
Q-Morph -
Implementing a Quadrilateral Meshing Algorithm

Karl Erik Levik
karll@ifi.uio.no

The thesis is submitted in partial fulfillment of the requirements
for the degree of siv.ing. at Department of Informatics,

University of Oslo.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

This thesis treats the implementational and some theoretical aspects of the
Q-Morph algorithm for 2D domains. The main application areas are within
FE methods. Q-Morph uses an advancing front method for generating un-
structured, almost all-quadrilateral meshes containing at most one triangle,
and few irregular nodes. The main algorithm is described in [16], while the
post-processing methods are covered in [9, 4].

In addition to an introduction to the Q-Morph algorithm, the thesis also
consists of some general background material for FEM meshing, discussions
of many issues concerning the implementation, a presentation of important
results, and a discussion of possible improvements. To ensure that the imple-
mentation conforms to the specifications of the algorithm, it has been tested
on a number of different cases.

i

Preface

Chapter organization

For readers already familiar with the finite element method (FEM), I would
suggest skipping some of the introductory material in the first chapter. If
you know the basics of FEM, but perhaps not so much about meshing, then
a good place to start is section 1.4. This section attempts to give a brief
justification for the employment of quadrilateral elements, and presents some
well-known arguments for why sometimes a better result can be obtained
with quadrilateral rather than triangular elements. The next section might
also be of interest. Here I discuss the properties of an optimal mesh.

For a more visually stimulating approach, one could have a glance at the
figures and accompanying text in chapter 5.

Although it would be an advantage to know a little about the Q-Morph al-
gorithm beforehand, one might hopefully find some of the necessary inform-
ation in chapter 2. This chapter is devoted entirely to explaining some issues
regarding the algorithm, or rather, the algorithms: the Q-Morph algorithm
and the algorithms which it employs for post-processing. For topological
cleanup, I have chosen the CleanUp algorithm [9], and for global smoothing
the optimization-based smoothing algorithm [4].

Almost everything concerning the actual implementation of the algorithms
is found in chapter 3. I suggest some possible improvements to the imple-
mentation in chapter 6.

Various results are presented in chapter 4: approximate values for the pro-
gram constants and the results from some simple experiments.

Among other things, the appendix has a short glossary of some terms used
in the text.

ii

iii

Acknowledgments

All scientific achievements, however minuscule and insignificant, are indebted
to the efforts of the scientists who paved the way in the past. (E.g. the
authors of [2].) This thesis is no exception in this regard.

In particular, I would like to thank the following people for their efforts,
good advice, inspiration, and encouragement. Obviously, I must thank prof.
Hans Petter Langtangen, my tutor and lecturer, who initially got me started
in the world of meshing. Also obviously, I acknowledge the authors of the
Q-Morph algorithm. The implementation of this algorithm is really what
this thesis is all about.

Next, Øyvind Hjelle and Michael Floater, who were lecturing the course
INF-TT in the autumn semester of 2001. Several of the topics taught in this
course proved useful as background material. Equally important was the
book “Automatic Mesh Generation - Application to Finite Element Meth-
ods”, written by Paul-Louis George, which I spent several months studying.
Although some illustrations in the thesis were created using my own software
(MeshDitor), I also produced some illustrations in the applications dia and
jPicEdt, and my thanks go to their respective authors, Alexander Larsson
and Sylvain Reynal.

Most important, however, was the support from my friends and family.
My parents have always been my most eager supporters, and have kindly
provided for me during my studies. Likewise, the company of my good
friends has been a great relief and inspiration. You all mean so much to me:
Paul, John Einar, Jan Arve, Arne, Vanja, Ulrik.

Thank you!

Oslo, 28th October 2002

Karl Erik Levik

Contents

1 Introduction 1

1.1 An analogous problem for the uninitiated reader 1

1.2 Preliminaries . 2

1.3 FEM, The Finite Element Method 4

1.3.1 Basis functions and weighting functions 5

1.3.2 Local coordinates, the element matrix and vector . . . 6

1.3.3 Essential boundary conditions 7

1.3.4 Assembly of the global system 7

1.4 Briefly on triangular versus quadrilateral elements 8

1.5 The optimal mesh . 9

2 The algorithm 12

2.1 What it does . 12

2.2 How it is done . 13

2.2.1 Constructing the initial triangle mesh 13

2.2.2 Edge state . 13

2.2.3 Edge level and front loops 13

2.2.4 Special cases . 15

iv

CONTENTS v

2.2.5 Topological cleanup 16

2.2.6 Global smoothing and distortion metrics 17

3 The implementation 19

3.1 Limitations to the original algorithm 19

3.2 Choosing a suitable programming language 20

3.3 Interfacing with Java from C++ 22

3.4 Program code organization 22

3.5 Problems, strategies and solutions 24

3.5.1 Constructing the initial triangle mesh 24

3.5.2 Selecting the next front edge 29

3.5.3 Recovering an edge . 30

3.5.4 Quadrilateral formation 30

3.5.5 Local smoothing . 31

3.5.6 Constants . 31

3.5.7 Intersection . 32

3.5.8 Testing for clockwise ordering of vectors 32

3.5.9 Counter-clockwise ordering of edges incident with a node 33

3.6 Topological cleanup . 35

3.6.1 Chevron elimination 35

3.6.2 Resolving cases by compositions 36

3.6.3 Connectivity cleanup 38

3.6.4 Boundary cleanup . 38

3.6.5 Shape cleanup . 39

3.6.6 The full CleanUp implementation 39

vi CONTENTS

3.7 Global smoothing . 40

3.7.1 Detecting inverted elements 41

3.8 The interactive GUI . 42

4 Results 44

4.1 Tuning the constant values 44

4.1.1 The ε1 and ε2 constants 44

4.1.2 The COINCTOL constant 44

4.1.3 The MOVETOLERANCE constant 45

4.1.4 The DELTAFACTOR constant 45

4.1.5 The MYMIN constant 45

4.1.6 The θmax (THETAMAX) constant 46

4.1.7 The OBSTOL constant 46

4.1.8 The γ (GAMMA) constant 46

4.1.9 The TOL constant . 46

4.1.10 The MAXITER constant 46

4.1.11 Definition of a chevron 47

4.2 Robustness . 47

4.3 The impact of the triangle mesh on the result 48

4.4 Element quality: some statistics 50

5 Example problems 52

5.1 Some general cases . 52

5.2 Case illustrating topological cleanup 54

5.3 Same case subjected to opt.-based smoothing 55

CONTENTS vii

6 Improvements 56

6.1 A better data structure . 56

6.2 Topological cleanup . 58

6.3 Code optimizations . 58

7 Conclusion 59

7.1 Summary of results . 59

7.2 Further work . 60

7.2.1 Performance . 60

7.2.2 A comparison with other quad meshing methods . . . 60

Glossary 62

Compositions 64

viii CONTENTS

Chapter 1

Introduction

1.1 An analogous problem for the uninitiated
reader

Throughout the entire course of writing this thesis, I have been struggling
with finding a truly simple explanation to what it is actually about. For a
long time it seemed impossible to give a short and intelligible explanation
to people outside of the mathematical community.

Eventually, I found an analogous problem in garden architecture that I
believe even non-scholars will understand quite easily.

Suppose that you want to build a slate paving in your garden and that the
outline of the paving consists of straight lines that do not necessarily form
any simple geometrical figure. Furthermore, suppose also that you want
this covering-up of slabs to be somewhat pleasing to the eye. You have
decided that this can be accomplished by fulfilling two criteria:

1. No corner of any slab should meet with the side of another slab, only
with the corners of adjacent slabs.

2. Each slab must be a quadrilateral and should as closely as possible
resemble a square.

So how exactly is the covering-up to be accomplished? By simplifying only
slightly, one can express the purpose of my thesis as to write (and
document) a computer program which automatically solves this problem.
It computes the number of slabs needed, and the exact shape and position

1

2 CHAPTER 1. INTRODUCTION

of each slab.

The real advantage of this analogy is perhaps that almost anyone can
relate to the problem of covering-up a surface by slate slabs. Although I
find this to be a striking analogy, I do not purport having discovered a new
and lucrative application area for quad-meshing!

1.2 Preliminaries

In the context of mesh generation, or meshing, there are some basic terms
that must be learned before one can fully take advantage of the literature
of the field. Firstly, there are structured meshes (or grids) as opposed to
unstructured meshes, see figure 1.1. A structured mesh has a uniform
topological structure, while an unstructured mesh has not. That is, every
node in a structured mesh has the same number of neighbours (except for
the boundary nodes). Because of this, assuming that the nodes are kept in
some list-like structure, one can refer to any neighbour of a node by means
of simple addition. In an unstructured mesh each node must maintain a list
of pointers to its neighbours.

Figure 1.1: Left: A structured mesh. Right: An unstructured mesh.

Still, unstructured meshes are often preferred. Many problems have
domains that just can not be adequately represented by structured meshes.
The physics of yet other problems may require a fine distribution of nodes
in one particular area of the domain, but allow for a much coarser
distribution in the remaining area. When employing a structured mesh in
such a problem, the need for a fine mesh in the one area will lead to the
creation of redundant nodes in the remaining area. Thus, the number of
nodes required by a structured mesh would probably be somewhat greater

1.2. PRELIMINARIES 3

than the number required by an unstructured mesh. The inevitable result
is higher memory requirements and excessive computations.

There is also a third, perhaps less evident, advantage of using unstructured
meshes. A comparison of relatively coarse structured and unstructured
meshes would reveal that unstructured meshes can more closely follow any
interior contours than structured meshes can. This is important in
problems where different layers possess different physical characteristics.

The accuracy of the solutions to some problems greatly depends on that
the meshes closely fit the domain boundaries. This can be achieved by
allowing for higher-order elements; elements with curved sides. Commonly
used higher-order elements are e.g. quadratic and cubic triangles and
quadrilaterals. The sides of these elements have the shapes of second-order
and third-order functions, respectively.

Furthermore, within quadrilateral meshing, there is a distinction between
direct methods and indirect methods. Indirect methods require an initial
triangle mesh as input, while direct methods do not. Traditionally, the
direct methods have provided higher quality elements with fewer irregular
nodes1. The indirect methods are considered to be fast, since they can
utilize topological information from the initial triangle mesh. One famous
direct method is the paving algorithm [2]. The Q-Morph algorithm [16] is
an example of an indirect method.

This particular algorithm, the Q-Morph algorithm as described in [16], is
the focus of this thesis. Q-Morph is an indirect method for generating
unstructured quadrilateral meshes. The application area for meshes with
quadrilateral elements are mainly restricted to FEM, whereas triangle
meshes are also used within several other fields of science:

• map-making/terrain modeling

• geological modeling

• 3D maps

• flight simulators

• visualization

• medical modeling

• CAD/CAM - computer aided design/computer aided modeling

1See page 62 for a definition of regular and irregular nodes.

4 CHAPTER 1. INTRODUCTION

1.3 FEM, The Finite Element Method

FEM is a numerical method for solving partial differential equations
(PDEs) on some given 1D or multidimensional domain. PDEs arise in a
wide range of physical problems, such as heat conduction, diffusion, waves,
fluid flow, solid and fluid mechanics. It is not the purpose of this thesis to
offer any sort of thorough introduction to FEM, and nor do I possess skills
even close to what would be required for such a grand task. Nevertheless,
from a pedagogical and motivational point of view, it seems wise to try and
present a subject (meshing in this case) within the context to which it
belongs.

Therefore I will try to outline the very basic ideas of FEM, just to show
how elements such as triangles and quadrilaterals come into play. A much
more comprehensive introduction is given in [10], from which this section
borrows heavily.

The main idea of FEM is to seek an approximation

û =
M∑
j=1

ujNj(x)

to the unknown function u(x). The Nj(x)-functions (often referred to as
basis functions) are prescribed, and the coefficients uj are unknown. Now,
the goal is to minimize the error u− û. In general this error is unknown.
Therefore, within the so-called weighted residual method, WRM, of which
FEM is a special case, the goal is to minimize the residual, R, arising when
replacing u with û in the PDE. We hope that a small residual indicates a
good approximation to u. In WRM, the weighted mean of R over Ω must
vanish for M linearly independent and prescribed weighting functions, Wi:∫

Ω
RWi dΩ = 0, i = 1, . . . ,M

Writing this out for some particular problem, we would see that it was
simply a linear algebraic system for u1, . . . , uM , and it could be written

M∑
j=1

Ai,jui = bi, i = 1, . . . ,M (1.1)

where the matrix entries Ai,j and vector entries bi were integrals evaluated
over the domain Ω.

In matrix form it would read Au = b, and we can now solve for u, selecting
from a well of solution methods, ranging from the simple and slow

1.3. FEM, THE FINITE ELEMENT METHOD 5

Gaussian elimination to the sophisticated and fast multigrid methods. We
refer to Au = b as the global system.

1.3.1 Basis functions and weighting functions

However, I have not yet said anything about how to choose the basis
functions and the weighting functions. The most common choice of
weighting functions in WRM is Wi = Ni. This is called Galerkin’s method.

