
UNIVERSITY OF OSLO
Department of Informatics

High precision text
extraction from PDF
documents

Øyvind Raddum Berg

Friday 29th April, 2011

Acknowledgments

It is a pleasure to thank the many people who made this thesis possible.

Firstly, I would like to thank my advisor, Stephan Oepen, for being a great source of
useful feedback, for being flexible, and for being easy to work with. Secondly, i thank
Johan Benum Evensberget for getting me started, and Jonathon Read for patiently
testing unfinished code.

I’ll forever be indebtful to all my friends and fellow students, both to those who helped
and motivated me with my thesis work, and to those who helped me avoid it.

A sincere thank you to my family for their love and support. Without your help this
thesis would have remained but a dream. A special thank you goes to Far for always
believing in me, and to Egil for always having been an inspiration.

Finally, to my bestest Regine. Thank you for your love, your patience and your smiles.
May the sun keep shining forever.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Background . 8

1.2.1 The PDF standard . 8
1.3 Problem description . 9

1.3.1 Geometric layout analysis . 9
1.3.2 Ordering of text content . 11
1.3.3 Logical layout analysis . 12
1.3.4 Reparation of publication-related damage 14

1.4 Technical terms . 14
1.5 Outline of thesis . 16
1.6 Major results . 17

2 Related work – Comparison of existing projects 19
2.1 Challenges and common problems . 19

2.1.1 Variation encountered in PDF files 21
2.2 Feature comparison . 23
2.3 Maintainability and architecture . 23

2.3.1 pdf2xml . 23
2.3.2 TextGrabber . 24

2.4 Performance overview . 24
2.4.1 Benchmark . 24
2.4.2 Results . 25

2.5 Conclusion . 26

3 Geometric layout analysis – Page segmentation 27
3.1 Choosing an algorithm . 28

4 CONTENTS

3.1.1 X–Y cut . 29
3.1.2 Breuel’s Constrained Textline Detection 29
3.1.3 Verdict . 30

3.2 Page segmentation – Implementation . 31
3.2.1 Motivation . 31
3.2.2 Whitespace covering algorithm . 31
3.2.3 Problems and adaptations . 34
3.2.4 Avoiding unwanted passages by overlapping 35
3.2.5 Avoiding stray whitespace by continuity 36
3.2.6 Avoiding intraparagraph lines by local minimum bounds 37
3.2.7 Avoiding two word separators . 37
3.2.8 Misc adaptions . 37
3.2.9 Discussion . 38

3.3 Determining page layout . 41
3.3.1 Challenges . 41
3.3.2 Extract column boundary candidates 41
3.3.3 Height adjustment of columns . 42
3.3.4 Combination and filtering of column boundaries 44

3.4 Text grouping and segmentation . 45
3.4.1 Page division – Column segmentation 45
3.4.2 Block segmentation . 45
3.4.3 Line segmentation . 45

3.5 Recovering reading order . 46
3.6 State after Geometric Layout Analysis . 47

4 Geometric layout analysis – Technical challenges 51
4.1 Exact glyph positioning . 51

4.1.1 Motivation . 51
4.1.2 Problem description . 51
4.1.3 Offsetting Y-coordinates . 52
4.1.4 Discovering bounding boxes . 52
4.1.5 Glyph mapping . 53
4.1.6 Missing information . 54

4.2 Physical word segmentation . 55
4.2.1 Motivation . 55
4.2.2 Technical background . 55

CONTENTS 5

4.2.3 Explicit space representation . 56
4.2.4 Implicit space representation . 56
4.2.5 Making sense of it . 57
4.2.6 Implementation . 58
4.2.7 Performance . 60

4.3 Extracting graphical information . 61
4.3.1 Motivation . 61
4.3.2 Vector graphics . 61
4.3.3 Bitmap graphics . 61
4.3.4 Missing in action . 62
4.3.5 Putting the pieces together . 62

5 Logical layout analysis 65
5.1 Text labelling . 66
5.2 Dehyphenation . 67
5.3 Logical paragraph segmentation . 67
5.4 Output format . 68

6 The application – PDFExtract 69
6.1 Technical introduction . 69

6.1.1 Model . 69
6.1.2 Datasource . 72
6.1.3 Datasource – PDFBox . 72
6.1.4 Logical tree . 73
6.1.5 analysis . 73
6.1.6 tei-output and tei-p5-schema . 73
6.1.7 xml-output . 73
6.1.8 renderer . 75

6.2 Example output . 75

7 Performance evaluation 77
7.1 Benchmark . 77
7.2 Behind the numbers . 78

7.2.1 Needlessly separated text . 78
7.2.2 Graphics problems . 79
7.2.3 Incorrectly detected columns . 79
7.2.4 Incorrect ordering of text . 79

6 CONTENTS

7.3 Evaluation . 79

8 Conclusion 81
8.1 Further work . 82

Bibliography 83

List of Figures 85

Acronyms 87

A Example document and result of analysis 89
A.1 Example document . 90
A.2 Logical output . 91
A.3 Physical output . 94

B Whitespace covering algorithm – Java implementation 95

Chapter 1

Introduction

1.1 Motivation

One of the great advances in the digital era has been to enable us to store vast amounts
of documents electronically. The advantages electronic documents have over documents
stored on paper are plentiful: easy storage, little maintenance, efficient retrieval and
sharing. Another firm advantage is that electronic documents have an explicit inter-
nal structure which is easily accessible. This structure can be physical (e.g. pages,
columns, paragraphs, tables, etc), logical (e.g. titles, abstracts, sections, etc) or both.
This structural information can be very useful for locating information contained within
the document, for Information Retrieval, or for helping for example visually impaired
access the information.

It is indeed curious then, that the Portable Document Format (PDF) standard, one
of the most used document standards for electronic document archiving, foregoes this,
and does not normally represent information in a manner which preserves structure or
semantics in a computer-understandable way. PDF documents are primarily organized
at a comparatively low level of typesetting instructions.

This thesis concerns itself with trying to recreate some notion of structure from the
information which is intact, with the primary goal of analysing scholarly literature.

Highlighting the need for this strctured information, a standard for embedding it in
PDF files has more recently been developed under the name PDF/Universal Accessibility,
or “Tagged PDF” (PDF/UA). However, because of the quantity of documents created
without this information, trying to recreate it remains a very important problem to
solve.

8 1 Introduction

1.2 Background

1.2.1 The PDF standard

PDF is a document standard which is the de facto standard for printable documents
on the web, as well as frequently used for document archival and exchange. It was
created by Adobe in 1993, and subsequently officially released as the open standard
ISO 32000-1:2008 (2008). The file format was originally created to represent documents
in a fixed-layout manner, while being independent from the platform and application
used to view it.

PDF can actually be seen as something of a composite standard, which unifies at
least three technologies, which together constitute a way to create documents:

1. A simplified subset of the PostScript page description programming language which
leaves out general programming constructs like loops and branches, but includes
all graphical operations to draw the layout, text and images.

2. A font embedding system which allows a document to carry the fonts it needs to
make sure it will display as it was designed.

3. A structured storage system which stores objects of data, images or fonts inside a
PDF document.

All the data objects are represented in a visually oriented way, as a sequence of opera-
tors which, when interpreted by a PDF parser, will draw the document on a page canvas.
This is a logical approach considering its roots as a PostScript successor and its orienta-
tion towards desktop publishing applications, but the implications are unfortunate for
anyone who wants access to the text in a structured manner.

Interpretation of these operators will provide us with all the individual characters, as
well as their formatting and position on the page. However, they generally do not convey
information about higher level text units such as words, lines or columns, that kind of
information is left implicit by whitespace. Furthermore, the fragments comprising the
text on a page may consist of an individual character, a part of a word, a whole line, or
any combination thereof. Complicating matters further, there are no rules governing the
order in which text is encoded in the document. For example, to produce a page with
a two-column layout, the page could be drawn by first drawing the first line of the left
column, then the first on the right, then the second on the left etc. Obtaining text in
the logical reading order obviously requires that the text in the left column be processed
before the one on the right, so a naïve output based on the encoded order of the text
might produce undesirable results.

1.3 Problem description 9

Since the standard is now open and free for anyone to use, we are fortunate to have
several mature, open source libraries for working with PDF documents to handle all the
low-level parsing. For this project we will use PDFBox (n.d.).

1.3 Problem description

In order to be able to perform many operations on the extracted content, it is vital
to have obtained a logical structure of the text. Since we are working with principally
visually oriented data, it was decided to pursue a method to approximate this structure
by using all the visual clues and information we have available.

The data presented in a PDF file consists of streams of data; by placing less im-
portance on the order of elements of within the streams, and more on the visual result
obtained by “rendering” (or at least evaluating all the PDF operations) the file, the
problem of making sense of these data is shifted slightly from what essentially amounts
to stream-processing, into a domain related to computer vision.

This essentially corresponds to the same problem tackled by Optical Character
Recognition (OCR) software, just without the need to perform the actual character
recognition. Since OCR has been researched for a long time, one could reasonably hope
that existing methods from this field could be adopted for this new context and benefit
from the more plentiful information available.

The process of “understanding” a document in this context is called document layout
analysis, a process which is frequently treated as two subsequent processes. First a page
image is subject to a geometric layout analysis, the result of which is then used as input
for a logical layout analysis to ultimately provide a logical representation of the content.

1.3.1 Geometric layout analysis

The goal of this analysis is to produce a hierarchical representation of a page in terms of
blocks of homogenous content, which implicitly contains the spatial relationship between
them. This is principally done through geometric and spatial information, i.e. the size
and position of content. The resulting structure allows describing a page at different
levels of detail, e.g. the content which corresponds to a linguistic word can thus be seen
as the whole word itself, as part of a line of text, as a part of a block of text lines, etc.

This process of segmenting different parts of document content in this way is a
well known problem, especially in the context of OCR software, and is normally called
geometric layout analysis. This is the process other PDF text extraction projects have

10 1 Introduction

labeled boxing/deboxing, so named after the boxes content is grouped in. Even though
we have more information when it comes to PDF documents than in an OCR context,
the process remain essentially the same. A thorough, if a bit dated, overview can be
found in Cattoni, Coianiz, and Messelodi (1998)

After having obtained all the content by parsing the PDF file, we find that the order
in which it is received may not necessarily correspond to the logical order in which it
should be read. To properly reorder the content, it is segmented into more manageable
blocks, each representing a maximal region of the page with homogenous content.

The main problem while performing this segmentation is essentially to decide the
function of whitespace between content, i.e. whether it represents character spacing,
word spacing, or if it divides two non-connected pieces of text. The reason why this is
difficult is that the boundaries for these classes of spacing might overlap, for example
when the distance separating two words might be bigger than that between two columns
of text. In any case these boundaries will vary a great deal between documents. Also
horizontal spacing gives some problems when it comes to deciding whether or not two
text fragments are on the same line, consider for example superscript, subscript and complex
equations. Although this is more thoroughly done in the logical layout analysis phase,
some floating text like sidenotes and graphic figures, etc should also be separated out
early.

Literature on the subject suggests three classes of approaches for this kind of analysis,
top-down, bottom-up and hybrid. Although these categories do not seem to be clear-cut
and without overlap, they still provide a useful way to differentiate the many algorithms.

Bottom-up algorithms start from individual pixels, construct connected components
from the pixels which constitute characters, and then iteratively cluster these connected
components into words, lines, etc. Superficially, bottom-up algorithms seem to generally
be variations of considering a text fragment in context of the immediately surrounding
text, and then group together those closer to each other than x, where x is hopefully
determined in a smart way.

Top-down algorithms start from the entire image of a page, and iteratively subdivide
it into smaller pieces until some condition is met, after which the current state is consid-
ered the final segmentation. This approach naturally favours establishing a higher level
layout representation of the document layout, and then grouping the content according
to that.

With such a high level layout representation, text grouping is easier, because it is

1.3 Problem description 11

done within certain constraints. Also, classification of horizontal whitespace is then
reduced to only two options (i.e. does this whitespace divide two words or not, it will
be known if it separates columns). Note especially in Figure 1.1 how even a complex
layout can be described by listing just a few column boundaries.

Figure 1.1: Columnal layout described by rectangles

Hybrid algorithms are those which are a mix of the two, or do not really fit in any
of the two categories.

For an overview over a selection of algorithms and which category they are deemed
to belong to, see Mao, Rosenfeld, and Kanungo (2003). Of the many techniques avail-
able, many inherently work only on bitmapped data (for example identifying blocks by
smearing images), while others seem more general in that they can lend themselves to
this new context of PDF documents instead of OCR.

1.3.2 Ordering of text content

The process of ordering the identified text blocks in its logical order is also crucial in
order to successfully extract information, as any failure to do so will result in garbled,

12 1 Introduction

wrongly combined or out of sequence fragments of text. The essential problem is to look
at all the whole page, and figure out in which order a person would read all the contained
blocks. For that it is necessary to consider all the text blocks and do a topological sort
of them. Figure 1.2 shows recovered reading order for a page with complex layout. All
text on a page is sorted; content like i.e. page numbers, which is not part of the body
text, is separated at a later stage.

Figure 1.2: Determining reading order. Expected reading order among the green boxes
marked with arrows. Text which might not be qualified as body text in red

1.3.3 Logical layout analysis

While geometric layout analysis leaves us with a complete physical representation of a
page in terms of blocks of segmented content, the next step is to somehow use that to
derive a logical structure.

The essential idea is to both assign labels to, and figure out the logical relationship
between these blocks based on an a priori model of a general document. These labels
are meant to correspond to concepts that humans perceive as meaningful with respect
to the content at hand, typical examples would be title, body text, table, etc. The
relationships will be for example that a section header precedes and introduces the body
text of paragraph, or that a section header belongs beneath the main title. Based on this

1.3 Problem description 13

information it is possible to construct a hierarchical tree-like structure which represents
the logical information we have found.

An important consideration here is the set of labels the application will use. It is
clear that some labels, say for example title and page number are very general and will
apply to large numbers of documents. Likewise it also seems clear that some possible
labels will be appropriate for only specific sets of documents. For example abstract and
footnote will make more sense for research papers than for letters, while the converse
will be true for sender, recipient and signature.

In other words, this process in particular could be adjusted or extended to differ-
entiate between a bigger number of labels for a specific set of documents, but then at
the cost of restricting the domain on which the program will reliably operate. Although
several backends for different types of documents could easily be imagined, this project
will include one generic set of labels. Since text extraction from scholarly literature is a
primary goal for the project, the set of will be sufficient to recognize and represent that,
but apart from that everything is kept as general as possible.

In order to perform this logical analysis, two things are essential: First, we need a
foundation which enables us to reason about the document layout and content. In this
project we naturally depend on the result of our geometric layout analysis, which leaves
us with a high quality and high level representation of the content.

Additionally, we also need some kind of model which describes what we can expect a
document to look like, and which characteristics a piece of text should exhibit in order to
receive a label. Starting thus with the blocks from the physical analysis, we can consider
the labelling of text as a classification problem. To illustrate this point a bit, consider
the case of deciding whether a block can be classified as a subsection header or not. In
that case, positive answers to most of the following questions might very well indicate
that it in fact is:

• is the text preceded by some text which was classified as a section header?
• is the text succeeded by what is considered the document body text?
• is the text formatted differently, perhaps with a bold or different font face or a

bigger font size, than body text?
• is the text indented compared to the general column start?
• does the text start with a number, letter, dot, star, etc…?

This process is relatively simple for specialized and homogenous groups of content,
but in the larger and more general picture it is much harder. There is an incredible
number of documents produced which exhibit an immense variety in design and style,

14 Technical terms

and so it goes without saying that the scope of this analysis will necessarily need to be
narrowed down to the subset which has a structure to be discovered, and which manifests
a relatively consistent design.

1.3.4 Reparation of publication-related damage

Additionally, several publishing-related artifacts should be cleaned up, this would in-
clude decomposing ligatures into the individual characters they consist of, removing
page numbers, migrate specific and obsolete character sets to Unicode, remove control
characters, remove word-dividing hyphens, and recombine lines. Except for recombi-
nation of lines and removal of page numbers, this topic will not be discussed in much
detail as code to perform these functions was inherited when the program started, and
PDFBox will now do some of it natively.

1.4 Technical terms

In this thesis a variety of different terms originating from as diverse fields as natural
language processing, typography and plain computer science will be used. In addition,
some terms require a more precise definition in this context. For this reason a short list
of concepts is presented below.

baseline in typography, the baseline is the line upon which most characters are placed.
To illustrate, an s is fully over the baseline, while a p has a descender which goes
crosses and goes underneath it.

Branch and Bound a general algorithm for finding optimal solutions of various opti-
mization problems, especially in discrete and combinatorial optimization. It con-
sists of a systematic enumeration of all candidate solutions, where large subsets of
fruitless candidates are discarded en masse, by using upper and lower estimated
bounds of the quantity being optimized (source: Wikipedia).

character set Refers to a numerical representation of a set of characters so that text
can be represented numerically. Earlier there were many character sets for different
languages in use, today Unicode is the most important one because it is a superset
of all the other character sets and its use hence essentially eliminates character
sets as something to be considered.

code point a numerical offset in a character set, as opposed to the character or item it
represents.

Technical terms 15

control character a code point in a character set, that does not in itself represent a
printable character. Fonts embedded in PDF documents might use custom encod-
ings which, if no corresponding Unicode translation table is supplied, might cause
output text to be garbled and often contain control characters which will make
the output appear as binary data.

dehyphenation the process of recombining a word which has been split over two lines
with a hyphen (–) while typesetting. The problem is to decide whether or not
to keep the hyphen when recombining, as some should be kept as they have a
semantic meaning.

descender in typography, a descender is the part of a glyph which is placed below the
baseline.

glyph a visual representation of a character in a specific font and style.

Information Retrieval the area of study concerned with searching for documents, for
information within documents, and for metadata about documents, as well as that
of searching relational databases and the World Wide Web (source:Wikipedia).

kerning the process of adjusting the spacing between characters in a proportional font,
usually to achieve a visually pleasing result.

ligature In typography, a ligature occurs when two or more characters are joined into
a single glyph. An example is when f and i are joined into fi.

Manhattan layout is a page layout with the property that all text and graphics regions
can be separated by horizontal and vertical line segments. Pages which do not have
this layout are considered more difficult to analyze.

Page segmentation refers to the first part of the geometric layout analysis, namely
the segmentation of homogenous content into blocks. In the context of OCR, this
is normally dependant on a preceding skew analysis to account for skewed content,
but that is unnecessary for PDF documents.

PostScript a dynamically typed concatenative programming language created by John
Warnock and Charles Geschke in 1982. PostScript is best known for its use
as a page description language in the electronic and desktop publishing areas
(source:Wikipedia).

16 Technical terms

river in typography, rivers are gaps which appears to run into a text paragraph because
of accidental alignment of whitespace so that it lines up.

TrueType an outline font standard originally developed by Apple Computer in the
late 1980s as a competitor to Adobe’s Type 1 fonts used in PostScript (source:
Wikipedia).

Unicode a computing industry standard for the consistent encoding, representation
and handling of text expressed in most of the world’s writing systems. If text is
encountered in another character set, it is typically desirable to convert to Unicode.

1.5 Outline of thesis

The following chapters will deal with the different aspects of the project mentioned in
the introduction.

• Chapter 2 describes the state of two prior projects which were inherited at the
start of the project, shows a performance evaluation which was conducted, and
lists some common problems while performing text extraction.

• Chapter 3 deals with how a suitable geometrical layout analysis algorithm was
found, and how it was adapted and implemented.

• Chapter 4 is in part a continuation of Chapter 3, in that it describes topics which
are related to the geometrical layout analysis. These topics, however, are purely
technical and would have been issues regardless of which method would have been
chosen in Chapter 3, and are hence collected in a chapter of their own.

• Chapter 5 presents the foundations of a logical layout analysis as described above.
The geometric layout analysis was the main focus of the project, and this chapter
thus above all shows how the result from that is of great help when developing this
subsequent analysis.

• Chapter 6 describes the organization and implementation of the application which
was developed.

• Chapter 7 presents a performance evaluation performed to assess how well the
implemented geometrical analysis algorithm works for a collection of previously
unseen documents, and discusses the most common imperfections observed in the
output.

• Chapter 8 finally presents the conclusion based on a performance evaluation and
briefly mentions possibilities for further work.

1.6 Major results 17

1.6 Major results

The main focus of the research performed in this project is the geometric layout analysis.
The analysis took as its point of departure an existing theory, but during the project
the main algorithm was substantially extended and adapted so that the final algorithm
has some novelty. Several other related algorithms developed for the project for column
boundary identification and recovery of reading order are only loosely based on the
existent theory, and are thus original research. Additionally, new solutions for word
segmentation and graphics separation and segmentation were found. Some imperfections
in the PDFBox and FontBox libraries were found and patched.

