
UNIVERSITY OF OSLO
Department of Informatics

Detection of
plagiarism in
computer
programming using
abstract syntax
trees.

Master thesis

Olav Skjelkvåle
Ligaarden

9th November 2007

Abstract

Plagiarism in connection with computer programming education is a serious problem. This

problem is common to many universities around the world, and the University of Oslo (UoO)

makes no exception. The major problem is that students plagiarize homework programming

assignments written by fellow students. To deal with this situation plagiarism detection soft-

ware has been developed to assess the similarity between program listings. Such software is

exposed to the daunting task of minimizing the numbers of false negatives and false positives

at the same time, i.e. finding the highest number of copies while avoiding those which are

not. UoO uses a distributed system for delivering such assignments, called Joly. This system

compares program listings by using an attribute counting metric. This is a very general met-

ric and here I investigate whether a less general-purpose metric tuned to the particularities of

programming code may perform better than the one currently being used in Joly. To this end

I have developed two new structure based similarity measures which quantify the structural

similarity between abstract syntax trees (AST). More specifically, I have (i) modified the stand-

ard AST representation to ease the comparison between trees, (ii) identified the most common

cheating strategies employed by students, (iii) assessed the changes these strategies have on the

AST structures, (iv) developed and implemented two new AST similarity measuring algorithms,

ASTSIM-NW and ASTSIM-LCS, focused on uncovering plagiarism based on the most common

cheating strategies leaving the most distinct AST footprints, and (v) compared the performance

of the two new algorithms relative to the one being currently used in Joly. Even though the test

results need to be interpreted with caution, the combined use of the two new algorithms appears

to perform better in terms of false negatives and false positives. This suggests that they should

be considered as candidates for complementing the current attribute counting approach in Joly

and thus be exposed to more extensive testing and polishing.

3

4

Acknowledgments

First of all I would like to thank my supervisors Arne Maus and Ole Christian Lingjærde for

helping me finish this master thesis. We have had a lot of interesting discussions, they have

introduced me to many interesting topics in computer science and other fields, and they have

given me valuable feedback on my work. I also would like to thank Stian Grenborgen, a fellow

master student who worked on a related topic, which I had many interesting discussions with

and that gave me useful comments on my work.

I would also like to thank my uncle Stig W. Omholt for valuable feedback on how I could

improve the structure of the thesis, the text and many other things. My sister Ingeborg Skjelkvåle

Ligaarden must also be mentioned. I want to thank her for reading my thesis and providing

me with comments and corrections, throughout the whole period that I worked on it, and for

motivating me. Two other persons also needs to be mentioned. Nicolaas E. Groeneboom for

helping me when I had issues with Latex and for reading my thesis, and Kjetil Østerås, friend

and former fellow master student, for introducing me to the Java Compiler Compiler parser

generator and other tools. Finally, I would like to thank my family and friends for supporting

and motivating me during the time I worked on the thesis.

5

6

Contents

1 Introduction 1

1.1 The structure of the thesis . 3

2 Background 5

2.1 Detection of plagiarism . 5

2.1.1 Preliminary formalization of the problem 5

2.1.2 Plagiarism detection in Joly . 5

2.1.3 Common student cheating strategies 6

2.2 Comparing different plagiarism detection programs 7

2.2.1 Elucidation of the confusion matrix concept 7

2.2.2 Illustration of the ROC curve approach 8

2.3 Outline of the AST concept . 10

2.4 Software for constructing AST . 10

2.5 Assessing similarities between trees . 11

2.5.1 Distance measures obtained by dynamic programming 12

2.5.2 Distance measures based on tree isomorphism 17

2.5.3 The different distance and similarity functions 20

3 Modifications of the JavaCC ASTs 21

3.1 Removal of redundant nodes . 21

3.2 Modifications of the JavaCC grammar . 22

3.2.1 The types in the grammar . 22

3.2.2 The literals in the grammar . 24

3.2.3 The selection statements and the loops in the grammar 24

4 ASTs generated by the most frequent cheating strategies 29

4.1 Applying the different cheating strategies . 29

4.1.1 Changing the formatting, the comments and renaming the identifiers . . 29

4.1.2 Changing the order of operands in expressions 30

4.1.3 Changing the data types . 31

4.1.4 Replacing an expression with an equivalent expression 31

4.1.5 Adding redundant code . 32

4.1.6 Changing the order of independent code 33

4.1.7 Replacing one iteration statement with another 34

4.1.8 Changing the structure of selection statements 38

4.1.9 Replacing procedure calls with the procedure body 40

4.1.10 Combine the copied code with your own code 42

4.2 Guidelines for the development of new similarity measures 42

4.2.1 Strategies that are important to detect 42

7

CONTENTS

4.2.2 How the strategies affect the development of new similarity measures . 44

5 Development of new similarity measures 47

5.1 Discussing possible measures . 47

5.1.1 Longest Common Subsequence . 47

5.1.2 Tree Edit Distance . 48

5.1.3 Tree isomorphism algorithms . 48

5.2 Two new similarity measures for ASTs . 50

5.3 Description of ASTSIM-NW . 50

5.3.1 Top-Down Unordered Maximum Common Subtree Isomorphism . . . 50

5.3.2 Needleman-Wunsch . 54

5.4 Description of ASTSIM-LCS . 58

6 Implementation of the new similarity measures 63

6.1 Pseudo code for ASTSIM-NW . 63

6.2 Pseudo code for ASTSIM-LCS . 66

6.3 Actual implementation of the new similarity measures 70

6.4 Testing of the actual implementations . 73

7 Comparing Joly with ASTSIM-NW and ASTSIM-LCS 75

7.1 Finding a common similarity score for the algorithms 75

7.2 Comparing Joly with ASTSIM-NW and ASTSIM-LCS by the use of ROC curves 76

7.2.1 Results for oblig 2 . 76

7.2.2 Results for oblig 3 . 78

7.2.3 Results for oblig 4 . 79

7.3 Comparing the assignment of similarity scores by the three algorithms 81

7.4 Similarity scores produced by the different cheating strategies 86

7.4.1 The effect of applying more and more cheating strategies 87

7.4.2 The effect of applying a single cheating strategy 87

7.5 Comparing the running times of the three algorithms 89

8 Discussion 93

8.1 Possible shortcommings of the new algorithms 93

8.1.1 Removal of redundant information from the AST 93

8.1.2 Unmodified AST representation . 93

8.1.3 The use of unordered nodes . 93

8.1.4 Possible counter stategies . 94

8.2 Alternative representations of the code . 95

8.2.1 Tokens . 95

8.2.2 Java bytecode . 95

8.3 ASTSIM-NW vs. ASTSIM-LCS . 96

8.4 Practical implementation of the new algorithms in Joly 96

8.4.1 Methods for reducing the running time 96

8.4.2 Selecting threshold values . 99

9 Conclusion and further work 103

9.1 Further work . 103

Bibliography 104

Appendices

8

A Examples of different maximum common subtrees 107

A.1 Top-down ordered maximum common subtree 107

A.2 Top-down unordered maximum common subtree 108

A.3 Bottom-up ordered maximum common subtree 109

A.4 Bottom-up unordered maximum common subtree 110

B Source code listings 111

B.1 The program listing P0 . 111

B.2 The program listing P10 . 115

9

10

Chapter 1

Introduction

In the ten year period from 1991 to 2001 the Department of Computer Science at Stanford Uni-

versity experienced more honor code1 violations than any other department at Stanford (Roberts,

2002). The Department had for the whole period 37 percent of all reported cases at the univer-

sity. Considering that only 6.5 percent of the students at Stanford were enrolled in computer

science classes, this is a surprisingly high number. The majority of violations appeared to be

associated with unpermitted collaboration and plagiarism in connection with homework assign-

ments involving computer programming. Another well known example of plagiarism associated

with computer programming is the cheating scandal at MIT in 1991 (Butterfield, 1991). In the

beginner programming course called "Computers and Engineering Problem Solving", unpermit-

ted collaboration in connection with the weekly hand-in computer programming assignments

caused 73 out of 239 students to be disciplined for violation of the honor code.

The two examples above illustrate a serious problem common to many universities around the

world, where the University of Oslo (UoO) makes no exception. Plagiarism in connection with

computer programming education at the Department of Informatics (DoI) at UoO is considered

to be a serious problem. Arne Maus at DoI has estimated that 10-20% of the students cheat

regularly on the homework programming assignments (Evensen, 2007). Of this cheating, DoI

focus on students that plagiarize the work of fellow students. Detection of this cheating is not

trivial. In the beginner programming course called INF1000 - "Introduction to object-oriented

programming", there are hundreds of students that hand in assignments. Manual comparison of

all those assignments against each other is not practically feasible. A further complicating factor

is that the assignments are often reused, so a student can copy the assignment of a past student.

To deal with this problem, DoI has developed a computerized plagiarism detection system called

Joly (Steensen and Vibekk, 2006) which is used routinely throughout the INF1000 course.

Joly consists of a database and algorithms for processing the data. The database contains

all the assignments of past and present students. When a new assignment is submitted to the

system it is inserted into the database, and the system uses an algorithm to measure the similarity

between this assignment and all assignments of the same kind in the database. Joly uses an

attribute counting metric algorithm developed by Kielland (2006) during his master thesis to

determine a similarity score between programs. More specifically, an attribute counting metric

counts different attributes found in a program, such as the number of for-loops, number of lines

and so on. Based on the counts of the different attributes for two programs, the algorithm

calculates a similarity score between them. The assignment is then marked as a possible copy

1A honor code is the university’s statement on academic integrity. It articulates the university’s expectations of

students and faculty in establishing and maintaining the highest standards in academic work.

1

Chapter 1

of another assignment if the similarity score is above a certain threshold value. In this context,

the word "copy" means an instance of plagiarism.

Computerized fraud detection systems like Joly is exposed to the daunting task of minimizing

the numbers of false negatives and false positives at the same time, i.e. finding the highest

number of fraud cases possible while avoiding those which are not. To accuse an innocent

student of cheating may have dramatic consequences and for this reason there is a constant

pressure on improving systems like this. One feature of attribute counting metrics like the one

Joly uses is that the context in which the attributes are used is not taken into account. Two

different program listings will thus be classified as likely copies if they have the same or almost

the same counts of the different attributes. This could happen even though the students have

worked independently. The background motivation for this thesis is to identify, develop and

assess new similarity measures that might circumvent this potential downside of simple attribute

counting metrics.

Indeed, such a metric may also be used to compare natural language documents by just chan-

ging the counting attributes it counts. The use of an attribute counting metric does not require

syntactically correct code. Less general-purpose metrics tuned to the particularities of program-

ming code may potentially perform better than the attribute counting metric.

One example is the class of so-called "structure based metrics". These metrics are used to

measure the structural similarity between two program listings. Verco and Wise (1996) com-

pared different attribute counting metrics and structure based metrics on program listings written

in PASCAL. The major result was that the structure based metrics performed equally well or

better than the attribute counting metrics in detecting plagiarized programs. Moreover, when

Whale (1990) compared a different set of attribute counting metrics and structure based metrics

on program listings written in FORTRAN, he came to the same conclusion.

Motivated by the reports of Verco and Wise (1996) and Whale (1990) I have in this thesis

focused on developing two structure based metric algorithms that measure the structural simil-

arity between abstract syntax trees (ASTs) of Java listings. More specifically, I have (i) modi-

fied the standard AST representation to ease the comparison between trees, (ii) identified com-

mon cheating strategies and assessed their impact on the ASTs, and (iii) implemented two new

similarity measure algorithms ASTSIM-NW and ASTSIM-LCS. ASTSIM-NW uses the Top-

Down Unordered Maximum Common Subtree Isomorphism algorithm (Valiente, 2002) on the

whole tree together with the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970).

The ASTSIM-LCS uses the Top-Down Unordered Maximum Common Subtree Isomorphism

algorithm on the whole tree, except for method bodies where it uses the Longest Common Sub-

sequence algorithm (Cormen et al., 2001).

I show on a small test set that the new algorithms together appear to perform better in terms

of false negatives and false positives than the current algorithm in Joly. Even though more

extensive testing needs to be done before any conclusion can be drawn, the results so far are

nevertheless quite promising.

2

Introduction

1.1 The structure of the thesis

The rest of the thesis is structured as follows:

Chapter 2 This chapter contains information instrumental for assessing the subsequent chapters.

It contains information about plagiarism detection, common cheating strategies, ROC

curves, ASTs, and metrics which can be used for assessing the similarities between ASTs.

Chapter 3 The modfications done to the AST is presented in this chapter. I have reduced the

size of the AST by removing nodes that are not important for the structure, and modified

the grammar in order to ease the comparision of ASTs.

Chapter 4 In this chapter I assess the impact of the different common cheating strategies on

ASTs. Then I assess which of the cheating strategies that deserve most attention based

on the number of differences which we get between the ASTs and how easy it is to use

the strategy. Finally, I outline how these strategies affect the development of the new

similarity measures.

Chapter 5 In this chapter, I consider measures for assessing the similarity between ASTs, giv-

ing particular attention to the cheating strategies that deserve most attention. Then I out-

line two new similarity measures ASTSIM-NW and ASTSIM-LCS based on the previous

discussion. Finally, I give a description of ASTSIM-NW and ASTSIM-LCS.

Chapter 6 I present pseudo code implementations of ASTSIM-NW and ASTSIM-LCS and

provide details about the actual implementations. Moreover, I outline how these imple-

mentations were tested.

Chapter 7 The two new measures ASTSIM-NW and ASTSIM-LCS are compared against the

algorithm in Joly in this chapter. I compare the algorithms abibility to detect plagiarized

programs listings. On small test sets, the two new measures appear to perform better in

terms of false negatives and false positives than the algorithm in Joly. I also compare the

running times of the algorithms. Here, the algorithm in Joly perform better than the new

algorithms.

Chapter 8 In this chapter I discuss possible shortcommings of the new measures, alternative

representations to AST of the code, ASTSIM-NW’s advantages over ASTSIM-LCS and

vice versa, and issues regarding the implementation of the new algorithms in Joly.

Chapter 9 The conclusion is given and suggestions to further work is presented.

3

4

Chapter 2

Background

This chapter contains information instrumental for assessing the subsequent chapters.

2.1 Detection of plagiarism

This section contains a preliminary formalization of the problem, how plagiarism detection is

practiced at UoO, and common student cheating strategies.

2.1.1 Preliminary formalization of the problem

In Chapter 1 we saw that we often want to test a large number of program listings for plagiarism.

A plagiarism detection program selects those program listings from the set P of program listings

that are most likely to be copies of each other. We can define a function for comparing a pair

of listings (pi, pj) ∈ P × P , where i 6= j, as s = f(pi, pj), where s is a similarity score. To a

similarity score s we have to associate a threshold t. This threshold maps the pair (pi, pj) to a

element ĉ in the set {p, n} of positive (possible copy) and negative discrete class labels. ĉ is the

the predicted class of the listing pair. All pairs with ĉ = p needs to be inspected manually for

further assessment and a final decision on whether it is reason to accuse one or more students of

fraud. In the manual inspection the pair is mapped to an element c in the set {p, n} of positive

(copy) and negative (not copy) discrete class labels. c is the actual class of the listing pair.

2.1.2 Plagiarism detection in Joly

As mentioned, Joly uses an attribute counting metric to detect plagiarism. The algorithm became

somewhat modified when it was implemented in Joly. Due to this I will in the following describe

the modified algorithm and not the original one. To compare two program listings p1 and p2 the

modified algorithm counts N = 10 different attributes in the two listings. For Java listings the

attributes that it counts are "void", "String", ">", "class", "if(", "=", "static", ";", "," and

"public". Before counting these strings, the algorithm removes the comments and the string

literals in the two listings. This is done to ensure that none of the attributes are found among

these elements.

For each program listing, the counts of the different attributes are stored in a vector of size N .

The algorithm then finds the angle α (in degrees) between the two vectors from the expression

cos α =

∑N
i=1 xi · yi

√

∑N
i=1 x2

i ·
√

∑N
i=1 y2

i

, (2.1)

5

Chapter 2

where xi and yi are elements in the vectors x and y of the listings p1 and p2, respectively. If

the angle α is less than or equal to some predefined threshold t, then p1 and p2 are classified as

possible copies.

Joly then sends an email to the teaching assistant responsible for the student(-s)1 behind the

listing(s). If the assistant after manual inspection of the listings thinks there may be a fraud

situation, he sends the listings along with a report to the course administrator(s). Based on the

documentation the course administrator decides whether the students should be taken in for an

interview. The outcome of the questioning in the interview then determines further actions from

the Department of Informatics.

2.1.3 Common student cheating strategies

When a student uses source code written by someone else, then he/she will often do modi-

fications on this source code for the purpose of disguising the plagiarism. By using his/hers

creativity and knowledge of a programming language, the student can use numerous cheating

strategies to disguise plagiarism. Rather than attempting to list all possible strategies, which

would be a rather hard task, we will instead focus on some of the most common ones. A list of

common strategies is presented by Whale (1990). This list is widely referenced in the literature.

The list is presented below. The strategies are listed from easy to sophisticated, with respect to

how easy it is to apply them. This list was originally made for FORTRAN and similar languages.

We can therefore remove strategy 11, since we cannot use non-structured statements, or GOTO

as it is also known as, in Java.

1. Changing comments or formatting.

2. Changing the names of the identifiers.

3. Changing the order of operands in expressions.

4. Changing the data types.

5. Replacing an expression with an equivalent expression.

6. Adding redudant code.

7. Changing the order of independent code.

8. Replacing one iteration statement with another.

9. Changing the structure of selection statements.

10. Replacing procedure calls with the procedure body.

11. Using non-structured statements.

12. Combine the copied code with your own code.

The set of strategies S = {1, . . . , 12} \ {11} can be divided into two subsets S1 and S2. A

student that copies the whole program from someone else can use the strategies S1 = S \ {12},
while the strategies S2 = S can be used by a student that copies parts of the program from

someone else and then combines it with his/hers own work.

1There is the possibility that one of the programmers is a past student.

6

Background

2.2 Comparing different plagiarism detection programs

Performance of two plagiarism detection algorithms can be compared by use of a Receiver

Operating Characteristics (ROC) curve approach (Fawcett, 2004). In order to better understand

what the ROC curve approach implies I introduce the confusion matrix concept and associated

vocabulary.

2.2.1 Elucidation of the confusion matrix concept

A confusion matrix (Kohavi and Provost, 1998) contains information about actual and predicted

classifications done by a classification system. Each row of the matrix represents the instances

in a predicted class, while each column represents the instances in an actual class. With a

confusion matrix it is easy to see if the system has mislabeled one class as another.

Given the actual and the predicted class labels for a pair of listings there are four possible

outcomes. Suppose a pair is positive. If it is predicted to be positive, then it is counted as a true

positive (TP); if it is predicted to be negative, then it is counted as a false negative (FN). Suppose

a pair is negative. If it is predicted to be negative, then it is counted as a true negative (TN); if it

is predicted to be positive, then it is counted as a false positive (FP). Given the classifier and a set

of instances (the listing pairs), a two-by-two confusion matrix can be constructed representing

the distribution of the set of instances. Table 2.1 shows a confusion matrix.

Actual class c

p n total

Predicted class ĉ
p True Positives (TP) False Positives (FP) P’

n False Negatives (FN) True Negatives (TN) N’

total P N

Table 2.1: Confusion matrix with the actual and predicted numbers of positives and negatives

for a set of program listings.

In this matrix P = TP + FN and N = FP + TN are the numbers of actual positives and

negatives in the test set, while P ′ = TP+FP and N ′ = TN+FN are the numbers of predicted

positives and negatives in the test set. The numbers along the main diagonal represent the correct

decisions made by the classifier, while the numbers off this diagonal represent the incorrect

decisions. The confusion matrix can be used to assess several performance characteristics of the

classifier. Some of these are given below:

The true positive rate (or sensitivity) is the proportion of true positives among the positives:

TPR =
TP

P
(2.2)

The false positive rate is the proportion of false positives among the negatives:

FPR =
FP

N
(2.3)

The quantity 1 − FPR is called the specificity of the test. The accuracy of the test is how

accurate the classifier is to classify the set of instances:

ACC =
TP + TN

P + N
(2.4)

7

Chapter 2

2.2.2 Illustration of the ROC curve approach

Most classifiers allow the trade-off between sensitivity and specificity to be adjusted through a

parameter, which in our case will be a classifier threshold. We can compare different classifi-

ers by using a ROC curve, which is a two-dimensional graph where (FPR,TPR) is plotted for

changing values of the classifier threshold. An ROC curve depicts relative trade-offs between

benefits (true positives) and costs (false positives). For example, the four different confusion

matrices given in Table 2.2 have ROC curve representations depicted in Figure 2.1.

TP = 63 FP = 28 91

FN = 37 TN = 72 109

100 100 200

TPR = 0.63

FPR = 0.28

ACC = 0.68

(a) Confusion matrix A

TP = 88 FP = 24 112

FN = 12 TN = 76 88

100 100 200

TPR = 0.88

FPR = 0.24

ACC = 0.82

(b) Confusion matrix B

TP = 77 FP = 77 154

FN = 23 TN = 23 46

100 100 200

TPR = 0.77

FPR = 0.77

ACC = 0.50

(c) Confusion matrix C

TP = 24 FP = 88 112

FN = 76 TN = 12 88

100 100 200

TPR = 0.24

FPR = 0.88

ACC = 0.18

(d) Confusion matrix D

Table 2.2: The four different confusion matrices A, B, C and D.

There are several points in ROC space that are worth noticing. The point (0, 0) represents

the strategy of never issuing a positive classification. With such a strategy there will be no false

positives, but there will also be no true positives. The opposite strategy is represented by the

point (1, 1). With this strategy we issue positive classification unconditionally. The best point

in ROC space is (0, 1). This point represents perfect classification. At (0, 1) all true positives

are found, while no false positives are found.

One point in ROC space is better than another if it is above and to the left the first. The TPR is

higher, FPR is lower, or both. In Figure 2.1 we can see that B is better than A, while A is better

than both C and D. Classifiers that appears on the left-hand side of an ROC graph, near the X

axis, may be thought of as "conservative". Such classifiers make positive classifications only

with strong evidence, so they make few false positive errors, but they often have a low rate of

true positives as well. Classifiers on the upper right-hand side of an ROC graph may be thought

of as "liberal". They make positive classification with weak evidence so they classify nearly all

positives correctly, but they often have a high rate of false positives as well.

The diagonal line represents the strategy of randomly guessing a class. For example, if a

classifier randomly guesses that a pair is a copypair (i.e. a positive outcome) half the time, it

can be expected to get half the positives and half the negatives correct. This would yield the

point (0.5, 0.5) in ROC space. A random classifier will produce a point that "slides" back and

8

Background

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC space

B

Perfect classification

A

C

D

Figure 2.1: ROC points for the four confusion matrices given in Table 2.2. Cf. text for further

description of the curve.

forth on the diagonal line based on the frequency with which it guesses the positive class. A

classifier that appears on the diagonal line may be said to have no information about the class.

To move above the diagonal line the classifier must exploit some information in the data. In

Figure 2.1 the classifier C, at the point (0.77, 0.77), has performance which is virtually random.

C corresponds to guessing the positive class 77 % of the time.

When a classifier randomly guesses the positive class with a frequency q the classifier has the

confusion matrix seen in Table 2.3. From this matrix we can calculate the TPR and the FPR,

and as seen in equation 2.5, we get the same result for both rates.

TPR =
TP

P
=

P · q
P

= q (2.5)

FPR =
FP

N
=

N · q
N

= q (2.6)

A classifier that appears below the diagonal line performs worse than random guessing. In

Figure 2.1, C is an example of such a classifier. A classifier below the diagonal line may be

said to have useful information about the data, but it applies this information incorrectly. It is

possible to negate a classifier below the diagonal line, since the decision space is symmetrical

about the diagonal separating the two triangles. By negating the classifier, we will reverse all its

9

Chapter 2

Actual class c

p n total

Predicted class ĉ
p TP = P · q FP = N · q P’

n FN = P · (1− q) TN = N · (1− q) N’

total P N

Table 2.3: Confusion matrix with the actual and predicted numbers of positives and negatives

for a test set. This confusion matrix is made by a classifier that randomly guesses the positive

class with a frequency q.

classifications. Its true positives will become false negatives, and its false positives will become

true negatives. The classifier B is a negation of D.

The hyperbolic graph in Figure 2.1 is an example of a true ROC curve. This curve is made by

varying the threshold of a classifier. For each threshold value, we get a new confusion matrix,

and the point (FPR,TPR) is plotted in ROC space. We can compare the results of different

plagiarism detection programs by making a ROC curve for each of the programs. If the curve

of one of the programs lies above the curves of the other programs, then this program performs

better than the other programs for all threshold values.