The essential boundary conditions impose some restrictions on the basis
functions. For û to fulfill the ess. boundary conditions, it is a good idea to
require basis functions that are zero on the boundary, ∂Ω. Now, if the ess.
boundary conditions are given as u = ψ(x) (on the boundary, ∂Ω,
obviously), then we can simply rewrite the expression for û as:

û = ψ(x) +
M∑
j=1

ujNj(x)

Note that elsewhere in the domain we still use the old expression for û, so
here the value of ψ(x) is irrelevant.

Now, FEM further consists in decomposing the domain into
non-overlapping elements. In 1D, the only possible element type is the line
segment, and the basis functions, Ni, are simple polynomials over each line
segment. In 2D, common FEM elements are triangles and quadrilaterals.
The appropriate basis functions for each of those element types are surface
patches composed of triangles or quadrilaterals, respectively.

Globally, each basis function is a piecewise polynomial (1D) or a surface
patch (2D) that is zero on every node except for node i, where it is 1:

Ni(x) = δij ,

where δij is the Kronecker delta:

δij =
{

1 for i = j
0 for i 6= j

This means that we get N1 = 1 on node 1 and zero on all other nodes,
N2 = 1 on node 2 and zero on all other nodes, and so on, see fig. 1.2.

6 CHAPTER 1. INTRODUCTION

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6
x

x

x

Figure 1.2: 1D linear basis functions over some elements. The lower function
shows N3(x), the middle function shows N4(x), and the top one shows N5(x).

1.3.2 Local coordinates, the element matrix and vector

Recall that the matrix entries Ai,j and vector entries bi in equation 1.1 are
integrals over the entire domain Ω. Instead of integrating over Ω, we can
integrate over each element e, and take the sum:

Ai,j =
m∑
e=1

A
(e)
i,j ,

bi =
m∑
e=1

b
(e)
i

where e is an index running over all the elements, and A(e)
i,j and b(e)i are

integrals over element no. e.

We can disregard all nodes that are not part of element no. e when
calculating A(e)

i,j and b(e)i . The reasons for this are that the basis functions
are zero for all nodes in the domain except for those that are part of
element no. e, and the entries A(e)

i,j involve basis functions Ni and Nj as

factors. Also the entries b(e)i involve Ni as a factor. Thus, only when both
nodes no. i and j are part of element no. e will A(e)

i,j be non-zero, and only

when node no. i is part of element no. e will b(e)i be non-zero.

It is now convenient to work at a local level and apply local coordinates ξ, η
and node numbers r, s instead of working at the global level with global
coordinates x, y and node numbers i, j. For each element e, we collect the

1.3. FEM, THE FINITE ELEMENT METHOD 7

nonzero contributions to each matrix A(e)
i,j and vector b(e)i into an element

matrix Ã(e)
r,s and element vector b̃(e)r , respectively.

Furthermore, we will of course need to transform the basis functions, their
derivatives, and the integrals, into local coordinates. Each physical
element2 is mapped onto a reference element with local coordinates. To
evaluate the integrals now deduced, numerical integration is applied.

1.3.3 Essential boundary conditions

The essential boundary conditions assign values to some of the nodes in
vector u, e.g. u1 = uB. Before we assemble the global system from the
element matrices and vectors, it is now a good idea to make them fulfill the
ess. boundary conditions. If we are to accomplish this on the element level,
we must manipulate the corresponding element matrix and vector
accordingly. Node no. 1 is part of element no. 1, so its corresponding
matrix and vector are the ones that we want. If we use linear 1D elements,
then this is a 2× 2 linear system:(

ã11 ã12

ã21 ã22

)(
ũ1

ũ2

)
=
(
b̃1
b̃2

)
We want u1 = uB , so we insert this as the first equation, and get:(

1 0
ã21 ã22

)(
ũ1

ũ2

)
=
(
uB
b̃2

)
To make the system fulfill other ess. boundary conditions, similar
manipulations can be performed. However, this was only one possible way
of fulfilling the ess. boundary condition. If the element matrix was initially
symmetric, and we wanted to preserve this property, a little more
sophisticated manipulations would be required. Symmetric element
matrices yield a symmetric global matrix, and this allows for faster linear
solvers. Hence, symmetry is a rather desirable property.

1.3.4 Assembly of the global system

Previously, the global coefficient matrix was written as a sum of element
matrices. Now we need to put these back into a global system. This is
accomplished by means of a function mapping from local into global node
numbers: i = q(e, r) and j = q(e, s). The entry (r, s) in element matrix no.

2For 2D domains, physical elements are e.g. triangles and quadrilaterals.

8 CHAPTER 1. INTRODUCTION

e is a contribution to the entry (i, j) in the global coefficient matrix, so we
can obtain the global coeff. matrix by applying the update formula

Aq(e,r), q(e,s) := Aq(e,r), q(e,s) +A(e)
r,s

to an an initially empty matrix, for all entries in each element matrix.

1.4 Briefly on triangular versus quadrilateral
elements

The reason for not always sticking to meshes composed solely of linear
triangles, is that it has been shown that if the grading and size of the
quadrilateral elements are carefully controlled, and thereby generating
well-shaped quads, an increase in efficiency over pure triangle meshes can
be achieved [11, 13].

Besides, according to [20]:

Some analyses require all-quad meshes. However, even if the
solver allows triangles, triangles typically do not perform as well
as quadrilaterals. This is especially true for linear analyses
(Zienkiewicz, 1977).

The reference is presumably for [21], in which the performance of linear
triangles is compared to that of linear and higher-order quadrilaterals.

Owen also writes favourably of quadrilateral meshes in [14], where he voices
the position that quadrilaterals have superior performance to triangles
when comparing an equivalent number of degrees of freedom.

That being said, the optimal choice of element type still greatly depends on
the specific problem at hand. Sometimes the physical characteristics of the
problem favours one particular element shape. For example, quadrilaterals
should be preferred in situations where alignment of elements is important.

When efficiency is the main concern, linear elements are generally superior.
Other times accuracy is more important, and in general one then has to
resort to higher-order elements.

However, it would be a strenuous task to obtain a truly clear conception of
all the issues concerning element type, and it is beyond the scope of this
thesis to elaborate any further. Nevertheless, a glance at the referenced

1.5. THE OPTIMAL MESH 9

literature above leaves the impression that there is certainly no reason to
doubt that quadrilateral meshes do indeed have an important role to play
in many FEM applications, and that it is worthwhile to pursue the quest of
developing and implementing algorithms for high quality quad meshing.

1.5 The optimal mesh

In the context of FEM, the ideally shaped element is equiangular, that is,
an element whose angles are equal in size. Elements with large or small
angles can degrade the quality of the numerical solution, and due to the
shapes of the input geometries, one will in practice to some extent have to
be content with such lesser attractive angles.

Still, there is a limit to how poorly shaped an element can be. A triangle
must not contain an interior angle which is greater than 180◦, while a
quadrilateral can not have more than one interior angle which is greater
than 180◦ [4]. Elements not conforming to these criteria are termed
inverted.

On the other hand, small angles can cause the coupled systems of algebraic
equations produced by FEM (or other numerical methods) to be
ill-conditioned [19]. When employing direct methods in such a case for
solving the system of equations, the accuracy of the solution is degraded by
roundoff errors. Conversely, iterative solution methods will suffer with slow
convergence.

Large angles pose two other problems: Discretization errors may occur
when applying FEM (or other numerical methods) to a mesh containing
elements with large angles. The solution may be far less accurate than
under more favourable circumstances. In theory, the solution yielded from
FEM should approach the exact solution as the element size decreases.
Nevertheless, it has been shown [1] that such convergence may fail to occur
when the mesh contains angles approaching 180◦.

21

46

97
59

Figure 1.3: The vertical directional derivative approaches infinity as the top
angle approaches 180◦.

10 CHAPTER 1. INTRODUCTION

The second problem concerning large angles is errors in the derivatives of
the solution. In many FEM applications, the main subject of interest is not
the solution itself, but derivatives thereof. This applies to e.g. elasticity
problems. Consider fig. 1.3: The values at the nodes in the figure represent
the discrete solution at those points. Now, assume that the solution along
the lower edge is estimated by linear interpolation, and that the
interpolated values depend on the values of the lower nodes only. It is now
trivial to see that as the angle at the top node approaches 180◦, the
directional derivative in the vertical direction becomes arbitrarily large.

Of course, for triangular and quadrilateral elements, large and small angles
are somewhat intertwined; an element with a small angle usually also has a
large angle and vice versa.

On the basis of this information, we understand that the best solution
possible is a mesh that has few poorly shaped elements and no inverted
elements.

For triangle meshes, it can be shown that the Delaunay triangulation (DT)
in some sense yields optimal results: Of all possible triangulations of a set
of points, the DT has the largest minimal angle, the smallest maximal
circumcircle, and smallest maximal min-containment circle [19]. (The
min-containment circle of a triangle is the smallest circle that contains it.)
DTs have been the subject of decades of research, and is by now very well
understood. Several classes of algorithms for generating DTs have been
developed. A good introductory, to-the-point example of a theoretically
optimal DT algorithm is [17].

For quadrilateral meshes, the case is somewhat less clear. The Q-Morph
algorithm may be seen as an effort in the direction of developing an
optimal quad mesher. However, due to its employment of heuristics, it can
not be guaranteed that the resulting mesh is the best mesh out of all
possible quad meshes, albeit probably pretty close.

It follows from the preference to equiangular elements, that the node
valence (that is, the number of edges incident with the node3) is 4 for
optimal quad meshes. Thus, one possible approach for generating an
optimal mesh, would be trying to maximize the number of 4-valent nodes.

Another approach is attempting to maximize the distortion metric of the
elements by smoothing the nodal positions. See section 2.2.6 for details on
the method used in Q-Morph.

3See the glossary on page 62 for a more precise definition.

1.5. THE OPTIMAL MESH 11

Now, to measure and compare the quality of entire meshes of elements, it is
customary to consider both the average metrics and the minimum metrics
of the meshes. In [4] it is claimed that analyses are more affected by
minimum metrics than by low average metrics. A similar claim is also
found in [20], where the papers [1, 7] are referred to on this subject.

In [13], mesh quality is measured with a formula based on the geometric
mean of the metric, rather than the average metric.

Chapter 2

The algorithm

2.1 What it does

Q-Morph is an indirect algorithm that takes a triangle mesh as input, and
generates an unstructured, almost all-quadrilateral mesh containing at
most one singular triangle, and few irregular nodes. An advancing front
sweeps through the triangles, selecting which triangles to be transformed
next. The authors claim that it has the following desirable features:

1. It is boundary sensitive, in that it will generate a mesh with contours
that closely follows the contours of the boundary.

2. It is orientation insensitive in that it will generate a mesh with the
same topology for any two triangle meshes with equal topologies.

3. It generates a mesh with few irregular nodes.

4. It is an indirect method, and thus it avoids many expensive
intersection calculations and poor element quality resulting from
colliding fronts. This is because it can, contrary to direct methods,
utilize topological information in the existing triangle mesh.

The algorithm is developed by Steve J. Owen, Matthew L. Staten, Scott A.
Canann, and Sunil Saigal. Their implementation of the algorithm is part of
a commercial release of ANSYS.

The algorithm promises to generate an all-quadrilateral mesh provided that
the input geometry has boundaries consisting of an even number of nodes.
If the boundary has an odd number of nodes, then the algorithm will have

12

2.2. HOW IT IS DONE 13

to generate one singular triangle, usually somewhere towards the interior of
the mesh.

2.2 How it is done

There is not much point in rephrasing the paper by Owen et al [16], but for
the sake of completeness, a short-version of the main algorithm is outlined
in table 2.1 on page 14. Some of the steps found there are elaborated in
greater detail in the next paragraphs.

2.2.1 Constructing the initial triangle mesh

The initial triangle mesh should be some kind of regular triangulation1, or
a regular triangulation with holes. Any meshing method goes that meets
those requirements. Note however that the local sizing of the final quad
mesh roughly will follow that of the triangle mesh.

2.2.2 Edge state

The state of a front edge is determined by the angles between it and the
two adjacent edges on the front. There are four different states: 0-0, 0-1,
1-0, and 1-1. If the angle at one of the nodes is less than 3π/4, then that
node bit is set to 1, else it is 0. So let us say that the left node bit is 1 and
the right node bit is 0. The state of this front edge is then 1-0.

2.2.3 Edge level and front loops

Each edge of the initial front belongs to level 0. If there are no holes in the
triangulation, then all the level 0 edges also belong to the same loop. A
loop is a consecutive ring of edges that, in any given instant during the
process, constitutes or is part of the current front. The current front may
consist of one or more such loops, depending on whether the triangulation
has holes in it. When holes are present, the front will advance both from
the hull of the triangulation and from the loops around its holes.

Level 1 front edges are those edges that replace level 0 edges as the front
advances. Level 2 edges replace level 1 edges and so on.

1See page 62 for a definition of a regular triangulation.

