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Abstract

This thesis describes how the use of more than one type of programming languages can
be useful in high-performance computing. Scripting languages like Python and Perl are
used for control and computational steering, while compiled languages as C and Fortran
are used for the numerically intensive tasks. How to efficiently call compiled code from
scripting languages is discussed in detail, and numerous examples show how this can be
done. The examples show that a combination of e.g. Python and Fortran is an option
very much worth considering for numerical applications. The combination can result in
applications with both run-time efficiency and flexible computational steering options.
There are even good chances that development time for such applications compare very
favorably with more traditional numerical applications.
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Chapter 1

Introduction

In this thesis we will study how the fields of numerics and high-performance computing
can benefit from the use of more than one type of programming language in a single
application. Due to their high run-time efficiency, primitive languages like Fortran and
C have been dominating high-performance computing, and are still in widespread use.
Modern scripting languages have until recently been little used in high-performance
computing, simply because numerically intensive programs written in them run too
slowly to be practical. We will show how modern scripting languages can enhance
numeric software by easing the creation of flexible problem solving environments in which
the scripting languages are used to interface C or Fortran code. We will try to show
how one can combine the best features from both worlds, and thereby create programs
that satisfy the need for efficient use of the available hardware and development time
through the use of a flexible problem solving environment.

Scripting languages are intended to be interactive, dynamic, portable and to offer
high-level data types and structures. They are ideal for creating small and useful ap-
plications, but some of them are also suitable for creating large systems. Compared to
equivalent systems written in primitive languages like C, the development time for such
systems is usually far shorter, see e.g. [19] or [21]. A dynamic, interpreted language
cannot produce as fast machine code as a compiler for a primitive, static language,
since there is less information available at code translation time. This is why scripting
languages can be slow for numeric calculations, as shown in the introductory exam-
ple in Chapter 1.1 where we compare the speed of array operations for a few scripting
languages and some compiled languages.

Primitive languages like Fortran and C offer tiny abstractions over assembly code,
and the compilers produce very fast code. Especially Fortran has been, and still is
popular in communities of scientific and high-performance computing. In the recent
years object-oriented languages like C++, Java and Fortran 95 have been used to some
extent, giving programmers better tools for creating useful abstractions. With these
languages programmers can create more flexible software, but they still lack the dynamic
and interactive nature of the scripting languages.

So, in this thesis we will show that it is possible to use the best from both worlds.
We will create and discuss applications which use scripting languages for design and
control, and use primitive compiled languages for speed demanding tasks. Through our
examples we will show that freely available tools can greatly simplify the process of
mixing languages in an application. In fact, a combination of e.g. Fortran and Python
code can be very efficient considering both CPU run time and development time. We
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will show two strategies for combining two or more languages in numerical applications:

1. Mixed-language numerical code. That is, we write new code mainly in a script-
ing language, but perform numerically intensive calculations in a fast compiled
language.

2. Access to existing numerical code. That is, we want to call existing numerical
libraries or applications directly from a scripting language.

These strategies are useful in a much wider context than just numerical software. Any
problem that contain tasks best solved in different languages may benefit from one of the
strategies above. In both strategies we will need communication between code written in
different languages. Such situations almost always imply the need for wrapper code, i.e.
code that handles language differences so that control and data can pass between sections
of code written in different languages. Python will be used as our main scripting language
in this thesis, but others can be used for the same purposes. Perl and Tcl are discussed
briefly below, and some other possible alternatives are mentioned in Chapter 4.1.

In the next section we investigate the efficiency of array operations for both compiled
and interpreted languages. Chapter 2 is an introduction to Mixed-Language program-
ming. This chapter includes a discussion of code wrapping concepts, and contains a
non-trivial code example that illustrates some code wrapping techniques. In Chapter 3
we discuss problem solving environments and computational steering, where we use a
wave simulator as our main example. Experiences from wrapping large numerical li-
braries are discussed in Chapter 3.4. We end this thesis with some concluding remarks
and suggestions for further work with these topics in Chapter 4.

Please note that several parts of this thesis have been developed in cooperation
between the author and Hans Petter Langtangen. The text in chapters 2.3.1 and 3.1.1
are mostly written by Langtangen. The text and code in Chapters 1.1, 2.3.2–2.3.6,
and 2.4.1–2.4.2 are joint work. These chapters will appear in the book [17]. Notice
that the source code described is an important part of this thesis. Much time and
effort has been spent on making the code useful, efficient, and as readable as possible,
but understanding all of the code is not neccessary for the overview. Appendix A lists
the software needed for running the code, and also contains a listing of the source files
developed and discussed.

1.1 Timing Array Operations

Let us evaluate the efficiency of array manipulations in scripting languages versus typ-
ical compiled languages. The idea is to show how bad the scripting languages Perl,
Python, and Tcl suffers when doing such calculations in an explicit loop, compared to
the compiled languages C and Fortran. It is possible to do calculations more efficient
in the scripting languages by using more specialized data structures, e.g. a numeric
array instead of an all-purpose list, and by avoiding the explicit loop. This is shown for
Python using the Numeric module.

Our simple test problem consist of evaluating a mathematical function at discrete
points in the interval [0, 1] and storing the function values in an array. The function to
be used in the example reflects the velocity of a pressure-driven power-law fluid between
two plane walls:
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f(x) =
n

1 + n

{
0.51+1/n − (0.5 − x)1+1/n, 0 ≤ x ≤ 0.5
0.51+1/n − (x− 0.5)1+1/n, 0.5 < x ≤ 1

(1.1)

We remark that n is a real number, typically n ∈ (0, 1].

1.1.1 Timing Results in Python

The function f for evaluating (1.1) has been implemented in a Python script fillarr.py,
found in the directory src/ex/fillarr/script. There are two alternative functions in
this script for creating an array of function values:

1. fillarr append, where we append new function values to a list,

2. fillarr repeat, where we create a list of fixed size and then use subscription to
insert function values.

These two functions have the following forms:

def fillarr_append(n):
list = []
for i in range(n):

x = float(i)/float(n-1)
list.append(f(x))

def fillarr_repeat(n):
list = [0.0]*n
for i in range(n):

x = float(i)/float(n-1)
list[i] = f(x)

Running the functions 20 times with arrays of length 100000 shows that the list append
approach is about a factor of 1.25 slower than working with the [0.0]*n list.

An implementation of f can look like

def f(x, n=0.3):
c = 1.0 + 1/n
cH = 0.5**c
A = n/(1.0 + n)
if x <= 0.5:

c1 = (0.5 - x)**c
else:

c1 = (x - 0.5)**c
return A*(cH-c1)

Note that setting n=0.3 as a default argument is both convenient and effective in Python.
If we want to use another value for f, just send it as a second argument, e.g f(x, n=0.4).
The built-in power operator is used instead of the built-in function pow or math.pow since
it is more efficient in this setting.

Using this optimal f function, the output from the fillarr.py script, run with
Python 2.0, became1

fillarr_append: elapsed=49.5316, CPU=49.23
fillarr_repeat: elapsed=40.32, CPU=39.94

1My laptop was used for the tests; IBM 570E, Intel 500 MHz processor with 128 Mb RAM, running
Debian Linux.
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Function calls are rather expensive in Python, which is measurable when a function is
called in a loop. If we in this example replace the function call in the for-loop, and
simply do the calculations inline, we get a better result

fillarr_repeat_no_f: elapsed=32.50, CPU=32.15

The best Python approach is about 1.4 slower than the similar Perl version, see Chap-
ter 1.1.2. When we eliminate the calls to f and do the calculations inline the speed
of Perl is almost reached, but the code is less readable. Using Python’s module for
numerical computing (Numeric), we can easily reach the speed of C.

Using NumPy Arrays for Speeding up Python Code

The efficiency of the array operations in fillarr.py can be dramatically improved by
replacing the loops by their equivalent NumPy expressions operating on arrays from the
module Numeric. Basically, our script fillarr.py in standard Python calls a user-defined
function for each entry in an array. Such a code must be replaced by a set of operations
on the whole array at once. For a simple function like

def myfunc(x): return 3*x + sin(2*x)

one can just call the function with x as a NumPy array2. However, our function (1.1)
is a bit more complicated. We also want to do operations in-place to minimize memory
requirements. A possible solution is listed next.

from Numeric import arrayrange, multiply, subtract, power, add, array
def fillarr_Numeric(size, n=0.3):

x = arrayrange(size)*1.0/float(size-1)
# now x contains the x values,
# manipulate so x contains f(x) values:
subtract(x, 0.5, x)
multiply(x[0:size/2], -1.0, x[0:size/2])
c = 1 + 1.0/n
power(x,c,x)
multiply(x, -1, x)
cH = 0.5**c
A = n/(1.0 + n)
add(x, cH, x)
multiply(x, A, x)

This function is implemented in the script src/ex/fillarr/NumPy/fillarr1 NumPy.py.
Timings show that the CPU time on my laptop is reduced to 4.8 seconds, which is
almost 10 times faster than using a loop over a Python array and quite close to the
timings obtained in C, C++, or Fortran 77 code.

There are other alternatives as well in many scripting languages. Python offers some
functional programming tools like map and lambda which can be used instead of a loop
or NumPy operations. The code

def fillarr_map(size):
x = arrayrange(size)*1.0/float(size-1)
res = map(f, x)

2We remark that this will create temporary arrays holding intermediate results, here 2*x, sin(2*x),
and 3*x.
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does exactly the same as the examples above. The built-in function map takes two
arguments, a function and a sequence (e.g. list or NumPy array), and returns the result
in a list. The sequence should contain the functions arguments. This is often much
faster than using a loop, as in e.g fillarr append. This function is about twice as fast
as the functions with explicit loops, but still seven times slower than the Numeric version
above.

Later, in Chapter 2.4, we will see that it is easy to write an efficient standard loop
over the NumPy array entries in C, or Fortran as an alternative to using the vector-
oriented Numeric functions only as we do in the presented fillarr1 Numeric routine.

1.1.2 Timing Results in Other Scripting Languages

Timing Results in Perl. The Perl code following have the similar functionality as in
the corresponding Python scripts in Chapter 1.1.1 and shown here for complete reference.
Notice that different improvements are available in Perl too, but for simplicity we only
implement the loop functions.3

sub fillarr_append {
my $n = $_[0]; # size of list
@list = ();
my $i;
for ($i = 0; $i < $n; $i++) {

$x = $i/($n-1);
push @list, f($x);

}
}

sub fillarr_repeat {
my $n = $_[0]; # size of list
@list = (0) x $n; # create $n entries
my $i;
for ($i = 0; $i < $n; $i++) {

$x = $i/($n-1);
$list[0] = f($x);

}
}

We run these subroutines 20 times with arrays of length 100000 as in the section above.
The output on my laptop, running Perl 5.6.0, was

fillarr_append: elapsed=31, CPU=30.7
fillarr_repeat: elapsed=29, CPU=29.16

The conclusion is that the two ways of working with arrays are not significantly different
with respect to computational efficiency.

Timing Results in Tcl. Inserting function values from (1.1) in Tcl can only be done
by appending the values to a list:

proc fillarr_append { n } {
for {set i 1} {$i < $n} { incr i} {

set x [ expr 1.0*$i/($n - 1) ]
append list [ f $x ]

}
}

3Notice that division of two integers, like $i/($n-1), results in the correct real number in Perl. This
is not the case in Python, C, C++ and many other languages.
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# run fillarr_append 20 times with list of length 100000:
set nr 20; set length 100000;
set txt [ time {fillarr_append $length} $nr ]

Running this example on my laptop gave about 800 seconds CPU time (Tcl v8.0),
which is dramatically slower than the Perl and Python versions. These tests shows
that Perl are a little faster than Python when doing explicit loops, and that they are
much faster than Tcl for our problem. However with Python’s Numeric module, or by
avoiding the explicit loop the problem can be solved much faster. Next we will measure
the efficiency of C, C++ and Fortran.

1.1.3 Timing Results in C and Fortran 77

It is of great interest to see the CPU times of a corresponding C or Fortran 77 program
that fills an array of length 100000 with function values from (1.1) 20 times. A possible
C implementation is listed at page 38 in Chapter 2.4.1. This program is essentially
doing the same as we did in the Perl, Python, and Tcl scripts. The C version used only
about 3 seconds of CPU time on the same machine. This is 13 times faster than Python
and 10 times faster than Perl, and about 1.6 times faster than the NumPy version. A
similar implementation in Fortran is listed at page 39 in Chapter 2.4.2.

On the Linux machine where the tests were performed, Fortran 77 ran at approxi-
mately the same speed as C (although the Fortran version avoids dynamic allocation of
20 arrays of length 100000 – this task took very little time). On a Sun machine running
Sun’s native Fortran 77 compiler, the Fortran version was almost a factor of two faster
than the C version. Note that on Sun, the programs were compiled using the -fast

option for optimization. Native f77 and CC (version 4) compilers were used.
It is interesting that for a simple problem like this, the compiled languages are so

much faster than the scripting languages when the problem apparently is solved in an
equivalent manner. But there are important differences to be aware of, even if the code
seems similar. The list data type for the scripting languages are “all-purpose” dynamic
lists with lots of features. This is very different than the simple contiguous memory
blocks that C and Fortran arrays really are. Another important issue is that the C and
Fortran compilers can optimize the loop and computations. The Python, Perl, and Tcl
interpreters can not optimize as much, since there is less information available at code
translation time.

Later in Chapter 2.4 we will discuss implementations evaluating (1.1) that combine
Python code with C and Fortran. Note that we are not running a complete benchmark
of the efficiency of array operations, but only giving an impression of the relative speed
between a few languages for a typical numerical problem.



Chapter 2

Introduction to Mixed-Language
Programming

There are a lot of programming languages designed for different purposes, all with their
strengths and weaknesses. No language is suited for all purposes, and thus using code
written in different languages in an application can be useful. Using this mixed-language
strategy almost always imply the need for wrapper code customized for the languages
involved. The wrapper code must take care of necessary type conversions and possibly
other tasks.

In the next section we will discuss the concepts of code wrapping, with emphasis on
the programming languages used in this thesis. Automatic generation of wrapper code is
discussed in Chapter 2.2, and a short introduction to some specific tools are presented.
Chapter 2.3 contains a computational intensive, but quite simple example where we
discuss pure Python and C/C++ implementations versus implementations combining
Python code with code written in C, C++, and Fortran. This example serves as an
practical introduction to code wrapping. In Chapter 2.4 we apply code wrapping to the
examples presented in the introduction, and compare the efficiency of the different im-
plementations. Some alternative methods for inter-language communication are briefly
discussed in chapter 2.5.

2.1 Code Wrapping Concepts

Wrapper code is often necessary to enable communication between code written in dif-
ferent programming languages. Such code should handle the differences between the
languages, e.g. conversion between data types. What the wrapper code should look
like depends on the programming languages, and sometimes the operating system (OS)
where the code is running. In general we could say that it is easier to mix languages
that have much in common, but some languages have methods for translating code to
or from another language. The programming languages used in this thesis are described
in the next section, followed by a section describing the code wrapping process. We will
refer to the language of the code to be wrapped as the target language (TL), and the
language which use the wrapped code as the application language (AL). The application
language is sometimes called the extended language, or the AL is said to be extended.
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Unix shells Python Tcl Perl

Java C++ C Fortran Assembly
DataControl

Figure 2.1: Programming languages: Control versus data. Unix shells are typical command
languages, while Perl, Python, and Tcl are scripting languages. C, C++, Fortran, and Java are said
to be structured languages. Command and scripting languages are typically more control oriented than
structured languages.

2.1.1 Programming Languages

In this section we will study the languages used in this thesis. We will not give a thor-
ough description of them, but describe the most important properties and features that
concern our context. This includes a language’s basic data types, other data types and
structures, typing, and special constructs that makes wrapping easier or more difficult.
Some basic concepts of programming languages are discussed. We will study Fortran,
C, and C++ as target languages, since they are the most used programming languages
in high-performance computing. As application languages we will study Perl, Python,
and Tcl, since they are some of the most popular scripting languages.

It is possible to turn this the other way around, using the target languages mentioned
above as application languages and vice versa, but for high-performance computing the
setting above makes most sense. The main reason is that we want to write most parts
of the application in a high level language and the time critical parts in the fastest code
possible. This is why all of our target languages are compiled languages with static
type binding, which produces the fastest code possible1, and our application languages
are dynamically typed and interpreted languages. Figure 2.1 illustrates the relative
level between some languages. High-level languages are control oriented, and low-level
languages are more data oriented.

It is important to distinguish between a programming language and its implementa-
tions. A language implementation could be a compiler or an interpreter depending on
the specific language. Most programming language standards do not directly describe
how communication with other languages should be done. The implementations of a
programming language, on the other hand, almost always have one or more recipes for
such communication. Python, for instance has two widespread implementations with
different systems for inter-language communication. The most widespread of them is
the C implementation, sometimes referred to as CPython to specify that it is written
in (ANSI) C. This implementation has an API which has utilities for conversion of
data types, type checking and other useful services, and naturally communication with
C is well supported. The other implementation, often called Jython (or JPython), is
implemented in Java, and Java libraries can be imported straightforwardly. But com-
munication with code written in other languages is treated differently. This is also the
situation for several other languages with more than one implementation. Note that we
sometimes mention a language implementation with only the name of the language, e.g
we refer to “the C implementation of Python” as Python.

In the discussion of data types we must distinguish between basic or built-in types
and advanced types. Basic data types as integers and characters exist in all the languages

1Except for highly tuned assembly code, but writing assembly code most often has a very poor time
spent versus effect gained ratio. Besides compilers continually improve.
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discussed here, but advanced or high-level data types such as lists or hash tables2 do not.
Conversion of primitive data types between two languages is usually easy, since the data
type is simple and the implementation of them do not differ much. If two data types
are implemented in an equivalent manner we say that they are isomorphic or that we
have isomorphism. For more advanced data types conversion can be extremely difficult,
especially if the data types do not match very well. In such cases we say that the data
types are non-isomorphic.

Another important concept is how a language is typed, i.e whether it has dynamic
or static typing. Static typing means that a variable must be declared as a certain type,
which can not be changed. Dynamic typing means that the type of a variable can not be
determined before run time, and that it may change during program execution. Fortran
is an example of a language with static typing. If a variable in Fortran is declared as an
integer it must remain an integer. Python on the other hand is dynamically typed, and
a variable can be an integer at first and then become for instance a string or an object.
For more information about programming languages, see e.g “Programming Language
Concepts” [12].

Fortran

Fortran, developed between 1954 to 1957, was the first third generation programming
language, and was designed for numerical computing. It was developed in a time with
very primitive hardware by today standards. Computers were slow, and had very little
memory. Thus Fortran is a primitive low-level language with static typing and memory
allocation, which makes it efficient in the sense of speed and memory usage.

Fortran exists in many versions with some variations in syntax, because compilers
where implemented differently. As a result, standards there has been developed stan-
dards like Fortran 77 and Fortran 90. In this thesis we will mostly discuss Fortran 77,
since it is by far the most used of the Fortran standards.

Fortran has the primitive data types

• integer

• real

• double precision

• complex

• logical

• character

where real and double precision are floating point numbers. Fortran has an array data
type that can consist of a contiguous linear sequence of elements of one of the basic data
types. Fortran allocates a contiguous block of memory equal to the size of the basic data
type multiplied by the number of elements in the array. No array bounds checking is
offered. Fortran 77 allows arrays of up to seven dimensions, which are stored by column
unlike arrays in most other languages. This complicates the wrapping process of Fortran
arrays to or from languages with row-wise array storage.

2Hash tables are also referred to as associative arrays and dictionaries.
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Fortran is by today’s standards a small and very simple language with few data
types and language constructs. Fortran has no global variables, i.e. variables that are
shared among several program units (subroutines). A way of sharing variables between
different subroutines is the use of common blocks. This construct and column-wise array
storage can make wrapping a bit difficult, but still Fortran is nearly ideal as a target
language for wrapping purposes, in a numerical context.

C

The C programming Language, created in 1972, was designed for system programming
purposes. It is compiled, static typed and low-level like Fortran, but offers some more
data types and constructs. Basic types like char, int, float, and double are offered.
In addition, some qualifiers can be applied to the basic types. For instance short and
long apply to integers. The intent is that short and long should provide integers with
different length, which depends on the hardware and OS. The idea is that other data
types can be expressed through the basic types.

The concept of pointers makes C different from Fortran, which offers no such con-
struct. Pointers in C are extremely flexible since they can point to anything in memory.
Pointers can be very useful, but can be a major source of obscure errors. Sometimes
pointers complicates the wrapping process. With a function prototype like

void foo(double a, double b, double *c);

it is difficult to know what purpose the pointer actually has. With another prototype
like

void add(double a, double b, double *result);

it is reasonable to expect that result points to where the function is expected to place
the result of a+b.

Arrays in C have much in common with Fortran arrays, except that they are stored
row-wise. In addition there is a close connection between pointers an arrays in C,
meaning that every expression including arrays can be written with pointers instead.
Another useful C construct is the struct. Structs group variables into a collection, and
can contain variables of any data type available, including pointers and other structs.
Wrapping structs is usually not a problem since they most often can be mapped to
objects in an object-oriented programming language.

Even though C has pointers, structs, and support recursion it is considered a low-
level programming language. Optimized C code is almost as fast as Fortran code, and
probably is the second most used language in scientific and high-performance computing.
In most cases C is a good choice as a target language, since it is relative easy to wrap
and since many wrapper code generating systems support it. The language is described
in detail in the classic book of Kernighan and Ritchie [15].

C++

The C++ programming language, created by Bjarne Stroustrup in 1984, was developed
as an extended C, supporting the object-orientation (OO) concept. Even though C++
is based on C it is a very different language. First of all it is a much larger and more
complex language, with many more data types and constructs. Another interesting
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fact is that it supports both the procedural, object-oriented and generic programming
paradigms, and thus can be said to be a high-level language. Fortran and C are mainly
procedural languages.

Since C++ has static typing and no run-time system, C++ code can be very efficient
if the code and compiler are good. Unfortunately the vast complexity of the language
makes it extremely difficult to develop compilers that can handle all C++ features
satisfyingly. In fact most C++ compilers are not able to process all the advanced
template expressions allowed by the language standard. Thus most programmers use
only a subset of C++. On the other hand, it is possible to use only a subset of C++
and still create useful applications, and C++ has become quite popular in scientific and
high-performance computing communities the last few years. This is mainly because
C++ offers lots of useful abstractions and that the code can be very efficient. Because
of its complexity, C++ can be extremely difficult to wrap, but the simpler constructs
are possible to wrap, and thus C++ can be useful as a target language in some cases.
See “The C++ Programming Language” [23] for a complete description of C++.