2.3 Outline of the AST concept

I will use an example from Louden (1997) to explain what an AST is. Consider the statement

a[index] = 4 + 2 which could be a line in some programming language. The lexical analyzer,

or scanner, collects sequences of characters from this statement into meaningful units called

tokens. The tokens in this statement are: identifier (a) [identifier (index)] = number (4) +

number (2).

The syntactical analyzer, or parser, receives the tokens from the scanner and performs a syn-

tactical analysis on them. The parser determines the structural elements of the code and the

relationship between these elements. The result of this analysis can either be a parse tree as

seen in Figure 2.2, or an AST as seen in Figure 2.3. The internal nodes in these two trees are

structural elements of the language, while the leaf nodes, in gray, represents tokens. We can

see that the AST is an reduced version of the parse tree. An AST differs from a parse tree

by omitting nodes and edges for syntax rules that do not affect the semantics of the program.

Therefore, an AST is a better representation than a parse tree since it only contains the nodes

that are necessary for representing the code.

2.4 Software for constructing AST

It is a time demanding and complicated process to develop a scanner, a parser and a tree builder

for ASTs for a language such as Java. Since the generation of ASTs is only a small part of

my thesis, I have used Java Compiler Compiler (JavaCC)2 and JJTree to generate the above

programs for the Java 1.5 version. JavaCC is an open source scanner and parser generator for

Java. JavaCC generates a scanner and a parser in Java from a file which contains the definitions

2JavaCC: https://javacc.dev.java.net/

10

Background

Figure 2.2: Parse tree for the code a[index] = 4 + 2. The internal nodes, in white, represents

the structural elements of the language, while the leaf nodes, in gray, represents tokens.

Figure 2.3: AST for the code a[index] = 4 + 2. The internal nodes, in white, represents the

structural elements of the language, while the leaf nodes, in gray, represents tokens.

of the tokens and the grammar of a language such as Java. To generate a tree builder for the

parser, JJTree together with JavaCC were used.

2.5 Assessing similarities between trees

In this section, I present different methods for assessing similarities between trees by the use of a

semi-metric approach. A semi-metric is a function which defines the distance between elements

of a set. In our problem we have the set P which contains the listings which we want to compare

against each other. The distance function d is then defined as d : P × P 7→ R, where R is the

set of real numbers. When we apply the function d on two listings in the set, we will get a low

distance if the structural similarity is high, and a high distance if the structural similarity is low.

If the structure of the two listings are identical, the distance is zero.

For all p, q ∈ P , the function d will be required to satisfy the following conditions:

1. d(p, q) ≥ 0 (non-negativity) and with equality iff p = q

2. d(p, q) = d(q, p) (symmetry)

When using d in our context, then p = q in condition 1 means that p and q have identical

structure. A semi-metric is similar to a metric, except that a metric d′ also needs to satisfy

the triangle inequality. I will define a distance function and a similarity function for most of

the methods that I present in the following sections. For each similarity function that I define,

there is a direct reciprocal relation to the corresponding distance function. I will only use the

similarity functions in the rest of the thesis, since both functions express the same thing.

The methods to be presented work on either ordered or unordered trees. In an ordered tree,

the relative order of the children is fixed for each node. The relative order of the children nodes

11

Chapter 2

leads to further distinctions among the nodes in an ordered tree. We let T = (V,E) be an

ordered tree. The node v ∈ V has the children set W ⊆ V . If a node w ∈ W is the first child

of v, then we denote that as w = first[v], and if the node w ∈ W is the last child of v, then

we denote that as w = last[v]. Each nonfirst children node w ∈ W has a previous sibling,

denoted as previous[w]. Also, each nonlast children node w ∈ W has a next sibling, denoted

as next[w].

Some of the methods that I present in the next sections uses the notion of a mapping. In our

context, a mapping is used to show which nodes that correpond to each other in the two trees.

The standard notation for a mapping M is given by M : X 7→ Y . In this thesis, I will use the

notation M ⊆ X × Y , where M is a subset of a cartesian product and not a function as in the

standard notation. In order for M to be a mapping from X to Y the following condition must

be satisfied: if (x, y), (x′, y) ∈M then x = x′.

2.5.1 Distance measures obtained by dynamic programming

The distance metrics that I present in this section uses dynamic programming (Cormen et al.,

2001). This method, like the divide-and-conquer method, solves problems by combining the

solutions of subproblems. In divide-and-conquer algorithms, the original problem is partitioned

into independent subproblems. These subproblems are then solved recursively, and the solu-

tions are combined to solve the original problem. Dynamic programming has an advantage

over divide-and-conquer algorithms when the subproblems are not independent, that is, when

the subproblems share sub-subproblems. A divide-and-conquer algorithm will in this context

do unnecessary work by repeatedly solving common sub-subproblems. On the other hand, a

dynamic programming algorithm solves every sub-subproblem just once and stores the result in

a table. The next time the subsubproblem is encountered, we only need to look up the answer in

the table.

Dynamic programming is well suited for certain optimization problems. For such problems

there can be one or more possible solutions. Each solution has a value, and we want to find

a solution with the optimal value. Depending on the problem, the optimal value is either a

maximum or a minimum value. A solution with the optimal value is called an optimal solution

to the problem. It is important to notice that we don’t call this solution the optimal solution,

since there can be several solutions that achieve the optimal value. For problems where we

can find an optimal solution with dynamic programming, the problem exhibits a property called

optimal substructure. A problem has an optimal substructure if the optimal solution can be built

from optimal solutions to subproblems.

For each of the problems that I present in this section, with exception of tree edit distance, I

will show how we can characterize the optimal substructure and how we can recursively define

an optimal solution.

Longest Common Subsequences

The longest common subsequence (LCS) problem (Cormen et al., 2001) is used when we want

to find the longest subsequence which is common to two or more sequences (I will only consider

LCS between two sequences). LCS has many applications in computer science. It is the basis

of the Unix algorithm diff, and variants of it are widely used in bioinformatics.

12

Background

A subsequence of a given sequence is just the given sequence with zero or more elements

left out. For example, Z = (T,C,G, T) is a subsequence of X = (A,T,C, T,G,A, T). If

we have two sequences X and Y we say that Z is a common subsequence of X and Y if Z is

a subsequence of both X and Y . And if Z is a subsequence of maximum-length we say that

Z is a longest common subsequence of X and Y . For example, Z = (T,C, T,A) is a longest

common subsequence of the sequences X = (A,T,C, T,G,A, T) and Y = (T,G,C,A, T,A).
This can also be given as a global alignment of X and Y , as shown below:

A T - C - T G A T

- T G C A T - A -
(2.7)

Characters in the two sequences that are not part of the longest common subsequence are aligned

with the gap character -. In LCS the subproblems correspond to pairs of prefixes of the two se-

quences. Given a sequence X = (x1, . . . , xn), we define the i-th prefix of X, for i = 0, . . . ,m,

as Xi = (x1, . . . , xi). For X = (A,T,C, T,G,A, T), X4 = (A,T,C, T) and X0 is the empty

sequence.

For each prefix of the sequences X = (x1, . . . , xn) and Y = (y1, . . . , ym), we find the

LCS. There are either one or two subproblems that we must examine for the prefixes Xi =
(x1, . . . , xi) and Yj = (y1, . . . , yj). If xi = xj then we must find a LCS of Xi−1 and Yj−1.

Appending xi = yj to this LCS yields an LCS of Xi and Yj . If xi 6= yj then we must solve

two subproblems, which are to find an LCS of Xi−1 and Yj and to find an LCS of Xi and Yj−1.

Whichever of these two LCS’s is longer is an LCS of Xi and Yj . Since these cases exhaust all

possibilities, we know that one of the optimal subproblem solutions must be used within an LCS

of Xi and Yj .

We can then define c[i, j] to be the length of an LCS of the prefixes Xi and Yj . If either i = 0
or j = 0, one of the sequences has length 0, so the LCS has length 0. The optimal substructure

of the LCS problem gives the recursive formula in equation 2.8.

c[i, j] =

0 if i = 0 or j = 0

c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max(c[i, j − 1], c[i − 1, j]) if i, j > 0 and xi 6= yj

(2.8)

To use LCS on two ASTs we need two sequences of the nodes that reflects the structure of

the two trees. This can be achieved by doing either a preorder or postorder traversal of the trees.

For the longest common subsequence problem between two ASTs T1 = (V1, E1) and T2 =
(V2, E2) of the programs p and q, define the normalized distance function d(p, q) and the nor-

malized similarity function sim(p, q) in equations 2.9 and 2.10. We call the two functions

normalized since we normalize by the sum of the nodes in T1 and T2.

d(p, q) =
|V1|+ |V2| − 2 · LCS(p, q)

|V1|+ |V2|
(2.9)

sim(p, q) =
2 · LCS(p, q)

|V1|+ |V2|
(2.10)

13

Chapter 2

Needleman-Wunsch

The Needleman-Wunsch (NW) algorithm (Needleman and Wunsch, 1970) is used to perform

a global alignment, with gaps if necessary, on two sequences. The algorithm is a well-known

method for comparison of protein or nucleotide sequences, although today most bioinformatics

applications use faster heuristic algorithms such as BLAST. If we instead want to find the best

local alignment between two sequences, we could use the Smith-Waterman algorithm.

The algorithm is similar to LCS in that it finds a global alignment between two sequences,

but there are some differences. Scores for aligned characters are specified by a similarity matrix

S. Here, S(i, j) is the similarity of characters i and j. It also uses a linear gap penalty, called

d, to penalize gaps in the alignment. An example of an similarity matrix for DNA sequences is

shown in 2.11.

S =

- A G C T

A 10 −1 −3 −4
G −1 7 −5 −3
C −3 −5 9 0
T −4 −3 0 8

(2.11)

In equation (2.12) we see an optimal global alignment of the sequences AGACTAGTTAC and

CGAGACGT. The score of this alignment is S(A,C)+S(G,G)+S(A,A)+3×d+S(G, G)+
S(T,A)+S(T,C)+S(A,G)+S(C, T) = −3+7+10+3×−5+7+−4+0+−1+0 = 1,

when using a gap penalty d which equals -5.

A G A C T A G T T A C

C G A - - - G A C G T
(2.12)

Since NW is very similar to LCS we can define F [i, j] to be the score of NW of the prefixes

Xi and Yj of the two sequences X and Y . If either i = 0 or j = 0, one of the sequences has

length 0. In that case, NW will produce the score d · n, if j = 0, or d ·m, if i = 0, where n and

m are the lengths of X and Y respectively. If both i = 0 and j = 0, then the score will be 0.

The optimal substructure of the NW problem gives the recursive formula in equation 2.13.

F [i, j] =

0 if i = 0 and j = 0

d · i if i 6= 0 and j = 0

d · j if i = 0 and j 6= 0

max(F [i− 1, j − 1] + S[i− 1, j − 1], otherwise

F [i, j − 1] + d, F [i− 1, j] + d)

(2.13)

The use of Needleman-Wunsch in this thesis will be explained later.

Tree edit distance

A tree T1 can be transformed into the tree T2 by the use of elementary edit operations, where

each operation has an associated cost. The operations are: deletion of a node in a tree, insertion

of a node in a tree, and substitution of a node in a tree with a node in another tree. We get a

14

Background

sequence of edit operations when we transform T1 into T2. The cost of the least-cost sequence

of transforming T1 into T2 is the edit distance between the two trees. There are different forms

of tree edit distance. I will consider the tree edit distance method presented in Valiente (2002)

for two unlabeled or labeled ordered trees. In this method the insert and delete operations are

restricted to leaf nodes.

If we have two labeled ordered trees T1 = (V1, E1) and T2 = (V2, E2) then T1 can be

transformed into T2 by a sequence of elementary edit operations. Let T be a labeled ordered

tree that is initially equal to T1. At the end of the transformation T = T2. The elementary

edit operations on T is either the deletion from T of a leaf node v ∈ V1, denoted by (v, λ); the

substitution of a node w ∈ V2 for a node v ∈ V1, denoted by (v,w); or the insertion into T of a

node w ∈ V2 as a new leaf node, denoted by (λ,w).

The transformation of T1 into T2 is given by an ordered relation E = e1e2 . . . en, where

ei ∈ (V1 ∪ {λ})× (V2 ∪ {λ}). In Figure 2.5 we have a transformation of T1 in Figure 2.4a into

T2 in Figure 2.4b, where substitution of corresponding nodes is left implicit in the figure. The

transformation E is given by [(v1, w1), (λ,w2), (v2, w3), (v3, w4), (λ,w5), (λ,w6), (v4, w7),
(v5, λ)].

(a) Tree T1. (b) Tree T2.

Figure 2.4: Two trees T1 and T2.

(a) T = T1 (b) (λ, w2) (c) (λ, w5) (d) (λ, w6) (e) (v5, λ)
(T = T2)

Figure 2.5: The transformation of T1 to T2. Substitution of corresponding nodes is left implicit

in the figure. We start with T = T1 in 2.5a and end up with T = T2 in 2.5e.

15

Chapter 2

Let the cost of an elementary edit operation (v,w) ∈ E be given by γ(v,w). Then the cost

of performing all operations in E is given by γ(E) =
∑

(v,w)∈E γ(v,w). Let us assume that

the cost of a elementary operations is γ(v,w) = 1 if either v = λ or w = λ, and γ(v,w) = 0
otherwise. Then the transformation E in Figure 2.5 has cost equal to 4. This transformation is

also a least-cost transformation, so the edit distance δ(T1, T2) of T1 into T2 is 4. It is important

to point out that the edit distance δ(T2, T1) for transforming T2 into T1 equals δ(T1, T2). By just

changing every edit operation (v,w) ∈ E to (w, v) we get the transformation E′ = [(w1, v1),
(w2, λ), (w3, v2), (w4, v3), (w5, λ), (w6, λ), (w7, v4), (λ, v5)] of T2 into T1.

For a transformation E of T1 into T2 it is important that the transformation is valid. First, all

deletion and insertion operations must be made on leaves only. It is also important in what order

the deletions and insertions are performed. For deletions, (vj , λ) occurs before (vi, λ) in E for

all (vi, λ), (vj , λ) ∈ E such that node vj is a descendant of node vi in T1. While for insertions,

(λ, vi) occurs before (λ, vj) in E for all (λ, vi), (λ, vj) ∈ E such that node vj is a descendant

of node vi in T2. We can see in Figure 2.5 that the deletions and the insertions are performed in

the correct order. The second requirement for a transformation E to be valid is that both parent

and sibling order must be preserved by the transformation. This is done to ensure that the result

of the transformation is an ordered tree. In a valid transformation of T1 into T2, the parent of a

nonroot node v of T1 which is substituted by a nonroot node w of T2 must be substituted by the

parent of node w. And, whenever sibling nodes of T1 are substituted by sibling nodes of T2, the

substitution must preserve their relative order.

The second requirement for a transformation between two ordered trees T1 = (V1, E1) and

T2 = (V2, E2) to be valid is formalized by the notion of a mapping. A mapping M of T1 to T2

is a bijection M ⊆W1 ×W2, where W1 ⊆ V1 and W2 ⊆ V2, such that

• (root[T1], root[T2]) ∈M if M 6= ∅

• (v,w) ∈ M only if (parent[v], parent[w]) ∈ M , for all nonroot nodes v ∈ W1 and

w ∈W2

• v1 is a left sibling of v2 if and only if w1 is a left sibling of w2, for all nodes v1, v2 ∈W1

and w1, w2 ∈W2 with (v1, w1), (v2, w2) ∈M

For the transformation E in Figure 2.5 we get the mapping in Figure 2.6. The transformation

E of T1 into T2 is then valid, since insertions and deletions are performed on leaves only and in

the correct order, and the substitutions constitute a mapping.

Figure 2.6: The mapping of the nodes in T1 and T2.

16

Background

For the tree edit distance problem between two ASTs T1 = (V1, E1) and T2 = (V2, E2) of the

programs p and q, define the normalized distance function d(p, q) and the normalized similarity

function sim(p, q) as follows:

d(p, q) =
δ(T1, T2)

|V1|+ |V2|
(2.14)

sim(p, q) =
2 · |M |
|V1|+ |V2|

(2.15)

2.5.2 Distance measures based on tree isomorphism

When we look at isomorphism between trees, the trees can either be ordered or unordered,

and they can be labeled or unlabeled. If the two trees are unlabeled or if the labels are of no

importance then two trees are isomorphic if they share the same tree structure. Two labeled trees,

on the other hand, are isomorphic if the underlying trees are isomorphic and if the corresponding

nodes in the two trees share the same label. In this section we will look at tree isomorphism and

maximum common subtree isomorphism for both ordered and unordered trees. The examples

that I show for different kinds of isomorphisms will be on unlabeled trees.

Ordered and unordered tree isomorphism

Two ordered trees T1 = (V1, E1) and T2 = (V2, E2) are isomorphic, denoted by T1
∼= T2, if

there is a bijective correspondence between their node sets, denoted by M ⊆ V1 × V2, which

preserves and reflects the structure of the ordered trees. M is an ordered tree isomorphism of

T1 to T2 if the following conditions are satisfied.

• (root[T1], root[T2]) ∈M

• (first[v], f irst[w]) ∈M for all non-leaves v ∈ V1 and w ∈ V2 with (v,w) ∈M

• (next[v], next[w]) ∈M for all non-last children v ∈ V1 and w ∈ V2 with (v,w) ∈M

If there exists an ordered tree isomorphism between two ordered trees then the two trees are

said to be the same tree. The two isomorphic trees can look very different, since they can be

differently labeled or drawn differently. In Figure 2.7 we have two isomorphic ordered trees that

are drawn differently.

In the case of unordered trees, we say that two unordered trees T1 = (V1, E1) and T2 =
(V2, E2) are isomorphic, denoted by by T1

∼= T2, if there is a bijective correspondence between

their node sets, denoted by M ⊆ V1 × V2, which preserves and reflects the structure of the

unordered trees. M is an unordered tree isomorphism of T1 to T2 if the following conditions are

satisfied.

• (root[T1], root[T2]) ∈M

• (parent[v], parent[w]) ∈M for all nonroots v ∈ V1 and w ∈ V2 with (v,w) ∈M

We can see that the mapping M is less strict for unordered trees than for ordered trees, since

an unordered tree isomorphism allows permutations of the subtrees rooted at some node. In

Figure 2.8 we have an example of two unordered trees T1 and T2 which are isomorphic.

17

Chapter 2

(a) Ordered tree T1. (b) Ordered tree T2.

Figure 2.7: Example of isomorphic ordered trees from Valiente (2002). The nodes are numbered

according to the order in which they are visited during a preorder traversal.

(a) Unordered tree T1. (b) Unordered tree T2.

Figure 2.8: Example of isomorphic unordered trees from Valiente (2002). The nodes are

numbered according to the order in which they are visited during a preorder traversal.

For both the ordered and unordered tree isomorphism between two ASTs T1 = (V1, E1) and

T2 = (V2, E2) of the programs p and q, define the normalized distance function d(p, q) and the

normalized similarity function sim(p, q) as follows:

d(p, q) =

{

0 if 2 · |M | = |V1|+ |V2|
1 otherwise

(2.16)

sim(p, q) =

{

1 if 2 · |M | = |V1|+ |V2|
0 otherwise

(2.17)

Ordered and unordered maximum common subtree isomorphism

Another form of isomorphism, which doesn’t require a bijection between the node sets of two

trees, is the maximum common subtree isomorphism. A maximum common subtree of two

ordered or unordered trees T1 and T2 is the largest subtree shared by both trees.

18

Background

(W,S) is a subtree of a tree T = (V,E), if W ⊆ V , S ⊆ E and the nodes in W are

connected. We call (W,S) an unordered subtree, or just a subtree, if T is an unordered tree.

If T is an ordered tree, then (W,S) is an ordered subtree if previous[v] ∈ W for all nonfirst

children nodes v ∈ W . A common subtree of two ordered or unordered trees can either be a

top-down subtree or a bottom up subtree. (W,S) is a top-down ordered or unordered subtree if

parent[v] ∈W for all nodes different from the root, and it is a bottom-up ordered or unordered

subtree if children[v] ∈ W , where children[v] denote the set of children for node v, for all

nonleaves v ∈ W . In Figure 2.9 we can see a subtree, a top-down subtree, and a bottom-up

subtree of an ordered and an unordered tree.

(a) Subtree of an

ordered tree

(b) Top-down

ordered subtree

(c) Bottom-up

ordered subtree

(d) Subtree of an

unordered tree

(e) Top-down

unordered

subtree

(f) Bottom-up

unordered

subtree

Figure 2.9: A subtree, a top-down subtree, and a bottom-up subtree of an ordered and an un-

ordered tree from Valiente (2002).

We define the common subtree of the two trees T1 = (V1, E1) and T2 = (V2, E2) as a

structure (X1,X2,M), where X1 = (W1, S1) is a subtree of T1, X2 = (W2, S2) is a subtree of

T2, and M ⊆ W1 ×W2 is a tree isomorphism of X1 to X2. A common subtree (X1,X2,M)
of T1 to T2 is maximum if there is no subtree (X ′

1,X
′
2,M

′) of T1 to T2 with size[X1] <

size[X ′
1]. In Appendix A there are examples of the four different maximum common subtree

isomorphisms from Valiente (2002).

For all the different maximum common subtree isomorphisms between two ASTs T1 =
(V1, E1) and T2 = (V2, E2) of the programs p and q, define the normalized distance function

19

Chapter 2

d(p, q) and the normalized similarity function sim(p, q) as follows:

d(p, q) =
|V1|+ |V2| − 2 · |M |

|V1|+ |V2|
(2.18)

sim(p, q) =
2 · |M |
|V1|+ |V2|

(2.19)

2.5.3 The different distance and similarity functions

For the sake of convenience I have compiled the distance and similarity functions in the two

previous sections.

Longest Common Subsequence

d(p, q) = |V1|+|V2|−2·LCS(p,q)
|V1|+|V2|

sim(p, q) = 2·LCS(p,q)
|V1|+|V2|

Tree Edit Distance

d(p, q) = δ(T1,T2)
|V1|+|V2|

sim(p, q) = 2·|M |
|V1|+|V2|

Tree Isomorphism

d(p, q) =

{

0 if 2 · |M | = |V1|+ |V2|
1 otherwise

sim(p, q) =

{

1 if 2 · |M | = |V1|+ |V2|
0 otherwise

Maximum Common Subtree Isomorphism

d(p, q) = |V1|+|V2|−2·|M |
|V1|+|V2|

sim(p, q) = 2·|M |
|V1|+|V2|

Table 2.4: The different distance and similarity functions.

20

Chapter 3

Modifications of the JavaCC ASTs

The grammar used to build the ASTs is from the JavaCC homepage1. For the rest of the thesis

I will call this grammar the original grammar. In its simplest form JavaCC generates very

large ASTs, since it creates nodes for all the non-terminals in the grammar. As many of the

created nodes carry no structure information and just complicate the analysis, I first developed

a procedure to remove these uninformative nodes. Moreover, I have sought ways to modify the

original grammar to ease the comparison of ASTs.

3.1 Removal of redundant nodes

In Listing 3.1 we have a simple Java listing and in Figure 3.1a we have the abstract syntax tree

of this listing.

p u b l i c c l a s s Hel loWorld {

p u b l i c s t a t i c void main (S t r i n g a r g s []) {

System . o u t . p r i n t l n (" H e l l o World ! ") ;

}

}

Listing 3.1: Class HelloWorld

In the AST in Figure 3.1a there are a lot of nodes that carry no structure information. We can

see in the tree that the statement System.out.println(...), starting at Statement, has

more than half of the nodes in the tree. And of these nodes, the string argument to the method

println is all the nodes from Expression to StringLiteral. The reason we get such a long list of

nodes is that JavaCC wants to ensure precedence between different operators in an expression,

but when we only have a string literal then other nodes in this list do not add any structure

information to the tree.

When comparing the structure of two ASTs, we can remove nodes in the two trees that are

not relevant for the comparison. Example of such nodes are nodes that are part of a list in the

tree and are not the head or the tail of the list. A list starts with a node that has two or more

children and end at a node that has two or more children or that is a leaf node. The nodes that

we remove are highlighted with gray in Figure 3.1a. After removing these nodes we get the tree

in Figure 3.1b.

1JavaCC grammar for Java 1.5: https://javacc.dev.java.net/files/documents/17/3131/Java1.5.zip

21

Chapter 3

The figure also contains some nodes that are highlighted in black that are not the head or tail

in a list. The node with label Block is not removed since this would make it harder to compare

a block with a single statement and a block that contains multiple statements. We also do not

remove the node with label ClassOrInterfaceBody since this would make it harder to compare

two classes or interfaces where one contains only a single declaration while the other contains

multiple declarations. The two other nodes in black are also not removed since they are labeled

with information that are important when manually comparing ASTs of two programs. The node

labeled with ClassOrInterfaceDeclaration contains the name of a class or an interface, while the

node MethodDeclarator contains the name of a method. These nodes are not important for the

structure, however by removing these it would be much harder to find the corresponding classes,

interfaces and methods of two ASTs when comparing their GML files2.

