
UNIVERSITY OF OSLO
Department of informatics

Agent-based
Extensions for the
UML Profile for
Service-Oriented
Architectures
(UPMS-A)

Master Thesis

60 credits

Ismar Slomic

1st August 2008

Acknowledgements

I would like to express my sincere thanks to my supervisors Dr. Arne-Jørgen
Berre (chief scientist, SINTEF ICT) and Brian Elvesæter (research scientist,
SINTEF ICT) who have given me the opportunity to learn about and acquire
hands-on experience with state-of-the-art research in software engineering.

Their dedication to their work and vast technological overview has in-
spired me beyond my own expectations and introduced me to a whole new
level of knowledge and learning. Through my affiliation with SINTEF, I have
had access to a large network of scientists, engineers, research fellows and
students working on more or less related research around the globe. Some
of them have played an important role as discussion partners. Among these
I would especially like to thank the following:

• Dr. Øystein Haugen (SINTEF,Norway) for sharing his expert in-
sight into the inner workings of the UML and SOA-Pro process, and
providing great motivation and guidance.

• Researchers Christian Hahn and Stefan Warwaz (DFKI Multi-
agent Group, Germany) for providing me highly needed support in
clarifying different parts of the case study and giving the feedbacks on
my models.

• James Odell (Chief Technology Strategist, Oslo Software and acting
chair of several OMG’s groups) for giving me opportunity to be a part
of the OMG Agent Group, and letting me having a word to say within
the work with the AMP RFP. Your talent to present the Intelligent
Agent World, in a natural and exiting way, has really encourage and
helped me in digging into this field.

• Odd Christer Brovig (Master student and friend) for being there
when i was frustrated, angry, lost and finally happy and satisfied when
finished.

3

And last, but not least my family and all friends that have supported me
all the way throughout my studies and work with thesis; thank you all!

Oslo, 01.08.2008 Ismar Slomic

Abstract

Service-Oriented Architectures are today’s favorite answer to solve inter-
operability issues. As various kinds of systems can be used to implement
Service-Oriented Architectures, the recent trend is to apply principles of
Model-Driven Development by (i) modeling the Service-Oriented Architec-
ture in an abstract manner and (ii) providing model transformations between
this abstract specification and the underlying platform specific systems.

As such, Multi-Agent Systems (MASs) became very popular as both,
Service-Oriented Architectures and Multi-Agent Systems, share several com-
monalities. In this thesis, we compare the core building blocks of Multi-Agent
Systems and a proposal for a standardized UML Profile and Metamodel for
Services (UPMS) requested by the Object Management Group. The major
objective of this investigation is to identify if SOA-Pro–the current submis-
sion under review–offers functionalities to allow modeling of Multi-Agent
Systems adequately and if not to identify what kind of functionality is miss-
ing and how this functionality can be achieved.

Interaction aspect in MASs describes how the interaction between au-
tonomous entities or organizations take place. In our comparison we found
that the ability to multicast messages is one feature that is lacking in UML
Sequence Diagrams. This is an important feature or characteristic of agent
interaction protocols. Here we show that SOA-Pro can easily be extended
to support these kinds of functionalities.

Contents

1 Introduction 11
1.1 Motivation and Background 11
1.2 Research Goals . 13
1.3 Scope . 13
1.4 Research Method . 13

1.4.1 Method . 13
1.4.2 Problem Analysis . 15
1.4.3 Innovation . 15
1.4.4 Evaluation . 16

1.5 Structure of this Thesis . 17

2 UPMS-A: Problem Analysis 19
2.1 Case Study: Supply Chain in Steel Production 19

2.1.1 Use case “Creation and Optimization of Heats and Se-
quences” . 21

2.1.2 Use Case Challenges 23
2.2 Hypothesis . 25
2.3 Definition of Success Criteria 25
2.4 Requirements for Interaction Protocols in SOA-Pro 26
2.5 Comparing SOA-Pro With MASs Aspects 26

2.5.1 Agent aspect . 27
2.5.2 Collaboration aspect 27
2.5.3 Role aspect . 27
2.5.4 Interaction aspect . 28
2.5.5 Behavioral aspect . 29
2.5.6 Mental aspect . 29

2.6 Tool Requirements & Evaluation 29
2.6.1 Requirements . 29
2.6.2 Evaluation . 30

3

3 Related Work 33
3.1 Model-Driven Development (MDD) 34

3.1.1 Model-Driven Architecture (MDA) 34
3.1.1.1 Basic MDA Concepts 35
3.1.1.2 Levels of Abstraction 35
3.1.1.3 Model Transformations 37

3.1.2 Software Factory . 37
3.1.2.1 Domain-Specific Modeling (DSM) 38

3.1.3 Summary . 38
3.2 Service-Oriented Architecture (SOA) 40

3.2.1 SOA Concepts . 40
3.2.2 Service Characteristics 41
3.2.3 SOA Modeling and Implementation 44
3.2.4 UML Profile and Metamodel for Services (SOA-Pro) . 45

3.2.4.1 Introduction 45
3.2.4.2 Basic Services 46
3.2.4.3 Service Interfaces 46
3.2.4.4 Participants and Service Ports 48
3.2.4.5 Service Contracts 49
3.2.4.6 Service Architecture 49

3.2.5 Summary . 50
3.3 Agents and Multi-Agent Systems 50

3.3.1 What is an IntelligentAgent? 50
3.3.1.1 Agent Architectures 55
3.3.1.2 Multi-Agent Systems 56
3.3.1.3 Agents and Objects 58
3.3.1.4 Agents and Web Services 59

3.3.2 Why are Agents Useful? 61
3.3.3 Agent-Oriented Software Engineering 62
3.3.4 Summary . 64

3.4 Optimization with Multi-Agent Systems 65
3.4.1 Use of Multi-Agent Systems in Transportation Schedul-

ing . 65
3.4.2 The Contract Net Protocol 65

3.4.2.1 Explanation of the Protocol Flow 67
3.4.3 The Simulated Trading Protocol 68

3.4.3.1 Explanation of the Protocol Flow 68
3.4.3.2 Sell-And-Buy Phase 68
3.4.3.3 Using the Trading Graph 71
3.4.3.4 Dynamic Scheduling Problems 74

3.4.4 Summary . 75

4 UPMS-a: Extensions for Interaction Protocols 77
4.1 Contract Net Protocol modeled with current UML 78

4.1.1 The Single Participant Approach 78
4.1.2 The Multiple Participant Approach 80

4.2 Introducing Configurations With Subsets 82
4.3 Introducing Subset Notation on Messages 84
4.4 The Semantics of the Multicasting and the Iterator-Clause . . 85
4.5 Use of Timer in UML 2 . 88

4.5.1 Custom Classifier Representing Timer 88
4.5.2 SimpleTime Model in UML Superstructure 89
4.5.3 Timer Described with UML Profile 91

4.6 Summary . 93

5 UPMS-a: Realization and Implementation 95
5.1 Introduction . 95
5.2 SOMA: Service Oriented Modeling Architecture 96
5.3 Purchasing the Order . 97

5.3.1 Service Identification 97
5.3.2 Service Specification 97
5.3.3 Service Realization . 99
5.3.4 Assembling Services and Fulfilling Contracts 101

5.4 Production and Planning . 103
5.4.1 Service Identification 103
5.4.2 Service Specification 105
5.4.3 Service Realization . 108
5.4.4 Assembling Services and Fulfilling Contracts 111

5.5 Summary . 112

6 UPMS-a: Evaluation 113
6.1 Success criterion 1 . 113
6.2 Success criterion 2 . 113
6.3 Success criterion 3 . 114
6.4 Success criterion 4 . 114
6.5 Hypothesis . 114

7 Conclusion and Future Work 115
7.1 Conclusion . 115
7.2 Achievements . 115
7.3 Future Work . 116

7.3.1 Implementation of Subset Notation 116
7.3.2 Definition of Timers 117
7.3.3 Organizations in SOA-Pro 117
7.3.4 Roles in SOA-Pro . 118
7.3.5 Complete UML 2 Tool Support 118

A List of Abbreviations 121

List of Figures

1.1 Method for Technology Research - main steps, from [33]. . . . 14
1.2 Illustration of the research method in context of this thesis. . 15
1.3 Thesis structure overview. 17

2.1 Steel production in Saarstahl AG. 20
2.2 Assignment of order positions to heats. 21
2.3 Aggregates and sequences. 22
2.4 Example daily target schedule (DTS). 22

3.1 Overview of the four modeling metalevels, defined by OMG. . 35
3.2 Simplified transformation from CIM to textual generation. . . 36
3.3 The Concepts of the OASIS Reference Model for SOA. 42
3.4 Granularity of Services. 43
3.5 Core concepts of the profile of SOA-Pro, UML Profile and

Metamodel for Services. 45
3.6 ServiceInterface with UML Interface, CollaborationUse, Part

and sequence diagram for describing behaviour. 47
3.7 Participants connected to each other through UML Ports with

same Port type. 48
3.8 Service Contract, defining the roles and the interfaces. 49
3.9 Weak notion of intelligent agents. 53
3.10 Interaction between agent and its environment through sensor

input and action output [16]. 55
3.11 Basic reactive agent architecture (from [35, page 47]). 56
3.12 Degrees of interaction, from [34, page 45]. 59
3.13 The evolution of programming according to [34]. 60
3.14 Layered view of agent-ws interactions. 61
3.15 The metamodel reflecting the agent aspect of the Pim4Agents

metamodel. 62
3.16 Concepts, notation and instance of the agent diagram. 63
3.17 FIPA Contract Net Protocol notation in Agent UML (AUML) [7]. 66

7

3.18 Step 1: Depot creates initial routing plan for each vehicle. . . 69
3.19 Step 2: Sell-And-Buy Phase is done iteratively, until an cer-

tain threshold. 71
3.20 Step 3: Calculate Trading Graph according to the decisions

from the vehicles and find node edges. 72
3.21 Step 4: Search Trading Match Phase. 74
3.22 Use of Simulated Trading Protocol together with Contract

Net Protocol in Heat and Sequence Optimization inside the
Supply Chain of Steel Production. 76

4.1 Agent Context for the single general participant. 79
4.2 UML FIPA protocol for the general participant. 79
4.3 UML FIPA protocol for the general participant, expressed

with only alt-fragments. 80
4.4 Agent Context with set of participants. 81
4.5 UML FIPA protocol for typical participants. 81
4.6 Agent Context with specialization. 82
4.7 UML FIPA protocol for typical participants, with subsets. . . 83
4.8 UML FIPA protocol with subset message notation. 84
4.9 UML FIPA protocol, compact version of multicasting and it-

eration. 85
4.10 UML FIPA protocol, expanded version of multicasting and

iteration. 86
4.11 Multicasting in FIPA Contract Net Protocol, expressed with

Pim4Agents (see Section 3.3.3). 87
4.12 Use of a Timer in UML 2, from [66, page 201]. 89
4.13 Simpletime - sequence Diagram with time and timing con-

cepts, from [61, page 513]. 90
4.14 DurationConstraint applied to simplified FIPA CNP. 91
4.15 UML Testing Profile: sequence diagram with time actions,

from [66, page 201]. 92

5.1 Major activities in SOMA. 96
5.2 High level overview and requirements of the purchase order

scenario. 98
5.3 Interfaces listing role responsibilities. 98
5.4 Identified Service Interfaces. 99
5.5 Purchasing service interface with capability as Operation. . . 99
5.6 The OrderProcessor Service Provider. 100
5.7 The processPurchaseOrderActivity Service Operation Design . 101
5.8 Assembling the parts into a deployable subsystem, Manufac-

turer. 102
5.9 Requirements of the Productions. 104
5.10 Productions Interfaces Listing Role Responsibilities. 104

5.11 Identified Service Interfaces in Productions. 105
5.12 The Planning Service Interface. 106
5.13 UML class diagram describing the relationship between entities.107
5.14 The ProductionsPlanner Agent. 108
5.15 The ProductionsPlanningUnit Agent. 108
5.16 Roles of the simulated trading protocol in Productions. 109
5.17 Custom Timer expressed by UML Class. 110
5.18 Simulated Trading Protocol in Productions. 110
5.19 Buy and sell phase of the STP in Productions. 111
5.20 Messages of the STP modelled as UML signals. 111
5.21 Assembling the parts into a deployable subsystem, Productions.112

7.1 Organizational extensions of SOA-Pro. 117
7.2 Role extensions of SOA-Pro. 118

List of Tables

2.1 Summarized requirements for interaction protocols. 26
2.2 Summarized interaction protocol evaluation of SOA-Pro . . . 29
2.3 Tool requirements. 30
2.4 Summarized tools evaluation. 32

3.1 Properties of different notions of agency. 55

10

Chapter 1
Introduction

You may be disappointed if you
fail, but you are doomed if you
don’t try.

Beverly Sills

This chapter provides an introduction to this master thesis and begins
with introducing the context of the work and the motivation for doing the
research. Then we present research scope, goals and method. Document
structure and relations between chapters are described in the final section.

1.1 Motivation and Background

Industry is increasingly interested in executing business processes that span
multiple applications. This demands high-levels of interoperability and a
flexible and adaptive business process management. The general trend in
this context is to have systems assembled from a loosely coupled collection
of services. These Service-Oriented Architectures (SOAs) appear to be a
natural environment in which agent technology can be exploited with signif-
icant advantages. Agents deployed for IT systems generally should have the
following three important properties: Autonomous, Interactive and Adaptive
(see Section 3.3).

From our point of view, considering their special features, the central role
that agents should play in a SOA scenario is to efficiently support distributed
computing and to allow the dynamically composition of Web services. In
the context of the integrated EU FP6 project ATHENA1, it was already
developed a model-driven approach for BDI2 agents [9] based on the JACK

1Advanced Technologies for Interoperability of Heterogeneous Enterprise Networks and
their Application

2Belief-Desire-Intention

12 CHAPTER 1. INTRODUCTION

[63] development environment. One of the main ideas for ATHENA was
to demonstrate how models which were defined according to the Platform
Independent Metamodel for Service-Oriented Architectures (PIM4SOA [6])
can be transformed into models that can be compiled into executable code
using a metamodel definition for JACK (see [22; 30] for a detail discussion
of the transformations). Furthermore, in order to use a Web service within
plans of JACK agents, a second transformation that maps the concepts of
a metamodel for WSDL3 to particular concepts of the JACK metamodel
(e.g. Capability) was defined. Detailed information on the model-driven
framework for the integration of services into agent systems can be found in
[74].

The PIM4SOA metamodel was one of the first attempts toward a meta-
model for SOAs on a more abstract or platform independent level, however,
its expressiveness is limited to the design of rather simple scenarios.

The Object Management Group (OMG 4) started a standardization pro-
cess for a platform independent model for services, called UML Profile and
Metamodel for Services (UPMS). The main objectives of this new standard
for services are (i) to enable interoperability and integration at the model
level, (ii) to enable SOAs on existing platforms through OMG’s Model-
Driven Architecture (MDA) initiative, and (iii) to allow for flexible platform
choices. A revised submission currently under review has been prepared that
is the base for further discussions in this thesis. A brief overview on this UML
Profile and Metamodel for Services (SOA-Pro [56]) is given in Section 3.2.4.

This master thesis is written in the context of the Semantically-enabled
Heterogeneous Service Architecture and Platforms Engineering(SHAPE)
project [14] at SINTEF ICT, Oslo, Norway. The project duration spans
over two and half years, starting in the beginning of the December 2007
and ending in May 2010. SHAPE project aims to support the development
and realization of enterprise systems based on a Semantically-enabled Het-
erogeneous service Architecture (SHA). SHA extends Service-Oriented Ar-
chitectures (SOA) with semantics and heterogeneous infrastructures (Web
services, Agents, Semantic Web Services, P2P and Grid) under a unified
service-oriented approach. The SHAPE consortium consists of well-balanced
combination of research, technology and application and service provider
partners.

The industrial case study, which will be presented in Section 2.1, comes
from the SHAPE project and will be used in our work for problem analysis
and validation of our work.

3Web Service Description Language
4http://www.omg.org/

1.2. RESEARCH GOALS 13

1.2 Research Goals

The general objective of this thesis is to compare the SOA-Pro proposal and
underlying metamodels and profiles with key functionalities of Multi-Agent
Systems (MASs), in order to investigate whether SOA-Pro offers rich and
adequate functionalities to support modeling of MASs. The reasons for this
comparison are twofold: Firstly, if the differences between both approaches
are too rigorous, we intend to extend SOA-Pro with agent-based properties
to guarantee that all strengths of MASs can actually be provided. This
is of special importance if SOA models are transformed to the particular
MAS models in the context of MDA. Secondly, this comparison could reveal
which kind of aspects can already be modeled with SOA-Pro and which kind
of aspects need to be explicitly provided in a separate Agent Metamodel and
Profile (AMP) [54] that is currently prepared at OMG.

1.3 Scope

Service-Oriented Architecture and Multi-Agent Systems are two wide re-
search fields, not formally standardized and still in their growing phase. Our
participation in the both OMG standardization processes, UPMS and AMP,
together with case study has gained us knowledge about these two fields,
and also helped us identifying requirements for the comparison of SOA-Pro.
These are presented in Section 2.5.

Covering all these needs and belonging solutions, simply is not possible
within the work with this master thesis. In fact, we had to choose only to
concentrate on the interaction aspects in the MASs, which describes how the
interaction between autonomous entities or organizations take place. Reason
for choosing this aspect, among several others, is because of its importance
with respect to the case study and its requirements.

1.4 Research Method

In this thesis we apply a research method that is a combination of the Tech-
nology Research, presented by Solheim and Stølen in [33], and the ACM’s
taxonomy of computer science presented in [13]. This kind of research meth-
ods concerns the development of a new artefact or improvement of an existing
one.

1.4.1 Method

According to Solheim and Stølen [33], Technology Research is an iterative
process consisting of the main steps as illustrated in Figure 1.1:

14 CHAPTER 1. INTRODUCTION

Figure 1.1: Method for Technology Research - main steps, from [33].

• Problem analysis - find a problem to which a solution is needed by
interacting with possible users and other stakeholders.

• Innovation - construct an artefact that satisfies the potential need.
The overall hypothesis is that the artefact satisfies this need.

• Evaluation - based on the potential need, formulate predictions about
the artefact and checks whether these predictions come true. If the
predictions turn out to be correct, it can be argued that the artefact
solves the identified problem.

The results are validated by performing test-cases, which will either
strengthen or weaken the hypotheses. This process may be repeated sev-
eral times, depending on the result of the validation.

What distinguishes technology research from technology development is
the artefact’s representation of new knowledge of some general interest. In
order to decide whether an activity is technology research or technology
development, we need to answer the following three questions:

1. Does the new artefact represent new knowledge?

2. Is the new knowledge of interest to others?

3. Is the new knowledge and results documented in a way that enables
validation by others?

In Figure 1.2, the research method is illustrated in the context of this
thesis. The three steps are elaborated further in subsections 1.4.2, 1.4.3,
and 1.4.4.

1.4. RESEARCH METHOD 15

Figure 1.2: Illustration of the research method in context of this thesis.

1.4.2 Problem Analysis

Initial step of our work was comparing the SOA-Pro proposal with the core
concepts of MASs, in order to identify the similarities and needed areas
where extensions were needed. We choose to compare SOA-Pro with the
agent aspects: agent aspect, collaboration aspect, role aspect, interaction
aspect, behavioral aspect and mental aspect (see Section 2.5).

Since the interaction aspect was central in the solution of our case study,
and we identified more problem areas than we were able to find solutions
for in the work of this thesis, we choose to focus further on the interaction
aspect.

In the context of the SHAPE project, where one of the main objectives
is to develop open-source tools, in order to support enterprise systems based
on a SHA, we wanted also to compare tools for modeling service- and agent-
oriented systems. This would help us identify the most feasible state of
the art tool covering our requirement (see Section 2.6 for requirements and
evaluation).

1.4.3 Innovation

When the problems were allocated in previous step, we analysed further the
interaction aspects within SOA-Pro at this step of the research method. The
aim was to identify solutions (artefact) to the identified problems.

Based on the identified problems, and discussions in Chapter 2, require-
ments were presented for interaction aspect that needed to be satisfied by the
resulting artefact. However, there have been situations during this process

16 CHAPTER 1. INTRODUCTION

that required that we took a step back, and analysed further, as additional
problems arise. The artefact in our work is presented in Chapter 4.

1.4.4 Evaluation

Validating the results is very important in order to confirm that result actu-
ally solves the identified problem. Thus we must validate that the extensions
to the SOA-Pro actually improves the expressiveness for agent interaction
protocols. The basis for the validation was to create predictions regarding
the hypotheses based on the interaction aspect extensions (see Section 2.2
and 2.3). Furthermore, the extensions were tested on the case study scenario
(see Chapter 5).

Thus; the prediction tried to predict how the proposed extension would
do improvement to SOA-Pro proposal, in order to specify interaction pro-
tocols, which is important within MASs. The results were validated (see
Chapter 6) in according to the evaluation criterions. If the artefacts proved
to be insufficient, we needed to take a step back to make improvements, or it
might be necessary to go back to the problem analysis with the newly gained
knowledge to analyse further.

1.5. STRUCTURE OF THIS THESIS 17

1.5 Structure of this Thesis

Figure 1.3: Thesis structure overview.

The structure of this thesis is basically divided into three main parts,
following the research method steps, as shown in Figure 1.3.

In the chapters of the Problem Analysis part, we present the back-
ground and context of our work, with problem analysis, case study descrip-
tion and related work which the reader needs to understand in order to follow
our work. Here we give briefly introduction to Model-Driven Development
(MDD), SOA, Agents and MASs, and introduce the reader to two commonly
used interaction protocols.

The Innovation part consists of only one chapter and that is proposed
extensions for interaction protocols. Note that we are using the acronym
UPMS-A in the name of Chapter 2, while UPMS-a in Chapters 4, 5 and
6. With this notation we want to illustrate that in chapter with problem
analysis (2), we introduce several aspects where SOA-Pro could and should
be extended in order to support modeling of MASs. But we only propose
solution on one of these aspects, and therefore small-case letter a.

Finally, the third part Evaluation includes chapter that present real-
ization and implementation of our extension and furthermore evaluates ex-
tensions with respect to the evaluation criterions that we presented in the
chapter with problem analysis. Last chapter concludes our work and gives
several future work ideas.

