables P1 and P2 be predicates of sort Pred, MODE and
MODE2 constants of sort Mode, ML a communication history in the form
of a message list and SL a (possibly empty) substitution list. The mode is
then determined in the CheckPredicate function by adding an equation that
checks for a Mode constructor, as shown below:

eq CheckPredicate(Mode(P1, MODE), ML, SL, MODE2) =
CheckPredicate(P1, ML, SL, MODE) .

The actual predicates are then checked in much the same manner as
defined in Chapter 5, for example the equation for the boolean and operator,
looks as follows:

eq CheckPredicate(P1 and P2, ML, SL, MODE) =
if bool(CheckPredicate(P1, ML, SL, MODE)) then

CheckPredicate(P2, ML, SL, MODE)
else

(false ; mode(CheckPredicate(P1, ML, SL, MODE)))
fi .

In contrast to the previous definition, a tuple is now returned from Check-
Predicate, and the current mode is passed along in every recursive call.

The actual difference in behavior when using the fail-stop mode as op-
posed to the force mode that we have implicitly used up till now, is handled in
the exec-mode conditional rewrite rule, as shown in Figure 8.1 on page 100.
The code that is changed from the previous definition of the strategy is
mainly in lines 23–31, in which the application of the LABEL rule has failed
because the resulting communication history would violate the predicate
PRED :

• In lines 23–25, we check if the mode is force. If this is the case, then
the behavior is as before, we put the label that failed at the back of
the labels list and add it to the failedRules list.
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• If, on the other hand, the mode is fail-stop, our goal is to stop the
execution and alert the user. This happens in line 30, where a new
object Fail of sort EngineObject replaces the Engine object. The Fail
object contains properties for the label of the rule that caused the
failure, and the current configuration at the time the fail occurred.
Because the Engine object is replaced, the execution will terminate,
since the exec-mode rule is no longer applicable.

So, to summarize, our rewrite strategy is now able to check the commu-
nication history in one of two modes, one that will force (as far as possible)
the execution of a specification to behave according to a predicate specifica-
tion, and one that allows for testing whether a given specification conforms
to a predicate on its communication history or not. It is also possible to
check different parts of the communication history in different modes by ap-
plying appropriate projections. If no mode is specified for the predicate, the
force mode is used.

8.3.1 An example: Abstract dining philosophers

The following example is based on the example in [4], which is included in
Appendix B. The example will be specified as a standard Maude object
specification.

We consider another variant of the dining philosophers problem. In this
example, we will use one programmed philosopher object, that has synchron-
ization rules and internal state, and several abstract philosopher objects that
may send any message at arbitrary times.

There is no butler this time, so a philosopher will have to contact his
right hand neighbor to borrow his stick when he is hungry. This is done
by sending a borrowStick message. The neighbor may then reply with a
lendStick message if he is willing to lend his chopstick to his neighbor. When
a philosopher has finished eating, he returns the stick he borrowed from his
neighbor by sending a returnStick message.

In addition to communicating with their neighbors, the philosophers may
also think and eat. For a philosopher X, this is represented by sending a
think or eat message from X to X, respectively.

For the philosopher objects, we define a predicate on the communication
history for acceptable behavior. The philosophers may only eat when they
are hungry, and think when they are fed. Furthermore, a philosopher may
obviously only lend his stick to his neighbor when he is in possession of his
own stick. These properties can be expressed for a philosopher X and a
communication history ML by the following recursive equations:

eq hungry?(X, nil) = false .
eq hungry?(X, (msg M from X to Y) @ ML) = (M == ’borrowStick or

M == ’eat) .
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1. crl [exec-mode] :
2. Engine[curTerm: T, curModule: MOD, labels:
3. LABEL LABELS, failedRules: FAILEDRULES]
4. History[h: ML, pred: PRED]
5. =>
6. if metaXapply([MOD], T, LABEL, none, 0, 1, 0) == failure
7. then
8. Engine[curTerm: T, curModule: MOD, labels:
9. LABELS LABEL, failedRules: FAILEDRULES LABEL]
10. History[h: ML, pred: PRED]
11. else
12. if bool(CheckPredicate(PRED, ML @
13. getNewMessages(T, getTerm(metaXapply([MOD],
14. T, LABEL, none, 0, 1, 0))))) == true
15. then
16. Engine[curTerm: getTerm(metaXapply([MOD], T, LABEL,
17. none, 0, 1, 0)), curModule: MOD, labels:
18. LABELS LABEL, failedRules: nil]
19. History[h: ML @
20. getNewMessages(T, getTerm(metaXapply([MOD], T,
21. LABEL, none, 0, 1, 0))), pred: PRED]
22. else
23. if mode(CheckPredicate(PRED, ML @
24. getNewMessages(T, getTerm(metaXapply([MOD],
25. T, LABEL, none, 0, 1, 0))))) == force
26. then
27. Engine[curTerm: T, curModule: MOD, labels:
28. LABELS LABEL, failedRules: FAILEDRULES LABEL]
29. else
30. Fail[label: LABEL, state: T]
31. fi
32. History[h: ML, pred: PRED]
33. fi
34. fi
35. if length(FAILEDRULES) < length(LABEL LABELS) .

Figure 8.1: A rewrite strategy that can check predicates in two different
modes, force and fail-stop
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eq hungry?(X, (msg M from Y to Z) @ ML) =
hungry?(X, ML) [otherwise] .

eq fed?(X, nil) = true .
eq fed?(X, (msg M from X to Y) @ ML) = (M == ’returnStick

or M == ’think or M == ’lendStick) .
eq fed?(X, (msg M from Y to Z) @ ML) =

fed?(X, ML) [otherwise] .

eq hasStick?(X, (msg ’lendStick from X to Y) @ ML) = false .
eq hasStick?(X, (msg ’returnStick from Y to X) @ ML) = true .
eq hasStick?(X, (msg M from Y to Z) @ ML) =

hasStick?(X, ML) [otherwise] .
eq hasStick?(X, nil) = true .

A philosopher is hungry when he has requested his neighbor’s chopstick,
as well as when he is still eating. A philosopher is fed when he has returned a
borrowed chopstick, or when he lends his stick to his neighbor. The hasStick?
equation returns true when a philosopher’s neighbor has returned the stick he
borrowed, or if the philosopher has never lent his chopstick to his neighbor.

We can now specify the global AccBeh : MsgList → Bool predicate for
acceptable philosopher behavior:

eq AccBeh(nil) = true .

eq AccBeh((msg ’think from X to Y) @ ML) =
ML == nil or (fed?(X, ML) and AccBeh(ML)) .

eq AccBeh((msg ’eat from X to Y) @ ML) =
(hungry?(X, ML) and AccBeh(ML)) .

eq AccBeh((msg ’borrowStick from X to Y) @ ML) =
fed?(X, ML) and AccBeh(ML) .

eq AccBeh((msg ’returnStick from X to Y) @ ML) =
hungry?(X, ML) and AccBeh(ML) .

eq AccBeh((msg ’lendStick from X to Y) @ ML) =
hasStick?(X, ML) and AccBeh(ML) .

We see that the AccBeh predicate is defined by one equation for each
message type. For example, the predicate specifies that if an eat message is
to be allowed, the philosopher in question must be hungry, as defined by the
hungry? equation.
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Now that we have defined a predicate for acceptable behavior, we move
on to looking at the actual philosopher objects in Maude. First, we con-
sider a concrete (programmed) philosopher object, with internal state and
synchronization rules.

op <_: Philosopher | state:_, myStick:_, nbrStick:_ ,
leftNbr:_, rightNbr:_ > :
Qid State StickState StickState Qid Qid -> Phil .

The state of the philosopher may be either hungry or fed, and the values
for the myStick and nbrStick attributes may be either yes, no or requested.
The identities of the left and right hand side neighbors are stored in the
leftNbr and rightNbr attributes, respectively.

Let C and D be variables of sort Qid, which is used as identifiers for
concrete philosopher objects. The behavior of concrete philosophers is spe-
cified by the following rewrite rules (attributes that are irrelevant for the
respective rules are ignored in the style of Full-Maude [16]):

rl [think] :
< C : Philosopher | state: fed >

=>
< C : Philosopher | state : fed >
msg ’think from C to C .

rl [eat] :
< C : Philosopher | state: hungry, myStick: yes, nbrStick: yes >

=>
< C : Philosopher | state: hungry, myStick: yes, nbrStick: yes >
msg ’eat from C to C .

rl [requestStick] :
< C : Philosopher | state: hungry, myStick: yes,
nbrStick: no, rightNbr: D >

=>
< C : Philosopher | state: hungry, myStick: yes,
nbrStick: requested, rightNbr: D >

msg ’borrowStick from C to D .

rl [returnStick] :
< C : Philosopher | state: hungry, myStick: yes,
nbrStick: yes, rightNbr: D >

=>
< C : Philosopher | state: hungry, myStick: yes,
nbrStick: no, rightNbr: D >

msg ’returnStick from C to D .

rl [lendStick] :
< C : Philosopher | state: fed, myStick: yes >
msg ’requestStick from D to C

=>
< C : Philosopher | state: fed, myStick: no >
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msg ’lendStick from C to D .

rl [recieveRequestedStick] :
< C : Philosopher | nbrStick: requested, rightNbr: D >
msg ’lendStick from D to C

=>
< C : Philosopher | nbrStick: yes, rightNbr: D > .

rl [recieveReturnedStick] :
< C : Philosopher | myStick: no, rightNbr: D >
msg ’returnStick from D to C

=>
< C : Philosopher | myStick: yes, rightNbr: D > .

We will now define an environment for the programmed philosopher in
form of an abstract philosopher definition. The idea is to have no synchron-
ization code, and rather let the behavior of the environment be completely
defined by a predicate specification. The only attributes that we will keep
is the neighbor attributes.

An abstract philosopher is defined as follows:

op <_: Philosopher | leftNbr:_, rightNbr:_ > :
Aid Qid Qid -> Phil .

Let A and B be variables of sort Qid, which is used as identifiers for
abstract philosopher objects. The behavior an abstract philosopher can be
specified by the following rewrite rules:

rl [abs-think] :
< A : Philosopher | >

=>
< A : Philosopher | > msg ’think from A to A .

rl [abs-eat] :
< A : Philosopher | >

=>
< A : Philosopher | > msg ’eat from A to A .

rl [abs-requestStick] :
< A : Philosopher | rightNbr: B >

=>
< A : Philosopher | rightNbr: B >
msg ’borrowStick from A to B .

rl [abs-returnStick] :
< A : Philosopher | rightNbr: B >

=>
< A : Philosopher | rightNbr: B >
msg ’returnStick from A to B .

rl [abs-lendStick] :
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< A : Philosopher | >
msg ’requestStick from B to C

=>
< A : Philosopher | >
msg ’lendStick from A to B .

These rules do not express any synchronization constraints on the in-
teractions, only which philosophers may interact. Also note, that rules for
receiving messages are no longer needed, since no internal state change takes
place in the abstract philosopher objects. Instead, a simple consumption
rule can be used to remove messages from the configuration:

rl [abs-consumeMsg] :
< A : Philosopher | > msg M from A to B

=>
< A : Philosopher | > .

Furthermore, by specifying rules for the creation and deletion of objects,
we can define a non-deterministically evolving environment:

rl [create] :
< A : Philosopher | rightNbr: B >
< B : Philosopher | leftNbr: A >

=>
< A : Philosopher | rightNbr: A + B >
< A + B : Philosopher | leftNbr: A, rightNbr: B >
< B : Philosopher | leftNbr: A + A > .

rl [destroy] :
< A : Philosopher | rightNbr: C >
< C : Philosopher | leftNbr: A, rightNbr: B >
< B : Philosopher | leftNbr: C >

=>
< A : Philosopher | rightNbr: B >
< B : Philosopher | leftNbr: A > .

In the create rule, the new abstract philosopher object is inserted in-
between two existing (abstract or concrete) philosopher objects. The new
philosopher will have the concatenation of the existing objects’ identifiers as
its identifier. In the destroy rule, an abstract philosopher object in-between
two other philosopher objects is deleted, and the remaining philosopher ob-
jects set their leftNbr and rightNbr properties accordingly.

The abstract specification may now be used as a testbed for a programmed
philosopher object X. The behavior of the environment is specified using a
projection on the history spanning every object but the programmed one,
and checking this projection in force mode with the AccBeh predicate. The
programmed object can then be tested by using a projection spanning only
this object and checking this projection with the AccBeh predicate in the
fail-stop mode:
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P(X) =
Mode(AccBeh(H / not from(X)), force)

and
Mode(AccBeh(H / (from(X) or to(X))), fail-stop)

In the first part of the predicate, the abstract environment is forced to
behave according to the AccBeh predicate. In the second part (after and),
the programmed philosopher object X is tested using the fail-stop mode. If
X attempts any action that would violate the predicate specification even
though the environment behaves correctly, the execution will be halted.

8.4 Parameters and variables in predicates

8.4.1 Parameters

The predicates that we have specified so far in this thesis, have been using
simple messages without any parameters. However, as we briefly touched
in on in Section 8.2.1, messages emitted from the Creol interpreter contain
parameter lists. Also, as we saw in the dining philosopher’s example from
Section 7.2, standard Maude specifications may make use of messages with
parameters. Even though the predicate specified to prevent deadlock in
Section 7.2 did not need to consider the parameters in the messages (in
fact, the parameters were simply ignored at the meta-level), it is not hard
to imagine scenarios in which such capabilities would be vital in order to
correctly specify a predicate for a given specification.

Even though a Maude message could contain a parameter of any sort,
as long as we specify its constructor accordingly, we will restrict parameters
in predicates to the data type Data (and subtypes), as defined for the Creol
interpreter in [3]. This is done mainly for two reasons:

• By restricting all parameter values to one common super-type, we avoid
having to define auxiliary functions and message constructors for a vast
number of data types available in Maude (Maude does not natively
support polymorphism in the form of a universal common super-type).

• By using the same data types as for Creol messages, we avoid having
to define separate mechanisms when dealing with Maude and Creol
specifications interchangeably.

Values of the Data type, are defined by wrapping constructors corres-
ponding to the given type around the actual value. For example, an integer
value 3 is represented as int(3), and a string value "test" is correspond-
ingly represented as str("test"). A message TestMessage from A to B with
parameter values 1, true and "test", would then be represented as

msg ’TestMessage(int(1), bool(true), str("test")) from ’A to ’B.
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In Chapter 6, we introduced regular expressions for messages. Now that
messages can contain parameters, we need to take this into consideration
when checking the message list for compliance with the predicate. As we
remember, checking whether a transition over a token T from a DFA-state
S to a DFA-state S ′ was allowed, was done by comparing T with the next
message M in the input communication history. If T and M were equal,
the transition was allowed, M was removed from the input, and the current
DFA-state was set to S ′.

Since, at this point, the parameters are all actual values (e.g. int(3)),
we can in fact use the same method as before when checking the regular
expressions. A message with parameters from the communication history
can be checked for equality with another message from the regular expression
predicate specification by using Maude’s built in == operator. However,
when the parameters in the predicate specification can contain variables or
expressions, we must take a different approach, and this is the scope of the
next section.

8.4.2 Variables

When specifying a predicate for a communication history that contains mes-
sages with parameters, it will often be the case that at the time of specifica-
tion, we cannot know (or are not interested in knowing) the exact values of
every parameter in every message.

In a safety specification, a typical example is that a given value must
always be within a given bound, but as long as this bound is not exceeded,
we do not want to specify the actual values in our predicate (as that would
make the predicate way to restrictive and/or way to verbose). For example,
one could imagine a power plant reporting temperature values from the core
to an external observer through message passing, and that the parameter in
these messages should never exceed a given value.

To be able to specify such predicates, we need to make some extensions
to our regular expressions engine. First, we will list the requirements that
we will have to meet:

1. We need a way of specifying an unknown value of a given type, so we
must introduce variables.

2. The variables should be able to hold any value of the Data data type.

3. The variables must reside in a scope, and scopes should be nestable.

4. We need to be able to specify a boolean expression ranging over the
defined variables, enabling us to for example enforce a bound value as
mentioned above.
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5. Our regular expressions engine must “understand” what a variable and
a variable scope is, and be able to check predicate specifications that
contain scoped variables.

The first requirement can be met by introducing a new sort, DataVari-
able, and constants x, y, z etc of this sort. (Here, x, y and z will be variable
names. The user may define his or her own variables as constants of the
sort DataVariable.)5 Furthermore, we overload the definition of the Data
constructors, so that a Data value can be constructed from either an actual
value, such as an integer, or from a DataVariable. Hence, an integer variable
can now be specified as int(x).

For the second requirement, we need to devise a means of storing the
values associated with each variable name. This will be done with a set of
bindings from name to value. A binding is defined as follows:

op binding : Data Data -> Binding [ctor] .

The first Data parameter is the variable, and the second is the value.
A binding of the value 4 to the variable name x would then be represented
as binding(int(x), int(4)). A function getBinding : Data × BindingSet →
Data returns the value associated with a given variable from a given set of
bindings.

A variable scope is defined by a scope...endscope construct of sort Pattern:

op scope(_)_endscope : List Pattern -> Pattern [ctor prec 53] .

The first parameter of sort List is a list of the variables that are included
in the scope. The second parameter of sort Pattern is the regular pattern to
which the scope applies, and since the sort of the scope...endscope constructor
itself is also Pattern, scopes can easily be nested. A variable defined in an
outer scope is accessible from any inner scopes. An example of a nested
scope with regular patterns P1 and P2 and variables x, y and z is shown
below:

scope(int(x), int(y)) P1 :: scope(int(z)) P2 endscope endscope

Note how the pattern concatenation operator :: is used in precisely the
same way as in Section 6.2; it simply concatenates the two patterns P1 and
scope(int(z)) P2 endscope.

Requirement four states that we need a way to specify a “sub-predicate”
inside the regular expressions, so that we for example can enforce an upper
or lower bound for a given variable or expression. For this purpose, we
introduce a where clause in our patterns:

5It may perhaps seem odd that we use constants for variables, but this is due to the
fact that from Maude’s point of view, they are just symbols with no inherent meaning,
and we will keep track of the values they contain ourselves.
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op _where_ : Pattern Expr -> Pattern [ctor prec 56] .

The Expr parameter is a boolean expression as defined in [3], and can be
built from the following constructors:

ops not_ neg_ : Expr -> Expr .
ops _+_ _-_ _*_ _/_ _cat_ _%_ : Expr Expr -> Expr .
ops _<_ _<=_ _>_ _>=_ : Expr Expr -> Expr .
ops _and_ _or_ _/=_ _=_ : Expr Expr -> Expr .

As an example, we extend our previous example from above with a where
condition on the variables x, y and z:

scope(int(x), int(y)) P1 :: scope(int(z)) P2
where x + y < z endscope endscope

Note that the variables x and y defined in the outer scope are still in scope
in the inner pattern P2, along with z.

Another thing about scopes that is worth noting, is the difference between
the expressions

scope(int(x)) x * endscope (1)

and

(scope(int(x)) x endscope) * (2)

In expression (1), the value of x will be bound to the first value in the input,
and for each subsequent symbol in the input, the value must be equal to x in
order to be accepted by the regular expression. In other words, (1) specifies
a string in which one specific integer is repeated zero or more times.

Expression (2), on the other hand, has the zero-or-more operator * (the
Kleene star) on the outside of the scope. This means that the value of x
will be rebound for every iteration. Hence, expression (2) specifies a string
of arbitrary integers.

Moving on to number five in our list of requirements, we have come to
the perhaps most challenging part of this section; to incorporate the other
four requirements into the regular expressions engine from Chapter 6. To
achieve this, there are again several issues that we need to consider:

1. How does the addition of scoping to the regular patterns affect our
finite automata?

2. When and how are the variables bound to actual data values?
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3. How do we check a given input message list against a regular expression
specification that may contain both variables and expressions?

Considering issue number one from the enumeration above first, the fact
is that we can no longer use the subset construction algorithm to create
deterministic automata when we add scoping information to the regular
expressions.6 To see why, let us look at a small example. Consider the
regular expression int(n)∗, where n is an integer. This expression specifies
strings consisting of zero or more n’s. In Figure 8.2 the corresponding non-
deterministic finite automaton (NFA) is shown (note that marking of accept-
ing states is ignored).

int(n)

ε

1 2

Figure 8.2: A non-deterministic finite automaton for the regular expression
int(n)∗.

The transformation from this automaton to a deterministic one is straight-
forward, and the resulting DFA is shown in Figure 8.3.

1

int(n)

Figure 8.3: A deterministic finite automaton for the regular expression
int(n)∗.

If we add scoping information to our example, and let the individual
states contain information about which variables are in scope in an inScope

6Intuitively, it seems that a correct deterministic automaton cannot be built at all from
a regular expression with variable scopes stored in the individual states, as introduced in
this section. However, time prohibits a thorough investigation of this “hunch” in this
thesis, so we will leave it an open issue for now.

109



property, it is not evident how to the transform the NFA to a correspond-
ing DFA. Consider the example from above, with the integer number n ex-
changed for a scoped variable x: scope(int(x)) int(x) endscope ∗. The NFA
for this pattern (with scope information inside the states) is shown in Fig-
ure 8.4.

ε

int(x)

inScope: nilinScope: int(x)

1 2

Figure 8.4: A non-deterministic finite automaton for the regular expression
scope(int(x)) int(x) endscope ∗.

If we try to transform this NFA to a DFA using the subset construction
algorithm in the same way as we did in Figure 8.3 on the page before, what
should be done with the inScope list of the remaining state? The answer
is that we cannot correctly use the subset algorithm and at the same time
preserve the correct scoping information inside the individual states when
transforming an NFA to a DFA. With the small example shown in Figure 8.4,
we could have manually created a correct DFA with scoping information,
but for the much more complex general case, it is not at all evident how this
should be done, or if it is at all possible. Hence, when it comes to regular
expressions with scoped variables, we will use NFA matching instead of DFA
matching to check whether a given input conforms to the specification. Note
that a given NFA accepts the exact same language as the corresponding
DFA.

Having decided to use NFA matching to check the regular expressions,
we need to add some extra information to the NFA states originally defined
in Section 6.3. We add two properties, one for the InScope list that will
contain which variables that are in scope in a given state, and a Where-
Condition property, that will allow a sub-predicate to be specified for the
variables in the regular expressions. At first glance it may seem odd that
the WhereCondition property is of sort List, but this is due to the fact that
since regular expressions can contain sub-expressions, the where condition
for a given state might actually be a list of where conditions. Our refined
definition of an NFA state is as follows:

op {State:_, Accepting:_, Transitions:_, InScope:_,
WhereCondition:_} : String Bool TransitionSet
List List -> NFA-State .
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Furthermore, we have to populate these properties when building an NFA
from a given regular expression. This implies that we will have to make
some changes to the MakeNFA equation originally introduced in Section 6.3
as well. The first thing we will do is to add two new parameters to its
signature, as shown below:

op MakeNFA : Pattern String String List List -> NFA .

The first three parameters are as before, while the two last List para-
meters are the scope list and the list of where conditions, respectively. To
begin with, both these parameters are nil, until a scope...endscope or where
clause is encountered. In the case of scope...endscope, the parameter lists are
populated by the following equation, where L, L2 and W1 are variables of
sort List, NAME and NEXTSTATE are strings and P1 is a Pattern:

eq MakeNFA(scope( L ) P1 endscope, NAME, NEXTSTATE, L2, W1) =
{State: NAME + "1", Accepting: false, Transitions:

(epsilon -> NAME + "21"),
InScope: L2, WhereCondition: W1

}
MakeNFA(P1, NAME + "2", NAME + "3", L L2, W1)
{State: NAME + "3", Accepting: NEXTSTATE == "", Transitions:

if NEXTSTATE =/= "" then
(epsilon -> NEXTSTATE)

else
emptyTransitionSet

fi,
InScope: L2, WhereCondition: W1

} .

As we can see, the new scope for the pattern P1 is the union of the
previous scope L2 and the new scope L. In the state immediately after P1,
the scope is reset to L2 again. In other words, in an inner scope, variables
defined in the outer scope are also accessible.

Similarly, for the where clause, the MakeNFA equation goes as follows,
in which E is a variable of sort Expr, and the other variables are as defined
for the previous equation:

eq MakeNFA(P1 where E, NAME, NEXTSTATE, L, W1) =
{State: NAME + "1", Accepting: false, Transitions:

(epsilon -> NAME + "21"),
InScope: L, WhereCondition: W1

}
MakeNFA(P1, NAME + "2", NAME + "3", L, W1 E)
{State: NAME + "3", Accepting: NEXTSTATE == "", Transitions:
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if NEXTSTATE =/= "" then
(epsilon -> NEXTSTATE)

else
emptyTransitionSet

fi,
InScope: L, WhereCondition: W1

} .

Corresponding to the previous equation, the where clause for the pattern
P1 equals the new condition E appended to the (possibly empty) list of
existing conditions W1.

Having established the equations that build a non-deterministic auto-
maton with scope and where condition information in the individual states,
we can now move on to the problem of how we use this automaton to check
the input. NFA checking is quite different from the DFA checking we did in
Chapter 6. In an NFA

• ε-transitions are allowed in the automaton,

• a state can have several transitions originating from it over the same
token, and

• we may have to back-track over several transitions and states during
the checking when the path we have followed no longer matches the
input.

Because of this, we will have to make some quite extensive changes to
our Match equation. Perhaps the biggest challenge is to handle backtracking
correctly. In order to achieve this, we will have to keep track of the states
that we have already visited, and which transitions within these states that
we have tried. Figures 8.5 on the next page and 8.6 on page 115 present a
pseudo code outline of the Match equation, showing the base case in which
the input message list is empty, and the general recursive case, respectively.
(Since the full code for the Match equation is quite complex and would take
up a couple of pages, we leave it for the interested reader to look up in the
source code in Appendix A.)

In Figure 8.5 on the next page, the SS variable of sort StateSet is used
to keep track of the states that we have already visited, and the BS variable
is a BindingSet that contains a set of bindings from variable names to values
of sort Data.

The Match function takes as its first parameter a token list, and checks if
there exists a valid transition from the current state over the first token from
the list. This functionality is implemented by the auxiliary FindTransition :
Token × TransitionSet × BindingSet × List × List → StateNameAndBind-
ingSet function. The Token parameter is a message from the communication
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eq Match(nil, NFA, S, PRS, SS, BS) =
if we use prs matching or S is an accepting state then
return true

else
make a recursive call to Match with ε as the current token

fi

Figure 8.5: A pseudo code outline of the base Match equation for NFA
matching, for which the message list parameter is the empty list nil

history for which we try to find a transition to another state in the Trans-
itionSet. The BindingSet is a list of bindings equal to the BS variable defined
above, and the final two lists contain which variables that are in scope and
any where conditions that the transition must conform to, respectively. The
return value is a tuple consisting of the name of the state that the chosen
transition leads to, or the empty string if no transition could be found, and
a set of bindings that exists after the transition has been made.

The code for FindTransition goes as follows:

eq FindTransition(msg (Q1(PLIST1)) from FROM1 to TO1,
((msg (Q2 (PLIST2)) from FROM2 to TO2) -> S) TS, BS, L, W1)=
if Q1 == Q2 and FROM1 == FROM2 and TO1 == TO2 and

bool(ParameterCheck(PLIST1, PLIST2, BS, L)) and
CheckCondition(W1, bindingSet(ParameterCheck(
PLIST1, PLIST2, BS, L)))

then
( S ; bindingSet(ParameterCheck(PLIST1, PLIST2, BS, L)) )

else
FindTransition(msg (Q1(PLIST1)) from FROM1 to TO1, TS,
BS, L, W1)

fi .

FindTransition first checks to see if the sender, receiver and message
names match, and if so, makes use of the auxiliary ParameterCheck : List
× List × BindingSet × List → BoolAndBindingSet function, that takes the
parameter list from the message that we are checking from the communica-
tion history, the parameter list from the message in the regular expression, a
set of variable bindings and a list of variables that are in scope and returns
a tuple consisting of a boolean value and a set of bindings.

The parameter check is performed as follows, for each pair of parameters
from the two lists:

• if the parameters are plain values, check if they are equal

• if the parameter from the regular expression is a variable, check if it is
in scope:
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– if it is not in scope, return false
– if it is in scope, check if it has already been bound to a value:
∗ if it has been bound, check if the value from the communica-
tion history equals the value that has been bound, and return
the result of the comparison
∗ if it has not been bound, bind it now to the current value

If the boolean part of the returned tuple from FindTransition is true, the
parameters are compatible, and the where conditions, if any, are checked by
the CheckCondition function. If this function also returns true, the name
of the new state to which the transition led is returned together with an
updated set of bindings. Otherwise, the remaining transitions (if any) are
checked. If no matching transition can be found, a tuple consisting of the
empty string and the current binding set is returned. The Match equation
will then have to backtrack and try to find another valid path through the
NFA.

