
University of Oslo

Department of Informatics

QoS-Aware Remote
Bindings in IP

Based Mobility

Management

Kim R. Bredesen
kimbre@ifi.uio.no

Master Thesis

31st January 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

QoS and mobility is a field that still has some performance issues. QoS
degrade when IP based nodes become mobile. This thesis tries to make
IP based networks as good as cellular networks, when it comes to mo-
bility.

We focus on solving the added complexity introduced by QoS in mo-
bility management in the middleware layer, inside a remote binding.

The main problem states, that we should find out how a remote bind-
ing can adapt and enhance QoS-parameters that perform poorly in IP
based mobility management.

The methods used are testing and prototyping. We test existing mobil-
ity management software (Mobile IP based) and design, implement and
test a QoS-Aware Remote Binding, named MobiBind. A custom traffic
generator, KGen, was developed as part of this thesis, in order to per-
forme testing.

In the test of Mobile IP, we found that the QoS parameters; packet
loss and seamlessness underperformed. We also found that hand-overs
in IP based mobility takes about one second to complete.

MobiBind did manage to increase performance of both packet loss
and seamlessness in mobility management. This did however increase
the delay (round trip time).

We found that the main problem in mobility management is the hand-
overs, and the connection breakage of about one second. This intro-
duces QoS degeneration that in our Mobile IP tests showed up in the
QoS parameters packet loss and seamlessness. MobiBind increased per-
formance of these QoS parameters, at the cost of delay. This indicates
that there is a tradeoff between the different QoS parameters, and that
total QoS might be difficult to increase unless the underlying problem is
fixed, in this case; the connection breakage. MobiBind enables applica-
tion developers to control which QoS parameters mobility management
impacts.

iii

Contents

1 Introduction 1

1.1 Background . 1
1.2 Problem Statement . 2
1.3 Scope . 3
1.4 Method . 3
1.5 Summary of Results . 5
1.6 Thesis Structure . 5

2 Background and Related Work 7

2.1 Mobility Management . 7
2.1.1 Mobility Background 7
2.1.2 The Mobility Problem 9
2.1.3 Mobility Solutions . 11

2.2 Mobile IP . 11
2.2.1 Mobile IP Details . 12
2.2.2 Mobile IP Security . 15
2.2.3 Reverse Tunneling . 16
2.2.4 Mobile IP Without Foreign Agents 16
2.2.5 Summary . 17

2.3 Middleware . 17
2.3.1 Introduction . 17
2.3.2 Component Based Middleware 19
2.3.3 Reflective and Adaptive Middleware 21

2.4 Quality of Service . 22
2.4.1 Introduction to Quality of Service 22
2.4.2 QoS Parameters . 23
2.4.3 QoS and the OSI Model 24
2.4.4 Renegotiation . 25
2.4.5 QoS and Mobility . 25
2.4.6 Traffic Classes . 26

2.5 Remote Bindings . 27
2.5.1 Introduction to Remote Bindings 27
2.5.2 Implicit Remote Binding 28

v

2.5.3 Explicit Remote Binding 28
2.5.4 Open Remote Binding 30
2.5.5 Remote Bindings and Mobility 31

2.6 Summary . 32

3 General Test Configuration 33

3.1 Motivation . 33
3.2 Equipment and Network . 33
3.3 Network Transfer Rates . 35
3.4 Mobile IP Implementation 35
3.5 Data Traffic Generation . 36
3.6 Performance Tuning . 38

4 Performance Test of Mobile IP 41

4.1 Test Description . 41
4.1.1 Jitter . 43
4.1.2 Packet Loss . 43
4.1.3 Round Trip Time . 44
4.1.4 Max Throughput . 44
4.1.5 Hand-over Time . 45

4.2 Test Results and Findings . 45
4.2.1 Jitter . 45
4.2.2 Packet Loss . 46
4.2.3 Round Trip Time . 46
4.2.4 Max Throughput . 47
4.2.5 Hand-over Time . 48

4.3 Analysis and Comparison . 48
4.4 Test Summary . 50

5 QoS-Aware Remote Binding Requirements 51

5.1 General Requirements . 51
5.1.1 Mobile Connectivity 52
5.1.2 Mobility Management 52
5.1.3 Two-Way Connectivity 52
5.1.4 Explicit Remote Binding 52

5.2 QoS Requirements . 52
5.2.1 QoS Monitoring . 53
5.2.2 Hand-over Aware . 53

5.3 Summary of Requirements 54

6 QoS-Aware Remote Binding Design: MobiBind 55

6.1 Abstraction Level . 55
6.1.1 Low level . 56
6.1.2 High Level . 56

6.1.3 Discussion . 57
6.2 Mapping Requirements to Functionality 59
6.3 Structural Design . 60

6.3.1 Basic Remote Binding Design 61
6.3.2 Inner Binding Structure 63
6.3.3 Creation, Initialisation, and Destruction 64
6.3.4 Network Communication 66
6.3.5 State Machine . 67

6.4 Functional Design . 69
6.4.1 Hand-over Detection Algorithm 69
6.4.2 Harvest Mechanism 73
6.4.3 Link Aware . 78

6.5 Example of Use . 80
6.5.1 Example 1 . 80
6.5.2 Example 2 . 81

6.6 Summary . 81

7 MobiBind Implementation 85

7.1 Implementation Language 85
7.2 MobiBind Code Presentation 85

7.2.1 Utility Class and Parameters 86
7.2.2 Hand-over Detection Algorithm 86
7.2.3 Link Awareness . 89
7.2.4 Harvest Mechanism 90
7.2.5 State Change . 92

7.3 Implementation Summary 93

8 MobiBind Test 95

8.1 Test Configuration . 95
8.2 KGen Modification . 95
8.3 Test Description . 96

8.3.1 Basic Testing . 96
8.3.2 Advanced Testing . 96

8.4 Test Results . 97
8.4.1 Basic Tests . 97
8.4.2 Advanced Tests . 97

8.5 Test Summary . 99

9 Thesis Assessment 101

9.1 QoS-Aware Remote Binding Requirements 101
9.1.1 Requirement 1: Mobile Connectivity 101
9.1.2 Requirement 2: Mobility Management 101
9.1.3 Requirement 3: Two-way Connectivity 101
9.1.4 Requirement 4: Explicit Remote Binding 102

9.1.5 Requirement 5: QoS Monitoring 102
9.1.6 Requirement 6: Hand-over Aware 102
9.1.7 Requirement 7: Seamless Data Connection 103
9.1.8 Requirement 8: Hand-over Monitoring 104

9.2 Thesis Problem Statement 104
9.2.1 Sub-problem 1 . 104
9.2.2 Sub-problem 2 . 105
9.2.3 Sub-problem 3 . 105
9.2.4 Main Problem Statement 105

10 Conclusion and Further Work 107
10.1 Conclusion . 107
10.2 Further Work . 108

10.2.1 QoS-Aware Remote Binding 108
10.2.2 Hand-over Time . 109
10.2.3 Notifications . 109
10.2.4 Application Specific High Level Binding 109

A Mobile IP Tests 111
A.1 Jitter . 111
A.2 Packet Loss . 113
A.3 Round Trip Time . 117
A.4 Max Throughput . 121
A.5 Hand-over Time . 126

B Enclosed CD 129
Bibliography

List of Figures

1.1 Research Method Integration 5

2.1 Fixed Network . 8
2.2 Network Address . 8
2.3 Data Packet Through Fixed Network 9
2.4 Mobility Problem in Finex Network 10
2.5 Mobile IP RFC History . 12
2.6 Mobility in Mobile IP . 13
2.7 Triangle Routing . 16
2.8 Example of Middleware . 19
2.9 a) Implicit Middleware and b) Explicit Middleware 20
2.10 Middleware Components . 20
2.11 Meta- and Base-Level . 21
2.12 Basic QoS . 22
2.13 QoS Parameters and the OSI Model 23
2.14 QoS Protocols and the OSI Model 24
2.15 QoS Renegotiation . 25
2.16 Implicit Binding . 27
2.17 Explicit Binding . 27
2.18 Open Binding . 27
2.19 One Controlling Interface 29
2.20 Two Controlling Interfaces 30

3.1 Test Configuration . 34
3.2 KGen . 37
3.3 Uncontrolled Throughput Test 39
3.4 Controlled Throughput Test 40

4.1 Test Setup . 42
4.2 WLAN Max Throughput Test 47

6.1 Explicit Remote Bindings and the OSI Model 57
6.2 Open Remote Bindings and the OSI Model 59
6.3 Basic MobiBind Design . 61
6.4 Logical View of MobiBind 62

ix

6.5 Inside MobiBind . 63
6.6 MobiBind Classes . 65
6.7 MobiBind Packet Format . 66
6.8 MobiBind State Diagram . 68
6.9 Normal Operation Before Adaption 73
6.10 Hand-over in MobiBind . 74
6.11 Fast Send in MobiBind . 75
6.12 Normal Operation After Adaption 75
6.13 Hand-over After Adaption 76
6.14 MobiBind Without MIP Buffer 77
6.15 MobiBind Without MIP Buffer in Fast Send 77
6.16 Example: MobiBind and Advanced Components 81
6.17 Example: MobiBind and Simple Components 82

7.1 Hand-over Detection Algorithm 87

8.1 Test Run of MobiBind . 98
8.2 MobiBind Without MIP Buffer 99

9.1 Binding Component Initialised Adaption 103

List of Tables

2.1 UMTS QoS Classes . 26

4.1 Traffic Patterns for Testing of QoS Parameters 43
4.2 Hand-over Scenarios Tested 45
4.3 Jitter Test Results . 46
4.4 Packet Loss Test Results . 46
4.5 RTT Test Results . 46
4.6 Max Throughput Test Results 47
4.7 Hand-over Time Test Results 48

6.1 Mapping Requirements to Functionality 60

7.1 Parameters in MobiBind . 86

A.1 LAN Jitter Test . 111
A.2 WLAN Jitter Test . 112
A.3 LAN Packet Loss Test . 113
A.4 WLAN Packet Loss Test . 115
A.5 LAN RTT Test; Conversation 117
A.6 LAN RTT Test; Streaming . 118
A.7 WLAN RTT Test; Conversation 119
A.8 WLAN RTT Test; Streaming 120
A.9 Max Throughput Without RTT Reqirement 121
A.10 Max Throughput With RTT Requirements 123
A.11 Hand-over Time Test . 126

xi

xii

Chapter 1

Introduction

1.1 Background

Several Quality of Service (QoS) demanding applications are frequently
used today. Applications like streaming and conversational traffic applic-
ations, which include Voice Over IP (VoIP), place great demands on the
network in order to give a stable service to the user. Enabling networks
to provide complex QoS has been the focus of much research. Elements
in the network that in some way manage QoS are, in this thesis, said to
be QoS-Aware.

In the 80’s big computers shrunk to portable laptops, and today light-
weight laptops with several types of communication abilities are com-
mon. Wired communication like Local Area Network (LAN), and wire-
less communication like Wireless LAN (WLAN), General Packet Radio
Services (GPRS) and Third-Generation wireless (3G) are commonly in-
stalled on laptops. All these network connections make it possible for
the laptops to become mobile, maintaining at least one of the network
connections.

Mobility management is the field that manages the added complex-
ity that comes when the laptops becomes mobile. The major difference,
compared to fixed systems, is the hand-over; the process of changing
networks. When changing networks, also possibly changing link tech-
nology, QoS parameters that are critical for QoS demanding applications
may change dramatically, this is also referred to as varying network con-
ditions. The way networks are built makes it impossible to maintain a
connection in this mobile environment. Mobility management has until
now focused its efforts on providing basic connectivity.

Users want to use QoS demanding applications not just when they are
stationary, but also when they are mobile, this pushes for an integration
of QoS into mobility management.

Increased complexity is added to mobility management when con-

1

2 CHAPTER 1. INTRODUCTION

sidering the other type of mobile nodes, i.e., Personal Digital Assistants
(PDAs). PDAs are small devices that have a lower amount of Random
Access Memory (RAM), and a smaller Central Processing Unit (CPU)
than laptops. PDAs have become powerful enough to be equiped with
WLAN and other wireless receivers, but are not as powerful as laptops.
Battery capacity of these devices is also lower.

The problem that this thesis focuses on is how to handle QoS in mo-
bility management. Streaming traffic requires seamless data delivery, but
how can that be provided when a hand-over causes connection break-
age, and violates QoS requirements? How can we take advantage of the
different links that are used? These are all questions that stem from the
question: How can QoS be handled in mobility management?

Or if related to cellular networks: How can IP based networks handle
mobility as efficiently at cellular networks do today?

Middleware is a software layer that lies between the resources and
the application. Middleware takes responsibilities from the application,
to make the job of the application developer easier.

Middleware can be used to connect two computers. In component-
based middleware this is often referred to as connecting two components
that are located in different address spaces. A connection between two
such components is called a Remote Binding. This remote binding can
be viewed as a distributed component, e.g. being located in both address
spaces of the components that are using it. This thesis researches the
possibility of a remote binding that can manage both QoS and mobility.

1.2 Problem Statement

This thesis has the following problem statement:

How can a QoS-Aware Remote Binding, implemented in a
distributed component, adapt to the varying network con-
ditions to enhance QoS-parameters that perform poorly in
IP Based Mobility Management.

This main problem statement aims at solving the problem of added
QoS complexity in mobility management, inside the middleware.

In order help answer the problem statement, it was divided into three
sub-problems:

1. Which QoS parameters underperform in mobility management com-
pared to fixed networks?

2. What would be required of a QoS-Aware Remote Binding from an
application developer’s point of view?

1.3. SCOPE 3

3. Is it possible to design and implement a QoS-Aware Remote Bind-
ing that enhance QoS-parameters performance?

Sub-problem one examines existing mobility solutions to reveal which
specific QoS parameters that underperform. Sub-problem two outlines
a requirement specification of a QoS-Aware Remote Binding based on
the findings from the first sub-problem. Sub-problem three tests an im-
plementation and provides proof that a QoS-Aware Remote Binding can
enhance QoS-parameter performance.

Solving these three sub-problems will result in a comprehensive solu-
tion to the thesis problem statement.

1.3 Scope

This thesis focuses on IPv4-based networks.
If the middleware does not have bindings that handle QoS and mobil-

ity, the application developer would have to design a QoS-Aware bind-
ing for each new application, every time. This is both complex and error
prone. It is therefore far better that the QoS management software is im-
plemented by an QoS-expert, so for this reason we give the middleware
the responibility for QoS.

Although there are several ways to handle the added complexity of
mobility management, this thesis focuses on the middleware approach.

Further, this thesis focuses on the mobility management scenario where
one computer is mobile and the others are stationary.

1.4 Method

The thesis uses the following methods:

• Test bed to test existing Mobile IP software and the proposed QoS-
Aware binding. The test bed is described in Chapter 3.

• Timeframed literature study to find related work and other compar-
able results to this thesis’ Mobil IP test.

• Prototyping to validate the presented QoS-Aware Remote binding,
called MobiBind.

Work Breakdown Structure

The test bed is used to test Mobile IP and to answer partly the ques-
tion stated in sub-problem one. This test and other comparable test res-
ults found in the literature study will be analyzed in the Mobile IP test

4 CHAPTER 1. INTRODUCTION

chapter, Chapter 4, to provide a full answer to sub-problem one. Com-
paring the results from the Mobile IP tests with other test results will
verify the identification of the correct under-performing QoS paramet-
ers.

The Mobile IP test comes before specifying any requirements of a
QoS-Aware Remote Binding. The Mobile IP test’s goal is to identify un-
der performing QoS parameters, but the test also functions as a bench-
mark for a QoS-Aware Remote Binding. The later implemented QoS-
Aware Remote Binding, MobiBind, is tested in the same lab, and the
results of the two tests can be compared.

Sub-problem two focuses on the application developer’s needs. Those
needs are addressed by specifying requirements in Chapter 5.

To verify that the requirements are met, prototyping is performed. A
QoS-Aware Remote Binding, MobiBind, is designed and implemented.
To answer the third sub-problem relating to the performance of such a
QoS-Aware Remote Binding, MobiBind is finally tested in the test lab.
The test results of MobiBind can then be compared to the original Mobile
IP test and analysis, found in the Mobile IP tests Chapter, chapter 4. This
final analysis will enable an answer to sub-problem three.

The design was performed using an agile iterative process. The design
was developed side by side with the prototype, testing out different design
options. Several iterations, with several solution proposals were engin-
eered. The design chapter only outlines the final design of MobiBind,
and any references to “tests” in the design chapter, Chapter 6, are to the
iterative testing performed.

The test bed was used frequently during development and testing of
MobiBind. Sadly one key element of the test lab, the laptop named QuA1
died during the final stage of the MobiBind test. The replacement of the
laptop was outside our control, and was not done. Some quantification
tests, among them the test to quantify the overhead the remote binding
produced, could not be performed. MobiBind was still comprehensively
tested, but some results could not be quantified.

Method Motivation

The motivation for combining three research methods was that by start-
ing out by testing existing technologies, like Birdstep’s Mobile IP soft-
ware the thesis grounds itself in the real world. The literature study en-
ables the thesis to develop ideas inline with the state-of-the-art. The
prototyping enables validation of the ideas presented, making this thesis
a part of the state-of-the-art.

1.5. SUMMARY OF RESULTS 5

Figure 1.1: Research Method Integration

1.5 Summary of Results

This thesis identifies, by testing, QoS parameters that underperform in
the current standard Mobile IP, compared to a fixed environment. QoS-
parameters like round trip time and packet loss increase with the use
of Mobile IP. Mobile IP does not provide seamless data connectivity
either. This thesis identifies several key requirements for a QoS-Aware
Remote Binding, the most important of which are reducing packet loss
and providing seamless data connectivity. This thesis also designs, tests
and implements a QoS-Aware Remote Binding called MobiBind. Through
testing we found that MobiBind meets the requirement of seamless data
connectivity and reduces packet loss; in part by the use of the harvest
mechanism suggested in this thesis.

1.6 Thesis Structure

The thesis is divided into the following chapters:

Chapter 2 gives a background and description of the various technolo-
gies relevant to this thesis, and their related work.

Chapter 3 describes the test bed and the traffic generator designed for
testing Mobil IP and MobiBind. This chapter can be seen as an
extension of the method described in Section 1.4.

Chapter 4 describes the tests performed on Mobile IP, as part of sub-
problem one. Results and findings of this test are also analysed.

6 CHAPTER 1. INTRODUCTION

Chapter 5 discusses and specifies requirements for a QoS-Aware Re-
mote Binding. The requirements are partly based on the Mobile IP
tests.

Chapter 6 discusses the design of MobiBind, a QoS-Aware Remote
Binding based on the requirements specified in Chapter 5.

Chapter 7 describes the implementation of MobiBind.

Chapter 8 presents tests of MobiBind, and analyses the results and find-
ings of the tests performed.

Chapter 9 evaluates MobiBind, the implemented QoS-Aware Remote
binding, against the requirements. It also evaluates whether the
research questions studied in this thesis has been answered.

Chapter 10 concludes this thesis and points out suggested further work.

Chapter 2

Background and Related
Work

The QoS-Aware Remote binding spans several research domains. In
order to fully understand all the discussions around this binding some
knowledge about each research domain is needed. This chapter provides
the relevant background needed from the different research domains.

Section 2.1 gives an overview of the challenges and existing solutions
for mobility management. Section 2.2 follows up with Mobile IP, an IETF
proposal to a solution for mobility management in IP based networks.
Middleware is discussed in Section 2.3. Section 2.4 highlights important
issues related to QoS and traffic classes. Finally, remote bindings are
discussed in Section 2.5.

Related work of this thesis is presented in the relevant sections.

2.1 Mobility Management

Mobility is a field that spans several domains; mobile computers as well
as cellular phones and many types of network technologies (e.g., global
system for mobile communication (GSM), GPRS, 3G and IP-based net-
works). The largest data network in the world, the Internet, must also
solve mobility.

This section looks into session mobility in a general way, starting with
a background to the mobility problem. Then Section 2.1.2 goes into the
mobility problem in more detail. Lastly, possible solutions to the mobility
problem are discussed in Section 2.1.3.

2.1.1 Mobility Background

With the dramatic increase in memory and CPU capacity, combined with
longer battery capacity and lighter laptops, it has become more conveni-

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Fixed Network

Figure 2.2: Network Address

ent to move the laptops around. Due to certain restrictions in the way
most networks are constructed, this becomes a problem.

Generally, networks are divided into sub-networks. One of the reas-
ons for doing this is to cut the size of the routing tables. Instead of re-
membering each node’s address, routers only remember which network
the node is attached to.

Figure 2.1 shows a typical network scenario: Two computers that
want to communicate across a large network. The computers are located
on different sub-networks and hence the traffic has to be forwarded by
routers. All computers in the network have an address that is constructed
of a host part and a network part. The host part, called host postfix,
uniquely identifies the node within the sub-network. The network part,
called network prefix, uniquely identifies the sub-network. When the
two are combined the address becomes unique for the entire network.
Computer A has in Figure 2.1 the address 1.4. As Figure 2.2 shows the

2.1. MOBILITY MANAGEMENT 9

Figure 2.3: Data Packet Through Fixed Network

network prefix is 1 and the host postfix of computer A’s address is 4.
When computer B wants to send a data packet to computer A, it

marks the data packet with computer A’s address and sends it to router 4.
When router 4 gets the packet it looks only at the data packet’s network
prefix. Based on that the router decides to send the packet to router 1.
Router 1 sees that the packet is meant for sub-network 1, and sends it
out on that sub-network, were computer A receives it (see Figure 2.3).

Keeping the same address when moving between sub-networks would
cause the packets to arrive at the wrong sub-network. This is the basis for
the entire mobility problem, explained in detail in the following section.

2.1.2 The Mobility Problem

Mobility is introduced if one of the computers, let’s say computer A, starts
to move from one sub-network to another. The mobility definition used
in this thesis is [33]:

A node’s ability to change its point of attachment while main-
taining all existing communications.

If computer A changes its attachment point from sub-network 1 to
sub-network 2, computer B’s packets would not be forwarded correctly
by the routers. Therefore mobility is not achieved, as illustrated in Figure
2.4. Mobility is not achieved because Computer B still uses the same ad-
dress for computer A. Since the routers only look at the network prefix,

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: Mobility Problem in Finex Network

and hence the packets are still routed to sub-network 1. The packets are
therefore lost in sub-network 1 and never reach computer A.

In the field of mobility, computer B, the computer that tries to send
data to a mobile node, is often called Corresponding Node. Computer
A, that moves, is called Mobile Node. The process of changing sub-
networks is called hand-over.