14 CHAPTER 2. THE ALGORITHM

Create the initial triangle mesh
Define the initial front
Using the triangle mesh, it is straightforward to define the initial front: Any
edge adjacent to only one triangle becomes part of the front.
Classify front edges
Front edges are classified according to state (see 2.2.2).
Front edge processing
An edge is selected to form the base of the quad to be built. The selection
procedure considers three attributes: 1) state, 2) level (see 2.2.3), and
sometimes 3) length. Length is only considered when large transitions are
required. Next, the selected edge is given the following treatment:

Check for special cases
Very small angles or large transitions local to the current
front are given special treatment.
Side edge definition
Choose from existing edges, or create new ones, depending on angles etc.
Top edge recovery
Delete edges intersecting a line between the top nodes of the side edges,
and create a new edge that connects these nodes.
Quadrilateral formation
Delete all elements, nodes, and edges inside the new quad.
Local smoothing
Smooth the positions of the four nodes of the quad, and all the nodes
that are adjacent to these (that is, connected with one edge).
Local front reclassification
Affected front edges need to be reclassified after smoothing and other
operations on the topology.

Topological cleanup
This step tries to optimize all the node valences.
Global smoothing
Laplacian and optimization-based smoothing is performed in order to
improve element quality even further.

Table 2.1: Overview of the Q-Morph algorithm

2.2. HOW IT IS DONE 15

nK

nK

nK

q

Figure 2.1: The transition seam operation.

2.2.4 Special cases

Special cases are subjected to one of the following operations: Seaming,
transition seaming or transition splitting.

The values of the constants ε1 and ε2 are used when deciding whether one of
the two seaming operations is to be performed. A seam or transition seam
operation can be called whenever one of the following criteria is fulfilled:

1. The angle between two adjacent front edges is less than ε1 and the
number of quads adjacent to their common node is greater than 4.

2. The angle between two adjacent front edges is less than ε2.

Note that ε1 < ε2.

If the transition from one of these fronts to the other is large (the length
ratio is larger than 2.5), then instead a transition seam is performed. If the
transition is large, but the angle is not small enough, then the transition
split operation is called.

In the following, nK denotes the common node of these two front edges. q
denotes the quad adjacent the split edge.

A transition seam operation splits the longer of the two front edges at the
midpoint. A new edge connects the node at the split to the vertex node
that is connected to nK . This effectively divides q into a quad and a

16 CHAPTER 2. THE ALGORITHM

triangle. The triangle that was opposite q at the longer front edge, is also
divided at the split, creating two new triangles. Then follows a recovery of
the edge between the node at the split and the node opposite nK on the
shorter of the two front edges. The operation is completed by local
smoothing. The transition seam operation is illustrated in figure 2.1.

Note that if the largest angle of q were greater than 180◦, and located at
node nK , then the procedure for transition seam would fail, as it would
create a non-conformal mesh. There is not given any solution for this case
in the algorithm.

Also the transition split operation splits the longer of the two front edges
at the midpoint. A new node is inserted at the centroid of q. The quad is
divided into two quads and a triangle. Lastly, local smoothing is
performed. The transition split operation can be seen in the two first
frames of figure 3.3.

2.2.5 Topological cleanup

A crucial step in the Q-Morph algorithm is topological cleanup. Here, the
number of irregular nodes is reduced by identifying and improving cases
(which are identified among others by their valence patterns2,) through a
series of local operations. This yields a mesh with internal contours that
more closely follow the contours of the boundary.

Owen’s paper [16] does not treat this subject in any detail, but refers to
three other papers. It is not clear which of these that has been used for
Owen’s implementation. I decided to use the paper by Kinney [9] for my
own implementation, although I did not do a complete implementation of
his algorithm.

Now, let us take a closer look at the particular steps that were in fact
implemented:

In the first action required, the elimination of all chevrons3, each chevron is
removed along with a neighbouring quad. The hole is filled with a
replacement pattern. This is one of the combine with neighbour operations.

Then follow three passes over the main cleanup processes. These are:

2See the appendix on page 62 for an explanation of the term valence pattern.
3In the paper by Kinney[9] a chevron is defined as a quad in which one angle is greater

than 200◦. This convention is also used here.

2.2. HOW IT IS DONE 17

1. Connectivity cleanup - The mesh is scanned for cases, which are
identified among others by their valence patterns. When a match is
made, the pattern found is modified so that it becomes the
appropriate replacement pattern.

2. Boundary cleanup - This process is in principle similar to
connectivity cleanup, but with the twist that the cases are located on
the boundary. Furthermore, efforts are made to remove boundary
diamonds and triangularly shaped quads from the boundary.

3. Shape cleanup - Quads with large angles, chevrons and bowties are
corrected in combine with neighbour operations.

After each of the cleanups, the mesh should be smoothed. Local smoothing
should also be applied after each individual action within the three
cleanups.

2.2.6 Global smoothing and distortion metrics

For global smoothing, Owen’s paper [16] refers to an algorithm developed
by Canann, Tristano, and Staten [4]. Here, Constrained Laplacian
smoothing (CLS) is used in combination with optimization-based smoothing
(OBS). The particular CLS algorithm described uses basic Laplacian
smoothing to find a new position for each node. If the new position is not
acceptable according to some certain criteria, a more moderate move is
attempted. Among others, the acceptance criteria is based on distortion
metrics, and moves resulting in inverted elements are denied. The
distortion metric used here are explained in detail later in this section.

OBS is particularly expensive in terms of CPU time, so CLS is used in the
first iterations. Each node that has not yet been moved to an acceptable
position will be smoothed by OBS. OBS aims at increasing the minimum
metric of the elements adjacent to each node. This is accomplished by
means of a method named steepest descent.

In short, the steepest descent method regards the distortion metric of an
element i, µi, as a function of an adjacent node’s position, x. This way, a
higher value for the distortion metric can be found by adding some vector
to the position. Because the values of µi for non-inverted elements
generally varies between -1 and 1, the direction of this vector, the gradient
vector ~gi, can be found by perturbing xi by δ in each of of the component
directions, and measuring the distortion metric for each direction: µ+

i,x, µ
+
i,y

and alternatively µ+
i,z. The components of ~gi are now a function of the new

18 CHAPTER 2. THE ALGORITHM

and old values of the distortion metric: gi,x = (µ+
i,x − µi)/δ and similarly

for gi,y and gi,z.

Of all the vectors ~gi obtained from the elements adjacent to the node, the
~g-value of the element with the smallest initial distortion metric, µmin, is
selected as this node’s gradient vector ~g. ~g and the other ~gi’s are used in
the calculation of a value γ, so that the new position of the node is x + γ~g.

The metrics used can be considered as an enhancement of that used in Lee
and Lo’s algorithm [12]. Q-Morph employs the following metrics for
triangles:

α(ABC) = I · 2
√

3 ·
~CA× ~CB

CA2 +AB2 +BC2
(2.1)

where the factor I indicates inversion of the triangle:

I =

{
1 if (~CA× ~CB) · ~Ns > 0
−1 if (~CA× ~CB) · ~Ns < 0

Here, ~Ns is the surface normal evaluated at the center of the triangle, and
the other quantities are (3D) vectors between the triangle vertices, and
their corresponding lengths.

When considering quadrilaterals, they are divided into four triangles along
each of their two diagonals. Then the distortion metric for each triangle, αi,
is computed. The distortion metric for the quadrilateral is then defined as:

β = {min(α1, α2, α3, α4)} − negval (2.2)

where:

negval =

1 if any of the corner angles of the quad are < 6◦,
any two of the nodes are coincident within a tolerance,
or two of the triangles are inverted

2 if three of the triangles are inverted
3 if all four triangles are inverted
0 otherwise

Note that the negval quantity used here has merely a heuristic foundation.

Chapter 3

The implementation

3.1 Limitations to the original algorithm

Due to time constraints, I could not implement the full Q-Morph
algorithm. My implementation is restricted to 2D domains.

Also, the triangulation method is quite crudely implemented: It has no
means for defining holes, and it does not support constraints. That is, the
triangulator will generate a triangle mesh with a convex boundary and
without holes. And finally, the triangulator does not generate any internal
nodes. Although some internal nodes may be inserted (and removed) later
as part of seaming, transition seaming and splitting, and topological
cleanup, the most reliable way to introduce internal nodes, is to supply
them along with the boundary points.

I should also mention that there is no support for constraints such as
hardpoints and hardlines in any part of the implementation. However,
neither is there any mention of hardpoints and hardlines in the Q-Morph
paper [16].

As mentioned briefly in the previous chapter, the implementation of the
CleanUp algorithm is not complete. There are several reasons to why I was
satisfied with, or rather had to content myself with, an incomplete
implementation: 1) Q-Morph does not provide parameters like the size
function that is required in the size cleanup step of Kinney’s algorithm. 2)
Some of the steps in Kinney’s algorithm are not needed. The reasons for
this are that we know that the previous steps of Q-Morph have generated a
conformal mesh, and the CleanUp implementation will also try to maintain
a conformal mesh at all times. 3) Not all details of Kinney’s algorithm are

19

20 CHAPTER 3. THE IMPLEMENTATION

revealed in his paper.

In this matter there is some comfort in reading the quotation [3] found in
the beginning of Kinney’s paper:

A cleanup implementation does not have to be complete to be
useful. Even if only a few of the cases are implemented, the
mesh will be better than it was before. The implementer can
concentrate on the cases determined to be most important,
saving additional cases for later.

3.2 Choosing a suitable programming language

Initially being most familiar with C and C++, I first considered these
languages. C is a widespread language with compilers for almost any
computer, and C compilers also generate very fast code. However, the lack
of OO1 support makes it difficult to write readable code when working with
very large and complicated algorithms. With a yet somewhat vague idea
that this was actually a pretty large and nasty algorithm, I decided that
the C language did not qualify.

C++ on the other hand, has both OO support and many of the pros of C,
like fast code. The syntax is also very similar, and C++ is, as the name
suggests, an extended C language.

However, from my experience with C and C++, it seems that one spends a
lot of time debugging, at least compared to some newer programming
languages, like Java. I am not quite sure why this is so, but I suspect that
it is related to the way pointers are implemented in C and C++.

One might also add that sometimes the compact syntax of C and C++
source code degrades the readability.

It is also worth mentioning Borland’s Delphi and the Linux version, Kylix.
The language is based on traditional Pascal, but extended with OO
support. The compilers generate native code, and according to Borland,
source code written for Kylix can be recompiled with Delphi, and vice
versa, without or almost without any modifications. Unfortunately, the
GPL version of Kylix was not yet available upon initiation of this project.
Delphi, running on MS Windows OSes, was ruled out due to personal
convictions and preferences regarding OSes.

1Object-Oriented

3.2. CHOOSING A SUITABLE PROGRAMMING LANGUAGE 21

I had been told many wonderful things about Java, and I was also hoping
that there would be some useful Java classes for mathematics and geometry
that I could utilize in this project. Java has not got the pointer problem
which sometimes troubled me as a C++ programmer. The syntax is not
quite as compact as that of C++, so the code is easier to read. Apart from
that, the syntax is pretty similar. If one understands C++ code, it is easy to
learn Java.

One contest that Java certainly seems to loose, is code speed. The usual
way of compiling a Java program, is first compiling it into platform
independent bytecode, which in turn must be executed by a virtual
machine. The virtual machine does an on-the-fly translation of the
bytecode into native code that it feeds to the processor. Of course,
platform independent code will not run as fast as the fastest native code,
although it allegedly can come pretty close.

Another drawback with using Java is that most scientific applications and
libraries are written in C, C++, and Fortran, and interfacing between that
code and mine is not straightforward. So, for interfacing and
demonstration purposes, I have included some C++ code that creates a Java
virtual machine and runs the Java code. Section 3.3 has more on this.

A great advantage of Java over C and C++, is that graphics support is
standard and incorporated as a part of the language itself. With C or C++
one would have to get a multiplatform graphical library for this task, if the
code was to run on more than one platform.

Now, after having spent quite some time writing Java code, I might add
that I have gradually grown somewhat disappointed with the allegedly
wonderful Java classes for mathematics and geometry. Three very essential
methods that I needed for the Delaunay mesh generation class were not
supported at all, or a proper implementation was missing. (See the
methods inCircle, inHalfplane, and intersectsAt in section 3.5.1.)
Thus, I had to write my own code for these methods. A somewhat tedious,
but still very instructive task.

On the other hand, I have become quite found of the informative runtime
error messages generated by Java code crashes: The line number of the
code that triggered the crash, and a list of calls leading up to the fatal line.
This way faulty code is instantly located, so that valuable time can be
spent on correcting the actual error, rather than scanning thousands of
lines with no clues whatsoever to what caused the crash. This feature is
also supported in Delphi/Kylix and by C++ debugger applications.