8.4.3 An example: The alternating bit protocol

The alternating bit protocol, also known as the stop-and-wait protocol, is a
protocol for reliable transfer of data over an unreliable network. The sender
will send one packet at the time, and wait for an acknowledgement from
the receiver before sending the next packet. If no acknowledgement arrives
(within a given time limit), the sender retransmits the packet. The receiver
may also choose to resend an acknowledgment, if no data packet arrives.
Since the sender has at most one unacknowledged packet in transit, a one
bit sequence number may be used, hence the name alternating bit protocol.

The sender and reciever objects are modeled as follows:

op <_: Sender | Bit:_, Data:_> : Qid Int Int -> Sender .
op <_: Receiver | Bit:_> : Qid Int -> Receiver .

The sender has a Bit attribute for the sequence number, and a Data
attribute containing the data that is to be sent. In our example, this is just
an integer to which we will add 1 for every packet we send. The receiver has
only one attribute, the sequence number Bit.

Our initial state consists of one sender, ′S, and one receiver, ′R, as shown
below:

op init : -> Configuration .
eq init = < ’S : Sender | Bit: 0, Data: 0 >

< ’R : Receiver | Bit: 0 > .

The sender sends Data messages to the receiver, containing two integers;
a one bit sequence number B (represented in Maude by an integer with
values 0 and 1), and an integer data value D:
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eq Match(T1 @ TL, {State: S, Accepting: B, Transitions: TS,
InScope: L, WhereCondition: W1} NFA, S, PRS, SS, BS) =

if we have already visited the current state S, or
S has no more transitions that we have not already
tried (TS is empty) then
return false

else
if the token T1 is not ε then
if there is a valid transition over token T1 then
make a recursive call to Match with TL and the
state that T1 points to as the current state
if the call succeeds then
return true

else
make a recursive call with S as the current state,
and with the transition we just tried removed
from S (there might be several transitions over
the same token in any given state)

fi
else
there are no valid transitions over T1, we check for
ε-transitions:
if there is an ε-transition from S then
make a recursive call with the state pointed to
by the ε transition as the current state
if this call succeeds then
return true

else
remove the ε-transition we just tried
from S, and make a recursive call with S
as the current state

fi
else
there are no ε-transitions either;
return false

fi
fi

else
the token T1 is ε:
if there is a transition over ε in TS then
make a recursive call to Match with S as the
current state
if the call succeeds then
return true

else
remove the transition we just tried,
and make a recursive call to Match

fi
else
there are no transitions over ε;
return false

fi fi fi

Figure 8.6: A pseudo code outline of the general recursive Match equation
for NFA matching

115



msg ’Data(int(B), int(D))

Correspondingly, the receiver sends acknowledgments containing only a
sequence number:

msg ’Ack(int(B))

The behavior of the sender is specified by the following rewrite rules for
sending a packet, resending a packet and receiving an acknowledgment from
the receiver, respectively:

rl [send-data] :
< ’S : Sender | Bit: I, Data: D >

=>
< ’S : Sender | Bit: (I + 1) rem 2, Data: D + 1 >
msg ’Data(int((I + 1) rem 2), int(D + 1)) from ’S to ’R .

rl [resend-data] :
< ’S : Sender | Bit: I, Data: D >

=>
< ’S : Sender | Bit: I, Data: D >
msg ’Data(int(I), int(D)) from ’S to ’R .

rl [recv-ack] :
< ’S : Sender | Bit: I, Data: D >
msg ’Ack(int(J)) from ’R to ’S

=>
< ’S : Sender | Bit: I, Data: D > .

For each new packet that the sender sends, the data value is increased by
one. Note that neither the data value nor the sequence number is changed
when a packet is resent in the resend-data rule.

The actions of the receiver are specified as follows:

rl [recv-data] :
< ’R : Receiver | Bit: I >
msg ’Data(int(J), int(D)) from ’S to ’R

=>
< ’R : Receiver | Bit: I > .

rl [send-ack] :
< ’R : Receiver | Bit: I >

=>
< ’R : Receiver | Bit: (I + 1) rem 2 >
msg ’Ack(int((I + 1) rem 2)) from ’R to ’S .
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rl [resend-ack] :
< ’R : Receiver | Bit: I >

=>
< ’R : Receiver | Bit: I >
msg ’Ack(int(I)) from ’R to ’S .

Note how both the sender and the receiver are under-specified. For ex-
ample, the sender in this specification may very well send several packets
without having received any acknowledgments from the receiver. Similarly,
the receiver may send acknowledgments for packets it has never seen.

The underlying network is unreliable, and may loose arbitrary messages.
This can be modeled by the following rewrite rules:

rl [loose-msg]:
msg ’Data(int(J) int(D)) from ’S to ’R

=>
none .

rl [loose-ack]:
msg ’Ack(int(J)) from ’R to ’S

=>
none .

An invariant for the alternating bit protocol is that the sender should
never have more than one distinct unacknowledged message in transit. To
conform to this invariant, we will specify a predicate for our example that
makes use of variables.

First, we define a scoped regular expression for one legal message ex-
change between sender and receiver, called one cycle:

op cycle : -> Pattern .
eq cycle =

scope(int(x) int(y))
(msg ’Data(int(x), int(y)) from ’S to ’R) ::
(
(msg ’Data(int(x), int(y)) from ’S to ’R) |
(msg ’Ack(int(x)) from ’R to ’S)

) * ::
(msg ’Ack(int(x)) from ’R to ’S)

endscope .

This regular expression states that in a valid cycle, there must first be a
Data message, then zero or more Data and/or Ack messages, and finally an
Ack message.
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The variable x is the sequence number, and y is the data value. The
variable scope will ensure that these values stay the same throughout the
cycle once they are bound, and this will prevent the sender from sending
more than one packet at the time, since the new packet would have a different
sequence number (and a different data value).

Since more than one message exchange is allowed, we define a new ex-
pression cycles, that makes use of the cycle expression:

op cycles : -> Pattern .
eq cycles =

((cycle where int(x) = int(1)) ::
(cycle where int(x) = int(0))) * .

We observe that in the cycles predicate, there are where conditions stat-
ing that the sequence number must first be 1, then 0, then 1 again etc. Since
the where condition encapsulates the cycle sub-predicate, in which the scope
for x is defined, the condition will initially be checked when x is bound inside
a cycle.

The entire predicate P can then be defined by a prefix of the regular
sequence cycles:

op P : -> Pred .
eq P = H prs cycles .

Below, we show some samples from the non-deterministic finite auto-
maton that is created from the cycles regular expression. (Because the auto-
maton is rather large, we only show parts of it.)

{State: "1",Accepting: false,
Transitions: (epsilon -> "21") (epsilon -> "3"),
InScope: nil,
WhereCondition: nil}

{State: "21",Accepting: false,
Transitions: epsilon -> "221",
InScope: nil,
WhereCondition: nil}

{State: "221",Accepting: false,
Transitions: epsilon -> "2221",
InScope: nil,
WhereCondition: nil}

{State: "2221",Accepting: false,
Transitions: epsilon -> "22221",
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InScope: nil,
WhereCondition: int((x).DataVariable) = int(1)}

{State: "22221",Accepting: false,
Transitions: epsilon -> "222221",
InScope: int((x).DataVariable) int((y).DataVariable),
WhereCondition: int((x).DataVariable) = int(1)}

The first thing we note in the listing above, is state 1, in which there
are two transitions; one to the next state 21, and one to state 3, which is
actually the last state of the entire automaton. The reason for this is that
the outermost operator is the Kleene star *. Hence, an input list that is
empty is valid.

Moving on to state 2221, we see that the where condition x = 1 has been
set. The variable x is not yet in scope, which may seem a bit odd. This,
however, is due to the fact that the states are constructed recursively, from
outermost to innermost, and hence the where condition will be populated
before the scope list. This is not a problem, since an ε-transition never will
make use of any variables anyway.

In state 22221, we see that both the scope list and the where condition
list are populated.

Below, we see the next state, 222221.

{State: "222221",Accepting: false,
Transitions: msg ’Data(int((x).DataVariable),

int((y).DataVariable)) from ’S to ’R -> "222222",
InScope: int((x).DataVariable) int((y).DataVariable),
WhereCondition: int((x).DataVariable) = int(1)}

In this state, there is an actual non-ε transition that includes the variable
x. Since this is the first time that x is encountered, it will now be bound
to the value in the recorded communication history, and then the where
condition will be checked.

Finally, in the last state, named 3, we see that the scope and where
condition lists are both empty. Furthermore, the state is accepting, and
there is a transition back to the first state of the automaton to start another
cycle:

{State: "3",Accepting: true,
Transitions: epsilon -> "1",
InScope: nil,
WhereCondition: nil}

This example concludes our discussion about parameters and variables.
To summarize, we have extended the predicates in such a way that messages
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can contain parameters, and predicates can contain both variables, expres-
sions and parameters. Adding variable scoping information to the individual
NFA states, rendered the subset construction algorithm useless, and hence
we had to devise a method for checking an NFA that can contain variables
and expressions. NFA matching will in many cases be slower than DFA
matching, due to backtracking and a larger automaton. Therefore, the DFA
creation and matching algorithms from sections 6.4 and 6.5, respectively, are
still useful for predicates without variables.
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Chapter 9

Non-deterministic Execution

In all the previous chapters of this thesis, our meta rewriting strategy has
chosen which rules to apply to the current term in a round robin manner.
This has worked fairly well, however, there are some issues with this method
that we will address in this chapter.

Since both Maude and hence also our engine are deterministic, two sub-
sequent executions of a given specification from a given start term will, nat-
urally, yield the exact same resulting term. Although this perhaps is fine
for modeling sequential systems, our main focus is on concurrent objects
that communicate through asynchronous message passing. In such a highly
non-deterministic scenario, one would perhaps expect that two executions of
the same system might yield different results or different execution paths,
at least when considering the order in which messages are sent and received
by the individual objects, for example due to external factors such as net-
work latency etc. Furthermore, there are several other problems with both
Maude’s built-in deterministic strategies and our own strategy up till this
point, perhaps most notably that the execution is unfair and more often than
not yields a very skewed result.

In order to amend this situation, we have until now had to make changes
to the actual module that models our problem domain. As an example, let
us look again at the initial configuration in the dining philosophers example
from Section 7.2 on page 78.

< ’Socrates : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: ’James, seat: 1, eatcount: 0 >

< ’Plato : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: ’James, seat: 2, eatcount: 0 >

< ’Aristotle : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: ’James, seat: 3, eatcount: 0 >

< ’Anaximander : Philosopher | state: thinking, leftStick: no,
rightStick: no, butler: ’James, seat: 4, eatcount: 0 >

< ’Pythagoras : Philosopher | state: thinking, leftStick: no,
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rightStick: no, butler: ’James, seat: 5, eatcount: 0 >
< ’James : Butler | sticks: 1 2 3 4 5 > .

We recall that this initial configuration models the five philosophers So-
crates, Plato, Aristotle, Anaximander and Pythagoras sitting around a table
on which there is a bowl of food in the middle, and the butler James keeping
track of the chopsticks needed by the philosophers in order to eat. Using this
initial configuration to perform a given number of rewrites with our meta
rewriting engine, the result will always be the same: Socrates will always be
the only philosopher that eats (assuming that we perform enough rewrites
to allow execution of the respective rewrite rules), and the others will starve.

In order to amend this in subsequent executions, we might try to change
the order in which the philosophers are listed in the initial configuration. We
might let, say, Pythagoras, be listed first instead of Socrates. Although this
will yield a different result, the only difference will be that now Pythagoras
will be the only one that gets to eat, and Socrates will starve with the rest
of the philosophers.

As well as changing the order of the objects in the initial configuration,
we might also try to change the order of the rewrite rules themselves within
our specification. This may or may not, depending on the changes we make,
affect the outcome of a following execution. However, these approaches seem
unnecessarily clumsy, and still they do not address the fact that the rewrite
rules will always be performed in the same order during an entire execution
(i.e., rewrite rule A will always be applied, or at least checked for applicab-
ility, before rule B is attempted applied).

As mentioned in Chapter 2, Maude contains a so-called fair rewrite
strategy, frew. This strategy is using a method known as position-fair re-
writing (for more information on this, see [7]). While frew is clearly fairer
than the strategy we have been using this far, the Maude Manual [11] states
the following:

Position-fair rewriting is not substitution fair; this is particularly
apparent if you have a multiset of messages and objects.

Seeing as multisets of messages and objects are at the very core of our
problem domain, some other non-manual, non-built-in method of fairness
and randomization of the rule selection process is needed.

9.1 AMaude module for generating pseudo-random
numbers

To address the problems discussed in the previous section, we will make
use of a general purpose pseudo-random number generator. Since Maude,
unlike many other popular programming languages, has no built-in access to
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such a generator, we will have to implement one ourselves. In this section, we
introduce a simple pseudo-random number generator based on the algorithm
presented in Numerical Recipes in C, p. 278 [33]:

Ij+1 = a Ij(mod m)

Furthermore, in [33] the authors argue that choosing

a = 25

and

m = 231 − 1

will yield a generator that has passed all the important theoretical tests,
and that has been put to successful use in a large number of real-world
applications.

Translating this algorithm to Maude syntax, we introduce the module
RANDOM, which will allow us to draw pseudo-random numbers in our meta-
level rewrite strategy, as shown in Figure 9.1.

fmod RANDOM is
protecting NAT .

op rand : Nat -> Nat .

op seed : -> Nat .
eq seed = 1 . *** May be any positive integer

ops a m : -> Nat .
eq a = 16807 . *** = 2^5
eq m = 2147483647 . *** = 2^31 - 1

var N : Nat .
eq rand(N) = (a * N) rem m .

endfm

Figure 9.1: A Maude module for generating pseudo-random numbers

In the module in this figure, the equation rand returns a pseudo-random
natural number based on the value of the supplied natural number N . Obvi-
ously, for equal values of N the return value will always be the same. Hence,
the previous return value from rand should be used as the input parameter
when generating the next value. For the cases in which no input is given,
the seed value specified by the constant seed may be used. Seeing as this
algorithm is implemented as a separate functional module in Maude, it can
easily be replaced with a more involved generator, should the need arise.
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9.2 Pseudo-random selection of rewrite rules

In this section, we will use the module in Figure 9.1 on the preceding page
to randomize the selection of rewrite rules from the labels list of the Engine
object. Regarding the actual implementation, there are several approaches
that are worth considering:

• We may randomly select one rule from the list of all rules, and then
use this rule as a starting point for applying the rest of the rules in
a FIFO manner. This will allow us to easily start an execution in
different manners, but all the rules will still be applied in the original
order during subsequent rewrites.

• On the other hand, upon every possible rule invocation, we may ran-
domly select one rule from the list of rules in the labels list. This
will result in an execution order that is totally randomized with re-
spect to the original list of rule labels, but will introduce some extra
overhead involving having to use the random number generator and
some method for retrieving the randomly selected rule from the rule
list based on the drawn number for each possible rule invocation.

• As a third alternative, we may combine the two approaches above. To
begin with, we randomly select a rule from the list of rule labels, and
apply it to the current configuration. Now, one of two things may hap-
pen; (1) the rule may be applied, resulting in a new configuration, or
(2) the rule may fail, either due to the fact that it is not applicable with
regards to the current configuration (Maude’s metaXapply returns fail-
ure), or because applying it to the current configuration would result
in a communication history that does not conform with the specified
invariant.
If the rule is applied, we randomly select a new rule. On the other
hand, if the rule application fails, we try subsequent rules from the
rule list in a round robin manner, until a rule is applied successfully.
Then, we start over, and randomly select a new rule.

When the random rule-selection strategy was first implemented during
the work with this thesis, option number three in the list above was chosen,
to minimize the overhead involved with the randomization process. However,
later experiments suggest that this overhead is negligible compared to the
cost of maintaining the lists of rule labels and failed rules. Hence, we will
choose option number two; upon every new rule application, the rule is drawn
randomly using the RANDOM module.

As with any random number generator, our generator needs a so-called
seed, in other words, an initial value. Once given, the entire sequence of ran-
dom numbers is determined, hence the term pseudo-random number gener-
ator. Therefore, we need to let the user specify the initial seed. Alternatively,
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we could have let the system clock supply the seed value, but Maude1 does
not allow access to it. Consequently, we have to change our signature for the
start function to allow for a user-specified seed (the final integer parameter):

op start : Qid Term QidList Pred Int -> EngineConfig .

Furthermore, the rule rewrite rule in our strategy that performs the ac-
tual execution of a given specification, has now become quite a bit more
complex. Nevertheless, since it is vital to the understanding of our solution,
we will take a closer look at it, though in small pieces at the time. Let us
first take a look at the left hand side of the rewrite rule, where there should
be few surprises:

crl [exec-random-rules] :
Engine[curTerm: T , curModule: MOD, labels: LABEL LABELS,

failedRules: FAILEDRULES, numRules: NUMRULES,
randomNum: RANDOMNUM]

History[h: ML, pred: PRED]
=>

As we can see, there is a new natural number property in the engine;
randomNum. This property allows us to hold the current random value,
as subsequent random values depend on the previous value. The attribute
randomNum will be initialized to the seed value.

Moving on to the right hand side of the rewrite rule, things are starting
to get a bit more intricate, and we will split the right hand side into separate
pieces that will be explained separately. For this purpose, we will first give
a pseudo-code skeleton of the code. The individual parts that we will look
at in detail below are enclosed within brackets, and are numbered from 1 to
4:

(1) { if <the selected rule cannot be applied> then }
(2) { <add the selected rule to the list of failed rules>

<draw a new random number> }
else

(3) { if <predicate check> == true then
<update the current term>
<update the history>
<draw a new random number> }

else
(4) { <handle the failure> }

fi
fi

1as of version 2.1
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The if test in part (1) checks whether the selected rule can be applied to
the current configuration, meaning that Maude’s metaXapply returns a term
and not the constant failure. A given rule is selected randomly by using the
remainder when dividing the pseudo-random number in RANDOMNUM by
the number of rule labels in the module MOD. The findItem : QidList × Nat
→ Qid returns a given item, identified by its number, from a list of quoted
identifiers:

if metaXapply([MOD], T, findItem(LABELS,
RANDOMNUM rem NUMRULES), none, 0, 1, 0) == failure

then

If the test above returns true, the rule that was randomly selected could
not be applied. Hence, in part (2), we need to add it to the list of failed
rules, and draw another random number:

Engine[curTerm: T, curModule: MOD, labels:
LABELS, failedRules:

if findItem(LABELS, RANDOMNUM rem NUMRULES)
in FAILEDRULES

then
FAILEDRULES

else
FAILEDRULES findItem(LABELS, RANDOMNUM

rem NUMRULES)
fi,

numRules: NUMRULES, randomNum: rand(RANDOMNUM)]
History[h: ML, pred: PRED]

Since we are drawing rules from the entire labels list at random, the
rule that has failed in the code fragment above, might already be in the
failedRules list. Therefore, it is necessary to test for this situation before we
add it to the list, which is done by using the in operator, which returns true
if a given quoted identifier exists in a given list of quoted identifiers.

If, on the other hand, the if test in part (1) of the right hand side of
the exec-random rewrite rule returns false, the selected rule is applicable to
the current configuration. In part (3), we will then have to check whether
the application of the rule will violate the predicate. If this is not the case,
we update the history and the current term in the same way as before, only
that now the rule label is of course chosen by using the random number in
RANDOMNUM :

if bool(CheckPredicate(PRED, ML @
getNewMessages(T, getTerm(metaXapply([MOD],
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T, findItem(LABELS, RANDOMNUM rem NUMRULES),
none, 0, 1, 0)), MOD, ML))

) == true
then

Engine[curTerm: getTerm(metaXapply([MOD], T,
findItem(LABELS, RANDOMNUM rem NUMRULES),
none, 0, 1, 0)), curModule: MOD, labels:
LABELS, failedRules: nil, numRules: NUMRULES,
randomNum: rand(RANDOMNUM)]

History[h: ML @
getNewMessages(T, getTerm(metaXapply([MOD], T,
findItem(LABELS, RANDOMNUM rem NUMRULES), none, 0, 1, 0)),
MOD, ML), pred: PRED]

Part (4) of the skeleton, vaguely described above as “handle the failure”,
comes into play when the predicate is about to be violated by a given rule
application. Depending on the chosen mode in which the predicate is to be
checked, the strategy must act accordingly, as explained in Section 8.3. If
the mode is force, the failure results in a new random number being drawn,
and the label of the rule that failed is added to the failedRules list. On the
other hand, if the mode is force, the execution is terminated, and the chosen
rule label is inserted into the Fail object.

if mode(CheckPredicate(PRED, ML @
getNewMessages(T, getTerm(metaXapply([MOD],
T, findItem(LABELS, RANDOMNUM rem NUMRULES),
none, 0, 1, 0)), MOD, ML))) == force

then
Engine[curTerm: T, curModule: MOD, labels:

LABELS, failedRules:
if findItem(LABELS, RANDOMNUM rem NUMRULES)
in FAILEDRULES

then
FAILEDRULES

else
FAILEDRULES findItem(LABELS, RANDOMNUM

rem NUMRULES)
fi,

numRules: NUMRULES, randomNum: rand(RANDOMNUM)]
else

Fail[label: findItem(LABELS, RANDOMNUM rem NUMRULES),
state: T]

fi
History[h: ML, pred: PRED]
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To summarize, we are now able to execute a specification in such a way
that the rewrite rules are selected pseudo-randomly at run-time, instead of
having the order statically defined by the order in which they appear in the
specification. The user may specify the initial seed value to easily produce
different executions. The entire rewrite strategy is shown in the exec-random
rewrite rule in Figure 9.2 on the next page.

9.2.1 An example: The dining philosophers with randomized
rule selection

Now that we have defined all the necessary functionality for pseudo-random
selection of rewrite rules, it is time to look at an example. Once more, we turn
to our beloved dining philosophers (as specified in the example in Section
7.2). We will look at two distinct executions, each consisting of 1000 rewrites.
Using our newly introduced fifth parameter of the start function, we are now
able to supply two different seeds for the random number generator. Apart
from this last parameter, represented by SEED below, the two calls to the
start function will be identical:

rew [1000] start(’DINING-PHILOSOPHERS, ’init.Configuration,
nil,
(if length(H / from(’James) / msgtype(Stick)) minus

length(H / from(’James) / msgtype(ThankYou)) eq 5
then

exists x |
(length(H / from(’James) / msgtype(Stick) / to(x))
minus
length(H / from(’James) / msgtype(ThankYou) / to (x))

eq 2)
else

TRUE
fi), SEED

) .

When using SEED = 1, the execution yields the following result (the History
object is omitted for the sake of brevity, and we focus only on the Engine
object):

Engine[
curTerm: ’__[
’<_:‘Butler‘|‘sticks:_>[’’James.Qid,’none.IntSet],

’msg_from_to_[’ThankYou.Msg,’’James.Qid,
’’Pythagoras.Qid],

’msg_from_to_[’Stick[’s_[’0.Zero]],’’James.Qid,
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crl [exec-random] :
Engine[curTerm: T, curModule: MOD, labels:

LABELS, failedRules: FAILEDRULES,
numRules: NUMRULES, randomNum: RANDOMNUM]

History[h: ML, pred: PRED]
=>
if metaXapply([MOD], T, findItem(LABELS, RANDOMNUM rem NUMRULES),

none, 0, 1, 0) == failure then
Engine[curTerm: T, curModule: MOD, labels:
LABELS, failedRules:

if findItem(LABELS, RANDOMNUM rem NUMRULES) in FAILEDRULES
then FAILEDRULES else
FAILEDRULES findItem(LABELS, RANDOMNUM rem NUMRULES)

fi,
numRules: NUMRULES, randomNum: rand(RANDOMNUM)]

History[h: ML, pred: PRED]
else

if bool(CheckPredicate(PRED, ML @
getNewMessages(T, getTerm(metaXapply([MOD],
T, findItem(LABELS, RANDOMNUM rem NUMRULES),
none, 0, unbounded, 0)), MOD, ML))) == true

then
Engine[curTerm: getTerm(metaXapply([MOD], T,

findItem(LABELS, RANDOMNUM rem NUMRULES),
none, 0, 1, 0)), curModule: MOD, labels:
LABELS, failedRules: nil, numRules: NUMRULES,
randomNum: rand(RANDOMNUM)]

History[h: ML @
getNewMessages(T, getTerm(metaXapply([MOD], T,
findItem(LABELS, RANDOMNUM rem NUMRULES),
none, 0, unbounded, 0)), MOD, ML), pred: PRED]

else
if mode(CheckPredicate(PRED, ML @

getNewMessages(T, getTerm(metaXapply([MOD],
T, findItem(LABELS, RANDOMNUM rem NUMRULES),
none, 0, 1, 0)), MOD, ML))) == force

then
Engine[curTerm: T, curModule: MOD, labels:
LABELS, failedRules:
if findItem(LABELS, RANDOMNUM rem NUMRULES) in FAILEDRULES
then FAILEDRULES else

FAILEDRULES findItem(LABELS, RANDOMNUM rem NUMRULES)
fi,

numRules: NUMRULES, randomNum: rand(RANDOMNUM)]
else

Fail[label: findItem(LABELS, RANDOMNUM rem NUMRULES), state: T]
fi
History[h: ML, pred: PRED]

fi
fi

if length(FAILEDRULES) < length(LABELS) .

Figure 9.2: A rewrite strategy with randomized rule selection
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’’Socrates.Qid],
’msg_from_to_[’Stick[’s_^5[’0.Zero]],’’James.Qid,

’’Anaximander.Qid],
’msg_from_to_[’RequestStick[’s_^2[’0.Zero]],’’Plato.Qid,

’’James.Qid],
’msg_from_to_[’RequestStick[’s_^3[’0.Zero]],’’Aristotle.Qid,

’’James.Qid],
’msg_from_to_[’RequestStick[’s_^4[’0.Zero]],’’Anaximander.Qid,

’’James.Qid],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

[’’Anaximander.Qid,’hungry.State, ’requested.StickState,
’requested.StickState,’’James.Qid,’s_^4[’0.Zero],

’s_^15[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

[’’Aristotle.Qid,’hungry.State,’requested.StickState,
’yes.StickState,’’James.Qid,’s_^3[’0.Zero],’s_^2[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

[’’Plato.Qid,’hungry.State,’requested.StickState,
’yes.StickState,’’James.Qid,’s_^2[’0.Zero],’s_^2[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

[’’Pythagoras.Qid,’hungry.State,’no.StickState,
’no.StickState,’’James.Qid,’s_^5[’0.Zero],’s_^5[’0.Zero]],’

<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

[’’Socrates.Qid,’hungry.State,’requested.StickState,
’yes.StickState,’’James.Qid,’s_[’0.Zero],’s_[’0.Zero]]],

curModule: ’DINING-PHILOSOPHERS, labels: ’getting-hungry
’recv-right-stick ’recv-left-stick ’had-enough ’eat
’req-left-stick ’accept-thanks ’req-right-stick
’give-stick ’get-returned-stick, failedRules:
’get-returned-stick, numRules: 10, randomNum: 2028841238

]

The current configuration is meta-represented in the property curTerm of
the Engine object. From this property, we note that Anaximander has eaten
15 times, Aristotle 2 times, Plato 2 times, Pythagoras 5 times and Socrates
1 time.

