
Department of Physics and Technology, University of Bergen

Phase Transitions in Non-Equilibrium

Dynamical Systems

by

Szabolcs Horvát

Advisor: László P. Csernai
Co-advisor: Jan S. Vaagen

Thesis submitted to University of Bergen in partial fulfillment of
the requirements of the Dr. Scient. Degree

October 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Contents

Contents i

1 Introduction 1

1.1 Dynamical phase transitions . . . . . . . . . . . . . . . . . . 1

1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . 3

1.3 Notations and conventions . . . . . . . . . . . . . . . . . . . 4

1.4 Computational fluid dynamics . . . . . . . . . . . . . . . . . 5

Fluid dynamics and heavy ion reactions . . . . . . . . . . . . 5

The Particle-in-Cell method . . . . . . . . . . . . . . . . . . 6

2 The final stages of expansion 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Numerical viscosity . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The MIT Bag model EoS in fluid dynamics computations . . 17

2.4 Thermodynamics quantities in FD calculations . . . . . . . . 20

2.5 Applying the method . . . . . . . . . . . . . . . . . . . . . . 26

3 Constituent quark number scaling 31

3.1 Asymmetry of the flow in heavy-ion collisions . . . . . . . . 31

i



ii CONTENTS

3.2 Constituent quark number scaling of v2 . . . . . . . . . . . . 33

3.3 v2 scaling in a variable-mass model . . . . . . . . . . . . . . 35

Stages of hadronization . . . . . . . . . . . . . . . . . . . . . 35

Quark mass in vacuum . . . . . . . . . . . . . . . . . . . . . 35

Initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Equations of state of the Jüttner gas . . . . . . . . . . . . . 37

Expansion of the gas . . . . . . . . . . . . . . . . . . . . . . 41

Final state of the expansion . . . . . . . . . . . . . . . . . . 43

Recombination into hadrons . . . . . . . . . . . . . . . . . . 45

Calculation of v2 for a source of N cells . . . . . . . . . . . . 48

3.4 Results and conclusions . . . . . . . . . . . . . . . . . . . . . 50

4 Summary 57

4.1 Final stages of the expansion . . . . . . . . . . . . . . . . . . 58

4.2 Constituent quark number scaling . . . . . . . . . . . . . . . 61

4.3 Significance of results . . . . . . . . . . . . . . . . . . . . . . 63

List of Figures 65

Bibliography 67



Acknowledgements

I am grateful to my supervisor, Prof. László Csernai, for his help

during the period of my PhD, useful advices, and especially for

always being available for discussions when I needed advice.

I am indebted to my colleagues and collaborators for all the

useful and enlightening discussions that we had: Cheng Yun,

Sven Zschocke, Etele Molnár, Björn Bäuchle and Zoltán Néda.

I am thankful to my parents for their support during my studies,

and especially grateful to Xiao Duo for her support and great

encouragement during the past few months.

Bergen, October 2010

iii





Preface

Significance of the subject

Phase transitions are usually described in a quasi-static manner, assuming

local phase equilibrium. This approach is not viable when studying rapid

and dynamical changes. An area of active research in heavy ion physics

is describing the transition from Quark-Gluon Plasma to hadronic matter.

This is a rapid transition where non-equilibrium processes play an important

role. It is conjectured that the transition proceeds through the Quarkyonic

matter phase, where quark deconfinement ceases but freeze-out has not

yet occurred. This work presents simple non-equilibrium models for the

hadronization that can reproduce experimental observations such as the

constituent quark number scaling of the v2 elliptic flow parameter. The

final stages of fluid dynamical expansion, leading up to the hadronization

transition, are discussed as well. The study of the final stages of expansion

provides guidelines for understanding the transition itself.

v





Chapter 1

Introduction

1.1 Dynamical phase transitions

Phase transitions are generally described in a quasi-statical way, where it is

assumed that local equilibrium persists during the process. However, this

is not true for all processes that can be observed in nature. In particular,

explosive processes cannot generally be accurately described in such a way,

as fluctuations and transport processes, such as heat transfer and viscosity,

play an important role.

This work deals primarily with the dynamical phase transitions observed

in heavy ion reactions. In ultra-relativistic heavy ion collisions a very

hot and dense state of matter is created, where quarks can freely move

in a perturbative vacuum, the Quark-Gluon Plasma. This state of matter

reaches a thermally equilibrated state, and can be described using relativistic

fluid-dynamic models. As the matter expands and cools down, the quarks

recombine into observable hadrons, and the fluid-dynamical equilibrium

1



2 CHAPTER 1. INTRODUCTION

breaks down. This is a fast and dynamical process that cannot be precisely

described using quasi-statical models. It was shown by Csernai and Kapusta

that the nucleation rate of the quark deconfinement phase transition is

slower than the expansion rate in a heavy ion collision [10, 9]. Therefore

chemical equilibrium between the phases and among the hadron species

cannot persist during hadronization.

However, such dynamic phase transitions do not only occur under such

extreme conditions as those within the collision chamber of a particle collider.

These also happen in high temperature detonations used in technical applic-

ations, such as rocket engines, gas turbines, internal combustion engines,

etc. The correct description of some of these technical applications requires

a relativistic treatment despite the slow flow velocities. For example, in

a rocket engine, radiation pressure dominates and thus it contributes to

stabilizing the detonation front. Thus the results derived from the study of

heavy ion reactions may be relevant for several everyday applications.

The Quark-Gluon Plasma is a remarkable state of matter because the

quarks and gluons inside it are able to move freely. Thus its study offers an

opportunity to better understand the fundamental building blocks of matter.

However, this state of matter only exists under extremely high temperatures

and energy densities, and cannot be observed directly. As it expands, the

quarks are confined into hadrons and the collisions between the hadrons

cease (the system “freezes out”). There is evidence supporting that these

two processes do not happen exactly at the same time [8]. Between them

the matter may exist in the hypothetical Quarkyonic phase [20, 13]. In

the experiments only the final hadron spectrum can be measured. To be
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able to draw conclusions from these data about the Quark-Gluon Plasma, it

is important to understand how the transition to the frozen-out hadronic

phase happens.

1.2 Structure of the thesis

This work is a summary of three papers (see references [5, 14, 24]). My

main contribution to each one is briefly described below.

1. L. P. Csernai, Y. Cheng, Sz. Horvát, V. Magas, D. Strottman, and

M. Zétényi, Flow analysis with 3-dim ultra-relativistic hydro, Journal

of Physics G, vol. 36, no. 6, p. 064032, 2009.

My main contribution to the paper is the study of effects of numerical

viscosity in computational fluid dynamic calculations and the deriva-

tion of analytical expressions suitable for estimating the magnitude of

numerical viscosity.

2. Sz. Horvát, V. Magas, D. Strottman, and L. Csernai, Entropy develop-

ment in ideal relativistic fluid dynamics with the Bag Model equation

of state, Physics Letters B, vol. 692, no. 4, pp. 277-280, 2010.

I developed a method to correctly calculate thermodynamic variables

during the final stages of expansion in a fluid dynamical model, when

the pressure approaches zero, and applied the method to an actual

calculation, considering the effects of numerical viscosity. I performed

all the necessary analytical and numerical calculations.
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3. S. Zschocke, Sz. Horvát, I. Mishustin, L. P. Csernai, Constituent quark

number scaling, Manuscript

My contribution to this work is deriving a general formula for calcu-

lating the v2 elliptic flow parameter from a simple source of N moving

fireballs, performing the numerical evaluation needed to calculate

the evolution of a simple hadronization model, and finally calculat-

ing v2 from the results of the hadronization model. I performed the

calculations related to the expansion and recombination phases.

The second chapter describes the results of the first two papers, and

deals with interpreting the output of fluid dynamical models during the

final stages of expansion in a heavy ion collision. It presents a way to

calculate thermodynamic parameters, and the effects of numerical viscosity

in computational approaches is discussed.

The third chapter is a summary of the third paper and presents a simple

hadronization model that reproduces the constituent quark number scaling

of the v2 elliptic flow parameter.

Results and conclusions are given in each chapter.

1.3 Notations and conventions

In this work we adopt a natural system of units. The speed of light and the

Boltzmann constant are considered to be of unit value and dimensionless:

c = 1 and k = 1. In this system of units the value of the reduced Planck

constant is � = �c = 197.326 MeV fm.
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Contravariant components of four-vectors are marked with an upper

Greek index:

xμ = (x0, x1, x2, x3) = (ct,x) = (ct, x, y, z)

Covariant components have a lower Greek index:

xμ = (x0, x1, x2, x3) = (ct,−x) = (ct,−x,−y,−z)

The metric tensor is

gμν = gμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

−1

−1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The Einstein summation convention is used throughout the work, i.e. aμbμ ≡∑
μ=0,1,2,3 a

μbμ.

