UNIVERSITY OF OSLO
Department of Informatics

Genetic Learning
Algorithms
combined with
novel Binary Hill
Climbing used for
Online
Walking-pattern
Generation in
legged Robots.

Master Thesis

I.ena Mariann
Garder

June 2006







Although Darwin was a clever man, he could not find out why only one ninth of his brain
was working properly.....



ii



Preface

This thesis is the result of a study for the Masters degree in Microelectronic Systems
at the Department of Informatics, in the program for Electronics and Computer
Technology at the University of Oslo. The thesis project was initiated in January,
2004 and concluded in June, 2006.

I am most grateful to my supervisor Mats Erling Hovin for his support, guid-
ance and discussions, and for letting me experiment with his exceptionally fine
robots. I would like to thank Dag Wisland and Jim Terresen for their patience and
fruitful discussions. I would specially like to thank Vidar Strenstad @Qveras for sup-
porting me, helping me and being able to cope with me through this period in my
life.

Big thanks to the employees at the MES-group for making a great environment
both socially and technically. Special thanks to Omid Mirmotahari, Karianne Qys-
ted, Lene Hempel, Kjetil Meisal, Claus Limbodal, all of the guys at the VLSI-lab
and the inhabitants of ‘Lekestue’. In addition I thank my friends outside of the
University for great social support.

I would like to thank my mother and father for raising me this way so I was
able to survive this educational ordeal, my siblings, Anne, Bjorn and Kjetil, and the
rest of my family for their loyal support in every way throughout my work. Last I
would like to thank God Almighty for taking care of me, my life would not be the
same without You.

Loena Mariann Sarder

June 2006

iii



iv



Abstract

% ccording to Darwin every species on this planet have developed from a small
group of simple molecules into all the modern species living among us today. The
reason why some species survive and others don’t is what Darwin called Natural
Selection, which means that every individual have to fight for its existence. Those
who are best fit will survive. This has brought life to the well known saying: "Sur-
vival of the Fittest". The best fit will have the best chance to reproduce, to pass
its well fitted, surviving qualities on to their offspring. And the offspring of two
well-equipped parents will have a high probability of adaptation, and so the circle
of life goes on...

(/‘7 set of evolutionary search methods have been extracted from the Darwinian
theories of evolution. These have been evolving in computer environments for
several decades and have been passing through different areas of computer science,
from theoretical tuning problems, algorithm developing, clustering, chip design,
and several real world applications have been the foci the last years.

g n this thesis Genetic Algorithms and Evolvable Hardware is used for evolving
gaits in a walking biped robot controller. The focus is fast learning in a real-time
environment. An incremental approach combining a genetic algorithm with hill
climbing is proposed. This combination interacts in an efficient way to generate
precise walking patterns in less than 15 generations. Our proposal is compared to
various versions of Genetic Algorithms and stochastic search, and finally tested on
a pneumatic biped walking robot.
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Chapter 1

Introduction

1.1 Introduction

To find a solution to a given problem, there may be several ways to search. You
are most likely to find one global optimum, being the best solution to your prob-
lem. There might however, exist several local optima, that are close enough and
thus saving you a lot of searching, cost and effort. If your local optimum saves the
purpose of being sufficient, it might substitute the global optimum.

The dimension or space, in which you are searching, can be of very different char-
acters. The space might be flat as a floor in an empty room, or chaotic like a jungle.
The different ways of searching will vary, depending on the landscape. When man-
euvering in a chaotic search space, there are several methods for finding optima.
An example of a chaotic search space may be learning how to walk. In this con-
text all possible ways of moving is the search space, this is described by Hornby
et. al. in their work with Aibo [1]. Another example of a chaotic search space
is to find a system to explain the origin and the dynamics of how sun storms ap-
pear and move. Tracking rules in different languages is another way to describe a
chaotic search space. Languages have often been cultivated through people’s ways
of expressing themselves through thousand of years, and serves as an example of
a chaotic system.

This thesis focuses on Genetic Algorithms (GA) inspired by natural selection. The
methods proposed in this master thesis can be applied to nearly any search space.
The requirements are to be able to control the input, and receive a feedback. The
feedback is a value that represents how well fitted the solution is to a given prob-
lem. For the GA approach to be profitable compared to other search algorithms the
search space need to be chaotic, without any obvious logic. Otherwise other meth-
ods are found more suitable, e.g. Hill climbing [2] and Neural Networks [3] [4].
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Figure 1.1: Henriette, the MES robot chicken, learning how to walk.

Developing effective gaits for bipedal robots is a difficult task which requires op-
timization of many parameters in a highly irregular, multidimensional space. In re-
cent years biologically inspired computation methods, and particularly GAs, have
been employed by several authors. For instance, Hornby and colleagues used GA
to generate robust gaits on the Aibo quadruped robot [1]. Several authors have per-
formed similar experiments, this is further described in Chapter 2. One of the main
objections to the application of GAs in the evolution of gait is the one concerning
the notable time-consuming characteristics of these techniques. In order to reduce
the time spent to evolve a proper robot gait, various experiments for speeding up
the GA have been executed.

To reduce the time spent several authors have separated different parts of their
problems/search spaces from one another or they have incrementally divided
the search space into subtasks. The incremental approach is further presented in
Chapter 5. For an exhaustive description of several incremental approaches, read-
ers may refer to the article written by Cantu Paz [5].
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Figure 1.2: The Asimo, from Honda, are pre-programmed to perform certain tasks when
being introduced to it.

1.2 Main Motivation of the Thesis

Robotic gaits can also be pro-programmed by a human. The humanoid ro-
bot Asimo is a successful example of a robot equipped with a database of pre-
programmed gaits. Although Asimo is able to run, climb stairs and otherwise is
very impressive it is far from comparable to natural beings with respect to eleg-
ance, efficiency, ability to adapt to environmental changes and robustness. On the
contrary there is no pre-programming in evolution. The main motivation for this
thesis is therefore to investigate if evolution can be used to develop gaits in an arti-
ficial being like the robot chicken "Henriette", illustrated in Figure 1.1, in real time.

The scientific background is based on the theory that most things, at least everything
alive, has evolved by evolution [6]. The dinosaurs came and were annihilated prob-
ably because they lacked the ability to adjust properly to the environment. The
modern humans adjusted through generations. They have grown taller and they
live longer.

Another example is species of fish that live in the deep subterranean lakes without
ever experiencing day light. There are even scientists that claim to have found
signs of bacterial life on the moon called Europe, which circles around Jupiter. This
moon has a lot of volcanic activity and is therefore highly toxic. The examples of
plants, humans and animals adjusting to the environment and the everyday life are
several and diverse.
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Figure 1.3: Intelligent design of higher powers or Darwinian evolution.

The thesis is not meant to challenge neither religions nor natural science, but does
not disregard the possibility that natural evolution is being "controlled" by a cre-
ating higher power. William Dembski [7] argues that nature has been intelligently
designed and can not be explained solely by Darwinian evolution.

Many scientists and pioneers have concluded that the "survival of the fittest" is
the basis of evolution. This theory was primarily proposed by Darwin [6]. When
modern scientists apply this knowledge in form of computer languages, (i.e. evol-
utionary algorithms), they are surprised to find that their systems do not function
properly. Drawing a parallel to modern evolutionary research it seems impossible
to match the results given by the natural processes by simulations in a computer. So
the question is what role does this creating higher power play in the evolutionary
process?

This thesis sets out to solve the evolutionary challenge by optimizing algorithms,
for this Genetic Evolutionary influenced chicken robot called Henriette. Illustrated
in Figure 1.1
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1.3 Important Headlights

The majority of scientists working within this field only experiment in software
because of the great difficulties often connected to hardware evolution. But simu-
lations do not necessarily correlate with the real world as we will see later in this
thesis. A crucial requirement for real-time evolution is that it has to be fast as most
mechanical robot parts will not last for millions of generations. The focus in this
thesis has therefore been to optimize GA to enable fast real-time evolution and the
tool has been incremental techniques with as little a priory knowledge as possible.

The work described in this thesis is divided in two parts - the first work is done
on a search space formed by representing the gait chromosome with 4 bits pause
lengths. The other work is done on a search space formed by a 6 bits pause rep-
resentation (see paper in Appendix A). These two search spaces are different and
therefore the results differ slightly.

* Stochastic Search has been tested on the robot as a comparative reference.

¢ Simple GA has been tested, performing considerably better than the stochastic
approach.

* Modified GA has been tested improving the performance.

* A novel tree-structure incremental GA has been proposed and tested improv-
ing the performance further.

* A novel incremental GA algorithm named GABH has been proposed and
tested providing the best results in this work.

1.4 Outline

¢ Chapter 1 gives a light introduction to the thesis and its content, it also
presents the phenomenon search space.

¢ Chapter 2 contains background material, the scientific work that underlies
this thesis, and other robots of current interest.

¢ Chapter 3 introduces the MES robots and a description of their construction.
There is also information about the simulator used in the work that underlies
this thesis.

* Chapter 4 describes the Genetic Algorithms, theirs history and functionalit-
ies. It also describes and illustrates the results of a stochastic search in the
search space of evolving gaits of the MES robots. The chapter further gives a
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thorough description of the genetic operators and demonstrates a first search
with GA applied on the biped MES robot. Then modified GA search are
presented and different selection models are described and tested. The large
differences in fitness score when varying the pause lengths within the chro-
mosomes are also discussed.

* Chapter 5 contains a description of different incremental approaches per-
formed by other researchers. This chapter describes several ideas tested to
speed up the evolution of gaits on the MES robot. The results obtained by
these methods are also presented. This chapter further contains the novel
GABH algorithm applied on the MES biped robot.

¢ Chapter 6 shows measurements of robotic gaits and other results.

¢ Chapter 7 presents a conclusion, gives a brief overview of tested ideas, and
gives a proposal for further work.




Chapter 2

Previous Work

This chapter includes the scientific background material that underlies the work
done in this thesis. The emphasis is walking machines, and real world applications
evolved by the use of learning algorithms.

2.1 Gait Development in Walking Machines

When the work in this thesis is described, the responses are often questions about
similarities compared to AIBO. The funny SONY robot dog is an electronic pet,
illustrated in figure 2.1, that most people know. The AIBO is pre-programmed
to behave like a dog, with a lot of a priori knowledge included into the program
controlling it. The AIBO even contain some of machine learning performing in
cycles.

Figure 2.1: The SONY robotic pet called Aibo.
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Figure 2.2: The MIT quadruped robot.

The gaits of the AIBO robot was evolved by Hornby et al. [1], they were evolved
by Evolutionary Algorithms. The feedback was given by the cameras inside the
eyes, measuring distances and giving feedback. In recent years, biologically in-
spired computation methods have been employed to find walking patterns by sev-
eral authors. Ullerstam and Mizukawa [8] present a reprogrammable Aibo, which
learns both the goals, sub goals and the means to achieve them during real-time
interaction with humans. They conclude that complex behavior patterns can be
learnt by a system based on Reinforcement Learning (RL) [9]. RL is an evolution-
ary method inspired by animal learning. The work done with the hexapod robot
named Kafka [10] is worth mentioning. This robot evolves gaits by the use of Q-
learning [11], which is applied directly on the robot hardware. Q-learning is a form
of RL. RL was also tested online on the Micro Electronics System Group (MES) robot
Henriette, but the results were not advantageous because of the practical challenges
mentioned in Chapter 3.

Gait evolution on hexapod robot by the use of neural network is presented by
Lewis, Fagg and Bekey [12]. They use GA to control the neural network, and con-
clude that it is impractical to apply GA in a strait forward manner to the design of
a neural network to control a robot. But the approach introduced by Lewis et. al
called "island of converges", makes the use of GAs practical by applying GAs to
real robots.

The Massachusetts Institute of Technology (MIT) have earlier been one of the lead-
ing within robotics combined with learning algorithms [13]. The Leg-lab was foun-
ded in 1980 by Marc Raibert. One of the MIT Leg-Lab robots is pictured in figure

8
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Figure 2.3: The most advanced quadruped robot on earth, "Big Dog” from Boston Dynam-
ics.

2.2. When Raibert quit from MIT Leg-Lab in 1995 he co-founded Boston Dynam-
ics [14] which now has, according to themselves, the most advanced quadruped
robot on earth, called Big Dog, see figure 2.3.

GA applied to bipedal locomotion was also proposed by Arakawa and Fukuda [15]
who made a GA based on energy optimization in order to generate a natural,
human-like bipedal gait. Energy optimization is just one of the techniques tested
to reduce the time spent searching in large search spaces with evolutionary meth-
ods like GA. One of the main objections to applying GAs in the search for gaits
is the time-consuming characteristic of these techniques due to the large fitness
search space that is normally present. For this reason most approaches have been
based on offline and simulator based searches. Various techniques for speeding
up the algorithm will be presented as follows. The increased complexity evolution
scheme, introduced by Terresen [16] has shown how to increase the search speed
by using a Divide and Conquer approach, by dividing the problem into subtasks in a
character recognition system. Haddow and Tufte have also done experiments with
reducing the genotype representation [17]. Kalganova [18] has shown how to in-
crease the search speed by evolving incrementally and bidirectional to achieve an
overall complex behavior both for the complex system to the sub-system and from
sub-system to the complex system. As earlier mentioned Cantu-Paz [5] further de-
scribes other approaches.
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Figure 2.4: Robot following a red ball (arranged picture).