Using SEED = 282475249 (corresponding to rand(rand(1))), we get the
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following results:2

Engine[
curTerm: ’__[
’<_:‘Butler‘|‘sticks:_>[’’James.Qid,’s_^4[’0.Zero]],

’msg_from_to_[’ThankYou.Msg,’’James.Qid,
’’Anaximander.Qid],

’msg_from_to_[’Stick[’s_^5[’0.Zero]],’’Anaximander.Qid,
’’James.Qid],

’msg_from_to_[’RequestStick[’s_[’0.Zero]],’’Socrates.Qid,
’’James.Qid],

’msg_from_to_[’RequestStick[’s_^2[’0.Zero]],’’Plato.Qid,
’’James.Qid],

’msg_from_to_[’RequestStick[’s_^3[’0.Zero]],’’Plato.Qid,
’’James.Qid],

’msg_from_to_[’RequestStick[’s_^4[’0.Zero]],’’Anaximander.Qid,
’’James.Qid],

’msg_from_to_[’RequestStick[’s_^4[’0.Zero]],’’Aristotle.Qid,
’’James.Qid],

’msg_from_to_[’RequestStick[’s_^5[’0.Zero]],’’Anaximander.Qid,
’’James.Qid],

’msg_from_to_[’RequestStick[’s_^5[’0.Zero]],’’Pythagoras.Qid,
’’James.Qid],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

[’’Anaximander.Qid,’hungry.State,’requested.StickState,
’requested.StickState,’’James.Qid,’s_^4[’0.Zero],
’s_^11[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

[’’Aristotle.Qid,’hungry.State,’yes.StickState,
’requested.StickState,’’James.Qid,’s_^3[’0.Zero],
’s_^6[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

[’’Plato.Qid,’hungry.State,’requested.StickState,
’requested.StickState,’’James.Qid,’s_^2[’0.Zero],
’s_^2[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

2The value rand(rand(1)) was chosen in order to get some interesting and illustrative
results; choosing for instance SEED = 2 will also produce a randomized execution that
is different from the case where SEED = 1, but the differences are not as immediately
evident as in this case.
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[’’Pythagoras.Qid,’hungry.State,’requested.StickState,
’yes.StickState,’’James.Qid,’s_^5[’0.Zero],
’s_^4[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>

[’’Socrates.Qid,’hungry.State,’requested.StickState,
’yes.StickState,’’James.Qid,’s_[’0.Zero],
’s_[’0.Zero]]],

curModule: ’DINING-PHILOSOPHERS, labels:
’accept-thanks ’had-enough ’eat ’give-stick ’req-left-stick
’req-right-stick ’recv-left-stick ’recv-right-stick
’get-returned-stick ’getting-hungry, failedRules:
’getting-hungry, numRules: 10, randomNum: 843998877

]

From this execution, we see that Anaximander has eaten 11 times, Ar-
istotle 6 times, Plato 2 times, Pythagoras 4 times and Socrates 1 time. We
also note that the messages in transit in the configurations resulting from
the two executions differ both in number and in contents.

9.3 Randomized rule application

In the previous section, we modified our rewrite strategy so that it could
choose which rules to apply to the current term in a pseudo-random manner,
and as we saw in the dining-philosopher’s example, this allowed us to easily
produce different executions by providing different seed values. The strategy
was obviously fairer than our previous round robin based one. However, as
the following small example will illustrate, this is not enough to provide an
execution that is truly randomized.

9.3.1 An example: The dining philosophers with only one
rewrite rule

The point of this example is to illustrate that randomization at the rule-
level is not enough for fairness; we also need randomization at the object
level. Consider once more the example from Section 7.2. What we will do
is to change this example, and make the philosophers a bit “ruder”, meaning
that they are always able to eat, even if it means that they must use their
bare hands in lack of chopsticks. To achieve this, we replace all the rewrite
rules from the previous example with only one new greedy-eat rule (irrelevant
attributes are ignored):

rl [greedy-eat] :
< P : Philosopher | eatcount: C >
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=>
< P : Philosopher | eatcount: C + 1 > .

If we try to execute this specification with the original initial configura-
tion (consisting of Socrates, Plato, Aristotle, Anaximander, Pythagoras and
the butler James) using our strategy from Figure 9.2 on page 129, the results
are devastating: the only philosopher that gets to eat is Anaximander, and
the others will starve, regardless of what seed we supply for the randomiza-
tion, as shown in the Engine object below after a thousand rewrites:

Engine[
curTerm: ’__[
’<_:‘Butler‘|‘sticks:_>
[’’Barry.Sort,’__[’s_[’0.Zero],’s_^2[’0.Zero],’s_^3[
’0.Zero],’s_^4[’0.Zero],’s_^5[’0.Zero]]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Anaximander.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_^4[’0.Zero],’s_^1000[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Aristotle.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_^3[’0.Zero],’0.Zero],

’<_:‘Philosopher‘|‘:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Plato.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_^2[’0.Zero],’0.Zero],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Pythagoras.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_^5[’0.Zero],’0.Zero],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Socrates.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_[’0.Zero],’0.Zero]

],
curModule: ’DINING-PHILOSOPHERS,labels: ’greedy-eat,
failedRules: nil, numRules: 1,randomNum: 270655128

]

As we can see from the eatcount attribute of the philosopher objects,
Anaximander has eaten a thousand times (represented at the meta-level as
’s_^1000[’0.Zero]), and all the others zero times (meta-represented as
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’0.Zero). It is now quite clear that we need to extend the randomization to
include objects (and terms within objects) as well as rewrite rules.

9.3.2 Randomization between and within objects

A given rule or equation may be applicable to a given term in several different
positions within the term. A rule applied to a term at a given position is
called a solution. As an example, consider the idempotency equation for
sets, where ELEMENT is a variable that can hold an arbitrary element in a
given set:

eq ELEMENT ELEMENT = ELEMENT .

Now, let’s say we have a set of integers consisting of the following ele-
ments: 1 5 2 2 2 3. The idempotency equation can now be applied at two
different positions in the set. The positions are underlined below:

• position 0: 1 5 2 2 2 3

• position 1: 1 5 2 2 2 3

In the same way, the greedy-eat rewrite rule from the previous dining
philosophers example can be applied at several positions within the configur-
ation at each rewrite (one for each philosopher). Additionally, other rewrite
rules may be applicable at several different positions within a single object.
Hence, to make our strategy fair, we need to randomize which solution is
used as well as which rule is used.

Maude’s built-in metaXapply(R, t, l, σ, n, b, m) function, that we have
been making heavy use of in our strategy to perform the actual meta-level
rewrites, allows us to control at which position within a given term the
rewrite takes place by supplying a natural number parameter m. In the
previous implementations of our strategy, we have supplied the value 0 for
m, meaning that we have used the first (according to Maude’s internal sorting
algorithm) available solution.

In order to pick a randomized solution number, the first thing we need
to know is how many solutions there are, and this is something that Maude
does not make directly available to us (probably because this value is not
calculated before it is needed by Maude’s internal engine). To find this value,
we make use of the fact that metaXapply returns failure when a given rule
cannot be applied to a given term at a given positionm, and that the solution
numbers are always increasing by one and starting from zero (in other words,
there are no gaps in the sequence of solution numbers). Knowing this, we
can find the number of possible solutions for a rule with label l applied to a
term t by repeatedly calling metaXapply with increasing values for m, until
the function returns failure.
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Knowing the number of solutions s, we can choose a solution number
randomly by drawing a number r from the RANDOM module of Figure 9.1
on page 123 and calculating r mod s. We could have used the number
in the randomNum property of the Engine object for r, but since we are
already using this for drawing rule labels at random and we want this to
be independent of the solution number, we add another natural number
property to the Engine object; randomNum2. Furthermore, we allow the
user to specify two separate seed values to the start function.

Figure 9.3 on page 137 shows the entire exec-random-2 rewrite strategy,
which now selects the solution number as well as the rule label pseudo-
randomly. The main difference from our previous implementation (Figure 9.2
on page 129), is the calls to a new auxiliary function ChooseSolution : Qid ×
Term × Qid × Int × Pred × MsgList → Int, found in lines 7, 11, 33 and
42. The ChooseSolution function takes the name of a module MOD, the
meta-representation of the current configuration t, a rule label l, a random
number r, a predicate p and a communication history ML in the form of
a message list, and returns the chosen solution number. It determines the
number of possible solutions s for applying l to t, and then selects one of
these by a modulo operation on r. The CheckPredicate function is then
called to see whether the attempted rule application is in concordance with
the predicate p. If this is the case, the solution number is returned and the
history is updated with any new messages. If, on the other hand, it is not in
accordance with the predicate p, the CheckPredicate does one of two things
depending on the mode in which the predicate is checked:

• If the mode is force, and there are solutions that have not yet been
tried, the next solution r′ = (r + 1) mod s is checked for compliance
with the predicate. If this check succeeds, r ′ is returned, otherwise
the next solution is tried. If no solution number can be found, −1 is
returned.

• On the other hand, if the mode is fail-stop, the execution is terminated
immediately if the predicate check fails, and −2 is returned to indicate
a fail stop to the exec-random-2 rule of Figure 9.3 on page 137. If the
check succeeds, the solution number is returned in the same way as in
the previous bullet.

The detailed code for the new versions of the auxiliary functions Choose-
Solution and CheckPredicate can be found in Appendix A.

If we try to execute the example with only one greedy eat rule from Sec-
tion 9.3.1, we see that our new rewrite strategy is capable of applying the
rule fairly between the philosophers, and that we are able to provide different
executions by changing the two seed values. Below is the resulting config-
uration from running the example with seed values 1 and 2 and performing
1000 rewrites:
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Engine[
curTerm: ’__[
’<_:‘Butler‘|‘sticks:_>
[’’Barry.Sort,’__[’s_[’0.Zero],’s_^2[’0.Zero],’s_^3[
’0.Zero],’s_^4[’0.Zero],’s_^5[’0.Zero]]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Anaximander.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_^4[’0.Zero],’s_^237[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Aristotle.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_^3[’0.Zero],’s_^195[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Plato.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_^2[’0.Zero],’s_^172[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Pythagoras.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_^5[’0.Zero],’s_^212[’0.Zero]],

’<_:‘Philosopher‘|‘state:_‘,leftStick:_‘,rightStick:_‘,
butler:_‘,seat:_‘,eatcount:_>
[’’Socrates.Sort,’thinking.State,’no.StickState,
’no.StickState,’’Barry.Sort,’s_[’0.Zero],’s_^184[’0.Zero]]

],
curModule:’DINING-PHILOSOPHERS,labels: ’greedy-eat,failedRules:
nil, numRules: 1,randomNum:2021703321,randomNum2: 1895922995

]

We observe that the values of the eat counters are quite evenly distrib-
uted, with Anaximander, Aristotle, Plato, Pythagoras and Socrates having
eaten 237, 195, 172, 212 and 184 times, respectively.
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1. crl [exec-random-2] :
2. Engine[curTerm: T , curModule: MOD, labels: LABELS ,
3. failedRules: FAILEDRULES, numRules: NUMRULES,
4. randomNum: RANDOMNUM, randomNum2: RANDOMNUM2]
5. History[h: ML, pred: PRED]
6. =>
7. if ChooseSolution(MOD, T,
8. findItem(LABELS, RANDOMNUM rem NUMRULES),
9. RANDOMNUM2, PRED, ML) < 0
10. then
11. if ChooseSolution(MOD, T,
12. findItem(LABELS, RANDOMNUM rem NUMRULES),
13. RANDOMNUM2, PRED, ML) == -1
14. then
15. Engine[curTerm: T , curModule: MOD, labels: LABELS ,
16. failedRules:
17. if findItem(LABELS, RANDOMNUM rem NUMRULES) in FAILEDRULES
18. then
19. FAILEDRULES
20. else
21. FAILEDRULES findItem(LABELS, RANDOMNUM rem NUMRULES)
22. fi,
23. numRules: NUMRULES, randomNum: rand(RANDOMNUM),
24. randomNum2: rand(RANDOMNUM2)]
25. else
26. Fail[label: findItem(LABELS, RANDOMNUM rem NUMRULES), state: T]
27. fi
28. History[h: ML, pred: PRED]
29. else
30. Engine[curTerm: getTerm(metaXapply([MOD], T,
31. findItem(LABELS, RANDOMNUM rem NUMRULES),
32. none, 0, unbounded,
33. ChooseSolution(MOD, T,
34. findItem(LABELS, RANDOMNUM rem NUMRULES),
35. RANDOMNUM2, PRED, ML))) ,
36. curModule: MOD , labels: LABELS,
37. failedRules: nil, numRules: NUMRULES, randomNum: rand(RANDOMNUM),
38. randomNum2: rand(RANDOMNUM2)]
39. History[h: ML @ getNewMessages(T, getTerm(metaXapply([MOD], T,
40. findItem(LABELS, RANDOMNUM rem NUMRULES),
41. none, 0, unbounded,
42. ChooseSolution(MOD, T,
43. findItem(LABELS, RANDOMNUM rem NUMRULES),
44. RANDOMNUM2, PRED, ML))), MOD, ML),
45. pred: PRED]
46. fi
47. if length(FAILEDRULES) < length(LABELS) .

Figure 9.3: A rewrite strategy with randomized rule and solution number
selection
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Chapter 10

Communication over Sockets

Maude comes with very few built-in possibilities for communicating with
“the rest of the world”. For example, there is no support for writing to files,
very limited GUI support, no support for external object creation (like for
instance COM [37] or SOAP [19]) etc. Furthermore, there is no way for
a Maude specification to communicate with another process, be it local or
remote, and in this chapter, we will look at how we can work around this
specific limitation.

In [30], an approach to this problem based on the actor model of distrib-
uted computation [1] is presented. In this paper, a Maude actor IMaude [22]
is presented, that can interact with other processes through the InterOper-
ability Platform (IOP) [23].

We will, in this chapter, take a somewhat more straightforward approach,
in which there is really no extra Maude framework code that needs to be
written, and no changes need to be done to the actual Maude or Creol
specifications.

The general idea is that since Maude writes to standard out, and reads
from standard in [36], we can add communication capabilities by “wrapping”
the Maude process in an external process that controls standard in and out.
By reading Maude’s output we can identify which messages are destined for
another process, and send them over the network via socket communication.
If we at the same time listen for incoming messages on the network, and
are able to insert such messages into the Maude configuration in-between
rewrites, we have established network communication support for Maude
specifications. An outline of this concept is shown in Figure 10.1 on the next
page.

We will write the wrapper program in Python [34], since this language
has good socket and threading support, and in general is a good RAD (rapid
application development) tool.

The wrapper program will have one queue for incoming messages, inq,
one queue for outgoing messages, outq, and a table objectLocations that
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Maude

InputOutput

msg ’M from ’O to ’O2
< ’O : Obj | ... >

...

Wrapper process Network
Listener socket

Communication
sockets

Figure 10.1: A schematic view of socket communication in Maude

specifies the locations on the network for the remote objects. The program
will consist of several threads with specific tasks:

The main thread The task of the main thread is to accept command
line parameters from the user, and to start the thread that controls the
Maude process, the listener thread and the sender thread. The command
line parameters for the main thread are:

• The file name of the Maude source code file in which the specification
that is to be executed is stored.

• The file name of an XML file that specifies where on the network
each remote object is located. An example of such a file is shown in
Figure 10.2 on the facing page. This file will be read into the object-
Locations table.

• The Maude module in which the rewrites are to be performed (op-
tional).

• The maximum number of rewrites that are to be performed (optional).

The Maude controller thread The task of this thread is to control
a Maude process by providing rewrite commands and terms as input and
capturing its output. It will keep the current Maude configuration in a
local variable curTerm. The thread will be running in a loop, and for each
iteration in this loop, the following operations will be performed:
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<objectLocations>
<object>

<name>’Sender</name>
<machine>ringhorni.ifi.uio.no</machine>
<port>5001</port>

</object>
<object>

<name>’Receiver</name>
<machine>cammarata.ifi.uio.no</machine>
<port>5003</port>

</object>
</objectLocations>

Figure 10.2: An example XML file with locations on the network for two
objects

• Check the inq for any new messages, and if there are any, add them to
the current configuration in curTerm.

• Start Maude, and instruct it to perform one rewrite of the current
configuration. If this is the very first iteration of the loop, the initial
configuration is assumed to be specified by an init : → Configuration
constant.

• Read Maude’s output, extract the resulting configuration, and store it
in the local variable curTerm.

• Quit Maude.

• Check the new configuration for any new messages that are destined
for a remote object, by looking up the individual receivers in the ob-
jectLocations table. If there are any such messages, remove them from
the configuration, and put them in the out queue outq.

It may seem a bit odd that Maude is started and terminated for each
iteration of the loop, and indeed this was not the initial design. To begin with
the communication with Maude was done through Unix pipes, and Maude
was only started once in the lifetime of the wrapper program. This did,
however, prove to be very unstable, and Maude would lock up at arbitrary
times. The reason for this is not known.

The listener thread The listener thread is started by the main thread,
and lives as long as the program is executing. It instantiates a listener socket,
and listens for incoming connection requests from other processes. When a
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connection request arrives, the connection is accepted, and a new instance
of a receiver thread is started to handle the communication with the remote
process.

The receiver thread The task of a receiver thread is to handle a spe-
cific communication request. It is started by the listener thread, and reads
incoming data from a socket dedicated to this connection. The client that
requested the connection transfers a Maude message (as a string) over the
network. When the transmission is complete, the new message is added to
the in queue inq, the socket is closed and the thread terminates.

The sender thread This thread is instantiated at startup by the main
thread, and monitors the out queue outq. For each new message in outq, the
sender thread

• establishes a socket connection to the remote process,

• sends the message,

• removes the message from the out queue, and

• closes the socket.

By using two or more of these wrapper processes, and setting up the
objectLocations tables accordingly, we are able to let objects in one Maude
specification send standard Maude messages to objects in another specific-
ation, that might be running on a different machine on the network. An
example setup is shown in Figure 10.3 on the next page.

In Chapter 9 we introduced random execution based on a pseudo-random
number generator. By using the approach from this chapter, we can have
true non-determinism when it comes to exchange of messages, seeing as the
network might introduce arbitrary delays, and CPUs run at different speeds.
This makes for a much more realistic testing environment for specifications.

Furthermore, there is, in principle, no need for the processes with which
the Maude process communicates to be other Maude processes. As long as
the messages that are put in the Maude configuration are of a form that
Maude can understand, the other objects may be implemented in any lan-
guage. Not only does this make Maude able to communicate with programs
and components of various kinds, but it also makes it possible to test that
third-party objects behave according to their specification, by using the pre-
dicate checking mechanisms introduced in this thesis.
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Figure 10.3: An example setup with two Maude processes communicating
across the network through sockets
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Chapter 11

Conclusion

In this thesis we have presented a non-deterministic rewrite strategy that can
record a communication history during runtime, and control the execution
of a specification according to predicates on this history.

The rewrite strategy has evolved throughout the thesis, from the basic
round robin strategy of Figure 4.2 on page 36 to the full-fledged strategy
that supports history logging, predicate checking, predicate enforcement,
execution of both Maude and Creol specifications and randomization of rules
and rule applications of Figure 9.3 on page 137.

11.1 Main results from this thesis

In Section 1.3 of the introduction, we presented our primary goal for this
thesis, which was

to develop a framework for executing specifications modeling distributed
systems, that can record and utilize a communication history.

The work towards reaching this goal has resulted in a meta-level Maude
framework that can execute meta-representations of both Maude and Creol
specifications. During runtime, the communication history is logged, and
predicates can be specified to control the behavior of the executing specific-
ation, or to test that the specification behaves according to its invariant.

To further concretize the goal, we presented four questions, which we will
try to answer in a little more detail below:

Transparent history logging

How can we execute Maude specifications and transparently, in the sense
that the original specification remains unchanged, build a communication

trace as the execution proceeds?
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This question is addressed in Chapter 4. The key points can be summarized
as follows: A meta-level representation of the object-level configuration is
stored in an Engine object, and the history is stored in a History object.
A meta-level rewrite strategy controls the execution, and extracts any new
messages from the configuration, and records them in the history. The fact
that we are utilizing a meta-level strategy to execute the specifications, and
a separate object to store the history, means that no changes are needed in
the original specifications.

Predicates on the communication history

How can we define predicates on this trace, and use such predicates to
control and test the behavior of objects?

Predicates on the communication history are introduced in Chapter 5. In
chapters 6 and 8, we increase the expressiveness of our predicates by adding
additional constructs, such as full support for regular expressions with para-
meters and scoped variables, and quantifiers.

An important point from this discussion, is that to specify predicates
that are to be checked during execution, we must define constructors that
cannot be further reduced by Maude, since at the time of specification the
communication history H has not yet been recorded. Hence, we will have to
parse the predicate specifications ourselves during runtime.

We also consider how the predicates can be used. In Chapter 5, the
predicates are used by our rewrite strategy to control the execution so that
illegal rewrites are not performed. Another approach is taken in Section 8.3,
in which a mechanism for testing that an object conforms to its specification
is presented. These two methods of predicate checking are called force mode
and fail-stop mode, respectively. Modes may be be combined, such that
different projections on the history can be checked in different modes. This
technique can be used for component testing.

In Chapter 10, we also briefly consider how the predicate checking mech-
anisms can be applied to external components through the use of a socket
extension to Maude.

Application to the Creol language

How can these techniques be applied to the Creol language, and more
specifically, to the Creol interpreter developed in Maude?

The concepts introduced in this thesis, can all be applied to Creol Machine
Code executed by the Creol interpreter as well as to standard Maude object
based specifications. Since a meta-level approach is used, we need not worry
about how the underlying specification is implemented or executed.
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There are, however, some minor considerations regarding the structure
of messages and how the interpreter handles local calls, that are dealt with
in Section 8.2. The important thing, though, is that no conceptual change is
needed to make the framework function with the Creol interpreter. This fact
supports the claim that the framework we have developed is general enough
to be useful for a wide variety of object based rewriting logic specifications.

Non-determinism

How can we execute models of highly non-deterministic concurrent systems,
such as Creol programs, in the deterministic rewrite tool Maude?

We have seen that Maude’s built-in strategies rew and frew are not suit-
able for executing rewriting logic models of non-deterministic problems. In
Chapter 9, we introduced a pseudo-random rewrite strategy based on a
pseudo-random number generator. We showed how a two-level randomiz-
ation was needed, both a the rule level and at the solution level. With this
strategy, non-deterministic problems are treated fairly, and we are also able
to provide different executions by specifying different seed values.

With the socket extension to Maude presented in Chapter 10, we are also
able to introduce true non-determinism by allowing Maude specifications to
communicate over a real network, with varying latency and CPU speeds,
possible packet loss etc.

11.2 Future work

In Chapter 4 we introduced the Engine object, that contains the current
term, the name of the current module, a list of rule labels from the current
module etc. This object is used by the rewrite strategy when performing
rewrites. It could perhaps be interesting to extend this concept to allow
for more than one Engine object, so that several independent specifications
could be executed at the same time (or interchangeably).

Also in Chapter 4, we looked at how to record the communication his-
tory by checking the configuration recursively for new messages in-between
rewrites. As we recall, we left it as an open question if this method was the
best way to go. An alternative approach could be to analyze the rewrite
rules in a specification at the meta-level, to see which rules may produce a
message under which conditions, and log the messages in the history based
on this analysis.

The predicates specified in this thesis have been independent from the
actual object specifications, in the sense that they are given explicitly as a
parameter to the rewrite strategy, as opposed to being a part of the spe-
cifications themselves. In Creol, invariants and assumptions are specified as
parts of an interface. A tighter integration with Creol in this respect could
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be considered, in which the strategy would read the predicate directly from
the Creol Machine Code. For this to work, the CMC from [3] would also
have to be modified to include this information.

The predicate checking in this thesis is performed dynamically during
run-time. A static approach could also be an interesting study, in which the
predicate is checked against all possible states for a given specification (from
a given initial state). For this, Maude’s built-in search command might
perhaps be utilized.

The socket extension to Maude presented in Chapter 10 allows Maude to
communicate with other processes. Developing some examples of interaction
between Maude and other types of software could be an interesting task,
especially with focus on component testing using the predicate framework
from this thesis.
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Appendix A

Source Code

A.1 Rewrite strategy

1 mod META-ENGINE is
2
3 protecting META-LEVEL .
4 protecting QID-LIST-EXT .
5 protecting QID .
6 protecting RANDOM .
7 protecting PRED .
8 protecting CONVERSION .
9 protecting STRING .
10
11 var MOD : Qid .
12 var T : Term .
13 var R : Rule .
14 var RS : RuleSet .
15 vars LABEL SUBSCRIPTION : Qid .
16 vars LABELS SUBSCRIPTIONS FAILEDRULES : QidList .
17 vars T1 T2 T3 T4 : Term .
18 var AS : AttrSet .
19 var Q : Qid .
20 vars QL QL2 QL3 FORCE-LABELS FAILSTOP-LABELS : QidList .
21 var EC : EngineConfig .
22 var CONDITION : Condition .
23 vars I NUMRULES SEED SEED2 RANDOMNUM RANDOMNUM2 : Int .
24 vars PRED PRED2 : Pred .
25 vars ML ML2 : MsgList .
26 var MODE : Mode .
27
28
29 sort EngineConfig .
30 sort EngineObject .
31 subsort EngineObject < EngineConfig .
32
33 *** Definitions of the EngineObjects:
34 op Engine[curTerm:_ , curModule:_ , labels:_ , failedRules:_ ,
35 numRules:_, randomNum:_, randomNum2:_] :
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36 Term Qid QidList QidList Int Int Int -> EngineObject .
37 op History[h:_ , pred:_] : MsgList Pred -> EngineObject .
38 op Fail[label:_ , state:_] : Qid Term -> EngineObject .
39
40 op __ : EngineConfig EngineConfig -> EngineConfig
41 [ctor assoc comm id: noEngine] .
42 op noEngine : -> EngineConfig [ctor] .
43
44
45 ***(
46 This is the equation that is used to start
47 meta-level rewriting.
48 ***)
49 op start : Qid Term -> EngineConfig .
50 op start : Qid Term Pred -> EngineConfig .
51 op start : Qid Term Pred Int -> EngineConfig .
52 op start : Qid Term Pred Int Int -> EngineConfig .
53
54 eq start(MOD, T) =
55 start(MOD, T, TRUE) .
56 eq start(MOD, T, PRED) =
57 start(MOD, T, PRED, seed) .
58 eq start(MOD, T, PRED, SEED) =
59 start(MOD, T, PRED, SEED, seed) .
60
61 eq start(MOD, T, PRED, SEED, SEED2) =
62 Engine[curTerm: T, curModule: MOD, labels: getRuleLabels(MOD),
63 failedRules: nil, numRules: length(getRuleLabels(MOD)),
64 randomNum: rand(SEED), randomNum2: rand(SEED2)]
65 History[h: nil, pred: PRED] .
66
67 op getLabelsFromRuleSet : RuleSet -> QidList .
68 eq getLabelsFromRuleSet(none) = nil .
69 eq getLabelsFromRuleSet(rl T1 => T2 [label(LABEL) AS] . RS) =
70 LABEL getLabelsFromRuleSet(RS) .
71 eq getLabelsFromRuleSet(crl T1 => T2 if CONDITION
72 [label(LABEL) AS] . RS) =
73 LABEL getLabelsFromRuleSet(RS) .
74
75 op getRuleLabels : Qid -> QidList .
76 eq getRuleLabels(MOD) = getLabelsFromRuleSet(upRls(MOD, true)) .
77
78 crl [exec] :
79 Engine[curTerm: T , curModule: MOD, labels: LABELS ,
80 failedRules: FAILEDRULES, numRules: NUMRULES,
81 randomNum: RANDOMNUM, randomNum2: RANDOMNUM2]
82 History[h: ML, pred: PRED]
83 =>
84 *** To begin with, we check if the rule is enabled,
85 *** and that it can be applied according to the
86 *** predicate:
87 if ChooseSolution(MOD, T,
88 findItem(LABELS, RANDOMNUM rem NUMRULES),
89 RANDOMNUM2, PRED, ML) < 0
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90 then
91 *** Error codes:
92 *** -1: The rule could not be applied, that is
93 *** there were no enabled solutions
94 *** -2: The rule was enabled, but was stopped by
95 *** the predicate:
96 if ChooseSolution(MOD, T,
97 findItem(LABELS, RANDOMNUM rem NUMRULES),
98 RANDOMNUM2, PRED, ML) == -1
99 then

