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UNIVERSITY OF OSLO 

ABSTRACT 

BUILDING AN MULTI-AGENT WHISKY 
RECOMMENDER SYSTEM 

by Torje Mjønes Coldevin 

MAS (Multi-Agent Systems), classifiers and other AI (Artificial Intelligence) techniques 
are increasingly becoming more common. The capability to handle complex and 
advanced problems by MAS was explored in this thesis. An MAS duty-free shopping 
recommender system was built for this purpose. The MAS system was part of a larger 
system built by the AmbieSense project. In addition, the AmbieSense project had built a 
prototype that was tested at Oslo Airport (OSL) Gardermoen. As a test case, the duty-free 
shopping system was set to classify and recommend whiskies.  

The system incorporated several AI techniques such as agents, ontology, knowledge base 
and classifiers. The MAS was built using the JADE-LEAP framework, and Protégé was 
used for constructing the knowledge base. Various tests were performed for testing the 
system. Firstly, the agent communication was monitored using a Sniffer Agent. Secondly, 
the system’s ability to run on mobile devices was tested on a PDA and various mobile 
phones. Thirdly, the MAS abilities compared to a ‘normal’ computer program were tested 
by replacing agents at run-time, using several JADE platforms, and by the experience 
gathered during development and the use of the developed system. Lastly, the 
recommendation was cross-validated against Dr. Wishart’s whisky classification.  

Weka was employed as a tool for testing different features and classifiers. Different 
classification algorithms are explained such as NNR (Nearest-Neighbour Rule), Bayesian, 
CBR (Case-Based Reasoning), cluster analysis and self-organizing feature maps. Two 
classification algorithms were tested; NNR and Bayesian.  Features were tested using 
feature evaluation algorithms; information gain and ReliefF. The accuracy of the 
classification was tested using 10 fold cross-validation. 

The testing showed that it is possible to make an MAS handling complex and advanced 
problems. It has also been shown that an MAS have some benefits in the areas of 
reliability, extensibility, computational efficiency and maintainability when compared to a 



‘normal’ program. The error rate produced by the classifier was 56%; a figure which is too 
high for a recommendation system. Improvements could probably be achieved by finding 
better features or by selecting a different classifier. The system developed does not 
necessarily have to be used for duty-free shopping but could also be used for any 
shopping items.  
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C h a p t e r  I   

INTRODUCTION 

My thesis is part of a larger research project called AmbieSense. The project is funded by 
EU and host many different companies, organisations and research institutions such as 
Siemens, CognIT, Oslo Airport, Sevilla Global, SINTEF, NTNU, Robert Gordon 
University, Lonely Planet, Reuters and Yellow Map. 

AmbieSense is a project which combines different technologies (hardware and software) 
such as high-tech antennas, mobile devices, context sensitive software and artificial 
intelligence. 

A new antenna called Context Tag has been developed by Siemens and SINTEF and is 
based on Bluetooth technology, which is a specification for short-range wireless 
communication. Due to Bluetooth’s short-ranged nature, it can transmit information only 
to nearby wireless devices. A Context Tag is basically a Bluetooth antenna that transmits 
information about its location to nearby wireless devices. In other words, when a user 
with a wireless device encounters a Context Tag, information about the Context Tag’s 
location is automatically sent to the user’s wireless device. 

An example where this technology could be useful would be in a museum, where each 
room contains a Context Tag. When a user enters a room, information relating to the 
displayed items in the room is displayed on the user’s mobile device. Another example 
could be an airport where information about departure time and check-in are provided on 
the travellers’ PDA or mobile phone. 

The software needed to provide this information is developed by CognIT, Robert Gordon 
University, SINTEF and NTNU. It is based on an MAS (Multi-Agent System), where 
several agents can cooperate and solve problems. The system is going to be ‘context 
aware’, which means that the system can act based on context information which is 
perceived, stored and analysed. An example of this behaviour could be a mobile phone 
that knows which ring signal is suited for a current situation. I.e. when you are in a 
meeting the phone turns off sound signals and only offers vibration, or if you are in a 
nightclub the phone turns the ring signal to maximum. A context aware system needs 
input through sensors like hearing, vision, a keyboard or other input devices. Input that 
the phone could use would be the calendar or direct input from the keypad. A more 

 



 

advanced approach would be that the phone could record sound from the environment 
and then decide which ring signal is best suited. 

AmbieSense uses an advanced approach for handling contexts where the system records 
different contexts and later match these stored contexts with the current situation. In this 
way, the system knows how to react to the current situation. For the phone example, this 
means that if the surrounding conditions are the same as before experienced, the ring 
signal is set back to what was done previously.  

The project’s goal is to make a general framework that allows for different application of 
the technology. As a demonstration of what this technology can be used for, AmbieSense 
is producing a prototype based on a traveller’s scenario. There is already a developed 
prototype in cooperation with Yellow Map which gives a traveller map information and 
position gathered from GPS. 

 The system is now going to be extended to handle calendar information, personal 
preferences, information about the environment, recommendations about interesting 
sights and transport planning. Basically the system is going to support a traveller on its 
journey from home to its destination and back again. There are several information 
vendors which are supplying information content to the project such as Reuter, Lonely 
Planet and Yellow Map. There are two users which are testing this system; Oslo Airport 
and Sevilla Global. Oslo Airport is going to have Context Tags mounted at several 
locations like the check-in, at some duty-free shops, cafes and so on. 

I am involved in CognIT’s developer’s team where software associated with the Context 
Tags is being developed. My task is to give content to the system where travellers and 
tourists can get personalised information adapted to their own interests. I have focused on 
duty-free shopping as a service that travellers might want and especially on whisky 
shopping. Whisky shopping is chosen due to its limited domain, around 80-100 products, 
but big enough for a recommender system to be appreciated. I am especially interested in 
technologies such as MAS, recommender systems and artificial intelligence in general. 

I have defined some scientific problems which I am going to answer in the course of my 
thesis, they are: 

How can we make an MAS with ‘intelligence’ that can handle complex and advanced 
problems? An example for a system like this could be a whisky recommender system, 
which gives offers on interesting whiskies, recommend interesting whiskies and informs 
about cheap offers. The system must be able to classify a whisky based on some specified 
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properties and recommend a suited candidate to the user. Is an MAS better suited than a 
‘normal’ computer program? 

How can we measure that an agent is good enough? By ‘good enough’, I am referring to 
the accuracy of the prediction given by the agent’s classifier. The accuracy expected 
should probably be in the area of less than 10-20% wrongly classified whiskies. Which 
methods can we use? Some methods such as mathematical methods (one example could 
be NNR (Nearest-Neighbour Rule)), trial and error, the used of known test data or 
comments from experts. 
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C h a p t e r  I I   

MULTI-AGENT SYSTEMS 

One of the main themes in my thesis is multi-agent systems. This chapter will explain the 
theory behind it and definitions commonly used. An MAS (Multi-Agent System) is as we 
would expect a system that consists of several agents. To fully understand what a multi-
agent system is and which benefits it can give us, we have to know what an agent is and 
the difference between a single-agent system and an MAS. 

 

2.1. Agent 

Agents are becoming increasingly more popular in mainstream computer science and in 
the field of AI. They can be found in e-mail programs, running on a server providing OS-
services or with the client as a GUI-agent. So what is an agent really? The word agent 
comes from the Latin word agree which means to do (Norvig & Russell (2003) p. 4). If we 
look up the word in a dictionary we find the following definition: a·gent “One that acts or 
has the power or authority to act” (www.dictionary.com). Act is something that every 
computer program does, so what then distinguishes a ‘normal’ computer program from 
an agent? Norvig and Russell (2003) defines an agent as; “anything that can be viewed as 
perceiving the environment through sensors and acting upon that environment through 
actuators” (p. 32). Following this definition a computer program must have some sensors 
like a camera, a keyboard or other sensors and be able to act from these inputs through 
some actuators like a screen. Wooldridge and Jennings (1995) gives an agent the following 
properties: autonomy, social ability, reactivity and pro-activeness (p.4). Autonomy and 
reactivity are covered by Norvig & Russell’s definition. Autonomy comes from 
autonomous which means something that is not controlled by others or by outside forces 
(www.dictionary.com). An autonomous agent is therefore an agent that relies on sensory 
input for making decisions, instead of relying on knowledge given at design time. An 
agent is reactive because it perceives the environment and responds to it. In addition 
Wooldridge & Jennings have properties of being social and pro-active; Social reflects the 
fact that agents interacts with other agents through communication. Pro-active is the 
ability to take initiative to pursue goals. 
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In the field of AI, agents are often given even more abilities to make them more human-
like, common abilities are: knowledge, belief, intention and obligation.  

So far I have not been talking about an ‘intelligent’ agent. Because of the controversy and 
problems of defining the word intelligence, I will use the term rational agents to describe 
‘intelligent’ agents. Norvig & Russell (2003) defines a rational agent as; “For each possible 
percept sequence, a rational agent should select an action that is expected to maximize its 
performance measure, given the evidence provided by the percept sequence and 
whatever built-in knowledge the agent has” (p. 36). This basically means that a rational 
agent is an agent that takes the optimal expected decision in every situation, based on the 
information it possesses. However, this does not mean that the decision is the right 
decision.  

 

2.2. Difference between Multi-Agent systems and Single-Agent 
Systems 

An agent in an MAS must be influenced by neighbour agents through communications or 
by other means. In a single agent system, an agent is only concerned about its own goals, 
actions and knowledge. Other agents may exist, but they are not accounted for. Although 
it might seem that single-agent systems should be simpler than MAS, when dealing with 
complex tasks the opposite is often the case (Stone & Veloso (1997) p. 5). Multi-agent 
systems consist of several agents who model each others goals and actions (Stone & 
Veloso (1997) p. 6). In a single agent system, an agent must be able to solve all tasks which 
it is required to, whereas in an MAS, an agent can cooperate with other agents to solve 
more complex tasks than it could do on its own. 

1. Sycara (1998) mentions some characteristic with an MAS (p. 2). 

2. Each agent has incomplete information or capabilities to solve a problem. 

3. There is no system global control. 

4. Data is decentralized. 

5. Computation is asynchronous. 
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An MAS can in some situations be thought of as a problem solving organisation. But in 
others, competition is more important than cooperation. A stockbroker MAS can be an 
example of this where every agent is competing for the best deals. 

Whichever MAS it is, be it competitive or cooperative, agents must be able to consider 
other agents’ actions. Stone & Veloso have made a taxonomy which divide agents by the 
degree of awareness they exercise, from the simplest scenario with homogenous agents to 
the most complex scenario with heterogeneous communicating agents (Stone & Veloso 
(1997) c. 4-6). 

1. Homogenous Non-Communicating Multi-Agent Systems 

2. Heterogeneous Non-Communicating Multi-Agent Systems 

3. Heterogeneous & Homogenous Communicating Multi-Agent Systems 

 
2.2.1. Homogenous Non-Communicating Multi-Agent Systems 

Homogenous agents have the same internal structure, goals, knowledge and actions. This 
makes it easy for homogenous agents to predict what other agents might be doing next. 
The only difference between two agents is their current location (Stone & Veloso (1997)). 

 
2.2.2. Heterogeneous Non-Communicating Multi-Agent Systems 

Heterogeneous agents give more power through differences and special abilities, but it 
also adds more complexity. Heterogeneous agents have different internal structure, with 
different goals, models of the world and actions they can perform. Hence heterogeneous 
agents must have an ability to predict what other agents actions are going to be. To 
achieve this, heterogeneous agents need to be more complex than homogenous agents to 
be able to observe and learn how other agents behave (Stone & Veloso (1997)). The benefit 
is that heterogonous agents can use the differences and join them together to solve tasks 
which they could not have solved on their own. 
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2.2.3. Heterogeneous & Homogenous Communicating Multi-Agent 
Systems  

Adding communication gives the agents possibilities to coordinate and work more 
efficiently than without communication. This applies to both heterogeneous and 
homogenous agents. An MAS that communicate can perform tasks with same complexity 
as single agent systems can perform, this of course depends on how well the 
communication works between the agents. We are going to look into agent 
communication more thoroughly later in this chapter. 

 

2.3. Pros and Cons Multi-Agent System 

So far we have seen different kinds of multi-agent systems without looking at which 
benefits an MAS design brings and if there are any major drawbacks with this design. 

Carnegie Mellon University (2001) has listed some benefits that are important with an 
MAS: 

• An MAS distributes computational resources and capabilities across a network of 
interconnected agents. Whereas a centralized system may be plagued by resource 
limitations, performance bottlenecks, or critical failures, an MAS is decentralised 
and thus does not suffer from the ‘single point of failure’ problem associated with 
centralised systems.  

• An MAS allows for the interconnection and interoperation of multiple existing 
legacy systems. By building an agent wrapper around such systems, they can be 
incorporated into an agent society. 

• An MAS models problems in terms of autonomous interacting component-agents, 
which is proving to be a more natural way of representing task allocation, team 
planning, user preferences, open environments, and so on.  

• An MAS efficiently retrieves, filters, and globally coordinates information from 
sources that are spatially distributed.  

• An MAS provides solutions in situations where expertise is spatially and 
temporally distributed. 
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• An MAS enhances overall system performance, specifically along the dimensions 
of computational efficiency, reliability, extensibility, robustness, maintainability, 
responsiveness, flexibility, and reuse. 

Lesser (1995) look at some of the problems that MAS have to deal with compared to a 
single-agent system: 

• Limited communication bandwidth and the computational costs of packaging and 
assimilating communicated information. 

• The heterogeneity of agents, which makes it difficult to share information and the 
potential for competitive agents who, for their own self-interest, are not willing to 
share certain information. 

• The dynamic character of the environment due to changing problems, agents, and 
resources, and the inability to predict with certainty the outcome of agents’ actions. 

We can see that an MAS is not suited for every situation. Since it depends on 
communication, it requires that there is always a minimum of bandwidth available for 
communication. The communication also comes with a price, with extra computational 
costs and added complexity. However, if these requirements are met, an MAS can be 
more robust, flexible and extensible than a single agent system. Most of the problems 
associated with MAS are overcome by new technology which provides faster and more 
efficient communication, better algorithms for planning and cooperating in an MAS.  

 

2.4. Agent Communication 

As mentioned earlier, agents need to communicate so that they can work and cooperate 
efficiently together. Agent communication is a field of research where three key elements 
are of importance (Flores-Mendez (1999)): 

• A common agent communication language and protocol 

• A common format for the content of communication  

• A shared ontology 
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2.4.1. Agent Communication Language 

There are two main approaches for design of an ACL (Agent Communication Language) 
Procedural and declarative language. Procedural is ‘common’ programming language 
like Java or C, where the programmer specifies the sequence of steps to be executed.  

 Declarative language describes the relationship between variables based on declarative 
statements such as through functions, definitions and assumptions. They are also most 
commonly used for agent communication. This is because a declarative language gives 
the opportunity to use knowledge stored in the system for tasks not planned (Flores-
Mendez (1999)). There are several declarative languages, such declarative languages are; 
Prolog which is one of the first declarative languages and KQML (Knowledge Query and 
Manipulation Language) which is one of the most popular languages for agent 
communication. 

 

2.4.2. Ontology 

For agents to communicate it is not sufficient with a common language, there is also a 
need for sharing the same understanding about objects and concepts in the world in 
which they operate.  

An ontology is defined in the dictionary as: on·tol·o·gy “The branch of metaphysics that 
deals with the nature of being” (www.dictionary.com). Like the definition of agent, AI 
(Artificial Intelligence) researchers like Gruber (1993) have their own meaning of ontology 
which differs from the general definition.  
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“An ontology is an explicit specification of a conceptualization. The term is 

borrowed from philosophy, where an ontology is a systematic account of Existence. 

For AI systems, what ‘exists’ is that which can be represented. When the knowledge 

of a domain is represented in a declarative formalism, the set of objects that can be 

represented is called the universe of discourse. This set of objects, and the describable 

relationships among them, are reflected in the representational vocabulary with 

which a knowledge-based program represents knowledge. Thus, in the context of AI, 

we can describe the ontology of a program by defining a set of representational 

terms. In such an ontology, definitions associate the names of entities in the 

universe of discourse (e.g. classes, relations, functions, or other objects) with 

human-readable text describing what the names mean, and formal axioms that 

constrain the interpretation and well-formed use of these terms. Formally, an 

ontology is the statement of a logical theory.” 

An ontology can be seen as a common model or vocabulary of a domain, described by 
objects, properties and relationships. An example could be two persons talking about an 
archive. Both parties know the English word “archive”, but both parties have different 
interpretations of the word related to the context in which it is used. An archive worker 
might think of the word archive as a physical archive where paper files are stored, 
whereas an IT-professional would think of a zip-file. Both parties have a different mental 
model of the same word. Ontologies can be used as a joined understanding of an area or 
domain, such as medical terms, IT expressions and so on. Agents can in the same way use 
ontologies which are suited to its particular task. 

Ontologies can be valuable for agent communication to avoid misunderstanding and to 
share knowledge in a formal representation. Ontologies are also playing an important role 
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for making internet available for machines in the future where different information is 
modelled by different ontologies.  

For sharing ontologies, common knowledge representation languages are developed, some of 
them are First-Order Logic, RDF (Resource Description Framework) and OWL (Web Ontology 
Language). Let us have a look at the different languages, since they might be useful when 
creating an ontology or a knowledge base (knowledge base is described in chapter 
5.2.2.2.1). 

 

2.4.2.1. First-Order Logic 

First-Order logic is one of the earliest and most basic forms of knowledge representation 
of languages. First-Order logic is based on mathematical logic, which has its origins in 
philosophy. It consists of three types of symbols; constants, predicates and functions, 
which represent objects, relations and functions respectively (Norvig & Russell (2003) p. 
246). An example of a First-Order logic sentence would be: 

Malt(Glenfiddich) 

In plain English this sentence says: “Glenfiddich is a malt” The constant or object in this 
sentence is Glenfiddich and the predicate or relation is Malt. 

Let us say we have the general rule stating: 

Malt(x) => Whisky(x) 

Then we can infer the following: 

Malt(Glenfiddich) => Whisky(Glenfiddich) 

We have inferred that if Glenfiddich is a malt then it is also a whisky. Inference is one of 
the major benefits of using a knowledge representation language. 

The biggest drawback using First-Order logic for ontologies is the fact that it is not 
possible to represent exceptions and uncertainty.  Even though we have a rule stating that 
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tomatoes are red, it is possible to have green, yellow and orange tomatoes. For handling 
such cases more advanced representation is needed (Norvig & Russell (2003) p. 321). 

 

2.4.2.2. RDF/RDFS & OWL 

RDF is a language set out to describe properties and metadata about web resources in a 
machine parsable form. A web resource could be a web page but because of the general 
description of RDF, a web resource could be any resource which can be described on the 
Web (Manola & Miller (2004) p.1). 

A resource’s properties are expressed as RDF statements. Each statement consists of a 
triplet; a subject, a predicate and an object. The subject is the thing that has properties, this 
could be a web page or, in my project, a whisky. The predicate describes the property of 
the subject, this could be the author of the Web page or the age of the whisky. Finally the 
object describes the value of the property which could be “John Smith” or, in the whisky 
example, the number 16. 

Since RDF is created for handling resources on the Web, it can identify the subjects, 
objects and predicates using a unique identifier. This identifier is called URI (Uniform 
Resource Identifier). The unique identifier gives benefits when sharing information with 
others on the Web; if you are talking about a resource you simply pass the URI of that 
resource, and there would be no confusion about which resource that is in question. 
Objects may also be represented as literals; a character string. To further clarify the RDF 
language let us look at an example:  
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If we want to represent the English sentence; “The webpage www.example.org has an 
author John Doe” 

 

http://www.example.org/index.html 

http://www.purl.org/dc/elements/1.1/author 

John Doe 

Figure 2.1: Example - RDF 

From the figure 2.1 we see that the web page and the predicate are specified by a URI. In 
particular, the web page uses a special URI address called URL (Uniform Resource Locator) 
and the predicate refers to the Dublin Core. The Dublin Core is a collection of standard 
properties used for describing a web document and contains properties such as title, 
creator, subject, description and more (Manola & Miller (2004) ch.6). 
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It would be rather inconvenient to express RDF using drawings, and quite hard for 
machines to understand, so the RDF provides a XML-based syntax. The same sentence as 
described earlier in figure 2.1 is here represented as a RDF/XML. 

 
<?xml version="1.0"?> 
 
<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns# 
xmlns:dc="http://www.purl.org/dc/elements/1.1/">  
          
  <rdf:Description about="http://www.example.org/index.html"> 
    <dc:author>John Doe</dc:author>  
  </rdf:Description> 
</rdf:RDF> 
 

 

Figure 2.2: Example - RDF/XML 

Note that the property author use the abbreviated dc, instead of the long URI. This makes 
it more readable. From the XML syntax we can see that RDF is quite tedious to read and 
write. 

RDF is often used in conjunction with RDFS (RDF Schema). RDFS provides the ability of 
declaring classes. This means that in addition to only describing properties of a resource 
as RDFS does, it is also possible to describe the class which the resource belongs to. This 
gives the RDF/RDFS language some of the same abilities as an object-oriented 
programming language.  RDF Schema even allows instances to be created for each class 
(Manola & Miller (2004) c. 5).  RDFS does not allow multiple inheritances, nor does it 
identify two similar classes, and finally it does not allow inference such as transitivity and 
symmetry.  OWL is a vocabulary extension of RDF/RDFS which targets these problems 
(Dean & Schreiber (2004)). 