1.4 Computational fluid dynamics

Fluid dynamics and heavy ion reactions

In the Quark-Gluon Plasma phase, the quarks are thermally equilibrated,

thus fluid dynamics suitable for describing this state of matter. Both

theoretical considerations [16] and experimental data collected at RHIC

suggest that the Quark-Gluon Plasma is an almost perfect fluid with very

low viscosity. Csernai et al. have noted that near a critical point of the

phase transitions, fluids have a minimal viscosity [11].
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Based on these results, the Quark-Gluon plasma can be modelled by a

perfect fluid. An ideal relativistic fluid is described by the relativistic Euler

equation:

∂μT
μν = 0, (1.1)

where T μν is the energy momentum tensor. For an ideal fluid, T μν can be

expressed as a function of the energy density e and the pressure p using the

following formula:

T μν = (e+ p)uμuν + pgμν .

Eq. (1.1) expresses the conservation of energy and momentum. When

describing nuclear collisions, it is complemented by an equation expressing

the conservation of the baryon number:

∂μN
μ = ∂(nuμ) = 0. (1.2)

Nμ denotes the four-current of the baryon charge, while n is the invariant

baryon-density.

Except for the most trivial configurations, the equations of fluid dynamics

can only be solved numerically, on a computer.

The Particle-in-Cell method

There are several computational methods to solve the equations of fluid

dynamics numerically.

The numerical fluid dynamical calculations in this work are based on a

(3 + 1)-dimensional computational fluid dynamics model [6, 2, 5] which uses

the Particle-in-Cell method to solve the relativistic Euler-equations. The
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Particle-in-Cell method uses a fixed grid of Eulerian cells in conjunction with

marker particles that flow through it. The marker particles are Lagrangian

fluid cells associated with a fixed amount of baryon charge, and carry

momentum and energy between the cells. The marker particles are initially

scattered randomly on the computational grid to avoid instabilities. The

code runs in a stable way, even up to the very last stages of fluid dynamical

expansion.





Chapter 2

Entropy production during the

final stages of expansion in heavy

ion reactions

2.1 Introduction

In this section we shall deal with the entropy production during the final

stages of expansion in ultra-relativistic heavy-ion reactions.

In high energy nuclear collisions a very hot and dense state of matter

is created, the quark-gluon plasma. In this state, particles reach thermal

equilibrium, thus the most appropriate way of modelling them is relativ-

istic fluid dynamics. As the matter expands and cools, the fluid dynamic

equilibrium will be lost, and the quarks will be confined into hadrons. At

this point fluid dynamic models cease to be applicable. However, any fluid

dynamic calculation will necessarily include the space-time regions where

9
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this happens, and the appropriate interpretation of the results will provide

valuable insights about the mechanism of freeze-out and hadronization.

Fluid dynamics alone does not constrain the location of the freeze-out

hypersurface. This is determined by external conditions. A viable modelling

approach is to let the fluid dynamics simulation run beyond the point of

freeze-out and determine the location of the freeze-out hypersurface later

from the results, using guidelines such as temperature and density. To

be able to do this, we need a reliable way to calculate thermodynamic

parameters, such as temperature and entropy, at the final stages of the

expansion when the pressure approaches zero. As we will see in the following

sections, this problem must be treated carefully.

It must be noted that any numerical fluid dynamic calculation will

unavoidably contain numerical errors arising from the finite resolution of

the computational grid. Some of these numerical errors appear in a form

analogous to viscosity. This numerical viscosity will lead to an apparent

additional entropy-increase in the computational model, and must not be

neglected in a study, especially concerning the entropy and other effects of

dissipation.

2.2 Numerical viscosity

Partial differential equations are usually solved numerically on computers

by discretising them in some way, and solving the corresponding difference

equation. The imprecision resulting from the discretization is called the

discretization error. When solving the equations of hydrodynamics numer-



2.2. NUMERICAL VISCOSITY 11

ically, part of the discretization error appears in the form of an additional

viscosity.

To see this, let us consider the simple Lax method of solving the one-

dimensional continuity equation. The general form of the continuity equation

is
∂ρ

∂t
+∇ · j = 0,

where ρ and j are the density and current of a conserved quantity. j is

usually j = ρv, where v is the flow velocity. The trivial discretisation of this

equation in space and time coordinates is

ρn+1
k − ρnk
Δt

= −jnk+1 − jnk−1

2Δx
.

(Upper indices represent time, while lower indices represent the space co-

ordinate: ρ(nΔt, kΔx) = ρnk .) However, it turns out that this particular

difference equation cannot be used to propagate the solution in time because

it leads to instabilities. In the numerical scheme known as the Lax method,

the instabilities are removed by replacing the ρnk term on the left-hand side

with the average of its spatial neighbours, 1
2
(ρnk+1 + ρnk−1):

ρn+1
k − 1

2
(ρnk+1 + ρnk−1)

Δt
= −jnk+1 − jnk−1

2Δx
. (2.1)

Let us now expand ρ and j in Taylor series around the point (n, k):

ρn+i
k = ρnk +

∂ρ

∂t
iΔt+

∂2ρ

∂t2
(iΔt)2

2
+O(Δt3),

ρnk+i = ρnk +
∂ρ

∂x
iΔx+

∂2ρ

∂x2

(iΔx)2

2
+O(Δx3),

jnk+i = jnk +
∂j

∂x
iΔx+

∂2j

∂x2

(iΔx)2

2
+O(Δx3).
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Substituting the expansions into equation (2.1) we get

∂ρ

∂t
+

∂2ρ

∂t2
Δt

2
− Δx2

2Δt

∂2ρ

∂x2
= −∂j

∂x
+O(Δx2,Δt2),

and we can see that eq. (2.1) can be interpreted as the discretization of the

following continuity equation with a diffusion term:

∂ρ

∂t
+

∂j

∂x
= 0 +

Δx2

2Δt︸︷︷︸
D

∂2ρ

∂x2
+O(Δx2,Δt), (2.2)

where D = Δx2

2Δt
is a diffusion coefficient dependent on the parameters of the

numerical solution (cell size Δx and time step Δt).

It can be proven that for the difference equation (2.1) to be stable, it is

necessary that |vnk |(Δt/Δx) ≤ 1 for all (n, k) (the Courant condition). This

is satisfied if ε = Δt/Δx ≤ 1/vmax = const. So D = 1
2
εΔx, and equation

(2.2) can be written as

∂ρ

∂t
+

∂j

∂x
= 0 +

Δx

2ε

∂2ρ

∂x2
+O(Δx2,Δt). (2.3)

Since ε is required to be less than a constant for stability, the diffusion

term in this equation decreases linearly (and not quadratically) with Δx.

The equations of fluid dynamics can be written in the form of conservation

laws (i.e. continuity equations) for the energy, momentum and particle

number (or other conserved charge):

∂e

∂t
+∇ · (ve) = −∇ · (vP )

∂Mk

∂t
+∇ · (vMk) = − ∂P

∂xk

, k = 1, 2, 3

∂n

∂t
+∇ · (vn) = 0

Here e, M and n are the density of the energy, momentum and particle

number. To have a solvable problem, these continuity equations need to be
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supplemented by an equation of state connecting these three quantities with

the pressure P .

If diffusion terms are added to these three continuity equations, they will

correspond to heat transfer, viscosity, and particle diffusion, respectively.

Let us look at viscosity in particular.

The usual form of the one-dimensional Euler equation of fluid dynamics,

and the continuity equation for the conservation of mass are

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= −∂p

∂x

∂ρ

∂t
+

∂(ρv)

∂x
= 0.

By multiplying the second equation and adding it to the first we obtain the

continuity equation for the momentum density, M = ρv:

∂(ρv)

∂t
+

∂(ρv2)

∂x
= −∂p

∂x
.

Using the Lax method to approximate the solution of these two continuity

equations will in fact give the solution of the following equations containing

diffusion terms:

∂ρ

∂t
+

∂(ρv)

∂x
= 0 +

Δx2

2Δt

∂2ρ

∂x2
+O(Δx2,Δt)

∂(ρv)

∂t
+

∂(ρv2)

∂x
= −∂p

∂x
+

Δx2

2Δt

∂2(ρv)

∂x2
+O(Δx2,Δt).