100 Engine[curTerm: T , curModule: MOD, labels: LABELS ,
101 failedRules:
102 if findItem(LABELS, RANDOMNUM rem NUMRULES)
103 in FAILEDRULES
104 then
105 FAILEDRULES
106 else
107 FAILEDRULES findItem(LABELS, RANDOMNUM
108 rem NUMRULES)
109 fi,
110 numRules: NUMRULES, randomNum: rand(RANDOMNUM),
111 randomNum2: rand(RANDOMNUM2)]
112 else
113 *** Choosesolution returned -2,
114 *** we were stopped by the predicate:
115 Fail[label: findItem(LABELS, RANDOMNUM rem NUMRULES),
116 state: T]
117 fi
118 History[h: ML, pred: PRED]
119 else
120 *** The test of this rule was ok, we apply it:
121 Engine[curTerm: getTerm(metaXapply([MOD], T,
122 findItem(LABELS, RANDOMNUM rem NUMRULES),
123 none, 0, unbounded,
124 ChooseSolution(MOD, T,
125 findItem(LABELS, RANDOMNUM rem NUMRULES),
126 RANDOMNUM2, PRED, ML))) ,
127 curModule: MOD , labels: LABELS,
128 failedRules: nil, numRules: NUMRULES, randomNum:
129 rand(RANDOMNUM), randomNum2: rand(RANDOMNUM2)]
130 History[h: ML @ getNewMessages(T, getTerm(metaXapply(
131 [MOD], T, findItem(LABELS, RANDOMNUM rem NUMRULES),
132 none, 0, unbounded,
133 ChooseSolution(MOD, T,
134 findItem(LABELS, RANDOMNUM rem NUMRULES), RANDOMNUM2,
135 PRED, ML))), MOD, ML),
136 pred: PRED]
137 fi
138 *** If all the rules have failed, we cannot do anything more:
139 if length(FAILEDRULES) < length(LABELS) .
140
141
142 vars Q1 Q2 Q3 : Qid .
143 vars GTL1 GTL2 : GroundTermList .
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144 vars GT1 GT2 GT3 : GroundTerm .
145 var C : Constant .
146 vars SOLUTION MAXSOLUTIONINDEX : Int .
147 var M : Msg .
148
149 op ChooseSolution : Qid Term Qid Int Pred MsgList -> Int .
150 eq ChooseSolution(MOD, T, LABEL, RANDOMNUM2, PRED, ML) =
151 if MaxSolutionIndex(MOD, T, LABEL) == -1 then -1
152 else
153 *** Must check if the chosen solution is compatible
154 *** with the predicate:
155 CheckSolutionAgainstPredicate(MOD, T, LABEL, PRED, ML,
156 rand(RANDOMNUM2) rem (MaxSolutionIndex(MOD, T, LABEL) + 1),
157 MaxSolutionIndex(MOD, T, LABEL), 0)
158 fi .
159
160 *** Checks whether a given solution is valid according to
161 *** the predicate. If not, the remaining solutions are tried.
162 *** If no valid solutions can be found, -1 is returned.
163 op CheckSolutionAgainstPredicate : Qid Term Qid Pred
164 MsgList Int Int -> Int .
165 op CheckSolutionAgainstPredicate : Qid Term Qid Pred
166 MsgList Int Int Int -> Int .
167
168 eq CheckSolutionAgainstPredicate(MOD, T, LABEL, PRED, ML,
169 SOLUTION, MAXSOLUTIONINDEX) =
170 CheckSolutionAgainstPredicate(MOD, T, LABEL, PRED, ML,
171 SOLUTION, MAXSOLUTIONINDEX, 0) .
172
173 eq CheckSolutionAgainstPredicate(MOD, T, LABEL, PRED, ML,
174 SOLUTION, MAXSOLUTIONINDEX, I) =
175 if I > MAXSOLUTIONINDEX + 1 then
176 *** We have tried every solution without
177 *** finding any that could be used with the
178 *** predicate
179 -1
180 else
181 *** Test the current solution:
182 if bool(CheckPredicate(PRED, ML @
183 getNewMessages(T, getTerm(metaXapply([MOD],
184 T, LABEL, none, 0, unbounded, SOLUTION)),
185 MOD, ML)))
186 then s
187 SOLUTION
188 else
189 *** Current solution failed
190 if mode(CheckPredicate(PRED, ML @
191 getNewMessages(T, getTerm(metaXapply([MOD],
192 T, LABEL, none, 0, unbounded, SOLUTION)),
193 MOD, ML))) == force
194 then
195 *** Test the next solution
196 CheckSolutionAgainstPredicate(MOD, T, LABEL, PRED, ML,
197 (SOLUTION + 1) rem (MAXSOLUTIONINDEX + 1),
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198 MAXSOLUTIONINDEX, I + 1)
199 else
200 *** Mode = fail-stop;
201 *** Return an error code when an illegal rule
202 *** application is attempted.
203 -2
204 fi
205 fi
206 fi
207 .
208
209 *** Returns the highest available solution index.
210 *** If no solution can be found, -1 is returned.
211 op MaxSolutionIndex : Qid Term Qid -> Int .
212 op MaxSolutionIndex : Qid Term Qid Int -> Int .
213
214 eq MaxSolutionIndex(MOD, T, LABEL) =
215 MaxSolutionIndex(MOD, T, LABEL, 0) .
216
217 eq MaxSolutionIndex(MOD, T, LABEL, I) =
218 if (metaXapply([MOD], T, LABEL, none, 0, unbounded, I)
219 =/= failure)
220 then
221 MaxSolutionIndex(MOD, T, LABEL, I + 1)
222 else
223 I + (- 1)
224 fi .
225
226
227
228 op isMetaMessage : Term Qid -> Bool .
229 eq isMetaMessage(T1, MOD) = wellFormed([MOD], ’M:Msg <- T1) .
230
231 op countGroundTerms : GroundTerm GroundTermList -> Int .
232 op countGroundTerms : GroundTerm GroundTermList Int -> Int .
233 eq countGroundTerms(GT1, GTL2) = countGroundTerms(GT1, GTL2, 0) .
234 eq countGroundTerms(GT1, GT2, I) = if GT1 == GT2 then 1 else 0 fi .
235 eq countGroundTerms(GT1, (GT2, GTL2), I) =
236 if GT1 == GT2 then
237 1 + countGroundTerms(GT1, GTL2, I + 1)
238 else
239 if I > 0 then
240 0
241 else
242 countGroundTerms(GT1, GTL2, 0)
243 fi
244 fi .
245
246 op strip : Qid -> Qid .
247 eq strip (Q) = qid (substr (string (Q), 1, length (string (Q)))) .
248
249 vars GTLABEL GTLABEL2 GTFROM GTTO GTMETHOD GTPARAM : GroundTerm .
250 vars FROM1 FROM2 TO : Qid .
251 var L : List .
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252
253 op GroundTermToMessage : GroundTerm MsgList -> Msg .
254 eq GroundTermToMessage(’msg_from_to_[GT1, GT2, GT3 ], ML) =
255 msg strip(getName(GT1)) from strip(getName(GT2))
256 to strip(getName(GT3)) . ***label ’’noLabel.Qid .
257 eq GroundTermToMessage(’msg_from_to_[’_‘(_‘)[GT1, GTPARAM],
258 GT2, GT3 ], ML) =
259 msg strip(getMsgName(GT1))(downParams(GTPARAM))
260 from strip(getName(GT2))
261 to strip(getName(GT3)) label ’’noLabel.Qid .
262 eq GroundTermToMessage(’invoc‘(_‘,_‘,_‘,_‘,_‘)[GTLABEL,
263 GTFROM, GTTO, GTMETHOD, GTPARAM], ML) =
264 msg invoc (strip(getName(GTMETHOD))(downParams(GTPARAM)))
265 from strip(getName(GTFROM))
266 to strip(getName(GTTO))
267 label GTLABEL .
268 eq GroundTermToMessage(’comp‘(_‘,_‘,_‘)[GTLABEL,
269 GTTO, GTPARAM], ML) =
270 msg comp (getMsgName(GTLABEL, GTTO, ML)(downParams(GTPARAM)))
271 from getMsgReciever(GTLABEL, GTTO, ML)
272 to strip(getName(GTTO))
273 label GTLABEL .
274
275 *** Transform a meta-level parameter list to
276 *** an object-level parameter list.
277 op downParams : GroundTerm -> List .
278 eq downParams(’nil.List) = (nil).List .
279 eq downParams(’int[’s_[’0.Zero]]) = int(1) .
280 eq downParams(’int[’0.Zero]) = int(0) .
281 eq downParams(’int[Q[’0.Zero]]) =
282 int(rat(substr(string(Q),3,100000000),10)) .
283 eq downParams(’__[GT1, GTL1]) = downParams(GT1) downParams(GTL1) .
284 eq downParams(Q) = oid(strip(getName(Q))) [otherwise] .
285
286 ops getMsgName getMsgReciever : GroundTerm Qid MsgList -> Qid .
287 eq getMsgName(GTLABEL, FROM1, nil) = ’LocalCall .
288 eq getMsgName(GTLABEL, FROM1, (msg M from FROM2 to
289 TO label GTLABEL2) @ ML) =
290 if strip(getName(FROM1)) == FROM2 and GTLABEL == GTLABEL2
291 then getMethod(M) else
292 getMsgName(GTLABEL, FROM1, ML) fi .
293
294 eq getMsgReciever(GTLABEL, FROM1, nil) = strip(getName(FROM1)) .
295 eq getMsgReciever(GTLABEL, FROM1, (msg M from FROM2 to
296 TO label GTLABEL2) @ ML) =
297 if strip(getName(FROM1)) == FROM2 and GTLABEL == GTLABEL2
298 then TO else
299 getMsgReciever(GTLABEL, FROM1, ML) fi .
300
301 op getMethod : Msg -> Qid .
302 eq getMethod(invoc (Q(L))) = Q .
303 eq getMethod(comp (Q(L))) = Q .
304
305 op getMsgName : GroundTerm -> Qid .
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306 eq getMsgName(Q[GTL1]) = Q .
307 eq getMsgName(GT1) = getName(GT1) [otherwise] .
308
309 *** The first parameter is the old term, the second is
310 *** the new one after the rewrite:
311 op getNewMessages : TermList TermList Qid MsgList -> MsgList .
312
313 eq getNewMessages(’__[GTL1], ’__[GT2, GTL2], MOD, ML) =
314 if isMetaMessage(GT2, MOD) and countGroundTerms(GT2, GTL1) <
315 countGroundTerms(GT2, (GT2, GTL2))
316 then
317 GroundTermToMessage(GT2, ML) @ getNewMessages(’__[GTL1],
318 ’__[GTL2], MOD, ML)
319 else
320 getNewMessages(’__[GTL1], ’__[GTL2], MOD, ML)
321 fi .
322
323 eq getNewMessages(GT1, ’__[GT2, GTL2], MOD, ML) =
324 if isMetaMessage(GT2, MOD) and countGroundTerms(GT2, GT1) <
325 countGroundTerms(GT2, (GT2, GTL2))
326 then
327 GroundTermToMessage(GT2, ML) @ getNewMessages(’__[GT1],
328 ’__[GTL2], MOD, ML)
329 else
330 getNewMessages(’__[GT1], ’__[GTL2], MOD, ML)
331 fi .
332
333 eq getNewMessages(’__[GTL1], ’__[GT2], MOD, ML) =
334 if isMetaMessage(GT2, MOD) and countGroundTerms(GT2, GTL1) < 1
335 then
336 GroundTermToMessage(GT2, ML)
337 else
338 nil
339 fi .
340
341 eq getNewMessages(GT1, GT2, MOD, ML) =
342 if isMetaMessage(GT2, MOD) and countGroundTerms(GT2, GT1) < 1
343 then
344 GroundTermToMessage(GT2, ML)
345 else
346 nil
347 fi .
348
349
350 endm
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A.2 Predicates

1 fmod PRED is
2
3 protecting MSG-LIST-FUNCS .
4 protecting INT .
5 protecting TRUTH-VALUE .
6 protecting STATE-SET .
7 protecting TOKEN .
8 protecting NFA-MATCH .
9 protecting QID-LIST-EXT .

10 protecting META-TERM .
11
12 sorts Pred BoolExp IntExp .
13 subsorts BoolExp IntExp < Pred .
14 subsort Int < IntExp .
15
16 sort History .
17 sort Projection .
18
19 sort ObjectVariable .
20 ops x y z : -> ObjectVariable .
21
22 sort QidOrVariable .
23 subsort Qid < QidOrVariable .
24 subsort ObjectVariable < QidOrVariable .
25
26 op _and_ : BoolExp BoolExp -> BoolExp [ctor assoc prec 54] .
27 op _or_ : BoolExp BoolExp -> BoolExp [ctor assoc prec 54] .
28
29 op _eq_ : IntExp IntExp -> BoolExp [ctor prec 53] .
30 op _lte_ : IntExp IntExp -> BoolExp [ctor prec 53] .
31 op _gte_ : IntExp IntExp -> BoolExp [ctor prec 53] .
32 op _lt_ : IntExp IntExp -> BoolExp [ctor prec 53] .
33 op _gt_ : IntExp IntExp -> BoolExp [ctor prec 53] .
34
35 op _plus_ : IntExp IntExp -> IntExp [assoc comm prec 33] .
36 op _minus_ : IntExp IntExp -> IntExp [prec 33 gather (E e)] .
37 op _times_ : IntExp IntExp -> IntExp [assoc comm prec 31] .
38
39 op FALSE : -> BoolExp .
40 op TRUE : -> BoolExp .
41
42 op H : -> History [ctor] .
43
44 op length : History -> IntExp [ctor] .
45
46 op if_then_else_fi : BoolExp Pred Pred -> Pred [ctor] .
47
48 op _/_ : History Projection -> History [ctor] .
49 op from : QidOrVariable -> Projection [ctor] .
50 op to : QidOrVariable -> Projection [ctor] .
51 op msgtype : Qid -> Projection [ctor] .
52
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53 op _or_ : Projection Projection -> Projection [ctor assoc] .
54
55 sort Mode .
56 op force : -> Mode .
57 op fail-stop : -> Mode .
58 op Mode : Pred Mode -> BoolExp .
59
60 vars P1 P2 : Pred .
61 vars M M2 : Msg .
62 var ML : MsgList .
63 var I : Int .
64 var HIST : History .
65 var PROJ : Projection .
66 vars Q1 Q2 Q3 : Qid .
67 vars QL QL2 : QidList .
68 vars IE IE2 : IntExp .
69 var BE : BoolExp .
70 var PATTERN : Pattern .
71 var NFA : NFA .
72 vars PR1 PR2 : Projection .
73 var B : Bool .
74 vars OV1 OV2 : ObjectVariable .
75 var L : GroundTerm .
76 vars MODE MODE2 : Mode .
77
78 *** Prefix of regular sequence
79 op _prs_ : History Pattern -> BoolExp .
80
81 op _prs_ : History NFA -> BoolExp .
82 eq HIST prs PATTERN = HIST prs MakeNFA(PATTERN) .
83
84 op MatchRE : History Pattern -> BoolExp .
85
86 op MatchRE : History NFA -> BoolExp .
87 eq MatchRE(HIST, PATTERN) = MatchRE(HIST, MakeNFA(PATTERN)) .
88
89 *** substitutions
90 sort Subst SubstitutionList .
91 subsort Subst < SubstitutionList .
92 op subst_with_ : ObjectVariable Qid -> Subst .
93 op nil : -> SubstitutionList .
94 op _,_ : SubstitutionList SubstitutionList -> SubstitutionList
95 [ctor assoc id: nil] .
96
97 *** quantifiers
98 op forAll_|_ : ObjectVariable Pred -> Pred [ctor] .
99 op exists_|_ : ObjectVariable Pred -> Pred [ctor] .

100 op forAll_elementOf_|_ : ObjectVariable QidList
101 Pred -> Pred [ctor] .
102 op exists_elementOf_|_ : ObjectVariable QidList
103 Pred -> Pred [ctor] .
104
105 var X : ObjectVariable .
106 var SL : SubstitutionList .
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107 var SUBST : Subst .
108
109 sort BoolAndModeTuple .
110 op (_;_) : Bool Mode -> BoolAndModeTuple .
111
112 op bool : BoolAndModeTuple -> Bool .
113 eq bool( (B ; MODE) ) = B .
114 op mode : BoolAndModeTuple -> Mode .
115 eq mode( (B ; MODE) ) = MODE .
116
117 op CheckPredicate : Pred MsgList -> BoolAndModeTuple .
118 op CheckPredicate : Pred MsgList SubstitutionList ->
119 BoolAndModeTuple .
120 op CheckPredicate : Pred MsgList SubstitutionList Mode ->
121 BoolAndModeTuple .
122
123 eq CheckPredicate(P1, ML) = CheckPredicate(P1, ML, nil) .
124 eq CheckPredicate(P1, ML, SL) = CheckPredicate(P1, ML, SL, force) .
125
126 eq CheckPredicate(Mode(P1, MODE), ML, SL, MODE2) =
127 CheckPredicate(P1, ML, SL, MODE) .
128
129 eq CheckPredicate(P1 and P2, ML, SL, MODE) =
130 if bool(CheckPredicate(P1, ML, SL, MODE)) then
131 CheckPredicate(P2, ML, SL, MODE)
132 else
133 (false ; mode(CheckPredicate(P1, ML, SL, MODE)))
134 fi .
135
136 eq CheckPredicate(P1 or P2, ML, SL, MODE) =
137 if bool(CheckPredicate(P1, ML, SL, MODE)) then
138 CheckPredicate(P1, ML, SL, MODE)
139 else
140 CheckPredicate(P2, ML, SL, MODE)
141 fi .
142
143 *** We are matching with an NFA instead of a DFA
144 ***(
145 eq CheckPredicate(HIST prs DFA, ML, SL) =
146 removeLabelFromMsg(ParseProjection(HIST, ML, SL)) prs DFA .
147 eq CheckPredicate(MatchRE(HIST, DFA), ML, SL) =
148 Match(removeLabelFromMsg(ParseProjection(HIST, ML, SL)), DFA) .
149 ***)
150
151 eq CheckPredicate(HIST prs NFA, ML, SL, MODE) =
152 ( (removeLabelFromMsg(ParseProjection(HIST, ML, SL))
153 prs NFA) ; MODE ) .
154 eq CheckPredicate(MatchRE(HIST, NFA), ML, SL, MODE) =
155 ( Match(removeLabelFromMsg(ParseProjection(HIST, ML, SL)),
156 NFA) ; MODE ) .
157
158
159 eq CheckPredicate(TRUE, ML, SL, MODE) = ( true ; MODE ) .
160 eq CheckPredicate(FALSE, ML, SL, MODE) = ( false ; MODE ) .
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161
162
163 eq CheckPredicate(forAll X | P1, ML, SL, MODE) =
164 CheckPredicate(forAll X elementOf (GetObjectIDs(ML)) |
165 P1, ML, SL, MODE) .
166
167 eq CheckPredicate(forAll X elementOf (Q1 QL) | P1, ML, SL, MODE) =
168 if bool(CheckPredicate(P1, ML, (SL, subst X with Q1), MODE)) then
169 CheckPredicate(forAll X elementOf (QL) | P1, ML, SL, MODE)
170 else
171 (false ; mode(CheckPredicate(P1, ML,
172 (SL, subst X with Q1), MODE)))
173 fi .
174 eq CheckPredicate(forAll X elementOf (nil) | P1, ML, SL, MODE) =
175 ( true ; MODE ) .
176
177 eq CheckPredicate(exists X | P1, ML, SL, MODE) =
178 CheckPredicate(exists X elementOf (GetObjectIDs(ML)) |
179 P1, ML, SL, MODE) .
180
181 eq CheckPredicate(exists X elementOf (Q1 QL) | P1, ML, SL, MODE) =
182 if bool(CheckPredicate(P1, ML, (SL, subst X with Q1), MODE)) then
183 CheckPredicate(P1, ML, (SL, subst X with Q1), MODE)
184 else
185 CheckPredicate(exists X elementOf (QL) | P1, ML, SL, MODE)
186 fi .
187 eq CheckPredicate(exists X elementOf (nil) | P1, ML, SL, MODE) =
188 ( false ; MODE ) .
189
190 op ReduceIntExp : IntExp MsgList SubstitutionList -> Int .
191
192 eq ReduceIntExp(length(HIST), ML, SL) =
193 len(ParseProjection(HIST, ML, SL)) .
194 eq ReduceIntExp(IE minus IE2, ML, SL) =
195 ReduceIntExp(IE, ML, SL) - ReduceIntExp(IE2, ML, SL) .
196 eq ReduceIntExp(I, ML, SL) = I .
197
198 eq CheckPredicate(IE eq IE2, ML, SL, MODE) =
199 ( (ReduceIntExp(IE, ML, SL) ==
200 ReduceIntExp(IE2, ML, SL)) ; MODE ) .
201 eq CheckPredicate(IE lte IE2, ML, SL, MODE) =
202 ( (ReduceIntExp(IE, ML, SL) <=
203 ReduceIntExp(IE2, ML, SL)) ; MODE ) .
204 eq CheckPredicate(IE gte IE2, ML, SL, MODE) =
205 ( ReduceIntExp(IE, ML, SL) >=
206 ReduceIntExp(IE2, ML, SL) ; MODE ) .
207 eq CheckPredicate(IE lt IE2, ML, SL, MODE) =
208 ( ReduceIntExp(IE, ML, SL) <
209 ReduceIntExp(IE2, ML, SL) ; MODE ) .
210 eq CheckPredicate(IE gt IE2, ML, SL, MODE) =
211 ( ReduceIntExp(IE, ML, SL) >
212 ReduceIntExp(IE2, ML, SL) ; MODE ) .
213 eq CheckPredicate(if BE then P1 else P2 fi, ML, SL, MODE) =
214 if bool(CheckPredicate(BE, ML, SL, MODE)) then

163



215 CheckPredicate(P1, ML, SL, MODE) else
216 CheckPredicate(P2, ML, SL, MODE) fi .
217
218 op GetObjectIDs : MsgList -> QidList .
219 op GetObjectIDs : MsgList QidList -> QidList .
220 eq GetObjectIDs(ML) = GetObjectIDs(ML, nil) .
221 eq GetObjectIDs(nil, QL) = nil .
222 eq GetObjectIDs((msg M from Q1 to Q2 label L) @ ML, QL) =
223 (if Q1 in QL then nil else Q1 fi)
224 (if Q2 in QL then nil else Q2 fi)
225 GetObjectIDs(ML, QL (if Q1 in QL then nil else Q1 fi)
226 (if Q2 in QL then nil else Q2 fi)) .
227 eq GetObjectIDs((msg Q3 from Q1 to Q2) @ ML, QL) =
228 (if Q1 in QL then nil else Q1 fi)
229 (if Q2 in QL then nil else Q2 fi)
230 GetObjectIDs(ML, QL (if Q1 in QL then nil else Q1 fi)
231 (if Q2 in QL then nil else Q2 fi)) .
232
233 op Project : Msg Projection SubstitutionList -> MsgList .
234 eq Project(M, PR1 or PR2, SL) =
235 if Project(M, PR1, SL) =/= nil then
236 Project(M, PR1, SL)
237 else
238 Project(M, PR2, SL)
239 fi .
240 eq Project(M, from(Q1), SL) = from(Q1, M) .
241 eq Project(M, from(OV1), SL) = from(Subst(OV1, SL), M) .
242 eq Project(M, to(Q1), SL) = to(Q1, M) .
243 eq Project(M, to(OV1), SL) = to(Subst(OV1, SL), M) .
244 eq Project(M, msgtype(Q1), SL) = msgtype(Q1, M) .
245
246 op Project : MsgList Projection SubstitutionList -> MsgList .
247 eq Project(nil, PR1, SL) = nil .
248
249 op Subst : ObjectVariable SubstitutionList -> Qid .
250 eq Subst(OV1, (subst OV1 with Q1), SL) = Q1 .
251 eq Subst(OV1, (SUBST, SL)) = Subst(OV1, SL) [otherwise] .
252
253 op ParseProjection : History MsgList SubstitutionList -> MsgList .
254 eq ParseProjection(H, ML, SL) = ML .
255 eq ParseProjection(HIST / PROJ, nil, SL) = nil .
256 eq ParseProjection(HIST / PROJ, M @ ML, SL) =
257 Project(ParseProjection(HIST, M, SL), PROJ, SL)
258 @ ParseProjection(HIST / PROJ, ML, SL) .
259
260
261 endfm
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A.3 Regular expressions