Python

Python is a high-level dynamically typed and interpreted language, created about ten
years ago by Guido van Rossum. It is still being developed by the PythonLabs team
lead by van Rossum. Python is a scripting language, but has turned out to be useful
in a much wider range of applications. In this thesis we will use Python for numeric
computations with fairly good results, see e.g. Chapter 2.3 and Chapter 3.

Some of Python’s strengths are the simplicity, readability, and ease of use. Python
is not particularly fast, not even for a interpreted language. The Perl interpreter, for
instance, is faster than any python implementation for many types of operations. One of
the main advantages of Python is that it supports communication with other languages
very well, as it was designed also to be easily extensible, i.e being capable of using code
written in other languages.

Python has the same basic data types as C, and several more. Types as long (arbi-
trary precision integer) and complex numbers, strings, lists, tuples, and dictionary are
all built-in data types in Python. All types in python are objects, and can be separated
into mutable and immutable objects. If an object’s value can be modified, it is said to
be mutable. Lists in Python are mutable, but number types are not. If a number is
assigned to a variable i, the variable gets a reference to an number object with correct
type and value. If then a new number is assigned to i, the first reference is lost and i

gets a reference to a new number object.
Python’s concept of basic types is different than C’s, we say they are non-isomorphic.

But Python’s basic types are based on the basic types of C, and Python’s C API defines
methods for conversions. Furthermore, the basic types in C are defined equivalently
with the basic types of many languages, say C++ and Fortran. Thus we can use or
rewrite some of the methods for communication to those other languages. These facts
makes Python well suited as an application language in our context. Documentation of
Python can be found at the Python home page [8] or Beazley’s reference book [5].

Other Scripting Languages

There are other scripting languages like Perl and Tcl which in many ways are similar
to Python. They are interpreted and dynamically typed languages with many of the
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same high-level data types and structures. As Python, they are both extensible. There
are differences both in syntax, philosophy, and intended use, but they still belong to the
same category of programming languages. Thus Perl and Tcl could also be good choices
as application languages, but Tcl has shown to be slow for numerical calculations, as we
saw in Chapter 1.1.2. So, if Tcl should be used in our context, efficient modules must
take care of the numerics. Perl, on the other hand, is often faster than Python, but we
will use Python as our main application language for the following reasons:

• Python has an active community doing scientific and high-performance computing.

• Python has the Numeric module with NumPy arrays, and other useful modules
for numeric computing as well.

• Python has a simpler and clearer syntax than Perl and Tcl, and is by many
programmers considered to be better suited for large scale applications.

In the conclusion at page 81 some other interesting languages are mentioned as
possible alternatives to Python. Common Lisp and Ruby are perhaps the most interesting
languages for our purposes. In the rest of this thesis we will use Python as the application
language, but we remark that other languages can be used with satisfying results.

2.1.2 The Wrapping Process

The process of wrapping code in a target language, and using this code in an application
language relies on three parts. We have

1. the code to be wrapped, written in TL.

2. the wrapper code.

3. the application code, written in AL.

Sometimes the code to be wrapped is not developed with the application code. It can
be a library written by a third party, and maybe just available as compiled code. In
such cases it is not desirable or possible to change this code. For the application code
we may have a similar situation, i.e it may be better to rewrite as little code as possible.
As a general rule the wrapper code should take care of all the dirty details, and adapt
to the other parts. If all the code is written more or less from scratch other adjustments
may be preferable.

There are several strategies for writing wrapper code, depending on the application
language and the implementation of that programming language. We can divide into
three main strategies for writing the wrapper code.

• Write the wrapper code in the target language.

• Write the wrapper code in the application language.

• Write the wrapper code in some other language

Which strategy we choose depend on languages, preferences, and the tools available. It
is possible to combine the strategies mentioned above. We will discuss the consequences
of and the use of these strategies in the next sections.
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Write the Wrapper Code in the Target Language

Writing the wrapper code in the target language is sometimes a good strategy. This
solution is most useful when the target language is identical to the operative system lan-
guage (i.e. the language used to implement the OS), or communicate straightforwardly
with the OS. Then the wrapper code can be compiled and used in the same manner as
other OS services. This solution is best suited for low level services, and not for the use
we are mostly aiming at in this thesis.

Sometimes the target language is the same as the language used to implement the
AT. This is the situation when we use C as TL and Python (i.e. CPython) as AL. In
such cases this can be a very good solution, as we will see examples of in Chapter 2.3
and 3.1.

Write the Wrapper Code in the Application Language

Sometimes it is possible to write all the wrapper code in the application language. This
is only possible if we have isomorphism between data types in AL and TL, or data type
conversion can be done entirely from the application side. This is not very common but
is supported by some languages. Perl with its Inline module is one example. The module
let users write code in TL directly in the Perl code, and the module, which is mostly
written in Perl creates the wrapper code. A small example from the documentation
(see [14]) shows how a little C function can be used:

use Inline C => <<’END_C’;
void greet() {

printf("Hello, world!\n");
}
END_C

greet;

This script will, when run in a Perl interpreter, print: “Hello, world”.

Write the Wrapper Code in Some Other Language

One of the most usual strategies is to write the wrapper code in the same language as
the implementation of the application language. This is how we write wrapper code for
CPython, and where the TL is not C (then we have the situation in Chapter 2.1.2).
An example of this strategy used in this thesis is wrapping of Fortran code for use in a
Python application, see Chapter 2.3.6. In that situation Fortran is TL, Python is AL,
and the wrapper code is written in C.

2.2 Automatic Generation of Wrapper Code

As we have seen in the sections above, and will see in examples in the following chapters,
wrapper code follows strict rules according to the languages in use and their implemen-
tations. A specific set of operations like type checking, data type conversion, and other
tedious tasks must be done for each data type, and every other language construct used.
This often results in lengthy monotonous code, where one of the main challenges is to
avoid typographical errors.

If we have isomorphic data types or methods for converting non-isomorphic data
types the wrapping process can be well enough defined to be done automatically. For
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Figure 2.2: Illustration of the wrapping process with SWIG.

non-isomorphic data types and language specific constructs additional information must
be given for the process to succeed. Fortunately there are several automatic wrap-
per code generating systems available. Most of them work by parsing the code to be
wrapped, and reading a user-written interface description. Many also do conversion of
non-isomorphic data types provided that a correct data type mapping is defined in the
interface description. We will give a short introduction and description of some systems
below. In later chapters we will use some of the systems presented.

2.2.1 Introduction to SWIG

SWIG is an acronym for Simplified Wrapper Interface Generator which is a tool used
to make C and C++3 code usable from scripting languages like Perl, Python, and Tcl.
SWIG works by reading a interface file (which the user must write), parse this file and
generate wrapper code and documentation, see Figure 2.2. Instead of writing wrapper
code manually, one must write an interface file with a C like syntax. The latter is in
most cases much simpler and less work.

Header and code files can be included or inserted directly into the interface file.
If the code is simple enough, this is enough for creating the wrapper code. For more
complicated constructs like pointers, structs, and conversion between non-isomorphic
data types certain SWIG directives must be given in the interface file. SWIG has
a mechanism called typemap for dealing with non-trivial data types and conversions
between non-isomorphic data types. This does exactly what it says, either convert a
data type from the target language to a new data type in the application language, or
the other way around. As an example a list of structs in C code, implemented with
pointers or an array, could be mapped into a list of objects in Python. We will see

3At least naive C++ code. Many C++ features, e.g templates, are not well handled by SWIG.
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examples which use typemaps in Chapter 2.4.1. Typemaps can be used for:

• mapping of default value function arguments in AL to explicit arguments in TL.

• mapping of function return values from TL data type to AL data type

• mapping of a function argument from the AL data type to TL data type.

A small example inspired by the SWIG users manual (see [4]) will illustrate how
SWIG works. Suppose we have some C code in the files: example.h and example.c

#include "example.h"

int fact(int n) {
if (n <= 1) return 1;
else return n*fact(n-1);

}

int mod(int n, int m) {
return (n % m);

}

where the header file just contains function prototypes. The SWIG input file looks can
like this:

%module example
%{
#include "example.h"
%}
%include "example.h"

The compilation process creates a shared object which can be imported as a module in
python.

linux> swig -python example.i
Generating wrappers for Python
linux> gcc -c example.c
linux> gcc -c example_wrap.c -fpic -I/home/rogerha/ext/linux/include/python2.0
linux> gcc -shared example.o example_wrap.o -o examplemodule.so

Testing of the module can be done in the interactive Python interpreter.

Python 2.0 (#1, Jan 11 2001, 11:56:43)
[GCC 2.95.2 20000220 (Debian GNU/Linux)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import example
>>> example.fact(5)
120
>>> example.mod(23,7)
2

We will use SWIG in several examples for wrapping of C and C++ code in this
thesis, see Chapter 2.3.5.
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2.2.2 Introduction to FPIG

FPIG stands for Fortran to Python Interface Generator, and are sometimes called f2py.
It makes wrapper code for Python, where the target languages are Fortran 77, Fortran 90
and Fortran 95. FPIG works pretty much like SWIG. It scans some given Fortran code
and automatically writes the wrapper code. The nice thing with FPIG is that it even
creates the interface file, which has borrowed its syntax from Fortran 95. Sometimes
one has to modify that file, but for users familiar with Fortran 95 that will be fairly
easy.

Another nice feature is that FPIG has an automatic connection with the NumPy
arrays from the Numeric module. When a NumPy array is given as a parameter to a
wrapped Fortran function, it will automatically work on the NumPy arrays data field in
the Fortran function. With SWIG we must write a typemap to achieve this effect. We
will use FPIG in Chapter 2.3.6. For more information about FPIG, see [20].

2.2.3 Other systems

A short introduction to some other wrapper code generators is given below. Some of
these systems will be used later in this thesis.

Pyfort

Pyfort is another Fortran to Python interface generator. But this system concentrates
only on Fortran 77. Pyfort works almost exactly like FPIG, but there is one major
difference. Pyfort do not generate the interface file, so the user must write it manu-
ally, like with SWIG. The syntax of the interface file is almost equal to the syntax of
FPIG interface files. We will use Pyfort in some examples in Chapter 2.3.6. For more
information about Pyfort, see [10].

CXX

CXX is designed to make it easier to extend Python with C++ code, but has another
philosophy than SWIG. Instead of creating the wrapping functions automatically, CXX
makes the process of writing wrapper code easier. The most important difference be-
tween using CXX and writing the extensions using only Pythons C/API is that CXX
offers a C++ interface to Python. So instead of doing all those tedious tasks in C, CXX
offers an abstraction to this, and e.g hides the reference counting.

In short, CXX makes it easier (if you know C++) to write extensions from scratch.
But still the wrapper code must be written manually, since this is not a parsing tool that
generates wrapper functions. For more information refer to the CXX home page [11].

BPL

BPL (Boost Python Library) is a system for quickly and easily interfacing C++ code
with Python such that the Python interface is very similar to the C++ interface. It is
designed to be minimally intrusive on the C++ design. In most cases, one should not
have to alter the C++ classes in any way in order to use them with BPL. The system
should simply ”reflect” the C++ classes and functions into Python.

Compared to the systems above BPL is somewhere between SWIG and CXX. It is
used to interface C++ code, but the interface one has to write is an abstract layer over
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Python’s C API. Worth to notice is that the interface is written in C++, and thus can
be linked directly with the library to e dynamic Python module. For more information,
refer to the BPL homepage [1].

Siloon

Siloon is a very ambitious project that try to create a general system for parsing C,
C++ and Fortran code, and produce interfaces to Perl and Python. It seems that the
goal with Siloon is to create a complete Problem Solving Environment for the languages
above. Unfortunately Siloon is not as mature as e.g SWIG and FPIG yet. For more
information, see the Siloon homepage at http://www.acl.lanl.gov/siloon/.

Perl Inline module

Perl has a collection of Inline modules for automatic use of code in many target lan-
guages. The TL code can be placed directly in the Perl code (inline) and the module
will silently create the necessary wrapper code. The Inline module supports C, C++
and Python, but the C++ support is rather poor. For more information, see e.g [14].

2.3 A Case Study for Mixed-Language Programming

This section is devoted to mixed-language programming, where Python scripts call up
computationally intensive functions written in C, C++, or Fortran. Chapter 2.3.1 de-
scribes the computational problem. A pure Python implementation appears in Chap-
ter 2.3.2. Extending of the Python scripts with graphics, run in a separate thread, is
explained in Chapter 2.3.2. A pure C/C++ implementation of the Python script, with-
out graphics, is presented in Chapter 2.3.3. The the efficiency of a Python script can
often be significantly enhanced by utilizing NumPy functionality. This is exemplified
in Chapter 2.3.4 for the current computational problem. We perform a profiling of the
Python-based scripts to detect the computationally intensive parts and replace the code
with C and C++ code in Chapter 2.3.5. In Chapter 2.3.6 we use Fortran code for the
number crunching. These chapters shows how SWIG, FPIG and Pyfort can be used for
code wrapping purposes.

2.3.1 The Computational Problem: Stochastic Simulation

Our main introductory example on integrating Python with C, C++, and Fortran code
concerns a simple, yet realistic, application from structural reliability. The end deflection
u of a cantilever beam, see Figure 2.3, can be expressed (according to simple beam
theory) as

u =
FL3

3EI
, (2.1)

where L is the length of the beam, F is the end load, E is Young’s modulus reflecting
the elastic properties of the beam, and I is the moment of inertia reflecting the geometry
of the cross section of the beam. In many practical circumstances neither E nor F is
known exactly. If we know some statistics of E and F , we can compute the corresponding
statistics of u and the probability that the deflection stays within some safe interval.
For simplicity we shall assume that F , L, and I are known parameters, and that E is
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F

L

Figure 2.3: Deflection of a cantilever beam of length L subject to an end force F .

distributed as a Gaussian random variable with known mean and standard deviation.
The purpose is to compute the mean, standard deviation, and probability distribution
of u.

The technique for computing statistics of u employed here is Monte Carlo simulation.
This means that we draw a large number of E values from a Gaussian distribution,
compute the u value corresponding to each E value, and use simple statistical estimation
techniques on all the u values for obtaining the mean, the standard deviation, and a
histogram. The latter quantity acts as an approximation to the probability density of
u.

Writing u = f(E) with f(E) = FL3/(3EI) and letting N(Eµ, Eσ) be the normal
distribution for E with mean Eµ and standard deviation Eσ, we generate random sam-
ples Ei, i = 1, . . . , n, drawn from N(Eµ, Eσ), compute ui = f(Ei), i = 1, . . . , n, and
apply well-known formulas for the expectation uE and the standard deviation uS :

uE =
1
n

n∑
j=1

uj , uS =

√√√√√ 1
n− 1

 n∑
j=1

u2
i − nu2

E

 . (2.2)

2.3.2 A Pure Python Implementation

We shall first implement all parts of the stochastic simulation problem in pure Python
code. We can thereafter migrate the most time critical operations to C, C++, or Fortran.

It is convenient to collect the basic statistical estimation techniques for the mean
and the standard deviation in a Python class. As an option, the class can also store the
samples in an array. This is convenient for histogram plotting or for computing other
statistics than the mean and standard deviation as a post process. Notice that without
the array of samples our simulation program can work with very large n values and
avoid the computer’s memory limitations.

class Statistics:
def __init__(self, varname, n=0):

self.sum1 = self.sum2 = 0.0 # sum of x, sum of x^2
self.n = 0 # current number of samples
self.varname = varname # name of the random variable
if n > 0: # store each sample?

self.samples = [0.0]*n
self.samples_length = n

else:
self.samples_length = 0

def add(self, sample):
"add a new sample"
self.sum1 += sample
self.sum2 += sample*sample
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if self.samples_length > 0:
try:

self.samples[self.n] = sample
except IndexError:

print "Statistics.add: no of samples is",self.n, \
"which is larger than the declared size =", \
self.samples_length
self.samples.append(sample)

self.n += 1

def getMean(self):
return self.sum1/float(self.n)

def getStDev(self):
return sqrt(1.0/float(self.n-1) * (self.sum2 -

self.sum1*self.sum1/float(self.n)))

def getSamples(self):
"return the samples collected so far"
if self.samples_length > 0:

return self.samples[:self.n]
else:

print
"Statistics.getSamples: no samples are stored.\n" \
"You need to call the Statistics constructor\n" \
"with a specified (or maximum) number of samples!\n"
return None

def __str__(self):
return "%6d samples: E[%s]=%g StDev[%s]=%g" % \

(self.n, self.varname, self.getMean(),
self.varname, self.getStDev())

The str function defines the behavior of the print a statement when a is a Statistics

object.
A typical application of the Statistics class is like this:

if n < 200:
r_stat = Statistics(’r’, n) # store samples

else:
r_stat = Statistics(’r’, 0) # no storage of samples

import random # Python module for random numbers
# draw n Gaussian random numbers and compute their statistics:
for i in range(n):

r_stat.add(random.gauss(2.0, 0.1))
print r_stat
if n < 200: print r_stat.getSamples()

The output is on the form

23000 samples: E[r]=1.99883 StDev[r]=0.100479

Having the deflection u implemented as Python function

def beam(F, L, E, I): return F*L*L*L/(3*E*I)

we can easily write a Monte Carlo simulation as follows:

from Statistics import Statistics
from random import gauss

def MonteCarlo(n, # no of simulations
E_mean, # mean of E
E_stdev, # stdev of E
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u_stat # output Statistics object
):

gauss_stat = Statistics("gauss") # statistics of E
for i in range(n):

E = gauss(E_mean, E_stdev)
gauss_stat.add(E)
u = beam(1.0, 1.0, E, 1.0)
u_stat.add(u)
# write 10 intermediate results:
if ((i+1) % (n/10)) == 0: print gauss_stat; print u_stat

return u_stat

For simplicity we call beam with unit values for F, L, and I.
The usage of the MonteCarlo function can be like this:

import sys
from random import seed
from Statistics import Statistics

E_mean = 2.0; E_stdev = 0.2
try: n = int(sys.argv[1])
except: n = 10000
# initialization of random generator by a 3-tuple:
seed((1,2,3))
u_stat = Statistics("beam")
u_stat = MonteCarlo(n, E_mean, E_stdev, u_stat)
# n more simulations:
u_stat = MonteCarlo(n, E_mean, E_stdev, u_stat)

The complete code is found in src/swig/sbeam/sbeam py.py. 200000 samples take about
13 seconds on my laptop, which is an acceptable speed in this example for practical
purposes. Nevertheless, more demanding stochastic problems also demands more CPU
power so it is interesting to see how fast NumPy-based and pure C/C++ codes are.
Before we do that, we briefly show how easy it is to calculate and display a histogram
of the u values in our Python script.

Adding Histogram and Graphics

A histogram representing the probability density of the beam deflection can be easily
calculated using the Scientific Python module by Konrad Hinsen. To use the histogram
functionality, we need to store all the samples so we send a second argument to the
Statistics constructor:

u_stat = Statistics(’u_stat’, nsamples)
...
from Scientific.Statistics.Histogram import Histogram
h = Histogram(u_stat.getSamples(), 50)
h.normalize() # let h be a density (unit area)

A plot of h would also be nice. Python’s Gnuplot module by Michael Haggerty for the
URL) allows easy access to Gnuplot from within a Python script. Suppose you have a
list of data pairs with the points on some curve:

points = [[0,1.2], [1.1,5.2], [2,-0.3]]

The minimum requirements for making a plot are then
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def plot(a, title=’’):
"a is a list of [x,y] pairs of data points"
import Gnuplot
g = Gnuplot.Gnuplot()
d = Gnuplot.Data(a, with=’lines’, title=title)
# let the Gnuplot object g plot the data object d:
g.plot(d)
g(’pause 30’) # halt the plot for 30 seconds

The Histogram object has a data member array that holds a list of (x, y) points on the
histogram curve such that plotting of the histogram in our example is easily enabled by

plot(h.array, title=’Histogram of deflection’)

at the end of the MonteCarlo function. These plotting statements are incorporated in
the sbeam py.py script that we have already referred to.

For our timing purposes it can therefore be convenient to turn on or off the his-
togram calculation and visualization. We have introduced an environment variable
SKIP HISTOGRAM, which equals 0 or 1, and controls whether a histogram should be com-
puted or not:

if os.environ.has_key(’SKIP_HISTOGRAM’):
skip_histogram = int(os.environ[’SKIP_HISTOGRAM’]) # 0 or 1

else:
skip_histogram = 0

if not skip_histogram:
# histogram calculation and plotting

The effect of skipping the histogram calculation for 200000 samples was negligible on
my laptop. However, the histogram calculation will consume a much larger portion of
the CPU time when we use NumPy arrays in our simulation code.

Doing Graphics with Threads

The plot function has a major drawback: It halts the program flow for 30 seconds while
displaying the graphics. The functionality we would like is to let the script proceed
with the computations in the second call to MonteCarlo while the graphics of the first
call is being displayed. In other words, we want the plot and MonteCarlo functions to
be executed concurrently. This can easily be done using threads. Threads in Python
behave much like threads in Java but are not yet as sophisticated.

Getting started with threads is easy. The program statements we want to run concur-
rently, or more precisely, in a thread separate from the main program, must be collected
in a function, which is simply the plot function in the current example. The thread is
constructed as (see [5, p. 174])

import threading
title = ’Histogram of deflection, n=%d’ % u_stat.n
p = threading.Thread(target=plot, args=(h.array,title))

where target=plot indicates the function to be executed in the thread, and args is a
tuple of arguments to be transferred to that function. Basic thread control includes
starting, stopping, and restarting the thread:

p.start()
p.stop()
# do something with data
p.run() # continue
p.stop()
p.run()
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In the current example we only need to start the thread.
An alternative and more flexible implementation of a separate thread for the plot-

ting statements makes use of a tailored class, e.g. called PlotThread, for running the
thread. Class PlotThread must be derived from Python’s Thread class in the threading

module and provide a function run (without arguments) that performs the tasks in this
thread. In the present example, run coincides with the plot function, except that the ar-
guments to plot must be transferred in another way; we have transferred them through
PlotThread’s constructor.

import threading
class PlotThread(threading.Thread):

def __init__(self, a, title=’’):
"a is a list of [x,y] pairs of data points"
threading.Thread.__init__(self)
self.a = a; self.title = title

def run(self):
import Gnuplot
g = Gnuplot.Gnuplot()
d = Gnuplot.Data(self.a, with=’lines’, title=self.title)
# let the Gnuplot object g plot the data object d:
g.plot(d)
g(’pause 300’) # display the plot for 300 seconds

In the MonteCarlo we can then write

p = PlotThread(h.array, title=title)
p.start() # start the thread, i.e., call p.run()

Both methods of implementing threads are included in the sbeam py.py script.