3.2 Modifications of the JavaCC grammar

I have done some modifications to the original grammar to get a better distinction between dif-

ferent primitive types and literals in the AST. Moreover, some modifications have been done to

the grammar of loops and selection statements. The modifications are presented in the following

subsections.

3.2.1 The types in the grammar

Primitive types and reference types are the two main types in the Java language. The primitive

types are divided into integral types (byte, short, int, long and char), floating point types (float

and double), and boolean type. The reference types are divided into class types, interface types

and array types.

In the original grammar the rule for the primitive types is defined as seen in Listing 3.2. In this

listing, "|" is used to denote choice. Since JavaCC only creates nodes for the non-terminals in

the grammar, it will make no distinction between the different primitive types. All the different

primitive types will then be represented with a node labeled PrimitiveType, which makes it

harder to compare trees that contains different primitive types.

To make a distinction between the different types, I have changed the rule in Listing 3.2 to

the rules in Listing 3.3. I have also made a further distinction between char and the rest of

the integral types by making an own type for char, since a char is mostly used to represent a

Unicode character. The effect of the new rules is that we create two nodes for each primitive

type, instead of only one node as for the rule in Listing 3.2. For each primitive type we first

create a node labeled PrimitiveType, and then we create a child of this node which is either

labeled IntegerType, FloatingPointType, CharacterType, or BooleanType.

P r i m i t i v e T y p e : : = " b y t e " | " s h o r t " | " i n t " | " l ong " | " f l o a t " |

" doub le " | " c h a r " | " b o o l e a n "

Listing 3.2: Rule for primitive types

2See Section 6.4 for more information.

22

Modifications of the JavaCC ASTs

(a) AST of the class HelloWorld

(b) Reduced AST of the class HelloWorld

Figure 3.1: a) AST produced by JavaCC, b) reduced AST. The nodes that do not define the head

or the tail of a list is highlighted in gray or black. The nodes in gray are removed, while the

nodes in black are not.

23

Chapter 3

P r i m i t i v e T y p e : : = I n t e g e r T y p e | F l o a t i n g P o i n t T y p e | C h a r a c t e r T y p e |

BooleanType

I n t e g e r T y p e : : = " b y t e " | " s h o r t " | " i n t " | " l ong "

F l o a t i n g P o i n t T y p e : : = " f l o a t " | " doub le "

C h a r a c t e r T y p e : : = " c h a r "

BooleanType : : = " b o o l e a n "

Listing 3.3: New rules for primitive types

3.2.2 The literals in the grammar

A literal is the source code representation of a value of a primitive type, the String type or the null

type. In the original grammar we have the same problem for literals as for the primitive types.

In Listing 3.4 we can see that JavaCC makes no distinction between literals of the different

primitive types. To make a distinction between these literals, I have changed the rules for literals

to the rules in Listing 3.5.

L i t e r a l : : = INTEGER_LITERAL | FLOATING_POINT_LITERAL |

CHARACTER_LITERAL | STRING_LITERAL |

B o o l e a n L i t e r a l | N u l l L i t e r a l

B o o l e a n L i t e r a l : : = " t r u e " | " f a l s e "

N u l l L i t e r a l : : = " n u l l "

Listing 3.4: Rules for literals

L i t e r a l : : = I n t e g e r L i t e r a l | F l o a t i n g P o i n t L i t e r a l |

C h a r a c t e r L i t e r a l | S t r i n g L i t e r a l |

B o o l e a n L i t e r a l | N u l l L i t e r a l

I n t e g e r L i t e r a l : : = INTEGER_LITERAL

F l o a t i n g P o i n t L i t e r a l : : = FLOATING_POINT_LITERAL

C h a r a c t e r L i t e r a l : : = CHARACTER_LITERAL

S t r i n g L i t e r a l : : = STRING_LITERAL

B o o l e a n L i t e r a l : : = " t r u e " | " f a l s e "

N u l l L i t e r a l : : = " n u l l "

Listing 3.5: New rules for literals

3.2.3 The selection statements and the loops in the grammar

In a Java program a block is a sequence of statements, local class declarations, and local variable

declarations within braces. In the AST the block is represented by a subtree rooted at a node

with the label Block, where the children are the statements and declarations from the sequence.

24

Modifications of the JavaCC ASTs

A block is often used in if-, while-, do-while-, and for-statements. These statements can

also have a single statement or declaration instead of a block. In Listings 3.6 and 3.7 we have

examples of two for-loops, where one contains a block while the other does not. We would say

that the two for-loops are identical since they do the same thing. The problem is that we get

different tree representations for the two for-loops. In Figures 3.2a and 3.2b we have the tree

representations of the two listings, where the subtrees that differ are highlighted in both trees.

. . .

f o r (i n t i = 0 ; i < 1 0 ; i ++)

System . o u t . p r i n t l n (" i = " + i) ;

. . .

Listing 3.6: For-loop without a block

. . .

f o r (i n t i = 0 ; i < 1 0 ; i ++) {

System . o u t . p r i n t l n (" i = " + i) ;

}

. . .

Listing 3.7: For-loop with a block

(a) For-loop without a block.

(b) For-loop with a block.

Figure 3.2: Two for-loops, one with and one without a block. The subtrees that differ are

highlighted in the two trees.

This problem is solved by always using a block in an if-, a while-, a do-while, and a for-

statement. For these four statements we have the rules from the original grammar in Listing 3.8.

In this listing, "<IDENTIFIER>" represents an identifier, while "+" is used to denote zero or one

occurrence. In Listing 3.9 I have changed these rules and added the new rule StatementBlock. In

the AST these four statements will now have a subtree rooted at the node StatementBlock. After

the reduction of the AST, this node will either have a node labeled Block or a single statement

or declaration as a child. If the child is Block, then the node StatementBlock is replaced by

this node. And if the child is a single statement or declaration, then the label of the node

StatementBlock is changed to Block.

25

Chapter 3

S t a t e m e n t : : = L a b e l e d S t a t e m e n t | A s s e r t S t a t e m e n t | Block |

E mptyS ta t ement | S t a t e m e n t E x p r e s s i o n () " ; " |

S w i t c h S t a t e m e n t | I f S t a t e m e n t | E l s e S t a t e m e n t |

W h i l e S t a t e m e n t | DoS ta t ement | F o r S t a t e m e n t |

B r e a k S t a t e m e n t | C o n t i n u e S t a t e m e n t | R e t u r n S t a t e m e n t |

T hrowS ta t ement | S y n c h r o n i z e d S t a t e m e n t | T r y S t a t e m e n t

I f S t a t e m e n t : : = " i f " " (" E x p r e s s i o n ") " S t a t e m e n t (" e l s e " S t a t e m e n t) +

W h i l e S t a t e m e n t : : = " w h i l e " " (" E x p r e s s i o n () ") " S t a t e m e n t

DoS ta t ement : : = " do " S t a t e m e n t " w h i l e " " (" E x p r e s s i o n () ") " " ; "

F o r S t a t e m e n t : : = " f o r " " (" ((Type <IDENTIFIER> " : " E x p r e s s i o n) |

((F o r I n i t) + " ; " (E x p r e s s i o n) + " ; " (ForUpdate) +)) ") "

S t a t e m e n t

Listing 3.8: Rules for the different loops and selection statements

S t a t e m e n t B l o c k : : = S t a t e m e n t

S t a t e m e n t : : = . . .

I f S t a t e m e n t : : = " i f " " (" E x p r e s s i o n ") " S t a t e m e n t B l o c k

(" e l s e " S t a t e m e n t B l o c k) +

W h i l e S t a t e m e n t : : = " w h i l e " " (" E x p r e s s i o n () ") " S t a t e m e n t B l o c k

DoS ta t ement : : = " do " S t a t e m e n t B l o c k " w h i l e " " (" E x p r e s s i o n () ") " " ; "

F o r S t a t e m e n t : : = " f o r " " (" ((Type <IDENTIFIER> " : " E x p r e s s i o n) |

((F o r I n i t) + " ; " (E x p r e s s i o n) + " ; " (ForUpdate) +)) ") "

S t a t e m e n t B l o c k

Listing 3.9: New rules for the different loops and selection statements

We can also have a block associated with a case-label in a switch-statement. A case-label

have none or more statements and/or declarations associated with it. For a case-label it is not

mandatory to have the statements and/or declarations within a block when it has two or more

statements and/or declarations. In this way it is different from the other four statements. For the

switch-statement we have the rules from the original grammar in Listing 3.10. In this listing, "*"

is used to denote zero or more occurrences. In Listing 3.11 I have changed these rules and added

the new rule SwitchLabelBlock. In the AST each case-label will now have a subtree rooted at

the node SwitchLabelBlock. After the reduction of the AST, this node have either no child, or

a node labeled Block as child, or one or more statements and/or declarations as children. If

it has no child, then I remove SwitchLabelBlock from the tree. If the child is Block, then the

node SwitchLabelBlock is replaced by this node. And if the node SwitchLabelBlock has one or

more children, then its label is changed to Block. We also have the special case where the node

SwitchLabelBlock has two or more children and the first child is labeled Block. Then the node

SwitchLabelBlock is replaced by the first child, and the other children becomes the children of

this node.

26

Modifications of the JavaCC ASTs

B l o c k S t a t e m e n t : : = L o c a l V a r i a b l e D e c l a r a t i o n " ; " | S t a t e m e n t |

C l a s s O r I n t e r f a c e D e c l a r a t i o n

S w i t c h S t a t e m e n t : : = " s w i t c h " " (" E x p r e s s i o n ") " " { "

(S w i t c h L a b e l (B l o c k S t a t e m e n t) *) * " } "

S w i t c h L a b e l : : = (" c a s e " E x p r e s s i o n " : ") | (" d e f a u l t " " : ")

Listing 3.10: Rule for a switch

S wi t chL abe lB lo ck : : = (B l o c k S t a t e m e n t) *

B l o c k S t a t e m e n t : : = . . .

S w i t c h S t a t e m e n t : : = " s w i t c h " " (" E x p r e s s i o n ") " " { "

(S w i t c h L a b e l S wi t chL abe lB lo ck) * " } "

S w i t c h L a b e l : : = . . .

Listing 3.11: New rule for a switch

27

28

Chapter 4

ASTs generated by the most frequent

cheating strategies

When a student uses source code written by someone else, then he often modifies the code for

the purpose of disguising the plagiarism. These modifications often cause differences between

the ASTs of the original and the modified source code. Since I measure the similarity between

ASTs, I want to assess how the AST of the modified code corresponds to the AST of the original

code when using different cheating strategies.

In this chapter I provide individual source code examples of the most frequently used cheating

strategies listed in Section 2.1.3. For each example I compare the ASTs of the original code and

the modified code. In the comparison I identify the similarities and the differences between

the two ASTs, and I identify what kind of transformations that can be used to transform the

AST of the original code into the AST of the modified code. And finally, I assess which of the

transformations that are most important to detect and how they affect the development of the

new similarity measures.

4.1 Applying the different cheating strategies

The cheating strategies are illustrated by use of a selected part of one of the Java listings1 Studen-

tregister.java, Suduko.java and ArrayParameter.java. There will also be some code examples

that are not from these listings.

4.1.1 Changing the formatting, the comments and renaming the identifiers

White spaces and comments are discarded when we build the AST, so changing the formatting

and/or the comments will have no effect. Changing the names of the identifiers will also have

no effect. When we change the name, we only change the value of the identifier node. We

will still have the same type of node, but now with a different value. With this strategy none

transformations are applied on the AST of the original code. This strategy is of no importance

for the development of new similarity measures since we get no differences between the two

ASTs.

1Java listings: http://www.uio.no/studier/emner/matnat/ifi/INF1000/h06/programmer/

29

Chapter 4

4.1.2 Changing the order of operands in expressions

For an expression exp we can change the order of some or all the operands and get the expression

exp′, as long as the evaluations of the two expressions gives the same result. Listing 4.1 contains

code from the method main in Suduko.java. By changing the order of some of the operands in

the two expressions, we get the modified code in Listing 4.2.

. . .

/ / t e s t 3 x3 f e l t

i n t r S t a r t = (r / 3) * 3 ;

i n t k S t a r t = (k / 3) * 3 ;

. . .

Listing 4.1: The code before changing the order of operands in expressions

. . .

/ / t e s t 3 x3 f e l t

i n t r S t a r t = 3 * (r / 3) ;

i n t k S t a r t = 3 * (k / 3) ;

. . .

Listing 4.2: The code after changing the order of operands in expressions

The ASTs for Listings 4.1 and 4.2 are shown in Figures 4.1a and 4.1b. We can see that the

children of the two subtrees rooted at MultiplicativeExpression in Figure 4.1a, have been rotated

in Figure 4.1b. That is, the transformation that is applied in this case consists of one or more

subtree rotations, where the number of rotations depends on the number of operands that switch

places. This strategy produces few differences between the ASTs of two Java listings, since the

transformations operates on subtrees which generally are of small sizes.

(a) AST of the code from Listing 4.1.

(b) AST of the code from Listing 4.2.

Figure 4.1: ASTs of the codes from Listings 4.1 and 4.2.

30

ASTs generated by the most frequent cheating strategies

4.1.3 Changing the data types

Sometimes the data type of a variable or field can be changed to another type. Depending on

the use of the variable or field, the change of the data type can require further changes in the

code. The effect on the AST of replacing one data type with another depends on the data type

it is changed to. If an Integral type is replaced with another Integral type there will be no

differences. However, if an Integral type is replaced with for instance a Class type, then the

two trees will differ. Suppose, for example, that we replace the statement int a = 1 with

Integer a = 1. The two ASTs are shown in Figures 4.2a and 4.2b. Observe that they differ

by only one node. If we instead had changed it to float a = 1.0f, the ASTs would differ

a bit more since the IntegerLiteral would be replaced with a FloatingPointLiteral.

(a) AST of the original code. (b) AST of the modified code

Figure 4.2: ASTs of the original and the modified code from Section 4.1.3.

When using this strategy, the transformations depend on what we change the data type to.

First, if we replace it with a type of the same kind, then no transformation is applied. Second,

if we change it to a type of a different kind, then at least one node and no more than two nodes

are changed. Two nodes are changed if it is part of a variable initialization and the literal that is

assigned to the variable needs to be changed. And last, the change of the data type can require

further changes in the tree. Here, the number of transformations and the types of transformations

depend on the different changes that are necessary for making the program work. With this

strategy we get few differences between the ASTs of two Java listings since the transformations

operates on subtrees of small sizes.

4.1.4 Replacing an expression with an equivalent expression

An expression can be replaced with an equivalent expression. In ArrayParameter.java we have

the method finnDelsummer. In the for-loop in this method we have the expression x[i]←֓
+= x[i-1], which we can replace with x[i] = x[i] + x[i-1]. The resulting ASTs

are shown in Figures 4.3a and 4.3b. For this strategy we use a transformation that replaces

a subtree of an expression with another subtree, or we use a transformation that replaces the

first subtree with another subtree that has the first subtree as a subtree. As see in Figure 4.3b

the subtree rooted at PrimaryExpression in Figure 4.3a has been replaced with a subtree rooted

at AdditiveExpression. That one subtree is replaced with another subtree is logical since one

expression is replaced by another expression.

We can see that there are some similarities between the two subtrees, since the second ex-

pression uses the first expression as a sub-expression. One could expect it to be some similarity

between two expressions that do the same thing, but that does not need to be the case. The two

expressions can be totally different, and have no similarity at all. It can therefore be very hard to

determine if it is a case of cheating or if the programmers have just written different expressions.

31

Chapter 4

When using this strategy on a Java listing, we get small differences between the ASTs since the

subtrees that represents expressions are of small sizes.

(a) AST of the original code.

(b) AST of the modified code

Figure 4.3: ASTs of the original and the modified code from Section 4.1.4.

4.1.5 Adding redundant code

In the method registerStudent in the class Institutt in Studentregister.java we have

the code in Listing 4.3. If we add some statements used for debugging to this code, we get the

code in Listing 4.4. Since code used for debugging is not necessary in the final version of the

source code, these statements should have been removed before the code was handed in.

. . .

S t u d e n t s t u d = f i n n S t u d e n t () ;

i f (s t u d == n u l l) { / / maks a n t a l l s t u d e n t e r er nådd .

re tu rn ;

}

. . .

Listing 4.3: Code before adding redundant statements and variables

. . .

S t u d e n t s t u d = f i n n S t u d e n t () ;

boolean debug = f a l s e ;

i f (s t u d == n u l l) { / / maks a n t a l l s t u d e n t e r er nådd .

i f (debug) {

sk j e rm . o u t ("DEBUG: Max number of s t u d e n t s . ") ;

}

re tu rn ;

}

. . .

Listing 4.4: Code after adding redundant statements and variables

32

ASTs generated by the most frequent cheating strategies

The trees for the two listings are shown in Figures 4.4a and 4.4b. In Figure 4.4b there are

some subtrees that are not present in Figure 4.4a. To determine the similarity between the two

trees we need to focus on the subtrees they have in common. For this cheating strategy, the

amount of differences we get between ASTs of two Java listings is very much dependent upon

the kind of redundant code that has been inserted. For example, the insertion of a redundant

statement or local variable declaration will produce few differences, while the insertion of a

redundant method or class can produce large differences.

(a) AST of the code from Listing 4.3.

(b) AST of the code from Listing 4.4.

Figure 4.4: ASTs of the codes from Listings 4.3 and 4.4.

4.1.6 Changing the order of independent code

Within a block we can change the order of independent statements and local variable declara-

tions without changing the program’s behavior. Another challenge is that several other struc-

tures are also independent in Java. In a Java listing the order of the class-, interface- and enum

declarations are not important. Within these declarations there are also declarations that are

independent. For instance, within a class declaration the order of initializers and constructor-,

field-, method-, class- and interface declarations are not important.

In Listing 4.5 we have some field declarations from the class Kurs in Studentregister.java.

If we change the order of these declarations, we get the code in Listing 4.6. For the two listings

we get the trees in Figure 4.5a and 4.5b. The only difference between these trees is that we have

changed the order of the children of ClassOrInterfaceBody. The transformation that has been

applied is a rotation of subtrees. For independent statements and local variable declarations we

do not necessarily need to use only this transformation. If we change the order of statements

and local variable declarations within a block, then we will apply rotations. On the other hand,

if we can move a statement or a local variable declaration outside the block, then we use a

transformation that first removes the subtree of the statement/local variable declaration and then

insert this subtree some other place in the AST.

33

Chapter 4

c l a s s Kurs {

S t r i n g kur skode ;

Ukedag dag ;

i n t t i d ;

. . .

}

Listing 4.5: Code before changing the order of independent structures

c l a s s Kurs {

i n t t i d ;

Ukedag dag ;

S t r i n g kur skode ;

. . .

}

Listing 4.6: Code after changing the order of independent structures

In this example only the order of some field declarations has been changed. If we instead

change the order of some class declarations or method declarations, the difference between the

two trees would be much bigger. The difference between the two trees depends on the kind of

structures that change places. For a plagiarism detection program it is easier to detect the change

of order for these declarations, than for independent statements and local variable declarations.

The program knows, for instance, that the order of declarations within a class is not important,

but within a block it is much harder to know which statements and local variable declarations

correspond to each other.

4.1.7 Replacing one iteration statement with another

A for-loop can be replaced by a while-loop and vice versa. Consider the code in Listing 4.7

which is from the method finnStudent in the class Institutt in Studentregister.java.

The for-loop is replaced with a while-loop as shown in Listing 4.8. The trees for the two listings

are shown in Figures 4.6a and 4.6b. We can see that the two trees have the same nodes, except

for the ForStatement node in Figure 4.6a that has been replaced with a WhileStatement node

in Figure 4.6b. There are some structural differences between the two trees, since some of the

subtrees in Figure 4.6a have been moved in Figure 4.6b.

. . .

f o r (i n t i = 0 ; i < a n t S t u d e n t e r ; i ++) {

i f (navn . e q u a l s (s t u d e n t e r [i] . navn)) {

s t u d = s t u d e n t e r [i] ;

}

}

. . .

Listing 4.7: Code for the for-loop

34

ASTs generated by the most frequent cheating strategies

(a) AST of the code from Listing 4.5.

(b) AST of the code from Listing 4.6.

Figure 4.5: ASTs of the code from Listings 4.5 and 4.6.

. . .

i n t i = 0 ;

wh i l e (i < a n t S t u d e n t e r) {

i f (navn . e q u a l s (s t u d e n t e r [i] . navn)) {

s t u d = s t u d e n t e r [i] ;

}

i ++;

}

. . .

Listing 4.8: Code for the while-loop

For this strategy we use one transformation that changes the label of a node (ForStatement

with WhileStatement), and two transformations that move subtrees. The subtrees that are moved

are the subtrees rooted at LocalVariableDeclaration and at Name (i), where Name (i) is the node

that represents the increment of the variable i. Where we move these subtrees depends on the

code that we do transformations on. In this example, the local variable declaration was moved

just outside the while-loop, but we could also have moved it to another place in the method. For

the node Name (i), we can in this example only insert it next to the subtree rooted at IfStatement.

This node needs to be within the subtree rooted at Block, but where we place it depends on when

the variable i can be incremented.

35

Chapter 4

(a) AST of the code from Listing 4.7.

(b) AST of the code from Listing 4.8.

Figure 4.6: ASTs of the codes from Listings 4.7 and 4.8.

A for-loop and a while-loop can also be replaced with a do-while-loop and sometimes with an

enhanced for-loop. An enhanced for-loop can be used if we are iterating over arrays or objects

from the Collection class. Listings 4.9 and 4.10 show examples of how we can rewrite the

for-loop in Listing 4.7 and the while-loop in Listing 4.8 to a do-while-loop and an enhanced

for-loop, respectively. We can see that we have to use an extra if-statement in each listing. This

is necessary since the do-while-loop runs one or more times, while a for-loop and a while-loop

runs zero or more times. For the enhanced for-loop it is necessary since some of the elements in

the array studenter can be null.

36

ASTs generated by the most frequent cheating strategies

. . .

i n t i = 0 ;

i f (i < a n t S t u d e n t e r) {

do {

i f (navn . e q u a l s (s t u d e n t e r [i] . navn)) {

s t u d = s t u d e n t e r [i] ;

}

i ++;

} wh i l e (i < a n t S t u d e n t e r) ;

}

. . .

Listing 4.9: Code for the do-while-loop

. . .

f o r (S t u d e n t s t u d e n t : s t u d e n t e r) {

i f (s t u d e n t != n u l l) {

i f (navn . e q u a l s (s t u d e n t . navn)) {

s t u d = s t u d e n t ;

}

}

}

. . .

Listing 4.10: Code for the enhanced for-loop

The trees of the two listings are shown in Figures 4.7a and 4.7b. If the first if-statement had

not been necessary in Figure 4.7a, then this tree would be very similar to the tree of the while-

loop in Figure 4.6b. The only differences would then be the node labeled DoStatement and that

the expression and the loop body had switched places. The tree of the enhanced for-loop in

Figure 4.7b is the tree that is most different from the other trees. The subtree with broken lines

in this tree, is the subtree that is most similar to the subtrees in gray in the other trees.

For both the codes and the trees, the for- and while-loop are the most similar, while the do-

while-loop share some similarity with these loops. The enhanced for-loop is not so similar to

the others when it comes to the code and the tree. We can become suspicious by the similarity

between the code of this loop and the code of the other loops, but it is not so easy to say if it is

cheating or not. The best way to find the similarity between all four trees is to look at the content

of the loop body (in gray or broken lines in the trees). We can have different loops, but if they

are iterating over the same code or similar code, then it is possible that they are modifications

of each other. The differences we get between two ASTs by replacing a loop with another loop

depend on what kind of loop the first loop is replaced with, and the sizes of the loop bodies. For

the examples in this section we have, for instance, a bigger difference between the for-loop and

the do-while-loop than between the for-loop and the while-loop. Also, the difference between

the different loops is not so big, since the loop-body is of a small size. If a loop with a bigger

loop-body was replaced with another loop, there would be a greater difference between the

ASTs.

37

Chapter 4

(a) AST of the code from Listing 4.9.

(b) AST of the code from Listing 4.10.

Figure 4.7: ASTs of the code from Listings 4.9 and 4.10.

4.1.8 Changing the structure of selection statements

Nested if-statements can sometimes be replaced with a sequence of if-statements. We can also

use if-statements instead of a switch-statement or vice versa. In the method menu in the class

Institutt in Studentregister.java we got the code in Listing 4.11. The switch-statement can

be replaced with a sequence of if-statements which is shown in Listing 4.12. Or they can be

replaced with nested if-statements which is shown in Listing 4.13.