If we transform the continuity form of these equations back to the standard

form of the Euler equation, we get

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= −∂p

∂x
+ ρ

Δx2

2Δt︸ ︷︷ ︸
ηnum

∂2v

∂x2
+ 2

Δx2

2Δt

∂ρ

∂x

∂v

∂x
+O(Δx2,Δt).
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Comparing this equation with the one-dimensional Navier-Stokes equation,

we see that the term
(
ρΔx2/(2Δt)

)
(∂2v/∂x2) is analogous to the viscosity

term. Since this term appears as a result of discretisation, its coefficient can

be interpreted as the magnitude of the numerical viscosity, ηnum.

ηnum ∼ ρ
Δx2

2Δt
. (2.4)

As mentioned earlier, Δx/Δt = ε needs to have an upper bound for the

numerical method to be stable, therefore the numerical viscosity decreases

linearly with the cell size of the grid on which the calculation is done.

Eq. (2.4) allows us to estimate the magnitude of numerical viscosity in

computational fluid dynamical calculations.

The numerical viscosity leads to a corresponding increase in entropy even

if an adiabatic state in change was assumed in the solved analytic partial

differential equations. Fig. 2.1 illustrates this for a calculation describing a

65 + 65 A·GeV nuclear collision. Note that even the initial entropy depends

on the cell size of the computational grid. This is due to the averaging effect

of discretisation: the matter is considered to be in equilibrium inside each

computational cell. Thus halving the grid-resolution by merging cell-pairs

is equivalent to letting each cell-pair reach a thermodynamic equilibrium,

which increases the entropy of the system. The lower the resolution of the

computational grid, the higher the entropy of the initial state will be.

Numerical viscosity is unavoidable in computational fluid dynamics,

therefore it is important the understand the effects and impact of numerical

viscosity on the final result. The equations of ideal relativistic fluid dynamics

are unstable by nature, and any small perturbation to a stationary solution
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will increase [4]. In realistic situations, however, there is always at least a

small amount of viscosity and dissipation present, which stabilizes solutions.

As seen in the calculations above, it is in fact the introduction of the numer-

ical viscosity that allows the equations of ideal fluid dynamics to be solved

in a stable manner on a computer. In a calculation that includes physical

viscosity explicitly, it is difficult to estimate the effects and contribution of

numerical viscosity. An alternative approach, which we have taken here,

is to adjust numerical viscosity so that it becomes approximately equal to

the physical viscosity that we wish to describe. The Quark-Gluon Plasma

was shown to behave like a low viscosity fluid, so this approach is feasible

when describing it. The Particle-in-Cell method that we used runs stably

for a wide range of densities from the start of the expansion up to the final

stages when the pressure becomes low. The random placement of marker

particles helps avoid grid related instabilities and ensures that the results of

the calculation will not be strongly affected by the grid size and time step.

Therefore this numerical method is suitable for such an approach.

The entropy increase due to numerical viscosity is around 5-6% in our

numerical calculations (see figure 2.1). This effect is larger in our (3 + 1)

dimensional model than the one found in (1 + 1) or (2 + 1) dimensional

calculation [1, 22]. However, it is smaller than the 6-24% increase in models

that explicitly include physical viscosity.
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0 2 4 6 8 10 12
210

220

230

240

250

260

time �fm�c�

S

N

b � 70�, Vcell � 0.19 fm3

b � 0, Vcell � 1.5 fm3

b � 0, Vcell � 0.19 fm3

Figure 2.1: Development of the mean specific entropy for three different

3D computational fluid dynamic simulation done using the Particle-in-Cell

method. Even though the computation assumed an ideal fluid and adiabatic

expansion, the entropy is increasing as a result of numerical viscosity. The

entropy increase is about 5-6%. The calculations describe an Au+Au heavy-

ion collision at 65 + 65 A·GeV with impact parameter b. Vcell is the size of

the computational cells. The difference in the initial specific entropy in the

two cases describing a collision with impact parameter b = 0 is due to the

finite cell size. Due to the averaging effect, the entropy of the same initial

state will be larger if it is discretized on a coarser grid.
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2.3 The MIT Bag model EoS in fluid

dynamics computations

When solving the Euler-equations of fluid-dynamics, it is necessary to

complement them with an equation that connects the pressure with the

baryon charge and energy density. In our calculations, the simple MIT Bag

model equation of state was used to obtain this relationship.

The MIT Bag model of nucleons assumes that the quarks move in

perturbative vacuum that has a constant energy density. This energy

density, denoted B, is called the Bag constant.

Assuming that the gas of asymptotically free quarks can be modelled

using a simple Stefan–Boltzmann gas, and neglecting the baryon charge, the

MIT Bag model equations of state are

E = σSBT
4V +BV

p =
1

3
σSBT

4 − B

S =
4

3
σSBT

3V,

(2.5)

where σSB is a constant. The relationship between the pressure and the

energy density will be

p =
1

3
e− 4

3
B (2.6)

Note that it is possible to solve the equations of fluid dynamics if only the

relationship between the pressure and energy density, eq. (2.6), is given,

not the full set of equations of state (2.5). This is applicable to baryonless

matter, nB = 0, where the continuity equation is not needed.
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It is important to note that the pressure–energy-density relationship of

eq. (2.6) allows for negative pressures when the energy density drops below

4B (see Fig. 2.2). Negative pressures lead to instabilities in fluid-dynamical

computations, therefore we have truncated this p(e) function as follows, for

use in numerical fluid dynamics calculations:

p =

⎧⎪⎪⎨
⎪⎪⎩
0 if e < 4B

1
3
e− 4

3
B otherwise

. (2.7)

2 4 6 8 10 12 14
e

�1

1

2

3

p

Figure 2.2: The Bag equation of state (pressure–energy-density relationship)

used in the fluid dynamical computation. The axes are in units of B.

However, it turns out that there is no single equation of state that is

compatible with such a p(e) relationship. Thus the ideal parton gas and

the perturbative vacuum in which it moves (referred to as the “Bag field”

from now on) cannot be treated as a single thermodynamic system that is

in equilibrium. We shall therefore use a simple model where we treat the

parton gas and the Bag field as two separate but interacting systems, as

illustrated in Fig. 2.3.
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To show that eq. (2.7) cannot result from the equation of state of any

equilibrated thermodynamical system, let us write the partial derivatives of

the entropy S(T, V ) with respect to the temperature T and volume V :

(
∂S

∂V

)
T

=
1

T

(
∂E

∂V

)
T

+
p

T
,(

∂S

∂T

)
V

=
1

T

(
∂E

∂T

)
V

.

The entropy is a state function, so it must be an exact differential, i.e.

∂2S

∂T∂V
=

∂2S

∂V ∂T
.

Substituting the partial derivatives into this formula it follows that

(
∂E

∂V

)
T

= T

(
∂p

∂T

)
V

− p.

From this it can be concluded that in the regime of small energy densities,

where the pressure is identically zero according to eq. (2.7), the energy does

not depend on the volume: (∂E/∂V )T = 0.

However, in the regime where p > 0, the gas is described by the same

equations as the unmodified Bag model, eqs. (2.5), so the energy of the

system is proportional to the volume. Thus the E(T, V ) internal energy

function in these two regimes cannot be stitched together in such a way that

a continuous function is obtained.

At the same time, a discontinuity in T does not contradict basic conser-

vation laws as any equation of state with a first order phase transition has a

discontinuity on the [μ, T ]-plane.



20 CHAPTER 2. THE FINAL STAGES OF EXPANSION

2.4 Interpreting the results of a

computational fluid dynamical

calculation

A computational fluid dynamic calculation involves the direct calculation of

the energy density, pressure, and density of conserved charges, such as the

baryon charge in a heavy ion reaction. Thermodynamic quantities such as

temperature and entropy do not directly appear in the computation. They

can however be calculated from the quantities that we do obtain: energy

density and baryon number density.

ppp

pB

e = ep + eB

Figure 2.3: Illustration of the compound system consisting of a quark-gas

and the Bag field. The effective pressure (that could be measured by an

external observer) of the full system is the sum of the pressures of the

constituent parts, p = pB + pp. The Bag pressure, pB, is always negative:

pB = −B if e ≥ 4B and pB = −pp if e < 4B.

