View metadata, citation and similar papers at core.ac.uk brought to you byji CORE

provided by NORA - Norwegian Open Research Archives

UNIVERSITY OF OSLO
Department of informatics

An Analog Neural
Network with
On-Chip Learning

Roy Ludvig
Sigvartsen

Main Subject Thesis

August 11, 1994

https://core.ac.uk/display/30827176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preface

The work presented in this Cand. Scient. thesis has been carried out at Dept. of Infor-
matics, University of Odlo. | started working on my thesis September 1992 and the work
has given me a stimulating and challenging time here at the institute. | thanks my supervi-
sor Yngvar Berg and Tor Sverre Lande for all advice and help in the process which have
resulted in this thesis. | would also thank the colleagues in the analog VLS| group for
always giving constructive talks.

Thanks to my parents for always encouraging me in the work. And finally 1 want to
express my specia thanks to Heidi who has supported me both financially and emotion-
ally through the research and writing.

Blinderen, August 1994

Roy Ludvig Sgvartsen

IO 1 01 0o (8t i o o SRR ORI 5
11 ANA0G NEUIAl NEIWOTKS.ciuiitiitiiieiteie ettt sttt se et e s be e s b sbesbe e 5
12 The motivation Of thiStheSiS........cceiiiiiee e 6
2. Artificial Neural NEIWOIKcociiiiiiiieiiee et 9
21 Feed-fOrWard NEEWOIK ..o et 9
22 BaCK-PrOPAgELION........coveiiieieteieete ettt st e b et 11
23 Learning With DaCKPIOPcoviviieie ittt eresne s 12
3. Basic ANN computationsin Analog CMOS.........cceiiiiireneseneseeeeee e 15
31 IMIUITIDITEE et bbb e bt s b e e bt bbb s ettt ebe e 16
311 A modified transamp with increased linear operation rangeccoceevveveevierseseeeseenns 16
312 Four qUadrant MUITIPITEYcereeeerree e 17
32 ANBIOG UVAIMEMOTY ...ttt ettt bbb et 19
321 PhySiCal DESCriPLIONcveuciecicicec et ae e 19
322 Circuit description
323 Resolution Of the UV-MEMOIY ..ot 21
324 Measurements 0N the UV-MEMONYoirriiereeec et 22
33 (0107 g o] ol UL £SO
331 SIGMOIA FUNCHION. ...ttt
332 (D= Y= o] [OOSR

333 Subtraction of two voltages
334 Current to voltage converter

34 RS 0] 7= Y2
4. Feed-forward and Back-propagation Computationsin Analog CMOS...................... 29
41 The Feed-forward COMPUEALTION...........cociiiierere e e 29
4.2 Back-propagation COMPULELION..........cceierieieeeieeecese s see st e e re e e eresne s 32
421 Computing the errorsin analog CIMOS ..o 32
422 Updating the weightsin @analog CMOS. ..o 36
4.3 THEthrESNOId ... et e 40
44 SUMIMIEIY ...ttt ettt et ae e et st esee e st e see e it e sheeaee s b e eaeeeb e e s b e eb e e b e eae e s e eaeensesneesaeennas 41
5. A 4-3-2 NeUral NEIWOTKcoeiuiriiiieierie et nee s 43
51 Why @4-3-2 SIZEA NEIWOTK?ecveieseeeste sttt e e snesre e s 43

52 Dynamical behavior and time CONSLANESccooereririrenere e 45

b

~

[l]
ul
@

)

53 Training the NEWOrK iN PraCtiCe.... ... e
531 [Nitiation Of thE NEEWOTK........ccoviveiierrieee s
532 Pattern presentation teChNIQUE.........c.coveieiieieire e
54 ON-ChIP TEAMING ...vieeee bbb

541 Learning four patterns
5.4.2 Learning afour pattern XOR function

543 Learning an eight pattern fUNCLioN..........ccooeoierne e
544 INCOMPIELE [EAMMINGcvieeeieieeee bbb
6. DiscuSSION @Nd CONCIUSION.......coiuiiieiieeieeie ettt ee e e see s
6.1 Discussion and iMPIOVEMENEScerueuerieierieertee et sr s ere s b ebeseebeseeseseesesreesreesseens
6.2 L0000 1ox 111 Lo o [OOSR
6.3 FUMNEN WOTK.....ocviiiii s
(271 o] Ta | "] /S 67
A. ANAIOG CMOS....... .ottt sttt e e e s te e sesaeesreeaesneesteensesneens 71
Al CIMOS TFANSISION ...itiiiititerie ettt a bbb b bbb e e e e b et e e se e e et eaesbesbesaesreneas 71
All Subthreshold operation (WEEK INVErSION)cccoeoeieieeirieiesiereee e 73
A2 Effectsto consider in analog CMOS ...t e 74
A21 EArTY EFfECL. ...ttt e
A22 Body effect (substrate effect)
A.2.3 Transistor mismatch...............
A24 TEMPEIAUrE VAITEHIONS....c.ceveeieeeieeeriete ettt b e e eens
A3 (@014 (= 011 11 o OSSP
A4 Transconductance amplifier (traNSAMP)ccoceveeireierere e 75
B. A KGNQAIOO SLOMYeiiiiiiiiiiie ittt sttt e s sbe e sbe e sne e nan e e e nnnes 77
C. DetailSOf the Chip.....ccoie i 79
C1l Neuron and weight modules at transiStor 1&VEl ... 79
C2 TRETAYOUL ..ottt bbbt e b et 80

Figure2.1:

List of Figures

A two layer feed-forward neural NEIWOTK.cccoereriririece e 10

Figure 3.1 : A simple source degeneration technique to increase the linear range............ 16
Figure 3.2 : A modified transamp with increased linear range for use in multiplications. 18
Figure 3.3 : Physical view Of the UV-SIIUCIUIE............cceiiiiriirinereneseeee s 19
Figure 3.4 : Circuit description of the analog UV memory.ccoceveeienienienenieeseene 20
Figure 3.5 : The amplifier stage used to program the UV-memory.cccccvevvecvereennnne 21
Figure 3.6 : Measurements 0N the UV-MEMOTY.cccceriiirinineneneseeee s 23
Figure 3.7 : Measurements of the dynamical behavior of four UV-memories. 24
Figure 3.8 : Circuit symbol for the activation function CirCuits............cccceeveveeiecceeceennen, 25
Figure 3.9 : Computation of the derivative lpymp. e 26
Figure 3.10 : A SIMPIE 1-V CONVEITES.oueeiiiieceeieeee e 26
Figure 4.1 : Feed-forward computation implemented in analog CMOS.ccccecuenee. 30
Figure 4.2 : Measurements on the feed -forward part...........c.cocverenerieienene e 32
Figure 4.3 : Computing the error o, and the weight updates AW, [T 33
Figure 4.4 : Measured response of the eror O,ccovevvicieiiiciiiccc s 34
Figure 4.5 : Computing the error 6j and the weight updat&sij e s 35
Figure 4.6 : Measured and theoretical result of the error signal 6J. PRSP 36
Figure 4.7 : The weight updating SCEME.coooiiiiiiee e 37
Figure 4.8 : Programmed increments as a function of AW, [s 38
Figure 4.9 : Measurements on the stability problem.............ccoeiiininineneee 39
Figure 5.1 : The 4-3-2 feed-forward NEtWOrKcocveiiiiecicce e 44
Figure 5.2 : A linear separabl@ fUNCLION..........ooi i 48
Figure 5.3 : Measured results of learning and recall of the 4 patterns: 0000, 0011, 1100
o S 50
Figure 5.4 : The XOR-function is not linear separable...........cccooeviiieniininnieieeeereee 51
Figure 5.5 : Measured results of learning and recall of the XOR-function. 52
Figure 5.6 : The eight patterns function islinear separable...........ccccoorriiiiiiicncncnee 53

Figure5.7 :

Measured results of learning and recall of eight patterns for output Og;.......56

b

~

[l]
ul
@

)

Figure 5.8 : Measured results of learning and recall of eight patterns for output Os,.......57
Figure 5.9 : The mean square error during training for the QULPULS...........ccccoeevercreniene. 58
Figure 5.10 : An attempt to learn the eight patterns XOR function............cccccevevvceereennnne 60

| ntroduction

1.1 Analog neural networks

Today, fast digital computers help humans in daily tasks. However, in most tasks the
human brain is superior to the computers. A good example is the processing of visual
information. If we could copy abit of the architecture in the brain, very powerful comput-
ers may be built. Therefore neural network models have received an extensively increased
attention in the past 10 years. The models are drawn from our current knowledge of bio-
logical neural systems. An example is the use of “neuron” and “synapse” which can be
found in brains and neural networks.

Our aimisto build systems that can understand images, speech and other similar tasks
in the human world. Most of the developments in this research field is implemented on
digital computers. The recent growing interest in the field also originates from the con-
stantly development of faster digital computers.

Why are neural networks so attractive? They are valuable on several aspects:

» They are adaptive: they can learn from new data.

» They can generalize: they can classify data which only broadly resembles the
aready learned data.

» They can handle imperfect or incomplete data, offering a degree of fault toler-
ance.

» They are non-linear: they can capture relationship of large complexity.
» They are highly parallel: their operations can be executed simultaneously.

The parallel computations in neural networks are not being completely exploited in
existing solutions since most of them are being executed on serial computers. However,
since the computers in the past years have been substantial faster, acceptable results are
still being obtained. Specia purpose parallel hardware that utilizes the massively parallel
processing in neural networks have agreat commercia potential. In this research field dig-
ital, analog and mixed digital/analog systems have been proposed. A review of the latest
publicationsin this field shows an advancement of analog systems.

b

6 1. Introduction =

)

[l]
ul

It can be explain with the following arguments:

O In analog systems (and neural networks) a high degree of fault tolerance is
allowed since it may not be critical if afew transistors do not function. Thisis
not true for digital systems.

O It is possible to build circuits which have a remarkable power of computation
compared to their sizes and complexity. One example is the computation of the
activation function and its derivative (in the neuron). The analog circuit com-
puting these two functions only involves 7 transistors! Such a high computa-
tional density isimpossible for digital systemsto achieve.

O Using analog CMOS, low power consumption is achieved, especially when
operating the CMOS transistor in the subthreshold region.

O Thebrainisalso “analog”. Understanding information processing in biological
systems in addition to the physics of analog signals, even more efficiently sig-
nal processing in neural networks can be obtained. An example is the summa-
tion of synapses at the input to a neuron. When using current as the output
signal type for all synapses, only hard wiring of the synapse outputs are neces-
sary to perform summation.

However, analog systems are not robust to noise, but that is not a requirement for neu-
ral networks. Besides, it has been shown that noise assists neural networks to learn
[Hertz][Lehman][Murray].

1.2 Themotivation of thisthesis

You may have already guessed from the above discussion that the subject of thisthesis
Is an implementation of a neural network in analog CMOS. The neural network will be of
feed-forward type and the learning algorithm is back-propagation. The main basis of the
thesisiswork done by [Soelberg]. He showed how a neuron and aweight (synapse) can be
build in analog CMOS. The proposed network implementation (a 2-1-1 network) did not
worked as expected. The pros and cons described by [Soelberg] were the fundament for
thisthesis.

A chip with a sample network is implemented and it will be shown how it is possible
to obtain on-chip learning for an analog neural network with back-propagation learning.
A long term analog memory with UV-light adaption is used as the weight storage ele-
ments. Current-mode differential signals are used as the main signal type. A specia
weight updating scheme is used since the network is continuous in time and no clocking is
required. The pattern presentation interval and the UV-light intensity determine the learn-
ing rate n and the size of the weight increments. A minimized weight module is obtained
including a multiplier of smaller size and larger linear operation range than the multiplier

3

4

used by [Soelberg]. The analog memory and the coupling between weights and neurons
are improved.

1.2 The motivation of this thesis 7

a
11

The thesis is organized into 6 sections. The second section describes fundamental s of
feed-forward neural networks and the back-propagation algorithm. Building blocks in
analog CMOS which can be used in neural networks are discussed in chapter 3. How ana-
log CMOS circuits may be connected to compute neural network operations are focused in
chapter 4. Chapter 5 discusses our implementation of a 4-3-2 network and on-chip learn-
ing of the network. The discussion and conclusion are included in chapter 6.

Four extra sections are included after the reference list. Appendix A gives a short
introduction to analog CMOS. Appendix B contains a history which describes back-prop-
agation. Appendix C gives a more detailed summary of the chip which includes transistor
diagrams of the neuron and the weight modules in addition to a description of the input

and output pads on the chip. Appendix D includes a paper published in the journal: Analog
Integrated Circuits and Sgnal Processing.

1. Introduction

[
di

b

)

(3

Artificia Neural Network

There exist several classes of neural network architectures. It is not always easy to
choose the most appropriate architecture for a given problem. The first thing to do is to
examine your training set. If it includes the correct outputs (targets) you can choose net-
works containing “learning with a teacher” (supervised learning). Applying supervised
learning a direct comparison of the outputs of the network with known correct answersis
carried out.

However, sometimes your training set do not includes any learning goals. Then the
only information available is the correlations of the training pairs. The network is
expected to create categories from these correlations (unsupervised learning). And the out-
puts can be a clustering, adimensionality reduction or afeature extraction of the inputs.

The future goal for our neural network implementation is to learn speech-, pattern rec-
ognition and other similar human tasks. For these problems the answer for a given set of
input is known, but the function is unknown. Thus an implementation of a neural network
with supervised learning is our choice.

2.1 Feed-forward network

The power of multi-layer networks was realized already in the late 60s, but only when
Rummelhart and McClelland [Rummelhart] showed how to make them learn, these net-
works appeared to be useful. The network topology we are going to use includes two lay-
ers asillustrated in figure 2.1. (The rule for this thesis are: when counting the number of
layers, the input layer is not included.) These two layers are the hidden layer and the out-
put layer.

Each layer has a number of units (or neurons) and to each of these neurons many syn-
apses (weights) are connected. For each neuron in the layer below it exists a weight to
each neuron in the layer above. The weights job is to scale the contribution from the neu-
ron in the layer below. Input to a neuron is a summation of all the weights connected to the
neuron. The output of a neuron is a threshold function of its input. We may choose the
threshold function (or activation function) to be either asign-function, alinear or semi-lin-
ear function, or asigmoid function.

b

10 2. Artificial Neural Network =

\

We use a sigmoid function because this function gives us continuous-valued outputs
which are nonlinear, derivable and kept between fixed bounds. A sigmoid function is easy
to implement in analog CMOS.

A neuron has a bias (threshold) which will ensure that the output of the neuron is non-
zero if the input is zero. A feed-forward network can map any function only if the right
architecture is used. The number of hidden units must be a choice which depends on the
complexity of the input patterns.

il
“"

On-

OZL’I. 12

I nput
‘ ‘ O O O 0O 0O 0O 0O o |a¥er
Iny Iny Iy N,

Figure2.1: A two layer feed-forward neural network.