2.3.3 A Pure C/C++ Implementation

The sbeam py.py script can be implemented in C/C++ for increased efficiency. A prac-
tical drawback is that C and C++ does not provide convenient functions for drawing
random numbers from the normal distribution. We therefore write a little module draw

in C for doing this:

/* functions for drawing random numbers */

extern void setSeed(int seed);
/* draw random number in [0,1]: */
extern double draw01();
/* draw from the normal distribution: */
extern double gaussian(double mean, double stdev);

The corresponding files draw.h and draw.c are found in src/swig/sbeam/c.
The Statistics class from our Python script can be translated to C++:

class Statistics
{
double sum1, sum2; // sum of samples and samples squared
int n; // current no of samples
const char* varname; // name of variable for statistics
double* samples; // optional storage of samples
int samples_length; // allocated length of samples array

public:
Statistics(const char* varname_, int n_ = 0);
~Statistics();
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void add(double sample);

int getNoSamples() const { return n; }

double getMean() const
{ return sum1/double(n); }

double getStDev() const
{ return sqrt((sum2 - sum1*sum1/double(n))/double(n-1)); }

const double* getSamples() const;

void report(std::ostream& out); // write statistics
};

This code segment is taken from the header file Statistics.h.
Central functions are beam and MonteCarlo, along with a kind of main program (the

run routine), defined in a header file MC.h:

double beam(double F, double L, double E, double I);

void MonteCarlo(int n, double E_mean, double E_stdev,
Statistics& u_stat);

void run(int n); // run MonteCarlo (kind of main program)

The implementations of these functions are listed next.

double beam(double F, double L, double E, double I)
{
return F*L*L*L/(3*E*I);

}

void MonteCarlo(int n, double E_mean, double E_stdev,
Statistics& u_stat)

{
Statistics gauss_stat("gauss");
for (int i=0; i<n; i++) {

double E = gauss (E_mean, E_stdev);
gauss_stat.add (E);
u_stat.add (beam(1.0, 1.0, E, 1.0));
if (((i+1) % (n/10)) == 0) {
gauss_stat.report(std::cout); u_stat.report(std::cout);

}
}

}

void run(int n)
{
double E_mean=2.0, E_stdev=0.2;
setSeed (12374);
Statistics u_stat("u");
MonteCarlo (n, E_mean, E_stdev, u_stat);
std::cout << "CPU time: " << double(clock())/CLOCKS_PER_SEC << std::endl;
// n more simulations:
MonteCarlo (n, E_mean, E_stdev, u_stat);
std::cout << "CPU time: " << double(clock())/CLOCKS_PER_SEC << std::endl;

}

The main program is now very simple:

#include "MC.h"
#include <stdlib.h>
int main (int argc, const char* argv[])
{
int n;
if (argc == 2) { n = atoi(argv[1]); }
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else { n = 1000; }
run(n);

}

Compiling the files yields an application that runs about 50 times faster than the
plain Python version.

2.3.4 A NumPy Implementation

We could try to improve our plain Python script for the Monte Carlo simulation example
by utilizing NumPy. The simple loop from 1 to the number of samples n must then
be expressed by vector operations. This requires rewriting the MonteCarlo function.
In particular, we need a mechanism for generating a long vector of random Gaussian
numbers applying NumPy functions only. The latter task can be accomplished by first
generating independent uniformly distributed numbers on the unit interval using the
RandomArray module that comes with NumPy and then creating Gaussian variables in
pairs (g1, g2) by the Box-Müller method:

g1 = −2 ln u1 cos 2πu2, g2 = −2 ln u1 sin 2πu2,

where u1 and u2 are two independent uniformly distributed random variables on the
unit interval. Here is a possible implementation in terms of NumPy array operations:

from Numeric import sqrt, log, sin, cos, concatenate, multiply
from RandomArray import random

def gaussian(n, mean, stdev):
"draw n independent Gaussian random numbers"
# u1, u2: independent uniformly distr. variables on [0,1]
# use u1 and u2 for the sin and cosine part of the pairs resp.
u1 = random(n/2)
u2 = random(n/2)
u1 = sqrt(-2.0*log(u1))
u2 = 2*3.14159*u2
s = sin(u2)
c = cos(u2)
a = concatenate((u1*s, u1*c)) # one long array
# a is now N(0,1)
multiply(a, stdev, a)
return a + mean

The array-oriented version of MonteCarlo can take the following form, where we utilize
two other features besides Histogram in the Scientific Python module: average and
standardDeviation for computing the mean and the standard deviation of the numbers
in an array.

def MonteCarloNumPy(n, mean, stdev, u_samples=None):
"MonteCarlo calculations with NumPy vector calculations."
import Scientific.Statistics
import Scientific.Statistics.Histogram
S = Scientific.Statistics # abbreviation

E = gaussian(n, mean, stdev)
F = 1.0; L = 1.0; I = 1.0;
u = beam(F,L,E,I)
# add u to the end of previous samples:
if u_samples == None:

u_samples = u
else:
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u_samples = concatenate((u, u_samples))

print "E[u]=", S.average(u_samples)
print "StDev[u]=", S.standardDeviation(u_samples)

# use an environment variable to turn on or off histogram
# computation and plotting (since this is time consuming
# and may produce less relevant CPU timings of the numerics)
if os.environ.has_key(’SKIP_HISTOGRAM’):

skip_histogram = int(os.environ[’SKIP_HISTOGRAM’]) # 0 or 1
else:

skip_histogram = 0
if not skip_histogram:

h = S.Histogram.Histogram(u_samples,50);
h.normalize()
p = PlotThread(h.array,

title=’Histogram of deflection, n=%d’ % (len(u_samples)))
p.start() # start the thread, i.e., call p.run()

return u_samples

Observe that we work on vectors in all statements and that the simple beam function
shown previously on page 19 also works with NumPy arrays as arguments (!). This is
one example on the flexibility of scripting languages where we do not need to explicitly
write the type of the function arguments.

A simple main program goes like this:

E_mean = 2.0; E_stdev = 0.2
from RandomArray import seed
seed(1,2) # init with two integers
try: n = int(sys.argv[1])
except: n = 10000
samples = MonteCarloNumPy(n, E_mean, E_stdev)
import time
print "CPU time:", time.clock()
# some more simulations:
samples = MonteCarloNumPy(n, E_mean, E_stdev, samples)
print "CPU time:", time.clock()

The script is found in src/swig/sbeam/sbeam numpy.py. 200000 samples run at a speed
about 15 times faster than the plain Python implementation, but still about three times
slower than the pure C/C++ version. When histogram calculations and plotting are
turned on, this NumPy-based script increases the CPU time by slightly more than a
factor of two, quite independent of n.

2.3.5 Combining Python and C/C++

This section explains how we can combine the flexibility and convenience of Python
scripts with the computational power of C/C++. What we would like to do is controlling
the simulation in Python and do the number crunching in C and C++.

Before we start with the implementations of parts of our stochastic beam simulation
example in C/C++, we should analyze where the bottlenecks are. An appropriate tool
is to run the Python profiling tools on the plain Python script sbeam py.py. Appropriate
Unix commands are

export SKIP_HISTOGRAM=1
profiler.py sbeam_py.py 100000

The output table from profiler.py reads (n = 100000)
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1000180 function calls in 50.500 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)
2 19.030 9.515 50.450 25.225 sbeam_py.py:15(MonteCarlo)

200000 10.670 0.000 17.570 0.000 random.py:238(gauss)
400000 10.120 0.000 10.120 0.000 Statistics.py:19(add)
200000 6.900 0.000 6.900 0.000 whrandom.py:65(random)

Although most of the time is spent in the MonteCarlo function, the random module
(which also calls whrandom) consumes 17 out of the 50 seconds in MonteCarlo, whereas
the Statistics object consumes another 10 seconds. Hence, the obvious candidate for a
quick improvement of the sbeam py.py script is to rewrite the random number generation
in C. A natural next step is to utilize the Statistics class in C++ and write the Monte
Carlo loop in C++.

A profiling of the sbeam numpy.py script is also of great interest. Running 1000000
samples gave

124 function calls (122 primitive calls) in 9.880 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)
6/4 5.410 0.902 5.410 1.353 __init__.py:14(moment)
2 2.300 1.150 3.400 1.700 sbeam_numpy.py:15(gaussian)
4 0.920 0.230 0.920 0.230 RandomArray.py:36

(_build_random_array)
2 0.760 0.380 0.760 0.380 sbeam_numpy.py:8(beam)
3 0.370 0.123 0.370 0.123 Numeric.py:154(concatenate)
1 0.030 0.030 9.870 9.870 sbeam_numpy.py:4(?)

Also here the random number generation (in the gaussian procedure) is time consuming.
A possible improvement could be to be to operate on the NumPy arrays in our own C
loops.

Based on the profiling results, four combinations of C/C++ and Python seem at-
tractive in our stochastic beam simulation example:

1. Work with the pure Python script sbeam py.py, but replace the Python random
number generator by the draw.c routines in C.

2. Work with sbeam py.py, but call a C++ function for the Monte Carlo loop, utilizing
a random generator in C and the Statistics class in C++.

3. Work with the NumPy-based Python script sbeam numpy.py, but with an imple-
mentation of the Monte Carlo loop and the generation of Gaussian random num-
bers in C. The C code must then operate directly on the C representation of
NumPy arrays.

4. As point 3, but write the Monte Carlo loop and the gaussian function in Fortran 77.

It is an open question whether the last two tasks will really pay off, but the technique is of
general interest, and the present application is well suited for a pedagogical introduction
to computations on NumPy arrays in C/C++ and Fortran.

Wrapping Pure C Code

Working with SWIG is very easy when wrapping pure C code. Starting with building
a Python interface to the functions defined in draw.h is therefore a good pedagogical
example as well as a highly relevant strategy according to the profiling results. The
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draw.h files defines three functions, which we want to call directly from Python scripts:
void setSeed(int), double draw01(), and double gaussian(double,double). The recipe
goes as follows.

Creating a Subdirectory for SWIG Files. Go to the directory contaning draw.h

and draw.c, and create a subdirectory swig, or swig-draw, since we shall work with
several extension modules now. Such a subdirectory is not required by SWIG, but it
helps to keep a clean structure of C and SWIG files. Go to swig-draw.

SWIG Interface File. Create a file draw.i that specifies the interface that we want
to wrap. In this case it should be all the functions declared in draw.h:

/* file: draw.i */
%module draw
%{
#include "draw.h"
%}

%include draw.h

Standard C comments can be used to put comments in .i SWIG files. The second
line defines a module draw. This means that we can later import the C functions into
Python by writing import draw. The code inside %{ ... %} should contain includes
necessary to compile the specified interface, here draw.h. The %include line defines the
functions we want to make a Python interface to. Here this is every function listed
in draw.h. If only the gaussian function were of interest, we could instead replace the
%include line by

double gaussian(double mean, double stdev);

The Python module draw would then only contain the gaussian function.

Running SWIG. Generate wrapper code by running

swig -python -I.. draw.i

SWIG can also generate Tcl and Perl interfaces; simply replace -python with -perl5

to get a Perl interface. The -I.. option tells swig to search for header files (like draw.h)
in our parent directory. The swig command results in a file draw wrap.c containing the
C code that enables C functions to be called from Python. Without SWIG you would
need to write such lengthy code yourself. How to write wrapper code is well explained
in Beazley [5] or in van Rossum’s Python Documentation (the part called “Extending
and Embedding”). The reader is encouraged to scan these resources for getting a feeling
of what is going on when calling C from Python.

Compiling and Linking. The compiling is done in the following steps:

1. run SWIG on the input file. This will generate wrapper code.

2. compile the C code and the wrapper code.

3. link the object files together to a shared library file.
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This can be done with a Makefile or a shell script:

#!/bin/sh -x
# simple manual compilation of the draw module:
swig -python -I.. draw.i
PREFIX=‘python -c ’import sys; print sys.prefix’‘
VERSION=‘python -c ’import sys; print sys.version[:3]’‘
gcc -O -I.. -I$PREFIX/include/python$VERSION -c ../draw.c draw_wrap.c
gcc -shared -o draw.so draw.o draw_wrap.o

Testing the Module. First check that you have a shared library file draw.so or
drawmodule.so Then invoke the Python interpreter and try

import draw
draw.setSeed(34)
draw.draw01()
draw.gaussian(0,1)

We can easily test the new draw module together with the sbeam py.py script: Simply
replace the call to gauss in the random module by gaussian from the new draw module:

from draw import gaussian
...
E = gaussian(E_mean, E_stdev)

Complete code is found in sbeam py draw.py in the directory

src/swig/sbeam/C/swig-draw.

The code runs at almost half the CPU time compared to the original sbeam py.py script.

Making a Python Interface to the C++ Code

The natural way to improve the computational efficiency of the sbeam py.py script,
besides using NumPy arrays, consists in implementing all the computationally intensive
parts in C or C++ code. Here we shall employ the C and C++ code from Chapter 2.3.3,
called directly from a Python script. SWIG works very smoothly with C code, but
integration with C++ code can be somewhat more challenging.

Moving the Deflection Function to the Draw Module. Just as an example on
how easy it is to extend the draw module, we move the beam function from Python to C.
The function can be typed directly in draw.i as follows:

%inline %{
double beam(double F, double L, double E, double I)

{
return F*L*L*L/(3*E*I);

}
%}

Running SWIG, as well as compiling and linking remain unchanged. The inline direc-
tive in SWIG specifies C code that we want to add to the module. That is, we do not
need to put all the code in C files.

In the sbeam py draw.py code we replace

def beam(F, L, E, I): return F*L*L*L/(3*E*I)
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by

from draw import beam

The files resulting from this modification are available in the directory

src/swig/sbeam/C/swig-draw-beam.

The effect on the CPU of moving beam from Python to C is negligible, a fact that is not
surprising from the profiling.

The SWIG Interface File. The new module is called sbeam and contains interface
to the functions in draw.c, MC.cpp, and Statistics.cpp files. The function prototypes
in draw.h, MC.h, and Statistics.h constitute the programming interface from a Python
script, and contains enough information to generate the wrapper code. The definition
of the interface to be wrapped by SWIG becomes as follows.

%module sbeam
%{
/* all includes required by C++ compilation of wrappers */
#include <draw.h>
#include <Statistics.h>
#include <MC.h>
#include <Python.h> // Python as seen from C
#include <Numeric/arrayobject.h> // NumPy as seen from C
%}

/* We want class Statistics to return its samples
(double* getSamples()) into a NumPy array in Python;
hence, we need NumPy support and automatic conversion
between C arrays and NumPy */

%init %{
import_array() /* initializing function for NumPy */

%}

%include "draw.h"
%include "MC.h"

/* Convert C array (double *) to NumPy array: */
%typemap(python, out) double* {

int n;
n = _arg0->getNoSamples();
$target = PyArray_FromDimsAndData(1, &n,

PyArray_DOUBLE, (char *) $source);
}

%include "Statistics.h"

The complete interface file is sbeam.i in the src/swig/sbeam/C/swig-MonteCarlo direc-
tory.

The typemap facility in SWIG allows us to automatically convert the C array that
is returned from Statistics::getSamples to a NumPy array. This functionality is very
useful when we need to extract the samples from the Statistics object in C++ and
pass the array on to the Histogram object, which expects the samples to be stored in a
NumPy array.
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Remarks.

1. If any of the files in the module are compiled with a C++ compiler, one needs to
let C++ administer the linking process as well.

2. Using a C++ compiler for compiling all the files requires the draw.h to employ the
extern "C" enclosure inside #ifdef cplusplus directives (C++ compilers nor-
mally turn on the cplusplus macro).

3. Make sure that the C and C++ code does not contain function names that coin-
cide with Python keywords. This is the reason why the output function in class
Statistics is called report and not print.

Running SWIG. Running SWIG with C++ code should be done like this:

swig -shadow -python -c++ -I.. sbeam.i

The c++ option is required, whereas -shadow is optional but highly recommended. With
-shadow SWIG makes so-called shadow classes for all C++ classes. Shadow classes are
pure Python classes that behaves like the underlying C++ classes4.

Compiling and Linking. The compilation process is the same as described in the
“Compiling and Linking” section of Chapter 2.3.5, but we must use a C++ compiler for
the C++ code and the linking. A shell script like

#!/bin/sh -x
swig -shadow -python -c++ -I.. sbeam.i
PREFIX=‘python -c ’import sys; print sys.prefix’‘
VERSION=‘python -c ’import sys; print sys.version[:3]’‘
gcc -fpic -I.. -O2 -c ./../draw.c
g++ -fpic -I.. -O2 -c ./../Statistics.cpp
g++ -fpic -I.. -O2 -c ./../MC.cpp
g++ -fpic -I.. -O2 -I$PREFIX/include/python$VERSION \

-DHAVE_CONFIG_H -c ./sbeam_wrap.c
g++ -shared -o sbeamcmodule.so draw.o Statistics.o MC.o \

sbeam_wrap.o

compiles the module correctly.

Using the Module from Python. First we test that the new module work, e.g., on
the fly in IDLE’s Python shell:

>>> import sbeam
>>> n = 100
>>> u_stat = sbeam.Statistics("u", n)
>>> sbeam.MonteCarlo(n, 2.0, 0.2, u_stat)

Notice that all calculations are here done in the C/C++ code, but Python is used to
control the program flow.

A new Monte Carlo function in Python can be written that takes advantage of the
Monte Carlo function in C++, but adds histogram and plotting functionality:

4Without -shadow the Python interface to C++ classes is purely based on functions, not member
functions of Python classes (see the SWIG manual for explanation).
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def MonteCarlo(n, mean, stdev, u_stat):
sbeam.MonteCarlo(n, mean, stdev, u_stat)
#print "u_stats first 10 numbers: "
#print u_stat.getSamples()[:10]

# use an environment variable to turn on or off histogram
# computation and plotting (since this is time consuming
# and may produce less relevant CPU timings of the numerics)
if os.environ.has_key(’SKIP_HISTOGRAM’):

skip_histogram = int(os.environ[’SKIP_HISTOGRAM’]) # 0 or 1
else:

skip_histogram = 0
if not skip_histogram:

from plot import plot, PlotThread
from Scientific.Statistics.Histogram import Histogram
h = Histogram(u_stat.getSamples(), 50)
h.normalize() # let h be a density (unit area)
title = ’Histogram of deflection, n=%d’ % \

u_stat.getNoSamples()
import threading
p = threading.Thread(target=plot, args=(h.array,title))
p.start()

return u_stat

A complete Python script is found in

src/swig/sbeam/C/swig-MonteCarlo/sbeam_py_MonteCarlo.py

Running this script with 200000 samples shows that it is about as fast as the pure
C/C++ code.

2.3.6 Combining Python and Fortran

Python can call functions written in Fortran. A way to do this is to make a C interface
to the Fortran code and then let Python call the C interface. Doing this manually
is clearly an even more tedious and error-prone task than writing pure C extensions.
Fortunately, there exists tools for writing wrapper functions automatically, somewhat
like SWIG. We shall cover two tools, FPIG and Pyfort. Both tools support Fortran 77,
and FPIG supports most Fortran 90/95 constructs.

How to wrap Fortran 77 code will here be demonstrated through the stochastic beam
example from Chapter 2.3.1. We will do the same with FPIG and Pyfort for Fortran 77
code as we do with SWIG for C and C++ in Chapter 2.3.5. Our first task in this chapter
is to write a random number generator module in Fortran and wrap the module to make
it callable from Python’s sbeam py.py script.

A Draw Module in Fortran 77. There are no built-in random number generators in
standard Fortran 77 so we need to provide suitable routines. The necessary subroutines
make up a piece of code we shall refer to as the draw module. From Python we want
to call two functions in this module: setseed, which initializes the random number
generator, and gaussian, which calculates a random number drawn from the normal
distribution with prescribed mean and standard deviation. The setseed and gaussian

subroutines have the following signatures in Fortran 77:

subroutine setseed(seed)
integer seed
...
end
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real*8 function gaussian(mean, stdev)
real*8 mean, stdev
...
return
end

In addition, the Fortran library contains a routine for generating uniformly distributed
random numbers (called by gaussian). The complete source code is found in

src/sbeam/Fortran/draw.f.

Wrapping Fortran 77 Code With FPIG

We find it convenient to make a new subdirectory to separate the wrapper code from
the Fortran code. The subdirectory is called f2py-draw when we use FPIG for creating
a Python module draw based on Fortran 77 code. Generation of the files containing the
wrapper code is performed with an f2py command on the form

f2py ../draw.f -m draw -h draw.pyf

The f2py program scans the Fortran code in ../draw.f, writes the relevant interface
specification in draw.pyf, and creates a makefile Makefile-draw for the draw module. By
default, f2py generates wrappers for all the functions encountered in the Fortran files.
In the present case we just want to create interfaces to two of the functions. This can
be specified with the only: option, as in

f2py ../draw.f -m draw -h draw.pyf only: gaussian setseed \
--overwrite-signature --overwrite-makefile

The two options --overwrite-signature and --overwrite-makefile are useful; otherwise
f2py will not overwrite an existing interface file draw.pyf and makefile Makefile-draw.
Of course, if you have made manual adjustments in these files, the overwrite options
must be left out.

The interface file draw.pyf, generated by f2py, is actually the definition of a Fortran 95
module containing the functions we want in the interface. In the present example the
generated draw.pyf file takes the form

python module draw ! in
interface ! in :draw

subroutine setseed(seed) ! in :draw:../draw.f
integer :: seed
integer :: ncalls
real*8 :: next_value
common /gaussdraw/ ncalls,next_value

end subroutine setseed
function gaussian(mean,stdev) ! in :draw:../draw.f

real*8 :: mean
real*8 :: stdev
integer optional :: ncalls=0
real*8 optional :: next_value=0.0
real*8 :: gaussian
common /gaussdraw/ ncalls,next_value

end function gaussian
end interface

end python module draw
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This file has enough information for f2py to create the correct wrapper functions.
You can adjust the behavior of the Python interface to the Fortran routines by editing
the draw.pyf file. For example, the function signatures in draw.pyf contains common
block variables used in the functions. This information is not required. A minimal
interface file is written manually in Chapter 2.3.6.