2.2 Real World Applications

Evolutionary algorithms have often been proposed as a method for designing sys-
tems for real world applications. Higutchi et al. [19] set a standard to the termin-
ology within this field, and also mention several applications. Some of the real
world applications are pattern recognition with GA in a prosthetic hand controller
that makes it possible to train the hand prosthesis faster and therefore the user ad-
apts faster to the prosthetic hand. They also present an adaptive robot controller,
where a robot follows a red ball and avoid obstacles, illustrated in figure 2.4. GA
controls the robot through sensory input. The results are 2 times faster in motion
changes than earlier robotic controllers. Higutchi et al. also evolves different chips
for cellular phones and describes decompression of an electro photographic printer.

The ball-chasing robot is thoroughly described by Higutchi [19]. Additional read-
ing is presented by Higutchi and Yao [20]. Jim Terresen [21] describes an Evolu-
tionary approach to the control of a Prosthetic Hand, illustrated in Figure 2.5.

2.3 Learning Algorithms in Digital and Analog Circuits

The principles of evolutionary design are also used for designing digital circuits.
Miller, Job and Vassilev [22] are pioneers in their work to explore new and better
digital combinational circuits. Their main goal was to detect principles in smaller
circuits that can be re-used for designing larger circuits in a more efficient way than
conventional design methods. The evolutionary method used in their work is an
Evolutionary Strategie (ES) called (1+A) ES [23]. The ES will be further presented
later in this thesis. Miller et. al concluded that the best result was obtained with
limited inputs. The number of input in their 3 bit multiplier required 3 million gen-
erations. Even so the results obtained were uplifting as their evolutionary design

10
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Figure 2.5: Arm prosthesis (arranged picture).

used less logic gates than the conventional circuits. They found it hard to extract
principles of the evolved circuits. An arranged picture of a Xilinx-chip where evol-
ution can be applied is illustrated in Figure 2.6

Koza, Bennet, Andre and Keane [24] have tried out the art of Genetic Program-
ming (GP) [25] for automatic design of analog electrical circuits. The evolutionary
method consists of three structures, where genetic operators like mutation, cros-
sover, reproduction and fitness measure are applied. Their results where some
years ago path-breaking, they rediscovered a conventional design for low pass fil-
ters. The solutions found by the GP, are of high standard that usually requires high
human intelligence.

Figure 2.6: Xilinx chip where evolutional methods can be applied.

11



2.4. ROBOTIC REMEDIES

Figure 2.7: Left picture, Waseda University in Tokyo, Japan, have made a walking robot-
chair, applicable where wheelchairs don’t reach. Right picture shows Toyota’s “I-foot”, con-
trolled by a joystick inside.

2.4 Robotic Remedies

There is a great research focus on developing remedies for handicapped people,
this is not a part of this thesis. The photos in Figure 2.7 show that in a few years the
wheelchairs may be obsolete. The latest news until summer 2005 where displayed
to the public at the 2005 World Expo in Aichi, Japan.

12
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Figure 2.8: Strap-on robotic pants, intended to help soldiers or fire fighters carry heavy
loads for long distances.

The photos in Figure 2.8 show robotic help-legs called "BLEEX". This stands for
"The Berkeley Lower Extremities Exoskeleton". It is a pair of strap-on robotic legs
designed to turn an ordinary human into a super strider. Ultimately intended to
help people like soldiers or fire fighters carry heavy loads for long distances, these
boots are made for marching.

"The design of this exoskeleton really benefits from human intellect and the
strength of the machine," says Homayoon Kazerooni, who directs the Robotics and
Human Engineering Laboratory at the University of California-Berkeley.

13
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Chapter 3

The MES Robot, Hardware &
Software

The Microelectronic Systems Group (MES) robotic laboratory [26] consists of many
different types of robots and walking machines. All the robots are handmade by
Mats Hovin. The experiments have mainly been focused on a one-legged pneu-
matic construction called Mono (illustrated in Figure 3.1) and a two-legged pneu-
matic chicken robot called Henriette (illustrated in Figure 3.1). The four-legged ro-
botic dog called Turbo (illustrated in Figure 3.2) and the robot-raptor called Jern-
/rna (illustrated in Figure 3.2) have only been preliminary tested. This chapter
describes the facts concerning the construction of Henriette and the hardware in-
formation. The simulator is also described.

Henriette Mono

Figure 3.1: The MES robots

15
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Turbo (side/front) Jern-Arna

AN

Figure 3.2: The MES robots.

3.1 Hardware: The Robots

The following description fits the robot called Henriette, a robotic chicken that is
the object of most of the advanced experiments. The robot skeleton is made of light
weight aluminum and is provided with two identical legs. The height is 40 cm.
Each leg consist of an upper part (i.e. the thigh) connected through a cylindrical
joint to the lower part (i.e. the calf). Pneumatic cylinders are attached to the thigh
and the calf used for controlling the movements of the calf and the thigh separately.

As shown in Figure 3.3 the rear cylinder in each foot actuates the calf whereas the
front cylinder actuates the thigh. The cylinders can either be fully compressed or
fully extended, thus a binary operation. The pneumatic valves are located on top
of the robot. The valves are electrically controlled by 4 power switches connec-
ted to a PC I/O card illustrated in Figure 3.4 element no. 3 (National Instruments
DAQ-pad) and the different search algorithms are implemented in the program-
ming language C. The pneumatic air pressure was set to 8 bar and provided by a
stationary compressor. The robot was attached to a balancing rod at the top (Fig-
ure 3.3 right picture, and Figure 3.4 element no. 1) making the robot able to move

16



3.2. SOFTWARE: THE SIMULATOR

Figure 3.3: An illustration to the left and a photo of the robot to the right. Proper walking
direction is left to right (bird construction).

in two dimensions. The other end of the rod is attached to a rotating clamp on a
hub, illustrated in Figure 3.4 element no. 2. The robot walks around the hub with a
radius of 2 meter, pictured in Figure 3.6

In addition to being a balancing aid, the rod supplies the robot with air pressure
and control signals from the DAQ-pad. The hub has a built in optical sensor repres-
enting the rod angle in 13 bit gray code [27]. This is the feedback to the GA running
on the computer. This optical angle measurer can be reset at any time, the GA is
therefore provided with an exact measure of every movement, illustrated in Figure
3.5.

3.2 Software: The Simulator

A simple mechanical chicken-robot simulator has been implemented in the model-
ling language is C++. The simulator models the robot with exact physical dimen-
sions and a weight of 3kg. The centre of gravity is located at the hip joint. It is
found very difficult to model the feet-to-floor friction force exactly as this force is
heavily modulated by large vibrations in the robot body and supporting rod dur-
ing walking /jumping. The feet-to-floor friction force is a very important factor for
developing efficient jumping patterns, and the lack of an exact model for this effect
is assumed to be the main weakness of the simulator. The source code for the sim-
ulator is included in the appendix. To indicate the vibrations in the balance rod, 5%

17
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Figure 3.4: The fitness measurement and balancing rod system, top view. The system
consist of three elements, element 1 being the robot, element 2 being the balancing rod,
element 3 the computer attached to the DAQ-pad.

Figure 3.5: Inside the hub. The black box is the 13bit optical/laser angle sensor. The other
parts are control signal transmission and air (8bar) transmission.

noise was added to the fitness landscape while running simulations. There are real
time deviations in the computer running the XP operating system. The variations
are measured to be up to +/- 15 ms.

18
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Figure 3.6: The Robot, the balance rod and the hub.

3.3 The Line of Action

The first approach was to exclusively run GA on the robot hardware, where evol-
ution could perform without simulating the results in advance. The majority of
experiments with GA are only tested in simulations. This master thesis was sup-
posed to be the exact opposite. Three quarters of a year, diluted by additional mas-
ter classes, were spent only testing the GAs on the robot called Mono, illustrated in
Figure 3.1.

When evolving gaits on the robot, a lot of challenges arose. These challenges are
thoroughly described in chapter 6. The tear and wear on the robot forced a sim-
ulator approach to the robot. By first simulating a lot of time was saved. Various
simulations were undertaken to find the appropriate GA parameters. The ones that
seemed to give the best results were selected and fixed for the robot experiments.

19
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Chapter 4

Genetic Algorithms

4.1 History of Genetic Algorithms

Genetic Algorithms (GA) [28] originated from the studies of cellular automata, con-
ducted by John Holland at the University of Michigan. Holland’s book [29], pub-
lished in 1975, is generally acknowledged as the beginning of the research of GAs.
Until the early 1980s, the research in GAs was mainly theoretical [30], with few real
world applications. This period is marked by ample work with fixed length binary
representation in function optimization by, among others, De Jong and Hollstien.
Hollstien’s work provides a careful and detailed analysis of the effect that different
selection and reproduction strategies have on the performance of a GA. De Jong’s
work focused on the adaptive features in the family of GA’s that constitute a robust
search procedure.

From the early 1980s the community of GAs has experienced plenty of applications
spread across a large range of disciplines [19]. Each and every additional applic-
ation has given a new perspective to the theory. Furthermore, in the process of
improving performance, new and important findings regarding the generality, ro-
bustness and applicability of GAs became available. Following the last couple of
years of intense development of GAs in the science, engineering and the business
world, these algorithms in various shapes and forms have now been successfully
applied to several problems. E.g. optimization problems scheduling, data fitting
and clustering, trend spotting and path finding [31]. NASA have further applied
GA in the design of an electromagnetic antenna [32]. Parts of the engine of the
airplane Boeing 777 is also designed by the use of GAs [33].

21
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Figure 4.1: An evolutionary System.

4.2 Genetic Algorithms

The GA is a set of evolutionary algorithms that use principles of Darwin’s theory
of evolution [6]. It is not validated whether Darwin’s principle alone is sufficient
for successful evolution, but the GA is known to be useful for solving problems
without deterministic algorithms. Since there are not algorithms known that de-
terministically develop robot gaits, GAs with some variations are chosen to im-
prove the performance. In the GA simple approach, described by Goldberg [28]
and by Torresen [34], the idea is to represent a solution by a bit string, which is
randomly initiated. The chromosome is also called an individual. There are several
chromosomes in a population. The entire population is tested in the search space
and the feedback (i.e. fitness) is retrieved. Then the genetic operators crossover,
Figure 4.8, mutation, Figure 4.9, and reproduction (i.e. selection) are performed on
the population and a new generation is tested toward the same problem. The op-
erators and the representation are thoroughly described in the following sections.

A schematic illustration of an evolutionary system is shown in Figure 4.1. The
population is situated on top of the figure, as it is randomly initiated. These chro-
mosomes can also be seen as solutions that are tested towards a problem, this is
what happens in the box in the middle of the figure. In the box to the right the fit-
ness is evaluated, all the chromosomes are given a value that indicates how well the
solution rated towards the given problem. The lower box represents the selection
of parent-chromosomes to the next generation. In the next sections the different se-
lection methods are described. The last events are the genetic operators crossover
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Figure 4.2: Gait representation in a chromosome / bit-string.

and mutation, seen in the box to the left. The crossover operator is the actual repro-
duction, like in nature the parent chromosomes are mixed together forming new
chromosomes. The mutation is to add variation. The population has now passed
through an entire generation, and again it is time to evaluate how well the new
population is solving the problem, in the center box in Figure 4.1.

Summing Up the GA Procedure
1. Represent solutions by bit strings /chromosomes.
2. Initiate a population of solutions/chromosomes.

3. Test every chromosome and give a score of how well fitted the solution is/a
fitness score.

4. Select desired amount of chromosomes, copy them into a new population.
5. Perform the genetic operators: mutation and crossover.

6. Go back to number 3.

4.3 Chromosome Coding of the MES Robotic Chicken

In our experiments each gait is coded by a 24 bit chromosome. The chromosome
represents three body positions, each followed by a time delay (i.e. pause) of vari-
able length. A body position is composed by the positions of the 2 legs (4 cylinders)
and represented by four bits each, describing the status of the corresponding cyl-
inder (compressed or extracted), as illustrated in Figure 4.2 and Figure 4.3. A com-
plete gait is then created by executing 3 body positions with 3 appropriate pauses
in between, illustrated in Figure 4.4. Each pause length is represented by 4 bits. The
pause length is represented as a binary code corresponding to pauses from 50 ms to
300 ms. Two cylinders can move a single leg to 4 different positions, see Figure 4.3.
Two legs with four cylinders can hold 16 different positions, and three following
positions with 4 bits of pauses in between, make a search space of 24 bits, giving
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o

Figure 4.3: Different positions for one leg of the MES robotic chicken.

16'777'216 different walking patterns (i.e. gaits), see equation 4.1. Various simula-
tions have shown no GA search speed improvement by representing the pauses in
gray code.