38

ASTs generated by the most frequent cheating strategies

. . .

do {

sk j e rm . o u t (meny) ;

v a l g = t a s t . i n I n t () ;

swi tch (v a l g) {

case 1 : r e g i s t r e r S t u d e n t () ;

break ;

case 2 : f i n n S t u d e n t () . s k r i v T i m e p l a n () ;

break ;

case 3 : / / a v s l u t t e r

break ;

d e f a u l t : sk j e rm . o u t l n (" Ukjen t menyvalg ") ;

}

} wh i l e (v a l g != 3) ; / / do−w h i l e

. . .

Listing 4.11: Code for the switch-case

. . .

do {

sk j e rm . o u t (meny) ;

v a l g = t a s t . i n I n t () ;

i f (v a l g == 1) {

r e g i s t r e r S t u d e n t () ;

}

i f (v a l g == 2) {

f i n n S t u d e n t () . s k r i v T i m e p l a n () ;

}

i f (v a l g > 3 | | v a l g < 1) {

sk j e rm . o u t l n (" Ukjen t menyvalg ") ;

}

} wh i l e (v a l g != 3) ; / / do−w h i l e

. . .

Listing 4.12: Code for a sequence of if-statements

. . .

do {

sk j e rm . o u t (meny) ;

v a l g = t a s t . i n I n t () ;

i f (v a l g == 1) {

r e g i s t r e r S t u d e n t () ;

}

e l s e i f (v a l g == 2) {

f i n n S t u d e n t () . s k r i v T i m e p l a n () ;

}

e l s e i f (v a l g > 3 | | v a l g < 1) {

sk j e rm . o u t l n (" Ukjen t menyvalg ") ;

}

} wh i l e (v a l g != 3) ;

. . .

Listing 4.13: Code for the nested if-statements

39

Chapter 4

The trees are shown in Figure 4.8a, 4.8b and 4.8c. We can see that the last two trees have the

most in common. If we transform the sequence of if-statements into nested if-statements, then

the right if-statement of an if-statement in the tree becomes the else-statement of this statement.

If we do it the other way around, then the if-statement within the else-statement becomes the

right sibling of the if-statement with the else-statement. These transformations can only be used

if we test on one value and not ranges of values and conditions.

A sequence of if-statements or nested if-statements can only be transformed into a switch-

statement if we test on single values. If we simplify the transformations here, we can say that

we only copy the subtrees in gray from either Figure 4.8b or Figure 4.8c and use them as the

bodies of the different case-labels. We can see that the first and the two last trees are not so

similar, but that they have some subtrees that are identical (the subtrees in gray). We should

look at these subtrees to find the similarity between the tree of a sequence of if-statements or

nested if-statements and the tree of a switch-statement. The differences we get between two

ASTs by replacing selection statements with other selection statements depend highly on the

sizes of the subtrees in gray. The bigger these subtrees are, the bigger the difference will be.

4.1.9 Replacing procedure calls with the procedure body

In the method registrerStudent in the class Institutt in Studentregister.java there is

a method call to the method finnKurs in the same class. This is shown in Listing 4.14. If we

replace the method call with the method body we get the code in Listing 4.15.

void r e g i s t r e r S t u d e n t () {

. . .

sk j e rm . o u t (" Oppgi kur skode (b l a n k l i n j e a v s l u t t e r) : ") ;

S t r i n g kur skode = t a s t . r e a d L i n e () ;

wh i l e (! kur skode . e q u a l s (" ")) {

Kurs k = f i n n K u r s (kur skode) ;

. . .

}

}

Kurs f i n n K u r s (S t r i n g kur skode) {

Kurs k u r s e t = n u l l ;

f o r (i n t i = 0 ; i < a n t K u r s ; i ++) {

i f (k u r s [i] . kur skode . e q u a l s (kur skode)) {

k u r s e t = k u r s [i] ;

}

}

re tu rn k u r s e t ;

}

Listing 4.14: Code from Studentregister.java

40

ASTs generated by the most frequent cheating strategies

(a) AST of the code from Listing 4.11.

(b) AST of the code from Listing 4.12.

(c) AST of the code from Listing 4.13.

Figure 4.8: ASTs of code from Listings 4.11, 4.12 and 4.13.

41

Chapter 4

void r e g i s t r e r S t u d e n t () {

. . .

sk j e rm . o u t (" Oppgi kur skode (b l a n k l i n j e a v s l u t t e r) : ") ;

S t r i n g kur skode = t a s t . r e a d L i n e () ;

wh i l e (! kur skode . e q u a l s (" ")) {

Kurs k = n u l l ;

f o r (i n t i = 0 ; i < a n t K u r s ; i ++) {

i f (k u r s [i] . kur skode . e q u a l s (kur skode)) {

k u r s e t = k u r s [i] ;

}

}

. . .

}

}

Listing 4.15: Code from Studentregister.java

For the two listings we get the trees in Figures 4.9 and 4.10. The transformations that can be

used, depends on the method that contains the method body. In this example we have a method

that returns a value. Then everything in its body, except the return statement, is moved to the

place where the method call occurs, and the remaining nodes of the method are deleted. We can

see in Figure 4.10 that we get new subtrees in the method body of registrerStudent,

and that there are some similarities between the local variable declarations of the methods

registrerStudent and finnKurs (denoted with broken lines). On the other hand, if

the method does not return a value, then the whole method body of this method is moved to

where the method call occurs, and the remaining nodes of the method are deleted. The differ-

ences that we get between two ASTs by using this strategy depends on the size of the method

body that is moved. In this example the body is not so large, but for other code listings we can

have much larger method bodies.

4.1.10 Combine the copied code with your own code

I will not give an example of this strategy, nor try to classify what kind of transformations that

are used when transforming the AST of the original code into the AST of the modified code.

The problem with this strategy is that the similarity between the two programs can be rather

small. Here the similarity will depend upon how much code that is copied.

4.2 Guidelines for the development of new similarity measures

In this section, I assess which of the cheating strategies that deserve most attention based on the

number of differences which we get between the ASTs and how easy it is to use the strategy. I

will also outline how these strategies affect the development of the new similarity measures.

4.2.1 Strategies that are important to detect

For the sake of convenience I have made Table 4.1 on page 45 which shows how many differ-

ences we get or can get between two trees by applying the different strategies. We can see that

the strategies 1 and 2 (4.1.1) are not important. For the strategies 3 - 5 (4.1.2, 4.1.3 and 4.1.4) we

will normally get few differences between the two trees. This depends of course on the number

of changes that are done, but since the changes are done on small subtrees the overall difference,

between the two ASTs, will be small.

42

ASTs generated by the most frequent cheating strategies

Figure 4.9: AST of the code from Listing 4.14. The subtree in broken lines contains the method

call, and the subtree in gray contains the nodes that will replace the subtree in broken lines.

Only strategies 6 - 10 and 12 generate substantial differences between the two associated

ASTs. For strategy 6 (4.1.5) we will not get so many differences if only statements and/or

local variable declarations are added. It depends of course on how many and the sizes of the

statements/local variable declarations which we add (for instance a redundant for-loop will give

a greater difference than a redundant statement that prints to screen). For the student it is easiest

to add statements and/or local variable declarations of small sizes, since it is easier to discover

redundant code of some size. For instance a redundant class, method or statement of some size

can easily be discovered by the teaching assistant when he grades the assignment. By using

strategy 7 (4.1.6) we will either get few or many differences between the trees. If we change the

order of independent statements, then we will not get so many differences. On the other hand, if

the order of classes and/or methods are changed, we can get huge differences between the two

trees. Since it is easy for the student to change the order of these structures and since the strategy

can have a real impact on the differences, it will be important to discover the rotation of these

subtrees of potentially large sizes. For the strategies 8 and 9 (4.1.7 and 4.1.8) the differences

we get between the two trees depend on the sizes of the loop bodies for strategy 8 and the sizes

of the bodies of the different selection statements for strategy 9. In Sections 4.1.7 and 4.1.8 we

used bodies of small sizes, but we can have bodies of much larger sizes. When using strategy 10

the differences between the two trees depend upon the size of the method body that we move.

For the student it is easiest to use this strategy for small methods, and in this case we will not

43

Chapter 4

Figure 4.10: AST of the code from Listing 4.15. The subtree in gray contains nodes from the

method that was called in Listing 4.14, and the subtree in broken lines show similarities between

the two method bodies.

get so many differences between the two trees. A large method body can also be moved, but

if many methods have method calls to this method, then all these methods need a copy of the

code from that method. This will not be very practical, and it can easily be discovered by the

teaching assistant when he grades the assignment. For strategy 12 (4.1.10) the differences that

we get between the two trees will depend upon how much code that the student copies.

4.2.2 How the strategies affect the development of new similarity measures

Strategy 7, used on classes, methods and other declarations, will have the greatest effect on

the development of the new similarity measure algorithms. For each class we will need to

measure the similarity between this class and all the other classes, and for each method we

will need to measure the similarity between this method and all the other methods. This needs

to be done since it can be hard to determine which classes that correspond to each other, and

which methods that correspond to each other. We can also measure the similarity between all

the constructors and all the field declarations, but they are not as important as the classes and

methods since these structures normally have most of the nodes in the trees. It is also important

that we can assess similarity between different loops (strategy 8) and between different selection

statements (strategy 9) since the trees of these structures can be potentially large. These trees

are often rooted at different nodes so we will need to search within the trees for similar loop

bodies or similar selection statements bodies. When choosing measures, it is also important that

the measure can find a good alignment between the statements and the local variables of two

44

ASTs generated by the most frequent cheating strategies

Differences between Strategy

the two ASTs

None
1. Changing comments or formatting.

2. Changing the names of the identifiers.

Normally few

3. Changing the order of operands in expressions.

4. Changing the data types.

5. Replacing an expression with an equivalent expression.

Possibly many

6. Adding redundant code.

7. Changing the order of independent statements.

8. Replacing one iteration statement with another.

9. Changing the structure of selection statements.

10. Replacing procedure calls with the procedure body.

12. Combine the copied code with your own code.

Table 4.1: The differences we get or can get between two trees by using the different strategies.

blocks of code. This is because redundant code can have been inserted, the order of independent

code can have been changed, method calls can have been replaced with method bodies, and the

student can have combined his own code with the copied code.

45

46

Chapter 5

Development of new similarity measures

In this chapter, I consider measures for assessing the similarity between ASTs, giving particular

attention to the cheating strategies emphasized in Section 4.2.2. The measures I consider are

those listed in Section 2.5. Then I outline two new similarity measures ASTSIM-NW and

ASTSIM-LCS based on the previous discussion. Finally, I give a description of ASTSIM-NW

and ASTSIM-LCS.

5.1 Discussing possible measures

5.1.1 Longest Common Subsequence

To use the Longest Common Subsequence (LCS) method, defined in Section 2.5.1, we need to

do a traversal of each AST. After that is done, we can find an optimal alignment between the

two traversals. One problem here is that the order of different independent structures might have

been changed in one of the trees. If the order of declarations such as classes, methods and so on

has been changed, then we can get a low similarity score between the two trees. This is due to

the fact that LCS is a method that is used to find an alignment between two ordered sequences,

while our sequences contains unordered subsequences which complicates the alignment. In

order to use this method, we need to find an alignment between each class declaration in the

first AST and each class declaration in the second AST. By doing so we can find the class

declarations that can best be aligned with each other. Further, to find the alignment between

two class declarations we need to find an alignment between each method declaration in the

first class and each method declaration in the second class. We can continue on if we want to

find the best alignments between constructor declarations and field declarations. One plagiarism

detection algorithm that uses a method similar to LCS is Sim (Gitchell and Tran, 1999). This

algorithm is made for program listings written in C and it finds an optimal alignment between

two token sequences. Also for this algorithm there is a need to find the best alignments between

the different functions in the two listings.

The main advantage with LCS is that it can find similarities between subtrees where the

labels of the root nodes differ, such as subtrees of different loops or subtrees of different selec-

tion statements. Both between the four loops in Section 4.1.7 and between the three selection

statements in Section 4.1.8, LCS would find good alignments. When it comes to aligning the

statements and/or local variable declarations of two blocks, LCS will find an optimal alignment

between the traversals of the two subtrees rooted at the nodes labeled Block. This alignment is

an optimal alignment between the two ordered sequences, but it does not necessary need to be

the best alignment between the two subtrees. This is due to the fact that LCS can have aligned

47

Chapter 5

single nodes (nodes where neither the parent of the node or children of the node are aligned with

other nodes), or it can have aligned small subtrees that are part of larger subtrees, or it can have

aligned the nodes in a subtree of the sequences with nodes in two or more subtrees in the other

sequence. If we allow such alignments, then the ASTs of the Java listings can seem more similar

than they actually are. When using this method it is important to decide which of the aligned

nodes in the two sequences that should be part of the alignment between the two subtrees.

5.1.2 Tree Edit Distance

The Tree Edit Distance (TED) method, defined in Section 2.5.1, can be used directly on the

trees. Since this metric works on ordered trees, it has the same problems as LCS when it

comes to independent structures in the two trees. This method has been used in Sager et al.

(2006) to measure the similarity between ASTs of Java listings. It has not been used to detect

plagiarism, but to detect similar Java classes in software projects. The method performed well

in this context, but I believe that it would perform worse in the context of plagiarism detection.

In such a context the student has often used methods to disguise the similarities, while in the

context of software development there is no reason for disguising the similarities between, for

instance, two versions of a program.

TED will find a good tree edit distance between the ASTs of the for-loop and the while-loop in

Section 4.1.7 since those trees have a very similar structure. The tree edit distance between, for

instance, the while-loop and the do-while-loop will not be so good. Since the two tree structures

are a bit different, the mapping (substitution) of the nodes will not be as good as for the for-

loop and the while-loop, and then we will get more deletions and insertions. For the selection

statements in Section 4.1.8 we have trees where the tree structures are even more different,

which leads to an even higher tree edit distance. One problem with the Tree Edit Distance

algorithm that I have considered in this thesis is that deletion and insertion are restricted to leaf

nodes only. For other forms of Tree Edit Distance we can insert and delete internal nodes in the

tree, which would be favorable when we have trees that share some similarity, such as the trees

in Section 4.1.8, but that have different structures. The drawbacks of these forms of Tree Edit

Distance can be an increase in complexity and that ASTs seem more similar than they actually

are. When it comes to aligning the statements and/or local variable declarations of two blocks,

TED will find a good alignment. TED will use the alignment of the subtrees of statements and

local variable declarations in the two blocks that gives the best mapping between nodes of the

two subtrees that represent the blocks.

5.1.3 Tree isomorphism algorithms

The ordered tree isomorphism, defined in Section 2.5.2, is not a good method for our problem. In

order to have an ordered tree isomorphism between two trees, we need two trees with identical

structure and nodes with corresponding labels. The unordered tree isomorphism, defined in

Section 2.5.2, is a little bit better since it can rotate the subtrees that are children of some node.

It can for instance rotate the subtrees of class declarations and the subtrees of methods within

the subtrees of class declarations, but if one of the trees has just one extra node then we will

have no unordered tree isomorphism between the two trees.

In the top-down ordered maximum common subtree isomorphism method, defined in Section

2.5.2, we want to find a top-down ordered maximum common subtree between two trees. For

a node v to be part of this maximum common subtree there are two requirements that needs to

48

Development of new similarity measures

be satisfied: Obviously, w the parent of v needs to be part of the maximum common subtree.

And, if v is not the first child of w, then the left sibling of v also needs to be part of the

maximum common subtree. Consider the following problem: We have two ASTs, where the

second is identical to the first tree, with exception of that we have changed the order of the

different declarations within the only class declaration in the second tree. Then we will get a

small maximum common subtree if many of the declarations that we try to match against each

other are different. For instance, a field declaration and a method declaration will only have a

couple of nodes in common. As we can see, this is not a good approach for our problem. The

top-down ordered maximum common subtree isomorphism method was also used in Sager et

al. (2006), where it obtained mixed results.

For the problem were we changed the order of the declarations, the top-down unordered

maximum common subtree isomorphism method, defined in Section 2.5.2, would be a much

better choice. With this method we would get a perfect score between the two trees, since

this method can rotate the different declarations in the second tree such that they get the same

order as the declarations in the first tree. This method can handle the different independent

structures since it uses an unordered approach, but it will find a low similarity between the

trees of the loops in Section 4.1.7 and the trees of the selection statements in Section 4.1.8.

For instance when it tries to find a top-down unordered maximum common subtree between

the trees of the for-loop and the while-loop in Section 4.1.7, it will stop at the nodes labeled

ForStatement and WhileStatement since the node labels do not match. When it comes to aligning

the statements and/or local variable declarations of two blocks, this algorithm will not find an

alignment but it will find the best unordered matching between the subtrees of the different

statements and local variable declarations in the two blocks. I consider it to be possible to treat

most of the nodes in the trees as unordered nodes. Some of the nodes are already unordered

(the roots of subtrees of class declarations, method declaration, constructor declarations, field

declarations and so on), while a lot of the unordered nodes will still be treated as ordered nodes

since the grammar of the Java language will lay restrictions on which nodes that can be matched

against each other. The main problems with the unordered approach are unordered matching of

operands in expressions where the order is important and the unordered matching of statements

and local variable declarations of two blocks. Here the unordered matching of statements and

local variable declarations is the most important, since these subtrees are larger than the subtrees

of the operands in expressions. We should find an optimal alignment between the subtrees of the

statements and local variable declaration of two blocks, instead of using an unordered matching.

We can also use the bottom-up ordered maximum common subtree isomorphism method,

defined in Section 2.5.2. This method also finds a maximum common subtree, but it does it

bottom-up. For a node v to be part of this maximum common subtree there is one requirement.

If v is not a leaf node then all the children of v needs to be part of the maximum common

subtree, and the first child of v needs to be matched against the first child of the node that v is

matched to and so on. For our problem it can be hard to find a bottom-up maximum common

subtree of some size, since we sooner or later will find a node z were not all the children are part

of the maximum common subtree. For the bottom-up unordered maximum common subtree

isomorphism method, defined in Section 2.5.2, all the children of a node v must also be part

of the bottom-up subtree, but we can use an unordered matching of these children against the

children of the node that v can be matched to. Here we also have the same problem as for the

bottom-up ordered maximum common subtree isomorphism method. The bottom-up unordered

maximum common subtree isomorphism method was also used in Sager et al. (2006), and it

performed worst of all three methods.

49

Chapter 5

5.2 Two new similarity measures for ASTs

The most promising method from the discussion above is the top-down unordered maximum

common subtree isomorphism method. This method can find a good match between the different

independent structures. One problem with this method is that it cannot find a good alignment

between the statements and local variable declarations of two blocks, since it treats them all

as unordered (independent) and therefore finds an unordered matching between them. Another

problem is that it will find a low similarity between the trees of different loops and between the

trees of different selection statements.

The first problem can be solved by using it together with the Needleman-Wunsch (NW) al-

gorithm, defined in Section (2.5.1). NW can find an optimal alignment between the subtrees

of the statements and the local variable declarations in two blocks. This approach is described

in Section 5.3.2. The second problem can best be solved by using LCS. This method can also

find a good alignment of statements and local variable declarations of two blocks. We saw in

the discussion that TED would get a high tree edit distance between trees where the structures

are very different, such as the trees of selection statements. I also consider it to be easier to

implement LCS than TED.

I propose two new similarity measures called ASTSIM-NW and ASTSIM-LCS. The first

measure will use the top-down unordered maximum common subtree isomorphism method for

the whole tree, but instead of using an unordered matching of the subtrees of two blocks it

will use the Needleman-Wunsch algorithm to find an optimal alignment between the subtrees.

This measure is described in Section 5.3. The second measure will use the top-down unordered

maximum common subtree isomorphism method for the whole tree, with exception of method

bodies where it will use LCS. This measure is described in Section 5.4.

5.3 Description of ASTSIM-NW

In this section I give a description of ASTSIM-NW. The pseudo code for the implementation of

ASTSIM-NW is given in Section 6.1.

5.3.1 Top-Down Unordered Maximum Common Subtree Isomorphism

To find the top-down maximum common subtree isomorphism of an unordered tree T1 =
(V1, E1) into another unordered tree T2 = (V2, E2) we start at the root nodes of T1 and T2.

For each node v ∈ V1 and w ∈ V2 we can find the maximum common subtree isomorphism

between the subtree rooted at v and the subtree rooted at w as long as the labels correspond.

If the labels do not correspond, then we have maximum common subtree isomorphism of size

zero. If either v or w is a leaf node, then we have a maximum common subtree of size 1 or 0.

Otherwise, we can construct the isomorphism between the node v and the node w by finding the

maximum common subtree isomorphisms of each of the subtrees rooted at the children of node

v in T1 into each of the subtrees rooted at the children of node w in T2.

To determine the mapping of the children of v and w we will do as follows: Let p be the

number of children of node v in T1 and let q be the number of children of node w in T1.

The children of the two nodes are then denoted as v1, . . . , vp and w1, . . . , wq . We then build

a bipartite graph1 G = ({v1, . . . , vp}, {w1, . . . , wq}, E) consisting of p + q vertices. If the

1A bipartite graph is a graph were we can partition the vertices into two disjoint vertex sets.

50

Development of new similarity measures

maximum common subtree of the subtree rooted at vi and the subtree rooted at wj has nonzero

size, then (vi, wj) ∈ E and that edge is then weighted by that nonzero size. The maximum

common subtree of v and w has size 1 (since v and w can be mapped against each other) plus

the weight of the maximum weight bipartite matching in G.

Example of a top-down unordered maximum common subtree isomorphism

I will give an example of how we can find a top-down unordered maximum common subtree

isomorphism between two unordered trees. In Figures 5.1a and 5.1b we have the two simplified

ASTs T1 and T2. For the different nodes in the trees we use the following labels: C is a class

declaration, f is a field declaration, c is a constructor declaration, m is a method declaration, v is

a local variable declaration, and s is a statement. The nodes are also numbered according to the

order in which they are visited during a preorder traversal.

(a) AST T1

(b) AST T2

Figure 5.1: Two simplified ASTs.

We will first consider the problem of finding the size of the top-down unordered maximum

common subtree isomorphism of T1 into T2. And second I will show how we can find the

maximum common subtree isomorphism mapping M of T1 into T2. The mapping M is given

by M ⊆ B ⊆ V1×V2. The set B contains all the nodes that can be mapped to each other, while

M contains the nodes that gives the top-down common subtree with the maximum size.

We use a top-down recursive algorithm to find this isomorphism. We start with the two root

nodes. To find the size of the top-down maximum common subtree isomorphism of C1 in T1

and C1 in T2, the maximum weight bipartite matching problem in Figure 5.2 is solved. Table 5.1

shows the different edge weights for this bipartite graph. An optimal solution to this maximum

weight bipartite problem has weight 1+1+1+4+5+4 = 16. The maximum common subtree

of the subtree rooted at C1 in T1 and the subtree rooted at C1 in T2 then has size 1 + 16 = 17.

Before we can solve this maximum weight bipartite matching problem we have to recursively

solve other maximum weight bipartite matching problems. For the nodes m6, m10 and m15 in

51

Chapter 5

T1 we have to find maximum common subtrees with m6, m10 and m15 in T2, and we have to

solve a maximum weight matching problem for each of these subtrees. m6, m10 and m15 in

T1 have each 3 maximum weight matching problems that are solved as seen in Figure 5.3, 5.4

and 5.5. The weights of the different edges are omitted in the figures, since all the edges have

weight 1.

Figure 5.2: Maximum weight bipartite matching of the children of C1 and C1 from T1 and T2.

f2 f3 c4 c5 m6 m10 m15

f2 1 1

f3 1 1

f4 1 1

c5 1 1

m6 4 3 4

m10 4 4 5

m15 3 4 3

Table 5.1: The edge weights for the bipartite graph in Figure 5.2. The edges that are part of the

maximum weight matching are in bold.

Here, B ⊆ V1×V2 contains all the solutions of the maximum weight bipartite matching prob-

lems that were solved during the top-down unordered maximum common subtree isomorphism

procedure upon the unordered trees T1 and T2. We know that the top-down unordered common

subtree between T1 and T2 is given by the structure (X1,X2,M) where X1 = (W1, S1) is a

top-down unordered subtree of T1 and X2 = (W2, S2) is a top-down unordered subtree of T2.

The top-down unordered maximum common subtree isomorphism mapping M is then given by

M ⊆W1 ×W2 ⊆ B ⊆ V1 × V2.

52

Development of new similarity measures

(a) m6 - m6 (b) m6 - m10 (c) m6 - m15

Figure 5.3: Maximum weight bipartite matchings of the children of m6 from T1 and the children

of m6, m10 and m15 from T2.