More information about RDF, RDFS & OWL can be found on the W3C web pages 
(www.w3.org/RDF/). 
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C h a p t e r  I I I   

RECOMMENDER SYSTEMS 

One of the tasks in the AmbieSense project is to support duty free shopping (also called 
tax-free shopping). Since I want to equip my agents with some kind of ‘intelligence’, an 
obvious choice would be to give some agents expert abilities.  

To illustrate how this system might work, we can look at an example. For instance, if a 
traveller wants to buy a whisky, the system should be able to recommend a whisky that 
the traveller is interested in. The recommendation is based on the information stored in 
the user’s context. The user context contains the user’s preferences and other information 
relevant to the user. One possible scenario would be a traveller who wants to buy a 
Glenfiddich whisky, but the duty free shop does not have this whisky in stock. The 
system then recommends a Glen Spey since it knows that this whisky has a taste which is 
similar to a Glenfiddich, and is available at the duty free shop. 

There are several ways to recommend an item. One way can be to look at predefined 
classifications made by experts. Whiskies are by some experts and classification systems 
grouped into 10 categories, where whiskies in the same category are said to be similar. A 
computer system could easily use a classification like this for recommending a whisky. 
For the system to recommend a similar whisky it only has to perform a table lookup. 

This approach proves to be efficient if we only want to find a whisky similar in taste to 
another whisky, based on the structures already drawn by the expert. Users can prefer 
certain features which divide the whiskies into other structures than a 10 categories 
classification. If we want a system to handle every user’s special preferences, we need 
something more sophisticated. A system like this could be based on some kind of 
classification technique. Computer based classification systems are often known as 
‘machine learning’, ‘artificial intelligence’, ‘pattern recognition’ or by other names. 

 

Since this system must be able to recommend all kinds of duty free products, a general 
framework would be a good help. Properties for such a framework can be a general 
storage of attribute data for each product, and storage of user specific data. Another 
property could be to support the classification process; where experimenting with 
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different combinations of features and different classification techniques should be easy. 
This is because the task of building a classification system involves some trial and error 
between different features and classification techniques. Some frameworks have been 
developed, one example of such a framework is ‘The Agent Development Framework’ 
developed by Athanasiadis et al. (2003). However, this framework is only limited to a 
Rule-based of classification algorithm. 

To summarize, there are 3 questions which has to be answered before making a 
classification system: 

1. What do we want to classify? 

2. Which feature do we want to use? 

3. How do we want to classify? 

 

3.1. Types of recommender systems 

A system concerned about guiding and recommending users are called a recommender 
system. Konstan et al. (2001) have as part of the GroupLens research project made a 
taxonomy which divides recommender systems into 6 categories, according to algorithms 
and approach used (p. 12-13): 

1. Raw retrieval 

2. Manually selected 

3. Statistical summarization 

4. Attribute-Based Recommendations 

5. User-to-User (Person-to-Person) Correlation 

6. Item-to-Item Correlation 

Note that an individual system can be a combination of some of these suggested systems. 
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Which kind of recommender system we choose depends on what kind of 
recommendation we want the system to perform. What kind of recommender system we 
choose decides how the classification is done, and which features we need. 

 
3.1.1. Raw retrieval 

This is nothing more than a database of items which the user can query. This can be useful 
in scenarios where the user has a specific request; if a user for instance wants a whisky 
below a specific price, all whiskies below that price are returned by the system (Konstan 
et al. (2001) p. 12). 

Systems like this are easy to implement and every system with a well designed database 
can easily adopt this ability. Konstan et al. (2001) call this a “null recommender” system, 
pointing out the fact that the system really does not recommend anything else then what 
the user has requested (p. 12).  

 
3.1.2. Manually selected 

This is also a basic system which gives sets of recommendations manually selected by 
editors, artists, critics or other experts (Konstan et al. (2001) p. 12). An example could be a 
list created by the famous whisky expert Michael Jackson presenting his ten favourite 
whiskies. It is important to note that all customers get the same recommendation, a so 
called ‘non-personalised’ application. Another important key issue is that the system does 
not need any computation at all; it is just presenting a list or some text manually compiled 
by an expert. 

Systems/sites like this are quite common; Whisky Magazine (www.whiskymag.com) is 
an example of such a system, where whisky experts have comments about several 
hundred whiskies. 

The downside with these kinds of systems is that they do not provide any personalised 
recommendation adapted to the particular user, and that they require human expertise. 
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3.1.3. Statistical summarization 

This gives statistics in a non-personal manner such as lists of the customers rating of a 
particular product (voting system) or the lists of the most frequent bought products 
(Konstan et al. (2001) p. 12-13). Amazon.com customers ratings, is an example of a system 
like this. Another example is a Top 20 music board, where the 20 most sold albums are 
listed.  

Statistical summarization is popular and is often used by e-commerce sites since it is easy 
to compute and gives valuable information. The drawback with this approach as with 
manually selected is that it does not support personalised recommendations. 

 
3.1.4. Attribute-Based Recommendations 

A system like this recommends a product based on its properties. For instance, if a 
customer wants a smoky whisky, all whiskies tasting smoky are recommended. This kind 
of recommender system categorizes items by their attributes.  

This approach requires that we have information about the item in some machine 
parsable form, or attributes have to be assigned by hand when the product is added to the 
system (Shardanand (1994) p. 14-15). However, when the product is added, it can be 
recommended instantly. If we add a book and it is classified as a ‘romance’ then the 
recommender system will recommend this book for customers who are interested in 
romance. These systems can be more advanced where several attributes are considered 
and matched with the users’ preferences. 

It might be interesting to find which whiskies a particular user prefers. Then we are 
operating with two classes, the ‘likes’ and ‘dislikes’ class. More advanced systems can 
have user profiles for each user and match this with products. 

The biggest problem with this approach is that the system needs knowledge about items 
which it is going to recommend. With current technology such knowledge is hard to 
gather in areas like sound, photographs, art, video, physical items and some multimedia 
by a machine (Shardanand (1994) p. 14-15). In those cases the system has to be combined 
with human knowledge. 
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3.1.5. User-to-User (Person-to-Person) Correlation 

This system is more advanced than the preceding systems and is based on the assumption 
that there are general trends and patterns within the taste of a person and between groups 
of people (Shardanand (1994) p. 17). For example if a person listens to music like heavy 
metal then his or her preferred motor bike might be a Harley. By exploiting this 
assumption people can be grouped and their interests can be predicted by looking at 
other users’ preferences within the group. The person who likes heavy metal and drives a 
Harley would most likely prefer a Jack Daniels as a whisky. Even though he or she has 
never tasted a Jack Daniels before, a user-to-user system would be able to recommend 
such a whisky. This is because most of the people in his or her group prefer this whisky. 

This approach has been developed at MIT labs under the name “collaborative filtering”, 
also called “social filtering” (Maes & Shardanand (1995) p. 1). It has taken many forms 
and the most known systems are Amazon, Firefly and Ringo. These systems are 
recommending things like books and music.  

In the Ringo system, an early version of the more famous Firefly system, each user have to 
grade artists on a scale from 1 lowest to 7 highest, on how much they liked his/her music. 
All scores are then saved in a user profile. Each user profile is then matched with other 
users’ profiles to decide similarity. To find similarity between two user profiles the ‘mean 
square difference’ is calculated. The lower the score the more similar the two profiles are. 
Users with a low score are grouped together in one user group. Users in one group are 
expected to prefer the same products (Shardanand (1994) p. 28 -30). The Ringo system 
used the Pearson r algorithm to calculate the mean square difference (Shardanand (1994) 
p. 45), but according to Breese (1998) several ‘well-known’ techniques to measure 
correlation can be used, ranging from cosine similarity calculation to Bayesian networks 
and nearest-neighbour method (p. 2-7).  

A good thing about this approach is that it can easily be used on any kind of product 
(Maes & Shardanand (1995) p. 8). It can recommend products which a specific user has 
never seen before. It utilizes learning and improves its accuracy over time, this is valid for 
the whole group. 

Problems with this approach are that a user has no direct impact on the system. If the user 
is not satisfied with the systems recommendation, the only thing he or she can do is to 
wait and hope that the system improves. 
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Similarity between users are computed on all users and the more users the heavier 
computing needs to be done so it does not scale well (Torres (2003)). This is unfortunate 
since a system like this requires a minimum amount of users to be effective. Maes & 
Shardanand (1995) describes this quantity as the “critical mass” for the system (p. 7-8). A 
typical system like this would have a “critical mass” of several thousand users (Maes & 
Shardanand (1995) p. 7). It is possible to use virtual users to help on the problem 
(Shardanand (1994) p. 76). There might be problems with new items added to the system 
which no users have previously reviewed before (Dai & Mobasher (2002) p. 1). 

 

3.1.6. Item-to-Item Correlation 

This system is quite similar to People-to-People correlation, but instead of looking at 
associations between people, we look at associations between products. 

This system recommends items found frequently in association with other items. For 
instance, the system knows that customers who frequently buy the whisky Laphroaig 
often buy the whisky Talisker as well. This information can then be used by the system to 
recommend Talisker to a user which often buys Laphroaig, but have never bought 
Talisker before. A typical example of this approach is the shopping cart example, where 
the system can recommend products from the products already in the shopping cart. 

Since we are looking for a recommender system that utilises some classification technique, 
the 3 first recommender systems as we have seen are not really candidates. The three later 
one however have embedded some kind of classification technique to it. Even though we 
are going to focus on one of the recommender system categories, the finished system 
might be a combination of any of the 6 categories. A recommender system incorporating 
classification techniques are able to give rational and personal recommendations. 
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C h a p t e r  I V   

CLASSIFICATION 

There are several techniques developed for machine intelligence which can be embedded 
in any of the three more advanced recommender systems. The technique varies in 
complexity from simple techniques like Association Rules and Decision Trees to more 
advanced techniques like Linear Discriminant Functions and Neural Networks. I am only 
going to briefly discuss some of the more popular techniques which could be interesting 
for my thesis (These are also techniques which I am familiar with). The techniques are 
developed in different areas such as pattern recognition, machine learning and artificial 
intelligence. What benefits can these different techniques give, and are there any 
drawbacks with any of these techniques? 

 

4.1. Classification techniques 

 

4.1.1. Bayesian probability 

Bayesian probability is named after the British mathematician Thomas Bayes who lived 
from 1702 to 1761 (Wikipedia (2004)). He developed the famous formula known as Bayes’ 
rule. This is a statistical approach which is used in AI under the name Bayesian decision 
theory. For an overview I am going to present Bayes’ rule and the use of this theory in AI. 

Bayes’ rule: 

P(A|B) = P(B|A) P(A) / P(B)                                                                                                                                        

This rule basically makes it possible to calculate a conditional (a posterior) probability 
from two unconditional (a prior or marginal) probabilities and one conditional 
probability. From the rule we can see that P(A|B) is a conditional probability which 
means the probability of A given that we know B has occurred. P(B|A) then means the 
probability of B given that A has occurred. P(A) and P(B) stands for the probability of A 
and B to occur.  
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How can Bayes’ rule be useful? It requires three terms just to compute one conditional 
probability (Norvig & Russell (2003) p. 480). To illustrate why Bayes’ rule might be useful, 
I am going to show an example taken from Norvig & Russell (2003) (p. 480): 

A doctor knows that the disease meningitis causes the patient to have a stiff neck, 50 % 
of the time. The doctor also knows that the chance for a person to get meningitis is 
1/50,000 and the frequency of people with stiff neck is about 1 out of 20. By using 
Bayes’ formula we can calculate the probability of a person having meningitis if he has 
stiff neck. 

Probability of having meningitis: P(A) = 1/50,000. 

Probability of suffering from stiff neck for a person: P(B) = 1/20. 

Probability of having stiff neck given that the person have meningitis: P(B|A) = 0.5. 

 

Probability of a person having meningitis given the person is suffering from stiff neck: 

P(A|B) = (0.5 x 1/50000) / (1/20) = 0.0002 

 

 

Figure 4.1: Example - Bayes’ rule 

As we see from the above example (figure 4.1) we can calculate important information 
with this rule Probabilistic information is often available in the form P(effect|cause) and 
that is why this approach can be quite valuable (Norvig & Russell (2003) p. 481). Now let 
us see how Bayesian theory can be used for classification. 
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4.1.1.1. Bayesian decision theory 

In Bayesian decision theory the following simple rule is used (Duda et al. (2001) p. 23): 

Decide ω1 if P(ω1|χ) > P(ω2|χ); otherwise decide ω2  

 

χ = Known density/probability. 

ω1 = class 1 

ω2 = class 2 

P(ω1|χ) = Probability/density of class 1 given we know the density χ. 

P(ω2|χ) = Probability/density of class 2 given we know the density χ. 

This expression is basically saying; select the class with highest a posterior probability. 
Thus, this is a good tool for AI systems that implements decision theory. Bayesian 
decision theory is a ‘parametric’ approach, which makes the assumption that the 
distribution of the density P(ω|χ) is known. The distribution can be multivariate normal 
distribution (Gaussian) or any other distribution. Bayesian decision theory is a so called 
‘supervised learning’ approach. This means that each sample in the training set must be 
labelled with a class. In other words, when training a Bayesian classifier we need to know 
which class each sample originates from. 

Overall the Bayesian approach is popular amongst the AI developers, this is due to good 
accuracy if good evidence (a prior) information about the problem is available and the 
distribution is known or at least estimated. Another reason is that compared to other 
approaches, less training data is needed because of the a prior information supplied. 

One problem with this approach is that it relies on a known density distribution. It can be 
difficult to say anything about the distribution, and estimating the distribution can prove 
to be a non-trivial task (Duda et al. (2001) p. 64). We do not always have a priori 
knowledge available about the problem we are solving, and so a Bayesian approach is 
useless. The most important problem however, is that each feature added gives an 
exponential growth in computation time. There are solutions to this problem which have 
resulted in a growing popularity of Bayesian classifiers in AI application (Norvig & 
Russell (2003) p. 482). 
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One approach to avoid the problem would be to always assume independent features; 
this approach is called Naïve Bayesian (idiot Bayes). By assuming independent features 
we achieve a very simple classifier (linear) compared to the one of the full Bayesian 
approach, (joint distribution/density) this without loosing too much accuracy if our 
assumption is not correct (Duda et al. (2001) p. 53). Bressan & Vitarà (2002) even claims 
that Naïve Bayesian outperforms several standard classifiers still when the independence 
assumption is not met (p.1). Another approach which is growing more popular is 
Bayesian networks. Bayesian networks give a more compact representation of a joint 
distribution. Instead of exponential growth of complexity as the full Bayesian approach 
gives, Bayesian networks give a linear growth of complexity. Bayesian networks can 
however, be complicated to construct (Norvig & Russell (2003) p. 97). I will come back to 
independent features later. 

 

4.1.2. Nearest neighbour 

This is a method which can be used for many of the same tasks as a Bayesian classifier 
and can also be used for supervised learning. But what differs is that the nearest 
neighbour classification does not need any assumption about the density distribution, 
therefore a non-parametric approach. Nearest neighbour classification actually bypasses 
probability estimation and goes directly to decision functions. This is good news because 
often it can be quite hard to assume any density distribution (Duda et al. (2001) p.161). 
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Figure 4.2: 5-nearest-neighbours rule 

The figure above illustrates the principles with the k-nearest-neighbour rule. X is the 
unknown sample we want to classify. The black and white dots are samples respectively 
from the two classes ω1 and ω2. The classification is simply to select the class which has 
highest density within the sphere. The sphere indicates the 5 closest samples to X. X 
would in this example be classified as class ω2, since the majority of samples in the 
spherical region originate from class ω2 (white dots) 

In this example (figure 4.2) the 5-nearest-neighbours rule was used. However the number 
of neighbours can be varied, thus the name k-nearest-neighbour rule. The more 
neighbours the lower error rate and higher computation costs. It is also possible to look at 
only one neighbour; this is called the nearest-neighbour rule. The nearest neighbour rule 
is often used as a first estimate of data due to an asymptotic error rate and easy 
implementation. It has an error rate of maximum 2 times Bayes error rate. Other 
techniques usually give better results (Duda et al. (2001) p.177). Instead of using a fixed 
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number of neighbours, a fixed window size can be used and are so called ‘window 
methods’. 

As we have seen, these methods are intuitive for a human to understand, and quite easy 
to implement. However, there are problems with high computational complexity both in 
space and time (Duda et al. (2001) p.184). Another fact is that there are other methods 
which have a lower error rate. 

 

4.1.3. Cluster analysis 

Sometimes we do not know anything about the classes involved or it is too costly to label 
the training data. We are then operating with unlabeled samples in our training set; this is 
often referred to as unsupervised learning (Duda et al. (2001) p.517). The task is then to 
find clusters in the data, where a cluster consists of samples of the same class. 

There are several techniques developed for finding these clusters, some of them need to 
make basic assumptions about number of classes and density distribution. A more 
general approach is to measure similarity between samples, and then define a criterion 
which specifies clustering quality. Similarity measures can be common distance measures 
like Euclidian distance or more specialized distance measure like principal components, 
which is invariant to rotation of the axis (Duda et al. (2001) p.539). Criterion functions 
should be selected according to which clusters we expect. For instance the Sum-of-
Squared-Error Criterion expects compact clouds that are well separated from one another 
(Duda et al. (2001) p.542). Criteria functions have proved useful to many problems, but it 
has a major problem; they can not detect clusters within clusters (sub-clusters)  

For problems where sub-clusters are present, hierarchical clustering can be used (Duda et 
al. (2001) p. 552). There are many examples on problems which require sub-clusters; for 
instance cars are ordered in brands and models, where model is a sub-cluster of brand. 
Each model again might consist of subcategories based on engine size, accessories and so 
on. 
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Figure 4.3: Dendrogram 

Hierarchical clustering can be represented in a tree form called a dendrogram, as seen 
above (figure 4.3). This dendrogram shows 8 samples named X1 to X8. Each level k = 1 to k 
= 8 represents a cluster. At level k = 1 each sample is a singleton cluster and at level k = 2 
X6 and X7 are forming a cluster. The scale to the right shows similarity between the 
clusters, for example the similarity of samples in the cluster formed at level k = 6 are 
about 50. This similarity score can be obtained with different procedures divided into 
Divisive (top-down) and agglomerative (bottom-up) procedures. The nearest-neighbour 
algorithm can be used as a bottom-up procedure for extracting similarity. Bottom-up 
procedures start with each sample as a singleton cluster and then iteratively merge 
clusters which are similar (Duda et al. (2001) p. 581). Whereas top-down procedures start 
with a single cluster for the samples and divides them into smaller clusters, hierarchical 
clustering is mostly used because of its simplicity and ability to tackle sub-clusters. 

 

4.1.4. Self-organising maps  

Sometimes the high dimensionality of the data that are being classified can cause 
problems, since they are hard to visualize and analyse. One solution to this problem is 
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called low dimensional representation. Low dimensional representation is really a 
method for mapping multidimensional data onto a two-dimensional space and not a 
method for finding clusters. It is important for such approach to preserve neighbourhoods 
and relative distances when projected into a lower dimensional room. There are several 
approaches for doing this projection as accurate as possible and one popular approach is 
Self organizing feature maps developed by Kohonen (1984). Self-organizing feature maps 
generate a topologically correct map of the data, preserving neighbourhoods. The 
mapping is done by a neural network, where similar data are mapped onto the same node 
or to a neighbouring node in the map. This arrangement of the clusters on the map 
reflects the attribute relationships of the clusters in the input space (Koua (2003) p. 1). 

To further illustrate what self-organizing feature maps can be used for, we can look at a 
map made by Chen (1995) and his colleagues which describe the content of Yahoo! in 
1995.  

 

Figure 4.4: Yahoo self-organizing feature map (Chen (1995)) 

As we see from the figure above (figure 4.4) we get a 2-dimentional ‘birds-eye’ view of the 
Yahoo! site, which in reality contains multi-dimensional data. Self-organizing feature 
maps are a valuable tool for visualising multi-dimensional data into a human 
understandable form. 
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4.1.5. Case Based Reasoning 

CBR (Case-Based Reasoning) originates from cognitive psychology theories and especially 
from Schank (1982) and his students work on dynamic memory at Yale University in the 
early 1980s. 

CBR tries to mimic a human’s ability to recognise similar situations. For instance if a car 
does not start a car mechanic would  know that for this particular car type it is more likely 
that the battery is causing the fault than that the spark plugs are to blame. Of course the 
more cars and situations the car mechanic has experienced, the faster and more accurate 
his reasoning becomes. CBR is based on the belief that new problems are often similar to 
previous problems. Therefore in most cases an old solution could be applied to the new 
problem. (Aitken (2004)) 

All CBR methods have the following process in common (Harrison (1997)):  

• Retrieve the most similar case (or cases) comparing the case to the library of past 
cases.  

• Reuse the retrieved case to try to solve the current problem. 

• Revise and adapt the proposed solution if necessary.  

• Retain the final solution as part of a new case.  

Some of the characteristics of a domain that indicate that a CBR approach might be 
suitable include (Harrison (1997)): 

• Records of previously solved problems exist.  

• Historical cases are viewed as an asset which ought to be preserved. 

• Remembering previous experiences is useful.  

• Specialists talk about their domain by giving examples.  

• Experience is at least as valuable as textbook knowledge.  
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A CBR engine usually consists of a data retrieval algorithm and a matching algorithm. 
The matching algorithm could be as simple as a string matching algorithm. Because of the 
simplicity of the algorithms used and the versatility of the CBR approach it has grown in 
popularity over the last years (Aamodt & Plaza (1994)). 

 

4.2. Some classification systems examples 

Some attempts have been made to make classification systems for whisky. I am going to 
present three different systems made. For each system, I am going to look at what kind of 
classification technique they use and which features they need for the classification. 