224t — 16777216 4.1)

4.4 Pauses

A gait is composed of leg positions and pauses. In our robot evolution we have
found that the most efficient gaits with respect to forward speed are gaits domin-
ated by jumping movements. In a jumping movement the pause length between
each leg kick is outmost critical as the robot may stumble if the timing of the leg
kick is just slightly wrong. Simulations show that a pause length deviation in the
magnitude of 10 ms can make the difference between a relatively useless and a
highly effective gait. It is however a trade off between the desire to represent the
pause lengths with a high number of bits and the exponential decrease in search
speed for each extra bit used due to the increased size of the search space. The
number of pause bits representing the pauses in this thesis is 4. In the paper found
in Appendix A, however, the number of bits representing the pauses is 6.

A plot of the chaotic fitness landscape is found in Figure 4.5, left plot, where the
fitness is proportional to the speed of the robot. In this plot the different chromo-
somes are plotted after one another in a queue with their fitness value represented
in the y-axis, making an irregular surface. The positions are variable, but the pause
lengths are set fixed lasting 181 ms. The chromosomes are sorted by their gray
value to keep bit changes as few as possible, but even so the landscape is chaotic
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4.5. STOCHASTIC SEARCH

with many narrow peaks. The illustration is an example of the search space refer-
enced from the paper, Appendix A.

In Figure 4.5 right plot, the search space of the pauses is plotted in three dimensions.
Two of the dimensions are represented by the two first pauses, the third pause is
fixed at 70 ms, and the third dimension is the fitness value found by simulating the
entire pause landscape. The cylinder positions are kept constant. The pause-search
space is an example referenced from the paper, Appendix A.

4.5 Stochastic Search

Stochastic search can be seen as a totally random selection, like the selection of
numbers in a lottery. A stochastic search is a search method most would choose

Cylinder bits Pause bits  Cylinder bits  Pause bits  Cylinder bits ~ Pause bits
(A A A A

o+ [T JofoJofr ot ]r1JofJojol ] rfrjoJojoft1 [T ][1]T1 |
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e

Figure 4.4: Chromosome coding.
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Figure 4.5: The left plot illustrates the fitness search space for variable positions (fixed
pauses at 181 ms) plotted after each other in a queue. The right plot shows fitness search
space for variable pauses with constant positions.
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when being confronted with an illogical problem. It is a random selection of chro-
mosomes (i.e. solutions) from all the possible chromosomes, measuring 16'777°216,
see equation 4.1, if the pauses between the positions in an individual are variable.
If they are constant there are 4096 different individuals, see equation 4.2

2126t — 4096 4.2)

The stochastically chosen chromosomes are tested towards the problem. If the
tested chromosome scores higher than the prior ones, the chromosome is pre-
served. If the fitness score is lower than the prior preserved chromosomes, it is
rejected. Stochastic search is testing random solutions until you are satisfied with
the obtained solution.

4.6 Stochastic Search on the MES Robot

The stochastic search method is tested on the biped MES robot, Henriette. The res-
ults of the search are shown in Figure 4.6. The x-axis of the plot shows the time
course denoted in generations. The y-axis shows how well the solution scored de-
noted in fitness scores. The fitness score is measured in speed = angle/time
angle_of_velocity. The angle of velocity is called fitness score.

Stochastic search with reuse of chromosomes

Stochastic search without reuse of chromosomes
4500 T T T T T T T

Fitness score
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—
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Figure 4.6: Left plot shows Stochastic Search without reuse of chromosomes. The right
plot shows Stochastic Search with reuse of chromosomes, shown in dotted lines. The y-
axis represents the fitness score, the x-axis represents the development of generations. Each
population contains 10 chromosomes.

Figure 4.6 shows a plot of the results when stochastic search method was intro-
duced to the problem of finding robotic gaits. The figure shows the max fitness in
blue lines, and the mean fitness in red lines. The highest fitness score in the first
generation measured a fitness score of 754. The mean of all the solutions presented
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in that generation, both rejected and preserved, was at a score of 443. In the last
generation, generation number 50, the best fitness measure is 2015 and the mean
measure at this point is 967. These measures show that in 49 generations the popu-
lation was able to increase the fitness measure by 63 %.

The dotted lines and the solid lines are quite similar to each other. Because of the
large amount of chromosomes, there are 16'777'216 as illustrated in equation 4.1,
while each of the lines in the plot only test 50°000. There is only a small possibility
that there will be reuse of chromosomes. The plots show no significant difference
of the two conditions, the reuse and the non-reuse, of chromosomes.

All the plots in this thesis include a max and a mean measure of the same runs.
These mean and max graphs will for the future have the same color on the lines rep-
resenting the same criteria for the search. They are, however, randomly initiated, so
every chromosome will be different from one another in the first generation. One
line does not represent one run of search, one line represent an arithmetic mean of
100 runs of search. This is done because there are large individual variations from
one run to another. All the mean and the max values are represented by 5 lines
each. There are 5 lines of each 100 runs to ensure accuracy in the plot since there
might be a lot of disturbing factors while measuring fitness. This means that all the
runs have 5 lines representing 500 runs of GA with the same criteria.

4.7 Genetic Operators

A proper presentation of the Genetic Algorithm-operators is necessary to under-
stand the parameter tuning and the depth of the thesis. There are three main op-
erators according to Goldberg [35], Crossover (Figure 4.8), Mutation (Figure 4.9)
and Reproduction (i.e. Selection). But before representing the operators, it is im-
portant to illustrate how a population is initiated. As described earlier, a popula-
tion of chromosomes or individuals is represented by a bit string. The population
contains 10 chromosomes. This number is constant through the entire evaluation.
Many algorithms operate with pre-programmed chromosomes, this is called "a pri-
ori", giving the chromosomes high score values according to prior knowledge. In
this thesis all the populations are initiated randomly, they are given the same prob-
ability, without any form of knowledge or instinct. The population is then tested
towards the problem, in the first generation the score is generally quite low, given
the random initiation. The feedback is called fithess measure, or fitness score. After
measuring fitness, the selection schemes are to be applied.

4.7.1 Selection

The next step in the evolutionary model is the selection operator. Before going
on to the crossover operator and the mutation operator it is time to select which
chromosomes are good enough to proceed into the next generation. There are many
selection models, in the following section those of current interest are presented.
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Roulette wheel

13.8%
0.83%

40.27%

Figure 4.7: Example of a roulette wheel, 4 chromosomes each have parts of the wheel ac-
cording to fitness measure.

Roulette Wheel Selection

All the chromosomes are represented in a roulette wheel [35], illustrated in Figure
4.7. All of the chromosomes are given shares of the wheel according to their fit-
ness score. A chromosome with a score of 3000 will have 3 times as wide a share
of the wheel compared to a chromosome with a score of 1000. The wheel spins as
many times as there are chromosomes in the new population. The chromosomes
with high score, and thus a wide share of the roulette wheel, have a higher prob-
ability to be selected into the next generation than a chromosome with a low score
and a narrow share of the wheel. Still there is a possibility to be chosen for the
chromosomes with low score, this ensures the diversity within the population.

If a population gets stuck in a local optima unable to search widely, diversity is
needed. This could happen if a chromosome of extremely high fitness compared
to the other chromosomes, is the only chromosome being reselected into the next
generation. With diversity, one may find better local optima and maybe the global
optima when applying the other operators. If the need for diversity in the pop-
ulation increases there is a possibility to scale the population so that the highest
scoring chromosome does not get as big a share of the wheel respectively to the
ones with lower fitness score.

Fitness-based Rank Procedure

The ranking procedure [36] is often used for assurance of diversity. After fitness
evaluation, the entire population is ranked according to the fitness. The chromo-
somes are given a new fitness score from 1 to 10 according to its rank. The large
differences in fitness value thus disappear. After ranking, a selection model needs
to be applied for the selection process (e.g. roulette wheel selection). For further
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4.7. GENETIC OPERATORS

explanation see pseudo code in the following sections.

Evolutionary Strategie

After using the rank procedure, this method makes sure a certain percentage of the
best chromosome are copied up, and selected to proceed to the next generation. A
lower percentage of the second best chromosome is allowed to proceed, and so on.
In this particular thesis the distribution of percentages that are allowed to proceed
is 40 % of the best chromosome, 30% of the next best chromosome, 20% of the third
best chromosome and 10% of the fourth best chromosome. For further explanation
see pseudo code in the following sections. After selection the crossover and muta-
tion operator are applied to the new population of chromosomes.

Tournament Selection

In this particular selection [36] two random chromosomes are selected to tourna-
ment against each other. The chromosome with the highest fitness score wins the
tournament and is selected to proceed to the next generation. This procedure is re-
peated until there are enough chromosomes in the next generation. After selection
crossover and mutation are performed. This selection method ensures the diversity
in a population.

4.7.2 Elitism/Clone

Elitism (i.e. clone) [37] is important to keep the max fitness score from decreas-
ing. The chromosomes (one or more) with the highest fitness score are directly
transferred to the next generation. They are not being transformed with any of the
operators. They are kept intact and directly transferred to the next generation.

4.7.3 Crossover

The crossover operator, illustrated in Figure 4.8 takes two chromosomes and splits
them into two or more parts. The operator is meant to combine the good qualit-
ies of the two parent-chromosomes, making two children-chromosomes, both of
them different from the initial ones. Where and how many times the chromo-
somes are split and combined varies. In this thesis the number of chromosomes
to cross also varies. But double-point crossover is used for the chromosomes that
are to be crossed, meaning two crossing points in the chromosomes make three
parts. The point of crossing within the chromosome strings is random, but every
chromosome is to cross with the one below. There is also a phenomenon called
knowledge-based crossover, which is optimized for the particular coding depend-
ing on the chromosome coding and its meaning. E.g. crossing between the different
genes/movements in a chromosome, and not in the middle of a gene/movement,
not destroying any of the genes, genes are illustrated in Figure 4.2. Knowledge-
based crossover is not used in this thesis. The pseudo code for the crossover oper-
ator is shown in the following section.
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Figure 4.8: The crossover operator.

Pseudo code for the Crossover Operator

1. Check whether to perform crossover.

AR R

If YES: proceed, if NO: stop.

Pick a random chromosome.

Pick two random crossing point-numbers.

the places of the random crossing point-numbers.

6. Return the chromosomes to the population.

4.7.4 Mutation

Perform crossover on the chosen chromosome and the next chromosome in

The mutation operator takes a chromosome string, finds one or more of the bits
in this string and changes the value. Because we have binary coded chromosome
strings containing only ‘0’s and "1’s it is easy to just change the selected "0’ to a "1,
or the selected "1’ to a ‘0’ to give the bit the opposite meaning. See Figure 4.9 for
illustration. The pseudo code for the mutation operator is shown in the following

section.
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Pseudo code for the Mutation Operator
1. Check whether to mutate.

If YES: proceed if NO: stop.

Pick a random chromosome.

Pick a random bit within the chosen chromosome.

AR S A

Change the value of the chosen bit within the chosen chromosome to the op-
posite value.

Cylinder bits Pause bits  Cylinder bits Pause bits  Cylinder bits  Pause bits

|o|o|o|o|0\0|o|0|o\o|o|o|0|0|0\o|0\0|0|o|0|0|0|0|

Old chromosome

Cylinder bits Pause bits  Cylinder bits Pause bits  Cylinder bits  Pause bits
rM rM

|o|0|0|o|o\1|o|0|o\o|o|o|o|0|o\o|o\o|1|0|0|0|0|0|

New chromosome

Mutations

Figure 4.9: The mutation operator.
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As earlier mentioned all the plots in this thesis consist of 5 graphs, each of them
presents an arithmetic mean of the results for each 100 runs. There are 5 of each
curve to show the divergence. All chromosomes are also repeated 3 times before
fitness evaluation to decrease influence from previous chromosomes and to ensure
accuracy of the current chromosome.

4.8 Introducing GA to the MES Robots

Earlier in this thesis it has been demonstrated how well the stochastic search per-
formed in the search space of robotic gaits. The stochastic search found many solu-
tions, and the best ones measured a fitness score of 2015. The next task is to test
a simple genetic algorithm on the same problem, to see whether it can manage to
find a better solution or not. In this thesis the initial values applied are similar to
the default parameters tested by Goldberg [2]. The parameters are shown in Table
4.1. The table shows that the total number of chromosomes is 10, the number of
chromosomes to be crossed with another chromosome are 10. This means that all
the chromosomes are to be crossed. The mutation rate is also 10. This means that
within the population there will be 10 bit mutated, during each generation. There
is no use of the elitism, since it does not occur in the Simple GA approach. The
plot in Figure 4.10 shows how well the GA performed in the same search space as
earlier tested (i.e. finding robotic gaits). The best solution measure a fitness score
of over 4000.

‘ CHR ‘ BIT ‘ GENE ‘ GNR ‘ MUT ‘ CROSS ‘ ELITISM ‘ SELECTION ‘
Roulette
Wheel

10 8 3 50 10 10 NO

Table 4.1: Parameters for Figure 4.10 CHR = no. of chromosomes in a population, BIT =
number of bits in a gene, GENE = no. of genes in a chr., GNR = no. of generations, MUT =
no. of mutations in a generation, cross = no. of chr. to be crossed in a generation, ELITISM
= yes/no, SELECTION = type of selection.