Mobility can be divided into macro and micro mobility. Micro mobil-
ity is when the computer moves within one single administrative domain,
and macro mobility is when computers move globally or to another do-
main. The possibility for an entire sub-network to change its point of
attachment is called network mobility and mobility within ad-hoc net-
works is called ad-hoc mobility.

Mobility may introduce gaps in the network connection, where the
node is not connected to any network. If a node wants to move from Eth-
ernet (802.3) to Ethernet using only one network card a gap is introduced
when the user switches Ethernet cables. In this gap there obviously can
be no network connection, since no cable is connected to the computer.
This type of hand-over is called hard hand-over. Hard hand-over means
that the node disconnects from the current network before it connects to
a new one. If a computer has both the old and the new network available
when performing the hand-over it is called a soft hand-over. A soft hand-
over has the potential to be performed seamlessly, e.g., the user does not
notice the hand-over.

2.2. MOBILE IP 11

2.1.3 Mobility Solutions

Mobility is a complex issue that can be solved several places in the OSI
reference model. The link, network, or application layer may be places to
solve the mobility problem. Wireless ATM [3] provides mobility support
at the link layer, Mobile IP at the network layer. An application layer
approach to solving mobility is also possible, but would perhaps not be a
wise choice since each application wold have to become mobility aware,
and this approach would not be backward compatible with old applic-
ations. A network layer solution, on the other hand, gives backward
compatibility since the applications would not have to become mobility
aware.

Examples of mobility management that are widely used are found in
GSM, GPRS, and universal mobile telecommunications system (UMTS).
Mobility management in the telecommunications industry is solved, this
thesis however focus on IP based networks, like the Internet. Solution
proposals for enabling mobility in IP based networks include Mobile IP
[46], Hawaii [28], Cellular IP [43], and host based routing.

ALICE [24] is a mobility management solution that enables mobility
in CORBA. This approach has no QoS-Awareness.

Host based routing enables the routers to route on the basis of the
entire IP address, instead of just the network prefix. This approach would
require that all routers have an entry in their routing table for all Mobile
Nodes. While this works in small networks, it is not scalable. The routing
tables would become huge, and require much memory. Lookup time
would increase and a high number of update messages would have to be
sent.

IETF has proposed a mobility solution for IPv4 based networks called
Mobile IP, which several WLAN operators are on the brink of providing
to their subscribers. Furthermore, for 3G mobile communications sys-
tems IP version 6 (IPv6) with Mobile IP support has been specified for
IP multimedia [18]. The technology used for the IPv6 solution is based
upon the IETF’s mobility solution for IPv4. Hence, this thesis does not
cover IPv6 mobility management. For details of mobility management in
IPv6, see [26].

The implications with regards to QoS and mobility will be discussed
in Section 2.4.5.

2.2 Mobile IP

Mobile IP works by making it appear to the rest of the network that the
mobile node is always addressable in its home network.

The technology used for Mobile IP IPv4 is defined in a series of Re-

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.5: Mobile IP RFC History

quest For Comments (RFC). Figure 2.5 shows which ones are valid today,
and the previous RFCs. RFC 3344 is the current RFC specifying the main
functionality of Mobile IP, the others specify helping technologies includ-
ing tunneling and management capabilities.

2.2.1 Mobile IP Details

Mobile IP solves the mobility problem by adding some new network ele-
ments without requiring changes to existing elements, except the Mobile
Node itself. The new elements are the Home Agent and the Foreign
Agent. The Mobile Node (computer A in the Figures) is also extended
with new functionality. Computer B, the corresponding node, does not
require any changes, as it is not aware of the fact that computer A is
mobile.

The Mobile Node has a home network; usually the network in which
the Mobile Node is most often located, or where the Mobile Node be-
longs. The home network has to have a Home Agent. This is also were
the Mobile Node receives its home IP address from. In Figure 2.6 sub-
network 1 is computer A’s home network.

The Home Agent may be implemented in a router, for example router
1 in Figure 2.6, or it may be implemented as a computer inside a home
network, for example sub-network 1 in the figure. The Home Agent is
responsible for forwarding data packets to the Mobile Node when it is
connected to a foreign network.

The home network may also be virtual. In Figure 2.6 this could be
done by implementing the Home Agent in router 1, and making sub-
network 1 virtual. When the home network is virtual the Mobile Node
would never be home, and the Home Agent would always operate and
tunnel packets to the Mobile Node.

2.2. MOBILE IP 13

Figure 2.6: Mobility in Mobile IP

When the Mobile Node moves from sub-net 1 to sub-net 2, it con-
nects to the Foreign Agent located in that network. Sub-network 2 would
then be a foreign network to the Mobile Node. The Foreign Agent’s job is
to allocate a temporary care-of IP address to the Mobile Node while it is
located in the foreign network. The Foreign Agent also helps the Mobile
Node with registration to the Home Agent, and serves as a de-tunneling
point for the Home Agent.

A Foreign Agent may serve several foreign networks. All it needs is
a connection or route to the network. If a router is a Foreign Agent for
more than one foreign network the care-of-address received by a Mobile
Node may not match the network prefix of the sub-network on which it
is currently located. The care-of-address may have the network prefix of
another sub-network which the router is a Foreign Agent to.

Some tests of Mobile IP have been performed. Espen Sagen [29]
focuses on testing end-to-end performance during hand-over. Kouch-
eryavy Y. et al. [19] tests WLAN under different conditions.

Service Advertisement

When a Mobile Node wants to attach to a foreign network it needs to
discover a care-of-address for that network. This is done using modified
Internet Control Message Protocol (ICMP) messages. The messages in-
clude available care-of-addresses along with other control information.
The same messages are used by the Home Agent and the Foreign Agent.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

The Foreign Agent sends these messages to advertise its services, a Mo-
bile Node uses them to determine which Foreign Agents it has contact
with.

A Mobile Node may also receive a care-of-address of a foreign net-
work by itself, typically using Dynamic Host Configuration Protocol (DHCP).
When a care-of-address is received by the Mobile Node alone, it is called
a co-located care-of-address.

Registration

Once a Mobile Node is located in a foreign network and has received a
care-of-address from a Foreign Agent, it sends a registration request to
the Foreign Agent. The request contains the following information:

• Mobile Node’s home address

• care-of-address

• registration lifetime desired

• encapsulation desired

• unforgeable replay protected authentication

Unless the request contains errors the Foreign Agent usually accepts
the request and keeps track of it. At the same time it sends the request to
the Home Agent. When the Home Agent receives the registration request
it can start to forward packets to the Mobile Node’s care-of-address. The
Home Agent replies with a registration reply message, also containing
authentication.

Tunneling

The Mobile Node receives a care-of-address from the Foreign Agent. The
care-of-address is an address that is valid in its current sub-network. On
behalf of the Mobile Node the Foreign Agent sends the care-of-address
to the Home Agent.

If a corresponding node wants to send a data packet to the Mobile
Node, while the Mobile Node is in a foreign network, it can still use the
same original (home) address of the Mobile Node. The packet it sent
from the corresponding node to the mobile node’s home network. In
the home network the Home Agent intercepts the packets going to the
Mobile Node’s home address. It then tunnels the datagram using the
Mobile Nodes care-of-address. The Foreign Agent de-tunnels the packet
and delivers it to the Mobile Node. This is shown in Figure 2.6.

2.2. MOBILE IP 15

There are several tunneling mechanisms available, the most common
is IP-within-IP and is described in RFC2003. Other alternatives are Min-
imal Encapsulation and Generic Routing Encapsulation (GRE).

Using this technology the Mobile Node may change sub-networks
while maintaining ongoing communications, thereby achieving mobility.

Route Optimisation

In Figure 2.7 the Mobile Node is shown to be able to deliver packets the
shortest way by the Mobile Nodes default router, the Foreign Agent. This
is because when the Mobile Node sends packets it addresses the corres-
ponding node directly, and does not use its care-of-address as sender, but
the home address. The correspondent node, on the other hand, delivers
packets to the home address, so all packets are sent through the home
network and the Home Agent. This is called triangle routing. It repres-
ents a routing asymmetry that is potentially annoying to the mobile users;
the asymmetry caused by triangular routing can cause some protocols to
underperform. It also sets up the Home Agent as a single point of failure.

Since the beginning of the Mobile IP design this weakness has been
recognised, and attempts to remedy the problem basically consists of de-
livering the care-of-address of the Mobile Node to the correspondents.
So that corresponding nodes does not have to send packets through the
Home Agent. Unfortunately all realistic solutions proposed so far have
the disadvantage that it either requires change in the corresponding node
to keep state about the Mobile Node, the Mobile Node’s care-of-address,
or change is required in selected routers to keep the same state informa-
tion.

2.2.2 Mobile IP Security

Security is implemented in several aspects. Mobile IP is designed so
that the corresponding node does not know where the Mobile Node is
located. This design decision was based partially on a security concern;
the corresponding node should not be able to track the movements of
the Mobile Node.

Another security issue is that of stealing traffic from the Mobile Node.
This could be done by sending a false registration request to the Home
Agent. This would enable an intruder to redirect traffic that should go
to the Mobile Node anywhere the attacker pleases. In short all commu-
nication in Mobile IP needs to be verified so that an intruder may not
send false requests or acknowledgements. This can be done by a Diffie-
Hellman key exchange or a private / public security association. Security
is not the focus in this thesis, so for further details on security handling
in Mobile IP, please see [33].

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.7: Triangle Routing

2.2.3 Reverse Tunneling

Mobile IP was designed for use with classical routing, where data packets
are routed on the basis on the destination address, and nothing else.
Classical routing is still the main way of routing packets, but firewalls
and Ingress Filtering do not operate like classical routing.

Ingress Filtering [10] is a relatively new technique that limits access
to the Internet. This is done by only allowing packets to go out of an
administrative domain if the packets have a source address that exists
within that domain. Thus Ingress Filtering breaks one of the traditional
assumptions of IP routing. However Ingress Filtering has found support
due to its ability to help prevent spoofing attacks.

Mobile IP uses its home address as source when it sends packets from
a foreign network and they will be stopped if Ingress Filtering is in use at
the foreign network. The solution proposed for this is reverse tunneling.
Reverse tunneling works so that the Mobile Node tunnels the packets
to the Home Agent, thereby in effect turning Mobile IP in to a virtual
network. This approach also makes the Home Agent the single point of
failure, both ways in the communication between the Mobile Node and
a correspondent node.

2.2.4 Mobile IP Without Foreign Agents

The Mobile Node may be configured to function without a Foreign Agent
in a foreign network. The tasks normally performed by the Foreign

2.3. MIDDLEWARE 17

Agent are then performed by the Mobile Node itself. This includes de-
tunneling, registration request and IP address assignation. The IP ad-
dress that the Mobile Node used to get from the Foreign Agent is now
given by a DHCP server in the sub-network.

This approach has both advantages and disadvantages. The advant-
age is that the Mobile Node does not need Foreign Agents to connect to a
foreign network. This is useful in today’s Internet, as few networks have
a Foreign Agent. A disadvantage is that the hand-over may not go seam-
lessly due to (1) delays in the communication to the DHCP server and
gracious Address Resolution Protocol (ARP), and (2) that packets sent to
the old foreign network are lost in that network before the Home Agent
starts to re-send packets to the correct care-of-address. A Foreign Agent
could collect these packets and send them to the new foreign network at
the Mobile Node’s request.

2.2.5 Summary

The first problem of mobility was to provide connectivity between the
moving computers, technologies like Mobile IP has enabled that con-
nectivity. The problem of enabling more complex services stands next
in line. Complex applications often require more than just the basic
connectivity, real time connectivity add requirements. One way of man-
aging these complex requirements is to introduce middleware as a place
to resolve the complexity. The transparency of middleware can help to
provide better service. Middleware is discussed in the following section.

2.3 Middleware

2.3.1 Introduction

Traditionally middleware was used as software that facilitated remote
database access and system transactions. More recently the term has
come to be associated with distributed platforms.

This thesis defines middleware as software designed to manage the
complexity and heterogeneity of distributed systems and thereby provide
a simpler programming environment for application developers. Net-
work, hardware, OS, and programming language heterogeneity are some
examples of where complexity is added in distributed systems. Distrib-
uted systems are defined by [6] as: Systems in which hardware and soft-
ware localised in a network of computers communicate and coordinate
their actions only by sending messages to each other (from [6]).

A way of managing the complexity of distributed systems is by hiding
heterogeneous properties of the system, making the distributed system

18 CHAPTER 2. BACKGROUND AND RELATED WORK

look like a black box. The term black box is used to illustrate that the
middleware provides functionality, where the implementation is hidden
inside the middleware. Hiding in middleware is called transparency and
a list of different types of transparencies are defined by [5] and [6]:

Access transparency enables local and remote resources to be accessed
using identical operations.

Location transparency enables resources to be accessed without know-
ledge of their location.

Concurrency transparency enables several process to operate concur-
rently using shared resources without interference between them.

Replication transparency enables multiple instances of resources to be
used to increase reliability and performance without knowledge of
their replicas by users or application programmers.

Failure transparency enables the concealment of faults, allowing users
and application programmers to complete their tasks despite the
failure of hardware or software components.

Mobility transparency allows the movement of resources and clients
within a system without effecting the operation of users or pro-
grams.

Performance transparency allows the system to be reconfigured to im-
prove performance as load varies.

Scaling transparency allows the system and applications to expand in
scale without change to the system structure or the application al-
gorithms.

The middleware software lies above the OS, extending its services and
masking heterogeneity. Further, the middleware software lies under the
application so it can be used by the applications. Typical services that
middleware provides are the ability for programs to communicate even
if they are made in different programming languages, e.g., the Common
Objects Request Broker Architecture (CORBA) and Microsoft’s Distrib-
uted Component Object Model (DCOM).

Figure 2.8 illustrates the usefulness of middleware, and what chal-
lenges distributed application developers face. The goal is to make a
simple client - server application. Without the middleware, Figure 2.8a,
the application designer would have to figure out how socket creation
is done on both the client and server. He would also need to design a
protocol to be used between the client and server program. Figure 2.8b

2.3. MIDDLEWARE 19

Figure 2.8: Example of Middleware

illustrates the same scenario with the use of middleware. The heterogen-
eity of the computers and network are transparent and the application
designer does not see it as a set of computers, but as one middleware
platform. Thus the application can call operations between the client
and server as they were local calls i.e., access transparency, and would
not need to worry about socket setup or protocol design.

In addition to simplifying the programming models, the middleware
offers services like database access, transaction control, persistence and
security, making the application more light weight. These added services
may be explicitly requested by the application, shown in Figure 2.9b, en-
abling the application to use the services when necessary. This approach
may be error prone; an application designer may forget to call secur-
ity services in some code were it should be called, exposing a potential
back door to the system. To overcome this problem another way of us-
ing the middleware services exist, called implicit services. The implicit
approach, shown in Figure 2.9a, intercepts messages to and from the ap-
plication, making sure that all the messages goes through, e.g., security
handling.

2.3.2 Component Based Middleware

The server application in Figure 2.9 is an application that is designed as
a black box. There is no way of knowing how it operates and how it
communicates with its clients. This means that if a third party would
like to add anything to a client or server it would not be possible, only
the party that created the application would have that knowledge. The
limitations of this black box approach has led to a new, component based
design, which is more open.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.9: a) Implicit Middleware and b) Explicit Middleware

Figure 2.10: Middleware Components

The definition of a component used in this thesis is as follows [36]:

A software component is a unit of composition with con-
tractually specified interfaces and explicit context depend-
encies only. A software component can be deployed inde-
pendently and is subject to composition by third parties.

The component based approach would allow a server to be construc-
ted using components developed by third parties. A video streaming ap-
plication could be composed as shown in Figure 2.10. The components
could also be changed if new and better technologies became available
in some areas. The component based approach can also be called a plug
and play approach. Developing is done by plugging existing compon-
ents together. Components may also consist of several smaller compon-
ents, making it possible to view the component at different granularities.
Components constructed in this way are often referred to as composite
components.

2.3. MIDDLEWARE 21

Figure 2.11: Meta- and Base-Level

Examples of middleware platforms for component based applications
are Enterprise Java Beans (EJB) [21], Microsoft .NET [23], and CORBA
Component Model (CCM) [15].

2.3.3 Reflective and Adaptive Middleware

Reflection and adaptation make the middleware self-aware. Reflection
enables the middleware to inspect its internal state and environment.
Adaption enables the middleware to change its behaviour and function-
ality.

To enable this self-awareness, the middleware consists of two levels,
referred to as meta- and base-level, see Figure 2.11. The base-level is
where the actual working components are located. The meta-level is a
high-level representation of the base-level. The meta-level is also called
a self representation. The two levels are causally connected. This means
that alterations made in the meta-level is absorbed down to the base
level, and vice versa. A system could also adapt on the basis on the reflec-
tion without any external involvement, making the system self-adaptive.
The meta-level contains information of the system and methods for chan-
ging the system’s behaviour. Only the meta-level is available for reflection
and adaptation.

Examples of reflective and adaptive middleware systems are OpenORB[13],
OpenCorba[42], QuA[2], DynamicTAO [9], and MADAM [7].

OpenORB provides a meta-level interface of different types to enable
reflection based on this meta level interface. OpenCorba has the same
meta-level notion, with a focus on providing reflection and dynamic ad-
aptability in CORBA. DynamicTAO provides a reflective ORB, that fo-
cuses on handling extended resource and security concerns in the mobile
domain. Finally, MADAM provides support for dynamically adaptive ap-
plications in the mobile domain.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.12: Basic QoS

2.4 Quality of Service

First QoS is discussed with focus on traditional network QoS, then the
added complexities of mobility management in QoS is discussed.

2.4.1 Introduction to Quality of Service

QoS is defined in many ways, but the definition that will be used here is
modified from Vogel et al. [45]:

QoS represents the set of those quantitative and qualitative
characteristics of a system that are necessary to achieve the
required functionality of an application.

As networks have gone from homogeneous to heterogeneous and ap-
plications have become increasingly complex, the QoS requirements of
the application have changed. An old QoS requirement is that of pre-
served payload content. This means that what the sender sends on one
side of the network is the same as the receiver receives. This is a basic
QoS requirement that is embedded in the TCP/IP protocol. Today QoS
requirements are more complex.

QoS is experienced by the user, so it is the user that specifies the QoS
requirements. If the user wants to see a streaming video the user may
wish to see it in colour and in full screen. These requirements needs
to be mapped down to something that the underlying system can un-
derstand. The system needs to know which system resources it needs to
reserve in order to make the user’s requirements possible. In this example
the system may need to make sure a colour screen is available and that
enough network bandwidth is available to sustain a full-screen stream.
Computer resources like the CPU would also need to be reserved. If the
system can accommodate these requirements, the resources are reserved
and the playback of the stream can begin. The system needs some way of

2.4. QUALITY OF SERVICE 23

Figure 2.13: QoS Parameters and the OSI Model

controlling the application’s use of the resources. If the application uses
more than it originally specified, it may effect other applications that are
using the shared resource. Monitoring of the application’s use of the
recourses is therefore necessary. Figure 2.12 illustrates this process.

If the system finds, by monitoring, that one of the applications are
using more than it is allowed to, it has to take action, either by reducing
the application to best effort or by forcing renegotiation of QoS.

[8] has a QoS-Aware solution that depends on RSVP. The solution
is built on Java-RMI and aims to make Java-RMI time predictable. The
solution requires that the network supports RSVP and resource reserva-
tion. The solution is not mobility enabled.

2.4.2 QoS Parameters

Today several ways of solving the QoS problem and several ways of spe-
cifying the QoS parameters exist. Some QoS parameters are well known,
like delay, jitter, throughput, data-packet size and packet loss. Further-
more, QoS parameters are specified in different ways according to where
in the OSI model they are used. User’s QoS parameters are often based
on vague descriptions of quality. A user may say that she wants to see a
video in high quality. If we assume that QoS is managed on the network
layer, “high quality” must be mapped down to parameters that the net-
work can understand. This has to be done via the application layer. So
from high quality the application decides that 24 frames per second need
to be sent, with 2 ms delay between the frames. The application calcu-
lates the necessary throughput required for sending the frames across the
network and asks the network layer QoS management service to reserve
the throughput and maximum delay. The QoS parameter defined by the
user as “high quality” has now been mapped down to the network QoS
layer. Figure 2.13 illustrates this.

24 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.14: QoS Protocols and the OSI Model

2.4.3 QoS and the OSI Model

The QoS problem can be solved at different places in the OSI model.
Figure 2.14 shows some of the protocols that have been constructed at
different layers in the model. Solving QoS at different layers has different
implications, which are discussed below.

Link Layer

Token ring based networks can guarantee maximum delay and reserve
resources based on the token, while Ethernet is non-deterministic and
can not guarantee QoS.

QoS managed at the link layer is only valid for one link. Solving
QoS here has its limitations. In a homogeneous network, QoS could
be reserved for the entire network using link layer QoS management.
Large networks are often heterogeneous and QoS would be complex to
set up. If some portions of the network were based on Ethernet it would
be impossible.

Network and Transport Layer

Solving QoS at the network and transport layers allow for QoS manage-
ment for entire networks, even if the networks are heterogeneous. In
the pre-multimedia age, data transport mainly focused on fairness and
uncorrupted delivery. Continuous media have quite different commu-
nication needs. Continuous media requires that streams be sent and de-
livered steadily. This forces the network to provide guaranteed delay and
throughput.

2.4. QUALITY OF SERVICE 25

Application Layer

QoS management at the application layer assumes scalable media. The
application adjusts the media according to available resources. This ap-
proach gives full freedom to the application developer, but also greatly
increase the application’s complexity.

2.4.4 Renegotiation

Applications may change their QoS requirements, or a user may decide
to go from bad quality video to high quality. This change would require
more throughput and, therefore, a renegotiation of the QoS parameters.
Renegotiation adds an additional step to QoS management, illustrated in
Figure 2.15.

Figure 2.15: QoS Renegotiation

2.4.5 QoS and Mobility

The QoS described up to this point is what we can call traditional net-
work QoS. The renegotiation described focuses on the user. This defini-
tion of QoS is still valid, but additional problems arise when mobility is
introduced. If QoS management operates on a network and nodes that
are mobile, the QoS management mechanism needs to be aware of this
in order to guarantee QoS regardless of the mobile setting. This is where
this thesis focuses its research.

The first problem for guaranteeing QoS in a mobile enabled net-
work is that during a hand-over the link is usually severed, creating a
non seamless environment. Guaranteeing QoS for some complex traffic
classes will therefore not be possible under the hand-over.