22 CHAPTER 3. THE IMPLEMENTATION

3.3 Interfacing with Java from C++

Java comes with an interface, the Java Native Interface (JNI), for
interfacing with some native code: C, C++, and Fortran. This means that
Java code can be called from native code, and native code can be called
from Java code. Moreover, native code can manipulate data fields in Java
classes and so forth. More information can be found on the web[8]. The
source code that was developed as part of this thesis has got some C++
source code for starting up the Java implementation, i.e. the MeshDitor
application.

3.4 Program code organization

Of course, all of the code is divided into classes, since that is the way to do
it in Java. Some classes represent the different parts of a mesh, such as
nodes, edges, triangles, and quadrilaterals. Others are devoted to the
specific meshers. The following lists each class with a comment explaining
its purpose:

class AboutDialog: A class which opens an "about" dialog window.

class Constants: This class holds the program "constants". That is,
they are given as parameters to the Q-Morph implementation.

class Dart: A very simple implementation of a dart.

class DelaunayMeshGen: This class offers methods for incrementally
constructing Delaunay triangle meshes.

class Edge: This class has methods and fields for edges.

class Element: This class declares methods and fields that are common
to quads and triangles.

class ExportToLaTeXOptionsDialog: This class supports exporting of
meshes to LATEX format. Make sure you include include both
packages epic and eepic in the header of your LATEX document.

class GCanvas: The Canvas class which paints the background grid, the
nodes, the edges etc.

class GControls: The Panel class with step button, zoom menu, and
axes and grid toggle buttons etc.

3.4. PROGRAM CODE ORGANIZATION 23

class GUI: This class implements the graphical user interface.

class GeomBasics: This is a basic geometry class with methods for
reading and writing meshes, sorting Node lists, printing lists,
topology inspection, etc.

class GlobalSmooth: This class is an implementation of the algorithm
described in [4].

class HelpDialog: A class which opens a help dialog window.

class MeshDitor: This is the executable class. It has methods for
outputting version and help information, and for processing user
command line options.

class Msg: This class outputs messages to the user.

class MyFilterOutputStream: This is a class for capturing Java error
messages.

class MyLine: This class has methods and fields for for lines. The
purpose of this class is solely to determine the intersection point
between two lines. The length of a line is, of course, infinite.

class MyVector: This class holds information for vectors, and has
methods for dealing with vector-related issues.

class Node: This class holds information for nodes, and has methods for
the management of issues regarding nodes.

class QMorph: This is the main class, implementing the triangle to quad
conversion process.

class QMorphOptionsDialog: A class for an options dialog for supplying
parameters to the Q-Morph implementation.

class Quad: A class holding information for quadrilaterals, and with
methods for the handling of issues regarding quads.

class Ray: This class holds information for rays, and has methods for
dealing with ray-related issues. The purpose of this class is solely to
determine the intersection point between a ray (origin and direction)
and a vector (origin and x,y giving the direction, the length of the ray
is considered to be infinite).

class TopoCleanup: This class constitutes a simple implementation of
the cleanup process as outlined by Paul Kinney in [9].

class Triangle: A class holding information for triangles, and with
methods for the handling of issues regarding triangles.

24 CHAPTER 3. THE IMPLEMENTATION

3.5 Problems, strategies and solutions

As I gradually became aware of the immensity of the task ahead, I tried to
work out a good solution strategy. Firstly, I found that a reasonable way to
organize the work, would be a divide and conquer-strategy: divide the work
into bulks of lesser proportions, and solve each task separately. Next, it
seemed that a good choice of such bulks would be the main steps of the
algorithm, with each step having one or more dedicated Java methods.

Of course, initially I spent quite some time trying to get a good overview of
the algorithm, so that I early on could spot potential problems related to
different approaches. Still, I could not possibly foresee every little obstacle
on the way.

On the occasions of facing seemingly unsolvable problems, poorly explained
or simply undefined steps, I often resorted to a strategy of temporarily
evasion. It seemed entirely possible, often even probable, that a solution
sooner or later would reveal itself from the context of its surroundings. Or
possibly, when the problem at hand was choosing between several
seemingly equivalent approaches, I could implement each one, and then let
the actual code performance help me select the best.

Considering that I did have the algorithms with papers dedicated to
explaining them, it might seem that the implementation now would be
fairly straightforward. Naturally, any such misconceived ideas that might
initially have deluded me, were quickly exposed as the work progressed.
Although several of the algorithm steps are indeed explained in great
detail, others remained utterly in the dark. This section is devoted to
describing these problems and the corresponding solutions applied in the
implementation.

3.5.1 Constructing the initial triangle mesh

The specific approach used here is an incremental Delaunay algorithm, but
as stated in the previous chapter, any triangle meshing strategy works,
provided that it generates a regular mesh with or without holes. In the first
step, the program creates an initial mesh consisting of only the two
triangles spanned by the four nodes that are farthest away in each direction
from the center of the node set. The other nodes are then inserted one at a
time, and after each insertion, the mesh is updated to remain Delaunay
compliant. When a node exterior to the current triangulation is
encountered, the program first determines the influence region of that

3.5. PROBLEMS, STRATEGIES AND SOLUTIONS 25

particular node. The mesh in this region is then retriangulated by simply
deleting all the triangles, and then connecting each of the nodes in the
influence polygon to the inserted node.

However, please note that the implemented mesher has no support for
defining holes in the domain. Still, in addition to node sets, the program
can receive triangle meshes as input. This way, triangle meshes with holes
can still be Q-Morphed.

Although I do not consider the triangle mesher to be a part of the core
Q-Morph algorithm, I still feel that a further elaboration of this topic is
justified by some non-trivial issues introduced by the implemented triangle
mesher. Also, the surprisingly vast amount of time that I spent working on
the triangle mesher speaks for a further elaboration. Thus, I have authored
some brief paragraphs on these topics:

The inHalfplane method

The purpose of this method is to determine whether a point, p = (xp, yp),
is located to the left, to the right, or on a line defined by the two points
(x1, y1) and (x2, y2). In the literature this method is often referred to as
the orientation method. This task can seemingly easily be solved by
evaluating the determinant x1 y1 1

x2 y2 1
xp yp 1

If the determinant evaluates to a negative number, then the point is
located to the left of the line, whereas a positive number indicates a
location to the right of the line, and zero is the number we get for points
located on the line itself.

However, because of the limited precision of computers, round-off errors
arise when this determinant is to be evaluated in the implementation. This
would not be such a big deal if the points where not located in the vicinity
of the line. It is only when a point is located close to the line that problems
arise. After all, the only thing that we need to know is whether the value of
the determinant is less than, equal to, or greater than zero. We need not
know the exact value of the determinant, unless it is zero.

In the Java implementation, I have utilized the methods of the
java.math.BigDecimal class to calculate the value of the determinant.
Hopefully, this gives a value that is sufficiently close to the exact solution.

26 CHAPTER 3. THE IMPLEMENTATION

The unitNormalAt method

The need for this method arose during the development of another method,
the inBoundedPlane method, which is used to test whether a node is
located within a given bounded plane. unitNormalAt will create a unit
normal at one of the endpoints of a given edge.

pC

p =(x ,y)B B B

p =(x ,y)
A A A

b

c

a=1

α

β

Figure 3.1: How can we find the point pC?

Consider figure 3.1: With only the information regarding the location of
the endpoints pA and pB, how can we find the point pC = (xC , yC), which
is the endpoint of the unit normal at point pB?

A pretty obvious answer is given by the following coordinates for pC :

xC = xA + b · cos(α+ β)
yC = yA + b · sin(α+ β)

(3.1)

However, I first need to know the values of α and β. To solve this problem,
I employ some well known results from trigonometry:

cos(u+ v) = cos(u) · cos(v) − sin(u) · sin(v)
and
sin(u+ v) = sin(u) · cos(v) + cos(u) · sin(v)

Furthermore, instead of first finding the angles α and β, and then
evaluating the sine and cosine of α and β directly, I found a much less
computing intensive approach using standard trigonometry: cos(α) = c

b ,
cos(β) = xB−xA

c , sin(α) = a
b , and sin(β) = yB−yA

c .

3.5. PROBLEMS, STRATEGIES AND SOLUTIONS 27

Now, using this information in equation 3.1, and skipping some
intermediate calculations, we arrive at the final answer:

xC = xB −
yB − yA

c

yC = yB +
xB − xA

c

The inCircle method

This method determines the location of a point relative to a circle: outside,
inside, or on the circumcircle. Much like in the inHalfPlane method, this
task could be solved using extended precision and evaluating a
determinant. However, a faster, less accurate, but yet numerically stable
approach has been developed [5].

α

β
p

Figure 3.2: The inCircle method: is point p located inside, outside, or on
the circumcircle?

As in the unitNormalAt method, the sine and cosine values of the two
angles can be found without ever knowing the values of the angles
themselves.

Now, if the cosine values of each angle are both less than 0, this implies
that the angles are obtuse, and therefore the point must be inside the
circumcircle. The opposite, that both cosine values are greater than 0,
implies that the angles are acute, and that the point is outside the
circumcircle.

If none of these cases match, the matter is settled by calculating
cosα sinβ + sinα cosβ. If this value is less than 0, the point is inside the
circumcircle, it is outside if the value is greater than zero, and on the
circumcircle if the value is zero.

28 CHAPTER 3. THE IMPLEMENTATION

The intersection methods

Some steps of the algorithm require the calculation of points of intersection.
This is the case in the particular triangulation method used, but also in
several steps of the Q-Morph algorithm itself. Intersection calculations are
expensive, so it is important to employ efficient methods for this.

I have developed several different intersection methods. Some just
determine whether two line segments intersect, some also seek a point of
intersection. The methods are all built on the same principles, which I have
mainly taken from [6]:

Two line segments are either non-intersecting, intersecting in one singular
point, or intersecting in an interval. The two line segments in question can
be parameterized as ~P0 + s ~D0 and ~P1 + t ~D1, with s, t ∈ [0, 1]. Furthermore,
we need the vector ~∆ = ~P1 − ~P0, and we define ~D0 × ~D1 ≡ x0y1 − x1y0.

We put the two line segments into an equation:

~P0 + s ~D0 = ~P1 + t ~D1

s ~D0 − t ~D1 = ~P1 − ~P0

s ~D0 − t ~D1 = ~∆

Because this is a vector equation in two variables, we get two scalar
equations. We solve these for s and t, and get:

(~D0 × ~D1)s = ~∆× ~D1

(~D0 × ~D1)t = ~∆× ~D0

(3.2)

Now, if ~D0 × ~D1 = 0, then the two lines, to which the actual line segments
belong, are parallel. A singular point of intersection is then only possible
on the endpoints of the line segments (s and t are 0 or 1), assuming that
the two lines are actually the same line. The equations 3.2 now reduce to
one equation 0 = ~∆× ~D0 (because ~D0 is a scalar multiple of ~D1). The lines
are the same if and only if this equation holds. A singular point of
intersection can now be sought at P0 and P0 + ~D0; the point being unveiled
by either one of the following four equations that holds: ~P0 = ~P1 or
~P0 = ~P1 + ~D1 or ~P0 + ~D0 = ~P1 or ~P0 + ~D0 = ~P1 + ~D1.

On the other hand, if ~D0 × ~D1 6= 0, then the two lines intersect in a
singular point somewhere, but we do not yet know if this also holds for the
particular line segments in question. This can easily be answered by
assuring that the values found for s and t are in the correct range:

3.5. PROBLEMS, STRATEGIES AND SOLUTIONS 29

s, t ∈ [0, 1]. Of course, the point of intersection is now given by ~P0 + s ~D0 or
~P1 + t ~D1.

The algorithm also requires some calculation of points of intersection
between lines and between line segments and rays. It is straightforward to
find these by trivial changes to the approach explained above.

3.5.2 Selecting the next front edge

It is a little unclear exactly in which cases the length of a front edge is to
be considered more important than its state and level. In the end, I
decided to use the following algorithm for selecting the next front edge:

1. Find the first state list that contains a selectable edge. Start parsing
the state lists in the state 1-1 list, then parse the state 1-0 and 0-1
lists, and finally look in the 0-0 list.

2. Parse this state list to find the front edge at the lowest level. If there
are more than one edge at this level, select the shortest.

3. If the candidate edge is not in state 1-1, and the transition to one of
the front neighbour edges is large, and this neighbouring front edge is
marked as selectable and it is shorter than the candidate, then the
neighbour is selected. Otherwise the candidate is selected.

The reason for excluding state 1-1 edges in the last step, is that the
implementation might otherwise fail irreversibly, plunging into a
non-terminating loop. Consider the case in figure 3.3. Suppose that edge
eB is created and elevated to state 1-1 by a transition split operation2, so
that eB in the next iteration of the main loop can form the base edge of a
new quadrilateral. Unless edges in state 1-1 are specifically disregarded as
candidates for the transition split operation, then we risk creating a
situation in which eB itself will be subjected to a transition split operation.
A new edge eC is created and elevated to state 1-1, and in the next iteration
of the main loop, edge eC is the victim of this reoccurring situation. The
program will eventually crash in iteration N when the centroid of the quad
adjacent edge eN is placed outside of the quad due to limited precision.

2Note that the transition split operation is briefly described in 2.2.4.