(a) m10 - m6 (b) m10 - m10 (c) m10 - m15

Figure 5.4: Maximum weight bipartite matchings of the children of m10 from T1 and the chil-

dren of m6, m10 and m15 from T2.

53

Chapter 5

(a) m15 - m6 (b) m15 - m10 (c) m15 - m15

Figure 5.5: Maximum weight bipartite matchings of the children of m15 from T1 and the chil-

dren of m6, m10 and m15 from T2.

To find the mapping M we will do as follows: First we map the root(T1) with root(T2) if and

only if (root(T1), root(T2)) ∈ B. If (root(T1), root(T2)) ∈ M , we will map the other nodes

during a preorder traversal of T1. Each nonroot node v ∈ V1 is mapped to the unique node

w ∈ V2 if and only if (v,w) ∈ B and (parent(v), parent(w)) ∈ B. Table 5.2 shows which

nodes that are mapped to each other according to our example. We can for instance see that only

the children of m6 in T1 are mapped against the children of m6 in T2 since (m6,m6) ∈ B. In

Figure 5.6 we see the mapping M of T1 into T2.

This example shows why we need to use the Needleman-Wunsch algorithm within blocks. We

can see that the method m10 in T1 is matched to the method m15 in T2. Within those method

bodies the statement s11 in m10 is matched to s17 in m15, while the local variable declaration

v12 in m10 is matched to v16 in m15. We cannot allow this unordered matching, since we do not

know if these statements and local variable declarations are independent or not.

5.3.2 Needleman-Wunsch

The Top-down Unordered Maximum Common Subtree Isomorphism algorithm treats all the

nodes in the two ASTs as unordered nodes. The problem with this is that not all of the nodes in

the two trees can be treated as unordered nodes. This is especially true within a block where most

of the statements and local variable declarations depends on other statements and local variable

declarations, and can therefore not be matched with statements and local variable declarations

in another block by the use of an unordered matching.

In Listing 5.1 and 5.2 we have two methods which we want to find the best match between.

The two methods switch the value of two integer variables and prints the values of the two

variables before and after the switch. We can see that the method bodies of the two methods

54

Development of new similarity measures

v ∈ V1 w ∈ V2 and (v,w) ∈ B

C1 C1

f2 f2

f3 f3

f4

c5 c4

m6 m6

v7 v7 v11 v16

s8 s8 s13 s17

s9 s9 s18

m10 m15

s11 s8 s13 s17

v12 v7 v11 v16

s13 s9 s18

s14 s19

m15 m10

v16 v7 v11 s17

v17 v12

s18 s8 s13 s17

Table 5.2: The nodes that are part of the mapping M . The node v in T1 is mapped to the node

w in T2 that is in bold. The nodes in T1 are listed as they are visited during a preorder traversal.

(a) Tree T1

(b) Tree T2

Figure 5.6: The maximum common subtree isomorphism mapping M of T1 into T2. The map-

ping M is shown in gray.

55

Chapter 5

differ a bit. In Listing 5.1 we print the values before and after the switch, while in Listing 5.2

we do all of the printing after the switch, but take into account that the switch has occurred.

p u b l i c s t a t i c void s w i t c h I n t e g e r s 1 (i n t a , i n t b) {

System . o u t . p r i n t l n (" Before t h e s w i t c h : a = " + a + " b = " + b) ;

i n t tmp = a ;

a = b ;

b = tmp ;

System . o u t . p r i n t l n (" A f t e r t h e s w i t c h : a = " + a + " b = " + b) ;

}

Listing 5.1: Method switchIntegers1

p u b l i c s t a t i c void s w i t c h I n t e g e r s 2 (i n t a , i n t b) {

i n t tmp = a ;

a = b ;

b = tmp ;

System . o u t . p r i n t l n (" Before t h e s w i t c h : a = " + b + " b = " + a) ;

System . o u t . p r i n t l n (" A f t e r t h e s w i t c h : a = " + a + " b = " + b) ;

}

Listing 5.2: Method switchIntegers2

The different statements and local variable declarations in the two method bodies are children

of a node labeled Block. To find the maximum common subtree between subtrees rooted at the

two block nodes block1 and block2, we first need to find the maximum common subtree of each

of the subtrees rooted at the children of node block1 into each of the subtrees rooted at the

children of node block2. When all these maximum common subtrees are found, we can find

the maximum common subtree between block1 and block2. If we use an unordered matching

approach to match the statements and the local variable declarations in the two blocks, we build

a bipartite graph G = (A ∪ B,E), where A = {a1, . . . , an} and B = {b1, . . . , bm} are the

children sets of block1 and block2, respectively. Then we find the maximum weight matching

for the graph G. This matching is shown in Figure 5.7. The edges that are part of the matching

are in bold. The weights of the different edges are omitted in this figure, because all the edges

from one node to its neighbors have the same weight.

The problem with this matching is that the first statement from A cannot be matched against

the fourth statement of B. The fourth statement from B, b4, depends upon statements b1, b2 and

b3 from B. We need to do an ordered matching of the statements instead of an unordered. In

such a matching we can only use edges that do not cross other edges used in the matching. What

we want to do is to find an alignment between the nodes of A and B, with gaps if necessary.

There can be many different alignments, but we want to find an alignment where the sum of

the weights of the edges is the maximum among all possible alignments. (5.1) is a maximum

alignment between A and B. We can see that a1 and b4 are aligned with gaps.

a1 a2 a3 a4 - a5

- b1 b2 b3 b4 b5
(5.1)

56

Development of new similarity measures

Figure 5.7: The best unordered matching between the statements and local variable declarations

from the method bodies of the Listings 5.1 and 5.2.

This problem can be solved with Needleman-Wunsch, defined in Section 2.5.1. For this

algorithm we use a similarity matrix S, given in (5.2), which contains the scores for aligning the

different statements and local variable declarations from the set A with the different statements

and local variable declarations in the set B. The scores in the matrix are the sizes of the different

maximum common subtrees isomorphisms of each of the subtrees rooted at the children of node

block1 into each of the subtrees rooted at the children of node block2. The score between the

statements bi and aj is given by S(i, j). For instance, b1 and a1 has a score equal to zero since

there is no maximum common subtree between the subtree rooted at a1 and the subtree rooted

at b1. There is no maximum common subtree since the node labels differ. This method also uses

a linear gap penalty called d, but I will not use a gap penalty, so I set d = 0.

S =

nodes a1 a2 a3 a4 a5

b1 0 5 0 0 0
b2 0 0 4 4 0
b3 0 0 4 4 0
b4 7 0 0 0 7
b5 7 0 0 0 7

(5.2)

To find an optimal solution to the alignment problem we will use a (n + 1)× (m + 1) matrix

denoted by F . In this matrix there is one column for each of the statements and local variable

declarations in A, and one row for each of the statements and local variable declarations in B.

There is also one column and one row for the gap character, here denoted by φ. We will fill this

matrix with values according to the recursive formula defined in equation 2.13 on page 14. Each

cell F (i, j) in the matrix will be an optimal solution of the alignment of the first i statements

and local variable declarations in B with the first j statements and local variable declarations in

A.

In matrix (5.3) we can see the result from applying the recursive formula. The lower right

hand corner contains the maximum score for the alignment of all the statements and local vari-

able declarations. To find out which statements that are aligned to each other we do a backtrack-

ing in the F matrix. This backtracking starts in the lower right hand corner. From this corner we

57

Chapter 5

move either diagonally, left or up. To decide where to move, we compare the value in the cell

F (i, j) with the three possible values it could be set to. If it equals F (i−1, j−1)+S(i−1, j−1),
then node bi and aj are aligned with each other and we move diagonally. The second possibility

is that it equals F (i−1, j)+d. Then node bi is aligned with a gap and we move up. And finally,

the third possibility is that it equals F (i, j − 1) + d. Then node aj is aligned with a gap and we

move to the left. We continue this procedure until we reach a cell that is either in the column or

the row of the gap character.

F =

nodes φ a1 a2 a3 a4 a5

φ 0 0 0 0 0 0
b1 0 0 5 5 5 5
b2 0 0 5 9 9 9
b3 0 0 5 9 13 13
b4 0 7 7 9 13 20
b5 0 7 7 9 13 20

(5.3)

In matrix (5.4) this backtracking is shown. When a cell F (i, j) is marked with gray, then

node bi and aj are aligned with each other. Figure 5.8 shows the best ordered matching of the

statements. There we can see that all of the nodes are matched, except for a1 and b4.

F =

nodes φ a1 a2 a3 a4 a5

φ 0 0 0 0 0 0
տ

b1 0 0 5 5 5 5
տ

b2 0 0 5 9 9 9
տ

b3 0 0 5 9 13 13
↑

b4 0 7 7 9 13 20
տ

b5 0 7 7 9 13 20

(5.4)

5.4 Description of ASTSIM-LCS

In this section I give a description of ASTSIM-LCS. Since the Top-Down Unordered Maximum

Common Subtree Isomorphism method has already been described in Section 5.3.1, I will only

give a description of how LCS should be used. The pseudo code for the implementation of

ASTSIM-LCS is given in Section 6.2.

ASTSIM-LCS uses the LCS to compare the method bodies of methods. Let T1 = (V1, E1)
and T2 = (V2, E2) be two ASTs, and let W1 ⊂ V1 be the nodes in a method body in T1 and

W2 ⊂ V2 be the nodes of a method body in T2. In order to find an alignment with a maximum

score of the nodes in W1 and W2, we need to do a traversal of the two subtrees that represents

the method bodies. We then get two ordered sequences of the nodes in W1 and W2. For all

nodes vi ∈ W1 and wj ∈ W2, i and j denotes in which order the node is visited during the

traversal. For LCS I do a preorder traversal of each method body.

58

Development of new similarity measures

Figure 5.8: An optimal alignment between the statements and local variable declarations from

the methods in listing 5.1 and 5.2.

To find an optimal solution to this alignment problem we will use a (n + 1)× (m + 1) matrix

denoted by c. In this matrix there is one row for the gap character (row 0) and one row for each

of the nodes from the preorder traversal of W1. There is also one column for the gap character

(column 0) and one column for each of the nodes from the preorder traversal of W2. We fill

this matrix with values according to the recursive formula defined in equation 2.8 on page 13.

Each cell c(i, j) in the matrix will be an optimal solution of the alignment of the first i nodes in

preorder traversal of W1 with the first j nodes in the preorder traversal of W2. An algorithm for

the computation of an optimal alignment is given in Algorithm 1, while an algorithm for finding

the actual alignment is given in Algorithm 2.

Algorithm 1 Find an optimal alignment of the nodes in W1 and W2.

1: for i = 0 to m do

2: c(i, 0)← 0
3: end for

4: for j = 0 to n do

5: c(0, j) ← 0
6: end for

7: for i = 1 to m do

8: for j = 1 to n do

9: if label(vi) = label(wj) then

10: c(i, j) = c(i − 1, j − 1) + 1
11: else

12: c(i, j) = max(d(i, j − 1), d(i − 1, j))
13: end if

14: end for

15: end for

If we use these algorithms on the method bodies of the Listings 5.1 and 5.2, we get the

alignments shown in Figures 5.9 and 5.10. Taking a closer look at this alignment, we can see that

there are some problems. In Figure 5.9 we have the subtree rooted at 27 StatementExpression.

59

Chapter 5

Algorithm 2 Find the actual alignment of the nodes in W1 and W2.

1: i← m

2: j ← n

3: while i > 0 and j > 0 do

4: if label(vi) = label(wj) then

5: Align vi with wj .

6: i← i− 1
7: j ← j − 1
8: else if c(i, j − 1) > c(i − 1, j) then

9: j ← j − 1
10: else

11: i← i− 1
12: end if

13: end while

The nodes in this subtree are aligned with nodes from two different subtrees in Figure 5.10. The

nodes numbered 27-29 are from the subtree rooted at 27 StatementExpression, while the node

numbered 30 is from the subtree rooted at PrimaryExpression. One way to solve this problem is

to only align nodes that have the same parent. We can see in Figures 5.9 and 5.10 that the nodes

labeled 30 Name (tmp) and 30 Name (a) have different parents in the two trees. The problem

with this approach is that we still can align nodes in one subtree with nodes from two or more

subtrees as long as the nodes have the same parents. Another problem is that we cannot align

two nodes labeled Block if they have different parents. As we know, loops can be transformed

into other loops and selection statements can be transformed into other selection statements. In

the trees of two different loops the block nodes will have different parents. We can solve these

problems by always aligning block nodes and by only aligning a node v1 with w1 if the parent

of v1 is aligned with the parent of w1. By using this strategy, the nodes labeled 30 Name (tmp)

and 30 Name (a) will not be part of the alignment in Figures 5.9 and 5.10.

60

Development of new similarity measures

Figure 5.9: AST of the method body from Listing 5.1. The nodes that are part of the alignment

are in black, and each node is numbered to show which node it is aligned with in Figure 5.10.

61

Chapter 5

Figure 5.10: AST of the method body from Listing 5.2. The nodes that are part of the alignment

are in black, and each node is numbered to show which node it is aligned with in Figure 5.9.

62

Chapter 6

Implementation of the new similarity

measures

In this chapter I present pseudo code implementations of the two new similarity measures

ASTSIM-NW and ASTSIM-LCS and provide details about the actual implementations. Moreover,

I outline how these implementations were tested.

6.1 Pseudo code for ASTSIM-NW

The pseudo code for the ASTSIM-NW algorithm is given in Algorithms 3 (Part I) and 4 (Part II).

The algorithm is called with the root nodes of the two trees T1 = (V1, E2) and T2 = (V2, E2),
and with the Map B. The map B stores all the nodes in V2 that a node v ∈ V1 can be mapped to.

After the top-down unordered maximum common subtree between T1 and T2 has been found,

the map B is used to find the mapping M of this maximum common subtree.

In Algorithm 3 (Part I) we first check if the node labels correspond. If they do not, then there

is no maximum common subtree between subtrees rooted at those nodes. Then we check if

one or both of the nodes are leaf nodes. If one or both are, then we have a maximum common

subtree of size one. If r1 and r2 are not leaf nodes and their labels correspond, then we can

find the maximum common subtree between the subtrees rooted at those nodes. In order to find

this subtree, we first need to find maximum common subtrees of all the subtrees rooted at the

children of r1 into all the subtrees rooted at the children of r2. For the children of r1 and r2 we

build a bipartite graph. For each of the children of r1 and r2 we create a vertex that is used to

represent the child in the graph. We use the Map GT to map a node to a vertex, and the Map

T1G and T2G to map a vertex to a node.

In Algorithm 4 (Part II) we use a double for-loop to find the maximum common subtrees

between the children of r1 and r2. If there is a maximum common subtree between a subtree

rooted at v1 and the subtree rooted at v2, then we create an edge between the vertices that rep-

resents v1 and v2 in the bipartite graph. The weight of this edge is the size of this maximum

common subtree. When we have found all the maximum common subtrees, we find the max-

imum common subtree between r1 and r2. This is either done with Needleman-Wunsch, if r1

and r2 have the label BLOCK, or with a maximum weight bipartite matching algorithm. Both

algorithms return the edges between the matched vertices in the bipartite graph. Then we can

find the size of the maximum common subtree between r1 and r2 and which of the children of

r1 and r2 that are part of this maximum common subtree. First we set result to 1, since r1

63

Chapter 6

Algorithm 3 ASTSIM-NW(Node r1, Node r2, Map < Node, List < Node >> B) (Part I)

1: if label(r1) 6= label(r2) then

2: return 0

3: end if

4: if isLeafNode(r1) or isLeafNode(r2) then

5: return 1

6: end if

7:

8: Map < Node, V ertex > T1G

9: Map < Node, V ertex > T2G

10: Map < V ertex,Node > GT

11:

12: List < V ertex > U

13: for all v1 ∈ children(r1) do

14: Create new V ertex v

15: Insert v into U

16: GT [v]← v1

17: T1G[v1]← v

18: end for

19:

20: List < V ertex > W

21: for all v2 ∈ children(r2) do

22: Create new V ertex w

23: Insert w into W

24: GT [w]← v2

25: T2G[v2]← w

26: end for

64

Implementation of the new similarity measures

and r2 can be mapped to each other. Then we add the weight of each matched edge to result.

Each matched edge goes from the vertices that represents the children of r1 to the vertices that

represents the children of r2. If a child of r1 has already been mapped to nodes in T2, then

we use the list that has been mapped to this node in B, otherwise we use a new list. The child

GT [v2] of r1 is then inserted into this list, and then the list is mapped to B[GT [v1]]. When we

have gone through all the matched edges, we return the size of the maximum common subtree

between r1 and r2.

Algorithm 4 ASTSIM-NW(Node r1, Node r2, Map < Node, List < Node >> B) (Part

II)

1: List < Edge > edges

2: for all v1 ∈ children(r1) do

3: for all v2 ∈ children(r2) do

4: result← ASTSIM-NW(v1,v2,B)

5: if result 6= 0 then

6: Create new Edge e = (T1G[v1], T2G[v2])
7: e.weight ← result

8: Insert e into edges

9: end if

10: end for

11: end for

12:

13: List < Edge > matchedEdges

14: if label(r1) = label(r2) = BLOCK then

15: matchedEdges ← Needleman-Wunsch(U ,W ,edges)

16: else

17: matchedEdges ←MaxWeightBipartiteMatching(U ,W ,edges)

18: end if

19:

20: result← 1
21: for all e ∈ matchedEdges do

22: V ertex v1 ← source(e), where v1 ∈ U

23: V ertex v2 ← target(e), where v2 ∈W

24:

25: List < Node > list

26: if B[GT [v1]] 6= nil then

27: list← B[GT [v1]]
28: end if

29:

30: Insert GT [v2] into list

31: B[GT [v1]]← list

32: result← result + e.weight

33: end for

34:

35: return result

After we have found the the size of the maximum common subtree between the root nodes

of T1 and T2, we can find the mapping M . This procedure was explained in Section 5.3.1, so

65

Chapter 6

here I will only state the algorithm. The algorithm is given in Algorithm 5. We can see that

that the Map M contains the mapping between nodes in T1 and T2, and that the size of the

mapping equals |M | = sizeOfMapping. The size of the mapping M is then used to calculate

the similarity score between T1 and T2. This is done by using the similarity function defined in

equation 2.19 on page 20.

Algorithm 5 Find the mapping M for ASTSIM-NW

1: Map < Node,Node > M

2: M [root(T1)]← root[T2]
3: sizeOfMapping ← 1
4:

5: List < Node > tree1 ← Preorder traversal of T1

6: for all v ∈ tree1 do

7: if B[v] 6= nil then

8: List < Node > list← B[v]
9: for all w ∈ list do

10: if M [parent(v)] = parent(w) then

11: M [v]← w

12: sizeOfMapping ← sizeOfMapping + 1
13: end if

14: end for

15: end if

16: end for

6.2 Pseudo code for ASTSIM-LCS

The pseudo code for the ASTSIM-LCS algorithm is given in Algorithms 6 (Part I) and 7 (Part

II). Observe that the algorithm is almost identical to the algorithm of ASTSIM-NW, given in

Algorithms 3 and 4. The differences are that we use a Longest Common Subsequence algorithm

to assess similarities between method bodies and that we do not use the Needleman-Wunsch

algorithm anymore.

The LCS algorithm is given in Algorithms 8 (Part I) and 9 (Part II). This algorithm is imple-

mented from the description given in Section 5.4. In Algorithm 8 we first do a preorder traversal

of the two subtrees rooted at r1 and r2, where r1 and r2 are root nodes of subtrees that repres-

ents method bodies in T1 and T2, respectively. Then we find the maximum size of an optimal

alignment between the nodes in subtree1 and subtree2. Observe that nodes are only aligned if

they share the same label. Moreover, the parents need to share the same label or the two nodes

v1 and v2 need to be labeled BLOCK. After we have found this maximum size, we can find the

actual alignment between the two sequences subttree1 and subtree2.

The actual alignment that was found between the sequences subtree1 and subtree2 in Al-

gorithm 8, is not necessarily the alignment that we will use between the nodes in the subtree

rooted at r1 and the nodes in the subtree rooted at r2. In Algorithm 9 a top-down approach is

used to find an alignment between those nodes. The alignment is stored in the Map alignment.

A node v ∈ subtree1 can only be aligned to a node w ∈ subtree2 if tmp[v] = w and one of

the following requirements are satisfied:

66

Implementation of the new similarity measures

Algorithm 6 ASTSIM-LCS(Node r1, Node r2, Map < Node, List < Node >> B) (Part I)

1: if label(r1) = label(r2) = BLOCK and label(parent(r1)) = label(parent(r2)) = METHOD-

DECLARATION then

2: result← LCS(v1,v2,B)

3: return result

4: end if

5:

6: if label(r1) 6= label(r2) then

7: return 0

8: end if

9: if isLeafNode(r1) or isLeafNode(r2) then

10: return 1

11: end if

12:

13: Map < Node, V ertex > T1G

14: Map < Node, V ertex > T2G

15: Map < V ertex,Node > GT

16:

17: List < V ertex > U

18: for all v1 ∈ children(r1) do

19: Create new V ertex v

20: Insert v into U

21: GT [v]← v1

22: T1G[v1]← v

23: end for

24:

25: List < V ertex > W

26: for all v2 ∈ children(r2) do

27: Create new V ertex w

28: Insert w into W

29: GT [w]← v2

30: T2G[v2]← w

31: end for

67

Chapter 6

Algorithm 7 ASTSIM-LCS(Node r1, Node r2, Map < Node, List < Node >> B) (Part

II)

1: List < Edge > edges

2: for all v1 ∈ children(r1) do

3: for all v2 ∈ children(r2) do

4: result← ASTSIM-NW(v1,v2,B)

5: if result 6= 0 then

6: Create new Edge e = (T1G[v1], T2G[v2])
7: e.weight ← result

8: Insert e into edges

9: end if

10: end for

11: end for

12:

13: List < Edge > matchedEdges

14: matchedEdges ←MaxWeightBipartiteMatching(U ,W ,edges)

15:

16: result← 1
17: for all e ∈ matchedEdges do

18: V ertex v1 ← source(e), where v1 ∈ U

19: V ertex v2 ← target(e), where v2 ∈W

20:

21: List < Node > list

22: if B[GT [v1]] 6= nil then

23: list← B[GT [v1]]
24: end if

25:

26: Insert GT [v2] into list

27: B[GT [v1]]← list

28: result← result + e.weight

29: end for

30:

31: return result

68

Implementation of the new similarity measures

Algorithm 8 LCS(Node r1, Node r2, Map < Node, List < Node >> B) (Part I)

1: List < Node > subtree1 ← Preorder traversal of the subtree rooted at r1

2: List < Node > subtree2 ← Preorder traversal of the subtree rooted at r2

3: m← Size of the subtree rooted at r1

4: n← Size of the subtree rooted at r2

5: Array < INT, INT > c

6:

7: for i = 0 to m do

8: c(i, 0)← 0
9: end for

10: for j = 0 to n do

11: c(0, j) ← 0
12: end for

13:

14: for i = 1 to m do

15: for j = 1 to n do

16: v1 ← (i-1)-th element in subtree1

17: v2 ← (j-1)-th element in subtree2

18: if (label(v1) = label(v2)) and ((label(parent(v1) = label(parent(v2)) or label(v1) =

BLOCK) then

19: c(i, j) = c(i − 1, j − 1) + 1
20: else

21: c(i, j) = max(c(i, j − 1), c(i − 1, j))
22: end if

23: end for

24: end for

25:

26: Map < Node,Node > tmp

27: i← m

28: j ← n

29: while i > 0 and j > 0 do

30: v1 ← (i-1)-th element in subtree1

31: v2 ← (j-1)-th element in subtree2

32: if (label(v1) = label(v2)) and ((label(parent(v1) = label(parent(v2)) or label(v1) =

BLOCK) then

33: tmp[v1]← v2

34: i← i− 1
35: j ← j − 1
36: else if c(i, j − 1) > c(i − 1, j) then

37: j ← j − 1
38: else

39: i← i− 1
40: end if

41: end while

69

Chapter 6

• Node v is the root node in the subtree rooted at r1. The nodes r1 and r2 can be aligned

with each other since their parents share the same label (METHODDECLARATION).

• The parents of v and w are aligned, with aligned[parent(v)] = parent(w). This require-

ment ensures that there is a path of aligned nodes aligned[v] = w, aligned[parent(v)] =
parent[w], . . . , aligned[b1] = b2, where b1 and b2 are labeled BLOCK.

• Node v and w are labeled BLOCK, and minimum one child of v is aligned to a child of

w.

If a node v can be aligned to a node w, then w is inserted into the list of nodes that can be

mapped w. At the end, the result of the alignment between the nodes in subtree1 and subtree2

is returned.