The hand-over is initiated because of the need to go over from an
old link to a new link. Not only is the hand-over process itself difficult,
when it comes to QoS, but the new link may also cause problems. If a

26 CHAPTER 2. BACKGROUND AND RELATED WORK

Traffic class Conversational
class

Streaming
class

Interactive
class

Background
class

Fundamental
characterist-
ics

Preserve
time rela-
tion(variation)
between in-
formation
entities of the
stream. Con-
versational
pattern.

Preserve
time relation
(variation)
between in-
formation
entities of the
stream

Request
response
pattern. Pre-
serve payload
content

Destination
is not ex-
pecting the
data within
a certain
time. Pre-
serve payload
content

Example of
the applica-
tion

Voice Streaming
video

Web brows-
ing

background
downloads of
emails

Table 2.1: UMTS QoS Classes

Mobile Node has some QoS guarantees when connected to a LAN link.
When the Mobile Node changes link to perhaps GPRS some of those
QoS guarantees might not be kept any more, due to the restrictions of a
GPRS link.

Changing links and hand-overs needs to be handled either by in-
volving the end user or solving it in the middleware. A method for in-
volving the end user is by allowing renegotiation to be initiated not only
by the user, but also when a new link is taken in use. This might ulti-
mately involve the user, if the renegotiation ends up with lower QoS, the
user might prefer ways to adapt to the new limitations.

2.4.6 Traffic Classes

Applications have different QoS requirements. Some require low delays,
while others require high throughput. QoS traffic classes categorise ap-
plications and their traffic so that instead of talking about specific ap-
plication QoS characteristics, one can generalise and group applications
into traffic classes. This thesis applies the traffic classes specified by 3G
Partnership Project (3GPP). 3GPP has specified four classes: Conversa-
tional, interactive, streaming and background. The main distinguishing
factor between these classes is how delay sensitive the applications are.
Conversation defines traffic that is very delay sensitive while the back-
ground class is the most delay insensitive traffic class. Table 2.1 lists fun-
damental characteristics and examples of each traffic class. For further
details please see the 3GPP Quality of Service concepts and architecture
specification [1].

2.5. REMOTE BINDINGS 27

Figure 2.16: Implicit Binding

Figure 2.17: Explicit Binding

2.5 Remote Bindings

2.5.1 Introduction to Remote Bindings

In the middleware scenario, a way to connect components is needed.
This functionality is provided by bindings. Bindings enable communic-
ation between components. The bindings can be divided into two main
categories:

• Local Bindings

• Remote Bindings

Local bindings take two components that exist in the same address
space and enable communication between them. In its simplest form, a
local binding is a binding that uses simple references to enable commu-
nication.

Remote Bindings take two components that exist in different address
spaces and enable communication between them. This is a more com-
plex procedure, since simple reference addressing is not an option. Usu-
ally it takes a complex structure that includes information on which ad-
dress space the two components are to hold information that the remote
binding needs.

While a local binding and an address reference is small, a remote
binding might be large; in Orbix [17] the size of a remote binding is 350
bytes.

Figure 2.18: Open Binding

28 CHAPTER 2. BACKGROUND AND RELATED WORK

The problem of remote bindings can be solved in several ways. Some
basic requirements of remote bindings are discussed below. The three
types of binding; implicit, explicit and Open are discussed. OpenORB
[13] and ReMMoc [14], implementations that focus on these bindings,
are also discussed. The binding types are taken from [11]. More inform-
ation can be found in the book of Gordon Blair and Jean-Bernard Stefani
[4].

2.5.2 Implicit Remote Binding

The fist generation bindings were Implicit bindings. Implicit bindings are
used in CORBA and use a black box approach. This is illustrated in Fig-
ure 2.16. The two components, located on different address spaces, have
a connection to each other, but the connection cannot be accessed in
any way. This is in accordance with the transparency principle in middle-
ware. The two components do not need to know that the communication
is remote, as the binding is supposed to handle all the communication.

2.5.3 Explicit Remote Binding

An explicit binding is addressable for the components. A typical remote
binding is illustrated in Figure 2.17. The Explicit remote binding has a
interface that the data producing components connect to, and a con-
trolling interface, that are used to control and communicate with the
remote binding. There are two important things with explicit bindings:

• The act of creating a binding can subsume static QoS management
functions and other static operations.

• The controlling interface can be used for dynamic QoS manage-
ment.

The controlling interface allows for inspection and adaption.
The explicit remote binding is both visible and controllable. This

enables more control of the explicit bindings than implicit bindings.

Implementing a Explicit Remote Binding

The explicit remote binding is, like all remote bindings, represented in
two address spaces. When implementing a remote binding, the imple-
mentation also has to be represented in both address spaces. Imple-
menting the controlling interface, the one on top of the explicit remote
binding in Figure 2.17, requires special attention due to the fact that the
remote binding is implemented in both address spaces. If just one inter-
face is available, it has to be implemented on one side, illustrated in figure

2.5. REMOTE BINDINGS 29

Figure 2.19: One Controlling Interface

30 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.20: Two Controlling Interfaces

2.19. Another possibility is to have the controlling interface represented
in both address spaces, illustrated in Figure 2.20.

Implementing just one controlling interface allows just the one side
to have access to it. Implementing two allows both side to control the
binding.

There exist other ways of handling the controlling interface problem.
The above solution describes a solution that handles the problem inside
the remote binding. The problem can also be handled outside the remote
binding. A RMI type of access mechanism can be implemented to make
several access one interface, or a receptacles, described in [22]. The Re-
ceptacles catch all the calls to the controlling interface and redirects them
to the one controlling interface.

2.5.4 Open Remote Binding

Open bindings build on explicit bindings, but allow for more adaption
and inspection. The binding not only has data and controlling interfaces,
but the objects inside the binding have the same type of interfaces. The
inside structure of the Open Remote Binding is also available through
an object graph. The inside structure can be manipulated through the
open remote bindings controlling interface. The inside objects can also

2.5. REMOTE BINDINGS 31

be reached through the controlling interface, and be manipulated in the
same way. Figure 2.18 illustrates an open remote binding.

The Components inside the Open Remote Binding may be specialised
to operate in a special setting, e.g., using a UDP binding in the centre,
with a MPEG-2 decoder on both sides of that UDP binding. In other
situations a lossless decoder will be preferable. To be able to provide
a open remote binding for different situations, a Binding Factory was
created. The Binding Factory constructs the Open Remote Binding based
on some requirements. For instance, lossy or lossless decoding may be
set as a parameter when requesting a remote binding from the Binding
Factory. The Binding Factory will then take available components and
construct an Open Remote Binding that best suits the requirements. The
newly created Open Remote Binding is then given back to caller.

There may also exist a hierarchy of Binding Factories. The applica-
tion may call a high level Binding Factory to construct a Remote Binding
with some requirements. The high level Binding Factory might then call
other low-level Binding Factories to get components that it can use in its
component graph.

Different applications may want to control different levels of the OSI
model. Some applications might just want a Open Remote Binding that
handles low level things like connectivity, and control other high levels in
the application, others might want the Open Remote Binding to handle
buffers, encoders and so on. The Open Remote Binding’s structure re-
flect this. The Open Remote Binding is often built with the lower por-
tions of the OSI model in the centre of the binding. Other, more high
level components, then encapsulate the “basic” component to provide a
more complex service. This building allows for both the applications and
Binding Factories to construct a Open Remote Binding that satisfies the
requirements of the using components.

2.5.5 Remote Bindings and Mobility

Remote bindings in conjunction with mobility have been the area of
much research. The research has focused on providing connectivity des-
pite mobility.

ReMMoc[14] is a binding framework that uses some of the principles
described above in a mobile setting. This thesis operates in the same
problem domain. ReMMoc focuses on the different technologies used in
different domains. ReMMoc solves this problem by having an external
entity (inside the framework, but outside the binding) that can change
the type of technology used in the binding, depending on the technology
used in the current domain.

Mobiware [25] is a project that researches QoS and Mobility. The
project focuses on ATM, not IP. The project also tries to address the

32 CHAPTER 2. BACKGROUND AND RELATED WORK

problem at the network layer, and not the middleware layer, like this
thesis.

However not much effort has been done in making QoS a part of the
Remote Binding. Adaptive and reflective operations in a QoS enabled
remote binding in a mobile setting needs more research.

2.6 Summary

This chapter presents areas that have been much researched; mobility,
Mobile IP, middleware, QoS and remote bindings. Several research pro-
jects that dealt with the various research areas were also presented. CCM
is a component based middleware solution, openORB provides reflec-
tion, wireless ATM and ALICE provides mobility. The main problem
however is that none of these projects have combined the field of IP
based mobility management and QoS-Awareness in a middleware set-
ting. This thesis focuses its efforts on just that area.

Chapter 3

General Test Configuration

The method in Section 1.4 states that Mobile IP will be tested, and that
prototyping is used to validate MobiBind. To do this, a test lab is re-
quired. This chapter discusses the lab used for the testing and proto-
typing. The tools used in the testing of Mobile IP and the prototyping
and testing of MobiBind are also discussed here. The actual tests are
discussed in Chapter 4 and Chapter 8. This chapter only discusses the
general lab setup and the tools used.

3.1 Motivation

The main driving force when setting up the mobility laboratory was the
ability to test existing software for existing networks. Hence, the test lab
use equipment that is commercially available and the lab is configured
to resemble a normal network. A normal network is not specially con-
figured for a specific task, but rather configured to perform well on a
general basis.

The reason for this motivation is that the gap between the perform-
ance of peak setups, like the one described by Aladdin Saleh [30] and a
normal setup in today’s Internet or private networks is large.

3.2 Equipment and Network

The lab configuration, illustrated in Figure 3.1, includes LAN and WLAN
equipment, Linux and Windows based workstations, a laptop with a
WLAN- and LAN-card together with Mobile IP software.

33

34 CHAPTER 3. GENERAL TEST CONFIGURATION

Figure 3.1: Test Configuration

Correspondent Nodes

The correspondent nodes used in the tests were the PCs Beta and Khuns.
They were used to send data to the Mobile Node.

Beta

Beta is a Windows computer used in testing throughput with the Win-
dows based tool Iperf.

Khuns

Khuns is the primary test PC, running the Linux operating system and
the server side of the KGen traffic generator, see Section 3.5 for more
details on KGen.

Mobile Node

QuA1 was the laptop used as Mobile Node. It is running Windows and
has both an 10 mbit/s Ethernet card and a 802.11b WLAN card installed.
The Mobile Node was also running Birdstep’s Mobile IP client software.

3.3. NETWORK TRANSFER RATES 35

Access Router

The Access Router is a Cisco 3200 Mobile IP capable router. This is
the router that all traffic passes through. Cisco’s Home Agent software
operates on the Access Router.

Home Network

The Home network was set up as a virtual home network, so during the
tests the Mobile Node was never in its home network, but always in a
foreign network.

Network

The networks Simula Switched Ethernet and Ifi, are shared networks
connected to the Internet. The network on the other side of the access
router, were the Mobile Node operates, was dedicated only to the Mo-
bility laboratory. The Internet connectivity provided some background
traffic, making the networks even more realistic.

3.3 Network Transfer Rates

WLAN speed

The 802.11b WLAN has a max transfer rate of 11 mbit/s. The protocol
is designed to auto adjust its transfer speed from 11 mbit/s to 2 mbit/s
depending on network conditions. This feature was disabled and the
speed fixed to 11 mbit/s. The reason for this is discussed in Section 3.6.

LAN speed

The LAN between the Access Router and QuA1 laptop has a speed of 10
mbit/s. The LAN behind the Access Router to the corresponding nodes
has a speed of 100 mbit/s. This assures that any bottlenecks would be
between the Access Router and the QuA1 laptop.

3.4 Mobile IP Implementation

The Mobile IP software used in this thesis was from Birdstep Technolo-
gies and Cisco. Birdstep’s software was used in the Mobile Node, while
Cisco’s software was used in the access router.

36 CHAPTER 3. GENERAL TEST CONFIGURATION

Birdstep Mobile IP 2.0

Birdstep Mobile IP 2.0 is a client software designed to operate on the
mobile node. It was installed on the QuA1 laptop. Information on the
product can be found in the user guide [39], the administrators guide
[40], the diagnostic guide [37], and the release notes [38]. Birdstep Mo-
bile IP 2.0 runs on Windows, and was installed on the QuA1 laptop.

Cisco Home Agent

The software from Cisco operated in the access router and was used as
the Home Agent. Chapter one of the Configuration guide [35] gives a
introduction to the software.

3.5 Data Traffic Generation

In order to perform the test, we not only need the test lab and Mobile IP,
but also something to test the technology with. Some kind of data needs
to be sent during the tests.

To generate data traffic one could use different applications (e.g., Real
Player server) together with a packet analyser (e.g„ Ethereal) and then
perform an analysis of the packet data to make some statistics. This will
give accuracy on the link layer since the packet analyser reads packets
from the link card. Delays encountered from the link layer up to the
application layer would not be seen. Because this thesis focuses on the
upper layers, however, this approach was not chosen.

Another approach is to use an emulator for the data traffic generated
by applications. Several software packages are available. Some packages
also incorporates a statistical component, making it possible to read the
network jitter and other statistics directly from the program, taking away
the need for a independent statistical program. An example of such a
program is GenSyn [16] [47]. GenSyn is a Java based program used to
generate synthetic Internet traffic. Other traffic analysers, like Argus and
Multi Router Traffic Grapher (MRTG) are described and compared in
[32].

To be able to tailor the experiments and later test the remote binding,
a custom traffic generator was developed as a part of this thesis. The
traffic generator was named KGen and is a Java, command line based,
traffic generator with statistical abilities. The software produces graphs
and data records of the transmissions, giving the user the ability to further
post-process the data. Having the source code of the traffic generator
tool also helped in connecting the QoS-Aware Remote Binding to KGen.

3.5. DATA TRAFFIC GENERATION 37

Figure 3.2: KGen

KGen

KGen consists of a client and a server program, illustrated in Figure 3.2.
A brief overview of the two programs are given. For a more detailed look,
including the source code, at KGen, please go to the enclosed CD and
the directory KGen.

The KGen client is a piece of software that receives packets from the
KGen Server, and sends a reply back to the KGen server. Each received
packet has a serial number, the serial number is reported back to the
KGen server in the reply. The reply may be 6 bytes or more.

The KGen server sends packets to the KGen client. The packet con-
tains a serial number together with packet data. The packet may be 6
bytes or more. The server also has a feature that allows the packets to
grow in size. It is also possible to set sending rate and packet size. Stat-
istics like round trip time, jitter, and packet loss are produced.

Due to KGen being constructed in Java, KGen comes with some Java
specific limitations. The main limitation is that in some scenarios, the
granularity of the packet scheduling mechanism is on the order of 20
ms. This limitation is mentioned in several of the competing tools that
are Java based. When trying to send packets with a inter packet gap less
than 20 ms KGen groups the packets, sending several at once. This gives
accurate throughput, but smaller inter packet gap. This limitation does
not effect the conclusion of the tests conducted in this thesis. Still it
needs to be noted that the granularity of the results has to be seen with
this limitation in mind.

Iperf

Another test tool used was Iperf. This tool gives max throughout by
pushing as much data as possible through a network connection during

38 CHAPTER 3. GENERAL TEST CONFIGURATION

a defined time period. Iperf is a part of the NLANR software package
[41].

Iperf was used in the bandwidth tests. Iperf has no QoS-Awareness
and pushes max data, through a TCP connection, from one side to the
other. This test tool can be used to find the actual max data-sending rate
for each link.

3.6 Performance Tuning

While setting up the lab, we made several decisions that have an effect
on test results. To be able to reproduce the experiments these decisions
are discussed here.

Gratuitous ARP

One problem was gratuitous ARP. This is described in [34] and a known
problem to the researchers at Birdstep. It is basically a test to see if the
given IP belongs to somebody else. The problem occurs when the Mobile
Node connects to a new foreign network. This is what happens:

The Mobile Node sends a DHCP request for a new IP address, and
a DHCP server in the foreign network replies with a IP address valid for
the foreign network. Before the Mobile Node can use the received IP
address it has to make sure that the IP address it not used anywhere else.
It does this by sending out ARP messages, asking if anyone already has
the received address. It does this several times, and waits to see if there
is a response. The number of times that is sends out the ARP message
depends on the operating system (OS), but between 4 and 10 times with
a waiting time of 200 ms between each ARP message is common. This
dramatically increases the hand-over time.

A possibility to counter this effect is by reducing the number gratuit-
ous ARP messages, or by disabling it. This can be done in a test setup,
but since the normal Internet settings use gratuitous ARP, it was left on.

A solution to this problem proposed by [44] is that the DHCP server
performs the gratuitous ARP messaging on its available IP addresses, so
that the mobile node does not need to do it.

Noise

Noise from other wireless senders was also experienced in the lab. Since
the mobility laboratory is located in a building with other firms that have
their own wireless networks, this interference is unavoidable. Further-
more, since interference is inevitable between commercial wireless APs,
the noise experienced in the lab makes our tests even more realistic.

3.6. PERFORMANCE TUNING 39

Figure 3.3: Uncontrolled Throughput Test

WLAN speed

Initial tests of the WLAN connections showed that during high band-
width utilisation the WLAN AP and card got confused, and interpreted
the traffic as heavy noise and errors. This caused the WLAN’s AP to
set different speeds on the connection, from 11 to 6 to 2 mbit/s. This
behaviour is caused by the protocol that is designed to adapt to vary-
ing network conditions. The protocol did not function well, and was
therefore disabled in the mobility laboratory. The speed was set to 11
mbit/s fixed. Figure 3.3 illustrates what happened when the adapta-
tion protocol was in use. In the figure throughput is increased to find
a saturation point of the link. But instead of giving a clear indication
when maximum throughput is reached, by increasing packet loss, the
link gives high packet loss and high RTT from the start of the test (when
the throughout is low). Figure 3.4 shows a test where adaptation was
disabled. The link has no or low packet loss and RTT up until a point
when the RTT and packet load explodes (followed by almost total packet
loss). This is a clear indication of the saturation point of the link.

Hard and Soft Hand-over

In the test we always performed hand-overs as soft hand-overs. As noted
in the background chapter, soft hand-overs have both old and new links
available when performing a hand-over. In theory this makes it possible
to perform hand-overs seamlessly.

40 CHAPTER 3. GENERAL TEST CONFIGURATION

Figure 3.4: Controlled Throughput Test

Foreign Agent

A Foreign Agent was not included in the test configuration. The Mo-
bile Node instead allocates a co-located care-of address, as described in
Section 2.2.

Firewall Tunneling

The Mobile Node tunnels all packets through the Home Agent. This
eliminates triangular routing.

Other Tweaks

Several other methods for tuning the wireless network exists, e.g., ad-
justing beacon interval, and request to send threshold suggested in [12].
This would ultimately lead to better hand-over times, but since this thesis
attempts to test hand-overs in a normal setting, the attributes were left to
default values.

Chapter 4

Performance Test of Mobile IP

This chapter uses the general test bed and utilities described in the previ-
ous chapter to test Mobile IP. Testing Mobile IP is the fist step in specify-
ing QoS-Aware Remote Binding requirements and relates to sub-problem
one; identifying underperforming QoS parameters. These tests are de-
signed to find out how the basic Mobile IP implementation behaves and
if any QoS-parameters in Mobile IP under-perform. There is a particular
focus on Streaming and Conversational traffic requirements.

The tests are described in Section 4.1. Results and findings are presen-
ted in Section 4.2. The tests performed here are then compared to find-
ings from other researchers. This comparison is performed in Section
4.3. Finally a short summary is presented in Section 4.4.

4.1 Test Description

The Mobile IP test is performed at this early stage because we want to
find areas in which a QoS-Aware Remote Binding can enhance perform-
ance. Another reason to test Mobile IP now is that the results found in
this test, can be compared with the test of MobiBind later.

As described earlier one of the challenges with mobility management
is the hand-over between different links in which data are sent. As a res-
ult, QoS becomes harder to handle in mobility management. The tests of
Mobile IP focus on the relevant QoS parameters for the Conversational
and Streaming traffic classes, both of which are defined in Section 2.4.6.
The challenges in providing QoS today rests on these two most QoS
demanding traffic classes. The basic requirement of mobile connectiv-
ity, keeping the nodes connected despite mobility, is solved in previous
work. This mobile connectivity is sometimes all that is required for the
“lower level” traffic classes.

Figure 4.1 shows the basic test setup: The tests and the QoS para-
meters that were tested. The first five QoS parameters of the figure

41

42 CHAPTER 4. PERFORMANCE TEST OF MOBILE IP

Figure 4.1: Test Setup

were tested using KGen, the last QoS parameter was tested using Iperf.
KGen was used to emulate both Conversational and Streaming traffic.
To emulate Streaming traffic we used RealPlayer Server data traffic pat-
tern, whose pattern is described in detail by Tianbo Kuang et al. in
[20]. The RealPlayer traffic emulated has a throughput of 1609 kbit/s
one way(from the server), with only acks travelling the other way (to the
server). 1609 kbit/s represents a high quality video stream. The Real-
Player Server encodes one video frame at the time, and sends it to the
sender. One video frame is typically too large to be fitted inside one da-
tagram, so several datagrams are created when a video frame is encoded.
This encoding scheme produces a bursty traffic behaviour. This bursty
behaviour is also described in [20]. The burstyness of RealPlayer was
also emulated with KGen.

The Conversational traffic was emulated using a VoIP traffic pat-
tern. One of the differences between Conversational traffic pattern and
streaming is that the conversational stream is the same size in both dir-
ections. G711 is a voice encoder and decoder that is used in VoIP. G711
produces 64 kbit/s in each direction, giving a total throughput of 128
kbit/s. 128 kbit/s represents a high quality VoIP stream. G711 emula-
tion with KGen was used to emulate the Conversational traffic class.

Two different throughput tests were performed. Iperf was used to test
max throughput without any QoS requirements. KGen was used to test
max throughput with QoS requirements. The difference between the two
max throughput tests (with and without QoS requirements) are described
in Section 4.1.4.

Table 4.1 presents the traffic patterns that were used to test the differ-
ent QoS Parameters.

The tests of Mobile IP were conducted several times on different days.
Many hours were spent in the lab; both to perform preliminary investig-

4.1. TEST DESCRIPTION 43

QoS Parameter Traffic Pattern

Jitter Conversational
Packet Loss Conversational and Streaming
Round Trip Time Conversational and Streaming
Max Throughput Max offered load
Max Throughput Max offered load with QoS demands
Hand-over Time Conversational

Table 4.1: Traffic Patterns for Testing of QoS Parameters

ations of Mobile IP (in order to decide test scope and to design efficient
tests) and to perform the actual tests. Testing on different days was es-
pecially important in WLAN. WLAN uses a shared medium, air, that in
addition to being shared may experience changing atmospheric interfer-
ence on different days.