18 CHAPTER 1. INTRODUCTION

Chapter 2
UPMS-A: Problem Analysis

It isn’t that they can’t see the
solution. It is that they can’t see
the problem.

Gilbert Keith Chesterton

In this chapter we will present the problem analysis that we did in the
early stage of our work, as in accordance with the research method. First, we
start with presenting the case study in Section 2.1, which is the supply chain
in steel productions. Section 2.2 depicts the hypothesis while Section 2.3 the
success criterions (predictions). Requirements for the interaction protocols
are described in Section 2.4. In Section 2.5 we name the core building blocks
of MASs and discuss in which manner the particular aspect can be expressed
using SOA-Pro Finally, Section 2.6 presents requirements and evaluation of
the state of the art modeling tools.

2.1 Case Study: Supply Chain in Steel Production

Saarstahl AG1, with its locations in Völklingen, Burbach and Neunkirchen
along with Roheisengesellschaft Saar in Dillingen (Saarstahl and Dillinger
Hütte each with 50%) is one of the most important manufacturers of long
products in the world. The company is recognized as having a high level of
competence in the field of steel production and further processing.

Saarstahl AG is a German steel manufacturing company with global pres-
ence on the steel production market. In particular, Saarstahl AG specializes
in the production of wire rod, steel bars, and semi-finished products of var-
ious grades as well as constructional steel and broad flanged beams. The

1http://www.saarstahl.com/

20 CHAPTER 2. UPMS-A: PROBLEM ANALYSIS

product range also includes open die forgings. These products are impor-
tant preliminary products, both today and for the future, for the automotive
industry and its suppliers, the construction industry, power industry engi-
neering, the aerospace industry, general mechanical engineering, and other
steel processing branches.

The production of steel normally is the first phase of most Supply Chains
in different areas. Steel manufacturing companies are strongly affected by
bull whip effect. Due to the irregular nature of incoming orders and the
frequently changing customer requirements on accepted orders, making the
right decision at a certain stage can make the difference between earning
or loosing. In order to keep a competitive position on the market, it is im-
portant to improve operational efficiency. To achieve this, flexible planning
and scheduling systems, capable of handling considerable amounts of data,
are needed. Existing systems are commonly centralized decision making ap-
proaches, mostly data driven and often not modeling the business processes
conveniently.

Figure 2.1: Steel production in Saarstahl AG.

In the past, Saarstahl has made great efforts to deal with the planning
and scheduling problems along its production chain. These are different
from supply chains like discrete productions in the automotive cluster. Steel
production is a disassembling, continuous process starting from hot metal
which is almost anytime similar and resulting in a vast number of different
products. Time restrictions are more important than in other production
chains, since certain processes cannot be interrupted. For instance, hot metal
leaving the blast furnace factory must be transformed and casted into steel
billets within a certain time, because of the temperature it has to keep during
the process before it goes from liquid to solid.

Given a working plan, the system schedules the execution of each order
along the production chain. It monitors production on a rough (weeks) and

2.1. CASE STUDY: SUPPLY CHAIN IN STEEL PRODUCTION 21

detailed (days and hours) level, and executes an online detailed planning and
scheduling for the different manufacturing phases. It has to detect problems
in the production and handle them in order to return to normal production.
The rough working plan for each manufacturing phase is calculated on de-
mand, before final order commitment. Depending on delivery date, order
size and vertical integration certain capacities at specified aggregates have
to be roughly allocated.

Usual orders to Saarstahl vary between five to several hundreds of tons.
Batch sizes on each manufacturing level are fixed or limited, hence, orders
have to be grouped together in process units on each stage with local con-
straints to keep. For instance, inside the steel work, a production unit is
called heat with fixed size of 160 t. The orders covered by a heat have to be
of same quality, same casting format, and should have the same calculated
processing step date.

2.1.1 Use case “Creation and Optimization of Heats and Se-
quences”

In higher planning levels (sales), the global production capacities for the
different production phases are booked. After that, the planning process
continues by planning at lower levels. In the case of the creation and opti-
misation of heats and sequences, the global planning level provides the lower
level with a set of orders. This set consists normally of about 3500 order po-
sitions of different sizes, deadlines, qualities, and further restrictions related
to each order position. These positions have to be mapped into heats of a
fixed size of 160t (see Figure 2.2).

Figure 2.2: Assignment of order positions to heats.

Aggregates are the production steps of the steelwork. Each aggregate
has certain capabilities. In order to produce a specific product, the liquid
steel has to be processed by suitable aggregates. Because of the continuous

22 CHAPTER 2. UPMS-A: PROBLEM ANALYSIS

process, heats with equal quality and similar time constraints have to be
grouped into sequences to reduce the setup times and down times of the
aggregates (see Figure 2.3). After a sequence of heats has been processed
by an aggregate, the aggregate requires a certain setup time before the next
sequence can be processed. Therefore, the length of every sequence has to
be maximised to reduce production costs.

Heat and sequence creation is divided in two levels:

1. First, an initial heat creation is calculated. In this phase, the order’s
deadline is the major criterion. The aim is to minimise the number of
heats to optimise order throughput and minimise costs.

2. Secondly, sequences are created. Maximising a sequence’s length means
to minimise down times of the continuous casting aggregate and hence
optimising the aggregate’s throughput.

Figure 2.3: Aggregates and sequences.

Figure 2.4: Example daily target schedule (DTS).

The result of these two phases is a base for the creation of a daily target
schedule (DTS) as a presetting for the production inside the melting shop.

2.1. CASE STUDY: SUPPLY CHAIN IN STEEL PRODUCTION 23

This DTS consists of a partial ordered set of sequences for the continuous
castings inside the steelwork. Each sequence consists of a total ordered set
of heats (see Figure 2.4).

2.1.2 Use Case Challenges

As mentioned, the first phase is the creation of heats as batch size for the
steelwork. Input for this process is the order backlog R of order positions
which still have to be melted, average |R| 4000.

Major criterion is the latest possible manufacturing completion date of
the steelwork. Also, other restrictions are mandatory, these are:

Steel Grade: different order positions may not be inside the same heat

Casting Dimension: the formats of all different positions must be equal
in order to be inside the same heat

Continuous Casting Aggregate: order positions are mapped to deter-
mined aggregates

Subject to these restrictions, R has to be partitioned into several subsets
so that the union of all subsets defines the whole original set R. A heuristic
is used to create the heats as initial solution for the second phase.

At first, each Rj is sorted lexicographically by delivery date and order
size. Some orders have capacity greater than one heat, hence at least one
complete heat is allocated by such orders and the orders have to be separated
into several parts. Because of different lengths of billets (limited by certain
legacy systems) and order sizes further orders need to be separated and
distributed on more than one heat. Some customers demand their materials
of a single heat. This is also taken into account in this first step. Now, new
heats are created anytime a certain order does not fit completely into an
instantiated heat. The system should not separate and distribute orders if
not necessary. Hence, according to urgency and size, heats are created until
a particular minimum is reached. Secondly, all orders which have not been
assigned yet have to be mapped to existing heats or probably new heats
have to be created. In this step, a score function is used by each order to
determine how worthwhile it is to get into a certain heat. Hence, the overall
costs are minimised. The score must be inside an user defined range. Since
it is possible, that certain orders might not be assigned according to this
range, in the next step, the “best" score is criterion. The first phase is closed
by a plausibility check on the filling degree. As a result, heats with a filling
degree greater than 95% have to be received.

In the second phase sequences have to be created and its compositions
have to be optimised. The planning department chooses a certain number
of heats as a sequence. This set consists of a set order positions. Since

24 CHAPTER 2. UPMS-A: PROBLEM ANALYSIS

a sequence is created for production, the major criterion “latest possible
manufacturing completion date" of the first phase has become irrelevant.
Other, new restrictions are mandatory, these are:

• The filling degree of a heat must be kept inside a certain tolerance
range

• Number of semi finished products lengths is limited to 4

• Each order position might not be separated on more that three heats

Most important criterion in this scenario is the degree of degassing. Cer-
tain orders need to be degassed for reasons of homogeneity. During the first
phase, this criterion has not been taken into account since it is counterpro-
ductive to the latest possible manufacturing completion date. Orders which
need a degassing are evenly distributed on each Rj in the initial solution.
Purpose of the second phase is to group all orders which need a degassing
into equal heats. So, the number of degassed heats and therefore production
costs will be minimised.

The former approach at Saarstahl was to solve it manually. An employee
of the planning department chose a certain subset - the length of the corre-
spondent sequence - and tried to exchange order positions between the heats
in order to optimise the number of degassed heats. Because of the complex-
ity of the problem and the fact that this has to be done for almost every
sequence of DTS, an automated solution was needed.

The presented approach uses Simulated Trading (see Section 3.4.3) to
solve it. It is an improvement mechanism starting from any initial solution
with random heats as generated during the heat creation. By successively
“selling" and “buying" certain order positions each heat tries to optimise its
composition of order positions. Objective is to achieve a new assignment
of the already accepted order positions to the heats with an optimised cost.
The trading goes over several rounds. In each cycle the heat agents submit
one offer to sell or buy an order position. At the end of each round a trading
agent tries to match the sell and buy offers.

This is a special kind of hill-climbing algorithm, which can be interrupted
anytime to pick the best solution found. This has to be done with all created
subsets in parallel which are the number of sequences in DTS. The protocol
is depicted in the Section 3.4.3 (Figure 3.22).

The Saarstahl case is a proof of concept for designing the main processes
within the supply chain based on the results of our thesis work. For the
“Creation and Optimization of Heats and Sequences" scenario, the following
issues are of main importance.

• Which parts need to be modelled and how to model particular parts?

• How to simplify the orchestration by using process modeling and ser-
vices?

2.2. HYPOTHESIS 25

• How to integrate planning and scheduling algorithms into SOA? How
to integrate existing legacy systems? For Saarstahl, it is fundamental
that existing systems (e.g. data bases) can be re-used within the SOA
to maintain the high product quality.

2.2 Hypothesis

While in the previous part of the problem analysis we described a case study,
recognized the problems within its domain and proposed a solution, in here
we state the hypothesis that this thesis needs to address:

H1 Proposed extensions will make SOA-Pro and UML suitable to
express agent interaction protocols.

2.3 Definition of Success Criteria

Since the hypothesis, H1, is stated, and the requirements for its main parts
listed, the next step would be to define the success criteria by which we will
test the hypothesis. The success criteria will focus on the expectation of H1,
meaning the improvement of the SOA-Pro in order to better support agent
interaction protocols. Through the success criteria we define the desired
effect that UPMS-a will provide. They are presented as predictions, and will
be evaluated in Chapter 6. The evaluation will validate the hypothesis H1.

Success criterion 1 A suitable extension of SOA-Pro will make it possible
to express multicast of messages between participants in agent inter-
action protocols.

Success criterion 2 A suitable extension will make it possible to group
participants in groups in order to express which group of participants
are receiving or sending particular message.

Success criterion 3 A suitable extension will only introduce or extend the
SOA-Pro proposal where needed, and use as much as possible existing
concepts in SOA-Pro or UML.

Success criterion 4 A suitable extension will make it clear how to use
timer concepts within SOA-Pro in order to express deadlines in inter-
action protocols.

In order to investigate further the hypothesis, we will define extension
requirements for interaction protocols, which will be used to evaluate SOA-
Pro in Section 2.5.4.

26 CHAPTER 2. UPMS-A: PROBLEM ANALYSIS

2.4 Requirements for Interaction Protocols in SOA-
Pro

Since Simulated Trading Protocol (STP) is central in solution to the use
case in our case study, and we believe that this protocol represent features
commonly needed within agent interaction protocols, it is required that SOA-
Pro supports for modeling these protocols.

In order to support agent interaction protocols, following features are
needed:

1. Multi-receiving and sending of messages. For instance the Initiator is
sending several call for proposal (cfp) messages in one step to potential
participants, and is receiving one or many responses in return.

2. Grouping of the participants. It is very important to be able to express
which group of participants is receiving or sending the messages.

3. Iterating multicast messages from and to particular participant groups,
in order to express possible message exchange between Initiator and
Participant

4. Defining timer concepts in order to express deadlines and prevent the
possible deadlock when the Initiator waits for responses from Partici-
pants.

Interaction Protocols Requirement
IPR1 Multi-receiving and sending of messages
IPR2 Grouping of participants
IPR3 Iterating multicast messages from participant groups
IPR4 Defining timer concepts

Table 2.1: Summarized requirements for interaction protocols.

2.5 Comparing SOA-Pro With MASs Aspects

In general, agents can be software agents, hardware agents, firmware agents,
robotic agents, human agents, and so on. While software developers nat-
urally think of IT systems as being constructed of only software agents,
a combination of agent mechanisms might in fact be used from shop-floor
manufacturing to warfare systems.

These properties are mainly covered by a set of core building blocks,
each focusing on different viewpoints of MASs. Even if these aspects do
not directly appear in SOA-Pro, we can relate them to concepts used in

2.5. COMPARING SOA-PRO WITH MASS ASPECTS 27

SOA-Pro. In the following, we name the core building blocks of MASs and
discuss in which manner the particular aspect can be expressed using SOA-
Pro. However, our focus here is on the Interaction Aspect described in
Section 2.5.4, and we will evaluate it in according to the requirement we
specified in previous section.

2.5.1 Agent aspect

Agent aspect describes single autonomous entities and the capabilities each
can possess to solve tasks within an agent system. In SOA-Pro, the meta-
class Agent describes a set of agent instances that provides particular service
capabilities. As the metaclass Agent inherits from the metaclass Participant
(see Figure 3.5), an Agent can be considered as entity providing services
(i.e. capabilities). This property nicely corresponds to the manner in which
agents and capabilities are linked in MASs. Agents in SOA-Pro are special-
ized because they have their own thread of control or life cycle. Another
way to think of agents is that they are active participants in a SOA system.
Participants are Components whose capabilities and needs are static. In
contrast, Agents are Participants whose needs and capabilities may change
over time. A Participant represents some concrete Component that provides
and/or consumes services and is considered as an active class. However,
SOA-Pro restricts the Participant’s classifier behavior to that of a construc-
tor, not something that is intended to be long-running, or represent an active
life cycle.

2.5.2 Collaboration aspect

Collaboration aspect describes how single autonomous entities collaborate
within MASs and how complex organizational structures can be defined.
In SOA-Pro, a Contract indicates roles interacting within this part and how
messages are exchanged between these parties, which is mainly done through
UML Sequence Diagrams. In SOA-Pro, a contract fulfillment (Collabora-
tionUse) indicates which roles are interacting (i.e., which parts they play) in
the contract. The concept of a ServiceContract can be used to model simple
collaborations in MASs. However, social units like organizations and groups
that are formed by agents during run-time to take advantage of the synergies
of its members, resulting in an entity that enables products and processes
that are not possible from any single individual are out of scope of SOA-Pro.

2.5.3 Role aspect

Role aspect in MASs covers feasible specializations and how they could be re-
lated to each role type. In SOA-Pro, the concept of a role is especially used
in the context of ServiceContracts. Like in MASs, the role type indicates
which responsibilities the particular entity takes on. However, in MASs,

28 CHAPTER 2. UPMS-A: PROBLEM ANALYSIS

several different notions of the term role can be considered. Often, beside
the more domain-related concept of a role, especially in collaborations be-
tween agents, social roles are typically used to express the power relationship
between participating entities. Furthermore, in MAS, roles are considered
as first class entities. Like agents, that can have access to particular capabil-
ities, behaviors, and resources. These more complex characteristics are not
part of SOA-Pro, and can even be hardly modeled using pure UML.

2.5.4 Interaction aspect

Interaction aspect in MASs describes how the interaction between autonomous
entities or organizations take place. Each interaction specification includes
both the entities involved and the order which messages are exchanged be-
tween them in a protocol-like manner. In SOA-Pro, ServiceContracts are
the place where interactions are defined. Like agent interaction protocols,
a services contract takes a role centered view of the business requirements
which makes it easier to bridge the gap between the process requirements
and message exchange. Furthermore, a Contract can have an owned behavior
which in most situations would be a UML Sequence Diagram. However, the
ability to multicast messages is one feature that is lacking in UML Sequence
Diagrams which is an important feature or characteristic of agent interaction
protocols.

IPR1 As we mentioned above, UML Sequence Diagrams are often used
to express interaction between parties. However, UML Sequence Di-
agram does only support scenarios where messages are sent to only
single entity and is lacking in supporting the multi-send and receive of
messages.

IPR2 This requirement are partly fulfilled by Sequenced Diagrams, since it
is possible to have one lifeline for each of the typical group a participant
may be in. In this it is possible to visualize more directly that there
are several participants. We are not able, however, to describe the
multiplicities of each of the groups.

IPR3 Since we already have pointed that multicast is lacking feature in
UML Sequence Diagrams, this feature has never been needed and
therefore this requirement is not fulfilled.

IPR4 SOA-Pro does not mention timer concepts at all. Although UML
provide SimpleTime model in the UML Superstructure, it is rarely
used and many designers are not even aware of that it exists.

0: Requirement is not fulfilled 1: Requirement is partly fulfilled 2: Re-
quirement is fulfilled

2.6. TOOL REQUIREMENTS & EVALUATION 29

Evaluation Score
IPR1 Multi-receiving and sending of messages 0
IPR2 Grouping of participants 1
IPR3 Iterating multicast messages from participant groups 0
IPR4 Defining timer concepts 1

Table 2.2: Summarized interaction protocol evaluation of SOA-Pro

2.5.5 Behavioral aspect

Behavioral aspect in MASs describes how plans are composed by complex
control structures and simple atomic tasks such as sending a message. In
SOA-Pro, a ServiceInterface is a BehavioredClassifier and can thus contain
ownedBehaviors that can be represented by UML 2 Behaviors in the form
of an Interaction, Activity, StateMachine, ProtocolStateMachine, or Opaque-
Behavior.

2.5.6 Mental aspect

Mental aspect in MASs defines concepts like Beliefs, Intentions, and Goals.
Such concepts are neither part of the metamodel of SOA-Pro nor part of the
profile. However, these concepts are very useful when designing MASs based
on a BDI architecture.

2.6 Tool Requirements & Evaluation

In order to solve some of the problems in our case study, we need sufficient
UML Tool which we can use for service and agent modeling. Since SOA-Pro
provides description of its UML Profile, we want to be able to define and
apply UML Profiles, in addition to other requirement as described in next
section.

2.6.1 Requirements

The tool shall:

1. be implemented in an open source technology.

2. be metamodel-based. The tool shall not only base on the UML 2
metamodel, but also check for correctness of model elements against
the metamodel.

3. give support for defining stereotypes which extends elements of UML
2. Afterwards, the profile shall be easy to apply to models and model
elements, and be displayed graphically.

30 CHAPTER 2. UPMS-A: PROBLEM ANALYSIS

4. represent models as common XMI Schemas to facilitate interchange of
semantic models, according to MDA approach.

5. graphical support for UML 2 Class Diagrams.

6. graphical support for UML 2 Sequence Diagrams with features as; com-
bined fragments (alt,opt,break..) and messages representing operations
or signals.

7. graphical support for UML 2 Component Diagrams with features as;
components, ports and owned elements (activity or sequence diagrams
describing behaviour).

8. graphical support for UML 2 Activity Diagrams.

9. have a graphical interface that could design and manipulate visual
models in different views.

10. be easy to use and stay in a stable condition so the user doesn’t expe-
rience lot of bugs and unexpected errors.

Tool requirement
TR1 Open-Source technology
TR2 Metamodel-based
TR3 UML Profiles
TR4 XMI Schemas
TR5 Class Diagram
TR6 Sequence Diagram
TR7 Component Diagram
TR8 Activity Diagram
TR9 Multiple-view support
TR10 Usability & Stability

Table 2.3: Tool requirements.

2.6.2 Evaluation

Four modeling tools were evaluated, according to requirements specified in
previous section, and mainly just two of them could be useful in our work.
Summarized comparison of tools is collected in Table 2.4.

UML 2 Tools v0.7.1 2 is a set of GMF-based (The Eclipse Graphical
Modeling Framework) editors for viewing and editing UML models,
and is a part of the Model Development Tools (MDT) Eclipse project.

2http://www.eclipse.org/mdt

2.6. TOOL REQUIREMENTS & EVALUATION 31

UML 2 Tool is in incubation phase now and there is huge lack of func-
tionality and UML support compared with other tools. But we believe
that this tool will be very valuable in the meaning of the MDA ap-
proach in the future work since it is open-source, built upon Eclipse
platform and represent models as common XMI Schemas which makes
the interchange of models between tools possible.

Objecteering Enterprise Edition v6.1 (Obj.) 3 claims to be a tool for
complete coverage of Model-Driven Development, from goal analysis
right through to coding and testing. The vendor, SOFTEAM4 offers
Free Edition of the modeling tool, but in order to use UML Profiles
you are required to upgrade and pay for commercial Enterprise Edi-
tion. Objecteering seems to be sufficient for simple UML modeling,
but when it comes to defining and applying UML Profiles, it is lacking
in usability, functionality and UML 2 compatibility. We should expect
more of an commercial product and therefore it almost gets the same
score as UML 2 Tools.

Papyrus v1.9.0 (Pap.)5 is a dedicated tool for modeling within UML 2.
This open source tool is based on the Eclipse environment and key
features are (i) compatibility with UML 2, (ii) development support
for UML Profiles and (ii) code generation from models. It covers most
of our needs and is ranked as number 2 in our evaluation.

IBM Rational Software Modeler v7.0.5(RSM) 6 is the most complete
tool of these four we have evaluated. It covers all of our requirements
and even more. Only drawback is that it is commercial. However,
through IBM Academic Initiative7, it is possible to gain access to soft-
ware, hardware, training and other benefits, with no cost and this has
been the main reason why we choose this tool instead of Papyrus.

3http://www.objecteering.com/
4http://www.softeam.fr
6http://www.ibm.com/developerworks/rational/products/rsm/
7http://www.ibm.com/university/academicinitiative

32 CHAPTER 2. UPMS-A: PROBLEM ANALYSIS

0: Requirement is not fulfilled

1: Requirement is partly fulfilled

2: Requirement is fulfilled

Requirements Obj. Pap. UML 2 Tools RSM
TR1 Open-Source technology 0 2 2 0
TR2 Metamodel-based 1 2 1 2
TR3 UML Profiles 1 2 0 2
TR4 XMI Schemas 0 2 2 2
TR5 Class Diagram 2 2 1 2
TR6 Sequence Diagram 1 2 0 2
TR7 Component Diagram 1 1 1 2
TR8 Activity Diagram 2 2 1 2
TR9 Multiple-view support 0 0 0 2
TR10 Usability & Stability 1 1 0 2

Score 9 16 8 18

Table 2.4: Summarized tools evaluation.