The next step is to generate wrapper code in C for the functions we want to access
from Python. To this end, run f2py on the possible edited draw.pyf file:

f2py draw.pyf

All parameters needed for successful compilation and linking are included in the makefile
Makefile-draw, so the creation of a shared library module, callable from Python, is
accomplished by just typing

make -f Makefile-draw

You can now test that the module can be used from Python by running a one-line
Python script, which just imports the new draw module:

python -c ’import draw’

A more detailed test is to write a script or invoke an interactive Python shell and call
the setseed and gaussian functions:

import draw
draw.setseed(9862)
draw.gaussian(0,1)

Documentation of a Fortran function is available in the doc string. Say, for instance,

print draw.gaussian.__doc__

With exactly the same Python code as used when the draw module is implemented in
C, src/sbeam/C/swig-draw/sbeam py draw.py we can now test the draw module. In other
words, Python cannot distinguish whether the draw module is written in C or Fortran.
The complete set of files for the Fortran 77 version of the draw module, including a copy
of sbeam py draw.py, is found in src/sbeam/Fortran/swig-draw.

Wrapping Fortran 77 Code With Pyfort

Pyfort works in a way similar to FPIG; the only significant difference is that we have
to write the interface file (like draw.pyf) manually. This is not very difficult if you are
familiar with Fortran 90/95, but can be some work if there are many functions to wrap.
The syntax of the interface files used by FPIG and Pyfort is almost identical since they
both borrow the syntax from Fortran 95. A major difference is, nevertheless, that Pyfort
does not use the module keyword. Actually, you can use FPIG to generate an interface
for Pyfort if you remove the module keyword and its associated end mark.

We shall make a Python interface to the random number generation routines de-
scribed on page 31. First we create a subdirectory pyfort-draw for the Pyfort files. The
interface file, now written by hand, can look like
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module draw
subroutine setseed(seed)

! in :draw:../gaussian.f
integer :: seed
integer :: ncalls
integer :: next_value

end subroutine setseed

function gauss(mean,stdev)
! in :draw:../gaussian.f
real*8 :: mean
real*8 :: stdev
integer :: ncalls
real*8 :: next_value
real*8 :: gauss

end function gauss
end module draw

Notice that we limit the variables visible in this interface to subroutine arguments (FPIG
automatically includes more variables in the interface).

Pyfort relies on Python’s Distutils tool for compilation and linking of the new mod-
ule. However, the Fortran files must be compiled into a library before running Pyfort.
In the present case we could accomplish this by

g77 -O -c ../draw.f -o draw.o
ld -r -o libdraw_f77.a draw.o

Of course, g77 can be replaced by any desired compiler. The next step is to run Pyfort:

pyfort -c g77 -m draw -b -L. -ldraw_f77 draw.pyf

The -c option specifies a compiler ID (not necessarily the name of the Fortran compiler,
see the Pyfort manual), -m specifies the name of the module, -b denotes building the
entire module without installing it, -L specifies the directory where the Fortran library
(here libdraw f77.a) is to be found, and -l is the name of the Fortran library without
the leading lib and the suffix. Replacing -b by -i makes Pyfort install the library, i.e.,
copy draw.so into the standard Python libraries for modules such that you can use the
new module easily from any directory.

The result of running Pyfort with the -b option is, hopefully, a directory tree build

containing the wrapper code and the new shared library file draw.so.
The draw module can be tested by the following lines in a Python script or in an

interactive Python shell:

import draw
draw.setseed(9862)
draw.gaussian(0,1)

Pyfort generates a file draw.txt with a documentation of the Python interface to the
Fortran code5.

The file make.sh in src/sbeam/Fortran/pyfort-draw lists all the statements needed to
automatically build the draw module using Pyfort. The Python code sbeam py draw.py,
making use of the random number generator in Fortran 77, can be found in the same
directory and is identical to the FPIG and SWIG twins.

5Unfortunately, the text in this file is not available as doc strings in the various function objects in
the Python code, which is the case when FPIG generates an interface.
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2.4 Wrapping NumPy Arrays

We shall now return to the test scripts from Chapter 1.1.1, where we evaluate the
function (1.1) at a large number of x values and place the results in an array. The
efficiency of the script fillarr1 NumPy.py, based on arrays from NumPy, proved to be
close to tailored C/C++ code. However, a disadvantage of this script is that we need to
express the mathematical problem in terms of NumPy vector operations, which can be
very difficult. Extensive memory requirements from temporary NumPy arrays in these
vector operations constitute another potential problem in large-scale applications. It
would hence be more convenient for many programmers and less memory demanding
for the computer to make a direct loop over the NumPy array entries. Such a loop is
extremely inefficient if it is coded in plain Python so we need to pass the NumPy array
to C, C++, or Fortran code and perform the loop operations there.

NumPy arrays are represented by a C structure PyArrayObject. Its most important
data members are

int nd

The number of indices (dimensions) in the NumPy array.

int *dimensions

Array of length nd, where dimensions[0] is the number of entries in the first index
of the NumPy array, dimensions[1] is the number of entries in the second index,
and so on.

char *data

Pointer to the first data element of the NumPy array.

int *strides

Array of length nd describing the number of bytes between two successive data
elements for a fixed index. Suppose we have a two-dimensional (PyArrayObject)
array a with m entries in the first index and n entries in the second one. Then nd

is m*n, dimensions[0] is m, dimensions[1] is n, and entry (i,j) is accessed by

a->data-> + i*a->strides[0] + j*a->strides[1]

in C or C++.

2.4.1 Computing with NumPy Arrays in C

Suppose we want to implement evaluation of (1.1) in a C module where we work with
NumPy’s C data structure directly. We shall first make the Python-C interface from
scratch, partly for showing how wrapper functions look like in C and partly for moti-
vating the use of tools for automatic generation of wrapper code.

The Python documentation has a chapter “Extending and Embedding the Python
Interpreter” (see [24]) that explains in detail how to call C functions from Python
(Beazley’s book [5] has a similar exposition). Using that information along with the
Numeric documentation’s, refer to [3] for guidelines on working with NumPy arrays in
C, we can quite straightforwardly create the following C code. Although there is a lot of
low-level administration of Python/NumPy data structures taking place in the function,
the reader should from the comments be able to understand the basic structure and adapt
it to similar problems. The relevant files are located in src/ex/fillarr/NumPy/C/basic.
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#include <Python.h> /* Python as seen from C */
#include <Numeric/arrayobject.h> /* NumPy as seen from C */
#include <math.h>

double f (double x)
{
double n, c, cH, A, c1, u;
n = 0.3; c = 1.0 + 1/n; cH = pow(0.5,c);
A = n/(1.0 + n);
if (x <= 0.5) c1 = pow(0.5 - x,c);
else c1 = pow(x - 0.5,c);
u = A*(cH-c1);
return u;

}

static PyObject *fillarr_Numeric_C(PyObject *self, PyObject* args)
{
PyArrayObject *array; /* C representation of Numeric array */
int i,n; /* number of array entries (x points) */
double x;
double* a; /* C ptr to the NumPy array */

/* parse the arguments to this function using Python tools */
if (!PyArg_ParseTuple(args, "O!", &PyArray_Type, &array)) {

/* extracting a NumPy array as argument was not successful */
return NULL; /* Error indicator */

}

/* check that we have a one-dimensional array */
if (array->nd != 1) {

/* throw a Python exception (ValueError) */
PyErr_SetString(PyExc_ValueError,

"the NumPy array must be one-dimensional");
return NULL;

}
/* check that the datatype is NumPy/Python float, i.e. C double */
if (array->descr->type_num != PyArray_DOUBLE) {

PyErr_SetString(PyExc_ValueError,
"the NumPy array must consist of floats");

return NULL;
}

n = array->dimensions[0]; /* length of the array */
a = (double*) array->data; /* pointer to the NumPy data */

/* what we came here to do: fill a with f(x) values */
for (i=0; i<n; i++) {

x = (double) i/(n-1);
a[i] = f(x);
/* more general: *(array->data+i*array->strides[0]) = f(x) */

}

/* return nothing; we just borrow a reference to the Python
object */

Py_INCREF(Py_None); return Py_None;
}
/*

the method table must always be present - it lists the
functions that should be callable from Python:

*/
static PyMethodDef FillarrMethods[] = {
{"fillarr_Numeric_C", /* name of func when called from Python */
fillarr_Numeric_C, /* corresponding C function */
METH_VARARGS},

{NULL, NULL}
};

void initfillarr_basic_C()
{
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/*
assign the name of the module and the name of the
method table:

*/
(void) Py_InitModule("fillarr_basic_C", FillarrMethods);
import_array(); /* NumPy initialization */

}

The type of the array elements is reflected by a PyArray Type variable, accessed by the
descr->type num attribute of the NumPy structure. The Numerical Python manual lists
the various legal data types. Computational scientists and engineers will make frequent
use of PyArray DOUBLE which means double in C, float in Python, and Float in NumPy.

We proceed with compiling the C file, here called fillarr basic C.c, and making a
shared library out of it. A little Bourne shell script can perform the tasks:

#!/bin/sh
PREFIX=‘python -c ’import sys; print sys.prefix’‘
VERSION=‘python -c ’import sys; print sys.version[:3]’‘
gcc -O3 -I$PREFIX/include/python$VERSION \

-c fillarr_basic_C.c -o fillarr_basic_C.o
gcc -shared fillarr_basic_C.o -o fillarr_basic_C.so

A little test script might read

import Numeric as N
n=20
a = N.zeros(n, N.Float) # create an array with n zero entries
from fillarr_basic_C import *
fillarr_Numeric_C(a) # fill a in a C function
print a

A complete timing script is found in fillarr NumPy basic C.py. It runs about the same
speed as the fillarr1 NumPy.py script, where we only use NumPy functions in Python.

Using SWIG to Simplify NumPy Operations in C

With SWIG we can automate the conversion from the Python representation of NumPy
structures to plain C arrays. This is done using typemaps. The result is that the manual,
low-level procedures like in the example above is simplified.

In our case a general typemap from a PyArrayObject to a double array looks like
this:

%typemap(python,in) double * {
PyArrayObject *py_arr;

/* first check if it is a NumPy array */
if (!PyArray_Check($source)) {

PyErr_SetString(PyExc_TypeError, "Not a NumPy array");
return NULL;

}

if (PyArray_ObjectType($source,0) != PyArray_DOUBLE) {
PyErr_SetString(PyExc_ValueError,

"Array must be of type double");
return NULL;

}

/* check that array is 1D and contiguous. */
py_arr = PyArray_ContiguousFromObject($source,

PyArray_DOUBLE, 1, 1);
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/* set _arg1 to the length of this array */
_arg1 = py_arr->dimensions[0];

/* set a double pointer to the NumPy allocated memory */
$target = py_arr->data;

}

The typemap can be stored in a SWIG library file, e.g. arraymaps.i and can be included
in any number of SWIG input files.

Having the typemap at our disposal, we can write a simple SWIG file where we put
the f(x) function and the fillarr Numeric C function, with their contents exactly as it
would have been in pure C without disturbing Python and NumPy data structures:

%{
double f (double x)
{
/* implement f(x) formula... */

}
%}

%inline %{
void fillarr_Numeric_C (double *a, int n)
{
int i; double x;

for (i=0; i<n; i++) {
x = (double) i/(n-1);
a[i] = f(x);

}
}
%}

The C code can be inserted directly or with the %include statement. Our input file
looks like

%module fillarr_swig_C

%{
#include <Python.h>
#include <Numeric/arrayobject.h>
#include <math.h>
%}

%init %{
import_array() /* Initialization function for NumPy */

%}

%include arraymaps.i

%{
double f (double x) { ... }
%}

%typemap(python, ignore) int n {
$target = 1;

}

%inline %{
void fillarr_Numeric_C (double *a, int n) {
int i;
double x;

for (i=0; i<n; i++) {
x = (double) i/(n-1);
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a[i] = f(x);
}

}
%}

The last little typemap tells swig to ignore the second argument in fillarr Numeric C

from the Python side. That means we don’t have to send the length of the array as the
second argument, because the typemap finds it and sends it along to the C function.
Running SWIG creates wrapper code that must be compiled and linked together with
any C files to a shared library. On my computer (with Linux) this can be done as follows:

linux> swig -python fillarr_swig_C.i
Generating wrappers for Python
linux> gcc -O3 -c fillarr_swig_C_wrap.c -DHAVE_CONFIG_H \
-I/home/rogerha/ext/linux/include/python2.0
linux> gcc -shared fillarr_swig_C_wrap.o -o fillarr_swig_Cmodule.so

Usage from Python looks like

linux> python
Python 2.0 (#1, Jan 11 2001, 11:56:43)
[GCC 2.95.2 20000220 (Debian GNU/Linux)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import fillarr_swig_C
>>> import Numeric
>>> a = Numeric.zeros(10,’d’)
>>> print a
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
>>> fillarr_swig_C.fillarr_Numeric_C(a)
>>> print a
[ 0. 0.00759499 0.01055114 0.01134961 0.01144676 0.01144676

0.01134961 0.01055114 0.00759499 0. ]

In the same directory you can find a Makefile or an alternative script make.sh for com-
piling and linking the module. The script fillarr Numeric swig C.py tests the module.

2.4.2 Computing with NumPy Arrays in Fortran

Working with NumPy arrays in Fortran code is trivial as soon as you have grasped the
basics of using f2py or Pyfort from Chapter 2.3.6. You will see that NumPy arrays
are much simpler to deal with in Fortran than in C (Chapter 2.4.1 treats the details of
computing with NumPy arrays in C code).

Our first example concerns migrating the fillarr.py script from Chapter 1.1.1 to
Fortran. Although we made a version of this script using NumPy functionality called
from Python, see Chapter 1.1.1, it appears to be easier to implement the f(x) function
(1.1) and a loop over an array in straight Fortran 77 code. A suggested implementation
looks as follows.

PROGRAM FILLARR
INTEGER N
PARAMETER (N=100000)
REAL*8 MYARRAY(N)

DO 10 I=1,20
CALL MAKELIST(MYARRAY, N)

10 CONTINUE
END

SUBROUTINE MAKELIST(MYARRAY, N)
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INTEGER N
REAL*8 MYARRAY(N)
INTEGER I
REAL*8 X

DO I = 0, N-1
X = I/FLOAT(N-1)
MYARRAY(I) = F(X)

ENDDO
RETURN
END

REAL FUNCTION F (X)
REAL*8 X
REAL*8 N, C, CH, A, C1

N = 0.3
C = 1.0 + 1/N
CH = C**0.5
A = N/(1+N)

IF (X .LE. 0.5) THEN
C1 = (0.5 - X)**C

ELSE
C1 = (X - 0.5)**C

ENDIF

F = A*(CH - C1)
RETURN
END

This code is found in /src/ex/fillarr/C-F77/F77/fillarr.f. Notice that Python inter-
faces will call FILLARRF77 as fillarrf77, i.e., all names are normally translated to their
lower-case equivalents (Fortran itself is case insensitive).

Remark. From the previous naming conventions in C versions of this code, it would be
natural to replace FILLARRF77 by FILLARR NUMPY F77. However, some Fortran 77 compil-
ers, including the widely used g77, adds a double underscore to function and subroutine
names already containing an underscore. This feature might be confusing when gener-
ating wrapper functions so we prefer to work with Fortran subroutine names without
underscores.

Wrapping the Functions with FPIG

Making a Python interface to the function FILLARRF77 in the fillarr.f file is trivial
using FPIG. We generate the interface in the directory

src/ex/fillarr/NumPy/F77/f2py

The relevant f2py command is

f2py ../../../C-F77/F77/fillarr.f -h fillarr.pyf -m fillarr \
only: fillarrf77 \
--overwrite-signature --overwrite-makefile

The generated interface definition fillarr.pyf can be used as is so the next step is just
compiling and linking, using the automatically generated makefile:

make -f Makefile-fillarr
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The fillarrf77 function in Fortran 77 takes two arguments: an array and the length
of the array. A similar function in Python we would just require the array variable, as
the length is an intrinsic part of the array object. Fortunately, the Python interface
to Fortran routines behaves this way, that is, the length of the array is an optional
argument, according to the interface definition in fillarr.pyf:

interface ! in :fillarr
subroutine fillarrf77(a,n)

real*8 dimension(n) :: a
integer optional,check(len(a)>=n),depend(a) :: n=len(a)

The specification of n as optional, with default value equal to the length of a allows the
parameter to be omitted when calling fillarrf77. The following Python code segment
demonstrates how the function can be called:

import fillarr
from Numeric import *
n = 10000
a = zeros(n,Float)
fillarr.fillarrf77(a) # fill a
# alternative call:
fillarr.fillarrf77(a,n) # fill a
print fillarr.f(0.76) # evaluate f(x)

Writing print fillarr.fillarrf77. doc results in a documentation of the generated
Python interface to fillarrf77, where the optional argument is clearly specified:

fillarrf77 - Function signature:
fillarrf77(a,[n])

Required arguments:
a : input rank-1 array(’d’) with bounds (n)

Optional arguments:
n := len(a) input int

Multi-dimensional arrays can be handled in the same way, that is, the size of the
array does not need to be provided as arguments in the call statement in the Python
script. Consider, for instance,

subroutine fill(a, m, n)
integer m, n
real*8 a(m,n)

...

An interface file could here contain the specification

python module ...
interface
subroutine fill(a,m,n)
real*8 dimension(m,n) :: a
integer optional,check(shape(a,1)==m),depend(a)::m=shape(a,1)
integer optional,check(shape(a,0)==n),depend(a)::n=shape(a,0)

end subroutine makearr
end interface
end python module

The size of a multi-dimensional arrays in dimension i-1 is computed as shape(a,i).
When the Fortran does code not apply unit base index in all dimensions, e.g.,

subroutine fill(a, m, n)
integer m, n
real*8 a(-1:m,-n:n)

...



42 Introduction to Mixed-Language Programming

the interface file specifies m and n according to

subroutine fill(a,m,n)
real*8 dimension(m + 2,2 * n + 1) :: a
integer optional,check((shape(a,1)-2)==m),depend(a) &

:: m=(shape(a,1)-2)
integer optional,check((shape(a,0)-1)/(2)==n),depend(a) &

:: n=(shape(a,0)-1)/(2)
end subroutine fill

That is, the array has zero base index when viewed from Python and the specified base
indices -1 and -n when viewed from Fortran. The Python interface moves all optional
array size arguments to the end of the argument list. Therefore, it is recommended
to do the same in the Fortran 77 code to ensure complete consistency between the
original source and the Python interface. As a specific example, consider subroutine

fill2(m,a,n). Running f2py generates a Python interface fill2(a,[m,n]), where the m

and n are optional and appear at the end of the argument list. Such reordering of the
arguments can be confusing for newcomers to f2py.

The script fillarr NumPy f77.py shows how we run the CPU time test from a Python
script, calling up the Fortran functions to do all the compuatations.

Wrapping the Functions with Pyfort

Pyfort requires us to provide an interface file. Very often, this file is identical or very
similar to the interface file generated by f2py (except for the module–end and interface–
end pairs of keywords). In the present case we tell Pyfort that we want to make a Python
interface to the Fortran functions fillarrf77 and f:

module fillarr
subroutine makelist(myarray, n)

integer n = size(myarray)
real*8, intent(in):: myarray(n)

end subroutine makelist
function f(x)

real*8 x
real f

end function f
end module fillarr

Notice that that the argument n has the length of the array as default value when
fillarrf77 is viewed from Python.

The next steps are identical to the ones described for creating the draw module (see
page 40). We work in a directory, here src/ex/fillarr/NumPy/F77/pyfort separate from
where the Fortran source code file is located. As usual with Pyfort, we need to compile
the Fortran source into a library. Example of relevant commands are

g77 -O -c ../../../C-F77/F77/fillarr.f -o fillarr.o
ld -r -o libfillarr_f77.a fillarr.o

Thereafter we run Pyfort to generate the interface wrapper code, compile it, and link
the new module:

pyfort -c g77 -m fillarr -b -L. -lfillarr_f77 fillarr.pyf

All the steps in creating the fillarr module are automated through the make.sh script.
To check that the new module works, try for instance
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from fillarr import fillarrf77
from Numeric import zeros
a = zeros(100,Float)
fillarrf77(a)

The script fillarr NumPy f77.py measures the CPU time of a number of calls to fillarrf77.
The efficiency can be compared to the pure F77 code in src/ex/fillarr/C-F77/F77; the
latter is slightly faster.

In this section we have seen both Pyfort and FPIG used. Both tools seem reliable
and the wrapped code is both efficient and easy to use. However, FPIG can be more
practical since interface files can be generated automatically.

2.5 Alternatives to Code Wrapping

Systems like CORBA, XML-RPC , and ILU are sometimes useful alternatives to the
code wrapping scheme described above. The basic idea they build upon is running the
target language code and application language code as separate processes, and handle
communication between these processes. The processes don’t even have to run on the
same machines and the communication may go over network By obvious reasons there
is more overhead in this approach, and for the use we are aiming for in this thesis such
a strategy is slightly overkill.
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Chapter 3

Problem Solving Environments

In the last chapter we saw several implementations of a relative simple example. When
dealing with more advanced applications, communication with users must often be per-
formed. This also applies for numerical applications, like simulators where input and
output data must be handled correctly. We want to create Problem Solving Environ-
ments (PSE) for handling the user communication in numerical applications. By using
a scripting language like Python we can create flexible PSE, and with mixed-language
programming techniques we can create effective applications as well. A dynamic PSE
makes it possible to do computational steering, i.e we can change conditions in the
middle of a simulation. The goal is to create applications which are flexible, effective,
modularized, and easy to extend.

In Chapter 3.1 we will introduce an example simulating water waves. The imple-
mentations will handle input data and produce output data which can be used for later
representation. In Chapter 3.2 we enhance the simulator with better handling of input
data, as well as processing of output data using XML, which is an excellent format for
storing of structured data. An introduction to XML is given in Chapter 3.2.1 and usage
of XML is shown in Chapters 3.2.2–3.2.3. Computational steering for the wave simula-
tor is discussed in Chapter 3.3. Experience from wrapping large numerical libraries is
outlined in chapter 3.4

3.1 A Wave Simulator

The idea of a Problem Solving Environments using scripting techniques is is most con-
veniently introduced through a non-trivial, specific example. The example to be used
here concerns simulation and visualization of water waves. More specifically, we have a
program which implements a numerical method for solving a partial differential equation
describing long water waves1. Solving a wave equation is a classical problem in many
sciences. We will derive a algorithm based on finite difference schemes to simulate the
water waves. The problem is briefly described in the next section. More details regard-
ing the mathematical model, the discretization, and numerics can be found in Chapter
1 of [16].