Each test ran for 60 seconds, using either 3000 packets for the Con-
versational traffic class, or 12000 packets for the Streaming traffic class.
The throughput tests used special tests describes in Section 4.1.4. In
Conversational traffic a packet was sent every 20 ms. The Streaming
class sent 4 packets every 20 ms.

4.1.1 Jitter

The first parameter tested was jitter. Many modern applications are jitter
sensitive, like Conversational and Streaming traffic. The applications
need to have a steady stream of data in order to perform a high quality
playback. This is why jitter is an important QoS parameter and should
be included in the investigation.

Jitter was tested on both LAN and WLAN, using KGen and the con-
versational traffic, with a sending rate of 20 ms.

4.1.2 Packet Loss

Another important QoS parameter is packet loss. Packet loss causes
TCP streams to reduce their sending rate, regardless of the reason for the
packet loss. TCP also resends lost packets, possibly increasing delivery
time. When faced with packet loss, UDP streams do not reduce send-
ing rate or resend lost packets. If packets are lost when using UDP, the
application simply receives an incomplete data set. Streaming and Con-
versational traffic can typically manage some gaps in the data set without
a noticeable reduction of user quality. But if the packet loss gets too
high, and thus the gaps in the data set (when using UDP), user quality

44 CHAPTER 4. PERFORMANCE TEST OF MOBILE IP

will become compromised. It is therefore important to have low packet
loss.

Packet loss was tested both for WLAN and LAN using both Conver-
sational and Streaming traffic. Packet loss in hand-overs was also tested.

4.1.3 Round Trip Time

Another important QoS parameter is Round Trip Time (RTT). Streaming
traffic does not have very strict RTT requirements, but a large RTT means
that the user needs to wait longer before the playback can begin. In order
for Conversational traffic to give good quality to the user, the RTT needs
to be below 200 ms [30]. 200 ms is the limit of what the user can hear, so
the user will not notice any quality change. However, if the RTT is over
200 ms, the user may notice a delay when having a conversation. This
delay gets worse the higher the RTT becomes.

RTT is tested for both WLAN and LAN, and for Streaming and Con-
versational traffic.

4.1.4 Max Throughput

The max throughput of the link limits the number of streams a link can
support.

During the preliminary testing we found that when a link had max-
imum traffic load, QoS for Streaming and Conversational traffic was vi-
olated. Max throughput was therefore tested in two different ways: One
test, performed with Iperf, tested the max throughput without paying at-
tention to any QoS requirements. Another tested max throughput while
paying attention to QoS requirements. The difference between the two
tests is that max throughput without any QoS attention only tries to push
as much data as possible through the link. The max throughput test with
QoS attention tries to push as much data as possible, while not com-
promising QoS. In this test QoS was specified as meaning a high RTT
and packet loss.

Max throughput with QoS was performed with KGen. A Special in-
cremental feature built into KGen was used. KGen incrementally in-
creases the kbit/s while monitoring packet loss and RTT. When the kbit/s
reached a certain point, the RTT and packet loss exponentially increased,
reaching a defined threshold. The kbit/s that KGen was sending at the
time the threshold was reached, was said to be the max throughput with
QoS. The tests ran several times until a reliable throughput could be
found.

Max throughput without QoS was performed by sending as many
packets as possible over the connection. KGen was not suitable for this,
so Iperf was used for this test. Iperf does not take into consideration QoS

4.2. TEST RESULTS AND FINDINGS 45

Handover Scenario From To

1 WLAN WLAN
2 LAN WLAN
3 WLAN LAN

Table 4.2: Hand-over Scenarios Tested

and only tries to maximise the throughput, regardless of RTT or packet
loss.

Both tests were ran on WLAN and LAN.

4.1.5 Hand-over Time

Seamlessness is an important QoS parameter in Conversational and Stream-
ing traffic. Any connection breakage would result in bad service to the
user. A video might stop playing, and similar quality degeneration would
be noticed in a conversation.

Hand-over is a place that the data flow would potentially be broken.
When the node switches networks it might take some time before the
new link (with new route to the Mobile Node) is operational.

The last parameter tested was therefore hand-over time.
This test measures how long the connection between a correspondent

node and Mobile Node is down when a hand-over is performed.
The tests were performed on hand-overs from and to both LAN and

WLAN. Table 4.2 displays the three different hand-over scenarios that
were tested.

4.2 Test Results and Findings

This section presents key results and findings of the Mobile IP tests de-
scribed above. Selected results based on the complete test set are presen-
ted here. For complete test results refer to Appendix A. The results and
findings presented here focus on answering sub-problem one, but also
shed light on findings that can help to specify requirements for the design
of a QoS-Aware Remote Binding.

4.2.1 Jitter

The jitter test results, presented in table 4.3, show that LAN had signific-
antly lower jitter than WLAN. The LAN results also had a lower standard
deviation, meaning more stable numbers.

46 CHAPTER 4. PERFORMANCE TEST OF MOBILE IP

Max Jitter (ms) Average Jitter (ms) Standard Deviation (ms)
WLAN 105 0,619 0,076
LAN 13,109 0,1 0,011

Table 4.3: Jitter Test Results

The jitter was relatively small, with average jitter below 1 ms. Max
jitter on WLAN is probably the only value that is high enough to cause
quality degeneration.

4.2.2 Packet Loss

Max Packet Loss (%) Average Packet Loss (%) Standard Deviation (packets)
WLAN 1,3 x 10

−2 1,1 x 10
−3 26,66

LAN 3,3 x 10
−4 2,2 x 10

−6 0,13

Table 4.4: Packet Loss Test Results

The packet loss was close to zero in LAN. WLAN had an erratic
pattern that can be partly explained in the wireless medium, its standard
deviation were also relatively high. LAN packet loss was so low that it
was difficult to measure. The test showed a big difference between packet
loss in LAN and WLAN.

Packet loss was also measured during hand-over. 61 packets were lost
when going from WLAN to WLAN. When going from LAN to WLAN the
packet loss was 49. The packet loss was also 49 when going from WLAN
to LAN.

4.2.3 Round Trip Time

Conversation (ms) StDev (ms) Streaming (ms) StDev (ms)
WLAN 4,06 0,41 10,33 1.58
LAN 1,26 0,03 4,09 0.03

Table 4.5: RTT Test Results

Table 4.5 shows that WLAN uses more time than LAN to send the
same amount of data back and forth. In fact, WLAN uses about 400%
more time in the Conversation traffic class, and about 200 % more time
in the Streaming traffic class. This could be because a Twisted Pair (TP)

4.2. TEST RESULTS AND FINDINGS 47

Figure 4.2: WLAN Max Throughput Test

cable is faster than air, or it might be because Ethernet tries to send pack-
ets and sees if it is successful, while WLAN checks to see if the link is
available before sending.

It is also only natural that there is a difference in RTT between Con-
versational and Streaming traffic. Streaming traffic has larger and a higher
number of packets than Conversational traffic.

In WLAN it was noticed that the RTT increased as the condition of
the link worsened.

4.2.4 Max Throughput

Throughput QoS(kbit/s) Throughput no QoS(kbit/s) StDev (kbit/s)
WLAN 3768 5488 51
LAN 8791 8811 36

Table 4.6: Max Throughput Test Results

The results of the max throughput test, with and without QoS, is dis-
played in Table 4.6.

Despite the fact that WLAN has a higher theoretical bandwidth (11
mbit/s) than LAN (10 mbit/s), both tests showed that LAN outperformed
WLAN.

In WLAN there was a big difference between how much throughput
the link could have with and without QoS. Figure 4.2 illustrates what

48 CHAPTER 4. PERFORMANCE TEST OF MOBILE IP

happens between QoS max throughput and no QoS max throughput.
After the max throughput with QoS has been reached, the link’s RTT
and packet loss starts to increase. At the max throughput without QoS,
the link is experiencing high RTT and high packet loss. The difference
between QoS and no QoS max throughout is 1720 kbit/s, or about 31
%. So for real-time sensitive applications or traffic classes, a WLAN
link should not have a higher throughput than 3768 kbit/s. Used for
Background traffic, however, the WLAN link could have a throughput
of 5488 kbit/s.

Even more interesting was the difference between QoS and non QoS
max throughout on LAN. The throughput test found that there was al-
most no difference in throughout with or without QoS requirements in
LAN. In WLAN, however, there was a significant decrease in through-
put when QoS requirements had to be met. This shows a clear difference
between LAN and WLAN.

4.2.5 Hand-over Time

From -> To Hand-over time (ms) StDev (ms)
LAN -> WLAN 976 18
WLAN -> LAN 976 8

WLAN -> WLAN 1229 31

Table 4.7: Hand-over Time Test Results

Table 4.7 presents the hand-over times found through testing. The
hand-over times were found to be very stable in the technologies we
tested. A hand-over from or to LAN takes 976 ms. A hand-over from
WLAN to WLAN takes a little longer; 1229 ms. Seamlessness is lost for
about one second during each hand-over. The measured hand-over time
suggests that Conversational traffic, particularly VoIP, might be difficult
to support during hand-overs, due to the limit of 200 ms with regards to
user perceived delay.

4.3 Analysis and Comparison

This sections further discusses the test results and findings. Test results
and findings from other researchers are also discussed and compared to
this thesis results. Some areas that should be addressed in the require-
ment specification are also highlighted.

The test of Mobile IP showed that jitter was low when using Mobile
IP. Only in a few circumstances was jitter a problem. Therefore, jitter

4.3. ANALYSIS AND COMPARISON 49

handling should probably not be the main focus when we specify the
QoS-Aware Remote Binding requirements.

[19] also presents results of a WLAN test lab. They found that jitter
does not become a problem until the link becomes very weak. The jitter
results from this thesis test was also stable, with a low standard deviation.
So jitter should not be view as a problem for the rest of this thesis.

Packet loss was also tested. The tests showed that LAN was very
stable when it came to packet loss; almost no packets were lost. WLAN
had a much higher packet loss rate, and a much higher standard devi-
ation.

Viewing only this thesis packet loss test we can conclude that there
is a big difference between LAN and WLAN when it comes to packet
loss. WLAN loses a lot of packets, while LAN is very stable and hardly
no packets are lost.

Packet loss for hand-overs was also very high. Depending on the
technologies involved, either 59 or 63 consecutive packets were lost.
This is a very high number, that spans from mobility management, and
the requirement specification of a QoS-Aware Remote Binding should
address the problem of high packet loss.

The RTT measured was lower for Conversational traffic than Stream-
ing traffic. This was to be expected, since more data was transported in
the streaming tests. It is more interesting to note that the RTT for the
same traffic is greatly different in LAN and WLAN. LAN has a lower
RTT than WLAN in both test scenarios. This is a big difference that can
be used if one needs to decide, from looking at the RTT, which type of
link the remote binding is currently using.

Max throughout was measured with, and without QoS requirements.
These tests revealed a difference between LAN and WLAN. While LAN
had almost the same throughput with and without RTT QoS require-
ments, WLAN showed a big difference. About 8,8 mbit/s could be sent
through the LAN link of a theoretical 10 mbit/s, regardless of having
QoS requirements or not. The WLAN link, despite a theoretical band-
width of 11 kbit/s, could only send 3,7 mbit/s through the link for QoS
sensitive traffic and 5.5 mbit/s for non QoS traffic. When trying to send
more data than 3,7 mbit/s on the wireless link, the link responded with
higher RTT and higher packet loss.

The hand-over time measured in the tests was very stable, taking
about one second. This is an unacceptably long time for both stream-
ing and conversational traffic. Hand-over times was also measured by
[29]. They also found that the hand-over time took about one second.
The hand-over time should therefore be addressed in the requirement
specification of the QoS-Aware Remote Binding.

50 CHAPTER 4. PERFORMANCE TEST OF MOBILE IP

4.4 Test Summary

The findings and observations discussed in this chapter show that there
is a big differences between how LAN and WLAN links behave, creating
a need for an adaptive remote binding. The tests also show that hand-
overs cause both packet loss and connection breakage. Results from this
chapter will be used in the requirement specification of the QoS-Aware
Remote Binding in the following chapter.

Chapter 5

QoS-Aware Remote Binding
Requirements

To answer the second sub-problem, that relates to the requirements of a
QoS-Aware Remote Binding. The tests of Mobile IP serve as a founda-
tion. This thesis takes the notion of QoS into the remote binding require-
ments. The requirements are divided into two categories, first we have
the general requirements, that are requirements for a remote binding,
secondly the QoS remote binding requirements in the mobile domain is
discussed and specified. The tests of Mobile IP from Section 4 are used
as a foundation when specifying the requirements in this chapter, and
especially in Section 5.2.

The requirements contain the words must and should. The words are
defined as follows:

Must or the adjective “required”, means that the item is an absolute re-
quirement of the specification.

Should or the adjective “recommended”, means that, in some circum-
stances, valid reasons may exist to ignore them, but the full implic-
ations must be understood and carefully weighed before choosing
a different course.

5.1 General Requirements

The general requirements of the remote binding are the requirements that
enable it to operate in a mobile setting. There are four general require-
ments.

51

52 CHAPTER 5. QOS-AWARE REMOTE BINDING REQUIREMENTS

5.1.1 Mobile Connectivity

A local or remote binding in component bases middleware enables con-
nectivity between components. The QoS-Aware Remote Binding should
do this, but also extend this connectivity to cover a Mobile Node, i.e.
one of the components exists in an address space in a computer that is
mobile.

REQUIREMENT The remote binding must connect two mobile com-
ponents together.

5.1.2 Mobility Management

To enable the Mobile Node to change APs. i.e., hand-over LAN to
WLAN and WLAN to WLAN, the binding must encapsulate a Mobile
IP client.

REQUIREMENT The remote binding must implement Mobile IP for
mobility management.

5.1.3 Two-Way Connectivity

The binding should support generic data traffic, and traffic might be two-
way: Telephony is an example of such an application. To be able to
handle applications like voice and other bidirectional applications, the
binding should be bi-directional.

REQUIREMENT The remote binding should provide a two-way con-
nection.

5.1.4 Explicit Remote Binding

The remote binding needs to be adaptable, and the design of an explicit
remote binding (discussed in Section 2.5) provides this, in the form of
connecting and controlling interfaces.

REQUIREMENT The remote binding should be designed as an explicit
remote binding.

5.2 QoS Requirements

The general requirements specifies a remote binding that has the ability
to function in a mobile domain. From our test of the QoS parameters,
we concluded, that hand-over and link changes have a major impact on
QoS. Therefore, the QoS-Aware Remote Binding must be designed to
handle and share information about hand-over and link changes.

5.2. QOS REQUIREMENTS 53

5.2.1 QoS Monitoring

The link change comes as a consequence of the hand-overs. In mobile
computing, the link may change drastically after each hand-over.

When the link changes, the QoS characteristics change. It is import-
ant that the remote binding is aware of this and in some way uses this
information. The information can also be useful for the using compon-
ents in their effort to provide the best service possible.

The remote binding should therefore provide QoS monitoring of key
QoS parameters. This network QoS information should be available
both to be used in the binding for adaption, and to the using compon-
ents.

The QoS monitoring needs to be aware of the fact of the link change
that occurs after a hand-over, and should strive to provide as accurate
information as possible after a hand-over.

REQUIREMENT The remote binding must provide QoS monitoring.

5.2.2 Hand-over Aware

Special to the mobile domain is the hand-overs. It is important that the
remote binding is aware of this and can understand the implications that
a hand-over yields.

As stated earlier the one of the main operational differences for a
remote binding in a mobile domain is hand-over. It is therefore natural
that this area is were the remote binding needs to focus on.

As stated in Chapter 4, the Mobile IP tests showed that QoS charac-
teristics like high packet loss and loss of connectivity was what happened
when a hand-over occurred. These problems are addressed in the follow-
ing requirements.

Packet Loss

As discussed in the Mobile IP tests packet loss, especially in hand-overs,
is high. It is therefore important that the remote binding minimises or
eliminates packet loss during hand-over.

REQUIREMENT The remote binding must minimise packet loss during
hand-over.

Data-flow

The second difference that the Mobile IP tests showed, were that when
a hand-over occurred the link went down for about one second. It is

54 CHAPTER 5. QOS-AWARE REMOTE BINDING REQUIREMENTS

important for applications to have a seamless data-flow. Therefore, the
binding should provide this.

REQUIREMENT The remote binding should maintain data flow during
hand-over.

Monitoring

The using components are aware of the explicit remote binding and might
also be aware that the link is a mobile link. The components might want
information about the hand-over. The main attribute for a hand-over
is the hand-over time. There might also be interesting to know when
a hand-over is occurring. This information should be available to the
components.

REQUIREMENT The remote binding should provide hand-over monit-
oring.

5.3 Summary of Requirements

The requirements that were discussed and specified in this chapter aims
at providing the best possible operation for components in a mobile en-
vironment. The following requirements were specified:

1. The remote binding must connect two mobile components together.

2. The remote binding must implement Mobile IP for mobility man-
agement.

3. The remote binding should provide a two-way connection.

4. The remote binding should be designed as an Explicit remote bind-
ing.

5. The remote binding must provide QoS monitoring.

6. The remote binding must minimise packet loss during hand-over.

7. The remote binding should maintain data flow during hand-over.

8. The remote binding should provide hand-over monitoring.

Chapter 6

QoS-Aware Remote Binding
Design: MobiBind

This thesis not only tests Mobile IP and specifies requirements for a QoS-
Aware Remote Bindings in Mobility Management; it also designs and
implements a specific QoS-Aware Remote Binding. The designed and
implemented QoS-Aware Remote binding for mobility management is
named MobiBind. MobiBind addresses the issues from both the Mobile
IP tests and the requirement chapter.

This chapter starts with a discussion on the abstraction level for Mo-
biBind in Section 6.1. This discussion refers to the OSI model, open and
explicit bindings, binding factories and nested bindings.

After the abstraction level of MobiBind has been discussed, Section
6.2 map the requirements from Chapter 5 to the functionality of Mobi-
Bind. This section also discusses the main reasons for the chosen func-
tionality.

The design of MobiBind is then presented; in Section 6.3 the struc-
tural design and in Section 6.4, the functional design. As noted in the
method the design and implementation of MobiBind was an agile and it-
erative process. The end design is presented in this chapter together with
interesting design decisions. Any references to testing in this chapter
refer to the agile and iterative process.

At the end of this chapter example of use is presented. The examples
illustrate typical uses of MobiBind.

6.1 Abstraction Level

The first design decision that requires our attention is the abstraction
level of MobiBind. The abstraction level efficiently sets the scope of the
explicit binding.

55

56 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

The abstraction level of the binding can be looked upon as deciding at
which layer of the OSI model the binding should be designed at. There
are two main ways of doing this. A remote binding can be designed
either at a low level, or at a high level. The low level would cause the
explicit binding to get responsibilities of the network layer. A higher
level of abstraction would increase the explicit binding’s responsibilities,
towards the application’s responsibilities.

6.1.1 Low level

If an explicit binding is implemented at the network layer the remote
binding would typically have communication interfaces that support pack-
ets. The remote binding would just receive and deliver packets to the
binding clients (the components that are connected to the remote bind-
ing through the communication interfaces). This packet based commu-
nication enables the remote binding to focus on delivering the pack-
ets, and operations related to this. Compression and decompression is
then typically something that is done outside the explicit remote bind-
ing, maybe by the client and server applications. This makes the remote
binding less complex, and adds complexity to the client/server. The com-
pression and decompression is something that needs to be done between
the client and server (sending a raw stream through the network is simply
a waste of resources). So the question is where to place the complexity
of compression and decompression, not whether to implement it or not.

At this low layer of abstraction the remote binding would have no
knowledge of the application specific stream that the packets are made
from. This makes the remote binding unable to know which, if any, pack-
ets are important and should be given priority.

The remote binding cannot manipulate the packet stream at this low
level, but changing network conditions could easily require change in the
stream in some way. Since the stream is compressed and decompressed
from a stream to packets outside the explicit remote binding, information
about the changes in the network should be available to components that
are responsible for converting the stream to packets, and probably also
the component that are producing the stream.

At this low level the explicit remote binding would concentrate adap-
tion at the lower layers, i.e., providing best possible network QoS to the
binding components.

6.1.2 High Level

Designing a explicit remote binding at a high level would enable the ex-
plicit remote binding to receive and deliver application specific streams,
not “generic” packets. At this high level the explicit remote binding

6.1. ABSTRACTION LEVEL 57

Figure 6.1: Explicit Remote Bindings and the OSI Model

knows what type of stream it is currently managing and could make
decisions based on both the stream type, and the network conditions.
When the explicit remote binding is faced with low throughput, it could
apply a stream specific compression algorithm that would require less
throughput from the network.

The explicit remote binding would at this high level know the stream
it is presented with. The more knowledge the remote binding would
get about the stream, the better would the decision about compression
be. The explicit remote binding would require to hold a large library of
compression algorithms in order to manage different network conditions
and different streams. This would increase the size of the binding. Added
complexity to choose appropriate compression algorithms would also
have to be included in the explicit remote binding.

Figure 6.1 illustrates the added complexity problem. Explicit remote
bindings are “black boxes” and can not be opened and manipulated. So
in order to handle increased responsibilities the explicit remote binding
would have to grow in size, e.g., by containing many different compres-
sion algorithms.

6.1.3 Discussion

There are two arguments that can be applied when choosing abstraction
level for MobiBind. First, the end-to-end argument by Saltzer et al. [31].
Secondly the “one shoe does not fit all” argument.

58 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

This thesis aims at enhancing QoS performance. The problem state-
ment does not state any specific traffic or application type that the remote
binding should be created for. If the explicit remote binding is implemen-
ted at a high level, support for “all” types of streams should be included.
The binding would then grow to be very large. The well known argu-
ment of “one shoe does not fit all” would be applicable to that scenario:
A large remote binding would not be able to run on a PDA because of
memory limitations.

The end-to-end argument by Saltzer states that if you have the choice
of implementing functionality on a high or low software level, the higher
level should always be chosen. The only exception from the rule is that if
some performance gain is given by implementing the functionality at the
lower layer.

The lower software layer is in this discussion the explicit remote bind-
ing, and the higher layer is the client and server that are producing and
consuming the stream. The functionality is the compression and decom-
pression. Placing the functionality, i.e., the compression, in the binding
would be non coherent to the end-to-end argument. So according to the
end-to-end argument a performance gain should be the only reason for
placing the compression inside the explicit remote binding. The perform-
ance gained by this, as described above, is the added value of managing
the stream inside the explicit remote binding. The binding sees both
the stream and the network and therefore make decisions based on both
sources of information. This management could, however, easily be done
outside the explicit remote binding if the binding components could ac-
cess information about the network. So to conform with the end-to-end
argument the compression should be placed outside the explicit remote
binding. The components performing the compression should instead
access the link aware information, as stated in the requirements, to ad-
apt the stream.