Chapter 3
Related Work

Not to know what has been
transacted in former times is to
be always a child. If no use is
made of the labors of past ages,
the world must remain always in
the infancy of knowledge.

Marcus Tullius Cicero

This chapter introduces the technologies, methodologies and concepts
this thesis are based on. Section 3.1 presents the foundations of the Model-
Driven Development (MDD). Section 3.2 explain the basics of the Service-
Oriented Architecture (SOA), which provides an technology independent
architecture for the integration of business processes. We assume that reader
has already some knowledge about this topic and will not cover all the details.
Here we also introduce core concepts of UML Profile and Metamodel for
Services (SOA-Pro).

Section 3.3 introduce the Agent concepts. Questions like “what is an
Intelligent Agent?” and “why are Agents useful?”, are answered in this sec-
tion. We also explain the basics of Multi-Agent Systems (MAS) and Agent-
Oriented Software Engineering (AOSE). Finally, Section 3.4 explain how we
can optimize supply-chain process in steel production by interaction with
use of two well-known interaction protocols in MAS.

The last two sections about Agents are the biggest part in this chapter.
The reason why using so much space is that we believe this is still an undis-
covered field for most readers and could somehow be difficult to relate to.
At the same time we feel that it’s important to have the basic understanding
to be able to follow further discussions in this thesis.

34 CHAPTER 3. RELATED WORK

3.1 Model-Driven Development (MDD)

Model-Driven Development (MDD) is a software engineering approach with
particular focus on models, automation and code generation. The difference
to traditional software development is that MDD proposes to leverage mod-
els to generate the specified software system. MDD aims to leverage models
for automatically generating applications with appropriate code generation
techniques and templates. Models are already used to specify software sys-
tems, but unfortunately these models mostly serve only for the purpose of
documentation and comprehending the system. Changing this fact by using
these existent models to generate the application, software development can
easily be automated. By automatic code generation, the quality of an ap-
plication can be increased, due to the fact that code is produced according
to a certain structure, scheme or rules. In this way the generated code will
precisely match the models. Further on this road the evolution could lead
to the fact that modeling languages replace the implementation languages,
just like the way third-generation languages replaced the assembly languages
through the introduction of compilers.

Two currently dominant approaches to MDD are Model-Driven Archi-
tecture (MDA) [51] and Software Factories (SF) [27]. We will first start
with giving a short introduction in these two approaches and then at the
end compare them with each other in order to discover their strength and
weakness.

3.1.1 Model-Driven Architecture (MDA)

Impelled from the idea that models are vital and necessary to handle com-
plexity in software development, Model-Driven Architecture (MDA) [51]
specifies a process for creating models.

The Unified-Modeling Language (UML) [58] is the proposed modeling
language for MDA. According to [60, page 11-19], UML’s architecture is
represented by a four layer hierarchy as shown in Figure 3.1. On the top of
this hierarchy is the meta-metamodel layer (M3), also known as the Meta-
Object Facility (MOF) [59] layer, followed by the metamodel layer (M2)
representing the UML. The third layer is model layer (M1), where the actual
modeling process takes place. The architectural hierarchy bottoms out at
the data layer (M0), which contains the run-time instances of a model.

Furthermore, UML provides extension mechanisms (Stereotypes, Tagged
Values and Constraints) to extend or specialize itself for specific purposes
and domain. A collection of Stereotypes, Tagged Values and Constraints is
called a UML Profile (see Figure 3.5 for example). Profiles are necessary and
needed in the context of MDA, because they facilitate code generation.

Examples of some UML Profiles are UML Testing Profile (see Section 4.5.3,
page 91), OMG Systems Modeling Language (SysML) and UML Profile for

3.1. MODEL-DRIVEN DEVELOPMENT (MDD) 35

Figure 3.1: Overview of the four modeling metalevels, defined by OMG.

Corba. These, and several other profile specification can be downloaded from
OMG’s catalog of UML Profile specifications [55].

3.1.1.1 Basic MDA Concepts

Platform independency is an important part of MDA. Particularly due to
this aspect, the software system is supposed to be modeled in three major
steps. Starting with the Computational Independent Model (CIM) to present
a high-level overview of the software system, continuing with the Platform
Independent Model (PIM) encapsulating the entire software specification,
apart from the any platform specific aspects, the modeling process finishes
with the enhancement of the PIM to a Platform Specific Model (PSM). The
PSM binds the software system to a specific platform.

3.1.1.2 Levels of Abstraction

Another important aspect of MDA is the transformation between model. In
order to achieve the independence from the software application platform,

36 CHAPTER 3. RELATED WORK

Figure 3.2: Simplified transformation from CIM to textual generation.

and for reasons of longevity in the rapid change of the business development,
MDA defines three main levels of abstraction. These are:

CIM The Computational Independent Model (CIM) focuses on the envi-
ronment of the system and hides the structural details regarding the
implementation platform. It captures the business context and the
business requirements. Usually, the CIM is constructed by a business
analyst.

PIM The Platform Independent Model (PIM) describes the system from a
platform independent perspective. It captures the abstractions of one
or more platform, by hiding the platforms specific data. The platform
in this context is the set of technologies and subsystems that provides
the needed functionality. A PIM is mostly used in describing the ar-
chitecture of a system, including its operation and details, but without
any specific implementation data.

PSM The Platform Specific Model (PSM) is the representation of the sys-
tem including the platform specific data. It combines the specification
of the PIM with the details of a specific platform. In the MDA context,
a PSM is created via a model transformation from a PIM. For instance,
a PIM describing the domain model of a system can be transformed to
a specific implementation platform like J2EE or .Net.

3.1. MODEL-DRIVEN DEVELOPMENT (MDD) 37

3.1.1.3 Model Transformations

As depicted in Figure 3.2, we can go from one viewpoint to other by doing
transformation. There exists two kind of transformations; (i) model-to-model
which defines mapping rules between concepts in source to target model and
(ii) model-to-text for textual generations (e.g. code for specific application
language). Note that model-to-model transformation is not only used to
move from one abstraction level to another, but could also be used between
models at the same level, for instance PIM-to-PIM or PSM-to-PSM.

Several model transformation languages have emerged along with Model-
Driven Engineering (MDE). Some of them specifically target the definition
of model-to-model transformations, like The Atlas Transformation Language
(ATL) [43]. Other are targeted for the definition of model-to-text transfor-
mations (e.g. code or documentation generators), like MOFScript [23]. Most
of the transformation languages are simple, rule-based languages and their
modularization constructs do not scale as the transformations get complex
or large in size.

3.1.2 Software Factory

Microsoft introduces Software Factories (SF) [27] as a new software develop-
ment paradigm. SF primarily focuses on Product Line Development, which
copes with developing a set of similar but distinct products. In this context
SF relies heavily on models and automation, which are basic concerns of
MDD.

Jack Greenfield and Keith Short define the methodology Software Fac-
tory [27] as followed: “A Software Factory is a Software Product Line that
configures extensible tools, processes, and content using a software factory
template based in a software factory schema to automate the development
and maintenance of variants of an archetypical product by adapting, assem-
bling, and configuring framework based components."

A Software Factory has two central elements, (i) a Software Factory
Schema and (ii) a Software Factory Template. A SF Schema defines, cate-
gorizes and summarizes the artifacts and assets required to build a software
product line. It can be seen as a recipe listing ingredients, tools and the ap-
plication process. A SF Template is based on the SF Schema and represents
the implementation of the SF Schema that means that all defined assets and
artifacts have to be built and made available. The implementation comprises
among others developing DSLs. The SF Template can be seen as a bag of
groceries containing the ingredients listed in the recipe (SF Schema).

A core principle of the SF approach is to enable a high degree of reuse
of existing assets and development of new reusable assets. The development
of a specific member of a product family comprises reusing existing assets
and developing variable assets for that specific member. The SF approach

38 CHAPTER 3. RELATED WORK

uses the concept of Domain-Specific Modeling (DSM), which utilizes Domain-
Specific Languages (DSLs) for modeling.

3.1.2.1 Domain-Specific Modeling (DSM)

The purpose of DSM serves primarily for the creation of models for com-
putation and secondarily for documentation. Models should be able to be
processed by tools to generate source code. DSM aims to bridge the gap be-
tween the problem domain and the solution domain by the means of abstrac-
tion. DSLs raise the level of abstraction by incorporating domain concepts.
A DSL uses concepts and terms of the problem domain and provides specific
graphical and textual notations to create models, thus it is very close to the
problem domain. The more a DSL can be tailored to a specific domain or
purpose the more efficient the DSL and the code generation will be.

The architecture of a DSL is similar to UML’s architecture, which is also
represented by a four-layer hierarchy. The significant difference is that the
metamodel layer (corresponding to UML’s M2 layer) has to be defined, while
UML’s metamodel layer is already defined and can be extended by Profiles.
The mapping of a DSL model into a programming language is conducted by
an appropriate code generator, which must be designed and developed for a
given DSL or at least be configurable to tailor its task to a specific domain. A
DSL is mapped to a programming language, just as a programming language
like Java is mapped into byte code. According to this analogy, the compiler
would correspond to the code generator.

3.1.3 Summary

Available MDA tools 1 demonstrate that productivity can be increased by
applying the MDA approach. Certainly, the utilized tool plays an impor-
tant role, but a better productivity can be achieved particularly due to the
omission of the implementation phase. A disadvantage in this case is that
the learning phase for the MDA tool is due to its complexity and individual-
ity very time-consuming. Nevertheless, the modeling process can be started
immediately, since the modeling language (UML) is already provided, apart
from the fact that specific UML Profiles are needed and not granted by the
MDA tool. As we described earlier in Section 2.6, tools supporting com-
plete UML specification and UML Profiles are still missing, and are maybe
the biggest challenge when using the MDA approach. Also, each tool has
it’s own way of implementing and defining UML Profile, which extend the
learning phase further.

The SF solution shows that the SF methodology can increase productiv-
ity as well, basically for the same reason as in the case of MDA, the imple-
mentation part is omitted. But, before reaching this point, the expense for

1http://www.omg.org/mda/products_success.htm/

3.1. MODEL-DRIVEN DEVELOPMENT (MDD) 39

the SF approach is much higher, because the DSL has to be developed first,
which is time-consuming and sophisticated, and requires expert knowledge
about the problem and the solution domain. This fact delays the start of
the modeling process.

Once a DSL is created, a better efficiency can be achieved, because a
DSL comprises domain concepts and thus it is closer to the problem domain.
This fact facilitates involving business stake holders into the specification
process to avoid misinterpretation and confusion. This is an advantage for
DSLs, since the comprehension of UML models require UML experts.

Quality and reliability of a software system can be improved as well in
both approaches, particularly due to the reason that the generated code
is less incorrect, because of its generation according to a scheme, rules or
code-templates. Provided that the model interpreter works properly, the
generated code is more reliable than handcrafted code that usually contains
bugs, because a developer tends to make mistakes. Furthermore, the gen-
erated applications exactly meet their specification in form of models, since
they are generated according to them.

Certainly, MDA and SF apply similar methods and techniques for mod-
eling and mapping, but they have distinct objectives. Due to the high ex-
pense of developing a DSL and a code generator, the SF approach is only
recommendable for developing Product Lines, because this expense has to be
compensated somehow. However, once a DSL and the code generator are de-
veloped, the costs for generating the product line members are very low due
to their similarity. The overall costs of a product line development can then
be distributed on the amount of all members, which makes the SF approach
productive. Otherwise, for One-Off development, the SF approach would
be expensive in terms of time, budget and resources. MDA on the contrary
can be used for One-Off Development and Product Line development, since
there is no additional expense to compensate. Product Line development
with the MDA approach would even increase the regular expected degree of
productivity, because the first model could be reused for the other product
line members.

Fact is that MDA is a pure MDD approach and focuses on platform in-
dependence, while SF is an entire software development methodology and
focuses on product line development. UML as the standard modeling lan-
guage for MDA is a general purpose language, which has to be specialized
and constrained with Profiles to be appropriate for MDD. A DSL in contrary
is supposed to be developed for a specific domain from beginning, without
specializing and constraining afterwards, in this manner DSLs can be very
efficient within that domain, but also very useless in other domains. On
the whole, both approaches have their strengths and weaknesses; none of
them is clearly in advance. Depending on the purpose they are applied for,
they demonstrate different strengths and weaknesses. An appropriate prob-
lem domain, professional developers, a suitable tool and a precise idea of the

40 CHAPTER 3. RELATED WORK

intended products or product family, can guarantee each approach’s benefits.

3.2 Service-Oriented Architecture (SOA)

It is hard to find a comprehensive definition of Service-Oriented Architecture
(SOA) because up to now, SOA has not been standardized. Therefore, this
section introduces the most important and widely accepted concepts and
ideas behind SOA. Moreover, this section gives a brief overview how SOA-
based systems usually look like in practice.

SOA is not new, it has been around for many years, but it has gained
popularity due to the increase of the complexity in today’s software sys-
tems and [46] introduces SOA as a concept whose time has come. SOA is
not something magic, and certainly not a “fix” to all problems in enterprise
systems, but a vision and guideline that allows the IT-functionality to be
delivered as modular business services in order to achieve specific business
benefits.

But what is SOA? If you google this question you will get around 9
million results, and hopefully not that much different answers, but many
enough to conclude that there is no common definition. However, according
to [46], it is a conceptual, technology independent, business architecture
that allows business functionality or application logic to be available through
reusable IT services. It is a concept, guideline, pattern, an approach and a
philosophy of how IT functionality can be planned, designed and delivered
in such a way that it will achieve a specific business goal. Therefore it
assures interoperability, reusability and integration across all business
processes and technology platforms.

According to the OASIS 2 SOA Reference Model [53], SOA is a paradigm
for organizing and utilizing capabilities of different ownership domains. It
provides the means of organizing solutions owned by others, which combined
with locally “owned", enable a more valuable usage of these solutions. The
main concept of SOA is the service. It is the centerpiece of SOA and con-
sidered also as its primary architectural asset. We will base our description
of the service and other relating concepts in the reference model introduced
below.

3.2.1 SOA Concepts

The Reference Model for SOA is an abstract framework for understanding
significant relationships among the concepts of the service domain. In the
lack of a standard, the abstract framework aims to provide the essence for
SOA, in a vocabulary and a common understanding of its concepts. It pro-
vides an abstract model not connected to any various existing or future

2Organization for the Advancement of Structured Information Standards

3.2. SERVICE-ORIENTED ARCHITECTURE (SOA) 41

deployment technology for this architecture.
Figure 3.3 shows the concepts of the SOA Reference Model. To reduce the

complexity of the figure, we did not show concepts related to the Execution
Context.

A Service is described in the reference model as a mechanism that enables
access to a set of capabilities. The capabilities incorporate the business
behaviour, while the access to them is provided using prescribed interfaces.
The service is provided by a service provider and invoked by the service
consumer.

Except the Service description that specifies the capabilities offered, con-
straints and policies, and the information needed to use the service, the rest
of the information is hidden to the service consumer.

In the context of service dynamics, there are some other concepts involved
in the interaction between services: the visibility between exchanging parties
and the actual interaction between them. The visibility relies in the ability
of providers and consumers to interact with each other, while the interaction
itself involves performing actions against the service. In many cases the
interaction takes place through message exchange.

In order to describe the interaction process, the service description refer-
ences an information model and a behaviour model. The information model
of a service describes the information that will be exchange with the service.
It includes both the structures(syntax) and meaning(semantics) of the infor-
mation to be exchange. The behaviour model provides the knowledge of the
actions invoked against a service, including the process of interacting with
the service.

The interaction itself is described in the execution context. The execution
context of a service interaction is the set of infrastructure elements, processes
and entities that form the path between the service provider and consumer.

Other concepts about the service are the service functionality, included
in the service description and policies & contracts. The policy represents
some constraints or conditions on the usage of the service, while the service
contract is the agreement by two or more parties.

After introducing the service and other concepts related to its description
or interaction, we will have a look at some of its characteristics.

3.2.2 Service Characteristics

This section introduces the service concept like it is utilized in SOA. A
service can encapsulate different amounts of business logic: a single process
step, larger parts of a business process, or a complete process (see Figure
3.4).

Service-orientation is the foundation for SOA. The difference between
SOA and former distributed computing approaches is the way how compo-
nents of SOA systems are designed. This section explains the most important

42 CHAPTER 3. RELATED WORK

Figure 3.3: The Concepts of the OASIS Reference Model for SOA.

service-oriented design concepts for services in the context of SOA. More-
over, we show how SOA systems look like in practice. According to [46], here
is an overview of the most important design concepts of services in SOA:

Coarse grained services is one of the most used words in SOA. This char-
acteristic involves the functionality the service encapsulate. The ser-
vice represents business functions and processes. Other components or
services are also contained within functions and processes. The gran-
ularity depends on the functionality of the service. For instance too
coarse-grained services will become “heavy" and encapsulate a large
number of components and transactions, while fine-grained services
have a narrow scope and fewer elements.

Contracts: Well defined service contracts involves having a clear specifi-
cation on the functional and technical details needed to consume a
service. It gives the outside world the needed information to use the
service, while hiding the technical details.

3.2. SERVICE-ORIENTED ARCHITECTURE (SOA) 43

Figure 3.4: Granularity of Services.

Loose-coupling: Loosely coupled services is a term that in the context of
service design, implies for the service to have a specific implementation.
This characteristic describes the service as an entity not bound to the
implementation technology. In the need of change this implementation
could be replaced without any further changes in the architecture of
the system.

Discover-ability: Discoverable in the service aspect means that the service
constructs or service description except for being well designed should
also be published and visible to the consumer. They should be easily
discovered implying that the services are listed in service registries in
order to achieve a bigger audience than the one intended in the design.

Compose-ability: Composable is a term use in SOA to characterize a ser-
vice as a collection of other components or services. The service con-
tains the components that form its functionality, but other services may
also be incorporated in it. This leads to an incremental extensibility
of services.

A service in SOA is considered to be business aligned. It should en-

44 CHAPTER 3. RELATED WORK

capsulate the business requirement, behaviour and other imperatives which
are found in business modeling. In order have a long lasting alignment, the
service should be durable. The durability of the service do not imply it
to be rigid and not flexible, but to hold the relationship to the business it
represents.

The service in SOA is reusable and interoperable. These are the main val-
ues that SOA promotes, but also the most difficult to achieve. The reusability
implies incorporating the proper functions of the services, in the way that
it can have a clear definition of its use and multiple consumption partners.
The interoperability involves clear definition of the application policies and
standards of the services.

3.2.3 SOA Modeling and Implementation

SOA has been associated with a variety of approaches and technologies. Web
Services are one of many implementations of SOA, but many people think
that this is actually SOA. The lack of common definition of SOA has made
the work difficult with respect to Model-Driven Architecture (MDA) ap-
proach of building platform independent model. However, one of the recent
results on this field is the Platform-Independent Model for Service-Oriented
Architecture (PIM4SOA) which were developed during the ATHENA project
at DFKI3. The project did not only build PIM, but also graphical editor in
Eclipse environment to support underlying language. But, the problem was
that metamodel was large and complex, and the service concept almost didn’t
exist. Its expressiveness is limited to the design of rather simple scenarios

November 2006, the Object Management Group (OMG) started a stan-
dardization process for a platform independent model for services, called
UPMS (UML Profile and Metamodel for Services) [56]. The main objectives
of this new standard for services are (i) to enable interoperability and inte-
gration at the model level, (ii) to enable SOAs on existing platforms through
OMG’s MDA initiative, and (iii) allows flexible platform choices.

Initial submission to the RFP was submitted by IBM, together with
some other partners and concentrated most on metamodel. This submission
has lately been merged with the submission from Adaptive, EDS and Model-
Driven Solutions and are currently under review. The focus now lies on UML
Profile since it’s more natural to use profiles when extensions are related to
UML, and it’s easier to apply it to existing modeling tools. By the end of
2008, OMG should vote and adopt specification that covers the requirements
from RFP and seems to be most feasible.

A brief overview of this UML Profile and Metamodel for Services (SOA-
Pro) [17] is given in next sections and is also the base for further discussions
in this thesis.

3German Research Center for Artificial Intelligence

3.2. SERVICE-ORIENTED ARCHITECTURE (SOA) 45

3.2.4 UML Profile and Metamodel for Services (SOA-Pro)

Figure 3.5: Core concepts of the profile of SOA-Pro, UML Profile and Metamodel
for Services.

In general, the UML Profile and Metamodel for Services (SOA-Pro) is
based on the UML 2.0 metamodel L2 and provides minimal extensions to
UML, only where absolutely necessary to accomplish the goals and require-
ments of service modeling. The specification takes advantage of the package
merge feature of UML 2.0 to merge the extensions into UML. The profile
provides a UML specific version of the metamodel that can be incorporated
into standard UML modeling tools. In the following, we discuss the core
concepts of SOA-Pro in more detail.

3.2.4.1 Introduction

As already mentioned, SOAs are a way of organizing and understanding
organizations, communities and systems to maximize agility, scale and inter-

46 CHAPTER 3. RELATED WORK

operability. SOA-Pro claims to be very flexible in order to support activities
of service modeling and design, and to fit into an overall Model-Driven De-
velopment approach. It supports three different perspectives: (i) from the
service consumer requesting the service, (ii) service provider advertising a
service to those who are interested and qualified to use it and (iii) from
a system design describing how consumers and providers will interact to
achieve overall objectives.

Furthermore, it supports both, bottom-up and top-down architecture de-
signs of services. In the case of the bottom-up definition, services are context
independent and focus on their own specification which makes them very
simple. In contrast, the top-down definition enables an organization or com-
munity to work more effectively using inter-related sets of services and focus
“in the large”. Figure 3.5 depicts the core concepts of SOA-Pro that are
discussed in the following in more detail.

3.2.4.2 Basic Services

The key concept of a service is a capability offered by one entity or entities
to others using well defined “terms and conditions" and interfaces. Those
entities may be people, organizations or systems and are called participants.