After we have found the the size of the maximum common subtree between the root nodes

of T1 = (V1, E1) and T2 = (V2, E2), we can find the mapping M . This algorithm is given in

Algorithm 10. The algorithm is similar to the algorithm given in Algorithm 5, but there are some

differences. In Algorithm 5 we have the requirement that a node v ∈ V1 can only be mapped to

a node w ∈ V2 if M [parent(v)] = w and w ∈ list = B[v]. When we use the LCS algorithm,

we can align two nodes v ∈ V1 and w ∈ V2 without aligning the parents of v and w, when both

v and w are labeled BLOCK. For instance, the parent of v can be labeled FORSTATEMENT,

while the parent of w can be labeled WHILESTATEMENT. Then M [parent(v)] 6= parent(w),
and the requirement from Algorithm 5 is no longer satisfied. In order to solve this problem,

we do preorder traversals of the subtrees rooted at v and w when v and w are the root nodes

in subtrees that represents method bodies. For each node v1 ∈ subtree1 we check if a node

w1 ∈ subtree2 can be mapped to v1. If that is the case, then M [v1] = w1. After haveing found

the mapping M and the size |M | = sizeOfMapping of this mapping, we can calculate the

similarity score between T1 and T2. This is done by using the similarity function defined in

equation 2.19 on page 20.

6.3 Actual implementation of the new similarity measures

All the algorithms have been written in the Java 1.5 language, and the actual implementation

can be found at http://olavsli.at.ifi.uio.no/thesis.

The Top-Down Unordered Maximum Common Subtree Isomorphism algorithm has been im-

plemented by using source code listings, written in C++ with the use of the LEDA library

(Mehlhorn and Näher, 1999), from Valiente (2002). LEDA is a library, written in C++, that

contains data structures and algorithms for combinatorial and geometric computing. To im-

plement the Maximum Weight Bipartite Matching algorithm, I used source code listings from

Mehlhorn and Näher (1999). Since the matching algorithm need a priority queue to do shortest-

path computations in the bipartite graph, I implemented a Fibonacci heap based on a pseudo

code implementation given in Cormen et al. (2001). The use of a Fibonacci heap is recommen-

ded by Mehlhorn and Näher (1999), since this heap improves the asymptotic running time of

the shortest-path computation. For both the implementation of the isomorphism algorithm and

the matching algorithm, I created data structures that are similar to the data structures used in

LEDA.

70

Implementation of the new similarity measures

Algorithm 9 LCS(Node r1, Node r2, Map < Node, List < Node >> B) (Part II)

1: result← 0
2: Map < Node,Node > alignment

3:

4: for all v ∈ subtree1 do

5: if tmp[v] 6= nil then

6: w ← tmp[v]
7:

8: if v = r1 then

9: alignment[v]← w

10: else

11: p1 ← parent(v)

12: p2 ← parent(w)

13:

14: if alignment[p1] = p2 then

15: alignment[v]← w

16: else if label(v) = BLOCK then

17: for all v1 ∈ children(v) do

18: if tmp[v1] 6= nil then

19: w1 ← tmp[v1]
20: if parent(w1) = w then

21: alignment[v]← w

22: end if

23: end if

24: end for

25: end if

26: end if

27:

28: if alignment[v] = w then

29: List < Node > list

30: if B[v] 6= nil then

31: list← B[v]
32: end if

33:

34: Insert alignment[v] into list

35: B[v]← list

36: result← result + 1
37: end if

38: end if

39: end for

40:

41: return result

71

Chapter 6

Algorithm 10 Find the mapping M for ASTSIM-LCS

1: Map < Node,Node > M

2: M [root(T1)]← root[T2]
3: sizeOfMapping ← 1
4:

5: List < Node > tree1 ← Preorder traversal of T1

6: for all v ∈ tree1 do

7: if v.checked = false and B[v] 6= nil then

8: List < Node > list← B[v]
9: for all w ∈ list do

10: p1 ← parent(v)

11: p2 ← parent(w)

12: if M [p1] = p2 then

13: if label(v) = label(w) = BLOCK and label(p1) = label(p2) = METHODDECLAR-

ATION then

14: List < Node > subtree1 ← Preorder traversal of the subtree rooted at v

15: List < Node > subtree2 ← Preorder traversal of the subtree rooted at w

16:

17: for all v1 ∈ subtree1 do

18: v1.checked ← true

19: List < Node > list2← B[v]
20:

21: for all w1 ∈ list2 do

22: if w1 ∈ subtree2 then

23: M [v1]← w1

24: sizeOfMapping ← sizeOfMapping + 1
25: end if

26: end for

27: end for

28: else

29: M [v]← w

30: sizeOfMapping ← sizeOfMapping + 1
31: end if

32: end if

33: end for

34: end if

35: end for

72

Implementation of the new similarity measures

For the Longest Common Subsequence algorithm I used to pseudo code implementation given

in Cormen et al. (2001) to implement it, while for the Needleman-Wunsch algorithm I used the

description given in Needleman and Wunsch (1970).

6.4 Testing of the actual implementations

I cannot guarantee that the implementations do not contain errors, but the algorithms have been

tested on large sets of Java listings (> 350) without errors. I have, however, found an error in

the parser generated by JavaCC by using the original grammar1. The error is that the parser

cannot parse Java listings that contains a single line comment at the end of the listing. If such a

comment is found, the parser reports a parser error. During the testing of the algorithms I have

removed such comments manually, but these comments should be removed automatically from

listings in a future version of the plagiarism detection program.

During the testing of the algorithms I made it possible to manually check the matching

between two ASTs T1 = (V1, E2) and T2 = (V2, E2). By doing so, I could assess if the

matchings were reasonable. I made an option of making a file in the GML graph file format for

each AST, when comparing two program listings. Then I could manually inspect the matching

between the two trees by viewing the files in the yEd graph editor program2. In the GML graph

files I used different colors for matched and unmatched nodes, and I numbered the nodes in

order to see which nodes in the two trees that were matched to each other.

1JavaCC grammar for Java 1.5: https://javacc.dev.java.net/files/documents/17/3131/Java1.5.zip
2yEd: http://www.yworks.com/en/products_yed_about.htm

73

74

Chapter 7

Comparing Joly with ASTSIM-NW and

ASTSIM-LCS

In this chapter I compare Joly with ASTSIM-NW and ASTSIM-LCS by using different tests.

I first find a common similarity score for the three algorithms. Then I assess the algorithms’

ability to discover plagiarized listing pairs by use of three different tests. Finally, I compare the

running times of the three algorithms.

7.1 Finding a common similarity score for the algorithms

Joly reports degree of similarity in terms of an angle (measured in degrees), while my algorithms

outputs a similarity score between 0 and 1, where a score close to 1 means that the program

listings are very similar. To be able to compare Joly with ASTSIM-NW and ASTSIM-LCS I

transformed Joly’s similarity score into a similarity score taking on values in [0, 1]. This is done

by use of the following function:

s(ϕ) =
1

1 + a · ϕ (7.1)

Here, a is a constant describing slope of the function s and ϕ is the angle.

The constant a was estimated the following way: I took 368 program listings (67528 listing

pairs), written by students, and found the similarity scores between them by using ASTSIM-

NW and Joly. I sorted the records (listing pair, score ASTSIM-NW, angle Joly) based on

the ASTSIM-NW score in decreasing order. Then I calculated the mean similarity score of

ASTSIM-NW, which was found to be 0.32. A manual inspection of the list showed that a large

number (1440) of the listing pairs had the score value very close to 0.32. The associated Joly

scores in these 1440 listing pairs had a mean angle value of 6.447 ◦. The two scoring systems

was then calibrated by determination of a by use of equation 7.1. Though this calibration is

quite crude, it ensures that small angles get high scores while large angles get low scores. For

instance, a listing pair with ϕ = 0.5 ◦ is considered as a possible copy in (Kielland,2006). The

mapping of ϕ to a number between 0 and 1 will then give the result s(0.5) = 0.86. This would

also be high enough to classify the pair as a possible copy.

75

Chapter 7

7.2 Comparing Joly with ASTSIM-NW and ASTSIM-LCS by the use of ROC

curves

In the first test I compared the results of the three algorithms on three small sets of listings. I

have run the three algorithms on mandatory programming exercises handed in by the students

in the subject INF1000 - "Introduction to object-oriented programming". Only listings from the

same exercises are tested against each other. The three exercises are called oblig 2, oblig 3 and

oblig 4, respectively. Some basic information about them are provided in Table 7.1. Note that

the number of listings in exercise oblig 2 is much smaller than those of the other two. I also

want to point out that in the exercise oblig 4, the students were given a predefined structure by

the course administration for solving the exercise. Observe, that I have, in each exercise set,

identified the number of listing pairs that are copies. This is necessary in order to build ROC

curves for the different algorithms.

No. of Average size Max size Min size No. of No. of

listings (lines / nodes) (lines / nodes) (lines / nodes) listing pairs listing pairs

that are copies

OBLIG 2

5 204 / 635 236 / 686 176 / 554 10 4

OBLIG 3

12 425 / 1537 535 / 1847 336 / 1221 66 7

OBLIG 4

11 479 / 1732 617 / 2236 261 / 1113 55 6

Table 7.1: Data for the three exercise sets oblig 2, 3 and 4. For average-, min- and max size I

both show the numbers of lines of code and nodes in the AST.

7.2.1 Results for oblig 2

Tables 7.2 - 7.4 shows the results the three algorithms on oblig 2. We can see that both ASTSIM-

NW and ASTSIM-LCS assign high scores to the listing pairs that were classified as copies

during the manual inspection. Joly also assigns high scores to these pairs, with the exception

of the pair 2.1 - 2.3. The ROC curves for the three algorithms are shown in Figure 7.1. We

can see that both ASTSIM-NW and ASTSIM-LCS achieves a perfect classification in ROC

space. ASTSIM-NW’s classification is perfect for a threshold t = [0.38, 0.92], while ASTSIM-

LCS’s has a perfect classification for a threshold t = [0.42, 0.95]. Joly does not obtain a perfect

classification, since the last positive pair is found with a threshold t = 0.38. Before it finds this

pair, false positives have been found for thresholds t = [0.39, 0.42]. I have to point out that even

if ASTSIM-NW and ASTSIM-LCS achieves a perfect classification here, that does not need to

be case for another set of listings. Here I have only used 10 listing pairs, which is far too few to

draw a conclusion about how good the algorithms are to classify the listing pairs. In Figure 7.4a

on page 84 we have the three ROC curves in one ROC graph. We can see that the ROC curves of

ASTSIM-NW and ASTSIM-LCS are better than or equal to Joly’s ROC curve for all threshold

values. For this test set with only 10 listing pairs, we say that ASTSIM-NW and ASTSIM-LCS

are better to classify the listing pairs than Joly.

76

Comparing Joly with ASTSIM-NW and ASTSIM-LCS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curve for ASTSIM−NW on oblig 2.

Threshold: [0.32,0.98]

(a) ASTSIM-NW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curve for ASTSIM−LCS on oblig 2.

Threshold: [0.42,0.95]

(b) ASTSIM-LCS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curve for Joly on oblig 2.

Threshold: 0.42 Threshold: [0.39,0.41]

Threshold: [0.3,0.38]

(c) Joly

Figure 7.1: ROC curves for the three algorithms on oblig 2.
77

Chapter 7

2.1 2.2 2.3 2.4 2.5

2.1 - 0.37 0.92 0.37 0.37

2.2 - - 0.33 0.98 1.00

2.3 - - - 0.34 0.33

2.4 - - - - 0.98

2.5 - - - - -

Table 7.2: Results for ASTSIM-NW on oblig 2. A score in bold indicates that the listing pair

was classified as a copy during the manual inspection.

2.1 2.2 2.3 2.4 2.5

2.1 - 0.40 0.95 0.41 0.40

2.2 - - 0.38 0.98 1.00

2.3 - - - 0.39 0.38

2.4 - - - - 0.98

2.5 - - - - -

Table 7.3: Results for ASTSIM-LCS on oblig 2. A score in bold indicates that the listing pair

was classified as a copy during the manual inspection.

7.2.2 Results for oblig 3

Tables 7.5 - 7.7 shows the results for the three algorithms on oblig 3. We can see that both

ASTSIM-NW and ASTSIM-LCS assign high scores to the listing pairs that were classified as

copies during the manual inspection. Joly also assigns high scores to these pairs, with the

exception of the pair 3.7 - 3.8. We can also see that Joly assigns high scores to the listing pairs

3.3 - 3.4, 3.4 - 3.9 and 3.4 - 3.12. These scores are in italics in Table 7.7, and the corresponding

listing pairs are not copies. The ROC curves for the three algorithms are shown in Figure 7.2.

Also for these listing pairs, we can see that both ASTSIM-NW and ASTSIM-LCS achieves a

perfect classification in ROC space. ASTSIM-NW’s classification is perfect for a threshold t =
[0.45, 0.7], while ASTSIM-LCS’s has a perfect classification for a threshold t = [0.49, 0.77].
Joly does not obtain a perfect classification, since the last positive pair is found with a threshold

t = 0.55. Before it finds this pair, many false positives are found. Joly actually finds the first

false positive for a threshold t = 0.89, while the next one is found for a threshold t = 0.84. In

Figure 7.4b on page 84 we have the three ROC curves in one ROC graph. We can see that the

ROC curves of ASTSIM-NW and ASTSIM-LCS are better than or equal to Joly’s ROC curve

2.1 2.2 2.3 2.4 2.5

2.1 - 0.28 0.38 0.29 0.28

2.2 - - 0.41 0.91 1.00

2.3 - - - 0.42 0.41

2.4 - - - - 0.91

2.5 - - - - -

Table 7.4: Results for Joly on oblig 2. A score in bold indicates that the listing pair was classified

as a copy during the manual inspection.

78

Comparing Joly with ASTSIM-NW and ASTSIM-LCS

for all threshold values.

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12

3.1 - 0.99 0.35 0.35 0.39 0.38 0.34 0.41 0.36 0.34 0.34 0.37

3.2 - - 0.35 0.35 0.39 0.38 0.34 0.41 0.36 0.34 0.34 0.36

3.3 - - - 0.42 0.37 0.39 0.40 0.36 0.75 0.39 0.38 0.76

3.4 - - - - 0.34 0.37 0.42 0.38 0.42 0.35 0.35 0.42

3.5 - - - - - 0.80 0.31 0.39 0.38 0.41 0.40 0.38

3.6 - - - - - - 0.31 0.39 0.39 0.40 0.40 0.39

3.7 - - - - - - - 0.70 0.44 0.35 0.36 0.44

3.8 - - - - - - - - 0.39 0.43 0.44 0.39

3.9 - - - - - - - - - 0.36 0.36 0.99

3.10 - - - - - - - - - - 0.98 0.36

3.11 - - - - - - - - - - - 0.36

3.12 - - - - - - - - - - - -

Table 7.5: Results for ASTSIM-NW on oblig 3. A score in bold indicates that the listing pair

was classified as a copy during the manual inspection.

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12

3.1 - 0.99 0.40 0.38 0.39 0.38 0.34 0.38 0.39 0.33 0.33 0.39

3.2 - - 0.40 0.37 0.39 0.37 0.34 0.38 0.39 0.33 0.33 0.39

3.3 - - - 0.41 0.41 0.39 0.42 0.43 0.77 0.43 0.43 0.77

3.4 - - - - 0.45 0.45 0.44 0.48 0.44 0.37 0.37 0.44

3.5 - - - - - 0.79 0.40 0.41 0.45 0.38 0.38 0.45

3.6 - - - - - - 0.36 0.38 0.44 0.38 0.38 0.44

3.7 - - - - - - - 0.84 0.48 0.39 0.40 0.48

3.8 - - - - - - - - 0.48 0.43 0.44 0.48

3.9 - - - - - - - - - 0.42 0.42 0.99

3.10 - - - - - - - - - - 0.98 0.42

3.11 - - - - - - - - - - - 0.42

3.12 - - - - - - - - - - - -

Table 7.6: Results for ASTSIM-LCS on oblig 3. A score in bold indicates that the listing pair

was classified as a copy during the manual inspection.

7.2.3 Results for oblig 4

Tables 7.8 - 7.10 shows the results the three algorithms on oblig 4. We can see that both

ASTSIM-NW and ASTSIM-LCS assign high scores to the listing pairs that were classified as

copies during the manual inspection, with the exception of the listing pair 4.6 - 4.11. Joly also

assigns high scores to these pairs, with the exception of the pairs 4.5 - 4.8, 4.6 - 4.11 and 4.8 - 4.9.

The ROC curves for the three algorithms are shown in Figure 7.3. This time, both ASTSIM-NW

and ASTSIM-LCS do not achieve a perfect classification in ROC space. ASTSIM-NW’s finds

false positives for the thresholds t = [0.55, 0.56]. For the threshold t = 0.55 it also finds the

last true positive. ASTSIM-LCS’s finds false positives for the thresholds t = [0.56, 0.58]. For

79

Chapter 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curve for ASTSIM−NW on oblig 3.

Threshold: [0.45,0.7]

(a) ASTSIM-NW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curve for ASTSIM−LCS on oblig 3.

Threshold: [0.49,0.77]

(b) ASTSIM-LCS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curve for Joly on oblig 3.

Threshold: 0.84

Threshold: [0.62,0.82]

Threshold: [0.49,0.55]

Threshold: [0.56,0.57]

Threshold: 0.89

(c) Joly

Figure 7.2: ROC curves for the three algorithms on oblig 3.
80

Comparing Joly with ASTSIM-NW and ASTSIM-LCS

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12

3.1 - 0.93 0.24 0.24 0.23 0.23 0.27 0.30 0.23 0.18 0.18 0.24

3.2 - - 0.23 0.23 0.23 0.23 0.26 0.29 0.23 0.18 0.18 0.23

3.3 - - - 0.89 0.58 0.57 0.48 0.35 0.84 0.39 0.39 0.88

3.4 - - - - 0.58 0.58 0.47 0.35 0.82 0.38 0.39 0.84

3.5 - - - - - 0.92 0.39 0.30 0.61 0.34 0.34 0.61

3.6 - - - - - - 0.38 0.30 0.60 0.33 0.33 0.59

3.7 - - - - - - - 0.55 0.45 0.33 0.34 0.48

3.8 - - - - - - - - 0.34 0.27 0.28 0.35

3.9 - - - - - - - - - 0.39 0.39 0.86

3.10 - - - - - - - - - - 0.83 0.38

3.11 - - - - - - - - - - - 0.38

3.12 - - - - - - - - - - - -

Table 7.7: Results for Joly on oblig 3. A score in bold indicates that the listing pair was classified

as a copy during the manual inspection, while a score in italics indicates that the listing pair has

a high score and has not been classified as a copy.

the threshold t = 0.56 it also finds the last true positive. Joly does neither obtain a perfect clas-

sification. We can see that Joly finds many false positives by using thresholds t = [0.29, 0.48],
before it finds the last true positive with the threshold t = 0.29. In Figure 7.4c on page 84 we

have the three ROC curves in one ROC graph. As seen the ROC curves of ASTSIM-NW and

ASTSIM-LCS are better than or equal to Joly’s ROC curve for all threshold values, and also

that ASTSIM-NW is a little bit better than ASTSIM-LCS since its FPR rate is lower or equal to

ASTSIM-LCS’s for all threshold values.

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11

4.1 - 0.99 0.42 0.36 0.41 0.32 0.42 0.44 0.34 0.41 0.33

4.2 - - 0.42 0.36 0.41 0.32 0.42 0.44 0.34 0.41 0.32

4.3 - - - 0.70 0.45 0.38 0.56 0.54 0.42 0.56 0.42

4.4 - - - - 0.45 0.30 0.50 0.44 0.41 0.49 0.36

4.5 - - - - - 0.33 0.44 0.68 0.55 0.43 0.34

4.6 - - - - - - 0.37 0.41 0.24 0.37 0.55

4.7 - - - - - - - 0.55 0.42 0.99 0.43

4.8 - - - - - - - - 0.64 0.54 0.44

4.9 - - - - - - - - - 0.43 0.32

4.10 - - - - - - - - - - 0.43

4.11 - - - - - - - - - - -

Table 7.8: Results for ASTSIM-NW on oblig 4. A score in bold indicates that the listing pair

was classified as a copy during the manual inspection.

7.3 Comparing the assignment of similarity scores by the three algorithms

In the previous section we saw that ASTSIM-NW and ASTSIM-LCS were better than Joly to

detect plagiarized listings in 3 small test sets. But even if they are better than Joly on these

81

Chapter 7

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11

4.1 - 0.99 0.49 0.45 0.53 0.38 0.50 0.51 0.37 0.49 0.39

4.2 - - 0.50 0.45 0.52 0.39 0.50 0.51 0.37 0.49 0.40

4.3 - - - 0.76 0.58 0.39 0.56 0.57 0.43 0.55 0.42

4.4 - - - - 0.51 0.36 0.54 0.49 0.40 0.54 0.40

4.5 - - - - - 0.44 0.56 0.74 0.54 0.55 0.40

4.6 - - - - - - 0.38 0.45 0.29 0.38 0.56

4.7 - - - - - - - 0.58 0.47 0.99 0.43

4.8 - - - - - - - - 0.67 0.57 0.46

4.9 - - - - - - - - - 0.47 0.35

4.10 - - - - - - - - - - 0.44

4.11 - - - - - - - - - - -

Table 7.9: Results for ASTSIM-LCS on oblig 4. A score in bold indicates that the listing pair

was classified as a copy during the manual inspection.

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11

4.1 - 0.94 0.32 0.32 0.33 0.35 0.28 0.32 0.22 0.27 0.36

4.2 - - 0.33 0.32 0.32 0.35 0.28 0.32 0.22 0.27 0.35

4.3 - - - 0.79 0.27 0.44 0.26 0.30 0.22 0.25 0.23

4.4 - - - - 0.26 0.42 0.25 0.29 0.21 0.24 0.23

4.5 - - - - - 0.38 0.41 0.57 0.34 0.41 0.39

4.6 - - - - - - 0.31 0.41 0.25 0.30 0.29

4.7 - - - - - - - 0.49 0.43 0.88 0.29

4.8 - - - - - - - - 0.38 0.47 0.33

4.9 - - - - - - - - - 0.45 0.23

4.10 - - - - - - - - - - 0.29

4.11 - - - - - - - - - - -

Table 7.10: Results for Joly on oblig 4. A score in bold indicates that the listing pair was

classified as a copy during the manual inspection.

82

Comparing Joly with ASTSIM-NW and ASTSIM-LCS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curve for ASTSIM−NW on oblig 4.

Threshold: 0.56

Threshold: 0.55

(a) ASTSIM-NW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curve for ASTSIM−LCS on oblig 4.

Threshold: 0.58

Threshold: 0.57

Threshold: 0.56

(b) ASTSIM-LCS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curve for Joly on oblig 4.

Threshold: 0.39

Threshold: [0.48,0.49]

Threshold: 0.38

Threshold: 0.3

Threshold: 0.29

(c) Joly

Figure 7.3: ROC curves for the three algorithms on oblig 4.
83

Chapter 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curves for ASTSIM−NW, ASTSIM−LCS and Joly for oblig 2.

ASTSIM−NW

ASTSIM−LCS

JOLY

(a) Oblig 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curves for ASTSIM−NW, ASTSIM−LCS and Joly for oblig 3.

ASTSIM−NW

ASTSIM−LCS

JOLY

(b) Oblig 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR or 1 − Specificity

T
P

R
 o

r
S

en
si

tiv
ity

ROC curves for ASTSIM−NW, ASTSIM−LCS and Joly for oblig 4.

ASTSIM−NW

ASTSIM−LCS

JOLY

(c) Oblig 4

Figure 7.4: Comparing ROC curves for the three algorithms on the three data sets.84

Comparing Joly with ASTSIM-NW and ASTSIM-LCS

sets, they do not necessary need to be better on some other test sets. I will therefore do another

test where I test which of Joly and ASTSIM-NW/ASTSIM-LCS that gives the most appropriate

score to a listing pair. To do this I have selected 10 listing pairs where Joly finds a high score,

while ASTSIM-NW/ASTSIM-LCS finds a low score and vice versa.

The listing pairs have been selected as follows: I have run the three algorithms on a set

of 368 listings. Then I have sorted the results for Joly and ASTSIM-NW in decreasing or-

der. For each of the listing pairs in the sorted lists I have found the corresponding scores for

either ASTSIM-NW and ASTSIM-LCS or Joly and ASTSIM-LCS. I have then gone through the

lists in decreasing order and selected listing pairs where there is a difference of 0.30 or higher

between the scores of ASTSIM-NW and Joly and between the scores of ASTSIM-LCS and Joly.