The resulting geometric layout analysis is quite powerful, and represents the most
important advance made in this project.

Chapter 2

Related work – Comparison of
existing projects

At the start of the project in February 2010, there were already two existing projects,
both of which could serve as the base for further work. These two were TextGrabber,
developed at the University of Oslo (UiO), and the other was pdf2xml, written at German
research centre das Deutsche Forschungszentrum für Künstliche Intelligen (DFKI). The
two projects had overlapping goals, and were quite compatible source code-wise, since
they used the same underlying library, PDFBox (n.d.).

It seemed that in order to see which one were to serve as a starting point, it was
logical to conduct a comparative study of the two projects to explore which of them
would be the better match. Additionally, it was important to see to which extent they
covered the goals which were planned for this project. To this end, a benchmark against
which the applications would be tested was created.

Aside from just the performance in the benchmark, the programs would also be
judged by the number of features which were present, if these were of the kind which
would be wanted for this project. The final quality which would be judged was main-
tainability. This meant a quick evaluation of code quality, architecture, availability of
unit tests, exported XML schema, etc.

2.1 Challenges and common problems

Before we present the comparison itself, it’s useful to have a look at common prob-
lems encountered while processing PDF documents. All of these challenges complicate
analysing PDF files in different ways.

20 2 Related work – Comparison of existing projects

• Many documents are laid out with bigger line spacing than normal. This fact
complicates code which combines singular lines into blocks, as one must maintain
an idea of average line distance. See Figure 2.1 for an example.

!"

"

To what extent do therapists in adult psychiatry involve the

children of mentally ill patient(s)?

Abstract:

involve children. Nine therapists from the psychiatric policlinic at the hospital in Namsos,

Norway were interviewed. The selection of interviewees was done in order to ensure

representation across the complete range of professions involved. An interview guide

consisting of 12 pertinent questions was developed and employed. The results show that the

of the therapists reported that the sick parent(s) had brought up their personal concerns for

their children in the course of treatment. Five of the informants confirmed that they had at

times invited the children to participate in conversations with their parents. Only two of these

had done this more than once. The explanation for why children are so seldom involved can

be stringent environmental control factors, uncertainties, fear of generated increased

workload, or of undertaking a more complex treatment process. Perhaps treatment in adult

psychiatry

socially unacceptable to

K ey Words: children at risk, children of mentally ill, maltreatment, prevention

Figure 2.1: Large line spacing

• Another recurring problem is the separation of footnotes from body text. Unless a
lot of care is taken, they will frequently end up being part of the running text or,
as was the case with these two programs, frequently just dropped from the output
altogether. See Figure 2.2 for an example of how a footnote might appear close to
body text.

Combining unsupervised and supervised methods for PP

attachment disambiguation

Martin Volk

University of Zurich

Schönberggasse 9

CH-8001 Zurich

vlk@zhwin.ch

Abstract

Statistical methods for PP attachment fall into

two classes according to the training material

used: first, unsupervised methods trained on

raw text corpora and second, supervised meth-

ods trained on manually disambiguated exam-

ples. Usually supervised methods win over un-

supervised methods with regard to attachment

accuracy. But what if only small sets of manu-

ally disambiguated material are available? We

show that in this case it is advantageous to in-

tertwine unsupervised and supervised methods

into one disambiguation algorithm that outper-

forms both methods used alone.
1

1 Introduction

Recently, numerous statistical methods for

prepositional phrase (PP) attachment disam-

biguation have been proposed. They can

broadly be divided into unsupervised and su-

pervised methods. In the unsupervised methods

the attachment decision is based on information

derived from large corpora of raw text. The text

may be automatically processed (e.g. by shallow

parsing) but not manually disambiguated. The

most prominent unsupervised methods are the

Lexical Association score by Hindle and Rooth

(1993) and the cooccurrence values by Ratna-

parkhi (1998). They resulted in up to 82% cor-

rect attachments for a set of around 3000 test

cases from the Penn treebank. Pantel and Lin

(2000) increased the training corpus, added a

collocation database and a thesaurus which im-

proved the accuracy to 84%.

In contrast, the supervised methods are based

on information that the program learns from

manually disambiguated cases. These cases

1This research was supported by the Swiss National
Science Foundation under grant 12-54106.98.

are usually extracted from a treebank. Su-

pervised methods are as varied as the Back-

off approach by Collins and Brooks (1995)

and the Transformation-based approach by

Brill and Resnik (1994). Back-off scored

84% correct attachments and outperformed the

Transformation-based approach (80%). Even

better results were reported by Stetina and Na-

gao (1997) who used the WordNet thesaurus

with a supervised learner and achieved 88% ac-

curacy.

All these accuracy figures were reported for

English. We have evaluated both unsupervised

and supervised methods for PP attachment dis-

ambiguation in German. This work was con-

strained by the availability of only a small Ger-

man treebank (10,000 sentences). Under this

constraint we found that an intertwined combi-

nation of using information from unsupervised

and supervised learning leads to the best re-

sults. We believe that our results are relevant to

many languages for which only small treebanks

are available.

2 Our training resources

We used the NEGRA treebank (Skut et al.,

1998) with 10,000 sentences from German news-

papers and extracted 4-tuples (V, N1, P,N2)

whenever a PP with the preposition P and the

core noun N2 immediately followed a noun N1

in a clause headed by the verb V . For example,

the sentence

In Deutschland ist das Gerät über die Bad

Homburger Ergos zu beziehen.

[In Germany the appliance may be ordered from Er-

gos based in Bad Homburg.]

leads to the 4-tuple (beziehen, Gerät, über,

Ergos). In this way we obtained 5803 4-tuples

with the human judgements about the attach-

ment of the PP (42% verb attachments and 58%

Figure 2.2: Footnote below paragraph

• Graphical figures and the textual content contained withing them will, if care is not
taken to separate them out along with their contained textual contents, normally
appear as text inside a column of body text. See Figure 2.3 for an example where
a table appears with more or less the same width as the column it is enclosed in.

• Mathematical formulæ are notoriously difficult to deal with for several reasons.
Some of the characters might be drawn with vector operations, the vertical posi-
tion varies much and is obviously significant. Outside of running text they might
conceivably be stripped out, but inlined in the text they have to be dealt with.
Since it is very difficult to make any sense of the extracted equations, the most
important thing is not to break the segmentation of surrounding text.

2.1 Challenges and common problems 21

2.5 Results

Table 1 shows the top five paradigmatic associa-
tions to six stimulus words. As can be seen from the
table, nearly all words listed are of the same part of
speech as the stimulus word. Of course, our defini-
tion of the term paradigmatic association as given
in the introduction implies this. However, the simu-
lation system never obtained any information on
part of speech, and so it is nevertheless surprising
that – besides computing term similarities – it im-
plicitly seems to be able to cluster parts of speech.
This observation is consistent with other studies
(e.g., Ruge, 1995).

blue cold fruit green tobacco whiskey
red hot food red cigarette whisky

green warm flower blue alcohol brandy
grey dry fish white coal champagne

yellow drink meat yellow import lemonade
white cool vegetable grey textile vodka

Table 1: Computed paradigmatic associations.

A qualitative inspection of the word lists generated
by the system shows that the results are quite
satisfactory. Paradigmatic associations like blue
red, cold hot, and tobacco cigarette are
intuitively plausible. However, a quantitative
evaluation would be preferable, of course, and for
this reason we did a comparison with the results of
the human subjects in the TOEFL test. Remember
that the human subjects had to choose the word
most similar to a given stimulus word from a list of
four alternatives.

In the simulation, we assumed that the system
had chosen the correct alternative if the correct word
was ranked highest among the four alternatives.
This was the case for 55 of the 80 test items, which
gives us an accuracy of 69%. This accuracy may
seem low, but it should be taken into account that
the TOEFL tests the language abilities of prospec-
tive university students and therefore is rather diffi-
cult. Actually, the performance of the average hu-
man test taker was worse than the performance of
the system. The human subjects were only able to
solve 51.6 of the test items correctly, which gives an
accuracy of 64.5%. Please note that in the TOEFL,
average performance (over several types of tests,
with the synonym test being just one of them) ad-
mits students to most universities. On the other

hand, by definition, the test takers did not have a
native command of English, so the performance of
native speakers would be expected to be signifi-
cantly better. Another consideration is the fact that
our simulation program was not designed to make
use of the context of the test word, so it neglected
some information that may have been useful for the
human subjects.

Nevertheless, the results look encouraging.
Given that our method is rather simple, let us now
compare our results to the results obtained with
more sophisticated methods. One of the methods
reported in the literature is singular value decompo-
sition (SVD); another is shallow parsing. SVD, as
described by Schütze (1997) and Landauer & Du-
mais (1997), is a method similar to factor analysis
or multi-dimensional scaling that allows a signifi-
cant reduction of the dimensionality of a matrix with
minimum information loss. Landauer & Dumais
(1997) claim that by optimizing the dimensionality
of the target matrix the performance of their word
similarity predictions was significantly improved.

However, on the TOEFL task mentioned above,
after empirically determining the optimal dimen-
sionality of their matrix, they report an accuracy of
64.4%. This is somewhat worse than our result of
69%, which was achieved without SVD and without
optimizing any parameters. It must be emphasized,
however, that the validity of this comparison is
questionable, as many parameters of the two models
are different, making it unclear which ones are re-
sponsible for the difference. For example, Landauer
and Dumais used a smaller corpus (4.7 million
words), a larger window size (151 words on aver-
age), and a different similarity measure (cosine
measure). We nevertheless tend to interpret the
results of our comparison as evidence for the view
that SVD is just another method for smoothing that
has its greatest benefits for sparse data. However,
we do not deny the technical value of the method.
The one-time effort of the dimensionality reduction
may be well spent in a practical system because all
subsequent vector comparisons will be speeded up
considerably with shorter vectors.

Let us now compare our results to those ob-
tained using shallow parsing, as previously done by
Grefenstette (1993). The view here is that the win-
dow-based method may work to some extent, but
that many of the word co-occurrences in a window

Figure 2.3: Figure in the middle of a column

Figure 2.4: A multiline equation

• Variable word and character spacing can be a big problem because it can fool the
word segmentation algorithms. As can be seen in Figure 2.5, this variation can be
very noticeable between documents.

Text Attributes - Character and Word Spacing

This test contains examples of character and word spacing.

Character spacing:
This text is normally spaced. This text is normally spaced. This text is normally spaced. This text
is normally spaced. This text is normally spaced. This text is normally spaced. This text is normally
spaced. This text is normally spaced. This text is normally spaced. This text is normally spaced.
This text is normally spaced. This text is normally spaced.
This text has inter-character intervals increased by 1pt This text has inter-character
intervals increased by 1pt This text has inter-character intervals increased by 1pt
This text has inter-character intervals increased by 1pt This text has inter-character
intervals increased by 1pt This text has inter-character intervals increased by 1pt
T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y 2 p t T h i s t e x t h a s
i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y 2 p t T h i s t e x t h a s i n t e r - c h a r a c t e r
i n t e r v a l s i n c r e a s e d b y 2 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s
i n c r e a s e d b y 2 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y
2 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y 2 p t
T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y
4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t
This text has inter-character intervals increased by 0pt (i.e. normally spaced). This text has
inter-character intervals increased by 0pt (i.e. normally spaced). This text has inter-character
intervals increased by 0pt (i.e. normally spaced). This text has inter-character intervals increased
by 0pt (i.e. normally spaced). This text has inter-character intervals increased by 0pt (i.e. normally
spaced). This text has inter-character intervals increased by 0pt (i.e. normally spaced).
This text has inter-character intervals reduced by -1pt This text has inter-character intervals reduced by -1pt This text has
inter-character intervals reduced by -1pt This text has inter-character intervals reduced by -1pt This text has inter-character
intervals reduced by -1pt This text has inter-character intervals reduced by -1pt

Word spacing:
In this text, spaces between words are normal. In this text, spaces between words are normal. In
this text, spaces between words are normal. In this text, spaces between words are normal. In this
text, spaces between words are normal. In this text, spaces between words are normal. In this text,
spaces between words are normal. In this text, spaces between words are normal. In this text,
spaces between words are normal. In this text, spaces between words are normal.
In this text, spaces between words are increased by 2pt In this text, spaces between words
are increased by 2pt In this text, spaces between words are increased by 2pt In this text,
spaces between words are increased by 2pt In this text, spaces between words are increased
by 2pt
In this text, spaces between words are increased by 6pt In this text, spaces between
words are increased by 6pt In this text, spaces between words are increased by

© RenderX 2000 XSL Formatting Objects Test Suite

Text Attributes - Character and Word Spacing Page 1

Text Attributes - Character and Word Spacing

This test contains examples of character and word spacing.

Character spacing:
This text is normally spaced. This text is normally spaced. This text is normally spaced. This text
is normally spaced. This text is normally spaced. This text is normally spaced. This text is normally
spaced. This text is normally spaced. This text is normally spaced. This text is normally spaced.
This text is normally spaced. This text is normally spaced.
This text has inter-character intervals increased by 1pt This text has inter-character
intervals increased by 1pt This text has inter-character intervals increased by 1pt
This text has inter-character intervals increased by 1pt This text has inter-character
intervals increased by 1pt This text has inter-character intervals increased by 1pt
T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y 2 p t T h i s t e x t h a s
i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y 2 p t T h i s t e x t h a s i n t e r - c h a r a c t e r
i n t e r v a l s i n c r e a s e d b y 2 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s
i n c r e a s e d b y 2 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y
2 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y 2 p t
T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d b y
4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t T h i s t e x t h a s i n t e r - c h a r a c t e r i n t e r v a l s i n c r e a s e d
b y 4 p t
This text has inter-character intervals increased by 0pt (i.e. normally spaced). This text has
inter-character intervals increased by 0pt (i.e. normally spaced). This text has inter-character
intervals increased by 0pt (i.e. normally spaced). This text has inter-character intervals increased
by 0pt (i.e. normally spaced). This text has inter-character intervals increased by 0pt (i.e. normally
spaced). This text has inter-character intervals increased by 0pt (i.e. normally spaced).
This text has inter-character intervals reduced by -1pt This text has inter-character intervals reduced by -1pt This text has
inter-character intervals reduced by -1pt This text has inter-character intervals reduced by -1pt This text has inter-character
intervals reduced by -1pt This text has inter-character intervals reduced by -1pt

Word spacing:
In this text, spaces between words are normal. In this text, spaces between words are normal. In
this text, spaces between words are normal. In this text, spaces between words are normal. In this
text, spaces between words are normal. In this text, spaces between words are normal. In this text,
spaces between words are normal. In this text, spaces between words are normal. In this text,
spaces between words are normal. In this text, spaces between words are normal.
In this text, spaces between words are increased by 2pt In this text, spaces between words
are increased by 2pt In this text, spaces between words are increased by 2pt In this text,
spaces between words are increased by 2pt In this text, spaces between words are increased
by 2pt
In this text, spaces between words are increased by 6pt In this text, spaces between
words are increased by 6pt In this text, spaces between words are increased by

© RenderX 2000 XSL Formatting Objects Test Suite

Text Attributes - Character and Word Spacing Page 1

6pt In this text, spaces between words are increased by 6pt In this text, spaces
between words are increased by 6pt
In this text, spaces between words are increased by 0pt (i.e. normally spaced). In this text, spaces
between words are increased by 0pt (i.e. normally spaced). In this text, spaces between words are
increased by 0pt (i.e. normally spaced). In this text, spaces between words are increased by 0pt
(i.e. normally spaced). In this text, spaces between words are increased by 0pt (i.e. normally
spaced).
In this text, spaces between words are reduced by -2pt In this text, spaces between words are reduced by
-2pt In this text, spaces between words are reduced by -2pt In this text, spaces between words are reduced
by -2pt In this text, spaces between words are reduced by -2pt

© RenderX 2000 XSL Formatting Objects Test Suite

Text Attributes - Character and Word Spacing Page 2

Figure 2.5: Examples of variable spacing. This document was obvisouly crafted to
highlight the possible variation, but none of the examples are implausible in the wild

2.1.1 Variation encountered in PDF files

Apart from the specific problems mentioned above, a no small part of the problem
faced while extracting information from PDF files is the sheer variety of tools used
to produce the files, and all the subtly different ways in which they encode them. To

22 2 Related work – Comparison of existing projects

illustrate the variation in terms of tools used to produce documents, a script was written
which collected some statistics from a collection of around 27000 documents from the
Norwegian Open Research Archives (NORA)1 collection. This is a primarily a collection
of research literature, and should be a good representation of documents in the wild.
The distribution of tools can be seen in Figure 2.6.

The different tools used will necessarily affect the typographical appearance of the
content, the manner and order in which content is written, the amount and size of
separational whitespaces, the representation of graphical content, the amount, format
and encoding of fonts, and amount of meta-information. All of this will affect and
frequently complicate the task at hand, especially because of the arising need to work
around missing information and avoid assumptions which some times will turn out to
be false.

Number of documents Name of tool
1063 214 other programs with less than 50 documents
62 Windows NT
64 AFPL Ghostscript PDF Writer
64 ESP Ghostscript
65 easyPDF SDK
75 GPL Ghostscript PDF Writer
89 HP Digital Sending Device
106 AFPL Ghostscript
122 PDF PT
123 FrameMaker
150 OmniPage Pro
160 Pscript.dll
163 Acrobat Distiller
180 Writer
211 PrimoPDF
221 PDFCreator
225 Aladdin Ghostscript
228 Canon iR EUR
232 Acrobat Distiller for Windows
392 Adobe InDesign
641 GNU Ghostscript
874 dvips
2199 TeX
2538 Adobe Acrobat
3641 PScript5.dll
6750 Word
248 Broken documents
6222 Documents without metadata

Figure 2.6: Overview of tools used to create PDF files

1http://www.ub.uio.no/nora/search.html

http://www.ub.uio.no/nora/search.html

2.2 Feature comparison 23

2.2 Feature comparison

The two applications must have had largely the same general goals, so it is logical that
the both have very similar lists of features. The main features, at least those which
could easily be seen were implemented in the code are the following:

• Both projects provide adequate text extraction possibilities for many documents
• Both projects have some code to create geometrical boxes out of the many frag-

ments of texts which is returned by the PDF parser library, and in that way group
text

• Removal of page numbers from text
• Removal of control characters from text
• Reparation of publication related damage:

– Removal of superfluous hyphens
– Decomposition of ligatures

In addition, the pdf2xml tries to recognise title, author and abstract for academic
papers. TextGrabber performs language identification and converts the legacy windows
1251 character set into Unicode.

2.3 Maintainability and architecture

The state of the code of both projects was assessed before the benchmark. Among the
main considerations were:

• the code itself
• how maintainable and easily understandable the code appears
• possibilities and limitations
• Structure of exported eXtensible Markup Language (XML) schema
• Recovery of structure in the text

2.3.1 pdf2xml

There are both good and bad things to say about this project. To start with the positive,
it has a relatively small amount of code, it uses clever abstractions for text grouping
(TextBox and TextGroup) as well as a graph component of a math library which seems
like a good fit, it integrates well with the inheritance model established by PDFBox (and
should hence be very forward compatible).

24 2 Related work – Comparison of existing projects

On the other hand the same clever text grouping code (which does after all consti-
tute the biggest part of the code) is also both difficult to understand and very poorly
documented, and is hence in need of some refactoring and documentation. Less severe,
but still worth mentioning, is the fact that some of the code is written in python, and
that the source distribution omits a required bibtex python module to build it. This is
however a much smaller component which at worst could even have been migrated to
Java easily.

2.3.2 TextGrabber

At first sight the code gives a very good impression, all the code is written in Java
and it has a working build script. It seems to be coded in a well planned manner with
an extensible pipeline system for processing of the text in the XML tree, and it takes
advantage of Java’s java.util.concurrent framework for parallel processing. Also there
is already some code to easily integrate it with Apache’s Lucene2 text indexing and
search project.

On the negative side, the project requires a patch to the third party PDFBox library
to work properly, something which could make upgrading to a newer version a bit more
difficult. By superficial analysis it seems possible to rewrite that part of the code.

The XML schema, although easily extendable, defines very little document structure.
The text transformer classes practically operate on raw text.

2.4 Performance overview

2.4.1 Benchmark

In order to perform the performance comparison in a thorough and unbiased way, a
benchmark with several real world documents was needed. It was deemed that a set of
15 heterogenous documents chosen in a way as to cover as much variation as possible
would cover at least a good subset of common problems. This number should probably
ideally have been higher, but in this phase of the project it was also necessary to keep
the amount of preparatory work to a minimum.