1Long water waves means that the wave length is much larger than the depth. Such water wave
models are used for simulating storm surges, tides, swells in coastal region, and tsunamis. Tsunamis are
destructive water waves generated by earthquakes, faulting, or slides, usually at the sea bottom. The
waves travel at high speed (500 km/h may be a representative figure) over large ocean areas and may
cause severe damage to the population during run-up on beaches.
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Figure 3.1: Sketch of long water waves, with the surface elevation and the bottom
functions.

After the problem description we will show several implementations programmed
in C, C++, Fortran, and Python. We will discuss the implementations abilities to be
changed, extended, and of course the efficiency of the code. The implementations will
range from a simple variant with little user communication to an implementation with
a GUI and runtime computational steering features.

3.1.1 Problem Description

A possible mathematical model for long water waves consists of a partial differential
equation (the so-called damped wave equation in this case)

∂2

∂t2
u(x, t) + β

∂

∂t
u(x, t) =

∂

∂x

(
H(x, t)

∂

∂x
u(x, t)

)
− ∂2

∂t2
H(x, t), (3.1)

coupled with initial and boundary conditions :

u(x, 0) = I(x), (3.2)
∂

∂t
u(x, 0) = 0, (3.3)

∂

∂x
u(x, 0) = 0, (3.4)

∂

∂x
u(x,L) = 0 . (3.5)

The function u(x, t) models the elevation of the water surface, where u = 0 corresponds
to still water (no waves), x is a spatial coordinate in the direction where the wave
propagates, and t denotes time. See Figure 3.1 for a sketch.

The equation (3.1) is to be solved in a domain (fjord, lake, harbor, ocean basin)
[0, L]. One sees that the domain is one-dimensional, while the water surface in the real
world is two dimensional and the water motion is three dimensional. The assumption
of long waves, relative to the depth, implies that the motion of the fluid particles in
the vertical direction is so small that it can be neglected, resulting in a reduction in the
number of space dimensions in the mathematical model. Here we also assume that the
variation of the waves in one of the horizontal directions is negligible. This leaves us
with a one-dimensional mathematical model describing two-dimensional water motion.
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The function H(x, t) in (3.1) models the still-water depth. Normally, H only varies
with x, but the time dependence in H allows us to model slides along the bottom (which
then results in a time-dependent bottom topography). The initial condition (3.2) says
that the water surface at zero time has a shape according to the prescribed function
I(x). The other initial condition, equation (3.3), expresses that the water is at rest
initially. The two boundary conditions (3.4) and (3.5) reflect that the wave does not
penetrate the boundary at x = 0 and x = L, that is, there are reflective walls at x = 0
and x = L. This is a natural condition if we study waves in a fjord or lake with steep
hills, but perhaps a less natural condition if the waves run up on a beach with small
slope. Even in the latter case, (3.4) and (3.5) give results that are in sufficient agreement
with observations of the nature. We should mention that the model (3.1)–(3.5) has been
scaled such that all variables are dimensionless, the depth has a size of order unity (exact
1 if the depth is constant), and the domain (fjord, lake, harbor, ocean basin) has length
L.

Of course, many physical effects are omitted in (3.1)–(3.5). We have already men-
tioned that the water surface is two-dimensional, demanding also another spatial co-
ordinate and an extra term in (3.1). Moreover, the waves might be steep such that
additional nonlinear terms should be included, and the waves might be too short for the
underlying long-wave approximation2. Nevertheless, (3.1)–(3.5) is a sufficiently accurate
model for many practical engineering and scientific studies of water waves.

The mathematical problem (3.1)–(3.5) must normally be solved by a numerical
method. Here we apply the finite difference method on a uniform grid. Roughly speaking,
the finite difference method consists in finding an approximation u`i to u(x, t) at discrete
points in space and time, where i is a counter for spatial points and ` denotes a time
level. Hence, at the third time level we have discrete values as depicted in Figure 3.2.
The space between two grid points are called cells, and this discrete representation of
the domain [0, L] is called a grid.

u

u u

u u
3

4 5
1

2

x=1x=0
x

3

3 3

3 3

Figure 3.2: The discrete u`i values as computed in a finite difference scheme with four
cells in the domain [0, 1].

The governing partial differential equation is assumed to hold at all the points in
the grid at each time level. At each point, we approximate the derivatives in the math-
ematical model by finite differences:

1
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)
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i

)
2See [16, ch. 1 and 6] for details regarding modification of the mathematical model to account for

the mentioned effects.
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The quantity ∆x is the spacing between the grid points, while ∆t is the time lag between
each time level, or in other words, the time step is ∆t. This equation can be solved with
respect to the new value u`+1

i , yielding a so-called explicit finite difference scheme for
u`+1
i , where the values at time level ` and `− 1 are considered as known. The function
H(x, t) is known and H`

i+ 1
2

simply means to evaluate H((i − 1
2)∆x, `∆t). However, in

the code we use the arithmetic mean H`
i+ 1

2

= 1
2(H`

i +H`
i+ 1

2

).

The updating formula for u`+1
i becomes:
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i =

2
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1
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2∆x2 ((H`
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i )(u
`
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H`−1
i + 2H`

i −H`+1
i

)
(3.6)

for all internal grid points i = 2, . . . , n − 1. Note that when u at time levels ` − 1 and
` are already computed, everything on the right-hand side of (3.6) is known. Refer to
Langtangen’s book ([16]) for more information about the derivation of the formulas.

At the boundary points, i = 1 and i = n, the boundary conditions (3.4)–(3.5) apply.
Discretizing the the derivative gives

u`2 − u`0
2∆x

= 0,
u`n+1 − u`n−1

2∆x
= 0,

implying u2 = u0 and un+1 = un−1. Using (3.6) for i = 1 and i = n involves the
fictitious values u0 and un+1 (outside the domain), but these can be replaced by u2 and
un−1 because of the boundary conditions. The result is a special updating formula for
the boundary points:

u`+1
1 =

2
2 + β∆t

(
2u`1 + (

1
2
β∆t− 1)u`−1

1 +

∆t2

2∆x2 ((H`
1 +H`

2)(u`2 − u`1) + (H`
2 +H`

1)(u`1 − u`2))−

H`−1
1 + 2H`

1 −H`+1
1

)
, (3.7)

u`+1
n =

2
2 + β∆t

(
2u`n + (

1
2
β∆t− 1)u`−1

n +

∆t2

2∆x2 ((H`
n +H`

n−1)(u`n−1 − u`n) + (H`
n−1 +H`

n)(u`n − u`n−1))−

H`−1
n + 2H`

n −H`+n
n

)
. (3.8)

We have assumed that H0 = H2 and Hn+1 = Hn−1, that is, ∂H/∂x = 0 at the bound-
aries.

Initially, at t = 0, we have known u0
i = I((i − 1)∆x) and ∂u/∂t = 0. The latter is

discretized with a centered difference, (u1
i −u−1

i )/(2∆t) = 0, giving u1
i = u−1

i . Applying
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(3.6) for ` = 0 and replacing the fictitious u−1
i by u1

i , we get a special scheme for u1
i . At

the boundaries, this scheme must be modified using u0 = u2, un+1 = un−1, H0 = H2,
and Hn+1 = Hn−1. From a computational point of view it can be convenient to define
u−1
i such that (3.6)–(3.8) are valid also for the first time step (` = 0). The proper u1

i

values are

u−1
i =

1
2

(
2u0

i +
∆t2

2∆x2 (Hi +Hi+1)(ui+1 − ui)

−(Hi−1 +Hi)(ui − ui−1)− 2(H1
i −H0

i )
)
, i = 2, . . . , n− 1, (3.9)

u−1
1 =

1
2

(
2u0

1 +
∆t2

2∆x2 (H1 +H2)(u2 − u1)

−(H2 +H1)(u1 − u2)− 2(H1
1 −H0

1 )
)
, (3.10)

u−1
n =

1
2

(
2u0

n +
∆t2

2∆x2 (Hn +Hn−1)(un−1 − un)

−(Hn−1 +Hn)(un − un−1)− 2(H1
n −H0

n)
)
. (3.11)

We have assumed that H−1
i = H1

i , i.e., ∂H/∂t = 0 for t = 0. Physically, this means
that the bottom is initially at rest.

The formula for u1
i involves the artificial quantity u−1

i , which should have the fol-
lowing form to be compatible with the initial conditions (3.2)–(3.3):

u−1
i = ui +

1
2

∆t2

∆x2

(
Hi+ 1

2
(u0
i+1 − u0

i ) +Hi− 1
2
(u0
i − u0

i−1)
)

(3.12)

for all grid points i = 1, . . . , n.

The Computational Algorithm

The computational scheme listed in the previous subsection can be expressed in a pre-
cise algorithmic form, a task to be accomplished before implementing the method in a
computer program.

The computational scheme is only stable when ∆t is sufficiently small,

∆t ≤ h

Hmax
. (3.13)

In the implementation we choose

∆t = S
h

Hmax
,

where S is a safety factor: S ∈ (0, 1].
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Algorithm 3.1

Simulation of waves.

define u+
i , ui and u−i to represent u`+1

i , u`i and u`−1
i , respectively

set the initial conditions:

ui = I(xi), for i = 1, . . . , n
define the value of the artificial quantity u−i :
Equations (3.9)–(3.11)
t = 0
while time t ≤ tstop

t← t+ ∆t
update all inner points:

Equation (3.6)
update boundary points:

Equations (3.7)–(3.8)
initialize for next step:

u−i = ui, ui = u+
i , for i = 1, . . . , n

plot the solution (ui, i = 1, . . . , n)

Implementation notes

The development of a simulation model and its implementation in a simulator is normally
carried out by a person who has extensive knowledge and experience with physics,
mechanics, mathematics, numerics, and numerical programming. We have outlined the
main points of the implementation in the previous text, and concluded with a algorithm
for the problem and numerical method chosen.

When the algorithm is derived and understood it is quite easy to implement a sim-
ulator. But different programming languages have different features for doing massive
array calculations. So some of the implementations will differ a bit from the original
algorithm. Besides the implementations don’t just implement the algorithm, but also
plotting features and handling of user data and so on. How these parts of the sim-
ulators are implemented varies. We have implementations written in Fortran 77, C,
C++ and Python. We will of course compare the computational speed, but also user
communication and the possibility of runtime computational steering.

Input parameters. There are several parameters in the equations (3.6)–(3.11) and
algorithm 3.1 that could be set to different values for tuning purposes. For maximum
flexibility we want to give these to the simulator at run time, as command line parameters
(an input file would be just as good). Here is a list of the available command-line options
for a simulator:

-n number of grid points, default 21
-tstop stop time for simulation, default 10
-S safety factor for time step calc., default 1
-m magnification of u values(for plotting), default 1
-H type of bottom function
-I type of initial water elevation
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The domain is fixed to be [0, 10] (i.e. L = 10).
We can choose between several bottom types, i.e. FlatBottom, ParabolicBottom,

Slide1 and BellBottom which are valid choices for the -H switch. The FlatBottom type
implements H = 1, whereas ParabolicBottom corresponds to the parabola H(x) =
x(10 − x)/25. The BellBottom corresponds to a Gaussian bell function, that is, a sub
sea hill:

H(x) = 1− (1− gH) exp
(
−(x−mH)2

2σ2
H

)
,

with σH and mH as the standard deviation and the mean of the bell function and gH as
the minimum depth. These three parameters are set by the command-line arguments

-BellBottom-mean -BellBottom-stdev -BellBottom-gap

A possible function H(x, t) for modeling an underwater slide is

H(x, t) = ∆− β(x+ ε)(x+ ε− L)

− K
1√
2πγ

exp

(
−1
γ

[
x− (L+ ε+ 2)

5
+ ceαt

]2
)
, (3.14)

where ∆, ε, L, K, γ, and α are constants that can be tuned to produce a particular
slide. A suitable choice of values are ∆ = 0.2, β = 0.04, ε = 0.5, L = 11, K = 0.7,
γ = 0.7, c = 1.2, and α = −0.3. This particular choice of H is called Slide1 in the
code. The Slide1 function corresponds to (3.14). The various parameters in (3.14) can
be assigned by the command-line arguments

-Slide1-Delta -Slide1-beta -Slide1-c -Slide1-K -Slide1-alpha

and so on.
Note that the simulators will not calculate H(x) every time in the equations (3.6)–

(3.11), but will calculate them once, and put the results in arrays. If the user choose a
time dependent bottom type, the arrays will be updated for each time step. Note also
that the points Hi+ 1

2
will be calculated with linear interpolation, Hi+ 1

2
= 1

2(Hi +Hi+1).
Just as for the bottom types we have some choices for the initial water elevation,

which we also refer to as surface type. A trivial choice for -I is FlatSurface, correspond-
ing to I(x) = 0. Other choices for -I cover PlugSurface with

I(x) = A

{
0.5 − π−1 tan−1(σ(x− 5− 2)), x > 5
0.5 + π−1 tan−1(σ(x− 5 + 2)), x ≤ 5

which is a plug shaped surface where σ controls the steepness of the plug (a large or
moderate σ gives a steep plug, while a small σ gives a smoothing of the plug shape). This
initial shape is interesting for studying the effect of numerical noise in finite difference
methods [16, App. A.4.8]. The σ parameter is set by the command-line argument
-PlugSurface-sigma.

Another choice of I is a Gaussian bell function, with the name BellSurface,

I(x) =
1√

2πσI
exp

(
−(x−mI)2

2σ2
I

)
,

where σI and mI are the standard deviation and the mean of the bell function, set by
the command-line options

-BellSurface-mean -BellSurface-stdev

respectively.
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3.1.2 A Pure C Implementation

The goal of this implementation was to make the code as readable, user friendly, fast,
and modular as possible. These goals are a bit contradictory but we have tried to reach
a reasonable compromise. The application takes user instructions as input, runs the
simulator with these parameters and saves the data for later visualization if asked.

User Communication. Some efforts have been made to give users ability to set
important variables at run time. With old C compilers and Fortran code many of
the variables and length of arrays would have to be set before compilation. Scanning of
input parameters, and dynamic memory allocation makes it possible to simulate different
situations without having to recompile the application.

Code Organization. The code is written in a procedural manner so the main routine
just call some functions

int main (int argc, char **argv)
{
struct Param p;
struct DataStructure ds;

scan(&p, argc, argv); /* Read command line arguments. */
ds = buildStructure(&p); /* Allocate memory, etc. */
solveProblem(&p, &ds); /* The solving routine. */
printResults(&ds); /* Print some results. */
return 0; /* Sucsess! */

}

The Param and DataStructure structs holds all the variables and arrays, making the code
more readable and easier to maintain.

Both Bottom and surface types are set at run time by using function pointers. Since
the function pointers are inside structs this gives an almost object-oriented style. The
bottom and surface type is set when reading the command line arguments

/* Check the (given) bottom function */
if (!strcmp(p->bf, "BellBottom")) {

p->bottomFunc = bellBottom;
} else if (!strcmp(p->bf, "FlatBottom")) {

p->bottomFunc = flatBottom;
} else if (!strcmp(p->bf, "ParabolicBottom")) {

p->bottomFunc = parabolicBottom;
} else if (!strcmp(p->bf, "Slide1")) {

p->bottomFunc = slide1;
} else {

fprintf(stderr, "scan: Unknown bottom function: %s\n%s\n", p->bf, help);
exit(1);

}

/* Check the (given) Initial function */
if (!strcmp(p->ic,"BellSurface")) {

p->initFunc = bellSurface;
} else if (!strcmp(p->ic,"FlatSurface")) {

p->initFunc = flatSurface;
} else if (!strcmp(p->ic,"PlugSurface")) {

p->initFunc = plugSurface;
} else {

fprintf(stderr, "scan: Unknown init function: %s\n%s\n", p->ic, help);
exit(1);

}
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The arrays are dynamically allocated at run time with size set by the user or the default
value. This gives a fairly dynamical application, able to set variables and switch between
different bottom and surface types with just a little effort. (We will see that this is much
harder in Fortran 77, but quite easy in C++ and Python).

3.1.3 Python Implementations

In this section we will describe several implementations of the wave equation described
in Chapter 3.1.1. The implementations will range from a version as simple as the C
implementation in the section above, to one with a graphical user interface and com-
putational steering features. A very interesting aspect is that Python modules and
classes effectively enable code reuse. This fact together with Python’s high level data
structures makes it possible to write very compact code. In fact three complete Python
applications has just a few more lines (about 10%) than one C implementation. We will
describe the three implementations wave1D, wave1DSteering, and guiWave. For all these
implementations we will have versions with only Python code, and versions with C code
for the time critical parts.

A Naive Implementation

Our first Python implementation has the same features as the C implementation. Pa-
rameters, bottom type and initial surface type can be set at the command line. The
code is organized as modules, where Bottom, Surface and Wavesim1D are the names of
the modules. Most of the code is in the Wavesim1D module, which import the two other
modules. Splitting the code in such modules gives more benefits than just making the
code better organized and readable. If we decide to use another Bottom module, we can
just replace the current one with the new or manipulate the so called PYTHONPATH3. We
will make use of this technique later in this section

The wave1D module is organized as the C implementation in section 3.1.2 except
that most of the functions belongs to a class. This is done for easy code usage reasons.
The next more advanced implementations will be subclasses of this one. The code is
organized as follows:

class Wavesim1D:
def scan(self, argv):

"""
Scan argv and set the variables that we need. Set either given
or default value.
"""

def report(self):
"Report to the user info about grid, number of nodes, etc."

def DHDu(self, i, ip, im):
"Help function for calculating DHDu"

def setInitCond(self):
"Sets the initial conditions in the equation."

def timeloop(self):
"Run over the computational loop"

def plotAtThisTimeStep(self, step):

3Modules in Python are searched for in a environment variable called PYTHONPATH on Unix and
Linux systems. Inside Python, sys.path is a list with the same path.
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"Write arrays at this timestep to file"

def solveAtThisTimeStep(self):
"Solves the equation at the given timestep."

def printResults(self):

def plotResults(self):

def solveProblem(self):
"Scan args, set Intial Condition and solve."

if __name__ == ’__main__’:
simulator = Wavesim1D()
simulator.solveProblem()
simulator.printResults()
if simulator.p2f:

simulator.plotResults()

The solveProblem function looks pretty much the same as in the C implementation.

def solveProblem(self):
"Scan args, set Intial Condition and solve."

self.scan(sys.argv[1:])
self.report()
self.setInitCond()
self.timeloop()

The timeloop is also quite simple with just a loop over the timesteps containing calls to
solveAtThisTimeStep and updating of arrays.

def timeloop(self):
"Run over the computational loop"

n = self.nnodes
step = 0
while self.t < self.tstop:

self.solveAtThisTimeStep()
# Update for next timestep
self.t += self.dt
self.um = self.u
self.u = self.up
self.up = self.um
runup = self.u[0]
if runup > self.max_runup: self.max_runup = runup

# Update if bottom is time dependent
if self.bf == "Slide1":

step += 1
self.Hm = self.H
self.H = self.Hp
self.Hp = array(map(self.bottom.H, self.grid, [self.t]*n))

# Print solutions to file?
if self.p2f: self.plotAtThisTimeStep(step)

The actual calculations of the equations (3.6)–(3.8) is in the solveAtThisTimeStep func-
tion.

def solveAtThisTimeStep(self):
"""
Solves the equation at the given timestep.
"""
n = self.nnodes
dt = self.dt



3.1 A Wave Simulator 55

h = self.h
beta = self.beta

# Update all inner points
for i in range(1,n-1):

self.up[i] = (2*self.u[i] + (0.5*beta*dt - 1)*self.um[i] +
(dt/h)**2 * self.DHDu(i, i+1, i-1) -
self.Hp[i] + 2*self.H[i] - self.Hm[i])/(1 + beta)

# Left Boundary condition
if self.bcl == "dudn=0":

i = 0;
self.up[i] = (2*self.u[i] + (0.5*beta*dt - 1)*self.um[i] +

(dt/h)**2 * self.DHDu(i, i+1, i+1) -
self.Hp[i] + 2*self.H[i] - self.Hm[i])/(1+beta)

else:
print "Error: solveProblem: radiation at x=0 not implemented\n"
sys.exit(1);

# Right Boundary condition
i = n-1;
self.up[i] = (2*self.u[i] + (0.5*beta*dt - 1)*self.um[i] +

(dt/h)**2 * self.DHDu(i, i-1, i-1) -
self.Hp[i] + 2*self.H[i] - self.Hm[i])/(1+beta)

This Python implementation has more readable and better organized code than
the C implementation, but the computational speed is much worse. Testing shows
that it executes about 100 times slower than the C implementation, which makes this
implementation unusable for large scale simulations. Fortunately we can improve the
simulators efficiency, with only small changes in the code.

Efficiency Considerations

Before doing any code changes we use a profiler to find the bottlenecks in the simulator.
When we have a time dependent bottom type like Slide1 about 50% of the time is used
in the H function (finding H(x, t)).

ncalls tottime percall cumtime percall filename:lineno(function)
354708 72.810 0.000 72.810 0.000 Bottom.py:62(H)

705 30.310 0.043 50.940 0.072 wave.py:177(solveAtThisTimeStep)
353704 20.660 0.000 20.660 0.000 wave.py:78(DHDu)

1 16.810 16.810 140.250 140.250 wave.py:128(timeloop)

When we have a time independent bottom type, the H(x, t) values are the same for all
timesteps, and the calculations are done only once. Then most of the time is used in
the solveAtThisTimeStep and DHDu functions.

ncalls tottime percall cumtime percall filename:lineno(function)
501 21.850 0.044 37.120 0.074 wave.py:177(solveAtThisTimeStep)

251500 15.310 0.000 15.310 0.000 wave.py:78(DHDu)
1503 0.180 0.000 0.180 0.000 Bottom.py:32(H)

The obvious efficiency improvements must be to do something about the H, DHDu and
solveAtThisTimeStep functions. First we try to use the abilities of the NumPy array, by
replacing the inner loop with NumPy vector-oriented array operations. Thus we replace
the inner loop in solveAtThisTimeStep function

# Update all inner points
for i in range(1,n-1):

self.up[i] = (2*self.u[i] + (0.5*beta*dt - 1)*self.um[i] +
(dt/h)**2 * self.DHDu(i, i+1, i-1) -
self.Hp[i] + 2*self.H[i] - self.Hm[i])/(1 + beta)



56 Problem Solving Environments

with the code

# Update all inner points
dhdu = array([0] + map(self.DHDu, range(1,n-1), range(2, n), range(n-2)) + [1])
self.up = (2*self.u + (0.5*beta*dt - 1)*self.um + (dt/h)**2 * dhdu -

self.Hp + 2*self.H - self.Hm)/(1 + beta)

Here we create an array of the values from DHDu such that updating the up array according
to the difference scheme can be done with vector operations. This improvement makes
the code twice as fast, but unfortunately more difficult to read for many programmers
(unless you are well known with vector-style operations). Besides the implementation is
still 50 times slower than the C implementation.