In order to do be able to do this, we need the full equation of state

connecting these quantities. In this particular case, however, we have two

compound systems, the quark gas and the Bag field. The energy density
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obtained from the fluid dynamic computation needs to be decomposed into

the energy density of these two parts:

e = ep + eB

(Quantities describing the parton gas will be marked with a p subscript,

quantities describing the Bag field will be marked with a B subscript.) Then

the temperature T = Tp and entropy density s = sp of the quark gas can

be determined from the Stefan-Boltzmann equation of state. Note that the

Bag field is homogeneous, isotropic and uniform, thus it does not contribute

to the entropy of the system.

First let us consider the case when e > 4B and the total pressure p

is positive. Then the Bag energy density is simply taken to be constant,

eB = B, according to the standard MIT Bag model. As the system expands,

some of the mechanical work done by the quark gas is used for increasing

the total energy of the Bag field, EB = eBV = BV . This can be interpreted

as the Bag field having its own negative valued pressure, pB = −B, while

the effective pressure of the compound system is the sum of the pressures of

the sub-systems: p = pp + pB = pp − B.

ep = σSBT
4 eB = B

pp =
1

3
σSBT

4 pB = −B

sp =
4

3
σSBT

3 sB = 0

(2.8)

When e < 4B, the total pressure of the system is p = 0, i.e. the negative

Bag pressure must balance the partonic pressure exactly: pB = −pp. To

be able to do decompose the energy density into e = ep + eB in this case,
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explicit assumptions need to be made about the nature of energy exchange

between the two sub-systems. Three choices will be considered here.

• The first one is that the energy density of the Bag field is constant

during the expansion, eB = B. The mechanical work done by the

parton gas component on the Bag field is not enough to maintain a

constant Bag energy density. In order for this to be possible, additional

energy must be transferred non-mechanically from the gas to the Bag

field. As a result of this non-mechanical energy transfer, the entropy

of the parton gas component will decrease. Note that even though

the fluid dynamic calculation assumed an ideal fluid, and thus the

combined parton gas + Bag system can be considered to expand

“adiabatically”, the expansion of the gas component alone will not be

adiabatic, and its entropy will not stay constant the expansion. (This

situation is similar to a system with two phases of the same material.)

A net entropy decrease in an isolated system, such as a quark gas

expanding in vacuum, is not physical, as it contradicts the second law

of thermodynamics. Thus the assumption that the Bag energy density

stays constant is not realistic.

• The second case is assuming that the only kind of energy exchange

between the sub-systems is a mechanical one. Thus the expansion of

the parton gas component is adiabatic, and its total entropy stays

constant, dS = 0. To see how the energy density of the Bag field will

change during the expansion, first let us calculate the energy density

of the parton component. Using the equation of state of an ideal
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Stefan-Boltzmann gas, eq. (2.8), it can be shown that if the entropy

stays constant during the expansion, S = S0, then ep/ep0 = (V/V0)
−4/3,

where V is the volume of the system. Here the lower index 0 is used

to denote quantities at the exact moment when the total pressure of

the compound system becomes p0 = pp0 + pB0 = 0. At this point

the energy densities are e0 = 4B, eB = B (as in the unmodified Bag

model), and ep = 3B. Since the total energy E = Ep+EB is conserved

during the expansion, E0 = E and the volume ratio can be expressed

using the energy density ratio: eV = e0V0 = 4BV0 and

ep
ep0

=
ep
3B

=

(
V

V0

)− 4
3

=
( e

4B

) 4
3
=

(
ep + eB
4B

) 4
3

.

Using the expression of ep(T ) from eq. (2.8), eB(T ) can be calculated

as a function of temperature using the following implicit equation:

ep(T )

3B
=

(
ep(T ) + eB(T )

4B

) 4
3

. (2.9)

• The third choice is that the energy of the parton gas in a Lagrangian

cell (i.e. a region of space that moves together with the flow) is constant:

dEp = 0. This is only possible if in addition to the mechanical work

that the quark gas component does on the Bag component, energy is

transferred non-mechanically from the Bag to the quark gas, resulting

in a zero net energy exchange between the two sub-systems. The

entropy of the parton gas will increase during this process. This

corresponds to a dissipative expansion.

If Ep = const., then EB = E −Ep is also a constant because the total

energy E of the system is conserved. The ratio EB/Ep = eB/ep will
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not change during the expansion, thus

eB(T ) =
ep(T )

3
. (2.10)

• If the net energy transfer is directed from the Bag component towards

the parton gas, then the entropy increase will be even larger.

The energy density of the Bag field, eB, is plotted as a function of

temperature in Fig. 2.4 for the three assumptions discussed above. In

these calculations, the value of the Bag constant was taken to be B =

396 MeV/fm3.

The interaction measure was also calculated for these three cases for

the purpose of comparison with Lattice QCD simulations. The interaction

measure is usually defined as

IM = (�c)3
e− 3p

T 4
. (2.11)

Notice that for an ideal Stefan-Boltzmann gas, where the particles do not

interact, the value of the interaction measure, is IM = 0. The stronger the

interaction between the particles, the more the interaction measure will

differ from zero.

When p > 0, based on eq. (2.5) the interaction measure decreases with

T−4:

IM(T ) = (�c)3
4B

T 4

When p = 0, then IM(T ) = (�c)3(ep(T ) + eB(T ))/T
4. Different results

are obtained depending on the assumption made about the energy transfer

between the sub-systems.
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Figure 2.4: The energy density of the Bag field, eB, as a function of the

temperature T . The dashed line represents the case when eB is constant

during the expansion. This has been shown to be unrealistic is it leads to

entropy decrease. The solid line corresponds to the constant entropy case,

S = const., while the dotted line corresponds to the total energy of the

parton gas component staying constant during expansion, Ep = const. In

the latter two cases the energy density of the Bag decreases as the system

expands.

If eB = B = const., then

IM(T ) = (�c)3
(
σSB +

B

T 4

)

If the entropy of the parton gas component stays constant, then using
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eq. (2.9) we obtain

IM(T ) = (�c)3
(
ep(T )

3B

) 3
4 4B

T 4
=

= (�c)3
(σSB

3B

) 3
4 4B

T
.

If the total energy of the parton gas stays constant during the expansion,

then using eq. (2.10) we get a constant interaction measure.

IM(T ) = (�c)3
4

3
σSB.

These three cases are summarized and plotted in Fig. 2.5. If the net

energy transfer is directed from the Bag to the parton gas, then the interac-

tion measure curve decreases with expansion when p = 0. In the same figure

the results of a Lattice QCD calculation [12] are plotted for the purpose of

comparison (empty circles). These calculations predict a decrease in the

interaction measure as the matter expands. This is possible in our model

if more energy is transferred from the Bag field to the gas components,

corresponding to a sharper decrease in eB and a higher entropy increase.

2.5 Applying the method

The method described here was applied to interpret the results of a (3 + 1)-

dimensional computational fluid dynamics calculation based on the Particle-

in-Cell method, and calculating the entropy as a function of time.

The calculation that was considered describes an Au+Au heavy ion

collision at 65 + 65 A·GeV with impact parameter b = 0. The cell size of

the computational grid was 0.19 fm3. The initial state of the calculation
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Figure 2.5: The interaction measure, IM, as a function of temperature

during expansion. The dashed line corresponds to eB = B = const. (this

case is not physical as itleads to decreasing entropy in the expansion), the

solid line corresponds to constant entropy, while the dotted line corresponds

to the energy of the parton gas component being conserved during expansion.

The result obtained from a Lattice QCD calculation [12] is plotted (empty

circles) for the purpose of comparison.

was taken from an analytic string rope model allowing for strings of the

colour-magnetic field with differing string tensions [19, 18].

For these calculations a more realistic set of equations of state was used
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for the parton gas component [4]:

ep =
1

(�c)3

(
37

30
π2T 4 +

1

3
μ2
BT

2 +
1

54π2
μ4
B

)

pp =
1

(�c)3

(
37

90
π2T 4 +

1

9
μ2
BT

2 +
1

162π2
μ4
B

)

np =
1

(�c)3
2

9

(
μBT

2 +
1

9π2
μ3
B

)

sp =
1

(�c)3

(
74

45
π2T 3 +

2

9
μ2
BT

)
(2.12)

Here np is the baryon number density of the parton gas and μB is the baryon

chemical potential. Note that for this equation of state it is still true that

pp = ep/3.

From the fluid dynamics code, we obtain the energy density e and baryon

number density n (as well as the pressure p). After decomposing the energy

density as e = ep+eB, eqs. (2.12) can be used to solve for the temperature T

and baryon chemical potential μB, and finally calculate the entropy density

sp. Since eqs. (2.12) is a fourth order polynomial system of equations in two

unknowns, the most effective way was to solve it numerically.