In order to construct this benchmark set, two collections of documents were consid-
ered. The first is the ACL Anthology Reference Corpus (ARC), which is provided by the
Association for Computational Linguistics (ACL). As is described in Bird et al. (2008),
it is a set of quite homogenous academic documents.

2http://lucene.apache.org/

http://lucene.apache.org/

2.4 Performance overview 25

The second collection comes from the NORA collection mentioned above. The main
difference between the two for this purpose is that the documents in the NORA collection
generally exhibit more variation in layout.

To obtain the wanted variation, it was decided to use the metadata embedded in the
documents to extract information on what tool had been used to create the document,
and which year it was made. A script then, based on that information, choose a subset
of 30 documents from the total sets of about 16000 documents in such a way that it
maximized variation of tools and periods of time. Then, based on a manual analysis,
the set was trimmed to 15 documents to avoid documents which added little to the test,
or were outright unsuitable (all text in images, saved with unrecoverable encoding, etc).

To perform the benchmark, a list of possible defects was compiled for each document,
which in turn was then manually compared against the actual results of the different
programs. The focus was both on the quality (missing or excessive whitespace, correct
segmentation of text lines and words) and quantity (text fragments which are missing
partially or altogether) of the text, and the order in which it was written.

A factor which complicated the comparison was the different feature sets supported
by the projects; to which degree should one of the projects be penalized for not success-
fully accomplishing something which the other project does not even attempt?

The problems found (and some general observations) are presented below.

2.4.2 Results

The DFKI project, pdf2xml, generally performed best for the documents which belonged
to the ARC set of documents; as it was developed with exactly that kind of documents
in mind. Even though it will sometimes lose some body text, the results were quite good.
Some headlines were unnecessary filtered out, and footnotes do very randomly appear
in the output. For the documents from NORA documents it fared worse, crashing while
processing 7 out of the (original) set of 30 documents. The code for finding abstract,
author and title worked to a certain degree for the ARC documents, but was useless for
the rest. Overall, the impression is thus kind of mixed, it worked satisfactory for ARC
documents, and a bit less so for the ones from NORA.

TextGrabber on the other hand had no crashing problems, and generally provided
useful output. Also here many documents had subtle or more serious errors when it came
to missing, wrongly ordered, and/or partly garbled text, but the results were satisfactory
in that the output contained most of the text and was generally indexable.

26 2 Related work – Comparison of existing projects

2.5 Conclusion

Based on the different evaluations above, it was a not entirely straightforward to choose
one of the projects. pdf2xml offered what was probably the strongest text grouping
engine, while in terms of codebase, features and performance, TextGrabber was deemed
to be better.

The main problem was that neither of them offered any definite solutions for the
most of the problems outlined above. There was e.g. no code to specifically handle lines
with superflous line spacing, no graphics-aware code, not smart enough text grouping
code, and too little structure in the exported XML schema.

Because of this, it was decided to try to go one step further, and create an applica-
tion from scratch which would have as its foundation a stronger geometric text grouping
engine, and then see how a logical analysis on top of that would perform. Many of the
features in TextGrabber like decomposing ligatures, performing dehyphenation, correct-
ing or eliminating control character, performing language detection, etc can then easily
be incorporated this more generic framework.

Chapter 3

Geometric layout analysis – Page
segmentation

The task of geometric layout analysis, and perhaps in particular Page segmentation
from images for OCR purposes, remains a frequent topic in the literature, even after
having been investigated for an extended amount of time by many researchers. Though
many viable solutions have been proposed, it has been commented for example by
Antonacopoulos, Gatos, and Bridson (2007) that they often are “devised with a spe-
cific application in mind and are fine-tuned to the test image dataset used by their
authors”.

The problem Page segmentation tries to solve is to divide a given page into homoge-
nous zones, or perhaps more clearly expressed, to separate what visually seems to belong
together into separate groups.

The essential problem encountered while doing this, is always in the end a decision
of whether a whitespace between two words divides only words or if it divides columns.
The reason why it is hard is that independent of font sizes and other known variables,
inter-column distances are frequently smaller than inter-word distances.

There seems to be a somewhat inconsistent view as to what would belong in and
what would be the output from such an analysis. The traditional approach seems to have
been about enveloping text and image regions in rectangular shapes or polygons, while
more recently it has been sought to recover the geometrical structure of the document.
In practice, that process involves an approximation of column boundaries which are
essential to determining reading order. There now also seems to be consensus that
logical and physical layout concepts not be mixed, and that proper segmentation of e.g.
logical paragraphs be deferred to a posterior logical analysis step.

28 3 Geometric layout analysis – Page segmentation

While the core problem remains the same, the task at hand in this project is in-
herently different from that of segmenting images while preparing for an OCR analysis.
Primarily, it is a question of the amount and quality of information available to the
algorithms. For the layout analysis of a PDF document, all the operations required to
render a page are known a priori, as is necessarily the result of said rendering. While
controlling the interpretation of a document, it can also be very useful to decide if and
how to render every component. Case in point is that careful separation of the rendering
of graphics from that of text could for example potentially enable such an analysis to
better deal with situations involving a so-called non-Manhattan layout, which have given
OCR software so much trouble. There will also necessarily exist information about fonts
used to render text, the sequence in which it was rendered, etc.

3.1 Choosing an algorithm

The differences in available rendering information mentioned above will obviously have
implications for an algorithm which was originally developed for OCR. When starting
to look for an algorithm which could be suitable for this new context, the following list
of requirements were compiled:

1. That the algorithm not mainly operate on raw bitmapped data. Since we have
much more and more precise data available in this context, it is essential that the
algorithm be extendable to incorporate that information

2. That it has received some favourable verdict, preferable in a performance compar-
ison

3. That it seems probable that added information will positively affect its performance
4. That it be general and, in order to avoid user intervention, not require manual

parameters

Literature on the subject of OCR was consulted to see what was available in terms
of algorithms, and two good starting points were found. A review of the state of the
art in the OCR literature can be found in Mao et al. (2003). Since it was both a bit
dated and none of the algorithms seemed to be exactly what was searched for, it was
mainly used for orientation. A more recent performance review was conducted in Shafait,
Keysers, and Breuel (2008), where 6 different algorithms were compared. This looked
more interesting, and it was thus used as a starting point.

After eliminating 4 of the 6 algorithms based on requirements 1 and 2, the remaining
algorithms were X–Y Cut and Constrained Textline Detection.

3.1 Choosing an algorithm 29

3.1.1 X–Y cut

This is a simple algorithm which was originally described in Nagy, Seth, and Viswanathan
(1992). It belongs to the top-down algorithms described in Section 1.3.1, and works by
creating a tree with a root node which represents the whole page. Subsequent recursive
steps create subnodes in the tree by subdividing rectangles vertically or horizontally
based on the content. The set of leaf nodes thus represents the final segmentation.

The algorithm itself might be a bit too simple for the use envisioned in this project,
but the updated version described in Meunier (2005) where it was extended to allow
more flexible layout and enable determination of reading order, would be a good match.

3.1.2 Breuel’s Constrained Textline Detection

What is described in Breuel (2002) is actually a framework for document layout analysis
with a four step process based on a whitespace analysis. The result of that analysis is
used to identify columns, which again are used to segment text lines. The last step in
the process is determination of reading order.

1. Whitespace analysis The first step is an analysis of the whitespace which sur-
rounds all the text and graphics in terms of rectangular covers. The idea is in a way the
opposite of the traditional process of enveloping groups of text in blocks; here what is
sought is to use blocks of whitespace to discover the logical structure of the page.

To a certain extent this approach builds on work by others, especially Baird (1992),
which was also mentioned by Shafait et al.. It is claimed (by Breuel himself) that
this algorithm is far easier to implement, that it, when contrasted to other similar
algorithms, outputs rectangles in decreasing size, and that it is quite efficient. This
seemed plausible based on the theory presented in the paper, and especially the promise
of easy implementation was considered a big plus by the author.

2. Identification of columns The second step in the process is identification of col-
umn boundaries based on the whitespace rectangles found. This is essentially a selection
process with some constraints, e.g. that a possible column boundary must be adjacent
to a certain number of characters, that it must have at least a certain aspect ratio, etc.

3. Finding text lines Next is a text line finding algorithm which takes the obstacles
(as it views the content and the identified whitespace rectangles) and column boundaries
into account, called constrained line finding.

30 3 Geometric layout analysis – Page segmentation

Since text line segmentation is a hard problem for OCR, it has to take a lot of factors
into account, most prominently among which are skew due to careless scanning of a page.
This does of course not apply for PDF documents.

Identifying text lines has traditionally also been considered a problem because text
lines which are physically close to each other (but non-related) might have different
line parameters (inter-character and inter-line distances). By using a high-level layout
description based on gutters (the identified columns), line segmentation only within the
resulting blocks of text becomes relatively easy.

4. Finding reading order The last step is to determine the reading order of the
content by a topological sort of the content. This process involves sorting the columns
which has been identified, and then the lines contained within them.

3.1.3 Verdict

In Shafait et al. (2008), Breuel’s Constrained Textline Detection seemed to receive the
best verdict of the two layout analysis algorithms which were considered for this project;
they concluded that “In the case of a heterogeneous document collection with differ-
ent font sizes, styles, and scan resolutions, the constrained text-line finding algorithm
appears to be the best choice”.

In order to get a better impression of the two algorithms, trial implementations were
performed of both.

For the X–Y Cut algorithm, the original, simple version was chosen, as the extended
version does not change the characteristics of the algorithm in an important way. The
main problem found with this algorithm was that it brought relatively little help in
making decisions about what belonged together; while the algorithm does provide a
context in which to make these decisions, they were still about making local choices
(within the current subrectangle) based on observed text distances and font information.
Since this is essentially a variation of the original problem, it was felt that other options
should be explored.

As for the other algorithm, the sample implementation proved more interesting in
that the identified rectangles provided additional help for text grouping. Additionally,
the algorithm has few parameters (only a quality function for deciding which rectangles
be preferred, and the identification of gutters/column separators.).

Both algorithms were deemed to benefit from the extra information available in the
context of PDF analysis, but Breuel’s Constrained Textline Detection was in the end

3.2 Page segmentation – Implementation 31

chosen because it seemed to fulfill all the prerequisites set forth above, and it seemed
like a very interesting match for the problem at hand.

3.2 Page segmentation – Implementation

The implementation in this project follows the spirit of the general process outlined by
Breuel (2002). However, since this project deals with a different (though definitively
related) problem, it is natural that it omits, adds or interchanges steps as has been
deemed suitable.

3.2.1 Motivation

A short discussion about why one would want information about whitespace might
perhaps be in order; it is after all about the only thing we would not be interested in
for any information retrieval purpose. Furthermore it is already left implicit by the
placement of everything else on a page.

The main point is indeed also not about the whitespace itself, but about the difference
between what we could call functional and nonfunctional whitespace, where a functional
whitespace can be said to have a separational quality.

The recurrent questions when one wants to determine whether text fragments are
related or not, are normally questions about their mutual distance and aesthetic dif-
ferences. What the information from this algorithm brings to the table is really the
possibility to ask another set of questions based on connectivity.

Are these text fragments separated by something?

Though a long shot from Artificial Intelligence, this information will hopefully serve
as an approximation to one of the patterns a human reader would subconsciously make
use of to read a page.

3.2.2 Whitespace covering algorithm

For the original description of the algorithm, the interested reader might want to consult
Section 2 of Breuel (2002). Since the core algorithm remains the same in this project,
this section will necessarily have to be a paraphrase of what is described there.

The algorithm finds a cover of the background whitespace of a document in terms
of maximal empty rectangles. It is a top-down algorithm, which means it uses a whole
page as its starting point, and works in a way analogous to quicksort or Branch and

32 3 Geometric layout analysis – Page segmentation

Bound algorithms. Whitespace rectangles are returned in order of decreasing quality
(the quality function which determines which rectangles we want is detailed below),
which means the output should be globally optimal in that no other combination of
covering rectangles should cover the page better.

The iterative steps are illustrated in Figure 3.1, where (a) shows the start of the
algorithm. We start with a bound and a set of rectangles, which are called obstacles. If
the set is empty, it means that the bound is a maximal rectangle according to the other
obstacles around which the page was divided. If on the other hand there are obstacles,
we need to further subdivide the bound. To this end, we choose a pivot, which ideally
is centered somewhere around the middle of the bound.

(a) (b) (c1) (c2)

Figure 3.1: Example showing one iteration of the whitespace covering algorithm. In
(a) we see some obstacles contained within a bounding rectangle. In (b) one of them is
chosen as as pivot (marked in red), and (c1) and (c2) show how the original bound is
divided into four smaller rectangles (marked in grey) around the pivot.

We know that any maximal rectangle can not contain any obstacles, in particular
not the pivot. Based on that there are four possibilities for the solution of the maximal
whitespace rectangle problem, one for each side of the pivot. The areas of these four
subbounds are computed, a list of intersecting obstacles is computed for each of them,
and they are all put back on the queue. The selection of a pivot is seen in (b) in Figure 3.1,
while the four resulting rectangles are marked in (c1) and (c2). The algorithm can be
seen in pseudocode in Figure 3.2.

Data structure The algorithm does not really require a specialized geometrical data
structure. The main data structure in use is a queue of QueueEntry objects which each
represent the bound of a subset of a page, and everything contained within it. The
definition can be seen in Figure 3.3. The queue is a priority queue which always will
return the QueueEntry with the highest priority, as determined by a quality function
Q(r).

Choosing a quality function To decide which rectangles we want as output, we use
a quality function Q(r) for a rectangle bound r, which in this project is defined as follows

3.2 Page segmentation – Implementation 33

Input: Geometrical bound of page pageBound
A list of obstacles obstacles

Output: The next identified whitespace rectangle

queue ←− create a queue which sorts QueueEntries based on their Q()
add a new QueueEntry containing obstacles and bounded by pageBound to queue

while queue is not empty do
current ←− QueueEntry with highest Q() from queue

if isEmpty (current →obstacles) then
output current
return if sufficient rectangles has been found, if not continue with next
QueueEntry

end

pivot ←− select the centermost obstacle from current →obstacles

b ←− current→bound
rright →bound ←− (pivot →endX, b →y, b →endX, b →endY)
rleft →bound ←− (b →x, b →y, pivot →x, b →endY)
rabove →bound ←− (b →x, b →y, b →endX, pivot →y)
rbelow →bound ←− (b →x, pivot →endY, b →endX, b →endY)
subrectangles ←− (rright, rleft, rabove, rbelow)

foreach r in subrectangles do
r →obstacles ←− select all of current →obstacles intersecting with r
→bound
add r to queue

end

end

Figure 3.2: This is the core algorithm more or less as described in the paper. It is called
repeatedly until the requested number of whitespace rectangles has been found. For
the next run, the returned whitespace rectangle will be added to the provided list of
obstacles

34 3 Geometric layout analysis – Page segmentation

class QueueEntry {
const Rectangle bound
const float quality ← Q(bound)
List<Rectangle> obstacles
int numberOfWhitespaceFound

}

Figure 3.3: The pseudocode definition of the QueueEntry class. It contains a rectangle
bound which corresponds to part of a page, the obstacles contained within it, and a
precalculated score as determined by the scoring function Q(r) which is subsequently
used to sort a priority queue.

:

Q(r) = area(r) · height(r)
4

As can be seen, tall rectangles are preferred. The trick while choosing this Q(r) was
to keep that preference while still allowing wide rectangles to be chosen. After having
experimented with quite a few variations, this simple function was considered a good
solution.

Finding n–best solutions (a greedy version) The algorithm as presented above
returns one maximal rectangle; in order to find more it is would be possible to continue
to expand nodes from the queue. However, this way of obtaining many rectangles would
produce rectangles with substantial overlap. In order to avoid that, a greedy version of
the algorithm, which was proposed in the original paper, was used.

After a maximal rectangle has been found, it is added back to the list of obsta-
cles. Whenever a QueueEntry is dequeued, its list of obstacles can be recomputed
to include newly identified whitespace rectangles. This is the purpose of the field
numberOfWhitespaceFound in the definition of QueueEntry, which on dequeueing is checked
against the current count.

3.2.3 Problems and adaptations

Although the algorithm worked like it was supposed to, there were some problems with
it for the use envisioned. The most important problem was that the algorithm was not
smart enough. It would leave connecting gaps between non-related groups of text, and
it would separate related text into several groups. Needless to say, tweaking Q(r) and

3.2 Page segmentation – Implementation 35

setting constant minimum bounds was of no use in the general case, so a few adaptations
to the core algorithm were needed.

Secondly, the algorithm as initially implemented was too slow. While running (single
threadedly) on a semi-modern Intel Core 2 Duo, worst case performance for analysing
one page was around 20 seconds, with averages closer to 3-4 seconds.

The following factors were important for the performance of the algorithm:

1. The number of rectangles required to adequately cover the page
2. The cost of computing one rectangle
3. The number of needlessly created rectangles (i.e. those which did not end up in

the output)
4. Implementation deficiencies and missing optimisations

It was thus clear that most, or preferably all, of these should be reduced to a mini-
mum.

3.2.4 Avoiding unwanted passages by overlapping

The most visible problem was that rectangles would frequently almost touch each other,
while letting small narrow passages remain inbetween. An example of this problem can
be seen to the left in Figure 3.4. This would complicate grouping later on, as it would
be necessary to then have some kind of limit of how narrow a connection between two
pieces of text could be. As this problem would essentially be just a variation of the
original problem faced, it was highly undesirable.

The main culprit here seemed to be uneven shapes of text groups, where a small
amount of content standing out could negatively affect the output as described. Although
this effect may to a certain degree be implicated by how the algorithm works, some simple
adaptations helped remedy the problem to a large degree.

The first and most obvious adaption, which was also suggested in the original article,
was to allow a candidate whitespace rectangle to overlap the surrounding obstacles by
some percent. After considering a few different ways to enable this functionality, the
following function was chosen for deciding whether any two rectangles overlap. White-
space_fuzziness is a constant which in the finished code was set to 15%, which was
thought to be a reasonable overlap and found to work well.

overlaps(r1, r2) = area(r1 ∩ r2) > min
area(r1), area(r2)

· whitespace_fuzziness

36 3 Geometric layout analysis – Page segmentation

Having defined that, we are left with the decision of whether to consider a potential
whitespace rectangle ρ as being empty, given the set of obstacles O in a page.

isEmptyEnough(ρ) = ∄ o ∈ O : overlaps(ρ, o)

∧
∑
o∈O

area(ρ ∩ o) < area(ρ) · whitespace_fuzziness

This also helped in that the generation of quite a few unnecessary rectangle candi-
dates was avoided, and it helped ensure a more smooth execution. The effect of this
adaption can be seen to the right in Figure 3.4.

Figure 3.4: Before (left) and after (right) the fix for unwanted passages.

3.2.5 Avoiding stray whitespace by continuity

Another problem were rectangles which were identified in the middle of text groups.
While normally not a big problem, it could erroneously break up said text groups at a
later stage. An example of such rectangles can be seen in Figure 3.5.

A check was added which impeded the algorithm from accepting rectangles which
were not adjacent to an already accepted rectangle, or to the border of the page. In
order to maintain the correctness of the algorithm, rejected rectangles are put in a hold
list. Each time a new rectangle is identified and accepted, this hold list will be added
back to the queue in case any of them will have become valid.

This had the effect that the algorithm started from the borders of the page and
worked itself inwards, thus more naturally working its way through groups of text. It
also avoided stray rectangles located inside paragraphs.

Figure 3.5: Whitespace rectangles were frequently misplaced inbetween groups of text

3.2 Page segmentation – Implementation 37

3.2.6 Avoiding intraparagraph lines by local minimum bounds

With a Q(r) which favoured long or tall rectangles for their separational qualities, it
would frequently happen that lines in some paragraphs would have whitespace rectangles
inbetween all their lines. While this would have been possible to remedy later, it was
still also undesirable.

This was solved by introducing lower bounds for the height and width of rectangles.
As an optimization, conservative page-wide bounds were precalculated based on average
font sizes (for vertical bounding) and average vertical distance between characters (for
horizontal bounding). For every identified rectangle, a more precise estimate of minimum
bounds is calculated based on the immediate surrounding text (if any), and the rectangle
will be accepted based on that. The effect of this fix can be seen in Figure 3.6.

Figure 3.6: Before (left) and after (right) the fix.

3.2.7 Avoiding two word separators

Rectangles would frequently sneak in into groups of text via rivers or extra spacing. Al-
though not a big problem, this had the effect of frequently breaking up short paragraphs
of 1-4 lines. An example of this can be seen in Figure 3.7

This was solved by imposing a rule stating that any rectangle located between one
text element both to the left and to the right will not be accepted.

Figure 3.7: Before (left) and after (right) the fix. Also take note how big enough spaces
are still filled, by looking at the spacing separating the words in “Eit gul-t hus”

3.2.8 Misc adaptions

Quite a few optimizations had to be done in order to get the algorithm working fast
enough.