When counting the number of layers, the input layer is kept outside. Each line between
two neurons is a synaptic connection (a weight) which performs a multiplication (0 L)
The network isa m-n-o sized network (m input, n hidden, and o output neurons).

qp

% 2.2 Back-propagation 11

4

2.2 Back-propagation

To recall afunction with afeed-forward network, a set of weights has to be found that
performs the desired mapping. The back-propagation (backprop) algorithm [Rummelhart]
Is an optimized scheme to find a solution set. The algorithm is based on a gradient descent
optimization procedure and should be thought of as an algorithm for computing gVEV for
each weight in the network.

| heard a good story once from the Internet (author: Warren Sarle) which explains the
backprop algorithm in a funny way. This story may be found in Appendix B. The algo-
rithm is based on atraining set of patterns which contains input and target vectors. Each
vector (or pattern) is presented for the network in a repeated order and the error, which
measures how far away the network isfrom a solution set, can be found. A typical way to
calculate the error is to use the sum-sgquare error measure:

es

10 2
E = éz Doip—tip% where (21
pI
p . .
O, isthe output of neuron i for pattern p,
P .
t.” isthe correct output (target) of neuroni for pattern p.

As evaluated in many books and articles [Hertz] [Rummelhart] the updating rules for the
weights using the error measure in eg. (2.1) and following gradient descent (g'\%) are:

For the hidden layer to output neuron connections:
AV\/ij = néioj where (2.2

n isthelearning rate which decide the step size,
o, isthe error computed in the output layer and
O, isthe output of the hidden neuron j.

For the input layer to hidden neuron connections:
ijk = r]ESj O, where (2.3)

6]. is the error computed in the hidden layer and
O isthe output of the input neuron k.

Before computing the weight changes, the errors have to be cal cul ated:
The error calculated for the output neuron:

o = (-0, 0O, where (2.4)

b

12 2. Artificial Neural Network

~

[,
ul
@

)

O, isthe output of the output neuron i and
O'; isthe derivative of the output neuroni.

The error calculated in the hidden neurons;
0, = O IZWi % (25)

Note that the & -errors are propagated from output down to input in an opposite direc-
tion of the feed-forward signals, hence the name back-propagation. In the original stan-
dard backprop agorithm the weight updating was employed only after al the patterns
were presented’. This approach required additional accumulation storage for each weight.
The more commonly used method is to update each weight before presenting a new pat-
tern (on-line updating). We do not truly follow the gradient aE because the network cal-
culates a new error between each pattern presented. The network will then have different
values of E for each pattern.

2.3 Learning with backprop

To find out what is required for a network to learn its training patterns is a non-trivial
problem and depends on several parameters which will be discussed.

Convergence

A network converge when the error E (in eg. (2.1)) has reach a limit €. The limit
describes how large error rate we can tolerate. If the limit is small, let us say that only
0.01% error is tolerated, the network may not converge or the time it takes to converge
will belarge. Then it is possible for the network to become overtrained(i.e. bad generaliza-
tion). A moderate choice of the limit € is necessary to ensure convergence.

Initial conditions

The theory says that a network should start with randomly chosen weights. If we pick
large weight values which will give us derivatives approximately equal to zero, the con-
vergence time will increase rapidly and the backprop algorithm may be stuck in a local
minimum. To avoid such situations it is important to pick random weights which gives
neuron output values in the dynamic switching range of its activation function.

If you know something about the mapping function, it would be an idea to set the
weights closest to the values you think the network will have at the end of the training.

1. Thismethod is called off-line updating (batch mode).

qp

% 2.3 Learning with backprop 13

4

es

Local minima

If the backprop agorithm falls into alocal minimum, it may be stuck. Local minima
may result in that networks will never converge or they will converge to awrong solution,
Usually, networks which have falen into alocal minimum use long time to get out it and
the convergence time will be increased. A typical local minimum is one in which two or
more weight updates cancel each other. To avoid such cancellations we can either add a
little noise to the patterns or present the patterns in random order [Hertz].

Mapping function and the architecture

In most cases the architecture of a neural network is dependant on the type of function
we want to map. The number of hidden neurons have to be varied with the complexity of
the mapping function and of course also with the number of inputs. If you use too few hid-
den units, the network may not converge. If you use too many, the network gets too many
free parameters and this may result in over-fitting™.

In order to achieve good generalization the training set have to be large. A rule of
thumb is to use more training patterns than the number of free parameters included in the
network. If we do not have such alarge set, one possibility is to enlarge the set with many
noisy variations of the original set. The convergence time will increase, but we get amuch
better generalization.

Learningraten

It is difficult to know the optimal value of n . Some use a constant value, others may
alter the value as a function of time and others again use an adaptive variation of the value
n . The adaptive choice may automatically regulate n after the following rules:

» When the backprop algorithm in the last repetitions has decreased the error E,
the algorithm may increase the speed of the reduction in the error E by increas-

ingn.

* When the error E has been increased in the last repetitions, n should be
decreased.

Due to this adjustment a more efficient and optimal training is achieved, however, in a
hardware implementation such adjustment will involve unwanted extra control logic. In
our implementation the most desirable and cheapest way of setting n, isto update it as a
function of time. Two adjustment techniques have shown good results in simulations. The
firstisto start with ahigh value of n (large step size) and then decrease it slowly. The sec-
ond technique is to first start with a low rate (small step size) and increase it for a while
before we decrease it again.

1. Thetraining patternswill give asmall error but new patterns which is unknown for the
network will give alarge error rate. (Bad generalization).

b

14

2. Artificial Neural Network

M

~

(b
®

~Basic ANN computations
In Analog CMOS

Those who are familiar with the CMOS transistor operating in week inversion
may continue reading. Otherwise you should read Appendix A first.

If you review the mathematical neural network equations in chapter 2, you can see that
we need to implement basic operations as summation, subtraction and multiplication in
our implementation. If the implementation should be a digital system we would begun to
build an adder, a subtracter and a multiplier. However, building an analog system, we
should take advantage of the physics of the two signal types in analog system: voltage and
current.

Using current signal representation we may easily achieve summation (and subtrac-
tion) by only physically connecting signals together (Kirchhoffs current law). By using the
CMOS transistor in weak inversion we obtain an operation range for current signals from
fA up to nA (theoretically).

Voltage signals have the advantage that they may be distributed to many high-ohmic
nodes (as gates on a CMOS transistor). Voltage signals should be applied when a neuron
output is assighed to many synapses.

Multiplication can be performed by various circuits. Important issues when choosing
multiplier are: linear range, offset problems, size and type of input/output signals.

Another mathematical operation we need is derivation, which is not atrivial operation
to implement in an analog system. We do, however, this in an elegant manner as will be
shown later.

When choosing the circuits for our network, we have to think of how they may be con-
nected together. Some circuits need differentia input/output representation and other sin-
gle representation. With one signal connection between each circuits a large amount of
routing space is saved. However, areference signal has to be routed to those circuits hav-
ing differential signal input. In addition, some of these circuits may have different
demands on the reference signal value, which means that several reference signals have to
be applied on the chip. With two connections between each circuits, each signal can be
split into a positive and a negative component. When routing this type of representation,
you use alot of extra space. But you do not have to deal with reference signals and global
routing. So we have chosen mostly differential current signal representation.

b

16 3. Basic ANN computations in Analog CMOS =

\

Another solution would be to use a combination of both single and differential repre-
sentation. Linking two or more circuits we could use one bidirectional current signal. And
for those circuits which need differential inputs a small converter could be applied to con-
vert the one bidirectiona signal into two unidirectional signals. This inquire that the con-
verter should only contain of a few transistors if this representation should be of any
advantage.

1]
(b

3.1 Multiplier

There exist several multiplier circuits operating in weak inversion. A major problem
for these multipliersisthe limited linear range. Often they do not satisfy the requirements
of accuracy in certain calculation because of transistor mismatch and temperature varia-
tions. It is very important to choose the right multiplier and we have tested various circuits
to find multipliers which gives best accuracy and fits with the signal representation.

3.1.1 A modified transamp with increased linear operation range

A transconductance amplifier (transamp) isacircuit that amplifies a voltage difference
into acurrent signal. The current output signal is scaled by abias current |, determined by
abiasvoltage V},. The scaling can be viewed as a multiplication. When using the transamp
as a multiplier we wish to operate it in the linear output range. However, this region is
small, only 60mV linear operation range. It exist a number of techniques to increase the
linear region, including capacitive division and source degeneration.

A widely used source degeneration technique for the transamp is described in [Watts|
andisillustrated in figure 3.1. In the circuit it has been placed two diodes between the dif-
ferential pair and the bias transistor. With this extension the linear range is increased to
144mV, but the common-mode operating range will be reduced significantly. To guarantee
such ainflexible input restriction, extralogic on the inputs have to be included. The result
of thiswill be an increase of the network size instead of a minimizing.

< Extrainserted
diodes

Figure 3.1 : A simple source degeneration technique to
increasethe linear range.

The disadvantage of this circuit is the reduced common-
mode operation range.

qp

% 3.1 Multiplier 17

4

Yuesn

Another source degeneration technique is described in [Torrance]. In this technique
several differential pairs may be connected in seriesin such away that the input voltageis
divided n timesif the number of sections are n. The voltage input to each differential pair
is (V,—=V,)/n.

An example with three differential pair sections are shown in figure 3.2 @ and per-
forms the function:

KQ (V V,)
loy = 1,—1, = I tanh ETZD 3.0)

The linear range is increased to 180mV and the common-mode operating range is not
reduced. If we only use two sections the linear range becomes 120mV. By using p-type
diodesinstead of n-type, as shown in figure 3.2 (b), the linear range increases to 140mV. A
hspice simulation of the circuit along with asimulation of a standard transamp is shown in
figure 3.2 (d). The linear range of the modified transamp with n=2 is 2.3 times larger than
the linear range of a standard transamp.

Equation (3.1) can be applied as a multiplications between a unidirectiona current-
signal (1) and adifferential voltage signal (V; -V,). The modified transamp in figure 3.2
(b) is chosen to perform the multiplications in the feed-forward computations. In these
computations the linear range of the multipliers is critical. [Soelberg] proposed a Gilbert
multiplier in the feed-forward computations. This multiplier contains of 11 transistors, has
5 signal input lines, and the linear range of the multiplier is only 60mV. The multiplier in
figure 3.2 (b) contains of 9 transistors, has 4 signal input lines, and the linear range is
140mV. The dynamical behavior and the layout size are improved.

3.1.2 Four quadrant multiplier

A transamp can only perform atwo quadrant multiplication. In some back-propagation
calculations afour quadrant multiplication is required. One remarkable small and practical
four quadrant multiplier is described by [Toumazou]. It is based on the transinear princi-
ple (first proposed by [Gilbert]) and is originally implemented with bipolar transistors. It
IS easy to convert bipolar transistors to CMOS transistors working in subthreshold region,
since the drain current has an exponential behavior. Unfortunately simulations of this mul-
tiplier showed some offset problems that will limit the usage of this multiplier.

Another well-known four quadrant multiplier is the Gilbert multiplier [Mead]. It per-
forms the function:

k V, =V, \Y,

= | tanhD\T L 2DtanhD\7

In this equation two differential voltage signals are multiplied. V; is the termal volt-
age kT/q and at room temperature it is equal to around 25mV.

3VD

(3.2)

18

b

3. Basic ANN computations in Analog CMOS =

)

[l]
ul
@

21}, 21,

o
o
[y
o
R
N

\%1 2
21}, 21}, 21},
(a) = = =
P
i 4
I, 2y I,
Iy
Vi -| |>-| |-<{ |- Vs

o
.||||_|: :|_<__
= e

(b)
L out
Vi—» SN I
V, —» SN I, TOA // Modified transamp
with increased

E %er]](grgp linear range

‘ VRY
© b 5 L -

@ Y

Figure 3.2: A modified transamp with increased linear range for use in multiplications.
(a) demonstrate the principle, with three differential pair sections. The voltage between
V;and nl, nl and n2, n2 and V, are (V4 - V,/ 3). Thelinear range will increase by a fac-
tor of three. (b) illustrates the circuit used in our network. It has two sections and uses p-
type diodes instead of n-type to increase the linear range.

(c) showsthe chasen symbol for the modified transamp when it is used asa multiplier and
(d) shows a simulation of both the standard and the modified transamp. The linear range

isincreased by 80mV.

% 3.2 Analog UV-memory 19

4

By some modification the multiplier may perform the function:

@
(D~

| = (I,—1,)tanh ‘0 33
out (1 2) E\TI_ 2 0O (3.3)

Equation (3.3) is a multiplication between a differentia current signal 1, -1, and a
differentia voltage signal V;-V,.

3.2 Analog UV-memory

One of our goal in the VLSI implementation of a neural network is to store and update
an analog memory on-chip. A promising approach is the floating gate technique. With this
technique we may store a charge on an isolated gate of a transistor (floating gate) with
extreme low leakage. Adjustment of the voltage on this gate may be accomplished either
by Fowler-Norheim tunneling, hot carrier injection or ultraviolet (UV) light exposure
which will be used in our implementation. By using UV-light exposure we are able to
inject el ectrons through (the edges of) a CM OS capacitor onto the floating gate node. Thus
it is possible to increase or decrease the value on the memory by small steps which is
required by many neural network algorithms.

UV-light Metal shield
with UV-window

UV-activated
.~ conductance

o

Circuit symbol

Figure 3.3: Physical view of the UV-structure.
The polyl layer is connected to a gate of a transistor. The UV-
activated conductance is also drawn in the figure.

3.2.1 Physical description

To program the floating gate, a capacitor, made of overlapping polyl - and poly2 layer
has to be connected to the gate. The insulator, silicon dioxide (SiO,), is separating these

b

20 3. Basic ANN computations in Analog CMOS =

\

two silicon layers, but when SiO, is exposed by UV-light, it conducts with a small con-
ductance.

To ensure that only the UV-structuresis exposed, we use ametal shield over the rest of
the chip. However, a small amount of UV-light waves are being reflected under the metal
shield. Benson and Kerns [Benson] showed that the reflection under the shield attenuates
exponentia as a function of the distance from the UV-window. Since the UV-activated
conductance is depending on the UV-light intensity, UV-structures with different time
constants can be build. Moving the UV-window a bit away from the UV-structure, we
achieve a smaller UV-activated conductance which means a larger time constant. A mem-
ory with an UV-window not exactly above the UV-structure is applied in our implementa-
tion. To prevent reflections under the shield we have in our design built guard rings of
poly1 to metal 1 contacts outside the UV-structure.

The edges of the capacitor in the UV-structure are one of the factors that decide the
size of the UV-activated conductance. To achieve high programming speed it isimportant
to layout the capacitor with long edges.

1]
(b

3.2.2 Circuit description

The poly1 node in figure 3.3 is usually called the control node while the poly2 nodeis
the floating gate node. The UV-activated conductance is a nonlinear function of the volt-
age difference between the control gate and the floating gate [Maher] [Benson]. Especially
for small voltage differences the conductance will be small. Benson and Kerns [Benson]
proposed a tanh-function dependency. Our approach is to always keep alarge voltage dif-
ference between the control gate and the floating gate in order to achieve higher program-
ming speed.

[Maher] introduced a second capacitor Cc,, connected to the floating gate to remove
the total load capacitance on the floating gate. The other input to this capacitor is an
inverted input V,p, of the control gate voltage Vg asillustrated in figure 3.4.

Vfgl
Control gate —@—
N | “HC
bt 'Ii
/ LB
d"‘i —| |:: dw
Ty o |
C
Floating gate |}
V
(@ (b) 102

Figure 3.4 : Circuit description of the analog UV memory.