The mean specific entropy (total entropy divided by total baryon number,

S/N) was calculated for the three assumptions discussed in the previous

section. The results are plotted in Fig. 2.6. As expected, assuming that the

Bag energy density is constant, eB = const., leads to an entropy decrease,

which is un-physical because it contradicts the second law of thermodynamics.

The entropy of a closed system cannot decrease. The assumption that the

total energy of the gas component is constant, dEp = 0, leads to an increase

in entropy. If the total energy of the gas increased because extra energy is

transferred to it from the Bag, then the entropy would increase even more.
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The assumption that the quark gas component expands adiabatically would

ideally lead to a constant entropy, however, due to the numerical viscosity of

the computational method, there is a slight increase (solid line in Fig. 2.6).
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Figure 2.6: Change of the mean specific entropy S/N in time during

expansion in a numerical fluid dynamic computation. The dashed line

corresponds to the assumption that the Bag energy density is constant.

This leads to decreasing entropy, which conflicts with the second law of

thermodynamics. The solid line represents an adiabatic expansion of the

quark gas component. The slight entropy increase here (of 5-6%) is due

to the numerical viscosity of the computational method. The dotted line

corresponds to the assumption that the total energy of the gas component

is constant during expansion. The cell size was dx = dy = dz = 0.575 fm





Chapter 3

Constituent quark number

scaling

3.1 Asymmetry of the flow in heavy-ion

collisions

The usual way to characterize the asymmetry of the transverse flow of

the expanding matter in heavy ion collisions is by using the coefficients

of the Fourier expansion of the momentum distribution of particles. Let

f(p⊥, ϕ, pz) denote the momentum distribution in cylindrical coordinates.

p⊥ denotes the transverse momentum, pz the longitudinal momentum, and

ϕ is the angle in the transverse plane. Then the momentum distribution for

mid-rapidity particles can be expanded as

f(p⊥, ϕ, pz = 0) = n(p⊥, pz = 0)

[
1 +

∞∑
k=1

vk(p⊥) cos(kϕ)

]
. (3.1)

31
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The coefficients vk are used to characterize the asymmetry of the distribution.

v1 corresponds to directed flow, while v2 corresponds to elliptic flow. A

momentum distribution with a non-zero v2 parameter is shown schematically

on figure 3.1.

px

py

Figure 3.1: Illustration of a momentum distribution with v2 �= 0 and vk = 0

for k �= 2. A fully symmetric distribution is shown for comparison (thin

dashed line).
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3.2 Constituent quark number scaling of v2

It was found in heavy ion collision experiments that the momentum dis-

tribution of the detected particles is azimuthally asymmetric in the plane

perpendicular to the beam direction. This phenomenon is referred to as the

elliptic flow in the literature. The asymmetry is caused by several factors,

the main one being the spatially asymmetric state created right after the

nuclei collide, due to the non-zero impact parameter.

The v2 parameter characterizing the elliptic flow is usually studied for

mid-rapidity particles, as a function of the transverse momentum, p⊥ (i.e. the

component of the particle momentum perpendicular to the beam direction).

Observations show that if v2(p⊥) is re-scaled by the constituent quark

number of the considered hadron type, and v2/ncq is plotted as a function of

p⊥/ncq, then the obtained curves will coincide for all hadron species, both

mesons and baryons. Furthermore, it was found that the scaling is even

more precise if instead of the transverse momentum, p⊥, the transverse

energy, E⊥ =
√
m2 + p2⊥ −m, where m is the particle mass, is used as the

dependent variable [17, 23]. A plot of the experimentally measured v2 is

shown in figure 3.2.

This finding suggests that the elliptic flow develops in the Quark-Gluon

Plasma phase, before the quarks are recombined into hadrons. Therefore

the study of constituent quark number scaling, and the understanding of

the phenomenon may provide insight into the Quark-Gluon Plasma phase

of matter.

The constituent quark number scaling of the v2 parameter is a remarkably



34 CHAPTER 3. CONSTITUENT QUARK NUMBER SCALING

simple empirical observation. It is reasonable to expect that it can be

explained by a relatively simple theoretical model. We developed a very

simple model of hadronization and calculated the resulting v2 curves.

Figure 3.2: Constituent quark number scaling of the v2 parameter for

different hadron species in experimental data [23]. The scaling law is

followed more precisely when v2 is plotted as a function of the transverse

mass m⊥ −m (right panel) instead of the transverse momentum (left panel).

m⊥ =
√
m2 + p2⊥.
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3.3 v2 scaling in a variable-mass model

Stages of hadronization

We considered a simple model of hadronization where the hadronization

happens in several stages during the expansion of a quark gas, as follows:

• The chemical equilibrium between the quarks and anti-quarks and the

chiral symmetry breaking starts at the same time.

• As the gas of quarks expands in a background field, the quarks gain

mass and become heavier.

• The quarks recombine into hadrons at the same time when the flow

freezes out and local thermal equilibrium breaks. This happens at

the point where the mean energy per hadron reaches a fixed value

(in our model 1.2 GeV, which precedes the empirically observed final

freeze-out hadron energy).

The v2 elliptic flow parameter was calculated at the point of freeze-

out. Each of these stages will be described in more detail in the following

subsections.

Quark mass in vacuum

The effective mass M of quarks can be calculated based on an effective

field theoretical model, the Nambu–Jona–Lasinio model, as a function of
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baryon-number density and temperature. The result from [24] is used here:

M (nB, T ) = m−2Gs〈qq〉0
(
1− 3 σq

f 2
π m2

π

nB − T 2

8 f 2
π

− T 4

384 f 4
π

− T 6

288 f 6
π

ln
Λq

T

)
.

(3.2)

Here m denotes the current quark mass in QGP, T is the temperature and

nB the baryon number density. The values of the constants were taken to

be 〈qq〉0 = (0.225 GeV)3, GS = 15 GeV−2, σq = 15 MeV, fπ = 93 MeV,

mπ = 138 MeV, and Λq = 300 MeV [24].

This formula allows interpolating between the current quark mass of

the asymptotically free quarks of the QGP and the effective mass of the

constituent quarks when chiral symmetry is broken. The dependence of

mass on temperature and density is shown in figure 3.3.

Initial state

The initial state of the expansion was chosen from the curve where the

quark mass becomes equal to the current quark mass in the baryon density–

temperature plane, [nB, T ]. The initial state curve is shown in figure 3.4.

We assume that at this point the quarks start gaining mass (according to

formula (3.2)) and the equilibrium between the chemical potential of quarks

and anti-quarks breaks at the same time. Since chemical equilibrium is

broken, all calculations need to be done in the density–temperature plane,

rather than the baryonic chemical potential–temperature plane ([μB, T ]).

During further expansion, the chemical potentials of quarks and anti-quarks,

μq and μq̄, will not be tied to the baryon charge chemical potential, μB, and

will evolve separately.
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Figure 3.3: Temperature and density dependence of the constituent quark

mass, based on eq. (3.2).

The current quark mass is considered to be m = 7 MeV, and the mass

difference between u and d quarks is ignored.

For simplicity, the quark gas was considered to have Jüttner distribution.

To calculate the expansion trajectory of the quark gas, it is necessary to

derive the expressions for the energy density (e), particle density (n), and

entropy density (s) of a Jüttner gas. This is done in the next section.

Equations of state of the Jüttner gas

The Jüttner distribution is commonly used to describe the distribution

of momenta in thermalised relativistic particle systems. Here the particle
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Figure 3.4: The initial state of the expansion was chosen from the curve

where the quark mass (shown in figure 3.3) becomes equal with the current

quark mass on the [nB, T ] plane.

density, energy density, pressure and entropy density will be derived as a

function of temperature, chemical potential and particle mass, assuming a

system that follows the Jüttner distribution.

Let us consider a relativistic gas that follows the Jüttner distribution,

and calculate the relevant extensive thermodynamic properties as a function

of the temperature, T , and chemical potential, μ. The Jüttner distribution
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is

f(x, p) =
1

(2π�)3
exp

(
μ− pμuμ

T

)
(3.3)

The invariant particle density can be obtained as

n = Nμuμ =

∫
pμuμf(x, p)

d3p

p0
(3.4)

Substituting (3.3) for f(x, p) we get

n = C

∫
d3p

p0
pμuμ e

−pμuμ/T ,

where C = 1
(2π�)3

e
μ
T . The dot product pμuμ can be expressed as function of

p as pμuμ = p0 =
√
p2 +m2, where m is the particle mass. Noticing that

the integrand is spherically symmetric, it can be written as

n = 4πC

∫ ∞

0

p2 dp e−
√

p2+m2/T .