38 3 Geometric layout analysis – Page segmentation

• The bounds within which the algorithm works are the minimum bound which
envelops all the content on the page, not the dimensions of the page. This decreases
the amount of rectangles needed to cover the page

• A maximum bound for queue size was applied. It is sufficiently large that enough
data will have been found once it is met

• The Java profiler JProfiler1 was used to identify local bottlenecks. The code was
thus optimized to perform a minimum of calculations. As importantly, the orig-
inally object-oriented design of the relevant classes had to be changed a bit to
enable static invocation and hence inlining of functions; although that may seem
overly technical, it effectively halfed execution time

3.2.9 Discussion

It was mentioned initially that the performance of the algorithm depends on a variety
of variables: page layout, whitespace rectangles needed, etc.

While the amount of whitespace rectangles needed is an important consideration, it
is also crucial to note a few things about what kind of rectangles are wanted as well.
In Breuel (2002), 200 rectangles are extracted from each page, with a pairwise overlap
of up to 80%, and no overlap with textual content. Here, in comparison, a whitespace
rectangle can overlap both other whitespace rectangles and text by the rules presented
in Section 3.2.4 (up to 15% pairwise and combined overlap).

The algorithm changes performance characteristics a bit by the changes presented
above. The overlapping rule and the page-wide bounds mentioned in Section 3.2.6
together drastically cut down on the number of generated potential rectangles. On the
other hand, the rest of the adaptions can be seen as filtering, and thus potentially throw
away many rectangles before one is accepted. This increases the cost again, but adds a
lot of value by outputting more useful rectangles.

More useful rectangles do here translate directly into a drastically reduced number
needed when compared to the original algorithm. The net result is that to completely
cover a page with advanced layout, 30 rectangles are almost always enough. A maximum
of 40 rectangles was eventually chosen to cover the odd case where it would be beneficial
with more.

The advantage of the added information provided by a PDF as opposed to a docu-
ment scan became apparent while implementing this algorithm. Permitting whitespace
rectangles to partly overlap with text had a very good effect. That would have been very

1http://www.ej-technologies.com/products/jprofiler

http://www.ej-technologies.com/products/jprofiler

3.2 Page segmentation – Implementation 39

difficult to do in OCR because it would have relied on information which is typically
not yet available. Likewise for the filtering process, which is in part powered by having
access to mostly exactly positioned content and font sizes for approximate boundaries.

In terms of CPU time, the algorithm is as mentioned expensive, though much less
so than the initial implementation. Once Java’s Just in Time compiler has warmed up,
a normal page is fully analysed in 100 ms on the same computer. The upper bound
seems to be around 1 second for finding these 40 rectangles. A graph which shows run
times for computing 0–50 rectangles for three pages of varying complexity is shown in
Figure 3.8. To illustrate the progression of the algorithm on a real page, see Figure 3.9.

Since this algorithm ended up being at the core of the project, and also was the
most researched part of the project, it was decided to include the implementation code
in Appendix B.

Figure 3.8: Number of whitespace rectangles identified plotted against how long it took
for three different pages, one simple and two complicated (The one with the longest
runtime can be seen in Figure 3.9) Even for 50 rectangles 400 ms is enough, while simple
pages will in any case be analysed in well under 100 ms. These numbers come from
effectively running the program 50 times for each page with one smoothing pass for the
runtimes.

40 3 Geometric layout analysis – Page segmentation

Figure 3.9: This demonstrates the progression after 2, 15, 30 and 50 identified rectangles. We see that
enough information to recover columnal structure is available after only two rectangles (as there are two
column boundaries). If text grouping is to rely on this information alone, 30 rectangles would not sufficient
for this page, as can be seen by e.g. the gaps left behind above section headers

3.3 Determining page layout 41

3.3 Determining page layout

The next step according to Breuel (2002) is to use the identified whitespace rectangles
to determine the page layout in terms of columns. As mentioned in Section 3.2.1, the
whitespace analysis is expected to provide functional whitespace, which can be used for
the analysis; this is its first application.

3.3.1 Challenges

It should be noted that while the whitespace rectangles enable this functionality, there
are no guarantees that there has been identified one rectangle which is equivalent to a
whole column boundary. This is a natural consequence of how the algorithm works, at
least with a Q(r) which admits reasonably sized horizontal rectangles. Such a horizontal
rectangle might be scored higher than a potential vertical rectangle which would have
covered a column perfectly, and thus block it.

In addition there can also be imperfections like gaps in the identified whitespace
if the page in question contains some content which breaks with the general layout.
An example of this can be seen to the left in Figure 3.10. It can also happen that
the whitespace cover algorithm erroneously outputs a set of rectangles which will leave
unrelated pieces of text connected. This can be seen at the right in the same figure.

In the original design by Breuel there was an assumption that such a guarantee was
indeed given, and that all that was needed was to select whitespace rectangles as column
separators based on a list of criteria. Because of the 80% permitted overlap among the
whitespace rectangles, column spacing would seldom be blocked, but the imperfections
would in any case remain, still making column adjustments necessary.

Taking these complications into account, our revised process for determining column
boundaries consists of three consecutive steps:

1. Extract a set of candidate column boundaries from the set of identified whitespace
rectangles

2. Vertically expand column boundary candidates
3. Combine equivalent and filter out unwanted boundaries.

3.3.2 Extract column boundary candidates

The objective here is to select whitespace rectangles which are likely to correspond to
at least part of a real column boundary. In order to do this, there must necessarily
exist some criteria which a potential candidate must meet. Because we will introduce

42 3 Geometric layout analysis – Page segmentation

Figure 3.10: Left: The name “Linell” breaks out from the layout. In order to obtain
the column boundary (marked in red), it is necessary to combine the two whitespaces
located above and below.
Right: The column boundary has to be interpolated based on the whitespace rectangle
at the bottom (starting roughly between “both” and “well”)

a combination and filtering phase at a later stage, it is appropriate to have quite loose
requirements here. These are summarised in the following paragraphs.

Aspect ratio Most importantly, the whitespace rectangle must be taller than it is
wide. In the original paper the minimum aspect ratio was 1 : 3. It was observed that
in some situations that would allow some columns to escape undiscovered, so for this
project this demand was relaxed to 2 : 3.

Surrounding content Additionally, there must be some bound on how much text is
required to surround the whitespace rectangle. This candidate selection essentially just
checks that there is indeed content on both the right and left sides. Even one side with
no content can be tolerated if there is a lot of content on the other; this solves a very
specific problem where small floaters located between page boundaries and a column of
text would not be separated from the column.

The pseudocode in Figure 3.11 illustrates how the selection is done.

3.3.3 Height adjustment of columns

The real column boundaries on a page can, as seen in Figure 3.10, extend beyond indi-
vidual whitespaces. To approximate these, it is necessary to try to adjust them. This is
done by finding a vertical range extending from that of the boundary column candidate

3.3 Determining page layout 43

Input: Set of identified whitespaces W
Output: Set of column boundary candidates B

foreach Rectangle w in W do
Only accept with a certain aspect ratio;
if w.height/w.width < 1.5 then

reject w;
end
leftCount ← locate count of text fragments which ends just left of w;
rcCount ← locate count of text fragments which starts just right of w;
Rule out whitespace with no content on either side, unless there is a lot on the
other;
if leftCount = 0 and rcCount < 8 then

reject w;
end
if rcCount = 0 and leftCount < 8 then

reject w;
end
Finally, There must be 4 or more lines of content on either side;
if leftCount ≥ 4 or rcCount ≥ 4 then

add w to B;
end

end

Figure 3.11: Algorithm for extracting column boundary candidates. The constants which
appear in the code to signify a lot are a bit random, but were found to work. This was
essentially a makeshift solution which there was never time to replace with something
more clever.

44 3 Geometric layout analysis – Page segmentation

while assuring that there is content on the right and that the range is not blocked by
any contents. The algorithm appears in Figure 3.12.

Input: Set of column boundary candidates B, a geometric data structure with
the content of the current page P

Output: Set of adjusted column boundary candidates A

foreach Rectangle b in B do
Rectangle[] splits = split b into three thin vertical columns, each centered
around the left, middle and right X-coordinates;
foreach Rectangle s in splits do

Iterate through the range of Y values and determine the real length of s:;
x← s.minX ;
for y ← P.minY toP.maxY do

contentToRight← exists(content right of (x, y));
blocked← exists(content intersecting (x, y)) or exists(content
adjacent to (x, y) on both sides);

end
startY← the first y–coordinate right of which there is text and below
which there is a nonblocked path to b;
endY← the last y–coordinate right of which there was text and above
which there was a nonblocked path to b.;
s← updated position with vertical coordinates from startY to endY;

end
add maxHeight(splits) to A

end

Figure 3.12: Algorithm for adjusting column boundary candidates

3.3.4 Combination and filtering of column boundaries

Frequently the two introductory phases will leave us with several column boundary
candidates which effectively represent the same real boundary. While this is not critical,
it is easy to combine them. This is done by sorting the column boundary candidates
on their X–coordinate, and then combining pairs of them when there is no content
inbetween them. There is also a lower bound on column height, both because there
tended to be many falsely identified columns of short length, and because very short
columns are insignificant layout-wise since they are generally correctly grouped and
ordered anyway.

3.4 Text grouping and segmentation 45

The resulting set of column boundaries together form the high level layout which
will subsequently be used for text grouping.

3.4 Text grouping and segmentation

3.4.1 Page division – Column segmentation

Dividing a page into subparts when given the identified column boundaries is conceptu-
ally very simple. In practice this is done in this project by starting from the right hand
side of the page, and then iteratively working leftwards boundary by boundary while
extracting the content remaining right of each boundary. All text deemed to fall within
a graphical figure is also extracted into special graphical elements.

Internally this is supported by a hierarchical, geometrical data structure in which
blocks of extracted content are placed under the content from which it was separated.
This is mainly done to facilitate finding the correct order of text later.

3.4.2 Block segmentation

Traditionally, many tools have enveloped content in rectangular blocks, as it is both
conceptually and computationally the simplest solution. One of the advantages we get
for free by using the whitespace covering algorithm is that we end up with implicit blocks
formed after the shape of the content contained within the “holes” left behind by the
whitespace rectangles.

Calculating blocks of variable shapes bounded by a set of rectangles was not en-
tirely straightforward, but was solved with a flooding, recursive function which for every
unassigned content locates the nearest connected (i.e. with a path not blocked by any
whitespace rectangle) neighbour in all directions, marks those as assigned to the same
block, and then restarts the procedure from each neighbour.

There is an exception for handling equations, where if what probably equals a line
of text is deemed (by its content and/or font) to be an equation, all whitespace separat-
ing content horizontally is ignored. This works around a problem where equations are
erroneously split up.

3.4.3 Line segmentation

Line segmentation is done blockwise. All content within a block is sorted on Y –coordinates,
and the algorithm starts from the top and works itself downwards, marking content as
belonging to the current line as it goes. For every Y –coordinate, an estimate of how

46 3 Geometric layout analysis – Page segmentation

many pixels are covered by content is made, and a new line is created for local minima
beyond a certain distance from the last newline.

3.5 Recovering reading order

The step for determining reading order is described in Breuel (2002) as “4. Determine
reading order using both geometric and linguistic information”. In this project there are
no means to use linguistic information to determine this, so we are stuck with geometric
information. In Breuel (2003), the same author outlines another method of ordering
text. In section 3 we are shown how topological sorting of text lines (not larger text
blocks) seems to do the job reasonably well. In section 4 a probabilistic extension is
suggested, which would be consulted when a document is ambigous at the layout level.

The probabilistic extension seemed both untested and time-consuming to implement,
so it was decided to go with the topological sort, and see how it would work and whether
it could be extended if it was not good enough.

The comparison function in use receives two blocks o1 and o2, and then decides which
of them should be sorted first. See Figure 3.13 for details.

1 /**
2 * Sorts two blocks, o1 and o2. if -1 is returned, that means o1 sorts before o2.
3 */
4 public int compare(@NotNull final HasPosition o1, @NotNull final HasPosition o2) {
5
6 /** If one block is located entirely above another, it goes before. */
7 if (o1.getPos().endY < o2.getPos().y) {
8 return -1;
9 }

10
11 if (o1.getPos().y > o2.getPos().endY) {
12 return 1;
13 }
14
15 /** If one block is entirely to the left, it goes before. */
16 if (o1.getPos().endX < o2.getPos().x) {
17 return -1;
18 }
19
20 if (o1.getPos().x > o2.getPos().endX) {
21 return 1;
22 }
23
24 /** if the two blocks are located at more or less the same Y-coordinate, the one to the
25 left goes before. If not, else the one which starts higher up is sorted first */
26 if (!MathUtils.isWithinPercent(o1.getPos().y, o2.getPos().y, 4)) {
27 return Float.compare(o1.getPos().y, o2.getPos().y);
28 }
29
30 return Float.compare(o1.getPos().x, o2.getPos().x);
31 }

Figure 3.13: Topological sorting function: two and two blocks are sorted relative to each
other.

3.6 State after Geometric Layout Analysis 47

The sorting function used in Breuel (2003) was not really described, but this imple-
mentation should follow the general gist of it. As can be seen from the sorting function,
it is not meant to correctly sort a flat page full of blocks of content, but depends on
an internal data structure briefly mentioned in Section 3.4.1. The trick here is that
columns will be divided into regions, which then permits nesting of further columns into
subregions. To see how this works in practice look at Figure 3.14. There are four top
level regions here (labelled in blue), namely the ones containing paragraphs numbered
1–7, 8–19, 20–22 and 23–26. The regions with numbers 15–19 and 25–27 are nested
within 8–19 and 23–27, respectively.

While there is no doubt that there will be some layouts for which this does not work
perfectly, it seems very promising and has successfully sorted content from a large range
of layouts.

3.6 State after Geometric Layout Analysis

To conclude the chapter on geometric layout analysis, it can be useful to have a look at
all the information we are left with after the geometric layout analysis. In Figure 3.15 we
can see a lot of things featured. The timeline at the bottom and the box with the heading
“tulipmania” are both categorized as graphics. The text inside is extracted along with
the graphics itself, and hence receive no paragraph numbers. Inside the tulipmania box
we can see how the whitespace covering algorithm is recursively applied, in case there
would be columns inside the box.

To the left, marked with number 2–4 are floating sidetexts which has been separated
out as a column of itself. There is top text present as well, which has been segmented
together into two blocks, one for each page. Separating these blocks of text out from
the body text will be performed as a part of the logical layout analysis.

We also see nested regions in play, as well as correctly ordered text blocks.

48 3 Geometric layout analysis – Page segmentation

Figure 3.14: Reading order: nested page regions.

3.6 State after Geometric Layout Analysis 49

Figure 3.15: This figure displays state after page division, text grouping, graphics extraction and text
ordering. See text for details

Chapter 4

Geometric layout analysis –
Technical challenges

4.1 Exact glyph positioning

4.1.1 Motivation

From the outset, exact glyph positioning was not thought of to be an issue, and hence
not given much thought. However it soon became clear that specific characters could
be severely misplaced by up to several lines. The immediate consequence was that the
existence of even a single equation could negatively affect text grouping of all surrounding
text, and hence it would be necessary to look into. Although the problems encountered
manifest themselves for many fonts, it is much more noticeable in those which contain
variably sized glyphs, the prime example of which would be fonts used for math.

4.1.2 Problem description

The reason why this was a tough challenge to handle is composite, and ranges from
bugs in PDFBox, to missing information about the fonts in use, to the sheer variety
of font types supported in PDF documents. It was also clear that the text extraction
component of PDFBox was probably not written with this functionality as a specific
goal, so it was apparent that it would have to be patched in order to approximate the
desired functionality.

Recovering this geometrical information has very much been an iterative process.
This resulted in several consecutive steps which are best described by a series of illustra-
tions. The document used for that was chosen because it exhibits several traits which

52 4 Geometric layout analysis – Technical challenges

will be described below.
The original information as received from PDFBox is shown to the left in Figure 4.1.

While at a casual glance these misplacements might not seem like much, they severely
complicate things down the line because:

1. Characters which are next to each other might appear to be completely above or
below one another (in this instance have a look at for example the small as in the
3rd line)

2. Characters might be placed well into another line
3. Characters will overlap graphic details, complicating their use for layout recogni-

tion purposes

4.1.3 Offsetting Y-coordinates

The first and most obvious step, independently of which font type is used, is to offset
the original Y-coordinate by each characters height; this leaves us with the information
drawn to the right in the same figure. From what we can see, this appears to fix most
characters except for some which seemed about correct in the first step. No amount of
hacky solutions emerged which could correctly predict which characters exhibited this
behavior, so a sturdier solution was needed. Although not terribly important, we can
also see that no glyphs with descenders are placed under the baseline.

Figure 4.1: Left: Original information. Right: After naïve Y-coordinate offsetting

4.1.4 Discovering bounding boxes

These misplaced positions were correctly calculated according to the information avail-
able, but the error seemed to stem from the fact that a preceding PDF operator moved
the current text position back up on the page before drawing. Strange as it seemed,

4.1 Exact glyph positioning 53

it warranted some more investigation into the inner workings of PDFBox and its font
library, FontBox.

It was discovered that most fonts has information available about boundary boxes for
each glyph and for the whole font. A glyph boundary box is the smallest rectangle which
will completely surround the given glyph, and also position it relative to the baseline (by
letting, say, a lower case g span Y –values -200 through 600 for a common 1000-based
font where 0 is the baseline). The font bounding box is the geometrical union of all the
glyph bounding boxes, thus it can contain any glyph.

As it turned out, fonts which exhibited placement problems did indeed have at least
one very tall symbol which skewed the vertical size of the font boundary box by a large
amount. The jump back up was to make room for these huge font boxes, and the font
rendering routines would place each glyph relative to that.

Since these boxes were not a part of the placement calculation for the text extraction
code, characters were simply misplaced at the top end of the space which was made
available.

Fixing this involved both a patch to PDFBox to let it export glyph bounding box
information, and also some heavily specialized code which involves no less than three
unit types – for text, glyph and display–, and Y–coordinates in two different coordinate
systems (Java places (0, 0) in the upper left, while PDF places it in the lower left).

4.1.5 Glyph mapping

Boundary boxes solved a lot of problems, but not all. Careful inspection of the equations
would have shown (if one were to patch PDFBox’ rendering routines) that some charac-
ters have two corresponding glyphs. In this example there is supposed to be both a big
and a small integral sign (corresponding to TEX’ internal \integral and \textintegral
characters, respectively), with the small ones located above the fraction bar. This would
again not be a problem if we wouldn’t have had big integral signs crossing over several
lines in the middle of running text, which destroyed the text grouping algorithms.

In short, both glyphs were mapped to the same Unicode representation (there is only
one integral sign in Unicode, ditto with other symbols like square roots for which TEX
has at least 5 glyphs of different sizes), and that was in turn used to look up character
information, making it essentially random which of those sizes would be picked.

Fixing this involved patching PDFBox to use the glyph’s unique code point within
the font instead to avoid ambiguity. The image to the left in Figure 4.2 shows the state
after these two fixes.

54 4 Geometric layout analysis – Technical challenges

Figure 4.2: Left: Correctly placed characters. Right: After combining characters into
words

4.1.6 Missing information

Of course, life wouldn’t be interesting if that was all there were to it. Except for the
Y-position offsetting, the solutions above hold primarily for Adobe’s various types of
Type 1 fonts, but there are of course several other types of fonts:

• TrueType fonts are also very common in modern PDF documents. They are han-
dled a bit differently, and does not exhibit any of the problems mentioned above.
Similar information about exact positioning is typically embedded in the font, but
is not used by PDFBox (except indirectly for rendering).

• Type 0 fonts, or composite fonts, are relatively common in documents typeset in
non-latin character sets. They are called composite because they reference multiple
descendent fonts. Support in PDFBox seems unfinished, but as they haven’t been
causing problems it has not been investigated further.

• Type 3 is what must originally have given text extraction from PDF documents
a bad reputation. All glyphs are rendered using the full set of PDF graphical
operators, and can thus be used for diverse purposes such as including legacy or
bitmap fonts, or drawing logos. Since this type of fonts can be generated by a PDF
production tool (not to be confused with embedding font subsets into a document),
these fonts typically and frequently contain little or no meta-information such as
glyph sizes or Unicode mapping. Placement is usually not too far off, but PDFBox
consistently guessed overly large dimensions for all glyphs. This problem was
mostly alleviated by disabling a font cache in PDFBox. For the odd case where it
still came back wrong, some code was added to drastically shrink those estimates,
the effect of which can be seen in Figure 4.3. It should be stressed that this

4.2 Physical word segmentation 55

adjustment does not seek to increase exactness, but rather to avoid problems.
• There are other, more obscure, font types available for use. These may or may not

inherit the fixes outlined above, and may or may not work well.