A difference of 0.30 is chosen to ensure that either Joly or ASTSIM-NW/ASTSIM-LCS has a

much lower score than the other algorithm(-s). For each of the 20 listing pairs I have manually

classified them as copies or not copies. In Table 7.11 are the results for the 20 pairs. For the

pairs 1-10 ASTSIM-NW/ASTSIM-LCS have high scores, and for the pairs 11-20 Joly has high

scores. We can see in Table 7.11 that ASTSIM-NW/ASTSIM-LCS assigns the most appropriate

scores to the different pairs. When they assign high scores then the pairs are copies, and when

they assign low scores then the pairs are not copies. On the other hand we can see that Joly does

the opposite for these pairs.

Pair ASTSIM-NW ASTSIM-LCS JOLY Diff. Joly and Diff. Joly and Copies?

(score) (score) (score) ASTSIM-NW ASTSIM-LCS

1 0.98 0.98 0.51 0.47 0.47 YES

2 0.95 0.95 0.53 0.42 0.42 YES

3 0.88 0.90 0.49 0.39 0.41 YES

4 0.86 0.89 0.46 0.40 0.43 YES

5 0.86 0.87 0.42 0.44 0.45 YES

6 0.83 0.84 0.38 0.45 0.46 YES

7 0.81 0.81 0.37 0.44 0.44 YES

8 0.80 0.79 0.47 0.33 0.32 YES

9 0.77 0.77 0.40 0.37 0.37 YES

10 0.77 0.78 0.40 0.37 0.38 YES

11 0.44 0.46 0.87 0.43 0.41 NO

12 0.49 0.47 0.83 0.34 0.36 NO

13 0.46 0.46 0.83 0.36 0.36 NO

14 0.48 0.51 0.82 0.34 0.31 NO

15 0.46 0.47 0.82 0.35 0.34 NO

16 0.37 0.40 0.82 0.45 0.42 NO

17 0.38 0.36 0.81 0.43 0.45 NO

18 0.49 0.50 0.81 0.32 0.31 NO

19 0.36 0.38 0.81 0.45 0.43 NO

20 0.47 0.43 0.81 0.34 0.38 NO

Table 7.11: The results of Joly and ASTSIM-NW/ASTSIM-LCS on at set of 20 listing pairs.

85

Chapter 7

7.4 Similarity scores produced by the different cheating strategies

In the two previous sections we have seen that ASTSIM-NW/ASTSIM-LCS have assigned more

appropriate scores to listing pairs than Joly in the different tests. It seems like Joly are more

sensitive to the different cheating strategies than ASTSIM-NM/ASTSIM-LCS. In this section

I will investigate the effect on the similarity score for the different algorithms by applying the

different strategies.

I will test the effect of the strategies 3-10 from Section 2.1.3. The strategies 1 and 2 will not

be considered since all of the algorithms are immune against these strategies, and 12 will also

not be used. In this test I start with the listing P0. I will then apply the different strategies one

by one on this listing. We then get the listing Pi where i = 3, . . . , 10. For each strategy that

I apply I will measure the similarity between P0 and Pi with the three algorithms. I will then

see how the similarity score between P0 and the other listings is affected when using more and

more strategies.

It is also interesting to look at the effect of applying only one strategy. When we measure the

similarity between P0 and Pi we get the combined effect of applying the strategies 3 to i. If we

on the other hand measure the similarity between Pi and Pi−1, then we get the effect of only

using the strategy i. I consider both situations in the following.

The listing P0 that I use is about 200 lines long and it is from the exercise oblig 2. It is found

in Listing B.1 in Appendix B. In this appendix we also have the listing P10, with all strategies

applied. This listing is found in Listing B.2. Table 7.12 shows the different listings that were

made from P0. For each listing I have listed what kind of changes that were done. For each

strategy I have done a reasonable amount of changes with respect to the size of listing P0.

Listing Based on Changes applied

P0

P3 P0 The order of the operands were changed in 5 expressions.

P4 P3 The data types of 3 local variables were changed from int to

double.

P5 P4 Two expressions were replaced with equivalent expressions, 3 as-

signments statements were replaced with one assignment state-

ment, and two assignment statements were replaced with one as-

signment statement.

P6 P5 7 redundant statements and 3 local variable declarations were in-

serted.

P7 P6 7 independent local variable declarations and statements were

moved.

P8 P7 Two for-loops, with a single statement, and a for-loop, with a

switch-statement with 5 case labels, were changed to while-loops.

P9 P8 A switch-statement with 6 case labels was changed to nested if-

statements.

P10 P9 A method call was replaced with the method body. The method

body contains 10 lines of code.

Table 7.12: The different listings based on P0.

86

Comparing Joly with ASTSIM-NW and ASTSIM-LCS

7.4.1 The effect of applying more and more cheating strategies

In Table 7.13 we see the similarity scores for the different algorithms on the different pairs.

Figure 7.5 shows how the similarity scores decreases by using more and more strategies and in

Table 7.14 displays the vectors that Joly makes for the different listings. As expected, the three

algorithms assign a perfect score when comparing P0 with P0, P1 and P2. For P3 only Joly and

ASTSIM-NW assign a perfect score.

For P4 we can see that the score decreases a little for both ASTSIM-NW and ASTSIM-LCS,

and that Joly still has a perfect score since there is no difference between the vectors of P0 and

P4. First at P5 that the score for Joly decreases. We can see in Table 7.14 that both the number

of "=" and ";" decreases. Also, ASTSIM-NWs and ASTSIM-LCSs scores decrease, but they

both have a higher score than Joly.

In Figure 7.5 we can see that the strategy of inserting redundant statements and local variable

declarations has a great impact on Joly’s similarity score. The score decreases from 0.8840

to 0.4780 since the vector of P6 contains 10 more ";" than the vector of P0. ASTSIM-NW

and ASTSIM-LCS scores decrease also, but only a little. For P7 Jolys score does not change,

since there is no difference between the vectors of P6 and P7. We can see that the score of

ASTSIM-LCS decreases more than the score of ASTSIM-NW.

In P8 I have replaced three for-loops with while-loops. We can see that Joly’s score actually

increases by doing this, since the vector of P8 contains one less ";" than the vector of P7. For

ASTSIM-NW and ASTSIM-LCS, we can see that ASTSIM-NW’s score decreases more than

ASTSIM-LCS, and that ASTSIM-LCS gets a higher score than ASTSIM-NW. The same thing

applies to P9 where ASTSIM-LCS’s score decreases less than ASTSIM-NW’s score. Joly’s

score also decreases for P9, since its vector is changing. One interesting observation about the

vector of P9 is that it now contains the same number of ";" as P0. From having 95, 95 and 94

";" for P6, P7 and P8 respectively, it has now only 88. But this does not help since the number

of "if(" and "=" increases.

By replacing a method call with the method body we get a decrease in the similarity score for

all three algorithms. We can see that both ASTSIM-NW and ASTSIM-LCS scores decrease by

somewhat the same amount, while Joly’s score decreases less than them. In the end ASTSIM-

NW, ASTSIM-LCS and Joly ends up with the similarity scores 0.6306, 0.7033 and 0.3824

respectively. For Joly the listing pair P0 - P10 has such a low score that we would not suspect

that the programs are copies, while the similarity scores for ASTSIM-NW and ASTSIM-LCS

could still indicate that the programs are copies, and then especially ASTSIM-LCS’s score.

7.4.2 The effect of applying a single cheating strategy

In Table 7.15 we have the similarity scores assigned by the different algorithms for the listing

pairs Pi and Pi+1, where i = 0, . . . , 9. For the different pairs, the similarity score is plotted for

each of the algorithms in Figure 7.6. In this figure we can see that all three algorithms assign

a perfect score for the pairs P0 − P1 and P1 − P2, while only ASTSIM-NW and Joly assign a

perfect score for the pair P2 − P3.

For the pair P3 − P4 we can see that both ASTSIM-NW and ASTSIM-LCS assign the same

score, which they also do for the pairs P4 − P5 and P5 − P6. Joly assigns a perfect score to

87

Chapter 7

Pair ASTSIM-NW ASTSIM-LCS JOLY JOLY

(score) (score) (score) (angle)

0 - 1 1.0 1.0 1.0 0.0

0 - 2 1.0 1.0 1.0 0.0

0 - 3 1.0 0.9910 1.0 0.0

0 - 4 0.9892 0.9801 1.0 0.0

0 - 5 0.9681 0.9590 0.8840 0.3982

0 - 6 0.9423 0.9335 0.4780 3.3133

0 - 7 0.8731 0.8394 0.4780 3.3133

0 - 8 0.7538 0.7947 0.4999 3.0347

0 - 9 0.6743 0.7568 0.3983 4.5835

0 - 10 0.6306 0.7033 0.3824 4.9000

Table 7.13: The scores between the original listing and the different listing with changes.

Program listings

0 1 2 3 4 5 6 7 8 9 10

"void" 6 6 6 6 6 6 6 6 6 6 5

"String" 5 5 5 5 5 5 5 5 5 5 5

">" 2 2 2 2 2 2 2 2 2 2 2

"class" 1 1 1 1 1 1 1 1 1 1 1

"if(" 5 5 5 5 5 5 5 5 5 11 11

"=" 65 65 65 65 65 62 62 62 62 74 74

"static" 1 1 1 1 1 1 1 1 1 1 1

";" 88 88 88 88 88 85 95 95 94 88 87

"," 2 2 2 2 2 2 2 2 2 2 2

"public" 1 1 1 1 1 1 1 1 1 1 1

Table 7.14: The vectors for the different listing made by Joly.

the pair P3 − P4, but for the pair P4 − P5 the score drops to 0.9205 since there is a difference

between the vectors of P4 and P5 in Table 7.14. For the pair P5−P6 we can see that Joly assigns

a score of 0.5060. In Table 7.14 we can see that there is a big difference between the vectors of

P5 and P6. The vector of P6 has 10 more ";" than the vector of P5.

When we change the order of independent statements and local variable declarations in the

listing P7, we see that ASTSIM assigns a little higher score to the pair P6 − P7 than ASTSIM-

LCS (See Section 8.3 for an explanation). For the same pair, Joly achieves a perfect score. In the

program P8 I have replaced for-loops with while-loops. We can see that ASTSIM-LCS assigns

a much better score for the pair P7 − P8 than ASTSIM-NW, which only assigns 0.7513 for this

pair (See Section 8.3 for an explanation). Joly assigns a high score to this pair, since the vectors

of P7 and P8 only differ with one ";".

For the pair P8−P9 we can see that ASTSIM-LCS still assigns a better score than ASTSIM-

NW, while Joly assigns a score of 0.2981. If we compare the vectors of P8 and P9 in Table 7.14,

we can see that there is a big difference between them. The biggest difference is that the number

of "if(" has doubled in P9 compared to P8. This has an impact on the angle between the vectors,

88

Comparing Joly with ASTSIM-NW and ASTSIM-LCS

0−0 0−1 0−2 0−3 0−4 0−5 0−6 0−7 0−8 0−9 0−10

0.4

0.5

0.6

0.7

0.8

0.9

1

Listing pairs

S
im

ila
rit

y

Comparing the original listing against the same listing with plagiarism strategies applied.

ASTSIM−NW
ASTSIM−LCS
JOLY

Figure 7.5: Comparing the three algorithms.

which we can see in Table 7.15. The angle is now 7.1431. For the last pair, P9−P10 we can see

that ASTSIM-NW and ASTSIM-LCS assign almost the same score, while Joly assigns a score

of 0.8417.

7.5 Comparing the running times of the three algorithms

The algorithm in Joly is very fast since it stores the vectors of the program listings in the data-

base. When a new listing is submitted to the system, the algorithm only needs to calculate the

vector of that listing before it compares it against vectors from the database. Another thing that

makes the algorithm fast is that it does not compare listings where the byte counts1 of two list-

ings differ with 10 % or more. Such listings are not compared, since the algorithm cannot detect

that the listings are copies when the byte counts differ with 10 % or more. One example of that

algorithm is very fast, is that it can handle that over 400 of the students in the course INF1000

submit their programming assignments to Joly during the last hour before deadline.

For both ASTSIM-NW and ASTSIM-LCS I have measured the running time when they com-

pare 50 and 100 listings. For both tests I determined the average time it took to compare two

listings. The results for the tests are shown in Table 7.16 for ASTSIM-NW and in Table 7.17 for

1The byte count is calculated after blanks, comments and strings are removed, and it is stored in the database.

89

Chapter 7

Pair ASTSIM-NW ASTSIM-LCS JOLY JOLY

(score) (score) (score) (angle)

0 - 1 1.0 1.0 1.0 0.0

1 - 2 1.0 1.0 1.0 0.0

2 - 3 1.0 0.9910 1.0 0.0

3 - 4 0.9892 0.9892 1.0 0.0

4 - 5 0.9790 0.9790 0.9205 0.2620

5 - 6 0.9731 0.9731 0.5060 2.9624

6 - 7 0.9197 0.9005 1.0 0.0

7 - 8 0.7513 0.9084 0.9163 0.2771

8 - 9 0.8875 0.9619 0.2981 7.1431

9 - 10 0.9241 0.9224 0.8417 0.5704

Table 7.15: The effect of applying a single cheating strategy.

ASTSIM-LCS. We can see that ASTSIM-NW uses 610 milliseconds on one comparison, while

ASTSIM-LCS uses about 560 milliseconds. For both ASTSIM-NW and ASTSIM-LCS most of

this time is used when comparing the ASTs, while very little time is used to build the ASTs and

to do modifications on them.

No. of listings No. of listing pairs Total time Average time for a listing pair

(in seconds) (in seconds)

50 1225 149.38 0.0610

100 4950 601.79 0.0610

Table 7.16: The running time for ASTSIM-NW on 50 and 100 listings.

No. of listings No. of listing pairs Total time Average time for a listing pair

(in seconds) (in seconds)

50 1225 134.92 0.0551

100 4950 555.90 0.0562

Table 7.17: The running time for ASTSIM-LCS on 50 and 100 listings.

In equations 7.2 and 7.3 I have calculated the time that ASTSIM-NW and ASTSIM-NW

would use to compare n = 2000 listings, when ASTSIM-NW uses t(ASTSIM-NW) = 0.061
and ASTSIM-LCS uses t(ASTSIM-LCS) = 0.056 on average to compare two listings. We can

see that the total running time is high for both algorithms. ASTSIM-NW uses 121939 seconds

which equals 33.87 hours, while ASTSIM-LCS uses 111944 seconds which equals 31.1 hours.

For the same number of listings, the algorithm in Joly would only use a fraction of the time that

ASTSIM-NW and ASTSIM-LCS uses.

90

Comparing Joly with ASTSIM-NW and ASTSIM-LCS

0−1 1−2 2−3 3−4 4−5 5−6 6−7 7−8 8−9 9−10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Listing pairs

S
im

ila
rit

y

The effect of applying a single cheating strategy.

ASTSIM−NW

ASTSIM−LCS

JOLY

Figure 7.6: The effect of applying a single cheating strategy.

Total running time =
n · (n− 1)

2
· t(ASTSIM-NW) (7.2)

=
2000 · 1999

2
· 0.061

= 121939 sec

Total running time =
n · (n− 1)

2
· t(ASTSIM-LCS) (7.3)

=
2000 · 1999

2
· 0.056

= 111944 sec

91

92

Chapter 8

Discussion

In this chapter I discuss possible shortcommings of the new algorithms, alternative representa-

tions to AST of the code, ASTSIM-NW’s advantages over ASTSIM-LCS and vice versa, and

issues regarding the implementation of the new algorithms in Joly.

8.1 Possible shortcommings of the new algorithms

8.1.1 Removal of redundant information from the AST

During the testing of the new algorithms it was discovered that some trees of non-similar code,

became similar after the removal of redundant nodes. For example, the statements i++; and

return a; have similar trees after the removal of redundant nodes, as seen in Figure 8.1. I

do not consider this to be a serious problem. This situation will only occur for some statements

and/or expressions, and since the trees of these structures normally are small the mismatch will

also be small. In this example there would only be a mismatch of 1, when matching Name (i)

and Name (a).

8.1.2 Unmodified AST representation

The algorithms have not been tested on unmodified ASTs. To do such a test the algorithms

would need to be somewhat modified, since they are now optimized for the modified trees. It is

difficult to predict the similarity scores such a test would produce, but an unmodified AST will

be much larger than the modified AST one and thus cause substantial increase of the running

time.

8.1.3 The use of unordered nodes

ASTSIM-NW treats all the nodes in the tree as unordered nodes, with exception of the nodes that

are roots in subtrees of statements and local variable declarations within method bodies. During

the testing, few unwanted rotations of nodes were detected. Most of the unwanted rotations were

related to operands in expressions, where the order of the operands was important. Especially for

the additive expression there were some unwanted rotations, when it was used as an argument to

methods that print to screen. Below are two method calls to println in System.out, where

both calls use an additive expression as argument. We can see that the order of the operands is

important in both expressions.

1. System.out.println(prime + "is a prime number.");

2. System.out.println("My name is "+ name);

93

Chapter 8

(a) AST of i++; (b) AST of return a;

Figure 8.1: Two different statements which become similar after the removal of redundant

nodes. The nodes in white are removed, while the nodes in gray are still in the tree.

In Figure 8.2 are the ASTs of the two statements, where nodes in dark gray have been matched

by rotations. We can see in this example that few nodes are affected by this unwanted rotation.

In general, unwanted rotations of operands in expressions is not a big problem, since only small

subtrees are rotated. These rotations will have little effect on the result when comparing the

ASTs of two program listings.

(a) AST of statement 1 (b) AST of statement 2

Figure 8.2: Matching between statements 1 and 2. The nodes are numbered to show which node

they are matched to. Dark gray is used to indicate that a node is matched to a rotated node.

8.1.4 Possible counter stategies

ASTSIM-NW and ASTSIM-LCS are vulnerable to techniques that make large changes to the

structure of the AST. Such techniques includes: Replacing method calls with large method bod-

ies (1), splitting a large method into two or more methods (2), insertion of a very large number

of redundant statements and local variable declarations (3), insertion of large redundant methods

94

Discussion

or classes (4), and so on. All these techniques can make the teaching assistent suspicious when

he grades the assignment, but if we do not incorporate this human factor it will become much

harder to uncover cheating.

The problem with (1) and (2) above is that the algorithms can only match a method against

one other method. Consider this problem: A Java listing p1 has only one method m that is of a

large size. We split this method into the three methods m1, m2 and m3 of some what equal size,

where m1 has a method call to m2 and m2 has a method call to m3, and we get the Java listing

p2. This operation can involve insertion of new code to make p2 work. When we then measure

the similarity between the p1 and p2, m is matched against one of the three methods, large parts

of m will be unmatched, and two of the methods in p2 will also be unmatched. One possible

solution could be to match the nodes in m against nodes in more than one method in p2, but this

approach can lead to problems when using it on other Java listings as we then can get a too high

score between two listings.

For (3) and (4) the problem is that we will get many unmatched nodes in one of the trees. This

will again give a lower similarity score between the two trees, since the score is affected by the

number of unmatched nodes in the two trees. For statements it can be hard for the plagiarism

program to determine if a statement is redundant or not. It may be easier to determine if local

variable declarations, methods and classes are redundant. One possible solution, is that the

program can check in the code to see if the variable, method or class is used in the program.

8.2 Alternative representations of the code

A Java listing can also have another representation than an AST. Two other possible representa-

tions are tokens and Java bytecode. In this section I will discusess pros and cons of using these

representations instead of ASTs for plagiarism detection.

8.2.1 Tokens

The main advantage of using tokens instead of ASTs is that we do not need syntactically correct

code. Joly has this advantage, even though it does not use tokens. A possible problem with

tokens is that it can be hard to identify which parts of a token stream that corresponds to a

class declaration, method and so on. For our problem we need to measure the similarity of each

class declaration with all the other class declarations in order to find the best match between the

different class declarations. In order to identify the class declarations or method declarations

in a token stream we need to use regular expressions, while in an AST we can identify these

structures by finding subtrees that are rooted at a node with a specific label, which is much

easier.

8.2.2 Java bytecode

One advantage with Java bytecode is that it is easier to detect the similarities between different

loops and between different selection statements. For instance, a for-loop and a while-loop

will have the same representation in the bytecode. The main problem with bytecode is that the

bytecodes of two Java listings can be more similar than the listings are. This is due to the fact

that listings that have a high semantically similarity also can have very similar bytecodes, even

if the two listings do not have a high structural similarity.

95

Chapter 8

8.3 ASTSIM-NW vs. ASTSIM-LCS

In Section 7.4 we looked at the effect of the different cheating strategies on the similarity scores

assigned by the different algorithms. For some of the strategies we saw that ASTSIM assigned

better scores than ASTSIM-LCS, and vice versa. In this section I will elaborate on this in some

more detail.

Needleman-Wunsch vs. Longest Common Subsequence

When we change the order of independent statements and local variable declarations, then

ASTSIM-NW always finds the best alignment between those statements and local variable de-

clarations, while ASTSIM-LCS does not necessarily find the best alignment. The reason that

ASTSIM-NW always finds the best alignment is that the Needleman-Wunsch algorithm tests all

possible alignments of the subtrees of the statements and local variable declarations in the two

blocks. On the other hand, ASTSIM-LCS first finds the alignment between the two traversals

of the two blocks. In this alignment we can have aligned nodes that will not be part of the final

alignment. In Figure 8.3 we can see that ASTSIM-NW finds a better alignment than ASTSIM-

LCS when comparing two blocks of statements and local variable declarations of the program

listings P6 and P7 from Section 7.4. We can see that there is one local variable declaration that

is not matched by ASTSIM-LCS, but that is matched by ASTSIM-NW.

Finding similarities between different structures

ASTSIM-NW cannot find similarities between subtrees where the labels of the root nodes do

not correspond. If, for instance, a for-loop is replaced with a while-loop, we have subtrees

where the root nodes do not correspond. On the other hand, ASTSIM-LCS can find similarities

between such subtrees. In Section 7.4 we had an example where 3 for-loops were replaced by

while-loops. In Figure 8.4 is an example of the similarity that ASTSIM-LCS found between one

of the for-loops and one of the while-loops. For the same example ASTSIM-NW would find no

similarity.

8.4 Practical implementation of the new algorithms in Joly

In this section I outline some practical implementation issues, regarding the implementation of

the new algorithms in Joly.

8.4.1 Methods for reducing the running time

When a new assignment is submitted to Joly by a student, the assignment is compared against

all the other assignments, where the difference between the byte counts is less than 10%. In

Section 7.5 we saw that both algorithms used a very long time to compare a large set of Java

listings. Due to this, the algorithms cannot be used to compare assignments at run time. There

are three ways to address this problem: (1) to not compare the listings when they are received,

but compare them later when the students have finished submitting to the system, (2) reduce

the running time of the new algorithms, (3) use a faster algorithm at run time to select listing

pairs that the two algorithms can compare later, when the students have finished submitting to

the system. The last option implies that we use a fast filtering algorithm with the purpose of

removing listing pairs that cannot be copies of each other. It appears that it may be easier to

apply this strategy compared to dramatically improve the running time of the algorithms.

96

Discussion

(a) ASTSIM-NW’s alignment of some statements and local variable declarations from the listing

P6.

(b) ASTSIM-LCS’s alignment of some statements and local variable

declarations from the listing P6.

(c) ASTSIM-NW’s alignment of the same statements and local variable declarations from the

listing P7.

Figure 8.3: Alignment by ASTSIM-NW and ASTSIM-LCS. The nodes in white are unmatched

nodes, while the others are matched.

97

Chapter 8

Figure 8.4: The match that ASTSIM-LCS finds between the body of a for-loop and the body of

a while-loop, here shown in the for-loop. The nodes in black are the nodes that are matched.

98

Discussion

8.4.2 Selecting threshold values

ASTSIM-NW and ASTSIM-LCS reports a similarity score s, in the range [0, 1], when measur-

ing the similarity between two program listings. To decide if a listing pair is a possible copy

the score s is compared with a threshold t. When a plagiarism detection program is used on a

set of programs listings P , we need a t which classifies the majority of the actual copies in P

as copies. Moreover, t needs to control the proportion of false positives among all listing pairs

classified as copies.

A threshold used for one set of program listings, does not neccesarily need to be a good

threshold for another set of listings. The average size of a program listing can be very different

in the two sets, or the listings in one of the sets can use a predefined structure, or the listings in

one of the sets can use predefined code, and so on. For example, in Section 7.2.3 most of the

students used a predefined structure, given by the course administration, to solve oblig 4. This is

possibly one of the reasons that many of the none-copy listing pairs were assigned scores equal

to or above 0.5 by ASTSIM-NW and ASTSIM-LCS. In Sections 7.2.1 and 7.2.2 none of the

none-copy listing pairs were assigned scores above 0.5. Even though the three listing sets are

small, there are idications of a pattern.

One way to choose a threshold value is through estimation. In this case the program listings

used need to be of the same kind or have a similar structure to the set of listings which the

threshold value is going to be applied on. In the following I present different methods to this

end.