Using the variable transformation

τ =

√
p2 +m2

T
, z =

m

T
(3.5)

we obtain

n = 4πT 3C

∫ ∞

z

dτ τ
√
τ 2 − z2e−τ .

Comparing this result with the integral representation of the modified Bessel

function of the second kind,

Kn(z) =
2n−1(n− 1)!

(2n− 2)!
z−n

∫ ∞

z

dτ τ(τ 2 − z2)n−3/2e−τ , (3.6)

we find that

n = 4πCm2TK2(z) = 4πCm2TK2(m/T )
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Using the expression of the energy-momentum tensor in the local rest

frame,

T μν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e

P

P

P

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and that

T μν =

∫
dp

p0
pμpν f(x, p),

we find that the pressure of a Jüttner gas is

P = −1

3
C

∫
dp

p0
(
pμpμ − (pμuμ)

2
)
e−pμuμ/T .

Performing the same variable transformation as before, eq. (3.5), and com-

paring the result with eq. (3.6) we get that

P = 4πCm2T 2K2(m/T ) = nT

Analogously, the for the energy density we get

e = T μνuμuν =

∫
d2p

p0
(pμuμ)

2 f(x, p),

and

e = 4πCm4

[
3
K2(z)

z2
+

K1(z)

z

]
=

= 4πCm4

[
3

4

K3(z)

z
+

1

4

K1(z)

z

]
,

where z = m/T .

The entropy density can be calculated starting from the thermodynamic

relation s = −μ/Tn+ e/T + n:

s = 4πC
(
m3K1(z) +m2TK2(z)

(
4− μ

T

))
.
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Collecting all results together, the equations of state obtained from the

Jüttner distribution are

n = 4πCm2TK2(z)

P = nT

e = 4πCm4

[
3
K2(z)

z2
+

K1(z)

z

]
s = 4πC

(
m3K1(z) +m2TK2(z)

(
4− μ

T

))
,

where z =
m

T
and C =

1

(2π�)3
e

μ
T

(3.7)

Expansion of the gas

We assume that at the initial moment, chemical equilibrium between quarks

and anti-quarks still exists. The based on equation (3.7), the densities of

quarks and anti-quarks are

nq =
4π

(2π�)3
e

μq
T M(nB, T )

2T K2

(
M(nB, T )

T

)

nq̄ =
4π

(2π�)3
e

μq̄
T M(nB, T )

2T K2

(
M(nB, T )

T

) (3.8)

In chemical equilibrium, μq = −μq̄ = μB/3 and

nB =
1

3π2
T sinh

(μB

3T

)
M(nB, T )

2 K2

(
M(nB, T )

T

)
(3.9)

The initial chemical potentials and quark and anti-quark densities are

calculated using these equations. Then the chemical equilibrium breaks

and the quark and anti-quarks numbers will be conserved and the densities

will change inversely proportionally to the volume V of the system: nq =

V0/V nq0, nq̄ = V0/V n0̄, nB = V0/V nB0, where quantities marked by the
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subscript 0 correspond to the initial state of the system. The quark and

anti-quark chemical potentials evolve separately and can be obtained from

the densities.

We assume that the gas expands adiabatically, i.e. its entropy stays

constant during expansion. Using equation (3.7) and the condition that the

quark numbers, as well as the baryon charge, are conserved, the quark and

anti-quark entropies can be expressed as a function of the baryon charge
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Figure 3.5: The thin red solid lines represent the trajectories of adiabatic

expansion, while the thin blue dashed lines represent the trajectories of

iso-ergic, dissipative expansion. The thick black line is the initial state curve

where quarks masses become equal to the current quark mass.



3.3. V2 SCALING IN A VARIABLE-MASS MODEL 43

density nB and the temperature T (using the initial quark and anti-quark

densities). From the condition that the total entropy is conserved,

s0V0 = s(nB, T )V =
(
sq(nB, T ) + sq̄(nB, T )

)
V,

the expansion trajectory on the [nB, T ] plane can be calculated. A few

possible trajectories, corresponding to different initial conditions, are shown

in figure 3.5. The trajectories corresponding to constant energy expansion

were also computed and are shown in the same figure. This corresponds to

dissipative expansion. Note that the adiabatic expansion leads to the fastest

cooling of the gas.

Final state of the expansion

Experimental observations show that the freeze-out happens when the mean

energy per hadron reaches approximately 1.0-1.1 GeV [3]. We assume in

our model that at this point the quarks recombine into hadrons and local

thermal equilibrium ceases to exist between the particles.

The freeze-out line from [3] is represented on the [μB, T ] plane in fig-

ure 3.6A. The dashed lines are from [3], while the solid lines are computed

from the condition that Ehadron/Nhadron = 1.0 GeV (1.1 GeV), assuming

that the hadrons have Jüttner distribution. The results obtained from the

Jüttner gas approximation agree to a ∼ 5% accuracy with the results of the

more complete treatment.

In our non-equilibrium model we cannot use the baryonic chemical

potential directly, therefore the freeze-out line needs to be approximated
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Figure 3.6: Panel A. shows the freeze-out curves on the [μB, T ]-plane,

corresponding to mean energies of Ehadron/Nhadron = 1.0 and 1.1 GeV per

hadron. The dashed lines are from [3] while the continuous lines were

computed assuming that the hadrons have a Jüttner distribution. Panel B.

shows the same curves transformed to the [nB, T ] plane.

on the [nB, T ] plane. This is done assuming that hadrons have Jüttner

distribution. The results are shown in figure 3.6B.

In our model we assume that at the point of recombination, the hadrons

have an average energy of 1.2 GeV / hadron. This energy includes the

background field, which is assumed to have an initial energy density of

B = 200 MeV. To find the freeze-out points, the hadron density must be

estimated from the quark and anti-quark densities. This is detailed in the

next section. The freeze-out points are shown for some expansion trajectories

in figure 3.7.
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Figure 3.7: The points of freeze-out and hadronization on the expansion

trajectories. The points were found based on the condition that the energy

of the quarks, including the background field, divided by the estimated

number of hadrons that the quarks can recombine into, is 1.2 GeV.

Recombination into hadrons

In this model we assume that the quarks can recombine into three types

of hadrons: baryons made of three quarks, anti-baryons made of three

anti-quarks, and mesons made of quark–anti-quark pairs.
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According to [21], the quark recombination rates are given by

q + q̄ → m : ṅm = Cm
qm
gqgq̄

nqnq̄ (3.10)

q + q + q → b : ṅb = Cb
qb

gqgqgq
nqnqnq (3.11)

q̄ + q̄ + q̄ → b̄ : ṅb̄ = Cb
qb

gqgqgq
nq̄nq̄nq̄, (3.12)

Here nb, nb̄ and nm denote the baryon, anti-baryon and meson densities,

respectively. The dot denotes a time derivative. The an estimate can be

given for the hadron densities without fully integrating the rate equations,

as follows:

The conserved baryon charge density is

nB = nb − nb̄.

Let a denote the fraction of anti-quarks that recombine into anti-baryons.

Then the baryon and anti-baryon densities are

nb = (nq − nq̄)/3 + anq̄/3, nb̄ = anq̄/3, (3.13)

while the meson density is

nm = (1− a)nq̄. (3.14)

From equations (3.12), the ratio of formed baryons and anti-baryons is

nb/nb̄ = (nq/nq̄)
3 ≡ Q. From the condition that the quark and anti-quark

numbers are unchanged during the recombination process we get

a ≈ (Q− 1)/(Q3 − 1). (3.15)

Using the parameter a, the baryon and meson densities can be calculated.
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Figure 3.8: Distribution of baryons (blue, dashed) and mesons (red,

solid) according to transverse momentum, p⊥, and transverse energy,

E⊥ =
√
M2 + p2⊥ − M . The right hand panels show the same distribu-

tions, re-scaled by the constituent quark number, ncq, and plotted against

p⊥/ncq and E⊥/ncq. The re-scaled distributions coincide. The initial condi-

tions of the expansion leading to the shown distributions are nB0 = 0.21 fm−3

and Tq0 = 176 MeV. The final baryon and meson temperatures are Tb = 228

MeV and Tm = 152 MeV and Tb/Tm = 3/2.