It goes for all fonts that glyph sizes would have been computable by evaluating the
drawing operations for each glyph, but that was considered out of scope for this project.

Figure 4.3: Type 3 font before (left) and after adjustment. Characters are not rendered
because of a PDFBox bug, but their contents remains available for text extraction.

4.2 Physical word segmentation

4.2.1 Motivation

Because of how whitespace is (not) represented in PDF files, It became abundantly clear
early on that the in order to succeed, the project would need a very well performing and
powerful word segmentation algorithm.

Let it be clear from the start that no stones has been left unturned in the search for
an algorithm which would meet these standards. Literature has duly been consulted, but
current research seems more focused on word segmentation as it applies to hand written
manuscripts and Asian scripts. The source code of the free software OCR project located
at Tesseract-OCR (n.d.) was also consulted, without getting any real help since it had
the option of delaying a decision until a later stage where it could consult databases
as to find the most probable combination of words. The algorithm eventually reached
through this process is thus very much my own creation.

4.2.2 Technical background

PDF supports two ways of representing whitespace in text, they can be explicitly written
in the data stream, or they can be left implicit by spacing. To fully appreciate the
complications this second kind of whitespace introduces, it is helpful to see how this is
done in PDF documents on a technical level.

56 4 Geometric layout analysis – Technical challenges

While drawing text, a compliant PDF interpreter must keep track of a text state
which the data stream in the PDF files manipulates with a range of operators. Some
relevant ones for text rendering are the following1:

• Tc sets character spacing
• Tf sets font and size
• Tw sets word spacing
• T* jumps to start of next line, like a normal line break
• TJ shows text string. It supports horizontal adjustments for every glyph it draws

in order to efficiently support typographical demands like kerning.
• TD offsets the text cursor on the page, by (x,y) coordinates it receives as arguments.

4.2.3 Explicit space representation

If a document were ever typeset using only this kind of whitespace representation, there
would be no need to write this section, because text extraction would be straightforward.
In Figure 4.4 we see operators from a PDF file writing “Scandinavian, which is ” in the
straightforward way, with two cases of moving glyphs closer to each other.

1 COSArray{[COSString{Scandinavian, which i}, COSFloat{17.6}, COSString{s}, COSFloat{17.6}, COSString{ }]}
2 PDFOperator{TJ}

Figure 4.4: Well behaved northerners

4.2.4 Implicit space representation

For comparison, a case of implicit space representation is shown in the log extract in
Figure 4.5.

On line 2, TJ parses the prefixed arguments, and renders “Cani”. Next it processes
the number, which moves the current text position 677.5 glyph units right, then renders
“d” and “a” with an added 19 glyph units between them. Line 6 offsets the current text
position with 4 text units, and line 9 adjusts normal spacing between characters in the
middle of the line. The last line renders more text.

The most interesting thing to note is that this line, which is arguably badly typeset,
has very variable inter-word spacing. The final distances we are left with for this line
can be seen in Figure 4.6.

1For a complete list, the reader is encouraged to consult chapter 9 in ISO 32000-1:2008 (2008)

4.2 Physical word segmentation 57

1 COSArray{[COSString{Cani}, COSFloat{-677.5}, COSString{d}, COSFloat{-19.1}, COSString{a}]}
2 PDFOperator{TJ}
3
4 COSFloat{4.0714}
5 COSInt{0}
6 PDFOperator{TD}
7
8 COSFloat{-0.0122}
9 PDFOperator{Tc}

10
11 COSArray{[COSString{guardia}, COSInt{-298}, COSString{d}, COSFloat{51.4}, COSString{i},
12 COSFloat{-940.8}, COSString{grosse}]}
13 PDFOperator{TJ}

Figure 4.5: Know your enemy: This sequence of operators renders the text “Cani da
guardia di grosse”

C0.51a-0.23n-0.05i9.73 d0.43a10.41 g0.38u0.64a-0.07r0.18d0.18i0.70a4.41 d-0.54i13.74 g…

Figure 4.6: Final character distances

4.2.5 Making sense of it

The problem of determining whether the distance between two arbitrary glyphs repre-
sents a real whitespace or not, might sound simple. In most realistic examples like the
one presented here, there would be a clear difference of scale between the distances sep-
arating characters and words. It is indeed very simple to come up with a solution which
fits any given document at hand; The difficulties will not really enter the picture until
you need to generalize for all documents, because of the enormous variation encountered.

In the search for a working algorithm, a word boundary space has at different points
in time been defined to be:

• A space broader than x% of font size
• A space broader than x% average width of the y preceding, succeeding or all

characters
• A space broader than x% of any relation between the narrowest and broadest

spaces in the line

Numerous algorithms determining these x in more or less smart ways have been
proposed, but every inherent assumption in every one of them always caused them to
fail in subtle or not so subtle ways. The final algorithm which is presented below is in
no way perfect, but it certainly works for a very large percentage of the cases.

58 4 Geometric layout analysis – Technical challenges

4.2.6 Implementation

The algorithm works by approximating the character text spacing (as could be set by the
Tc operator) by averaging a number of the lower character distances within a line. This
charspacing is subsequently used to normalize the distances, that is, subtract the found
charspacing from every distance to ideally place character distances around 0, while
word distances will remain larger (they will also be relatively much larger than before
in comparison), thus facilitating identification. The identification of word boundaries
itself ended up being perhaps overly simple, it just compares the normalized distance
to a percentage of font size. This is actually the imperfect part of the equation, but
as indicated above it was frustratingly difficult to find any assumptions which generally
would hold.

Estimating charspacing

The main idea is that font kerning and other local adjustments will contribute relatively
little to the observed distance between characters, whereas the more general applied
character spacing will make up by far the biggest amount of the space. These local
adjustments will contribute in both directions, so in many cases we will be able to get a
somewhat good approximation if we average out a semi-random number of the smallest
distances.

To put some numbers to this, say we have character distances varying from 3.5 to
9pt. If we iterate through the first n distances, with distances ranging from 3.5 to 4.5pt
(the rest being skipped for being too big), the approximation of the character spacing
would thus end up around 4.

The Java implementation of the algorithm can be seen in Figure 4.7.

1 static float approximateCharSpacing(@NotNull List<PhysicalText> line) {
2 /** the real lower bound where this algorithm applies might be higher, but
3 * at least for 0 or 1 distances it would be non-functional*/
4 if (line.size() <= 1) {
5 return 0.0f;
6 }
7
8 final float[] distances = calculateDistancesBetweenCharacters(line);
9 Arrays.sort(distances);

10
11 /**
12 * This value deserves a special notice. When it was written semi-random above,
13 * this is essentially what was meant. We start out with the smallest distance,
14 * and will keep iterating until the numbers start to be bigger. The underlying
15 * assumption here is that word spacing will never be only 2 times the smallest
16 * space occurring between two characters.
17 *
18 * The 0.6 is a quite random number, it's purpose is to avoid breaking the
19 * algorithm for negative character distances (which are common and useful),

4.2 Physical word segmentation 59

20 * and its only properties are that it is too small to ever separate a word, and
21 * that it is a positive number :)
22 */
23 final float maxBoundary = Math.max(0.6f, distances[0] * 2.0f);
24
25 int counted = 0;
26 float sum = 0.0f;
27
28 for (float sortedDistance : distances) {
29 if (sortedDistance > maxBoundary) {
30 break;
31 }
32 sum += sortedDistance;
33 counted++;
34 }
35
36 return sum / (float) counted;
37 }

Figure 4.7: Determining character spacing – Java implementation

Word segmentation algorithm

The algorithm iterates through the characters in a line from left to right. While seg-
menting words, it considers both ways of implementing word spacing. If there is already
whitespace in the text, the words are segmented in the obvious way. If not, it, it calcu-
lates distances between all the characters and subtracts the approximated charspacing
as described above. Then word boundaries are then identified where these normalized
character distances are larger than a fraction of the font size.

1 @NotNull
2 Collection<PhysicalText> createWordsInLine(@NotNull final List<PhysicalText> line) {
3
4 /* keep the characters sorted at all times. note that unfinished words are put back into
5 * this queue, and will this be picked as currentWord below
6 */
7 final Queue<PhysicalText> queue = new PriorityQueue<PhysicalText >(line.size(), sortByLowerX);
8 queue.addAll(line);
9

10 /* this list of words will be returned */
11 final Collection<PhysicalText> segmentedWords = new ArrayList<PhysicalText >();
12
13 /* if we already have whitespace information */
14 final boolean containsSpaces = containsWhiteSpace(line);
15
16 /* an approximate average charspacing distance */
17 final float charSpacing = approximateCharSpacing(line);
18
19 /* all font sizes will be the same. if it is missing (Type3 fonts >:) just guess 10 */
20 final float fontSize;
21 if (line.get(0).getStyle().xSize != 0) {
22 fontSize = (float) line.get(0).getStyle().xSize;
23 } else {
24 fontSize = 10.0f;
25 }
26
27 /**

60 4 Geometric layout analysis – Technical challenges

28 * iterate through all texts from left to right, and combine into words as we go
29 */
30 while (!queue.isEmpty()) {
31 final PhysicalText currentWord = queue.remove();
32 final PhysicalText nextChar = queue.peek();
33
34 /* we have no need for these spaces after establishing word boundaries , so skip */
35 if (" ".equals(currentWord.getText())) {
36 continue;
37 }
38 /* if it is the last in line */
39 if (nextChar == null) {
40 segmentedWords.add(currentWord);
41 break;
42 }
43
44 /**
45 * determine if we found a word boundary or not
46 */
47 final boolean isWordBoundary;
48 if (containsSpaces) {
49 isWordBoundary = " ".equals(nextChar.getText());
50 } else {
51 final float distance = currentWord.getPos().distance(nextChar.getPos());
52 isWordBoundary = distance - charSpacing > (fontSize / 8.0f) + charSpacing*0.5f;
53 }
54
55 /**
56 * combine characters if necessary
57 */
58 if (isWordBoundary) {
59 /* save this word and continue with next */
60 segmentedWords.add(currentWord);
61 } else {
62 /* combine the two fragments */
63 PhysicalText combinedWord = currentWord.combineWith(nextChar);
64 queue.remove(nextChar);
65 queue.add(combinedWord);
66 }
67 }
68
69 return segmentedWords;
70 }

Figure 4.8: Word segmentation algorithm – Java implementation

4.2.7 Performance

Because it was necessary to have a benchmark against which one could compare the
output, a compilation of 5502 lines of text was compiled. Depending on parameters
the code would have around 40 lines with at least one error. Of those several would
be related to punctuation (which in any case could be fixed automatically), some lines
were a bit ambiguous as to what would be the correct segmentation, and some were
picked because they were notoriously difficult to get right. Since this was a very quickly
crafted, manually corrected set of text, undoubtedly there will also be some lines flagged
as correct which ideally would have been segmented differently. In any case, for this

4.3 Extracting graphical information 61

set of text, the failure rate counted in lines would be less than 0.01%. In the wild, the
success ratio will probably be lower, because of the variation mentioned.

4.3 Extracting graphical information

4.3.1 Motivation

It was decided that it would be very beneficial to have information about all graphical
elements on a page for the logical layout recognition. In particular it would make it
easier to separate out floating boxes with text, text which belonged inside of or next to
an illustration, find graphical text separators, etc.

4.3.2 Vector graphics

As PDF is at its core a resolution independent data format where everything is drawn
in terms of operators which manipulate and draw shapes, it should thus not come as a
surprise that most embedded graphics are vector based.

All drawing operators were originally disabled for the PDFBox’ text extraction code,
so the first step towards this information was to reenable them. Thanks to PDFBox’
well-thought-out architecture, this was as easy as swapping a Java properties-file with
another one.

Then, i needed to somehow come up with a capturing surface on which it would be
possible to draw. The existing rendering code was again cleverly written, so eventually
the methods which had to be reimplemented was narrowed down to the interface seen
in Figure 4.9:

The two vector methods receive a java.awt.geom.GeneralPath object which describes
the shape of the object which is to be drawn. Unfortunately, because frequently several
non-overlapping objects are described by the same java.awt.geom.GeneralPath object,
computing a simple bound is not sufficient. It turned out that one of the operators
available in that class is closePath(), so it was straightforward to write a method to
split paths around those.

4.3.3 Bitmap graphics

Bitmap graphics were a bit easier to get access to. Physically the bitmap data is stored in
separate content streams in the PDF, and PDFBox conveniently provides access to it as
java.awt.Image objects. Both vector and bitmap graphics can be subject to transforma-
tions, but while PDFBox took care of transforming vector data, it is up to the rendering

http://download.oracle.com/javase/6/docs/api/java/awt/geom/GeneralPath.html
http://download.oracle.com/javase/6/docs/api/java/awt/geom/GeneralPath.html
http://download.oracle.com/javase/6/docs/api/java/awt/geom/Path2D.html#closePath%28%29
http://download.oracle.com/javase/6/docs/api/java/awt/Image.html

62 4 Geometric layout analysis – Technical challenges

1 /**
2 * This represents a surface on which it is possible to draw. <p/> For graphic segmentation purposes
3 * no real drawing will occur, but a list of graphic placements will be created
4 */
5 public interface DrawingSurface {
6
7 // -------------------------- PUBLIC METHODS --------------------------
8 void clearSurface();
9

10 void drawImage(Image image, AffineTransform at, Shape clippingPath);
11
12 void fill(GeneralPath originalPath, Color color, Shape clippingPath);
13
14 @NotNull
15 List<GraphicContent> getGraphicContents();
16
17 void strokePath(GeneralPath originalPath, Color color, Shape clippingPath);
18 }

Figure 4.9: Drawing surface interface – Java definition

layer to perform the transformations on bitmap data and ultimately compute the final
position of the image. The provided clipping path is in practice PDF’s implementation
of clipping images, so it had to be considered as well.

4.3.4 Missing in action

There seems to be a bug in PDFBox which affects handling of (at least) graphics in the
Tagged Image File Format (TIFF) format, so some graphics will be missing. This would
probably have been possible to fix as it seemed to stem from incorrect assumptions about
endianness in the PDFBox code, but there was no time for that.

4.3.5 Putting the pieces together

It frequently occurs that one single vectorized image can be composed of up to several
thousand vector operations, so for practical use it is important that these parts be
combined into the real present graphics. Also, perhaps more surprisingly, bitmapped
images are subject to a relatively high degree of fragmentation as well, and must thus
be recombined in the same way.

It should be noted that erroneous combination of graphical components will mean
that we could be left with information about a too big graphic which could potentially
cover a lot of text. Since graphical information is primarily used to separate out text
related to images, such information would be rendered useless. It was thus decided to
enforce a rather strict boundary for how far apart these graphical components can be
and still be combined. Also, many documents render invisible boxes around body text
which would frequently overlap with real graphics. The colour passed to our “rendering”

4.3 Extracting graphical information 63

component was thus used to filter out most graphic with the background colour before
combining even starts.

Chapter 5

Logical layout analysis

The line which separates what belongs in a logical layout analysis and what belongs in
a geometric layout analysis is not a firm one. There has been considerable variation as
to what goes into which throughout the history of the research done in this field. As is
made clear by its name, geometric layout analysis is very much a process which relies on
geometrical and spatial information, and in this project it includes most processes which
are based on manipulation of coordinates. The processes which constitute the logical
layout analysis are principally concerned with blocks of text and their relationships to
each other.

It should be made clear from the start that the main focus of this thesis has been on
the geometric layout analysis, and that has been where most of our effort has been spent.
What was deemed to be the one of most intriguing things about the geometric layout
analysis was that as long as it could be made to perform well, it would go a long way
towards later enabling a powerful logical layout analysis without too much work. This
means, unfortunately, that the theory behind what is presented here is not as developed
as what has been presented in Chapter 3 and also partly Chapter 4. It also means that
while the implementation of the different parts of the geometric layout analysis has had
time to mature, what is presented here can in many ways be considered more of a proof
of concept.

The results from the processes which make up the logical layout analysis are inher-
ently a bit more difficult to render and show graphically than those from the geometric
layout analysis. To give an impression of how it works, there are excerpts of the results
from running an example document through the application, provided in Appendix A.

66 5 Logical layout analysis

5.1 Text labelling

The heart and soul of the logical layout analysis as described in Section 1.3.3 is the
text labelling process. This is in many ways, together with proper text ordering and
separation of floating text, the reason why we wanted to go to all the trouble and
provide such a thorough geometric layout analysis. Although more plentiful and more
varied labels would have been desirable, the ones which are implemented in this project
are listed below in the order they are identified:

Body text Counts how many characters are formatted with each style, a combination
of font and font size, which is represented in the document, and chooses the one with
the most.

Title The heuristic for finding the title is quite easy: Choose the heading with the
biggest font size on the first page. After identifying it, it is extracted from the main
text.

Abstract If one of the first pages has a single-line block with a style which is big-
ger/bolder than body text, and contains the world abstract, it is choosen as an abstract
header. All the body text following it until the next header-like block is encountered, is
taken to be the abstract text.

Footnote Footnote identification is admittedly also very simple. It looks for blocks on
the lower part of the page with smaller or slightly different style than body text, and
checks that they start with something like a number. When found, they are extracted
from the main text into floating elements. Identification of other types of floaters like
top text and text located besides the main text should be very similar to implement.

Three levels of div – headers After having labelled title and abstract, the code then
tries to identify up to three levels of section headers. In order to do that, it starts by
assembling a list of potential header styles. To decide if a certain style might be a header,
it is compared to the body text style, which has already been identified. Essentially the
style should preferably have bigger font size, or alternatively at least the same size but
with a bolded, slanted or different font face.

Having constructed the list of potential header styles, the code iterates through all
the content to try to recognize the different levels of section headers. Looking at the style
itself proved to not be sufficient, so the code also takes a look at the content of potential

5.2 Dehyphenation 67

section headers. When that content starts with something which could correspond to a
numbered section, i.e. something like 1.2 or (1a), it is very probable that it is, effectively,
a section header.

The last bit of information which is used in determining which lines might be which
kind of headers, is the order in which they appear. It is assumed that a div1–header will
always appear earlier in the document than a div2–header, and so on.

After having identified the different headers in the document, these headers are
subsequently used to create a logical hierarchical representation where document title,
abstract, floaters and figures are separated from the main text. The main text itself
is put into a tree of div–elements, where lower level headers will be placed underneath
their higher level headers, and all content will be placed together with its introducing
header.

5.2 Dehyphenation

When documents are typeset, long words are frequently divided over two lines with a
hyphen to ensure that every line contains a suitable amount of text. In order to recover
the original text, it is neccessary to recombine these word fragments. The reason why
this is difficult is that it sometimes the hyphen should not be removed because it has a
semantic meaning.

This is a problem which has been solved elsewhere, and in this project an existing
solution was used which was developed as a part of the inherited TextGrabber project,
as mentioned in Chapter 2.

5.3 Logical paragraph segmentation

We already segmented text on several levels in the geometric layout analysis, what
remains here is to convert physical blocks of text into logical paragraphs. The difference
between the two is simple, a block is just a collection of lines, while a logical paragraph is
equivalent to the normal text subdivisional entity we normally think about. Naturally,
a paragraph might correspond to part of a block, or it might span several, for example
in the case when it is divided over two pages.

In order to form these logical paragraphs, the first thing which needs to be done is to
combine consecutive text blocks with equal style. Then the second step is to redivide the
resulting text based on indentation, exploiting the fact that new paragraphs are normally

68 5 Logical layout analysis

indented. Additionally, this process should probably be able to split paragraphs if there
is more vertical space than normal between them, but this is not implemented yet.

5.4 Output format

The output XML schema to be used was for a long time a design consideration of the
program. It was desireable to find one which would natively and easily support all the
different elements which the logical layout analysis recognizes, and which preferrably
was widely used.

This process was difficult, because the different standards each favour different kinds
of information. The focus could be on metadata, on physical page layout, on archivation
of and uniquely identifying scanned images, etc. The many foci meant that at least
initially it all seemed like a bewildering array of partly overlapping and related standards.
Eventually an overview which breaks down different schemas into categories was found in
Day (2010). Suggested in the category of Text encoding was the Text Encoding Initiative
(TEI) Guidelines1.

It was chosen for this project because it supports everything we want to represent, it
seemed to have some momentum and had been in use for some time, and finally because
there were other projects in our department which already used it.

TEI is an international consortium which is dedicated to maintaining these guidelines
as a recommended standard for textual markup. The guidelines, officially called Guide-
lines for Electronic Text Encoding and Interchange, are described in Wittern, Ciula, and
Tuohy (2009).