In SOA-Pro, capabilities are provided or required by participants through
the interaction points, the UML Ports. To express that participants of-
fer service capabilities, the certain Port is stereotyped as <<Service>>.
In contrast, if the capabilities are required by the participant, the Port is
stereotyped as <<Requisition>>. The <<Service>> port is the inter-
action point where consumers of the service use that particular service. The
Port has a type, which describes how to use that service that may be either
a UML Interface (for very simple services) or a ServiceInterface (see Sec-
tion 3.2.4.3). In either case, the type of the service port specifies directly or
indirectly, everything that is needed to interact with that service—it mainly
describes the contract between the providers and consumers of that service.

3.2.4.3 Service Interfaces

The capabilities and needs of a Service or Requisition port are defined by
its type, which is a ServiceInterface, or in simple cases, a UML 2 interface.
In this case, there is no protocol associated with the Service. Consumers
simply invoke the operations of the ServiceInterface. A ServiceInterface may
also be a Class which may specify various protocols for using the functional
capabilities defined by the servicer interface. This provides reusable protocol
definitions for different service participants providing or consuming the same
Service.

The ServiceInterface stereotype is like an UML Interface, but has the
additional feature that it can specify a bi-directional service—where both,

3.2. SERVICE-ORIENTED ARCHITECTURE (SOA) 47

capability
provide (realize) Shipping use (require) ScheduleProcessing

UML Interface
ServiceInterface

role

part

ServiceContract

ContractFullfillment

behaviour

Figure 3.6: ServiceInterface with UML Interface, CollaborationUse, Part and
sequence diagram for describing behaviour.

the provider and consumer, have responsibilities to send and receive messages
and events. The ServiceInterface is defined from the perspective of the service
provider, using three primary sections:

Interfaces are standard UML Interfaces that are realized or used by the
ServiceInterface. The interface that is realized specifies the provided
capabilities, the messages that will be received by the provider (and
correspondingly sent by the consumer). The interface used by the Ser-
viceInterface defines the required capabilities, the messages or events
that will be received by the consumer (and correspondingly sent by the
provider)

ServiceInterface and enclosed parts specify the roles that will be played
by the parties involved with the service. The role that is typed by the
realized interface will be played by the service provider

Behavior specifies the interactions between the provider and consumer—
the contract or protocol of the interaction, without specifying how ei-
ther party implements their role. Any UML behavior specification can
be used, but interaction and activity diagrams are the most common

48 CHAPTER 3. RELATED WORK

3.2.4.4 Participants and Service Ports

The Participant stereotype in SOA-Pro is specifying the UML Component
classifier, and is used to represent software components, organizations, actors
or individuals in SOA. The Participants are defined by the role they are
playing in the service architecture, and the capabilities they are providing
and requiring.

Just as we want to be able to describe what capabilities of the Partici-
pant are provided, using the <<Service>> port, we also want to express
what capabilities are consumed. This is defined by stereotyping the port as
a <<Requisition>>. The type of a <<Requisition>> port is a Ser-
viceInterface or UML Interface as well as it is with a <<Service>> port.
The <<Requisition>> port is the conjugate of a <<Service>> port in
which it defines the use of a service.

Figure 3.7: Participants connected to each other through UML Ports with same
Port type.

To illustrate why both stereotypes are needed, we take a closer look
at Figure 3.7 that illustrates two Participants, OrderProcessor and Shipper.
The interaction between them is done through their UML Ports. Shipper is
providing the capabilities described in ShippingService (see Figure 3.6) and
therefore its port is stereotyped as Service. In contrast, OrderProcessor is
requiring the capabilities of the ShippingService, and its port is stereotyped
as Requisition. Note that Participants can only interact with each other
through ports with the same type and opposite stereotype of the port.

In Figure 3.6, we described the capabilities of the ShippingService only
once. Certainly, this ServiceInterface is defined from the perspective of Ship-
per, but with this technique, we are able to specify that it is used by the
OrderProcessor Participant. Without this technique, we would have to de-
scribe the capabilities needed and provided twice, from Shipper and Order-
Processor perspectives and that would make the models more complex and
harder to maintain.

3.2. SERVICE-ORIENTED ARCHITECTURE (SOA) 49

3.2.4.5 Service Contracts

A ServiceContract is the specification of the agreement between consumers
and providers of a service as to what information, products, assets, value and
obligations will flow between them - it specifies the service without regard
for realization or implementation.

behaviour with activity diagram

UML Collaboration

Figure 3.8: Service Contract, defining the roles and the interfaces.

As illustrated in Figure 3.8, the basis of the ServiceContract, Shipping-
Contract, is the UML Collaboration that focus on the interaction involved
in providing a service and where the particular roles are defined. The par-
ticipants fulfills the ServiceContract by the corresponding CollaborationUse,
as depicted in Figure 3.6.

3.2.4.6 Service Architecture

A ServiceArchitecture (SOA) describes the roles of a set of Participants that
provide and use services to achieve some mutual goal or implement a business
process. By expressing the use of services, the ServiceArchitecture implies
some degree of knowledge of the dependencies of the participants, i.e., the
consumption of services to deliver their services. Each service of a Ser-
viceArchitecture is represented by the use of a ServiceContract bound to
participant roles.

50 CHAPTER 3. RELATED WORK

3.2.5 Summary

In this section we described main concepts of SOA, including the service as
the centerpiece, and concepts of service interaction or service description.
Later in this section we introduced the main characteristics of a service and
concluded with the relation of SOA to models and implementation technolo-
gies.

SOA promises the integration of business processes inside an organisation
and across organisations. Today’s SOA systems are usually implemented
with Web Services. There are some problems that are hard to solve with
the Web Services technology. For example, the dynamic composition of
Web Services is an unsolved issue. Due to the fact that SOA is basically
technology independent, one can rise the question if other technologies should
be utilized instead or in addition to Web Services to solve the open problems.
Agent technology offers several benefits over Web Services and could be used
to overcome some of the most important problems of today’s SOA systems.

3.3 Agents and Multi-Agent Systems

This section introduce the basics about agents andmulti-agent systems (MASs).
We begin with Section 3.3.1 by answering the first obvious question, namely
“What is an agent?”. We answer this question by first introducing four
relevant definitions. Then we will discuss properties that characterize an
intelligent agent and contrast agents with objects and web services in Sec-
tions 3.3.1.3 and 3.3.1.4.

The usual second question is “Why should I bother with agents?”. In
Section 3.3.2 we answer this question by arguing that agents are a natural
progression from objects that provide a better abstraction and improved
encapsulation. The remaining subsections of this section are dedicated to
answering the third question “How do I develop agents and agent systems?”.

3.3.1 What is an IntelligentAgent?

Let us first note that we are talking about software agents. Whenever we say
“agent”, we really mean “software agent”. The typical dictionary definition
of agent as

“An entity having the authority to act on behalf of another.”

(e.g. a real estate agent) is not what we mean. Although, some software
agents may act as agents in this sense as well. For example, a software
assistant that buys products or services on behalf of its user.

Software Agents are a part of Distributed Artificial Intelligence (DAI),
which is a sub-field of Artificial Intelligence (see [16, page 121-164]) research
dedicated to the development of distributed solutions for complex problems

3.3. AGENTS AND MULTI-AGENT SYSTEMS 51

regarded as requiring intelligence. Since the mid of the 1990s, agent technol-
ogy was successfully applied in many practical applications (e.g. Whitestein
Technologies [69]). The focus and use of agents in this thesis lies on the
ability of agents to collaborate in and interact with distributed computing
environments, such as SOA. Agent technology promises the ability of writing
software for distributed computing environments in an intuitive and elegant
way.

As is to be expected from a fairly young area of research, there is not
yet a universal definition of what an agent is. Following we present different
definitions, however the Wooldridge and Jennings definition, Definition 4, is
increasingly adopted and is the one that we rely on in the rest of this thesis.

Definition 1 “Agents are active, persistent (software)
components that perceive, reason, act, and communi-
cate.”

— Huhns and Singh, 1997 [68, page 29]

Definition 2 “An agent is an entity whose state is viewed
as consisting of mental components such as beliefs , capa-
bilities, choices, and commitments”

— Bradshaw, 1997 [8, page 272]

Definition 3 “For each possible percept sequence, a ra-
tional agent should select an action that is expected to max-
imize its performance measure, given the evidence provided
by the percept sequence and whatever built-in knowledge the
agent has.”

— Russel and Norvig, 2003 [35, page 34]

52 CHAPTER 3. RELATED WORK

Definition 4 “An agent is a computer system that is sit-
uated in some environment, and that is capable of au-
tonomous action in this environment in order to meet its
design objectives.”

— Wooldridge, 2002 [47] (adopted from Wooldridge and
Jennings, 1995 [49, page 25])

According to the Definition 4, there are two distinguish notions of agency
in the relevant literature: the weaker and the stronger notion, or also referred
as mentalistic notion.

Attributes describing the weak notions is called weak because it does
not take much to fulfill them and are the general way of characterizing the
term agent to denote a hardware or software-based computer system. For
example, a simple UNIX service that process these attributes could be called
agent. Short explanation of the weak properties that are most important in
agent applications follows.

Situated: Agents are situated in an dynamic, unpredictable and unreliable
environments. Environments are changing rapidly and agents can’t
assume that the environment will remain static while it is trying to
achieve a goal. This means that it’s impossible for the agent to predict
what will happen in the future states of the environment. The envi-
ronments are unreliable in that the action that an agent can perform
may fail for reasons that are beyond an agent’s control.

Reactive: To deal with the situations in such environments as described
in previous property, agents must respond to significant changes in its
environment, in a timely manner. Agents percept their environment,
process their perceptions, and choose an appropriate actions that are
performed by effecting the environment.

Proactive: Agents persistently pursues goals over time. Because agents
are persistent, they are more robust and can continue to attempt to
achieve a goal despite failed attempts. They are also able to exhibit
goal-directed behaviour by taking the initiative, without any external
invocation.

Robust: Because of challenging environments agents are situated in, failure
of actions and more generally plans to reach the goals is a possibility.
In that case, it is important that agent are able to recover from such
failures.

3.3. AGENTS AND MULTI-AGENT SYSTEMS 53

Flexible: To achieve this robustness, agents are flexible in that they have a
range of ways of achieving a given goal should a plan fail or environment
be changed.

Autonomous: Agents are autonomous - they have control both over their
internal state and over their own behaviour. There is no need for exter-
nal control by humans or other agents. Autonomy is a defining agent
characteristic and a consequence of the characteristics previously listed.

Social: In order to reach the goals, agent can interact with other agents and
in that way be social. This interaction is often on a higher level. Instead
of just saying that agents exchange messages, agent interaction can be
framed in terms of performatives [47, chap. 8] such as inform, request,
agree and so on. Agent interaction are aligned to human interaction
types, such as negotiation, coordination, cooperation and teamwork. We
discuss Multi-Agent Systems further in Section 3.3.1.2.

social

enviornment

agent

agentagent

situated,
reactive goal

goal

proactive

flexible

autonomous

Figure 3.9: Weak notion of intelligent agents.

The second notion of agents are the stronger notion. Such notion reflects
those used in human cognition or communication, such as agents having
beliefs about the world or certain desires or aims. Or agents performing
intended actions to progress towards a goal. This notion might sound some-
what human-like, but it is representing programming abstractions intended
to facilitate a more intelligent approach to decision making. According to [16]
and [65], we have following explanation of these three mental capabilities:

Believe: Beliefs represent the informational state of the agent - in other
words it’s beliefs about the world (including itself and other agents).

54 CHAPTER 3. RELATED WORK

Beliefs can also include inference rules, allowing forward chaining to
lead to new beliefs. Typically, this information will be stored in a
database (sometimes called a belief base), although that is an im-
plementation decision. Using the term belief rather than knowledge,
recognises that what an agent believes may not necessarily be true (and
in fact may change in the future).

Desire: Desires (or goals) represent the motivational state of the agent.
They represent objectives or situations that the agent would like to
accomplish or bring about. Examples of desires might be: find the
best price, go to the party or become rich. Usage of the term goals
adds the further restriction that the set of goals must be consistent.
For example, one should not have concurrent goals to go to a party
and to stay at home, even though they could both be desirable.

Intention: In order to reach a certain goal, a BDI agent has to plan its
actions. Planning is based on the agent’s beliefs. The computed action
sequences are the agents intentions.

Jennings and Wooldrige [49] also discussed further properties one could
consider useful in the design process of agent-based systems. These prop-
erties are not directly linked with the notion of weaker or stronger agency.
They are rather orthogonal to the properties discussed so far and may or may
not considered to be useful concepts in the context of a specific application.

Because concepts like goals, knowledge, and ontologies are quite naturally
encountered in business context as well as in Service-Oriented Architectures,
it is obvious that it is natural to adopt the strong notion of agency in this
context.

Rationality: Does the agent make its decision according to a rational de-
cision criterion (e.g., utility maximization)?

Truthful: Does the agent communicate in truthful manner with its outside
environment?

Benevolent: Is the agent per se benevolent, i.e. it will never intentionally
do malicious actions?

Mobile: Is the agent able to migrate from one platform (computer) to an-
other one?

Emotional: Does the agent (pretend) to exhibit emotional states?

Agents receives inputs related to the state of their environment through
sensors and they act on the environment through actuators, like Figure 3.10

3.3. AGENTS AND MULTI-AGENT SYSTEMS 55

Environment

Agent
action
outputsensor

input

Figure 3.10: Interaction between agent and its environment through sensor input
and action output [16].

Weak Notion Stronger Notion Other properties
Autonomy Knowledge/Believes Rational

Social Ability Intentions Truthful
Reactivity Desires/Goals Benevolent

Pro-Activeness Obligations Mobile
Flexible Capabilities Emotional

Table 3.1: Properties of different notions of agency.

illustrates. According to [35], an agent’s environment can be fully or partially
observable, deterministic, stochastic, single-agent, multi-agent, etc. The en-
vironment is usually provided by an agent execution platform.

3.3.1.1 Agent Architectures

In previous section we introduced two notions of agents, which are commonly
used. An agent architecture is a blueprint for software agents and intelligent
control systems, depicting the arrangement of components. These archi-
tectures are often referred to as cognitive architectures. Here we will shortly
introduce two of many architectures that have properties of the notions men-
tioned earlier.

Reactive agent architectures is one type of agent architectures that have
properties of the weak notion of agency. Agents choose the next action to

56 CHAPTER 3. RELATED WORK

perform, only based on the current perceptions. They do not remember
previous perceptions and states, and are also not able to reason. Figure
3.11 shows the basic architecture and as we can see, condition-action rules
defines a direct mapping from perceptions to an action. It is obvious that
reactive agents are limited because they can not remember previous states.
One of the most successful reactive agent architecture implementations is
the subsumption architecture which is a reactive robot architecture heavily
associated with behaviour-based robotics and was introduced by Rodney
Brooks and colleagues in 1986 [11].

Figure 3.11: Basic reactive agent architecture (from [35, page 47]).

Believe-Desire-Intention Architectures is the second architecture type
and introduce a more complex design and composition of agents. BDI archi-
tectures assume agents to possess mental capabilities and are based on the
properties from mental or the stronger notion of agency as described ear-
lier. There exist formal frameworks that specify the semantics of believes,
desires, and intentions (e.g. [65]). Moreover, there also exist two important
multi-agent frameworks that are based on the BDI architecture: Jack [28]
and Jadex [15]. Both multi-agent frameworks have been utilized in many
real world scenarios.

3.3.1.2 Multi-Agent Systems

The various agent technologies existing today can be classified as being ei-
ther single-agent or multi-agent system. In single-agent systems, an agent
may interact with the user or with local or remote system resource. In con-
trast, a Multi-Agent System (MAS) is a system designed and implemented
as several interacting agents. Hence, MAS can communicate either with hu-

3.3. AGENTS AND MULTI-AGENT SYSTEMS 57

man and system resource or with other agent. Consistent with the degree
of cooperation exhibited by the individual agent, MAS is classified into two
types:

Competitive agents: Each agent goal is to optimise its own interest, while
attempting to reach agreement with other agents. Example of the
system that using competitive agent are:

BargainFinder [5] The user give a specific product that she/he is
looking for. The system queries a fixed set of web merchant sites
for its price and present the user with a ranked set of price quotes.

Jango It is an advanced version of BargainFinder which makes prod-
uct

Kasbah [2] Kasbah is a ads service on the WWW that incorporates
interface agents. A web site represent a ’market-place’ where
Kasbah agents, acting on behalf of their owners, can filter through
the ads and find those that their users might be interested in. The
agent negotiates to buy and sell items.

MAGMA [39] Magma introduces an open marketplace involving
agents buying/selling physical goods, investments and forming
competitive/cooperative alliances. Magma has "offer board" that
contains offers from buyer and sellers. Seller agent posts the high-
est price of offered product to the offer board through its Personal
Assistants (PA). The buyers inform the PA to retrieve a number
of best offers of a specific product that they interested in. The
buyer PA will display a set of offers. The buyer will select which
offer to follow up. Finally, the buyer PA will then post an accept
offer to the relevant seller agent.

Cooperative agents: Agents share their knowledge and beliefs to try to
maximise the benefit of the community as a whole. Example of the
system that using competitive agent are:

Air Traffic Control Chu and Carrol [37; 44] have developed a co-
operative negotiation model among the agents (pilot, air traffic
control). They cooperate to develop the best plan for flight and
handle the entire situation, which affect the flight.

We can classify multi-agent production scheduling in this thesis as cooper-
ative multi-agents, since the agents cooperate to optimise production and
execution tasks in time and cost constraint. Communication is essential in
a MAS to enable social behaviour among the agents. Agents can coordinate
their actions to reach common goals and to prevent deadlocks. Collaborating
agents can solve more complex tasks than a single agent could solve. This
property of MASs is called emergent functionality. In Section 3.4 we will
introduce two commonly used agent-related interaction protocols in MAS.

58 CHAPTER 3. RELATED WORK

3.3.1.3 Agents and Objects

In previous sections we have covered the definitions and characteristics of
intelligent software agents. The reader might be confused about just how
different - or the same are objects and agents. This question has been an-
swered by many authors. We base our answers on this topic according to
[62; 34; 26], since they summarize and collect these differences. Two key ar-
eas that can differentiate the agent-based approach from traditional Object
Oriented are autonomy and interaction and we will try to cover those in this
section. However, there are other ways in which agents may seem to differ
from objects (see “Philosophical Differences” [34, page 47]), but we will not
include them in this thesis as they are not so relevant for our case study.

Autonomy : In the object-oriented paradigm, the system is comprised
of several, possibly distributed, objects interacting with each other
through predefined interfaces. The interface describes the object’s ser-
vices which can be invoked by other objects. In other words, an object
is passive system component which is able to respond to predefined re-
quests and react accordingly. An object system is usually governed by
a central process/object responsible for the coordination between ob-
jects and the flow of control between them towards the achievement of
the desired result. As we have seen so far, agents are being autonomous
and therefore agent systems tends to be decentralized.

Another important difference between agents and objects, when we are
talking about autonomy, is that objects uses the notion of encapsula-
tion to give objects control over their own internal states. This is done
by declaring the access of the methods to be private or public. In this
way, objects are bringing autonomy, but only over its state. It does
not exhibit autonomy over its behaviour and the reason for this is that
once the method has been declared as public at the design time, the
object has no control over whether that method shall or will be exe-
cuted in runtime or not. In contrast to agents, objects are not able
to this kind of decisions in runtime. In MAS, where an agent requests
an action to be performed by another agent rather than invoking this
action, request could be accepted or refused by the serving agent ac-
cording to various factors such as domain state or the identity of the
client.

Interaction : Agents are social entities, which in both notions, strong and
weak, focus on the ability to communicate with the environment and
other entities (agents). This ability can be also expressed in degrees as
illustrated in Figure 3.12. On the left end, we have method invocation
that is the usual object oriented way of interacting with other objects.
This could be classified as the basic or simple way of interaction. While
we are moving to the right end, we are getting more complex degree

3.3. AGENTS AND MULTI-AGENT SYSTEMS 59

of interaction. For example, food-gathering ants don’t invoke methods
on each other to give instruction for each action one ant should do.
Instead, they are listening directly to the physical inputs from the
environment, and acting out from this perception. Finally in MAS,
agents can collaborate, in parallel, with multiple other agents and act
as a society.

An agent message could consist of a character string whose form can
vary yet obeys a formal syntax, while the conventional Object Ori-
ented method must contain parameters whose number and sequence
are fixed. Agent Communication Language (ACL) is expressive enough
to cover all desired situations, including method invocation of objects
and expressing communications among multiple agents.

Figure 3.12: Degrees of interaction, from [34, page 45].

Conclusion is that agent could appear and have the same capabilities as
ordinary object, but it is distinguished from objects since it is autonomous
and can interact with the environment and other agents. It is not only
contribution to modeling information in the enterprises as object often are
used for, but it also extends this capability to model behaviour. This fact
means that the behaviour of agents can be modified dynamically, due to
learning of influence of other agents or the environment. Moreover, agents
can dynamically cooperate to solve problems. In fact, viewpoint in [34] from
Odell, considers agents to be an evolutionary step forward from objects.

In next section we will relate agents and services that is commonly used
in the distributed systems.

3.3.1.4 Agents and Web Services

According to [64], fundamental differences between web services and agents
can be pointed out by discussing some of the properties from notions of
agency we already have discussed in previous sections.

Flexibility and Robustness The approaches used to engineer agents and
web services are fundamentally different. Typically, when designing
web services, the work flow to reach a goal is well defined at the design
time and any changes in the environment under runtime could cause

60 CHAPTER 3. RELATED WORK

Figure 3.13: The evolution of programming according to [34].

failure in the work flow, and the goal will not be reached. Since agents
are reactive, flexible social and interacts with the environment, they
would adopt to changing contexts and environments and either choose
alternative plan or delegate the task to other agents.

Proactiveness Since agents are communicative and social, they respond
to both, messages from other agents and changes in the environment
and this could trigger their intention to achieve some goal, resulting
in proactive behaviour as necessary. Web services are typically just
reactive because it has to be triggered by some message, to do some
actions.

Goal orientation Typically web services exist to provide access to some
resources or facilitate third-party trading between companies. Web
services are more task oriented, and will generally perform the task
immediately in contrast to agents, which is goal oriented. When agents
receives one request, in order to maximize some utility through rational
behaviour, it can refuse to execute the task if it doesn’t give any gain
to reach the overall goal.

Autonomy In the same way as objects, web services needs to be invoked
or triggered by some external parties to do some behaviour. As we
have pointed several times in this section, agent can evolve its own
behaviours without direction from its owner or user.