The two plots are shown together in Figure 4.10, with the intention of comparing
them to each other. The GA search method is shown in dotted blue lines while the
Stochastic search method are shown in dotted red lines. As shown the GA search
method rises high above the stochastic in fitness scores. Even the mean fitness score
for the GA is somewhat higher than the best fitness score for the stochastic search.
But still the GA is too slow to evaluate on real robots. The need for speeding up
the GA is high. The focus in the following will be speeding up the GA, and finding
good gaits and fast evolution.
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Figure 4.10: A Simple GA run, shown in blue lines (both solid lines and dotted lines), red
dotted lines show stochastic search.

4.9 Modified GA Runs

According to Goldberg [2] a certain way of speeding up GAs is to add cloning,
also called the elitism operator. By simply copying the two chromosomes with the
highest score to the next generation without mutating or crossing the genes, it is
made sure that the max fitness score will be at least as good as the prior generation.
So elitism is therefore added to the GA. The two best chromosomes are directly
transferred into the new generation. The parameters are otherwise the same as
earlier, as shown in Table 4.1.

‘ MUT ‘ CROSS ‘ ELITISM ‘ SELECTION ‘
Roulette
10 8 YES Wheel

Table 4.2: Parameters for Figure 4.11, left plot. For number of chromosomes, bits, genes
and generations, refer to Table 4.1.

The results of the GA run with elitism are shown in Figure 4.11, left plot. The
simple GA from the last search is still shown in dotted blue lines, while the GA
with elitism is shown in solid green lines. Like expected from Goldberg’s book, the
left plot show an improvement from the simple GA. GA with elitism is of higher
fitness score than the simple GA approach. Since the crossover operator tends to
destroy already good chromosomes, a run was made with decreased crossover rate.
The plot in Figure 4.11, right plot, shows the Simple GA run, still in dotted blue
lines, compared to a simple GA run with only 40% crossover rate. The parameters
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Plot of GA with Ellitism and Simple GA GA search, 40 % crossover rate
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Figure 4.11: Simple GA, shown in dotted blue lines. Left plot show simple GA contra GA
with elitism, show in solid green lines. Right plot show simple GA contra GA where the
crossover operator is only performed at 4 of the 10 chromosomes shown in red lines.

are as shown in Table 4.3. The low rate of crossover did not give a better result
in this particular search space. A reason for this is because this run is without
the elitism operator, so the relatively low mutation rate was all the difference in
the new generations compared to the old generation in addition to the 4 crossed
chromosomes.

‘ MUT ‘ CROSS ‘ ELITISM ‘ SELECTION ‘
Roulette
10 4 NO Wheel

Table 4.3: Parameters for Figure 4.11, right plot. For number of chromosomes, bits, genes
and generations, refer to Table 4.1

The next step was to test a low crossover rate combined with elitism. The plot in
Figure 4.12 shows a Simple GA run in dotted blue lines with the same parameters as
earlier described, combined with a modified GA run where there are no crossover
operator used at all, see Table 4.4, but elitism as described above. This is shown in
black solid lines. The results were somewhat better than without elitism and with
a low crossover shown in Figure 4.11, right plot, but still not as good as in Figure
4.11, left plot. This is because in this plot the variations are bigger, because of the
crossover rate of 4 chromosomes. The idea of increasing the mutation rate therefore
arose. Mutation does not destroy a perfectly good chromosome like crossover can
do, but it still adds variation to the population.
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GA search, with elitism, without crossover
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Figure 4.12: Simple GA (dotted blue lines) contra GA with no crossover, but with elitism
as described above(solid black lines).

‘ MUT ‘ CROSS ‘ ELITISM ‘ SELECTION ‘
Roulette
10 NO YES Wheel

Table 4.4: Parameters for Figure 4.12.

The graphs in Figure 4.13 shows a Simple GA run in dotted blue lines with the
parameters in Table 4.1. These graphs are combined with several modified GA
runs, where there are no use of the crossover operator and the mutation rate are
of different values, see Table 4.5. The GA runs with 300 mutations per population

| MUT | CROSS | ELITISM | SELECTION |
Roulette
300/90/50 NO YES Wheel

Table 4.5: Parameters for Figure 4.13.

are shown in black crossed lines, the GA runs with 90 mutations per population are
shown in solid green lines, the GA run with 50 mutations per population are shown
in dashed red lines. Figure 4.13 show large differences in fitness score comparing
the different graphs. The best fitness is provided by the plot with 50 mutations per
generation. It is better than the simple GA. This is an inexact indication of what the
mutation rate should be. It is therefore natural to adjust more accurate. The plot in
Figure 4.14 shows the fine adjustments to find the exact best mutation rate for this
search space.
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GA search, no crossover, variable mutation rate 1
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Figure 4.13: Simple GA is shown in dotted blue lines contra GA-300 mutations in crossed
black lines, GA-90 mutations in solid green lines, GA-50 mutations in dashed red lines.
Only simple GA uses the crossover operator.

| MUT | CROSS | ELITISM | SELECTION |
Roulette
40/30/25/20 NO YES Wheel

Table 4.6: Optimal parameters (25 mutations) for “roulette-GA” (i.e. GA with roulette
wheel selection), Figure 4.14.
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GA search, no crossover, variable mutation rate 2
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Figure 4.14: Simple GA is shown in dotted blue lines, contra GA-40 mutations in crossed
red lines. GA-30 mutations in pink dashed lines. GA-25 mutations in solid black lines and
GA-20 mutations in crossed green lines. Only simple GA uses the crossover operator.

The plot in Figure 4.14 shows a Simple GA run in dotted blue lines, with the para-
meters shown in Table 4.1 combined with several modified GA runs where there are
no use of the crossover operator and the mutation rate varies, see Table 4.6 All the
graphs are of the same fitness score, with insignificant differences. But the graphs
showing GA with 25 mutations per population shows a slightly higher fitness score
than the other graphs compared in this plot. This is the optimum GA that is found
in this thesis by only tuning the crossover and mutation rate, in addition to adding
the elitism operator and using roulette wheel selection. The run illustrated in Fig-
ure 4.14 in solid black lines, uses no crossing chromosomes, having 25 mutations
per population and with elitism, scores the highest. This result will be used as the
standard from now on, to compare with other modifications to GA instead of the
simple GA, illustrated in Figure 4.10, left plot, that has been used as a standard for
comparing so far in this thesis. The new comparable standard will be referred to as
the "optimal roulette-GA".
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GA with ranking procedure
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Figure 4.15: Optimal roulette-GA shown in solid black lines contra GA with ranking
procedure and roulette wheel selection shown in red crossed lines.

4.10 Various Selection Models: Ranking Selection

Pseudo code for the Ranked Selection

1. Initiate a population of chromosomes
Test the population towards the search space
Get fitness scores for each chromosome

Rank the population according to fitness score

SSAN - R

Give each of the chromosomes new fitness score according to rank (1 - 10),
the poorest = 1, the best = 10

6. Perform the Roulette wheel selection until there are enough chromosomes in
the next generation

7. Perform crossover / mutation / elitism
8. Go back to number 2

The plot in Figure 4.15 shows optimal roulette-GA in solid black lines. The only
selecting operator tested until now have been the roulette wheel selection. The red
crossed lines show GA with the same parameters as in black lines, see parameters
in Table 4.7. In all the earlier plots the roulette wheel selection is the only selection
tested. The next sub chapters will test other selection models for further improve-
ments. This population illustrated in red crossed lines has been ranked before it
was reselected with the roulette wheel selection. This ranking procedure may cause
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‘ MUT ‘ CROSS ‘ ELITISM ‘ SELECTION ‘
Rank &

25 NO YES Roulette
Wheel

Table 4.7: Parameters for Figure 4.15.

a higher probability for diversity in a population. In this plot the diversity was not
an advantage to the population, that show a lower fitness score than the optimal
roulette-GA.

411 Various Selection Models: Tournament Selection

Pseudo code for the Tournament Selection

Initiate a population of chromosomes.

Test the population towards the search space.
Get fitness scores for each chromosome.

Pick randomly two chromosomes.

The two chromosomes tournament.

A

The one with the highest fitness score wins and is transferred into the next
generation.

N

Repeat until there are enough chromosomes in the next generation.
8. Perform crossover / mutation / elitism.

9. Go back to number 2.

4.11.1 Without Elitism

The plots in Figure 4.16, left plot, show optimal roulette-GA in solid black lines
plotted contra optimal GA without elitism and with Tournament Selection (TS)
operator shown in crossed red lines. As mentioned earlier TS is a selection pro-
cess where two chromosomes from the current generation are selected to fight each
other in a tournament. The chromosome with the highest fitness score wins the
tournament, and is selected into the next generation. For further explanation see
pseudo code above. The graphs shown in Figure 4.16, left plot have a lower fitness
score because there is no use of elitism.
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GA with 25 mutations, without elitism and Tournament GA with elitism, 25 mutations and Tournament Selection
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Figure 4.16: The graphs in solid black lines are the optimal roulette-GA with parameters as
shown in Table 4.6. Left plot illustrates GA with parameters as shown in Table 4.8 selected
with Tournament Selection (TS) in crossed red lines. Right plot show GA with parameters
as shown in 4.9, selected with TS in green crossed lines.

‘ MUT ‘ CROSS ‘ ELITISM ‘ SELECTION ‘
75 NO NO Tourngment
Selection

Table 4.8: Parameters for Figure 4.16, left plot.

4.11.2 With Elitism

‘ MUT ‘ CROSS ‘ ELITISM ‘ SELECTION ‘
75 NO YES Tourngment
Selection

Table 4.9: Parameters for Figure 4.16, right plot.

The graphs in Figure 4.16, right plot, show optimal roulette-GA in solid black
lines contra green crossed lines that represent GA with elitism and the TS selec-
tion method. Although the TS with elitism, green crossed lines, are a lot better than
the TS without elitism, black crossed lines in the left plot, they are not better than
the optimal roulette-GA shown in black solid lines.

GA with roulette wheel selection may have a problem with lack of diversity in
the selection process, but the tournament selection takes care of the problem of
diversity by making sure many chromosomes with lower fitness than average are
transferred into the next generation. As shown in Figure 4.16, right plot the GA
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GA with elitism, ranked with ES selection

GA without elitism, ranked with ES selection
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Figure 4.17: The graphs in solid black lines show optimal roulette-GA. Left plot show GA
with elitism, ranked and with ES selection in crossed blue lines, parameters as in Table 4.10
Right plot show GA, ranked and with ES selection but without elitism in pink crossed lines,
parameters shown in Table 4.11

with TS, is less good than the optimal roulette-GA, even if the TS selection with
elitism was almost as good as the optimal roulette-GA. This selection model has
shown to be less good for this particular problem because of too much diversity. In
the next section a new selection model will tested to see if Evolutionary Strategie
can match the roulette wheel selection.

4.12 Various Selection Models: Evolutionary Strategie

Pseudo code for the Evolutionary Strategie

—_

Initiate a population of chromosomes

Test the population towards the search space

Get fitness scores for each chromosome

Pick the best chromosome, copy it into 40 % of the next generation

Pick the next best chromosome, copy it into 30 % of the next generation
Pick the third best chromosome, copy it into 20 % of the next generation
Pick the fourth best chromosome, copy it into 10 % of the next generation

Perform crossover / mutation / elitism

o © N G ok » DN

Go back to number 2
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4.12.1 With Elitism

| MUT | CROSS | ELITISM | SELECTION |
25 NO YES Evolutlf)nary
Strategie

Table 4.10: Parameters for Figure 4.17, left plot.

In Figure 4.17 left plot, the graphs obtained by optimal roulette-GA are shown
in solid black lines. These graphs are illustrated contra GA with the same paramet-
ers as the optimal GA, but the graphs illustrated in crossed blue lines are ranked
and reselected with Evolutionary Strategie (ES). As shown in the plot this selection
method is somewhat better than the Roulette Wheel selection. The ES is coded so
that the best chromosome is copied into 40% of the next generation, the next best
chromosome is copied into 30% of the next generation, the third best chromosome
is selected into 20% of the next generation, and the fourth best chromosome is se-
lected into the remaining 10% of the next generation. Then the mutation operator
is performed like described earlier. Elitism is applied on top of the ES. The para-
meters are as shown in Table 4.10.

4.12.2 Without Elitism

‘ MUT ‘ CROSS ‘ ELITISM ‘ SELECTION ‘
25 NO NO gvolutif)nary
trategie

Table 4.11: Parameters for Figure 4.17, right plot.

Figure 4.17, right plot, show the optimal roulette-GA as a comparative, the pink
crossed lines represent GA with parameters as in Table 4.11, ranked and reselected
with ES, but the elitism is not performed. This plot also show improvement com-
pared to the optimal roulette-GA, but is not as good as the ES with elitism. This is
probably because when elitism is applied, the two best chromosomes are directly
cloned into the next generation without performing the mutation operator on these
two chromosomes. The mutation operator can in addition to create better gaits,
also in many ways destroy already good gaits. Therefore by performing the elitism
operator, one can save the two best gaits from the previous generation and make
sure that the highest fitness obtained does not decrease. The ES is coded the same
way as described earlier, for further explanation see pseudo code above.
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GA with ES selection
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Figure 4.18: The solid black lines are optimal roulette-GA. The red crossed lines show GA
with pauses lasting 0.28 seconds, elitism and the ES selection method is applied, parameters
are shown in Table 4.12. The blue crossed lines are GA with ES selection method with

variable pauses lasting between 0.05 seconds and up till several seconds, controlled by the
GA. Parameters are shown in Table4.12.