They provide recommendations for markup for a a wide range of textual, physical,
literary, and linguistic features. Groups of features exist for describing e.g. document
structure, punctuation, quotations, semantics, links and references, citations, verse, etc.

Although this application really just needed a very small subset of the comprehensive
set of elements available in the standard, the structured way in which the standard is
defined practically begged for an automatic generation of a Java model. This was ac-
complished with a Maven plugin for The Java™ Architecture for XML Binding (JAXB).
JAXB is described in Joseph Fialli (2003). This was not entirely straightforward be-
cause some elements were duplicated at several levels, something which is allowed in
the XML schemas used, but not in JAXB. This was solved by creating a binding file
which mapped these problematic tags to other names in the Java model. XPath, which
is described in Clark and DeRose (1999), was used to do the replacements.

1http://www.tei-c.org/Guidelines/P5/

http://www.tei-c.org/Guidelines/P5/

Chapter 6

The application – PDFExtract

6.1 Technical introduction

The application is a free-standing Java 6 SE application with a multi-moduled Maven 21

build system, altogether consisting of around 8500 lines of code. The different modules
are written to be as independent as possible, so it makes most sense to describe them
individually. The source code for the application can be found at http://github.com/
elacin/PDFExtract.

The dependency structure of the different modules in the project can be seen in
Figure 6.1.

6.1.1 Model

The model contains the entities referenced throughout the application and is split into
various packages.

geom Since a large part of the task was about manipulating geometrical data, it was
necessary to write some supporting classes to facilitate this.

1. Rectange and Point are specialized classes which represent the obvious things
2. RectangleCollection enables grouping of rectangles, queries about their locations,

and caching of frequent queries
3. Sorting is a utility class with frequent ways to sort geometrical data
4. HasPosition is an interface which is implemented by every class with an associated

location
1http://maven.apache.org

http://github.com/elacin/PDFExtract
http://github.com/elacin/PDFExtract
http://maven.apache.org

70 6 The application – PDFExtract

Figure 6.1: The architecture of PDFExtract. The lines represent dependency so
that everything ultimately depends on model, and pdfextract-cli depends on ev-
erything. A subset of external dependencies are shown only, with green arrows.
org.elacin.tei-p5-schema depends on xmlout-simple, but it was not picked up by the
UML-tool

6.1 Technical introduction 71

5. PositionCache is an abstract class which provides an organized way to update
a cache of the current position. This is useful because various classes contain a
changing collection of rectangles.

style A Style is a combination of a specific font face and text size. This package
provides this entity along with various ways to compare them.

content This package defines a hierarchy of classes which represents the content on
a page, and is used to physically segment the page. The classes and their relationships
can be seen in Figure 6.2

Figure 6.2: Inheritance is marked by upwards pointing dark blue lines, implementation
of an interface by dotted lines, and class relationship with multiplicity by black lines.
Shaded classes are in other packages. Note especially how PhysicalPageRegion supports
being split up in subregions

72 6 The application – PDFExtract

6.1.2 Datasource

This module contains an interface which specifies a PDFSource. This is a way to decouple
the application logic from the library used to read the PDF file, so the entities contain
all the content from the file in a lightweight format, the structure of which can be seen
in Figure 6.3. The application naturally ships with an implementation of this interface
for PDFBox.

Figure 6.3: The PDF library interface. PhysicalText, GraphicalContent and Style are
from the content package seen in Figure 6.2

.

6.1.3 Datasource – PDFBox

Although PDFBox is a sophisticated and well developed library, it was felt during de-
velopment that it may have left a thing or two to be desired.

It was especially the pain experienced with exact positioning of characters and miss-
ing graphical elements which is described in Section 4.3.4, which caused this feeling. For
this reason it was decided to implement an interface – PDFSource – through which one

6.1 Technical introduction 73

could communicate with the library. Also the implementation details of PDFBox was
abstracted away. The rough details of this interface can be seen in Figure 6.3

Somewhat interestingly, another obvious problem is the performance penalty implied
by having the library implemented in Java compared to for example interfacing with a
C library. Interpretation of PDF files is relatively quick, but font handling is abysmal.

The interface obviously supports reading documents, and textual and graphical con-
tents is returned page by page. It also abstracts out rendering of individual pages so
that no other parts of the program need to depend on PDFBox.

6.1.4 Logical tree

It was deemed appropriate to, in addition to the physical representation of the tree
outlined above, also create a logical representation. This tree structure is the output of
the physical page segmentation. For logical segmentation, all the nodes can be assigned
Roles according to which function they are deemed to have. The hierarchy can be seen
in Figure 6.4.

6.1.5 analysis

The analysis package is the heart and soul of the application, it contains all the classes
which together perform the geometrical and logical analysis described in Chapters 3
and 5.

6.1.6 tei-output and tei-p5-schema

As mentioned in Section 5.4, it was decided to use version 5 of the TEI Guidelines as
the preferred output from the application. Since the definition was so structured, it was
decided to generate a Java model which makes it easier to use. This model has then
then packaged as a separate project, which could be reusable by anyone. For exactly
that reason it is placed in a separate github project2. In Figure 6.1 this is seen as an
external dependency called “Maven:org.elacin:tei-schema:0.1”.

6.1.7 xml-output

The second of the two modules for writing the results of the analysis to XML is a lot
simpler. It essentially dumps the identified physical data structure into a homegrown
XML dialect. This was mostly used for debugging.

2https://github.com/elacin/TEI-P5-Java-model

https://github.com/elacin/TEI-P5-Java-model

74 6 The application – PDFExtract

Figure 6.4: The document tree which is the output of the page segmentation algorithm.
Note that the dotted relationships between the nodes should be 1→∗, but since each
node class’ type of subnode is determined by generics, my UML-tool did not understand
that.

6.2 Example output 75

6.1.8 renderer

There is also a rendering component bundled, which main use has also been for debug-
ging. It delegates the rendering of the actual document data to the datasource, and
renders requested portions of the logical tree and/or physical content on top of it. It
has been used to create a sizeable share of the figures in this thesis.

6.2 Example output

In order to showcase what the application can do, it was decided to include three
pages from an example document, and the output generated from the xml-output and
tei-output modules. The logical output from the tei-output module is located in Ap-
pendix A.2, while an excerpt from the physical output from xml-output can be found in
Appendix A.3.

It should be mentioned that this exact document was chosen because the logical
output was considered good, and should be considered more of a showcase of what a
well-written logical layout analysis can obtain.

Chapter 7

Performance evaluation

7.1 Benchmark

In order to get an idea of how well PDFExtract performs on real life documents, it
was necessary to test it on previously unseen data. In keeping with the introductory
comparison, it was logical to again test on both a set of the ACL Anthology Reference
Corpus (ARC), and a set of Norwegian Open Research Archives (NORA) documents.
Two sets of documents were chosen, and the output for every document was then manu-
ally inspected to see how well the program had performed. To keep the amount of work
at a reasonable level, it was decided to consider 5 random pages from each document.
Also, since the logical layout analysis is still in early stages of implementation, it was
decided that it made most sense to focus the evaluation on the results of the geometric
layout analysis.

NORA A sample of 54 NORA documents from 2007 were chosen, amounting to 266
pages altogether (4 documents had only 4 pages in total). The results can be seen to
the left in in Figure 7.1.

ARC For the ARC, a sample of 39 documents, a third of the C04 section, was chosen.
From these 39 documents, a total of 195 pages were examined. The results can be seen
to the right in the same figure.

78 7 Performance evaluation

NORA

Total number of pages 266
Graphics problems 3
Needlessly separated text 15
Incorrectly detected columns 4
Incorrect ordering of text 4
Correctly segmented pages 247

ACL

Total number of pages 195
Graphics problems 12
Needlessly separated text 25
Incorrectly detected columns 6
Incorrect ordering of text 16
Correctly segmented pages 136

Figure 7.1: Results of performance evaluation. The numbers will not add up, because
some pages exhibited several problems

7.2 Behind the numbers

These numbers deserve some discussion, because a page-level success rate of just over 80
% may seem relatively low. Note that here we apply a maximally stringent definition of
’success’, i.e. a perfect output for all content elements. To start off, let us have a look
at the most common errors encountered and what causes them.

7.2.1 Needlessly separated text

This is definitely the most frequent category in terms of errors found. It is dominated
by two subgroups:

1. Formulæ, which might lose fragments located well above or below the baseline, for
example arguments to a summation operator, or their associated number in the
left or right margin)

2. Numbered section headers, which are some times separated from their number

These errors highlight a problem with relying too much on the functionality of the
whitespace rectangles, as this content is, in contrast to normal body text, purposely
laid out with extra spacing. There is already a special strategy in place for segmenting
formulae, but it is apparently not quite clever enough yet. Another discussion is whether
whitespace should be used for horizontal division of text at all after the high-level column
layout has been established. These errors are not necessarily grave in that they have
limited consequence for the surrounding text, but errors they remain.

7.3 Evaluation 79

7.2.2 Graphics problems

The second biggest category. In practise this means that fragments of graphical content
are not properly recognized as belonging together. Since graphical elements are used for
text grouping, this may produce some odd output in that parts of text which belong
inside a graphic will fail to be marked and separated as such. Also a lot of these errors are
caused by missing graphical information (as mentioned in Section 4.3.4) which in turn
is caused by either PDFBox or the PDF files themselves, and would hence be difficult
to fix. But in any case, graphics segmentation is a weak point.

7.2.3 Incorrectly detected columns

This is the category of errors with the biggest consequence for the output, and occurs
when a page region is separated around a nonexistent column boundary. A frequent
culprit happens to be tables, which is natural since they are inherently column based.
This would be fine, if it were not for the fact that there is not yet any table recognition
code; in other words, a table which is not contained in a graphical frame will break up
output in unfortunate ways. There were also a handful of real false positives, frequently
coinciding with blocks of formulae with aligned spacing.

The conclusion here is that the column boundary filtering code qualifies as another
weak point.

There was exactly one occurrence of a column boundary which was not completely
recognized, and that was because there was text crossing over the whole boundary,
something the algorithm is not prepared to deal with. Apart from that it worked very
satisfyingly.

7.2.4 Incorrect ordering of text

The vast majority of this category was caused by the above-mentioned incorrectly de-
tected columns. The remaining few were local errors where two paragraphs placed more
or less side by side would come out in the wrong order. This is a consequence of what
must be a bug in the text ordering code.

7.3 Evaluation

All in all, it was surprising that the performance was much better in the documents
from the NORA collection than from the ARC, as the NORA collection contains a much
more heterogenous collection of documents. The main reason why this is so, is that the

80 7 Performance evaluation

set of documents which was used from ARC, happened to consist of many formulæ and
graphics heavy papers which exposed imperfections in the application to a bigger degree.
The layout variation found in the NORA documents is satisfyingly handled.

Chapter 8

Conclusion

Let me start out by affirming that the problem of complete page segmentation has
decisively proved itself again to be a hard one. In the context of text extraction from
PDF files, this project has sought to restate a problem of making sense of a data stream
into a principally geometrical problem. By drawing from the considerable amount of
research on OCR and augmenting it with the extra information available, it was hoped
to make some progress towards the ambitious goal of solving this problem. Ambitious
enough that (the above-mentioned results notwithstanding) one would perhaps be wise
not to expect to fully solve it in the general case without a human brain at one’s disposal.
The loss of structural information in PDF files is so massive that its wide use for archival
purposes is nothing less than troubling.

Though, progress has indeed been made:

• The main ingredient in the analysis which has been developed, the whitespace
rectangle covering algorithm, has been extended to make use of the additional
information available in PDF compared to OCR to produce more useful rectangles

• These rectangles are successfully used to recover column boundaries and to group
text

• The text ordering algorithm successfully recovers reading order from pages with
complex layout

Comparing PDFExtract to other state-of-the-art PDF text extractors is quite an
apples-to-oranges comparison, given that it tries to do more. Grouping content in this
way is really about taking a risk by ignoring the inherent structure in the content stream
from the PDF file, while trying to find a correct logical structure. If a mistake is made
in that process, the output might be of worse quality than what one would obtain by

82 8 Conclusion

simply performing a naïve geometrical sorting of the contents.
That being said, the output of PDFExtract is overall very good. Most of the mistakes

found above are related to formulæ handling and segmenting content together with
graphical content. These are in themselves challenges which, as far as the author is
aware of, are not addressed in full elsewhere. A failure to perfectly perform these two
functions will most of the time mean that the output contains isolated text fragments
with a piece of a formula or an illustration. This is not necessarily very grave for the
quality of the output.

The real number of the examined pages with seriously damaged content lies around
15 (10 from incorrectly detected columns, and a handful of graphics problems). This
leaves us with 3-4% of pages with serious errors, most of which could be remedied by
more intelligent column filtering code.

To conclude, PDFExtract might need more work in order to work even better. The
theoretic base on which it is built seems to be both sound and useful. But also in its
current state it is competitive with, if not superior to, other alternatives. The clean,
modular design of the application combined with a permissive open source license makes
reuse of individual modules possible.

8.1 Further work

As seen in the performance evaluation, possibilities for further work are plentiful. The
overall usefulness of the geometric layout analysis method presented in this project will
depend on a few factors:

• A solution needs to be found for dealing with tables, which are inherently column-
based.

• For this project the column finding algorithm was deliberately made more liberal
in what it accepts. For that to be a good idea, there needs to be smarter filtering
process in place.

• Graphics segmentation needs to be further developed

Also, opportunities abound for developing a more in-depth logical layout analysis,
something which could easily have merited a project on its own.

Bibliography

Antonacopoulos, A., Gatos, B., & Bridson, D. (2007, sept). Page Segmentation Com-
petition. In Document Analysis and Recognition, 2007. ICDAR 2007. Ninth
International Conference on (Vol. 2, p. 1279 -1283). Available from http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4377121

Baird, H. S. (1992). Background structure in document images. In In advances in
structural and syntactic pattern recognition (pp. 17–34). World Scientific. Available
from http://cvit.iiit.ac.in/papers/DocStructure.pdf

Bird, S., Dale, R., Dorr, B. J., Gibson, B., Joseph, M., Kan, M.-Y., et al. (2008, Jan). The
ACL Anthology Reference Corpus: A reference dataset for bibliographic research
in computational linguistics. In Lrec. European Language Resources Association.
Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1
.139.2351&rep=rep1&type=pdf

Breuel, T. (2002, Jan). Two geometric algorithms for layout analysis. In D. Lopresti,
J. Hu, & R. Kashi (Eds.), Document analysis systems v (Vol. 2423, p. 687-692).
Springer Berlin / Heidelberg. Available from http://www.springerlink.com/
index/w0fn0bnjecvqtlte.pdf

Breuel, T. (2003). Layout analysis based on text line segment hypotheses. DLIA’03.
Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1
.124.3478&rep=rep1&type=pdf

Cattoni, R., Coianiz, T., & Messelodi, S. (1998, Jan). Geometric layout analy-
sis techniques for document image understanding: a review. ITC-irst Technical
Report TR#9703-09. Available from http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.37.353&rep=rep1&type=pdf

Clark, J., & DeRose, S. (1999, Jan). XML path language (XPath) version
1.0. faa.gov. Available from http://www.faa.gov/about/office_org/
headquarters_offices/ato/service_units/techops/atc_comms_services/
swim/documentation/media/compliancy/Xpathv1.0.pdf

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4377121
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4377121
http://cvit.iiit.ac.in/papers/DocStructure.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.2351&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.2351&rep=rep1&type=pdf
http://www.springerlink.com/index/w0fn0bnjecvqtlte.pdf
http://www.springerlink.com/index/w0fn0bnjecvqtlte.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.3478&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.3478&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.353&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.353&rep=rep1&type=pdf
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/compliancy/Xpathv1.0.pdf
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/compliancy/Xpathv1.0.pdf
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/compliancy/Xpathv1.0.pdf

84 Bibliography

Day, M. (2010, Jan). IMPACT best practice guide: Metadata for text digitisation
and OCR. opus.bath.ac.uk. Available from http://opus.bath.ac.uk/23311/1/
IMPACT-metadata-bpg-pilot-1.pdf

ISO 32000-1:2008. (2008). Document management, Portable Document Format, PDF
1.7. ISO, Geneva, Switzerland. Available from http://www.adobe.com/devnet/
pdf/pdf_reference.html

Joseph Fialli, S. V. (2003, Jan). The Java™ Architecture for XML Binding (JAXB). JSR
Specification. Available from http://svn-mirror.glassfish.org/hj3/tags/0
.3/etc/jaxb-1_0-fr-spec.pdf

Mao, S., Rosenfeld, A., & Kanungo, T. (2003, Jan). Document structure
analysis algorithms: a literature survey. Proc. SPIE Electronic Imaging.
Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1
.1.6218&rep=rep1&type=pdf

Meunier, J.-L. (2005). Optimized XY-Cut for Determining a Page Reading Order.
In ICDAR ’05: Proceedings of the Eighth International Conference on Document
Analysis and Recognition (pp. 347–351). Washington, DC, USA: IEEE Computer
Society. Available from http://dx.doi.org/10.1109/ICDAR.2005.182

Nagy, G., Seth, S., & Viswanathan, M. (1992, July). A prototype document image
analysis system for technical journals. Computer, 25(7), 10 -22. Available from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=144436

PDFBox, A. (n.d.). PDFBox project [Computer software]. Website. (http://pdfbox
.apache.org)

Shafait, F., Keysers, D., & Breuel, T. (2008, June). Performance Evaluation and
Benchmarking of Six-Page Segmentation Algorithms. IEEE Trans. Pattern Anal.
Mach. Intell., 30, 941–954. Available from http://portal.acm.org/citation
.cfm?id=1399104.1399432

Tesseract-OCR, G. (n.d.). Tesseract-OCR [Computer software]. (http://code.google
.com/p/tesseract-ocr)

Wittern, C., Ciula, A., & Tuohy, C. (2009, Jan). The making of TEI P5. Liter-
ary and Linguistic Computing. Available from http://llc.oxfordjournals.org/
cgi/content/abstract/fqp017

http://opus.bath.ac.uk/23311/1/IMPACT-metadata-bpg-pilot-1.pdf
http://opus.bath.ac.uk/23311/1/IMPACT-metadata-bpg-pilot-1.pdf
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://svn-mirror.glassfish.org/hj3/tags/0.3/etc/jaxb-1_0-fr-spec.pdf
http://svn-mirror.glassfish.org/hj3/tags/0.3/etc/jaxb-1_0-fr-spec.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.6218&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1.6218&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ICDAR.2005.182
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=144436
http://pdfbox.apache.org
http://pdfbox.apache.org
http://portal.acm.org/citation.cfm?id=1399104.1399432
http://portal.acm.org/citation.cfm?id=1399104.1399432
http://code.google.com/p/tesseract-ocr
http://code.google.com/p/tesseract-ocr
http://llc.oxfordjournals.org/cgi/content/abstract/fqp017
http://llc.oxfordjournals.org/cgi/content/abstract/fqp017

List of Figures

1.1 Columnal layout described by rectangles 11
1.2 Determining reading order . 12

2.1 Large line spacing . 20
2.2 Footnote below paragraph . 20
2.3 Figure in the middle of a column . 21
2.4 A multiline equation . 21
2.5 Examples of variable spacing. 21
2.6 Overview of tools used to create PDF files 22

3.1 Whitespace: One iteration . 32
3.2 Whitespace: Core algorithm . 33
3.3 Whitespace: QueueEntry class . 34
3.4 Whitespace: Passage fix . 36
3.5 Whitespace: Stray rectangles . 36
3.6 Whitespace: Line separator fix . 37
3.7 Whitespace: Two word separators fix . 37
3.8 Whitespace: Algorithm performance . 39
3.9 Whitespace: Algorithm progression . 40
3.10 Column boundary: Challenges . 42
3.11 Algorithm for extracting column boundary candidates 43
3.12 Algorithm for adjusting column boundary candidates 44
3.13 Topological comparison function . 46
3.14 Reading order: nested page regions. 48
3.15 State after text grouping and establishing reading order 49

4.1 Effect of offsetting Y-coordinates . 52
4.2 Effect of text positioning fixes . 54

86 LIST OF FIGURES

4.3 Minimizing damage of fonts with wrong information 55
4.4 Well behaved northerners . 56
4.5 Know your enemy . 57
4.6 Final character distances . 57
4.7 Determining character spacing – Java implementation 59
4.8 Word segmentation algorithm – Java implementation 60
4.9 Drawing surface interface – Java definition 62

6.1 PDFExtract architecture . 70
6.2 Physical content class hierarchy . 71
6.3 Interface to PDFBox . 72
6.4 Document tree hierarchy . 74

7.1 Results of performance evaluation . 78

Acronyms

ACL the Association for Computational Linguistics. 24

ARC ACL Anthology Reference Corpus. 24, 25, 77, 79, 89

DFKI das Deutsche Forschungszentrum für Künstliche Intelligen. 19, 25

JAXB The Java™ Architecture for XML Binding. 68

NORA Norwegian Open Research Archives. 21, 24, 25, 77, 79

OCR Optical Character Recognition. 9, 11, 15, 27, 28, 30, 39, 55, 81

PDF Portable Document Format. 7

PDF/UA PDF/Universal Accessibility, or “Tagged PDF”. 7

TEI Text Encoding Initiative. 68, 73

TIFF Tagged Image File Format. 62

UiO University of Oslo. 19

UML Unified Modeling Language. 69, 73

XML eXtensible Markup Language. 23, 24, 26, 68, 73

Appendix A

Example document and result of
analysis

To give an idea of what the application is able to do, three pages of an example document
from the ARC is provided, along with the output from the complete document layout
analysis, and then an excerpt from the output of the geometric layout analysis alone.
The output from the complete analysis displays several features which are described in
Chapter 5 such as title identification, building a hierarchy of sections and subsections,
extraction of abstract, identification of footnotes, and separation of text contained within
graphical figures. We also see logical paragraph segmentation and removal of publication-
introduced hyphens.