1
2 in obj.maude .
3 in msglist.maude .
4
5
6 ******************************************
7 ***(
8 Pattern constructors for regular expressions
9 :: is used to concatenate patterns,
10 *, +, ? and | are used for 0 or more occurences,
11 1 or more occurences, 0 or 1 occurence and
12 choise between alternatives, respectively.
13 )***
14 ******************************************
15 fmod PATTERN is
16
17 protecting OBJ .
18
19 sort Pattern .
20 subsorts Msg < Pattern .
21
22 op _::_ : Pattern Pattern -> Pattern [ctor assoc prec 54] .
23 op _* : Pattern -> Pattern [ctor prec 53] .
24 op _+ : Pattern -> Pattern [ctor prec 53] .
25 op _? : Pattern -> Pattern [ctor prec 53] .
26 op _|_ : Pattern Pattern -> Pattern [ctor prec 55] .
27
28 op _where_ : Pattern Expr -> Pattern [ctor prec 56] .
29 op scope(_)_endscope : List Pattern -> Pattern [ctor prec 53] .
30 endfm
31
32
33 ******************************************
34 ***(
35 Set of state names. Used by the DFA and
36 NFA modules
37 )***
38 ******************************************
39 fmod STATE-SET is
40
41 protecting STRING .
42 sort StateSet .
43
44 subsort String < StateSet .
45 op emptyStateSet : -> StateSet .
46 op _,_ : StateSet StateSet ->
47 StateSet [ctor assoc comm id: emptyStateSet] .
48
49 op _in_ : String StateSet -> Bool .
50
51 var SS : StateSet .
52 vars S1 S2 : String .
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53 eq S1, S1 = S1 .
54
55 eq S1 in emptyStateSet = false .
56 eq S1 in S2, SS = S1 == S2 or S1 in SS .
57 endfm
58
59
60 fmod TOKEN is
61 protecting OBJ .
62 protecting MSG-LIST .
63
64 sort Token .
65 subsort Msg < Token .
66 op epsilon : -> Token .
67 op start : -> Token .
68
69 sort TokenList .
70 subsort MsgList < TokenList .
71
72 endfm
73
74
75
76 ******************************************
77 ***
78 *** Non-deterministic automaton
79 ***
80 ******************************************
81 fmod NFA is
82
83 protecting PATTERN .
84 protecting INT .
85 protecting STRING .
86 protecting TOKEN .
87
88 sort NFA .
89 sorts Transition TransitionSet NFA-State .
90 subsort NFA-State < NFA .
91 subsort Transition < TransitionSet .
92
93 op emptyTransitionSet : -> TransitionSet .
94 op __ : TransitionSet TransitionSet ->
95 TransitionSet [ctor assoc comm id: emptyTransitionSet] .
96
97 op emptyNFA : -> NFA .
98 op MakeNFA : Pattern String String List List -> NFA .
99 op MakeNFA : Pattern -> NFA .
100 op __ : NFA NFA -> NFA [ctor assoc comm id: emptyNFA] .
101
102 *** Transition over a given token to a state
103 *** identified by its name as a string.
104 *** The state from which the transition originates
105 *** is implicitly given, since the transitions are
106 *** contained within the states.
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107 op _->_ : Token String -> Transition .
108
109 *** State with name, accepting flag, a set of
110 *** transitions to other states, a list of
111 *** variables in scope and a list of where
112 *** conditions.
113 op {State:_, Accepting:_, Transitions:_, InScope:_, WhereCondition:_} :
114 String Bool TransitionSet List List -> NFA-State .
115
116 var S1 S2 : String .
117 var NFA : NFA .
118 var B : Bool .
119 var TS : TransitionSet .
120 vars L L2 : List .
121 vars W1 W2 : List .
122 var E : Expr .
123
124 var T : Token .
125 vars P1 P2 : Pattern .
126 var I : Int .
127 vars NAME NEXTSTATE : String .
128
129 op _in_ : String NFA -> Bool .
130 eq S1 in emptyNFA = false .
131 eq S1 in {State: S2, Accepting: B, Transitions: TS, InScope:
132 L, WhereCondition: W1} NFA =
133 S1 == S2 or S1 in NFA .
134
135
136 ***(
137 MakeNFA takes a sub-pattern, a name and the
138 name of the state that comes after the sub-pattern
139 as its parameters. The first state that is made by
140 a call to MakeNFA, will be named NAME + "1".
141 NEXTSTATE is the name of the state following this pattern.
142 If NEXTSTATE = "", then the accpeting flag will be set
143 to true, since this is the last state in the automaton.
144 ***)
145
146 eq MakeNFA(P1) = MakeNFA(P1, "", "", nil, nil) .
147
148 *** The current pattern is a single token
149 eq MakeNFA(T, NAME, NEXTSTATE, L, W1) =
150 {State: NAME + "1", Accepting: false, Transitions:
151 (T -> NAME + "2"), InScope: L, WhereCondition: W1
152 }
153 {State: NAME + "2", Accepting: NEXTSTATE == "", Transitions:
154 if NEXTSTATE =/= "" then
155 (epsilon -> NEXTSTATE)
156 else
157 emptyTransitionSet
158 fi,
159 InScope: L, WhereCondition: W1
160 } .
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161
162 *** Repetition (*)
163 eq MakeNFA(P1 *, NAME, NEXTSTATE, L, W1) =
164 {State: NAME + "1", Accepting: false, Transitions:
165 (epsilon -> NAME + "3")
166 (epsilon -> NAME + "21"),
167 InScope: L, WhereCondition: W1
168 }
169 MakeNFA(P1, NAME + "2", NAME + "3", L, W1)
170 {State: NAME + "3", Accepting: NEXTSTATE == "", Transitions:
171 (epsilon -> NAME + "1")
172 if NEXTSTATE =/= "" then
173 (epsilon -> NEXTSTATE)
174 else
175 emptyTransitionSet
176 fi,
177 InScope: L, WhereCondition: W1
178 } .
179
180
181 *** Forced repetition (+)
182 eq MakeNFA(P1 +, NAME, NEXTSTATE, L, W1) =
183 {State: NAME + "1", Accepting: false, Transitions:
184 (epsilon -> NAME + "21"),
185 InScope: L, WhereCondition: W1
186 }
187 MakeNFA(P1, NAME + "2", NAME + "3", L, W1)
188 {State: NAME + "3", Accepting: false, Transitions:
189 (epsilon -> NAME + "41"),
190 InScope: L, WhereCondition: W1
191 }
192 MakeNFA(P1 *, NAME + "4", NAME + "5", L, W1)
193 {State: NAME + "5", Accepting: NEXTSTATE == "", Transitions:
194 if NEXTSTATE =/= "" then
195 (epsilon -> NEXTSTATE)
196 else
197 emptyTransitionSet
198 fi,
199 InScope: L, WhereCondition: W1
200 } .
201
202
203 *** Zero or one (?)
204 eq MakeNFA(P1 ?, NAME, NEXTSTATE, L, W1) =
205 {State: NAME + "1", Accepting: false, Transitions:
206 (epsilon -> NAME + "21")
207 (epsilon -> NAME + "3"),
208 InScope: L, WhereCondition: W1
209 }
210 MakeNFA(P1, NAME + "2", NAME + "3", L, W1)
211 {State: NAME + "3", Accepting: NEXTSTATE == "", Transitions:
212 if NEXTSTATE =/= "" then
213 (epsilon -> NEXTSTATE)
214 else
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215 emptyTransitionSet
216 fi,
217 InScope: L, WhereCondition: W1
218 } .
219
220 *** Alternative
221 eq MakeNFA(P1 | P2, NAME, NEXTSTATE, L, W1) =
222 {State: NAME + "1", Accepting: false, Transitions:
223 (epsilon -> NAME + "21")
224 (epsilon -> NAME + "31"),
225 InScope: L, WhereCondition: W1
226 }
227 MakeNFA(P1, NAME + "2", NAME + "4", L, W1)
228 MakeNFA(P2, NAME + "3", NAME + "4", L, W1)
229 {State: NAME + "4", Accepting: NEXTSTATE == "", Transitions:
230 if NEXTSTATE =/= "" then
231 (epsilon -> NEXTSTATE)
232 else
233 emptyTransitionSet
234 fi,
235 InScope: L, WhereCondition: W1
236 } .
237
238 *** Concatenation
239 eq MakeNFA(P1 :: P2, NAME, NEXTSTATE, L, W1) =
240 {State: NAME + "1", Accepting: false, Transitions:
241 (epsilon -> NAME + "21"),
242 InScope: L, WhereCondition: W1
243 }
244 MakeNFA(P1, NAME + "2", NAME + "3", L, W1)
245 {State: NAME + "3", Accepting: false, Transitions:
246 (epsilon -> NAME + "41"),
247 InScope: L, WhereCondition: W1
248 }
249 MakeNFA(P2, NAME + "4", NAME + "5", L, W1)
250 {State: NAME + "5", Accepting: NEXTSTATE == "", Transitions:
251 if NEXTSTATE =/= "" then
252 (epsilon -> NEXTSTATE)
253 else
254 emptyTransitionSet
255 fi,
256 InScope: L, WhereCondition: W1
257 } .
258
259
260 *** Scope:
261 eq MakeNFA(scope( L ) P1 endscope, NAME, NEXTSTATE, L2, W1) =
262 {State: NAME + "1", Accepting: false, Transitions:
263 (epsilon -> NAME + "21"),
264 InScope: L2, WhereCondition: W1
265 }
266 MakeNFA(P1, NAME + "2", NAME + "3", L L2, W1)
267 {State: NAME + "3", Accepting: NEXTSTATE == "", Transitions:
268 if NEXTSTATE =/= "" then
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269 (epsilon -> NEXTSTATE)
270 else
271 emptyTransitionSet
272 fi,
273 InScope: L2, WhereCondition: W1
274 } .
275
276 *** Where condition:
277 eq MakeNFA(P1 where E, NAME, NEXTSTATE, L, W1) =
278 {State: NAME + "1", Accepting: false, Transitions:
279 (epsilon -> NAME + "21"),
280 InScope: L, WhereCondition: W1
281 }
282 MakeNFA(P1, NAME + "2", NAME + "3", L, W1 E)
283 {State: NAME + "3", Accepting: NEXTSTATE == "", Transitions:
284 if NEXTSTATE =/= "" then
285 (epsilon -> NEXTSTATE)
286 else
287 emptyTransitionSet
288 fi,
289 InScope: L, WhereCondition: W1
290 } .
291
292 endfm
293
294
295 ******************************
296 ***
297 *** NFA matching of regular expression
298 ***
299 ******************************
300 fmod NFA-MATCH is
301 protecting NFA .
302 protecting STRING .
303 protecting STATE-SET .
304
305 op Match : TokenList NFA -> Bool .
306 op Match : TokenList NFA Bool -> Bool .
307 op Match : TokenList NFA String Bool -> Bool .
308 op Match : TokenList NFA String Bool StateSet BindingSet -> Bool .
309
310 op _prs_ : TokenList NFA -> Bool .
311
312 var TL : TokenList .
313 vars T1 T2 : Token .
314 vars S S2 : String .
315 var NFA : NFA .
316 var B : Bool .
317 var TS : TransitionSet .
318 var T : Token .
319 var PRS : Bool .
320 var L : List .
321 var SS : StateSet .
322
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323 var P : Pattern .
324 vars Q1 Q2 FROM1 FROM2 TO1 TO2 : Oid .
325 var BS : BindingSet .
326 vars D1 D2 : Data .
327 vars PLIST1 PLIST2 : List .
328 var X : DataVariable .
329 var I : Int .
330 vars P1 P2 E : Expr .
331 var W1 : List .
332
333 eq TL prs NFA = Match(TL, NFA, true) .
334
335 eq Match(TL, NFA) = Match(TL, NFA, false) .
336 eq Match(TL, NFA, PRS) = Match(TL, NFA, "1", PRS,
337 emptyStateSet, emptyBindingSet) .
338
339 eq Match(nil, NFA, S, PRS, SS, BS) =
340 if PRS or IsAccepting(S, NFA) then
341 true
342 else
343 Match(epsilon, NFA, S, PRS, SS, BS)
344 fi .
345
346 eq Match(T1 @ TL, {State: S, Accepting: B, Transitions: TS, InScope: L,
347 WhereCondition: W1} NFA, S, PRS, SS, BS) =
348 *** If we have already visited this state without eating
349 *** any input, or there are no more transitions originating
350 *** from it that we have not yet tried, we return false:
351 if S in SS or TS == emptyTransitionSet then
352 false
353 else
354 if T1 =/= epsilon then
355 if stateName(FindTransition(T1, TS, BS, L, W1)) =/= "" then
356 if Match(TL, {State: S, Accepting: B, Transitions:
357 TS, InScope: L, WhereCondition: W1} NFA,
358 stateName(FindTransition(T1, TS, BS, L, W1)), PRS,
359 emptyStateSet, bindingSet(FindTransition(T1, TS, BS,
360 L, W1)))
361 then
362 true
363 else
364 Match(T1 @ TL, {State: S, Accepting: B, Transitions:
365 RemoveTransition(T1,stateName(FindTransition(
366 T1, TS, BS, L, W1)), TS,
367 bindingSet(FindTransition(T1, TS, BS, L, W1)), L),
368 InScope: L, WhereCondition: W1} NFA, S, PRS, SS, BS)
369 fi
370 else
371 *** There are no transitions in the current
372 *** state S over token T1 - we check if there
373 *** is an epsilon-transition:
374 if stateName(FindTransition(epsilon, TS, BS, L, W1))
375 =/= "" then
376 if Match(T1 @ TL, {State: S, Accepting: B,
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377 Transitions: TS, InScope: L,
378 WhereCondition: W1} NFA,
379 stateName(FindTransition(epsilon, TS, BS, L, W1)),
380 PRS, (S, SS),
381 bindingSet(FindTransition(epsilon, TS, BS, L, W1)))
382 then
383 true
384 else
385 *** We tried an epsilon-transition that did not work,
386 *** but there might be more transitions on the same
387 *** token.
388 *** We remove the transition we just tried, and
389 *** continue the checking:
390 Match(T1 @ TL, {State: S, Accepting: B, Transitions:
391 RemoveTransition(epsilon,stateName(
392 FindTransition(epsilon, TS, BS, L, W1)), TS,
393 bindingSet(FindTransition(epsilon, TS, BS, L, W1)), L),
394 InScope: L, WhereCondition: W1} NFA, S, PRS, SS,BS)
395 fi
396 else
397 *** There are noe epsilon transitions either
398 false
399 fi
400 fi
401 else *** T1 == epsilon:
402 if stateName(FindTransition(epsilon, TS, BS, L, W1)) =/= ""
403 then
404 if Match(nil, {State: S, Accepting: B, Transitions:
405 TS, InScope: L, WhereCondition: W1} NFA,
406 stateName(FindTransition(epsilon, TS, BS, L, W1)),
407 PRS, (S, SS),
408 bindingSet(FindTransition(epsilon, TS, BS, L, W1)))
409 then
410 true
411 else
412 Match(epsilon, {State: S, Accepting: B, Transitions:
413 RemoveTransition(epsilon,stateName(
414 FindTransition(epsilon, TS, BS, L, W1)), TS,
415 bindingSet(FindTransition(epsilon, TS, BS, L, W1)), L),
416 InScope: L, WhereCondition: W1} NFA, S, PRS, SS, BS)
417 fi
418 else
419 false
420 fi
421 fi
422 fi .
423
424
425 *** Is the current state accepting?
426 op IsAccepting : String NFA -> Bool .
427 eq IsAccepting(S, {State: S, Accepting: B,
428 Transitions: TS, InScope: L,
429 WhereCondition: W1} NFA) = B .
430
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431
432 op RemoveTransition : Token String TransitionSet
433 BindingSet List -> TransitionSet .
434 eq RemoveTransition(T1, S, (T1 -> S) TS, BS, L) = TS .
435
436 eq RemoveTransition(msg (Q1(PLIST1)) from FROM1 to TO1, S,
437 ((msg (Q2 (PLIST2)) from FROM2 to TO2) -> S) TS, BS, L) =
438 if Q1 == Q2 and FROM1 == FROM2 and TO1 == TO2 and
439 bool(ParameterCheck(PLIST1, PLIST2, BS, L))
440 then
441 TS
442 else
443 ((msg (Q2 (PLIST2)) from FROM2 to TO2) -> S)
444 RemoveTransition(msg (Q1(PLIST1))
445 from FROM1 to TO1, S, TS, BS, L)
446 fi .
447
448 eq RemoveTransition((Q1(PLIST1)), S,
449 ((Q2(PLIST2)) -> S) TS, BS, L) =
450 if Q1 == Q2 and bool(ParameterCheck(
451 PLIST1, PLIST2, BS, L))
452 then
453 TS
454 else
455 ((Q2(PLIST2)) -> S)
456 RemoveTransition((Q1(PLIST1)), S, TS, BS, L)
457 fi .
458
459 eq RemoveTransition(T1, S, TS, BS, L) = TS [otherwise] .
460
461
462 *** Returns an NFA state that can be reached
463 *** via a transition over a given token
464 *** in a transitionsete. If there is no
465 *** such transition, the an empty transition
466 *** set is returned. The final two parameter lists
467 *** are the variables in scope and the where
468 *** condition that must be true for the
469 *** the transition.
470 op FindTransition : Token TransitionSet
471 BindingSet List List -> StateNameAndBindingSet .
472 eq FindTransition(T1, emptyTransitionSet, BS, L, W1) =
473 ( "" ; scope(BS, L) ) .
474
475 eq FindTransition(msg (Q1(PLIST1)) from FROM1 to TO1,
476 ((msg (Q2 (PLIST2)) from FROM2 to TO2) -> S) TS, BS, L, W1) =
477 if Q1 == Q2 and FROM1 == FROM2 and TO1 == TO2 and
478 bool(ParameterCheck(PLIST1, PLIST2, BS, L)) and
479 CheckCondition(W1, bindingSet(ParameterCheck(
480 PLIST1, PLIST2, BS, L)))
481 then
482 ( S ; bindingSet(ParameterCheck(PLIST1, PLIST2, BS, L)) )
483 else
484 FindTransition(msg (Q1(PLIST1)) from FROM1 to TO1, TS, BS, L, W1)
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485 fi .
486
487
488 eq FindTransition((Q1(PLIST1)), ((Q2 (PLIST2)) -> S) TS, BS, L, W1) =
489 if Q1 == Q2 and bool(ParameterCheck(PLIST1, PLIST2, BS, L)) and
490 CheckCondition(W1, bindingSet(ParameterCheck(
491 PLIST1, PLIST2, BS, L)))
492 then
493 ( S ; bindingSet(ParameterCheck(PLIST1, PLIST2, BS, L)) )
494 else
495 FindTransition((Q1(PLIST1)), TS, BS, L, W1)
496 fi .
497
498
499 eq FindTransition(T1, (T2 -> S) TS, BS, L, W1) = if T1 == T2 then
500 ( S ; scope(BS, L) )
501 else
502 FindTransition(T1, TS, BS, L, W1)
503 fi [otherwise] .
504
505
506 sort BoolAndBindingSet .
507 sort DataAndBindingSet .
508 sort StateNameAndBindingSet .
509 op (_;_) : Bool BindingSet -> BoolAndBindingSet .
510 op (_;_) : Data BindingSet -> DataAndBindingSet .
511 op (_;_) : String BindingSet -> StateNameAndBindingSet .
512
513 op bool : BoolAndBindingSet -> Bool .
514 op bindingSet : BoolAndBindingSet -> BindingSet .
515 op bindingSet : DataAndBindingSet -> BindingSet .
516 op bindingSet : StateNameAndBindingSet -> BindingSet .
517 op stateName : StateNameAndBindingSet -> String .
518 op data : DataAndBindingSet -> Data .
519
520 eq bool(( B ; BS )) = B .
521 eq bindingSet(( B ; BS )) = BS .
522 eq bindingSet(( D1 ; BS )) = BS .
523 eq bindingSet(( S ; BS )) = BS .
524 eq stateName(( S ; BS )) = S .
525 eq data(( D1 ; BS )) = D1 .
526
527 op CheckCondition : List BindingSet -> Bool .
528 eq CheckCondition(nil, BS) = true .
529 eq CheckCondition(E W1, BS) =
530 evalTest(E, BS) and evalB(E, BS) and
531 CheckCondition(W1, BS) .
532
533 op scope : BindingSet List -> BindingSet .
534 eq scope(emptyBindingSet, L) = emptyBindingSet .
535 eq scope(BS, nil) = emptyBindingSet .
536 eq scope(binding(D1, D2) BS, L) =
537 if D1 in L then
538 binding(D1, D2) scope(BS, L)
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539 else
540 scope(BS, L)
541 fi .
542
543 op ParameterCheck : List List BindingSet List -> BoolAndBindingSet .
544
545 eq ParameterCheck(nil, nil, BS, L) = (true ; scope(BS, L)) .
546
547 eq ParameterCheck(P1 PLIST1, P2 PLIST2, BS, L) =
548 if P1 == data(evalWrapper(P2, scope(BS, L), P1))
549 then
550 ((true and
551 bool(ParameterCheck(PLIST1, PLIST2,
552 bindingSet(evalWrapper(P2, scope(BS, L), P1)), L))) ;
553 (bindingSet(ParameterCheck(PLIST1, PLIST2,
554 bindingSet(evalWrapper(P2, scope(BS, L), P1)), L))))
555 else
556 (false ; scope(BS, L))
557 fi .
558
559
560 op evalWrapper : Expr BindingSet Expr -> DataAndBindingSet .
561 eq evalWrapper(P2, BS, P1) =
562 if evalTest(P2, BS) == false then
563 (eval(P2, addBinding(P2, P1, BS)) ; addBinding(P2, P1, BS))
564 else
565 *** The binding allready exists, or no variable
566 *** in parameter
567 (eval(P2, BS) ; BS)
568 fi .
569
570
571 endfm
572
573
574 ******************************************
575 ***
576 *** Deterministic automaton
577 ***
578 ******************************************
579 fmod DFA is
580
581 protecting NFA .
582 protecting STATE-SET .
583 sort DFA .
584
585
586 sorts DFA-State, DFA-Transition .
587 subsort DFA-State < DFA .
588 subsort DFA-Transition < Transition .
589
590 op emptyDFA : -> DFA .
591 op __ : DFA DFA -> DFA [ctor assoc comm id: emptyDFA] .
592 op start : -> Token .
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593
594 *** A DFA state has name of sort StateSet,
595 *** since it represents a set of NFA states.
596 op {State:_, Accepting:_, Transitions:_} :
597 StateSet Bool TransitionSet -> DFA-State .
598 op _->_ : Token StateSet -> DFA-Transition .
599
600
601 vars S1 S2 : String .
602 var NFA : NFA .
603 var B : Bool .
604 var T : Token .
605 var T2 : Token .
606 var TS : TransitionSet .
607 var SS : StateSet .
608 var SS2 : StateSet .
609 var TS2 : TransitionSet .
610 vars B2 B3 : Bool .
611 var RESULT-SO-FAR : DFA .
612 var DS : DFA-State .
613 var DFA : DFA .
614
615 op MakeDFA : NFA -> DFA .
616 eq MakeDFA(emptyNFA) = emptyDFA .
617 eq MakeDFA(NFA) = RenameTransitions(
618 {State: "START", Accepting: false, Transitions: start -> "1"}
619 SubsetConstruction(NFA), NFA) .
620
621 *** The subset construction is used to transform
622 *** an NFA to a DFA
623 op SubsetConstruction : NFA -> DFA .
624 eq SubsetConstruction(NFA) =
625 SubsetStart(NFA) Subset2(SubsetStart(NFA),
626 NFA, SubsetStart(NFA)) .
627
628 *** Start of subset construction
629 op SubsetStart : NFA -> DFA .
630 eq SubsetStart({State: "1", Accepting: B, Transitions: TS} NFA) =
631 MakeDFAState(eClosure("1", {State: "1",
632 Accepting: B, Transitions: TS} NFA),
633 {State: "1", Accepting: B, Transitions: TS} NFA) .
634
635 *** "Main function" for the subset construction. Takes the
636 *** current state, the NFA and a set of DFA states that
637 *** have been generated this far as its parameters.
638 op Subset2 : DFA-State NFA DFA -> DFA .
639 eq Subset2({State: SS, Accepting: B, Transitions: (T -> S1) TS},
640 NFA, RESULT-SO-FAR) =
641
642 *** Makes a DFA-state from the first transition,
643 *** if it does not already exist.
644 if MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA)
645 in RESULT-SO-FAR
646 then
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647 emptyDFA
648 else
649 MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA)
650 fi
651
652 *** Recursive call for the remaining transitions in
653 *** this state, if any.
654 Subset2({State: SS, Accepting: B, Transitions: TS},
655 NFA, RESULT-SO-FAR
656 MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA))
657
658 *** Recursive call for the first new state, if it
659 *** does not already exist.
660 if MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA)
661 in RESULT-SO-FAR
662 then
663 emptyDFA
664 else
665 Subset2(MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA),
666 NFA, RESULT-SO-FAR
667 MakeDFAState(eClosures(T, (T -> S1) TS, NFA), NFA))
668 fi
669 .
670
671 eq Subset2({State: SS, Accepting: B, Transitions:
672 emptyTransitionSet}, NFA, DFA) =
673 emptyDFA .
674
675 *** Removes all transitions over a given token
676 op RemoveTransitions : Token TransitionSet -> TransitionSet .
677 eq RemoveTransitions(T, emptyTransitionSet) = emptyTransitionSet .
678 eq RemoveTransitions(T, (T2 -> S1) TS) =
679 if T == T2 then emptyTransitionSet else (T2 -> S1) fi
680 RemoveTransitions(T, TS) .
681
682
683 *** epsilon closure for every state that can be reached
684 *** from transitions in a transition set over a given token:
685 op eClosures : Token TransitionSet NFA -> StateSet .
686 eq eClosures(T, emptyTransitionSet, NFA) = emptyStateSet .
687 eq eClosures(T, (T2 -> S1) TS, NFA) =
688 if T == T2 then eClosure(S1, NFA) else emptyStateSet fi,
689 eClosures(T, TS, NFA) .
690
691 *** epsilon closure for a given state
692 op eClosure : String NFA -> StateSet .
693 op eClosure : String NFA StateSet -> StateSet .
694
695 eq eClosure(S1, {State: S1, Accepting: B, Transitions: TS} NFA) =
696 eClosure(S1, {State: S1, Accepting: B, Transitions: TS} NFA,
697 emptyStateSet) .
698
699 eq eClosure(S1, {State: S1, Accepting: B, Transitions:
700 emptyTransitionSet} NFA, SS) = S1 .
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701
702 eq eClosure(S1, {State: S1, Accepting: B, Transitions:
703 (T -> S2) TS} NFA, SS) =
704 S1,
705 if T == epsilon then
706 if not S2 in SS, S1 then
707 S2, eClosure(S2, ({State: S1, Accepting: B, Transitions:
708 (T -> S2) TS} NFA), (SS, S1, S2))
709 else
710 emptyStateSet
711 fi
712 else
713 emptyStateSet
714 fi,
715 eClosure(S1, {State: S1, Accepting: B, Transitions: TS} NFA, SS,
716 S1,
717 if T == epsilon then
718 if not S2 in SS, S1 then
719 S2, eClosure(S2, ({State: S1, Accepting: B, Transitions:
720 (T -> S2) TS} NFA), (SS, S1, S2))
721 else
722 emptyStateSet
723 fi
724 else
725 emptyStateSet
726 fi
727 ) .
728
729 ceq eClosure(S1, NFA, SS) = emptyStateSet if not S1 in NFA .
730
731
732 *** Makes a DFA state from a set of NFA state names
733 op MakeDFAState : StateSet NFA -> DFA-State .
734 eq MakeDFAState(SS, NFA) =
735 {State: SS, Accepting: AnyAccepting(SS, NFA), Transitions:
736 RemoveEpsilonTransitions(GetTransitions(SS, NFA))} .
737
738 *** Checks if there is at least one accepting state in a
739 *** given state set.
740 op AnyAccepting : StateSet NFA -> Bool .
741 eq AnyAccepting( (S1, SS), {State: S1, Accepting: B, Transitions: TS}
742 NFA) =
743 B or AnyAccepting(SS, NFA) .
744 eq AnyAccepting(emptyStateSet, NFA) = false .
745
746 op GetTransitions : StateSet NFA -> TransitionSet .
747 eq GetTransitions( (S1, SS), {State: S1, Accepting: B,
748 Transitions: TS}
749 NFA) =
750 (TS GetTransitions(SS, NFA)) .
751 eq GetTransitions(emptyStateSet, NFA) = emptyTransitionSet .
752
753 op RemoveEpsilonTransitions : TransitionSet -> TransitionSet .
754 eq RemoveEpsilonTransitions((T -> S1) TS) =
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755 if T =/= epsilon then (T -> S1) else emptyTransitionSet fi
756 RemoveEpsilonTransitions(TS) .
757 eq RemoveEpsilonTransitions(emptyTransitionSet) =
758 emptyTransitionSet .
759
760 *** In a DFA, two equal states are not allowed:
761 eq DS DS = DS .
762
763 *** Checks if a state already exists in a given
764 *** DFA
765 op _in_ : DFA-State DFA -> Bool .
766 eq DS in emptyDFA = false .
767 eq {State: SS, Accepting: B, Transitions: TS} in
768 {State: SS2, Accepting: B2, Transitions: TS2} DFA =
769 SS == SS2 and B == B2 and TS == TS2 or
770 {State: SS, Accepting: B, Transitions: TS} in DFA .
771
772
773 *** Renames all transitions in a DFA so that they point
774 *** to the e-closure of the state(s) that they
775 *** originally pointed to:
776 op RenameTransitions : DFA NFA -> DFA .
777 op RenameTransitions : TransitionSet NFA -> TransitionSet .
778
779 eq RenameTransitions(emptyDFA, NFA) = emptyDFA .
780
781 eq RenameTransitions(emptyTransitionSet, NFA) = emptyTransitionSet .
782
783 eq RenameTransitions({State: SS, Accepting: B,
784 Transitions: TS} DFA, NFA) =
785 {State: SS, Accepting: B, Transitions:
786 RenameTransitions(TS, NFA)}
787 RenameTransitions(DFA, NFA) .
788
789 eq RenameTransitions((T -> S1) TS, NFA) =
790 (T -> eClosures(T, (T -> S1) TS, NFA))
791 RenameTransitions(RemoveTransitions(T, TS), NFA) .
792
793 endfm
794
795
796 ****************************************
797 *** ***
798 *** Module for DFA matching ***
799 *** ***
800 ****************************************
801 fmod REGEXP is
802
803 protecting DFA .
804 protecting STRING .
805 protecting PARAMETERS .
806
807 var P : Pattern .
808 var TL : TokenList .
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809 vars T1 T2 : Token .
810 vars Q1 Q2 FROM1 FROM2 TO1 TO2 : Qid .
811 var SS : StateSet .
812 var DFA : DFA .
813 var B : Bool .
814 var TS : TransitionSet .
815 var T : Token .
816 var PRS : Bool .
817 var BS : BindingSet .
818 vars D1 D2 : Data .
819 vars PLIST1 PLIST2 : List .
820 var X : DataVariable .
821 var I : Int .
822 vars P1 P2 : Expr .
823
824 *** CompileRE is used to compile a regular expression into
825 *** the corresponding DFA. This function can be used as an
826 *** interface to the outside.
827 op CompileRE : Pattern -> DFA .
828 eq CompileRE(P) = MakeDFA(MakeNFA(P)) .
829
830 *** Standard regular matching:
831 op Match : TokenList DFA -> Bool .
832 op Match : TokenList DFA Bool -> Bool .
833 op Match : TokenList DFA StateSet Bool -> Bool .
834 op Match : TokenList DFA StateSet Bool BindingSet -> Bool .
835
836 *** Match of prefix of regular sequence:
837 op _prs_ : TokenList DFA -> Bool .
838 eq TL prs DFA = Match(TL, DFA, true) .
839
840 eq Match(TL, DFA) = Match(TL, DFA, false) .
841 eq Match(TL, {State: "START", Accepting: B,
842 Transitions: (start -> SS)} DFA, PRS) =
843 Match(TL, DFA, SS, PRS, emptyBindingSet) .
844
845 *** If there is nothing left of the input, we must
846 *** be in an accepting state if the language
847 *** is to be accepted
848 eq Match(nil, DFA, SS, PRS, BS) = PRS or IsAccepting(SS, DFA) .
849
850 *** Checks if there is a transition from a given state to
851 *** another state over the current token T1:
852 eq Match(T1 @ TL,
853 {State: SS, Accepting: B, Transitions: TS} DFA, SS, PRS, BS) =
854 if stateSet(FindTransition(T1, TS, BS)) =/= emptyStateSet then
855 Match(TL, {State: SS, Accepting: B, Transitions: TS} DFA,
856 stateSet(FindTransition(T1, TS, BS)), PRS,
857 bindingSet(FindTransition(T1, TS, BS)))
858 else
859 false
860 fi .
861
862 *** Is the current state accepting?
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863 op IsAccepting : StateSet DFA -> Bool .
864 eq IsAccepting(SS, {State: SS, Accepting: B,
865 Transitions: TS} DFA) = B .
866
867
868 *** Returns a set of NFA states (that corresponds
869 *** to a DFA state), that can be reached by
870 *** transitions over a given token in a
871 *** given transition set.
872 op FindTransition : Token TransitionSet BindingSet ->
873 StateSetAndBindingSet .
874 eq FindTransition(T1, emptyTransitionSet, BS) =
875 ( emptyStateSet ; BS ) .
876
877 eq FindTransition(msg call (Q1(PLIST1)) from FROM1 to TO1,
878 ((msg call (Q2 (PLIST2)) from FROM2 to TO2) -> SS) TS, BS) =
879 if Q1 == Q2 and FROM1 == FROM2 and
880 TO1 == TO2 and bool(ParameterCheck(PLIST1, PLIST2, BS))
881 then
882 ( SS ; bindingSet(ParameterCheck(PLIST1, PLIST2, BS)) )
883 else
884 FindTransition(msg call (Q1(PLIST1))
885 from FROM1 to TO1, TS, BS)
886 fi .
887
888 eq FindTransition(msg return (Q1(PLIST1)) from FROM1 to TO1,
889 ((msg return (Q2 (PLIST2)) from FROM2 to TO2) -> SS) TS, BS) =
890 if Q1 == Q2 and FROM1 == FROM2 and TO1 == TO2
891 and bool(ParameterCheck(PLIST1, PLIST2, BS))
892 then
893 ( SS ; bindingSet(ParameterCheck(PLIST1, PLIST2, BS)) )
894 else
895 FindTransition(msg return (Q1(PLIST1))
896 from FROM1 to TO1, TS, BS)
897 fi .
898
899 eq FindTransition(msg (Q1(PLIST1)) from FROM1 to TO1,
900 ((msg (Q2 (PLIST2)) from FROM2 to TO2) -> SS) TS, BS) =
901 if Q1 == Q2 and FROM1 == FROM2 and TO1 == TO2
902 and bool(ParameterCheck(PLIST1, PLIST2, BS))
903 then
904 ( SS ; bindingSet(ParameterCheck(PLIST1, PLIST2, BS)) )
905 else
906 FindTransition(msg (Q1(PLIST1)) from FROM1 to TO1, TS, BS)
907 fi .
908 eq FindTransition(T1, (T2 -> SS) TS, BS) =
909 if T1 == T2 then ( SS ; BS ) else
910 FindTransition(T1, TS, BS) fi [otherwise] .
911
912
913
914 sort BoolAndBindingSet .
915 sort DataAndBindingSet .
916 sort StateSetAndBindingSet .
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917 op (_;_) : Bool BindingSet -> BoolAndBindingSet .
918 op (_;_) : Data BindingSet -> DataAndBindingSet .
919 op (_;_) : StateSet BindingSet -> StateSetAndBindingSet .
920
921 op bool : BoolAndBindingSet -> Bool .
922 op bindingSet : BoolAndBindingSet -> BindingSet .
923 op bindingSet : DataAndBindingSet -> BindingSet .
924 op bindingSet : StateSetAndBindingSet -> BindingSet .
925 op stateSet : StateSetAndBindingSet -> StateSet .
926 op data : DataAndBindingSet -> Data .
927
928 eq bool(( B ; BS )) = B .
929 eq bindingSet(( B ; BS )) = BS .
930 eq bindingSet(( D1 ; BS )) = BS .
931 eq bindingSet(( SS ; BS )) = BS .
932 eq stateSet(( SS ; BS )) = SS .
933 eq data(( D1 ; BS )) = D1 .
934
935 *** The first list is the parameters from the history,
936 *** the second is the expression from the automaton
937 op ParameterCheck : List List BindingSet -> BoolAndBindingSet .
938 *** If no parameters are passed, we return true.
939 eq ParameterCheck(nil, nil, BS) = (true ; BS) .
940
941 eq ParameterCheck(P1 PLIST1, P2 PLIST2, BS) =
942 if P1 == data(evalWrapper(P2, BS, P1))
943 then
944 (true ; bindingSet(evalWrapper(P2, BS, P1)))
945 else
946 (false ; BS)
947 fi .
948
949
950 op evalWrapper : Expr BindingSet Expr -> DataAndBindingSet .
951 eq evalWrapper(P2, BS, P1) =
952 if evalTest(P2, BS) == false then
953 (eval(P2, addBinding(P2, P1, BS)) ; addBinding(P2, P1, BS))
954 else
955 *** Binding already exists, or no variable in parameter.
956 (eval(P2, BS) ; BS)
957 fi .
958
959 endfm
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A.4 Pseudo-random number generator
1 ***(
2 Implementation from Numerical Recipes in C, page 278
3 ***)
4 fmod RANDOM is
5
6 protecting NAT .
7
8 op rand : Nat -> Nat .
9
10 op seed : -> Nat .
11 eq seed = 1 . *** May be any positive odd natural number
12
13 ops a m R : -> Nat .
14 eq a = 16807 . *** 7^5
15 eq m = 2147483647 . *** 2 ^ 31 - 1
16 eq R = 8 .
17 var N : Nat .
18 eq rand(N) = (a * N) rem m .
19
20
21 endfm
22
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A.5 Auxiliary modules

1 fmod QID-LIST-EXT is
2 protecting QID-LIST .
3
4 protecting INT .
5
6 op _in_ : Qid QidList -> Bool .
7 op length : QidList -> Int .
8
9 vars Q1 Q2 : Qid .