Another way to view the explicit remote binding is inside a nested
open binding component. A open component is a way of building up
the OSI layers. The open design enables the components to change the
inside components. The open binding would then not need to contain all
possible compression algorithms, but the compression algorithm could
be changed depending on the type of stream.

The low level explicit remote binding could then be used as a base,
when constructing a higher level nested open remote binding. This prin-
ciple is illustrated in Figure 6.2.

A way of creating the open binding is by a binding factory. The bind-
ing factory is supplied with some parameters, in this case it could be
stream type and some notion of what quality the user appreciates. The
binding factory would then take the explicit remote binding, and con-
nect appropriate compression and decompression components together

6.2. MAPPING REQUIREMENTS TO FUNCTIONALITY 59

Figure 6.2: Open Remote Bindings and the OSI Model

with other needed components to create a stream and application spe-
cific open binding. It is important to note that a high level nested open
binding would only be required to contain one pair of compression and
decompression algorithms. The explicit remote binding at the same level
would need to contain all possible compression and decompression al-
gorithms. So an open binding at a high level would be smaller in size
than an explicit remote binding at the same level.

The problem statement does not specify a specific traffic type or ap-
plication; only enhance QoS, so MobiBind should be designed as a low
level explicit binding, that can be used by a binding factory to create open
nested bindings. An important feature would be to enable the binding
components to see relevant information that will enable them to perform
high level adaptation.

6.2 Mapping Requirements to Functionality

Table 6.1 lists the requirements from Chapter 5. The requirements are
mapped down to functionality and sections where they are discussed and
designed.

The three main functions of MobiBind is the Harvest mechanism,
hand-over detection algorithm and link-awareness. The Harvest mech-
anism’s main goal is to provide seamless connectivity during hand-overs.
The harvest mechanism also plays a part in minimising packet loss. An-
other important function of MobiBind is the hand-over detection al-

60 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Requirements Functionality / Section

The remote binding must connect
two mobile components together. Basic Remote Binding Design 6.3.1
The remote binding should provide
a two-way connection. Inner Binding Structure 6.3.2
The remote binding must implement
Mobile IP for
mobility management. Basic Remote Binding Design 6.3.1
The remote binding should be designed
as an Explicit remote binding. Basic Remote Binding Design 6.3.1
The remote binding must provide
QoS monitoring. Link Awareness 6.4.3
The remote binding must minimise packet Hand-over Detection Algorithm 6.4.1&
loss during hand-over. Harvest Mechanism 6.4.2
The remote binding should maintain data
flow during hand-overs. Harvest Mechanism 6.4.2
The remote binding should provide
hand-over monitoring. Hand-over Detection Algorithm 6.4.1

Table 6.1: Mapping Requirements to Functionality

gorithm. This algorithm enables MobiBind to provide hand-over monit-
oring and a efficient hand-over detection algorithm helps prevent packet
loss. The link-awareness functionality enables QoS-Monitoring, and also
helps the remote binding to provide QoS information to the binding con-
trolling components (the components that are using the controlling in-
terface of MobiBind).

6.3 Structural Design

This section presents the structure of MobiBind. The structure of Mobi-
Bind is given before the functional design discussion to better relate the
functional discussion to the actual structure of MobiBind.

Section 6.3.1 discusses the basic explicit remote binding design, then
a look inside MobiBind is provided in Section 6.3.2. A section about
Network communication is then presented in Section 6.3.4. Lastly, the
state machine of MobiBind is presented.

The structural elements of MobiBind will be used when the functional
design is presented, in Section 6.4.

6.3. STRUCTURAL DESIGN 61

6.3.1 Basic Remote Binding Design

Requirement four states that the QoS-Aware Remote Binding should be
designed as an explicit binding. The scope of the explicit binding is
already discussed, but the QoS-Aware Remote binding is also distrib-
uted, i.e., located in both address spaces, so design decisions have to be
made her as well.

Requirement one and two states that the remote binding should use
Mobile IP and connect two mobile components together. So a Mobile
IP implementation should be included in the design of MobiBind. This
Mobile IP implementation should lie in the middle of the remote binding
to provide mobile network connectivity.

There are several possibilities regarding what functionality should be
included at each side of Mobile IP in MobiBind. The majority of the
functionality can be implemented on one side of Mobile IP, or a more
balanced design could be chosen, with equal functionality on each side
of the Mobile IP implementation.

Figure 6.3: Basic MobiBind Design

If a binding were to be designed with major functionality on one side,
signalling would be required to notify the less functional side of any de-
cisions. This might be difficult in Mobility Management, since commu-
nication is down during hand-over. It is impossible for one side of the re-

62 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

mote binding to notify the other side that a hand-over is occurring, when
the network link is down. Because of this MobiBind is implemented
with equal functionality on both sides of the Mobile IP implementation.
This is illustrated in Figure 6.3. The two sides should also be able to both
monitor and make independent decisions. Both sides of MobiBind has
its own state, more on this in Section 6.3.5.

Figure 6.3 also has a controlling interface for both the sides of Mo-
biBind. This means that MobiBind manages the controlling interfaces
itself, and not externally as discussed as an possibility in Section 2.5.3.
This comes as a natural decision when MobiBind has two independent
sides. Both sides are equal, and there is no reason why one side should
have a controlling interface, and the other not.

Figure 6.4: Logical View of MobiBind

6.3. STRUCTURAL DESIGN 63

6.3.2 Inner Binding Structure

This section describes the objects within MobiBind and how they are
connected.

The inner structure of MobiBind allows for fulfilment of requirement
three, two-way connection. The structure also makes it possible to im-
plement the other functionality and assign responsibilities to the inside
objects of MobiBind, to fulfil the remaining QoS-Aware Remote Binding
requirements.

As stated earlier the remote binding is made of two independent and
equal sides. Figure 6.4 shows one of these sides. First, the side needs to
communicate with the connected component, secondly, it needs to sup-
port link and hand-over awareness and finally it needs to communicate
with the other part through the network.

Figure 6.5: Inside MobiBind

Figure 6.5 shows both sides of MobiBind. In the middle lies Mobile
IP, that is responsible for sending the UDP packets to and from the two
sides, more on network communication in Section 6.3.4. The controlling
interface goes through the Meta object. The design conforms to the lo-
gical design of the sides, described above. The connections shown in
this figure are only the main relationships, other connections exist that
are not shown in this figure. Here is a list of the objects different respons-
ibilities:

Inn The connection point for the binding component. Used by the
binding components to send packets to the receiving component.
Takes the binding component’s data packet and makes a MobiBind
packet of it.

64 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Controller Is responsible for link awareness and also contains a “sender
side” buffer. The Controller also plays a part in fast send.

Sender Sender communicates with Mobile IP and sends MobiBind pack-
ets through Mobile IP. It also encapsulates the MobiBind packets
inside a UDP packet. The Sender also plays a part in hand-over
detection.

Receiver Receives packets from Mobile IP and de-capsulates the Mobi-
Bind packets. Depending on the type of packet, it sends the packet
to either the Controller or Mobile IP (MIP) buffer. Notifies the
Controller that an ack has arrived. The Receiver is also respons-
ible for hand-over detection.

MIP Buffer Intelligent buffer to be used during hand-over, and adapta-
tion to future hand-overs. This buffer plays a key role in the harvest
mechanism.

Out Removes the data-packet from the MobiBind packet and delivers it
to the receiving component.

Meta Holds key information like link awareness information and hand-
over information. May also be used to alter the remote binding’s
behaviour (use MIP buffer or not) and to access link aware in-
formation. Responsible for starting the entire component. Manages
state changes.

Figure 6.6 shows the class diagram for the Remote Binding. The figure
shows important classes and methods that implement the functionality
of MobiBind.

6.3.3 Creation, Initialisation, and Destruction

Creation and Initialisation

The creation and initialisation of MobiBind is done via a call to it. Meta
then creates and initialises MobiBind based on the parameters given to
Meta. Meta then provides a way for the binding component to connect
to the communication interfaces.

Destruction

The destruction of MobiBind is done, via the controlling interface, to
Meta. Meta purges the buffers and deallocates the resources used by the
binding.

6.3. STRUCTURAL DESIGN 65

Figure 6.6: MobiBind Classes

66 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Figure 6.7: MobiBind Packet Format

6.3.4 Network Communication

MobiBind is implemented as two equal sides. All that connects them to-
gether is the communication through Mobile IP. A way for MobiBind to
communicate through this connection is therefore needed. This section
presents the packet format used by MobiBind.

In MobiBind the communication is sent over UDP, the simplest trans-
portation protocol available in the IP stack. UDP was chosen over TCP
because TCP adds features, like re-sending, that adds complexity and
delay. By choosing UDP we can chose the added complexity, and avoid
any complexity overhead. UDP also allow for lossy transmission. Mo-
biBind defines its own packet format that is sent through this UDP con-
nection. The packet format is designed to be very data efficient, meaning
that the packet format should generate minimum overhead. The packet-
format is shown in Figure 6.7. The packet contains the following fields:

• Sequence number

• Type

• Data

Sequence number

The Sequence number is used for keeping track of the packets and en-
abling acks. The acks are the basis for link awareness.

Type

MobiBind can send several packet types, so a type field is required to
define the packet content. The four types are:

6.3. STRUCTURAL DESIGN 67

• Data

• Harvest

• Ack

• Signal

Both data and harvest is used to send data (that is generated by the
binding components), where harvest is a special mark used during fasts
end and in the harvest mechanism. Ack is used by the Receiver to notify
the Sender that a data or harvest packet was received. Signal is used for
signalling between the two sides of the component.

Signals include ping and pong used in hand-over detection and a
purge signal, which job is to empty buffers, typically at the end of a trans-
mission.

Data

The data field of the packet is where the actual data is stored. In a data-
type-packet this will be the data received by the binding components.

6.3.5 State Machine

The state diagram of MobiBind is shown in figure 6.8. A brief overview of
the different states is given below. The state machine is used by the entire
binding, but especially by the harvest mechanism, which is described in
Section 6.4.2.

Transmitting Normal operation. MobiBind only monitors for hand-
overs in this state, and calculates link statistics (used in link aware-
ness).

Hand-over Hand-over in progress and the link is down. All incoming
data is buffered in the Controller. The MIP buffer is used to main-
tain seamless data flow.

Fast send Recovery period after hand-over. The buffered data, in the
Controller, is sent over with harvest marker set, to the MIP buffer.
Fast-send lasts until all packets in the sending buffer has been sent
to the receiving side.

This state machine represents the remote binding, and the current
state is held in Meta. The remote binding is made up of two independent
parts. The two parts have their own Meta and therefore their own state.

68 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Figure 6.8: MobiBind State Diagram

State change

The state is kept in Meta. All objects inside the remote binding can notify
Meta of a state change. There are different components that notifies
about different state changes. It is the Receiver that alerts about the
transaction from Transmitting to hand-over. This is where the hand-over
detection algorithm lies. Hand-over to fasts end is also the Receiver, this
is the object that knows when the hand-over is finished. Fasts end to
transmitting is the responsibility of the Controller. Fasts end lasts until
the Controller’s buffer is empty, and that is something the Controller
knows first.

When Meta is alerted of a state change it notifies the components that
needs to alter behaviour. The current state is always available through
Meta’s getState()method. This is also something that is available
through the controlling interface.

Because the two sides of the component are independent of one an-
other, both sides of the component has its own state. While these should
always be in synchronisation, it is possible for MobiBind as a whole to be
out of synchronisation. This will not cause the component to crash, but
may result in “none optimal performance”, such as an increase in buffer-
ing and packet loss. The state change is mainly caused by a hand-over,
therefore the de-synchronisation is caused by the two sides not detecting
a, or wrongly detecting a hand-over. The problem of de-synchronisation
and hand-over detection is the first area of the functional design, and are

6.4. FUNCTIONAL DESIGN 69

discussed next.

6.4 Functional Design

The functional design in this section gives the functionality needed to
support the remaining requirements. Hand-over detection discusses how
to detect a hand-over. The harvest mechanism provides seamless data
flow and reduces packet loss. Link awareness is a function that enables
the binding controlling components to access link information.

6.4.1 Hand-over Detection Algorithm

Hand-over detection is important because the requirement specifies that
the QoS-Aware Remote Binding should be hand-over aware. It is also
important to detect hand-overs when trying to reduce packet loss. The
Hand-over time that this algorithm produces needs to be correct in or-
der to secure seamless data flow, used by the harvest mechanism and
available through the controlling interface.

The hand-over detection algorithm is also the algorithm that allows
the state machine to change from transmitting to hand-over, and from
hand-over to fast send. This implies two distinct operations in the hand-
over detection algorithm: The first part is to detect the hand-over, the
second to detect when the hand-over has ended.

There are two fundamentally different ways of detecting a hand-over:
first, with the help of the underlying system, called notifications and
second, without the help of the underlying system. Both approaches
are discussed below.

Notifications

The remote binding may not itself detect the hand-over, but rather just get
a notification when a hand-over is occurring. This notification could be
given by mobility enabling software like Birdstep’s Mobile IP client or by
lower OSI layers. For instance the network card could give a notification
when the LAN cable is disconnected. This would enable MobiBind to be
very accurate in detecting hand-overs, and thus loosing fewer packets .If
the notifications were given from the physical layer, like the different link
cards, MobiBind would in some way have to detect all available cards
and subscribe to notifications from each one. The mobility enabling soft-
ware would perhaps be a better location to receive these notifications
from. MobiBind would then only subscribe to notifications from that
software. The problem with this approach is that currently no support

70 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

in Birdstep’s Mobile IP client or the lower layers for such notifications.
This makes notifications not possible at this time.

Alternative Detection Algorithms

Notifications would enable the QoS-Aware Remote Binding to get no-
tifications from the outside. This is not currently possible, so a way of
detecting hand-overs based on indications that are observable to Mobi-
Bind is needed. We will first discuss some alternative detection methods,
before the chosen design is presented and discussed.

Marker

One way to detect a hand-over is for the two sides of the remote bind-
ing to send a marker between them, when the marker it not returned, the
link is down. The remote binding can then start to take the time of the
hand-over. A problem here is to know when to re-send the marker, since
there should only be one marker. And also, who sends it.

Packet loss

The remote binding could monitor all packets sent by the binding
components, and require acknowledgements. If a defined number of
packets are lost, it interprets that as a hand-over in progress. This ap-
proach would work well when the mobile node operates on a LAN link.
The LAN link has very low packet loss and if a number of consecutive
packets are lost, it is most likely a hand-over. On bad links, like WLAN,
however the packets may be lost or delayed during normal operations,
making the remote binding wrongly assume hand-over. This approach
also requires that there is a steady stream of packets, because the remote
binding only monitor the packets sent. If for instance three packets are
sent within a few milliseconds on an unstable link they may be lost, but
the link may not be down.

Another problem here is that if only one side produces data, only one
side will detect the hand-over. This will create an unbalance between the
two sides of the remote binding.

Timer

A timer may be used to regularly detect hand-overs. The timer may
run a detection algorithm with a specified delay. The drawback is that
this polling strategy will only detect hand-overs in the timer interval, giv-
ing less accuracy. The timer may also need to gather link information for
each run. This data gathering may also take time.

Monitoring

6.4. FUNCTIONAL DESIGN 71

The component may use special packets to send from one to another,
when they no longer receive those packets it means that a hand-over is
in progress. There are several ways to perform the monitoring. They may
each send a stream to the other, or they may send pings to one another,
that the other side replies to with a pong. An algorithm has to be used to
be able to decide when a hand-over occurs. Either packet loss or timer
could be used. The disadvantage of this approach is the extra traffic that
the monitoring generates. On low bandwidth links this could become a
problem.

There is also a possibility to monitor data-packets, and not generate
own ping packets. This would require that regular data-packets are sent
regularly, to actually detect hand-overs. When testing this it was shown
to not produce good results. To reduce the number of pings sent, pings
may only be sent when there are no data packets to send.

In MobiBind
Notifications from Mobil IP would be the best way to detect a hand-

over. This option is not available today, and, thus; MobiBind was im-
plemented with packet loss and monitoring. Preliminary testing showed
that monitoring gave the best result in hand-over detection. Therefore,
this was used to detect hand-overs. The time before a packet is marked
as lost depends on the current RTT of the link (as described in Section
6.4.3). MobiBind has the RTT of the current link and the value of the
RTT is used when deciding how long MobiBind should wait for a answer
(pong) from the request (ping). This is an example of self adaptability.

The packet types used in monitoring are special signal packets called
ping, with the answer from the receiver; pong. One side sends out pings,
and receives pongs from the other as long as the link is up. When a
hand-over occurs the pongs will stop and the Receiver, which notifies
Meta about the hand-over. The end of hand-over is also an important
function of the hand-over detection algorithm. The ping packets are al-
ways sent, and when the Receiver starts to receive pongs again (when in
hand-over) it knows that the hand-over has ended. The number of pongs
the Receiver needs to get before declaring end of hand-over is controlled
by a parameter.

Securing Correct Hand-over Time

As described earlier the hand-over time should be a prediction of how
long the next hand-over takes. The hand-over time is also available to the
binding controlling components (through the controlling interface and
Meta. It may be used for adaptation to hand-overs outside MobiBind.
To do this we use the time of the last hand-over to predict the next one.
When MobiBind starts it assumes that a hand-over takes 1000 ms. 1000

72 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

ms is assumed because this is what the test of Mobile IP showed. Mo-
biBind monitors the actual time spent in each hand-over state, and uses
this information to calculate a new hand-over time. The stored hand-
over time is adjusted to reflect the hand-over-time just experienced. To
stop the hand-over time from going up and down to fast, since wrong
hand-over detections may cause very small hand-over-times (false pos-
itives), we need some kind of limitation. The hand-over time may be
restrained by minimum and max values. However, this is not recommen-
ded since hand-over time may vary greatly depending on technology used
to enable mobility. A better approach is to only allow the new hand-over
time to adjust the old one by a fraction. This fraction is defined in the
remote binding and may be set using parameters. The optimal fraction is
not researched and therefore not known, but may depend on link prop-
erties and the number of false positives. Currently it is set to 5 %, which
is a value that worked well in our test scenario. The formula looks like
this:

If:
new measured HT -/+ currentHT > currentHT*0.05 ->

newHT=currentHT +/- currentHT*0.05
Else:
newHT=new measured HT

False Positives and False Negatives

Two ways that the hand-over detection algorithm may fault is by produ-
cing false negatives and false positives. False positives and negatives have
consequences both for the hand-over time and the later described har-
vest mechanism and link awareness. The consequences for the harvest
mechanism and link awareness are discussed in detail in their respective
sections.

False negatives is were the detection algorithm believes that a hand-
over is not occurring when it is in fact occurring. This will not have
implications to seamless data flow, since the pings and pongs are re-
ceived (and thus the connection is not broken). It will however have
consequences for the link Awareness. The link awareness, described
later, is aware that link QoS may change drastically after a hand-over
(imagine going from LAN to a bad WLAN link) so the QoS-Awareness
has special functionality to handle this, but this require the hand-over
detection algorithm to notice the hand-over. More on the consequences
of false negatives in the QoS-Awareness in its section.

6.4. FUNCTIONAL DESIGN 73

Figure 6.9: Normal Operation Before Adaption

False positives, when a hand-over is falsely flagged, might cause the
hand-over time to be set very small, but as described above there are
mechanism to limit the implications of this (the fraction). False positives
will also effect the harvest mechanism, but not reduce QoS performance
of MobiBind. False positives effects on the harvest mechanism are de-
scribed later.

6.4.2 Harvest Mechanism

MobiBind is required to provide seamless data flow and reduce packet
loss. Both these requirements are addressed in the harvest mechanism.
The harvest mechanism uses a sender side buffer to reduce packet loss,
and a receiving side buffer to provide seamless data flow. How this is
done and which design decisions that are taken is described below.

Introduction

The central mechanism for the adaptation of MobiBind is called harvest,
and is a way for the binding, in a generic way, to know how much data
that needs to be buffered; in order to have seamless data delivery during
hand-over. Harvest is a mechanism that effects every state of MobiBind.
The main idea is to buffer the data that comes from the sender, while
in the state of hand-over, and push those packets over to the receiving
side MIP buffer. The receiving side will then be able to use the MIP
buffer during the next hand-over, masking the effects of the hand-over.
The two main objects involved is Controller on the sending side, and the
MIP buffer on the receiving side.

74 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Figure 6.10: Hand-over in MobiBind

Since the hand-over detection algorithm is based on indications, false
positives and false negatives might occur, and the harvest mechanism
should be able to manage this.

The harvest mechanism has three modes of operation:
First is the normal mode, i.e., state transmitting. When a packet is

sent in this state the packet goes straight through MobiBind and to the
receiver. This is illustrated in Figure 6.9.

Secondly, when a hand-over is detected and the link is down the
Controller starts to buffer all incoming packets, as illustrated in Figure
6.10. This causes the buffer to contain data needed for maintaining the
next hand-over seamlessly. The first hand-over will incur a stop in the
packet stream, as the remote binding uses this first hand-over to adapt.

Third, when the link has come up again, and the hand-over is fin-
ished, fast send begins. This is illustrated in Figure 6.11. In state fast
send the data buffered in the Controller object are sent, at a high transfer
rate to the MIP buffer. Fast send finishes when the entire buffer has been
moved. The packets that are sent when moving the buffer is marked as
harvest-type, causing them to remain in the MIP buffer until needed.

After the three states have been completed for the first time MobiBind
has adapted, it can now seamlessly support hand-overs, since enough
data now is in the MIP buffer on the receiving side, as shown in Figure
6.12. The next time a hand-over occurs the binding will save all packets
received in the Controller, and at the same time use the MIP buffer. This
causes the hand-over to appear seamless, illustrated in Figure 6.13.

The harvest mechanism manages false positives from the hand-over
detection well. If the mechanism has adapted, the false positives will not
have any noticeable effect to the binding components. All that happens

6.4. FUNCTIONAL DESIGN 75

Figure 6.11: Fast Send in MobiBind

Figure 6.12: Normal Operation After Adaption

76 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Figure 6.13: Hand-over After Adaption

is that the MIP buffer is used, emptied and refilled without any QoS
degeneration, loss of seamlessness or packet loss. In fact, a False positive
could be started to control when MobiBind should adapt to hand-overs.

False negatives will only happen if a link changes, without any con-
nectivity loss, as stated earlier. And as long as the link is up, there is no
problem for the harvest mechanism.