4.13 Testing the ES Selection Model

| MUT | CROSS | ELITISM | SELECTION |
25 NO YES Evolutlf)nary
Strategie

Table 4.12: Parameters for Figure 4.18.

The plot in Figure 4.18 show optimal roulette-GA in solid black lines. The red lines
illustrate GA-ES with fixed pauses lasting 0.28 seconds, while the blue lines illus-
trate GA-ES with variable pauses, controlled by GA. The differences between the
GA-ES with constant pauses and the GA-ES with variable pauses are insignificant.
This is probably because the chosen constant pause length is quite optimal for this
search space. The plots in 4.18 show that ES selection is better suited for this par-
ticular problem than the Roulette wheel selection. Parameters are shown in Table
4.12. The GA-ES with variable pauses shown in crossed blue lines will be referred
to as the optimal GA-ES in the next section.
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Optimal GA ES, var. pauses contra const. pauses lasting 3 sec o Optimal GA ES, var. pauses contra const. pauses at 1.5 sec

45001

4000

3500

3000

2500

2000

Fitness score
Fitness score

1500

1000

5001

Generation # Generation #
Figure 4.19: Left plot show optimal GA-ES in solid black lines contra GA-ES with pre-
defined constant pauses set to 3 seconds in green crossed lines. Right plot show the optimal

GA-ES plotted contra GA-ES with predefined constant pauses set to 1.5 seconds illustrated
in blue crossed lines.

4.14 Testing the ES Selection Model, Constant Pauses

In this section all the plots contain two plotted graphs. The graphs that are plot-
ted in crossed colored graphs are showing GA-ES with fixed predefined pauses of
different lengths. The optimal GA-ES is plotted in solid black lines with variable
pauses controlled by GA as a reference. All the graphs have the parameters as
described in Table 4.13.

| MUT | CROSS | ELITISM | SELECTION |
25 NO YES Evolutlf)nary
Strategie

Table 4.13: Parameters for all figures with predefined constant pauses in this section.

Figure 4.19, left plot show the optimal GA-ES with pauses varying within GA in
solid black lines contra GA-ES with constant pauses set to 3 seconds in crossed
green lines. Right plot show the optimal GA-ES in solid black lines contra GA-ES
with constant pauses set to 1.5 seconds in blue crossed lines. Both pauses lasting
3 seconds and the pauses lasting 1.5 seconds obtain a poor fitness score. The per-
formance of the graphs in Figure 4.19, right plot, with half the length of the pauses
as in the left plot, have somewhat improved the performance of the GA-ES with
constant pauses, but still the results are insufficient for robotic gait evolution and
can not compete with the runs done with GA-ES with variable pause lengths.
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Optimal GA ES, var. pauses contra const. pauses at 0.05 sec Optimal GA-ES, var. pauses contra constant pauses 0.15 & 0.1sec
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Figure 4.20: Left plot show optimal GA-ES in solid black lines contra black crossed lines
representing the GA-ES with constant pauses set to 0.5 seconds. Right plot show new black
crossed lines illustrating GA-ES with constant pauses set to 0.1 seconds and red crossed
lines show GA-ES with constant pauses set to 0.15 seconds

The graphs in Figure 4.20, left plot, show constant pauses lasting one sixth of the
length of the pauses in Figure 4.19, left plot. The fitness obtained by the GA-ES
with predefined constant pauses is still very poor compared to the optimal GA-ES.
The performance in Figure 4.20, right plot, with pauses lasting 0.15 seconds in red
crossed lines, and pauses during 0.1, black crossed lines, have increased the fitness
score up to an approved level. But still the fitness of the pauses varying within
the GA is better in the last 35 generations. In the early generations the GA have
improved and show faster evolution of gaits than the optimal GA-ES. This makes
it interesting to investigate the meaning of the constant predefined pauses in these
first generations since the focus is fast evolution of gaits. The next chapter will
contain further developments of this founding.

Based on the research done, it appears obvious that the right pause length causes
the evolution to improve, and get a higher fitness score in the first 15 generations
simply by setting the right pauses. At the fifteenth generation, however, the plots
with variable pauses controlled by GA catches up with the constant pauses. It
is obvious that only when the best pause lengths are predefined in advance, the
constant pauses are better in the first generations. Otherwise the GA with constant
pauses gets a remarkably lower fitness score than the GA with the variable pauses
controlled by GA. This is a sort of "a priori knowledge".

Other methods besides tuning the parameters and tuning the pause lengths are
needed. This chapter has shown that the lengths of the pauses are an important
factor that influences the fitness score. In the next chapter the possibility of fur-
ther improvements of GA, by incrementally evaluating the pause lengths, are dis-
cussed.
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Chapter 5

The Incremental Approach

A common problem while programming GA is the size of the search space. When
trying to define the problem of desired accuracy, the chromosome that represents
the solutions to the search space has a tendency to become too complex and long.
This means a lot of time is spent testing in either software or hardware before the
GA is properly efficient. As a solution to the time consuming problem, this chapter
presents an incremental approach to make GAs more effective. The incremental GA
differs from the simple GA because the representation is divided into smaller parts
and evolved separately [16] [38]. By gradually evolving a complex task in a series of
subtasks, increased complexity can be achieved [39] [40]. This approach can make
the evolution faster by sectioning the search space. This means starting with simple
behavior and incrementally making the task more complex and general.

5.1 The first Incremental Approach

By optimizing the simple GA and the modified GA with different types of selection
models, parameter tuning and pause variation, the gaits still did not evolve fast
enough for real time evolution. The fitness development was not efficient enough
to operate on an online medium, like a robot. The need for faster methods for gait
development emerged, and the incremental idea arose. Several researchers have
tested the incremental approach for similar problems with quite successful results.
Kalganova [18] proposes a two-step method to decompose a complex problem us-
ing incremental evolution. The second step of Kalganovas method is to gradually
make the tasks more challenging and general. The method was tested in a digital
circuit domain and compared to direct evolution. The results from the experiments
show that bidirectional incremental evolution performed significantly better than
direct evolution. The evolutionary process changed to the better when different
types of decomposition were allowed. Kalganova concluded that this approach
could be applicable to many real world applications that consist of a natural hier-
archy of behaviors from simple to complex. For further description, see Appendix
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5.1. THE FIRST INCREMENTAL APPROACH

Figure 5.1: By mutating and incrementally maneuvering in the search space, the solutions
obtained may vary. Rene Magritte, "Wonders of Nature”.

B. Terresen introduced an Evolvable Hardware (EHW) architecture for pattern clas-
sification with elements of incremental evolution [41]. Experiments with simple
GA were applied to find the best possible combination of sub circuits for a pros-
thetic hand controller circuit. In the first step each motion in the prosthetic hand
was evolved separately. In the second step of the incremental approach the motions
were evolved simultaneously. A feed-forward neural network was also trained and
tested with the same data sets. The results showed that in 59.4% of the tests the
average performance of the EHW-architecture did better than the best case of the
neural network. Torresen concluded that evolving incremental systems for com-
plex real world applications could be a promising approach.

There are other researchers who have tested the incremental approach with success.
DeJong [38] and Potter [42] have presented cooperative co-evolution. They have
successfully applied evolutionary algorithms to the solution of increasingly com-
plex problems while developing effective techniques in the form of co-evolution
and co-adaptation. The system architecture allowed the authors to scale up to
more complex problems than possible with standard EA. For a more thorough doc-
umentation of successful incremental approaches, see Appendix B. From this back-
ground it is obvious that incremental approaches have been applied successfully
to many real world applications. In the next section the chromosome of the MES
robot is incrementally divided, the evolution of cylinder bits are separated from the
evolution of pause bits.

By incrementally dividing a search space the number of possible solutions decrease.
For the incremental approach to be efficient, it is outmost critical to perform the
division in the right manner, otherwise the results can be poor. There is no general
form of incremental approach, the incremental solutions must be customized for
the current application. Several customized incremental solutions for robotic gaits
are presented in the next section.
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D 010

slalnlcle
Figure 5.2: Awvailable pauses in a tree structure, generations shown to the right. As gen-

erations evolve, the GA can choose between more predefined pauses. Pauses are given in
seconds.

5.2 Predefined Pauses in a Tree Structure

The incremental approach was first tested by making a tree structure of predefined
pause lengths, illustrated in Figure 5.2. The approach is a combination of constant
pauses and pauses varying within GA. The idea is to let the pauses vary between
two or more predefined pause lengths, letting the GA choose which lengths are the
most suitable.

In the first 10 generations all the pauses in a chromosome have the same initial
pause length. The initial pause length measures 0.1 seconds. This pause length is
the most suitable pause length in early generations according to the tests done with
constant pauses in Chapter 4, illustrated in Figure 4.20, right plot. After developing
suitable gaits, it is time to see whether the GA can find even better gaits by being
able to choose between more pause lengths. When reaching generation number
10, the cylinder bits in the chromosome are set fixed. We now assume that the
cylinder bits are quite optimal, but variations in the pause length can still make a
great difference between sufficient gaits and good gaits.

At generation number 10, all the pause lengths are initially set to 0.05 seconds. GA
now has the opportunity to add additional pause lengths to the original. From
generation number 10 the opportunities the GA can choose are 0.05 seconds, 0.1
seconds, 0.15 seconds, 0.3 seconds, or any combination of the listed values. This
makes 7 pause lengths, making 7 nodes in the pause tree, varying from 0.05 seconds
up to 0.61 seconds.
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After reaching the fifteenth generation the GA can also choose to add 0.075 seconds
to the number of solutions already presented. This makes 7 * 15 tree-nodes of pause
lengths in the next level.

Again, when reaching generation number 20 a pause length of 0.0375 seconds can
be added as a solution to one or more of the prior possibilities, making 7 * 15 * 31
pause lengths for the GA to choose in the next level. For an illustration of the pause
tree see Figure 5.2. For pseudo code how the pause tree is coded see below.

Chromosome coding:

genel gene2 gene3

cylinderl pausel cylinder2 pause2 cylinder3 pause3

chr = ClCiCiCl PlPIPiP} C3C3C3CS P?PiPiP? C3C3C3CS PPPSPSP;

An explanation of the C;‘ and the P; is as follows, the C stands for bits representing
cylinders, while the P stands for bits representing pauses. The x stands for the gene
number, the y stands for the bit number. For a more graphical view of the pause
and cylinder bits and how the chromosome is represented see Figure 4.4 in Chapter
4,

Pause bit P} represents a pause length of 0.3 seconds. Bit Py represents a pause
length of 0.15 seconds. Bit P; represents a pause length of 0.075 seconds and bit
Pj represents a pause length of 0.0375 seconds. The total pause length for gene x
is given by the combination of the corresponding bits. The total pause length will
thus be restricted to the [0.05 — 0.6] seconds interval. In the following sections there
will be presented two versions of the Pause Tree Structure algorithm.

Pseudo code for Algorithm no.1 with Pause Tree Structure
1. Generation < 10:

¢ Keep all pauses at 0.1 seconds.

¢ Run GA on all cylinder bits.
2. 10 < generation < 15:

* Keep pause bits P; = P} = 0.

¢ Keep all cylinder bits equal to cylinder bits found in best chromosome,
generation 10.

* Run GA on pause bits P and P;'.
3. 15 < generation < 20:

* Keep pause bits P; = 0.
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5.3. INCREMENTAL RESULTS USING PAUSE TREE.

Incremental approach, pauses in a tree structure Incremental approach, pauses in a tree structure
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Figure 5.3: Optimal GA-ES in solid black lines contra Incremental GA, with algorithm no
1 with Pause Tree structure in crossed black lines. The right plot also includes algorithm
no 2, where incremental swap between cylinder and pause evaluation is shown in crossed
green lines.

¢ Keep all cylinder bits equal to cylinder bits found in best chromosome,
generation 10.

* Run GA on pause bits P}, P5 and P5.
4. 20 < generation < 50:

¢ Keep all cylinder bits equal to cylinder bits found in best chromosome,
generation 10.

* Run GA on pause bits P}, Py, P; and Py.

5.3 Incremental Results Using Pause Tree.

The GA approach with the pauses in a tree structure is tested towards optimal
GA-ES. In the optimal GA-ES the pauses can be of any length, decided by the GA
itself, not necessarily be restricted to choose between predefined pause lengths like
described in the pause tree structure. The results are shown in Figure 5.3. The
optimal GA-ES is shown in solid black lines. The crossed black lines are algorithm
no 1, illustrated in Figure 5.2.