A few shortcomings are also present. There is no code to extract author information,
so it appears in the text before the first heading. Also, there is no functionality yet
to extract figure captions from the text, so they remain in the body text. Individual
characters in equations are frequently not combined into words, this is because it has
both not been given much attention and it is frequently not clear what the correct
output of such a word segmentation would be. Doing this in a “right” way would require
interpretation which is entirely out of scope for this project.

There are some characters missing from the output, namely some chinese characters
and math characters like ∩ and ∪; this is the fault of the LATEX software used to typeset
the text, they survive into the Unicode–encoded output from the application.

90 A Example document and result of analysis

A.1 Example document

A.2 Logical output 91

A.2 Logical output

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <TEI xmlns="http://www.tei-c.org/ns/1.0" xmlns:ns2="http://www.tei-c.org/ns/Examples">
3 <teiHeader>
4 <fileDesc>
5 <titleStmt>
6 <title>Improving Statistical Word Alignment with a Rule-Based Machine Translation
7 System
8 </title>
9 </titleStmt>

10 </fileDesc>
11 </teiHeader>
12 <text>
13 <front>
14 <div type="abs">
15 <head>ABSTRACT</head>
16 <p>The main problems of statistical word alignment lie in the facts that source
17 words can only be aligned to one target word, and that the inappropriate target
18 word is selected because of data sparseness problem. This paper proposes an
19 approach to improve statistical word alignment with a rule-based translation
20 system. This approach first uses IBM statistical translation model to perform
21 alignment in both directions (source to target and target to source), and then
22 uses the translation information in the rule-based machine translation system to
23 improve the statistical word alignment. The improved alignments allow the
24 word(s) in the source language to be aligned to one or more words in the target
25 language. Experimental results show a significant improvement in precision and
26 recall of word alignment.
27 </p>
28 </div>
29 </front>
30 <body>
31 <div>
32 <p>WU Hua, WANG Haifeng</p>
33 <p>Toshiba (China) Research & Development Center 5/F., Tower W2, Oriental Plaza,
34 No.1, East Chang An Ave., Dong Cheng District
35 </p>
36 <p>Beijing, China, 100738</p>
37 <p>{wuhua, wanghaifeng}@rdc.toshiba.com.cn</p>
38 </div>
39 <div1>
40 <head xml:id="sec1">Introduction</head>
41 <p>Bilingual word alignment is first introduced as an intermediate result in
42 statistical machine translation (SMT) (Brown et al. 1993). Besides being used in
43 SMT, it is also used in translation lexicon building (Melamed 1996), transfer
44 rule learning (Menezes and Richardson 2001), example-based machine translation
45 (Somers 1999), etc. In previous alignment methods, some researches modeled the
46 alignments as hidden parameters in a statistical translation model (Brown et al.
47 1993; Och and Ney 2000) or directly modeled them given the sentence pairs
48 (Cherry and Lin 2003). Some researchers used similarity and association measures
49 to build alignment links (Ahrenberg et al. 1998; Tufis and Barbu 2002). In
50 addition, Wu (1997) used a stochastic inversion transduction grammar to
51 simultaneously parse the sentence pairs to get the word or phrase alignments.
52 </p>
53 <p>Generally speaking, there are four cases in word alignment: word to word
54 alignment, word to multi-word alignment, multi-word to word alignment, and
55 multi-word to multi-word alignment. One of the most difficult tasks in word
56 alignment is to find out the alignments that include multi-word units. For
57 example, the statistical word alignment in IBM translation models (Brown et al.
58 1993) can only handle word to word and multi-word to word alignments.
59 </p>
60 <p>Some studies have been made to tackle this problem. Och and Ney (2000) performed
61 translation in both directions (source to target and target to source) to extend
62 word alignments. Their results showed that this method improved precision
63 without loss of recall in English to German alignments. However, if the same
64 unit is aligned to two different target units, this method is unlikely to make a
65 selection. Some researchers used preprocessing steps to identity multi-word
66 units for word alignment (Ahrenberg et al. 1998; Tiedemann 1999; Melamed 2000).
67 The methods obtained multi-word candidates based on continuous N-gram
68 statistics. The main limitation of these methods is that they cannot handle
69 separated phrases and multi-word units in low frequencies.
70 </p>
71 <p>In order to handle all of the four cases in word alignment, our approach uses
72 both the alignment information in statistical translation models and translation
73 information in a rule-based machine translation system. It includes three steps.
74 (1) A statistical translation model is employed to perform word alignment in two
75 directions 1 (English to Chinese, Chinese to English). (2) A rule-based English
76 to Chinese translation system is employed to obtain Chinese translations for
77 each English word or phrase in the source language. (3) The translation
78 information in step (2) is used to improve the word alignment results in step
79 (1).
80 </p>
81 <p>A critical reader may pose the question “why not use a translation dictionary to

92 A Example document and result of analysis

82 improve statistical word alignment”? Compared with a translation dictionary, the
83 advantages of a rule-based machine translation system lie in two aspects: (1) It
84 can recognize the multi-word units, particularly separated phrases, in the
85 source language. Thus, our method is able to handle the multi-word alignments
86 with higher accuracy, which will be described in our experiments. (2) It can
87 perform word sense disambiguation and select appropriate translations while a
88 translation dictionary can only list all translations for each word or phrase.
89 Experimental results show that our approach improves word alignments in both
90 precision and recall as compared with the state-of-the-art technologies.
91 </p>
92 </div1>
93 <floatingText xml:id="footnote1" type="footnote">
94 <body>
95 <div>
96 <p>We use English-Chinese word alignment as a case study.</p>
97 </div>
98 </body>
99 </floatingText>

100 <div1>
101 <head xml:id="sec2">Statistical Word Alignment</head>
102 <p>Statistical translation models (Brown, et al. 1993) only allow word to word and
103 multi-word to word alignments. Thus, some multi-word units cannot be correctly
104 aligned. In order to tackle this problem, we perform translation in two
105 directions (English to Chinese and Chinese to English) as described in Och and
106 Ney (2000). The GIZA++ toolkit is used to perform statistical alignment. Thus,
107 for each sentence pair, we can get two alignment results. We use S 1 and S 2 to
108 represent the alignment sets with English as the source language and Chinese as
109 the target language or vice versa. For alignment links in both sets, we use i
110 for English words and j for Chinese words.
111 </p>
112 <p>S 1 = {(A j , j) | A j = { a j }, a j � 0 }</p>
113 <p>S 2 = {(i , A i) | A i = { a i }, a i � 0 }</p>
114 <p>Where, a x (x = i , j) represents the index position of the source word aligned
115 to the target word in position x . For example, if a Chinese word in position j
116 is connected to an English word in position i , then a j = i . If a Chinese word
117 in position j is connected to English words in positions i 1 and i 2 , then A j
118 = { i , i } . 2 1 2 We call an element in the alignment set an alignment link .
119 If the link includes a word that has no translation, we call it a null link. If
120 k (k > 1) words have null links, we treat them as k different null links,
121 not just one link.
122 </p>
123 <p>Based on S 1 and S 2 , we obtain their intersection set, union set and
124 subtraction set.
125 </p>
126 <p>Intersection: S = S 1 � S 2</p>
127 <p>Union: P = S 1 � S 2</p>
128 <p>Subtraction: F = P − S</p>
129 <p>Thus, the subtraction set contains two different alignment links for each English
130 word.
131 </p>
132 </div1>
133 <floatingText xml:id="footnote2" type="footnote">
134 <body>
135 <div>
136 <p>In the following of this paper, we will use the position number of a word
137 to refer to the word.
138 </p>
139 </div>
140 </body>
141 </floatingText>
142 <div1>
143 <head xml:id="sec3">Rule-Based Translation System</head>
144 <p>We use the translation information in a rulebased English-Chinese translation
145 system 3 to improve the statistical word alignment result. This translation
146 system includes three modules: source language parser, source to target language
147 transfer module, and target language generator.
148 </p>
149 <p>From the transfer phase, we get Chinese translation candidates for each English
150 word. This information can be considered as another word alignment result, which
151 is denoted as S 3 = {(k , C k)} . C k is the set including the translation
152 candidates for the k-th English word or phrase. The difference between S 3 and
153 the common alignment set is that each English word or phrase in S 3 has one or
154 more translation candidates. A translation example for the English sentence “He
155 is used to pipe smoking”. is shown in Table 1. Table 1. Translation Example
156 </p>
157 <p>From Table 1, it can be seen that (1) the translation system can recognize
158 English phrases (e.g. is used to); (2) the system can provide one or more
159 translations for each source word or phrase; (3) the translation system can
160 perform word selection or word sense disambiguation. For example, the word“”
161 pipe has several meanings such as “”tube, “tube used for ”smoking and “wind”
162 instrument. The system selects “tube used for ”smoking and translates it into
163 Chinese words “��” and “��” . The recognized translation candidates will be
164 used to improve statistical word alignment in the next section.
165 </p>
166 </div1>

A.2 Logical output 93

167 <floatingText xml:id="footnote3" type="footnote">
168 <body>
169 <div>
170 <p>This system is developed based on the Toshiba EnglishJapanese translation
171 system (Amano et al. 1989). It achieves above-average performance as
172 compared with the EnglishChinese translation systems available in the
173 market.
174 </p>
175 </div>
176 </body>
177 </floatingText>
178 <div1>
179 <head xml:id="sec4">Word Alignment Improvement</head>
180 <p>As described in Section 2, we have two alignment sets for each sentence pair,
181 from which we obtain the intersection set S and the subtraction set F . We will
182 improve the word alignments in S and F with the translation candidates produced
183 by the rule-based machine translation system. In the following sections, we will
184 first describe how to calculate monolingual word similarity used in our
185 algorithm. Then we will describe the algorithm used to improve word alignment
186 results.
187 </p>
188 <div2>
189 <head xml:id="sec4.1">Word Similarity Calculation</head>
190 <p>This section describes the method for monolingual word similarity
191 calculation. This method calculates word similarity by using a bilingual
192 dictionary, which is first introduced by Wu and Zhou (2003). The basic
193 assumptions of this method are that the translations of a word can express
194 its meanings and that two words are similar in meanings if they have mutual
195 translations.
196 </p>
197 <p>Given a Chinese word, we get its translations with a Chinese-English
198 bilingual dictionary. The translations of a word are used to construct its
199 feature vector. The similarity of two words is estimated through their
200 feature vectors with the cosine measure as shown in (Wu and Zhou 2003). If
201 there are a Chinese word or phrase w and a Chinese word set Z , the word
202 similarity between them is calculated as shown in Equation (1). sim (w , Z
203) = Max (sim (w , w ')) w ' � Z (1)
204 </p>
205 </div2>
206 <div2>
207 <head xml:id="sec4.2">Alignment Improvement Algorithm</head>
208 <p>As the word alignment links in the intersection set are more reliable than
209 those in the subtraction set, we adopt two different strategies for the
210 alignments in the intersection set S and the subtraction set F . For
211 alignments in S , we will modify them when they are inconsistent with the
212 translation information in S 3 . For alignments in F , we classify them into
213 two cases and make selection between two different alignment links or modify
214 them into a new link.
215 </p>
216 <p>In the intersection set S , there are only word to word alignment links,
217 which include no multiword units. The main alignment error type in this set
218 is that some words should be combined into one phrase and aligned to the
219 same word(s) in the target sentence. For example, for the sentence pair in
220 Figure 1, “”used is aligned to the Chinese word “��” , and “”is and “”to
221 have null links in S . But in the translation set S 3 , “is used to" is
222 a phrase. Thus, we combine the three alignment links into a new link. The
223 words “”is, “”used and “” to are all aligned to the Chinese word “��” ,
224 denoted as (is used to, ��). Figure 2 describes the algorithm employed to
225 improve the word alignment in the intersection set S . Figure 1. Multi-Word
226 Alignment Example Figure 2. Algorithm for the Intersection Set
227 </p>
228 <p>In the subtraction set, there are two different links for each English word.
229 Thus, we need to select one link or to modify the links according to the
230 translation information in S 3 .
231 </p>
232 <p>For each English word i in the subtraction set, there are two cases:</p>
233 </div2>
234 </div1>
235 <floatingText xml:id="footnote4" type="footnote">
236 <body>
237 <div>
238 <p>We define an operation “ combine ” on a set consisting of position
239 numbers of words. We first sort the position numbers in the set ascendly
240 and then regard them as a phrase. For example, there is a set {{2,3}, 1,
241 4}, the result after applying the combine operation is (1, 2, 3, 4).
242 </p>
243 </div>
244 </body>
245 </floatingText>
246 <figure>
247 <p>English Words Chinese Translations He � is used to �� pipe ����� smoking ����</p>
248 </figure>
249 <figure>
250 <p/>
251 </figure>

94 A Example document and result of analysis

252 <figure>
253 <p>Input: Intersection set S , Translation set S 3 , Final word alignment set WA For
254 each alignment link � i , j) in S , do: (1) If all of the following three
255 conditions are satisfied, add the new alignment link � ph k , w �� WA to WA .
256 a) There is an element � ph k , C k) � S 3 , and the English word i is a
257 constituent of the phrase ph k . b) The other words in the phrase ph k also have
258 alignment links in S . c) For each word s in ph k , we get T = { t | (s , t) �
259 S } and combine 4 all words in T into a phrase w , and the similarity sim (w ,
260 C k) > � 1 . (2) Otherwise, add � i , j) to WA . Output: Word alignment set
261 WA
262 </p>
263 </figure>
264 </body>
265 <back/>
266 </text>
267 </TEI>

A.3 Physical output

1 <document>
2 <styles>
3 <style id="NSimSun--9" font="NSimSun" size="9"/>
4 <style id="SimSun--10" font="SimSun" size="10"/>
5 <style id="SimSun--9" font="SimSun" size="9"/>
6 <style id="SymbolMT--11" font="SymbolMT" size="11"/>
7 <style id="SymbolMT--6" font="SymbolMT" size="6"/>
8 <style id="SymbolMT--9" font="SymbolMT" size="9"/>
9 <style id="TimesNewRoman --10" font="TimesNewRoman" size="10"/>

10 <style id="TimesNewRoman --10B" font="TimesNewRoman" size="10" bold="true"/>
11 <style id="TimesNewRoman --10I" font="TimesNewRoman" size="10" italic="true"/>
12 <style id="TimesNewRoman --11" font="TimesNewRoman" size="11"/>
13 <style id="TimesNewRoman --11I" font="TimesNewRoman" size="11" italic="true"/>
14 <style id="TimesNewRoman --12" font="TimesNewRoman" size="12"/>
15 <style id="TimesNewRoman --12B" font="TimesNewRoman" size="12" bold="true"/>
16 <style id="TimesNewRoman --15B" font="TimesNewRoman" size="15" bold="true"/>
17 <style id="TimesNewRoman --6" font="TimesNewRoman" size="6"/>
18 <style id="TimesNewRoman --6I" font="TimesNewRoman" size="6" italic="true"/>
19 <style id="TimesNewRoman --7" font="TimesNewRoman" size="7"/>
20 <style id="TimesNewRoman --7I" font="TimesNewRoman" size="7" italic="true"/>
21 </styles>
22 <page num="1">
23 <paragraph x="83.76" y="94.0077" w="427.8874" h="27.059975" seqno="2001">
24 <line styleRef="TimesNewRoman --15B">Improving Statistical Word Alignment with a Rule-Based Machine</line>
25 <line styleRef="TimesNewRoman --15B">Translation System</line>
26 </paragraph>
27 <paragraph x="230.64" y="136.26208" w="134.02309" h="7.871994" seqno="4001">
28 <line styleRef="TimesNewRoman --12B">WU Hua, WANG Haifeng</line>
29 </paragraph>
30 <paragraph x="102.0" y="149.88202" w="391.3822" h="49.271774" seqno="4002">
31 <line styleRef="TimesNewRoman --12">Toshiba (China) Research & Development Center</line>
32 <line styleRef="TimesNewRoman --12">5/F., Tower W2, Oriental Plaza, No.1, East Chang An Ave., Dong Cheng ...
33 <line styleRef="TimesNewRoman --12">Beijing, China, 100738</line>
34 <line styleRef="TimesNewRoman --12">{wuhua, wanghaifeng}@rdc.toshiba.com.cn</line>
35 </paragraph>
36 <paragraph x="158.34" y="229.80206" w="44.693985" h="7.871994" seqno="5001">
37 <line styleRef="TimesNewRoman --12B">Abstract</line>
38 </paragraph>
39 <paragraph x="82.259995" y="248.66118" w="197.01521" h="201.87206" seqno="5002">
40 <line styleRef="TimesNewRoman --10">The main problems of statistical word alignment</line>
41 <line styleRef="TimesNewRoman --10">lie in the facts that source words can only be</line>
42 <line styleRef="TimesNewRoman --10">aligned to one target word, and that the inappro-</line>
43 <line styleRef="TimesNewRoman --10">priate target word is selected because of data</line>
44 <line styleRef="TimesNewRoman --10">sparseness problem. This paper proposes an ap-</line>
45 <line styleRef="TimesNewRoman --10">proach to improve statistical word alignment</line>
46 <line styleRef="TimesNewRoman --10">with a rule-based translation system. This ap-</line>
47 <line styleRef="TimesNewRoman --10">proach first uses IBM statistical translation</line>
48 <line styleRef="TimesNewRoman --10">model to perform alignment in both directions</line>
49 <line styleRef="TimesNewRoman --10">(source to target and target to source), and then</line>
50 <line styleRef="TimesNewRoman --10">uses the translation information in the rule-based</line>
51 <line styleRef="TimesNewRoman --10">machine translation system to improve the statis-</line>
52 <line styleRef="TimesNewRoman --10">tical word alignment. The improved alignments</line>
53 <line styleRef="TimesNewRoman --10">allow the word(s) in the source language to be</line>
54 </paragraph>
55 ...
56 </page>
57 ...
58 </document>

Appendix B

Whitespace covering algorithm –
Java implementation

1 /*
2 * Copyright 2010-2011 Øyvind Berg (elacin@gmail.com)
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE -2.0
9 *

10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 package org.elacin.pdfextract.physical.column;
17
18 import org.apache.log4j.Logger;
19
20 import org.elacin.pdfextract.Constants;
21 import org.elacin.pdfextract.content.PhysicalContent;
22 import org.elacin.pdfextract.content.PhysicalPageRegion;
23 import org.elacin.pdfextract.content.WhitespaceRectangle;
24 import org.elacin.pdfextract.geom.FloatPoint;
25 import org.elacin.pdfextract.geom.HasPosition;
26 import org.elacin.pdfextract.geom.Rectangle;
27 import org.elacin.pdfextract.geom.RectangleCollection;
28
29 import java.util.ArrayList;
30 import java.util.List;
31 import java.util.PriorityQueue;
32
33 import static org.elacin.pdfextract.Constants.*;
34 import static org.elacin.pdfextract.geom.RectangleCollection.Direction.E;
35 import static org.elacin.pdfextract.geom.RectangleCollection.Direction.W;
36
37 /**
38 * Created by IntelliJ IDEA. User: elacin Date: Jun 23, 2010 Time: 13:05:06
39 */
40 public final class WhitespaceFinder {
41
42 // ------------------------------ FIELDS ------------------------------
43 private static final Logger log = Logger.getLogger(WhitespaceFinder.class);
44
45 /* min[Height|Width] are the thinnest rectangles we will accept */
46 private final float minHeight, minWidth;
47
48 /* all the obstacles in the algorithm are found here, and are initially all
49 the words on the page */
50 protected final RectangleCollection region;
51
52 /**
53 * State while working follows below
54 */
55
56 /* a queue which will give us the biggest/best rectangles first */
57 private final PriorityQueue<QueueEntry> queue;