The frame of mind when it comes to the buffers is that the application
should decide how much to buffer. So during hand-over all data is buf-
fered, and then that amount is used during a later hand-over. If no data is
received during the hand-over MobiBind assumes that the binding com-
ponent did not have any thing to send. If data was collected, the packets
are spaced evenly out from the MIP buffer during the next hand-over.
Another way of doing this would be to specify a “packet space descrip-
tion” through the controlling interface, to provide information on how
the MIP buffer should be used while in the hand-over.

Supporting low RTT traffic

MobiBind is designed to work at a low level and for no special traffic in
mind. The harvest mechanism and the buffers it uses cause the RTT to
increase when providing seamless data flow. In order to support traffic
that is RTT sensitive MobiBind can change its inside structure. It can
remove the MIP buffer, so that RTT is kept low, but packet loss is still
kept to a minimum.

Meta can by a call through the controlling interface take out the MIP
Buffer from the packet delivery stream. This is shown in Figure 6.14.
The figure shows MobiBind with one MIP buffer taken out. This adapt-

6.4. FUNCTIONAL DESIGN 77

Figure 6.14: MobiBind Without MIP Buffer

ation can be done on both MIP buffers, or just the one, providing great
flexibility.

When MobiBind receives a request to remove the MIP buffer it takes
away the requested MIP buffer and connect the Receiver directly to Out.
This allows both data packets and harvest packets to go directly from the
Receiver, through Out, to the binding component. Figure 6.15 illustrated
this principle during fast send. The packets that are sent from the Con-
troller are not buffered at the receiving side, as normal, but sent directly
to the binding component.

Figure 6.15: MobiBind Without MIP Buffer in Fast Send

78 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Purging

The MIP buffer will after a hand-over contain a number of packets.
In the transmitting state the MIP buffer size will not change; it only
sends one packet out, for every data packet it receives. When the sender
reaches the end of the stream the last portion of the streams data packets
will remain in the MIP buffer. Purging addresses this problem.

The size of the MIP buffer does not change during the transmission
state. This is normal behaviour. The packets in the buffer are going to be
used to provide seamless connectivity during the next hand-over. At the
end of the transmission however this is not wished behaviour. The last
portion of the stream will remain in the MIP buffer.

This is avoided by adding a way for the binding controlling compon-
ents to notify MobiBind that the end of the stream is reached. This is
done via a call through the controlling interface called purgeAllBuffers().
The call goes to Meta and involves the Receiver, Controller and MIP
buffer.

When Meta receives a request to empty buffers, it sends a request to
all the MIP buffers to purge their buffers. The call effect the entire dis-
tributed binding; the remote MIP buffer is reached though MobiBind’s
signalling packets.

6.4.3 Link Aware

As stated by the requirements the QoS-Aware Remote Binding should
support QoS monitoring. Link awareness is the functionality that provides
this. The QoS parameters of the current link should be made available
to MobiBind’s inner objects and also to the binding controlling compon-
ents. This information might help applications or other components to
make decisions.

The lower layers does not support notification about current QoS of a
link, so MobiBind must gather this information by it self. The Controller
holds information about each packet sent, and receives an ack to each
data packet from the other side of MobiBind. This information forms the
base of the calculation, which is described later.

Characteristics

Which QoS parameters does the binding controlling components and
MobiBind need information about, and which is it possible to imple-
ment?

All the normal characteristics, those that were tested in the Mobile
IP tests, are also interesting here; RTT, jitter and bandwidth and packet
loss.

6.4. FUNCTIONAL DESIGN 79

Jitter and RTT can be monitored by the ack mechanism and the Con-
troller object. The arrival time of the acks, together with sent time of the
packets give both RTT and jitter. MobiBind uses the RTT in the hand-
over detection algorithm. This is actually an excellent way of adapting.
The RTT will vary, and therefore the hand-over detection algorithm also.
This causes fewer wrong hand-over detections, as discussed in the hand-
over detection algorithm, Section 6.4.1.

Bandwidth could have been used for the sending component, i.e. a
video streaming server, to choose the correct codec. It would be more
complex to measure bandwidth, since the entire link would have to be
flooded, and that would not be good for QoS performance in a shared
medium. As an alternative bandwidth could be fetched from the network
link card. This is not currently available, so therefore the bandwidth is
not available in MobiBind.

Bandwidth and saturation tests could be provided by the binding as
tests. The binding controlling components could request the tests, know-
ing that it could not transmit at the same time. This is not implemented;
the binding may not have sole ownership of the link, and others may
suffer because of these tests. Also, the total bandwidth would not be
something that can be controlled by a component in the middleware,
other network entities may also produce uncontrollable throughput on
to a shared medium.

Packet loss is not currently used inside MobiBind, but binding con-
trolling components may benefit from the parameter when choosing whether
to send small or large packets. The packet loss are also measured with
the ack system. No ack means that the packet is lost.

These basic characteristics just described could be combined to sup-
port a higher level of link description. In the Mobil IP tests it was seen
that there were significantly different RTT, packet loss etc on a LAN link
and a WLAN link. One could have used this information to calculate if
one currently was on a LAN or WLAN link. A computer can of course
move to other links than LAN and WLAN, so this might limit the useful-
ness of this higher level description. One advantage of this is to possibly
be able to predict the maximum throughput of the current link (by know-
ing each link’s maximum throughput). To design a binding that could
efficiently separate between different high level links, test of technolo-
gies like GPRS and 3G would need to be performed, and information
that distinguishes these technologies from each other should be known
to the remote binding. It is also possible that this approach would not
be plausible when the number of link technologies is high and the dis-
tinguishing factors are low. At this point in time no such information is
available, so this feature is currently not implemented.

Today MobiBind supports jitter, RTT and packet loss QoS paramet-
ers. They can be access through the controlling interface.

80 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Calculation

As noted above the calculation of the QoS parameters is done by com-
paring the sent time of the MobiBind data-packet with the time the ack
was received. This is all done in the Controller. The Controller records
when the packet was sent, and the receiver informs the Controller that
the ack was received. Calculation of link awareness and the character-
istics is done in the Controller.

The calculation is only performed when MobiBind is in the trans-
mitting state, and only if there is sufficient number of packets sent on
the link. Update time of the link characteristics and number of packets
needed to perform calculation can be adjusted through parameters.

During hand-over the packets sent on the old link is not used for stat-
istics, as they do not represent the new link. These packets are marked
as stale and are not used to calculate link characteristics. This prevents
old QoS information to be use on the new link

False positives from the hand-over detection algorithm will cause a
small interruption in the link awareness, because all packets are marked
stale. The QoS information will be available again when enough packets
are sent (after the false positive).

False negatives will cause the link awareness to use link information
from the old link on the new link. This may cause binding controlling
components to get wrong link awareness information when querying.

6.5 Example of Use

MobiBind is a versatile QoS-Aware Remote Binding. It is designed at a
low level of the OSI model to be used as a part of the middleware. It
can either be used by advanced components alone, or as part of a nested
open binding, to provide a complete service simple components.

This section presents two example of use of MobiBind. Example one
in Section 6.5.1 presents a use of MobiBind together with a set of ad-
vanced video consumer and producers. Example two in Section 6.5.2
presents a MobiBind together with simple components, and highlight
that MobiBind can be used for adaption.

6.5.1 Example 1

Figure 6.16 shows MobiBind together in a video streaming example.
With an advanced video producer, and an advanced video consumer.
The video consumer is in a mobile address space. The video stream is
encoded by the advanced video producer and decoded by the advanced
video consumer. All the two video components need MobiBind for, is

6.6. SUMMARY 81

Figure 6.16: Example: MobiBind and Advanced Components

to provide a seamless connection in the mobile setting. The video server
further uses the controlling interface of MobiBind to get link informa-
tion. This information allows the Advanced video producer to adapt and
possibly change the decompression algorithm.

6.5.2 Example 2

The second example is also a video streaming example, but with simple
video producer and consumer. The simple components are only capable
of producing and consuming raw video streams, so more functionality is
required to connect the two components across a network. The simple
components need to use the middleware in an more advanced way to
create a binding between the two. Figure 6.17 shows how the simple
video producer uses a binding factory to create a lightweight nested open
binding. First, in A the simple video producer requests a binding from
a binding factory. The request contains a requirement for mobility and
high quality video streaming. The binding factory will then go to the lib-
rary of available components to create a binding that satisfies the simple
video producer’s request. In B the binding factory finds MobiBind that
enables mobile, seamless, connectivity. The binding factory uses Mobi-
Bind as a base. But the simple video producer and consumer does not
have any video compression So the binding factory creates a nested open
binding that contains high quality MPEG2 compression and MobiBind.
In C the video producer and consumer uses this newly created nested
open binding. The nested open binding can be self adaptive, or the mid-
dleware might adapt the binding if needed, as illustrated in D; By using
the controlling interface of MobiBind the nested open binding can read
link awareness information. If for instance the link becomes bad and
heavy jitter is reported by MobiBind, the nested open binding may adapt
by inserting a jitter buffer. This adaption is illustrated in E.

6.6 Summary

This chapter presents a comprehensive design of a QoS-Aware Remote
Binding, called MobiBind. MobiBind is designed at a low level in the

82 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Figure 6.17: Example: MobiBind and Simple Components

6.6. SUMMARY 83

OSI model. This enables MobiBind to be used directly by advanced com-
ponents, as showed in example one, or together with other components
inside a nested open binding, which example two describes a scenario
of.

Key functionality as hand-over detection, harvest and link awareness
assures that the requirements from Chapter 5 are fulfilled.

84 CHAPTER 6. QOS-AWARE REMOTE BINDING DESIGN: MOBIBIND

Chapter 7

MobiBind Implementation

In order to test the proposed design it needs to be implemented. This
chapter presents the implementation of MobiBind. The chapter starts
out with a discussion of the chosen implementation language. Then con-
tinues with a presentation of implemented key functionality.

7.1 Implementation Language

When choosing a programming language to implement MobiBind in there
was several considerations. Firstly, the programming language should be
a good language to prototype in; It should be high level and give good
feedback to the programmer. It should also be object oriented, since the
design is object oriented.

Secondly, the QuA project, which this thesis is a part of, is implemen-
ted in Java and Smalltalk. So for MobiBind to be compatible with this
project it needs to be implemented in either of the two languages.

Having both the tests tool and the remote binding implemented in
the same language gave an advantage in making to two applications easy
to join. The tests tool KGen was already implemented in Java, making
it possible to integrate MobiBind’s interfaces into it. Java SE 5.0 was
chosen because it met our requirements.

7.2 MobiBind Code Presentation

This section presents the implementation of five key aspects: parameter
values, hand-over detection, link awareness, harvest mechanism, and
state transitions. The objective is to give a better understanding of the
proposed design of MobiBind; the QoS-Aware Remote Binding. The
Java source code presented here is enhanced for easier understanding.
To view the complete implementation, refer to the enclosed CD.

85

86 CHAPTER 7. MOBIBIND IMPLEMENTATION

Parameter Value Designation

FASTSEND_GAP 20 ms
PACKET_HANDOVERTHREASHOLD 8 packets
CONTROLLER_BUFFERSIZE 12000 packets
MAX_HANDOVER_CHANGE 5 %
LINKAWARE_MINIMUM 10 packets
LINK_DETECTION_INTERVAL 500 ms
MAX_SEND_RATE 20 ms
HANDOVERSTREAM_GAP 20 ms
PINGS_AFTER_HANDOVER 10 packets

Table 7.1: Parameters in MobiBind

7.2.1 Utility Class and Parameters

When implementing the binding some code was repeatedly used. This
was especially true for code having to with taking the MobiBind packet
in and out of the UDP packet. This code was separated out to a utility
class called Util.

Static parameters were also placed in the utility class. To make it easy
to test out new parameters values, and to ensure that both sides of the
binding have the same parameter values. Different values were tested
for the parameters to find values that performed well in the forthcoming
tests.

Table 7.1 lists of the parameters included in Util.
When implementing the MobiBind we found that during purge we

had to have some limitation on how fast the buffers were sent through
the network, if the packets were sent to fast heavy packet loss was en-
countered. The parameter MAX_SEND_RATE sets the max send rate
during purge.

7.2.2 Hand-over Detection Algorithm

There are two object within MobiBind that enables hand-over detection;
Receiver and Sender. The implemented algorithm uses, as the design
noted, a ping and pong monitoring scheme. The Sender is a ping gener-
ator, while the Receiver both reflect pings and analyses pongs.

Figure 7.1 presents a illustration of the hand-over detection algorithm.

Sender

The Sender sends a Util.SIGNAL packet with Util.PING_INT signal.
The method was implemented as a thread in an inner class of the Sender

7.2. MOBIBIND CODE PRESENTATION 87

Figure 7.1: Hand-over Detection Algorithm

class. The internal class looks like this:

class Hand-overStream extends TimerTask implements Runnable {
public void run() {

Datapacket dp = new Datapacket(new byte[1]);
dp.setType(Util.SIGNAL);
dp.setSequeceNumber(Util.PING_INT);
sendDatapacket(dp);

}
}

The parameter Util.HANDOVERSTREAM_GAP controls how often
the thread is run, currently set to 20 ms. Every time the thread is run
it creates a new data-packet, sets the packet type, and the PING signal
type. It then sends the packet.

Receiver

The Receiver’s job in the hand-over detection is two folded, first, when
it receives a ping it sends back a pong. If the Receiver receives a pong,
it passes it on to the hand-over detection monitor (called ping-monitor),
implemented as a inner class of the Receiver. The code executed when
receiving a signal packet is as follows:

88 CHAPTER 7. MOBIBIND IMPLEMENTATION

if (datapacket.getType() == Util.SIGNAL) {
if (datapacket.getSequencenumber() == Util.PING_INT) {
sendPong();

}
if(datapacket.getSequencenumber() == Util.PONG_INT) {
pingmonitor.pongReceived();

}
if (datapacket.getSequencenumber() == Util.PURGE_INT) {
controller.purgeBuffer();
next.purge();

}
}

The ping-monitor registers the time the pong was received, and uses
this information when the monitor is run. The monitor is executed at the
same interval as the Sender’s ping interval.

if (pong_not_received_time > maximum_allowed_waiting_time) {
if (meta.getState() == Util.TRANSMITTING) {
pingsAfterHand-over = 0;
System.out.println("PingMonitor: Hand-over detected");
meta.setState(Util.HANDOVER);

}
} else if (meta.getState() == Util.HANDOVER) {
if (pingsAfterHand-over > Util.PINGS_AFTER_HANDOVER) {
System.out.println("PingMonitor: Hand-over ended");
meta.setState(Util.FASTSEND);

}
}

The code section showed above is executed when the connection is
up. It checks whether pongs has been received within the maximum
allowed waiting time. If not, and the state is transmitting, the state is
changed to hand-over. If a packet is received, it may change state from
hand-over to fast send, this change is controlled by the number of pongs
received after the hand-over was initiated. This increment count is con-
ducted each time a pong is received. In addition to the code above the
Receiver checks if the connection between the two parts is up yet, before
performing the above code.

The method below shows is the method that is responsible for receiv-
ing the pongs. It notes the time of arrival of the pong, and also counts
them,

7.2. MOBIBIND CODE PRESENTATION 89

private void pongReceived() {
addToLastreceived();
if (buffer[bufferLastReceived] == null) {
buffer[bufferLastReceived] = new BufferLine();

}
buffer[bufferLastReceived].setSent(System.nanoTime());
if(meta.getState() == Util.HANDOVER){
pingsAfterHand-over++;
System.out.println("pong received while in hand-over nr:"
+ pingsAfterHand-over);

}
}

7.2.3 Link Awareness

The link awareness algorithm measures the QoS parameters; packet loss,
RTT and jitter, and is implemented as an inner class in the Controller
class. It uses the packet sent and ack received times gathered by the
binding and stored in the Controller’s buffer. The Controller’s buffer is
directly available to the LinkDetection class because it is design as an
inner class.

The class executes in intervals defined by the parameter Util.LINK_DETECTION_INTERVAL.
If there are enough packets, and the information is not stale (it is marked
as stale after a hand-over). QoS calculation is performed and the inform-
ation is given to the meta object.

Below is an exert of the LinkDetection class.

class LinkDetection extends TimerTask implements Runnable {
public void run() {
int index = bufferAkkIndex;
if (index < Util.LINKAWARE_MINIMUM) {
return;

}

//check if enough packets to peform link detection.
if (buffer[index - Util.LINKAWARE_MINIMUM] == null ||
buffer[index - Util.LINKAWARE_MINIMUM].stale == true) {
meta.setrtt(-1);
meta.setjitter(-1);
meta.setpacketloss(-1);

} else {
// RTT
calculateRTT();

90 CHAPTER 7. MOBIBIND IMPLEMENTATION

meta.setrtt(rtt);

// Jitter
calculcateJitter();
meta.setjitter(jitter);

// Packet loss
calculcatePacketLoss();
meta.setPacketLoss(packetloss);

}
}

}

7.2.4 Harvest Mechanism

The harvest mechanism is the main mechanism for handling the hand-
over. Firstly, the Controller, that is responsible for sending additional
packets during fast send, and marking them with the harvest-packet-
type. Secondly, the MIP Buffer that is responsible for harvesting the
extra packets, and using them during the hand-overs.

Controller

The fast send operation sends all the packets in the controllers buffer,
using the parameter Util.FASTSEND_GAP as a bandwidth limit. Finally
it sets the state back to transmitting.

The fast send algorithm, implemented in an inner class of the Con-
troller, is shown here:

class FastSend extends Thread {
public void run() {
// calculate how many packets to send
int numberofpackets = bufferInputIndex - bufferOutputIndex;
// send the packets
for (int i = 0; i < numberofpackets; i++) {
sendDatapacket(true);
try {

Thread.sleep(Util.FASTSEND_GAP);
} catch (InterruptedException ex) {

ex.printStackTrace();
}

}
meta.setState(Util.TRANSMITTING);

7.2. MOBIBIND CODE PRESENTATION 91

}
}

MIP Buffer

The MIP Buffer has two main functions during hand-over, first receive
harvest packets during fast send, second use packets during hand-over.
While in fast send the packets are received by the following method:

public void receiveDatapacket(Datapacket datapacket) {

//store in buffer
buffer[bufferInIndex] = datapacket;
updateBufferInindex();

//if data, send out one from buffer
if (datapacket.getType() == Util.DATA) {
sendPacket();

} else if (datapacket.getType() == Util.AKK) {
System.out.println("Error: ack came to MIPBuffer");

}else if (datapacket.getType() == Util.HARVEST){
//if harvest do nothing
//nop

}
}

This method stores the incoming packet in the buffer, and if the in-
coming packet was a harvest packet, no further action is taken. This
causes the buffer to increase.

In the hand-over state, the MIP Buffer gets a message from the meta
object to start using its buffer, to provide seamless data flow. The inner
class BufferUser is activated by the MIP Buffer. The class BufferUser
gets the number of packets to use and the interval gap. A way to space
out the packets from the MIP buffer is needed. The number of packets
is simply the total number of buffered packets in the MIP Buffer, the
interval gap used is actually an example of self adaptation. The interval
gap is calculated by taking the expected hand-over-time (the MIP Buffer
queries the meta object for this) and divides that time by the number of
packets that is in the buffer. This ensures a steady flow of packets during
the entire hand-over.

class BufferUser extends Thread {
int gap = 0;
int number = 0;

92 CHAPTER 7. MOBIBIND IMPLEMENTATION

BufferUser(int sendgap, int number) {
this.gap = sendgap;
this.number = number;

}

public void run() {
System.out.println(
"component.MIPBuffer.BufferUser: Starting to use buffer");
for (int i = 0; i < number; i++) {
try {
sendPacket();
Thread.sleep(gap);

} catch (InterruptedException ex) {
ex.printStackTrace();

}
}
System.out.println(
"component.MIPBuffer.BufferUser:" +
"buffer used (stopping to use buffer)");

}

}

7.2.5 State Change

The design from the previous chapter presents a state machine. Different
objects in the remote binding are responsible for detecting different state
transitions. All state transitions goes through meta. The method used for
changing states, implemented in the meta object is shown here:

public void setState(short state) {

// Change state
this.state = state;

//implement state change
if (this.state == Util.HANDOVER) {
setHand-overStartTime();
numberofhand-overs++;
controller.startBuffering();
mipbuffer.useBuffer();

7.3. IMPLEMENTATION SUMMARY 93

// set link information stale
controller.setBufferStale();

} else if (this.state == Util.FASTSEND) {
controller.stopBuffering();
calculateNewHand-overtime();
controller.startFastSend();

} else if (this.state == Util.TRANSMITTING) {
.
.
.
} else {
System.out.println("component.Meta: Unknown state");

}
}

Is here clearly shown that meta holds the state and also informs the
other objects of the state change, by telling the objects what to do. Object
can always check the current state by using the getState() method.

7.3 Implementation Summary

This chapter has highlighted some key functionality of the MobiBind
implementation. The implementation is used together with KGen to test
the proposed design in the next chapter.

94 CHAPTER 7. MOBIBIND IMPLEMENTATION

Chapter 8

MobiBind Test

This chapter discusses the tests performed on MobiBind. The tests of
MobiBind have two objectives: Validate the functionality of the pro-
posed design, and compare the QoS characteristics of the remote bind-
ing against the raw Mobile IP solution. First the tests configuration is
presented. This is followed by modifications done to KGen in order for
KGen to use MobiBind. Then follows the description of the tests per-
formed. The test are divided into basic and advanced tests. Finally, the
tests results are presented.

8.1 Test Configuration

The test configuration used here was the same as for the Mobile IP tests.
The general test configuration, with its strengths and limitations, is dis-
cussed in Chapter 3. MobiBind was used together with KGen. This
enabled efficient testing. Since KGen were also made specifically for this
thesis, we had full freedom in getting out tests results wherever needed.

8.2 KGen Modification

The generator KGen used to test Mobile IP in Chapter 4 was also used
to test MobiBind. By using the same tests tool the test results could be
compared. As MobiBind is an explicit remote binding, and has special
interfaces that the using components need to connect to, it was necessary
to do some small rewrites of KGen.

In the Mobile IP tests, KGen used a UDP socket to send and receive
the data packets. The major modification to KGen was to remove the
UDP socket and instead use MobiBind. This did not require big altera-
tions; the initialisation of the UDP socket was removed, and replaced by

95

96 CHAPTER 8. MOBIBIND TEST

the initialisation of MobiBind. The code for sending packets through the
UDP socket in the original KGen, looked like this:

datasocket.send(packet);

This was changed to use MobiBind’s interface, and the send method.
The new code line, in the modified KGen, looked like this:

in.sendPacket(databuffer);

The last change,was accessing the controlling interface of MobiBind.
The modified version of KGen can be found on the enclosed CD.