30 CHAPTER 3. THE IMPLEMENTATION

eA

eB

eC

eD

eE

eF

Figure 3.3: The code would fail unless special precautions are taken at the
programming level: The transition split operation is called repeatedly, cre-
ating the pattern depicted above, and eventually the code would crash. (For
simplicity, the initial triangles ahead of the front is not drawn in the figure.)

3.5.3 Recovering an edge

The algorithms for recovering an edge (algorithm 1 and 2 in [16]) will fail if
the edge is intersecting a quad, and there are no clues as how to handle
such a situation. I pounded over this problem for quite some time,
considering extensions to the algorithms that would allow for the edge to
intersect both triangles and quads.

In the end I decided that the only sensible thing to do, would be to abort
the current quadrilateral formation process, temporarily mark the current
base edge as unselectable, and initiate a new process with a different base
edge. This solution seems to work fine, and I also believe this to be more in
the spirit of the original algorithm.

3.5.4 Quadrilateral formation

When the base, side, and top edges have been found, the quadrilateral
formation process is almost complete. However, the process may still fail.
The reason for this is that the quadrilateral may contain holes, and we can

3.5. PROBLEMS, STRATEGIES AND SOLUTIONS 31

not allow the quad formation process to “eat” them. It would be difficult to
detect the presence of holes at an earlier stage. If a hole is present, the
process must abort, marking the current base edge as unselectable until
another quadrilateral has successfully been formed. If no holes are found,
then the process may continue as normal, deleting all triangles contained in
the area inside of the four edges, and at last the new quadrilateral is
formed.

3.5.5 Local smoothing

Although this step is explained in great detail, some issues are left
undefined in [16]. These are:

• How to smooth a triangle. The implementation uses an approach
similar to that used for quads.

• What to do with a node that is part of the front and at the same
time belongs to more than two quads. For these cases, I chose to
adjust the location of the nodes using isoparametric smoothing only,
as proposed in [2].

• Consider employing length weighted Laplacian smoothing, as
described in [2]. This is one of two options for smoothing nodes that
are not part of the front. Now, for those of the contribution vectors
pointing to a node on the boundary, one should adjust for angular
smoothness. However, the algorithm for angular smoothness is
defined for front nodes only. Naturally, it is trivial to extend this
algorithm to also include boundary nodes.

• Another problem concerning angular smoothness arises in situations
like the one illustrated in figure 3.4. The extension of vector PB2 will
not intersect the line segment between Ni−1 and Ni+1, as required by
the algorithm.

This issue is still unresolved in the implementation.

3.5.6 Constants

No clues are given to which values to assign to different constants, such as
ε1 and ε2 for the seaming operations. Well-working values for the different
constants are the topic of section 4.1.

32 CHAPTER 3. THE IMPLEMENTATION

Ni−1

Ni

Ni+1
PB1

PB2

Figure 3.4: Problematic adjustment for angular smoothness

In swapping and splitting operations where Nm is on an opposing front, no
indications are given to how large values one should allow for ε, or what to
do if such a limit is exceeded. In the implementation all angles are allowed.

3.5.7 Intersection

See the paragraph on intersection in section 3.5.1.

3.5.8 Testing for clockwise ordering of vectors

I needed a method to determine whether an edge was cw3 to another. More
specifically, the method should return true if the angle between the calling
edge and the argument edge was ∈ [0, 180◦).

Rather than some cunning technical approach, the implementation of this
method consists of a series of if-sentences that has proven to work well.
Firstly, the method finds the quadrants in which the vectors are located.
This is done by simply considering the sign of the vector components. If
the vectors are not in the same quadrant, and also not in opposite
quadrants, it is straightforward to tell whether or not they are cw ordered.
If in fact they are in the same quadrant, or in opposite quadrants, the
question can be answered by comparing the slopes of the vectors.

3“cw” is an abbreviation for “clockwise”.

3.5. PROBLEMS, STRATEGIES AND SOLUTIONS 33

3.5.9 Counter-clockwise ordering of edges incident with a
node

The purpose of algorithm 2 in [16] is to determine which edges that are
intersected by a line between the start and end nodes, Nc and Nd

respectively. To accomplish this, it first creates a vector ~Vs from Nc to Nd,
and an ordered set of ccw triangles and quads adjacent Nc.

We know that every node must be connected to at least two edges.
Furthermore, if a two-edge node lies on the boundary, then the two
connected edges also reside on the boundary. However, if Nc is a boundary
node with only two edges connected to it, it would be difficult to decide on
which side of them to look for the end node, Nd, by use of the methods and
data structures found elsewhere in the code4. The following outlines the
solution employed in the code.

Instead of directly creating the ordered set of ccw triangles and quads
found around Nc, the implementation first creates a corresponding set of
edges and a vector representation for each edge. Now, the following scheme
is based on the method isCWto(MyVector) in class MyVector that returns
true if the calling vector is clockwise to the argument.

If the node resides on the boundary, then it is assumed that there are two
and only two boundary edges incident with the node. The boundary edge
which is cw to its neighbour edge (according to the isCWto method) is
selected to be the first in the list, unless the element between them has a
concavity at the node, in which case the other boundary edge is placed first
in the list. The subsequent edges in the list are added in cw order by
parsing the elements around the node, starting at the (only) element
adjacent to the first edge in the list.

Provided that there are only two edges in the list, which implies that they
are boundary edges, both orderings of their vector representations are in
principle be legal ccw orderings. So why is it not indifferent which of them
get selected? Here we must carefully consider the needs of the other
methods in the code, i.e. the implementation of algorithm 2.

Let us now assume that we use the isCWto method and the ordering
described above. In the case of only two edges in the list, we must require
that the most cw edge according to the isCWto method, comes first in the
list. When the implementation of algorithm 2 parses this list, it will test

4However, if I had employed edges with direction, and all boundary edges were directed
so that e.g. the outside of the mesh was to the right and the inside was to the left of the
edge, then this would not have been a problem.

34 CHAPTER 3. THE IMPLEMENTATION

Nc

Nc

e1 e2

e1

e2

~Vs

~Vs

Figure 3.5: Top: The boundary edges at Nc form a convex boundary seg-
ment. e1 is the most cw edge according to the isCWto method. Bottom:
The boundary edges at Nc form a concave boundary segment. Their com-
mon element is a quad, or more precisely, a chevron. Of the two boundary
edges, e2 is the most cw one according to the isCWto method. However,
the ordering of the edges must remain the same in both configurations: first
edge e1, then edge e2.

3.6. TOPOLOGICAL CLEANUP 35

each edge against ~Vs using the isCWto method. It will first test ~Vs against
the first edge in the list, and then against the second edge, correctly
detecting whether ~Vs does in fact intersect the triangle spanned (or quad
partly spanned) by the two edges in the list. If the ordering in the list was
reversed, then the loop would fail.

If the node does not reside on the boundary, then it does not matter which
edge comes first in the list. A random edge is selected, and then the
remaining edges are added to the list in ccw order by first finding the
element which is ccw to the first edge (using the isCWto method), and then
parsing all the elements around the node starting at the first edge and this
element and continuing in the direction of the other edge that is also
connected to the node and the same element.

3.6 Topological cleanup

Because of the somewhat undetailed nature of the paper describing
topological cleanup[9], it was hard work trying to solve all the issues
concerning the implementation of this algorithm. Eventually it still seems
that I arrived at a decent solution, which is outlined below.

Note that illustrations of most of the different cases are found in [9].

3.6.1 Chevron elimination

Before a combine with neighbour operation is executed, the cleanup code
attempts a much simpler solution: Unless the node at the greatest angle of
the chevron is on the boundary, it can be relocated so that the chevron
becomes an ordinary quad. A Laplacian smooth is used for this purpose.

If the Laplacian smooth fails to relocate the node so that the quad is no
longer a chevron, or the node is on the boundary, then a suitable neighbour
is found, both quads are removed, and the hole is filled with either fill_3 or
fill_4. The difficulty here lies in selecting the most suitable neighbour.

As depicted in figure 3.6 (left), one can choose between two neighbours, q1

and q2. Relative to the node at the concavity, c, the first quad neighbour is
located adjacent the edge between the next cw node from c in the chevron
and the node opposite of c in the chevron. Conversely, the other neighbour
is found adjacent the edge from c’s opposite node and the next ccw node
from c in the chevron.

36 CHAPTER 3. THE IMPLEMENTATION

n1

c

q2

q1

c

q1

Figure 3.6: The elimination of a chevron by a combine with neighbour op-
eration: fill_3.

The decision with which neighbour the chevron is to be combined, depends
on the valence values resulting from each choice. The neighbour that gets
chosen, is the one that, when combined with the chevron in a fill_3
operation, yields the valence values considered to be most optimal.

Then the fill_3 operation is performed as described in Kinney’s paper: The
two quads are removed, and the hole is filled with three new quads, as can
be seen in fig.3.6 (right).

However, if the angles at node n1 in the chevron and the selected neighbour
in the figure sum up to more than 200◦, then a fill_3 will not solve the
problem, as it introduces another chevron. We must then use fill_4
instead. This situation is depicted in fig. 3.7.

3.6.2 Resolving cases by compositions

The code which I wrote for correcting cleanup cases, employed in both
connectivity cleanup and partly in boundary cleanup, is perhaps the
achievement with which I am most pleased in retrospect. Even so, it is
probably not particularly original, and I would be surprised if it turned out
that Kinney’s implementation was essentially different in this respect.

3.6. TOPOLOGICAL CLEANUP 37

c

n1

c

n1

q1
q1

Figure 3.7: The elimination of a chevron by a combine with neighbour op-
eration: fill_4.

Code Description
3 Close the current quad, new pos of cur. node at the opposite node
4 Close the current quad, new pos of cur. node midway to oppos. node
5 Fill cur. quad and neighbour with fill_3
6 Fill cur. quad and neighbour with fill_4
7 Split cur. quad into two new quads along diagonal from cur. node
8 Switch cur. edge clockwise
9 Switch cur. edge counter-clockwise

Table 3.1: The mesh modification codes.

The approach employs the concepts of darts5 and α-iterators6.

I introduced 7 new codes in addition to the three α-iterators (0,1,2); codes
which I have named mesh modification codes, that each signify a particular
cleanup action to be performed at the current dart. (See table 3.1.) With
appropriate compositions (or sequences) of these 10 codes, I was able to
perform all the action routines described in Kinney’s paper.

5A dart consists of one element (e.g. triangle or quad), one of its edges, and one of the
nodes on the edge.

6α-iterators are operations performed on a dart for traversing the nodes, edges and
elements of a mesh. Given a dart, d, the operation α0(d) changes the current node to
become the other node on the edge. α1(d) changes the current edge to the neighbour edge
at the current node inside the element. And finally, α2(d) changes the current element to
become the neighbour element at the current edge.

38 CHAPTER 3. THE IMPLEMENTATION

3.6.3 Connectivity cleanup

As noted in the previous chapter, the cases are identified among others by
their valence patterns7. For the so-called standard cases in connectivity
cleanup, a reliable identification must also take into account that such a
case has 4 vertices, which are found among the nodes outlining the area of
the mesh in question. If one of these nodes is to be regarded as a vertex,
then the internal angle at the node must be smaller than the internal angle
at every non-vertex node on the outline. A vertex pattern informs which
nodes are to be regarded as vertices.

For some cases, an additional requirement is that certain nodes are internal
nodes. Consequently, such cases must have a corresponding internal nodes
pattern.

To resolve the cases, connectivity cleanup relies entirely on compositions.
The complete list of implemented cleanup cases and their corresponding
solutions, in terms of compositions, is found in the appendix on page 64.

3.6.4 Boundary cleanup

For reliable identification of boundary cases, the code must verify that
certain nodes in the valence pattern are located on the boundary. Thus,
each valence pattern should have a corresponding boundary pattern
indicating which of the nodes that should be on the boundary.

Boundary cleanup now continues along the lines of connectivity cleanup.
Those of the boundary cases that can be identified by their valence and
boundary patterns, are listed in the appendix in table 3 on page 65.

After that, the code attempts to replace triangularly shaped quads having
two boundary edges with the large angle at their common node. As
illustrated in [9], the replacement depends on whether a one row transition
or a two row transition can be used. To accomplish the one row transition,
a fill_4 operation followed by a fill_3 operation will do the job. On the
other hand, two consecutive fill_3 operations is needed for the two row
transition. (Of course, the operations should be performed at some
particular darts, and they should be followed by appropriate smoothing.)

In addition, attempts are made to remove boundary diamonds8. There is
some hinting in [9] that not all boundary diamonds should be removed, but

7See the appendix on page 62 for an explanation of the term “valence pattern”.
8Boundary diamonds are quads with one and only one node on the boundary.