Simple methods for estimating threshold values

When we estimate a threshold value, we have to decide how large the proportion of false posit-

ives among all positives can be. If we only allow few or none false positives, then the threshold

value will normally be high. The consequence of this is that many of the listings pairs that are

actual copies, can be classified as not copies. On the other hand, if we allow many false pos-

itives, then the threshold value can become to low and we can get many false positives among

the classified copies. The consequence of this is extra work for the person(s) which manually

classifies the listing pairs.

A reasonable proportion of false positives can for instance be 5 %. We can use a set of 1000

listing pairs, where none of the listing pairs are copies, to estimate a threshold t. The similarity

scores for these pairs are then sorted in increasing order, as shown in equation 8.1. Then we set

t = s950, which is the lowest score of the 5 % highest similarity scores. By doing so, we get a

high threshold value that will ensure that the proportion of false positives will be reasonable.

s1, . . . , s950, . . . , s1000 (8.1)

Statistical methods for estimating threshold values

Hypothesis testing can be used for estimating a threshold value. When doing hypothesis testing

on our problem, we want to find out if a set of program listings P contains program listings that

are copies of each other. Program listings that are copies of each other can be called "associated".

For each listing pair (pi, pj) ∈ P × P we can then test the null hypothesis H0(i, j): Program

listing i and j are not associated. The alternative hypothesis for the same pair is H1(i, j):
Program listing i and j are associated.

99

Chapter 8

For a set of program listing P with size n = |P | the null hypotheses are

H0(1, 2) : Program listing 1 and 2 are not associated.

H0(1, 3) : Program listing 1 and 3 are not associated.

...

H0(n− 1, n) : Program listing n-1 and n are not associated.

This is a multiple hypotheses test since we test several hypothesis at the same time. For each

listing pair (pi, pj) ∈ P × P , where 1 ≤ i ≤ n − 1 and i < j ≤ n, we compare the similarity

score s of the listing pair with a threshold t. We then have four possible outcomes for each null

hypothesis test which are shown in Table 8.1.

H0(i, j) Comparing s and t Actual classification of (pi, pj)

true s < t True negative

true s ≥ t False positive (Type I error)

false s < t False negative (Type II error)

false s ≥ t True positive

Table 8.1: The four possible outcomes for a null hypothesis test.

By running the plagiarism detection program with a threshold t we get the results in Table 8.2.

In this table m is the number of null hypotheses tests, m0 is the number of true null hypotheses,

m1 is the number of false null hypotheses, U is the number of true negatives, V is the number

of false positives, T is the number of false negatives, and S is the number of true positives. U,

V, T and S are unobservable random variables, while R is an observable random variable. R is

observable since this is the number program pairs that the detection program classified as copies.

V and S become observable variables after we have manually inspected the R listing pairs.

non-significant significant Total

true null hypotheses U V m0

false null hypotheses T S m1 = m−m0

Total m−R R m

Table 8.2: Some random variables associated with the multiple hypotheses test.

After we have manually inspected the R listing pairs, we can calculate the proportion of false

positives (Type I errors) among all program pairs classified as copies, as shown below.

E

[

V

V + S

]

= E

[

V

R

]

(8.2)

We want to find a t such that E
[

V
R

]

< α, where α is the significance level for all the the null

hypothesis tests. The significance-level is the probability of making a Type I error. If E
[

V
R

]

> α,

then we reject the null hypothesis. We then need to try a new threshold t′, where t′ > t. Only

an increase of the threshold value can reduce the proportion E
[

V
R

]

.

100

Discussion

When we select the significance-level for the null hypotheses, we need to select a level with

a good compromise between the numbers of false positives (Type I errors) and false negatives

(Type II errors). The selection of a very small significance-level will give a higher threshold

value and the test will become more significant. The problem is that we then can get many false

negatives, and so have a test with less statistical power.

Two methods that can be used to select the significance level α are false discovery rate (FDR)

and familywise error rate (FWER). FDR is used to control the expected proportion of Type I

errors in a multiple hypothesis test. It is given by equation 8.2, and one wants to keep it below

the significance level α. If we set α equal to 0.05, we accept less than 5 % false positives among

all the listing pairs that were classified as copies. FWER is the probability of one or more Type

I errors in a multiple hypothesis test. If we set FWER equal to 0.05, then α can be calculated as

shown below.

1− (1− α)m = 0.05 (8.3)

(1− α)m = 0.95

α = 1− m

√
0.95

In this equation 0.05 is the probability of not making any Type I error in any of the m null hypo-

thesis tests. If m = 1000, then α is 0.0005. We can see that FWER is much more conservative

than FDR with respect to the proportion of Type I errors in a multiple hypothesis test. With

FWER we would normally estimate a higher threshold than when we estimate the threshold

with FDR, but this depends of course on the significance level that we use.

A FWER equal to 0.05 would result in a high significance for the test, but the test would have

less statistical power. In our case it would be better to use FDR with a significance-level of 0.05

or higher. Then we would get a good compromise between the significance and the statistical

power of the test. There are different methods that can be used for estimateing a threshold t for

a set of program listings P with FDR. One simple method that can be used is to select lower and

lower threshold values, until E
[

V
R

]

is as close to α as possible. For each new threshold t that

we select, we only need to manually classify the new listing pairs that were added to the set of

possible copies by t. If E
[

V
R

]

> α we would need to increase the threshold value.

101

102

Chapter 9

Conclusion and further work

In this thesis I set out to develop new similarity measures for Joly focused on quantifying the

structural similarity between ASTs of Java listings. In order to achieve this I have modified

the standard AST representation to ease the comparison between trees, assessed the impact of

common cheating strategies on ASTs, and implemented two new algorithms, ASTSIM-NW

and ASTSIM-LCS, with respect to the cheating strategies which potentially have the greatest

impact on the trees. I have documented that ASTSIM-NW and ASTSIM-LCS on small test

sets performed better than the current algorithm in Joly in terms of false positives and false

negatives. Even though more extensive testing needs to be done before any firm conclusion can

be drawn, the results so far are nevertheless quite promising. However, I have also documented

that the computing time demands of ASTSIM-NW and ASTSIM-LCS are unacceptable when

comparing a large number of program listings. One way to resolve this is to preprocess the

listing set with a faster algorithm first to remove listing pairs that cannot be copies of each

other, and then test the remaining pairs with ASTSIM-NW and ASTSIM-LCS. Such a faster

algorithm can, for instance, remove those listing pairs where there is some predefined difference

between the node counts of the ASTs. Another concern, which was given little attention during

the development of the new measures, is that my approach is dependent upon code that can

be parsed in order to build the ASTs. We often experience that students submit syntactically

incorrect code to Joly, and a simple solution to this problem is to make specific use of algorithms

that are insensitive to syntax errors in these cases.

Even though my suggested algorithms may not qualify to supplement the existing one in Joly

in the end, I have still succeeded in showing how abstract syntax trees, which is a concept from

the field of computer science, can be combined with statistical methods to quantify structural

similarity. I also succeeded in showing that it is possible to consider the ASTs as unordered

trees, when assessing the similarity between them. In Sager et al. (2006) similarity measures for

ordered trees were used, while I have shown that the Top-Down Unordered Maximum Common

Subtree Isomorphism algorithm can be used in combination with either the Needleman-Wunsch

or the Longest Common Subsequence algorithm for ASTs. The advantage of this approach is

that my measures are not so vulnerable against reordering of independent code as the measures

in Sager et al. (2006) are.

9.1 Further work

Both ASTSIM-NW and ASTSIM-LCS can get unordered matching of statements and local

variable declarations within constructor bodies. The grammar for the constructor body is a

bit different from the grammar of the method body, and this makes it harder to compare two

103

Chapter 9

constructor bodies than two method bodies. A suggestion here is to change the grammar for the

parser that generates the ASTs for my algorithms, so that the grammar for the constructor body

becomes more similar to the grammar of the method body. That would ease the comparison of

constructor bodies.

Both algorithms are quite demanding concerning computing time and the possibility of redu-

cing the tree size further without throwing out significant information should be investigated.

In software projects we try to minimize the amount of duplicated code. My algorithms could

perhaps, after some modifications, be used to search for code which is similar to the code that

the programmar is writting. In this way the programmar can be told that he is writting duplicated

code. The algorithms can also might be used to find differences between different versions of a

program. Then we can see how the program evolve.

104

Bibliography

[Butterfield,1991] F. Butterfield. Scandal over cheating at MIT stirs debate on limits on team-

work, The New York Times, May 22 1991

[Cormen et al.,2001] T. Cormen, C. Leiserson, R. Rivest and C. Stein. Introduction to Al-

gorithms, The MIT Press, 2nd edition, 2001

[Evensen,2007] M. Evensen. "Joly" fanger eksamensfuskerne, Aftenposten, June 17 2007

[Fawcett,2004] T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers,

March 16 2004

[Gitchell and Tran,1999] D. Gitchell and N. Tran. Sim: A utility for detecting similarity in com-

puter programs, 1999

[Kielland,2006] C. Kielland. Metoder for likhetsvurdering av innleverte obligatoriske oppgaver

i Java, Master thesis, University of Oslo, 2006

[Kohavi and Provost,1998] R. Kohavi and F. Provost. Glossary of terms, Machine Learning, 30

1998

[Louden,1997] K. Louden. Compiler Construction: Principles and Practice, Course Techno-

logy, 1997

[Mehlhorn and Näher,1999] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial

and Geometric Computing, Cambridge University Press, 1999

[Needleman and Wunsch,1970] S. Needleman and C. Wunsch. A general method applicable to

the search for similarities in the amino acid sequence of two proteins, Journal of Molecular

Biology, 48:3 1970

[Roberts,2002] E. Roberts. Strategies for promoting academic integrity in CS courses, 32nd

ASEE/IEEE Frontiers in Education Conference, November 6-9 2002

[Sager et al.,2006] T. Sager, A. Bernstein, M. Pinzger and C. Kiefer. Detecting Similar Java

Classes Using Tree Algorithms, 2006

[Steensen and Vibekk,2006] T. Steensen and H. Vibekk. DHIS and Joly: two distributed sys-

tems under development: design and technology, Master thesis, University of Oslo, 2006

[Stephens,2001] S. Stephens. Using metrics to detect plagiarism, March 2001

[Valiente,2002] G. Valiente. Algorithms on Trees and Graphs, Springer, 2002

[Verco and Wise,1996] K. Vecro and M. Wise. Plagiarism à la Mode: A Comparison of Auto-

mated Systems for Detecting Suspected Plagiarism, The Computer Journal, 39:9 1996

105

Appendix

[Whale,1990] G. Whale. Identification of program similarity in large populations, The Com-

puter Journal, 33:2 1990

106

Appendix A

Examples of different maximum common

subtrees

This appendix contains examples of the for different maximum common subtree isomorphisms.

All the examples are from Valiente (2002), and all the trees are unlabeled.

A.1 Top-down ordered maximum common subtree

(a) Ordered tree T1. (b) Ordered tree T2.

Figure A.1: An example of a top-down maximum common subtree of the two ordered trees T1

and T2. Nodes are numbered according to the order in which they are visited during a postorder

traversal. The common subtree of T1 and T2 is in gray in both trees.

107

Appendix A

A.2 Top-down unordered maximum common subtree

(a) Unordered tree T1. (b) Unordered tree T2.

Figure A.2: An example of a top-down maximum common subtree of the two unordered trees T1

and T2. Nodes are numbered according to the order in which they are visited during a postorder

traversal. The common subtree of T1 and T2 is in gray in both trees.

108

Examples of different maximum common subtrees

A.3 Bottom-up ordered maximum common subtree

(a) Ordered tree T1. (b) Ordered tree T2.

Figure A.3: An example of a bottom-up maximum common subtree of the two ordered trees T1

and T2. Nodes are numbered according to the order in which they are visited during a postorder

traversal. The common subtree of T1 and T2 is in gray in both trees.

109

Appendix A

A.4 Bottom-up unordered maximum common subtree

(a) Unordered tree T1. (b) Unordered tree T2.

Figure A.4: An example of a bottom-up maximum common subtree of the two unordered trees

T1 and T2. Nodes are numbered according to the order in which they are visited during a

postorder traversal. The common subtree of T1 and T2 is in gray in both trees.

110

Appendix B

Source code listings

This appendix contains source code listings of P0 and P10 from Section 7.4. All the program

listings (P0 and P3 − P10) from this section can be found at http://olavsli.at.ifi.uio.no/thesis.

B.1 The program listing P0

import easyIO . * ;

c l a s s Obl ig {

In t a s t = new In () ;

Out sk j e rm = new Out () ;

p u b l i c s t a t i c void main (S t r i n g [] a r g s) {

Obl ig o b l i g = new Obl ig () ;

o b l i g . meny () ;

}

void meny () {

i n t v a l g = 0 ;

wh i l e (v a l g != 6) {

sk j e rm . o u t l n (" ") ;

sk j e rm . o u t l n (" Velg e t t a l l : ") ;

sk j e rm . o u t l n (" ") ;

sk j e rm . o u t l n (" 1 : F a k u l t e t ") ;

sk j e rm . o u t l n (" 2 : Adder t i l o p p g i t t sum ") ;

sk j e rm . o u t l n (" 3 : Trekk e t k o r t ") ;

sk j e rm . o u t l n (" 4 : B l a c k J a c k ") ;

sk j e rm . o u t l n (" 5 :DNA ") ;

sk j e rm . o u t l n (" 6 : A v s l u t t ") ;

v a l g = t a s t . i n I n t () ;

swi tch (v a l g) {

case 1 :

f a k u l t e t () ;

break ;

case 2 :

a d d e r T i l O p p g i t t S u m () ;

break ;

case 3 :

t r e k k E t K o r t () ;

111

Appendix B

break ;

case 4 :

b l ackJAck () ;

break ;

case 5 :

dNA () ;

break ;

case 6 :

break ;

d e f a u l t :

sk j e rm . o u t l n ("Du h a r t a s t e t f e i l . P røv i g j e n ") ;

}

}

}

void f a k u l t e t () {

sk j e rm . o u t l n (" T a s t i n n e t h e l t a l l ") ;

i n t n = t a s t . i n I n t () ;

i n t f a k = 1 ;

f o r (i n t m = 1 ; m <= n ; m++) {

f a k *= m;

}

sk j e rm . o u t l n (n + " != " + f a k) ;

}

void a d d e r T i l O p p g i t t S u m () {

sk j e rm . o u t l n (" Oppgi e t h e l t a l l som m a k s i m a l v e r d i : ") ;

i n t n = t a s t . i n I n t () ;

i n t k ;

i n t sum = 0 ;

f o r (k = 1 ; sum <= n ; k ++) {

sum += k ;

}

sk j e rm . o u t l n ("Summen av 1 , 2 , 3 , . . . , " + (k − 1) + " e r " + sum + " ←֓

som e r s t ø r r e e l l e r l i k maksverd i en : " + n) ;

}

i n t t r e k k E t K o r t () {

S t r i n g [] k o r t f a r g e = { " H j e r t e r " , " R u t e r " , " Kløver " , " Spar " } ;

i n t t y p e = (i n t) (4 . 0 * Math . random ()) ;

sk j e rm . o u t (k o r t f a r g e [t y p e] + " ") ;

S t r i n g [] k o r t n r = { " 2 " , " 3 " , " 4 " , " 5 " , " 6 " , " 7 " , " 8 " , " 9 " , " 10 " , ←֓

" Knekt " , " Dronning " , " Konge " , "A" } ;

i n t t a l l = (i n t) (1 3 . 0 * Math . random ()) ;

sk j e rm . o u t l n (k o r t n r [t a l l]) ;

re tu rn t a l l ;

}

void blackJAck () {

i n t g = t r e k k E t K o r t () ;

i n t h = t r e k k E t K o r t () ;

i n t v e r d i 1 , v e r d i 2 , v e r d i 3 ;

i n t sum = 0 ;

112

Source code listings

i f (g == 9 | | g == 10 | | g == 11 | | g == 12) {

v e r d i 1 = 1 0 ;

}

e l s e {

v e r d i 1 = g + 2 ;

}

i n t poeng = v e r d i 1 ;

i f (h == 9 | | h == 10 | | h == 11 | | h == 12) {

v e r d i 2 = 1 0 ;

}

e l s e {

v e r d i 2 = h + 2 ;

}

i n t p = v e r d i 2 ;

i n t b = p + poeng ;

sk j e rm . o u t l n ("Summen av de t o f ø r s t e k o r t e n e e r " + b) ;

do {

sk j e rm . o u t l n (" V i l du t r e k k e enda e t k o r t ? ") ;

S t r i n g s v a r = t a s t . inWord () ;

i f (s v a r . e q u a l s (" j a ")) {

i n t o = t r e k k E t K o r t () ;

i f (o == 9 | | o == 10 | | o == 11 | | o == 12) {

v e r d i 3 = 1 0 ;

}

e l s e {

v e r d i 3 = o + 2 ;

}

i n t s = v e r d i 3 ;

sum = s + b ;

sk j e rm . o u t l n ("Summen av de k o r t e n e e r " + sum) ;

i f (sum > 21) {

sk j e rm . o u t l n ("Game over ! ! ! ! ! ! ! ! ! ! ") ;

}

}

e l s e {

sk j e rm . o u t l n (" Nå a v s l u t t e s s p i l l e t . Din sum v a r " + b) ;

break ;

}

} wh i l e (sum <= 21) ;

}

void dNA () {

sk j e rm . o u t l n (" T a s t i n n DNA s e k v e n s e n : ") ;

113

Appendix B

S t r i n g s e n s e S t r e n g = t a s t . i n L i n e () ;

char [] b a s e r = s e n s e S t r e n g . t o C h a r A r r a y () ;

f o r (i n t k = b a s e r . l e n g t h − 1 ; k >= 0 ; k−−) {

swi tch (b a s e r [k]) {

case ’A’ :

sk j e rm . o u t (’T ’) ;

break ;

case ’T ’ :

sk j e rm . o u t (’A’) ;

break ;

case ’G’ :

sk j e rm . o u t (’C ’) ;

break ;

case ’C ’ :

sk j e rm . o u t (’G’) ;

break ;

d e f a u l t :

sk j e rm . o u t l n (" V e n n l i g s t t a s t i n n kun b o k s t a v e n e A, T ,G ←֓

og C ") ;

}

}

}

}

Listing B.1: The program listing P0

114

Source code listings

B.2 The program listing P10

import easyIO . * ;

c l a s s Obl ig10 {

In t a s t = new In () ;

Out sk j e rm = new Out () ;

p u b l i c s t a t i c void main (S t r i n g [] a r g s) {

Obl ig10 o b l i g = new Obl ig10 () ;

o b l i g . meny () ;

}

void meny () {

i n t v a l g = 0 ;

sk j e rm . o u t l n (" Velkommen t i l programmet ") ;

wh i l e (v a l g != 6) {

sk j e rm . o u t l n (" ") ;

sk j e rm . o u t l n (" Velg e t t a l l : ") ;

sk j e rm . o u t l n (" ") ;

sk j e rm . o u t l n (" 1 : F a k u l t e t ") ;

sk j e rm . o u t l n (" 2 : Adder t i l o p p g i t t sum ") ;

sk j e rm . o u t l n (" 3 : Trekk e t k o r t ") ;

sk j e rm . o u t l n (" 4 : B l a c k J a c k ") ;

sk j e rm . o u t l n (" 5 :DNA ") ;

sk j e rm . o u t l n (" 6 : A v s l u t t ") ;

v a l g = t a s t . i n I n t () ;

i f (v a l g == 1) {

sk j e rm . o u t l n (" F a k u l t e t ") ;

i n t b ;

double f a k = 1 . 0 ;

sk j e rm . o u t l n (" T a s t i n n e t h e l t a l l ") ;

i n t n = t a s t . i n I n t () ;

i n t m = 1 ;

wh i l e (m <= n) {

f a k = f a k * m;

m++;

}

sk j e rm . o u t l n (n + " != " + f a k) ;

}

e l s e i f (v a l g == 2) {

sk j e rm . o u t l n (" Adder t i l o p p g i t t sum ") ;

a d d e r T i l O p p g i t t S u m () ;

}

e l s e i f (v a l g == 3) {

sk j e rm . o u t l n (" Trekk e t k o r t ") ;

t r e k k E t K o r t () ;

}

e l s e i f (v a l g == 4) {

sk j e rm . o u t l n (" Black Jack ") ;

b l ackJAck () ;

115

Appendix B

}

e l s e i f (v a l g == 5) {

sk j e rm . o u t l n ("DNA") ;

dNA () ;

}

e l s e i f (v a l g == 6) {

sk j e rm . o u t l n (" Programmet a v s l u t t e s ") ;

}

e l s e {

sk j e rm . o u t l n ("Du h a r t a s t e t f e i l . P røv i g j e n ") ;

}

}

}

void a d d e r T i l O p p g i t t S u m () {

i n t f ;

i n t k = 1 ;

sk j e rm . o u t l n (" Oppgi e t h e l t a l l som m a k s i m a l v e r d i : ") ;

i n t n = t a s t . i n I n t () ;

double sum = 0 . 0 ;

wh i l e (sum <= n) {

sum = sum + k ;

k ++;

}

sk j e rm . o u t l n ("Summen av 1 , 2 , 3 , . . . , " + (k − 1) + " e r " + sum + " ←֓

som e r s t ø r r e e l l e r l i k maksverd i en : " + n) ;

}

i n t t r e k k E t K o r t () {

S t r i n g [] k o r t n r = { " 2 " , " 3 " , " 4 " , " 5 " , " 6 " , " 7 " , " 8 " , " 9 " , " 10 " , ←֓

" Knekt " , " Dronning " , " Konge " , "A" } ;

S t r i n g [] k o r t f a r g e = { " H j e r t e r " , " R u t e r " , " Kløver " , " Spar " } ;

i n t t a l l = (i n t) (Math . random () * 1 3 . 0) ;

i n t t y p e = (i n t) (Math . random () * 4 . 0) ;

sk j e rm . o u t (k o r t f a r g e [t y p e] + " ") ;

sk j e rm . o u t l n (k o r t n r [t a l l]) ;

re tu rn t a l l ;

}

void blackJAck () {

i n t x ;

i n t v e r d i 1 , v e r d i 2 , v e r d i 3 ;

i n t g = t r e k k E t K o r t () ;

i n t h = t r e k k E t K o r t () ;

i f (g == 9 | | g == 10 | | g == 11 | | g == 12) {

v e r d i 1 = 1 0 ;

}

e l s e {

v e r d i 1 = 2 + g ;

116

Source code listings

}

i f (h == 9 | | h == 10 | | h == 11 | | h == 12) {

v e r d i 2 = 1 0 ;

}

e l s e {

v e r d i 2 = 2 + h ;

}

i n t b = v e r d i 1 + v e r d i 2 ;

double sum = 0 . 0 ;

sk j e rm . o u t l n ("Summen av de t o f ø r s t e k o r t e n e e r " + b) ;

do {

sk j e rm . o u t l n (" V i l du t r e k k e enda e t k o r t ? ") ;

S t r i n g s v a r = t a s t . inWord () ;

i f (s v a r . e q u a l s (" j a ")) {

i n t o = t r e k k E t K o r t () ;

i f (o == 9 | | o == 10 | | o == 11 | | o == 12) {

v e r d i 3 = 1 0 ;

}

e l s e {

v e r d i 3 = 2 + o ;

}

sum = v e r d i 3 + b ;

sk j e rm . o u t l n ("Summen av de k o r t e n e e r " + sum) ;

i f (sum > 21) {

sk j e rm . o u t l n ("Game over ! ! ! ! ! ! ! ! ! ! ") ;

}

}

e l s e {

sk j e rm . o u t l n (" Nå a v s l u t t e s s p i l l e t . Din sum v a r " + b) ;

break ;

}

} wh i l e (sum <= 21) ;

}

void dNA () {

sk j e rm . o u t l n (" T a s t i n n DNA s e k v e n s e n : ") ;

S t r i n g s e n s e S t r e n g = t a s t . i n L i n e () ;

char [] b a s e r = s e n s e S t r e n g . t o C h a r A r r a y () ;

i n t k = b a s e r . l e n g t h − 1 ;

wh i l e (k >= 0) {

swi tch (b a s e r [k]) {

case ’A’ :

sk j e rm . o u t (’T ’) ;

117

Appendix B

break ;

case ’T ’ :

sk j e rm . o u t (’A’) ;

break ;

case ’G’ :

sk j e rm . o u t (’C ’) ;

break ;

case ’C ’ :

sk j e rm . o u t (’G’) ;

break ;

d e f a u l t :

sk j e rm . o u t l n (" V e n n l i g s t t a s t i n n kun b o k s t a v e n e A, T ,G ←֓

og C ") ;

}

k−−;

}

}

}

Listing B.2: The program listing P10

118