While in [64] we can read about the differences between agents and web
services, in [48] we additionally see how these differences can become blurred

3.3. AGENTS AND MULTI-AGENT SYSTEMS 61

by using agents as an layer over web services as illustrated in Figure 3.14.

Atomic web service

Operations

Plans

Intentions, goals,
strategies

Agent

Composite web services

Figure 3.14: Layered view of agent-ws interactions.

A key proposal ofWeb Service Architecture (WSA) is that simple, atomic,
services can be composed together, in a work flow, to form complex composite
behaviours [29]. Research in [48] suggests that BDI Agent performs the
planning on behalf of a user to meet some set of goals. This means that
agents primarily are responsible for mediating between users’ goals, and the
available strategies and plans. Agents invoke, or design, atomic or composite
web services as necessary.

3.3.2 Why are Agents Useful?

Having described what agents are, we now turn over to the question of why
agent technology is useful. It is important to realize that, like other software
technologies such as objects and web services, agents are not magic. They
are simply an approach to structuring and developing software that offers
certain benefits, and that is very well suited to certain types of applications.

Agents are reducing coupling since they are autonomous. This can lead to
software systems that are more modular, decentralized and changeable.
This has led to the application of agents as an architectural glue in a range of
software applications. In this usage, agents are often used to “wrap” legacy
systems.

In addition to reduce the coupling, agents are well suited in applica-

62 CHAPTER 3. RELATED WORK

tions where environment is challenging and changing rapidly. The failure is
possibility and it’s important that recovery is done autonomously.

Properties of being proactive and reactive is making agents behaviour and
characteristics very human-like. This has led to a number of applications
which software agents are used as substitutes for humans in certain limited
domains. The recent computer game Black and White [25] used agents,
specifically based on the Belief-Desire-Intention (BDI) model.

Another application areas where software agents can provide benefits in-
clude Intelligent Assistants, Electronic Commerce, Manufacturing and Busi-
ness process modeling [62].

3.3.3 Agent-Oriented Software Engineering

Software development belongs to the most complex enterprises. Software
engineering provides tools, methodologies, and principles for developing soft-
ware systems. Agent-Oriented Software Engineering (AOSE) introduces the
agent concept to traditional software engineering approaches [52].

Figure 3.15: The metamodel reflecting the agent aspect of the Pim4Agents meta-
model.

The main goal of AOSE is to adapt traditional software engineering ap-
proaches to agent technology. Similar to traditional software systems, MASs
can be specified with metamodels (see Section 3.1.1). Agent metamodels can
be utilized for the analysis and development of MASs. There exist several
metamodels for MASs that were developed in the recent years. Some exam-
ples are Gaia [50], Prometheus [62], Tropos [10] and Platform Independent
Metamodel for Agents (Pim4Agents) [12]. The three first mentioned exam-
ples are not just metamodels, they are complete methodologies for AOSE.
Since our work in this thesis has been in cooperation with German Research
Center for Artificial Intelligence (DFKI) we want to give an short overview
of Pim4Agents metamodel (see Figure 3.15).

3.3. AGENTS AND MULTI-AGENT SYSTEMS 63

Figure 3.16: Concepts, notation and instance of the agent diagram.

The Pim4Agents metamodel specifies the concepts and relations of a typ-
ical MAS. One of the central concepts is the Agent,the autonomous entity
capable of acting in the system. An Agent is member of an Organization
and can perform some Roles. The Role concept is used to specify respon-
sibilities and permissions. Furthermore, an Agent has access to a set of
Resources which may include information or ontologies from its surrounding
Environment. Behaviours defines how particular tasks are achieved and at
least Agent may have certain Capabilities that group a particular type of
Behaviours.

In addition to the abstract syntax of this language, which is expressed
in Eclipse Modeling Framework (EMF), DFKI has also implemented the
concrete syntax [67] with help of Eclipse Graphical Framework (GMF). Fig-
ure 3.16 shows the concepts, notation and instance of the agent diagram in
the concrete notation of Pim4Agents. In Chapter 5 we will come back to
this language and relate it to our work in this thesis.

64 CHAPTER 3. RELATED WORK

The PIM4Agent metamodel is platform-independent. Multi-Agent Sys-
tems that is modeled with an agent metamodel like Pim4Agents can be
executed with an interpreter or can be transformed to a specific multi-agent
platform like Jack [42]JACK [28] and JadeJava Agent DEvelopment Frame-
work. AOSE is an important step towards the utilization of agent technology
in real world business scenarios. This section gave a rough overview of AOSE.
The next section summarizes the agent technology part.

3.3.4 Summary

In this section, we gave a brief overview of agent technology. In Section
3.3.1, we introduced the agent concept and followed with Section 3.3.1.1
where we described different notion of agency. The basic terminology of
MASs were introduced in Section 3.3.1.2. Moreover, we presented in Sec-
tion 3.3.1.3 and 3.3.1.4 the differences between agents compared with web
services and objects. After discussing what agents are, we continued with
why they are useful in Section 3.3.2. Finally, we gave an overview of AOSE
in Section 3.3.3. We explained the importance of metamodels in AOSE and
gave the Pim4Agents metamodel as an example.

In following section we will take an further look at the interaction be-
tween agents and explain two of the most used interaction protocols in agent
systems.

3.4. OPTIMIZATION WITH MULTI-AGENT SYSTEMS 65

3.4 Optimization with Multi-Agent Systems

Now that we know more about what agents are and how they can be use-
ful in software development, we will in following sections explain how they
can be used to optimize supply-chain process in steel production, where the
interaction is described through two well-known agent interaction protocols.

3.4.1 Use of Multi-Agent Systems in Transportation Schedul-
ing

Transportation scheduling problems are common real world problems. One
of the examples is that in a shipping company and courier service, there
are many orders that have to be sent to specific destination address and
time. All of these orders should be assigned to the appropriate vehicle such
as truck, bicycle, etc. Every vehicle has to be assigned to the appropriate
route, so the truck will not spend off the road or travelling empty. Dispatch
officers often face some problem when:

• during the execution of the order, a customer comes with a new order

• the vehicle has broken down

• the traffic situation changes

Therefore, the dispatch officers needs to rescheduled the existing plan.
In the last years, transportation problems have been analysed in details

within the area of artificial intelligence. In the field of Multi-Agent Systems
(MASs) and Distributed Artificial Intelligence (DAI) there are several re-
cent papers that deal with transportation scenarios. In addition, the use of
MASs is an approach that matters more and more in our days. In several
later papers the sense of such kind of systems for transportation scenarios
came clear. So in [32] and [38] systems are introduced, which are MASs that
deal with routing problems. In the year 2006 the [3] workshop, gave several
approaches, how agents in a MAS can be used to deal with traffic and trans-
portation problems. The multi-agents can handle the situation where the
constraints change, such as the arrival of new order or the changing traffic
situation.

For the optimization part of the use case in this thesis, we will use the
approach from [32], where the combination of protocols described in sec-
tions 3.4.2 and 3.4.3, will be used to optimize the supply chain of steel
production.

3.4.2 The Contract Net Protocol

The Contract Net Protocol (CNP) [24] is a negotiation protocol proposed
by Smith and David in 1980, to specify problem-solving communication and
control of nodes in a distributed problem solver.

66 CHAPTER 3. RELATED WORK

The FIPA Contract Net Protocol (CNP) [21] is a standardised communi-
cation protocol done by Foundation for Intelligent Physical Agents (FIPA) [19],
and is a minor modification of the original, it adds rejection and confirmation
communicative acts. One agent, who is the Initiator, has some task he wants
the other agents (Participants) to perform, and further wishes to optimise a
function that characterizes this task. In some domains this characteristic is
expressed as the price, but it could also be regarding to the execution time,
fair distribution of task, etc.

To understand each other, they are using FIPA acts defined in the stan-
dard FIPA Communicative Act Library (CAL) [20]. FIPA CAL defines all
feasible performatives which are part of the Agent Communication Language
(ACL) [18].

Figure 3.17: FIPA Contract Net Protocol notation in Agent UML (AUML) [7].

3.4. OPTIMIZATION WITH MULTI-AGENT SYSTEMS 67

3.4.2.1 Explanation of the Protocol Flow

The Figure 3.17 illustrates the steps that are performed during a CNP run.
The protocol is initiated by the Initiator which starts with sending m call for
proposals (cfp) act, which contains a task and conditions, to several other
agents (Participants). The potential contractors (Participants) are able to
generate n responses where j are to perform the task (propose) while i=n-j
are to refuse (refuse) the task. Attached to the proposal response, agent can
for example include the preconditions that are necessary, in order to perform
the task, or the costs that would be caused by the task.

Once the deadline passes, the Initiator can refuse or accept each of the j
proposals separately. The l agents of the selected proposal(s) will be sent an
accept-proposal act and the remaining k agents will receive a reject-proposal
act. According to the outcome of the task processing, each Participant in-
forms the Initiator with one of the following messages; (i) inform-done or
(ii) explanatory version in the form of an inform-result, or (iii) failure if the
Participant fails to complete the task.

68 CHAPTER 3. RELATED WORK

3.4.3 The Simulated Trading Protocol

The Simulated Trading Protocol (STP) [1] is a general improvement heuristic
for solving vehicle routing problems and was proposed by Bachem, Hochstät-
tler and Malich in 1992. Starting from the initial tour plan it tries to improve
the current solution by doing some complex customer interchanges.

In the following three subsections we will give briefly, step for step, de-
scription of this algorithm. Basically because we used much resources to
get into the details by ourself. One of the main reasons is that the official
report refers mostly to the mathematically proofs, and most of the readers
will probably find this hard to read and time consuming. However, imple-
mentation and use of the protocol in the Chapter 4 and 5, will only focus on
message exchange between participants, details about algorithm in Section
3.4.3.3 will be left out.

3.4.3.1 Explanation of the Protocol Flow

The (STP) is, like the CNP, also a protocol that relies on communication
between several entities.

The basic problem of vehicle routing problems is given as follows: a
set of n customers with demands di has to be served from a depot using
t vehicles of capacity Q. The objective is to minimize the total distance
covered by the vehicles or some other measure such as cost, time, etc. While
traditionally heuristic is only used for local improvement within one of the
available tours, Simulated Trading introduce a global improvement, which is
changing customers between tours.

The algorithm can roughly be described as follows:

Algorithm 1
T = (T1,..,Tt) is a feasible tour plan
repeat

Sell-And-Buy phase
Trading-Matching-Search phase
If Trading-Matching M is found then

Update tour plan T according to M
until timelimit is reached

3.4.3.2 Sell-And-Buy Phase

In the Sell-And-Buy phase each tour is checked for “good” trading possibilities
depending on its previous actions. This defines the trading graph which is
searched for a maximum weighted trading matching in the next phase (the

3.4. OPTIMIZATION WITH MULTI-AGENT SYSTEMS 69

definition and use of the trading graph will be given later in the Section
3.4.3.3). Through one example, we will now discuss these routines in more
detail.

Consider the following example of below:

• Vehicle 1 would like to give up order A since it will give him an extra
hour of driving time

• Vehicle 2 can take order A since position of order A is on the way of
his tour. But his vehicle is full and he needs 20 minutes additional
time for order B. If someone takes order B, he will be able to insert A
in his vehicle with only 10 minutes of extra time.

• Vehicle 3 is qualified to take order B but if he would insert order B in
his tour then he would violate the time window of order C.

• Vehicle 4 will have an extra hours of driving time if he would take
order C. But if another vehicle would be able to take order D then it
would be possible for him to take order C.

• Vehicle 1 is able to take order C by 15 minutes cost.

We can use example above to demonstrate how this customer exchange
could be optimized with use of STP. As shown in figure 3.18, depot starts
with creating the initial tour plan for each vehicle.

vehicle 1 vehicle 2 vehicle 3 vehicle 4

depot

initial tourplan initial tourplan initial tourplan initial tourplan

Figure 3.18: Step 1: Depot creates initial routing plan for each vehicle.

Since these tour plans are not optimized, the next step is to send a selling
list to the vehicles, containing all orders that have been sold by these, in
earlier rounds (or also called decision level, more about this in next section).

70 CHAPTER 3. RELATED WORK

In the first round, this list is empty and only starts the protocol. After the
list with orders has been received, each vehicle decides randomly one, and
only one, of the following actions:

(i) sell: If an order should be sold, the vehicle calculates for each of its
orders that could be sold, the gains that would be caused by not per-
forming the order. The obtained values are the basis for selecting an
order and to sell it. Since the order to be sold is selected randomly,
each order has a probability to be chosen. This probability, depends on
the calculated gains: the more costs could be saved by selling an order,
the higher is the probability for this order to be sold.

(ii) buy: If a buying should be performed, the vehicle calculates for each
of the orders in the selling that it could buy, the additional costs this
order would cause to its current plan. Depending on these values, one
of the orders is randomly chosen to be bought in this round. In this
case, the probability for an order to be chosen is lower, if it causes more
costs when it is inserted into the current plan.

(iii) wait: If the vehicle don’t want to take any actions in current round,
and wants to wait for updated selling list, he answers with wait.

After the order to be bought or to be sold is chosen, the vehicles informs
the depot about the result. How these results are used by the depot is de-
scribed in Subsection 3.4.3.3. So, at the end of the round, there are two
possible situations:

(i) the vehicle has a new plan, in case it was able to buy or sell order

(ii) the vehicle sticks to its old plan, since it could not buy or sell, for all
buyable orders did not fit into its current plan, or there was no order
it could sell

Nonetheless, with the obtained plan, a next round is performed. This
Buy-And-Sell phase is done iteratively, until a threshold, for the number of
rounds is reached (normally not more then 10 [32]).

At this point there is a decision for each and for each vehicle. All these
decisions can be taken into account to find a new solution for the Pickup and
Delivery Problem (PDP). So the depot searches, based on these decisions,
other solutions for the PDP. If a solution is found that is better than the
initial one, it replaces the initial solution. This is done, by telling each
vehicle, which of its newly generated plans it has to take as its new one.
To transmit this information, the number of the round, whose resulting plan
should be taken by the vehicle, is sent. For example if Round 3 is sent, then
the vehicle knows, that the plan it created at the third round, is it’s result
of this protocol run. After that, the protocol ends.

3.4. OPTIMIZATION WITH MULTI-AGENT SYSTEMS 71

vehicle 1 vehicle 2 vehicle 3 vehicle 4

depot

selling list sell / buy / wait decision

Figure 3.19: Step 2: Sell-And-Buy Phase is done iteratively, until an certain
threshold.

3.4.3.3 Using the Trading Graph

This subsection describes, how the buying and selling actions, which the
vehicle make during the STP rounds, are used by the depot. Furthermore,
it describes, how the depot finds a solution for the PDP, according to these
actions. Each round is called a decision level, since each vehicle has to make
a decision in a round. This decision is sent to the depot, and contains the
following information

• if a buying, or selling action should be performed at this level. Or wait
(no operation) if the chosen action could not be performed.

• which task should be the object of the buying or selling action (nothing
if a wait action must be performed).

• how much costs the buying would cause, or how much could be gained
by selling the selected order (nothing, if a nop action must be per-
formed).

These information can be used to create buying and selling nodes. Further-
more, the nodes are connected as follows. For each trading action, there is
an edge between the buying and selling nodes that correspond to the buying
and selling action of the trading action.

So an edge between two nodes indicates that the buying and selling object
in the two actions is the same. Thus an edge tells, that in the buying nodes’
action, the object is bought and in the selling nodes’ action sold. The weight

72 CHAPTER 3. RELATED WORK

B, 10

Vehicle 4
D, 10

Vehicle 3
C, 20 B, 25

Vehicle 2
A, 10B, 20

A, 60 C, 15

Vehicle 1

buy decisionsell decision

Decision level

Figure 3.20: Step 3: Calculate Trading Graph according to the decisions from the
vehicles and find node edges.

of an edge is the difference between the gains and the costs of the nodes,
that are connected by this edge. So let gains be the gain of a selling node
s and costsb the costs of a buying node b. Then the weight w of the edge,
which connects s and b, is given by

Definition 5 w = gains - costsb

The set of all these nodes and edges builds up a graph, which contains
all trading actions between the vehicles and therefore is called a Trading
Graph (TG). A TG is organised as a m * n matrix, where m is the number
of vehicles that participate in the STP, and n is the number of decision levels
that are performed during the STP.

Figure 3.20 shows the TG that is generated during two decision levels
of our example. In this TG, one can see that Vehicle 1 sells order A and
saves 60 cost units at the first decision level, while Vehicle 2 buys order A
at the second decision level, which causes 10 cost units. Thus, if Vehicle
1 sells A to Vehicle 2 this action would causes a deficit of 50 cost units to
the resulting solution. Another important thing that can be noticed is the
fact, that Vehicle 2 can buy A with costs of 10, because it sold order C on
the first decision level (see Definition 6., item (ii)). This shows that each
decision of a vehicle on the n-th decision level depends on the decisions it
has made on the previous levels. Thus an algorithm, which searches a legal

3.4. OPTIMIZATION WITH MULTI-AGENT SYSTEMS 73

set of selling and buying actions, that ends up in a better solution for the
underlying PDP, has to consider this aspect.

A Subgraph of a TG, consisting of so called matched nodes (nodes whose
actions are selected to be realised for a new solution), is called a Trading
Match (TM), if and only if:

Definition 6

(i) for each matched node there is exactly one other node in the TM
which is connected to it by an edge. This means that for each buying
node there is a corresponding and connected selling node in the TM
and for each selling node there is exactly one corresponding and
connected buying node in the TM.

(ii) for each matched node at decision level x, all other nodes of this
vehicle, which are positioned on an earlier decision level y (where
y < x), are also matched and so are part of the TM.

Waiting nodes are not affected by these conditions. That is the case,
since waiting nodes represent no performable actions and thus do not change
the plans of the vehicles. So it is not necessary, to match these nodes. But if
the conditions are fulfilled for buying and selling nodes, the TM contains the
actions that have to be performed by the vehicles, in order to create another
solution for the PDP. The quality of such a solution can be derived from the
TM, by summing up the weights of the edges, which connect the matched
nodes.

So let {e0, . . . , ek} be the set of edges, that connect the nodes of the
TM and wi the weight of the i-th edge out of this set. Then the weight WTM

of this match is given by

Definition 7

WTM =
k∑

i=0

wi

If this sum is positive, then a better global solution for the PDP is found,
since the saved costs by the selling actions are greater than the additional
costs of the buying actions.

Figure 3.21 shows the TMs that could be found in the TG of Figure 3.20.
Here we have included trading matches with the weight for each edge, and

74 CHAPTER 3. RELATED WORK

50

-5

5

B, 10

Vehicle 4
D, 10

Vehicle 3
C, 20 B, 25

Vehicle 2
A, 10B, 20

A, 60 C, 15

Vehicle 1

Decision level

Figure 3.21: Step 4: Search Trading Match Phase.

when we calculate total weight of the matches, we get sum of 50. Since this
sum is positive, we have a better global solution for the PDP compared with
the initial tour plan.

You may ask yourself, shouldn’t we get better improvement if Vehicle 2
sells order B with cost of 20 minutes to Vehicle 4? And you are probably
right, we should actually get positive weight of 10 instead of -5. But since
no other vehicles have interest in buying order D from Vehicle 4, which he
is selling in his first (and previous) decision round, according to Definition 6
we got no Trading Match.

In conclusion, if Vehicle 1 would take order C with cost of 15 minutes,
this would give the global improvement for the whole tours of 50 minutes
from the original tour plan.

To generate the plans, that correspond to the better solution, the Depot
has to tell Vehicle 1,Vehicle 2 and Vehicle 3 to do all the actions to the
second decision level and the protocol ends.

3.4.3.4 Dynamic Scheduling Problems

All these steps work fine, as long as a complete PDP given to the system
and this problem has to be solved and optimised. But problems occur, if
additional orders are given to the system, while the optimization process is
already running. Since the result of the optimization does not include this
new order, it cannot be scheduled while an optimization process is running.
This would result in data inconsistencies. To handle this problem, there are
two options that were considered.

The first way to get rid of this problem, is not to schedule the new order
until the optimization is done. This would decrease the efficiency of the

3.4. OPTIMIZATION WITH MULTI-AGENT SYSTEMS 75

system. In addition to this, the time the optimization process is running,
could be several seconds.

The second way to solve this challenge would be to stop the optimization
process and to use the result that was up to now the best if it proves to be
an improvement. Then the new order can be scheduled and the optimization
process can start again and can also include the new order.

3.4.4 Summary

So far, we have introduced two protocols, the Contract Net Protocol and
Simulated Trading Protocol, where both relies on communication between
several entities. For our industrial use case, we will use the Contract Net
Protocol to initiate the communication, while the Simulated Trading Protocol
for the optimization. Figure 3.22 summaries the interaction flow between the
Planner and Heat agents in the heat and sequence optimization inside supply
chain of steel production.

76 CHAPTER 3. RELATED WORK

Figure 3.22: Use of Simulated Trading Protocol together with Contract Net Proto-
col in Heat and Sequence Optimization inside the Supply Chain of Steel Production.

Chapter 4
UPMS-a: Extensions for Interaction
Protocols

Any fool can make things bigger,
more complex, and more violent.
It takes a touch of genius - and a
lot of courage - to move in the
opposite direction.

Albert Einstein

So far we have been introduced through the chapters about motivation
and background, problem analyses and technologies related to our work.
Here we are introducing the contribution and main work of this thesis.

Our work is influenced and based on Øystein Haugen’s paper [70] on the
very same theme. We will briefly present this work, and later apply it to the
use case scenario in Chapter 5, as proof of concept.

We start with outlining the challenges in existing version of UML by
beginning with model the FIPA Contract Net Protocol(CNP) in Section 4.1.
Because the ability to multicast messages is one feature that is lacking in
UML, we will show how some very small enhancements of UML make the
language more suited to express agent protocols. First we start with intro-
ducing configurations with subsets in 4.2 and subset notation of messages
in 4.3. Thereafter we will explain the semantics of the multicasting and the
iterator-clause in Section 4.4. We also realized that current version of UML
is not providing any guidelines for how timers could be modeled. Timers
are important within interaction protocols and that to prevent deadlocks.
Therefore, we will present best-of-practice alternatives to realize such mech-
anism, in Section 4.5.