Optimizing with C Extensions

It seems that the problem we want to simulate is to demanding to solve efficient with
pure Python code4. So to reach further improvements we will use the code from the C
implementation for the H, DHDu and solveAtThisTimeStep functions, and import them as
modules into the Python code.

We follow the procedure described in more detail in Chapter 2 and wraps the C code
in the necessary Python extension API code. The code for the BellBottom.H function
looks like

static PyObject *
CBottom_Bell_H(PyObject *self, PyObject *args)
{
double x, t, gap, mean, stdev;
double result;

if (PyArg_ParseTuple(args, "ddddd:Bell_H", &x, &t, &gap, &mean, &stdev)) {
result = 1 - (1-gap)*exp(-pow(x-mean,2)/2*pow(stdev,2));
return Py_BuildValue("d", result);

}
/* else ...*/
PyErr_SetString(PyExc_TypeError, "Five doubles expected");
return NULL;

}

The other H functions are written in the same manner. A really nice feature with this
extension is that we can import it in our implementation without changing any code in
the Wavesim1D module. All changes is within the Bottom module

class BellBottom(BottomFunc):
def scan(self, argv):

self.gap = float(readComLineArg(argv, "-BellBottom-gap", "0.5"))
self.mean = float(readComLineArg(argv, "-BellBottom-mean", "5.0"))
self.stdev = float(readComLineArg(argv, "-BellBottom-stdev", "0.5"))

# Set variables in C extension
CBottom.setBellVars(self.gap, self.mean, self.stdev)
# Set BellBottoms H method to the C extensions Bell_H
self.H = CBottom.Bell_H

Note that we set the variables as global variables (in the extension), such that the H

functions points directly to the extension module functions. The alternative would be
to call the functions like

4It should be mentioned that this example does not use neither Python or NumPy arrays to it’s full
potential. The computational algorithm are influenced by C/Fortran programming techniques. So other
examples will probably be more fair to Python and NumPy, as the sbeam example in Chapter 2.3 shows.
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class BellBottom(BottomFunc):
def scan(self, argv):

self.gap = float(readComLineArg(argv, "-BellBottom-gap", "0.5"))
self.mean = float(readComLineArg(argv, "-BellBottom-mean", "5.0"))
self.stdev = float(readComLineArg(argv, "-BellBottom-stdev", "0.5"))

def H(self, x, t):
return CBottom.Bell_H(x, t, self.gap, self.mean, self.stdev)

which is less efficient because of Python’s function overhead. These changes makes the
code four time faster when we have a time dependent bottom type, but still considerably
slower than the C implementation (about 25 times).

Since no code is changes in the Wavesim1D we can just manipulate the PYTHONPATH

environment variable to import the Bottom module from the extension directory, and
then run the simulator as before. Another solution is of course to just import the new
Bottom module and the other modules like this:

# Get Bottom and Surface classes
import sys
from Bottom import *

# Import Surface and wave from ..
sys.path = [’..’] + sys.path
from Surface import *
from wave import Wavesim1D

if __name__ == ’__main__’:
simulator = Wavesim1D()
simulator.solveProblem()
simulator.printResults()
if simulator.p2f:

simulator.plotResults()
# end

The extension developed above don’t really speed things up with the stationary
bottom types. So we move on to write the whole solveAtThisTimeStep (with the H and
DHDu functions) as an extension module. The idea is the same as above, to give a Python
interface to the solveAtThisTimeStep and bottom functions and let them call any internal
functions (like DHDu). As in the example above we set some global variables (global in
the extension scope) at the scanning stage. In this implementation we must replace the
timeloop function in the wavesim1D module to make use of the new solveAtThisTimeStep

function. The newWavesim1D module looks like

class NewWave(Wavesim1D):
def timeloop(self):

"Run over the computational loop"

n = self.nnodes
step = 0

# Help solveAtThisTimeStep extension to chose right H function
csolve.setBottom(self.bf, self.bcl)

while self.t < self.tstop:
csolve.solveAtThisTimeStep(n, self.dt, self.h, self.beta, self.up,

self.u, self.um, self.Hp, self.H,
self.Hm, self.grid, self.t)

# Update for next timestep
step += 1
self.t += self.dt
self.um = self.u
self.u = self.up
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self.up = self.um
runup = self.u[0]
if runup > self.max_runup: self.max_runup = runup

# We don’t need to update the H arrays if we don’t have a
# time dependent Bottom function
if self.bf == "Slide1":

self.Hm = self.H
self.H = self.Hp
self.Hp = array(map(self.bottom.H, self.grid, [self.t]*n))

# Print solutions to file?
if self.p2f: self.plotAtThisTimeStep(step)

The module is a bit more complicated than the earlier versions, but still it’s quite simple.
And the use from Python is very simple. The only difference is that solveAtThisTimeStep
must have more parameters.

Now we want to compare the efficiency for this implementation against the others.
We see that this version is about three times slower than the C version. That is a fairly
good result, considering that only small pieces of the code is rewritten in C. Besides
all these test runs are done with plotting and file writing turned off, for the purpose of
measuring the raw computational power. With the plotting turned on, all the programs
will slow down, and these results will be less interesting. All results can be found in
table 3.1.

# nodes BottomType C Python CBottom CSolve
n = 501 BellBottom 0.12 12.90 12.79 0.38
n = 501 Slide1 0.73 77.18 20.23 2.67
n = 2001 BellBottom 1.78 201.1 2.80
n = 2001 Slide1 11.67 39.29

Table 3.1: Efficiency comparison of the different versions of the wave1D simulator. The
pure C version is in the C column, the pure Python version in the Python column, the Python version
with C bottom functions in the CBottom column, and the last Python version in the CSolve coloumn.

3.2 Enhancing the Wave Simulator

The implementation discussed in the section above does not really offer the user anything
new. The source code is more modular and easier to read and extend, but for the
user of the simulator there is little difference from the C implementation discussed in
Chapter 3.1.2, except the efficiency. In this section we will implement new features
improving user communication. First we will let the user give the input parameters
to the equation in an XML format, as an alternative to the command line arguments.
Second, the simulator will write the results to an XML file suitable for further processing.

3.2.1 Introduction to XML

XML is an acronym for eXtensible Markup Language, and was developed by the W3C
(World Wide Web Consortium)5. XML is ideal for storing so-called structured data. A

5Actually XML is still under development. XML version 1.0 was released in february 1998, and XML
1.0 second edition in october 2000. A new version and XML related standards are under development.



3.2 Enhancing the Wave Simulator 59

document can be split into elements by using XML. A major difference between XML
and other markup languages is that tags (or more precisely elements) can be given
names suitable for the content. E.g. the grid information for the 1D wave simulator in
Chapter 3.1.1 can be stored in the XML format:

<grid start="0" stop="10">101</grid>.

The example contains a grid element, with two attributes; start and stop. The element
data is the number of nodes in the grid.

As the example shows a document can be split into elements, where each element has
a name describing the data content. If a document is extended with new types of data,
one can mark them with a new element. We say that a document has a logical structure
when it is split into elements. This simple but powerful idea makes XML a very flexible
system for handling structured (or semi-structured) data and makes it usable for a wider
range of purposes than just traditional markup. Another important issue is that XML
is designed to be readable for both humans and computers. To give an element a name
descibing its content makes it easier to read, and the logical structure makes the XML
document parsable for computers. We will later see that an XML document has a tree
structure, which makes fast computation possible. Software like XML parsers and XML
tranformation engines are often called XML processors.

In the next sections we will briefly discuss traditional markup, how XML developed
and the differences between XML and other markup languages as HTML and SGML.
We will describe XML in more depth, and mention XML related technologies like XSLT,
a powerful transformation language for XML documents. Furthermore we will discuss
use of XML technologies for use in mathematical and technical application, and show
some examples of this in the following sections.

Document Markup and Historical Context

Traditionally, markup have been used in typesetting systems for giving specific styles
for text. Such systems used different techniques for tagging text blocks. Common for
most of these systems are looking at text documents as data streams, i.e. sequential
ordered characters. Thus the start and end of a block can be marked. The end mark
has in some systems been marked by a newline character, or the start of a new markup
tag. XML differs from this, since a start tag and end tag are both required. Before
going into more details of XML we will look at the two markup languages which has
been most influential to XML, that is SGML and HTML.

SGML is an acronym for Standardized General Markup Language, and was ratified as
a standard by ISO in 1986. It was designed to be a general markup language for a wide
range of applications, much like XML. But it never became a success for various reasons.
Most important is that it was too advanced. It is quite a task to know and understand
the whole SGML standard, and to develop stable, robust and effective SGML processors
was a tremendous challenge. Most SGML software had to use a subset of SGML, and
was still incomplete, ineffective and error-prone. Still we could say that SGML was a
success from an academic point of view. Many of the ideas survived, and XML has
inherited much from SGML.

Some years later, the world wide web (WWW) and a markup language which was
called HTML (HyperText Markup Language) was developed. There were many people
and institutions working on this, and Tim Berners-Lee and CERN had an active role in
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the process. See e.g. Feizabadi’s article in [2] for more information. The WWW and
HTML became a vast success, at least if we count the number of HTML documents. But
not everyone thinks of the HTML format as a success. HTML has serious limitations
as a document format for using the web to its full potential. It lacks support for giving
documents logical structure, making searching and automatic processing less effective.
This is one of the reasons why XML was designed, to replace HTML as the document
format on WWW.

The Element. The basic tool for markup in XML is the element. An element consist
of a start-tag, a end-tag and the data enclosed by them, as we saw in the example above.
A start-tag consist of the element name enclosed by < and >. The end tag consist of the
element name enclosed by </ and >.

Elements can contain other elements and data. Elements which only contains other
elements are called container elements, and these contained elements are called child
elements. Elements contained in the same elements are called siblings. Elements which
contains data is said to have data content

<parent>
<child>data</child>
<child>More data</child>

</parent>

In this example parent is a container element, and the child elements are both siblings
and have data content. Elements with both data and elements are said to have mixed
content. An element which doesn’t have content at all is said to be empty. A convenient
feature is that empty elements can skip the end tag if the start tag ends with /> instead
of the usual >.

The example above introduces attributes. The grid element above has two attributes
start and stop. Attributes in XML must have a name and a value on the form: attribute
name, equal sign and the attribute value enclosed by double or single quotes. An
attribute is typically used for adding information about the element it belongs to. This
is often very useful, especially if you don’t want to assign this information to a child
element. Attributes can hold about any character data, but it is wise to let attribute
values be small pieces of information concerning the element. It is possible to narrow
the allowed content of an attributes value. We will look more into this in chapter 3.2.1.

Document Structure and Design

It is important to distinguish between the physical and logical structure of a XML
document. The physical structure is the order of data units in the document. The
logical structure of a document is a set of rules saying something about the order and
quantity of the data units in the document. These rules are defined in a DTD (Document
Type Definition), if present. If a document refer to a DTD, an XML parser can use this
DTD to validate the document, which means to check wether the documents strictly
follows the rules set up in the DTD or not. All documents which is processed by an XML
processor must be well-formed or else an error message is given. A short description of
well-formedness is given below.

Physical Structure. A complete XML document should begin with a XML declara-
tion like
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<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

This is a processing instruction for an XML processor indicating which XML version,
the character set used, and indicates if other documents or a DTD is referred to. If
a DTD is available, a declaration with the DTD should come next. This is called the
doctype declaration, and could look like

<!DOCTYPE mydoc SYSTEM "mydoc.dtd">

After these two special declarations, entity declarations and ordinary elements can fol-
low. Entities can be used for refering to files, or text blocks. This gives the possibility
for making a framework XML file referring to other files for keeping a proper document
structure. In simple cases you can of course let all the data be in one file. Notice that
an entity is declared once, but can have any number of references to it.

Well-Formed XML Documents. There are certain specified rules which must be
obeyed if an XML document should be called well-formed. These rules represent the
minimum criteria necessary for XML processors to be able to read and process the
documents. In fact, the XML standard instructs that XML processors should give an
error message and stop the processing if a document is not well-formed6. We will give
a short description of some of the rules below.

Non-empty elements must have start and end tags, but empty elements may skip
the end tag if the start tag ends with />. The names of the start and end tag of an
element must be the same. Note that XML is case sensitive. There are rules for
the element names as well, see “The XML Companion” [7] for more information.

Root element. A well-formed XML document must have a root element containing all
other elements of the document.

Elements must not overlap. Elements may contain other elements and data, but
can not overlap each other. Text like
<title>Math is <emph>fun!</title></emph>

is not allowed in XML documents. This should instead be written like
<title>Math is <emph>fun!</emph></title>.

Enclose attribute values in quotes. Both single and double quotes are allowed if
the same type of quotes start and end the attribute value. Attribute values en-
closed with single quotes may contain double quotes without character escaping
of any sort.

Only use < and & to start tags and entities. XML assumes that and opening bracket
always starts a tag, and that the ampersand always start an entity reference. These
characters have predefined entities; &lt; and &amp; respectivly.

6This is very different from many HTML processors, like web many browsers, which allows malformed
HTML and tries to fix the error.
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Logical Structure. An important feature of XML is the possibility of using a formal
set of rules to define document structure. This set of rules must be in the form of a
DTD, a concept inherited from SGML. The use of a DTD is optional, but gives the
opportunity to validate XML documents. This can be done with a validating XML
parser, which will report if any errors is found.

When discussing the further topics we will create a DTD for input files to the wave
simulator. Some exmples of XML input files will be shown too. This DTD will have a
tree structure which reflects the document tree structure, but it is not identical. In a
DTD elements are defined once, but in a document tree it may appear more than once
(if allowed by the DTD).

First of all, a XML document should have a root element. The root element will
typically have one or more child elements. In a input file we can call the root element
“input”. The other elements will contain data for the grid, the bottom type and other
variables. An input file could look like

<input>
<grid start="0" stop="20">101</grid>
<bottom>

<Bell>
<mean>5.0</mean>
<stdev>0.5</stdev>

</Bell>
</bottom>

</input>

Here, we set the start and end points, and the number of nodes for the grid. The bottom

element set the type and some type dependent variables. A DTD that allows an element
structure like this can look like:

<!ELEMENT input (grid?, bottom?)>
<!ELEMENT grid (#PCDATA)>
<!ATTLIST grid start CDATA #FIXED "0"

stop CDATA "10">
<!ELEMENT bottom (Flat | Bell | Slide1 | Parabolic)>
<!ELEMENT Bell (gap?, mean?, stdev?)>
<!ELEMENT gap (#PCDATA)>
<!ELEMENT mean (#PCDATA)>
<!ELEMENT stdev (#PCDATA)>
...

The DTD allow the input element to have two optional elements, that is grid andbottom
respectivly. The first has two attributes and data content, while the latter contain one
element setting the bottom type. A complete DTD is listed at page 64.

We have seen that elements can both contain other elements and free text (PC-
DATA). Elements that can contain other elements we say has a model group, consisting
of those elements. We can decide the order of of the elements with two logic operators,
the sequence connector ‘,’ and the choice connector ‘|’. Both are used in our example
above.

Quantity control is ensured by quantity indicators. If an element should occur once
and only once, no further information is required. If an element is optional and cannot
repeat, it must be followed by a question mark, ‘?’. Zero or more occurrences is ensured
by an asterisk, ‘*’. If an element is required and may repeat, it must be followed by a
plus sign, ‘+’. If more advanced structures are wanted, the operators must be combined
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to gain the wanted effect7.
As seen in our first example (at page 59) elements can have attributes. An attribute

is defined by the an attribute declaration. These contains the name of the element which
the attribute belongs to, the attribute name and the type of the attribute. The most
common attribute types is the CDATA and the name group, which are those used in the
examples below. The CDATA type is character data (or just simple text). The name
group restricts values to one of a finite set. For example a name group like (foo | bar)
specifies that the attribute with this name group should have one of those tokens as
value. It is also possible to give attributes default values. There are many other types
as well. For information about the attributes and attribute types, refer to the XML
standard [9] or “The XML companion” [7].

XML Processing and Related Standards

There are more features of XML we could cover, but what is mentioned so far should
be sufficient to give some understanding of the purpose and use of XML. On the other
hand, there are a lot of standards and technologies related to XML which is important for
effective use of XML. How to read, write and process XML documents is very important.
Writing XML is a trivial matter for most applications, since XML documents are pure
text. Almost any programming language can write text to files and thus create XML
documents. Reading XML and do something useful with it is a far more complicated
matter. This is a task for an XML parser. There is several parsers available, both free
and commercial, implemented in several programming languages.

There are two fundamentally different approches to reading the content of an XML
document. They are known as event-driven and tree-manipulation techniques. With
the event-driven approach the document is processed in a strict sequence. The parser
starts at the root node and goes from node to node. The tree-manipulation approach
gives access to the entire document by building a node tree, which make it possible to
go to any part of the tree and interrogate and manipulate in any order. We see that
the tree-manipulation approach is very powerful, but it can be very memory demanding
since a tree structure of the whole document is built. This could make this approach
ineffective when handling large documents. The event-driven approach is less powerful,
but much less demanding on memory and more effective.

For simple tasks like searching for specific elements and processing of its content,
the event-driven approach is most effective. But sometimes this approach is to simple
for the problem to solve. As an example the tree-manipulation approach is best when
a full XML document should be converted to another format. The W3C has develped
a standard API for both approaches, ensuring that the same ideas and methods are
common for all XML parsers. The Simple Api for XML (SAX) for event-driven parsing,
and Document Object Model (DOM) for tree-manupilation respectivly.

We should also mention the XML Stylesheet Language Transformation (XSLT) stan-
dard, since we will use this below. XSLT is a very powerful language for transforming
XML to other document formats. An XSLT processor uses the tree-manipulation ap-
proach, which gives the possibility for massive manipulation of the original node tree.
Thus an XML document can be converted to another format with a totally different

7For some structures this is obviously hard to achieve. This is one of the reasons why the W3C has
developed an alternative to DTDs called XML Schema, which is more flexibel and has more control
features.



64 Problem Solving Environments

structure.

Usage of XML Technologies

In Chapter 3.1 we have implementations of a wave simulator. This simulator can both
take input parameters and write a lot of information from the simulation to a file or
stdout. Both the input parameters and out-data could be structered as xml documents,
giving some useful benefits. First, the input parameters should be correct and have
proper values, which is easy to check with a validating xml parser. Second, it would be
nice to convert (parts of) the out-data to one or more document formats. In an example
we will convert all data to a HTML format, but only the most important data to a
document format for printing to paper. The next sections gives examples of these ideas.

3.2.2 Verification of Input Data with XML

One advantage with sending the input parameters in an XML format is that verification
of the input data is possible. With the implementations above it is possible to give
wrong input parameters or parameters with no meaning in the specific context, e.g. the
command

linux> wavesim1D -n 1000 -H Slide -BellBottom-gap 0.7.

There are two errors here, the first being a typo and the second has no meaning. The
argument -H Slide is a typo since the bottom type is called Slide1. The argument
-BellBottom-gap 0.7 has no meaning, since it indicates that the gap parameter for
BellBottom bottom type should be set to 0.7 even though we are not using that bottom
type.

In the implementations discussed above these errors would just be ignored by the
simulator, and default values would be set. This could be very frustrating if it result in
wrong results or waste of computation time. We could of course improve the scanning
routines and do full parsing of the input arguments, but that is not as simple as it may
sound. In fact it is possible that the number of code lines doing the parsing would exceed
the code lines of the rest of the application. With XML, existing parsers can be used
and just an interface to the parser must be written. Another solution could be to adjust
the input parameters format to suit the getopt module in Python or a similar module.

A DTD for the Input

For validation of the input data a set of rules must be given. These rules should decide
which elements that are allowed, and their structure. A DTD is used for setting the
rules, i.e. the logical structure of an XML document. The DTD sets the order, quantity
and allowed content for the elements. We will list the DTD and explain the details
below.

<!ELEMENT input (grid?, tstop?, beta?, sfactor?, bcleft?, plot?,
bottom?, surface?)>

<!ELEMENT grid (#PCDATA)>
<!ATTLIST grid start CDATA #FIXED "0"

stop CDATA "10">

<!ELEMENT tstop (#PCDATA)>
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<!ELEMENT sfactor (#PCDATA)>
<!ELEMENT bcleft (#PCDATA)>

<!ELEMENT plot (destination, casename?, magnification?)>
<!ELEMENT destination (#PCDATA)>
<!ELEMENT casename (#PCDATA)>
<!ELEMENT magnification (#PCDATA)>

<!ELEMENT bottom (Flat | Bell | Slide1 | Parabolic)>
<!ELEMENT surface (Flat | Bell | Plug)>

<!ELEMENT Flat EMPTY>
<!ELEMENT Bell (gap?, mean?, stdev?)>
<!ELEMENT Slide1 (stdev?, beta?, eps?, L?, K?, c?, alpha?, gamma?)>
<!ELEMENT Parabolic EMPTY>
<!ELEMENT Plug (amplitude?, sigma?)>

<!ELEMENT mean (#PCDATA)>
<!ELEMENT stdev (#PCDATA)>
<!ELEMENT gap (#PCDATA)>
<!ELEMENT amplitude (#PCDATA)>
<!ELEMENT sigma (#PCDATA)>
<!ELEMENT beta (#PCDATA)>
<!ELEMENT eps (#PCDATA)>
<!ELEMENT L (#PCDATA)>
<!ELEMENT K (#PCDATA)>
<!ELEMENT c (#PCDATA)>
<!ELEMENT alpha (#PCDATA)>
<!ELEMENT gamma (#PCDATA)>

An input file must have an input element which can contain zero or one of the
elements grid, ..., surface in that order. We will, as in the previous implementations,
let all variable have default values. Thus a input file may contain an empty input element
(all though it would be simpler to not give a input file to the simulator). A grid element
should contain the number of nodes, and start and stop values as attributes. The start
values has a default value “0”, which cannot be changed (see Section 3.1.1 to find the
reason for this), and the stop value has a default value “10” which can be changed.
A plot element can be given with child elements determining magnification, whether
to plot directly or to files with certain filenames. Furthermore a bottom and surface
element can be given, specifying type and possibly variable values. With this DTD you
cannot give wrong variables to a bottom or surface type or mistype a variable, since the
parser will find the error and stop the scanning. A full input file looks like:

<input>
<grid stop="20">101</grid>
<tstop>10</tstop>
<beta>0.003</beta>
<sfactor>1</sfactor>
<bcleft>dudn=0</bcleft>
<plot>

<destination>file</destination>
<casename>SIM</casename>
<magnification>1</magnification>

</plot>
<bottom>

<Bell>
<gap>0.5</gap>
<mean>5.0</mean>
<stdev>0.5</stdev>

</Bell>
</bottom>
<surface>

<Plug>
<amplitude>0.5</amplitude>
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<sigma>1000.0</sigma>
</Plug>

</surface>
</input>

While the DTD determines the logical structure, a parser may need to validate
further. The data content of some elements should perhaps be of a certain type. The
grid element above should have a integer as the data content. Such validation cannot
be done with the DTD, and must be performed by the parser.