10 var QL : QidList .
11
12 eq Q1 in nil = false .
13 eq Q1 in Q2 QL = if Q1 == Q2 then true else Q1 in QL fi .
14
15 eq length(nil) = 0 .
16 eq length(Q1 QL) = 1 + length(QL) .
17
18 op head : QidList -> Qid .
19 eq head(Q1 QL) = Q1 .
20
21 op tail : QidList -> QidList .
22 eq tail(Q1 QL) = QL .
23
24
25 vars I J : Int .
26
27 op swapHead : QidList Int -> QidList .
28 eq swapHead(Q1 QL, I) =
29 removeItem(findItem(Q1 QL, I) insertItem(Q1,
30 removeItem(Q1 QL,I), I), 1) .
31
32 op removeItem : QidList Int -> QidList .
33 op removeItem : QidList Int Int -> QidList .
34 eq removeItem(QL, I) = removeItem(QL, I, 0) .
35 eq removeItem(Q1 QL, I, J) =
36 if I == J then QL else Q1 removeItem(QL, I, J + 1) fi .
37
38 op findItem : QidList Int -> Qid .
39 op findItem : QidList Int Int -> Qid .
40 eq findItem(QL, I) = findItem(QL, I, 0) .
41 eq findItem(Q1 QL, I, J) =
42 if I == J then Q1 else findItem(QL, I, J + 1) fi .
43
44 op insertItem : Qid QidList Int -> QidList .
45 op insertItem : Qid QidList Int Int -> QidList .
46 eq insertItem(Q1, QL, I) = insertItem(Q1, QL, I, 0) .
47 eq insertItem(Q1, nil, I, J) = Q1 .
48 eq insertItem(Q1, Q2 QL, I, J) =
49 if I == J then (Q1 Q2) QL else Q2
50 insertItem(Q1, QL, I, J + 1) fi .
51 endfm
52
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53 fmod PARAMETERS is
54
55 protecting INT .
56 protecting QID .
57 protecting STRING .
58
59 sorts Binding BindingSet .
60 subsort Binding < BindingSet .
61 op __ : BindingSet BindingSet -> BindingSet
62 [ctor assoc comm id: emptyBindingSet] .
63 op emptyBindingSet : -> BindingSet .
64 op binding : Data Data -> Binding [ctor] .
65
66 *** example binding: binding(int(x), int(1)) .
67
68 vars D1 D2 : Data .
69 var BS : BindingSet .
70
71 op _in_ : Data BindingSet -> Bool .
72 eq D1 in binding(D1, D2) BS = true .
73 eq D1 in BS = false [otherwise] .
74
75 op addBinding : Data Data BindingSet -> BindingSet .
76 eq addBinding(D1, D2, BS) = binding(D1, D2) BS .
77
78 op getBinding : Data BindingSet -> Data .
79 eq getBinding(D1, binding(D1, D2) BS) = D2 .
80 eq getBinding(D1, BS) = noBinding [otherwise] .
81
82 sorts Data List Oid Expr .
83 subsort Data < Expr .
84 subsort Expr < List .
85 subsort Qid < Oid .
86
87 op nil : -> List [ctor] .
88 op __ : List List -> List [ctor assoc id: nil] .
89
90 op null : -> Data [ctor] .
91 op int : Int -> Data [ctor] .
92 op str : String -> Data [ctor] .
93 op bool : Bool -> Data [ctor] .
94 op oid : Qid -> Data [ctor] .
95 op noBinding : -> Data [ctor] .
96
97 sort DataVariable .
98 ops x y z : -> DataVariable .
99

100 op int : DataVariable -> Data [ctor] .
101 op str : DataVariable -> Data [ctor] .
102 op bool : DataVariable -> Data [ctor] .
103
104 *** expressions
105 ops not_ neg_ : Expr -> Expr .
106 ops _+_ _-_ _*_ _/_ _cat_ _%_ : Expr Expr -> Expr .
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107 ops _<_ _<=_ _>_ _>=_ : Expr Expr -> Expr .
108 ops _and_ _or_ _/=_ _=_ : Expr Expr -> Expr .
109
110 *** Calculate values of expressions
111 *** Some of these functions were originally
112 *** written by Marte Arnestad in 2003. Later
113 *** adapted for this thesis:
114 op eval : Expr -> Data .
115 op eval : Expr BindingSet -> Data .
116
117 op evalB : Expr BindingSet -> Bool .
118 op evalI : Expr BindingSet -> Int .
119 op evalS : Expr BindingSet -> String .
120
121 vars Q Q’ R : Qid .
122 vars D E : Data .
123 var S : String .
124 vars I J : List .
125 vars X X’ : Expr .
126 vars B B’ : Bool .
127 vars N N’ : Nat .
128 vars C C’ : Int .
129 var DV : DataVariable .
130 var L : List .
131
132 op _in_ : List List -> Bool .
133 eq D in nil = false .
134 eq D in E L = D == E or D in L .
135
136 *** data
137 eq eval(D) = eval(D, emptyBindingSet) .
138
139 eq eval(null, BS) = null .
140 eq eval(bool(B), BS) = bool(B) .
141 eq eval(int(C), BS) = int(C) .
142 eq eval(str(S), BS) = str(S) .
143
144 eq eval(int(DV), BS) = getBinding(int(DV), BS) .
145 eq eval(str(DV), BS) = getBinding(str(DV), BS) .
146 eq eval(bool(DV), BS) = getBinding(bool(DV), BS) .
147
148 *** data-bool
149 eq eval(not X, BS) = bool(not evalB(X, BS)) .
150 eq eval(X and X’, BS) = bool(evalB(X, BS) and evalB(X’, BS)) .
151 eq eval(X or X’, BS) = bool(evalB(X, BS) or evalB(X’, BS)) .
152
153 eq eval((X > X’), BS) = bool(evalI(X, BS) > evalI(X’, BS)) .
154 eq eval((X >= X’), BS) = bool(evalI(X, BS) >= evalI(X’, BS)) .
155 eq eval((X < X’), BS) = bool(evalI(X, BS) < evalI(X’, BS)) .
156 eq eval((X <= X’), BS) = bool(evalI(X, BS) <= evalI(X’, BS)) .
157
158 eq eval(X = X’, BS) = bool((eval(X, BS) == eval(X’, BS))) .
159 eq eval(X /= X’, BS) = bool((eval(X, BS) =/= eval(X’, BS))) .
160
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161 *** data-string
162 eq eval(X cat X’, BS) = str(evalS(X, BS) + evalS(X’, BS) ) .
163
164 *** data-int
165 eq eval((neg X), BS) = int(- evalI(X, BS)) .
166 eq eval((X + X’), BS) = int(evalI((X + X’), BS)) .
167 eq eval((X - X’), BS) = int(evalI((X - X’), BS)) .
168 eq eval((X * X’), BS) = int(evalI((X * X’), BS)) .
169 eq eval((X / X’), BS) = int(evalI((X / X’), BS)) .
170 eq eval((X % X’), BS) = int(evalI((X % X’), BS)) .
171
172 eq evalB(bool(B), BS) = B .
173 eq evalB(not X, BS) = not evalB(X, BS) .
174 eq evalB(X and X’, BS) = evalB(X, BS) and evalB(X’, BS) .
175 eq evalB(X or X’, BS) = evalB(X, BS) or evalB(X’, BS) .
176 eq evalB((X > X’), BS) = evalI(X, BS) > evalI(X’, BS) .
177 eq evalB((X >= X’), BS) = evalI(X, BS) >= evalI(X’, BS) .
178 eq evalB((X < X’), BS) = evalI(X, BS) < evalI(X’, BS) .
179 eq evalB((X <= X’), BS) = evalI(X, BS) <= evalI(X’, BS) .
180 eq evalB(X = X’, BS) = (eval(X, BS) == eval(X’, BS)) .
181 eq evalB(X /= X’, BS) = (eval(X, BS) =/= eval(X’, BS)) .
182 eq evalB(bool(DV), BS) = evalB(getBinding(bool(DV), BS), BS) .
183
184 eq evalS(str(S), BS) = S .
185 eq evalS(X cat X’, BS) = evalS(X, BS) + evalS(X’, BS) .
186 eq evalS(str(DV), BS) = evalS(getBinding(str(DV), BS), BS) .
187
188 eq evalI(int(C), BS) = C .
189 eq evalI((neg X), BS) = (- evalI(X, BS)) .
190 eq evalI((X + X’), BS) = evalI(X, BS) + evalI(X’, BS) .
191 eq evalI((X - X’), BS) = evalI(X, BS) - evalI(X’, BS) .
192 eq evalI((X * X’), BS) = evalI(X, BS) * evalI(X’, BS) .
193 eq evalI((X / X’), BS) = evalI(X, BS) quo evalI(X’, BS) .
194 eq evalI((X % X’), BS) = evalI(X, BS) rem evalI(X’, BS) .
195 eq evalI(int(DV), BS) = evalI(getBinding(int(DV), BS), BS) .
196
197
198 *** evalTest tests if the expression can be
199 *** evaluated with the current binding set.
200 op evalTest : Data -> Bool .
201 op evalTest : Data BindingSet -> Bool .
202
203 eq evalTest(D) = evalTest(D, emptyBindingSet) .
204
205 eq evalTest(null, BS) = true .
206 eq evalTest(bool(B), BS) = true .
207 eq evalTest(int(C), BS) = true .
208 eq evalTest(str(S), BS) = true .
209
210 eq evalTest(int(DV), BS) = getBinding(int(DV), BS) =/= noBinding .
211 eq evalTest(str(DV), BS) = getBinding(str(DV), BS) =/= noBinding .
212 eq evalTest(bool(DV), BS) = getBinding(bool(DV), BS) =/= noBinding .
213
214 eq evalTest(not X, BS) = evalTest(X, BS) .
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215 eq evalTest(X and X’, BS) = evalTest(X, BS) and evalTest(X’, BS) .
216 eq evalTest(X or X’, BS) = evalTest(X, BS) and evalTest(X’, BS) .
217
218 eq evalTest((X > X’), BS) = evalTest(X, BS) and evalTest(X’, BS) .
219 eq evalTest((X >= X’), BS) = evalTest(X, BS) and evalTest(X’, BS) .
220 eq evalTest((X < X’), BS) = evalTest(X, BS) and evalTest(X’, BS) .
221 eq evalTest((X <= X’), BS) = evalTest(X, BS) and evalTest(X’, BS) .
222
223 eq evalTest(X = X’, BS) = evalTest(X, BS) and evalTest(X’, BS) .
224 eq evalTest(X /= X’, BS) = evalTest(X, BS) and evalTest(X’, BS) .
225
226 eq evalTest(X cat X’, BS) = evalTest(X, BS) and evalTest(X’, BS) .
227
228 eq evalTest((neg X), BS) = evalTest(X, BS) .
229 eq evalTest((X + X’), BS) = evalTest(X, BS) and evalTest(X’, BS) .
230 eq evalTest((X - X’), BS) = evalTest(X, BS) and evalTest(X’, BS) .
231 eq evalTest((X * X’), BS) = evalTest(X, BS) and evalTest(X’, BS) .
232 eq evalTest((X / X’), BS) = evalTest(X, BS) and evalTest(X’, BS) .
233 eq evalTest((X % X’), BS) = evalTest(X, BS) and evalTest(X’, BS) .
234 endfm
235
236 fmod OBJ is
237
238 protecting META-TERM .
239 protecting QID .
240 protecting QID-LIST .
241 protecting INT .
242 protecting PARAMETERS .
243 sort Msg .
244
245 op invoc_ : Msg -> Msg .
246 op comp_ : Msg -> Msg .
247
248 var Q : Qid .
249 op _() : Qid -> Msg .
250 eq Q() = Q(nil) .
251 op _(_) : Qid List -> Msg .
252
253 op msg_from_to_ : Msg Oid Oid -> Msg .
254 op msg_from_to_label_ : Msg Oid Oid GroundTerm -> Msg .
255 op msg_from_to_ : Qid Qid Qid -> Msg .
256
257 sort Obj .
258 op <_> : Oid -> Obj .
259
260 sort Configuration .
261 subsorts Msg Obj < Configuration .
262 op __ : Configuration Configuration -> Configuration
263 [ctor assoc comm id: none] .
264 op none : -> Configuration [ctor] .
265
266 endfm
267
268
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269 fmod OID-SET is
270
271 protecting OBJ .
272
273 sort OidSet .
274 subsort Oid < OidSet .
275 op none : -> OidSet .
276 op _;_ : OidSet OidSet -> OidSet [ctor assoc comm id: none] .
277
278 var O1 Oid .
279 var OS : OidSet .
280
281 op _in_ : Oid OidSet -> Bool .
282 eq O1 in (O1 ; OS) = true .
283 eq O1 in OS = false [otherwise] .
284
285 endfm
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A.6 Python code for socket communication

1 #!/local/snacks/bin/python2.3 -d
2 # -*- coding: utf-8 -*-
3
4 import socket
5 import pre as re
6 import popen2
7 import os
8 import getopt
9 import sys

10 import thread
11 import string
12 import time
13 import random
14
15
16 objectlocations = {}
17
18 # example objectlocations table:
19 # {"R1": ("pantelleria.ifi.uio.no", 50007),
20 # "R2": ("pantelleria.ifi.uio.no", 50007),
21 # "R3": ("pantelleria.ifi.uio.no", 50007),
22 # "W1": ("pantelleria.ifi.uio.no", 50007),
23 # "SP": ("pantelleria.ifi.uio.no", 50007),
24 # "RWServer": ("pantelleria.ifi.uio.no", 50008)}
25
26 # example objectlocations xml file:
27 # <objectlocations>
28 # <object>
29 # <name>R1</name>
30 # <machine>pantelleria.ifi.uio.no</machine>
31 # <port>5007</port>
32 # </object>
33 # <object>
34 # <name>R2</name>
35 # ... etc ...
36 # </objectlocations>
37
38 outq = []
39 inq = []
40 maudefile = ""
41 maudemodule = ""
42 xmlfile = ""
43
44 def receive_thread(socket):
45 # receive a message (of max 2048 bytes):
46 data = socket.recv(2048)
47 inq.append(data)
48 socket.close()
49
50 def listen(objectname):
51
52 host, port = objectlocations[objectname]
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53
54 # crete socket
55 serversocket = socket.socket(
56 socket.AF_INET, socket.SOCK_STREAM)
57 serversocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
58 # bind the socket to the current machine and specified port:
59 serversocket.bind((socket.gethostname(), port))
60 # listen for incomming requests
61 serversocket.listen(5)
62
63 while 1:
64 # accept connections from the outside,
65 # and create a new socket
66 (clientsocket, address) = serversocket.accept()
67 # create new thread, that will handle the communication
68 # over the new socket:
69 thread.start_new_thread(recieve_thread, (clientsocket,))
70
71 def send_thread():
72
73 while 1:
74 for m in outq:
75 if sendmessage(m):
76 outq.remove(m)
77 sleep(100)
78
79 def sendmessage(msg):
80 msg, reciever = msg
81 host, port = objectlocations[reciever]
82
83 retval = 1
84 try:
85 cs = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
86 cs.connect((host, port))
87 cs.send(msg)
88 except:
89 retval = 0
90 cs.close
91 return retval
92
93
94 def maude_thread():
95
96 tempfilename = "tmp" + \
97 str(random.randrange(1000000,9000000,1)) + ".txt"
98 commandfilename = "tmp" + \
99 str(random.randrange(1000000,9000000,1)) + ".maude"

100
101 # the first state must be "init"
102 state = "init"
103 i = 0
104 while i < numberOfRewrites or numberOfRewrites == 0:
105
106 i = i + 1
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107
108 # create temporary command file
109 commandfile = open(commandfilename, "w")
110 commandfile.write("load " + maudefile + " .\n")
111 if maudemodule != "":
112 commandfile.write("select " + maudemodule + " .\n")
113 commandfile.write("rew [1] " + state + " .\n")
114 commandfile.write("q \n")
115 commandfile.close()
116
117 lines = ""
118
119 # read the output from Maude:
120 rc = os.system(’maude -interactive -no-prelude’ + \
121 commandfilename + ’ > ’ + tempfilename)
122
123 tempfile=open(tempfilename,’r’)
124 for line in tempfile:
125 lines = lines + line
126 tempfile.close()
127
128 # For some reason, Maude will from time to time not
129 # print all the lines; we check if this is the case:
130 if string.find(lines, "Bye.") != -1:
131
132 lines = string.replace(lines, "\n", "")
133 lines = string.replace(lines, "\r", "")
134 lines = string.replace(lines, "\t", "")
135
136 result = re.search(r".*result \[?\w*\]?:\
137 ((.|\n)*)Bye((.|\n)*)$", lines)
138 state = result.group(1)
139
140 # Put new messages from the inq into the configuration:
141 engine = re.search(
142 r"^(?P<enginePre>(.|\n)*Engine\[\s*curTerm:\s*’__\[\s*)\
143 (?P<curTerm>(.|\n)*)(?P<enginePost>\s*\]\s*,\s*curModule:
144 (.|\n)*\s*\])$", state)
145 try:
146 test = engine.group("eginePre")
147 except:
148 engine = re.search(
149 r"^(?P<enginePre>(.|\n)*Engine\[\s*curTerm:\s*) \
150 (?P<curTerm>(.|\n)*)(?P<enginePost>\s*,\
151 \s*curModule:(.|\n)*\s*\])$", state)
152
153 newMsgs = ""
154 for m in inq:
155 newMsgs = newMsgs + m
156 inq = []
157
158 if newMsgs != "":
159 if engine.group("curTerm") == "’init.Configuration":
160 state = engine.group("enginePre") + "’__[" + \
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161 engine.group("curTerm") + newMsgs + "]" + \
162 engine.group("enginePost");
163 print state + "\n\n"
164 else:
165 if not engine.group("curTerm")[0:4] == "’__[":
166 state = engine.group("enginePre") + \
167 "’__[" + engine.group("curTerm") + newMsgs + "]" + \
168 engine.group("enginePost")
169 else:
170 state = engine.group("enginePre") + \
171 engine.group("curTerm") + newMsgs + \
172 engine.group("enginePost")
173 print state + "\n\n"
174
175 # remove tab and cr:
176 state = string.replace(state, "\n", "")
177 state = string.replace(state, "\t", "")
178
179 failed = 0
180 while not failed:
181
182 engine = re.search(
183 r"^(?P<enginePre>(.|\n)*Engine\[\s*curTerm:\s*’__\[\s*)\
184 (?P<curTerm>(.|\n)*)(?P<enginePost>\s*\]\s*,\s*curModule:\
185 (.|\n)*\s*\])$", state)
186 try:
187 test = engine.group("eginePre")
188 except:
189 engine = re.search(
190 r"^(?P<enginePre>(.|\n)*Engine\[\s*curTerm:\s*)\
191 (?P<curTerm>(.|\n)*)(?P<enginePost>\s*,\s*curModule:\
192 (.|\n)*\s*\])$", state)
193
194 curTerm = engine.group("curTerm")
195
196 result = re.search(
197 r"^(?P<pre>(.|\n)*)(?P<msg>\s*,\\
198 s*’msg_from_to_\[’_‘\(_‘\)\\
199 [.*\],\s*’’(?P<from>\w*)\.Sort,\s*’’(?P<to>\w*)\.Sort\])\
200 (?P<post>(.|\n)*)$", curTerm)
201
202 try:
203 msg = string.replace(result.group("msg"), "\r", "")
204 reciever = result.group("to")
205 except:
206 failed = 1
207
208 if not failed:
209 # check to see if the message is destined for another
210 # machine / process or not:
211 if objectlocations[objectname] != objectlocations[reciever]:
212 # to be sent:
213 outq.append((msg, reciever))
214 else:
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215 # local message:
216 inq.append(msg)
217
218 # remove the message from the current state
219 state = engine.group("enginePre") + result.group("pre") + \
220 result.group("post") + engine.group("enginePost")
221 else:
222 # do another iteration of the loop with the same state
223
224
225 # command line arguments:
226 optlist, args = getopt.getopt(sys.argv[1:], ’’)
227
228 try:
229 objectname = args[0]
230 maudefile = args[1]
231 xmlfile = args[2]
232 try:
233 maudemodule = args[3]
234 except:
235 maudemodule = ""
236 try:
237 numberOfRewrites = int(args[4])
238 except:
239 numberOfRewrites = 0
240 except:
241 print "Usage: ", sys.argv[0], "ObjectName " + \
242 "MaudeFile XmlObjectLocations [Module] [NumberOfRewrites]"
243 sys.exit(1)
244
245 objectlocations = XmlToDictionary(xmlfile)
246
247 myIP = socket.gethostbyname(socket.gethostname())
248
249 # start listener thread
250 thread.start_new_thread(listen, (objectname,))
251
252 # start send thread
253 thread.start_new_thread(send_thread, ())
254
255 # start maude controller thread:
256 thread_start_new_thread(maude_controller, ())
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Appendix B

Papers

Results from the work with this thesis have been included in two scientific
papers:

• A Run-Time Environment for Concurrent Objects with Asynchronous
Methods Calls [24] is published in the Proceedings of the 5th Interna-
tional Workshop on Rewriting Logic and its Applications (WRLA’04).

• Toward Reflective Application Testing in Open Environments [4] is sub-
mitted for publication at Norsk Informatikk-Konferanse 2004 (NIK’04).

Both papers are included in their entirety on the following pages.
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Abstract

A distributed system may be modeled by objects that run concurrently, each with
its own processor, and communicate by remote method calls. However objects may
have to wait for response to external calls; which can lead to inefficient use of pro-
cessor capacity or even to deadlock. This paper addresses this limitation by means
of asynchronous method calls and conditional processor release points. Although at
the cost of additional internal nondeterminism in the objects, this approach seems
attractive in asynchronous or unreliable distributed environments. The concepts
are illustrated by the small object-oriented language Creol and its operational se-
mantics, which is defined using rewriting logic as a semantic framework. Thus,
Creol specifications may be executed with Maude as a language interpreter, which
allows an incremental development of the language constructs and their operational
semantics supported by testing in Maude. However, for prototyping of highly non-
deterministic systems, Maude’s deterministic engine may be a limitation to practical
testing. To overcome this problem, a rewrite strategy based on a pseudo-random
number generator is proposed, providing Maude with nondeterministic behavior.

Key words: Object orientation, asynchronous method calls,
operational semantics, rewriting logic, nondeterministic rewrite
strategies

1 Introduction

The importance of inter-process communication is rapidly increasing with the
development of distributed computing, both over the Internet and over local
networks. Object orientation appears as a promising framework for concur-
rent and distributed systems [20], but object interaction by means of method
calls is usually synchronous and therefore less suitable in a distributed set-
ting. Intuitive high-level programming constructs are needed to unite object
orientation and distribution in a natural way. In this paper programming
constructs for concurrent objects are proposed with an object-oriented design

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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language Creol, based on processor release points and asynchronous method
calls. Processor release points are used to influence the implicit internal con-
trol flow in concurrent objects. This reduces time spent waiting for replies to
method calls in a distributed environment and allows objects to dynamically
change between active and reactive behavior (client and server).

We consider how object-oriented method calls, returning output values in
response to input values, can be adapted to the distributed setting. With the
remote procedure call (RPC) model, an object is brought to life by a proce-
dure call [6]. Control is transferred with the call so there is a master-slave
relationship between the caller and the callee. Concurrency is achieved by
multiple execution threads, e.g. Hybrid [26] and Java [19]. In Java the inter-
ference problem related to shared variables reemerges when threads operate
concurrently in the same object, and reasoning about programs in this setting
is a highly complex matter [1,11]. Reasoning considerations suggest that all
methods should be serialized [9], which is the approach taken by Hybrid. But
with serialized methods, the caller must wait for the return of a call, blocking
for any other activity in the object. In a distributed setting this limitation
is severe; delays and instabilities due to distribution may cause considerable
waiting. In contrast, message passing is a communication form without trans-
fer of control. For synchronous message passing, as in Ada’s Rendezvous
mechanism, both sender and receiver must be ready before communication
can occur. Method calls may be modeled by pairs of messages, on which the
two objects must synchronize [6]. For distributed systems, this synchroniza-
tion still results in much waiting. In the asynchronous setting, messages may
always be emitted regardless of when the receiver accepts the message. Com-
munication by asynchronous message passing is well-known from e.g. the Actor
model [2,3]. However, method calls imply an ordering on communication not
easily captured in the Actor model.

In this paper, method calls are taken as the communication primitive for
concurrent objects and given an operational semantics reflected by pairs of
asynchronous messages, allowing message overtaking. The result resembles
programming with so-called future variables [8,10,16,28,29]; computation may
continue until the return value of the call is explicitly needed in the code.
To avoid blocking the object at this point, we propose interleaved method
evaluations in objects by defining potential processor release points in method
bodies using inner guards. Hence, present activity may be suspended, allowing
the object’s invoked and enabled methods to compete for the free processor.