 

4.2.1. Whisky Classified 

When building a classification system, it is important to find features that are 
independent, and it must be possible to give a value which is scalable.  This is described 
more in depth in chapter 6. Wishart (2002) has in his classification project “Whisky 
Classified” divided the taste of a whisky into 11 different features as seen in figure 4.5. 
Additional information is available at www.whiskyclassified.com. 
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Feature       1                 2                 3                 4                 5   
Body Light Heavy 
Sweetness Dry Sweet 
Smoky Non-Peaty Peaty 
Medicinal Salty Non-Salty 
Tobacco Tea Feinty 
Honey Non-Vanilla Vanilla 
Winey Non-Woody Woody 
Nutty Non-Oaky Oaky 
Malty Non-Cerealy Cerealy 
Fruity Non-Estery Estery 
Floral Non-Herbal Herbal 
 

1.Not Present, 2.Slight Hint, 3.Medium Note, 4.Definite Note, 
5.Pronounced feature. 

  

Figure 4.5: Wishart features (Wishart(2002)) 

Each feature is graded from 1 to 5. The feature Body, for example can have values ranging 
from 1 to 5 where 1 means light and 5 means heavy. 

The model for representing the taste was developed in cooperation with several whisky 
experts and has been approved by several distilleries. 86 whiskies were specified by the 
new taste model developed, and these data were later analysed using a cluster algorithm.  
From this analysis 10 clusters were found and whiskies in the same cluster were said to 
have similar taste. A recommendation is based on recommending whiskies in the same 
cluster/class as the whisky the user likes.  

 

4.2.2. www.celticmalts.com 

Kraaijeveld (2001), has also used a cluster algorithm when he was trying to figure out how 
ancient Celtic whiskies tasted. By looking at production methods from around 1880 he 
tried to classify whiskies in clusters of similarity and give each cluster a taste description. 
It would have been quite time-consuming to gather information about which production 
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methods each distillery used, but Kraaijeveld was lucky to have detailed descriptions 
about each distillery around 1880. Features like grains used, kiln, kiln fuel, mash tun and 
wash back contents, still type and contents, number of distillations and warehouse 
capacity were documented. 

 The reason for Kraaijeveld to use this technique rather than tasting notes, was that tasting 
notes had not yet been invented at that time. This approach also gives other benefits; 
classification can be made objective, with less interference by human’s subjectivity. It is 
also possible to predict how a whisky would taste even before it is made.  

 

4.2.3. Classification of Pure Malt Whiskies 

Lapointe and Legendre (1994) used a different approach in their classification project. 
Instead of using a cluster algorithm the use a Naïve Bayes (TDF-IDF) classifier which is 
usually used for analysing documents. This approach treats every word which can be 
used to describe a whisky as a feature. This literally means that we can deal with several 
hundreds or even thousands of features. 

Features could be aromatic, peaty, sweet, light, fresh, dry, fruity, grassy, salty, sherry, 
spicy, rich. Each whisky is given a score on how many of the features (words) that is used 
to describe the whisky.  

Whisky      Word     
 Smoky Peaty Sweet Light Fresh Fruity Dry Grassy Salty Sherry 

Macallan  X    X    X 
Chivas Regal X     X  X  X 
 

Figure 4.6: Example - Naïve Bayes (TDF-IDF)  

From figure 4.6 we can see that Chivas Regal would receive a higher score than the 
Macallan. Each of the features is given a weight after how frequently it appears. Whiskies 
with equal score are said to be similar. 

Lapointe and Legendre have not received the same support from the ‘whisky world’ as 
Wishart’s classification. 
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C h a p t e r  V   

AGENT PLATFORM 

We have so far looked at general AI techniques and different technology developed by the 
AmbieSense project. How can the different technology support duty-free shopping? In 
this chapter the final system combining all of these technologies is presented. First let us 
get a clearer view on what the system are set to do. To illustrate the tasks of the system we 
can have a look at the Oslo Airport test mentioned earlier in chapter 1. For testing the 
technology, the AmbieSense project has made a test scenario at Oslo Airport (OSL) 
Gardermoen.  

 

 

Figure 5.1: Oslo Airport (OSL) Gardermoen  scenario 
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Figure 5.1 shows how AmbieSense technology might be applied to support duty-free 
shopping at OSL airport. Here we see a traveller passing by a duty-free shop fitted with a 
Context Tag.  

Information about the current location is sent from the Context Tag and the traveller’s 
context is updated. Information sent from the Context Tag could contain information 
about map coordinates, duty-free shops, check-in, travel agencies, cafés and so on. The 
new information is then matched with the recorded interests of the traveller. Only if the 
information offered match the traveller’s profile and the system recognises the situation as 
suited for this kind of information is the information passed on to the user. This can be 
seen on the last picture in the sequence of figure 5.1, where two offers appear on the 
user’s/traveller’s mobile phone; one for a 12 year old Chivas whisky and another for a 
Boss perfume. Several factors are evaluated before the system presents these offers to the 
user such as interest in whisky, time before take-off, money available and what kind of 
travel (business or pleasure). If, however, the traveller’s favourite whisky is out of stock or 
if he wants to try a new whisky, the system can recommend a whisky based on what he 
usually drinks. 

 

5.1. AmbieSense MAS 

The AmbieSense project decided to use an MAS because it provides the flexibility, 
scalability and extensibility which are needed by such a system. More about the 
motivation for using an MAS can be found in the documentation of the AmbieSense 
project, especially in D8 chapter 2.2 (Myrhaug et al. (2004)). In particular, JADE (Java 
Agent Development Framework) was chosen as a MAS framework.  

5.1.1. JADE 

JADE is one of many frameworks for building an MAS; a few others include Aglet, FIPA-
OS, Odyssey, Voyager and Zeus. Jade is a MAS framework based on FIPA (Foundation for 
Intelligent Physical Agents) specifications (Bellifemine et al. (2003)). FIPA is a European 
organization for standardization of MAS (FIPA (2003)). Like most MAS framework JADE 
gives benefits like built in support for communication and predefined agent behaviours. 
In addition, JADE also supports mobile platforms through LEAP (Lightweight Efficient 
Application Protocols). 
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5.1.1.1. The JADE platform 

The JADE platform consists of two agents which are always running; the AMS (Agent 
Management System) agent and the DF (Directory Facilitator) agent. The AMS agent 
administers the lifecycle of the other agents with tasks such as registering, deregistering, 
relocation and stopping of agents. When agents register they are given a unique number 
called the AID (Agent Identifier) (Bellifemine et al. (2004)). The DF Agent works like the 
yellow pages, where an agent can request a service, let us say plumber, the DF Agent 
would search for all plumber agents and return their AID.  

 

Figure 5.2: The JADE Agent Platform (Belligemine et al. Figure 1 p.7) 
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Message Transport System also known as ACC (Agent Communication Channel), are 
software components controlling exchange of messages between agents, internally and 
from other platforms.  

The agent platform can be distributed across different kinds of machines which not even 
need to share the same operating system. Only one Java application runs on each host 
machine, and each agent runs in a tread. This allows a JVM (Java Virtual Machine) to be 
shared between several agents. JADE also allows agents to move from one machine to 
another during run-time. When a developer develops an agent he or she does not have to 
consider where the agent is going to be run. The JADE platform provides containers as a 
habitat for agents to run in. In theory a container could support an infinite number of 
agents running simultaneously. However, in reality the host machine limits the number of 
agents able to run. Agents can also move between different containers, while running. 

  

5.1.2. LEAP (Lightweight Efficient Application Protocols) 

The JADE platform is developed for running on PCs and servers and is not suited for 
mobile devices for several reasons (Caire (2003) p.3): 

• Big memory footprint (several Mbytes) 

• Requires JDK 1.4 or later, which is not normally supported by mobile devices 

• Requires a fixed network 

To overcome these problems, JADE is used in conjunction with LEAP. LEAP is a set of 
protocols specially adapted for low bandwidth communication, ideal for wireless and 
mobile applications (Banan (2000)).  
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Figure 5.3 LEAP split execution (Caire (2003) p.7) 

LEAP gives the possibility to run the agent on a split container, which means that an 
agent can be split into a front-end running on the mobile device and a backend running 
on a server, as seen on figure 5.3. This allows heavy application to be started from a 
mobile device, but the actual computation is done on a server. In the JADE framework, 
every agent with a GUI (Graphical User Interface) is programmed with the possibility of 
being run on a split container (Bellifemine et al. (2003) p.15). This means that for the 
programmer creating an agent, running on a split container requires the same amount of 
work as creating a non split agent. 
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public class PrefsAgent 
    extends GuiAgent { 
 

//Agent content  
} 

 

Figure 5.4: Example - agent with GUI 

Programming wisely, an agent with a GUI has to extend the GuiAgent class. Figure 5.4 
illustrates how this is done in Java. 

 

5.1.3. Reason for choosing JADE-LEAP 

The reason for choosing JADE as the MAS framework is illustrated in figure 5.5 which is 
made from table 3 in appendix 1 of D8 in the AmbieSense documentation (Myrhaug et al. 
(2004)). 
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Framework AR1 AR2 AR3 AR4 AR5 AR6 

 Mobile 
Platform 

Open 
platform 

FIPA Programmable Open 
Source 

Representation 
language 

Tryllian yes yes yes yes no yes 

April no no yes yes yes yes 

Comtec no yes yes yes yes yes 

FIPA-OS yes yes yes yes yes yes 

Grasshopper yes yes yes yes no yes 

JACK no yes yes yes no yes 

JADE-LEAP yes yes yes yes yes yes 

JAS yes yes yes no yes no 

ZEUS n/a yes yes yes yes yes 

 

Figure 5.5 MAS frameworks based on table 3 Appendix 1 D8 (Myrhaug et al. (2004)) 
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From the figure, we can see that only FIPA-OS and JADE-LEAP fulfil the requirement 
AR1-AR6 set by the AmbieSense project. From these two candidates, JADE was selected 
due to the following reasons (Myrhaug et al. (2004)): 

• There has been former positive experience with the JADE platform in the 
consortium. 

• LEAP was developed in another IST project. Using this framework in AmbieSense 
contributes to a consistent way of utilising EU-funded research. 

• With the release of JADE version 3 (19.03.2003), the JADE developer team manages 
LEAP; LEAP is now integrated in JADE as an add-on, thus ensuring closer 
integration of these frameworks as well as support and further development. 

• JADE-LEAP has a very active developer community, thus ensuring support and 
further development even after the project’s end. 
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5.1.4. The AmbieSense Architecture 

 

Figure 5.6: AmbieSense architecture, UML class diagram   

Figure 5.6 was taken from the AmbieSense documentation D9 page 8 (Wienhofen et al. 
(2004)). As we can see from the figure 5.6, the AmbieSense system consists of 3 main 
agents; a Context Agent, a Recommender Agent and a Content Agent. 

 

5.1.4.1. The Context Agent 

The Context Agent is responsible for storing and retrieving contexts from the context 
middleware.   

According to the AmbieSense project (Myrhaug et al. (2004)): 
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“A context describes aspects of a situation seen from a particular actor’s point of 

view. An actor can in the widest sense for instance be a person, thing, matter, or 

organism. In this way a context is actually defined as something separate from the 

situation itself. A context in AmbieSense is a representation inside the computer. It 

represents aspects of a situation in the real world. (…) AmbieSense chose to 

implement this structure by developing Java-classes integrated with Java 

technology.” 

The OSL airport scenario described earlier in this chapter uses two kinds of contexts; one 
user context and one tag context. The user context stores information about the user, 
whereas the tag context is a context describing a Context Tag. When a traveller/user 
passes a Context Tag, the tag context is merged with the user context. Basically this means 
that the user’s context is updated with local information received from the tag context. A 
user’s context is grouped into five sub-categories:  

• Social Context 

• Task Context 

• Personal Context 

• Environment Context 

• Spatio-Temporal Context 

This context hierarchy model was first described by Myrhaug (2001). 

Each category can themselves hold sub-categories or attributes.  

Social Context - Contains information such as friends, neighbours, roles and relatives.  

Task Context – Describes what the user is doing. This can be expressed as goals, tasks, 
actions, activities, or events. 
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Personal Context – Divided into two sub-categories; the physiological context and the 
mental context. The physiological context holds information such as pulse, blood 
pressure, weight, fingerprint and more. The mental context contains information such as 
mood, stress, expertise, interest etc. 

Environment Context – Captures entities surrounding the user like things, services, 
temperature, light, humidity, noise and persons. 

Spatio-Temporal Context - Holds information about time and space. Information that 
might be stored could be location, time, heading and other information. 

A tag context is similar to the user context, but lacks the personal context category. 

 
 
<?xml version="1.0" encoding="UTF-8"?> 
<contextTemplate xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
   <contextTemplateName>user context template</contextTemplateName> 
   <contextTemplate> 
      <contextTemplateName>spatio-temporal context</contextTemplateName> 
      <attribute> 
         <attributeName>current time</attributeName> 
         <string>noon</string> 
      </attribute> 
      <attribute> 
         <attributeName>current location</attributeName> 
         <string>CHELSEA</string> 
      </attribute> 
   </contextTemplate> 
</contextTemplate> 
 

 

Figure 5.7: XML representation of context in AmbieSense 

For further illustration of how a context is represented in the AmbieSense project figure 
5.7 shows an example of a user context represented in xml. Contexts are stored as Java 
objects, but can be translated into xml.  Here we see a user context with information about 
current time and current location. This information is stored as two attributes, each with a 
name and a value. All kinds of information about the user can be represented in this way. 
We can recognise the context hierarchy where the user context is the root category, and 
spatio-temporal is a child or sub-category. 
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This is just a brief description of the context hierarchy, it is described in more detail in 
Chapter 5 of D2 in the AmbieSense documentation (Myrhaug et al. (2004)). The context 
hierarchy represents the common basis of knowledge between the agents in the 
AmbieSense MAS, and it creates the foundations of the OntoSense ontology. The 
OntoSense ontology is used by the agents in the AmbieSense MAS when they are 
communicating, to ensure that they share the same understanding of concepts. New 
concepts and attributes can be added to the AmbieSense ontology as long as they reside 
inside one of the five main categories (Myrhaug et al. (2004)). For example, if we want to 
add information about the user’s mood, a mood attribute could be added under the 
personal-mental category. 

Each user context is stored in the context middleware. The context middleware acts as a 
database which store, search, merge and retrieve context information for each user of the 
system. It also keeps a history of previous contexts, which can be restored if needed. This 
is particularly useful for recognizing previously encountered situations.  

The context middleware also holds the responsibility for the security of the contexts. One 
mechanism ensuring security is a single access point to the context middleware. All access 
to the context middleware is done through the Context Agent. The Context Agent 
validates users by a user name, a password and a X.509 certificate, before it can access the 
context middleware.  The information sent between the context middleware and the 
Context Agent is encrypted, so is the information residing in the context middleware.  SSL 
(Secure Socket Layer) is used to secure the network connections (Myrhaug et al. (2004)). 

 

5.1.4.2. The Recommender Agent 

Based on the user context, the Recommender Agent can predict which information the 
user wants. For this task, it is equipped with Creek; a CBR engine. The theory behind CBR 
has been introduced earlier in chapter 4. Other techniques could be employed which 
better fits the information recorded. An example where it is important to give right 
information would be in a situation whereby the plane leaves in 10 minutes. In such 
situation, the traveller should get a reminder on his/her flight instead of information 
about duty-free shopping. The system should be able to recognize the situation from 
earlier cases (contexts) where the time to departure are 10 minutes or less, and act 
according to these previously recorded cases (contexts). Previously recorded cases 
(contexts) are either learnt by earlier experience or learnt by training. 
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5.1.4.3. The Content Agent 

The Content Agent’s task is to keep track on valid content providers depending on the 
situation. The Content Agent receives an update message from the Context Agent each 
time a context change occurs. Based on the context and which information the 
Recommender Agent recommends, the Content Agent finds content providers suited for 
the requested information. For example, if duty-free shopping is requested the Content 
Agent search for available duty-free shops nearby. The information is retrieved from the 
shopping web site of OSL. 

 

5.2. Duty-free (whisky) shopping MAS 

The AmbieSense project focuses on making a general framework, whereas my thesis is 
giving content to the system, and demonstrating how it can be used for the specific 
scenario of duty-free shopping. Before the actual solution is presented, let us look at the 
initial requirements that were set. 

 

5.2.1. Requirements 

The system must consist of at least two agents; one GUI/User agent that communicates 
with the user and one expert agent which recommends products to the user. There are 
two actors to consider in this system; the user/traveller and the duty-free shop. 

The GUI/User agent must provide the following: 
 

• Ask user about products he or she might be interested in. 

• Store a profile containing products the user is interested in. 
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The expert agent must provide the following: 
 

• Recommend relevant products to the user. 

• Classify new products based on some defined properties. 

The user must be able to: 
 

• Register which products he or she is interested in and specify the price range. 

• Accept an offer. 

• Easily shut off information about offers. 

• Access the system on their mobile device without having to install a lot of 
programs. 
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5.2.2. Duty-free (whisky) shopping - MAS architecture 

 

 

Figure 5.8: Duty-free MAS, conceptual model 

This is a conceptual model of the final MAS architecture provided as an overview. A more 
detailed UML can be found in Appendix A. We can recognize the Context Agent from the 
AmbieSense framework; the other agents (Recommender Agent and Content Agent) are 
also present in my application as we will see when each agent is presented. 

5.2.2.1. Preferences Agent 

The Preferences Agent is the traveller’s personal agent. This agent runs solely or partially 
on the traveller’s mobile device. It is responsible for taking the user’s preferences and 
informs the users about things he/she is interested in. The Preferences Agent has to 
cooperate with other agents to achieve this, and works as a coordinator or a switchboard 

 47



 

between them. The Preferences Agent is implemented as a split agent with a GUI, this 
allows it to run on mobile devices.  

Responsibilities: 

• Build GUI dynamically from duty-free ontology and information gathered from 
the Whisky Expert Agent. 

• Receive preferences from user, and pass them to the Context Agent. 

 
5.2.2.2. Whisky Expert Agent 

In many ways this agent is similar to the Recommender Agent, but instead of 
recommending the next move for the system, it recommends a whisky to the user.  For the 
duty-free shopping domain there would be one expert agent for each production such as 
a cognac expert, perfume expert and so on. The Whisky Expert Agent can be compared to 
a human whisky expert where his responsibilities are to: 

• Give information about a whisky on request. 

• Recommend a whisky on request, based on some criteria. 

• Classify new whiskies into categories of similar whiskies. 

• Be able to extend its knowledge about whiskies. 

 
Instead of communicating with other humans, the expert agent must communicate with 
other agents. The whisky expert must have expert knowledge just like its human 
counterpart and be able to extract a recommendation from this knowledge. To be able to 
do this, the Whisky Expert Agent consists of a knowledge base and a classification system. 
The knowledge base is used to store all kinds of information about whiskies and the 
classification system is used for classifying new whiskies, which can later be 
recommended to a user (agent). Since the Whisky Expert Agent is supposed to make 
expert decisions it important that the accuracy of the recommendations have a certain 
standard. A realistic measure would be a accuracy within the range of 10% or less 
mistakes. 
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5.2.2.2.1. Knowledge Base 

Noy & McGuinness (2001) defines a knowledge base as “an ontology together with a set 
of individual classes constitutes an knowledge base” (p.3). Also, according to Norvig & 
Russell (2003), a KB (Knowledge Base) is a collection of sentences written in a knowledge 
representation language and represents some assertion about the world. The knowledge 
base stores the knowledge the agent has. The knowledge base can be used to store 
knowledge acquired or to access knowledge stored. A knowledge base also has the ability 
to infer new knowledge from the knowledge already stored (p.195). 

With these definitions in mind, you could think of a knowledge base as a kind of 
database. Instead of an ER-model defining the structure, an ontology defines the 
structure. Where a database stores and retrieves data, a knowledge base stores and 
retrieves knowledge. In addition a knowledge base has the ability to infer knowledge 
from knowledge already stored. 

This way of looking on a knowledge base may work in many situations. However, the 
distinction between the ontology and the knowledge base is not always clear, and 
sometimes it can be hard to establish a clear-cut border between them (Noy & 
McGuinness (2001) p.3). 

 
5.2.2.2.2. Protégé 
Protégé is a tool made for constructing domain ontologies. Nevertheless, it may also serve 
as a standalone KB for storing and retrieving knowledge (protégé.standford.edu). When 
used as a KB, it is possible to use the supplied GUI for entering data and make queries. It 
has also the possibility for applications to access the knowledge base using the supplied 
Java API. A KB constructed in Protégé can easily be exported into a knowledge 
representation language such as RDF, OWL, DAML or into a Java ontology. It is even 
possible to export the KB into a normal database format such as JDBC. 
 
For my thesis, I used Protégé as a construction tool for the KB. The KB was later exported 
into RDF/RDFS. RDF/RDFS was used because I wanted an open platform which could 
easily be accessed by any program using an RDF parser. The ontology used by the JADE 
agents were also extracted from the same design using a plug-in called the BeanGenerator 
(Acklin (2004)). The BeanGenerator creates Java code compliant with the JADE ontology 
specification. 
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5.2.2.2.3. Weka 

The classification system was built using Weka. Weka is a collection of classification 
algorithms implemented in Java. (Frank et al. (2000)) Weka allows the classification 
algorithms to be applied in two ways; from a GUI where different kinds of visualisation 
and experimenting can be done, or directly from a java program through an API. This 
gives the system developer the opportunity of experimenting with different learning 
algorithms using the GUI until a suited one is found, and later implement it into the agent 
using the Java API. In addition, Weka supports different kind of pre-processing, 
association rules, feature validation and more. Basically, Weka supports the whole 
classification process as we will see in chapter 6. 