V.., ISan inverted voltage of v, . dwisa current difference which isamplified to a
large voltage difference. Figure ?a) shows a typical floating gate memory and figure
(b) shows a differential voltage representation which will be used in our implementa-
tion. The actual value of the memory is then Vg -Vgo.

qp

% 3.2 Analog UV-memory 21

4

es

To remove the total load capacitance the signal V,, and Vg have to have symmetrical
characteristic. [Soelberg] introduced a digital inverter to invert Vg, but this led to an
unstable floating gate voltage on Vg when Vg and Vey, switched. An improved solution
will beto let atransamp with a differential output control Vg and Vg, as shown in figure
3.5. One important detail with this implementation is how the voltage on V¢, is com-
puted. To minimize the symmetrical switching mismatch between Vg and Vg, Vegp IS
computed directly from V. The only source of errors in the symmetrical characteristic
will be the current mirrors inverting the voltage V4. The extratime used to invert Vg is
not a problem since the time constant of the UV-memory is considerable larger.

The unsymmetrical characteristic of Vg and V¢, may affect the voltage on the float-
ing gate due to the capacitive division of the Vg and V5, To avoid such disturbance after
finished programming, Vg and Vg, can be set to a fixed voltage level. Locking V¢y and
Veap @t a fixed value may be accomplished by using n-type transistors to pull down the
voltages on the control gate and Vg

A A A A A
] bl byl
Vcap ch v W v

Iout+ Iout'

?;II-—I | J;I IE?L

Figure 3.5: The amplifier stage used to program the UV-memory.
The current inputs |5+ and |, are outputs from a differential pair.

3.2.3 Resolution of the UV-memory

All neural networks have to include some kind of storage of the weight values. A well-
known problem for the storagesis if they have the required resolution. The main reason is
that these neural network storage mechanisms in some way touch the digital regime.
Either the storage istotally digital or the long-term storage is digital but before/after train-
ing these values are put through a DAC/ADC. A digital value is always quantized and it is
necessary to know how many bitsis required to obtain a wanted accuracy.

An analog storage, however, that is never digitalized, will not have an exact lower
level of accuracy because of a quantization problem. The accuracy in analog storages are
determined by the level of noise included in the storages.

b

22 3. Basic ANN computations in Analog CMO

2]

[l]
ul

\

[Tarassenko] reports a detectable accuracy of 1:1000 on their analog memory (10 bits
accuracy). The memory value is held on the gate capacitance of a FET. The disadvantage
of thistype of analog storageisthat it needsto be refreshed regularly. After finished train-
ing all the memories are digitally saved. With 1:1000 accuracy on both the memories and
the analog multipliers used they have successfully simulated on-chip learning for a neural
network.

Our UV-memory alone has an higher accuracy of 1:1000 if the whole operation range
Is used. However, our problem is that only a constrained range of the memory is interest-
ing because the output of the memory is an input to a multiplier with a linear range of
140mV (seefigure 3.2). If the memory shall work inside the linear range with an accuracy
of 1:1000, the UV-memory has to achieve programming steps small as 0.14mV.

[Murray] talks about how analog noise in the memories actual assist the learning pro-
cess in neural network. He says that you may see the inaccuracy in analog memories as
spread of “actual” values of the memory. But the memories maintain its accuracy asatime
average. And if the learning process is sufficiently slow, as is for our network, it “sees
trough” the relatively low levels of noise in an analog system. So analog memories have
fundamentally different accuracy problems than digital memories. And therefore it is
probably not meaningful to talk about exact values of the resolution of our memory and
compare it with digital resolution.

[Lehman] demonstrated that constrained analog weights with added noise, enhanced
the probability of learning in neural networks. The weights used in his network corre-
spond to the weights in our network in a such way that they are constrained and they
include noise. Thus the accuracy of our weights do not have to reach alimit before a suc-
cessful learning of the network is obtain.

)

3.2.4 Measurements on the UV-memory

Usually we look at programming steps as voltage increments between two measure-
ments. In a neural network the time between two measurements may be equalized to the
time each pattern is presented. If we want to decrease the steps, we may increase the mea-
sure frequency (decrease the time each pattern is presented) or decrease the UV-light
intensity.

The UV-light source used, is an old eprom-eraser which expose light with wavelengths
of 254nm and with an effect of 4W. To adjust the intensity of the UV-light exposed to the
chip, two methods can be used. The obvious one is to alter the distance between the chip
and the light source. The light intensity has an exponential dependency on the distance.
The second method isto filter the light exposed to the chip with various degree of attenua-
tion. We have two filters that only amplify lights with wavelengths around 250nm. The
first one (filter A10) has an amplification of 0.1 at 254nm and the second (filter B24) has
an amplification of 0.24 at 254nm. Measurements showed that the programming speed of
the weights had an exponential dependency on the difference between applying filter B24
and filter A10. For small UV-light distance the difference was large (at 3cm: 8.7 times),
and for larger distances the difference was smaller (at 12cm: 4 times)

L

3.2 Analog UV-memory 23

)

®
(1=
il

b)

3 L s
< 100k, < 40 M S = e
< m
o 50 Ko
8 8 20
E 0 g
2 P
g -50 g 0
(&) ()
£-100 £ Sem
3 3

-150 -20

0 100 200 300 0 100 200 300
lllumination Time (s) lllumination Time (s)

Figure 3.6 : Measurements on the UV-memory.

Examples of how a memory can be programmed are shown. Figure (a) shows the
fastest changing memory (model A) and figure (b) shows the slower memory (model
B). For both figuresthe UV-light source distance has been altered between 3cm, 5cm
and 12cm. Thefilter B24 has been applied for all measurements.

Two types of the UV-memory with different time constants have been applied. The
UV-memory model with smallest time constant (model B) has a half size UV-window that
ismoved 6um to the left of the floating-gate node (see figure C.5). The window is placed
in a such way that UV-light is only exposed to one of the edge of the capacitor poly1-
poly2 (capacitor between control node and floating-gate node, see also figure 3.3). The
time constant for the memory was decreased by a factor of 3.3 (mean value).

When updating the UV-memory we may only increase or decrease the value stored.
Figure 3.6 shows both increasing and decreasing values of the two different UV-memory
models (model A and model B) for various light-source distances. From figure 3.6 you
may see that when shifting from negative to positive programming steps the value on the
memory jumps about 20mV. This is due to non-symmetrical behavior of the amplifier
stage in figure 3.5. Especialy when I . and I, (shown in figure 3.5) are not symmetri-
cal matched (the common mode signal 1}, + 17, # 0) this effect will occur.

Figure 3.7 illustrates the problem discussed above for three UV-memory models of
type A and for one model of type B. Compare to the UV-memory discussed in [Soel berg]
our UV-memory has a considerable improved switching characteristic, but may still be
improved. A particular unwanted offset is the voltage difference obtained after the input
has switched sign. To reach a higher level of accuracy, such offsets have to be removed.

If you compare the switching characteristic of model A and B in figure 3.7, model B
has a significant smaller offset error than model A. The inconsistence between these two
models are due to avery poor layout of the UV-memory model A. The routing of the float-
Ing gate node is unfortunately not kept at a minimum. Extra gate capacitances are included
for themodel A due to the unnecessary routing of the floating gate. In addition, the routing
area is probably different for the two UV-structures included in the differential memory
circuit which can be observed as a larger switching mismatch of the memory. The UV-
memory model B do not suffer of such a horrible routing. Therefore a more stable UV-
memory should be obtainable for the whole network.

b

24 3. Basic ANN computations in Analog CMOS _:'

it
(b
®

S S
E 20 E 20
< <
D D
B 0 8 0
£ €
— (q\]
> >
E-ZO E'ZO
g £
T -40 T -40
> >
o] o]
g 20 -10 0 10 20 20 -10 0 10 20
Input (mV) b) Input (mV)
S fan)
>
£ 20 E 20
<
3 .
é 0 T 0
™ o R RRRORORaN E‘
>\ [—_
£-20 o -20
2 £
3 g
>5-40 3 -40
)
0 20 10 0 10 20 d) 20 -10 0 10 20

Input (mV) Input (MmV)

Figure 3.7 : Measurements of the dynamical behavior of four UV-memories.

The figures show the characteristic of four UV-memories when the programming
direction is switched (UV-light source is turned off). The input is a differential volt-
age presented to a Gilbert multiplier for model A and transamp for model B. These
two circuits produce the input signals 1}, and 1, to the amplifier stage in figure
3.5.

3.3 Other circuits

3.3.1 Sigmoid function

In the algorithm of neural networks, a threshold function is used in a similar way as
the behavior of a biological neuron. For our network we have chosen the sigmoid func-
tions:

1

(O,+) = (O,) = tanh (Bh) and O = T+ oph

(3.4)

qp

. 3.3 Other circuits 25

4

Both of these functions can be calculated by transamps. A transamp which only output
one of the currents in its differential pair (14 in figure A.5) will output O, . A transamp
which outputs both of the currents flowing in each leg of the differential pair will output
(O,+) and (O,-) . Figure 3.8 shows circuit symbols for the two activation functions,
figure 3.84) for O, and figure 3.8 b) for (O_+) — (O,-) .

es

Figure 3.8 : Circuit symbol for the
activation function circuits.
Figure (a) shows a transamp
with the output O, in equation
(3.4) (One unidirectional signal).
Figure (b) shows a transamp
with the output (O,+) - (0,-) in
equation (3.4) (two unidirec-
tional signals)

Solid lines are voltage and stip-
pled linesare current signals.

3.3.2 Derivation

We have to calculate the derivative of asigmoid function. [Delbriick] showed how this
may be accomplished (see figure 3.9). By only adding two transistors to the transamp cir-
cuit, we are able to calculate the derivative of asigmoid function which is a powerful ana-
log computation.

3.3.3 Subtraction of two voltages

To find an easy way to substract two voltages, we use atransamp to do this. When it is
working in its linear range, a rea scaled substraction is performed. That works well for
our use.

3.3.4 Current to voltage converter

When connecting transamps with current outputs to Gilbert multipliers with voltage
inputs, the current outputs have to be converted to voltage signalsfirst. In the subthreshold
region a current signal works over several order of magnitude. But the linear input voltage
of atransamp or a Gilbert multiplier only works in the mV-region. A converter circuit
should map the wide range current signal into a voltage within the constrained input range

b

26 3. Basic ANN computations in Analog CMO

)

I,
ul
@

L [
:| })ﬂ — Zrreet lou
/
/

Y
v v v I bump
loutt l bump lout

(@ (b)

Figure 3.9: Computation of the derivative I,y

loutt @and I~ are outputs of a differential pair ‘and perform atanh function
when subtracting them. While Iy, performsa 1/cosh? function which isthe
derivative of the tanh function. Figure (b) shows the circuit symbol for a
transamp which also outputs the bump signal 1y

of transamps and Gilbert multipliers. One possibility is to use an inverse-sinh conversion
[Kerns]. But this converter circuit includes around 11 transistors and uses a bidirectional
current input and voltage output.

liny Vout
|m c/v WM
:| "<“?1 conv. >
= @ ()

Figure3.10: A simple |-V converter.

It converts a current signal to a voltage signal with a
logarithmic compression. Figure (b) shows a symbol
used in therest of the thesis.

Another solution is to use a logarithmic compression conversion. This may be
achieved by using diode-coupled transistors as show in figure 3.10. [Soelberg] used only
one diode-coupled transistor for each signal. The operation range for one n-type diode do
not exceeds 1.5V. If we add an extra diode at the top of the first one, we may get a more
useful operation range (between 1V and 3V depending on the WI/L ratio of the diodes).
The conversion is proportional to:

il

v O2InH I_D

qp

% 3.4 Summary 27

4

3.4 Summary

es

The basic circuits used in our implementation of a neural network have been pre-
sented. The circuits shown have been extensively tested in the simulators hspice and Ana-
LOG before they were pick out to be applied in the implementation. The proposed circuits
are covering every operations required for a neural network. The two most important cir-
cuitsin aneural network are the multipliers and the memories. These two types of circuits
have been thoroughly discussed.

An modified transamp with increased linear range is proposed as the multiplier to be
used in the feed-forward computations. A floating gate memory with UV-adapation is pro-
posed as the storage of the weights. The memory circuit has an improved dynamical
behavior compared to the circuit used by [Soelberg]. Two different memory circuits are
applied, model A and model B. Model A, which has the smallest time constant, are being
used as the weight storage while model B, which has the most stable behavior, are being
used as the threshold storage.

Each circuit operates properly aone. However, putting them together into aneural net-
work and trying to operate them in their operation range synchronously is not obtained
straightforward. The problems relating to this work will be discussed in next chapter.

b

28

3. Basic ANN computations in Analog CMOS

M

)

~—

Feed-forward and Back-propagation
Computations
In Analog CMOS

A presentation of how an ANN are implemented in analog CMOS is described in this
chapter. The first part will present the forward calculation and the second part the error
and update calculations.

4.1 The Feed-forward computation

In chapter 2 the rules of afeed-forward neural net with back-propagation learning was
described. This chapter will show how the feed-forward part may be implemented in ana-
log CMOS. Forward calculation of the network is working when being in learning (train-
ing)- and in recall-mode. Thus it is important that this calculation do not diverge in these
two modes.

Important issues for thispart is.

* Which activation function to use.
* Which multipliers to use.
* Which signal representation to use.

In chapter 3 we answered these questions generally. Now we want to build a whole net-
work with these selected circuits and signals.
In chapter 3.3 two different activation function for the neurons were sel ected:

1

1+ o (Bme “.h

g, (net) =

,(net) = tanh (3 Chet) (4.2

net isthe input to the neuron which is a summation of weights. These two activation
functions can be implemented by a transamp (see chapter 3.3.1). The activation function
in equation (4.1) is always positive and may be represented in analog CMOS as an unidi-
rectional current signal. The input and hidden neurons use this activation function because
it only requires one output signal for each neuron. With one input signal instead of two
implies a simplification of the multiplier circuits connected to the activation function cir-

b

30 4. Feed-forward and Back-propagation Computations in Analog CMOS _:'

\

cuits. The output neurons use the activation function in equation (4.2). A conversion of the
function in equation (4.2) to adigital function is easy. If the function is positive, then the
output islogical high. If the function is negative, then the output is logical low.

Jannans

[l]
ul

1
O =1 o
] b, 0 O
—BDZ O, [ranh (awj,) + 1, Ctanh (a©))0
1+e H& -
A
\
A 5
N
NI
LA
Y
NI
N
: \
Vo
NDuhabahehh bbb AR R kb "
\ \ \
i N R 3
\ NI \
— Ay D —
«— «— «—
— Wit — V2 «— Yim
R) v
. Al
\ : :
N \ N
On Oz Om
Figure4.1: Feed-forward computation implemented in analog CMOS.
Thefigure describes the computations from input layer k to hidden layer j. The input
O, isthe output from the neurons in the input layer. The large grey circle demon-
strates the neuron-module and the gray boxes the weight-modules for feed-forward
computations. Stippled lines are current signals and solid lines are voltages.

The computation of hidden neurons is shown in figure 4.1. First every weighted neu-
ron output from the layer below DNJ- « Is summed together with the weighted threshold
Oj OON"* . All these signals are represented as currents to be able to use Kirchhoffs cur-
rent law and just wire these signals together to perform the summation. The contribution
of G)j is scaled by the input ON which can be looked at as a neuron that is always on.

qp

% 4.1 The Feed-forward computation 31

4

es

In the equation in figure 4.1 it is assumed that the weights w;, are inside the linear
range of the multipliers. This consideration may not always be true but it is not critical for
the back-propagation learning[Lont][Lehman]. However, it seems like that the size of the
linear range of these multipliersis of more significance.

The current output O; of the neuron described in figure 4.1 has afew extra parameters
which are not included in the theory:

ij : Determined by Bias;,
B : Thermal voltage for activation function circuit,
Defined as kg/2KT,

o : Thermal voltage for multiplier circuits,
Defined as kg/4KT,

|, :determined by ON.