78 CHAPTER 4. UPMS-A: EXTENSIONS FOR INTERACTION
PROTOCOLS

4.1 Contract Net Protocol modeled with current
UML

As we explained in Section 3.4.2, the CNP shows how an initiator sends out
a number of call for proposals (cfp) to a set of participants. Some of these
participants will refuse the call, while others may come up with a proposal.
The initiator will then consider the proposals and reject some, and accept
some. For those that are accepted, there are three different final results sent
back to the initiator.

The FIPA protocol depicted in Figure 3.17 is not a valid UML 2 dia-
gram. It is described in a dialect of sequence diagrams using extensions to
Agent UML, suggested by Huget [45]. The notation used has included mul-
tiplicity on the messages on the ends to show how many message instances
the diagram really describes. This approach functions well on an informal
level, but is not sufficient if we want to describe what happens with every
participant. There is nothing in the FIPA diagram that says anything about
which participants are involved in which sequence of messages. E.g. there
is nothing in the diagram that expresses that the reject-proposal messages
are sent only to participants that earlier sent proposals back to the initiator.
This is obvious to the human reader, but is nowhere defined.

So let us take a look at how we could realize CNP in existing UML.

4.1.1 The Single Participant Approach

One approach is to define a UML collaboration (see Figure 4.1) where there
is one initiator and one participant. That participant has all the abilities of
any participant, but of course for one single case, the participant is only one
person.

We believe that most UML designers are not familiar with use of UML
Collaborations, so we choose to include definition noted in [61, page 168-
171]:

Definition 8 A collaboration describes a structure of collaborating ele-
ments (roles), each performing a specialized function, which collectively
accomplish some desired functionality. Its primary purpose is to explain
how a system works and, therefore, it typically only incorporates those as-
pects of reality that are deemed relevant to the explanation. Thus, details,
such as the identity or precise class of the actual participating instances
are suppressed.

A collaboration is shown as a dashed ellipse icon containing the name
of the collaboration. The internal structure of a collaboration as comprised

4.1. CONTRACT NET PROTOCOL MODELED WITH CURRENT
UML 79

by roles and connectors, may be shown in a compartment within the dashed
ellipse icon. Alternatively, a composite structure diagram can be used.

Figure 4.1: Agent Context for the single general participant.

Figure 4.2: UML FIPA protocol for the general participant.

We apply the combined fragments of UML 2 sequence diagrams to define
the different options that are open to the participant.

In Figure 4.2 we apply the break-fragment [61, page 467-472] which means
that either the fragment contents happen or the rest of the diagram (actually
the rest of the enclosing interaction fragment) happens. Thus we are able to
express that for a participant that refuses the call for proposal, there will be

80 CHAPTER 4. UPMS-A: EXTENSIONS FOR INTERACTION
PROTOCOLS

no continuation of the protocol. We notice also that the use of the break-
fragments and the final alt-fragment (showing three different alternatives)
makes the diagram more compact than the original, and in fact is a lot more
precise. However, we still have the problem that the approach misses the
point that the initiator sends calls to many potential participants and that
he in fact must cope with many replies. The diagram shown in Figure 4.2
shows a very limited view, the situation as seen from the general participant.

Figure 4.3: UML FIPA protocol for the general participant, expressed with only
alt-fragments.

Break-fragment is one of the new concepts in UML 2 and many design-
ers have not used it before. To illustrate how the same sequence could be
modeled with more well-known concept, we can replace each break-fragment
with alt-fragment as depicted in Figure 4.3. However, the first approach
gives more compact and precise diagrams, so we will continue with use of
break-fragments in following sequence diagrams.

4.1.2 The Multiple Participant Approach

Our next attempt is intended to express that there are different participants
with different situations relative to the initiative described in the protocol.
Rather than defining one participant that is fully general, we now describe
one participant for each distinct situation. In our collaboration Figure 4.4
we define a set of participants with multiplicity.

We apply a notation in the lifeline header to select one object from a set
by a selector. The selector in this case is only a symbolic name serving as an

4.1. CONTRACT NET PROTOCOL MODELED WITH CURRENT
UML 81

Figure 4.4: Agent Context with set of participants.

index indicating what situation that given participant object is representing.

Figure 4.5: UML FIPA protocol for typical participants.

In Figure 4.5 we have one lifeline for each of the typical situations a par-
ticipant may be in. In this way we visualize more directly that there are
several participants that the initiator must relate to. We are not able, how-
ever, to describe the multiplicities of each of the subgroups. This approach
fails to give the impression that the initiator has the same approach to all

82 CHAPTER 4. UPMS-A: EXTENSIONS FOR INTERACTION
PROTOCOLS

participants in the first place. It also shows a situation where the initiator
handles the different typical participants in strict sequence. This is by no
means illegal as this diagram is not necessarily intended to define all possible
traces of the protocol. Sequence diagrams show possible runs, but seldom
all possible runs. Still we may want to express that there is nothing that
prevents the initiator from handling the return from an accepting partici-
pant before the return from a refusing participant. We can achieve that by
introducing such standard constructs as coregions which express that events
may come in any order.

4.2 Introducing Configurations With Subsets

The problem with the approach of typical participants was that the sets from
which these typical lifelines were selected, were not properly described. Their
multiplicity and internal relationships were not defined. We remedy this by
introducing configurations with subsets. In fact this is available in UML 2
already, but seldom used in modeling with composite structures, while the
UML 2 metamodel has very many subset declarations on association ends
in class diagrams. Subsets are constraints on a class property indicating
that the defined property is a subset of some other property defined in a
superclass of the encloser. An example (Figure 4.6) will make this clearer.

Figure 4.6: Agent Context with specialization.

In AgentContext we define one total set of participants p with multiplic-

4.2. INTRODUCING CONFIGURATIONS WITH SUBSETS 83

ity m. AgentContextSpecial is a specialization of the general AgentContext
where we have defined three subsets of p and these subsets are given new
names refused, rejected and accepted. What this does is to keep the informa-
tion that all objects of these sets are still contained in the original p, but that
they may have added capabilities or situations. In fact it would be natural in
our context to have three layers of specialization. The first distinction goes
between those that refuse and those that propose. The second distinction de-
fines subsets within those that propose, namely between the rejected and the
accepted. We flattened the two lower subclasses for illustration simplicity.

The behavior definition given in Figure 4.7 is structurally equivalent to
that of Figure 4.5, but the names of the lifelines reflect the subsets. Within
each of the subsets we apply the single lifeline approach as every object
within the subset should exhibit the same behavior.

Figure 4.7: UML FIPA protocol for typical participants, with subsets.

Notice that we have not applied any constructs that are not in UML 2
already, but we have in this latest approach applied a description technique
that is not very common. The technique has been presented with additions
by Haugen and Møller-Pedersen in [73].

84 CHAPTER 4. UPMS-A: EXTENSIONS FOR INTERACTION
PROTOCOLS

4.3 Introducing Subset Notation on Messages

We have found that the subset construct, that can be effectively applied to
composite structures as shown in Figure 4.6, are useful also as identifiers
in sequence diagrams as shown in Figure 4.7. But the latter still fails to
capture properly the distinction between showing one typical instance of
the set (as depicted first in Figure 4.5) and expressing that the interaction
actually holds for every instance of the set.

Applying multiplicities to the messages as suggested by the FIPA pro-
tocol standard (Figure 3.17) does not quite express this precisely as this
is not a matter of numbers only, but rather a matter of subsets. That is
why we suggest to introduce a subset notation for messages that very much
corresponds to the FIPA protocol standard.

Figure 4.8: UML FIPA protocol with subset message notation.

The notation is simple. Attached to one (or both) ends of a message
there is a constraint that has the keyword all followed by a part name. That
part must be a subset of the part represented by the lifeline on the message
end with the all constraint. In Figure 4.8 we have that refused, rejected and
accepted are all subsets of p. Notice also that we have reached the same kind
of compactness in our description that we had with our first approach with
the general participant in Figure 4.2.

Informally the meaning of this notation is the same as described by the

4.4. THE SEMANTICS OF THE MULTICASTING AND THE
ITERATOR-CLAUSE 85

FIPA protocol. Take e.g. the refuse message from p lifeline to initiator
where the sending has attached the constraint {all refused}. This obviously
is intended to mean that there is one message from every member of the
refused set to the initiator.

Likewise the reject-proposal message with {all rejected} constraint on its
receiving side intends to describe one message sent from initiator to every
member of the rejected subset of p.

But, we need one construct more. It is not sufficient only to be able to
define multicasting of messages to or from a given subset. The problem is not
to define how to send a bunch of messages out, the problem lies in defining
how to deal with the various responses that will return from that multicast.
In Figure 4.8 we see how the propose message or the refuse message are
responses to the initial cfp. We find that defining the refused, and rejected ∪
accepted subsets is a fruitful way to define the different alternatives. We could
continue to subset the participants into smaller and smaller subsets, but in
the end we choose a different variant. We define a combined alt-fragment
with an iterator-clause. The “alt {all accepted}" fragment iterates over all
participants of the accepted subset meaning that every accepted participant
has that choice between sending back failure, inform-done or inform-result.

4.4 The Semantics of the Multicasting and the Iterator-
Clause

We define the semantics of our proposed constructs as shorthands. We define
a transformation procedure that transforms a diagram with multicasts and
iterators into a standard UML 2 sequence diagram. The transformation
should not really be carried out because it assumes creating lifelines for all
objects of all parts in the composite structure.

Figure 4.9: UML FIPA protocol, compact version of multicasting and iteration.

86 CHAPTER 4. UPMS-A: EXTENSIONS FOR INTERACTION
PROTOCOLS

The sequence diagram in Figure 4.9 shows a compact version of the pro-
tocol isolating only the multicast and the iterator constructs.

Assume that the accepted subset of p only contains two participants, the
expansion of the constructs result in the sequence diagram in Figure 4.10.
The procedure for transforming multicasting has three steps:

Figure 4.10: UML FIPA protocol, expanded version of multicasting and iteration.

1. Create one lifeline for each object in the subset mentioned in the all-
constraint.

2. Replicate the message for every created lifeline.

3. Contain the multiple messages sends (or correspondingly receives) in
a coregion indicating that the sending / receiving may come in any
order.

In the situation where the all-constraint is used on both ends of a message,
it is necessary to replicate the message for every pair of lifelines from the two
lifeline sets involved (on either side of the message). On every lifeline there
will be a coregion.

The iterator has a similar definition and in fact it can be seen as the more
general of the two procedures since the multicasting can be described as if
the message was contained in a special combined fragment with iterator.

1. Create one lifeline for each object in the subset mentioned in the iter-
ator clause.

4.4. THE SEMANTICS OF THE MULTICASTING AND THE
ITERATOR-CLAUSE 87

2. Replicate the combined fragment for every created lifeline.

3. Contain each created combined fragment in an operand of an enclosing
par-combined fragment.

The par-fragment is defined in UML 2 as a parallel merge operator [61,
page 468] that will merge in all possible ways the sequences of the operands.

Figure 4.11: Multicasting in FIPA Contract Net Protocol, expressed with
Pim4Agents (see Section 3.3.3).

That we can define our new constructs as shorthands that may be trans-
formed into standard sequence diagrams means that we have not introduced
anything that obstructs the good semantic properties of sequence diagrams
such as compositionality. By compositionality we mean that the sequence di-
agrams can be refined piecewise and we can be certain that the result when
putting these pieces back together is a refinement of the original. Using
the STAIRS approach [72; 71; 40] we formalize this by a trace semantics
where we can show that sequence diagrams are monotonic with respect to
refinement for most of the standard operators such as alt, seq, loop, par [36].

This definition of multicast as explained, is not the first attempt to define
multicasting in the area of sequence diagrams. Helouet made a definition
in [41] which was combined with the ITU version Z.120 where he defines
multicast groups that in some way resembles our subsets. DFKI has also very
similar approach for solving the multicasting in their interaction diagrams
of the Pim4Agent metamodel (see Section 3.3.3).

As the Figure 4.11 illustrates, we see that definition of multicast groups
as well is used. There are two main actors, Initiator and ParticipantsActor,
where the Initiator sends CFP message to ParticipantsActor and the mes-
sageflow (MF) continues further to the subsets ProposeActor and Remaining

88 CHAPTER 4. UPMS-A: EXTENSIONS FOR INTERACTION
PROTOCOLS

(or called refused in Figure 4.8). Then these two groups replies with either
RefuseMessage or ProposeMessage, which both are FIPA compliant, and at
the end we can also see that Parallel concept is used to illustrate that Re-
jectMessage and AcceptMessage goes in parallel to BestBidder and Reject
participants.

Certainly, this definition divides participants into additional and smaller
sub groups, but as mentioned earlier, this is possible with our approach as
well. Furthermore we can see that this approach neither apply multiplicity or
subset notation to the messages, but the containment of participant subsets
inside participant have the semantics that this means “all” participants of
certain type of subset.

4.5 Use of Timer in UML 2

In scenarios where two or more actors are waiting for each other to reply
or finish their actions, it is important to prevent the possible deadlock that
could occur if they never respond. Usually timer is used for this purpose,
where the initiating actor is starting the timer when sending some request
and if the response is not received within certain duration, timeout occurs
and initiator can continue further on doing other tasks.

Our understanding of the deadline event used in FIPA CNP, Figure 3.17,
is that this notation might be obvious to the human reader, but is nowhere
defined. According to the diagram, it is hard to understand who is starting
the timer and when. Neither do we see what triggers the deadline event
that occurs after the cfp message. Haugen’s approach for bringing multicast
of messages in UML 2 sequence diagrams, as described in previous section,
neither clarifies this further.

However, there are three alternative ways to model timers with UML 2,
but rarely used and known by UML designers; i) custom classifier that rep-
resents timer, ii) use of SimpleTime model included in UML Superstructure
and iii) create more sophisticated model of time provided by an appropriate
UML profile. We will now give a short introduction to these three alterna-
tives.

4.5.1 Custom Classifier Representing Timer

We can, with help of an classifier and some neat sequence diagram elements,
build our own timers with UML 2. Sequence diagram in Figure 4.12 describes
interaction between Initiator and particular Participant. The Timer lifeline
is an classifier and could for instance be implemented as UML Class or
Component. The timer is set by sending a message startTimer with the
delay of some duration, in this case 5 time units, which is assigned to a
parameter d. A variable expire is assigned the point in time the timer should

4.5. USE OF TIMER IN UML 2 89

Figure 4.12: Use of a Timer in UML 2, from [66, page 201].

expire as the sum of the timestamp t1 of the reception of the startTimer,
and the delay d.

In the first alternative, Initiator sends a message stopTimer to Timer,
and the reception of stopTimer on t is followed by a time constraint stating
that the timestamp of the event should be less that the value of expire.

In the second alternative, the Timer sends a message timeout to Initiator,
followed by a constraint specifying that the timestamp of transmission of
timeout should be equal to the value stored in expire.

Specifying a timer in this way, as an independent entity, we place all the
mechanism and implementation inside the Timer classifier, and can build
more sophisticated model of timers. Disadvantages is that sequence diagrams
become complex and harder to read.

4.5.2 SimpleTime Model in UML Superstructure

Most UML designers are not aware of that UML 2 is originally supporting
constructs to help describing observation of time. Reason for this could
probably be that almost none UML modeling tool is support this features
and therefore it’s rarely used.

The SimpleTime subpackage [61, page 423-454], of the Common Behavior
package, adds metaclasses to represent time and durations as well as actions
to observe the passing of time.

As the name tells, the simple model of time described in SimpleTime
package, is intended as an approximation for situations where the more com-
plex aspects of time and time measurement can safely be ignored. However,

90 CHAPTER 4. UPMS-A: EXTENSIONS FOR INTERACTION
PROTOCOLS

SimpleTime is not explicitly introducing “timer” to UML, but instead provide
support for representing time and duration.

Figure 4.13: Simpletime - sequence Diagram with time and timing concepts, from
[61, page 513].

The Sequence Diagram in Figure 4.13 shows how time and timing no-
tation may be applied to describe time observation and timing constraints.
The User sends a message Code and its duration is measured. The ACSys-
tem will send two messages back to the User. CardOut is constrained to last
between 0 and 13 time units. Furthermore the interval between the sending
of Code and the reception of OK is constrained to last between d and 3*d,
where d is the measured duration of the Code signal. We also notice the
observation of the time point t at the sending of OK and how this is used to
constrain the time point of the reception of CardOut.

The DurationConstraint could be applied to CNP as demonstrated in
Figure 4.14, which is simplified CNP. The figure shows two diagrams, almost
equal to each other, describing scenario where one buyer wants to buy a ser-
vice and sends request for service(cfp) to all potential sellers. After the offers
are received, buyer picks out one or many sellers to provide this service and
rejects the others. Difference between diagram a and b is that we are describ-
ing deadlines for different actors. In a we describe deadline for receiving
the offers at buyers side, while in b we describe deadline for sending offer
from seller side. The upper arrow in DurationConstraint illustrates that the
clock starts ticking when request for service message is sent (or received in
diagram b). The lower arrow illustrates that the DurationInterval 0..d is
checked on the reception of offer the service message (or sending in diagram
b). All traces where the constraints are violated are negative traces i.e., if
they occur in practice the system has failed.

In principle, the SimpleTime is applicable to all behaviour constructs of

4.5. USE OF TIMER IN UML 2 91

(a) Buyer deadline (b) Seller deadline

Figure 4.14: DurationConstraint applied to simplified FIPA CNP.

UML, for example sequence diagrams, state machines and activity diagrams.
It is also more compact approach compared with one described in previous
section. But since there is no or very little use of this package, there are also
very few examples to relate to in order to get more practical understanding.

4.5.3 Timer Described with UML Profile

Finally, the third and last alternative way of describing timers with UML
is to define your own UML Profile, or use existing one. One example is the
UML Testing Profile [57]. This is OMG specification, based on UML 2.0,
which defines a language for designing, visualizing, specifying, analyzing,
constructing, and documenting the artifacts of test systems. It is a test
modeling language that can be used with all major object and component
technologies and applied to testing systems in various application domains.

Now, the interesting part of this profile is the Time Concept [57, page
29-36]. The Simple Time concepts of UML do not cover the full needs for
test specification, and therefore the Testing Profile provides a small set of
useful time concepts.

In Figure 4.15 we have described the same sequence diagram as in Fig-
ure 4.12, but with time concepts from UML Testing Profile. As you can
notice, the Timer is now represented as messages and not lifeline as in the
first diagram. Also startTimer, stopTimer and timeout messages has been
replaced with symbols.

Timer is a predefined interface. Timer properties may only be owned by

92 CHAPTER 4. UPMS-A: EXTENSIONS FOR INTERACTION
PROTOCOLS

Figure 4.15: UML Testing Profile: sequence diagram with time actions, from [66,
page 201].

active objects. An active class may own multiple timers. Operations like
start, stop and read are defined for the timer interface.

By means of the start() operation, a timer may be started with a certain
time value. The predefined time value of a timer is always positive. For
example, "start Timer1(now+2.0)" means to start a timer and to stop it at
latest in 2 time units, otherwise it expires.

With the stop() operation, an active timer can be stopped. The expira-
tion time of an active timer can be retrieved by the read() operation. The
timer attribute isRunning is a boolean value and indicates whether the timer
is still active or not. When a timer expires after its predefined time, a special
timeout message is generated automatically. It is sent immediately to the
active class that owns the timer. A timeout is only allowed to be sent to the
owning class of the timer.

When we tried to apply the UML Testing Profile to our case study, we
found some legacy problems regarding UML version that was used in original
profile. The specification claims that the profile is based on the UML version
2.0. But when we tried to define the profile from the scratch, with respect
to the specification [57], we recognized that some metaclasses was missing
(or replaced).

However, we believe that such concepts are fruitful and important with
respect to the agent interaction protocols, and has proposed this as one
mandatory requirement in the Agent Metamodel and Profile (AMP) RFP.
We get more compact and easier to read diagrams, and maybe the biggest
advantage, compared with the first approach, we can reuse it in several
models without having to describe it over again.

4.6. SUMMARY 93

4.6 Summary

In the previous sections of this chapter we described the architecture and
design of UPMS-a. We started with outlining the challenges in UML de-
scribing agent interaction protocols and slightly followed with introducing
configuration with subsets, in order to group participants and define their
multiplicity and internal relationship.

Subset notation on messages were introduced in order to apply what
participant subset(s) the messages is being sent to and from. New Iterator-
clause were explained as support for iterating the multicasting

Finally we presented three possible approaches to define timer concepts
with UML 2.

Here we conclude the architecture and design chapter and leave the de-
scription of the realization and implementation details to the next.

94 CHAPTER 4. UPMS-A: EXTENSIONS FOR INTERACTION
PROTOCOLS

Chapter 5
UPMS-a: Realization and
Implementation

In theory, there is no difference
between theory and practice.
But in practice, there is.

Yogi Berra

In this chapter, we want to provide realization and implementation of the
UPMS-a proposal on the use case from Section 2.1.1. With this, we want to
proof that presented solutions in previous chapter is really useful with the
respect to the agent interaction protocols, and it is possible to be realized
and solve the problems in use case scenario from Saarstahl.

5.1 Introduction

The implementation consists of a Collaboration describing the requirements
for a service for purchasing orders with the focus on scheduling productions,
and the ServiceInterfaces and Participants that fulfill this contract. Fur-
thermore, the specification encompasses a class diagram that describes the
relations between the involved entities and at least the models of STP which
emphasize optimization in the steel production as described earlier in the
Section 3.4.3.

The scenario exists of four different, but collaborating domains; Pur-
chasing, Invoicing, Productions and Shipping. We will only cover two of
these, the Purchasing and Productions. For both domains we will explain
the steps from business view to implementation and service view, which is in
according to the Service-Oriented Modeling Architectre (SOMA), described
in Section 5.2.

96 CHAPTER 5. UPMS-A: REALIZATION AND IMPLEMENTATION

In Section 5.3 we focus on the high level requirements of the purchasing
the order scenario, where we will also spend some time on explaining the use
of SOA-Pro stereotypes.

In Section 5.4 we will explain in details the scheduling productions, and
also apply the UPMS-a we described in previous chapter. Finally, in Sec-
tion 5.5 we summarize the realization and implementation of the case study.

5.2 SOMA: Service Oriented Modeling Architec-
ture

As in all development projects, it is very helpful to have guidelines, patterns
and methodology on how to proceed in the different steps of the development
process. Unfortunately, the SOA-Pro submission doesn’t recommend any for
us, so we have to choose our own SOA methodology in order to model the
purchase order scenario.