The operational semantics of Creol has been defined in rewriting logic [23],
which is supported by the executable modeling and analysis tool Maude [13].
Rewriting logic is a logic of concurrent change. A number of concurrency mod-
els have been successfully represented in rewriting logic and Maude [23,24], in-
cluding the ODP computational model [25] and structural operational seman-
tics [17]. We have used rewriting logic and Maude as a tool for development
of high-level programming constructs for distributed concurrent objects. As
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our aim is to consider constructs for a traditional imperative setting, rewrite
rules capture the behavior of the abstract machine, rather than method calls
as in the object model of rewriting logic and Maude [13,23]. Our experiments
suggest that rewriting logic and Maude provide a well-suited framework for
experimentation with language constructs and concurrent environments. How-
ever, in order to capture the nondeterminism of distributed systems, Maude’s
deterministic engine may be a limitation. Therefore, the paper proposes a
new rewrite strategy for Maude, based on a pseudo-random number genera-
tor. This allows nondeterministic executions, selecting not only the rewrite
rule according to the random number, but also where it is applied. The strat-
egy seems well-suited for testing any nondeterministic Maude specification, as
several runs of the same specification give rise to different executions.

Paper overview. Section 2 introduces the imperative level of Creol. Sec-
tion 3 provides an example. Section 4 defines Creol’s operational semantics
using rewriting logic. Section 5 presents a nondeterministic rewrite strategy
for Maude. Section 6 considers related work and Section 7 concludes.

2 Programming Constructs

This section proposes programming constructs for distributed concurrent ob-
jects, based on asynchronous method calls and processor release points. Con-
current objects are potentially active, encapsulating execution threads; con-
sequently, elements of basic data types are not considered objects. In this
sense, our objects resemble top-level objects in e.g. Hybrid [26]. Objects have
explicit identifiers: communication takes place between named objects and ob-
ject identifiers may be exchanged between objects. All object interaction is by
means of method calls. Creol objects are typed by abstract interfaces [21,22].
These resemble CORBA’s IDL, but extended with semantic requirements and
mechanisms for type control in dynamically reconfigurable systems. The lan-
guage supports strong typing, e.g. invoked methods are supported by the called
object (when not null), and formal and actual parameters match.

In order to focus the discussion on asynchronous method calls and pro-
cessor release points in method bodies, other language aspects will not be
discussed in detail, including inheritance and typing. To simplify the exposi-
tion, we assume a common type Data of basic data values which may be passed
as arguments to methods, including as subtypes the object identifiers Obj and
data types such as Bool. Expressions Expr evaluate to Data. We denote by Var

the set of program variables, by Mtd the set of method names, and by Label

the set of method call identifiers.

2.1 Classes and Objects

At the programming level, attributes (object variables) and method decla-
rations are organized in classes in a standard way. Objects are dynamically
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created instances of classes. The attributes of an object are encapsulated and
can only be accessed via the object’s methods. Among the declared methods,
we distinguish two methods init and run, which are given special treatment
operationally. The init method is invoked at object creation to instantiate at-
tributes and may not contain processor release points. After initialization, the
run method, if provided, is started. Apart from init and run, declared meth-
ods may be invoked by other objects of appropriate interfaces. These methods
reflect passive or reactive behavior in the object, whereas run reflects active
behavior. Object activity is organized around an external message queue and
an internal process queue which contains pending processes. Methods need not
terminate and, apart from init, all methods may be temporarily suspended on
the internal process queue.

2.2 Asynchronous Methods

An object offers methods to its environment, specified through a number of
interfaces. All interaction with the object happens through the methods of its
interfaces. In the asynchronous setting method calls can always be emitted,
because the receiving object cannot block communication. Method overtaking
is allowed in the sense that if methods offered by an object are invoked in one
order, the object may react to the invocations in another order. Methods are,
roughly speaking, implemented by nested guarded commands G −→ C, to be
evaluated in the context of locally bound variables. Guarded commands are
treated in detail in Section 2.3.

Due to the possible interleaving of different method executions, the values
of an object’s instance variables are not entirely controlled by a method in-
stance if it suspends itself before completion. However, a method may create
local variables supplementing the object variables. In particular, the values of
formal parameters are stored locally, but other local variables may also be de-
clared. Semantically, an instantiated method is a process, represented as a pair
〈GC,L〉 where GC is a (guarded) sequence of commands and L : Var→ Data

the local variable bindings. Consider an object o which offers the method

op m(in x : Data out y : Data) == var z : Data := 0;G −→ C .

to the environment. Accepting a call invoc(l, o′, o,m, 2) from an object o′

adds the pair 〈G −→ C, {label 7→ l, caller 7→ o′, x 7→ 2, y 7→ nil, z 7→ 0}〉
to the internal process queue of object o, where pending processes wait for
the object processor. An object can have several pending calls to the same
method, possibly with different values for local variables. The local variables
label and caller are reserved to identify the call and the caller for the reply,
which is emitted at method termination.

An asynchronous method call is made with the command l!o.m(e), where
l ∈ Label is a unique reference to the call, o an object identifier, m a method
name, and e an expression list with the supplied actual parameters. Labels
are used to identify replies, and may be omitted if a reply is not explicitly
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requested. As no synchronization is involved, process execution may proceed
after calling an external method until the return values are needed by the
process. To fetch the return values from the queue, say in a variable list x, we
ask for the reply to the call: l?(x). If the reply has arrived, return values are
assigned to x and execution continues without delay. If no reply to the call has
been received, the process must now wait. This interpretation of l?(x) gives
the same effect as treating x as a future variable. However, waiting in the
asynchronous case can be avoided altogether by introducing processor release
points for reply requests. In the case without reply, execution is suspended,
placing the active process and its local variables on the internal process queue.

Although remote and local calls can be handled operationally in the same
way, it is clear that for execution of local calls the calling process must even-
tually suspend its own execution. In particular, synchronous local calls are
given direct access to the object processor. The syntax o.m(e;x) is adopted
for synchronous (RPC) method calls, blocking the processor while waiting for
the reply. Local calls need not be prefixed by an object identifier.

2.3 A Language with Processor Release Points

In Creol, the control flow inside concurrent objects may be influenced by
potential processor release points. These are explicitly declared in method
bodies using guarded commands, as introduced by Dijkstra [18], and may be
nested within the same local variable scope. When an inner guard evaluates to
false during process execution, the remaining process code is suspended to the
internal process queue and the processor is released. After processor release,
an enabled process from the internal process queue is selected for execution.

Definition 2.1 The type Guard is constructed inductively as follows:

• wait ∈ Guard (explicit release)

• l?(x) ∈ Guard, where l ∈ Label and x ∈ Var

• φ ∈ Guard, where φ is a boolean expression over local and object variables

Here, wait is a construct for explicit release of the processor. The reply
guard l?(x) checks whether the reply to a method call has been received, as
further execution of a process will often depend on the arrival of a certain
reply. If this is the case, l?(x) returns true and instantiates x with the return
values. Evaluation of guards is done atomically.

Guarded commands can be composed in different ways, reflecting the re-
quirements to the internal control flow in objects. Let GC1 and GC2 denote
the guarded commands G1 −→ C1 and G2 −→ C2. Nesting of guards is ob-
tained by sequential composition; in a program statement GC1;G2 −→ C2,
the guard G2 corresponds to a potential inner processor release point. Non-
deterministic choice between guarded commands is expressed by GC12GC2,
which may compute C1 if G1 evaluates to true, C2 if G2 evaluates to true, and
is otherwise suspended. Nondeterministic merge is expressed by GC1|||GC2,
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Syntactic categories. Definitions.
C in Com

GC in Gcom

G in Guard

x in VarList

e in ExprList

m in Mtd

o in Obj

l in Label

C ::= ε | x := e |GC | C1;C2 | new classname(e)
| if G then C1 else C2 fi
|while G do C od
|m(e;x) | l!m(e) | !m(e) | l?(x)
| o.m(e;x) | l!o.m(e) | !o.m(e)

GC ::= G −→ C

|GC12GC2

|GC1|||GC2

Fig. 1. An outline of the syntax for the proposed language Creol, focusing on the
main syntactic categories Com of commands and Gcom of guarded commands.

which can be defined by (GC1;GC2)2(GC2;GC1). Ordinary control flow is
expressed by if and while constructs, and assignment to local and object vari-
ables is expressed as x := e for a list x of program variables and a list e of
expressions. Figure 1 summarizes the language syntax.

With nested processor release points, the processor need not wait actively
for replies. This approach is more flexible than future variables: pending pro-
cesses or new method calls may be evaluated instead of blocking the processor.
However, when the reply has arrived, the continuation of the original process
must compete with the other enabled and pending processes in the internal
process queue.

3 Example: The Dining Philosophers

The well-known dining philosophers are now considered in Creol. The exam-
ple will later be used to experiment with the language interpreter. A butler
informs a philosopher of the identity of the philosopher’s left neighbor. A
philosopher may borrow and return its neighbor’s chopstick. Interaction be-
tween the philosophers and the butler is restricted by interfaces. This results
in a clear distinction between internal methods and methods externally avail-
able to other objects typed by so-called cointerfaces [21,22]. These express
mutual dependency between interfaces, and are declared in the interfaces by
means of a with construct. Strong typing and cointerfaces guarantee that
only philosophers may call the methods borrowStick and returnStick.

interface Phil interface Butler
begin begin

with Phil with Phil
op borrowStick op getNeighbor(out n:Phil)
op returnStick end

end
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In this approach, philosopher objects display both active and reactive behav-
ior. Each philosopher controls one chopstick and must borrow its neighbor’s
chopstick in order to eat. Thus, philosophers have their internal activity as
well as responding to calls from the environment. The standard configuration
of the dining philosophers is most easily obtained by means of a single butler.

3.1 Implementing the Philosophers

Philosophers are active objects so the Philosopher class will include a run
method. This method is defined in terms of several nonterminating internal
methods representing different activities within a philosopher: think, eat, and
digest. In run, the internal methods are invoked asynchronously, and will be
interleaved in a nondeterministic and nonterminating manner, illustrating the
processor release point construct. All three methods depend on the value of
the internal variable hungry. The think method is a loop which suspends its
own evaluation before each iteration, whereas eat attempts to grab the object’s
and the neighbor’s chopsticks in order to satisfy the philosopher’s hunger. In
this case, the philosopher must wait until both chopsticks are available. In
order to avoid blocking the object processor, the eat method is suspended after
asking for the neighbor’s chopstick; further processing of the method can first
happen when the guard is satisfied. The digest method represents the action
of becoming hungry. Classes may include class parameters, which become
instance attributes bound at object creation, as in Simula. The Philosopher
class is defined as follows:

class Philosopher(butler: Butler) implements Phil
begin

var hungry: bool, chopstick: bool, neighbor: Phil
op init == chopstick := true; hungry := false; butler.getNeighbor(;neighbor) .
op run == true −→ !think ||| true −→ !eat ||| true −→ !digest .
op think == not hungry −→ 〈thinking...〉; wait −→ !think .
op eat == var l : label; hungry −→ l!neighbor.borrowStick;

(chopstick ∧ l?()) −→ 〈eating...〉; hungry := false;
!neighbor.returnStick; wait −→ !eat .

op digest == not hungry −→ (hungry := true; wait −→ !digest) .

with Phil
op borrowStick == chopstick −→ chopstick := false .
op returnStick == chopstick := true .

end

This implementation favors implicit control of the object’s active behavior.
Caromel and Rodier argue that facilities for both implicit and explicit control
are needed in languages which address concurrent programming [10]. Explicit
activity control can be programmed in Creol by using a while loop in the run
method. However in asynchronous distributed systems, we believe that com-
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munication introduces so much nondeterminism that explicit control struc-
tures quickly lead to program over-specification and possibly to unnecessary
active waiting.

In contrast to the active philosophers, butlers are passive. After creating
philosophers during initialization, a butler waits for philosophers to request
the identity of their neighbors. The code of the butler class is straightforward
and therefore omitted here.

4 A Rewriting Logic Semantics for Creol

The operational semantics of the proposed language constructs is given using
the semantic framework provided by rewriting logic (RL). A rewrite theory is
a 4-tupleR = (Σ, E, L,R), where the signature Σ defines the function symbols
of the language, E defines equations between terms, L is a set of labels, and R
is a set of labeled rewrite rules. From a computational viewpoint, a rewrite rule
t→ t′ may be interpreted as a local transition rule allowing an instance of the
pattern t to evolve into the corresponding instance of the pattern t′. Rewrite
rules apply to local fragments of a state configuration. Rules may be applied
in parallel to non-overlapping subconfigurations. We assume that RL is known
to the reader and present the operational semantics in the syntax of Maude.
Rewrite rules will capture the behavior of a Creol abstract machine, and not
of the Creol objects as in Maude’s object model. Hence, a configuration is
a multiset combining Creol objects, messages, queues, and classes. Auxiliary
functions are defined in equational logic, and evaluated in between rewrite
steps [23]. As usual, the associative and commutative constructor for multisets
and the associative constructor for lists are represented by whitespace.

An RL object is a term of the type 〈O : C | a1 : v1, . . . , an : vn〉, where O
is the object’s identifier, C is its class, the ai’s are the names of the object’s
attributes, and the vi’s are the corresponding values [13]. We adopt this form
of presentation and define Creol objects, classes, and external message queues
as RL objects. Omitting RL types, a Creol object is represented by an RL
object 〈Id | Cl, Pr, PrQ,Lvar,Att, Lcnt〉, where Id is the object identifier, Cl
the class name, Pr the active process code, PrQ a multiset of pending pro-
cesses (see Section 2.2) allowing all kinds of queue orderings, and Lvar and
Att the local and object variables, respectively. Finally, Lcnt is the method
call identifier corresponding to labels in the language. Thus, the object iden-
tifier Id and the local label value provide a globally unique identifier for each
method call. External message queues have a name and contain a multiset
of unprocessed messages. Each external message queue is associated with one
specific Creol object.

Creol classes are represented by RL objects 〈Cl | Att,Ocnt, init, run,Mtds〉,
where Cl is the class name, Att a list of attributes, Ocnt the number of objects
instantiated of the class, and Mtds a set of methods. When an object needs
a method, it is loaded from the Mtds set of its class (overloading and virtual
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binding issues connected to inheritance are ignored in this paper).

In RL’s object model [23], classes are not represented explicitly in the
system configuration. This leads to ad hoc mechanisms to handle object
creation, which we avoid by representing Creol classes in the configuration.
The Creol command new C(args) will create a new object with a unique
object identifier, object variables as listed in the class parameter list with
values defined in args and in Att, and place the code from methods init and
run in Pr. Uniqueness of the object identifier is ensured by appending the
number Ocnt to the class name, and increasing Ocnt.

There are four different kinds of rewrite rules:

• Rules that execute code from the active process: For every program state-
ment there is at least one rule. For example, the assignment rule for the
program X := E binds the value of the expression E to X in either the list
of local or object variables.

• Rules for suspension of the active process: When an active process guard
evaluates to false, the process and its local variables are suspended, leaving
Pr empty.

• Rules that activate pending processes: When Pr is empty, a pending process
may be activated. When a process is loaded, its local variables are also
loaded into memory.

• Transport rules: These rules move messages into and out of the external
message queue. Because the external message queue is represented as a
separate RL object, it can belong to a different subconfiguration from that
of the object itself. Consequently, messages can be received in parallel with
other activity in the object.

Specifications in RL are executable on the Maude tool, so Creol’s opera-
tional semantics may be used as a language interpreter. The entire interpreter
consists of 700 lines of code, including auxiliary functions and equational speci-
fications, and it has 32 rewrite rules. A detailed presentation of the interpreter
may be found in [7]. The rules for asynchronous method calls and guarded
commands are now considered in more detail.

4.1 Asynchronous Method Calls

Objects communicate by asynchronous method calls. In the operational se-
mantics, two messages are used to encode a method call. If an object o1

calls a method m of an object o2, with arguments in, and the execution of
m(in) results in the return values out, the call is reflected by two messages
invoc(l, o1, o2,m, in) and comp(l, o1, out), which represent the invocation and
completion of the call, respectively. In the asynchronous setting, the invoca-
tion message must include the reply address of the caller, so the completion
can be transmitted to the correct destination. As an object may have several
pending calls to another object, the completion message includes a unique
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label l, generated by the caller.

When an object calls an external method, a message is placed in the config-
uration. Transport rules eventually move the message to the callee’s external
message queue. After method execution, a completion message is emitted into
the configuration, eventually arriving at the caller’s external message queue.

The interpreter checks the external message queue of a Creol object for
method invocations, and loads the corresponding method code from the ob-
ject’s class into the object’s internal process queue PrQ The rewrite rule for
this transition can be expressed as follows, ignoring irrelevant attributes in
the style of Full Maude [13]:

rl [receivecall] :

〈O : Id | Cl : C,PrQ : W 〉 〈q(O) : QId | Ev : Q invoc(N,O′, O,M, I)〉
〈C : Cl | Mtds : MT 〉 ⇒
〈O : Id | Cl : C,PrQ : (get(M,MT, (N O′ I))) W 〉 〈q(O) : QId | Ev : Q〉
〈C : Cl | 〉 .

The auxiliary function get fetches method M in the method set MT of the
class, and returns a process with the method’s code and local variables. Values
of actual parameters I, the caller O′, and the message label N , are stored as
local variables. (The label cannot be modified by the process.) The rule
for a local asynchronous call is similar, but the call comes from the active
process code Pr instead of the external message queue. For a synchronous
local call the code is loaded directly into the active process code Pr, since
waiting actively in this case leads to deadlock.

4.2 Guarded Commands

Creol has three types of guards representing potential processor release points:
The standard boolean expression, a wait guard, and a return guard. Rules for
evaluation of return guards in the active process are now considered. Return
guards allow process suspension when waiting for method completions, so the
object may attend to other tasks while waiting. A return guard evaluates to
true if the external message queue contains the completion of the method call,
and execution of the process continues.

crl [returnguard] :
〈O : Id | Pr : X?(J) −→ P,Lvar : L〉 〈q(O) : QId | Ev : Q comp(N, O, K)〉 ⇒
〈O : Id | Pr : (J := K);P,Lvar : L〉 〈q(O) : QId | Ev : Q〉

if N == val(X,L) .

The condition ensures that the correct reply message is identified. The auxil-
iary function val fetches the value associated with the label variable X from
the local variables L.

If the message is not in the queue, the active process is suspended. In this
case other enabled processes may be activated while waiting for the method
call completion.

10
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crl [returnguard notinqueue] :

〈O : Id | Pr : X?(J) −→ P,PrQ : W,Lvar : L〉 〈q(O) : QId | Ev : Q〉 ⇒
〈O : Id | Pr : empty,PrQ : W (X?(J) −→ P,L),Lvar : no〉 〈q(O) : QId | Ev : Q〉

if not inqueue(val(X,L), Q) .

where the function inqueue looks for the completion in the message queue Q.

If no process is active, the suspended process with the return guard can be
tested against the external message queue again. If the completion message
is present, the return value is matched to local or object attributes and the
process is reactivated.

crl [return guard st] :

〈O : Id | Pr : empty,PrQ : (X?(J) −→ P,L′) W 〉
〈q(O) : QId | Ev : Q comp(N, O, K)〉 ⇒
〈O : Id | Pr : (J := K);P,PrQ : W,Lvar : L′〉 〈q(O) : QId | Ev : Q〉

if N == val(X,L′) .

Otherwise, another pending process from the multiset PrQ may be activated.

4.3 Execution of Creol Programs in Maude

The operational semantics of Creol is executable on the rewriting logic tool
Maude, as an interpreter for Creol programs. This makes Maude well-suited
for experimenting with programming constructs and language prototypes,
combined with Maude’s various rewrite strategies, search, and model-checking
abilities.

Although the operational semantics is highly nondeterministic, Maude is
deterministic in its choice of which rule to apply to a given configuration. The
dining philosophers program of Section 3 is used to test the performance of the
interpreter. Running the example on the interpreter, we observe that Maude
selects processes from the internal process queue in an unfair manner. Even
with the “fair” rewrite strategy [14], the philosophers would only think after
10 000 rewrites. This means that although the suspended instance of digest
is enabled in each philosopher, it is not executed. In order to explore the
full state space of the above program, Maude provides a breadth-first search
facility. However, for highly nondeterministic systems, the naive use of this
search mechanism will often become very resource demanding and hard to
apply in practice.

5 Nondeterministic Execution

This section presents an approach to nondeterministic execution of Maude
specifications. The approach is based on Maude’s reflective capabilities in
order to control the rewriting process. Informally, a configuration C and
the set R of rewrite rules of a Maude specification may be represented as
terms C and R at the metalevel, and metalevel rewrite rules may be used to
select which rule from R to apply to which subterm of C. This is done by a
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sequential interpreter function which takes as arguments a finitely presented
rewrite theory R, a term C, and a deterministic strategy S. Details on the
theory and use of reflection in rewriting logic and Maude may be found in
[12,15]. A strategy for rule selection which employs a pseudo-random number
generator, is now defined in Maude syntax.

There is a vast selection of algorithms for generating pseudo-random num-
bers. For simplicity, we select a simple “minimal” general purpose algorithm
from Press et al. [27, p. 278]: Ij+1 = a Ij (mod m). In [27], the authors
argue that choosing a = 75 and m = 231−1 yields a generator that has passed
all important theoretical tests, and that has been put to successful use in a
variety of practical applications. The algorithm is programmed in Maude as
a functional module RANDOM :

fmod RANDOM is

protecting NAT .

op rand : Nat → Nat .

ops a m :→ Nat .

eq a = 16807 . *** = 75

eq m = 2147483647 . *** = 231 − 1
var N : Nat .

eq rand(N) = (a ∗N) rem m .

endfm

The nondeterministic rewriting strategy is defined as a Maude module META-
ENGINE that protects the built-in module META-LEVEL. Metalevel rewrit-
ing is carried out by a conditional rule exec, described below. An object
Engine keeps track of the current state, and is defined as follows:

op 〈Engine | curTerm : , curModule : , labels : , failedRules : ,

numRules : , randomNum : , randomNum2 : 〉 :
Term Qid QidList QidList Int Int Int→ EngineObject .

The object contains several attributes, whose values are set at run-time;
curTerm contains the metarepresentation of the current configuration, cur-
Module is the metarepresentation of the name of the base-level module in
which the rewrites will be performed, labels is a QidList of rule labels from
the module curModule, failedRules contains a QidList of rule labels for rules
that could not be applied to curTerm, numRules is the length of the labels
list, included for performance reasons, and finally randomNum and random-
Num2 are numbers generated by the pseudo-random number generator defined
above.

The actual metalevel rewrite steps are handled by Maude’s built-in descent
function metaXapply(R, t, l, σ, n, b, m), where R is module, t a term, l a
rule label, σ a (partial) substitution, n a match number, b a bound, and
m a solution number [14]. The last argument, the solution number m, is of
particular interest for nondeterministic execution. Our strategy for performing
a rewrite is two-fold:
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(i) The engine will select, using the pseudo-random number generator, a rule
label l corresponding to a rule in R.

(ii) A rule identified by l may be applicable to a term t at several different
positions within the term, referred to in Maude as solutions. To allow for
“deep” randomization, within objects as well as between them, we will
also select the solution number pseudo-randomly.

The conditional rewrite rule exec implements this strategy, using metaXap-
ply and an auxiliary function chooseSolution(R, t, l, r). The latter takes care
of part (ii) of the strategy, and chooses a valid solution number using the
pseudo-random number r. It makes use of the fact that metaXapply(R, t, l,
σ, n, b, m) returns failure when there is no solution m. It is therefore easy
to find the number s of possible solutions by repeatedly calling metaXapply
with increasing values for m, until it returns failure. Utilizing this informa-
tion, selecting a solution randomly becomes a matter of calculating r mod s.
If no solution can be found (i.e. the rule is not applicable), chooseSolution
returns −1. The code for exec is given below:

crl [exec] :

〈Engine | curTerm : T, curModule : MOD, labels : L, failedRules : FR,

numRules : NR, randomNum : R, randomNum2 : R2〉
⇒

if chooseSolution(MOD,T,findItem(L,R rem NR), R2) == −1
then

〈Engine | curTerm : T, curModule : MOD, labels : L,
failedRules : if findItem(L,R rem NR) in FR then FR

else FR findItem(L,R rem NR) fi,

numRules : NR, randomNum : rand(R), randomNum2 : rand(R2)〉
else

〈Engine | curTerm : getTerm(metaXapply([MOD], T,
findItem(L,Rrem NR),none, 0,unbounded,

chooseSolution(MOD,T,findItem(L,R rem NR), R2))),
curModule : MOD, labels : L, failedRules : nil,numRules : NR,

randomNum : rand(R), randomNum2 : rand(R2)〉
fi

if length(FR) < NR .

Performing one rewrite at the time, the engine selects a rule randomly
from its list of rule labels, and tries to apply it to the current configuration. If
rule application fails (i.e., the left side of the rule does not match the current
configuration and chooseSolution returns −1), the rule label is added to the
list failedRules. If the length of failedRules equals the number numRules of
rules in the module, the execution terminates, as no rule is applicable.

Once an applicable rule has been selected, the list of failed rules is reset
to nil, and the rule is applied. The resulting term is assigned to curTerm,
and another rewrite may be performed in the same manner. For specifications
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where a majority of the rules will be nonapplicable to any given configuration,
the strategy given in exec will prove to be inefficient. To amend this, rules
that have already failed may be temporarily removed from the labels list until
a rule application succeeds.

The metarewriting engine introduced in this section makes it easy to sim-
ulate a series of different executions of any valid Maude specification, by sup-
plying different seeds for the pseudo-random number generator. Therefore,
the engine provides a rewriting strategy for testing specifications of nonde-
terministic systems, complementary to Maude’s standard rewrite and search
facilities. For the Creol example of the Dining Philosophers (Section 3), this
strategy provides much more informative testing than Maude’s internal fair
rewrite strategy on a single run, distributing rewrite steps evenly between the
different philosophers and their different enabled methods, and easily provides
a series of different “fair” executions of the program.

6 Related Work

Many object-oriented languages offer constructs for concurrency. A common
approach has been to keep activity (threads) and objects distinct, as done in
Hybrid [26] and Java [19]. These languages rely on the tightly synchronized
RPC model of method calls, forcing the calling method instance to block
while waiting for the reply to a call. Verification considerations suggest that
methods should be serialized [9], which would block all activity in the calling
object. Closely related are method calls based on the rendezvous concept in
languages where objects encapsulate activity threads, such as Ada [6] and
POOL-T [4]. The latter is interesting because of its emphasis on reasoning
control and compositional semantics, allowing inter-object concurrency [5].

For distributed systems, with potential delays and even loss of communica-
tion, the tight synchronization of the RPC model seems less desirable. Hybrid
offers delegation as an explicit programming construct to (temporarily) branch
an activity thread. Asynchronous method calls can be implemented in e.g.
Java by explicit concurrency control, creating new threads to handle calls. In
order to facilitate the programmer’s task and reduce the risk of errors, implicit
control structures based on asynchronous method calls seem more attractive,
allowing a higher level of abstraction in the language.

Languages based on the Actor model [2,3] take asynchronous messages as
the communication primitive, focusing on loosely coupled concurrency with
less synchronization. This makes Actor languages conceptually attractive for
distributed programming. Representing method calls by asynchronous mes-
sages has lead to the notion of future variables, which is found in languages
such as ABCL [29] and ConcurrentSmalltalk [28], as well as in Eiffel// [10],
CJava [16], and Polyphonic C] [8]. The proposed asynchronous method calls
are similar to future variables, but the proposed nested processor release points
further extend this approach to asynchrony.
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In Maude’s standard object model [13,23], object behavior is captured
directly by rewrite rules. Both Actor-style asynchronous messages and syn-
chronous transitions (rewrite rules involving many objects) are allowed, which
makes Maude’s object model very flexible. However, asynchronous method
calls and suspension points as proposed in this paper are hard to represent
directly within this model.

7 Concluding Remarks

Whereas object orientation has been advocated as a promising framework
for distributed systems, common approaches to combining object-oriented
method invocations with distribution seem less satisfactory. High-level im-
plicit control structures may facilitate the design of distributed concurrent
objects. This paper proposes asynchronous method calls and nested processor
release points in method bodies for this purpose. The approach is more flexible
than serialized methods, while maintaining the ease of partial correctness rea-
soning about code which is lost for nonserialized methods. However liveness
reasoning in our setting will require a fairness guarantee which is not provided
by the RL semantics, suggesting the need for a fair scheduling strategy.