A transconductance amplifier may also be used as a multiplier. If the voltage-input is
AV, andthebiascurrent I, = O, then the amplifier performs a multiplication between
asingle quadrant current signal and a voltage difference:

K
lout = O, [tanh%n—vT mving where (4.3)

V; is the thermal voltage. The linear range of the tanh-function increases proportional
with the parameter n. In chapter 3.1 it was shown how we may increase the parameter n
to achieve higher linear range. The multipliersin figure 4.1 are modified transamps with
n=2.

M easurements

Figure 4.2 shows measurements of an output neuron O;. In figure 4.2 (a) we have dis-
connected all the neurons in hidden layer (O;) and the output O; was only depending on
©, . This voltage was modified by programming it with UV-light exposure. So the X-axis
in figure 4.2 (a) is programmed values of ©; and Y-axis is obtained by measurements
between each programming period. The curve shows atypical sigmoid function.

Figure 4.2 (b) is measurements of output neuron O;, but here is the X-axis a voltage
input to the input neuron O,. As you can see, this sigmoid function has a large bump. It
looks like O; is going to be positive but something happens and it stays negative. The rea-
son is that when O; is reaching -10nA, the programming direction of the weights is begin-
ning to switch sign. As described in chapter 3.2.4 the value on the memories may jump up
to 60mV while the programming direction is switching sign. These large jumps in the
weight values are causing the transient in the output of neuron O;. Why the output of O; is
not becoming positive, must be due to the variation in weight values for different signs of
the programming direction.

b

32 4. Feed-forward and Back-propagation Computations in Analog CMOS

)

[l]
ul
@

-5
< <
£ £ 10
o) o}
o c
o o
5 5-15
[} [}
pa pza
3 - 3.-20
5 =
O . O ,
-25
-100 0 100 100 200 300 400
(a) Programmed values of@i (mV) (b) Input 1N (mV)

Figure 4.2 : Measurements on the feed -forward part.

Shown in (a): output of neuron O, as a function of programmed values of ©, when
all the neuron o, in the hidden layer are off (Bias = Gnd). Shown in (b): output of
neuron O, asa function of the input In, to the network. The bump in figure b) is
caused by unstable weights.

In recall-mode the problem with unstable weights is easy to eliminate. You have to
clamp the sign of the programming direction to afixed value and not let it interfere with
the back-propagation computation. But under training-mode it is not so trivial to compen-
sate for this error since it is the back-propagation computation which determines the pro-
gramming direction. A more carefully UV-memory layout to obtain a stable value on the
memory may help to eliminate this error.

Since the offset error is critical only during the training-mode, a Simpler storage with
less errors could be used in this mode. Afterwards, the values on these storages could be
stored in the UV-memory before enter the recall-mode. A simple storage could be a capac-
itor which have to be updated frequently. [Tarassenko] used the gate-capacitance of atran-
sistor to hold analog values under the training of the network and the capacitor had to be
refreshed every 10ms. The refreshing requires a clocking and such an arrangement may
conflict with the continuous-time computation in the network.

4.2 Back-propagation computation

In chapter 2 the rule for back-propagation was described. The calculation of back-
propagation can be divided into two categories: the computation of the errors and the com-
putation of the weight updating.

4.2.1 Computingtheerrorsin analog CMOS

There are two important errors in the back-propagation algorithm; &, and &, as shown
in equations (2.4) and (2.5). Common for the calculations of these errorsis the derivative

L

4.1 The Feed-forward computation 33

)

Yuesn

@
l
il

8 = O'; danhFo gt - O/

AW, AW, AW,

Figure4.3: Computing theerror 5, and the weight updates aw;, .

The increment Aw;; gives the direction of the updating of V\/IJ AW, is the current
input to the amplifier stage in figure 3.5. The constant a in the calculation of &, is
defined as a = kq/2kT. Stippled linesare current signals and solid lines are voltages.
The white multipliers are Gilbert multipliers with one differential voltage input and
one differential current input. The black multiplier is a standard transamp with dif-
ferential current output. The derivative 0, controls the bias current of this tran-
samp.

of the activation function. The derivative may be achieved nicely by the bump circuit
[Delbriick]. From this circuit the bump signal (the derivative of the tanh function) isacur-
rent (one quadrant) output. This signal may easily be multiplied with a voltage difference
in a transconductance amplifier. See figure 4.3 and figure 4.5 where O'; and O'j are the
bump signals.

Normal assertion for accuracy in back-propagation is at least 16-bit precision. How-
ever, Murray [Murray] showed that the learning was enhanced by introducing noise (20%)
on the weight calculation and the activation function in an analog neural network. There-
fore the accuracy and the linear range of the multipliers involved in calculation of the
errors are not critical for the final result. The specia weight updating scheme explained in
chapter 4.2.2 will also strengthen this conclusion.

34 4. Feed-forward and Back-propagation Computations in Analog CMOS = §

G

-100 0 100 200 300
@ Target (mV) (0)

Target (mV)

Figure4.4: Measured response of the error 3, .

Target is swept for different values of O, . In (a) the sign of the programming direc-
tion of the weightsis clamped to a fixed value and Bias, = Bias,. In (b) the program-
ming direction is determined by the back-propagation computation, hence the jump
intheerror & which is caused by unstable weights.

Figure 4.3 illustrates how computing of the error o, is done. Before the signal 9,
leaves the neuron module it is converted to a voltage. Thusit is easy to distribute the sig-
nal to many nodes. Also shown in figure 4.3 is the calculations of the weight change
AW, = 0, [0, and the threshold change A©, = ¢, 1 O* . The weight change is obtained
in the weight-module by a Gilbert multiplier with one differential current input and one
differential voltage input. The output of this multiplication is input to an UV-memory
amplifier stage shown in figure 3.5. The neuron output ‘O‘ included in the threshold
change computation describes a neuron which awaysis‘on’ (high). It is, however, unnec-
essary to include a multiplication with this neuron since it is constant on and therefore the
calculation of A®; isidentical to §;. The current signal AO; is input an UV-memory
amplifier stage.

Measured response of o, is shown in figure 4.4 for different values of .. Figure 4.4
(a) shows results when the sign of every weight programming directions are clamp to a
fixed value and when Bias; = Bias.. The results in figure 4.4 (b) are obtained when the
back-propagation is computing the sign of the programming direction. When &, is switch-
ing sign it jumps from 350mV to -50mV because of the change in the values of the
weights due to non-symmetrical capacitances in the UV-structure (described in chapter
3.2.4). From measurements, we found out that the jump in 9, when switching sign may be
adjusted by theratio Bias/Bias;. Using this, it was possible to minimize the error shownin
figure (b).

A layout error (two signals were exchanged in the layout) demanded a different use of
the error signd 9, . To get positive increments of the weights, &, had to be negative (if OJ.
was positive). 9, had to have opposite sign of the wanted weight change direction. This
could be obtained by setting target with opposite sign of the direction wanted. As a conse-
quence of this approach, &, will operate outside the range where it is unstable. A further
discussion can be read in the following chapter 4.2.2.

/' =~ 4.1 The Feed-forward computation 35

Hidden

3 3 | 3
N \“‘i N
=\ *== =
SO N SN %\
A N N N Y \ AN 0
Aw On Aw, O12 Aw ;
i1 2 in

Figure 4.5: Computing theerror 3, and the weight updates Aw,,

Thiserror isdepending on each error 5, in the output layer. The white multiplier cir-
cuitsshown in thefigure are Gilbert multipliers and the black oneis a standard tran-
samp used as a multiplier. The result from the multiplication w5, is:
f(W,; 05) = Ibijtanh(uWij)tanh(aai) where a iskq/kT.

Stippled lines are current signals and solid lines are voltages.

Figure 4.5 demonstrate how the hidden layer error &, iscomputed. It isvery similar to
the computation of &,. However, the computation of 3, includes the propagated error
which is asummed value of the weighted values W, [d, Jfor =1, 2,...,0. Themultipliers
used in these calculations are Gilbert multipliers with two differential voltage inputs. The
output of these multipliers are current signals and are summed together by just wiring
them together.

Figure 4.6 (a) shows measurements of the error &, as a function of the output layer
error &, for different values of the output layer error d,. Asthe observant reader may have

b

36 4. Feed-forward and Back-propagation Computations in Analog CMOS _:'

)

[l]
ul
@

T S 500
£ E _
= s = 8,=10mv
WS
5 S
m 0 W0 5, =-30mv
g o
s i /
= 50 c /
g 5 5,=-10mv
©
k= R - T -500—— ‘ ‘
* -100 0 100 100 0 100
@ (b) Output Layer Error 61 (mV)

Output Layer Error 8; (mV)

Figure 4.6 : Measured and theoretical result of the error signal 5. .

The measured result in figure a) is obtained by putting the real error & through a
transamp to get a bidirectional current signal. The X-axisin figure a) is'obtained by
sweeping the target t, for different values of t, and measuring & , 5, and 5, at the
same time. Figure bﬁ shows simulations in hspice of the hidden layer error. The
result illustrates how a theoretical 5 should look like.

already seen, the signal type of &, in figure 4.5 and figure 4.6 (@) is not identical. In figure
4.6 (a) the o, isacurrent signal. LI'his is due to few pads on the chip and by converting 6J.

to a bidirectional signal we are able to only use one output pad for this signal. The mea-
sured result in figure 4.6 (a) is an output of atransamp with the original error 6j as input.
The result illustrates how the summed propagation error and then again 6j are depending
on the output layer errors o, . The measured results correspond to the theoretica resultsin
figure 4.6 (b) which shows simulations of the network in hspice. The ssimulationsillustrate
the origina 6j and how it variates with the output layer errors o, .

4.2.2 Updating the weightsin analog CM OS.

Equations (2.2) and (2.3) demonstrates how the weights are updated. It isimportant to

understand how this computation is implemented in analog CMOS because our method
departs from the theory and implementations in software.
Equations (2.2) and (2.3) computes the size of the incremental change on aweight. In a
computer program this will execute perfectly. A pattern is being presented at the inputs
and the targets. The weights are updated, not synchronously but one at atime, before next
pattern will be presented. This method works in the discrete-time domain.

In our design the weights will be updated synchronously (parallel computing) and this

Is done in continuous-time. Thus equations (2.2) and (2.3) is difficult to implement
directly into analog CM OS because the equations are designed for discrete-time computa-
tions.
The way to go is to let the time each input/target pattern pair is present to the network,
decide the size of the increment. And let equations (2.2) and (2.3) only decide the sign.
(Theintensity of the UV-light illumination is also afactor which determines the size of the
increments.) Figure 4.7 displays the weight updating scheme for our network.

L

4.1 The Feed-forward computation 37

)

Yuesn

@
l
il

Presentation time

Old
Wi [°
New
Sign of R | Real AN Wij
AW - AW; U >

UV-intensity

Figure 4.7 : The weight updating scheme.

A schematic diagram that illustrate how the updating of the weight is done. The
weight W, is updated with an increment Aw,.. The size of the increment is deter-
mined by thetimea pattern is presented and the intensity of the UV-light exposure.

This approach has some good facilities:
» All the weights are being updated all at the same time.

» We control the size of the increment AW outside the chip (this
may be compared to controlling the learning rate n .)

But this approach has also some unwanted effects that we have to consider:
* Itisonly the UV-light that determines the learning is on or off.

e All the increments AW for one pattern have nearly the same
size.

Figure 4.8 illustrate how the sign of the computed increment AW, determines the sign
of the increase or decrease in W, . Unfortunately the sign of AW, isinverse of the sign of
theincreasein W, . During drawing of the chip layout, two signalsin a differential signal
have been switched. One way out of thislayout error problem isto set an inverse value on
target. When target is positive, we want a negative output and when target is negative, we
want a positive output. The method will work but the error &, will not behave as expected.
The computation of &, will not approach zero when O, approach the wanted output. A
continuing of the weight updating when O, is equal to wanted output may lead to that the
network can forget already learned patterns. The convergence time will be increased
because unnecessary weight updating for learned patterns will slow down the learning of
unlearned patterns.

38 4. Feed-forward and Back-propagation Computations in Analog CMO

01,8
-3l

(mV)

@

-85 AW; >0
S
E0
E_
-95
0 50 100 0 50 100
lllumination Time (s) (b) lllumination Time (s)

Figure 4.8 : Programmed increments as a function of aw,.

The measured results show how computed values of AW isincreas ng and decreas-
ing the weight w,;, when the UV-light is on. As you may see the values of w;,
increases when AW is negative and vice versa. Dueto equations (2.2) and (2.3) this
iswrong behavior and is caused by a layout error under realization of the chip. This
may be compensated by switching the sign of the target. When target is negative we
want a positive output and vice versa.

Since equations (2.2) and (2.3) only will determine the sign and one (two with UV-
light) global parameter decides the size of al the increments AW, identical sized incre-
ments may lead to cancellations of previous increments. This problem can be solved with
a different pattern presentation scheme (also called training scheme). Usually one pattern
pair is presented one at a time with the same time between each pair and in a sequential

repeating order.
There exist two alternatives to eliminate the cancellations:

or:

If we pick arandom length of the presentation timefor each pattern,
each weight increment will differ from last increment and we get no
cancellation effects. With this tactic it will probably be important
that the total presentation time for each pattern at the end of training
are equal for all patterns.

If we let the presentation time for each cycle of the training set dif-
fer, we get asimilar effect as the alternative above. For example we
may start with along presentation time for each cycle and reduce it
for each repetition until end of training. (also proposed in chapter
2.3). The weights will for a such training scheme first be adjusted
roughly and during further training the weights will approach more
and more exact values.

L

I3

41

11

The Feed-forward computation

39

< 300 200
é N — 3
WS 200 % 2 i
5 =150
Y 100 = i
< 3
) 2100f
5 W’
© -100 . - - 50 - ; ;
0 0.5 1 15 2 0 05 1 1.5 2
@) Training Time (s) x 10° (b) Training Time (s) x 10
~ 8 80
E
I'O_7'5 S
5 E79
s 7 =
(0 =
"5 -
65 5
- ()
L >
5
Os5 77
1 15 2 1 15 2
(©) Training Time (s) ~ , 1.* (d) Training Time (s) ~ , 1.*
Figure 4.9 : Measurements on the stability problem.
Figure (a) showstheerror 5 whileit is decreasing toward zero and staysthere. Fig-
ure (c) is a zoomed window of 3, in (). Figure (b) shows programming of a weight
which isafunction of 3, . Observe how stable W, iswhen & isalmost zero, only
3. é% drift of normal programmmg speed. Figures (c) and (d) are zoomed windows
of figures (a) and (b) respectively. Measurements is taken every minute.The filter
A10 was used during programming and the distance between the UV-light source
and the chip was 15cm.

Neither of these two methods were tested when actualy training the network. It
appeared that the weight changes for pattern to pattern differed under training, due to
noise in small weight increments. For larger and more complex pattern sets applying these
two presentation schemes may be necessary.

Sequential repeating order of the training patterns may also cause oscillations of the
weight values. You may think of it asalocal minimum. By picking out the order randomly
we eliminate this problem. This training scheme has aso been reported as a way to
shorten the training time [Weiss].