8.3 Test Description

The tests have two objectives, first to compare the performance of Mobi-
Bind with the basic Mobile IP implementation. This is done in the basic
tests section. Then, to validate the advanced functionality like adaption,
harvest mechanism, link monitoring and hand-over detection algorithm.
This is discussed under advanced testing.

8.3.1 Basic Testing

The basic tests were performed in the same way as the Mobile IP tests
from chapter 4. This enabled us to compare the performance of Mobi-
Bind with the basic Mobile IP implementation. Tests were performed on
several days and to stable findings could be extrapolated. No hand-overs
were performed here, this was done in the advanced testing. The absence
of hand-overs allowed us to control MobiBind for false positives.

8.3.2 Advanced Testing

The advanced tests aimed at testing the advanced, new, functionality
provided by MobiBind. The harvest mechanism was tested, to see if it
actually worked according to its design goals. The harvest mechanism
was designed to adapt to hand-overs and provide seamless data con-
nectivity. Purging at the end of transmission was also tested. The same
was MobiBind with and without the MIP Buffer. The link awareness was
tested by comparing the link statistics with the one KGen produced. The
stale function in link awareness, that stops the link awareness calcula-
tion from using data from an old link after a hand-over, was also tested.
The hand-over detection algorithm was also tested. This was done by
producing a hand-over, and checking whether MobiBind detected the
hand-over. The algorithm was also checked by running MobiBind on a

8.4. TEST RESULTS 97

bad link (large packet loss, large jitter), without any hand-overs, to see if
a hand-over was falsely detected.

8.4 Test Results

8.4.1 Basic Tests

The basic tests showed that MobiBind has the same basic tests results in
the basic tests, like jitter, RTT and packet loss, as the raw Mobile IP im-
plementation, tested in Chapter 4. RTT was about 5% higher than on the
raw Mobile IP implementation. This is probably due to the extra over-
head in CPU time of the remote binding, and the extra network overhead
due to the remote binding packets. MobiBind adds a 5 byte header on
each packet. MobiBind was stable and performed well.

On bad WLAN links MobiBind did sometimes faulty detect a hand-
over. This was of course not the actual hand-over, since no hand-overs
were performed during the basic testing. The false hand-over detection
occurred because MobiBind did not receive any pongs for the designated
period. MobiBind may have sent or received some data traffic, but the
detection algorithm just checks pongs. We discuss this problem in the
following section (Advanced Tests).

8.4.2 Advanced Tests

All the implemented functionality worked as expected. The link aware-
ness algorithm regularly performed its calculations, based on the para-
meter setting. Using only information that was not stale (collected from
a previously used link). The link awareness information was available
through the controlling interface.

The hand-over detection algorithm continuously checked for hand-
over, and also reported to Meta when the hand-over was finished. This
caused Meta to calculate a new expected hand-over time. The new hand-
over time did not change more that the maximum fraction allowed per
adjustment, controlled by the parameter MAX_HANDOVER_CHANGE.
The harvest mechanism did also work as designed. It provided seamless
data connectivity, after the initial adaption.

Figure 8.1 shows a typical graph of a test run. When MobiBind starts
to transmit the RTT is low, about 5 ms in this test. When MobiBind de-
tects its first hand-over, it adapts. This is an automated function. In the
first hand-over, the binding looses connectivity for about one second.
This is where MobiBind adapts by increasing the MIP Buffer. Chapter
9 discusses an idea on how to make this algorithm better. After the first
adaption the RTT is about 1 second. This is due to the packets buffered at

98 CHAPTER 8. MOBIBIND TEST

Figure 8.1: Test Run of MobiBind

the sending side Controller. The packets are transferred from the Con-
troller to the other side’s MIP Buffer during the state fast send. This
transportation does not effect the RTT, as the buffer only changes place,
not size. When the second hand-over is detected it uses the MIP Buffer,
and at the same time stores new packets in the sender side’s Controller.
The data transmission is now seamless.

The parameters that controls the number of ping/pongs lost before
assuming a hand-over and the number of ping/pongs that has to be re-
ceived before a hand-over is ended was manipulated during the tests. It
was found that WLAN is more unstable and easier trigger false hand-over
detections than LAN. WLAN required a higher setting of the number of
packets both to be lost and received after a hand-over. 7 packets seemed
to be a number that worked well on WLAN. 7 Packets also worked on
LAN, but LAN did not require 7 packets, since the technology is more
stable than WLAN and the number can be adjusted down. The pings
were sent every 20 ms, so 7 packets gives a maximum of 140 ms before
a hand-over actually happens until it is detected. It also took some time
before the hand-over had ended until MobiBind moves away from the
hand-over state. This is because the parameter, that controls how many
pongs that need to be received before a hand-over is finished, was set to
more than one. The value one did not work because it made the remote
binding detect that the hand-over was over before it actually had ended.
The reason may be that Mobile IP allows for some connectivity before
the new link is fully stable, or that an old pong is arriving late. This late

8.5. TEST SUMMARY 99

finish-detection increases the hand-over time. Generally, the hand-over
time was from 0% to 10% higher with the remote binding than the raw
Mobile IP implementation.

The hand-over detection algorithm and harvest mechanism decreases
the packet loss significantly. During a hand-over in MobiBind 5 to 10
packets were lost, usually 7 (when sending packets every 20 ms). The raw
Mobile IP implementation lost about 50 packets. This is a huge improve-
ment in the packet loss parameter for MobiBind. The harvest mechanism
does not lose any packets. The packets are lost due to the hand-over de-
tection algorithm that is based on assumptions and therefore has some
delay in detecting a hand-over. The parameters for hand-over detection
may be adjusted to further minimise packet loss.

Figure 8.2: MobiBind Without MIP Buffer

Figure 8.2 shows how MobiBind behaved when the MIP buffer was
taken out to support low RTT traffic. As seen on the figure RTT is kept
low, except when the packets are temporarily stored in the Controller
during hand-over. This function also worked as designed. The length
and steepness of the “RTT-tail”, after the hand-over, can be adjusted by
the fast send parameter.

8.5 Test Summary

The tests showed that MobiBind did provide seamless connectivity, after
the initial adaption. The tests also showed that this connectivity came at
an expense of the RTT. Packet loss was also greatly reduced. By turning

100 CHAPTER 8. MOBIBIND TEST

off the MIP Buffer the remote binding reduced packet loss, and at the
same time kept the RTT to a minimum.

Link awareness information was calculated and made available through
the controlling interface.

During the testing, the implementation was stable and performed
well. Some of the parameters may need further adjustment to perform
optimal.

Chapter 9

Thesis Assessment

This chapter first assess if the QoS-Aware Remote Binding requirements
were met in MobiBind. Then the work performed in this thesis is as-
sessed against the problem statement.

9.1 QoS-Aware Remote Binding Requirements

9.1.1 Requirement 1: Mobile Connectivity

The remote binding must connect two mobile components together.

This requirement is fully met. The basic component structure and the
dependencies to Mobile IP ensure this. In the test of MobiBind we suc-
cessfully connected two “components” together, KGen server and client.
They exchange data between each other.

9.1.2 Requirement 2: Mobility Management

The remote binding must implement Mobile IP for mobility manage-
ment.

This requirement is fully met. The requirement is met by the dependence
to Mobile IP. In MobiBind this dependence was realised by Birdstep’s
Mobile IP client, which worked well together with MobiBind in the tests.
Basic mobile connectivity was never a problem.

9.1.3 Requirement 3: Two-way Connectivity

The remote binding should provide a two way connection.

This requirement is fully met. MobiBind’s design and implementation
provides a receiving and sending interface, as well as a controlling inter-

101

102 CHAPTER 9. THESIS ASSESSMENT

face to the components using it. All Interfaces can be used concurrently,
and provide full two way connectivity.

9.1.4 Requirement 4: Explicit Remote Binding

The remote binding should be designed as an Explicit remote binding.

This requirement is fully met. The MobiBind provides a design that
conforms with a explicit remote binding design. Both controlling and
sending interfaces are provided. Binding components can connect to the
packet based interface directly or MobiBind can be used in a nested open
binding. Binding controlling components can get information about cur-
rent QoS and hand-overs through the controlling interface. MobiBind
also supports adaption; through the controlling interface MobiBind can
manipulate its internal structure to support low RTT traffic.

9.1.5 Requirement 5: QoS Monitoring

The remote binding must provide QoS monitoring.

This requirement is fully met. MobiBind provides key QoS parameters,
like packet loss, RTT and jitter, with the link awareness function. Mobi-
Bind also uses some of these characteristics to perform self adaption. The
link awareness comes at a cost; additional complexity, internal sequence
numbers and acks together with the computation of the QoS-parameter
values. The Sequence numbers and acks allow MobiBind to be upgraded
easily to provide lossless data transmission. QoS monitoring allows the
binding controlling component and middleware to get more information
out of the binding, which it can use at it sees fit. Because information
used to calculate the QoS-parameter values are set stale after a hand-
over, the values become even more reliable.

9.1.6 Requirement 6: Hand-over Aware

The remote binding must minimise packet loss during hand-over.

This requirement is fully met. The harvest mechanism enables MobiBind
to limit the packet loss during hand-over. The MobiBind tests show that
packet loss is reduced when using MobiBind, compared to the raw Mobil
IP implementation. Remaining packet loss is due to a delay in the hand-
over detection algorithm. MobiBind has the potential to further limit
packet loss during hand-overs, if the hand-over detection functionality is
improved, e.g., based on notifications.

9.1. QOS-AWARE REMOTE BINDING REQUIREMENTS 103

9.1.7 Requirement 7: Seamless Data Connection

The remote binding should maintain data flow during hand-over.

This requirement is met. MobiBind provides seamless data flow, it does
however provide this only after an initial adaption. This adaption takes
place during the first hand-over. This is a natural place to perform the
adaption, since the link is down, and the adaption does not degrade cur-
rent performance, but heightens latter performance, by providing seam-
less data connection during hand-overs. This means that data flow is not
maintained during the first hand-over.

In MobiBind, the adaption can only be triggered by hand-overs, not
by the binding controlling components. MobiBind could have provided
a method to initiate the adaption. The adaption could then be done
at the binding controlling component’s convenience, to prevent connec-
tion breakage during the first hand-over, this is illustrated in Figure 9.1.
In this figure the adaption is requested at a time that is convenient for
the component and user (e.g., during non vital communication). Thus,
during the first and consecutive hand-overs the connection is seamless.
The idea should be research further, to provide even better seamless data
connectivity.

Figure 9.1: Binding Component Initialised Adaption

104 CHAPTER 9. THESIS ASSESSMENT

9.1.8 Requirement 8: Hand-over Monitoring

The remote binding should provide hand-over monitoring.

This requirement is fully met. Hand-over Monitoring is provided by the
hand-over detection algorithm. Several alternatives to hand-over detec-
tion algorithms as discussed in Section 6.4.1, was implemented to see
who functioned best. It was found that the chosen algorithm worked
best in our test lab. The Hand-over detection algorithm does still cause
some packet loss and increases the hand-over time. This is because the
hand-over detection algorithm is implemented using assumptions, not
notifications. The hand-over detection algorithm also gives the binding
controlling components access to expected hand-over time.

The hand-over detection algorithm would probably function better if
it received information from other sources closer to the actual link and
Mobile IP technology. As an example: If the link that is currently used
is disconnected from the link card, the link cards controlling software
could report this directly to MobiBind. MobiBind could then immedi-
ately assume hand-over. This would further reduce packet loss, and po-
tentially reduce packet loss to zero. In some cases the Mobile IP software
decides to initiate a hand-over because a new preferred link has become
available, in the current implementation, the Mobile IP implementation
and MobiBind don’t share information, so the number of pong-packets
decided by the controlling parameter still needs to be lost before a hand-
over is detected by MobiBind. If the Mobile IP software could notify
MobiBind before the hand-over, no packets would need to be lost in this
scenario.

9.2 Thesis Problem Statement

The problem definition was divided in to three sub problems to split the
main problem into smaller problems that could be answered separately.
First, the sub-problems will be discussed one by one. At the end of this
chapter, the main problem is discussed.

9.2.1 Sub-problem 1

Which QoS parameters underperform in mobility management com-
pared to fixed networks?

To find the underperforming QoS parameters we tested Mobile IP in a
general test lab. Several of the tests results found were compared to
findings from other researches. Several QoS parameters were found to
underperform. We found that specific for mobility management is that

9.2. THESIS PROBLEM STATEMENT 105

the QoS parameters packet loss and seamlessness performed poorly. We
found differences between LAN and WLAN, which could be used to sep-
arate between the two links on a high level. We found interesting max
throughput results.

9.2.2 Sub-problem 2

What would be required of a QoS-Aware Remote Binding from an
application developer’s point of view?

The requirements of a QoS-Aware Remote Binding are discussed in Chapter
5, based on the underperforming QoS parameters. We identified 8 re-
quirements, ranging from mobile connectivity to QoS-monitoring and
requirements for seamlessness and reduced packet loss. The requirement
specification gives an application developer a powerful tool in providing
QoS-aware applications in an mobile environment.

9.2.3 Sub-problem 3

Is it possible to design and implement a QoS-Aware Remote Binding
that enhance QoS-parameters performance?

This sub-problem was answered by taking the requirements from Chapter
5 and designing a QoS-Aware Remote Binding that would satisfy these
requirements. The designed remote binding, MobiBind, provides en-
hancements to QoS-parameters in the following functionality:

• Hand-over detection algorithm

• Harvest mechanism

• Link awareness

MobiBind was implemented; all the designed functionality was suc-
cessfully implemented. The tests of MobiBind showed that it did provide
enhancements to QoS-parameters: The enhancements include better seam-
lessness and lower packet loss.

9.2.4 Main Problem Statement

The problem statement of this thesis was as follows:

How can a QoS-Aware Remote Binding, implemented in a
distributed component, adapt to the varying network con-
ditions to enhance QoS-parameters that perform poorly in
IP Based Mobility Management.

106 CHAPTER 9. THESIS ASSESSMENT

The three sub-problems helped answer the main problem statement.
The QoS-parameters we identified was improved by MobiBind, so in
that respect we did succeed. It is important to note that even though
packet loss and seamlessness was improved, this came at a cost to other
QoS-parameters. We identified through testing that RTT increased when
seamlessness was provided. So maximising performance on the identi-
fied QoS parameters came at a cost of other parameters. This seems to
be a tradeoff, maximising QoS performance on all parameters does not
seem possible without fixing the underlying cause of degraded QoS.

We did construct a way for MobiBind to support low RTT traffic,
providing only reduced packet loss, not seamlessness. However, as Fig-
ure 8.2 shows, RTT still increased, in periods, when providing reduced
packet loss during hand-overs. This again illustrates the tradeoff between
different QoS parameters. Moreover, the assumption that the total QoS
remains the same.

Chapter 10

Conclusion and Further Work

In this chapter, the final conclusion of this thesis is presented. The con-
clusion emphasises the contributions of this thesis. In Section 10.2, pos-
sible further work is presented.

10.1 Conclusion

This thesis set out to find a way that mobility IP based networks could
support connectivity in the same efficient way as cellular networks do
to day. The main operational feature of those networks is that IP based
networks does not handle hand-overs in the same efficient manner that
cellular networks do.

The QoS-Aware Remote Binding, MobiBind, designed in this thesis
addresses this problem by implementing functionality at the middleware
layer. This relatively “high level” approach mainly focused on three
things; first on giving binding components access to QoS information,
secondly the binding knowing when a hand-over occurs,and finally, to
handle those hand-overs in a manner that improve the QoS for the bind-
ing components.

In this thesis, a way to handle hand-overs called harvesting was pro-
posed and implemented. In the tests of MobiBind it was shown that the
harvest mechanism worked well in providing seamless connectivity, i.e.,
a steady stream of packets despite that the connection was down during
hand-over. This connectivity came at an cost of a higher RTT, indicating
a tradeoff.

Because MobiBind was designed to be a general remote binding,
we identified that some applications does not require the seamless con-
nectivity, but require low RTT. To accommodate this MobiBind allows
the binding controlling component to configure MobiBind so that packet
loss are minimised, and RTT kept low.

107

108 CHAPTER 10. CONCLUSION AND FURTHER WORK

The link awareness feature enables both the middleware and the bind-
ing controlling components to extract QoS information about the current
link. This is something that can be very useful when planning or making
decisions.

The Harvest mechanism proposed in this thesis is a generic way to
handle hand-overs, which works well. The harvest mechanism needs to
know when a hand-over is occurring; this is the job of the hand-over
detection mechanism. The detection algorithm in MobiBind was not
stable during all conditions, some ways of improving stability by making
MobiBind more self adaptive was discussed. This might be beneficial, but
the fact remains that at this high level, and working with assumptions,
there is no easy way of knowing when a hand-over is occurring. A better
approach would be to enable notifications from lower layers, like the link
layer. Another way is for the Mobile IP software to notify MobiBind of
the hand-over.

10.2 Further Work

We conclude the presentation of this master thesis work by looking for-
ward. Unaddressed issues as well as addressed issues that can be further
researched are presented below.

Further work can be divided in to three main areas, first there are
further research spanning from the current design and implementation
of MobiBind, secondly, research into hand-over time, and third notifica-
tions to MobiBind.

10.2.1 QoS-Aware Remote Binding

MobiBind is a relatively complex piece of software that aims at providing
a general, low level, approach to the hand-over problem. Defining ap-
plication areas, and producing more application specific solutions, could
be one way of evolving the field of QoS-Aware Remote Bindings. Re-
search can then be performed to see if the application specific remote
bindings will perform better than this thesis general QoS-Aware Remote
Binding.

It is difficult to separate a hand-over from a bad link at this high
level. This thesis uses one approach, but research can be conducted into
making the hand-over detection better. Both better detection of an actual
hand-over and separating between actual hand-overs and false positives
and negatives.

Another area of possible future research is to take MobiBind as it is
now, and try to adjust the parameters. The parameters are today just

10.2. FURTHER WORK 109

broadly tuned. To achieve the best performance MobiBind the paramet-
ers needs to be given more attention. One possible way of performing
this research is to see whether a generic parameter setting can be found,
or if a application or maybe link specific approach is better.

MobiBind is aware of hand-overs, despite of this it still looses some
packets during a hand-over. Research could be performed to try to elim-
inate this packet loss.

On a more practical note, better shutdown and startup procedures
need to be found. This could be done by integrating MobiBind better
in to the middleware, so that the middleware is in part responsible for
initialising and stopping it.

MobiBind has several QoS parameters that it can use for self adap-
tion. This could be researched in more detail. One example of better
self adaptability could be to use the the links current packet loss rate
in hand-over detection, to better separate between hand-overs and false
positives and negatives that are caused by bad links..

10.2.2 Hand-over Time

A big problem of hand-overs in IP based networks is that the hand-over
takes a long time to complete. The heterogeneity of the IP based network
also makes it more difficult to predict the time the hand-over takes to
complete. Further research can be focused on making the hand-over
shorter in time.

10.2.3 Notifications

The hand-over detection algorithm in this thesis performs okay, but not
perfect. A major part of this problem is that there is no way of knowing
exactly when a hand-over is occurring. Because of this, a polling strategy
like the one in this thesis, has to be used. A much better approach would
be a event-notification pattern from a lower software layer. Research into
providing this could be one possible research area.

10.2.4 Application Specific High Level Binding

MobiBind is a generic, low level, explicit remote binding. It is relatively
small, but has a lot of basic QoS functionality and improvements. One
research path could be to make a high level application specific binding
that uses MobiBind. As discussed in 6.1, a generic explicit remote bind-
ing could probably not be high level, this however, probably changes
with a Application Specific Binding. The possibilities of which should
be further researched.

110 CHAPTER 10. CONCLUSION AND FURTHER WORK

Appendix A

Mobile IP Tests

In this appendix the test data from the performance test of Mobile IP are
listed. This is the basis for the numbers presented in Chapter 4. 3000
packets were sent during a conversation test, 12000 packets was sent in
a streaming test.

A.1 Jitter

The jitter tests was performed on several days and several times. The
traffic sent emulated conversational traffic class, more presicely the G711
codec. Each test ran for 60 seconds. Both WLAN and LAN was tested.

Table A.1 gives the results of the jitter LAN test.

Table A.1: LAN Jitter Test

Test number Max jitter (ms) Jitter (ms)

1 10,155 0,106
2 8,889 0,087
3 15,564 0,110
4 14,433 0,119
5 13,631 0,100
6 14,101 0,103
7 16,588 0,114
8 12,066 0,090
9 12,568 0,103
10 13,734 0,097
11 13,063 0,116
12 12,516 0,094
13 15,902 0,107

Continued on next page

111

112 APPENDIX A. MOBILE IP TESTS

Table A.1 – continued from previous page

Test number Max jitter (ms) Jitter (ms)

14 16,384 0,105
15 15,577 0,098
16 10,805 0,090
17 17,297 0,104
18 8,492 0,080
19 8,469 0,073
20 11,951 0,105

Average 13,109 0,100
Standard d. 2,73 0,011

Table A.2 presents the jitter tests performed on WLAN. These test ran
on three days. WLAN was more unstable and required more testing to
give better results.

Table A.2: WLAN Jitter Test

Test number Max jitter (ms) Jitter (ms)

1 102,72 2,152
2 110,165 2,121
3 106,52 2,434
4 32,7 1,747
5 112,466 0,504
6 99,719 0,312
7 120,153 0,391
8 115,227 0,312
9 124,361 0,381

10 129,742 0,336
11 122,038 0,629
12 128,484 0,659
13 29,995 0,456
14 109,673 0,620
15 151,283 0,563
16 129,643 0,659
17 113,896 0,600
18 172,492 0,624
19 113,136 0,656
20 102,834 0,499
21 104,763 0,527

Continued on next page

A.2. PACKET LOSS 113

Table A.2 – continued from previous page

Test number Max jitter (ms) Jitter (ms)

22 111,233 0,660
23 105,31 0,693
24 111,371 0,518
25 109,763 0,524
26 113,329 0,525
27 34,546 0,624
28 128,385 0,702
29 122,197 0,673
30 115,946 0,651

Average 105,787 0,619
Standard d. 27,596 0,076

A.2 Packet Loss

Packet loss was tested for WLAN and LAN with both the Conversational
traffic class and streaming class.

Table A.3 presents the packet loss tests for LAN. The first 30 tests are
performed using the conversational traffic class test, the latter 30 tests
are performed using streaming traffic. The tests were performed on 3
different days.