An Input Parser

The input parser should validate the input file according to the DTD, and build a
suitable data structure of the input data. Since the whole input file should be parsed,
and that it is relatively simple, makes the event-driven approach a good parsing strategy.
We implement this by using the SAX interface, see page 63 of Chapter 3.2.1. For easy
usage in the wave simulator we implement the parser as a module, which can be used
directly from the scan function.

def scan(self, argv):
"""
Scan argv and set the variables that we need. Set either given
or default value.
"""
import waveInputParser
data = waveInputParser(argv)

self.L = int(data.grid[’stop’])
self.nnodes = int(data.grid[’nnodes’])
...

The actual parser is written in a object-oriented fashion, following the SAX interface
rules. This means that objects for handling document elements and errors must be
created. Our parser has the following structure:

from xml.sax import saxlib
class DocumentHandler(saxlib.DocumentHandler):

def __init__(self):

def startElement(self,name,attrs):

def endElement(self,name):

def characters(self,data,start,length):

class ErrorHandler:
def error(self, exception):

def fatalError(self, exception):

def warning(self, exception):

def parse(wave_input):
app = DocumentHandler()
err = ErrorHandler()

import xml.sax.drivers.drv_xmlproc_val
sp = xml.sax.drivers.drv_xmlproc_val.create_parser()
sp.setDocumentHandler(app)
sp.setErrorHandler(err)
sp.parse(wave_input)
return app
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The interesting parts are the startElement, endElement, and characters functions.
The ErrorHandler object just report and stop the parsing if errors occur, and the parse

function is the driver function for this module. We let the parser go through all elements,
and we create dictionaries for storing of the data; grid, input, bottom, and surface

respectively. The elements which has attributes or contain other elements must be
handled as special cases. For instance the bottom and surface elements can contain
elements determining the type of bottom or surface.

def startElement(self,name,attrs):
self.current_element_name = name
self.current_element_attrs = attrs
# Handle Bottom and Surface
if name == "bottom":

self.inBottom = 1
elif name == "surface":

self.inSurface = 1
elif self.inBottom and name in self.bottomTypes:

# we got a correct bottom type
self.bottom[’type’] = name

elif self.inSurface and name in self.surfaceTypes:
# we got a correct surface type
self.surface[’type’] = name

def endElement(self,name):
# Handle Bottom and surface
if name == "bottom":

self.inBottom = 0
if name == "surface":

self.inSurface = 0

The other elements are handled in the characters function, where we store the
data. The elements are stored in dictionary with keys and values according to the
element names and values. The tstop element, which can occur in the input file like
<tstop>10</tstop> is put in the dictionary with ‘tstop’ as key and ‘10’ as value. The
specific code is listed below.

def characters(self,data,start,length):
el = self.current_element_name
at = self.current_element_attrs
end = start+length
if el == "grid":

# get number of nodes
self.grid[’nnodes’] = data[start:end]
# Get attributes
self.grid.update(at.map)

elif self.inBottom:
self.bottom[el] = data[start:end]

elif self.inSurface:
self.surface[el] = data[start:end]

else:
self.input[el] = data[start:end]

The code of the parsing module and the simulator using it is found in the directory
src/wave/LongWave1D/python/.

3.2.3 Processing of Output Data with XML

The wave simulators discussed above generates result and output data, where some is
stored in files, some printed on the screen and plots are shown. Sometimes it is practical
to store all this information for later usage. If the data is stored as XML, it is available
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in a general storage format which can be converted to many other formats. It is worth
to notice that others can use the data, and easily convert them to suit their needs.
The conversion is best done by using XSLT, the standard for transformation of XML
documents.

For a typical simulation of water waves it makes sense to store the values of the
equation variables, the grid, the timestep and the other variables and results from the
simulation. The results arrays can be quite large, and it may be wise to store them in
separate (possibly binary) files. An output file can look like

<output>
<setup>

<grid stop="20">101</grid>
<tstop>10</tstop>
<beta>0.003</beta>
<bottom type="BellBottom">...</bottom>
<surface type="FlatSurface">...</surface>
<dx>0.5</dx>
<dt>0.07</dt>
<ntsteps>2700</ntsteps>

</setup>
<plot>plot_0.07.ps</plot>
<results>

<maxdepth>2.3</maxdepth>
<maxrunup>1.2</maxrunup>
<cputime>1.28</cputime>

</results>
</output>

Note that the output file will be generated by the simulator, and validation is not
necessary for the conversion. Thus we do not need a DTD.

Conversion of XML to HTML

To show conversion of XML using XSLT, we provide an example of how the output file
can be converted to HTML. Assume we want the result from the computation to be a
part of another web page. Thus we may want to convert the xml code above to HTML
code like:

<h2>A long water wave simulation</h2>

<img src="plot_0.07.ps"></img>
<p>The simulation took place with the following setup:</p>
<table>
<tr><td>Bottom Type</td><td>BellBottom</td></tr>
<tr><td>Number of nodes</td><td>101</td></tr>
</table>
...

The conversion is done by an XSLT processor, which must be given instructions for
how the XML code should be converted. The instructions must be given in the XSLT
language. A straightforward version for our example is

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="output">

<h2>A long water wave simulation</h2>
<xsl:apply-templates />

</xsl:template>

<xsl:template match="plot">
<img>
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<xsl:attribute name="src"><xsl:value-of select="."/></xsl:attribute>
</img>

</xsl:template>

<xsl:template match="setup">
<p>The simulation took place with the following setup:</p>
<table>
<xsl:apply-templates />
</table>

</xsl:template>

<xsl:template match="grid">
<tr><td>Number of nodes</td><td><xsl:value-of select="."/></td></tr>

</xsl:template>

<xsl:template match="bottom">
<tr><td>Bottom type</td><td><xsl:value-of select="@type"/></td></tr>

</xsl:template>
...

</xsl:stylesheet>

What actually happens here is that the XSLT processor builds a node tree of the
XML document. With the information from that tree, a new document can be created
with the information that is relevant for the purpose. When much of the information
should be passed from the XML document to the new one, it is convenient to convert
the data while traversing the tree. The XSLT language may seem verbose, lengthy and
clumsy, but it is very powerful when one gets the grasp of it. The data tree representing
the XML document can be manipulated thoroughly, thus making it possible to generate
a quite different document. An explanation of XSLT instructions follows.

First we go to the output node of the XML tree. That element has no useful data
for the HTML document, and thus we move on to the child elements, after writing a h2

header to the HTML document. The <xsl:apply-templates /> means; move on the the
child elements. for the plot element in the XML file we want to have a img element in
the HTML file. This is done by telling the XSLT processor to put the data in the plot
element (that is “plot 0.07.ps”) in the src attribute of the img element. For the setup

element we build a table in the HTML file, and let the information in the child elements
fill the table cells, as we see for the grid and bottom elements.

In this section we have shown that an XML parser easily can be coupled with the
wave simulator. This parser is used to parse and validate input data to the simulator.
If the simulator writes the output in an XML format, we can use an XSLT processor
to convert the output to a suitable format, such as HTML, PDF, and RTF. A simple
example shows how HTML can be produced.

3.3 Computational Steering

Computational steering means to interactively steer or control a simulation. Real time
plotting, analyzing, or parameter manipulation are examples of computational steering.
This is a different approach than just set some input data to a simulator, start it, and
study the results afterwards. Beazley’s article [6] gives an explanation, motivation, and
a large scale example of the issue. We will give an example of computational steering
by adding more control of the simulations from the wave simulator introduced in the
above sections. This is done in terms of user communication, real-time plotting features,
and options for control of numerical variables. An important part of the computational
steering aspect is the user interface, which gives the user of the application options for
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Figure 3.3: Wave simulation with numerical instability. A wave simulation which has been
started with a too large value for the ∆t variable. At timestep 4.6 the finite difference scheme becomes
unstable due to ∆t.

controlling the simulation. With a simple GUI this can be easy and intuitive. Before a
description of the GUI is given, the computational steering example will be described.

In the problem description in Chapter 3.1.1, ∆t is the time step variable of the
difference scheme in equations 3.6–3.11. To avoid numerical instabilities that can arise
from the difference scheme, ∆t must satisfy the inequality 3.13. In short, this means that
when the number of spatial nodes increase and the number of time steps must increase
too, which means that ∆t must decrease. This slows down the computation. It can be
interesting to set ∆t to a larger value than recommended, and adjust it if instabilities
occur, which is what our example allows. Figure 3.3 shows a simulation where ∆t has
been increased with 30%, and almost half-way in the simulation, instabilities occur.

The GUI for the example described above must have the proper functionality. This
includes options for halting the simulation, adjusting the ∆t variable and restarting.
In addition an option for “rewinding” the simulation to a time step before instabilities
occurred must be offered. Because of this, an efficient module for array storage and
lookup is used. Other features like save options for plots would be nice. All these
features are offered in the example in the src/wave/LongWave1D/python/CSolve/gui.py

application. The actual GUI is implemented using the Tkinter module in Python.
Much of the code from the previous version of the wave simulator is reused in this

simulation. Some new code must be written for the GUI design and functionality, but
only some of the control functions of the simulator are rewritten. The setInitCond must
be rewritten, since plotting and array storage must be initialized.
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def setInitCond(self):
...

# Create NumPy array database
self.array_store = NumPyDB.NumPyDBNumPyPickle(self.fname, ’store’)

# Plot window
self.plot = Gnuplot.Gnuplot()
self.plot(’set data style lines’)
self.plot(’set yrange [-1.5:0.5]’)

The timeloop function must be rewritten too, because of the extra checking each time
step.

def timeloop(self):
n = self.nnodes
while self.t < self.tstop and not self.halt_timeloop:

self.plotAtThisTimeStep(self.grid, self.up*self.m, self.H*(-1), self.t)
self.solveAtThisTimeStep()

# Update for next timestep
self.step += 1
self.t += self.dt
self.um = self.u
self.u = self.up
self.up = self.um
...

The real time plotting functionality is done in

def plotAtThisTimeStep(self, grid, u, H, t):
"""
Plot Surface and bottom at a timestep.
"""
d1 = Gnuplot.Data(grid, u, with=’lines’,

title=’Surface Elevation at t=\%2.1f’ \% t)
d2 = Gnuplot.Data(grid, H, with=’lines’, title=’Bottom’)
self.plot.plot(d1, d2)

using Python’s Gnuplot module. With this feature the plots from the simulation appears
as a movie, though slow if the number of nodes is to large.

With the rewind functionality we are able to “play the movie” backwards if something
unexpected happens in the simulation. If e.g. numerical instabilities occur, as shown
in Figure 3.3, the simulation can be stopped, rewinded, ∆t can be adjusted, and the
simulation can continue. This means that when something goes wrong, the simulation
must not necessarily start from scratch. This may not seem very useful in this example,
but for simulations that run for hours or days, it can be really useful to stop, adjust, and
continue. This is really the main point about computational steering, giving interactive
control options to the user. A different strategy called inverse steering, is described
in [13]. The idea of this strategy is to give feed the desired results of a computation to
the simulator, and let it adjust the parameters necessary to achieve that result.

The efficiency for the computational steering example is somewhat lower. This ver-
sions run time grows with about 50 % compared to the standard Python version with file
writing (for later plotting) turned on. Both versions use the fastest C-extension module,
described on page 57. That means that this version, with computational plotting and
real time plotting has a run time about five times slower than the pure C version. We
observe that the computational steering model slows down the computations, but more
freedom and flexibility is gained.
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3.4 Wrapping Numerical Libraries

In the last two chapters we have wrapped many small pieces of target language code
designed for the specific needs of some application. This is what we referred to as mixed-
language programming in the introduction. Now we will show that it is possible to wrap
large numerical libraries and use the functionalities offered from Python. A fortran
library for hyperbolic partial differential equations called Clawpack, and a collection
of C++ code for solving partial differential equations will be wrapped. Some simple
applications in Python will show the usage for the wrapped libraries.

3.4.1 Wrapping CLAWPACK

CLAWPACK (Conservation LAWS PACKage) is a package of Fortran subroutines for
solving time-dependent hyperbolic systems of partial differential equations in one, two,
and three dimensions. This includes systems of conservations laws, but one can also
solve nonconservative hyperbolic systems and systems with variable coefficients including
source term. For more information about CLAWPACK, see [18].

To simplify the examples and reduce the amount of work, we will only consider one
dimensional conservation law problems. That is equations on the form

κ(x)qt + f(q)x = ψ(q, x, κ), (3.15)

where q = q(x, t) ∈ Rm. The standard case of a homogeneous conservation law has
κ = 1 and ψ = 0, giving the equation

qt + f(q)x = 0.

A simple version of this equation called the advection equation

qt + uqx = 0, (3.16)

will be solved in our example below.

Wrapping the high-level routines

CLAWPACK is organized with subroutines in two levels. The high level routines pro-
vides an easy way to use CLAWPACK and is able to solve many problems. In one space
dimension the routines available are claw1ez and claw1. Both these routines requires
data files in a specific format and user-defined fortran routines. Thus, even if we wrap
these high-level routines and access them from Python, some Fortran code must be pro-
vided too. This may seem strange, but a simple interface is made, and gives possibility
to combine the application with other Python modules. If fortran programming is to
be avoided, the low level functions must be wrapped. In that case the applications gain
more flexibility, but more work must be done, as we will see in the next section.

First we will wrap the claw1ez subroutine with FPIG and test it from Python. The
most important variables and arrays passed to this function are

maxmx: The maximum number of grid cells.

meqn: The number of equations in the hyperbolic system

mwaves: The number of waves produced in the Riemann solution
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mbc: The number of “ghost cells” used for implementing boundary conditions

work: Work array with Dimension maux

maux: The number of “auxiliary” variables needed, i.e. the dimension of the array aux.

q: This array holds the approximate solution Qni at a given time tn.

aux: This array holds auxiliary variables used to define a specific problem.

The fortran code that must be provided is in the files

qinit.f: contains the subroutine qinit which sets the initial data in the array q.

rp1.f: contains the subroutine rp1 which essentially is the Riemann solver for the ad-
vection equation.

setprob.f: contains the subroutine setprob which set problem-specific parameters.

In addition other types of boundary conditions can be set in a file bc1.f, but for our
problem we will use the default boundary conditions.

We follow the recipe outlined in chapter 2.3.6, and use the command

f2py -m clawpy -h clawpy.pyf ../claw1ez.f

The auto-generated interface file turns out to be flawed, and must be corrected manually.
The integer value of aux and the size and dimension of the array maux are set wrong by
FPIG. The correct interface file looks like

python module clawpy ! in
interface ! in :clawpy

subroutine claw1ez(maxmx,meqn,mwaves,mbc,maux,mwork,mthlim,q,work,aux)
integer :: maxmx
integer optional,check(shape(q,0)==meqn),depend(q)::meqn=shape(q,0)
integer optional,check(len(mthlim)>=mwaves),depend(mthlim)::mwaves=len(mthlim)
integer :: mbc
integer :: maux
integer optional,check(len(work)>=mwork),depend(work)::mwork=len(work)
integer dimension(mwaves) :: mthlim
double precision dimension(maxmx+mbc-(1-mbc)+1,meqn),depend(maxmx,mbc)::q
double precision dimension(mwork) :: work
double precision dimension(maxmx+mbc-(1-mbc)+1,maux),depend(maxmx,mbc)::aux

end subroutine claw1ez
end interface

end python module clawpy

The next step is to run f2py on the interface file:

f2py clawpy.pyf

and then compile the generated wrapper code and the fortran code, and link these with
the CLAWPACK 1D library file. With this done we can test the new module with a
simple python script:
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import Numeric
import clawpy

maxmx = 500
mwork = 4032
mbc = 2
meqn = 1
mwaves = 1
maux = 0

q = Numeric.zeros((maux+1, maxmx+2*mbc), ’d’)
aux = Numeric.zeros(1, ’d’)
work = Numeric.zeros(mwork, ’d’)
mthlim = Numeric.zeros(mwaves, ’d’)

clawpy.claw1ez(maxmx, mbc, maux, mthlim, q, work, aux)

This little script solves equation (3.16), and the results can be plotted from the data
files produced.

The claw1 routine gives more flexibility than the claw1ez routine wrapped above,
but the wrapping techniques will be the same. The same procedure can be followed to
wrap the low level routines in the CLAWPACK 1D library.

3.4.2 Wrapping a C++ Library

Wrapping a C++ library is something quite different from wrapping a C or Fortran
library. C++ has objects and offers more data types, which complicates the wrapping
process. Thus, creating a functional and practical wrapper tool that handles all C++
features is very demanding. Thus many C++ wrapper systems use tighter code inter-
faces, i.e. the user must write a more detailed interface. This is a different strategy from
what we see in e.g. SWIG or FPIG. Though, there are lot of available C++ code that
are possible to wrap. For instance, the C++ code in the stochastic simulation example
from Chapter 2.3 was wrapped with SWIG, without problems. In this section we will
use the Boost Python Library to wrap parts of a more advanced C++ library, developed
at the University of Oslo, see [22].

The C++ library contains classes for numerical arrays, grids, fields, and classes for
a two-dimensional wave simulator. The most important parts of the MyArray.h are

template< typename T >
class MyArray
{

T* A; // the data
int dimensions; // number of dimensions (max is 2)
int length[2]; // lengths of each dimension

// needed for optimizations:
int length0;
int length0p1;

// these three functions are used by constructors, destructors and redim:
T* allocate(int length1);
T* allocate(int length1, int length2);
void deallocate();

// transform fake indicies to real:
int transform_index(int i, int j) const;

public:
MyArray();
MyArray(int n1); // constructor for 1D array
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MyArray(int n1, int n2); // constructor for 2D array
MyArray(const MyArray<T>& array); // copy constructor
~MyArray(); // destructor

void redim(int n1); // redim 1D array
void redim(int n1, int n2); // redim 2D array

// return the size of the arrays dimensions
int size() const; // length of 1D array
int size(int dimension) const;

bool indexOk(int i) const; // check if index is ok to use
bool indexOk(int i, int j) const; // check if indicies are ok to use

// operator() for 1D array
const T& operator()(int i) const;
T& operator()(int i);

// operator() for 2D array
const T& operator()(int i, int j) const;
T& operator()(int i, int j);

MyArray& operator=(const MyArray& v); // assignment operator
// (not implemented yet)

// returns pointers to the data
const T* getPtr() const;
T* getPtr();

void print(std::ostream& os);
};

The complete source code of MyArray and the other classes can be found in the directory
src/wave/Wave2D/C++.

Now we will make a simple interface to MyArray, TimePrm, GridLattice and Wave2D1.
The first step of the wrapping process is to write the wrapper interface. This interface
must be written in C++, and uses the Boost library directly. This means that Boost
header files are included and the library must be linked with the object files after com-
pilation to create a python module (a shared library or DLL in most situations). A
proper interface can look like

#include <Wave2D1.h>
#include <boost/python/class_builder.hpp>

// Python requires an exported function called init<module-name> in every
// extension module. This is where we build the module contents.
extern "C"
void inittest()
{
try

{
// create an object representing this extension module
boost::python::module_builder m("test");
// Create a Python type object for our extension class (MyArray)
boost::python::class_builder<MyArray<double> > m_a(m, "MyArray");
// Add the __init__ function
m_a.def(boost::python::constructor<>());
m_a.def(boost::python::constructor<int>());
m_a.def(boost::python::constructor<int, int>());
// Add a regular member function
// m_a.def(&MyArray<double>::print, "print");
// Overloaded member functions
m_a.def((void (MyArray<double>::*)(int))

&MyArray<double>::redim, "redim");
m_a.def((void (MyArray<double>::*)(int, int))

&MyArray<double>::redim, "redim");
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m_a.def((bool (MyArray<double>::*)(int) const)
&MyArray<double>::indexOk, "indexOk");

m_a.def((bool (MyArray<double>::*)(int, int) const)
&MyArray<double>::indexOk, "indexOk");

m_a.def((int (MyArray<double>::*)(void) const)
&MyArray<double>::size, "size");

m_a.def((int (MyArray<double>::*)(int) const)
&MyArray<double>::size, "size");

// Create a Python type object for our extension class (TimePrm)
boost::python::class_builder<TimePrm> time_class(m, "TimePrm");
time_class.def(boost::python::constructor<double, double, double>());

// Create a Python type object for our extension class (GridLattice)
boost::python::class_builder<GridLattice> grid_class(m, "GridLattice");
grid_class.def(boost::python::constructor<>());

// Create a Python type object for our extension class (Wave2D1)
boost::python::class_builder<Wave2D1> wave_class(m, "Wave2D1");
wave_class.def(boost::python::constructor<>());
wave_class.def(&Wave2D1::scan, "scan");
wave_class.def(&Wave2D1::solveProblem, "solveProblem");

}
catch(...)

{
boost::python::handle_exception(); // Deal with the exception for Python

}
}

The interface file is an abstract layer over the Python C extension API. For instance,
the line

boost::python::module_builder m("test");

creates the Python module test. The equivalent way to do this in the C extension API
is with code like

static PyMethodDef testMethods[] = {
/* Func_name_from_python, func_name_in_C, */
{"test_foo", foo, METH_VARARGS},
{NULL, NULL}

};

void inittest()
{
(void) Py_InitModule("test", testMethods);
import_array(); /* NumPy initialization */

}

where testMethods is the function table, mapping function names from C to the Python
module. The way to interface the MyArray class and some of its methods is

boost::python::class_builder<MyArray<double> > m_a(m, "MyArray");
m_a.def(boost::python::constructor<>());

Here we make MyArray available from Python, with a constructor that takes no argu-
ments. The other classes and functions are wrapped in a comparable way. The complete
interface file and compile instructions is located in src/wave/Wave2D/C++/bpl-MyArray.