We have just talked about the weight updates as positive or negative increments. Usu-
aly, when the network converge, the errors & become small (values near zero). The
decrease in & should have some effect on the size of the increments AW or else the net-
work may have difficulties with converging. During the design of the analog UV-memory

!I |

40 4. Feed-forward and Back-propagation Computations in Analog CMO _:'

\

it was an important task to consider the state where the sign input & CO isamost zero. Of
course it is significant to stop the updating of the weightsif the errors are near zero. But to
include extralogic to control this, was out of the question. One of our main issues was to
minimize the area of the weights. Instead of designing extralogic, we exploited the behav-
ior of the implemented UV-memory. When & [0 = 0 the control node and the capacitive
node have amost identical voltage (approximately 2.5V). Thus the voltage difference
between control node and floating gate node becomes smaller. In chapter 3.2 it was
described how a change in the floating gate voltage is depending on the voltage difference
between the control node and the floating gate node. With a smaller voltage difference the
size of the increments and decrements will be considerably smaller. And this, in addition
to the feedback error computation, will probably be enough to get the network to con-
verge.

Figure 4.9 shows measurements on the network. One pattern is presented at the inputs
and the targets, and the UV-light source is turned on. Two nodes in the network are exam-
ined, the output error o, and the weight W.. . W.. is updated as a function of the sign from
the multiplication &, [O, . What will happen when o, approaches zero? In chapter 4.2.1 it
was discussed the situation where o, was approaching zero because O; was approaching
t.. Infigure 4.9 &, approaches zero because the derivative O', approaches zero. The shape
of d, follows the shape of atypical bump signal (O';). When &, is close to OV, the updat-
ing of W are approximately stopped. W stablllzes as we had hoped. In normal pro-
grammlng mode the speed on the programml ng in figure 4.9 is 1.8mV/min, while when
6, =0 the programming speed is only 0.07mV/min. The weight W only drift 3.9% of
normal programming speed when 9, is closeto OV. Thisis avery mterestl ng result. The
stabilizing of the weights when the derlvatlve O'; is approximately zero will help the net-
work to hold its weight values inside an interesti ng range (-200 > W, | < 200mV). Because
of the fixed output bounds of a neuron output it is unnecessary to change those weights
that are trying to increase this neuron output if it aready have reach its maximum value. A
drawback is that if the network starts with many weight values outside the interesting
range these values may never enter the interesting range. Therefore a satisfactory initiation
of the network is especially important.

)

4.3 Thethreshold ©
Updating of the threshold do not differ much from weight updating:

A =nBOO (4.4)

The only difference is that the neuron ‘O is always on (logical high). Therefore the
multiplication with the neuron ‘O' is not necessary. The sign of threshold updating are
then only determined by the error 6. Infigure 4.3 and figure 4.5 A® isshown as acopy of
the current version of d before d is converted to voltage. A® isfed into the UV-memory
amplifier stage shown in figure 3.5.

In the feed-forward computation, however, we wish to scale or sometimes disconnect
the contribution of the threshold and therefore an extra multiplier is included in our net-

qp

% 44 Summary 41

4

work in order to obtain these opportunities. In figure 4.1 the threshold © is scaled (from
voltage to current) before it is summed together with the rest of the net-input to a neuron.
The scaling is determined by the bias signal ON which is identical to the neuron ‘O* .
Hence it is possible to regulate the magnitude of © to match it to the net-input signal to a
neuron. The network implementation proposed by [Soelberg] did not include the threshold
scaling facility. The absence of this facility was the major factor that his network did not
work.

[Soelberg] stated that weight updating should be faster than updating of thresholds. To
enlarge the time constant on the threshold we had to implement an UV-memory structure
that had a higher time constant. The realization of such a structure was explained in chap-
ter 3.2. The UV-structure model B described in this chapter has been applied for the stor-
age and updating of the threshold ©. This structure has about three times larger time
constant than the structure the weights are using (model A).

es

l
11

4.4 Summary

It has been showed how the theoretical equations described in chapter 2 may be imple-
mented in analog CMOS. Measured results of the computation of these equations are al'so
included. Calculations in analog CMOS have often constrained range of operation. An
example is the multipliers used. The linear operation range to these multiplies are limited
within 140mV. In the back-propagation calculation the range of the multipliers used is of
second order importance, mainly because of our special weight updating scheme. Nor-
mally these computations are deciding the size of each weight update increment. But in
our system the size is determined by how long a pattern is present, the UV-light intensity
and if the back-propagation error is close to zero or not. The weight increment computa-
tion only determines the sign of the increment.

As discussed before, noiseisamajor factor in analog system. Noise includes transistor
mismatch, temperature offsets, interference from the setup as electromagnetic fields,
unwanted offsets caused by the UV-light and so on. Many has concluded that analog
CMOS is too imprecise to ever handle tasks such as neural networks. But [Murray]
showed how noise enhanced the computations in these tasks when applying analog
CMOS. The discovering of weight jumps up to 15% of its interesting operation range in
our UV-memories was not desirable. In addition, alayout error almost spoiled everything,
we asked ourselves:. Is our network going to learn?

42

4. Feed-forward and Back-propagation Computations in Analog CMO

M

(9]
Y,
W,

b

)

A 4-3-2 Neural Network

A feed-forward neura network with 4 input, 3 hidden, 2 output neurons and back-
propagation learning is implemented on a chip processed at MOSIS. In this chapter the
network implementation will be thoroughly discussed. First we consider how the network
behaves and how it may be trained. Secondly we demonstrate on-chip learning.

5.1 Why a 4-3-2 sized network?

When designing the neural network we wanted alarger network than the typical XOR-
network. [Soelberg] designed such a network (a 2-1-1 network) but he also included a lot
of test structures, and that was not of any interest for us, mainly because of the good result
he achieved on the test structures.

The size of the network was chosen from the criteria:

» thesizeof the chip

 the number of inputs to be synchronously controlled
 the number of outputs to be measured

» which type of mapping function we want to learn.

Our network should have analog inputs and analog outputs athough we think about
them as digital inputs and outputs. Functions we want to map are in first hand boolean
functions. Later, if we succeeds, more complicated analog function may be mapped in
improved implementations.

Usually neural network architectures are designed after finding the training set. When
designing a network that is larger than absolute the minimum size, you can tolerate that
not every neuron have to operate as expected, exploiting the high level of fault tolerance
in analog systems and neural networks. For example if aneuron islocked at afixed value,
another neuron may “take over” itsjob. Examples on this will be shown later.

The 4-3-2 network has 6 analog inputs. Each pattern has to be represented as a 6 bit
word: 4 inputs and 2 targets. To take advantage of the whole network at once, we need 6
voltage sources to be simultaneously programmed. To be able to measure the result the

44

b

5. A 4-3-2 Neural Network = \
51 L
J | J
t;—Ogy = Og
Og Oz
net,, § net,., f—
31 O3 %2 § O3
e I Y P '"I. """"""
Woy Wo, Was
-.-.-.-.-.‘
—tTe Tt 1Y
Wiy Wi, Wis
—
Oy Op Ops
net, 7 net,, F— net, .5 —

21 i2321 2f 5,, S 5,
1 MR (s e N Al —T Ty
g, i W : W Waq

1 L f P 3
yooheee- (il Maleleleiels Tl Niluli..cluleh lailebiaks Falaleiateleleleisletels il ¥
f— : TN TN i
il i > Wos Woq
4 ""'.'"" """" B I B STt }
f— TN TN i
Wi Wi i Wiy
Oy Op, O3 Oy
In, In, Ing In,

Figure5.1: The 4-3-2 feed-forward network

qp

% 5.2 Dynamical behavior and time constants 45

4

first idea was to measure the two output layer errors in addition to the two output neurons.
But after testing the chip we found out that it was enough to measure the two output neu-
rons during training, mainly due to the special target presentation applied which altered
the output layer errorsin a different manner than assumed at the beginning.

The 4-3-2 network contains of 22 weights and thresholds but only 5 neurons as can be
seen in figure 5.1. If we had added one hidden neuron, seven more weights had to be
included. This shows that it is necessary to carefully choose the number of hidden neu-
rons. After having picked out the number of input and output neurons, the number of hid-
den neurons was determined in according to the space |eft on the chip.

es

5.2 Dynamical behavior and time constants

Our analog system has alot of parameters which can be adjusted. When starting mea-
suring on the chip, our first problem was to match signals. With 5 bias voltages, 3 other
reference voltages and 6 input voltages it was in the beginning difficult to get any reason-
able relevant measurements. In addition, initiation of 22 weight values also led to difficul-
ties. How do we get the network to operate as we wanted? First we had to study the
matching of signalsinside the network.

The 6 input voltages were fed directly into 6 transamps and a reference voltage set to
2.5V worked as the negative differential voltage component for all the transamps. There-
fore these 6 voltages should be adjusted around 2.5V £150mV.

The output of a neuron is a tangents hyperbolic function which are normally con-
strained between the two currents +1, . Anincrease in the output is avoided if the input is
expanding outside the operation range due to the fixed boundary output range.

Also included in the neuron is the derivative of the tanh function (bump signal). This
signal is approximately zero when the tanh function is at its operation range borders. The
bump signal operatesin our network as a bias voltage for a transamp which computes the
error o (see figure 4.3). When the bump signal approaches zero, the output of the tran-
samp also approaches zero. An example on thisisillustrated in figure 4.9 (a) which shows
measured results of & when the derivative O' approaches zero. The shape of & follows a
typical bump signal shape. In these measurements the bump signal operates as desired, it
stops the programming of the weights. But as experienced with other signals, offset errors
in differential pairs could give a positive or negative offset when their bias currents are
amost zero. With this offset error the programming of the weights would not stop as
desired. As a consequence of this we tried to increase the bias voltages to increase the
operation range of the bump signal. It would be a better solution to amplify the bump sig-
nal in the design by increasing the width of the transistors that calculate the bump signal.

The operation range for the input to a neuron is determined by summed weights. How
large the range is, will be afunction of the number of weights. If the result of the summing
of weights exceeds the operation range of the neuron, in worst case by 2-3 times, the con-
vergence time will grow. The extratime applied is due to the time the network may use to
adjust net inputs which are largely outside the operation range of the neurons.

Therefore to match the operation range of aneuron aweighting between the number of
summed weights connected to it and the weights linear range should be carried out.

b

46 5. A 4-3-2 Neural Network =

\

As described in chapter 2.3 the theory says that the weights should start with random
values. The UV-memory has an operational range of about 4V but the multiplier with the
UV-memory as one of the inputs, has only a dynamical operation range of about 250mV
(140mV linear range). And with no extralogic to set afixed value on the UV-memory, this
mismatch between operation range was probably the most difficult problem to overcome.

[Pineda] showed how relationships between time constants in a feed-forward neural
network have to be satisfied before the network can learn. He stated that the time constant
for the forward propagation has to be smaller than the back-propagation which again has
to be smaller than the time constant of the weight adaption. Measurements have shown
that these criteria are satisfied in our network.

il
|"'

5.3 Training the network in practice

5.3.1 Initiation of the network

As stated before, the weights should start with random values. But since the weight
values only have an interesting range of about 150-250mV and a dynamical operation
range of 1-4.9 V they have to be initiated to ensure that they are inside the interesting
range.

Pull-down transistors have been included at each control node in the UV-memory. The
intention of these transistors was to apply them when we wanted to lock the value on the
memories with the result that the memories not were disturbed by the back-propagation
signals. In addition it was the purpose to use the pull-down transistors to initiate the UV-
memory by programming all the memories towards Gnd. The initiation gave poor results.
The memories did not enter the interesting range. And when training of the network was
activated, the programming of the weights showed a “stairs-step” effect. A “stairs-step”
effect means that positive increments are not identical sized with negative increments for
identical programming parameters.

The effect isaso reported by [Abusland94]. His solution to thisinitiation problem was
to put the network through several up and down programming steps. In our network we
held al the inputs constant and altered the two target inputs up and down several times
which was the key to successful training. All the weight values entered the interesting
range and the network had been initilized with random values. However, sometimes one
or two hidden layer errors d;. were stuck at values near zero. For these errorsthe derivative
O' wascloseto zero. How t‘his affected the training of the network, is discussed in chapter
54.

qp

% 5.3 Training the network in practice 47

4

5.3.2 Pattern presentation technique

es

In general, patterns are presented sequentially during training in a repeating order. As
discussed in chapter 4.2.2 this may lead the network into alocal minimum. A better solu-
tion will be to pick out the order randomly. This technique has been applied in the training
of our network.

The special weight updating scheme uses the time each pattern is on (pattern presenta-
tion interval) and the UV-light intensity to determine the size of the increments. Adjusting
the size of the presentation intervals may speed up the convergence time. You can com-
pareit with regulation of thelearning rate n . Thisrateis often used as an instrument to get
faster out of local minima. A normal regulation technique of the learning rate is to start
with a high value and then decrease the value. This technique could aso be applied on the
length of the presentation intervals. But in practice it was enough to only pick out the
order randomly, because the weight increments did not canceled out due to the noise
present in analog systems in addition to the random presentation order.

The training of the network follows the algorithm:

UV-light source ON
For (the number of repetition)
Begin
For (the number of patterns)
Begin
Put on a pattern in random order
Measure
Let it stay on in n seconds
Measure
End
If (error <= a chosen limit) then training finished
(regulate n)
End
UV-light source OFF

The statement <For (the number of repetition)> may be replaced with <While (not
training finished)> if we have knowledge in front of the training that error will reach limit.

If the error don’t approach limit, the network will not converge and the training will never
end.

b

48 5. A 4-3-2 Neural Network

~

it
(b
®

5.4 On-chip learning

5.4.1 Learning four patterns

We start to show on-chip learning for a simple boolean function to demonstrate that
the back-propagation algorithm is working in analog CMOS. Four patterns is picked out
from the boolean function defined as O5, = Ingln,. The patterns are shown in table 5.1.

The selected function is linear separable. A linear separable problem must have the
ability to separate its boolean outputs with a line or a plane in its input space. The cor-
rectly separation of the outputs for the function O,, = Ingln, isshown in figure 5.2.
All linear separable problems can be mapped by a feed-forward network with only one

layer (perceptron).

|n1| N,
A

O . 03]_:0
X . 03]_:1

Figure5.2: A linear separable function.

The figure demonstrates the separation of the boolean function
Ingln, into a group with outputs logical high and a group with
outputs logical low.

Table 5.2 shows parameters which are set off-chip. The three parameters UV-filter,
UV-light source distance, and pattern presentation interval are determining the weight and
threshold time constant. For this training session we used a relative large time constant.
The network would still have converge if a smaller time constant had been used for train-
ing of this simple function.

Figure 5.3 demonstrates the training period and the recall period. Figure 5.3 () shows
measurements during the training. First the chip is initiated, secondly the presentation
algorithm in chapter 5.3.2 is used. You can see how the two patterns with targets equal to
“0" arefirst positive and move towards negative values as wanted. The training durationis
3000 seconds and with a pattern interval of 15 seconds the four patterns are repeated 50
times.

Figure 5.3 (b) shows retrieval of the four patterns when the UV-light is turned off and
the target is set to afixed value. Asyou can observed the network has successfully learned
the selected function.

% 5.4 On-chip learning 49

)

es

Figure 5.3 (c) shows the calculated mean square error during the training. The error is
calculated from the equation:

n
1
MSE = 7 Zl (t;—05)2 (5.1)
p:

Where p is the number of patterns, t, is the correct output and O, is the actua out-
put. Since O, isacurrent in the nanoampere region, the value of t; hasto be converted.
t, ischosen from where the output O, isstable. Fromfigure 5.3 (a) the valuefor t; =0is
-24nA and 22nA for t, =1.