Table A.3: LAN Packet Loss Test

Test number Packet loss

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0

Continued on next page

114 APPENDIX A. MOBILE IP TESTS

Table A.3 – continued from previous page

Test number Packet loss

14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 1
22 0
23 0
24 0
25 0
26 0
27 0
28 0
29 0
30 0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0

Continued on next page

A.2. PACKET LOSS 115

Table A.3 – continued from previous page

Test number Packet loss

24 0
25 0
26 0
27 0
28 0
29 0
30 0

Average 0,1 packets pr test
Average 2,2 x 10

−6 %
Standard d. 0,129 packets

Table A.4 presents the test results of the packet loss test performed
on WLAN. Both conversational and streaming traffic was tested. The
first 30 tests of the table presents the conversational tests, the latter 30
presents the streaming tests.

Table A.4: WLAN Packet Loss Test

Test number Packet loss

1 2
2 4
3 3
4 0
5 4
6 6
7 9
8 4
9 5
10 2
11 0
12 1
13 2
14 0
15 0
16 0
17 0
18 1
19 0
20 1

Continued on next page

116 APPENDIX A. MOBILE IP TESTS

Table A.4 – continued from previous page

Test number Packet loss

21 1
22 0
23 0
24 0
25 2
26 0
27 3
28 0
29 1
30 2

1 10
2 18
3 157
4 17
5 135
6 8
7 24
8 30
9 11
10 25
11 1
12 0
13 0
14 1
15 0
16 0
17 0
18 0
19 0
20 1
21 1
22 0
23 0
24 0
25 3
26 2
27 5
28 0
29 0
30 0

Continued on next page

A.3. ROUND TRIP TIME 117

Table A.4 – continued from previous page

Test number Packet loss

Average 1,1 packets pr test
Average 1,1 x 10

−3 %
Standard d. 26,664 packets

A.3 Round Trip Time

The Round Trip Time tests ran on several days, testing both conversa-
tional traffic class and streaming traffic class, for both WLAN and LAN.

Table A.5 presents the round trip times for the conversational tests.
Table A.6 presents the results for the LAN streaming traffic class tests.

Table A.5: LAN RTT Test; Conversation

Test number RTT (ms)

1 1,33
2 1,22
3 1,22
4 1,21
5 1,21
6 1,21
7 1,22
8 1,23
9 1,23
10 1,23
11 1,33
12 1,23
13 1,28
14 1,23
15 1,22
16 1,31
17 1,25
18 1,24
19 1,28
20 1,26
21 1,30
22 1,29
23 1,28

Continued on next page

118 APPENDIX A. MOBILE IP TESTS

Table A.5 – continued from previous page

Test number RTT (ms)

24 1,30
25 1,29
26 1,27
27 1,30
28 1,28
29 1,29
30 1,29

Average 1,26
Standard d. 0,03

Table A.6: LAN RTT Test; Streaming

Test number RTT (ms)

1 4,06
2 4,07
3 4,08
4 4,06
5 4,07
6 4,07
7 4,06
8 4,14
9 4,08
10 4,07
11 4,07
12 4,06
13 4,09
14 4,13
15 4,06
16 4,07
17 4,07
18 4,06
19 4,07
20 4,07
21 4,108
22 4,102
23 4,182
24 4,111
25 4,109

Continued on next page

A.3. ROUND TRIP TIME 119

Table A.6 – continued from previous page

Test number RTT (ms)

26 4,101
27 4,106
28 4,104
29 4,12
30 4,11

Average 4,09
Standard d. 0,03

RTT for WLAN was also tested for both traffic classes. Table A.7
presents the RTT test for WLAN using conversational traffic. Table A.8
present the WLAN tests using streaming traffic.

Table A.7: WLAN RTT Test; Conversation

Test number RTT (ms)

1 3,83
2 3,91
3 3,96
4 3,88
5 3,80
6 4,04
7 3,76
8 4,22
9 3,90
10 3,88
11 3,93
12 3,84
13 3,98
14 3,82
15 3,88
16 3,90
17 3,85
18 3,86
19 3,83
20 3,90
21 5,13
22 5,02
23 5,34

Continued on next page

120 APPENDIX A. MOBILE IP TESTS

Table A.7 – continued from previous page

Test number RTT (ms)

24 4,72
25 4,02
26 3,87
27 3,93
28 3,86
29 3,96
30 3,96

Average 4,06
Standard d. 0,41

Table A.8: WLAN RTT Test; Streaming

Test number RTT (ms)

1 10,69
2 11,71
3 16,92
4 11,58
5 11,39
6 11,6
7 12,54
8 11,72
9 11,08
10 10,82
11 9,55
12 9,64
13 9,47
14 9,55
15 9,50
16 9,44
17 9,49
18 9,47
19 9,44
20 9,50
21 9,47
22 9,478
23 9,655
24 9,404
25 9,50

Continued on next page

A.4. MAX THROUGHPUT 121

Table A.8 – continued from previous page

Test number RTT (ms)

26 9,48
27 9,549
28 9,476
29 9,422
30 9,485

Average 10,33
Standard d. 1,58

A.4 Max Throughput

Max throughput was tested for both traffic with a RTT QoS requirement
and for traffic without any QoS reqirements. The no QoS RTT test is
presented in Table A.9. This tests uses IPERF to push as much data as
possible through the link. Table A.10 uses KGEN to actively search for
the saturation point, where the RTT and packet loss is low.

No RTT QoS-Requirement

Table A.9: Max Throughput Without RTT Reqirement

Test number WLAN (kbit/s) LAN (kbit/s)

1 5329 8814
2 5472 8791
3 5529 8797
4 5443 8832
5 5525 8817
6 5572 8867
7 5452 8802
8 5527 8760
9 5453 8783
10 5564 8811
11 5477 8801
12 5547 8866
13 5463 8837
14 5548 8793
15 5409 8837
16 5463 8854
17 5511 8797

Continued on next page

122 APPENDIX A. MOBILE IP TESTS

Table A.9 – continued from previous page

Test number WLAN (kbit/s) LAN (kbit/s)

18 5455 8848
19 5490 8803
20 5459 8808
21 5444 8827
22 5569 8786
23 5417 8802
24 5542 8738
25 5417 8775
26 5577 8793
27 5455 8802
28 5480 8793
29 5511 8754
30 5500 8896
31 5568 8850
32 5515 8757
33 5540 8774
34 5469 8775
35 5430 8790
36 5554 8851
37 5500 8873
38 5455 8772
39 5416 8762
40 5477 8886
41 5510 8808
42 5422 8791
43 5536 8758
44 5483 8876
45 5479 8783
46 5482 8832
47 5440 8762
48 5557 8812
49 5529 8824
50 5563 8829
51 5435 8799
52 5568 8830
53 5486 8892
54 5546 8819
55 5450 8777
56 5527 8817
57 5485 8831

Continued on next page

A.4. MAX THROUGHPUT 123

Table A.9 – continued from previous page

Test number WLAN (kbit/s) LAN (kbit/s)

58 5475 8827
59 5544 8756
60 5433 8804
61 5480 8780
62 5449 8792
63 5452 8850
64 5492 8783
65 5510 8826
66 5564 8824
67 5485 8848
68 5425 8811
69 5468 8851
70 5501 8766
71 5572 8833
72 5533 8791
73 5417 8826
74 5441 8765
75 5442 8837
76 5493 8870
77 5385 8812
78 5493 8858
79 5461 8781
80 5474 8803

Average 5488 8811
Standard d. 51 36

Table A.10: Max Throughput With RTT Requirements

Test number LAN (kbit/s) WLAN (kbit/s)

1 8647 3825
2 8701 3693
3 8745 3740
4 8802 3841
5 8489 3491
6 8886 3519
7 8899 3665
8 8759 3828
9 8640 3700

Continued on next page

124 APPENDIX A. MOBILE IP TESTS

Table A.10 – continued from previous page

Test number LAN (kbit/s) WLAN (kbit/s)

10 8715 3566
11 8913 3860
12 8734 3627
13 8464 3647
14 8882 3765
15 8791 3756
16 8996 3588
17 8897 3760
18 8956 3796
19 8785 3817
20 8551 3797
21 8652 3834
22 8731 3870
23 8730 3643
24 8949 3750
25 8910 3792
26 8636 3746
27 8460 3811
28 8600 3773
29 9002 3824
30 9049 3759
31 8901 3810
32 8759 3813
33 8907 3723
34 8772 3718
35 8669 3755
36 8866 3780
37 8732 3775
38 8880 3801
39 8742 3812
40 8679 3772
41 8641 3583
42 8690 3858
43 8732 3770
44 8691 3721
45 8595 3796
46 8936 3752
47 8988 3840
48 8894 3760
49 9023 3678

Continued on next page

A.4. MAX THROUGHPUT 125

Table A.10 – continued from previous page

Test number LAN (kbit/s) WLAN (kbit/s)

50 8633 3863
51 8905 3697
52 8656 3727
53 8517 3765
54 8741 3696
55 8747 3640
56 8869 3755
57 8691 3825
58 8869 3778
59 8745 3789
60 8597 3864
61 8751 3818
62 8786 3751
63 8937 3741
64 8918 3826
65 8784 3762
66 8793 3789
67 8618 3807
68 8748 3747
69 8786 3817
70 8877 3855
71 8872 3676
72 8921 3814
73 8885 3830
74 8920 3665
75 8887 3697
76 8747 3728
77 8908 3820
78 8777 3766
79 8896 3863
80 8922 3796
81 8805 3823
82 8819 3783
83 8636 3768
84 8854 3757
85 8915 3808
86 8998 3835
87 8789 3847
88 8996 3912
89 8708 3703

Continued on next page

126 APPENDIX A. MOBILE IP TESTS

Table A.10 – continued from previous page

Test number LAN (kbit/s) WLAN (kbit/s)

90 9008 3847
91 8466 3714
92 8887 3700
93 8739 3811
94 8834 3870
95 8644 3771
96 8715 3651
97 8883 3909
98 8858 3950
99 8758 3895
100 9000 3912

Average 8791 3768
Standard d. 136 83

A.5 Hand-over Time

The hand-over test is presented in Table A.11. This test finds out how
long the connection is down during a hand-over.

Table A.11: Hand-over Time Test

Test number LAN -> WLAN (ms) WLAN -> LAN (ms) WLAN -> WLAN (ms)

1 960 980 1260
2 960 980 1240
3 960 980 1220
4 960 980 1200
5 980 980 1200
6 980 980 1200
7 960 980 1220
8 960 960 1280
9 980 980 1280
10 1000 980 1220
11 980 980 1260
12 1000 980 1240
13 960 980 1220
14 960 980 1180
15 960 980 1200

Continued on next page

A.5. HAND-OVER TIME 127

Table A.11 – continued from previous page

Test number LAN -> WLAN (ms) WLAN -> LAN (ms) WLAN -> WLAN (ms)

16 960 980 1200
17 960 960 1220
18 960 980 1280
19 1000 980 1280
20 960 960 1220
21 1000 980 1260
22 1000 980 1240
23 1000 980 1220
24 960 980 1180
25 980 960 1200
26 1000 980 1200
27 960 980 1220
28 960 980 1280
29 960 960 1220
30 1000 960 1220
31 1000 980 1260
32 980 980 1240
33 960 980 1220
34 960 960 1180
35 960 980 1200
36 1000 980 1200
37 980 980 1220
38 1000 980 1280
39 980 960 1280
40 960 980 1220
41 1000 960 1260
42 980 980 1240
43 980 980 1220
44 1000 960 1180
45 1000 980 1200
46 1000 980 1200
47 960 980 1220
48 960 960 1280
49 960 980 1280
50 960 980 1220
51 1000 980 1240

Average 976 976 1229
Stanard d. 18 8 31

128 APPENDIX A. MOBILE IP TESTS

Appendix B

Enclosed CD

The enclosed CD contains the following directories:

MobiBind contains the source code of the MobiBind implementation.

KGen contains the source code of KGen, that was used during the Mo-
bile IP testing.

KGen Modified contains the KGen source code, used when testing Mo-
biBind. It is modified to allow it to connect to and use MobiBind.

Documents contain an electronic version of this thesis.

The CD does not contain a runnable example because MobiBind has
a dependence to Mobil IP. This dependency was realised with software
that is not freely distributed, so it could not be enclosed on the CD,
thereby making it impossible to provide a runnable example.

129

130 APPENDIX B. ENCLOSED CD

Bibliography

[1] 3GPP. Universal Mobile Telecommunications System (UMTS);
Quality of Service (QoS) concepts and architecture, ts 23.107 ver-
sion 5.13.0 release 5 edition.

[2] S. Amundsen, K. Lund, F. Eliassen, and R. Staehli. Qua: Platform-
managed qos for components architectures. In Proceedings of Nor-
wegian Informatics Conference (NIK). Tapir, 2004.

[3] Geert Awater and Jan Kruys. Wirleless atm - an overview. Mobile
Notworks and Applications, 1:235–243, 1996.

[4] Gordon Blair and Jean-Bernard Stefani. Open Distributed Pro-
cessing and Multimedia. Addison-Wesley, 1997.

[5] Cambridge: Architecture Projects Management Ltd. Advanced
Networked Systems Architecture ANSA Reference Manual, 01
.oo edition.

[6] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed
systems - Consepts and design. Pearson, third edition, 2001.

[7] Theory of adaptation - specification of the madam core architec-
ture and middleware services. Technical report, EU Project - Sixth
Framework Programme, 2005.

[8] M.A. de Miguel. Solutions to make java-rmi time predict-
able. Object-Oriented Real-Time Distributed Computing, 2001.
ISORC, pages 379–386, May 2001.

[9] Ping Liu Jina Mao Tomonori Yamane Luiz Claudio MagalhÃ£es
Roy H. Campbell Fabio Kon, Manuel RomÃ¡n. Dynamic Con-
figuration with the dynamicTAO Reflective ORB, volume 1795.
Lecture Notes in Computer Science, Jan 2000.

[10] P Ferguson and D Senie. Network ingress filtering: Defeating denial
of service attacks which employ ip source address spoofing. Rfc
2827, Cisco, 2000.

131

132 BIBLIOGRAPHY

[11] Tom Fitzpatrick, Gordon Blair, Geoff Coulson, Nigel Davies, and
Robin P. Supporting adaptive multimedia applications through
open bindings. Proceedings of the 4th International Conference
on Configurable Distributed Systems (ICCDS ’98), 1998.

[12] Matthew S. Gast. 802.11 Wireless Networks: The Definitive
Guide. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.

[13] Geoff Coulson Gordon Blair. The design and implementation of
openorb 2. IEEE Distributed Systems Online, 2(6), 2001.

[14] Paul Grace, Gordon S. Blair, and Sam Samuel. A reflective frame-
work for discovery and interaction in heterogeneous mobile envir-
onments. ACM SIGMOBILE Mobile Computing and Commu-
nications Review, 9(1):2–14, January 2005.

[15] Object Management Group. Corba components. Technical Report
02-06-65, OMG, 2002.

[16] Poul E. Heegaard. Gensyn - a java based generator of synthetic in-
ternet traffic linking user behaviour models to real network proto-
cols. ITC Specialist Seminar on IP Traffic Measurement, Modeling
and Management, sep 2000.

[17] http://www.iona.ie. The orbix architecture. Technical report, IONA
Technologies, 1995.

[18] Juha Korhonen. Introduction to 3G mobile communications.
Artech House, 2003.

[19] Harju J. Koucheryavy Y., Moltchanov D. Performance evaluation
of live video streaming service in 802.11b wlan environment under
different load conditions. In MIPS 2003, pages 30–41, 2003.

[20] Tianbo Kuang and Carey Williamson. A measurement study of Real-
Media streamin traffic. In SPIE ITCOM, pages 68–79, 2002.

[21] DeMichiel LG. Enterprise javabeanstm specification. Technical Re-
port 2.1.2002, Sun Microsystems Inc., 2002.

[22] Geoff Coulson Nikos Parlavantzas Michael Clarke, Gordon
S. Blair. An efficient component model for the construction of ad-
aptive middleware. In Lecture Notes in Computer Science, volume
2218, page 160. Jan 2001.

[23] Microsoft. Overview of the .net framework white paper. Technical
report, Micrisoft, 2001.

BIBLIOGRAPHY 133

[24] R. Cunningham M. Haahr and V. Cahill. Supporting corba applic-
ations in a mobile environment. In Proc. 5th Int. Conf Mobile
Computing and Networking, pages 36–47. ACM Press, 1999.

[25] M. Kounavis O. Angin, A. Campbell and R. Liao. The mobiware
toolkit: Programmable support for adaptive mobile netwoking. Per-
sonal Communications agazine, Special Issue on Adapting to
Network and Client Variability., Aug 1998.

[26] Charles E. Perkins and David B. Johnson. Mobility support in ipv6.
In MobiCom ’96: Proceedings of the 2nd annual international
conference on Mobile computing and networking, pages 27–37,
New York, NY, USA, 1996. ACM Press.

[27] Charles E. Perkins and David B. Johnson. Mobility Support in IPv6.
In Mobile Computing and Networking, pages 27–37, 1996.

[28] R. Ramjee et al. Ip micro-mobility support using hawaii. Internet
draft, July 2000.

[29] Espen Sagen. End-to-end performance during mobile ip handovers.
Master’s thesis, University of Oslo, 2003.

[30] Aladdin Saleh. Mobile ip performance and interworking architec-
ture in 802.11 wlan/cdma2000 networks. In CNSR, 2004.

[31] REED D. P. SALTZER, J. H. and D. D. CLARK. End-to-end argu-
ments in system design. ACM Trans. Comput. Syst., 1984.

[32] Michael Shuldman. Tools developed for network profiling and
traffic analysis. Master’s thesis, UiO, 2004.

[33] James D. Solomon. Mobile IP, The internet unplugged. Prentice
Hall, 1998.

[34] W. R. Stevens. TCP/IP Illustrated, volume 3 of Professional Com-
puting Series, chapter TCP for Transactions, pages 1–158. Addison-
Wesley, Reading, MA, 1999.

[35] Cisco Systems. Cisco 3200 Series Access Router, configuration
guide edition, August 2003.

[36] Clemens Szyperski, editor. WCOP’96 Summary in ECOOP’96
Workshop Reader. dpunkt Verlag, isbn 3-920993-67-5 edition,
1997.

[37] Birdstep Technology. Birdstep Mobile IP Client Diagnostics
Guide, universal edition release 2.0.4 edition, June 2003.

134 BIBLIOGRAPHY

[38] Birdstep Technology. Birdstep Mobile IP Client Release Notes,
universal edition release 2.0.4 edition, June 2003.

[39] Birdstep Technology. Birdstep Mobile IP Client User Guide, uni-
versal edition release 2.0.4 edition, June 2003.

[40] Birdstep Techology. Birdstep Mobile IP Client Administrator’s
Guide, universal edition release 2.0.4 edition, June 2003.

[41] NLANR Tools. http://dast.nlanr.net/npmt/, June 2005.

[42] Ledoux T. Opencorba: a reective open broker. Reflection’99,
1616:197–214, 1999.

[43] A. G. Valko. Cellular ip: A new approach to internet host mobility.
Comp Commun Review, 29(1):42–49, 1999.

[44] Jon-Olov Vatn and Gerald Q. Maguire Jr. The effect of using co-
located care-of addresses on macro handover latency. In 14th Nor-
dic Tele-traffic Seminar, aug 1998.

[45] Vogel. Distributed multimedia and qos: A survey. IEEE Multime-
dia 1995, 1995.

[46] Rfc3344 - ip mobility support for ipv4, 2002.

[47] http://www.item.ntnu.no/ poulh/gensyn/gensyn.html, July 2005.

	Introduction
	Background
	Problem Statement
	Scope
	Method
	Summary of Results
	Thesis Structure

	Background and Related Work
	Mobility Management
	Mobility Background
	The Mobility Problem
	Mobility Solutions

	Mobile IP
	Mobile IP Details
	Mobile IP Security
	Reverse Tunneling
	Mobile IP Without Foreign Agents
	Summary

	Middleware
	Introduction
	Component Based Middleware
	Reflective and Adaptive Middleware

	Quality of Service
	Introduction to Quality of Service
	QoS Parameters
	QoS and the OSI Model
	Renegotiation
	QoS and Mobility
	Traffic Classes

	Remote Bindings
	Introduction to Remote Bindings
	Implicit Remote Binding
	Explicit Remote Binding
	Open Remote Binding
	Remote Bindings and Mobility

	Summary

	General Test Configuration
	Motivation
	Equipment and Network
	Network Transfer Rates
	Mobile IP Implementation
	Data Traffic Generation
	Performance Tuning

	Performance Test of Mobile IP
	Test Description
	Jitter
	Packet Loss
	Round Trip Time
	Max Throughput
	Hand-over Time

	Test Results and Findings
	Jitter
	Packet Loss
	Round Trip Time
	Max Throughput
	Hand-over Time

	Analysis and Comparison
	Test Summary

	QoS-Aware Remote Binding Requirements
	General Requirements
	Mobile Connectivity
	Mobility Management
	Two-Way Connectivity
	Explicit Remote Binding

	QoS Requirements
	QoS Monitoring
	Hand-over Aware

	Summary of Requirements

	QoS-Aware Remote Binding Design: MobiBind
	Abstraction Level
	Low level
	High Level
	Discussion

	Mapping Requirements to Functionality
	Structural Design
	Basic Remote Binding Design
	Inner Binding Structure
	Creation, Initialisation, and Destruction
	Network Communication
	State Machine

	Functional Design
	Hand-over Detection Algorithm
	Harvest Mechanism
	Link Aware

	Example of Use
	Example 1
	Example 2

	Summary

	MobiBind Implementation
	Implementation Language
	MobiBind Code Presentation
	Utility Class and Parameters
	Hand-over Detection Algorithm
	Link Awareness
	Harvest Mechanism
	State Change

	Implementation Summary

	MobiBind Test
	Test Configuration
	KGen Modification
	Test Description
	Basic Testing
	Advanced Testing

	Test Results
	Basic Tests
	Advanced Tests

	Test Summary

	Thesis Assessment
	QoS-Aware Remote Binding Requirements
	Requirement 1: Mobile Connectivity
	Requirement 2: Mobility Management
	Requirement 3: Two-way Connectivity
	Requirement 4: Explicit Remote Binding
	Requirement 5: QoS Monitoring
	Requirement 6: Hand-over Aware
	Requirement 7: Seamless Data Connection
	Requirement 8: Hand-over Monitoring

	Thesis Problem Statement
	Sub-problem 1
	Sub-problem 2
	Sub-problem 3
	Main Problem Statement

	Conclusion and Further Work
	Conclusion
	Further Work
	QoS-Aware Remote Binding
	Hand-over Time
	Notifications
	Application Specific High Level Binding

	Mobile IP Tests
	Jitter
	Packet Loss
	Round Trip Time
	Max Throughput
	Hand-over Time

	Enclosed CD