Figure 5.3, left plot, illustrates optimal GA-ES in solid black lines. It is plotted con-
tra algorithm no 1, (Incremental GA with the ES selection method) in crossed black
lines, both having parameters as showed in Table 5.1. The graphs also illustrate
how the incremental approach has been considerable faster in the first 15 genera-
tions compared to the optimal GA with pauses varying within the GA. It is obvious
that in these first generations the runs that select all possible pause lengths inside
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| MUT | CROSS | ELITISM | SELECTION |
25 NO YES Evolutl‘onary
Strategie

Table 5.1: Parameters for Figure 5.3.

the original optimal GA have a larger search space and therefore the lower fitness
in the beginning. But after 20 generations the GA with pause tree structure suffers.
This might be because the cylinder bits are fixed without possibility to adjust to the
new pause lengths. The next step will be to incrementally swap between cylinder
evaluation and pause tree evaluation in algorithm no 2.

Figure 5.3, right plot, illustrates the same graphs as in the left plot, but in addition
there are green crossed lines illustrating algorithm no 2, (GA runs with pauses in
tree structure.) In the matter of the green crossed graphs the difference from al-
gortihm nol, is that the cylinder evaluation starts again after reaching generation
number 15. Algorithm no 2 have the same behavior as algorithm no 1 until gen-
eration 15, (i.e. cylinder evaluation up to generation 10). After generation 10 the
cylinder bits are kept fixed for the pause tree method to work properly from gen-
eration 10 to generation 15. In this way the cylinder evaluation is started again
and kept running from generation 15, adjusting to the pauses found for the last 35
generations. The pseudo code for algorithm 2 is shown below.

Pseudo code for Algorithm no 2 with Pause Tree Structure and Cylinder Eval-
uation

1. Generation < 10:

¢ Keep all pauses at 0.1 seconds.
¢ Run GA on all cylinder bits.

2. 10 < generation < 15:

* Keep pause bits P; = P} = 0.

¢ Keep all cylinder bits equal to cylinder bits found in best chromosone,
generation 10.

* Run GA on pause bits P and P5'.
3. 15 < generation < 20:

* Keep pause bits Py = 0.
* Run GA on pause bits P}, Py and P5.
* Run GA on all cylinder bits.
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4. 20 < generation < 50:

* Run GA on pause bits P}, Py, P; and Py.
¢ Run GA on all cylinder bits.

The green crossed lines in Figure 5.3, right plot, are like the black crossed graphs
better than the optimal GA-ES in the first 15 generations. In difference from the
black crossed graphs, the green graphs stay better than the optimal GA until gener-
ation 25 and stays at the same level as, and slightly better than, the optimal GA-ES.
This method provides faster evolution of good gaits than the earlier approaches.

5.4 The GA - Binary Hill Climbing Algorithm

The second and more successful incremental approach is the Binary Hill climbing
(BH) idea. When the hill climbing approach is applied in a search space, it means
the search always proceeds in the direction where the highest fitness is obtained.
This search is well suited for search spaces with smooth topography. The GABH
algorithm focuses on fast evolution and it lasts only the first 15 generations, as it is
targeted at fast online evolution. The Figure 5.4, show the evaluation focus in red
color covering the bits being evaluated in each generation.

The first increment of the GABH is very much like the earlier incremental ap-
proaches (algorithm no 1 and algorithm no 2). The cylinder bits are evaluated and
the pauses are kept constant at 0.1 seconds until generation 10. After generation 10
a hill climbing algorithm is to start the search through the pause search space step
by step.

The chromosome with highest fitness from generation 10 is chosen. The cylinder
bits in the chromosome (C; C5C3Cj), are fixed for all further evolution. See illustra-
tion in Figure 5.4, generation 11. 8 copies of the best chromosome is made, with all
possible combinations of the bits Pl Plz, and P13 represented (shown in red color),
this is the new population.

These 8 chromosomes are manually tested towards the problem, and fitness is as-
signed. The best chromosome from generation 11 is chosen to proceed to the next
generation. Within this chromosome, the bits Pll, Pl2 and P13 are fixed for all further
evolution.

The next step is to release the bits of next most significance (P;, P and P5), and keep
bits Py = P} = 0, see Figure 5.4, generation 12. 8 copies of the best chromosome
is made, with all possible combinations of the bits P;. The 8 chromosomes are
further manually tested towards the problem, and fitness is assigned. The best
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Figure 5.4: Illustration of GABH, blue color indicates fixed bits, red color indicates evalu-
ation focus in each generation, shown to the right.

chromosome from generation 12 is chosen to proceed to the thirteenth generation.
Within this chromosome, the bits P, Pj_z and P23 are fixed for all further evolution.

The process is then repeated for the two last generations. The third most significant
bits (P31, Pg and Pg’) are released, see Figure 5.4, generation 13. The least significant
pause bits (P} = le2 = P43 = 0) are kept fixed, see Figure 5.4, generation 13. 8 copies
of the best chromosome is made, with all possible combinations of the bits P5. The
8 chromosomes are further manually tested towards the problem, and fitness is
assigned. The best chromosome from generation 13 is chosen to proceed to the
fourteenth generation. Within this chromosome, the bits 23 P§ and Pg’ are fixed for
all further evolution.

The least significant pause bit P} are released, see Figure 5.4 generation 14. 8 copies
of the best chromosome are made, testing all possible combinations of the bits P}.
The 8 chromosomes are tested towards the problem, and the best chromosome is
preserved. This chromosome will contain the optimal pause length obtained for
this exact problem with the GABH algorithm. For further description see pseudo
code.

Pseudo code for GABH algorithm

1. If generation < 10:

* Set pauses fixed to 0.1 sec.
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Run GA on the cylinder bits.

2. If generation = 11:

Terminate GA.
Select the best chromosome from generation 10.
Fix all cylinder bits Cj.

Set the 3 least significant pause bits to 0 in all 3 pauses.
genel gene2 gene3

pausel pause2 pause3

—~= —~ —~
chr = CICICIC] P1000 C2C3C3CF P3000 C3C5C3C3 P3000
Make 8 copies of the chromosome with all 23 = 8 different combinations
of the P}, P%, Pg values.

Test all 8 chromosomes towards the problem and assign fitness.

3. If generation = 12:

Select the best chromosome from generation 11.

Fix the most significant pause bits 2 Plz, Pf’.

Keep the 2 least significant pause bits at 0 in all 3 pauses.

chr = CICiCiC] PIP00 C3C3C3Cs PAP300 CJC3C3C3 PPP300

Make 8 copies of the chromosome with all 2° = 8 different combinations
of the P}, P2, P} values.

Test all 8 chromosomes towards the problem and assign fitness.

4. If generation = 13:

Select the best chromosome from generation 12.

Fix the two most significant pause bits P;" and P in all 3 pauses.

Keep the least significant pause bits at 0 in all 3 pauses.

chr = C}C%C%Ci P11P21P§0 C%C%C%Ci P%PfP%O CfC%CgCi P13P23P§0

Make 8 copies of the chromosome with all 23 = 8 different combinations
of the P}, P3, P3 values.

Test all 8 chromosomes towards the problem and assign fitness.

5. If generation = 14:

Select the best chromosome.
Fix the 3 most significant pause bits P}, P; and P3 in all 3 pauses.

Make 8 copies of the chromosome with all 23 = 8 different combinations
of the P, P2, P3 values.

Test all 8 chromosomes towards the problem and select the best solution.
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Figure 5.5: Red lines show GABH algorithm, solid black lines show optimal GA-ES.
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Figure 5.6: Red lines show GABH algorithm with fixed pauses at 0.1 seconds in the first
10 generations, the crossed blue lines illustrate the optimal GA with fixed pauses at 0.1
seconds.

56



5.4. THE GA - BINARY HILL CLIMBING ALGORITHM

GABH algorithm

4500

4000 -

3500~

3000+

Fitness score
N N
3 3
T T

N

o

(=]

(=]
T

1000

500

Generation #

Figure 5.7: Red lines show GABH algorithm with 0.1 seconds constant pause in the first
10 generations, the solid black lines show optimal GA. The blue lines show the GABH with
the constant pauses set to 0.3 seconds in the first 10 generations.

When the pause search is divided into several parts, the search space for these bits
becomes quite narrow. Because the cylinder bits and % of the pause bits are kept
fixed in each generation, the opportunity to manually search exhaustively occur in
the last part of the GABH algorithm. If the search space was larger it would have
been natural to perform random mutations and perform the further search with
EAs.

Figure 5.5 illustrates the results of GABH runs. The GABH algorithm is represented
in red lines, the solid black lines are optimal GA. In the GABH runs the fixed pauses
in the first 10 generations are set to last for 0.1 seconds, which is the best fixed
pause in GA runs according to earlier experiments. The GABH runs last only for
14 generations. The GABH algorithm has a higher fitness score than the optimal
GA run for 14 generations. This method is more suitable for fast evolution of good
gaits.

Figure 5.6 illustrates a plot of the GABH algorithm with fixed pauses at 0.1 seconds,
it is compared to the GA with fixed pauses at 0.1 seconds. These graphs are of quite
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Figure 5.8: The Binary Hill climbing approach. The 3 dimensional fitness landscape above
the squares is not illustrated

equal fitness score for the first 10 generations, but then the GABH algorithm starts
tuning in better suited pause lengths and obtains higher fitness scores.

Figure 5.7 show the GABH run contra the optimal GA-ES (black graphs) and contra
GABH with non-optimal initial pause for the first 10 generations (blue graphs).
This non-optimal pause is set to 0.3 seconds. Even with this non-optimal pause
length the GABH algorithm performs after the tenth generation significantly better
than the optimal GA-ES, and even better than the GABH with 0.1 seconds initial
pause. The fact that a GABH run with non-optimal initial pause catches up with,
and performs better than, the optimal GA-ES and even performs better than GABH
algorithm with optimal initial pause, show the stability and reliability of the binary
hill climbing algorithm.

To fully understand the operation of the binary hill climbing algorithm one may
look at a simplification where the pause in gene 3 is kept constant and the algorithm
is applied only to the pauses in gene no.1 and gene no.2. When the pause bits P}
and Piz are varied and the rest of the pause bits are fixed at 0, there are 4 different
pause combinations. This is illustrated in Figure 5.8 where the four corners of the
largest square represent all four pause combinations. Suppose that the algorithm
evaluate the fitness of all 4 corners in the largest square and selects the combination
P! = 1and P? = 0. In the figure this is illustrated by point A.

When P} = 1 and P} = 0 and the pause bits P} and P7 are varied where the rest
of the pause bits are fixed at 0, there are 4 new pause combinations illustrated by
the four corners of the next largest square in the figure. Suppose that the algorithm
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evaluate the fitness of all these 4 corners and selects the combination Pl1 =1, Piz =0
and le =1, Piz = 1. In the figure this is illustrated by point B.

By proceeding with less significant pause bits the algorithm continues to evaluate
new squares where each side is half the size of the previous, hence the name "binary
hill climbing".

An article about this novel method has been written and is accepted in the GECCO
2006 conference in Seattle this July. The article is to be found in the Appendix A.
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Chapter 6

Measured Results

6.1 Gaits Obtained

This chapter addresses methods and results used for both the practical work done
with pauses represented by 4 bits in this thesis and the work done with pauses
represented by 6 bits in the paper, Appendix A.

The gaits obtained can be parted into three main categories, two suboptimal gaits
and one optimal gait. The three types of gaits are presented in Figure 6.1, Figure
6.2 and Figure 6.3. For further illustration of suboptimal gaits see DVD attached in
the back of this thesis.

Figure 6.1: Suboptimal gait based on asymmetric jumping, similar to the fastest horse gait
called gallop.

QR

Figure 6.2: Suboptimal gait based on every other one-leg jumping, similar to the move-
ments made in the sport pole vault.
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6.2. PRACTICAL CHALLENGES

TRz g R aret ey

Figure 6.3: Optimal gaits based on jumping. Most efficient gait obtained, but in real life
this gait has many drawbacks (E.g. the slippery effect in the floor to feet friction when the
robot kicks hard).

Figure 6.4: The pneumatic robot chicken "Henriette” were provided with rubber shoes.

6.2 Practical Challenges

This section focuses on some of the practical challenges that arose while evolving
directly on the robot. The first challenge was the foundation and floor in the labor-
atory. The floor was too hard for optimal robotic gait evolution and when the robot
was expected to jump, it slipped. The robot became worn, due to the hard founda-
tion and vibrations in the balance rod. As a solution, the robot was provided with
rubber shoes, illustrated in Figure 6.4. The result was less tear and rod vibrations.
Furthermore, the robot began to walk more springier, and started to evolve more ef-
ficient gaits based on jumping. The jumping-based gaits turned out to be the most
effective. Due to sound propagation, a carpet was needed as a base underneath
the robot. The carpet resulted in less noise, but again the slippery effect became
an issue. This problem was solved by pasting sand paper underneath the rubber
shoes.

Other contributing factors were variations in the air pressure that influenced the
performance and the real time qualities. The floor in the laboratory has a slight
incline, resulting in a small variety in the fitness measure when evolving on the
robot. These descriptions are some of the problems faced when evolving gaits on a
real robot.
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Figure 6.5: Measured results from GA binary hill climbing approach.

6.3 Measured Results

The GABH algorithm has been tested on the pneumatic robot in an attempt to
verify the theory. Results are illustrated in Figure 6.5. Two typical fitness devel-
opments are shown for the GABH algorithm. In these examples the binary hill
climbing starting point was set to the seventh generation. From the measurements
a fitness improvement is noticeable after this point. After the thirteenth generation
the population is kept static, but even for repeated executions of the same chromo-
somes the fitness found to vary significantly du to practical effects.