An interesting finding in this training session was found. The network has an ability to
handle faults relating to hidden neurons which is stuck at one of their operation range bor-
der. Before and after training every hidden neurons and hidden layer errors were mea-
sured. The measured results showed that two of the hidden neurons and their hidden layer
errors had not changed at all. Thisisinteresting because it tells us that it is not necessary
for al hidden neurons to work if we want to train the network. The reason these neurons
were stuck, is not satisfying initiation of the weights connected to those neurons.

Table 5.1 : Four patterns from the boolean function Ingin, .

I nput Target
Number

| nl | n2 | n3 | n4 tl

1 0 0 0 0 0

2 0 0 1 1 1

3 1 1 0 0 0

4 1 1 1 1 1

Table 5.2 : Training parameters.
. UVHlight | b tiern Weight Threshold time
UV-filter | sourcedis- | .)
intervals time constant constant
tance

A10 12cm 15s 0.86mV/interval 0.25mV/interval

50

5. A 4-3-2 Neural Network

M

b

)

~

(nA)
BN
o o o

Output Neuron
AR
o

&

N
o

P Bt

(nA)

Output Neuron

1000 2000
Training Time (s)

3000

(b)

[EnY
a1

Mean Square Error (%)
(=Y
o

o

—~
\2)

20 30
Training epochs

10

40

50

20
10

-10
-20
-30

0000 0011 1100 1111
Input Patterns

Figure 5.3 : Measured results of learning and recall of the 4 patterns. 0000, 0011,
1100 and 1111.
Figure a) shows measurements during training, figure b) illustrates the measured
result of the recall of the training patterns, and figure c) shows calculated mean
square error of the measurementsin figure a).

5.4.2 Learning afour pattern XOR function

A classical problem to map is the XOR-function. This function requires hidden neu-

ronsif it is mapped by afeed-forward network. More complex functions are involving the
XOR-function as a subproblem.

We have chosen to train the network with four patterns from the XOR-function

In;In, O Ingln, asshownintable 5.3. Thisfunctionis not linear separable. Asillustrated
in figure 5.4, more than one line has to be applied to divide the function into target groups

(*0” and “1”). Therefore this function has to be solved with a network including hidden
neurons.

then we started the training. For thistraining session, the filter B24 was preferred.

First we initiated the network so the weights were inside the interesting range. And

L

5.4 On-chip learning 51

)

Yuesn

@
l
il

Inll Ny
A
O . 031 =0
x O X . 031: 1
© X—>
|n3| Ny
Figure 5.4 : The XOR-function is not linear separable.
It is not possible to separate the function into two groups
with only oneline (or one plane).

Pattern intervals was set to 10 seconds and the weight time constant was measured to
be 2.25mV/interval as described in table 5.4. The number of repetitions was scheduled to
125 and then the total training time became 5000 seconds.

The results are shown in figure 5.5. In figure (@) it is shown the measurements of the
output during training. After 30-40 repetitions the network output approaches close to the
correct output. As you also may observe, one of the patterns with negative target (‘*’
points) first seems to change sign. However, the continued training shows that the output
for this pattern is changing more and more against the wanted target.

After training the UV-light is turned off and the training patterns is tested on the net-
work as shown in figure 5.5 (b). For this training session, retrieval of the patterns had to
include the targets. The main reason was that the network needed the back-propagation
signals identical to those calculated under training to obtain the same result. The network
could not tolerate that weight values were not changed due to change of programming
direction (described in figure 3.7).

Figure 5.5 (c) shows the mean square error calculated from the equation (5.1). The tar-
get t; was set to -32nA for t;=0 and 20nA for t;=1. After 30-40 repetitions the error
decreases rapidly and the reduce in the error continues slowly, as expected, until the train-
ing is finished.

52

5. A 4-3-2 Neural Network

i3
(===

Table 5.3 : Four patterns from the boolean function in;in, O Ingln, .

~

I nput Target
Number
Ing Iny Ing Ing ty
1 0 0 0 0 0
2 0 0 1 1 1
3 1 1 0 0 1
4 1 1 1 1 0
Table 5.4 : Training parameters for the XOR problem.
. UV-light | b iern Weight Threshold time
UV-filter | sourcedis | . .
intervals time constant constant
tance
B24 12cm 10s 2.25mV/interval 0.62mV/interval
_ 40 : :
£ 3
4 | 520 | —
Cy) 0 do ' !
c = ‘
o S O i
=}) |
2 50 z |
5 S0
E 3] ‘ .
-40 -40 :
0 1000 2000 3000 4000 0000 0011 1100 1111
@ Training Time (s) (b Recall of traning patterns
25
S
<20
o
Wis
g
©
310
n
g 5
s
0
0 50 100
© Training Epochs

Figure5.5: Measured results of learning and recall of the XOR-function.

Figure a) shows measurements during training. ‘*’ isinput 0000, ‘0’ isinput 0011,
‘-’ isinput 1100, and ‘.’ isinput 1111. Figure b) illustrates the measured result of the
recall of the training patterns, and figure ¢) shows the calculated mean square error
of the measurementsin figure a)

qp

% 5.4 On-chip learning 53

4

5.4.3 Learning an eight pattern function

es

To show on-chip learning for alarger set of training pairs an eight pattern function was
selected. The boolean function for these patterns is defined as (in;iny)(ing+iny). The pat-
terns are shown in table 5.5. The eight other patternsincluded in this function will be used
as test patterns to demonstrate the networks ability to generalize. These test patterns are
shown in table 5.7. The chosen function is linearly separable, asillustrated in figure 5.6.
This time both of the outputs are trained with the same function. Thus it is possible to
compare the output behavior for these two outputs.

The weight time constant was chosen to be 1.13mV/interval as described in table 5.6.
First the number of repetitions was set to 200 and with a pattern interval of 5 seconds the
total training time became 8000 seconds. After these repetitions retrieval of the training
patterns was measured for the two outputs. Thisis shown in figure 5.7 (b) (O3,) and in fig-
ure 5.8 (b) (O3,). Asyou can see, Oz, has not learned the function yet, but O3, has already
learned it. The retrieval of the training patterns is done with the targets locked at a fixed
value and the UV-light source turned off.

In{In,
A
O : 031:0
[0) X X 1 0g=1
© o -
|n3+|n4
Figure 5.6 : The eight patterns function islinear separable

Since O3, had not learned all the eight patterns, it would be interesting to see if Oz,
could learn all the patterns while O3, could still store all learned outputs. Therefore 100
additional repetitions (4000 seconds) were executed. The total training time became
12000 seconds. As you can observe in figure 5.7 (c), Oz, has at last learned all eight pat-
terns. But O, in figure 5.8 (c) has ‘forgotten’ the previoudly learned pattern 1100. It can
sincerely be a problem if the outputs are not able to finished the learning of all patterns at
the same time. Since we can not stop the weight updating of some weights and continue
updating of others, such problems may occur. One of the main reasons outputs have not
synchronously learned all patterns, can be that the random initiation of the weights con-
nected to each output neuron differ too much. Thus some of the output neurons need
longer training timeto learn up their weights to give the neurons correct outputs. Probably
this would not happen if we had succeeded with the stopping of the weight programming
when the error & was zero dueto identical O, and t .

b

54 5. A 4-3-2 Neural Network =

\

It should be said that if the targets were included when retrieving the training patterns,
both of the outputs were giving correct outputs. It looks like that the variation of the
weight values due to switching of the programming direction sign, influences the two out-
puts to not simultaneoudly learn all eight patterns.

Figure 5.9 shows the calculated mean square errors for each of the outputs (figure (a)
and (b)) in addition to the mean of the outputs (figure (c)). In these calculations (see equa-
tion (5.1) for details) it is used -32.2nA for t, =0, +17.4nA for t, =1, -32.8nA for t,=0,
and +23nA for t,=1.

From these measurements you can clearly see that both of the outputs have learned the
function. After about 190 repetitions (7600 seconds) the network output has under 0.03%
error. From this it may be concluded that the network has learned its training patterns.
However, when we tried to recall these patterns, one of the outputs had not learned its
training patterns as described above due to swing in weight values. Thus it exists a minor
variation at the outputs which depends on whether or not the targets are included in the
retrieval phase. To minimize the error at the output the targets should be included in the
recall mode for our implementation.

1]
(b

Table 5.5 : Eight training patterns from the boolean function In,in, (Iny+1n,) .

I nput Target
Number

Ing Iny Ing Ingy t1 ty
1 0 0 0 0 0 0
2 0 0 0 1 0 0
3 0 0 1 0 0 0
4 0 0 1 1 0 0
5 1 1 0 0 0 0
6 1 1 0 1 1 1
7 1 1 1 0 1 1
8 1 1 1 1 1 1

Table 5.6 : Training parametersfor the eight pattern function.

. UV-light | b iern Weight Threshold time
UV-filter | sourcedis- | .)
tance intervals time constant constant

B24 12cm 5s 1.13mV/interval 0.31mV/interval

qp

% 5.4 On-chip learning 55

)

es

Table 5.7 : Eight testing patterns from the boolean function in In, (Iny +1n,) .

I nput Target
Number

Ing Iny Ing Iny ty ty
1 0 1 0 0 0 0
2 0 1 0 1 0 0
3 0 1 1 0 0 0
4 0 1 1 1 0 0
5 1 0 0 0 0 0
6 1 0 0 1 0 0
7 1 0 1 0 0 0
8 1 0 1 1 0 0

Generalization

Normally, mapping of boolean functions by neural networks is done by learning of
every patterns included in afunction. Thisis mainly because it always exists a finite num-
ber of patternsin the functions. And when every combinations of the patternsis known for
a selected boolean function, all these patterns may be included in the training set. Perfect
generalization can be obtained, which meansthat it exist no unknown patterns and the net-
work has learned everyone.

However, one of the features of neural networks is that we do not have to know the
function we want to map. In large neural networks with thousands of input neuronsit exits
not always a knowledge of which function the patterns are describing. It will probably
exist a number of input patterns not included in the training set which will have unknown
outputs. For these cases it would be interesting to analyze the network to find out what it
will do with patterns which never have been presented for the network; to find out how
good the generalization characteristic of the network is.

The network was tested with the eight reminding patterns from the chosen boolean
function (In;In,) (Ing+1In,) . These patterns are listed in table 5.7. The measured result
of thistest is shown in figure 5.7 (d) for O5, andin figure 5.8 (d) for Og,. A comparison
of the measurements and table 5.7, shows that the network has achieved 100% generaliza-
tion. The good result may be a consequence of training with a simple function. The gener-
alization ability should be tested for more complex functions and a mean value should be
obtained from repeated training lesson.

56

b

5. A 4-3-2 Neural Network

— —_—
T ——
— =
20
<
£ 0
—
g’
5
£-20
o
(a) _400 5000 10000 (b) 40 0000 0001 0010 0011 1100 1101 1110 1111
Training Time (S) Retrieval of Training Patterns after 200 Repetitions
H———m——————————— 40
< 20
£
o
Fol
5
o
5
0 -20
(c) -40— (d) -40—
0000 0001 0010 0011 1100 1101 1110 1111 7100 0101 0110 0111 1000 1001 1010 1011
Retrieval of Training Patterns after 300 Repetitions Test Patterns after 300 Repetitions

Figure5.7 : Measured results of learning and recall of eight patterns for output Oz;.

Figure a) shows measurements during training. Figure b) shows measurements of
therecall of the learning patterns with UV-light source off after 200 repetitions. Fig-
ure c) shows the same as (b) but after 300 repetitions. In figure d) the measured
results from the presentation of the test patterns are shown.

)

)/
)

5.4 On-chip learning

(1=
il

40
< < 20
£ £
N N
o’ d g
5 5
g 1=
3 3 -20
(a) -400 5000 10000 (b) -40 0006 0001 0010 0011 1100 1101 1110 1111
Training Time (S) Retrieval of Training Patterns after 200 Repetitions
H——m™m—————————— 40
< 20 < 20
£ £
o (]
3 o o1+ A B |
5 5
o o
5 5
O -20 0 -20
(© -40b——n— (d) -a0l—
0000 0001 0010 0011 1100 1101 1110 1111 0100 0101 0110 0111 1000 1001 1010 1011
Retrieval of Training Patterns after 300 Repetitions Test Patterns after 200 Repetitions

Figure5.8: Measured results of learning and recall of eight patterns for output Os,.
Figure a) shows measurements during training. Figure b) shows measurements of
therecall of the learning patternswith UV-light source off after 200 repetitions. Fig-
ure c) shows the same as (b) but after 300 repetitions. In figure d) the measured
results from the presentation of the test patterns are shown.

o7

b

58 5. A 4-3-2 Neural Network

~

[l]
ul
@

)

£20 £20

o} 3

<15 < 15

(@] o

3 3

Z 10 Z 10

5 5

i =

35 3 5

© ©

S g ‘ 5 4 ‘ ;
b 0 100 200 300 b 0 100 200 300
(a) Training Epochs (b) Training Epochs

20

Total Error (%)
= =
o a1

a1

(© 0o 100 200 300
Training Epochs
Figure5.9: The mean square error during training for the outputs.
Figure a) shows the calculated MSE for o,, and figure b) for o,,. Figure c) shows
the average of the calculated resultsin (a) and (b).

5.4.4 Incomplete learning

In previous chapter it was stated that when retrieving the training patterns, targets
should be included. In this chapter it will be shown how targets may totally dominate the
output when they areincluded in the retrieval phase.

A new training was started:

First wetried to initiate the network, but it was not successful. The hidden neurons did not
respond for any alteration of the inputs. Some weights in the input to hidden layer connec-
tions probably were heavily exceeded the interesting operation range. Of course anew ini-
tiation could solve this problem. However, it would be interesting to see if the network
could handle such situations. Eight patterns from a XOR-function listed in table 5.9, were
picked out and training of 250 repetitions were started. The weight time constant
described in table 5.8, was set to a large value because the training was planned to last
over the night.

qp

% 5.4 On-chip learning 59

4

es

The measured results are shown in figure 5.10. Figure (a) shows the progress of the
output O, during training. Observe how nice the output is divided into two target groups
as wanted.

Table 5.8 : Training parameters for the eight patterns XOR function.

. UV-light | b iern Weight Threshold time
UV-filter | sourcedis- | .)
intervals time constant constant
tance
A10 12cm 30s 1.72mV/interval 0.50mV/interval

Table 5.9 : Eight patterns from the boolean function in, O In,.

I nput Target
Number

Ing Iny Ing Ing t1
1 0 0 0 0 0
2 0 0 0 1 0
3 0 0 1 0 1
4 0 0 1 1 1
5 1 1 0 0 1
6 1 1 0 1 1
7 1 1 1 0 0
8 1 1 1 1 0

Figure 5.10 (c) shows the calculated mean square error. After 100 repetitions it |ooks
like that the network has learned the patterns. And a small drift is causing the network to
develope an offset (from 140 to 250 repetitions). After the training phase we recalled the
training patterns. The result is shown in figure 5.10 (d). The targets are included in the
recall. It appears that the network could separate the patterns for high and low targets cor-
rectly. Only a offset created by adrift in the weights after an early finished learning of pat-
terns, is destroying the network from achieving successful training after 250 repetitions.

However, new measurements of the hidden neurons showed that these neurons were
still stuck at amost the same values. It was obviously that a variation in the output could
never be caused by an input variation. Theretrieval of the training patterns was performed
once again, but this time the targets were locked at afixed value. The result can be seen in
figure 5.10 (b). Changing sign of the fixed value resulted in sign change of the output for
all of the patterns.