The executable semantic framework provided by rewriting logic and Maude
offers valuable support for the development of program constructs, allowing
experimentation with the language behavior during development. In order to
simulate the highly nondeterministic environment targeted by the language,
a nondeterministic rewrite strategy has been proposed, based on a pseudo-
random number generator. We are currently extending the abstract machine
with a metalayer which captures the semantic specifications of the abstract
interfaces of the language [21,22]. This provides a prototyping environment
for initial designs, allowing the observable behavior of objects to be controlled
without explicit modelling, and a testing environment for imperative programs
without explicit representation of the environment. Analysis techniques for
Creol programs are under development. In future work, we plan to extend the
operational semantics with class inheritance mechanisms, including method
overloading, and use this model to experiment with dynamic features of open
object systems such as run-time mechanisms for system upgrades.
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Abstract
Many distributed applications can be understood in terms of components
interacting in an open environment such as the Internet. Open environments
are subject to change in uncontrollable ways, as other applications may arrive,
change, or disappear. In order to test the behavior of components in such
environments, it is necessary to build a testing environment which reflects this
highly unpredictable behavior. To avoid over-specification of environment
components, we use the observable communication history to abstractly
reflect the state of communicating components. Rewriting logic has been
used to model many different systems of concurrency and communication in
an executable manner. In this paper, we show how rewriting logic models can
be extended with observable communication histories in a transparent way
and suggest using this extension to capture a form of assumption guarantee
specification based testing of components in open environments.

1 Introduction
The aim of this paper is to suggest an application of rewriting logic [18] to test
the behavior of software units in open environments such as the Internet. An open
environment is an environment in which other unknown software units exist, and no
specific knowledge about these units may be assumed. A software unit in this setting
may be a distributed application in an open distributed system, but also an off-the-shelf
component which should behave properly in a variety of environments. To keep the
exposition simple, we will model software units by objects communicating by means
of message passing in this paper, keeping in mind that the approach may in principle be
extended to “real components” or distributed applications.

It is a major challenge to predict the behavior of objects evolving in open
environments, in order to ensure and maintain behavioral properties such as safety,
availability, quality of service, various forms of fault tolerance, etc. Formal approaches
to this challenge include methods for verification, by means of e.g. assertion systems
such as Hoare logic, type checking, and model checking. A disadvantage of these
approaches is that they generally depend on knowledge of the implementation details
of the systems they consider. In contrast, approaches based on testing create an artificial
environment in which the object can be subjected to controlled test runs. In contrast to
verification methods, testing cannot generally ensure that components are well-behaved
at all times, but may still give interesting insights into the component’s behavior. This
paper takes a testing approach to object analysis. The goal of the paper is to show
how open environments can be mimicked by underspecified formal descriptions based
on observable behavior in order to test object behavior.



Testing is done in an executable platform defined using rewriting logic and the Maude
system [5,18]. Rewriting logic can naturally express and combine many different models
of communication and concurrency. Further, rewriting logic is reflective [3, 6] in a
mathematically precise manner: it is possible to reason formally about reflective rewriting
inside rewriting logic itself, and to execute reflective specifications at the Maude meta-
level. The use of reflection is essential to our approach, allowing for guided search and
system monitoring in a modular, composable, and hierarchical way. Reflection may
be used to define execution strategies for an executable object model, for example a
nondeterministic execution strategy is proposed in [16]. Reflective specifications support
a layered architecture where several specifications may be given at each level. Reflection
can be used to extend a system model with e.g. logging facilities [23]. In this paper,
we transparently extend an executable system model with its history of observable
communications [7, 12] at the meta-level, and define execution strategies at the meta-
level which are influenced by requirements on the history. This paper gives an overview,
technical details of the implementation of this work in Maude may be found in [1].

Paper overview: Section 2 briefly reviews a notion of behavioral interface and
introduces the example of the paper. Section 3 introduces rewriting logic and Maude.
Section 4 provides an executable Maude specification of the running example. Section 5
explains how histories are introduced into the Maude model. Section 6 considers testing
of observable behavior. Section 7 provides an executable abstract Maude specification
of the running example. Section 8 combines two meta-level strategies to create an open
testing environment. Section 9 concludes the paper.

2 Specifications of Observable Behavior
In the open distributed setting, objects in the environment may come from third-party
manufacturers, and their implementation details may be unavailable for various reasons.
Reasoning about the overall system behavior should be based on abstract specifications
of system components. Specification in terms of observable behavior seems particularly
attractive, assuming that components have behavioral interfaces that describe their use. A
component may have many interfaces corresponding to different behavioral requirements.

Interaction histories. In a distributed environment, object behavior may be given in
terms of an assumption guarantee specification [17]. The assumption is a requirement on
the behavior of the objects in the environment. As customary in the assumption-guarantee
paradigm, the guaranteed invariant need only hold when the environment respects the
assumption. In our setting, the paradigm is adjusted to deal with input and output
aspects of communicating systems. An object’s observable history, i.e. the trace of all
communication events between the object and its environment, represents an abstract
view of its state, available for reasoning about past and present behavior. Consequently, an
object’s behavior may be determined by its communication history up to present time, and
a specification of its behavior as a predicate on finite traces. The approach emphasizes
mathematically intuitive concepts such as generator inductive function definitions and
finite sequences, avoiding fix-point semantics and infinite traces [14].

Behavioral interfaces. In order to specify object behavior in a generic way, we
introduce interfaces which may be associated with objects. Interfaces that contain
semantic requirements can be understood as behavioral interfaces. An interface can be



implemented by different classes and a class can implement different interfaces. If a
class implements an interface, all the objects of the class must behave according to the
semantic requirements of the interface, which describe observable behavior in terms of
possible communication histories. For further technical details and discussion the reader
is referred to [13, 14]. We shall here proceed by an example.

Example. Consider the well-known dining philosophers example [9] with N philosoph-
ers seated around a table. They are thinking deeply, but may occasionally need to eat from
a common resource. Each philosopher is equipped with one chopstick, but in order to eat
two chopsticks are needed. Hence, a philosopher may request and return its right-hand
neighbor’s chopstick, and lend its stick to its left-hand neighbor in response to a request.
These are the possible philosopher operations. We assume that philosophers are initially
thinking, but at some point they may request their neighbor’s chopstick, and lend their
chopstick to their left-hand neighbor. A philosopher which controls two chopsticks may
eat, return the requested chopstick, and resume thinking.

We specify an interface Phil, describing observable philosopher behavior. Let X
and Y be variables ranging over possible philosophers. Semantically, we represent an
interaction by a triple 〈X ,Y,M〉, where M is a method. Remark that think and eat are
internal methods, i.e. X = Y , while requestStick, returnStick and lendStick are external,
i.e. X 6= Y . In the latter case, say that X represents the initiator of the request. The
behavior of a philosopher is formulated in terms of acceptable communication histories,
which observationally reflect the internal state of a philosopher. Clearly, if the history
ends with a request for the neighbor’s chopstick, the philosopher is hungry, and if the
history ends with the return of the chopstick, the philosopher is fed. The philosopher may
only eat when it is hungry and only think when it is fed, so these actions do not change
the state. The behavioral interface capturing philosopher behavior is defined as follows:

interface Phil
begin

opr think
opr eat
opr requestStick
opr returnStick
opr lendStick

inv AccBeh(this,H )
where AccBeh(X ,ε)≡ true

AccBeh(X ,H ` 〈X ,Y, think〉)≡H == ε∨ (fed?(X ,H )∧AccBeh(X ,H ))
AccBeh(X ,H ` 〈X ,Y,eat〉)≡ hungry?(X ,H )∧AccBeh(X ,H )
AccBeh(X ,H ` 〈X ,Y, requestStick〉)≡ fed?(X ,H )∧AccBeh(X ,H )
AccBeh(X ,H ` 〈X ,Y, returnStick〉)≡ hungry?(X ,H )∧AccBeh(X ,H )
AccBeh(X ,H ` 〈X ,Y, lendStick〉)≡ hasStick?(X ,H )∧AccBeh(X ,H )
AccBeh(X ,H ` 〈X ′,Y,M〉)〉) ≡AccBeh(X ,H ) if (X 6= X ′)

hungry?(X ,H ` 〈X ′,Y,M〉)≡ if (X == X ′) then (M == requestStick ∨ M == eat)
else hungry?(X ,H ) fi

fed?(X ,H ` 〈X ′,Y,M〉)≡ if (X == X ′) then (M == returnStick ∨ M == think
∨M == lendStick) else fed?(X ,H ) fi

hasStick?(X ,H )≡ (H /{〈X ,Y, lendStick〉,〈Y,X , returnStick〉} ew returnStick)
end

In the predicate definitions, the free variables in each equation have an implicit universal
quantifier, reminiscent of for instance ML, and each line corresponds to a possible



generator case. The empty sequence is denoted ε, and ew denotes “ends with”. The
restriction of a history h to a set S of messages is denoted h/S. Note that the specification
is underspecified with regard to philosopher behavior. In particular, we do not know if a
philosopher will lend its chopstick to its neighbor when hungry.

3 Rewriting Logic and Maude
This section gives a brief introduction to rewriting logic [18] and Maude [5]. A rewrite
theory is a 4-tuple R = (Σ,E,L,R), where the signature Σ defines the function symbols
of the language, E defines equations between terms, L is a set of labels, and R is a set
of labeled rewrite rules. From a computational viewpoint, a rewrite rule t −→ t ′ may
be interpreted as a local transition rule allowing an instance of the pattern t to evolve
into the corresponding instance of the pattern t ′. Rewrite rules apply to fragments of a
state configuration. If rewrite rules may be applied to non-overlapping fragments of the
configuration, the transitions may be performed in parallel. Consequently, rewriting logic
(RL) is a logic which easily captures concurrent change. A number of concurrency models
have been successfully represented in RL [5, 18], including Petri nets, CCS, Actors,
and Unity, as well as the ODP computational model [19] and real-time systems [20].
RL is also used to define the operational semantics of the Creol language [15, 16], and
additionally offers its own model of object orientation [5].

Informally, a state configuration in RL is a multiset of terms of given types. These
types are specified in (membership) equational logic (Σ,E), the functional sublanguage
of RL which supports algebraic specification in the OBJ [11] style. When modeling
computational systems, configurations may include the local system states, where
different parts of the system are modeled by terms of the different types defined in the
equational logic. An RL object is a term of the type 〈O : C | a1 : v1, . . . , an : vn〉, where O
is the object’s identifier, C is its class, the ai’s are the names of the object’s attributes, and
the vi’s are the corresponding values [5].

RL extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules, supplementing the equations which
define the term language. Assuming that all terms can be reduced to normal form,
rewrite rules transform terms modulo the defining equations of E. Each rule describes
how a part of a configuration can evolve in one transition step. If several rules can be
applied to distinct subconfigurations, they can be executed in a concurrent rewrite step.
Consequently, concurrency is implicit in RL.

Conditional rewrite rules are allowed, where the condition can be formulated as a
conjunction of rewrites and equations which must hold for the main rule to apply:

crl [label] : subconfigur ation −→ subconfigur ation if condition .

Rules in RL may be formulated at a high level of abstraction, closely resembling a
compositional operational semantics. In fact, structural operational semantics can be
uniformly mapped into RL specifications [8].

Reflection and the Maude Meta-Level. Rewriting logic is reflective in the sense that
there is a finitely presented rewrite theory U that is universal, meaning that we can
represent any finitely presented rewrite theory R (including U itself) in U [4].

Let C and C′ be configurations and R be a set of rewrite rules. We write R `C→C′ to
express that C may be rewritten to C′ in the rewrite theory R . Informally, a configuration



C and the set R of rewrite rules of a Maude specification may be represented as terms C
and R at the meta-level. Using this notation, we have the following equivalence:

R `C→C′⇔U ` 〈R ,C〉 → 〈R ,C′〉
In other words, if a term C can be rewritten to a term C′ in a rewrite theory R , then

the meta-representation of C in R , 〈R ,C〉 can be rewritten to the meta-representation of
C′ in R , 〈R ,C′〉, in the universal rewrite theory U, and vice versa.

Meta-level rewrite rules may be used to select which rule from R to apply to which
subterm of C. This is done by a sequential interpreter function which takes as arguments
a finitely presented rewrite theory R , a term C, and a deterministic strategy S. Details on
the theory and use of reflection in rewriting logic and Maude may be found in [3, 4, 6].

4 A Maude Model of the Dining Philosophers
The dining philosophers of Section 2 are now implemented in Maude. In order to define
the synchronization constraints, we introduce internal attributes in the philosopher objects
to determine their ability to perform the different possible actions. Let C and D be
variables ranging over the sort Cid of concrete philosopher identifiers, a subsort of Phil.
A concrete philosopher with internal structure may be defined as follows:

〈C : Cid |state : _,myStick : _,nbrStick : _, leftNbr : _, rightNbr : _〉
The philosophers interact asynchronously by passing messages to each other, as well as

by sending synchronous messages to themselves representing internal actions.
A message consists of an envelope with a sender and a receiver and the actual message

(or action) represented by a quoted identifier. In Maude, messages are conventionally
defined as follows:

msg_ from_ to_

We are now able to define synchronization constraints directly in terms of a philosopher’s
internal state. A hungry philosopher may attempt to gain control of two chopsticks in
order to eat. A fed philosopher may think. Hence, the state may be either hungry or fed.
When a philosopher is hungry, it will attempt to acquire chopsticks. When it controls two
chopsticks, it may eat, release the chopsticks, and resume thinking. This can be expressed
by the following rewrite rules, ignoring attributes that are not needed for synchronization
in the style of Full-Maude [5]:

rl [think] : 〈C : Cid |state : fed〉 −→ 〈C : Cid |state : fed〉 (msg ’think from C to C) .

rl [eat] :
〈C : Cid |state : hungry,myStick : yes,nbrStick : yes〉

−→ 〈C : Cid |state : hungry,myStick : yes,nbrStick : yes〉 (msg ’eat from C to C) .

rl [requestStick] :
〈C : Cid |state : fed,myStick : yes,nbrStick : no, rightNbr : D〉

−→ 〈C : Cid |state : hungry,myStick : yes,nbrStick : requested, rightNbr : D〉
(msg ’requestStick from C to D) .

rl [returnStick] :
〈C : Cid |state : hungry,myStick : yes,nbrStick : yes, rightNbr : D〉

−→ 〈C : Cid |state : fed,myStick : yes,nbrStick : no, rightNbr : D〉
(msg ’returnStick from C to D) .

rl [lendStick] :
〈C : Cid |state : fed,myStick : yes〉 (msg ’requestStick from D to C)

−→ 〈C : Cid |state : fed,myStick : no〉 (msg ’lendStick from C to D) .



rl [recieveRequestedStick] :
〈C : Cid |nbrStick : requested, rightNbr : D〉 (msg ’lendStick from D to C)

−→ 〈C : Cid |nbrStick : yes, rightNbr : D〉
rl [recieveReturnedStick] :
〈C : Cid |myStick : no, rightNbr : D〉 (msg ’returnStick from D to C)

−→ 〈C : Cid |myStick : yes, rightNbr : D〉
Note that in this specification, a hungry philosopher will not render its chopstick.

5 Extending the Model with Histories
In the executable model, the messages corresponding to the philosophers’ actions can
be recorded in a communication history. In this section we will look at how to utilize
Maude’s meta-level capabilities during execution of the specified model to record the
history in a transparent way, i.e. leaving the original specification unchanged.

In order to execute a specification at the meta-level, we develop a custom strategy, i.e.
rewrite rules which apply to the meta-representation of the model. This strategy makes
use of an object Engine that stores the information that we need to keep track of to control
consecutive meta-level rewrites. The engine object is defined as follows:

〈E : Engine |curTerm : _,curModule : _, labels : _, failedRules : _〉

This object contains several attributes, whose values are set at run-time; curTerm
contains the meta-representation of the current configuration, curModule is the meta-
representation of the name of the object-level module in which the rewrites will be
performed, labels is a list of rule labels from the module curModule, and failedRules
contains a list of rule labels for rules that could not be applied to curTerm.

The communication history is kept in a Maude object, History, which is distinct from
the objects of the object-level model and is defined as follows:

〈H : History |h : _〉

The only attribute of this object, h, will contain the actual recorded communication history
in the form of a message list during runtime.

By defining a custom strategy we gain control over when a meta-level rewrite is
performed, and hence we are able to inspect the current state in-between rewrites. This
is the key point that enables us to record a communication history while executing a
specification, since we can now check whether the application of a given rewrite rule to
a given configuration results in a new message being sent, by comparing the meta-level
representations of the configuration before and after the rule application, respectively.

Our strategy is implemented by a conditional rewrite rule exec, defined below. The
actual term rewriting is performed by Maude’s built-in descent function metaXapply(R ,
t, l, σ, n, b, m). This (partial) function provides fine-grained control over rewriting at the
meta-level, allowing us to specify which rewrite rule (l) is to be applied to which term
(t), and at which position (m) within the term the rule is to be applied if there are several
possibilities. For a more detailed description of this function, see [5]

The function metaXapply returns a four-tuple consisting of the resulting term, the type
of the term, a substitution and a context, and we use a function getTerm to extract the re-
written term from this tuple. Note that whitespace in Maude denotes list concatenation:
If L is a label and LABELSis a list of labels, then L LABELSis a non-empty list of labels.



crl [exec] :
〈E : Engine |curTerm : T,curModule : MOD, labels : L LABELS, failedRules : FR〉
〈H : History |h : ML〉

−→
if metaXapply([MOD], T, L, none, 0, unbounded, 0) =/= failure then
〈E : Engine |curTerm : getTerm(metaXapply([MOD],T, L, none, 0, unbounded, 0)),

curModule : MOD, labels : LABELSL, failedRules : nil〉
〈H : History |h : ML + getNewMessages(T, getTerm(metaXapply([MOD],

T, L, none, 0, unbounded, 0)), MOD, ML)〉

else
〈E : Engine |curTerm : T,curModule : MOD, labels : LABELSL, failedRules : FR〉
〈H : History |h : ML〉

fi
if length(FR) < length(L LABELS).

This strategy applies rules from the labels list in a round-robin fashion to the meta-level
configuration in curTerm. (Remark that we may define other strategies for rule selection
than round-robin. In [16], we have shown how to extend a similar strategy such that the
rules are selected randomly using a pseudo-random number generator.) In the event that
no rule is applicable, the execution will terminate.

The auxiliary function getNewMessages compares the term T with the term resulting
from applying (with metaXapply) the rule labeled L to T. If there are new communication
messages in the new configuration, the attribute h of the history object is extended with
the new messages. If there are several new messages, these are caused by concurrent
actions and we can add them to the history in an arbitrary order.

Using the strategy defined above, we may execute a Maude specification, such as the
one for the dining philosophers problem introduced in Section 4, and record any messages
that are being sent, without changing anything in the original specification. Hence, the
analysis capabilities obtained by recording the history may be added to the model when
needed and removed after sufficient analysis.

6 A Strategy for Testing Observable Behavior
The communication history that is built at runtime when applying the rewrite strategy
introduced in Section 5, can be used as input to a test oracle, blocking execution if
a given Maude specification violates a given behavioral specification. This can be
achieved by extending the strategy with functionality for checking whether a given rule
application will lead to an illegal state, as specified by a given predicate. Taking the
observational approach, we consider predicates on communication histories. In order to
obtain a compositional system, the predicate on the global history will be the conjunction
of a number of behavioral interfaces, associated with different objects. Behavioral
specifications for specific object-level objects are represented by trace predicates on the
global history, restricted to an appropriate subset of possible communication events. The
overall picture is illustrated by Figure 1: Let R be the object-level set of rewrite rules
and C a system state. A meta-level strategy S controls how the choice of rule is made
for application at the object level. The strategy is here parameterized by a predicate on
communication histories. For the testing strategy of this section, a fail-stop strategy is
defined, which blocks further execution once the system attempts to violate the predicate
P on the global history.



Rule set: Configuration:

Meta-level rewrite system: Sfail-stop(P(h)) R ,C ,〈H : History |h : _〉

↓ Control ↑ History logger

Object level rewrite system: R C

Figure 1: Reflective testing of observable behavior.

In order to implement fail-stop testing in Maude, we first define a constant H of
a new sort History, which we will use as a placeholder for the actual communication
history H (which will be recorded during execution, and hence is not available at the
time of specification) in the specification of our predicates. Furthermore, we define a
sort Pred, the sort of predicates on communication histories. For the running example,
acceptable behavior for a system of philosophers behaving according to the behavioral
interface defined in Section 2, can then be expressed by the Maude operator

op AccBeh : History→ Pred .

During execution, the predicate needs to be checked between each rewrite step. For this
purpose, we introduce the function CheckPredicate : Pred ×MsgList→ Bool. This function
will be called by the strategy from Section 5, and will parse the predicate specification,
call auxiliary predicate checking functions and return a boolean value indicating whether
the message list is in compliance with the predicate or not.

Returning to the AccBeh predicate, the case in which think is the last message in the
history can be specified equationally in Maude as follows:

eq AccBeh((msg’think from X to Y)+ ML)= (ML==nil) or (fed?(X, ML) and AccBeh(ML)) .

eq fed?(X,nil) = true .
eq fed?(X, (msg M from X to Y)+ ML)= (M == ’returnStick

or M == ’think or M == ’lendStick) .
ceq fed?(X, (msg M from Yto Z) + ML)= fed?(X, ML) if X =/= Y .

Here, X , Y , and Z are variables of sort Phil, M is a message of sort Msg, and ML is the
communication history in the form of a message list as recorded by our strategy during
execution. The last equation for fed? is conditional, and can only be applied if X 6= Y .
Note that since the predicate in the Maude specification is a global predicate that spans all
objects, there is no need to pass the object identifier as a separate parameter to AccBeh.

If the communication history after a given rewrite is not in compliance with the
predicate, the execution will terminate and a “failure object” will be inserted into the
configuration to indicate what went wrong. For more details on the implementation of the
predicate check, see [1].

7 An Executable Abstract Prototype of Dining Philosophers
We now define a prototype philosopher model in Maude. The idea is to postpone design
decisions concerning the concrete internal structure and rather define the behavior of the
philosopher in terms of restrictions on the history of its observable actions. Let A and B
be variables ranging over object identifiers of sort Aid for abstract philosophers. Define



a sort AbsPhil with terms 〈A : Aid| leftNbr : _, rightNbr : _〉. Except for philosopher
identities and their left- and right-hand side neighbors, we completely ignore any internal
structure in the philosopher objects. Consequently, synchronization constraints cannot be
expressed in terms of the internal state. The possible actions of the abstract philosophers
are captured by the following rewrite rules:

rl [think] : 〈A : Aid| 〉 −→ 〈A : Aid| 〉 (msg ’think from A to A) .

rl [eat] : 〈A : Aid| 〉 −→ 〈A : Aid| 〉 (msg ’eat from A to A) .

rl [requestStick] :
〈A : Aid| rightNbr : B〉

−→ 〈A : Aid| rightNbr : B〉 (msg ’requestStick from A to B) .

rl [returnStick] :
〈A : Aid| rightNbr : B〉

−→ 〈A : Aid| rightNbr : B〉 (msg ’returnStick from A to B) .

rl [lendStick] :
〈A : Aid| leftNbr : B〉 −→
〈A : Aid| leftNbr : B〉 (msg ’lendStick from A to B) .

These rules do not express any synchronization constraints on the interactions, only
which philosophers may interact. Also note, that rules for receiving messages are no
longer needed, since no internal state change takes place in the abstract philosopher
objects. Instead, a simple consumption rule can be used to remove messages from the
configuration:

rl [consumeMsg] : 〈A : Aid| 〉(msg M from B to A)−→ 〈A : Aid| 〉 .

8 Simulating Open Environments by Behavioral Interfaces
In an open environment, objects may be created and destroyed dynamically during
execution. With our abstract philosopher specification, this can be modeled by the
following rewrite rules:

rl [create] :
〈A : Phil | rightNbr : B〉 〈B : Phil | leftNbr : A〉

−→ 〈A : Phil | rightNbr : A + B〉 〈B : Phil | leftNbr : A + B〉
〈A + B : Aid| leftNbr : A, rightNbr : A + B〉

.

rl [destroy] :
〈A : Phil | rightNbr : B〉 〈B : Aid| leftNbr : A, rightNbr : C〉 〈C : Phil | leftNbr : B〉

−→ 〈A : Phil | rightNbr : C〉 〈C : Phil | leftNbr : A〉 .

In the create rule, the new abstract philosopher object is inserted in-between two
existing (abstract or concrete) philosopher objects. The new philosopher will have the
concatenation of the existing objects’ identifiers as its identifier. In the destroy rule, an
abstract philosopher object in-between two other philosopher objects is deleted, and the
remaining philosopher objects set their leftNbr and rightNbr properties accordingly.

Using our abstract dining philosopher specification with the rules introduced above,
we can simulate an open environment of which the behavior is exclusively defined by
a behavioral specification in the form of predicates at the meta-level. As mentioned in
Section 5, the meta-level can be used to define a strategy which stops the execution of a
specification if a given rule application violates the predicate. However, when defining



Rule set: Configuration:

Meta-level: Sforce(P1(h/α1))∧Sfail-stop(P2(h/α2)) R 1∪R 2,(C1 C2),〈H : History |h : _〉

↓ Control ↑ History logger

Object level: R 1∪R 2 C1 C2

Figure 2: Reflective testing of observable behavior in open environments.

an abstract environment where every rule is applicable at any time (because there is no
synchronization code in the objects), this is not optimal. Instead, we want to force the
abstract specification to behave in compliance with the predicate. This can be achieved
by a similar strategy, using the mechanisms introduced in Section 6. However, where the
fail-stop strategy halts the execution when the application of an enabled rule will break
the predicate, the new force strategy will try another enabled rule from the labels list of
the Engine object instead. Execution will first terminate when no rule can be applied
without violating the predicate.

The abstract environment specification can now be used as a “testbed” for a number
of actual programmed components, like the philosophers from Section 2. Let R 1 be an
object-level set of rewrite rules which may be applied to a system configuration C1, the
system state of abstract objects (the open environment), and let R 2 be the object-level set
of rewrite rules which may be applied to the concrete objects in a system configuration C2

(the given components, with synchronization constraints on the internal state). Let α1 and
α2 be messages associated with the objects of C1 and C2, respectively. Messages may be
exchanged freely between all objects, so the two sets are not disjoint. Let P1 be a predicate
observationally specifying the environment. The meta-level strategy Sforce restricts rule
application from R 1 to acceptable environment behavior. This provides an abstract, open
environment which may behave in any way that does not violate the specification P1.
We here combine two meta-level strategies which react differently to the violation of
predicates: force will restrict rule application so that the communication history conforms
to the predicate, and fail-stop will halt the execution and produce an error object if the
predicate is attempted violated. By specifying one predicate that spans only messages
from the programmed object, and one that spans all objects, and by checking the former
in fail-stop mode and the latter in force mode, we can test whether our programmed
component execute correctly provided that the environment does so. This scenario is
illustrated by Figure 2.

To illustrate this scheme by the running example of this paper, we may consider a
system of dining philosophers, where some philosophers are implemented, i.e. belong
to the concrete philosophers defined in Section 4. We want to test that these concrete
objects behave according to the requirements of the Phil interface by means of the fail-
stop strategy. To create an environments in which they interact with other, abstract
philosophers, we introduce the abstract philosophers of Section 7. In order to make
the abstract philosophers behave according to the same Phil interface, we use the force
strategy. In Figure 2, the Phil interface will be used as both predicates P1 and P2.



9 Conclusion and Future Work
This paper shows how abstract specifications of dynamic environments may be captured
very naturally in a rewriting logic model extended with behavioral interfaces. Due to
the reflective character of rewriting logic, supported by Maude, it is possible to define
execution strategies at the meta-level. In this paper, we have used this facility to test
whether an executable model is well behaved with respect to a number of requirements
on the observable behavior of the model, defined as behavioral interfaces.

Further, we show how meta-level strategies may be used to execute a prototype
model defined by its observable behavior, without deciding on its implementation details.
Combining these meta-level strategies, we obtain abstract testing environments for models
of components or distributed applications, in which the environment is unspecified but
subjected to certain minimal observational requirements. Previous approaches to history-
based testing, e.g. [10, 21], and automata-based approaches, e.g. [2, 22], require specific
test cases to be defined. In contrast, our approach uses random testing and assumption
guarantee specifications to define open environments. Further, the environment and
the test oracle are defined within the same formalism. Methods to generate additional
restrictions on assumptions to obtain reasonable coverage remain to be addressed.

Some experiments with socket extensions to Maude suggest that it is possible to
employ Maude processes as demonstrated in this paper to act as a testing environment
and to simulate an open environment for actual components communicating by means of
a predefined set of messages with the Maude process via sockets. However, future work
in this vein remains.
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