 

5.2.2.3. Context Agent 
This is the exact same agent as described earlier in the overview of the AmbieSense 
architecture. The context used is extended to contain whisky information and this is 
further explained later in this chapter. 
 
5.2.2.4. Duty-free Agent 

The Duty-free Agent could either be the Content Agent described in the AmbieSense 
framework or a sub-agent only handling duty-free content. In my scenario, it does not 
matter if it is the main Content Agent or just a content provider for duty-free shopping. 
Either the Content Agent knows every domain from check-in to duty-free shopping or it 
only knows which agent it can delegate the different tasks to. This really depends on the 
size of the total domain. 

Responsibilities: 

• Search the Internet for relevant duty-free items available on the current location. 

• Retrieve prices on requested duty-free items. 
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5.3. Communication 

JADE provides an extensive support for agent communication. Figure 5.9 shows the 
different layers of communication in JADE. 

 
 

Figure 5.9: JADE/FIPA communication model (Helin (February 2003))) 

The 4 layers from the top are administered by JADE (golden), and the two following 
lower layers are administered by LEAP (blue). I am not going to go through the whole 
model, only highlight layers which are of interest.  

The MTP (Message Transport Protocol) layer in JADE are divided into; intra platform 
communication (Within one JADE platform), and inter platform communication (Between 
different JADE platforms). Jade uses the RMI (Remote Message Invocation) for intra 
platform communication and HTTP (Hypertext Transport Protocol) or IIOP (Internet Inter-
ORB protocol) for communication between agent platforms. The inter platform 
communication enables agents to communicate across different machines and locations. 
IIOP was used in earlier versions of JADE, but from version 3.2 HTTP is used as the 
standard protocol. The reason for selecting HTTP as the standard protocol is because it 
provides shorter and easier addresses instead of the awkward CORBA (Common Object 
Request Broker Architecture) address used by IIOP (Grimshaw (July 2004)). HTTP is also 
simpler to implement and is because of that it better suited for small devices (Helin (2003) 
p.1).  Earlier performance problems with HTTP have been solved by using bit-efficient 
Agent Communication Languages. Even this is not enough to beat IIOP when it comes to 
transferring a number of bytes (Helin (2003) p.3).  
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The Agent Communication Language layer clearly contains the ACL (Agent 
Communication Language). The ACL is, as you might recall from chapter 2, one of three key 
elements for agent communication. The other two are a common content language and a 
shared ontology. JADE has support for the commonly used KQML and FIPA-ACL which 
is FIPA’s alternative to KQML. 

The Content Language layer describes which kind of content is being sent, such as 
formulas or plain text. Several languages are supported; for example FIPA-SL (Subset 
Language), FIPA–RDF0 (FIPA version of RDF), FIPA-CCL (FIPA version of Content 
Choice Language), KIF (Knowledge Interchange Format) and the FIPA-KIF (FIPA version of 
KIF). Ontologies can easily bind into any of these languages. More about FIPA’s content 
languages can be found at the FIPA web page (FIPA (1999)).  

For the project, FIPA-ACL was chosen as the agent communication language because it is 
the default language in JADE and most of the JADE documentation uses this language. 
There has been a controversy between the two languages arguing which is the better 
language. FIPA-ACL comes with formal semantics which gives a standard interpretation, 
KQML on the other hand does not provide formalised semantics, but KQML has the 
benefit of being more widely used (Huns & Singh (1997)). However, for my project it is 
important that the agents speak the same language, and not which language they speak. 
As a Content Language, FIPA-SL is used because it is the standard content language in 
JADE, but also because it is more efficient than for example FIPA-RDF. The ontology can 
be described as java classes when used by FIPA-SL. 

 

5.3.1.1. Ontology 

The ontology used is designed in Protégé and then exported into java as explained earlier. 
Here is an UML showing the structure of the Ontology: 
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Figure 5.10: Duty-free Shopping Ontology, UML class diagram 

The ontology tries to model any object in the duty-free shopping domain. It is constructed 
in such a way that it can easily be extended to contain other products in the future. If we 
want to add a new product such as the drink; cognac, it could be added to extend the 
class; Alcoholic.  Not only are drinks able to be added, other products like perfume or 
chocolate could be added, thus extending the DutyfreeItem class. Nevertheless, for my 
scenario whiskies are the only product which is modelled. We can also see that Whisky 
extends Alcoholic and that it could be; Malt, Grain or Blended. A whisky also has a taste 
which is modelled as an own class. 

Since the ontology is based on the same design as the KB, it contained the same structure 
and fields as the KB. There are both benefits and drawbacks with this approach. The 
benefits are that both the KB and ontology can be maintained in the same design and that 
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everything in the KB is guarantied to be understood by the ontology. The drawback is 
that differences which actually exist between the KB and the ontology are not captured. 
For example, the price property is not part of the knowledge base because the prices are 
gathered from the duty-free shop. Agents need to know and communicate about price, 
but it is not stored in the knowledge base. Even though we store price in the KB, it would 
not mean the same thing because prices from several different shops can not be 
represented. 

The Ontology was added to the context middleware by extending the context hierarchy as 
shown on figure 5.11. 
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Figure 5.11: Context hierarchy, UML class diagram 

From the figure, we can see that a new category Interest is added under the mental 
context. Interest describes the user’s interests such as sports, food, music and so on. 
Shopping is one of such interests and we can see that Shopping are added as a sub-
category of interests. Shopping actually contains the whole duty-free shopping ontology 
described in figure 5.11.   
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5.4. Recommendation 

The recommendation process is not only handled by the Whisky Expert Agent, but is also 
a result of several agents working together. Let us look at the initial scenario where a 
traveller passes a duty-free shop, but this time we look at how the agents interact.  
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Figure 5.12: User passing Context Tag, AUML sequence diagram  
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Since standard UML (UML 1.0) is unable to express the complexity of agent 
communication and behaviours, I have used AUML (Agent UML) instead 
(www.auml.org). AUML is not yet an official standard and is currently under 
development. 

The figure presented here is not complete, but is meant as an illustration of the 
communication taking place between the agents when a traveller passes a Context Tag. 
Only agents are shown in the diagram and components like the Context Tag and the 
context middleware are left out. 

Figure 5.12 describes the scenario where a traveller passes a Context Tag. The scenario is 
initiated by the Context tag which sends information to the context middleware.  

The Context Agent informs the Preference Agent that duty-free shopping is wanted by 
sending an updated context containing information about the location and information on 
the wanted shopping items.  

The Preferences Agent sends the user’s whisky preference to the whisky expert for 
matching. If the Whisky Expert Agent finds matching whiskies, they are returned to the 
Preferences Agent. The returned matched whiskies can be seen as the users preferred 
whiskies. The preferred whiskies are either sent back to the whisky expert used as the 
basis for a recommendation or they are sent directly to the Duty-free Agent. This depends 
on if the user wants a recommendation or not. If the user wants a recommendation then 
the whisky expert will recommend some whiskies and they are added to the already 
matched whiskies and are sent back to the Preference Agent. The Preference Agent then 
sends the matched and recommended whiskies to the Duty-free Agent which is searching 
for these products in the nearby shops. If the matching and recommended products are 
found, the prices are added and they are sent back to the Preferences Agent. The 
Preferences Agent lists the found products in a sorted way by relevance. As we can see, 
the communication is rather complex and difficult to even describe with words. 
Nevertheless it is important to notice the different stages which lead to the final 
recommendation. 

5.4.1. Matching 

For the system to perform any recommendation, the user has to give some input about his 
or her whisky preferences. The user can either directly choose one or more whiskies he or 
she prefers, or enter some properties that the preferred whisky should possess.  
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Figure 5.13: Selecting preferred product (left), Specify properties (right) 

Figure 5.13 (left) shows how a user can search for a specific product by entering the name 
and the type of the product. From figure 5.13 (right), we can see the menu where the user 
can fill in values for preferred properties such as age, price and producer found in the 
second column.  Each property can be ranked from 1 – 10 in the first column found in the 
menu, whereby 1 is the most preferred property and 10 is the least preferred.  But he or 
she does not however, need to fill up all the boxes in the column.  Instead, figures inserted 
will only reflect on the user’s choice.  For example, if he or she only has age, cask and taste 
in mind, then he / she will only need to fill up 1 – 3 in the first column.    

The system tries to match these properties to whiskies already known by the system 
which is contained in the KB. This matching technique can be sophisticated, but in my 
system I used a simple algorithm for matching (string matching). From this matching, 
hopefully one or more whiskies are found and a list will be created. 
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5.4.2. Classification 

The whiskies preferred by the user or matched by the system are used as the basis for the 
recommendation. It is important to notice that it is only when a new whisky is entered 
into the system that the classification algorithm is used to classify the whisky into one of 
ten categories. When the system recommends a whisky to the user, it only searches for 
other whiskies classified into the same class as the whiskies the user prefers. More about 
the classification algorithm can be found in chapter 6. 

 

5.4.3. Ranking 

The recommended whiskies and the preferred whiskies are ranked before they are 
presented to the user. The ranking is simple and it arranges the cheapest whisky first, and 
whiskies with the same price are then ranked by their score given by a whisky expert. 
This ranking could be improved by calculating a score combining the price and score 
given by a whisky expert, for finding the whisky with best value for money. The user 
could also be able to enter his or her own ranking. 
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Preferred products: 
 
  
 
Matched products: 
 
Macallan Thirties    219  95 
 
Macallan Twenties    219  95 
 
Macallan Forties    219  94 
 
Macallan Fifties    219  93 
 
  
 
Recommended products: 
 
Dalmore  12  229  79 
 
Glendronach   249  79 

 

Figure 5.14: Output from recommender system 

We can see that the output is arranged into three different categories; Preferred, Matched 
and Recommended products. The preferred products reflect products which the user has 
specifically requested. The matched products refer to products the system has found 
based on the properties the user specified. Finally, the recommended products are the 
products which the system recommends. We can also see that under each category the 
whiskies are ranked by price (first number) and by score (last number). 

 

5.5. Testing 

The testing of the system was done as four separate tests; testing of the mobile platform, 
testing of multi agent platform (recommendation), testing of AmbieSense framework and 
testing of classification. Together these tests covered most aspects of the final working 
system.  
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5.5.1. AmbieSense framework 

I did not participate in the testing of the AmbieSense framework. Nevertheless I am going 
to give a brief description of the testing. More about the testing can be found in the 
AmbieSense documentation D9 chapter 2.4 and 3 (Myrhaug et al. (2004)). 

The testing of the AmbieSense project consisted of 3 steps: 

• Component testing 

• Integration testing 

• Complete system testing 

 

5.5.1.1. Component testing  

The AmbieSense framework consists of different separate components like Context Tags, 
context middleware and the agent system. Each of these components was tested 
separately to ensure that they complied with the requirements. For some of the 
components, test applications have been developed and used for testing. 

 

5.5.1.2. Integration testing 

Integration testing was performed to see how certain components worked together. For 
instance, the context middleware and the Context Agent was developed respectively by 
SINTEF and CognIT, and had to be tested to see that they worked together in an 
integration test.  
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5.5.1.3. Complete system testing  

For a complete test of the AmbieSense system, it was tested on OSL airport, described 
earlier as the OSL scenario. Two test runs had been done on site in May and August 2004. 
The testing included both a test of the functionality and a user acceptance testing.  

The OSL scenario focuses on presenting three types of content to the user/traveller; 
dining information, shopping information and service information such as flight 
information. Context Tags were placed in different locations such as: check-in area, 
security check, post security check, Explorer Bar, Thune, Gate 39, Gate 43 and four tags in 
the non-domestic departure area. 

The functionality testing included tests of: 

• Running of the agent platform with the different protocols; IIOP and HTTP 

• Testing two PDAs (Compaq iPAC 3870) with WLAN and Bluetooth 

• Running agents in three different setups; distributed, partially distributed and 
locally. 

• Response time and uptime. 

The user acceptance testing consisted of: 

• Users using the system 

• Interviews while and after the users were using the system (Use and interview 
lasted for  about 25 – 40 minutes) 

 

5.5.2. Multi Agent System (Recommendation) 

 

The testing was also here divided into 3 different stages: 

• Component testing 
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• Integration testing 

• Complete systems testing 

 

5.5.2.1. Component testing 

The component test involved testing of each agent separately to see that they worked as 
planned. Initially, I started with only dummy agents (not to be mistaken with dummy 
agents created in the JADE administration GUI) which gradually were developed to fully 
functional agents. Also, components integrated into agents such as the classifier and the 
knowledge base were tested separately. 

 

5.5.2.2. Integration testing 

The integration testing was not only conducted between finished agents, but also with 
dummy agents that had a hard coded behaviour. The communication between agents was 
monitored by a Sniffer Agent. The Sniffer Agent creates a sequence diagram which can be 
displayed graphically, of the communication taking place between the respective agents. 
The scenario described in figure 5.12 was used as a test scenario when testing the agents. 
The reason for using figure 5.12 as a test scenario was that it is on of the most complicated 
scenarios involving all the agents, other simpler scenarios should work if this one does. 
However, any communication tested between two agents could be seen as an integration 
test. 

 

5.5.2.3. Complete system testing 

Most of the system was built as described earlier in this chapter, but some parts were 
partially or fully simulated. Another important restriction was that the MAS were not 
running on any mobile devices. However, agents were running on different JADE 
platforms and physical machines.  

Since I did not have access to every component in the whole AmbieSense project, and I 
did not have a Context Tag, some parts had to be simulated. The context agent was only 
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storing contexts locally and not in the context middleware. The Context Tag/antenna was 
simulated as an agent, which gave a location every 10 seconds. The Duty-free Agent did 
not search the internet as intended, but instead it searched a text file which where a 
compilation of the Euroshop web page, see Appendix B. 

The testing itself was divided into two different categories; testing of recommendation 
and testing of the MAS platform.  

The testing of the recommendation was basically to see if the system produced a 
recommendation as expected. I will explain more about this in the discussion of the 
findings. 

Testing of the MAS platform was performed to see if the system benefited from it. Tests 
here included running of agents on different JADE platforms and servers, adding and 
replacing agents at runtime. 

 

5.5.3. Mobile platform 

If the whisky recommender system is to be used by travellers it has to be available on 
their mobile device, be it a notebook, a PDA or a mobile phone. To ensure that JADE-
LEAP could work sufficiently in such a scenario, agents were tested on some available 
mobile devices. Emulators from Nokia and Sony Ericsson were also used during the 
testing. Instead of testing the Preferences Agent, a simple Demo application consisting of 
two simple agents were used. Instead of using my own agent which might contain errors 
that could influence the final result, the Demo application was chosen as it had already 
been tested and run before on mobile devices. JADE-LEAP can be run on three different 
Java configurations: 

J2SE (Java Standard Edition) is ‘normal’ Java which is run on servers and PC in a fixed 
network.  

Personal Java is the ‘old’ standard for running Java on mobile device. Personal Java is 
currently listed as “end of life” by Sun Microsystems (2004a), which means that it is not 
supported by Sun anymore and is replaced by newer standards such as MIDP 2.0 and 
also by J2SE which some newer PDAs support. 
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MIDP 1.0 (Mobile Information Device Profile) is today’s runtime environment for mobile 
devices such as mobile phones and PDAs. MIDP contains a reduced set of the J2SE library 
and only provides a minimum of functionality required by mobile application (Sun 
Microsystems (2002)). MIDP 1.0 is gradually replaced by MIDP 2.0 which adds additional 
functionality for handling graphics and communication (Sun Microsystems (2004b)). For 
this project the requirements of socket support is the most important new feature with 
MIDP 2.0 as I will explain later. Most new phones support MIDP 2.0. JADE-LEAP can run 
on both MIDP 1.0 and MIDP 2.0 devices. 

MIDP was chosen for running JADE-LEAP on mobile devices, since Personal Java is no 
longer supported by Sun. The testing was performed on a PDA (HP Jornada 540) and on 
several mobile phones. 

Before the Demo application could be run on a mobile device, it had to be compiled into a 
JADE-LEAP MIDP agent. For compiling agents into JADE-LEAP the following had to be 
done: 

• JADE 3.1 was installed on the computer the agent was compiled on, thereafter 
LEAP was copied into an add-on folder located in the JADE root-folder 

• The build tool Ant had to be installed 

• The J2ME wireless toolkit had to be installed 

For compilation of the Demo application the build tool Ant was used. Ant gives the 
possibility of compiling an application into all the different Java configurations (MIDP, 
Personal Java and J2SE) in one operation. However, before this was possible every 
compiler had to be specified in the buildLEAP.properties file. The compilation creates a 
.jad and a .jar file. The .jad file contains various information such as the size of the .jar file, 
the path to the .jar file and the functions required for the .jar file to run. The .jar file is the 
compiled and packed version of the application. 

After the application was compiled, it was ready to be tested on a mobile device. 
However, instead of copying the files to each mobile device, the files were put on a web 
server, so they were easily accessible for downloading.   

Both the stand-alone and the split mode described earlier in this chapter were tested when 
running the agent on the mobile devices. On devices only supporting MIDP, only split 
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mode is recommended due to limitations in memory and/or processing capabilities 
(Caire (2003) p.7).  

 

5.5.4. Classification 

The ability of the classifier was tested, a full description of how this was done are 
described in chapter 6. 
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C h a p t e r  V I   

FINDINGS CLASSIFICATION 

In this chapter we are going to see which considerations have to be taken when designing 
a classification system and how we can measure the performance of the classification. In 
the end of the chapter the findings for the selected classifier are presented. 

6.1. Designing a classification system 
 

The design of a classification system usually contains different stages: 

• Data collection 

• Feature choice 

• Model choice 

• Training 

• Evaluation 
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Figure 6.1: Design cycle classifier (Duda et al. (2001) p. 14 figure 1.8) 

As seen from the model, the design process is an iterative process where it is possible to 
go back to any of the previous steps until the result is satisfactory. 

 

6.2. Data Collection 

Collecting data usually accounts for a large part of the cost in developing a pattern 
classification system. It is important to collect as many ‘typical’ examples of data which 
may occur in the ‘real’ world as possible. Usually a minimum of 30 samples per class is 
needed for a proper classification. As example data, I used the same 86 whiskies that 
Wishart used in his classification project. All these whiskies are Scottish single malt 
whiskies. The reason for choosing the same whiskies as he did is because I could then use 
his results as labels for my training data. 
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Since my goal is not to find new measuring techniques or secrets of whisky production, I 
have based my system on easily available data from books and the internet. In cases 
where data are conflicting, more sources were used to cross validate the data.  

Media Name Author Publisher Information 
Book The Single Malt Whisky 

Companion : A 
Connoiseur's Guide 

Arthur, 
Helen 

Macmillan, 1997 General information 

Book Whisky fra hele verden Laurin, 
Urban 

Landbruksforlaget, 
1998 

General information 

Book Maltwhisky : håndbok Jackson, 
Michael 

Gyldendal, 2000 Rating and general information 

Book Whisky classified Wishart, 
David 

Pavilion Books 
Limited, 2002 

General information and class 
labels. 

Internet ”Ecosse: Whisky et 
Distilleries” 
www.whisky-
distilleries.info 

  Distillery information 

Internet “Whisky magazine” 
www.whiskymag.com 

  General information 

Internet “Whisky distilleries, 
producers and 
distributors” 
www.awa.dk/whisky/s
tills/ 

  Distillery, producers and 
distributors information 

Internet “Scotchwhisky.net” 
www.scotchwhisky.net 

  Distillery information 

Internet “The Edinburgh Malt 
Whisky Tour” 
www.dcs.ed.ac.uk/hom
e/jhb/whisky/scotland.
html 

  Location data 

 

Figure 6.2: Sources used for collecting data 

The data collected are incorporated into a knowledge base which is trying to reflect 
domain knowledge through relations between the data. 
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Figure 6.3: Structure of final Knowledge base 

 

6.3. Selecting features 

After collecting data for the system, it is important to find features from the data which 
can be used by the classifier. Features are also known as attributes. A good feature is a 
measurement which is similar to objects in the same class and clearly different to those 
that is not. In the case of separating balls from boxes, a good feature would be the shape, 
because all balls have a round shape (except an American football), which is different 
from the square shape of a box. For other scenarios, other features would be better 
soothed like light intensity, length or width of the item. The better the feature we choose, 
the easier the job of the classifier becomes (Duda et al. (2001) p. 11). This is why it is 
important to find good features. Before we select features, it is important to be aware of 
the fact that there are different kinds of features; each handled differently. We should also 
know which abilities a good feature should hold. 
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 There are two main categories of features namely discrete features and continuous 
features.  

A feature is discrete if its set of possible values is a collection of isolated points on the 
number line. However, a feature is continuous if the set of values form an entire interval 
on the number line (Devore & Peck (1990) p. 5). This means that a discrete feature is a 
variable which can take a limited set of values in an interval, whereas a continuous 
feature can take on any value in an interval. An example of a discrete feature could be a 
person’s hair colour or a person’s age. Whereby the hair colour is black, brown, blonde or 
other colour nuances, and the age is 16 or 65 and so on. Discrete instances often have the 
same value. A continuous feature could be the body temperature measured for each 
person. For example, if we measure two persons’ body temperature with a three digit 
thermometer we could measure the same value 37.6, but with an increased resolution of 
four digits we might measure the different values of 37.62 and 37.69. We see that 
continuous values can be measured discretely but have an underlying nature which 
makes them different from a discrete value. 