It was found very difficult to characterize the physical system accurately due to
various practical side effects. One major problem was time consumption and mech-
anical wear out, particularly of the sandpaper shoe sole which affected the system
significantly. When the robot moved, the whole system was vibrating heavily due
to the quick contraction/expansion movement of the pneumatic pistons. This vi-
bration made the robot shoe soles occasionally slip during kick-off, and this made
the system very unpredictable. Variable friction due to this kind of vibration made
the robot occasionally stumble, even for seemingly optimal jumping patterns. Even
for repeated executions of the same chromosomes the fitness was found to vary
significantly due to practical effects such as variable sole friction. From these few
measurements it is difficult to conclude that the GABH algorithm is working sig-
nificantly better than simple GA. The only conclusion one can make so far from
these few measurements is that the algorithm itself is working quite well in this
noisy environment. For a further illustration, see the various media contributions
in Appendix C and the multi media demonstrations on the DVD.
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Chapter 7

Conclusion and proposal for
further work

7.1 Conclusion

In this thesis evolutionary algorithms for evolving robotic gaits have been presen-
ted. There are several ways to search when trying to find optima, this thesis
presents several search methods that have successfully obtained robotic gaits in
software and/or in hardware.

The work done in this master thesis is divided into two parts. The first part de-
scribes the work concerning the search space given by the 4 bits pause length rep-
resentation. The other work is presented in the paper to be found in Appendix
A, representing the pauses by 6 bits. The search spaces and which method found
optimal differs slightly from the one to the other. Both simulations and measure-
ments have been carried out. In simulations the results of the different approaches
have been easy to differentiate from each other. In measurements GA has shown
to be effective at finding good gaits, but due to the practical challenges it has been
difficult to measure the difference between each algorithm. The methods tested for
obtaining robotic gaits are listed in the following section.

¢ Stochastic search was tested as a comparative reference. It was tested on both
search spaces.

¢ Simple GA approach was tested, performing considerably better than the
stochastic approach. This approach was tested on both search spaces.

* Modified GA was found optimal when there was no crossover, 25 mutations
per generation, extensive use of elitism and evolutionary strategie was used
as the selection method in the work where the pauses was represented by 4
bits.
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7.1. CONCLUSION

In the matter of the 6 bit represented pauses, the work done with the para-
meter tuning was found optimal at no crossover, 48 mutations per generation
and with roulette wheel selection.

* GA fixed pauses was tested only in the search space with the 4 bit pauses,
when lasting 0.1 seconds the results was found optimal.

¢ Incremental GA was tested on both search spaces. By separating the cylinder
bits from the pause bits the fitness score increased, for the work done with 4
bit pause representation. The incremental approach obtained the better res-
ults than all the GA approaches for the 4 bits pause representation. For the
6 bits pause representation the incremental approach never obtained better
results than the fitness provided by simple GA.

* GABH was tested on both search spaces. For the work done with 4 bits pause
representation, the GABH provided the best score after the 14 generation,
compared to the other methods at the 14 generation. But all GA approaches
scored higher after 50 generations, than the GABH after 14 generations. For
the work done with 6 bits pause length representation however, the scores
obtained after generation 15 was in average superior to the other applications,
even the fitness obtained by the other methods at generation 50.

A bar chart showing all the different search methods tested for the 4 bits pause
representation is illustrated in Figure 7.1 to compare the different methods to each
other. This overview show the fitness measures after generation 14 shown in light
blue color, and the fitness measure after generation 50 shown in purple color. The
different search methods are illustrated in ascending order, sorted by the fitness
score obtained after the fourteenth generation. Stochastic search followed by the
simple GA approach are shown farthest to the left, while the method farthest to the
right is the GABH algorithm, who have the highest obtained fitness score after 14
generations. The GABH algorithm was not tested for more than 14 generations.

A bar chart showing the different search methods tested for the 6 bits pause repres-
entation is illustrated in Figure 7.2 to compare the different methods to each other.
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Overview of methods and fitness
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Figure 7.1: Summary of the search methods tested in the search space with 4 bits pause
representation. The methods are sorted ascending by the fitness obtained in generation 14.
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Figure 7.2: Summary of the search methods tested in the search space for the 6 bits pause
representation.

7.2 Discussion

Several search methods have been tested in a chaotic search space for finding effi-
cient robotic gaits. The focus besides getting efficient gaits has been fast learning.
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7.3. OTHER IDEAS

Stochastic search, simple GA with elitism and modified GA was successfully tested.
Due to practical problems regarding both hardware and the environment variables,
a simulator approach was enforced, saving a lot of time and preventing the further
robotic wear out.

An incremental search algorithm combining GA and binary hill climbing has
been presented. In various simulations this algorithm has shown to develop accur-
ate walking patterns faster than standard GA/ES based algorithms. However, in
a physical environment with practical side effects such as unpredictable shoe sole
friction, varying pneumatic air pressure and wear out, it has been difficult to prove
that this algorithm is better than standard GA based algorithms when evolving in
hardware. The algorithm itself is, on the other hand found to perform quite well in
a noisy environment.

7.3 Other Ideas

This section contains ideas that have been invented, discussed and some of them
are tested through out the time spent working with this thesis. The tested ideas
have however not been as efficient as hoped and expected, or other problems have
occurred and interfered with the efficiency of these ideas. These ideas have there-
fore not been published like the GABH algorithm.

7.4 Idea: Mother Routine

A lot of time was spent tuning parameters to find the optimal GA, the idea of mak-
ing a "Mother Routine" came up, this method would run in the background and
provide GA with new sets of parameters. The routine would feed GA with para-
meters according to efficiency and fitness measures. For the "Mother Routine to
work properly, it would actually be necessary to run some kind of GA within the
"Mother Routine" as well. This routine would result in the robot being able to walk
and test different parameters for a very long time without human interference. But
unfortunately the wear on the robot restricted the possibilities to accomplish this
task. It is probably better to apply this routine for gait simulations than on a real
robot performing online. This routine is more thoroughly described in the further
work.

7.5 Idea: Positive Reinforcement

The feedback given from the robot is a very accurate measure. Varying this feed-
back can make the robot seem more alive or responsive to a live audience. A pos-
sibility is to let an audience give the feedback, (the robots have been performing for
live audiences quite a lot). Several sensors could be attached, for instance sensors
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7.6. IDEA: CONTROL METHOD / A PRIORI KNOWLEDGE

Positive®
Reinforcement

Figure 7.3: Illustrating positive reinforcement

sensitive to sound. Le. if the robot performed in ways the audience percepted as
good, and the audience responded with hand-clapping and made a lot of noise,
this could give a high fitness score and this particular motion could be repeated.
This is a very inaccurate measure, and there would also need to be a delay from
the robot have behaved optimal until the audience responds to the behavior and
the feedback is registrated by the robot. This method could be a interesting way to
make a robot respond to an audience, by repeating and evolving those individuals
what the audience think is good behavior.

7.6 Idea: Control Method / A priori Knowledge

The idea behind this method is to keep chromosomes or series of good chromo-
somes in a library. This means making an "a priori" library of good patterns earlier
evolved. One of the drawbacks in Genetic Algorithms and related programming
methods are the possibility to end up in local optima without finding optima with
higher fitness. A possible way to expand this thesis would have been to make some
sort of library of chromosomes that have been found favorable. If the GA gets stuck
in local optima with low fitness, new chromosomes from the library could have re-
placed some of the chromosomes in the population. This routine can be a "Control
Method" that runs in the background replacing individuals if the mean fitness does
not exceed a certain level. This control method could even be combined with the
"Mother Routine".

7.7 Idea: Cyclic

Although the search space can be made slightly smaller by representing each gait
by a cyclic coding [43] our experiments have shown no noticeable difference in
search speed for cyclic/non cyclic coding for this robot. The size of this search
space clearly requires a more efficient search algorithm than simple GA in order to
enable cyclic real-time gait development in hardware.
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7.8. IDEA: REINFORCED LEARNING

7.8 Idea: Reinforced Learning

Q-learning (RL) have also been tested unsuccessfully in hardware. The results ob-
tained were poorer than any run with GA. The testing was only performed in hard-
ware.

7.9 Further work

There are several things that would have been done differently if this thesis was to
be done all over again. The main thing would have been to code the GA in C++
instead of C. The Object orientation would have advantages when the program
source code gets large and complex and difficult to follow.

There are great opportunities to further develop the GABH algorithm, let it last for
more generations by representing the pauses with more bits. This would of course
make the search space larger as well.

Regarding simulations the "Mother Routine" could have found even better com-
binations of parameters in simple GA and modified GA. The "Mother Routine"
combined with a "Control Method", a library of "A Priori Knowledge", could prob-
ably improve the GA alot. But then it would have been a different type of GA when
applying the "a priori knowledge".

If the robot is to perform for live audiences, or in other robots that may have other
types of feedback it could have been visually funny to apply Positive Reinforce-
ment in forms of sensors to make the audience give the feedback. The limitations
here are several, as there would have to be a delay from the robot performs till the
program receives the feedback from the audience. There would also have to be a
noise filter, because the audience would probably make noise no matter if the robot
behaved good or the poorly. There is no guarantee that the audience would behave
in ways that are suited as GA feedback, but if this worked it would have been a
success for the audience to see the robot respond to their response.
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ABSTRACT

In this paper an evolutionary algorithm is used for evolv-
ing gaits in a walking biped robot controller. The focus
is fast learning in a real-time environment. An incremen-
tal approach combining a genetic algorithm (GA) with hill
climbing is proposed. This combination interacts in an effi-
cient way to generate precise walking patterns in less than
15 generations. Our proposal is compared to various ver-
sions of GA and stochastic search, and finally tested on a
pneumatic biped walking robot.

Categories and Subject Descriptors

1.2.9 [Artificial Intelligence|: Robotics—Propelling mech-
anisms; 1.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search— Heuristic methods

General Terms
Algorithms

Keywords

Evolutionary robotics, Genetic algorithms, Machine learn-
ing

1. INTRODUCTION

Evolutionary algorithms has often been proposed as a
method for designing systems for real-world applications [6].
Developing effective gaits for bipedal robots is a difficult task
that requires optimization of many parameters in a highly ir-
regular, multidimensional space. In recent years biologically
inspired computation methods, and particularly genetic al-
gorithms (GA), have been employed by several authors. For
instance, Hornby et al. used GA to generate robust gaits on
the Aibo quadruped robot [7]. GA applied to bipedal loco-
motion was also proposed by Arakawa and Fukuda [1] who
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made a GA based on energy optimization in order to gen-
erate a natural, human-like bipedal gait. One of the main
objections to applying GA’s in the seach for gaits is the time-
consuming characteristic of these techniques due to the large
fitness search space that is normally present. For this reason
most approaches have been based on offline and simulator
based searches. To reduce the time spent searching large
search spaces with GA, various techniques for speeding up
the algorithm have been presented.

With the increased complexity evolution schema intro-
duced by Torresen [11], Torresen has shown how to increase
the search speed by using a divide and conquer approach, by
dividing the problem into subtasks in a character recogni-
tion system. Haddow and Tufte have also done experiments
with reducing the genotype representation [5]. Kalganova [9]
has shown how to increase the search speed by evolving in-
crementally and bidirectional to achieve an overall complex
behaviour both for the complex system to the sub-system
and from sub-system to the complex system. For an ex-
haustive description of other approaches readers may refer
to Cantu-Paz [2].

The robot presented in this paper is a two-legged biped
with binary operated pneumatic cylinders. The search space
in our experiments was set up to describe the forward speed
of the robot given the different gaits, and the goal was to
find the most efficient gait with respect to speed. To enable
efficient gaits the search space needed to be quite large as
the accuracy of the pause lengths between the different leg
positions is outmost critical, especially for gaits dominated
by jumping movements. The focus has not been on evolv-
ing a balancing system as there have been no other sensory
feedback than the forward position of the robot.

The main goal for our work was to find a search algorithm
fast enough to enable real-time gait generation/adaptation
where the fitness is provided by the mechanical robot with-
out the need for an offline simulator model.

In this paper we present a different approach to increase
the search speed by combining GA and binary hill climbing
(BH) in an algorithm that we will refer to as the GABH
algorithm.

In chapter IT we describe the robot hardware and in chap-
ter III we describe how the different gaits are represented
in the chromosome. In chapter IV we present the simulated
results of different search algorithms compared to the new
GABH algorithm, and in Chapter V we present measured re-
sults of the GABH algorithm applied to the hardware robot
in real-time with no simulator model.



2. THE ROBOT HARDWARE

The robot skeleton is made of aluminium and is provided
with two identical legs. The height is 40 cm. Each leg
is composed of an upper part (i.e. the thigh) connected
through a cylindrical joint to the lower part (i.e. the calf).
Pneumatic cylinders are attached to the thigh and the calf
used for controlling the movements of the calf and the thigh
separately. As shown in Fig. 1 the rear cylinder in each
foot actuates the calf whereas the front cylinder actuates
the thigh. The cylinders can either be fully compressed or
fully extended (binary operation), and the pneumatic valves
are located on top of the robot. The valves are electrically
controlled by 4 power switches connected to a PC 1/O card
(National Instruments DAQ-pad) and the different searching
algorithms are implemented in the programming language
C++ on the PC.