The incorrect learning of the network is related to two conditions. The first one is the
ateration in weight values due to switching of the sign of the weight programming. The
switching of the sign isafunction of the targets. Therefore an output variation is caused by
avariation in weights which again is caused by a variation of atarget.

b

60 5. A 4-3-2 Neural Network =

\

Secondly, when the input to a hidden neuron is large, the derivative (bump signal) is
approximately zero. Then the hidden layer error &, becomes almost zero and we have a
condition identical to the oneillustrated in figure 4.9 where the weight updates of w;, are
practically zero. The stop of weight updating when the derivative is zero is not a‘ways
desirable and is one of the main drawbacks of the back-propagation algorithm. During the
time that a neuron output has its maximum value and we want the output to be, as an
example, of opposite sign, the derivative of the neuron output is stopping, or slowing
down the process of changing the neuron output. It exist improvements of the standard
back-propagation which handle this type of unwanted effects in a more efficient way.
Hence he learning algorithm should be improved in a redesigned implementation.

il
|"|

< <200 .
= < oL
ok gwof oo
S S j : 1 1 1 : :
5 5 OfF -
() o) ‘ | | ' ' | |
Z Z ' 1 1 1 1 1 1
5- 5-100 0000
o Q. ! i ' ' ' : |
5 5 I P
O- 0O -20 A
0000 0001‘ 0010 0011‘ 1100 1101‘ 1110 1111
@ Training Time (s) % 10" Retrieval of Training Patterens WITHOUT Targets
(b)
50 0 T
s < P
~ 40 =
e 3?5
L 30 c
o S
] >
220 g -10
c 2
@ 10 5 -15 !
= S E——]
O0 5‘0 160 150 260 ' 0000 0001 0010 0011‘ 1100 1101‘ 1110 1111
(0) Training Epochs (d) Retrieval of Training Patterens WITH Targets
Figure 5.10: An attempt to learn the eight patterns XOR function. o _
All three hidden neurons were stuck at a fixed value during the training. Figure a)
shows measurements during training. Figure b) and d) shows recall of the training pat-
terns. From these two figuresit should be obviousthat it is the target sthat determine the
outputs. Figure c) shows calculated mean square error.

Discussion and
Conclusion

6.1 Discussion and improvements

It was shown in chapter 5 how the network could learn. The most important criterium
stated to obtain learning, was the ability to ensure an appropriate initiation of the weights.
If the weights are outside the interesting operation range (150-250mV), the network will
probably not managing to learn the training patterns.

The initiation method used (a large number of up and down programming steps) was
difficult to accomplish. We had to ensure that none of the derivative O' were near zero.
This requirement was not easy to put through al the time. In chapter 5.3.1, two of the hid-
den neurons were reported stuck at their maximum value because of poor initiation. For
this training session it was enough with one hidden neuron operative to learn the training
patterns. However, in chapter 5.4.4 all three hidden neurons were reported out of function
and it was impossible to learn the training patterns.

A suggestion of an improvement of the initiation problem could be to include a specid
mode where the initiation took place. One solution isto apply the V, . signa which was
planned to be used in the recall mode. The signal V, ¢ is dready routed around the chip
and can easily be connected to the derivative O'. When no scaling of O' iswanted, V,
could be set to OV. During the initiating of the network, V, . could be set to 0.8V. Thusthe
initiation of the weights would not be stopped due to derivatives O' = 0 .

Originally, the computation of the derivative O' is correct in accordance to the theory.
However, sometimes especially at the beginning of training, the derivative O' may reduce
the learning speed. In our network this situation may destroy the ability of learning as
stated in chapter 5.4.4. The problem with the derivative O' in the standard back-propaga-
tion has been widely discussed in the theory [Fahlman][Hertz].

b

62 6. Discussion and Conclusion _:'

\

One solution could be to remove the calcul ation of the derivative O'. This can be done
by applying an another error function estimator called relative entropy [Hertz]:

3
|"'

p
10 01+t°0 10 01—t 0
E = z Dl+tf’%|ogm—m+ “Hl- t'%logm—m 6.1)
2 +O 2 OI|:|

It can be shown that the output layer error only becomes (when using gradient
descent):

o =t-0 (6.2)

Asyou can see, no derivative O' isincluded. The problems at the start of training are
eliminated. However, the output layer error o, do not become equal to zero when the input
to a output neuron exceeds its operation range. Thus the derivative can not prevent this
input to exceed the input operation range. Notice also that this only concerns the output
layer. In the hidden layer error we still have to include the calcul ation of the derivative O'.

[Fahlman] found a compromise:

5 = (t-0,) (O +a) (o> 0) 63)

Equation (6.3) takes advantage of the features in the sum square error estimation as
well as in the relative entropy error estimation. The parameter a could be set to arela
tively high value before training and then be decreased during the training. The inclusion
of a can in additional be applied to the hidden layer error .. In an implementation this
may be incorporated identically to the proposed solution on the initiation problem dis-
cussed above.

Another solution including stop of the weight updating, can be obtained by looking at
the error:

_1
E = Ez(ti_oi)z

When when error E is equal to zero, the network has learned the pattern presented. There-
fore this pattern, strictly speaking, need no updating and next pattern may immediately be
presented. We could also scale the time each pattern is presented in harmony with the size
of the error E to speed up the learning. The only drawback is that these calculations have
to be executed off-chip.

Asdescribed in chapter 3.2, we used two amost identical UV-models where the differ-
ence was the time constants. One for the weights W;. and Wiy, and one with larger time
constant for the thresholds ©, and ©, . Measurements of the influence of the scaling in the
learning showed excellent results. The weights were adjusting themselves according to the
threshold. A similar scaling could be extended to aso yielding the weights W and w. ik
w,, could have a faster time constant than WJ This might lead to av0|dance of some
types of local minima and fasten up the convergence time.

qp

% 6.1 Discussion and improvements 63

4

Yuesn

In general, there are few restrictions of which type inputs, outputs and targets should
bein feed-forward network. They could be boolean or continuous valued types. In our net-
work inputs are scaled to be a current between zero and | b, (abias current determined by
the bias voltage Bias,). If we want boolean inputs, we ‘can define zero current as “0
(false) and 1, as“1” (true). If we want continuous valued inputs, we have to operate in
the linear range between zero current and |

Outputs and targets operate in the range —I to +1, . If we want boolean outputs, we
may define negative current as“0” and posrtrve current as“1”. If we want continuous val-
ued outputs, we have to operate the outputs (and the targets) in the linear range between

- b and +1, . Usualy, obtaining linear outputs, the activation function in outputs neu-
ronsis dropped Thus these neurons will have only the summation of weights as their out-
put. The above discussed item has shown that we may achieve mapping for both boolean
functions and continuous valued functionsin our network.

Probably the most complex boolean function a network with 4 inputs can learn, is the
4 bits parity problem. Parity problems are defined as “1” if the input pattern contains an
odd number of “1”sand “0” otherwise. The XOR problem isa 2 bits parity problem.
[Rummelhart] stated that a feed forward network requires at least N hidden neurons to
solve parity for N-bitsinput patterns. Thusit is not possible for our network to solve the 4
bits parity problem sinceit has only 3 hidden neurons. We tested this function and the net-
work did not manage to learn all the patterns included in the 4 bits parity function. An
improved implementation should have at least identical number of hidden neurons and
inputs. [Rummelhart] also showed that the convergence time is reduced linearly with the
logarithm of the number of hidden neurons. The number of hidden neurons should there-
fore not be minimized for other reasons than limited space on the chip.

During the measurements we used 6 voltage sources to adjust the inputs. The voltage
sources were programmed serially. This operations required at least 2 seconds for each
repetition of a pattern. Thus less than 5 seconds presentation intervals were not used. For
larger networks an improved method should be found. The UV-light distance could be
reduced in such away that the weight programming speed was increased by a factor of 5
compared to the speed used during the training. If we only reduced the UV-light distance
and not the pattern presentation interval, the learning rate n reached a value which
brought the network into alocal minimum. To reduce the interval and obtain shorter con-
vergence time afaster adjustment of the inputs and the targets have to be applied.

One solution is to use a computer with a parallel interface which is controlling analog
multiplexers which again are controlling sample and holds circuits operating as voltage
sources [Teeffelen]. Another solution isto only use digital inputs [Abusland94]. However,
such a method will limit the operation of the network since a network with digital inputs
only can map boolean functions.

b

64 6. Discussion and Conclusion

~

[l]
ul
@

)

6.2 Conclusion

A design of afeed-forward neural network with back-propagation on-chip learning in
analog CMOS has been proposed. It works in continuous-time and has long term analog
memories. With the structure used on the fabricated chip, it is possible to build networks
of any size, aso wafer scale. It has been shown that back-propagation implemented in
analog CMOS operating in subthreshold region is possible. The high accuracy in memory
and back-propagation described for digital systems appeared to be inessential for our ana-
log system.

Some unwanted offsets in the memory circuit are reported, and when not compensat-
ing for this error it was sometimes difficult to retrieve all the learned patterns. To ensure
on-chip learning of hard tasks such as the parity problem, a more carefully design of the
memory programming circuit should be carried out.

Although we succeeded with the initiation of the network in most cases, an improved
method should be found to ensure afast and reliable initiation.

The layout error described on page 34 resulted in a different target presentation the
originaly planned. With this compensating technique the network could not take full
advantage of the interesting findings regarding the stability of the memories shown in fig-
ure 4.9. However, the network still managed to learn its training patterns. This shows how
powerful the back-propagation algorithm is, especialy in analog systems.

The bottleneck in our system is the learning speed, due to the UV-memory. Fortu-
nately, the programming speed for our memories isindependent of the network size. Thus
when going up to wafer scale integration, our network may compete even with digital pro-
cessors working in paralel. Appropriate tasks for networks on such hardware may be
speech- and pattern recognition where the number of free parameters exceeds 10 Since
we can not reduce the time constant for the UV-memory after processing the chip, several
other techniques have been proposed to speed up the convergence time in thisthesis.

6.3 Further work

Continuous development of the UV-memory is taken place at our institute. From this
work it has been constructed circuits with other utilities such as the UV-light programma-
ble voltage reference [Abusland93].

To speed up the programming time of the UV-memories, new ideas have to be found.
In these days a new UV-structure is under testing, where the poly1 to poly2 capacitance is
replaced with a diffusion to polyl capacitance (a transistor with common drain and
source). The development of the UV-structure has to proceed to increase the programming
Speed.

An improved method of controlling the inputs to a network should be found. The
method applied for our network has limited operation. The learning speed could have been
increased at least by afactor of 5 if afaster adjustment of the inputs had been applied.

An advancement of our network could be alarger network with a special task to solve.
A larger network can be implemented on a larger chip, but such a chip will increase the

“._ 6.3 Further work

65

4

chip development cost. The fault tolerance allowed for expensive chipsis minimal. It is,
however, possible to build many small chips at low-cost and connect these chips into a
network [Lansner]. The chips can be divided in two groups. neuron chips and weight

chips. An flexible architecture can be obtained because the number of applied neurons can
be adjusted even after the processing of the chips.

es

b

66

6. Discussion and Conclusion

M

~

(b
®

[Abusland93]

[Abusland94]

[Allen]

[Benson]

[Delbriick]

[Fahlman]

[Gilbert]

Bibliography

Aanen Abusland, Tor Sverre Lande

Local Generation and Storage of Reference Voltages in CMOS Tech-
nology Using UV-light

Proc. 11th European Conf. Circuit Theory and Design, Vol. I, 1993,
pp. 281-286

Aanen Abusland

A CMOS Analog Hopfield Net with Local Adaption and

Sorage of Weights

Cand. Scient. thesis, Institute of Informatics, The University of Oslo,
February 1994

Philip C. Allen, Douglas R.Holberg
CMOS Analog Circuit Design
Holt, Rinehart and Winston 1987

Ronald G. Benson, Douglas A. Kerns
UV-Activated Conductances Allow for Multiple Time Scale Learning
|EEE Transactions on Neural Network, Vol. 4, No. 3, May 1993

Tobi Delbriick

“Bump” Circuits for Computing Smilarity and Dissimilarity of
Analog \Voltages

Caltech 1991

S.E Fahlman

Fast-Learning Variations on Back-Propagation: An Empirical Study
In Proceedings of the 1988 Connectionist Models Summer School
pp 38-51, San Mateo: Morgan Kaufmann

B. Gilbert
Trandlinear Circuits. a Proposed Classification
Elecronic letters, Vol. 11, pp. 14-16, 1975

68

[Hertz]

[Kerng|

[Lansner]

[Lehman]

[Lont]

[Maher]

[M ead]

[Murray]

[Pineda]

[Rummelhart]

b

. Bibliograph

| <
Y,
l..

)

[l]
ul
@

John Hertz, Anders Krogh, Richard G. Pamer
Introduction to the Theory of Neural Computation
Addison-Wesley, 1991

D. A.Kerns
Experimentsin Veery Large-Scale Analog Computation
Cdlifornia Institute of Technology PhD thesis 1993

John A. Lansner and Torstein Lehmann

An Analog CMOS Chip Set for Neural Networks with

Arbitrary Topologies

|EEE Transactions on Neural Networks, Vol. 4, No. 3, May 1993

A.von Lehman, E.G. Pagk, PF. Liao, A. Marrakchi, J.S. Patel
Factors Influencing Learning by Back-Propagation.

|EEE International Conference on Neural Networks, Vol. I,
pp. 335-341, San Diego 1988

Jetzy B. Lont, Walter Guggenbiihl

Analog CMOS Implementation of a Multilayer Perceptron with
Nonlinear Synapses

|EEE Transactions on Neural Network, Vol. 3, No. 3, May 1992

M. A. Maher
New UV-Memory Writing Scheme
(Unpublished) 1992

Carver Mead
Analog VLS and Neural System
Addison-Wesley 1989

Alan F. Murray

Multilayer Perceptron Learning Optimized for On-Chip Implementa-
tion: A Noise-Robust System

Neural Computation, Vol. 4, No. 3, pp 366-81 1992
Cambridge,Mass. ISSN 0899-7667

F. J. Pineda
Dynamics and Architecture for Neural Computation
Journal of Complexity, Vol. 4, pp. 216-245, 1988

D. E. Rummelhart, J. L. McClelland

Parallel Distributed Processing - Explorationsin the
Microstructure of Cognition

Vol.1 Foundations MIT Press 1986

[Tarassenko]

[Teeffelen]

[Torrance]

[Toumazou]

[Tsividig]

[Watts]

[Weiss|

69

Knut Soelberg, Roy Ludvig Sigvartsen, Tor Sverre Lande, Y ngvar
Berg.

An Analog Continuous-Time Neural Network..