Why is it important to differentiate between continuous and discrete features? In statistics 
we operate with probabilities for discrete values, but for continuous values it is not 
possible to calculate because the probability is close to zero (Duda et al. p.618). Instead, 
we have to look at continuous values as intervals and calculate densities instead of 
probabilities. Different algorithms and techniques used in the classification process can 
either work on discrete or continuous values, and some can work on both.                                                      

When we search for features it is also desirable if the features we find are independent. 
Independent features are features that are not correlated with each other, and two 
independent features A and B can be expressed as following (Norvig & Russell (2003) 
p.478): 

P(A|B) = P(A) or P(B|A) = P(B) or P(A^B) = P(A) P(B)  

The reason for selecting independent features is that it leads to a simple (linear) classifier 
(Duda et al. (2001) p. 53). 

For selecting features, domain knowledge can help us to find the best suited features. 
However, there are some mathematical models that are developed which can be used for 
testing the quality of the found features. Mathematical models can also be used to reduce 
the number of features, which shorten the calculation time. The area of mathematically 
based feature selectors is currently under a lot of research, and it is beyond the scope of 
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this thesis. Nevertheless, I am going to give a brief introduction and then focus on the 
techniques used in my research instead. There are two main categories of mathematical 
feature selectors; filters and wrappers. Filters are evaluating features independent of the 
learning algorithm itself, whereas wrappers typically use the targeted learning algorithm 
to calculate the accuracy of features (Hall (1999) p. 2). 

Even though filters and wrappers are supplied by Weka, I will apply solely filter-based 
techniques in my thesis as they are easier to understand and use.  

Hence, I am going to use the most common filter technique called information gain, and a 
technique called ReliefF; also supported by Weka (Kononenko & Robnik-Sikonja (1997) 
p.1). 

According to Norvig and Russell (2003), information gain is “the difference between the 
original information requirements and the old information requirement” (p.660). 
Information gain can be expressed by the formula (Norvig, P. & Russell, S. (2003) p.660): 

Gain(A) = I(p/p+n, n/p+n) – Remainder(A) 

By looking at the formula you might think that information gain is something which only 
concern mathematics. But most people have a built-in ability to perform some form of 
information gain evaluation when taking decisions. To illustrate this, think of the game 20 
questions. If you are not familiar with the game, I will explain how it works. The game is 
played by two persons. Person A is thinking of an answer and the other person B is trying 
to guess what the answer is. Person B initiates the game by stating the domain in form of 
a question. Person A then tries to guess the answer. The only feedback person B is 
allowed to give is ‘yes’ or ‘no’. Now back to the example: You are given the problem: “I 
am thinking of a number between 1 and 1000”. To answer this problem, there are several 
questions that could be asked such as “Is the number a prime?”, “Is it 467” or “Is it 
between 1 and 500”. However, most people would first ask “Is it between 1 and 500” 
because this question would classify most data into its right class.  

If we calculate the information gain using the formula, we would get the same result. I am 
not showing the calculations here, but Greiner and Schaeffer (January 2003) provide the 
full calculation needed. 

Unfortunately, information gain only works with discrete values and assumes 
independence between features. ReliefF on the other hand can estimate feature quality 
even though there are strong dependencies between features, and does not rely on 
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discretising of continuous features but can handle continuous features directly 
(Kononenko & Robnik-Sikonja (1997) p.1). 

When we know which abilities we are looking for in a good feature, it is time to find 
suitable feature candidates for my system. To further select features, it is important with 
domain knowledge since it allows us to find good feature candidates more quickly than a 
solely mathematical approach. In the following section, I am also going to present feature 
candidates that I found and some of the underlying factors playing a role in the whisky 
domain. 

There are several factors in the production of a whisky which influence the final taste. 
Some of the most important factors are cask, water, location and barley. 

 
6.3.1. Cask 

The cask (barrel) in which a whisky is stored is important for the taste and aroma it 
develops. A study done by the distillery Glenmorangie shows that 50-60 % of the taste is 
due to the cask storage (Laurin (1998) p. 27). 

There are several features of a cask which may be important for the taste; wood, size of 
cask, the re-use of the cask and the mixture of casks. 

 
6.3.1.1. The wood: 

• American oak 

• European oak –Spanish, French 

The casks used for whisky production are either made from American or European oak. 

American oak casks are more moderate in flavour than the more tannin-rich flavour of 
European oak casks. European oak can again be divided into Spanish and French oak 
whereby Spanish oak is the most tannin-rich between them. 
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6.3.1.2. The size: 

• Puncheon (580 l) 

• Butt (500 l) 

• Hogshead (250-305 l) 

• American Barrel (173-191 l) 

• Quarter (127-159 l) 

• Octave (45-68 l) 

The size of the cask also affects the final taste of the whisky. The smallest casks produce a 
more oaky and woody taste, whereas the biggest casks affect the taste to a lesser degree. 

 
6.3.1.3. The re-use: 

• Ex-Bourbon (1st filling after bourbon production) 

• Ex-Bourbon-refill (2nd or more fills after bourbon production) 

• Ex-Sherry (1st. filling after sherry production) 

• Ex-Sherry-refill (second or more fills after sherry production) 

• Ex-Port 

• Ex-Madeira 

• Ex-Rum 

• Refill (used by grain whisky or other whisky) 

• Raw  (never used before) 

• Ex-Bourbon-Sherry (the finish (usually last two years) is done on a sherry cask)  
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The previous use of the cask also influences the taste of the whisky. The above is just a 
selection of possible refill casks. There are even more varieties such as French wine casks 
and others, which have different influence on the final flavour. There is also a difference 
between sherries; an olorosso sherry has a more distinct flavour than an amontillado or a 
fino. One reason for this difference might be that the olorosso cask is made from Spanish 
oak, whereas an amontillado or a fino cask is made of French oak. 

Ex-Sherry casks produce a whisky with a taste of sherry and chocolate, whereas ex-
bourbon casks produce a softer and fruitier flavour. Ex-bourbon casks also have an ability 
to cover the smoky flavour some whiskies have. To preserve this, sherry casks can be 
used. 

 
6.3.1.4. Mixing casks: 

Whiskies are usually stored in maturing casks for most of the storage time, but often they 
are given two years in a finishing cask. However, there are examples where half of the 
storage time is done in finishing casks. Ex-bourbon casks are usually used for maturing 
and ex-sherry casks are used as finishing; this is by some distilleries called ‘wood finish’. 
In 1996 Glenmorangie was the first distillery to start the trend of finishing the whisky in a 
second cask (Wishart (2002) p.26). Many distilleries have following this trend and have 
done experiments with whiskies finished in ex-rum, ex-port, and ex-wine and other casks. 

There are some dependencies between the cask size and previous content of the cask; 
butts are usually used for sherry, and hogshead and American barrel are used for 
bourbon.  

Due to this dependency and problems finding information about barrels size, I have 
decided to try and compile all the cask information into a single scalable feature. 

Alternative ranking: 

1. Raw 

2. Sherry 

3. Port 

4. Sherry-Refill 
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5. Sherry-Bourbon 

6. Bourbon 

7. Bourbon-refill 

8. Refill 

This arrangement tries to represent the attributes of a cask on a two-dimensional scale 
which incorporates data such as where the oak originates from, number of times the cask 
has been re-used and the fact that the cask often has been used for other drinks prior to 
the whisky production, for example sherry, bourbon, port, madeira or rum.  

I have also made an alternative separation of cask information where I have divided the 
information into four features; wood, reuse, maturing and finish. This hopefully separates 
whiskies stored on ex-bourbon casks more from whiskies stored on ex-sherry casks than 
the first alternative. 

Wood, is a number value ranging from 0 to 100% whereby the number corresponds to how 
much time the cask storage is done in a European or American wood cask. 30% describes 
the situation where a whisky has been stored 30% of the time in a European oak cask and 
70% in an American oak cask. 

Re-use, is a number value ranging from 0 to 4 where the number corresponds to how 
many times the cask has been reused. 0 means that the cask has never been used before 
(raw cask), four means that the cask has been used four times or more. 

Maturing, describes which previous content was held by the cask before it was used for 
maturing whisky. Ex-bourbon casks are usually used for maturing, but some makers only 
use ex-sherry casks. Maturing casks previously containing whisky are called refill casks. 
A refill cask might have been refilled more than 3 times, and the wood character will be 
largely reduced. Whiskies matured on refill casks are less modified by the cask than 
whiskies stored on ‘fresher’ casks. 

Finish, is the name of the drink previously stored on the cask used for finishing. Normal 
reuse casks are ex-sherry casks, ex-port casks, ex-rum casks, but recently ex-wine is also 
being used. 

Thus, there are two alternatives: 
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Alternative 1: 

 
 

Feature 
Name Value Range Scaling 

Cask Discrete 1-8 1.Raw, 2.Sherry, 3.Port, 4.Sherry-Refill, 5.Sherry-Bourbon, 6.Bourbon, 
7.Bourbon-Refill, 8.Refill 

Figure 6.4: Cask - Alternative 1 

 

Alternative 2: 

 
Feature 

Name Value Range Scaling 
Wood Discrete/ 

Continuous 
0-100% 0% = stored on American cask, 100% = stored on European cask. 

Re-use Discrete 0-4 0. No refill, 1.1st refill, 2.2nd refill, 3.3rd refill, 4. four refills or more 
Maturing Discrete 1-5 1.Port, 2.Sherry, 3.Rum, 4.Whisky, 5.Bourbon 
Finish Discrete 1-5 1.Port, 2.Sherry, 3.Rum, 4.White-Wine, 5.None 

Figure 6.5: Cask - Alternative 2 

 
6.3.2. Location 

Scottish whiskies are typically divided into five categories according to the region which 
they are produced. Whiskies produced near the sea often have a salty character, and this 
is said to be a combination of the storage of casks in shelters without proper insulation 
and the casks’ ability to absorb oxygen from the air. (Laurin (1998) p. 27) The climate at 
the location may also alter the whisky during storage. In a dry climate, water evaporates 
more than alcohol and in a moist climate vice versa will happen. Different regions might 
also have their own specific production methods. For example, whiskies produced in the 
region Islay are known for a taste with a lot of peat. This is because there is a tradition for 
drying the barley on peat fire. These are just a few factors which are dependent on the 
region. Since there is a lot of implicit information in this region label, I have decided to try 
two scenarios; one with only region and another where I have separated the region into a 
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physical location measured in longitude and latitude. In addition, the physical location 
should be combined with information about production techniques. One obvious reason 
to split the region into smaller information is that new information about production can 
be easily added without thinking of dependencies. 

Again, two alternatives: 

Alternative 1: 

Feature 
Name Value Range Scaling 

Region Discrete 1-6 1.Speyside, 2.Highland, 3.Campbeltown 4.Lowland, 5.Islands, 
6.Islay 

Figure 6.6: Location - Alternative 1 

 

Alternative 2: 

Feature 
Name Value Range Scaling 

Latitude Discrete/ 
Continuous 

0-90 Decimal degrees 

Longitude Discrete/ 
Continuous 

0-180 Decimal degrees 

Figure 6.7: Location - Alternative 2 

 
6.3.3. Water 

Water and barley are the two main ingredients of a whisky and play an important role for 
the final product. The water quality is described by several factors ranging from 
measurable abilities such as pH value and minerals content, to less measurable abilities 
such as pureness, peatness, and sweetness. Soft water (low pH) is often preferred when 
making whisky as it is said to absorb more flavour from the barley than hard water (high 
pH value). Experiments done by some distilleries have shown that water with lighter 
peating produced a whisky with a less peated style (Wishart (2002) p.19). 
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Due to the lack of resources and the time constraints, I have chosen not to include water 
as a feature. With sufficient time I would have included a feature describing the peatiness 
of the water. 

 
6.3.4. Barley 

Good barley must of course be free of mould and insects. But there are also some types of 
barley which are better than others. Golden promise is known to be the best barley 
because of its high starch content which yields more alcohol than other barley. Another 
important factor is how it is dried. In older days, every distillery dried their own barley 
over a peat fire. Today, it is more common to buy finished coke dried barley, which 
results in a less peaty whisky (Wishart (2002) p.20). It was hard to find information about 
the barley for every whisky, again with sufficient time I would have included a feature 
describing how the barley was dried. 

 
6.3.5. Washback 

The whisky is fermented in large vessels called washbacks. These washbacks are usually 
made from wood, but some distilleries use stainless-steel. It is believed that the bacteria 
living in the wooden washbacks give additional taste to the whisky (Wishart (2002) p.21). 
Since Wishart (2002) describes the material used for the washback by each distillery, and 
that it might influence the taste, I have added washback as a feature candidate. 

 
Feature 

Name Value Range Scaling 
Washback Discrete 1-2 1.Wood, 2.Stainless-Steel 

Figure 6.8: Washback 

 

6.3.6. Distilling 

The distilling process describes the process where the alcohols, esters, aldehydes and 
acids are separated from the yeast. The process is monitored and controlled by a stillman. 
The distillation process consists of three phases; first phase produces low-wines. Low-
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wines only consist of around 21-23% alcohol. The second phase is called the middle cut 
and produces alcohol around 70%. The final phase consists of feints which are oily 
substances that can ruin the whisky. These feints are re-distilled and used in the final 
product. The stillman’s job is to mix spirit from the different phases into a whisky which 
is ready for cask storage. The stillman’s skill not only influence the distillation process, but 
also the still used. A still with a high tall neck produces a clean and fruity whisky, 
whereas a short and wide still produces a powerful and fat whisky. Some distilleries use 
triple distillation which produces a cleaner and less tasty whisky then ‘normal’ double 
distillation. 

It would be difficult to assess the stillman’s knowledge and skill in one or more features 
even though this probably holds some of the ‘secrets’ of the whisky’s flavour. However, 
both shape of the still and number of distillation are candidates that are better suited as 
features because they are easy to express in a computer system. I would have used the 
shape of the still and the number of distillations if I have had this information available 
for every whisky. Since I do not have complete information, I have to exclude these 
candidates, once again with more time it should be possible to gather the missing 
information. 

 
6.3.7. Age 

Age is describing how long a whisky has matured oak casks. The longer a whisky is 
stored in a cask, the smoother and softer the taste gets. However, it also acquires a more 
woody taste which is not to everyone’s liking. Another side effect is that the alcohol 
volume also decreases over time (Laurin (1998) p. 31). Even though age has an influence 
on the taste of the whisky, it does not provide any information dividing two whiskies 
from each other. A Macallan would still be a Macallan even though it is stored for 15 
years instead of 12 years. 

 

6.4. Selecting classifier (model) 

The next phase is to select a classifier. We usually start with a simple model, and to 
improve accuracy a more advanced classifier can be used. For selecting a proper classifier 
there are several factors to consider. Are we going to use a classifier utilising supervised, 
unsupervised or reinforced learning? To further explain the different forms of learning, 
we can think of a scenario with a teacher and a pupil. With supervised learning, the pupil 
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gets all the correct answers from the teacher and learns from it. Mathematically speaking, 
the pupil tries to learn a function from examples of its input and output. Instead of being 
told the right answer, the teacher can provide feedback in the form of correct or wrong. 
This is called reinforced learning. The pupil is searching for a function which is not giving 
a false answer. A false answer leads to a rejection of the current function. If the pupil is 
left with no feedback from the teacher, we call it unsupervised learning. Unsupervised 
learning is the situation where the pupil is learning patterns in the input where no output 
is specified (Norvig & Russell (2003) p.650). 

Since my training set is equipped with class labels, the most sensible thing is to use a 
classifier that supports supervised learning. There are several different supervised 
classifiers, and it is important to select the right one. As discussed earlier in chapter 4, 
there are different benefits and drawbacks with the different classifiers. Duda et al. (2001) 
state that there is no ultimate best classifier which works best in all situations, through the 
use of the No Free Lunch Theorem and the Ugly Duckling Theorem (p. 454-461). This leaves 
the responsibility of selecting a good classifier to the designer of the pattern recognition 
system. There are several factors which are important when selecting the appropriate 
classifier: 

• Accuracy 

• Speed of learning 

• Speed of classification 

• Space requirements 

• Specialisation 

• Pre-processing 

• Easy to understand 

 
6.4.1.1. Accuracy 

The most important ability for a classifier is of course the ability to make accurate 
predictions. Unfortunately, increased accuracy often leads to high requirements of 
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training data, computing power, pre-processing and space. The accuracy of a classifier is 
usually measured in error rate. 

  
6.4.1.2. Speed of learning 

When we are talking about the speed of learning, we are not only thinking of the time the 
training process takes, but also the amount of training data needed for training the 
classifier. Learning speed is often expressed as a learning curve which can be used to 
compare different classifiers. Decision trees often provide a good result on small training 
sets; in those cases where prior information is available, a Bayesian classifier usually 
performs better. 

  
6.4.1.3. Speed of classification 

In laboratory experiments, the speed of the classification process is usually of lesser 
importance. However, when taking a decision out in the field the speed of the classifier 
might be crucial. Usually specialised classifiers are faster than general classifiers. 

 
6.4.1.4. Space requirements 

If space is limited, some classifiers perform better than others. There is a huge difference 
in memory usage between the different classifiers. A NNR classifier has to store every 
sample in memory, whereas a Bayesian classifier only needs to store a formula for each 
class. 

 
6.4.1.5. Specialisation 

There is a range of specialised classifiers for different fields and they perform better than 
the more general approaches. These special methods often require more pre-processing 
than a more general approach. An example of a specialised classifier is the LeNet neural 
network classifier which is specialised to recognize handwritten and machine written 
characters (Norvig & Russell (2003) p.753). The huge drawback with LeNet is that it is 
useless on other classification problems. 
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6.4.1.6. Pre-processing 

Some classifiers need the data on a certain form or the classifier must be configured to fit 
the data. Before a neural network can be used, an appropriate number of layers and nodes 
have to be found according to the data being classified. 

 
6.4.1.7. Easy to understand 

This might sound like an odd factor, but it might be one of the most important factors. 
This is because it makes it easier to understand the result we get and the type of changes 
that are needed to produce a better result. 

 
6.4.1.8. Thesis requirements  

Hence, being accurate is one of the most important requirements for my classifier so that 
the recommendation is as good as possible. It is also important to use a classifier which 
works with small training sets. The memory and classification speed is less important 
both because the project is done in a lab environment and also because there is a small 
training set with few features. Therefore, any classifier can handle it with ease. Since it is 
unlikely that someone has made a special classifier for classification of whiskies, I would 
try to use a general classifier. Due to the fact that the classifier selected is going to be used 
as part of my thesis, it would be beneficial if the classifier is easy to understand. I decided 
to use the two most common supervised classifiers described earlier in chapter 4; 
Bayesian and NNR. Both of these classifiers are supported by Weka. 

 
6.4.2. Training 

For training the classifier we need a training set selected from the data collected. For 
unsupervised learning we can use the samples collected in the data collection phase 
directly. On the other hand for supervised learning, we need to supply the class labels to 
every sample in the test data. 
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6.4.3. Evaluation 

When evaluating the results it is important to look back at the requirements used when 
selecting the classifier and see if the requirements are fulfilled. 

 
6.4.3.1. Cross-validation 

Supervised learning provides a smart way to test the classifier often referred to as cross-
validation. By dividing the training data into two disjoint sets; a training set and a test set, 
it gives us the opportunity to test the classifier with samples we already know of the 
correct class.  

The training data are usually divided into a training set consisting of 66% of the data and 
a test set which consists of the remaining 33%. However, this ratio can be adjusted to fit 
the size of the test data. For small amounts of test data, we usually want to use as much of 
the test data as possible for training. The most extreme variant of this is called ‘leave one 
out’, this approach uses one sample as a test set and the rest for training. A common 
mistake is to include the same sample both in the training and test set; this is known as 
‘testing on the training set’ (Duda et al. (2001) p. 483). 

Weka provides something they call 10 fold cross-validation testing. This is the cross-
validation test done 10 times. For each validation the data are randomly split into a 
training set and test set. It is ensured that each class is equally represented in the training 
set. The 10 fold cross-validation calculates the means error rate for the classifier. 

Cross-validation can be used empirically to test different classifiers and their 
performance. (Also different features) The result is an estimate of the ‘real’ life 
performance, and not the actual ‘real’ life performance. Duda et al. (2001) show that the 
result provided by the cross-validation is optimistic, but the accuracy increases as more 
training data are supplied (p. 484-485). 

 
6.4.3.2. Confusion matrix 

A confusion matrix is used to give a visual representation of the classification. 
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Figure 6.9: Confusion matrix 

The confusion matrix tells us which class a sample is classified as, and which class is the 
correct class for that sample. A perfect classification is recognized by having all the values 
on the diagonal in the red area on the figure. From figure 6.9 we can see that for class A 
three samples are correctly classified, but two samples are incorrectly classified as class B. 

 86



 

 
6.4.3.3. Findings: Features ranked by information gain 

Information Gain Ranking 
Ranking Feature Score 
1 Region 0.756 
2 Maturing 0.261 
3 Washback 0.15 
4 Finish 0.127 
5 Wood 0.0 
6 Re-use 0.0 

Figure 6.10: Findings - Features ranked by information gain 

 

6.4.3.4. Findings: Features ranked by ReliefF 
ReliefF Ranking 

Ranking Feature Score 
1 Region 0.109 
2 Wood 0.044 
3 Washback 0.026 
4 Maturing 0.019 
5 Finish 0.012 
6 Re-use 0.003 

Figure 6.11: Findings - Features ranked by ReliefF 

 
 
6.4.3.5. Findings: 10 fold cross-validation 
Run Classifier Features Build 

Time 
(sec.) 