In the model we use the simplifying assumption that the masses of baryons

and mesons are equal to the sum of the masses of their constituent quarks

at the freeze-out temperature and density. Thus Mb = Mb̄ = 3Mq(nB, T )

and Mm = 2Mq(nB, T ).
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At freeze-out, the thermal equilibrium between hadrons is broken. It is

assumed that both mesons and baryons have a Jüttner distribution after the

freeze-out, but the temperature parameters in their respective distributions

will differ. The temperature parameters Tb and Tm are determined from

the condition of energy conservation: the hadron energies will be the same

as the energies of their constituent quarks, with the addition of 60 MeV /

hadron from the background field. See [24] for details. This will result in a

temperature Tb/Tm that corresponds to the mass ratio Mb/Mm = 3/2.

The distribution of baryons and mesons at the point of hadronization

is plotted in figure 3.8. The initial state used to generate this plot is

nB0 = 0.21 fm−3 and Tq0 = 176 MeV. In the process of recombination, the

hadron temperatures increase, yielding Tb = 228 MeV and Tm = 152 MeV.

The final quark mass before recombination is Mq = 308 MeV.

Calculation of v2 for a source of N cells

The v2 elliptic flow parameter can be calculated from the final hadron

distributions for each hadron species. To model the asymmetry of the

flow, let us divide the system into a N cells, each of which is moving with

velocity vi, and each of which has a Jüttner distribution in their respective

local rest frames. This is a generalization of the simple four-source model

presented in [15], where four cells are moving in the ±x,±y directions, and

the three-source model presented in [7].

According to the definition of v2 (equation (3.1)), for a particle distribu-
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tion f(x,p),

v2 =

∫
d3x

∫
d3p f(x,p) cos 2ϕ∫

d3x

∫
d3p f(x,p)

, (3.16)

where ϕ is the angle of p relative to axis x in the plane perpendicular to

the beam direction.

We are interested in the elliptic flow parameters of mid-rapidity particles

as a function of p⊥, so from now on we assume pz = 0, and use the (p⊥, ϕ)

cylindrical momentum-coordinates. Each cell is assumed to be homogeneous

and the volume of cell i is denoted by Vi. Then

v2(p⊥) =

∑
i

Vi

∫
p⊥dϕ f(p⊥, ϕ) cos 2ϕ

∑
i

Vi

∫
p⊥pϕ f(p⊥, ϕ)

, (3.17)

Inserting the Jüttner distribution (3.3) into this equation, and performing

the integration, we obtain

v2(p⊥) =

∑
i

Ñi e
−γiM i

⊥/Ti cos 2ϕi
0 I2(γ

ivip⊥/Ti)∑
i

Ñi e
−γiM i

⊥/Ti I0(γ
ivip⊥/Ti)

, (3.18)

where ϕ0 is the angle in the transverse plane between the x axis and the

velocity vector vi, γi = 1/
√
1− v2i , and

Ñi = Vi
ni

TiK2(Mi/Ti)
. (3.19)

Ik is the kth order modified Bessel function of the second kind. M⊥ =√
M2 + p2⊥ is the transverse mass. The calculations are detailed in [24].

If each cell has the same temperature, Ti = T , then the terms depending

only on T cancel from the numerator and denominator, and equation (3.19)
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simplifies to

v2(p⊥) =

∑
i

Ni e
−γiM i

⊥/T cos 2φi
0 I2(γ

ivip⊥/T )∑
i

Ni e
−γiM i

⊥/T I0(γ
ivip⊥/T )

, (3.20)

where Ni = Vini is simply the particle number of each cell.

Two special cases are considered here: the first one is the simplest case

of only two cells, moving in opposite directions with the same velocity v

(see figure 3.9, top), which yields

v2(p⊥) =
I2(γvp⊥/T )
I0(γvp⊥/T )

. (3.21)

The second case is a source of one larger stationary cell in the middle, and

two side-cells moving in opposite directions with velocity v, as shown in the

bottom panel of figure 3.9. For this latter case we obtain

v2(p⊥) =
2Nse

−γM⊥/T I2(γvp⊥/T )
2Nse−γM⊥/T I0(γvp⊥/T ) +Nce−M⊥/T

. (3.22)

Here Nc denotes the particle number of the middle cell, while Ns denotes

the particle number of the identical side-cells.

3.4 Results and conclusions

The v2 parameter as a function of the transverse momentum p⊥ and trans-

verse energy E⊥ was calculated for the final states of expansion using the

simple model of elliptic flow described in the previous section. Two config-

urations were considered.

First, we calculated v2 using two cells moving in opposite direction with

velocity v, as shown in figure 3.9. Both cells are assumed to have the same
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v v

v v

Figure 3.9: The elliptic flow can be approximated in a simple way by

dividing the system into cells moving in different directions. The two simplest

configurations are shown here: two cells moving in opposite directions with

velocity v (top); and two moving side cells with a stationary central cell

(bottom).

temperature. For this configuration v2 is given by expression (3.21). To

obtain v2, we need the velocities of the cells. In this model, the baryons

and mesons were given different flow energies per constituent quark. It

was assumed that (FEb/ncq)/(FEm/ncq) = 3/2. This assumption leads to

constituent quark number scaling of v2(p⊥) and v2(E⊥).
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Figure 3.10: The v2 parameter as a function of p⊥, calculated with a

two-cell model. The dashed blue curve represents the baryons, while the

red solid curve represents the mesons. The cell velocities for baryons and

mesons are vb = 0.26 and vm = 0.21, corresponds to a flow-energy ratio of

3/2 of the constituent quarks of the two different particle types (calculated

relativistically).
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Figure 3.11: The re-scaled elliptic flow parameter, v2/ncq, as a function

of p⊥/ncq and E⊥/ncq, based on a two-cell model. The blue dashed curves

represent the baryons while the solid red curves represent the mesons. The

curves coincide for low p⊥ value, i.e. the constituent quark number scaling

is reproduced for the low p⊥ region using a simple two-source model.
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Figure 3.12: v2(p⊥) in the three source model. The dashed blue curve

represents the baryons, while the red solid curve represents the mesons. The

cell velocities are the same as in the case of figure 3.10. The particle number

ratio between the central and side cells is Nc/Ns = 10. The magnitude of v2

is similar experimentally found values (figure 3.2).
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Figure 3.13: Re-scaled elliptic flow parameter calculated from the three-

source model. The blue dashed curves represent the baryons while the solid

red curves represent the mesons. The constituent quark number scaling

is reproduced for a wider range of p⊥ values than in the case of the two-

cell model. Note that the bounds of the horizontal axis are wider than in

figure 3.11.
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The results for the same initial state that is described in the previous

section are shown in figures 3.10 and 3.11. The cell velocities were taken

vb = 0.26 for baryons and vm = 0.21 for mesons. This corresponds to a

flow-energy ratio of 3/2 between the constituent quarks of baryons and

mesons. As shown in figure 3.11, this assumption leads to constituent quark

number scaling of v2 in the limit of low p⊥. In this simple model, there

is no significant difference in the scaling behaviour between the two usual

dependent variables, p⊥ and E⊥.

The results presented in [21] suggest that the constituent quark number

scaling will be more precise if the flow asymmetry is small, and if the

contribution of higher vk (k > 2) Fourier coefficients is reduced. Therefore

the elliptic flow parameter was also calculated for a model of one large

central cell, with particle number Nc, and two smaller moving side cells with

particle number Ns. The particle number ratio was set Nc/Ns = 10. The

flow energy ratio of baryons and mesons and the side cell velocities were

the same as in the case of the two-cell model. The elliptic flow parameter

is given by equation (3.22) for this configuration. The v2 curves are shown

in figures 3.12 and 3.13. The magnitude of the obtained v2 approximately

matches the experimentally obtained one (compare with figure 3.2). With

the three-cell model, the constituent quark number scaling is reproduced

well for a wide range of p⊥ values.

The simple multi-cell models considered here, with cells of equal tem-

peratures, are just crude approximations of the realistic flow pattern, and

therefore have their limitations. For example, the saturation value of v2 for

very high p⊥ is always 1, therefore the constituent quark number scaling
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cannot be present at high values of p⊥. Nevertheless, this simple model is

capable of reproducing constituent quark number scaling of the elliptic flow

parameter for p⊥ ranges in which it is observed in experiments.





Chapter 4

Summary

This work is a summary of three papers (references [5, 14, 24]), which

deal with modelling the hadronization and freeze-out in heavy ion collisions.

There is evidence that this is a non-equilibrium process, and therefore cannot

be described in a quasi-statical way, assuming local phase equilibrium.