Analog Integrated Circuits and Signal Processing

Vol. 5, page 235-246, 1994

Loinel Tarassenko, Jon Tombs

On-Chip Learning With Analouge VLS Neural Networks

in Proceedings of the Third MicroNeuro conference, pp. 163-174,
Edinburgh, April 1993

J. J. M. van Teeffelen

Interfacing Neural Network Chips with a Personal Computer
Master thesis, Faculty of Electrical Engineering, Eindhoven Univer-
sity of Technology, August 1993

R. R. Torrance, T. R. Viswanathan, J. V. Hanson

CMOS \oltage to Current Transducers

|EEE Transactions on circuits and system, Vol. CAS-32, No. 11,
November 1985

C. Toumazou, F. J. Lidgey, D. G. Haigh

Analogue IC design: the Current-Mode Approach

Peter Peregrinus Ltd. 1990

Y. Tsividis

Moderate Inversion in MOS Devices

Solid State Electronics, Vol. 25, No. 11 1982 pp. 1099-1104

L. Watts, D. A. Kearns, R. F. Lyon, C. A. Mead
Improved I mplementation of the Slicon Cochlea
|EEE Journal of Solid-State Circuits Vol. 27 No. 5 May 1992

Shalom M. Weiss, Casimir A. Kulikowski
Computer Systems That Learn
Morgan Kaufmann, San Mateo, California 1991

70

. Bibliograph

| <

[
di

4

)

Analog CMOS

A.1 CMOStransistor

A simple way to explain how a CMOS-transistor works is to compare it with a switch
which has two states: ON or OFF. Figure A.1 shows a circuit symbol of a n-channel
CMOS transistor. The CMOS-process includes two types of transistors, one n-channel
type transistor which has electrons as charge carriers, and one p-channel type transistor
which has holes as charge carriers. The circuit symbol for aCMOS transistor has three ter-
minals. A voltage V. (between the Gate - and the Source terminal) decide if a current

l 4 Will flow from the Drain - to the Source terminal...

Drain lds

For different
Vgs

Saturation Region \\

Vols>

Figure A.1: Circuit symbol for and n-channel transistor and a simulation of it in hspice.
V. isswept from OV to 2V for various voltages of v . between 1.5V and 2.5V

b

\

We may model the behavior of the transistor in an analog fashion. Figure A.1 shows
the current |, asafunction of the voltage V . . It is possible to split this function into
two region:

72 Appendix A. Analog CMO _:'

i, @
(b

* One linear region where | . is dependent of V. (among oth-
ers) and

* One saturation region where | . isamost independent of V.

Common for the linear region and the saturation region shown in figure A.1 is that
V s> V1 where V. isthethreshold voltage. If V <<V thenthecurrent | ;. isequd to
apprOX|mater zero. Although this statement can be read in many books, it is not exactly
true. When V <<V, itflowsatiny, but well-defined current through the channel of the
transistor
We can say that the voltage V < Splitsthe behavior of the current | ;. into two region
(seefigure A.2):
. S_trong inversion region (Vgs >> V.). Here the squarelaw_func-
tion of the current | . yields [Allen] and the current in the
channédl is flown by drift.

* Week inversionregion (V . << V). Here hasthe current |,
exponential behavior [I\/?ead] and the dominant current- flow
mechanism is diffusion.

106 Log(lge) I
T I
Weak inversion |
region |
| M oderateI
109 | inversion |
T | region |
| _Strong
I inversion
| | region
1013 | |
| I
| | >
V

gs

Figure A.2: Simulation of a n-channel (n-type) transistor in hspice
With BSIM parameters.

isswept from OV and up to 1.3V and Vv, iskept at a constant
vc?ltage (2.0V).

In the transition between the two regions none of these above mention behaviora
yieldsalone. Thisregionis called the moderate inversion region [Tsividis] and therangeis
typical 0.5V.

/' == A.1l CMOS transistor 73

A.1.1 Subthreshold operation (week inversion)

A good electrical model of the current flowing through a n-type CMOS transistor
which operating in the subthreshold region, is described in [Mead]:

_aKVe[O Vs V]

_ KT K K
lis = 1 KT Ee T_e TE (A1)

where

|, isaphysical constant (including the width and the length of the transistor.)

g isthe electron charge (positive for p- (holes) and negative for n-type
transistors (electrons)).

k isthe Boltzmanns constant.
T isthe Temperature.
K describes the reduced gate effectiveness.

Theterm KT is often called the termal voltage and named V. and usually has a mag-
nitude equal to 25mV at room temperature. The model for p-channel type transistor is
similar to equation (A.1) but all the voltages have opposite signs. KT
We may shorten the equation (A.1) and scale the tree voltages Vg Vg and V, by q-

le = 1,8V (e7Vs—e™0) (A.2)

lye = 1€V Vs(1—€ V) (A3)

Vds

Figure A.3: Transistor characteristic in subthreshold region.
Vysis swept a few 100mV.

b

74 Appendix A. Analog CMO

2]

I,
ul

A

kT
The drain current |4 SAturates when Vs 24T because then the value of the term
e Ve becomes near zero Equation (A.3) becom&s

)

(KVg=Vy) (A.4)

Ids = Isat = IOe

Figure A.3 showsthis region (Saturation region) where | .. istheoretical independent
of V- Butasyoumay seeinthefigure | isincreasing sowly with V

A.2 Effectstoconsider in analog CMOS

A.2.1 Early effect

The current | ;. increases slowly with the voltage V. (in the saturation region)
which can be seenin Figure A.3. Theincreasein | . isdueto theincreasein the width of
the depletion layer (surrounding the drain) when the drain voltage increases.The growing
in the depletion layer width is decreasing the channel length. A shorter channel resultsina
shorter path for the electrons to flow through which has the effect that it will increase the
current | . . Thiseffect is called the Early effect [Mead] and if we includeit into equation
(A.4), we get:

[
d
Ids - Isatgl + VOSE (A.5)

Where V,, is aconstant that describes the channel length modulation (for agiven tran-
sistor size). To make the transistors |least affected by the Early effect you have to build the
transistors with along channel.

A.2.2 Body effect (substrate effect)

A problem in the fabrication of the chipsis the pollution of the substrate. This will
lead to decreased efficiency of the gate voltage:

When we increase the source voltage V (for an-type transistor) we have to
increase the gate voltage Vg even more to keep the current | ;. constant.

Therefore the parameter K isintroduced in equation (A.1) to compensate for this effect.

A.2.3 Transistor mismatch

Unfortunately matching transistors in the subthreshold region is difficult. The current
flowing in two identical transistor (size and biasing) may differ by afactor of 2 [Mead].
One of the major reason is the nonuniform doping on the chip. It is possible to improve the
matching by increasing the size of the transistors. The matching error decreases roughly as
the square root of the increase in the transistor area [Watts].

qp

“._ A.3 Current mirror 75

4

A.2.4 Temperaturevariations

es

l
11

CMOS transistors are considerabl e sensitive to temperature variations especially when
they are operating in subthreshold region. From the equation (A.1) you can see that the
current | . increases with an increase in the temperature. With thisincrease will also the

transistor mismatch increase and in aworst case analyze a mismatch may give different
results for different temperature.

A.3 Current mirror

The most common operation in analog circuit design isto copy acurrent. Infigure A.4
the circuit shown copies the current |, | asingle time. With this circuit we can copy the
current |, . as many times as we want to because it is no load on the input. The current
mirror shown in figure A.4 can only copy unidirectional currents.

10 Log(l our)

I
J fout

-12
LU Log(l ou)

— =
1012 10

Figure A.4: Current mirror

The pointsin theright figureisa simulation of the current mirror and thelineis an exact
copy.

A.4 Transconductance amplifier (transamp)

Often we represent asignal as the difference between two voltages. To manipulate
these type of signals we usually use some variant of the differential pair shown in figure
A.5 a). A variant is the transconductance amplifier (transamp) which only includes a cur-

rent mirror on the top of the pair shown in figure A.5 b). The output of atransamp isasig-
moid function [Mead]:

_ _ [K (Vl_vz)D
lout = 11-15 = IbtanhD———z———D (A.6)

kT
(Remember that al voltages are scaled by)

b

76 Appendix A. Analog CMOS =

it
(b
®

Where | isthe current through the transistor controlled by the voltage V,,,
and I, plus |, isdefined as.

eKV1 eKV2
o and |, = |, ————
eKV1 + eKV2 eKV1 + eKV2

(A7)

1

What can this amplifier calculate? It performs at |east a substraction of two voltages
and amplify this with atangents hyperbolic function into a current.
We will use the transamp:

« inmultiplication (of I and tanh)
e insubstraction (of V; and V,)
 to perform asigmoid function of the input

|1, Ll 1

(@ (b)
Figure A.5: A differential pair and a transconductance amplifier

A Kangaroo Story

This story was found in the Internet news group comp.ai.neural-nets and was written
by Warren Sarle. It explains the standard backprop algorithm in a easy and funny way.

Training a network is a form of numerical optimization, which can be lik-
ened to a kangaroo searching for the top of Mt. Everest. Everest isthe glo-
bal optimum, but the top of any other really high mountain such as K2
would be nearly as good. We're talking about maximization now, while
neural networks are usually discussed in terms of minimization, but if you
multiply everything by -1 it works out the same

Initial weights are usually chosen randomly, which means that the kanga-
roo may start out anywherein Asia. If you know something about the scales
of the inputs, you may be able to get the kangaroo to start near the Himala-
yas. However, if you make a really stupid choice of distributions for the
randominitial weights, or if you have really bad luck, the kangaroo may
start in South America.

In standard backprop, the kangaroo is blind and has to feel around on the
ground to make a guess about which way is up. He may be fooled by rough
terrain unless you use batch training. If the kangaroo ever gets near the
peak, he may jump back and fourth across the peak without ever landing on
the peak.

b

78

B. A Kangaroo Stor

M

<

~

(b
®

~ Details of the Chip

An more extensive presentation about the chip will be shown to demonstrate details
such as the layout of the UV-structures and the chip. In addition, neuron and weight mod-
ules at transistor level are shown.

The layout was don on late winter of 1994 and the chip was processed at Mosis in the
spring. The processwas a 2.0 um p-well Orbit semiconductor run. The Mosistest results
showed athreshold voltage for a minimum n-channel type transistor equal to 0.98V and
for aminimum p-channel type transistor -0.75V.

C.1 Neuron and weight modules at transistor level

7
v jﬂ%ﬂ%ﬁﬁ —+ EF i |

P e B

Figure C.1: The weight module w; at transistor level.

+ -
O

Since the layout of the chip isdivided into neuron and weight modules, it might be
interesting for the reader to see these modules at transistor level. It exists two weight mod-
ules: One for the input to hidden layer connections (w;, - module) and one for the hidden

b

80 Appendix C. Details of the Chip

~

[l]
ul
@

)

to output layer connections (W; - module). The difference between these two modulesis
that the W; - module also includes a Gilbert multiplier to compute the propagated error.
Figure C.1 describes the w;, - module. It contains 28 transistorsin addition to a differential
UV-structure.

The hidden neuron and the output neuron are designed identically. The neuron module
with output labels is shown in figure C.2. The module contains 48 transistors and a differ-
ential UV-structure. The input neurons contain only atransamp which includes 5 transis-
tors.

45‘_‘:
42‘_‘;
42‘_‘:

i T
1
1

<
= |
1
i
i
i

Bias

Ll
s

Net;
6iv) A A
Figure C.2: Neuron module at transistor level.

Thelabels shown in the figure indicate that this neuron is a output neuron.

C.2 Thelayout

The chip layout was drawn by the help of the IC design system NEyOL. Netlists from
NEyyOL and the transistor simulator program Anal OG were successfully compared
before sending the chip to processing. Figure C.3 afloorplan for the chip is shown. The
figureisaphoto taken at our institute where we have amicroscope with aRGB connection
to a Silicon Graphics computer (Indy). The figure is magnified 4000 times.

Thelayout size of aw;, - module is 300x280pm, and for a W; - module 400x300pm.
For aneuron module the layout size is 440x300um. A small degree of effort was done to
minimize these modules. It is possible to build larger network at Mosis, however, more
circuitry outside the chip hasto be build to control the inputs and outputs to a larger net-
work.

L

C.2 The layout

)

Yuesn

' - - _-lql_ Q€N 1o, =— ‘T'lil""-; hidde; :
. i_,-"." ‘nections (3x2) ol dx3da .
i X

T g W

2 hiaden nailrons .
OUTDUT NeUTroNs -

1

i Tt 4 L1510 1= P o i S —
TR —wil —gm- -

EI—_.:I'-I—

L Rt
—

| - § ¥
| H *3 | 1 e
‘Figure C.3: A die photo of the chip.

extraread-out circuitry is 2000x2000 L m.

The figure displays the floorplan of the chip. The size of the network without the

81

A photo of the UV-structure model A is shown in figure C.4. The photo is magnified
110000 times. The UV-window may be seen asadark areaand it is placed over the poly2
area. Figure C.5 illustrates photo of the UV-structure model B. In this model the UV-win-

dow (marked with awhite circle) isonly covering one side of the poly2 area.

Figure C.6 describes a diagram of the padframe, which demonstrates where the inputs

and the outputs are.

82

Appendix C. Details of the Chi

M

=1
I..
I..

,
b

)

~

FlgureC4 A die photo O
Thestructurein the figure has a real size of 100x50 Hm

Figure C.5: A die photo of the UV-structure mode
The structurein the figure has a real size of 100x50 Hm

)/
)

/E . C.2 The layout 83
€ 3 3 £ & &§ £°
- > + ' + ' +
' l_‘+ 'dl 1
w = |=| |=] |2| [=] || |25
Gnd s| |8 |&] |B] |8] [B] |&] [B||< Vdd
15| |14/1|13 |12/ 11| |10 | 9| |8 | 7|:|6]| |5
O3 bare 16 4 bare Oy
bias, in 17 3 wide W3
target, |in 18 2 in bias;
Bias,| for input neurons (+ 6jk out)
target; |in 19 _ 1 in Vet
Bias | for hidden neurons (+small UV)
biass n 20 Bias;j| for &; W, computation (+ W out) 40 wide |deltag+
UVout |wide 21 Bias | for output neurons (+® out) 39 wide |deltag;-
folé)?;vser in 2 Bias | for targets (+hig UV-struct) 38 wide |deltag,+
bias, in 23 37 wide |deltag,-
deltay; |bare 24 l 36 bare |Oy3
25| [26:[27] [28 [29] [30] [31] [32 [33]:[34] [
(P;?% S I =1 = =] =] =1 = =] S \F;gg
))
s 9 3 5 5 5 5 g9:.g
. = ' = N () I -
Bm : + + + + § ' |§J

Figure C.6:

84

Appendix C. Details of the Chip

M

b

)

The paper

Knut Soelberg visited the NORCHIP seminar in Finland 1992. The talk he had at this
seminar resulted in an invitation from a journal to send an extended version. Since | was
measuring on his chip at thistime, the job to extend his work was handed over to me. The
final result was published in the journal: Analog Integrated Circuits and Sgnal Process-
ing. The paper isincluded in the next pages.

At the moment a short version of thisthesisis under development. This paper is

planned to be sent to the NORCHIP seminar of 1994 held in Gothenburg (deadline 1. Sep-
tember).

Yeeeenn([])

z 1]l

D. The pape

86

	Tittel
	Contents
	List of Figures
	1 Introduction
	1.1 Analog neural networks
	1.2 The motivation of this thesis

	2 Artificial Neural Network
	2.1 Feed-forward network
	2.2 Back-propagation
	2.3 Learning with backprop

	3 Basic ANN computations in Analog CMOS
	3.1 Multiplier
	3.2 Analog UV-memory
	3.3 Other circuits
	3.4 Summary

	4 Feed-forward and Back-propagation Computations in Analog CMOS
	4.1 The Feed-forward computation
	4.2 Back-propagation computation
	4.3 The threshold Θ
	4.4 Summary

	5 A 4-3-2 Neural Network
	5.1 Why a 4-3-2 sized network?
	5.2 Dynamical behavior and time constants
	5.3 Training the network in practice
	5.4 On-chip learning

	6 Discussion and Conclusion
	6.1 Discussion and improvements
	6.2 Conclusion
	6.3 Further work

	Bibliography
	A Analog CMOS
	B A Kangaroo Story
	C Details of the Chip
	D The paper