Error 
rate (%) 

Confusion matrix Comment 

1 NNR Region, 
Cask 

0 80.4878 a b c d e f g h i j  
4 2         a 
3 2 2 1  2  2  1 b 
 2 3 1 1 1  1   c 
 2 1 1 3 1 1    d 
 1 1 3 2    1  e 
1 1 1 2 2  1 2   f 
  1 1 1 1 1 1   g 
 4 1   4     h 
 1     2  3  i 
 1      2 3  j  

With basic 
features 

2 NaiveBayes Region, 0.02 81.7073 a b c d e f g h i j  With basic 
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Cask  6         a 
1 8 1 1    1  1 b 
 5     1 3   c 
 3 2  2 1   1  d 
  3 2  2   1  e 
 6   1  2 1   f 
 2 1  1 2     g 
 3 1   1 1 3   h 
 2  1     3  i 
    1  1 1 2 1 j  

features 

3 NNR Longitude, 
Latitude, 
Cask 

0 81.7073 a b c d e f g h i j  
3 1 1     1   a 
3 2 2 2 1 2    1 b 
 1 2 1  2 2 1   c 
 2 2  2 2  1   d 
  1 1 2 1 2   1 e 
 1 2 2 1 1  3   f 
  2  1  1 1 1  g 
1    1 1 3  1 2 h 
    1  1 1 3  i 
 1   1   3  1 j  

Used 
Longitude, 
Latitude 
instead of 
Region 

4 NaiveBayes Longitude, 
Latitude, 
Cask 

0.02 80.4878 a b c d e f g h i j  
3 3         a 
4 2 3 1 1 1   1  b 
1 2 2    1 3   c 
1 1 3  2  1   1 d 
  5  1    1 1 e 
2  5 1 1 1     f 
1  4      1  g 
 1 2 1  2  2  1 h 
 1       2 3 i 
       1 2 3 j  

Used 
Longitude, 
Latitude 
instead of 
Region 

5 NNR Region, 
Wood, Re-
use, 
Maturing, 
Finish 

0 80.4878 a b c d e f g h i j  
3 1 1 1       a 
2 3  2  2 2 1  1 b 
  1 2  3  3   c 
 2 2 2 1 1   1  d 
   2  2 1 1 1 1 e 
1 1 1 2 1 3  1   f 
1   3  1  1   g 
1 1 2   1 1 2  1 h 
  1 1 2     2 i 
 1   1   1 1 2 j  

Region 
with cask 
divided 
into wood, 
Re-use, 
Maturing, 
Finish 

6 NaiveBayes Region, 
Wood, Re-
use, 
Maturing, 
Finish 

0.02 80.4878 a b c d e f g h i j  
3 2      1   a 
7  2   3    1 b 
 1 2  1 2  2  1 c 
2 1 1  2 2   1  d 
  1 1 1 1 1 1  2 e 
 2   1 4 2 1   f 
 1 1  2 1  1   g 
 1   1 2 2 1  2 h 
2  1      1 2 i 
       1 1 4 j  

Region 
with cask 
divided 
into Wood, 
Re-use, 
Maturing, 
Finish 

7 NNR Region, 0 84.1463 a b c d e f g h i j  Used only 
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Maturing, 
Finish 

3 1    1 1    a 
1 1 1 2 2 2 1 2 1  b 
 2 1 2 1 2  1   c 
 3   3  1 1 1  d 
  1 1 1  3 1  1 e 
1 2   1 3 2 1   f 
 1  1 1 1 1 1   g 
 2 2   2 2 1   h 
   1 2  1   2 i 
 1       3 2 j  

the three 
best 
features 
from Info. 
gain 
ranking. 
(except 
Washback) 

8 NNR Region, 
Wood, 
Maturing 

0 80.4878 a b c d e f g h i j  
2 2 1     1   a 
1 6 1 2  1  1  1 b 
 4  2  1  2   c 
 3 1  1 1 2  1  d 
 1  1   2 3  1 e 
 4 2   1 1 2   f 
 1   1  2 1 1  g 
1  2  1 1 2 1  1 h 
   2 1    2 1 i 
 1   1   1 1 2 j  

Used only 
the three 
best from 
ReliefF 
ranking. 
(except 
Washback) 

9 NNR Region, 
Wood, Re-
use 

0 75.6098 a b c d e f g h i j  
3 1 1   1     a 
2 4 1   3  2  1 b 
1  3 2  1 1 1   c 
 3 1  3 1   1  d 
 1  2 2 1  1  1 e 
 1 1 2 1 3  2   f 
 1  2 1  2    g 
 2 2  3     2 h 
   1   1  1 3 i 
 1   1   1 1 2 j  

Used 
Wood and 
Re-use 

10 NaiveBayes Region, 
Wood, Re-
use 

0.02 80.4878 a b c d e f g h i j  
4 1      1   a 
9  3       1 b 
 1 1  2 1  4   c 
3 1 1  1 2    1 d 
1  2  1 1  2  1 e 
1 3   2 1  3   f 
1 1 2  2      g 
1 1 2  1   4   h 
2 1 1      1 1 i 
1       1  4 j  

 

11 NNR Longitude, 
Latitude,         
Wood,             
Re-use, 
Washback 

0 75.6098 a b c d e f g h i j  
3 2 1        a 
2 4 2 2   1 1  1 b 
 2 3   1  3   c 
 2 1  1 2 2   1 d 
  1 1 3  1  1 1 e 
  2 4 3  1    f 
 1   1 1 3    g 
 1   3  3 1  1 h 
 1   1    2 2 i 
    1   2 2 1 j  

Tried 
washback 

12 NNR Region, 0 71.9512 a b c d e f g h i j  Washback 
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Wood, Re-
use, 
Washback 

2 3 1        a 
3 5  2    2  1 b 
1 1 2 2   1 2   c 
1 1 1 3 1 1   1  d 
 1  1 3  2   1 e 
 3 1  2 2 1 1   f 
 1  1   2 1 1  g 
 1 3  1  1 2  1 h 
  1 2 1    1 1 i 
 1   2   1 1 1 j  

and 
Region. 

13 NNR Region, 
Wood, Re-
use, 
Washback 

0 68.2927 a b c d e f  
3 1 1  1  a 
2 9 4 4 2 1 b 
 6 2 3 4 2 c 
1 3 3 7 2  d 
1 3 1 4 3 3 e 
  1  3 2 f  

Reduced 
to 6 classes 

14 NNR Region, 
Wood, Re-
use, 
Washback 

0 56.0976 a b c d  
15 9 2 2 a 
10 16 5 2 b 
4 5 3 3 c 
 1 3 2 d  

Reduced 
to 4 classes 

 

Figure 6.12: Findings - 10 fold cross-validation 

 
6.4.3.6. Overfitting 

Even though we get a result as expected, this does not necessary means that our features 
and classification are correct. Our classifier might suffer from overfitting. This describes 
the situation where we have selected an overly complex model for our classifier which 
makes it able to classify the training data perfectly, but work poorly on new unseen data.  
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Figure 6.13: Overfitting 

This figure (figure 6.13) shows an example of overfitting, we can se that the decision 
boundary is overly complex. 

 
 

Figure 6.14: Simple-Linear 
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Figure 6.14 shows the same data as figure 6.13, but with a simple linear boundary. We can 
see that some samples are not correctly classified. However, when new unknown samples 
arrive, this classifier might prove to be better than the overly complex classifier in figure 
6.13. 
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C h a p t e r  V I I   

FINDINGS AGENT PLATFORM 

As we saw earlier in chapter 5, the testing was conducted in 4 separate tests; testing of the 
mobile platform, testing of the multi agent platform (recommendation), testing of the 
AmbieSense framework and testing of the classification. The findings from the 
classification system have already been shown in chapter 6. In this chapter, the findings of 
the remaining three tests are presented. 

 

7.1. AmbieSense framework 

As mentioned earlier in chapter 5, the testing was performed by the AmbieSense project 
(Wienhofen et al. (2004)), and I will only provide a brief summary of the work they have 
done. Each component was tested separately and together to ensure that they integrated 
with each other. No problems during the testing of the components were reported. The 
integration testing was more interesting since different components were made by 
different parties in the project. For instance, the developed agents developed by CognIT 
had to be tested with the context middleware developed by SINTEF. The integration 
testing only gave results as expected, and everything worked as planned. The final 
complete system testing on Gardermoen provided more mixed results. 

 

7.1.1. Complete system testing 

The complete testing consisted of functionality testing and user acceptance testing.  

7.1.1.1. Functionality testing 

The functionality testing included 4 tests as described earlier in chapter 5: 

1. Before the testing at OSL Gardermoen, the system had been tested in a laboratory 
wired and wireless using both the IIOP and the HTTP protocol. Both protocols 
worked well, but the HTTP protocol was easier to use since the IP address for the 
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machines could be used instead of the long CORBA address used by IIOP.  The 
network used on OSL Gardermoen was a newly installed WLAN, which proved to 
be rather unstable and had caused several time-outs. First the IIOP protocol was 
used for connecting the agent platform. However, the agent platform was not able 
to run stable on this setup due to several time-outs when trying to retrieve content 
from the Content Agent. Another problem discovered was that a content message 
took approximately 1 to 7 seconds to be dispatched. The HTTP protocol was used 
with the same result. Since none of the protocols proved to give satisfactory inter-
platform communication, all agents and content was run from the handheld 
device. With this setup, everything worked fine and the latency was reduced to 
less than 1 second. 

2. The testing was performed on two PDAs. The PDAs was Compaq iPAC 3870 
running Linux OS with a Blackdown VM.  The PDAs used a WLAN card to 
communicate with the JADE platform and Bluetooth to communicate with the 
Context Tag. There were no problems during testing.  

3. The tested agents were running 3 different setups; distributed, partially distributed 
and locally. The distributed setup consisted of running each agent on best suited 
locations such as Context Agent on the mobile device, Recommender Agent and 
the Content Agent running on a server. The partially distributed setup involved all 
agents on the mobile device and the content on a server. In the last setup all agents 
and content were stored on the mobile device. The distributed setup did not work 
particularly well as already explained earlier. In the laboratory, this setup had 
proved to work well. The partially distributed setup did not prove to be much 
better since it got timed out when retrieving content. 

4. Response times were measured to less than 1000 ms/request and were evaluated 
as good by the users. The uptime of the agent system was 100% during the testing 
on OSL Gardermoen. 
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Laboratory Field scenario OSL Gardermoen  

Agent Setup 
IIOP HTTP IIOP HTTP 

Distributed Worked fine Worked fine Network Address 
Translation problems. 

Content messages use 1 
to 7 seconds for being 
dispatched. 

Content messages 
use 1 to 7 seconds 
for being 
dispatched. 

Partially 
Distributed 

Worked fine Worked fine Time-outs when 
retrieving content. 

Time-outs when 
retrieving content. 

Locally Worked fine Worked fine Worked fine. 

 

Worked fine. 

 

Figure 7.1: Findings - Functionality testing 

 

7.1.1.2. User acceptance testing 

The user acceptance testing results only contain comments from users about the agent-
based content delivery, since other comments about speed, reliability of the WLAN and 
hardware will be covered in the Test and Evaluation Report (which is not yet finished). 
The AmbieSense project noted that the results from the survey were difficult to validate 
statistically, but they found some tendencies (Wienhofen et al. (2004)). In particular, there 
were three areas users had comments about; recommendation versus search, the quality 
of the recommendation and the profiles granularity. 

1. In general the users liked the concept of getting recommendations based on a 
profile instead of searching for information themselves.  

2. The users found the content presented by the agents useful and relevant, 
particularly the flight information status overview which provided information 
about the next flight and so on. The only exception was the shopping information 
which the users did not see the need for. The general attitude was that OSL 
Gardermoen is too small for this kind of information, but would probably be 
useful on larger airports such as Frankfurt. Instead of shopping information the 
users wanted information such as news and weather updates.  
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3. Another problem many users complained about was the granularity of the user 
preferences. Some wanted to specify more or less information about their 
preferences. More about the results of the user interviews can be found in the 
AmbieSense D9 documentation (Wienhofen et al. (2004)). 

 

7.2. Multi Agent System (recommendation) 

The testing of the MAS was done as described earlier in chapter 5 solely in laboratory 
conditions.  

 

7.2.1. Component testing 

Here too, each component was tested to verify that they worked as planned. There were 
not any real problems with the component testing; the only thing special was that a 
component usually was the agent itself. Compared to ‘normal’ components, it took some 
time to understand which abilities the agent platform could provide to the agents and 
how these abilities could be used. For instance, all the communication between agents is 
handled by the agent platform. Hence, the agent had to use the right function calls for 
utilising this ability.  There is, however, a lot of good documentation and tutorials on the 
JADE web site (jade.tilab.com). When one agent was produced, this was used as a 
blueprint for the basic functionality for the rest of the agents. In particular, the way of 
communication and subscribing the DF Agent is handled equally in all agents. Another 
problem I had was due to the Java code generated by the BeanGenerator. The 
BeanGenerator was used to generate the code for the ontology as described earlier in 
chapter 5. The Java code contained references to the BeanGenerator itself something 
which seemed unnecessary. Fields (slots) with a set of optional values were defined as 
symbols for some strange reason. To fix these problems I simply removed all references to 
the BeanGenerator in the generated Java code, and the symbols were converted into 
normal Stings. 
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7.2.2. Integration testing 

The integration testing was performed using a scenario where a user is passing a context 
tag. The scenario used for testing is described in the use case (figure 5.12) presented in 
chapter 5. For capturing the communication between the different agents, a Sniffer Agent 
was used as described in chapter 5.  

 

Figure 7.2: Findings - Sniffer Agent 

Figure 7.2 shows the sequence diagram created by the Sniffer Agent. We can see that the 
sequence of events was initiated from ‘other’, which in this case was the antenna.  

During this testing, I encountered some problems where agents did not respond in time to 
the requesting agent. The requesting agent did stop working because it was waiting for a 
reply which never came, or came too late. Most of these problems were solved by 
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programming waiting behaviours or by letting the agent continue without the requested 
information. 

 

7.2.3. Complete system testing 

As described earlier in chapter 5, the complete system testing was divided into a test of 
the recommendation and a test of the MAS platform. 

 

7.2.3.1. Recommendation 

For the recommendation, I did testing with two scenarios; a scenario where the user 
preferred the whisky Glenmorangie 10 years old and a second scenario where the user 
wanted any whisky with rating 85. 

 
Preferred products: 
 
Glenmorangie  10  259  80 
 
 
Matched products: 
 
  
 
Recommended products: 
 
Glen Garioch  15  239  79 
 
Balblair  16  289  76 
 
Oban  14  369  79 
 

 

Figure 7.3: Findings – Selecting preferred product 

 98



 

From figure 7.3 we can see that the user prefers Glemorangie 10 years old, and 3 whiskies 
are recommended. 

 

 
Preferred products: 
 
  
 
Matched products: 
 
Glenlivet  12  209  85 
 
Ardbeg  10  289  85 
 
  
 
Recommended products: 
 
Laphroaig  10  289  86 
 
Speyburn  10  219  71 
 
Dalwhinnie  15  269  76 
 
Talisker  10  279  90 
 

 

Figure 7.4: Findings – Specify preferences by properties 

In the second scenario; figure 7.4, we can see that the system had found two whiskies with 
85 in rating (the last number), listed under matched products. Based on both of these 
matched whiskies, the system recommended 4 additional whiskies. 
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7.2.3.2. Test of MAS platform 

The testing of the MAS platform consisted of two tests: 

• Running agents on different JADE platforms and machines 

• Adding and replacing agents at runtime 

 

For running agents on different JADE platforms, two computers running Windows XP 
were used. Both computers had JADE and Java installed. One computer was used as the 
server hosting every agent except the Preferences Agent, the other as the client. The client 
machine hosted the main platform whereas the server machine hosted the remote 
platform. The setup was as follows: 

JADE 
Platform 

Agents Hosted Machine Name IP-address Operating 
System 

main Preferences shadow-qqs36mra  Windows XP 
remote WhiskyExpert,Dutyfree, 

Context, Antenna(dummy) 
shadow-hh17tdm5  Windows XP 

Figure 7.5: JADE platform setup 

Before the application could be run, the two JADE platforms had to be connected. It 
proved to be a difficult and time consuming process. Firstly, the remote platform had to 
be connected to the main platform with IP address and name of the AMS Agent. 
Secondly, the remote platform had to set one of the DF Agents to main DF Agent and to 
sub or child DF Agent.  

When the two JADE platforms were connected, the application was run to see if it worked 
as it did on a single platform. 
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Figure 7.6: Findings - Running on remote platform 

Figure 7.6 shows how the platform setup was represented in the JADE administration 
GUI. During the first test the agents could not find each other. After some investigation, I 
found that the search depth is defaulted to 1, which means that an agent only contacts the 
main DF Agent to search for other agents/services. If, however, the search depth is set to 
2, the main DF’s immediate children are also contacted. After the search depth was set to 
2, the system ran as expected and no slowdown was experienced when running the 
application.  

The testing of replacing one agent at runtime was carried out on one JADE platform. Two 
agents of the same kind; ContextOne and ContextTwo were started.  
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Figure 7.7: Findings - Replacing one agent at runtime 

From figure 7.7 we can see both Context Agents running (ContextOne and ContextTwo). 
The agent in use was ‘killed’ with the agent ‘kill’ button to see if the other agent was 
utilised as a replacement. The particular agent used for testing was the Context Agent, but 
any other agent could be used. In the start, the ContextTwo Agent was not utilised 
because the Preferences Agent did not know that the ContextOne Agent was not 
available. This was solved by implementing automatic deregistering from the DF Agent 
when an agent dies. 

 

7.3. Mobile platform 

As described earlier in chapter 5, the testing of the mobile platform had been divided into 
different tasks: 
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• Compile application into right Java configuration 

• Distribute application to mobile device or emulator 

• Run application on mobile device or emulator as split or standalone if possible 

 

7.3.1. Compiling application 

When compiling the agent to MIDP several error messages occurred.   

D:\JADE\ADD-ONS\LEAP\j2se\src\jade\core\management\BEAgentManagement  
Service.java:680: warning: finally clause cannot complete normally 

The error message shown here was just the first of many. After searching the Internet, I 
found that the problem was caused by different versions of the Wireless Toolkit (Tognalli 
(2004)). JADE-LEAP (version 3.1) was based on using Wireless Toolkit 2.0 while I had 
used Wireless Toolkit 2.1. The solution was to replace some of the files in the WTK2.1 
installation with files from WTK 2.0.  When this problem was solved, I ended up with 3 
files; demoJ2SE, demoMidp.jar and demoMidp.jad. 

 

7.3.2. Distributing application 

For transferring the application, it was put on a web server. The only important thing was 
to set the right MIME type on the files so the web server could correctly serve the files. For 
the .jad file the MIME type was set to text and for the .jar file the MIME type was set to 
application. No problems were experienced with using the web server for distributing the 
JADE agents. 

 

7.3.3. Running application 

For running the application, different devices were used ranging from different emulators 
to one PDA and several mobile phones. 
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7.3.3.1. Running on HP Jornada 548 PDA 

The PDA used for testing was a HP Jornada 548 from the year 2000. Hence, the PDA was 
relatively old and the official VM for this PDA Chai VM only supported Personal Java. 
There exists commercial VM that support MIDP, but since this is a research project, none 
of them were tried. Sun has an open source VM that supports MIDP called KVM (Kilo 
Virtual Machine). However, it had to be ported to the specific platform (SH3/Windows CE 
3.0). No VM could be found for this PDA so no testing was done on this PDA. Figure 7.8 
shows a list of the different VMs tried. 

 

Figure 7.8: Findings - Virtual Machines 

The list (figure 7.8) shows if the VM has support for MIDP, CLDC (Connected Limited 
Device Configuration), CDC (Connected Device Configuration), it also shows which OS the 
VM is compatible with and if the VM is free to download. 
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7.3.3.2. Running on mobile phones 

Running on mobile phones did not prove to be any easier then running on the PDA. For 
testing we had some phones from Sony Ericsson and Nokia available. Here are the results: 

Brand Model Did run 
Nokia 6210 (Series40) No 
Nokia 7250 (Series 40) No 
Sony Ericsson T610 No 
Sony Ericsson P800 No 

Figure 7.9: Findings - Mobile phones running Demo application 

The different mobile phones tested had different limitations making it impossible to run 
the Demo application on most of the phones tested. 

Phones in series 40 from Nokia are limited to run applications smaller than 64 KB. The 
series 60, however, is not prone to this limitation. The Demo was unfortunately 170 kb 
after optimisation which made it unable to run on any series 40 phones.  

JADE-LEAP supports MIDP 1.0 for mobile phones but also requires that the device it is 
run on supports sockets. The MIDP 1.0 standard does not require socket support; thus, 
some mobile device does not have socket support. (Java Community Process (1998)) Most 
of Sony Ericsson’s mobile phones support MIDP 1.0, but they do not have socket support. 
This meant that JADE-LEAP is unable to run on most of Sony Ericsson’s phones such as 
T68, T610 and T630. Only the so called ‘smartphones’ from Sony Ericsson support sockets.  
Today it is only P900 and Z1010, but also the new K700 and S700 that support sockets. For 
an overview of the findings, I have produced a list of the most common mobile phones on 
the Norwegian market listing their abilities to run JADE-LEAP. 
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Figure 7.10: Findings - Mobile phones (general overview) 

The information presented in figure 7.10 was gathered from different sources such as 
Jimm Mobile SourceForge (2004), Nokia Forum (forum.nokia.com) and Sony Ericsson 
Developer Forum (developer.sonyericsson.com). 