The study of dynamical phase transitions is an important subject, as it

has practical applications not only in the description of nuclear collisions,

but also in many other fields, e.g. in technical applications which involve

high temperature detonations. Examples include gas turbines, internal

combustion engines, rocket engines, etc. The correct description of some of

these processes requires a relativistic approach. For example, in a rocket

engine, radiation pressure has an important role in stabilizing the detonation

front, therefore a relativistic description is required despite the relatively

small flow velocities. Lessons learned from the study of the dynamical phase

transition in heavy ion collisions can be applied to these other fields as well.

The first part of the work, based on [5, 14], analyses the final stages

57
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of expansion in fluid dynamical models, taking into account the effects of

numerical viscosity in computational approaches. A way to compute the

thermodynamic parameters, such as temperature and entropy, is presented.

These parameters are relevant for finding the location of the freeze-out

surface.

The second part of the work, based on [24], presents a simple model

of rapid and dynamical hadronization that is capable of reproducing the

constituent quark number scaling of elliptic flow, as observed in experiments.

4.1 The final stages of expansion in fluid

dynamical models

The Quark-Gluon Plasma was shown to behave like a low viscosity fluid in

experiments, therefore fluid dynamical approaches are suitable for studying

it. Except for the most trivial configurations, the equations of relativistic

fluid dynamics can only be solved numerically, on a computer. However,

numerical methods can only give an approximate solution to equations.

The difference between the (unknown) analytic solution and the numerical

solution is called the numerical error. Part of the numerical error in fluid

dynamical computations arises in the form of numerical viscosity. That

is, even when solving the equations of a perfect fluid, some viscosity will

be present in the solution due to the effect of the finite resolution of the

computational grid.

It is important to be able to estimate the effects of numerical viscosity
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on the results of calculations. However, if physical viscosity is included in

the fluid dynamical equations, then it is difficult to distinguish the effects of

physical and numerical viscosity from each other. A possible solution to this

problem is to set the numerical viscosity equal to the physical viscosity that

we wish to describe. This is a viable solution when describing low viscosity

fluids such as the Quark-Gluon Plasma. This approach was presented in

the first part of this work.

It is important to note that the equations of perfect fluid dynamics are

unstable. In real fluids, some viscosity is always present, therefore large

instabilities do not always arise. Therefore it is not our goal to find the

exact solution of the equations of non-viscous fluid dynamics. Instead, the

numerical viscosity arising from the discretization of these equations is set

equal to the (slight) physical viscosity.

The numerical fluid dynamics code that we use is based on the Particle

in Cell method and is highly stable. It can run stably up to the final stages

of expansion where the pressure becomes zero. Our approach is to let the

fluid dynamical model run beyond the point of freeze-out. The freeze-out

hypersurface can then be determined from external parameters that are not

used in to solve the fluid dynamical model. The temperature and density

can provide guidelines.

To be able to solve the equations of fluid dynamics, it is necessary to

complement them with an equation of state that connects the pressure,

baryonic density and energy density. Note, however, that quantities such

as temperature and entropy do not appear in the calculation. These can

be determined from the baryonic density and energy density after the code
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has run. In our code, we used the simple Bag model equation of state. This

equation of state yields negative pressures for low energy densities, which

would indicate an (unphysical) tendency for clusterization. To avoid this,

the pressure was set to zero at low energy densities. Then the entropy and

temperature must be calculated in accordance with this change.

The Bag model assumes that a gas of partons is moving in a background

field of constant energy density. When calculating the entropy and tem-

perature in the energy density regions where the total pressure is zero, it

is necessary to consider the exact nature of energy exchange between the

parton gas and the background field. We considered three cases, each of

which results in a different entropy evolution of the system.

It was found that in order for the entropy not to decrease (and to satisfy

the second law of thermodynamics), it is necessary that the energy density

of the background field decreases during expansion. The interaction measure

was calculated as well, and compared to curves obtained from Lattice QCD

calculations.

It is conjectured that the hadronization and freeze-out may proceed

through a Quarkyonic phase, where the chiral symmetry is broken and the

quarks gain mass. This corresponds to the gradual disappearance of the

background field in these calculations.
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4.2 Constituent quark number scaling in

heavy ion collisions

The momentum distribution of particles created in nuclear collisions is

asymmetric, primarily due to the finite impact parameter. This asymmetry is

referred to as the elliptic flow. The elliptic flow is usually characterized by the

second harmonic coefficient, v2, of the momentum distribution in the plane

perpendicular to the beam direction. It was observed in experiments that

the v2 parameter, when studied as a function of the transverse momentum

p⊥, scales according to the constituent quark number of hadrons. That

is, if v2/ncq is plotted against p⊥/ncq, the curves coincide for all hadron

species. The scaling is more precise if instead of the transverse momentum,

the transverse energy, E⊥ is used as dependent variable.

The presence of this scaling in experimental data suggests that the el-

liptic flow develops in the Quark-Gluon Plasma phase, before the quarks are

confined into hadrons. Thus the study of elliptic flow may provide informa-

tion about the Quark-Gluon Plasma phase of matter, and the hypothetical

Quarkyonic phase.

The experimentally observed constituent quark number scaling is a

remarkably simple phenomenon. Therefore it is reasonable to assume that

it can be reproduced by a relatively simple model. Equilibrium models are

unable to reproduce the constituent quark number scaling of v2, therefore

we approached the problem using a non-equilibrium model of dynamic

hadronization.

We considered a simple model of rapid and dynamic hadronization, where
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the change of the effective mass of quarks was taken into account. In this

model, the hadronization proceeds through the following phases: First, the

chiral symmetry breaking starts and the effective quark mass increases. The

chemical equilibrium between quarks and anti-quarks ceases at the same

time. Then the gas of quarks and anti-quarks expands rapidly, while the

effective quark mass increases. The mass was calculated as a function of

temperature and density. In accordance with experimental observations,

recombination into hadrons and freeze-out happens at the point when the

average energy per hadron reaches 1.2 GeV / hadron. The created hadrons

are not in thermal equilibrium with each other.

In this simple model it was assumed that the quark gas has Jüttner

distribution. The expansion curves were computed from the condition of

entropy conservation. This leads to rapid cooling of the quark gas. The

quarks recombine into hadrons at the point of freeze-out, resulting in a

re-heating of the matter to experimentally observed temperatures, and the

production of entropy.

The v2 parameter was calculated from the final hadron distributions using

a simple multi-source model to approximate the elliptic flow. v2(p⊥) and

v2(E⊥) was calculated assuming that the system consists of N homogeneous

cells moving in different directions. Two particular cases were considered: a

system made of only two cells, moving in opposite directions with the same

velocity; and a stationary central cell surrounded by two smaller side cells

moving in opposite directions. The first case leads to a highly asymmetric

momentum distribution. The second case models a spherical momentum

distribution with the addition of a small elliptic component.
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The model of two cells can only reproduce constituent quark number

scaling of v2(p⊥) in the limit of small p⊥ values. However, the three cell

model, containing a stationary central source, yields v2(p⊥) curves that

which follow the scaling for a wide range of p⊥ values.

Thus we were able to reproduce constituent quark number scaling in a

simple, non-equilibrium model of hadronization.

4.3 Validity and significance of results and

work of the candidate

This work is a summary of my contributions to the three articles. Our aim

was to reproduce experimentally observed features, such as the constituent

quark number scaling of the elliptic flow, using simple models. To reproduce

every feature of a phenomenon, we need complex and detailed models. How-

ever, such models are only feasible when the phenomenon is well understood.

The study of the hadronization transition in heavy ion collisions is still

an open field of research. Therefore out goal was to understand the main

features of this transition and the mechanisms responsible for features of

the experimental data. Although the hadronization model presented here is

admittedly crude, it succeeds in reproducing the constituent quark number

scaling of the v2 parameter.

My main work during the period of the doctoral research was first focused

on fluid dynamical models and the final stages of the expansion of the Quark-

Gluon Plasma. I described a method to correctly calculate thermodynamic
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parameters during the final stages of expansion in a computational fluid

dynamical model, applied the method to actual calculations, and discussed

the significance of the fluid dynamical results for the hadronization transition.

The second part of my work was focused on a simple non-equilibrium

hadronization model. I carried out the analytic and numerical calculations

related to the expansion of the quark gas and the final recombination of

quarks into hadrons. I calculated and discussed the v2(p⊥) curves obtained

from the model, using simple few-source models of the elliptic flow.
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