96 B Whitespace covering algorithm – Java implementation

58
59 /* this holds a list of all queue entries which are not yet accepted. Upon finding a new
60 * whitespace rectangle , these are added back to the queue. */
61 private final List<QueueEntry> holdList = new ArrayList<QueueEntry >();
62
63 /* this holds all the whitespace rectangles we have found */
64 private final WhitespaceRectangle[] foundWhitespace;
65 private int foundWhitespaceCount = 0;
66
67 /* the number of whitespace we want to find */
68 private final int wantedWhitespaces;
69
70 // --------------------------- CONSTRUCTORS ---------------------------
71 WhitespaceFinder(RectangleCollection region, final int numWantedWhitespaces , final float minWidth,
72 final float minHeight) {
73
74 this.region = region;
75 wantedWhitespaces = numWantedWhitespaces;
76 foundWhitespace = new WhitespaceRectangle[numWantedWhitespaces];
77 queue = new PriorityQueue<QueueEntry >(WHITESPACE_MAX_QUEUE_SIZE);
78 this.minWidth = minWidth;
79 this.minHeight = minHeight;
80 }
81
82 // -------------------------- PUBLIC STATIC METHODS --------------------------
83 public static List<WhitespaceRectangle> findWhitespace(final PhysicalPageRegion region) {
84
85 final long t0 = System.currentTimeMillis();
86 final int numWhitespaces = WHITESPACE_NUMBER_WANTED;
87 WhitespaceFinder finder = new WhitespaceFinder(region, numWhitespaces,
88 region.getMinimumColumnSpacing(), region.getMinimumRowSpacing());
89 final List<WhitespaceRectangle > ret = finder.findWhitespace();
90 final long time = System.currentTimeMillis() - t0;
91
92 log.info(String.format("LOG00380:%d of %d whitespaces for %s in %d ms", ret.size(),
93 numWhitespaces, region, time));
94
95 return ret;
96 }
97
98 // -------------------------- STATIC METHODS --------------------------
99

100 /**
101 * Finds the obstacle which is closest to the centre of the rectangle bound
102 */
103 static HasPosition choosePivot(QueueEntry entry) {
104
105 final FloatPoint centrePoint = entry.bound.centre();
106 float minDistance = Float.MAX_VALUE;
107 HasPosition closestToCentre = entry.obstacles[0];
108
109 for (int i = 0; i < entry.numObstacles; i++) {
110 HasPosition obstacle = entry.obstacles[i];
111 final float distance = obstacle.getPos().distance(centrePoint) * 100.0f
112 / obstacle.getPos().height;
113
114 if (distance < minDistance) {
115 minDistance = distance;
116 closestToCentre = obstacle;
117 }
118 }
119
120 return closestToCentre;
121 }
122
123 /**
124 * Checks whether the rectangle represented by whitespaceCandidate is empty enough to be
125 * considered a whitespace rectangle
126 */
127 static boolean isEmptyEnough(QueueEntry whitespaceCandidate) {
128
129 if (Constants.WHITESPACE_FUZZY_EMPTY_CHECK && (whitespaceCandidate.numObstacles != 0)) {
130
131 /* accept a small intersection */
132 float intersectSum = 0.0f,
133 whitespaceArea = whitespaceCandidate.bound.area();
134 final float intersectLimit = whitespaceArea * WHITESPACE_FUZZINESS;
135
136 for (int i = 0; i < whitespaceCandidate.numObstacles; i++) {
137 final Rectangle obstaclePos = whitespaceCandidate.obstacles[i].getPos();
138 final float intersectSize = whitespaceCandidate.bound.intersection(
139 obstaclePos).area();
140 final float smallestArea = Math.min(obstaclePos.area(), whitespaceArea);
141
142 if (intersectSize > smallestArea * WHITESPACE_FUZZINESS) {

97

143 return false;
144 }
145
146 intersectSum += intersectSize;
147 }
148
149 return intersectSum < intersectLimit;
150 }
151
152 return whitespaceCandidate.numObstacles == 0;
153 }
154
155 /**
156 * This is the quality function by which we sort rectangles to choose the 'best' one first. The
157 * current function bases itself on the area of the rectangle, and then prefers high ones
158 */
159 static float rectangleQuality(Rectangle r) {
160 return r.area() * (1 + r.height * 0.25f);
161 }
162
163
164
165
166
167 // -------------------------- OTHER METHODS --------------------------
168
169 /**
170 * The main algorithm. Finds the next whitespace rectangle
171 * @return A new identified whitespace rectangle
172 */
173 WhitespaceRectangle findNextWhitespace() {
174
175 queue.addAll(holdList);
176 holdList.clear();
177
178 while (!queue.isEmpty()) {
179
180 /** Place an upper bound. If we reach this queue size we should already have enough data */
181 if (WHITESPACE_MAX_QUEUE_SIZE - 4 <= queue.size()) {
182 log.warn("Queue too long");
183
184 return null;
185 }
186
187 /** this will always choose the rectangle with the highest priority */
188 final QueueEntry current = queue.remove();
189
190 /**
191 * If we have accepted a whitespace rectangle since this was added to the queue, we need
192 * to recalculate the obstacles it references to make sure it doesnt overlap
193 */
194 if (current.numberOfWhitespaceFound != foundWhitespaceCount) {
195 updateObstacleListForQueueEntry(current);
196 }
197
198 /**
199 * if this contains no obstacles (or just barely touches on some) we have found a
200 * new whitespace rectangle
201 */
202 if (isEmptyEnough(current)) {
203 final WhitespaceRectangle newWhitespace = new WhitespaceRectangle(current.bound);
204
205 /** check if we accept the whitespace rectangle or not */
206
207 /* check whether the whitespace is connected to either an edge or an existing
208 * whitespace. if it is not, leave it in the holdList list for now */
209 if (WHITESPACE_CHECK_CONNECTED_FROM_EDGE &&!isNextToWhitespaceOrEdge(newWhitespace)) {
210 holdList.add(current);
211
212 continue;
213 }
214
215 /* find all the surrounding content. make sure this rectangle is not too small.
216 * This is an expensive check, which is why it is done here. i think it is still
217 * correct. */
218 if (WHITESPACE_CHECK_LOCAL_HEIGHT) {
219 if (isWhitespaceTooShortForSurroundingText(newWhitespace)) {
220 continue;
221 }
222 }
223
224 /* we do not want to accept whitespace rectangles which has only one or two words
225 * on each side (0 is fine), as these doesn't affect layout and tend to break up
226 * small paragraphs of text unnecessarily */
227 if (WHITESPACE_CHECK_TEXT_BOTH_SIDES) {

98 B Whitespace covering algorithm – Java implementation

228 if (isWhitespaceNeedlesslySeparatingText(newWhitespace)) {
229 continue;
230 }
231 }
232
233 return newWhitespace;
234 }
235
236 /** choose an obstacle near the middle of the current rectangle */
237 final HasPosition pivot = choosePivot(current);
238
239 /**
240 * Create four subrectangles, one on each side of the pivot, and determine the obstacles
241 * located inside it. Then add each subrectangle to the queue (as long as it is not too
242 * thin)
243 */
244 final QueueEntry[] subrectangles = splitSearchAreaAround(current, pivot);
245
246 for (QueueEntry sub : subrectangles) {
247 if (sub == null) {
248 continue;
249 }
250
251 queue.add(sub);
252 }
253 }
254
255 /* if we ran out of rectangles in the queue, return null to signal that. */
256 return null;
257 }
258
259 /**
260 * This method provides a personal touch to the algorithm described in the paper which is
261 * referenced. Here we will just accept rectangles which are adjacent to either another one
262 * which we have already identified, or which are adjacent to the edge of the page.
263 * <p/>
264 * By assuring that the we thus form continous chains of rectangles, the results seem to be much
265 * better.
266 */
267 final boolean isNextToWhitespaceOrEdge(final WhitespaceRectangle newWhitespace) {
268
269 /* accept this rectangle if it is adjacent to the edge of the page */
270 final float l = WHITESPACE_OBSTACLE_OVERLAP;
271 final Rectangle wPos = newWhitespace.getPos(),
272 rPos = region.getPos();
273
274 if ((wPos.x <= rPos.x + l) || (wPos.y <= rPos.y + l) || (wPos.endX >= rPos.endX - l)
275 || (wPos.endY >= rPos.endY - l)) {
276 return true;
277 }
278
279 /* also accept if it borders one of the already identified whitespaces */
280 for (int i = 0; i < foundWhitespaceCount; i++) {
281 final WhitespaceRectangle existing = foundWhitespace[i];
282
283 if (wPos.distance(existing.getPos()) <= WHITESPACE_OBSTACLE_OVERLAP) {
284 return true;
285 }
286 }
287
288 return false;
289 }
290
291 /**
292 * Finds up to the requested amount of whitespace rectangles based on the contents on the page
293 * which has been provided.
294 *
295 * @return whitespace rectangles
296 */
297 List<WhitespaceRectangle> findWhitespace() {
298
299 if (foundWhitespaceCount == 0) {
300
301 /* first add the whole page (all its contents as obstacle)s to the priority queue */
302 int obstacleCount = region.getContents().size();
303 HasPosition[] obstacles = region.getContents().toArray(new HasPosition[obstacleCount]);
304
305 queue.add(new QueueEntry(region.getPos(), obstacles, obstacleCount, 0));
306
307 /* continue looking for whitespace until we have the wanted number or we run out */
308 while (foundWhitespaceCount < wantedWhitespaces) {
309 final WhitespaceRectangle newRectangle = findNextWhitespace();
310
311 /* if no further rectangles exist, stop looking */
312 if (newRectangle == null) {

99

313 break;
314 }
315
316 foundWhitespace[foundWhitespaceCount++] = newRectangle;
317 }
318 }
319
320 ArrayList<WhitespaceRectangle> ret = new ArrayList<WhitespaceRectangle >(foundWhitespaceCount);
321
322 for (int i = 0; i < foundWhitespaceCount; i++) {
323 ret.add(foundWhitespace[i]);
324 }
325
326 return ret;
327 }
328
329 /**
330 * Check if the whitespace rectangle is made useless by the way it separates text. see thesis
331 * text for details.
332 */
333 boolean isWhitespaceNeedlesslySeparatingText(final WhitespaceRectangle newWhitespace) {
334
335 if (newWhitespace.getPos().width > 30) {
336 return false;
337 }
338
339 /* decrease the size a tiny bit, so we don't include what blocked the rectangle , especially
340 * above and below */
341 Rectangle search = newWhitespace.getPos().getAdjustedBy(-1.0f);
342 final float range = 8.0f;
343 final List<PhysicalContent> right = region.searchInDirectionFromOrigin(E, search, range);
344 int rightCount = 0;
345
346 for (PhysicalContent content : right) {
347 if (content.isText()) {
348 rightCount++;
349 }
350 }
351
352 if ((rightCount == 1) || (rightCount == 2)) {
353 final List<PhysicalContent> left = region.searchInDirectionFromOrigin(W, search, range);
354 int leftCount = 0;
355
356 for (PhysicalContent content : left) {
357 if (content.isText()) {
358 leftCount++;
359 }
360 }
361
362 if ((leftCount == 1) || (leftCount == 2)) {
363 return true;
364 }
365 }
366
367 return false;
368 }
369
370 /**
371 * Check if newWhitespace is too small considering the surrounding content
372 */
373 boolean isWhitespaceTooShortForSurroundingText(final WhitespaceRectangle newWhitespace) {
374
375 final List<PhysicalContent> surroundings = region.findSurrounding(newWhitespace, 8);
376
377 if (!surroundings.isEmpty()) {
378 float averageHeight = 0.0f;
379 int counted = 0;
380
381 for (PhysicalContent surrounding : surroundings) {
382 if (surrounding.isText()) {
383 averageHeight += surrounding.getPos().height;
384 counted++;
385 }
386 }
387
388 if (counted != 0) {
389 averageHeight /= (float) counted;
390
391 float u = Math.max(((PhysicalPageRegion) region).getMinimumRowSpacing(), averageHeight);
392
393 if (u > newWhitespace.getPos().height) {
394 return true;
395 }
396 }
397 }

100 B Whitespace covering algorithm – Java implementation

398
399 return false;
400 }
401
402 /**
403 * Creates four rectangles with the remaining space left after splitting the current rectangle
404 * around the pivot. Also divides the obstacles among the newly created rectangles
405 */
406 QueueEntry[] splitSearchAreaAround(final QueueEntry current, final HasPosition pivot) {
407
408 /* Everything inside here was the definitely most expensive parts of the implementation ,
409 * so this is quite optimized to avoid too many float point comparisons and needless
410 * object creations. This cut execution time by a _lot_ :) */
411 final int missingRectangles = wantedWhitespaces - foundWhitespaceCount;
412 final float splitX = pivot.getPos().x,
413 splitEndX = pivot.getPos().endX,
414 splitY = pivot.getPos().y,
415 splitEndY = pivot.getPos().endY;
416 final Rectangle bound = current.bound;
417
418 /* check which of the four possible subrectangles we want to create, and their dimensions */
419 Rectangle left = null;
420 HasPosition[] leftObs = null;
421 final float leftWidth = splitX - bound.x;
422
423 if ((splitX > bound.x) && (leftWidth > minWidth)) {
424 left = new Rectangle(bound.x, bound.y, leftWidth, bound.height);
425 leftObs = new HasPosition[current.numObstacles + missingRectangles];
426 }
427
428 Rectangle above = null;
429 HasPosition[] aboveObs = null;
430 final float aboveHeight = splitY - bound.y;
431
432 if ((splitY > bound.y) && (aboveHeight > minHeight)) {
433 above = new Rectangle(bound.x, bound.y, bound.width, aboveHeight);
434 aboveObs = new HasPosition[current.numObstacles + missingRectangles];
435 }
436
437 Rectangle right = null;
438 HasPosition[] rightObs = null;
439 final float rightWidth = bound.endX - splitEndX;
440
441 if ((splitEndX < bound.endX) && (rightWidth > minWidth)) {
442 right = new Rectangle(splitEndX, bound.y, rightWidth, bound.height);
443 rightObs = new HasPosition[current.numObstacles + missingRectangles];
444 }
445
446 Rectangle below = null;
447 HasPosition[] belowObs = null;
448 final float belowHeight = bound.endY - splitEndY;
449
450 if ((splitEndY < bound.endY) && (belowHeight > minHeight)) {
451 below = new Rectangle(bound.x, splitEndY, bound.width, belowHeight);
452 belowObs = new HasPosition[current.numObstacles + missingRectangles];
453 }
454
455 /**
456 * All the obstacles in current already fit within current.bound, so we can do just a quick
457 * check to see where they belong here. this way of doing it is primarily an optimization
458 */
459 int leftIndex = 0,
460 aboveIndex = 0,
461 rightIndex = 0,
462 belowIndex = 0;
463 final float adjustedSplitX = splitX - WHITESPACE_OBSTACLE_OVERLAP ,
464 adjustedSplitY = splitY - WHITESPACE_OBSTACLE_OVERLAP ,
465 adjustedSplitEndX = splitEndX + WHITESPACE_OBSTACLE_OVERLAP ,
466 adjustedSplitEndY = splitEndY + WHITESPACE_OBSTACLE_OVERLAP;
467
468 for (int i = 0; i < current.numObstacles; i++) {
469 HasPosition obstacle = current.obstacles[i];
470 final Rectangle obstaclePos = obstacle.getPos();
471
472 /* including the pivot will break the algorithm */
473 if (obstacle == pivot) {
474 continue;
475 }
476
477 if ((left != null) && (obstaclePos.x < adjustedSplitX)) {
478 leftObs[leftIndex++] = obstacle;
479 }
480
481 if ((right != null) && (obstaclePos.endX > adjustedSplitEndX)) {
482 rightObs[rightIndex++] = obstacle;

101

483 }
484
485 if ((above != null) && (obstaclePos.y < adjustedSplitY)) {
486 aboveObs[aboveIndex++] = obstacle;
487 }
488
489 if ((below != null) && (obstaclePos.endY > adjustedSplitEndY)) {
490 belowObs[belowIndex++] = obstacle;
491 }
492 }
493
494 final int n = foundWhitespaceCount;
495
496 return new QueueEntry[] { (left == null) ? null : new QueueEntry(left, leftObs, leftIndex, n),
497 (right == null)
498 ? null : new QueueEntry(right, rightObs, rightIndex, n),
499 (above == null)
500 ? null : new QueueEntry(above, aboveObs, aboveIndex, n),
501 (below == null)
502 ? null : new QueueEntry(below, belowObs, belowIndex, n) };
503 }
504
505
506
507 /**
508 * Checks if some of the newly added whitespace rectangles, that is those discovered after this
509 * queue entry was added to the queue, overlaps with the area of this queue entry, and if so
510 * adds them to this list of obstacles .
511 */
512 void updateObstacleListForQueueEntry(final QueueEntry entry) {
513
514 int numNewestObstaclesToCheck = foundWhitespaceCount - entry.numberOfWhitespaceFound;
515
516 for (int i = 0; i < numNewestObstaclesToCheck; i++) {
517 final HasPosition obstacle = foundWhitespace[foundWhitespaceCount - 1 - i];
518
519 if (entry.bound.intersectsAdmittingOverlap(obstacle.getPos(), WHITESPACE_OBSTACLE_OVERLAP)) {
520 entry.addObstacle(obstacle);
521 }
522
523 entry.numberOfWhitespaceFound = foundWhitespaceCount;
524 }
525 }
526
527 // -------------------------- INNER CLASSES --------------------------
528 static class QueueEntry implements Comparable<QueueEntry> {
529
530 final Rectangle bound;
531 int numberOfWhitespaceFound , numObstacles;
532 final HasPosition[] obstacles;
533 final float quality;
534
535 private QueueEntry(final Rectangle bound, final HasPosition[] obstacles, int numObstacles,
536 int numFound) {
537
538 this.bound = bound;
539 this.obstacles = obstacles;
540 this.numObstacles = numObstacles;
541 numberOfWhitespaceFound = numFound;
542 quality = rectangleQuality(bound);
543 }
544
545 public final int compareTo(final QueueEntry other) {
546 return Float.compare(other.quality, quality);
547 }
548
549 public void addObstacle(HasPosition obstacle) {
550 obstacles[numObstacles++] = obstacle;
551 }
552 }
553 }

	Introduction
	Motivation
	Background
	The PDF standard

	Problem description
	Geometric layout analysis
	Ordering of text content
	Logical layout analysis
	Reparation of publication-related damage

	Technical terms
	Outline of thesis
	Major results

	Related work – Comparison of existing projects
	Challenges and common problems
	Variation encountered in PDF files

	Feature comparison
	Maintainability and architecture
	pdf2xml
	TextGrabber

	Performance overview
	Benchmark
	Results

	Conclusion

	Geometric layout analysis – Page segmentation
	Choosing an algorithm
	X–Y cut
	Breuel's Constrained Textline Detection
	Verdict

	Page segmentation – Implementation
	Motivation
	Whitespace covering algorithm
	Problems and adaptations
	Avoiding unwanted passages by overlapping
	Avoiding stray whitespace by continuity
	Avoiding intraparagraph lines by local minimum bounds
	Avoiding two word separators
	Misc adaptions
	Discussion

	Determining page layout
	Challenges
	Extract column boundary candidates
	Height adjustment of columns
	Combination and filtering of column boundaries

	Text grouping and segmentation
	Page division – Column segmentation
	Block segmentation
	Line segmentation

	Recovering reading order
	State after Geometric Layout Analysis

	Geometric layout analysis – Technical challenges
	Exact glyph positioning
	Motivation
	Problem description
	Offsetting Y-coordinates
	Discovering bounding boxes
	Glyph mapping
	Missing information

	Physical word segmentation
	Motivation
	Technical background
	Explicit space representation
	Implicit space representation
	Making sense of it
	Implementation
	Performance

	Extracting graphical information
	Motivation
	Vector graphics
	Bitmap graphics
	Missing in action
	Putting the pieces together

	Logical layout analysis
	Text labelling
	Dehyphenation
	Logical paragraph segmentation
	Output format

	The application – PDFExtract
	Technical introduction
	Model
	Datasource
	Datasource – PDFBox
	Logical tree
	analysis
	tei-output and tei-p5-schema
	xml-output
	renderer

	Example output

	Performance evaluation
	Benchmark
	Behind the numbers
	Needlessly separated text
	Graphics problems
	Incorrectly detected columns
	Incorrect ordering of text

	Evaluation

	Conclusion
	Further work

	Bibliography
	List of Figures
	Acronyms
	Example document and result of analysis
	Example document
	Logical output
	Physical output

	Whitespace covering algorithm – Java implementation