 

7.3.3.3. Running on emulators 

The testing on the mobile phone emulators went much better where the test application 
did work on all emulated phones. For emulating Sony Ericsson phones, the WTK 2.0 for 
Sony Ericsson phones found in Sony Ericsson’s J2ME SDK 2.1 package were used. This 
special edition of WTK is able to emulate all of today’s available Sony Ericsson phones. 
Phones that were tested with the emulator were Sony Ericsson T610 and P800. For Nokia 
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phones, Nokia’s own Nokia Developer’s Suite 2.0 was used for emulating the phones. 
Phones that were tested (emulated) with the emulator were the series 40 phone Nokia 
6210. 
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C h a p t e r  V I I I   

DISCUSSION 

In chapters 6 and 7 the findings of the testing were presented. What information can we 
get from these findings? The testing was conducted in 4 main areas as described earlier in 
chapter 5.5; AmbieSense framework, multi-agent system (recommendation), mobile 
platform and the classification. 

 

8.1. AmbieSense framework 

Even though the testing of the AmbieSense system was not done by me, I am going to 
comment on the findings which are important for my system.  The testing of the 
AmbieSense system consisted of 3 tests presented earlier in chapter 5.5.1; components 
testing, integration testing and complete system testing. The component and integration 
testing did work as planned. The JADE framework can maybe take some of the credit for 
the success.   We will look into that later when my system is discussed. 

 

8.1.1. Complete system testing 

The complete system testing was divided into a functionality testing and a user 
acceptance testing. 

 

8.1.1.1. Functionality testing 

The functionality testing included 4 tests. 

1. The result from trying the different protocols did not give immediate answers since 
none of the protocols could provide a sufficient inter-platform communication. The 
problems were most likely due to the newly installed WLAN, and not the JADE 
platform or protocols.  
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2. The testing of the PDAs worked well, the JADE agents ran successfully on these 
PDAs compared to the PDA that I had used because they used a VM that 
supported J2SE. 

3. The testing of the three different setups (distributed, partially distributed and 
locally) showed that running each agent locally on the mobile device was the only 
setup which worked satisfactory. Again, this was probably due to the WLAN and 
not the JADE platform as such.  

4. Both the response time and up time were acceptable. However, more information 
on this will be available in the Test and Evaluation Report from the AmbieSense 
project. 

From the functionality testing it became clear that the JADE platform relied heavily on the 
network and did not work in a distributed setup when the network bandwidth was too 
low or unstable. However, this is not something special for JADE alone but is true for 
every MAS as discussed earlier in chapter 2.3.   

 

8.1.1.2. User acceptance testing 

The AmbieSense system was tested by some users, what could they tell us about the 
system? 

1. It is good that the users liked the concept of getting recommendations based on a 
profile instead of searching for items themselves.  The users were positive about 
the idea since they did not have to physically search for the item themselves.  
Hence, one of the foundations of the system developed by the AmbieSense project 
is the concept of getting recommendations based on a profile.  This is also relevant 
for my system since it also uses profiles to store information about users’ duty-free 
shopping preferences. 

2. When the users say they do not really see the point of the shopping 
recommendation, this is not good news for my whisky recommender system. 
Nevertheless, some users say that shopping recommendation could be useful in 
larger airports. This probably translates to that it would be useful in cases where 
many offers/services are available, such as urban areas. 
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3. When the users say they want either a higher or lower granularity of the context, 
this should not be a problem for the framework itself since it is flexible and can 
contain any degree of granularity.  The problem lies more on how this is 
communicated to the user. A better designed GUI where the user could specify the 
granularity him- or herself could be one possible way to solve this problem. 

My overall impression from the user acceptance testing is that most of the innovations of 
the AmbieSense project were appreciated by the test users. The biggest problem was 
probably that the test scenario at OSL was not big enough for the users to see the value of 
some of the information presented. 

 

8.2. Multi-Agent System (recommendation) 

So far we have looked at the testing done by the AmbieSense project, let us now look at 
the testing I did on the system I developed, and see what the findings can tell us. Let us 
start looking at the experience gathered when testing the MAS. The testing was divided 
into a component testing, an integration testing and a complete system testing, as 
described in chapter 5.5.2. 

 

8.2.1. Component testing 

The testing of the components did not show any problems except the extra code produced 
by the BeanGenerator, described in chapter 7.2.1. It is strange that the BeanGenerator 
creates code which relies on BeanGenerator libraries to work. The modularity is lost with 
this approach because other agents communicating with the ontology created by the 
BeanGenerator need to have BeanGenerator installed. Luckily, not many lines of code had 
to be removed. 

Another interesting discovery when testing the components was JADE's built in support 
for testing components. Components can be tested using dummy agents which 
communicate with them. The dummy agents does not have to be programmed, but can 
easily be created from/with the JADE administration GUI. 
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8.2.2. Integration testing 

For the integration testing the scenario described in the use case (figure 5.12) was used. To 
find out if the agents performed as planned, we can compare the use case (figure 5.12) 
which contains the planned scenario with the actual findings from chapter 7.2.2, figure 
7.2; produced by the Sniffer Agent. When comparing them, we can see that they resemble 
each other. However, there are some differences between them; the use case figure 5.12 
contains some alternatives where the actual performed scenario only contains one 
alternative. Another difference is that internal communication is not shown in the result 
made by the Sniffer Agent figure 7.2. By the similarity of the findings and the original 
design presented in the use case, we can conclude that the integration between the agents 
worked as planned. 

Also for the integration testing dummy agents were used.  But these were simple agents 
programmed in Java/JADE, rather than the built-in dummy agents started from the 
administration GUI. 

The problems mentioned about asynchronicity can be compared with working with 
threading in Java. It is extra challenging to plan processes which are not working 
synchronously to each other. The Agent UML was a good tool for overcoming some of 
these problems where it provides possibilities to plan and model alternative actions. JADE 
also provides different modes for an agent to wait on other agents by using ‘receiving 
block’, which means that an agent waits until a message arrives or ‘normal receive’, where 
the agent does other activities while waiting for messages.  

From the integration testing we have seen that the Sniffer Agent can be a valuable tool for 
evaluating the agent communication in the MAS. Dummy agents can be produced and 
used as placeholders for the actual agent which had not yet been developed. When 
designing agents, it is important to remember that they work asynchronous and are able 
to handle situations where messages are missing or too late. 

 

8.2.3. Complete system testing 

The complete system testing was divided into testing of the recommendation and testing 
of the MAS platform, described earlier in chapter 5.5.2.3. 
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8.2.3.1. Recommendation 

The testing of the recommendation was to see if the system produced a recommendation 
as expected. The results can be found in chapter 7.2.1. 

In the first scenario, figure 7.3; we can see that the system has Glenmorangie 10 years old 
as the preferred product and Glen Gardioch 15 years old, Balblair 16 years old and finally 
Oban 14 years old as recommended whiskies. Glenmorangie is in class c, and therefore, 
the system recommends other available whiskies in class c. It is easy to verify the result by 
cross-referencing the whiskies list (Appendix C) in class c with available whiskies listed in 
the Euroshop list (Appendix B). 

In the second scenario, figure 7.4 is a little more advanced whereby the system has to first 
do a matching in the database to find the whisky the user prefers. Again, we can verify 
the result by looking at the list of whiskies (Appendix C), the only two whiskies with 
rating 85 are the Glenlivet and the Ardbeg.  The whiskies recommended are either in class 
d or e since Glenlivet is class d and Ardbeg is class e. 

As we can see, the system produces a recommendation as expected but it should be noted 
that the recommendation is really a basic database search rather than a sophisticated 
‘intelligent’ prediction. As we remember from chapter 3.1.1, a system like this is classified 
as a raw retrieval system. However, the system is not a pure raw retrieval system.  For the 
final ranking of the whiskies, manually selected recommendation is used where the score 
given by whisky experts are used for ranking the whisky. The matching process where 
the user can select some features he or she prefers is a simple kind of attribute-based 
recommendation. The system also has the ability to recommend whiskies that have not 
been seen before without any help from a human expert. 

There are several reasons for why we ended up with a recommendation system as such, 
and not any of the more advanced recommender systems. By selecting one of the more 
advanced recommender systems a higher degree of personalisation could probably be 
achieved. The more advanced systems were person-to-person correlation, item-to-item 
correlation and attribute-based. The person-to-person and item-to-item system would be 
possible to implement since the context contains all the information such a system would 
need. The huge drawback with any of those systems is that they require a large number of 
users, therefore it would be difficult to gather enough test users for such an approach. A 
pure attribute-based approach would also be difficult because of the data required. For 
training the classification algorithm, at least 20 samples are needed per class. Let us say 
we wanted to build a system with two classes; ‘interesting’ and ‘not interesting’.  Since we 
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operate with two classes, the user needs to supply the system with 30 whiskies he or she 
likes and 30 whiskies he or she does not like. How many ‘normal’ people have tasted 60 
different whiskies? People who have tasted 40 whiskies are probably experts themselves 
and would not be in need of a whisky recommender system. As we can see, a system with 
a high degree of personalisation would be difficult to construct based on the data 
available. 

As we can see, the system is not really an advanced recommender system. It does use raw 
retrieval, manually selected recommendation and a simple version of attribute-based 
recommendation. But it does not contain advanced recommendation techniques like user-
to-user correlation or an item-to-item correlation recommendation. Nevertheless, the 
system can give a recommendation which is not that basic if we take into account that the 
system can handle yet unseen whiskies, without any help from a human expert. The 
recommendations do also have a degree of personalisation. Whiskies selected are based 
on whiskies preferred by the user or by some feature specified by the user. The 
classification process itself does not contain any personalisation because the users’ 
preferences are not part of the classification process. 

 

8.2.3.2. MAS platform 

The testing of the MAS platform was divided into two tests; running of agents on 
different JADE platforms and servers, as well as adding and replacing agents at runtime 
(see chapter 5.5.2.3). The findings were presented in chapter 7.2.3.2. 

Running agents on different JADE platforms and servers worked well, but the 
administration when joining two platforms was both time consuming and awkward. To 
make the configuration easier the AMS and DF Agents should be default agents, and the 
only configuration would be to specify the correct IP-address for the remote platform. 
Another feature which could ease the administration would be a profile which stored the 
information, so that it easily could be retrieved later.  

Adding and replacing agents at run-time worked well after each agent automatically were 
given the ability to deregister when ‘killed’. 

From the MAS platform testing we have seen that the JADE platform gives some 
interesting benefits like reliability, extensibility, computational efficiency and 
maintainability.  
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8.2.3.2.1. Reliability 

An agent that fails can easily be replaced by another agent. Even platforms can be 
replaced if they fail due to a hardware or software failure. 

 

8.2.3.2.2. Extensibility 

If the problem requires it, additional agents can easily be added. Agents can also be 
moved to a more powerful server at runtime. 

 

8.2.3.2.3. Computational efficiency 

Another benefit when developing JADE agents is that the system developed is multi-
threaded since each agent runs in a separate tread. This is going to be more interesting 
when computers with more than one processor arrive this year. However, most servers 
can benefit from this today.  

 

8.2.3.2.4. Maintainability 

The JADE framework gives extensive support for communication which saves time in 
development and ensures compatibility with other systems.  

 

8.3. Mobile platform 

The testing on the mobile platform was divided into three different tasks; compiling, 
distributing and running the application (see chapter 5.5.3). The findings was presented in 
chapter 7.3. 
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8.3.1. Compiling 

Compiling the application did not prove to be difficult, but it was rather time consuming 
because of the configuration involved. The error encountered did also contribute to the 
time spent. The error is fixed in the version 3.2 of JADE.  

Despite the time spent to understand and configure the compilation environment, it is 
impressive to see that an application programmed in Java can work on a mobile device 
without writing the application especially for that purpose. The programmer does not 
have to worry about which platform the application is going to run on until the 
deployment.  

 

8.3.2. Distributing 

The use of a web server for distributing the application proved to be a good idea. This 
made the application accessible and it required minimal from the user to install and run 
the application. The .jar file had to be downloaded to the user’s mobile device and then 
double clicked to run. The user did not have to worry about the JADE platform at all, as it 
is embedded into the .jar file that was distributed. When running the application, it looks 
just like any other ordinary application. 

 

8.3.3. PDA 

Running of the Demo application was stranded because no free MIDP compatible VM 
was found for the particular PDA and OS. The search for a MIDP compliant VM for the 
PDA showed that Sun does not have the same strong position on mobile device as they 
have on stationary devices (see figure 7.8). On the mobile platform it is a variety of 
different VMs. Some support MIDP, while others have their own proprietary support of 
Java libraries like the SuperWaba VM. Another important issue is that most of the VM are 
licensed and not free for the user to use and download. This could actually mean that a 
user have to pay for running his or her own Java program. When this is said, most of 
today’s PDAs have a pre-installed VM which supports either MIDP or J2SE. 
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8.3.4. Mobile phones 

The Demo application could only run on one of the mobile phones that were tested. 
Problems running the application were either due to a lacking support of sockets 
(SonyEricsson) or a limitation of the maximum application size (Nokia series 40).  

The overview presented in figure 7.10 shows that not only the phone I tested lacks socket 
support. Another thing to note is that all of the MIDP 2.0 phones have socket support, this 
is because the MIDP 2.0 standard requires socket support as mentioned earlier in chapter 
5.5.3. When MIDP 2.0 becomes the dominant standard on mobile phones, then JADE 
could truly reach its potential on the mobile platform. 

 

8.3.5. Emulators 

As mentioned earlier in chapter 7.3.3.3, the Demo application worked on all emulators. 
However, this is not just positive. Even phones that were proved not to work in real life, 
worked on the emulator. For example, the Sony Ericsson T610 did work perfectly on the 
emulator, but real life testing showed that lack of socket support made it useless for 
running JADE. The same was also experienced using the Nokia emulator. The lesson to be 
learnt here is to always test applications on the actual phone the application is meant for. 

Unfortunately, I was not able to run the application on any of the tried mobile devices. 
The problems encountered when trying to run the Demo application on a mobile device 
were not due to problems in the JADE framework, but rather maturity problems with the 
Java platform. When the MIDP 2.0 standard is used on all ‘normal’ mobile phones, 
hopefully these problems could be solved. 

 

8.4. Classification 

The classification testing consisted of an evaluation of the features and a 10 fold cross-
validation, as described in chapter 6. 
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8.4.1. Feature evaluation 

From figure 6.10 chapter 6.4.3.3 we can see a ranking of the 6 best features that was found, 
using the information gain algorithm. Some features are not in the list since they are 
directly dependent on other features. For instance, Region is in the list instead of 
Longitude and Latitude. Both Region and the combination of Longitude and Latitude 
describe the location of where a whisky has been produced. The use of all three features 
would provide redundant information which should be avoided because it means that 
those features are dependent of each other. A change in Region would necessarily lead to 
a change in either Longitude or Latitude. It is also important to note that Longitude and 
Latitude are independent but can be used together. Region is in the list because it scored 
higher than the combination of Longitude and Latitude. It is not easy to compare one 
feature against two features, so this result has to be handled with caution. In the 10 fold 
cross-validation testing both combinations are going to be tested despite the result from 
the feature evaluation algorithms.  

From the information gain ranking figure 6.10, we can see that both the features Wood 
and Re-use scored 0. The features are in the list even tough they received a mediocre score 
of 0, because they scored better using the ReliefF algorithm (figure 6.11). The mediocre 
score when using the information gain algorithm is probably due to the fact that it lacks 
support for continuous features.  

An interesting result was produced in run 9 (figure 6.12) where the two lowest ranked 
features from the information gain algorithm were used. The error rate decreased to 
75.6% compared to using the highest ranked features in run 7 (84.1%) and run 8 (80.5%). 
The Re-use feature was actually ranked last by both feature evaluation algorithms, but in 
real life it proved to be a valuable feature. 

From using the feature evaluation algorithms we have seen that they can provide 
valuable information about suitable features. However, it is important to be aware of the 
strengths and limitations using the different algorithms. These algorithms do not 
necessarily come up with all the best features, so it is still advisable to do some testing on 
different features. There are probably better features than the 6 listed here. But 
unfortunately, it was difficult to find the necessary data for other better features. 
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8.4.2. 10 fold cross-validation testing 

The first test-runs produced some exceptional results with an error rate of only 23 %. For 
this testing, the samples were manually divided into a training and test set. 
Unfortunately, after some investigation it became apparent that the exceptional results 
were due to some samples that appeared in both the training and the test set. After this 
experience, a better approach using the 10 fold cross-validation testing provided by Weka 
as described in chapter 6 were applied. 

There are several lessons to be learnt from the results presented in figure 6.12 in chapter 6. 

• Information rich features 

• Classifier 

• Reduced classes 

• Error rate 

• Other features 

 
 
8.4.2.1. Information rich features 

One of the things that would be interesting to find out during the testing; if there is any 
difference using a feature containing much information or using several more atomic 
features joined together. In particular, it was tested with features describing the location 
with the possibility to use the feature; Region (Alternative 1) or a combination of the 
features Longitude and Latitude (Alternative 2). The whisky cask used for storage was 
either described by one feature; Cask (alternative 1) or by several features Wood, Re-use, 
Maturing and Finish (alternative 2).  

First, let us have a look at the features describing the location. In run 1, Region was used 
for describing the location, and in run 3, Region was replaced by the features Longitude 
and Latitude. From these two runs, we can see that there is not much difference between 
these two combinations. Nevertheless, Region produced a better error rate of 80.5% 
compared to 81.7% when Longitude and Latitude were used. In run 11 and 12, this 
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difference is even more apparent giving the feature; Region an error rate of 72% compared 
to the error rate of 76.6% when the features Longitude and Latitude were used. 

At least when combined with the features used in my testing, the feature Region proved 
to be the better feature for describing the location. This was further proven by the scores 
received from the feature evaluation algorithms. 

Let us now look at the results from the features describing the cask. In run 1, Cask was 
used and in run 5, the features Wood, Re-use, Maturing and Finish were used. We can see 
that the error rate is equal in the two runs; 80.5%. However, as described earlier, the 
classification had further improved by using only some of the 4 features (Wood, Re-use); 
this can be seen in run 9, 11 and 12. 

From the results it is not possible to draw any conclusion on whether it is better to use a 
broad information rich feature or several smaller combined features. Nevertheless, we can 
see that several small features provide greater flexibility where features containing 
irrelevant or redundant information can be removed.  

 
8.4.2.2. Classifier 

From the results in figure 6.12, it is easy to conclude that the Bayesian classifier did not 
work well with the data. This is probably because there is no obvious a priori information 
which could be used to increase the accuracy of the classification. From the testing, we can 
see that the build time was not a factor since it even with the slowest classifier was close to 
zero. Other classifiers could have been used to improve the accuracy of the classification. 
But before this is done, it is important to find more and better features.  

 

Natural classifier candidates would have been the improved version of the NNR, the 5-
NNR and maybe even a neural network. Both these algorithms can easily be tested using 
Weka. While working on the classification I have come up with an idea of making a 
specialised classifier for the duty-free scenario. The classifier would be an unsupervised 
classifier based on the NNR algorithm. A recommendation would simply be to 
recommend the nearest neighbour in vector space without any concern of the class label. 
The benefits with such an approach would be that whiskies would have to be labelled, 
and the user could prefer certain features before others. Ultimately, this could have 
resulted in a more personalised recommendation. On the downside, since the algorithm 
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sketched here is not in Weka, the algorithm would have to be programmed in Java. It 
could also be difficult to prove the quality of the recommendation. 

 
 
8.4.2.3. Reduced classes 

When we look at the results (figure 6.12), one apparent problem is that the error rate is 
ranging between 75 and 85%. This might seem quite high, but when we know that the 
error rate of selecting randomly among 10 classes is 90%, the result is not that bad after all. 
The main problem having to deal with 10 classes is that for each class, around 30 samples 
per class is required as explained earlier in chapter 6. This means that for 10 classes, 300 
pre-classified whiskies are required for the system to work sufficiently. For my system, 
which contains only around 80 pre-classified whiskies, 3-4 classes would be more fitting. 
To further decrease the error rate, some classes were joined together. The classes were 
joined using classes described by Wishart (2002). He had done some classification where 
whiskies were divided into 4 and 6 classes. The results of this decrease in classes are 
shown in run 12 and 13; the numbers of classes in the two runs were 6 and 4 classes 
respectively. By decreasing the number of classes, the error rate was lowered to 68.3% 
when using 6 classes and 56.1% when using 4 classes. The result when using 4 classes 
proved to be ‘good’, especially when taking into consideration that the random error rate 
for 4 classes is 75%. What does it mean to reduce to 4 classes, is this only a good thing? 
When reducing the number of classes to 4, the granularity of the prediction is lowered. It 
is just like an expert of cars, he or she would be able to correctly identify cars into the 
country they were produced, rather than identifying the correct maker of the car. Since 
the classification is going to be used to make expert recommendations, it is important to 
keep both the granularity of the prediction and the quality of the prediction as high as 
possible. The natural compromise would be 6 classes. However, since the error rate 
produced by reducing the number of classes is still not what you would expect from an 
expert (error rate less than 10-20%), better features or a better classifier should be found 
before experimenting further with a reduced number of classes. 

 
 
8.4.2.4. Other features 

To further improve the result, could other features have been used? Let us have a look at 
the best run, run number 12, to see what information it might provide. From the 
confusion matrix we can see that the classes with highest error rate were the classes h, i 
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and j of, 87.5%, 83.3% and 83.3% respectively (The values are calculated by dividing the 
correct classified samples on the total samples in the class). Class b on the other hand had 
the lowest error rate of 62%. Are there any obvious features that could classify the last 3 
classes better? This figure provided by Wishart (2002) might give some useful insight. 