3.6. TOPOLOGICAL CLEANUP 39

there is no good explanation to which ones should actually be removed. In
my implementation, those boundary diamonds that conform to this
inequality will be removed:

|4−(valence(na)+valence(nb)−2)| ≤ max(|4−valence(na)|, |4−valence(nb)|)

where na and nb are the two nodes in the diamond that are directly
connected to the boundary node. Admittedly, the reason for choosing this
particular criteria was more empirically based rather than based on any
theoretical proof. What is actually compared here, is the deviation at the
nodes na and nb from the optimal node valence, 4. On the left side in the
inequality we find the deviation of the node resulting from closing the
diamond, and effectively merging na and nb. On the right side is the larger
of the deviations at na and nb when the diamond remains open.

3.6.5 Shape cleanup

In shape cleanup, a total of four different cases are given in [9]. Firstly,
there are the two cases with quads having angles greater than 160◦. These
cases are identified by simply comparing angles, and verifying factors like
the number of incident edges at the central node, the existence of
appropriate neighbour quads, and that certain nodes are on the boundary.
The first case can be resolved by a fill_4 operation, and the second case is
resolved by a split quad operation followed by two fill_3 operations. In the
first case, the criteria for which neighbours to combine with, is based on
the size of the angles both at the central node and others. More
information can be found in the source code. The operations should be
accompanied by appropriate smoothing.

Secondly, there are the chevron and bowtie cases. Chevrons are removed as
described in section 3.6.1. Bowties are illegal quads that violates the
topology of the mesh. I decided that the simplest way to deal with bowties
was to avoid creating any altogether. Therefore efforts are made
throughout the cleanup code to guarantee that bowties are never
introduced into the mesh.

3.6.6 The full CleanUp implementation

To close this section, I give the pseudo-code for the CleaunUp
implementation:

Chevron elimination

40 CHAPTER 3. THE IMPLEMENTATION

Loop 3 times:
{
Connectivity cleanup
Global smoothing
Boundary cleanup
Global smoothing
Shape cleanup
Global smoothing

}

Note that within each of the major cleanups, the mesh should be
completely relieved of one particular case, before the next case is
considered. The order in which cases are resolved is also important.

3.7 Global smoothing

The global smoothing algorithm requires the calculation of distortion
metrics for each element. In this process, each quadrilateral is divided into
four triangles along its two diagonals, and the distortion metric for the
quadrilateral is computed according to equation 2.2. Now, this might not
sound so difficult. However, I eventually learned that my first idea of how
to divide the quadrilateral was erroneous.

n1 n2

n3n4

nc

Figure 3.8: How I first thought a quad was to be partitioned.

I thought I understood perfectly well how this division was to be
accomplished: We get four triangles defined by their vertices, see fig. 3.8:
(n1, n2, nc), (n2, n3, nc), (n3, n4, nc), and (n4, n1, nc). Here, nc is the point
where the two diagonals intersect.

This did work to some extent, but for some quads, like chevrons and most
inverted quads, the intersection point is located outside the quad. We then
get triangles whose area is also located outside the quad. It might seem a
little strange that the distortion metric of such artificial triangles should be
considered in the computation of a distortion metric for the quad.

3.7. GLOBAL SMOOTHING 41

Furthermore, we might also imagine an inverted quad whose point nc does
not exist because the diagonals are parallel.

n1 n2

n3n4

n1 n2

n3n4

Figure 3.9: A better way to partition a quad.

Thus, my first conception of the partitioning for quads had to be discarded,
and I then found the second conception, which I believe to be correct. We
get the two first triangles by dividing the quadrilateral along the first
diagonal, and then we get the two last ones by dividing along the second
diagonal, see fig. 3.9.

In computing the quadrialteral distortion metrics, I found it necessary to
use a slightly different formula for the four triangle distortion metrics: α1,
α2, α3, and α4. As we do in fact not want equiangular triangles, but (90◦,
45◦, 45◦) triangles so that two triangles form one square quadrilateral, the
normalizing factor in formula 2.1 should now be 4 rather than 2

√
3.

3.7.1 Detecting inverted elements

During the implementation of the global smoothing methods, I realized the
need for robust and efficient metohds for detecting inversion of elements.
These methods must work correctly for all possible situations, and yet they
should not be too computing expensive.

We assume that each element is initially uninverted, but that it may
become inverted at a later stage when the nodes are moved about.

For triangles, one can apply the method for calculating the “I” quantity
that is briefly mentioned in section 2.2.6 and in [4]. But because the
current implementation is restricted to 2D domains, there is no need to
involve the surface normal. We can stick to 2D vectors, and the surface
normal is quite unnecessary, as we shall see:

First note that I use the definition of a cross product for 2D vectors as
given in section 3.5.1. Assuming that each triangle has a dedicated base
edge and a top node opposite this base edge, we find the cross product of
the two vectors originating from each of the endpoints of the base edge and

42 CHAPTER 3. THE IMPLEMENTATION

pointing to the top node. This cross product indicates which side of the
base edge that the top node is located. Now, the triangle is inverted if the
top node is no longer on the same side of the base edge as it was initially.
That is, the triangle is inverted if the cross product becomes negative.
However, the order of the factors matters because cross products are
anticommutative: ~a×~b = −(~b× ~a). Thus, each triangle must have a field
indicating the order of the factors.

For quadrilaterals, it was slightly harder to find methods for detecting
inversion. After some time pondering, I came up with the following idea:
With some minor extensions, we can apply the strategy for detecting
inversion of triangles. By regarding each of the edges of the quad as the
base edge of a triangle and each of the two opposite nodes as top nodes in
triangles, inversion is detected if for one of the base edges, none of the
opposite nodes is on the initial side.

This rather brute force strategy requires at most eight cross product
calculations per quad. With a pen and some paper, and a little
experimenting with the editor (see section 3.8), I found that this number
can be reduced to four with the following optimization:

We check only two opposite edges in the quad, and demand that at least
two cross products be negative to be certain that the quad is inverted. If
three or all four cross products are positive, then the quad is not inverted.
This means that a quad is inverted if more than one node is located on the
“wrong” side of an opposite edge, or in other words, more than one interior
angle is greater than 180◦.

3.8 The interactive GUI

When working with any geometry code that reaches a certain level of
complexity, I suppose the aid of some kind of interactive GUI for
visualizing the actual geometry is a tremendous advantage over trying to
work your way through hundreds and hundreds of debug messages. For this
purpose I developed a very simple application, called MeshDitor.

Initially, the only features were visualization of meshes, manual
construction of meshes by point and click, and loading and saving meshes.
But as I grew increasingly tired of debugging aided only by debug messages
and Java runtime error messages, I decided to add some more functionality.

With the click of menu buttons, the editor will execute the triangulation or
Q-Morph code on the current mesh. Other convenient features included are

3.8. THE INTERACTIVE GUI 43

zooming and scrolling the mesh window, turning on and off debug
messages, and a step mode that allows for executing the triangulation or
quad-meshing methods one edge at a time.

Figure 3.10: MeshDitor, the mesh editor with which I created most of the
mesh cases.

Chapter 4

Results

4.1 Tuning the constant values

By running the Q-Morph code on several triangle meshes, and in each case
trying out different values for the program constants, I have found, that the
values given in table 4.1 seem to work pretty well. Still, I cannot guarantee
that the values listed here will suite all implementations of the Q-Morph
algorithm. Nevertheless, these values should at least give an idea to which
range to look for optimal values.

Each of the constants are explained below.

4.1.1 The ε1 and ε2 constants

These are explained in section 2.2.4

4.1.2 The COINCTOL constant

This constant is used in the quadrilateral distortion metric to determine
whether two of the quad’s nodes are too close. Preferably, I think that the
value of this constant should depend on the spacing of the boundary nodes.
(I.e. it would not really be a constant at all.)

Imagine a scenario in which the value of COINCTOL is higher than the
length of any of the boundary edges. In effect, the element quality of the
quads at these edges would suffer. In my opinion, this is undesirable. Thus,

44

4.1. TUNING THE CONSTANT VALUES 45

Constant Value
ε1 0.04 · π
ε2 0.09 · π
COINCTOL see section 4.1.2
MOVETOLERANCE see section 4.1.3
OBSTOL 0.1
DELTAFACTOR 10−5

MYMIN 0.05
θmax (THETAMAX) 200◦

TOL 10−5

γ (GAMMA) [0.8, 0.9]
MAXITER ∞ ?

Table 4.1: Well-working values for the program constants. Keep in mind
that these are merely suggestions.

a better solution is perhaps that the value of COINCTOL becomes a
constant factor times the length of the smallest boundary edge in the mesh.

4.1.3 The MOVETOLERANCE constant

A node movement that is proposed by the CLS1 and whose length is less
than the MOVETOLERANCE constant is denied. Ideally, and as with the
previous constant, the value should be a constant factor times the length of
some feature in the mesh rather than simply a constant factor.

4.1.4 The DELTAFACTOR constant

The δ value is used for perturbing the position of the nodes in the steepest
descent method, which is briefly described in section 2.2.6. The value of δ
is set to DELTAFACTOR·maxModDim, where maxModDim is the
maximum model dimension2.

4.1.5 The MYMIN constant

This should be a value in the range 0 to 1. (A value of 0.05 is proposed in
[4].) In the CLS it is the minimum element quality which is considered to

1Constrained Laplacian Smoothing
2My interpretation of that is the length of the longest edge in the mesh.

46 CHAPTER 4. RESULTS

be acceptable for a node move.

4.1.6 The θmax (THETAMAX) constant

When performing the CLS on a node, θmax is the maximum angle that is
allowed for the angles in the surrounding elements.

4.1.7 The OBSTOL constant

In the global smoothing process, if the Constrained Laplacian Smoothing
(CLS) has been performed twice on a particular node, and the smallest
distortion metric of the elements surrounding the node is still less than
OBSTOL, then the Optimization-Based Smoothing (OBS) should be
performed.

4.1.8 The γ (GAMMA) constant

If the steepest descent method, briefly described in section 2.2.6, fails in
finding a suitable γ value, then the program reverts to the GAMMA
constant.

4.1.9 The TOL constant

In the final step of the OBS, the proposed move of the node is accepted
provided that the lowest distortion metric, µ+

min, measured for the
surrounding elements is greater than or equal to the lowest distortion
metric for the same elements before the move plus TOL:

µ+
min ≥ µmin + TOL

4.1.10 The MAXITER constant

At least during the development of the implementation, it was sometimes
the case that the global smoothing process did not terminate. Thus, I had
to enforce a limit for the maximum number of iterations allowed. It may
well be that it is now obsolete, as some serious flaws have been corrected
recently.

4.2. ROBUSTNESS 47

4.1.11 Definition of a chevron

However, what seems to have the greatest impact on the element quality is
the definition of the chevron, which is used by the CleanUp
implementation. If the lower limit for the largest angle is set to 180◦

instead of 200◦, this leads to an improvement in element quality in most
cases. Especially the minimum distortion metric benefits from this.
Practical results of the two different definitions can be studied by
comparing the results in table 4.3.

Still, in what appears to be the minority of the cases, the 180◦ limit results
in lower element quality. In some cases the program might simply fail due
to new chevrons continually being introduced to the mesh during chevron
elimination. 200◦ seems safe for the current implementation, and this is
also the limit given in [9].

4.2 Robustness

The implemented code has been tested on a number of different mesh
cases. Whenever a program crash or other fail situation occurred, the bug
was located and corrected. It seems that the code now runs smoothly on all
the tested mesh cases without crashing or generating inverted elements.

However, I cannot promise that the implementation now will run perfectly,
by any means. The complexity of the program is far too great, and needless
to say, it is impossible to test all possible cases. Bugs have been discovered
and corrected up until the very last weeks before the deadline, and alas it is
likely that more bugs will continue to surface also in the future. Still, there
is some comfort in the fact that the number of bugs in a program is finite.
As this number already has been dropping over quite some time, it is my
hope that the number of bugs in the implementation is now so close to zero
that the implementation actually can perform some useful tasks.

I am aware that the program may produce low-quality quad-meshes for
some rare cases. Also, the user interface has some annoying flaws, and
additional efforts are required before it can be brought to a satisfactory
state.

48 CHAPTER 4. RESULTS

Figure 4.1: Model snake-t-1: A relatively high quality triangle mesh.

Figure 4.2: Model snake-t-2: The internal nodes have been move about in
an effort to significantly reduce the mesh quality.

4.3 The impact of the triangle mesh on the result

Q-Morph puts no restrictions on the quality of the initial triangle mesh,
promising to create an overall high quality quad mesh no matter what. I
have conducted some simple experiments just to see if this is a reliable
promise.

The first test investigates the “snake cases”. In both of these, the boundary
edges and boundary nodes remain fixed. The first snake case has triangles
of relatively high quality, whereas in the other case the internal nodes have
been moved about, so that most of the triangles have become severely
distorted. See figures 4.1 and 4.2.

Considering the data for the snake cases in table 4.2, it seems that the
distortion of triangles does not necessarily have a negative impact on the
final element quality. The average element quality is actually a little higher
for the quad mesh created from the distorted triangles (snake-q-2, see
figure 4.4), than for the quad mesh created from the high quality triangle
mesh (snake-q-1, see figure 4.3). The minimum element quality remains
unchanged.