However, we believe that IBM’s Service Modeling Technique known as
SOMA [4] (Service Oriented Modeling Architecture), is providing us the
needed guidelines for our purpose. This technique consists of three key steps
Identification, Specification and Realization of Services, Components
and Flows (see Figure 5.1).

Figure 5.1: Major activities in SOMA.

In the Identification step, we will start with identifying the business do-
main, which is identifying the key business processes that supports pur-
chasing the orders in the Saarstahl case study. This will be the input for
identifying candidate services and data elements.

5.3. PURCHASING THE ORDER 97

In the Specification step, we use identified artefacts from previous step
and design them in details.

The last step, Realization, consists of realizing the functionality and col-
lecting peaces together for the deployment.

5.3 Purchasing the Order

The requirements for processing purchase orders are captured in a Collabo-
ration. Here we will not cover how this collaboration was determined from
business requirements or business processes. The collaboration is then ful-
filled by a number of collaborating Participants having needs and capabilities
through Requisitions and Services specified by ServiceInterfaces identified
by examining the collaboration. This collaboration is a formal, architec-
turally neutral specification of the requirements that could be fulfilled by
some interacting service consumers and providers, without addressing any
IT architecture or implementation concerns.

The Process Purchase Order Process collaboration in Figure 5.2 indicates
there are four roles involved in processing purchase orders. The orderProces-
sor role coordinates the activities of the other roles in processing purchase
orders. The types of these roles are the Interfaces shown in Figure 5.3. These
Interfaces have Operations which represent the responsibilities or capabilities
of these roles.

5.3.1 Service Identification

The next step in the development process is to examine the collaboration
and identify services and participants necessary to fulfill the indicated re-
quirements. Eventually a service provider will be designed and implemented
that is capable of playing each role in the collaboration, and providing the
services necessary to fulfill the responsibilities of that role.

Figure 5.4 shows a view of the service interfaces determined necessary to
fulfill the requirements specified by the collaboration in Figure 5.2. Note that
Interfaces are mapped to activity partitions (roles) in the activity diagram in
Figure 5.2 and actions to Operations. This view simply identifies the service
interfaces defining services that will fulfill the service contracts, the packages
in which they are defined, and the anticipated dependencies between them.

5.3.2 Service Specification

The identified ServiceInterfaces must now be defined in details. A Service
Interface defines an interface to a service: what consumers need to know to
determine if a service’s capabilities meet their needs and if so, how to use
the service. A ServiceInterface also defines as what providers need to know
in order to implement the service.

98 CHAPTER 5. UPMS-A: REALIZATION AND IMPLEMENTATION

Figure 5.2: High level overview and requirements of the purchase order scenario.

Figure 5.3: Interfaces listing role responsibilities.

Again, we choose only to focus on the Purchasing and the Scheduling
(from Productions package) service interfaces. Invoicing and Shipping are
out of the scope and will not be covered.

5.3. PURCHASING THE ORDER 99

Figure 5.4: Identified Service Interfaces.

The requirement was to create a new purchasing service that uses the
Invoicing, Productions and Shipping services, as determined in Figure 5.4
and according to the Process Purchase Order process. This will provide an
implementation of the business process as choreography of a set of inter-
acting service providers. Since this is such a simple service, no contract is
required, and the service interface is a simple UML Interface providing a
single capability as shown in Figure 5.5 (read more about Service Interfaces
in Section 3.2.4.3).

The processPurchaseOrder operation has to in-parameters, containing
customer related data and the purchased order. In return, the operation is
providing invoice of the order.

Figure 5.5: Purchasing service interface with capability as Operation.

5.3.3 Service Realization

Part of architecting an SOA solution is to determine what participants will
provide and consume what services, and how they do so. These consumers
and providers must conform to any fulfilled contracts as well as the protocols
defined by the service interfaces they provide or require. Each capability
provided by a service participant must be implemented somehow.

Each capability (operation) will have a method (behavior) whose speci-

100 CHAPTER 5. UPMS-A: REALIZATION AND IMPLEMENTATION

fication is the provided service operation. The design details of the service
method can be specified using any Behavior: an Interaction, an Activity,
StateMachine or OpaqueBehavior.

Often a service participant’s internal structure consists of an assembly of
parts representing other service providers, and the service methods will be
implemented using their provided capabilities. We will not present partici-
pants and contracts for purchasing and production parts.

The purchase order processing services are specified by the Purchasing in-
terface, and provided by the OrderProcessor provider as shown in Figure 5.6.
This participant provides the Purchasing Service through its purchasing port.

Figure 5.6: The OrderProcessor Service Provider.

The OrderProcessor participant also has Requisitions to three services:
invoicing, scheduling and shipping. The providers of these services are used
by the OrderProcessor component in order to implement its Services.

The OrderProcessor participant uses an Activity to model the design of
the provided processPurchaseOrder service operation. The details for how
this is done are shown in the internal structure of the OrderProcessor com-
ponent providing the service as shown in Figure 5.7.

Each service operation provided by a service provider must be realized
by either:

1. an ownedBehavior (Activity, Interaction, StateMachine, or OpaqueBe-
havior) that is the method of the service Operation, or

2. an AcceptEventAction (for asynchronous calls) or AcceptCallAction
(for synchronous request/reply calls) in some Activity belonging to
the component. This allows a single Activity to have more than one
(generally) concurrent entry point controlling when the provider is able

5.3. PURCHASING THE ORDER 101

Figure 5.7: The processPurchaseOrderActivity Service Operation Design

to respond to an event or service invocation. These AcceptEventAc-
tions are usually used to handle callbacks for returning information
from other asynchronous CallOperationActions.

Within the OrderProcessor, the processPurchaseOrder operation is the
specification of the processPurchaseOrderAvtivity Activity which is an owned
behavior of OrderProcessor.

This diagram corresponds very closely to the overview activity diagram
with purchase order requirements that we specified in Figure 5.2. The In-
voiceProcessing and ShippingProcessing service operations are realized through
the processInvoice and processSchedule accept event actions in the process.
The corresponding operations in the interfaces are denoted as «trigger» op-
erations to indicate the ability to respond to AcceptCallActions (similar to
receptions and AcceptEventActions where the trigger is a SignalEvent).

5.3.4 Assembling Services and Fulfilling Contracts

The OrderProcessor component is now complete. But there are two things
left to do. First, new Participant must be created that connects service
providers, capable of providing the OrderProcessor’s required services, to
the appropriate services. This will result in a deployable Participant that is
capable of executing.

102 CHAPTER 5. UPMS-A: REALIZATION AND IMPLEMENTATION

Second the OrderProcessor, and the other participants, needs to indicate
that they fulfills the requirements specified in the collaboration shown in
Figure 5.2.

The OrderProcessor, Invoicer, Productions and Shipper Participants are
classifiers that define the services consumed and provided by those partici-
pants and how they are used and implemented. In order to use the providers,
it is necessary to assembly instances of them in some context, and connect
the consumer requisitions to the provider services through service channels.

Figure 5.8: Assembling the parts into a deployable subsystem, Manufacturer.

The Manufacturer Participant shown in Figure 5.8 represents a complete
component that connects the OrderProcessor service provider with other
service providers that provide its required services. Figure 5.8 also shows how
the Manufacturer participant provides the purchaser service by delegating
to the purchasing service of the OrderProcessor.

Figure 5.2 describes the requirements for the OrderProcessor participant
using a Collaboration. You may recognize that we are using the stereotype
«ServiceArchitecture» and not «ServiceContract» of this collaboration. As
we described in Section 3.2.4.6, Service Architecture is used to describes the
roles of a set of Participants that provide and use services to achieve some
mutual goal or implement a business process. Each service of a ServiceArchi-
tecture is represented by the use of a ServiceContract bound to participant
roles.

A CollaborationUse is added to the Manufacturer to indicate the ser-
vice contract between the four participants. Service contract fulfillment are
indicated by use of CollaborationUse.

The CollaborationUse, called requirements, is an instance of the Purchase

5.4. PRODUCTION AND PLANNING 103

Order Process Collaboration (from Figure 5.2. This specifies that the par-
ticipants fulfills the Purchase Order Process requirements. The role bindings
indicate which role the parts of the service Participants plays in the collab-
oration. The orderProcessor part is bound to the orderProcessor role in the
ServicesArchitecture. This part is capable of playing the role because it has
the same type as the role in the architecture. The invoicer part is bound to
the invoicing role of the ServicesArchitecture. This part is capable of playing
this role because it provides a Service whose ServiceInterface is the same as
the role type in the ServicesArchitecture. The scheduling and shipping roles
are similar.

The Manufacturer Participant is now complete and ready to be deployed.
It has specific instances of all required service providers necessary to fully
implement the processPurchaseOrder service. Once deployed, other service
consumers can bind to the order processor component and invoke the service
operation.

In next sections we will go in details how the Production part is designed
and implemented.

5.4 Production and Planning

In previous sections we identified overall requirements, and the collaboration
between core participants through well defined interfaces. In this section
we will explain the Productions part more in details, and apply UPMS-a
proposals in creation and optimization of heats and sequences.

5.4.1 Service Identification

In Figures 5.2 we identified high level requirements for purchasing the order.
This helped us to discovering the Productions role, which we have refined
in more details in Figure 5.9. Two new roles are discovered for the planning
part, ProductionsPlanning and ProductionsUnitPlanning (see Figure 5.10).
Note that there are one or many (1..*) instances of the ProductionsUnitPlan-
ning in the ProductionsPlanningContract. We have placed this multiplicity
in the properties of the part, but choose to attach a Note in order to show
this graphically in the diagram.

The ProductionsPlanning role is used to initiate and coordinate the exe-
cution of the STP, while the ProductionsUnitPlanning role decide whether to
buy or sell OrderPositions in order to optimize the local plans (computeNex-
tAction operation).

104 CHAPTER 5. UPMS-A: REALIZATION AND IMPLEMENTATION

Figure 5.9: Requirements of the Productions.

Figure 5.10: Productions Interfaces Listing Role Responsibilities.

5.4. PRODUCTION AND PLANNING 105

5.4.2 Service Specification

Figure 5.11 shows a view of the service interfaces determined necessary to
fulfill the requirements specified by the collaboration in Figure 5.9. This view
has identified new Service Interface, PlanningService, which is described in
Figure 5.12. The Purchasing service that we described in Figure 5.5 was
such a simple service that it was sufficient to describe it with ordinary UML
Interface. The PlanningService is little bit more complex and also illustrates
the use of ServiceInterfaces within SOA-Pro. The PlanningService provides
the ProductionsPlanning interface and requires the ProductionsUnitPlan-
ning interface. In addition it also owns activity diagram which described the
collaboration between these two roles (interfaces). The activity is describing
high level steps of the STP.

Figure 5.11: Identified Service Interfaces in Productions.

From description of case study in Section 2.1, we have relationship be-
tween entities as depicted in Figure 5.13

Figure 5.13 depicts a UML class diagram that describes the relations be-
tween orders, aggregates, and heats. We use the concept OrderPositionPart
to express that one OrderPosition might be split-up into several parts that
are distributed among several Heats.

Moreover, each OrderPositionPart has to be assigned to an Aggregate
that fits to the required format and quality constraints of the corresponding
OrderPosition. Every Aggregate refers to an ordered list of Sequences that
represents the local schedule for it (see Figure 2.3). A Sequence consists of an
ordered list of Heats that have similar time, quality, and format constraints.
The DTS is the schedule for the whole steelwork containing the set of all
Sequences.

106 CHAPTER 5. UPMS-A: REALIZATION AND IMPLEMENTATION

Figure 5.12: The Planning Service Interface.

5.4. PRODUCTION AND PLANNING 107

Figure 5.13: UML class diagram describing the relationship between entities.

108 CHAPTER 5. UPMS-A: REALIZATION AND IMPLEMENTATION

5.4.3 Service Realization

As described earlier in Section 3.4.3, there are two actors in the STP: The
Initiator initiates and coordinates the execution of the STP, while the Par-
ticipants represent the planning units that decide whether they want to buy
or sell something to optimize their local plans. In every round of the STP,
the participants send their buy and sell decisions to the initiator that has to
decide what actions are executed.

Figure 5.14 depicts the Agent, which is specialization of Participant (see
Figure 3.5) in SOA-Pro and is representing the Initiator. The Production-
sPlanner requires the capabilities of the Scheduling interface, provides the
ProductionsPlanning and requires PorductionsUnitPlanning interfaces. This
is because the Planning service interface is designed from ProductionsPlan-
ner point of view.

Figure 5.14: The ProductionsPlanner Agent.

Actor representing the Participant in the STP is depicted in Figure 5.15
and is also stereotyped as Agent. In contrast to ProductionsPlanner, the
ProductionsPlanningUnit is requiring the ProductionsPlanning interface and
providing the ProductionsUnitPlanning interface.

Figure 5.15: The ProductionsPlanningUnit Agent.

The Participants in the STP is divided in several subgroups according to
the decisions they take in the Buy and Sell Phase. We remember that UML
already supports configuration with subsets and the Figure 5.16 depicts how
this is done in our use case. We have three UML Collaborations which refines

5.4. PRODUCTION AND PLANNING 109

each other in order to specialize the different roles of the ProductionsPlan-
ningUnits.

Figure 5.16: Roles of the simulated trading protocol in Productions.

We have also included custom Timer class, which is used by Production-
sPlanner for the timer constraints. Operation of the Timer is used to start,
stop and read timer actions, as described in Figure 5.17. Details about how
these operations are implemented will not be covered here, we only focus on
the concepts.

Now that we have identified, specified and realized participants of the
STP and the services, the only part that is missing before we can assem-
bling services together is the sequence diagram describing the interaction
between participants. This will provide more details to the requirements of
the contract from Figure 5.9.

110 CHAPTER 5. UPMS-A: REALIZATION AND IMPLEMENTATION

Figure 5.17: Custom Timer expressed by UML Class.

Figure 5.18: Simulated Trading Protocol in Productions.

Figure 5.18 depicts the STP, where planner starts the protocol with send-
ing the participation-request signal to all �planningUnits. Then the Buy&SellDecision
Phase repeats several times before the search-result signal is sent to the
planningUnits and the protocol starts over again until some threshold. The
Buy&SellDecision Phase interaction use is described in Figure 5.19. Before
the selling and buying interactions starts, the planner calls the startTimer
operation of the timer in order to start the clock. The possible decisions by
planningUnits is buy, sell or wait. Last alternative message is the TimeOut
signal that could be sent from timer if there is timeout. The different signals
that is used is depicted in Figure 5.20. These signals are specializing the
FIPA-performatives and we want to use signals instead of method calls since
agents are listening to and acting from asynchronous events.

Details about how the planner and planningUnits take their decisions in

5.4. PRODUCTION AND PLANNING 111

Figure 5.19: Buy and sell phase of the STP in Productions.

the STP is left out here because we wanted only to focus on the concepts.
Most probably the implementation of how to decide whether to buy/sell or
wait in Saarstahl use case, will not be modelled, but rather reused by calling
a service which has the implementation already.

Figure 5.20: Messages of the STP modelled as UML signals.

5.4.4 Assembling Services and Fulfilling Contracts

We are now ready to assembly all services together and create the big picture
of the Productions participant.

In Figure 5.21, we present how the production part of the PurchaseOrder
scenario can be extended to use the STP for production planning. The Pro-
ductionsPlannner (stereotype Agent) is the central entity in the STP. It is in

112 CHAPTER 5. UPMS-A: REALIZATION AND IMPLEMENTATION

charge of the initialization of the STP and the coordination of the Produc-
tionPlanningUnits (stereotype Agent). Diagram in Figure 5.21 depicts one
instance of Agent ProductionPlanner and three instances of the Production-
PlannerUnit. The STP itself is specified in the context of the Productions-
PlanningContract, which defines the message exchange between the involved
parties. The instances of ProductionsPlanner perform the Initiator actor of
the STP and the instances of ProductionPlanningUnit the Participant role.

Figure 5.21: Assembling the parts into a deployable subsystem, Productions.

5.5 Summary

The realization and implementation chapter explained the work done in the
realization of UPMS-a. Concerning the requirements of the case study, it
introduced how the purchase order and scheduling production could be mod-
eled in collaboration of services in SOA and interaction protocols in Multi-
Agent Systems.

Chapter 6
UPMS-a: Evaluation

Experience is a hard teacher
because she gives the test first,
the lesson afterwards.

Vernon Sanders Law

As we explained in the beginning of this thesis, evaluation will be based
on evaluating the hypothesis with respect to the success criteria previously
defined in Chapter 2. Every success criterion, is followed by a short argu-
mentation on its validation result.

We validate the success criteria through a level of fulfillment. These levels
are Fulfilled, Partly Fulfilled and Poorly Fulfilled.

6.1 Success criterion 1

A suitable extension of SOA-Pro will make it possible to express multicast of
messages between participants in agent interaction protocols.

Fulfilled: UPSM-a introduced subset notation on messages which provided
support in UML Sequence Diagrams for expressing which group(s) of
participants are sending or receiving particular messages. The imple-
mentation of this feature is depicted in case scenario, Figure 5.18.

6.2 Success criterion 2

A suitable extension will make it possible to group participants in groups in
order to express which group of participants are receiving or sending partic-
ular message.

Fulfilled: UPMS-a presented configuration with subsets in UML, which
makes it possible to not only define groups of participants, but also

114 CHAPTER 6. UPMS-A: EVALUATION

describe their multiplicity and internal relationships. The implemen-
tation of this feature is depicted in case scenario, Figure 5.16.

6.3 Success criterion 3

A suitable extension will only introduce or extend the SOA-Pro proposal
where needed, and use as much as possible existing concepts in SOA-Pro
or UML.

Fulfilled: UPMS-a has only introduced two new extensions to UML and
SOA-Pro; (i) subset notation on messages in Sequence Diagrams and
(ii) iterator constructs for multicasting. This was not possible to ex-
press with UML 2 since features for multicasting were an lacking fea-
ture and the need to express this kind of scenarios have not arise.

6.4 Success criterion 4

A suitable extension will make it clear how to use timer concepts within
SOA-Pro in order to express deadlines in interaction protocols.

Fulfilled UPMS-a presented three alternative ways to model timers with
UML 2 and SOA-Pro i) custom classifier that represents timer, ii) use
of SimpleTime model included in UML Superstructure and iii) more
sophisticated model of time provided by an appropriate UML profile.
First alternative is implemented in case scenario, Figures 5.17 and 5.19.

6.5 Hypothesis

H1 Proposed extensions will make SOA-Pro and UML suitable to express
agent interaction protocols.

Through the evaluation of the success criteria, we have validated the
hypothesis H1. From the four success criteria that acted as predicates to
test the hypothesis, all four were Fulfilled. This result, led us the conclusion
that H1 is true. From here we can confirm that the main goal of this thesis
is accomplished.

Now we can state that : “Extensions proposed in UPMS-a does make
SOA-Pro and UML suitable to express agent interaction protocols."

Chapter 7
Conclusion and Future Work

Try not to become a man of
success, but rather try to
become a man of value.

Albert Einstein

The final chapter summarizes this thesis and provides an outlook on
feasible future work. First we start with summarizing our work in Section 7.1.
Then we emphasize achievements in Section 7.2 and finishing with suggesting
feasible future work in Section 7.3.

7.1 Conclusion

In this thesis, we investigated the similarities of Service-Oriented Architec-
tures (SOAs) and Multi-Agent Systems (MASs). For this purpose, we took
the revised submission of the UML Profile and Metamodel for Services (SOA-
Pro) and evaluated whether the proposed approach supports modeling of the
core building blocks of MASs. Our evaluation taught us that SOA-Pro offers
basic functionalities to model MASs and thus a model transformation be-
tween SOA-Pro and MASs like PIM4Agents is feasible. However, advanced
functionalities of MAS, like agent interaction protocols are not supported by
SOA-Pro and we showed that SOA-Pro could easily be extended to support
these kinds of functionalities. In our evaluation, we mainly concentrated
on interaction extensions, however, further extensions are discussed in the
ongoing work in the context of the Agent Metamodel and Profile by OMG.

7.2 Achievements

The work with agent-based extensions for the UML Profile for Service-
Oriented Architectures:

116 CHAPTER 7. CONCLUSION AND FUTURE WORK

• identified similarities and needed extensions of SOA-Pro submission in
order to collaborate with MASs.

• proposed feasible and small extensions of SOA-Pro and UML 2 in order
to model agent interaction protocols.

• modeled one of the very first real world scenarios with SOA-Pro. The
submission is still under review and is not yet published for the public.
Not only did we present and explain how to use the stereotypes, but we
also showed how agents and services can collaborate with each other
in the context of MDA.

• has already showed to be of great value for multiple parties; (i) in
the ongoing work with AMP RFP, which is research on the same
field, but in greater scale, with a number of participants involved and
greater time pan. (ii) We have also written a paper [31] that summa-
rize our work and which is to be published for the Modeling, Design,
and Analysis for Service-Oriented Architecture Workshop; 3rd edition
(mda4soa)1. (iii) Within SHAPE project our work has already been
adopted in the work packages and will be basis for the further research
and discussions.

7.3 Future Work

As we mentioned earlier, there is ongoing work in the context of the Agent
Metamodel and Profile (AMP) by OMG, which has been in process since we
started with our work. We have worked together in defining the requirements
in the RFP, which will be covered by submissions.

Basically we believe that first step, in direction of metamodel and profile
for Agents, is to make adjustments in SOA-Pro so it supports the core build-
ing blocks of MASs that we presented earlier in this thesis (see Section 2.5.

Following, in Section 7.3.1 and 7.3.2 we will suggest future work on re-
spectively implementation of subset notations on messages and definition of
the timer concepts, both within AMP. Then we take closer look at two of
the core blocks, organization and roles, and suggests how they could be im-
plemented with SOA-Pro. Suggestions we present in Section 7.3.3 and 7.3.4
are just conceptual, and are inspirited by PIM4Agent metamodel. Finally,
in Section 7.3.5 we will discuss the future work on the tools for UML and
UML Profiles modeling.

7.3.1 Implementation of Subset Notation

We believe that subset notation on messages, as we presented in this thesis,
was successful support in order to express multicast of messages within in-

1http://events.deri.at/mda4soa2008/

7.3. FUTURE WORK 117

teraction protocols. However, we did only present shorthand notation. Now
it’s important to take an closer look on how this could be implemented in
metamodel and UML Profile for Agents and SOA-Pro.