The wrapped classes and methods can be tested interactively from Python

>>> import test
>>> a = test.MyArray()
>>> a.redim(10)
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>>> print a.size()
10
>>> a.redim(10,2)
>>> print a.size(1)
10
>>> print a.size(2)
2
>>> g = test.GridLattice()
>>> print g
<GridLattice object at 0x8385c28>
>>> sim = test.Wave2D1()
Hi!

Unfortunately, wrapping all the classes in the library are both difficult and time con-
suming. Thus, no useful Python applications interfacing the library code is shown.
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Chapter 4

Conclusions and Final Remarks

In the introduction we showed how the efficiency for some scripting languages suffers
when doing numeric calculations in explicit loops. For Python, however, we showed
that using the Numeric module we could almost reach the speed of C and Fortran for
our simple example. Other scripting languages have modules or techniques for numeric
computing as well.

In Chapter 2 we explained how it is possible to interface and use code written in
another language from most scripting languages. Python is excellent in the role of
application language for numerical purposes, and C and Fortran 77 are good choices for
languages to be interfaced from Python, i.e. as target languages. C++ is less suitable as
target language, mostly because of its complexity. Various tools for wrapping C, C++
and Fortran code to Python are described, and some are used in the main example of
the chapter. Among the available wrapping software, we have used SWIG and FPIG
most extensively, and have found them to be very adequate and mature. Also Pyfort
works well for wrapping Fortran 77 code.

The main example of Chapter 2 deals with stochastic simulation and implemen-
tations using C, C++, Fortran and Python are described. Benchmarks show that a
pure C/C++ version is 50 times faster than the Python version, and three times faster
than the NumPy version, i.e. the Python version using the Numeric module. Finally
a Python version interfacing some of the C/C++ code is as fast as the pure C/C++
version. In addition the Python implementations have optional plotting and statistical
features, which increase their utility. Interfacing Fortran code from Python yields the
same efficiency as the corresponding C code. The example from Chapter 1.1 is now
implemented with C and Fortran modules in Python, with the same resulting efficiency
as when implemented purely in C or Fortran.

A more complicated example is introduced in Chapter 3, where we study a wave sim-
ulator. With this example we focus on user communication and computational steering
in addition to efficiency. A simple C implementation tuned for speed is about a hundred
times faster than a pure Python version, and three times faster than the most efficient
extended Python version. This shows that a python application with a simple extension
module not always compare to the speed of C, which may happen when the program
gets complicated or there are several parts of the program using much CPU time. In
such situations a better and more efficient module can be implemented, but that can
be quite time consuming. On the other hand, the Python implementations can easily
be coupled with an XML parser for better input and output handling and a GUI and
plotting tools for better user communication and computational steering. This is shown
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in Chapter 3.2 where XML is used for parsing of input data, and conversion of output
data. Python’s XML modules are handy for doing parsing and verification of input data
to the wave simulator, and processing of output data to a wanted format. Run-time
steering of the ∆t variable is performed in Chapter 3.3. Introducing run-time steering
naturally slows down the application due to the unavoidable extra checking that must be
done every n’th time step. The flexibility from computational steering in this example
necessarily results in a slower application.

The experience from wrapping larger libraries written in Fortran 77 and C++ is out-
lined in Chapter 3.4. Parts of the Fortran library Clawpack are wrapped and used suc-
cessfully. But due to time limitations only some of the functions for the one-dimensional
library of Clawpack are wrapped. This limits the utility of the module, but should be
sufficient to show that also larger numerical Fortran libraries can be used from Python.
Wrapping C++ code turned out to be more difficult, as expected. Simple C++ code like
the code from the main example of Chapter 2 poses no problems, but when for instance
more advanced features like those found in the Standard Template Library are used,
trouble often arises. The local numeric C++ library was wrapped with only limited
success with any of the packages describes in Chapter 2.2.3. However, both the Boost
Python Library (BPL) and Siloon look promising, and may become more mature in the
future. But for now, wrapping often requires great knowledge of C++, the code to be
wrapped, and the wrapper tool, in addition to much work.

The experience gained from the examples and the work with this thesis has proved
that Python in combination with C or Fortran can be e very good solution for numerical
applications. The C or Fortran code can range from small pieces of code designed for
a specific application to a more general library. Especially Python and Fortran can be
an excellent choice, for several reasons. Fortran is generally recognized as the fastest
language for numerical computations. The availability of very good tools for wrapping of
Fortran code for use from Python is an important issue. Both FPIG and Pyfort are able
to automatically convert Fortran arrays to NumPy arrays. Another very important issue
is that Fortran is the by far most commonly used programming language for numerical
and high-performance computing. There is a huge amount of applications and libraries
available for almost any kind of numerical fields, and much of this code has seen heavy
use in production environments for many years. It must therefore be considered to be
among the most reliable numerical code in existence. This code can be reused in Python
modules and connected to new software. The combination of Python and C can also
be a great choice. The most common implementation of Python supports C directly
through the API described in [24], and tools like SWIG simplify the process of wrapping
C code a lot. Numerical C code is also very fast, sometimes as fast as Fortran code.
On the other hand, wrapping C code can be more challenging than wrapping Fortran
code, as C is a larger and more high-level language than Fortran. One should also be
aware that less numerical software has been written in C than in Fortran. The average
C programmer will therefore have to write and debug more of his software by himself
than the average Fortran programmer.

For numerical applications, the combination of a high-level scripting language like
Python and an efficient low level language like C or Fortran is an option very much
worth considering. This combination lets one prioritize relatively freely between run-
time efficiency and development time expenditure. There are even good chances that
one can reduce development time without compromising run-time efficiency at all. If
numerical code useful in the project already exists, development time may be cut even
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further. Python paired with Fortran or C is a good alternative to modern object-
oriented languages like C++, Java and Fortran 95, and also compares favorably with
programming environments like Matlab and Octave.

4.1 Further work

There are several projects which can build on the work done in this thesis. Some are
in proceeding by the author, but are in an early state and it is to time demanding to
present the results here. Some of the examples in the previous chapters are dealing with
partial differential equations (PDE). Creating useful and general modules for handling
some types of PDE using finite difference methods or finite element methods based on
the methods described in this thesis could be an interesting project.

We have learned that it is a very demanding task to make interfaces to C++ code
from Python, as well as other application languages. There are wrapper tools developed
for this purpose, but none of them are as good as e.g. FPIG, yet. A challenging project
could be to create or participate in developing such software.

Other application languages could be worth considering. Common Lisp which first
version appeared already in 1956 could be very interesting. The main reason is that
Common Lisp is very flexible. It can be interpreted like Python, but there are good
compilers too which can create efficient machine code. Another important fact is that
Common Lisp in general is dynamically typed, as Python, but static typing for some
variables can be offered as well. This means that for efficiency reasons a variable can
be set to be a two-dimensional array, and other variables can be dynamically typed in
the same application. This flexibility makes Common Lisp extremely interesting as an
application language for numerical purposes. There exist good tools for interfacing For-
tran and C code for most Common Lisp implementations. Unfortunately Common Lisp
is rarely used in high-performance computing, and the Common Lisp implementations
that are considered best are commercial software.

A new scripting language called Ruby could be an interesting application language. It
has many similarities with Python and Perl, which applies both to syntax and intended
use. Ruby can be extended with C and C++ code, but the author is not aware of
tools for wrapping Fortran code. An interesting aspect of Ruby is that it is created
to be easily extended. As an example the run-time garbage collection system in Ruby
are more advanced than in e.g. Perl and Python. The garbage collection system is
implemented with a so called mark and sweep procedure, which means that extension
modules do not need to take care of reference counting, like in Perl and Python.
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Appendix A

Source code

The packages and software needed for running the source code developed during the
work on this thesis is listed below. Note that the code is developed and run on a
Linux system. It will probably work on most Unix versions without problems, except
that some paths may have to be changed. Using the code on a Windows system will
probably require some work.

A.1 System requirements

Some system requirements must be satisfied for using the code in the thesis. First of
all, there must be compilers for C, C++ and Fortran available. Then Perl version 5.0
or later must be installed with the C inline module. Tcl version 8.0 or later, with the
tkinter package must be installed. SWIG version 1.1p5 must be installed. Python 2.0
or later must be installed with a large number of extra modules

• Numeric module version 16.0 or later

• Scientific module version 2.0.1 or later

• PyXml version 0.6.5 or later

• Pyfort version 6.0.1 or later

• FPIG (also called f2py) version 2.298 or later

• Gnuplot version 1.4 or later

• Boost version 1.19.0 or later

• CXX version 5.0 or later

• SCXX

• Siloon version 2.3 or later

• Pdtoolkit version 1.3 and later with gcc patch which can be downloaded from the
Pdtoolkit home page.

• tkinter
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A.2 File listing

The source code files, setup files, and makefiles needed are listed beneath. A zipped
tar-file with all the files is available.

src/ex/swig/example.c
src/ex/swig/example.h
src/ex/swig/example.i
src/ex/swig/clean.sh
src/ex/swig/make.sh
src/ex/swig/test.py
src/ex/fillarr/runall
src/ex/fillarr/C-F77/bench.py
src/ex/fillarr/C-F77/fillarr.c
src/ex/fillarr/C-F77/fillarr.f
src/ex/fillarr/C-F77/make.sh
src/ex/fillarr/DpC++/Makefile
src/ex/fillarr/DpC++/fillarr.cpp
src/ex/fillarr/DpC++/fillarr_f77.f
src/ex/fillarr/NumPy/fillarr1_numpy.py
src/ex/fillarr/NumPy/fillarr2_numpy.py
src/ex/fillarr/NumPy/numpy_basics.py
src/ex/fillarr/NumPy/C/basic/Makefile
src/ex/fillarr/NumPy/C/basic/fillarr_Numeric_basic_C.py
src/ex/fillarr/NumPy/C/basic/fillarr_basic_C.c
src/ex/fillarr/NumPy/C/basic/make.sh
src/ex/fillarr/NumPy/C/basic/clean.sh
src/ex/fillarr/NumPy/C/swig/Makefile
src/ex/fillarr/NumPy/C/swig/Makefile.template
src/ex/fillarr/NumPy/C/swig/fillarr_Numeric_swig_C.py
src/ex/fillarr/NumPy/C/swig/fillarr_swig_C.i
src/ex/fillarr/NumPy/C/swig/make.sh
src/ex/fillarr/NumPy/CXX/Makefile
src/ex/fillarr/NumPy/CXX/fillarr.cxx
src/ex/fillarr/NumPy/CXX/test.py
src/ex/fillarr/NumPy/F77/f2py/Makefile
src/ex/fillarr/NumPy/F77/f2py/fillarr_Numeric_f77.py
src/ex/fillarr/NumPy/F77/f2py/make.sh
src/ex/fillarr/NumPy/F77/pyfort/Makefile
src/ex/fillarr/NumPy/F77/pyfort/fillarr.pyf
src/ex/fillarr/NumPy/F77/pyfort/fillarr_Numeric_f77.py
src/ex/fillarr/NumPy/makeall
src/ex/fillarr/NumPy/cleanall
src/ex/fillarr/script/fillarr.pl
src/ex/fillarr/script/fillarr.py
src/ex/fillarr/script/fillarr.tcl
src/ex/fillarr/makeall
src/ex/fillarr/clean.sh
src/ex/makeall
src/ex/cleanall
src/wave/LongWave1D/python/Bottom.py
src/wave/LongWave1D/python/Surface.py
src/wave/LongWave1D/python/wave.py
src/wave/LongWave1D/python/CBottom2/Bottom.py
src/wave/LongWave1D/python/CBottom2/CBottommodule.c
src/wave/LongWave1D/python/CBottom2/Makefile
src/wave/LongWave1D/python/CBottom2/wave.py
src/wave/LongWave1D/python/CBottom2/gui.py
src/wave/LongWave1D/python/CBottom2/waveSteering.py
src/wave/LongWave1D/python/CSolve/Bottom.py
src/wave/LongWave1D/python/CSolve/csolvemodule.c
src/wave/LongWave1D/python/CSolve/Makefile
src/wave/LongWave1D/python/CSolve/wave2.py
src/wave/LongWave1D/python/CSolve/gui.py
src/wave/LongWave1D/python/CSolve/waveSteering.py
src/wave/LongWave1D/python/CBottom/Makefile
src/wave/LongWave1D/python/CBottom/CBottommodule.c
src/wave/LongWave1D/python/CBottom/Bottom.py
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src/wave/LongWave1D/python/CBottom/wave.py
src/wave/LongWave1D/python/CBottom/waveSteering.py
src/wave/LongWave1D/python/CBottom/gui.py
src/wave/LongWave1D/python/waveSteering.py
src/wave/LongWave1D/python/gui.py
src/wave/LongWave1D/python/xml/input.dtd
src/wave/LongWave1D/python/xml/input.xml
src/wave/LongWave1D/python/xml/output.xml
src/wave/LongWave1D/python/xml/output.xsl
src/wave/LongWave1D/python/wave2.py
src/wave/LongWave1D/python/NumPyDB.py
src/wave/LongWave1D/python/Bottom2.py
src/wave/LongWave1D/F77/prog.f
src/wave/LongWave1D/F77/f2py/prog.f90
src/wave/LongWave1D/F77/f2py/Makefile
src/wave/LongWave1D/plain-C/main.c
src/wave/LongWave1D/plain-C/wave1D.c
src/wave/LongWave1D/plain-C/wave1D.h
src/wave/LongWave1D/plain-C/Makefile
src/wave/LongWave1D/plain-C/plot.py
src/wave/LongWave1D/Diffpack-C++/Makefile
src/wave/LongWave1D/Diffpack-C++/README
src/wave/LongWave1D/Diffpack-C++/Wave1D6.cpp
src/wave/LongWave1D/Diffpack-C++/Wave1D6.h
src/wave/LongWave1D/Diffpack-C++/main.cpp
src/wave/LongWave1D/Diffpack-C++/alt/Makefile
src/wave/LongWave1D/Diffpack-C++/alt/README
src/wave/LongWave1D/Diffpack-C++/alt/Wave1D6.cpp
src/wave/LongWave1D/Diffpack-C++/alt/Wave1D6.h
src/wave/LongWave1D/Diffpack-C++/alt/main.cpp
src/wave/LongWave1D/README
src/wave/Wave2D/python/Wave2D1.py
src/wave/Wave2D/python/Surface.py
src/wave/Wave2D/python/Bottom.py
src/wave/Wave2D/C++/CommandLineArgs.h
src/wave/Wave2D/C++/Convert2vtk.h
src/wave/Wave2D/C++/FieldLattice.h
src/wave/Wave2D/C++/GridLattice.h
src/wave/Wave2D/C++/Handle.h
src/wave/Wave2D/C++/MyArray.h
src/wave/Wave2D/C++/TimePrm.h
src/wave/Wave2D/C++/Visualizer.h
src/wave/Wave2D/C++/Wave2D1.h
src/wave/Wave2D/C++/WaveFunc.h
src/wave/Wave2D/C++/real.h
src/wave/Wave2D/C++/CommandLineArgs.cpp
src/wave/Wave2D/C++/Convert2vtk.cpp
src/wave/Wave2D/C++/FieldLattice.cpp
src/wave/Wave2D/C++/GridLattice.cpp
src/wave/Wave2D/C++/MyArray.cpp
src/wave/Wave2D/C++/Visualizer.cpp
src/wave/Wave2D/C++/Wave2D1.cpp
src/wave/Wave2D/C++/WaveFunc.cpp
src/wave/Wave2D/C++/handle_test.cpp
src/wave/Wave2D/C++/main.cpp
src/wave/Wave2D/C++/test.cpp
src/wave/Wave2D/C++/bpl-MyArray/Makefile
src/wave/Wave2D/C++/bpl-MyArray/testmodule.cpp
src/wave/Wave2D/C++/images/template.param
src/wave/Wave2D/C++/make.sh
src/wave/Wave2D/C++/makefiles/Makefile-Vetle
src/wave/Wave2D/C++/makefiles/Makefile-hpl
src/wave/Wave2D/C++/siloon-MyArray/MODULE
src/wave/Wave2D/C++/siloon-MyArray/Makefile
src/wave/Wave2D/C++/siloon-MyArray/user.defs
src/wave/Wave2D/C++/siloon-MyArray/prototypes.doinclude
src/wave/Wave2D/C++/siloon-MyArray/python/siloon_python.cc
src/wave/Wave2D/C++/siloon-MyArray/python/Makefile
src/wave/Wave2D/C++/siloon-MyArray/python/MyArray.py
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src/wave/Wave2D/C++/siloon-MyArray/Make.dynamic
src/wave/Wave2D/C++/siloon-MyArray/MyArray_siloon.pdb
src/wave/Wave2D/C++/siloon-MyArray/prototypes.included
src/wave/Wave2D/C++/siloon-MyArray/prototypes.excluded
src/wave/Wave2D/C++/siloon-MyArray/prototypes.unsupported
src/wave/Wave2D/C++/siloon-MyArray/siloon_includes.h
src/wave/Wave2D/C++/siloon-MyArray/siloon_register.cc
src/wave/Wave2D/C++/siloon-MyArray/siloon_execute.h
src/wave/Wave2D/C++/siloon-MyArray/siloon_execute.cc
src/wave/Wave2D/C++/clean.sh
src/wave/makeall
src/wave/cleanall
src/sbeam/Statistics.py
src/sbeam/cleanall
src/sbeam/makeall
src/sbeam/plot.py
src/sbeam/runall
src/sbeam/sbeam_numpy.py
src/sbeam/sbeam_py.py
src/sbeam/tests.verify
src/sbeam/C/MC.cpp
src/sbeam/C/MC.h
src/sbeam/C/Statistics.cpp
src/sbeam/C/Statistics.h
src/sbeam/C/clean
src/sbeam/C/draw.c
src/sbeam/C/draw.h
src/sbeam/C/main.cpp
src/sbeam/C/make.sh
src/sbeam/C/tests.verify
src/sbeam/C/swig-MonteCarlo/Makefile.swig
src/sbeam/C/swig-MonteCarlo/Setup.sbeam
src/sbeam/C/swig-MonteCarlo/clean
src/sbeam/C/swig-MonteCarlo/make1.sh
src/sbeam/C/swig-MonteCarlo/make2.sh
src/sbeam/C/swig-MonteCarlo/make3.sh
src/sbeam/C/swig-MonteCarlo/make4.sh
src/sbeam/C/swig-MonteCarlo/sbeam.i
src/sbeam/C/swig-MonteCarlo/sbeam_py_MonteCarlo.py
src/sbeam/C/swig-draw/Makefile.swig
src/sbeam/C/swig-draw/Setup.draw
src/sbeam/C/swig-draw/clean
src/sbeam/C/swig-draw/draw.i
src/sbeam/C/swig-draw/make1.sh
src/sbeam/C/swig-draw/make2.sh
src/sbeam/C/swig-draw/make3.sh
src/sbeam/C/swig-draw/make4.sh
src/sbeam/C/swig-draw/sbeam_py_draw.py
src/sbeam/C/swig-draw-beam/Makefile.swig
src/sbeam/C/swig-draw-beam/Setup.draw
src/sbeam/C/swig-draw-beam/clean
src/sbeam/C/swig-draw-beam/draw.i
src/sbeam/C/swig-draw-beam/make1.sh
src/sbeam/C/swig-draw-beam/make2.sh
src/sbeam/C/swig-draw-beam/make3.sh
src/sbeam/C/swig-draw-beam/make4.sh
src/sbeam/C/swig-draw-beam/sbeam_py_draw_beam.py
src/sbeam/C/siloon-MonteCarlo/MODULE
src/sbeam/C/siloon-MonteCarlo/Makefile
src/sbeam/C/siloon-MonteCarlo/user.defs
src/sbeam/C/siloon-MonteCarlo/prototypes.doinclude
src/sbeam/C/siloon-MonteCarlo/python/siloon_python.cc
src/sbeam/C/siloon-MonteCarlo/python/Makefile
src/sbeam/C/siloon-MonteCarlo/python/MonteCarlo.py
src/sbeam/C/siloon-MonteCarlo/python/MonteCarlo.pyc
src/sbeam/C/siloon-MonteCarlo/python/sbeam_py_MonteCarlo.py
src/sbeam/C/siloon-MonteCarlo/python/sbeam.py
src/sbeam/C/siloon-MonteCarlo/python/sbeam.pyc
src/sbeam/C/bpl-MonteCarlo/sbeammodule.cpp
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src/sbeam/C/bpl-MonteCarlo/Makefile
src/sbeam/C/bpl-MonteCarlo/test.py
src/sbeam/Fortran/Makefile
src/sbeam/Fortran/draw.f
src/sbeam/Fortran/mc.f
src/sbeam/Fortran/xgasdev.f
src/sbeam/Fortran/xgauss.f
src/sbeam/Fortran/xmc.f
src/sbeam/Fortran/f2py-MonteCarlo/.f2py_get_compiler_CC
src/sbeam/Fortran/f2py-MonteCarlo/.f2py_get_compiler_FC
src/sbeam/Fortran/f2py-MonteCarlo/.f2py_get_compiler_LD
src/sbeam/Fortran/f2py-MonteCarlo/Makefile-MonteCarlo
src/sbeam/Fortran/f2py-MonteCarlo/MonteCarlo.pyf
src/sbeam/Fortran/f2py-MonteCarlo/clean
src/sbeam/Fortran/f2py-MonteCarlo/make.sh
src/sbeam/Fortran/f2py-MonteCarlo/sbeam_numpy_MonteCarlo.py
src/sbeam/Fortran/f2py-draw/clean
src/sbeam/Fortran/f2py-draw/make.sh
src/sbeam/Fortran/f2py-draw/sbeam_py_draw.py
src/sbeam/Fortran/f2py-draw-beam/clean
src/sbeam/Fortran/f2py-draw-beam/make.sh
src/sbeam/Fortran/f2py-draw-beam/sbeam_py_draw_beam.py
src/sbeam/Fortran/pyfort-MonteCarlo/Makefile
src/sbeam/Fortran/pyfort-MonteCarlo/MonteCarlo.pyf
src/sbeam/Fortran/pyfort-MonteCarlo/sbeam_numpy_MonteCarlo.py
src/sbeam/Fortran/pyfort-draw/Makefile
src/sbeam/Fortran/pyfort-draw/draw.pyf
src/sbeam/Fortran/pyfort-draw/sbeam_py_draw.py
src/sbeam/Fortran/pyfort-draw-beam/Makefile
src/sbeam/Fortran/pyfort-draw-beam/draw.pyf
src/sbeam/Fortran/pyfort-draw-beam/sbeam_py_draw_beam.py
src/makeall
src/INSTALL.txt
src/cleanall