In the second experiment, the “ball cases”, the boundary nodes and edges

4.3. THE IMPACT OF THE TRIANGLE MESH ON THE RESULT 49

Figure 4.3: Model snake-q-1: The Q-Morphed version of snake-t-1.

Figure 4.4: Model snake-q-2: The Q-Morphed version of snake-t-2.

are still fixed in both cases, and the internal nodes of the second case have
been moved about, but here also additional internal nodes have been
inserted. Consequently, the number of triangles is increased. See figure 4.5.

Figure 4.5: Models ball-t-1 (left) and ball-t-2 (right). ball-t-1 has a low
number of internal nodes, whereas ball-t-2 has a higher number of internal
nodes.

Looking at the ball case data in table 4.2, it appears that the increase in
number of nodes does not have any negative impact on final element
quality. On the contrary, the resulting element quality in the quad mesh is
significantly higher when a high number of nodes is present in the triangle
mesh. The resulting quad meshes can be seen in figures 4.6.

50 CHAPTER 4. RESULTS

Figure 4.6: Models ball-q-1 (left) and ball-q-2. ball-q-1 is created from
a triangle mesh with a low number of internal nodes, whereas ball-q-2 is
created from a triangle mesh with a higher number of internal nodes.

4.4 Element quality: some statistics

Since my main priority was getting the code right, and my thesis is already
long overdue, I was prevented from performing any proper study of element
quality in the Q-Morphed meshes. This would require a significant number
of mesh cases, and ideally the cases should also have relevance to real-world
simulations. Nevertheless, during the program development, I created a
moderate number of strictly artificial mesh cases, and in table 4.2 I have
collected the statistics for the largest of these. I suspect that the low
minimum metrics for most of the resulting quad meshes should be
attributed to the inadequate number of cleanup cases. Of course, the
average metric would also benefit from this.

Several other mesh cases were also used for testing purposes. Some of these
are very small, i.e. they have very few nodes. Others have extremely
difficult geometries. These cases are not representative for real-world
domains, and thus they are not presented here.

4.4. ELEMENT QUALITY: SOME STATISTICS 51

Before Q-Morph After Q-Morph
Model Num. Min. Avg. Num. Num. Min. Avg.

tris metric metric quads tris metric metric
snake-t-1 97 0.520 0.846 41 1 0.0769 0.635
snake-t-2 97 0.126 0.551 40 1 0.0769 0.670
ball-t-1 72 0.429 0.828 30 0 -0.00355 0.655
ball-t-2 150 0.0 0.697 35 0 0.519 0.766
concave 107 0.223 0.760 49 1 −7.63 · 10−17 0.595
difficult 206 0.371 0.810 95 0 -0.00456 0.495
donut 63 0.465 0.832 24 1 0.327 0.593
sqrhole 28 0.277 0.672 27 0 -1.11 0.192
mask 68 0.433 0.779 46 0 -1.03 0.344
onehole 41 0.611 0.864 31 1 -0.0102 0.382
cry-head 82 0.234 0.670 50 0 -0.0672 0.542
mickey 156 0.295 0.771 66 0 -0.121 0.565

Table 4.2: The statistics for the most relevant mesh cases. The constant
values were ε1 = 0.04 · π, ε2 = 0.09 · π, COINCTOL=0.01, MOVETOL-
ERANCE=0.01, OBSTOL=0.1, DELTAFACTOR=10−5 , MYMIN=0.05,
θmax = 200◦, TOL=10−5, γ = 0.8 and MAXITER=5.

200◦ limit 180◦ limit
Number of Metric: Number of Metric:

Model quads tris min. avg. quads tris min. avg.
snake-t-1 41 1 0.0769 0.635 40 1 0.0769 0.646
snake-t-2 40 1 0.0769 0.670 46 1 0.0769 0.644
ball-t-1 30 0 -0.00355 0.655 31 0 0.405 0.772
ball-t-2 35 0 0.519 0.766 - - - -
concave 49 1 −7.63 · 10−17 0.595 50 1 0.150 0.618
difficult 95 0 -0.00456 0.495 99 0 0.0 0.491
donut 24 1 0.327 0.593 24 1 0.215 0.545
sqrhole 27 0 -1.11 0.192 22 0 0.106 0.338
mask 46 0 -1.03 0.344 68 0 3.25 · 10−12 0.373
onehole 31 1 -0.0102 0.382 50 1 -0.968 0.273
cry-head 50 0 -0.0672 0.542 57 0 0.0433 0.563
mickey 66 0 -0.121 0.565 68 0 0.160 0.577

Table 4.3: A comparison of the results obtained with the original definition
of chevrons (left) and the results obtained with a new definition (right). The
constant values are otherwise identical to those used in table 4.2. However,
the program is no longer stable, as it breaks down during chevron elimination
in model ball-t-2.

Chapter 5

Example problems

As I did not initially have any cases/models/data sets to test the program
with, I had no option but to create my own. In this task I was aided by the
editor functionality in MeshDitor. However, it is a tiresome task to
construct large mesh cases by this method, and alas I have never tested the
implementation on meshes of any significant size.

The triangle meshes were constructed for the sole purpose of serving as test
cases for the implementation, i.e. they do not have a basis in real-world
simulations.

5.1 Some general cases

Firstly, let us look at some snapshots of the Q-Morph process. In figure 5.1
the front advances through the triangle mesh, and one by one the quads are
formed. In the final snapshot, topological cleanup and smoothing have
been performed. One singular triangle remains in the mesh due to an odd
number of boundary intervals.

The advantage of algorithms like Q-Morph is their ability to obtain a
satisfactory result even on the most bizarrely shaped domains. In the next
figure (5.2) we see my triangle mesh interpretation of the well-known
Disney character, and the result after subjecting it to the Q-Morph
implementation.

52

5.1. SOME GENERAL CASES 53

Figure 5.1: The donut case: A series of snapshots of the Q-Morph imple-
mentation at work in a triangle mesh.

Figure 5.2: Models mickey-t (left) and mickey-q (right): The triangle meshed
model and its Q-Morphed counterpart.

54 CHAPTER 5. EXAMPLE PROBLEMS

Figure 5.3: A quad mesh before topological cleanup.

Figure 5.4: The quad mesh in figure 5.3 after topological cleanup.

5.2 Case illustrating topological cleanup

Topological cleanup can dramatically improve mesh quality. In figure 5.3,
the minimal element quality is -0.800 and the average element quality is
0.455. The mesh has 64 quads, 1 2-valent node, 15 3-valent nodes, 53
4-valent nodes, 10 5-valent nodes and 3 6-valent nodes. After the CleanUp
code has completed, see figure 5.4, the minimal element quality is 0.386
and the average element quality is 0.701. The mesh has now 68 quads, no
2-valent or 6-valent nodes, 11 3-valent nodes, 65 4-valent nodes and 10
5-valent nodes.

5.3. SAME CASE SUBJECTED TO OPT.-BASED SMOOTHING 55

Figure 5.5: The quad mesh in figure 5.3 after optimization-based smoothing.
Note that the triangularly shaped elements are actually degenerated quads.

5.3 Same case subjected to opt.-based smoothing

In the Q-Morph algorithm, optimization-based smoothing should be
performed after topological cleanup. However, in the following example the
optimization-based smoothing is executed on the mesh in figure 5.3 without
a preceding topological cleanup. The resulting mesh is found in figure 5.5.
Smoothing does not alter the valency of nodes, but element quality can still
be improved. The minimal element quality is now −5.93 · 10−9, while the
average element quality is 0.612.

Chapter 6

Improvements

As the main focus of the development has been on correctly implementing
the algorithm rather than finding the optimal data structure and writing
optimal code, there is certainly room for many improvements in this
respect.

6.1 A better data structure

When I began the implementation process, I had no clear idea what
demands the algorithm would force upon the data structure. I therefore
chose one which was flexible and extensive. It became increasingly evident
that a more optimized and carefully planned data structure would have
spared me from a lot of hard work.

However, having based everything on this particular structure, it appeared
to be a much too arduous task to convert the code to work with a different
one. Thus, I was stuck with the initial data structure which is depicted in
figure 6.1.

If I was to re-implement the algorithm, or if I was to offer advice to others
in this respect, the data structure in figure 6.2 might be a starting-point.

The Edge class does not any longer need to worry about which of the nodes
are to the left and to the right. Instead, each edge is now directed, having a
start and end node. The Node class is kept just for convenience, so that the
x and y fields can be transferred in a singular operation between methods.
Operations on nodes should be carried out from the Edge class rather than
from the Node class itself. E.g. to obtain the list of edges connected to a

56

6.1. A BETTER DATA STRUCTURE 57

Quad
classElement

abstract class

Triangle
class

Edge
class

double [] ang

Node firstNode

Edge [] edgeList

Node leftNode

Node rightNode

double len

Element element1

Element element2

Edge leftFrontNeighbour

Edge rightFrontNeighbour

Node
class

double x

double y

ArrayList edgeList

boolean isFake

Figure 6.1: The implemented data structure, somewhat simplified. The
Quad and Triangle classes are subclasses of the Element class. Only the
most significant data fields in each class are shown here.

Quad
classElement

abstract class

Triangle
class

Edge
class

double [] ang

Edge [] edgeList

Node startNode

Node endNode

double len

Element element1

Element element2

Edge leftFrontNeighbour

Edge rightFrontNeighbour

Node
class

double x

double y

boolean isFake

Figure 6.2: Perhaps a better data structure.

58 CHAPTER 6. IMPROVEMENTS

specified node, this can be accomplished by starting at the edge which we
already know, and then traversing the elements around the node. Thus, the
edgeList field in the Node class can also be removed.

We demand that the edges connected to a particular element all have the
same direction, i.e. they all have this element on a specified side, e.g. their
left side. The firstNode field in the Element class was only needed to help
determine if the element had become inverted. Since the edges now are
directed, detecting inversion is easier, and the firstNode field is no longer
needed.

6.2 Topological cleanup

The topological cleanup process has a significant impact on mesh quality,
even with the modest number of cleanup cases currently implemented. It is
evident from some of the test cases that the implementation would benefit
from implementing even more cleanup cases.

6.3 Code optimizations

The ArrayList class is used extensively throughout the implementation,
although in many cases, more efficient array classes could have been chosen.

Although it is stated specifically in [16] that there should be four state
lists, one for each state, Q-Morph does not discriminate between edges in
states 1-0 and 0-1. Thus, a simplification would be to put those edges in a
common list. (This improvement has been carried out in the current
implementation.)

Sometimes the removal of a boundary diamond actually degrades the
quality of the mesh. It is likely that a better result would be obtained by
using distortion metrics to determine whether to close a boundary diamond
or not.

Chapter 7

Conclusion

7.1 Summary of results

We have seen that some of the promises made in the paper by Owen et al.
[16] appears to hold also for this implementation: At most one triangle is
generated, and the mesh quality is generally high, even though it cannot
always compare to the quality of the initial triangle mesh. The reason for
this is presumably that more cleanup cases are needed for the CleanUp
implementation, but perhaps also that triangles are in fact better suited in
cases with relatively few boundary intervals and highly non-trivial
boundaries, i.e. boundaries with extreme concavities and unevenly spaced
nodes.

With respect to the initial triangle mesh, it appears that its quality and
positioning of internal nodes have little influence on final element quality.
It seems that perhaps a high number of internal nodes is beneficial.

In some of the cases, a better mesh quality especially in terms of minimal
distortion metric, can be achieved by defining a chevron as a quad whose
greatest internal angle is greater than 180◦ rather than 200◦. However, the
current implementation becomes unstable with this value (180◦).

59

60 CHAPTER 7. CONCLUSION

7.2 Further work

7.2.1 Performance

As mentioned in the previous chapter, the mesh quality can be increased
by implementing more cleanup cases. (Especially, there seems to be a need
for cleanup cases that remove 2-valent nodes.)

The triangle mesher will not really be useful before it can handle node sets
with constraints. This way it can mesh domains with holes and concave
boundaries.

Presumably, the current Java implementation is somewhat slow and not
well suited for large datasets. Neither is interfacing with other FEM tools.
To improve on this situation, some countermeasures could be taken:
Firstly, the program would benefit greatly from implementation of filter
methods for reading and writing common mesh file formats. Secondly, the
optimizations suggested in the previous chapter could be implemented.

As a last resort, and a rather drastic enterprise, the code could be ported
into C++ and thereby contributing to the speed-up. As the implementation
is not heavily based on exotic Java classes, this would perhaps not be as
difficult as it might sound. A port to C++ would also ease the interfacing
with existing scientific computing code.

One important task that probably remains incomplete, is the identification
and correction of all bugs. Countless hours of labour have already been
spent on this goal, but I still fear that it has not been entirely successful.

7.2.2 A comparison with other quad meshing methods

There seems to be considerable activity going on in the meshing method
research community, with new papers being published all the time, and all
over the world. Common topics are e.g. tetrahedral and hexahedral mesh
generation, mesh improvement, and triangular and quadrilateral mesh
generation. In the context of this thesis, the interesting papers are
predominantly the ones dedicated to quadrilateral mesh generation.