 
 

Figure 8.1: Whisky taste diagram (Wishart (2002) p. 37) 

From figure 8.1, we can see that Macallan and Glengoyne have a taste with little peat, 
whereas Highland Park and Laphroaig have a taste where peat is highly present. When 
we compare this with the result from run 12 (figure 6.12), which was the test-run with 
lowest error rate (except run 13 and 14 where number of classes was reduced), we can see 
that Highland Park and Laphroaig are both members of classes which were difficult to 
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classify (Class i and j). This gives some indications that more features describing the peat 
content could produce a better classification. 

In chapter 6, some features candidates containing information about peat content were 
mentioned; water character and the drying of the barley. Both these candidates should 
have been tested if sufficient information had been found. Personally, I believe that drying 
the barley over a peat fire has the most influence on the final taste since most of the 
distilleries known for their peaty whisky use this drying method. 

From the testing of the classifier, we have seen that the accuracy is not as good as required 
for the system. Experiments with more features should be done to increase the accuracy of 
the classification. A better suited classifier, either a general classifier or a specialised 
classifier could have been tried. Finally, the accuracy can be further increased by reducing 
the number of classes. 

We have also seen that the system is flexible when it comes to testing different features 
and classifiers. 

 

8.5. Summary 

The overall impression of the testing is that the system works as planned with the only 
exception of the mobile platform and the quality of the classification. The problems on the 
mobile platform would probably be solved with the new MIDP 2.0 standard, whereas the 
quality of the classification could probably be improved by using more and better 
features.  

The system also serves as a framework connecting different AI techniques, such as agents, 
ontologies, knowledge base and classification. The framework proved to be flexible when 
it came to testing different features and classifiers. This is important since it is built to 
handle different duty-free products, which might require different features and classifiers. 

The GUI was not tested because it did not have a high priority in the project. This does 
not mean that the GUI is not important. On the contrary, the reason why the GUI was left 
out is because it would require too much time and could easily represent a thesis itself. 
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C h a p t e r  I X   

CONCLUSION 

9.1. Scientific questions 

I am now going through the scientific questions asked in chapter 1 to see if they can be 
answered by the thesis. 

How can we make an MAS with ‘intelligence’ that can handle complex and advanced 
problems?  

In chapter 7, I have shown that it is possible to make a rational MAS that can handle 
complex and advanced problems. The system developed serves as an application where 
users can specify duty-free shopping interests and get recommendations. Nevertheless, it 
also serves as a framework where duty-free products can be added and classified.  To 
accomplish this, the system integrates different AI techniques such as agents, ontologies, 
knowledge base and classification. 

Is an MAS better suited than a ‘normal’ computer program? 

It have been demonstrated in chapter 7 that an MAS can give benefits compared to a 
normal computer program when it comes to reliability, extensibility, computational 
efficiency and maintainability. When the MIDP 2.0 standard is more widely used, the 
JADE platform can also provide benefits from its split-container ability as described in 
chapter 5.1.2. 

How can we measure that an agent is good enough? Which methods can we use?  

In chapter 6, I have shown different methods which can be used to measure the quality of 
a classification system. With the use of these methods, I have discovered that the classifier 
still needs some improvements to predict with the accuracy needed for such a system. 
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9.2. What have I learned? 

Before writing this thesis, I had only theoretical knowledge about agents and even less 
knowledge about MAS. Hence, through the course of this project, I have gathered hands-
on understanding on the subject of MAS. One important discovery was the benefits the 
agent framework gives the programmer, but also the new problems that emerged such as 
planning asynchronous activities. 

Another thing that I have learnt was the difficulties of getting the data needed for the 
classification. This was a far bigger challenge than selecting the right features and 
classifier or programming the agents. 

A side effect of this project was the increased knowledge about whiskies. Whether or not 
this is a positive side effect, it still remains to be seen.  

 

9.3. Further work 

The classifier has to be improved for making classifications as expected of an expert, 
either by finding better features or by selecting a different classifier. More duty-free 
products could also be added to the system. The GUI should be improved so that it is 
more user-friendly and could support advanced search in the KB using predicates.  

The system I have created are not necessarily  limited to duty-free shopping, but can be 
used for handling any shopping items, and could be used by any shop selling items. 

On a bigger scale, the framework made by the AmbieSense project has a wider 
application than the airport scenario already demonstrated. For example, the system 
could be used in a museum, informing users about items in the room they are visiting. 
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Appendix B – Euroshop list 

 

Highland 
Balblair Elements    100   179 
A beautifully balanced, complex and satisfying whisky. 
Dalmore Black Isle 12 YO    100   229 
Fruity, spicy taste, slightly smoked. 
Glen Garioch 15 YO    100   239 
Smoky, sweet flavoured taste in between camphor and sandlewood  
with smoky finish. 
Glen Grant Highland Malt    100   199 
A light, fruity, malty and somewhat oily taste. 
Glenmorangie 10 YO    100   259 
Slightly smoky, oily and creamy taste. 
Glenmorangie Woodfinish Madeira    100   279 
Spicy fresh , sweet citrus taste. 
Glenmorangie Woodfinish Port    100   279 
Butterscotch and dark chocolate taste, with fresh minty notes. 
Glenmorangie Woodfinish Sherry    100   279 
Full bodied sherry wine notes, traces of honey, nuts and hints of vanilla. 
Johnnie Walker Pure Malt    100   259 
Blending of superb single malts.  
Slightly fruity with hints of cedar wood and honey 
Oban Highland Distillers Edition    100   369 
Montilla Fino cask wood gives sea-laced flavours beautifully enhanced  
Old Pulteney 12 YO    100   189 
A rather pungent, smoky and peaty taste. 
Speyburn 10 YO    100   219 
Fresh, slightly sweet and malty 
Aberfeldy 12 YO    70   179 
Malty sweetness, faint smoky peatiness. 
Balblair 16 YO   70   289 
Balanced and complex, sweet to a start, slightly dry. 
BallantineÂs Pure Malt    70   209 
Fresh,clean smoothness balanced by soft sweet orange,cinnamon and ginger 
Islands 
Highland Park 12 YO    100   239 
Slightly salty, peaty and fruity taste. 
Highland Park 18 YO    70   349 
Heather-honey sweetness,smooth and round 
Isle of Jura Legacy 10 YO    100   209 
Fresh, peaty, sweet, slightly oily. Some saltiness. 
Isle of Jura 16 YO    70   289 
Mellow, smooth and less peaty than other island malts  
Scapa 12 YO    100   219 
A smooth, sweet and malty taste.  
Fruity with notes of apple, vanilla and heather-honey. 
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Talisker Skye 10 YO     100   279 
A sweetish seaweedy aroma with a pungent peaty ruggedness. 
Talisker Skye Distillers Edition    100   369 
Amorose cask wood amplifies the sweetness and the rugged, 
spicy,peaty character. 
Islay 
Ardbeg 10 YO    100   289 
Islay whisky, earthy,peaty,salty and robust. 
Bowmore Darkest    75   359 
Rich, smoky flavour, warm chocolate sweetness. 
Bowmore Dusk    75   359 
Superb balance between the finesse of France and the power  
of Islay.Aromas of chocolate,roses,soft fruits and peat smoke 
Bowmore Dawn    75   359 
Sweet flavours of grapes och black plums together with the  
characteristic smoky taste of Bowmore 
Bowmore 12 YO    100   189 
Smoky, lightish, burnt heather, tarry and chocolate taste. 
Bowmore 12 YO PET    50   109 
Smoky, lightish, burnt heather, tarry and chocolate taste. 
Bowmore Cask Strength    100   249 
Oak hidden with a burnt sugar sweetness. 
Bowmore Mariner 15 YO    100   329 
Sweety, fruity, medium peaty. Smooth and mellow. 
Bunnahabhain 12 YO    100   209 
Smooth and gentle, clean, nutty-malty sweetness. 
Lagavulin Islay Distillers Edition    100   379 
Pedro Ximinez cask wood gives sweetness to the intense peat flavour. 
Laphroaig Cask Strength 10 YO    100   289 
Rich peat smoke with some sweetness and strong hints of the sea. 
Laphroaig Collection 3x33    100   319 
Contains: Laphroaig 10YO, Laphroaig 10YO Cask Strength, Laphroaig 15YO  
Laphroaig Islay 10 YO    100   219 
A rich, sweet and gingery flavour with hint of oil, peat and tars.  
Lowland 
Auschentoshan 10 YO PET    50   149 
A light soft taste with an orange-based fruity sweetness. 
Glenkinchie Lowland 10 YO    100   249 
Dry and smoky taste. Soft. 
Glenkinchie Lowland Distillers Edition    100   339 
Amontillado cask slightly nutty flavour augments the sweet and dry blend. 
Auchentoshan 3 Wood    75   349 
Fruit and syrup.Hazelnut, hints of cinammon and lemon. Sweet. 
Speyside 
Aberlour 15 YO    100   349 
Nutty, spicy with sherry-accent. 
Balvenie Doublewood 12 YO    100   209 
Matured in two wood. Smooth and mellow single malt. Full bodied. 
Balvenie Founders Reserve 10 YO    100   189 
Smoky, mellow aroma. Honey notes. 

 4



 

Balvenie Mixed Assortment    60   479 
Benriach 10 YO    100   189 
Light balanced fruity flavours with soft sweetness. 
Cardhu Malt 12 YO    100   269 
Round and mellow, sweet with a delicate peatiness. 
Cragganmore Speyside 12 YO    100   259 
Good firm body, smokey finish. Pleasantly dry, delicate aroma. 
Speyside 
Cragganmore Speyside Distillers Edition    100   349 
Port wine cask adds deep succulent notes to this Speyside malt. 
Dalwhinnie Highland 15 YO    100   269 
Light and aromatic with soft heather honey finish. Rich in body. 
Dalwhinnie Highland Distillers Edition    100   359 
Oloroso cask wood reflects and complements the peat and heather notes. 
Glen Deveron 10 YO    100   219 
A smooth, sweet flavoured taste in between camphor  
and sandalwood. Salty finish. 
Glen Keith 10 YO    100   189 
Dry, thin taste with almond oil, some bitterness. 
Glendronach 15 YO    100   249 
Smooth, malty fine sherry character. Hint of smoke. 
Glenfarclas 12 YO    100   199 
Delightful fruit, oak and sweet taste. 
Glenfiddich12 YO    100   179 
A smooth, sweet, fruity and malty taste. 
Glenfiddich 12 YO PET    50   99 
A smooth, sweet, fruity and malty taste. 
Glenfiddich Solera 15 YO    100   279 
Smooth, delicate oak notes, great depth of flavour, long finish. 
Glenfiddich Ancient Reserve 18 YO    70   329 
Sea-air aromas, hints of cashew nuts, salty, lingering finish. 
Glenfiddich Havana 21 YO    70   769 
Matured in Havana Rum casks 
Knockando    100   199 
Perfectly balanced with a unique delicacy and fruitiness. 
Longmorn 15 YO    100   199 
A silky-sweet, nutty and well-balanced taste. 
Strathisla 12 YO    100   199 
A sweet, warm and fruity (apple) taste. 
Tormore 12 YO    100   219 
Well balanced,smooth single malt with honey taste 
The Macallan Elegancy Vintage    100   259 
100% matured in sherry oak casks. Light and sweet with  
citrus, apple and toffee flavours. 
The Macallan Fifties    50   219 
Rich Macallan with strong sherry, resinous spice, dried fruits,  
a touch of nuttiness, toffee and wood.  
The Macallan Forties    50   219 
Fresh apple fruit woody and slightly nutty. 
The Macallan Thirties    50   219 
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Peat smoke, apples, citrus orange and spice. 
The Macallan Twenties    50   219 
Classic Macallan with sherries, spicy cloves, rich oily viscosity. 
The Glenlivet 12 YO    100   209 
Fruity, floral notes and creamy taste with a honeyed sweetness. 
The Glenlivet 12 YO PET    50   99 
Fruity, floral notes and creamy taste with a honeyed sweetness. 
The Glenlivet French Oak 12YO    100   249 
Rich floral and soft fruity flavours with some sweetness and spicy oakiness. 
The Glenlivet 18 YO    100   379 
Rather fiery, citrus - lime, sweet, dry, some cocoa in the finish. 
The Glenlivet 15 YO    100   289 
Soft, mellow fruity flavours, enchanced by sweet fragrance. 
Whiskey De Luxe 
BallantineÂs 12 YO Reserve    100   219 
Lightly smoked flavour with a hint of the cask. 
BallantineÂs 12 YO Reserve    50   119 
Lightly smoked flavour with a hint of the cask. 
Chivas Regal 12 YO    100   239 
Lightly smoked, fruity and full flavour. 
Chivas Regal 12 YO PET    50   129 
Lightly smoked, fruity and full flavour. 
Chivas Regal 18 YO    100   389 
Smooth,soft,rich flavours with slight smokiness.  
Chivas Royal Salute 21 YO    70   699 
A well-balanced smokiness with a malty taste. 
The Famous Grouse Gold Reserve 12 YO    100   219 
A sweet, fruity and oily taste. 
Johnnie Walker Black Label 12 YO    100   219 
Full-bodied taste with vanilla flavour and somewhat smoky aftertaste. 
Johnnie Walker Black Label PET    50   119 
Full-bodied taste with vanilla flavour and somewhat smoky aftertaste. 
Other Malt 
The Famous Grouse Vintage Malt 12 YO     100   209 
Created from the finest whiskies of a single yearÂs distillation 
Discovery Malt Pack 3x33    100   249 
Isle of Jura 10YO,Dalmore 12YO,Tamnavulin 12YO. 
Scotch, Standard 
Ballantine's Finest    100   169 
A sweet and slightly smoky taste. 
Ballantine's Finest PET    50   99 
A sweet and slightly smoky taste. 
Bell's     100   169 
Lightly smoked flavour with hints of malt, and cask. 
Grant's  Finest    100   169 
A full and fruity taste. 
Grant's  Finest PET    50   99 
A full and fruity taste. 
Grant's Super Strength    100   179 
A full and fruity taste. 
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J&B   Rare    100   169 
Slightly smoky, long, sweet taste. 
Johnnie Walker Red Label     100   169 
A dry, smoky and balanced taste. 
Johnnie Walker Red Label PET    50   99 
A dry, smoky and balanced taste. 
The Famous Grouse    100   169 
A sweeet, oily and full taste. 
The Famous Grouse PET    50   99 
A sweeet, oily and full taste. 
The Famous Grouse Cask Strength    100   199 
Upper Ten PET    50   89 
 
 

 
 
 
 
 
 
 
 
 
 
 
Appendix C – Whisky list 
 
 
Brand Age Wood Reuse Maturing Finish Cask WashBack Class 

Dailuaine 16 50 1 Bourbon Sherry Bourbon-Sherry Wood a 

Dalmore 12 50 1 Bourbon Sherry Bourbon-Sherry Wood a 

Glendronach 15 100 1 Sherry None Sherry Wood a 

Macallan 12 100 1 Sherry None Sherry Stainless-steel a 

Mortlach 16 100 1 Sherry None Sherry Wood a 

Royal Lochnagar 12 10 1 Bourbon Sherry Bourbon-Sherry Wood a 

Aberfeldy 12 50 1 Bourbon Sherry Bourbon-Sherry Wood b 

Aberlour 10 50 1 Bourbon Sherry Bourbon-Sherry Stainless steel b 

Ben nevis 10 50 1 Bourbon Sherry Bourbon-Sherry Stainless steel b 

Benrinnes 15 50 1 Bourbon Sherry Bourbon-Sherry Wood b 
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Blair Athol 12 0 2,5 Bourbon None Bourbon-Refill Stainless 
steel./Wood 

b 

Cragganmore 12 0 4 Whisky None Refill Wood b 

Edradour 10 100 1 Sherry None Sherry Wood b 

Glenfarclas 10 100 1,5 Sherry None Sherry-Refill Wood b 

Glenturret 12 50 1 Bourbon Sherry Bourbon-Sherry Wood b 

Knockando 12 10 2,5 Bourbon Sherry Bourbon-Sherry Wood b 

Longmorn 15 50 1 Bourbon Sherry Bourbon-Sherry Stainless-steel b 

Scapa 12 0 1 Bourbon None Bourbon Wood b 

Strathisla 12 50 1 Bourbon Sherry Bourbon-Sherry Wood b 

Balvenie 
Founder's Res. 

10 30 1 Bourbon Sherry Bourbon-Sherry Wood c 

Benriach 10 50 2 Bourbon Sherry Bourbon-Sherry Stainless steel c 

Dalwhinnie 15 0 1 Bourbon None Bourbon Wood c 

Glen Elgin 12 10 1 Bourbon Sherry Bourbon-Refill Wood c 

Glen Ord 12 10 1 Bourbon Sherry Bourbon Wood c 

Glendullan 12 0 4 Whisky None Refill Wood c 

Glenlivet 12 5 2,5 Whisky Sherry Bourbon-Sherry Wood c 

Linkwood 12 0 4 Whisky None Refill Wood c 

Royal Brackla 10 0 1 Bourbon None Bourbon Wood c 

An Cnoc 12 0 4 Whisky None Refill Wood d 

Auchentosan 10 50 1 Bourbon Sherry Bourbon-Sherry Wood d 

Aultmore 12 0 1 Bourbon None Bourbon Wood d 

Cardhu 12 0 1 Bourbon None Bourbon Wood d 

Glen Grant 10 50 1 Bourbon Sherry Bourbon-Sherry Wood d 

Glengoyne 10 100 3 Sherry None Sherry-Refill Wood d 

Mannochmore 12 10 2 Bourbon Sherry Bourbon-Sherry Wood d 

Tamdhu 8 40 2 Bourbon Sherry Bourbon-Sherry Wood d 

Tobermory 10 50 1 Bourbon Sherry Bourbon-Sherry Wood d 

Bladnoch 10 50 1 Bourbon Sherry Bourbon-Sherry Wood e 

Bunnahabhain 12 10 1 Bourbon Sherry Bourbon-Sherry Wood e 

Glen Moray 12 5 1 Bourbon white-
wine 

Bourbon Stainless-steel e 

Glenallachie 12 0 2,5 Bourbon None Bourbon-Refill Stainless-Steel e 

Glenkinchie 10 0 4 Whisky None Refill Wood e 

Glenlossie 10 0 1 Bourbon None Bourbon Stainless-steel e 

Inchgower 14 0 1 Bourbon None Bourbon Wood e 

Tomintoul 10 5 1 Bourbon Sherry Bourbon-Refill Stainless-steel e 

Ardbeg 10 0 1,5 Bourbon None Bourbon-Refill Wood f 

Ardmore 11 0 1,5 Bourbon None Bourbon-Refill Wood f 

Auchroisk(The 
singleton) 

10 10 1 Bourbon Sherry Bourbon-Sherry Stainless steel f 

Deanston 12 50 2,5 Bourbon Sherry Sherry-Refill Stainless-steel f 

Glen Deveron 10 50 2,5 Bourbon Sherry Bourbon-Sherry Stainless-steel f 

Glen Keith 10 10 2 Bourbon Sherry Bourbon-Sherry Wood f 
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Glenrothes 1989 12 50 1 Bourbon Sherry Bourbon-Sherry Wood f 

Old Fettercairn 10 40 2,5 Bourbon Sherry Bourbon-Sherry Wood f 

Tomatin 10 5 1 Bourbon Sherry Bourbon Stainless-steel f 

Tormore 10 0 2,5 Bourbon None Bourbon-Refill Stainless-steel f 

Tullibardine 10 5 1 Bourbon Sherry Bourbon Wood f 

Arran 8 50 2 Bourbon Sherry Bourbon-Sherry Wood g 

Dufftown 15 50 1 Bourbon Sherry Bourbon-Sherry Stainless-steel g 

Glen Spey 12 0 2,5 Bourbon None Bourbon-Refill Stainless-steel g 

Glenfiddich 12 0 1 Bourbon None Bourbon Wood g 

Miltonduff 12 0 2,5 Bourbon None Bourbon-Refill Stainless-steel g 

Speyburn 10 0 1 Bourbon None Bourbon Wood? g 

Balblair 16 0 1 Bourbon None Bourbon Wood h 

Craigellachie 14 5 1 Bourbon Sherry Bourbon Wood h 

Glen Garioch 15 50 1 Bourbon Sherry Bourbon-Sherry Stainless-Steel h 

Glenmorangie 10 0 1,5 Bourbon None Bourbon-Refill Wood h 

Oban 14 0 1 Bourbon None Bourbon Wood h 

Old Pulteney 12 10 1 Bourbon Sherry Bourbon-Sherry Stainless-steel h 

Strathmill 12 0 2,5 Bourbon None Bourbon-Refill Stainless-steel h 

Tamnavulin 12 0 2,5 Bourbon None Bourbon-Refill Stainless-steel h 

Teaninich 10 50 1 Bourbon Sherry Bourbon-Sherry Stainless-
steel? 

h 

Bowmore 12 30 1 Bourbon Sherry Bourbon-Sherry Wood i 

Bruichladdich 10 60 1 Bourbon Sherry Bourbon-Sherry Wood i 

Glen Scotia 14 50 2 Bourbon Sherry Bourbon-Sherry Stainless-steel i 

Highland Park 12 50 1 Bourbon Sherry Bourbon-Sherry Wood i 

Isle of Jura 10 0 4 Whisky None Refill Wood i 

Springbank 10 30 1 Bourbon Sherry Bourbon-Sherry Wood i 

Caol Ila 15 50 1 Bourbon Sherry Bourbon-Sherry Wood j 

Clynelish 14 0 1 Bourbon None Bourbon Wood j 

Lagavulin 16 10 1 Bourbon Sherry Sherry-Refill Wood j 

Laphroaig 10 0 1 Bourbon None Bourbon Stainless-steel j 

Talisker 10 0 1 Bourbon None Bourbon Wood j 
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Appendix D – Use case 
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