7.3.2 Definition of Timers

As we described, timer concepts are important with respect to the agent
interaction protocols. We suggest that Timer concepts from UML Testing
Profile get adopted in AMP and modified to suit UML 2 metamodel. We
did try this in our work, but realized that we need more detail knowledge
of the UML metamodel, before we can suggest any modifications. Benefit of
defining the Timer concepts in the UML Profile, as we suggest here it is easier
to start using already existing concepts, and the diagrams gets becomes more
compact (as explained in Section 4.5.3).

Figure 7.1: Organizational extensions of SOA-Pro.

7.3.3 Organizations in SOA-Pro

A Cooperation (depicted in Figure 7.1) defines a social structure Agents can
take part in. It is a specialization of a ServiceContract in SOA-Pro and binds
Instances of Agent to DomainRoles the Cooperation requires. An Organiza-
tion is a special kind of Cooperation that also has the characteristics of an
Agent. Therefore, the Organization can perform DomainRoles and has Ca-
pabilities. Using the concepts of an Organization, social units can be formed
that take advantage of the synergies of its members, resulting in an entity
that enables products and processes that are not possible from any single
individual.

118 CHAPTER 7. CONCLUSION AND FUTURE WORK

Figure 7.2: Role extensions of SOA-Pro.

7.3.4 Roles in SOA-Pro

In general, a Role (see Figure 7.2) is an abstraction of the social behavior
of an Agent in a given social context, usually a Cooperation. It refers to
(i) a set of Capabilities defining the Behaviors it can possess and (ii) a set
of Resources that represent the environment it has access to. Three spe-
cializations of a Role are considered in Figure 7.2. A DomainRole gives
an Agent certain Capabilities inside a particular domain whereas an Inter-
actionRole defines the entities within Interactions and their capabilities to
behave in accordance to the Interaction with respect to sending and receiv-
ing messages. InteractionRoles can also be split using the subactor reference
meaning that the Instances that are bound to the superactor can be part of
exactly one subactor. In general, the subactors are filled at run-time, how-
ever, the range of Instances can be defined at design time using the min and
max attributes. Beside the DomainRole and InteractionRole, a SocialRole
defines which responsibilities it needs to fulfill in the particular social unit it
is acting.

7.3.5 Complete UML 2 Tool Support

As we could see in our comparison of the modeling tools for UML in Table 2.4,
there is poor support for complete UML modeling. We found IBM RSM

7.3. FUTURE WORK 119

7.0.5 as the best alternative, among several other commercial and open-
source tools. However, neither of the tools did completely support UML 2,
and if the MDA approach should be successfully used in the industry, it is
required that the tool support gets much better and with advantage on the
open-source frameworks like Eclipse.

120 CHAPTER 7. CONCLUSION AND FUTURE WORK

Appendix A
List of Abbreviations

AOSE Agent-Oriented Software Engineering
BDI Belief, Desire, Intention
CIM Computational Independent Model
AI Artificial Intelligence.
DAI Distributed Artificial Intelligence
DSL Domain Specific Language
MAS Multi-Agent System
MDA Model-Driven Architecture
MDSD Model-Driven Software Development
MDD Model-Driven Development
MOF Meta Object Facility
PIM Platform-Independent Model
PSM Platform-Specific Model
SOA Service-Oriented Architecture
UML Unified Modeling Language
CNP Contract Net Protocol
STP Simulated Trading Protocol
PDP Pickup and Delivery Problem
CAL Communicative Act Library
FIPA Foundation for Intelligent Physical Agents
ACL Agent Communication Language
WS Web Service
WSA Web Service Architecture
JADE Java Agent DEvelopment Framework
AUML Agent UML
OMG Object Management Group
OASIS Organization for the Advancement of Structured Information Standards
SF Software Factories
DSM Domain Specific Modeling

122 APPENDIX A. LIST OF ABBREVIATIONS

Bibliography

[1] Bachem A., Hochstättler W., and Malich M. Simulated Trading: A
New Parallel Approach for Solving Vehicle Routing Problem Report No.
92.125, 1992.

[2] Chavez A. and Maes P. Kasbah: An agent marketplace for buying and
selling goods. In First International Conference on the Practical Ap-
plication of Intelligent Agents and Multi-Agent Technology (PAAM’96),
pages 75–90, London, UK, 1996. Practical Application Company.

[3] AAMAS. Autonomous Agents and Multiagent Systems. 4th work-
shop on agents in traffic and transportation. [online]. Available
from: http://ki.informatik.uni-wuerzburg.de/~kluegl/
att2006/ [cited 4. June 2008].

[4] Ali Arsanjani and Abdul Allam. Service-Oriented Modeling and Ar-
chitecture for Realization of an SOA. In SCC ’06: Proceedings of the
IEEE International Conference on Services Computing, Washington,
DC, USA, 2006. IEEE Computer Society.

[5] Krulwich B. Bargain finder agent prototype, Anderson Consulting,
1995.

[6] G. Benguria, X. Larrucea, B. Elvesæter, T. Neple, A. Beardsmore, and
M. Friess. A Platform Independent Model for Service Oriented Archi-
tectures. In Second International Conference on Interoperability of En-
terprise Software and Applications (I-ESA 2006), 2006.

[7] Bauer Bernhard and Odell James. UML 2.0 and Agents: How to Build
Agent-based Systems with the new UML Standard . Journal of Engineer-
ing Applications of Artificial Intelligence, 18(2):141–157, March 2005.

[8] Jeffrey M. Bradshaw. An Introduction to Software Agents. In Jeffrey M.
Bradshaw, editor, Software Agents, pages 3–46. AAAI Press / The MIT
Press, 1997.

http://ki.informatik.uni-wuerzburg.de/~kluegl/att2006/
http://ki.informatik.uni-wuerzburg.de/~kluegl/att2006/

124 BIBLIOGRAPHY

[9] M. Bratman. Intentions, Plans, and Practical Reason. Harvard Univer-
sity Press, Cambridge, Massachusetts, 1987.

[10] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
Tropos: An Agent-Oriented Software Development Methodology . Au-
tonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[11] R. Brooks. A robust layered control system for a mobile robot . Robotics
and Automation, IEEE Journal of [legacy, pre - 1988], 2(1):14–23, 1986.

[12] Hahn Christian. A Platform Independent Agent-based Modeling Lan-
guage, German Research Center for Artificial Intelligence (DFKI), 2008.

[13] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe
Turner, and Paul R. Young. Computing as a discipline. Communica-
tions of the ACM, 32(1):9–23, 1989.

[14] SHAPE Consortium. SHAPE Project [online]. Available from: http:
//www.shape-project.eu/ [cited 02. June 2008].

[15] University of Hamburg Department of Informatics, MIN Faculty.
JADEX: BDI Agent System [online]. Available from: http://
vsis-www.informatik.uni-hamburg.de/projects/jadex/
[cited 16. June 2008].

[16] E. H. Durfee. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. MIT Press, March 1999.

[17] IBM et al. UML Profile and Metamodel for Services (SOA-Pro) [online].
Available from: http://www.omg.org/docs/ad/08-05-03.pdf
[cited 01. July 2008].

[18] FIPA. FIPA Agent Communication Language Specifications [online].
Available from: http://www.fipa.org/repository/aclspecs.
html [cited 02. June 2008].

[19] FIPA. IEEE Foundation for Intelligent Physical Agents. The foundation
for intelligent physical agents [online]. Available from: http://www.
fipa.org/ [cited 02. June 2008].

[20] FIPA. FIPA Communicative Act Library Specification, Foundation for
Intelligent Physical Agents, 2002.

[21] FIPA. FIPA Contract Net Interaction Protocol Specification, Founda-
tion for Intelligent Physical Agents, 2002.

[22] K. Fischer, C. Hahn, and C. Madrigal-Mora. Agent-oriented software
engineering: a model-driven approach. International Journal of Agent-
Oriented Software Engineering, 1(3/4), 2007.

http://www.shape-project.eu/
http://www.shape-project.eu/
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
http://www.omg.org/docs/ad/08-05-03.pdf
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/
http://www.fipa.org/

BIBLIOGRAPHY 125

[23] The Eclipse Foundation and SINTEF. MOFScript Home page [on-
line]. 2007. Available from: http://www.eclipse.org/gmt/
mofscript/ [cited 05. July 2008].

[24] Smith Reid G. and Davis R. The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem Solver . IEEE
TRANSACTIONS ON COMPUTERS, C-29(12), 1980.

[25] gameai.com. AI in Games: A Personal View [online]. Available from:
http://www.gameai.com/blackandwhite.html [cited 19. June
2008].

[26] Francisco J. Garijo and Magnus Boman, editors. MultiAgent System
Engineering, 9th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, MAAMAW ’99, Valencia, Spain, June 30 -
July 2, 1999, Proceedings, volume 1647 of Lecture Notes in Computer
Science. Springer, 1999.

[27] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software
Factories: Assembling Applications with Patterns, Models, Frameworks,
and Tools. Wiley, August 2004.

[28] Agent Oriented Software Group. JACK [online]. Available from: http:
//www.agent-software.com/jack.html [cited 16. June 2008].

[29] W3C Web Services Architecture Working Group. Web Service Architec-
ture [online]. February 2004. Available from: http://www.w3.org/
TR/ws-arch/ [cited 12. June 2008].

[30] Christian Hahn, Cristian Madrigal-Mora, Klaus Fischer, Brian
Elvesæter, Arne-J370rgen Berre, and Ingo Zinnikus. Meta-models, Mod-
els, and Model Transformations: Towards Interoperable Agents. In Pro-
ceedings of the 4th German Conference on Multiagent System Technolo-
gies, volume 4196 of Lecture Notes in Computer Science, Berlin/Heidel-
berg, 2006. Springer.

[31] Christian Hahn and Ismar Slomic. Agent-based Extensions for the UML
Profile and Metamodel for Service-oriented Architectures. Saarbrücken,
Germany and Oslo, Norway, 2008. IEEE Computer Society (To be pub-
lished).

[32] Bürckert Hans-Jürgen, Fischer Klaus, and Vierke Gero. Holonic trans-
portation scheduling with teletruck . Journal of Applied Artificial Intel-
ligence, 2000.

[33] Solheim Ida and Stølen Ketil. Technology Research Explained SINTEF
A313, SINTEF, March 2006.

http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/gmt/mofscript/
http://www.gameai.com/blackandwhite.html
http://www.agent-software.com/jack.html
http://www.agent-software.com/jack.html
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

126 BIBLIOGRAPHY

[34] Odell James J. Objects and Agents Compared . Journal of Object Tech-
nology, 1(1):41–53, May/June 2002.

[35] Russell Stuart J. and Norvig Peter. Artificial Intelligence: A Mod-
ern Approach. Pearson Education, 2003. Available from: http:
//portal.acm.org/citation.cfm?id=773294.

[36] Runde R. K. STAIRS - Understanding and Developing Specifications
Expressed as UML Interaction Diagrams. In Department of Informatics,
page 348. University of Oslo, 2007.

[37] Fischer Klaus, Müller Jörg P., and Pischel Markus. Cooperative
Transportation Scheduling: an application Domain for (DAI) RR-95-01,
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Kaiser-
slautern, Germany, 1995.

[38] Fischer Klaus, Müller Jörg P., and Pischel Markus. Cooperative trans-
portation scheduling: An application domain for dai , Computational
Economics, 1996.

[39] Fischer Klaus, Muller J. P., Pischel Markus, and Schier Darius. A Model
for Cooperative Transportation Scheduling . In Proceedings of the First
International Conference on Multiagent Systems., pages 109–116, Menlo
park, California, June 1995. AAAI Press / MIT Press.

[40] Runde Ragnhild Kobro, Haugen Øystein, and Stølen Ketil. The Prag-
matics of STAIRS . In Formal Methods for Components and Objects,
volume 4111, pages 88–114. Springer, 2006.

[41] Helouet L. Distributed system requirement modeling with message se-
quence charts: the case of the RMTP2 protocol . Information and Soft-
ware Technologys, 45(11):701–714, August 2003.

[42] Telecom Italia Lab. Java Agent DEvelopment Framework [online]. Avail-
able from: http://jade.tilab.com/ [cited 19. June 2008].

[43] ATLAS Group (INRIA & LINA). ATL (Atlas TransformationLanguage)
[online]. 2005. Available from: http://www.eclipse.org/m2m/
atl/ [cited 05. July 2008].

[44] Magnus Ljungberg and Andrew Lucas. The (OASIS) air-traffic man-
agement system. In Proceedings of the Second Pacific Rim International
Conference on Artificial Intelligence (PRICAI ’92), Seoul, Korea, 1992.

[45] Huget M.-P. Extending Agent UML Sequence Diagrams, volume
2585/2003 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2003. ISBN 978-3-540-00713-5.

http://portal.acm.org/citation.cfm?id=773294
http://portal.acm.org/citation.cfm?id=773294
http://jade.tilab.com/
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/m2m/atl/

BIBLIOGRAPHY 127

[46] Eric A. Marks and Michael Bell. Service-Oriented Architecture (SOA):
A Planning and Implementation Guide for Business and Technology.
John Wiley & Sons, Inc., New York, NY, USA, April 2006.

[47] Wooldridge Michael. Introduction to MultiAgent Systems. John Wiley
& Sons, June 2002.

[48] Wooldridge Michael and Dickinson I. Agents are not (just) web services:
considering BDI agents and web services, HP Laboratories Bristol, July
2005. HPL-2005-123.

[49] Wooldridge Michael and Jennings Nicholas R. Intelligent Agents: The-
ory and Practice. Knowledge Engineering Review, 10(2):115–152, 1995.

[50] Wooldridge Michael, Jennings Nicholas R., and Kinny David. The Gaia
Methodology for Agent-Oriented Analysis and Design. Autonomous
Agents and Multi-Agent Systems, 3(3):285–312, 2000.

[51] Jishnu Mukerji and Joaquin Miller. MDA Guide Version 1.0.1 [on-
line]. 2003. Available from: http://www.omg.org/docs/omg/
03-06-01.pdf [cited 03. July 2008].

[52] Jennings N. and Wooldridge Michael. Agent-Oriented Software Engi-
neering . In Francisco J. Garijo and Magnus Boman, editors, Proceedings
of the 9th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World : Multi-Agent System Engineering (MAAMAW’99),
volume 1647, pages 1–7. Springer-Verlag: Heidelberg, Germany, June
30 - July 2 1999.

[53] OASIS. Reference Model for Service Oriented Architecture 1.0 [online].
October 2006. Available from: http://docs.oasis-open.org/
soa-rm/v1.0/soa-rm.html [cited 01. July 2008].

[54] OMG. Agent Metamodel and Profile (AMP), Request For Pro-
posal [online]. Available from: http://www.omg.org/docs/ad/
08-06-02.pdf [cited 21. June 2008].

[55] OMG. Catalog of UML Profile Specifications [online]. Avail-
able from: http://www.omg.org/technology/documents/
profile_catalog.htm [cited 05. July 2008].

[56] OMG. UML Profile and Metamodel for Services (UPMS), Request For
Proposal [online]. Available from: http://www.omg.org/cgi-bin/
doc?soa/06-09-09 [cited 03. July 2008].

[57] OMG. UML Testing Profile V1.0 [online]. Available from: http:
//www.omg.org/cgi-bin/apps/doc?formal/05-07-07.pdf
[cited 27. June 2008].

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://www.omg.org/docs/ad/08-06-02.pdf
http://www.omg.org/docs/ad/08-06-02.pdf
http://www.omg.org/technology/documents/profile_catalog.htm
http://www.omg.org/technology/documents/profile_catalog.htm
http://www.omg.org/cgi-bin/doc?soa/06-09-09
http://www.omg.org/cgi-bin/doc?soa/06-09-09
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-07.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-07.pdf

128 BIBLIOGRAPHY

[58] OMG. UML: Unified Modeling Language [online]. Available from:
http://www.uml.org [cited 05. July 2008].

[59] OMG. Meta Object Facility (MOF) Core Specification, OMG Available
Specification Version 2.0 [online]. 2006. Available from: http://www.
omg.org/spec/MOF/2.0/PDF [cited 05. July 2008].

[60] OMG. OMG Unified Modeling Language (OMG UML): Infrastructure,
V2.1.2 [online]. 2007. Available from: http://www.omg.org/spec/
UML/2.1.2/Infrastructure/PDF [cited 05. July 2008].

[61] OMG. OMG Unified Modeling Language (OMG UML): Superstructure
V2.1.2 [online]. 2007. Available from: http://www.omg.org/spec/
UML/2.1.2/Superstructure/PDF [cited 22. June 2008].

[62] Lin Padgham and Michael Winikoff. Developing Intelligent Agent Sys-
tems: a practical guide. John Wiley and Sons, 2004.

[63] M. Papasimeon and C. Heinze. Extending the UML for designing JACK
agents. In Proceedings of the Australian Software Engineering Confer-
ence (ASWEC 01), 2001.

[64] Payne Terry R. Web Services from an Agent Perspective. 23(2), 2008.

[65] Rao Anand S. and Georgeff Michael P. Modeling Rational Agents within
a BDI-Architecture. In James Allen, Richard Fikes, and Erik Sandewall,
editors, Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning (KR’91), pages 473–484.
Morgan Kaufmann publishers Inc.: San Mateo, CA, USA, 1991.

[66] Lund Mass Soldal. Operational analysis of sequence diagram specifica-
tion. PhD thesis, Faculty of Mathematics and Natural Sciences, Uni-
versity of Oslo, 2008.

[67] Warwas Stefan and Hahn Christian. The Concrete Syntax of the Plat-
form Independent Modeling Language for Multiagent Systems, DFKI
GmbH, 2008.

[68] Ming Tan. Multi-Agent Reinforcement Learning: Independent vs. Coop-
erative Learning . In Michael N. Huhns and Munindar P. Singh, editors,
Readings in Agents, pages 487–494. Morgan Kaufmann, San Francisco,
CA, USA, 1997.

[69] Whitestein Technologies. Autonomic Business Solutions [on-
line]. Available from: http://www.whitestein.com/
autonomic-business-solutions [cited 11. June 2006].

[70] Haugen Øystein. Challanges to UML 2 to Describe FIPA Agent Proto-
col , 2008.

http://www.uml.org
http://www.omg.org/spec/MOF/2.0/PDF
http://www.omg.org/spec/MOF/2.0/PDF
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.whitestein.com/autonomic-business-solutions
http://www.whitestein.com/autonomic-business-solutions

BIBLIOGRAPHY 129

[71] Haugen Øystein and et al. STAIRS towards formal design with sequence
diagrams. Software and System Modeling (SoSyM), 4(4):355–367, 2005.

[72] Haugen Øystein and Stølen Ketil. STAIRS - Steps To Analyze Interac-
tions with Refinement Semantics. In UML 2003. Springer-Verlag, 2003.

[73] Haugen Øystein and Pedersen B. Møller. Configurations by UML. In
European Workshop on Software Architecture, volume 4344/2006, pages
98–112. Springer, 2006.

[74] Ingo Zinnikus, Christian Hahn, Michael Klein, and Klaus Fischer.
An Agent-Based, Model-Driven Approach for Enabling Interoperabil-
ity in the Area of Multi-brand Vehicle Configuration. In Proc. of
the Fifth International Conference on Service-Oriented Computing (IC-
SOC), volume 4749 of Lecture Notes in Computer Science, pages 330–
341. Springer Verlag, 2007.

	Introduction
	Motivation and Background
	Research Goals
	Scope
	Research Method
	Method
	Problem Analysis
	Innovation
	Evaluation

	Structure of this Thesis

	UPMS-A: Problem Analysis
	Case Study: Supply Chain in Steel Production
	Use case ``Creation and Optimization of Heats and Sequences''
	Use Case Challenges

	Hypothesis
	Definition of Success Criteria
	Requirements for Interaction Protocols in SOA-Pro
	Comparing SOA-Pro With MASs Aspects
	Agent aspect
	Collaboration aspect
	Role aspect
	Interaction aspect
	Behavioral aspect
	Mental aspect

	Tool Requirements & Evaluation
	Requirements
	Evaluation

	Related Work
	Model-Driven Development (MDD)
	Model-Driven Architecture (MDA)
	Basic MDA Concepts
	Levels of Abstraction
	Model Transformations

	Software Factory
	Domain-Specific Modeling (DSM)

	Summary

	Service-Oriented Architecture (SOA)
	SOA Concepts
	Service Characteristics
	SOA Modeling and Implementation
	UML Profile and Metamodel for Services (SOA-Pro)
	Introduction
	Basic Services
	Service Interfaces
	Participants and Service Ports
	Service Contracts
	Service Architecture

	Summary

	Agents and Multi-Agent Systems
	What is an IntelligentAgent?
	Agent Architectures
	Multi-Agent Systems
	Agents and Objects
	Agents and Web Services

	Why are Agents Useful?
	Agent-Oriented Software Engineering
	Summary

	Optimization with Multi-Agent Systems
	Use of Multi-Agent Systems in Transportation Scheduling
	The Contract Net Protocol
	Explanation of the Protocol Flow

	The Simulated Trading Protocol
	Explanation of the Protocol Flow
	Sell-And-Buy Phase
	Using the Trading Graph
	Dynamic Scheduling Problems

	Summary

	UPMS-a: Extensions for Interaction Protocols
	Contract Net Protocol modeled with current UML
	The Single Participant Approach
	The Multiple Participant Approach

	Introducing Configurations With Subsets
	Introducing Subset Notation on Messages
	The Semantics of the Multicasting and the Iterator-Clause
	Use of Timer in UML 2
	Custom Classifier Representing Timer
	SimpleTime Model in UML Superstructure
	Timer Described with UML Profile

	Summary

	UPMS-a: Realization and Implementation
	Introduction
	SOMA: Service Oriented Modeling Architecture
	Purchasing the Order
	Service Identification
	Service Specification
	Service Realization
	Assembling Services and Fulfilling Contracts

	Production and Planning
	Service Identification
	Service Specification
	Service Realization
	Assembling Services and Fulfilling Contracts

	Summary

	UPMS-a: Evaluation
	Success criterion 1
	Success criterion 2
	Success criterion 3
	Success criterion 4
	Hypothesis

	Conclusion and Future Work
	Conclusion
	Achievements
	Future Work
	Implementation of Subset Notation
	Definition of Timers
	Organizations in SOA-Pro
	Roles in SOA-Pro
	Complete UML 2 Tool Support

	List of Abbreviations