The ultimate goal in this research is to find the optimal method. However,
this might not be an achievable goal, at least not for years to come. Thus,
it would be interesting to conduct really extensive experiments to at least
single out the best method available at the present time. Here, another

7.2. FURTHER WORK 61

problem is posed by all the different metrics appearing in the papers. It is
impossible to pick a winner when they all use their own metrics, and their
own sets of cases. Someone really ought to enforce a standard by which all
methods could be fairly judged. Properties that should be evaluated are
e.g. element quality, robustness, efficiency and application to non-planar
surfaces. An extensive set of test cases should also be part of the standard.

Other quad-meshers are e.g. LayTracks [18], the Paving algorithm [2], and
Lee and Lo’s algorithm [12].

However, perhaps the best result can be achieved independently of the
quad generation method. Perhaps are the best results obtained by applying
clever mesh improvement methods.

Considering the complexity of the Q-Morph algorithm, and the associated
difficulties in implementing it, it would be fair to expect a relatively huge
leap in performance over the more straightforward and naive quad meshing
algorithms. The simplest way to generate an all quadrilateral mesh from a
triangle mesh, is splitting each triangle into three quads, as mentioned in
[15]. (Add one internal node and one node on each edge of the triangle.)
The drawback with this method is that it introduces a huge number of
irregular nodes. Another approach is the merging method, which is
described in [13, 15]. In short, one can explain this method simply as
merging pairs of adjacent triangles in some intelligent fashion. The
drawback here is the risk of not achieving an all-quad mesh, i.e. more than
one triangle might appear in the final mesh.

Furthermore, the post-processing methods used by Q-Morph can easily be
applied to the naive methods, presumably giving them quite a boost in
mesh quality. It would be interesting to see whether this improvement
could close the expected mesh quality gap between the methods.

Glossary

A triangle is degenerate if its nodes are collinear. A quad is degenerate
if three or all four of its nodes are collinear.

A regular node is a node with four incident edges, in the case of a quad
mesh, and a node with six incident edges, in the case of a triangle mesh.
Thus, all other nodes are irregular nodes.

A regular triangulation ∆ defined on a domain Ω must meet the
following requirements:

1. No triangles are degenerate.

2. No interiors of any two triangles are intersecting.

3. No vertices intersect any edge except for at its endpoints.

4. The union of all triangles in ∆ equals Ω.

5. The domain is connected.

6. The triangulation has no holes.

7. Two boundary edges are incident with each boundary vertex.

The valence of a node (or valency or degree of a node) is the number of
edges incident with it. However, on the boundaries this is not entirely true,
at least not by the definition of “valence” found in [9]. This definition
explains how to compute the valence of boundary nodes, but for practical
purposes the following interpretation will suffice:

If the internal angle at a boundary node is less than or equal to 135◦, then
the valence is the number of incident edges plus 2. If the angle is in the
range < 135◦, 225◦ >, then the valence is the number of incident edges plus
1. Otherwise the valence is equal to the number of incident edges.

62

63

A valence pattern is a list of valences. The first number is the valence of
the central node. Then comes a dash, and lastly, in ccw order around the
central node, follow the valences of the neighbour nodes. An example of a
valence pattern is 5-4433534444.

Valence pattern Vertex pattern Composition
5-4+34+3404043 1 0 1 0 0 1 0 1 0 0 5,1,9
6-4-4+4344+4-34+34+3 0 1 0 0 0 1 0 0 1 0 1 0 2,1,5,2,1,8,2,1,

0,2,1,0,5,0,2,1,
2,0,1,9,5

6-4+3434+3404043 1 0 0 0 1 0 0 1 0 1 0 0 5,1,2,1,5,1,0,5
5-4+340404043 1 0 0 1 0 1 0 1 0 0 5
5-4+0434+34+34+3 0 1 0 0 1 0 1 0 1 0 1,2,1,0,8,5,0,1,

2,0,1,9,2,1,0,1,9

Table 1: The standard cases in connectivity cleanup and their solutions.

Valence pattern Internal nodes pattern Composition
5-3443000000 - 1,9
5-4430000003 - 8
5-344+4300000 - 1,0,5
3-4+34+000 1 1 1 0 0 0 4
3-354544 1 0 0 0 0 0 0,3,0,3
4-34434445 1 1 1 1 1 0 0 0 4,0,3,2,0,1,0,2,

1,4,0,3

Table 2: The normal cases in connectivity cleanup and their solutions. Note
that the case in row 4 can only be reliably identified by using its vertex
pattern in addition to the valence and internal nodes patterns. The vertex
pattern for row 4 is: 0 0 0 1 0 1.

Compositions

The following tables contain the compositions of α-iterators and mesh
modification codes that are used in the implementation for resolving the
different cleanup cases. Illustrations of most of these cases are found in [9].

64

65

Valence pattern Boundary pattern Composition
5-4354344 1 1 0 1 1 0 0 1 1,8
5-44+34534 1 1 0 0 1 1 0 1 1,2,1,9
4-43544 1 1 0 1 1 1 1,5
4-44534 1 1 1 1 0 1 1,5
4-54345434 0 1 0 0 1 1 0 0 1 8,2,0,1,0,2,3,1,0,2,3
5-4353534 1 1 0 1 1 1 0 1 1,2,1,5,1,8

Table 3: The boundary cases and their solutions. The first value in each of
the boundary patterns indicates the boundary state of the central node.

Bibliography

[1] Ivo Babuška and A.K. Aziz. On the Angle Condition in the Finite
Element Method. SIAM Journal on Numerical Analysis ,
13(2):214–226, 4 1976.

[2] Ted D. Blacker and Michael B. Stephenson. Paving: A New Approach
to Automated Quadrilateral Mesh Generation. International Journal
for Numerical Methods in Engineering, 32:811–847, 1991.

[4] Scott A. Canann, Joseph. R. Tristano, and Matthew L. Staten. An
Approach to Combined Laplacian and Optimization-Based Smoothing
for Triangular, Quadrilateral and Quad-dominant Meshes. In
Proceedings of the 7th International Meshing Roundtable, pages
479–494. October 1998.
URL http://www.imr.sandia.gov/papers/imr7/canann98.ps.gz

[3] Scott Canann, Sella Mutukrishnan, and Bob Phillips. Topological
Improvement Procedures for Quadrilateral and Triangular Finite
Element Meshes. In Proceedings of the 3rd International Meshing
Roundtable, pages 559–588. 1994.

[5] A.K. Cline and R.J. Renka. A storage efficient method for
construction of a thiessen triangulation. Rocky Mountain J. Math.,
14:119–140, 1984.

[6] David Eberly. Intersection of Linear and Circular Components in 2D,
2002. Documentation to Magic Software’s online source code.
URL
http://www.magic-software.com/Documentation/IntersectionLin2Cir2.pdf

[7] L.N. Gifford. More on Distorted Isoparametric Elements. Int. J.
Numer. Method Eng., 14(2):290–291, 1976.

[8] Sun Microsystems Inc. Java Native Interface, 2002.
URL http://java.sun.com/j2se/1.3/docs/guide/jni/

66

http://www.imr.sandia.gov/papers/imr7/canann98.ps.gz
http://www.magic-software.com/Documentation/IntersectionLin2Cir2.pdf
http://java.sun.com/j2se/1.3/docs/guide/jni/

BIBLIOGRAPHY 67

[9] Paul Kinney. CleanUp: Improving Quadrilateral Finite Element
Meshes. In Proceedings of the 6th International Meshing Roundtable,
pages 449–467. Ford Motor Company, 1997.
URL http://www.imr.sandia.gov/papers/imr6/kinney97.ps.gz

[10] Hans Petter Langtangen. Computational Partial Differential
Equations. Springer, 1999.

[11] D.A. Lavender and D.R. Hayhurst. An Assessment of Higher-Order
Isoparametric Elements for Solving an Elastic Problem. Computer
Methods in Applied Mechanics and Engineering , 56:139–165, 1986.

[12] C. K. Lee and S. H. Lo. A new scheme for the generation of a graded
quadrilateral mesh. Computers and Structures, 52(5):847–857, 1994.

[13] S. H. Lo and C. K. Lee. On using meshes of mixed element types in
adaptive finite element analysis. Finite Element Anal. Design ,
11:307–336, 1992.

[16] Steven J. Owen, Matthew L. Staten, Scott A. Canann, and Sunil
Saigal. Advancing Front Quadrilateral Meshing Using Triangle
Transformations. In Proceedings of the 7th International Meshing
Roundtable. October 1998.
URL http://www.imr.sandia.gov/papers/imr7/owen98.ps.gz

[15] Steven J. Owen. A Survey of Unstructured Mesh Generation
Technology. In Proceedings of the 7th International Meshing
Roundtable, pages 239–267. October 1998.
URL
http://www.imr.sandia.gov/papers/imr7/owen_meshtech98.ps.gz

[14] Steve J. Owen. Mesh Generation: A Quick Introduction, 2002.
Introduction given at Steve Owen’s Meshing Research Corner.
URL http://www.andrew.cmu.edu/user/sowen/mintro.html

[17] Samuel Peterson. Computing Constrained Delaunay Triangulations in
the Plane, 1998. Part of Minnesota Center for Industrial Mathematics
Undergraduate Industrial Mathematics Project.
URL http://www.geom.umn.edu/~samuelp/del_project.html

[18] W. R. Quadros, K. Ramaswami, F. B. Prinz, and B.Gurumoorthy.
Laytracks: A new approach to automated quadrilateral mesh
generation using MAT. In Proceedings of the 9th International
Meshing Roundtable, pages 239–250. 2000.
URL http://www.imr.sandia.gov/papers/imr9/quadros00.ps.gz

http://www.imr.sandia.gov/papers/imr6/kinney97.ps.gz
http://www.imr.sandia.gov/papers/imr7/owen98.ps.gz
http://www.imr.sandia.gov/papers/imr7/owen_meshtech98.ps.gz
http://www.andrew.cmu.edu/user/sowen/mintro.html
http://www.geom.umn.edu/~samuelp/del_project.html
http://www.imr.sandia.gov/papers/imr9/quadros00.ps.gz

68 BIBLIOGRAPHY

[19] Jonathan Richard Shewchuk. Lecture Notes on Delaunay Mesh
Generation, September 1999. Lecture notes to Shewchuk’s course, CS
294-5 Meshing and Triangulation in Graphics, Engineering, and
Modeling.
URL
http://www.cs.berkeley.edu/~jrs/meshpapers/delnotes.ps.gz

[20] Matthew L. Staten and Scott A. Canann. Post refinement element
shape improvement for quadrilateral meshes. Trends in Unstructured
Mesh Generation, 220:9–16, 1997.
URL http://www.imr.sandia.gov/papers/mcnu/staten97.ps.gz

[21] Olgierd Cecil Zienkiewicz. The finite element method, chapter 9.
McGraw-Hill Book Company (UK) Limited, third edition, 1977.

http://www.cs.berkeley.edu/~jrs/meshpapers/delnotes.ps.gz
http://www.imr.sandia.gov/papers/mcnu/staten97.ps.gz

	Introduction
	An analogous problem for the uninitiated reader
	Preliminaries
	FEM, The Finite Element Method
	Basis functions and weighting functions
	Local coordinates, the element matrix and vector
	Essential boundary conditions
	Assembly of the global system

	Briefly on triangular versus quadrilateral elements
	The optimal mesh

	The algorithm
	What it does
	How it is done
	Constructing the initial triangle mesh
	Edge state
	Edge level and front loops
	Special cases
	Topological cleanup
	Global smoothing and distortion metrics

	The implementation
	Limitations to the original algorithm
	Choosing a suitable programming language
	Interfacing with Java from C++
	Program code organization
	Problems, strategies and solutions
	Constructing the initial triangle mesh
	Selecting the next front edge
	Recovering an edge
	Quadrilateral formation
	Local smoothing
	Constants
	Intersection
	Testing for clockwise ordering of vectors
	Counter-clockwise ordering of edges incident with a node

	Topological cleanup
	Chevron elimination
	Resolving cases by compositions
	Connectivity cleanup
	Boundary cleanup
	Shape cleanup
	The full CleanUp implementation

	Global smoothing
	Detecting inverted elements

	The interactive GUI

	Results
	Tuning the constant values
	The 1 and 2 constants
	The COINCTOL constant
	The MOVETOLERANCE constant
	The DELTAFACTOR constant
	The MYMIN constant
	The max (THETAMAX) constant
	The OBSTOL constant
	The (GAMMA) constant
	The TOL constant
	The MAXITER constant
	Definition of a chevron

	Robustness
	The impact of the triangle mesh on the result
	Element quality: some statistics

	Example problems
	Some general cases
	Case illustrating topological cleanup
	Same case subjected to opt.-based smoothing

	Improvements
	A better data structure
	Topological cleanup
	Code optimizations

	Conclusion
	Summary of results
	Further work
	Performance
	A comparison with other quad meshing methods

	Glossary
	Compositions