The pneumatic air pressure was set to 8 bar and provided
by a stationary compressor. The robot was attached to a
balancing rod at the top (Fig. 1 right and Fig. 2) making the
robot able to move in two dimensions. The other end of the
rod was attached to a rotating clamp on a hub. The robot
walks around the hub with a radius of 2 meter. In addition
to being a balancing aid, the rod supplies the robot with air
pressure and control signals from the DAQ-pad. The hub
has a built in optical sensor representing the rod angle in 13
bit Gray code.

~

Figure 1: Illustration (left) and photo (right) of the
robot. Proper walking direction is left to right (bird
construction).

3. GENETIC ALGORITHM
3.1 SimpleGA

A genetic algorithm is based on representing a solution
to the problem as a genome (or chromosome). The genetic
algorithm then creates a population of solutions and applies
genetic operators to evolve the solutions in order to find
the best one(s). In the simple GA approach [4], [12] the

S

Figure 2: The fitness measurement and balancing
rod system (top view).

chromosomes are randomly initiated and the only genetic
operators used are mutation and crossover. The selection
process is done by roulette wheel selection.

3.2 The chromosome coding

In our experiments each gait is coded by a 30 bit chro-
mosome. The chromosome represents three body positions
each followed by a variable pause. A body position is com-
posed of the positions of the 2 legs (4 cylinders) and rep-
resented by four bits (Fig. 3) each describing the status of
the corresponding cylinder (compressed or extracted). A
complete gait is then created by executing 3 body positions
with 3 appropriate pauses in between. Each pause length
is represented by 6 bits. The pause length is represented
as a binary number corresponding to pauses from 50ms to
300ms. Various simulations have shown no GA search speed
improvement by representing the pauses in Gray code.

Two cylinders can move a single leg to 4 different posi-
tions. Two legs with four cylinders can hold 16 different
positions, and three following positions with 6 bits pauses
in between make a search space of

230 = 1073741824 (1)

different gaits.

Although the search space can be made slightly smaller
by representing each gait by a cyclic coding [10] our exper-
iments have shown no noticeable difference in search speed
for cyclic/non cyclic coding for this robot. The size of this
search space clearly requires a more efficient search algo-
rithm than simple GA in order to enable real-time gait de-
velopment in hardware.

Leg position Leg position Leg position
bits Pause length bits bits Pause length bits bits

71 71 71 7121 71 71210101 7171 717121 7171212121 717171 7]

P17 17177 2T7] I
0: 7: Pneumatic
cylinder

Figure 3: The chromosome internal coding.

Pause length bits




3.3 Pauses

A gait is composed of leg positions and pauses. In our
robot evolution we have found that the most efficient gaits
with respect to forward speeds are gaits dominated by jump-
ing movements. In a jumping movement the pause length
between each leg kick is outmost critical as the robot may
stumble if the timing of the leg kick is just slightly wrong.
Measurements show that a pause length deviation in the
magnitude of 10ms can make the difference between a rel-
atively useless and a highly effective gait. It is however a
trade-of between the desire to represent the pause lengths
with a high number of bits and the exponential decrease in
search speed for each extra bit used due to the increased size
of the search space.

4. SIMULATED RESULTS

To compare the efficiency of the different search algo-
rithms against each other the robot was first simulated in
software.

41 Thesimulator

A simple mechanical chicken-robot simulator has been im-
plemented in C++. This simulator models the robot with
exact physical dimensions and a weight of 3kg. The centre of
gravity is located at the hip joint. It was found very difficult
to model the feet-to-floor friction force exactly as this force
is heavily modulated by large vibrations in the robot body
and supporting rod during walking/jumping. The feet-to-
floor friction force is a very important factor for developing
efficient jumping patterns and the lack of an exact model for
this effect is assumed to be the main weakness of the sim-
ulator. The fitness of each chromosome (gait) is a function
of the forward speed of the robot caused by the correspond-
ing chromosome. Each gait is repeated 3 times in sequence
to reduce the impact caused by the initial leg positions. A
movement in the backward direction causes the fitness to be
Z€ro.

4.2 Search spacetopology

The optimal search algorithm for a given problem depends
heavily on the topology of the search space. For the chro-
mosome coding described in chapter 3.2 and the chosen soft-
ware robot model we have tried to get an overview of this
topology by separating the search space in two parts, one
part generated by the pause bits and one part generated by
the leg position bits.

Fig. 4 shows a plot of the fitness landscape for all possible
leg positions in a single chromosome (gait) were all 3 pause
lengths are fixed at 100ms. The size of this search space is
243 = 4096 leg positions. This plot indicates that the part of
the overall search space generated by the leg positions is very
chaotic although there may be some repetitive phenomena.
A similar topology has been found for other choices of con-
stant pause lengths. The different leg positions are sorted
by the Gray value of their corresponding bits to keep the bit
difference between neighbouring chromosomes in the plot as
low as possible, but even so the landscape is chaotic with
many narrow peaks.

In Fig. 5 the fitness landscape is plotted for different pause
lengths where the leg positions are kept constant. To make
the fitness landscape visually informative one of the 3 pause
lengths are also kept constant at 70ms resulting in a three di-
mensional plot. As this plot indicates the part of the overall

fitness landscape generated by the pause lengths is smooth
and will typically contain a few numbers of maxima. In this
type of landscape a hill climbing search will normally be
more efficient than a genetic algorithm.
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Figure 4: Fitness search space for different leg posi-
tions (fixed pauses at 100ms).

30 50

20 Pause length no.2 (ms)
10 60

Pause length no.1 (ms)

Figure 5: Fitness search space for pause no. 1 and
no. 2. All leg positions and pause no. 3 are fixed.

4.3 Simple GA simulations

The focus for this real-time application has been to find
a search algorithm capable of finding an optimal gait in
less than 20 generations. The first search approach was to
perform a search for an optimal chromosome (gait) in the
global search space consisting of 23° different chromosome
values. Simple and more advanced genetic algorithms were
tested against different evolutionary strategies (ES) [4]. ES’s
showed to be less effective for this particular application and
a genetic algorithm was therefore chosen.

In all our simulations 5% noise is added to the fitness func-
tion to model practical effect such as variable foot friction,



vibrations, variable air pressure and pause length deviations
caused by non-ideal real-time behaviour of the XP operating
system.

A simple genetic algorithm with roulette wheel selection,
elitism, a population size of 10 chromosomes, no crossover
but with as high as 0.2% mutation probability for each bit
was found to be the most effective. The high mutation prob-
ability indicates that GA is struggling with the topology
in this global search space. This result is not surprising
as the global search space is assumed to be dominated by
the chaotic and complex phenomena shown in the partial
search space shown in Fig. 4. In Fig. 7 we see that GA
produces slightly less than twice as effective gaits compared
to a stochastic search after 15 generations. In all plots each
graph shows the mean result from 1000 simulations with ran-
domly initiated populations. 5 different graphs are shown
to illustrate the consistency of the simulations.

4.3.1 Anincremental GA approach

The next approach was to evolve the partial search spaces
shown in Fig. 4 and Fig. 5 separately by an incremental ge-
netic algorithm. Incremental GA differs from simple GA
because the search space is divided into smaller parts and
evolved separately [11] [8]. By gradually evolving each task
in series increased complexity can be achieved [3] [1]. The
first incremental approach was to first evaluate the leg po-
sition bits, with fixed pause lengths. After obtaining gaits
with sufficient fitness the leg position bits are fixed and the
pause bits are evolved separately. From Fig. 6 we se that
this approach is not successful as the fitness is never found
to be higher than the fitness provided by simple GA. Leg
position bits are evolved up to generation 11 and pause bits
are evolved from generation 12.

The next incremental approach was to divide the search
in to 7 increments. First the leg position bits were evolved,
then the most significant pause bits were evolved, then the
next most significant pause bits were evolved until the least
significant pause bits were evolved in the last increment.
Even this approach was not found to provide better results
than simple GA.
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Figure 6: Incremental GA versus simple GA. Leg
position bits are evolved up to generation 11 and
pause bits are evolved from generation 12.

4.4 The GABH algorithm

The third and more successful incremental approach was
to combine GA and binary hill climbing in the GABH algo-
rithm. From Fig. 5 we notice that the typical pause length
fitness landscape is smooth with few maxima. In a practi-
cal application disturbances will be added to this landscape
due to variable foot friction, vibrations, variable air pres-
sure and pause length deviations caused by non-ideal real-
time behaviour of the operating system. However, the main
characteristic of this landscape indicates that a hill climbing
algorithm may be more efficient than a GA based search.

In the GABH algorithm the leg position bits are first
evolved by simple GA up to generation 8. All pause length
bits are fixed corresponding to pause lengths of 150ms. In
generation 8 GA has normally found a decent leg position
pattern. From generation 9 all leg position bits are fixed. In
generation 9 all possible combinations of the most significant
pause length bits are tested (coarse seach) where all other
bits are kept fixed. With 3 pauses in a chromosome there
are 8 possible combinations of the most significant pause
bits to be tested. The chromosome with the highest fitness
containing the most successful most significant pause bits
is kept. 8 copies of this chromosome are then made form-
ing generation 10. In generation 10 all combinations of the
next most significant pause bits are tested keeping the other
bits fixed. The chromosome with the highest fitness con-
taining the most successful next most significant pause bits
are then kept. 8 copies of this chromosome are then made
forming generation 11 and so on until the least significant
pause bits are found in generation 14. The search is then
terminated. In this way the search space given by pause
lengths is searched in a coarse to fine sequence.
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Figure 7: Comparison between simple GA, GABH
and stocastic seach.

In Fig. 7 the GABH algorithm is compared to simple GA
and stochastic search. As each graph represents the average
fitness development over 1000 simulations, we see that the
GABH algorithm is in average superior to the others in this
application where the focus is fast learning in less than 20
generations. A possible objection to the proposed GABH
algorithm is that heavy noise in the fitness calculations may
cause the algorithm to derail and search in a non optimal
region of the search space. To make the algorithm more ro-



bust an improvement could therefore be to let the algorithm
run each increment over more than 1 generation and select
the optimal chromosome based on fitness averaging.

45 Gaitsobtained

The gaits obtained can be divided into three categories.
Two suboptimal gaits and one optimal gait. In Fig.8-10
these gaits are illustrated. The optimal gaits were based
on synchronous jumping where both legs are kicking at the
same time. By kicking both feet at the same time the most
power was available causing the longest jumps. Other sub-
optimal gaits were based on one-leg jumping or asymmetric
jumping where one foot was slightly delayed with respect to
the other.

Figure 8: Suboptimal gait based on asymmetric
jumping.
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Figure 9: Suboptimal gait based on every other one-
leg jumping.
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Figure 10: Optimal gaits based on synchronous
jumping.

5. MEASURED RESULTS

The GABH algorithm has been tested on the pneumatic
robot in an attempt to verify the theory. It was found very
difficult to verify the theory accurately due to various prac-
tical side effects. One major problem was time consump-
tion and mechanical wear out, particularly of the sandpaper
shoe sole which affected the system significantly. When the
robot moved, the whole system was vibrating heavily due
to the quick contraction/expansion movement of the pneu-
matic pistons. This vibration made the robot shoe soles oc-
casionally slip during kick-off, and this made the system very
unpredictable as the robot occasionally stumbled instead of
jumped even for seemingly optimal jumping patterns.

In Fig. 11 two typical fitness developments are shown for
the GABH algorithm. In these examples the binary hill
climbing starting point was set to the 7th generation. From
the measurements we notice an improvement in fitness after
this point. After the 13th generation the population was
kept static, but even for repeated executions of the same
chromosomes the fitness was found to vary significantly due

to practical effects such as variable sole friction. However,
the algorithm was found to produce proper gaits in less than
10 generations in almost all our experiments. From these few
measurements it is difficult to conclude that the algorithm
is working significantly better than simple GA. The only
conclusion one can make so far from these measurements is
that the algorithm itself is working quite well in this very
noisy environment.
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Figure 11: Measured results.

6. CONCLUSION

This paper has presented an incremental search algorithm
combining GA and binary hill climbing. In various sim-
ulations this algorithm has shown to develop proper gaits
significantly faster than standard GA/ES based algorithms.
However, in a physical environment with practical side ef-
fects such as highly unpredictable shoe sole friction due to
vibrations, varying pneumatic air pressure and wear out it
has been difficult to prove in hardware that this algorithm is
better than standard GA based algorithms. The algorithm
itself, on the other hand was found to perform quite well in
a very noisy environment.
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Appendix B

Incremental Appendix

B.1 Successful Incremental Approaches

In the following appendix the prior knowledge of successful incremental ap-
proaches are documented. This chapter is also giving a short review of some of the
papers handling different kinds of incremental approaches, some combined with
evolutionary algorithms.

B.1.1 Bidirectional Incremental Evolution in Extrinsic Evolvable Hard-
ware

By:Tatiana Kalganova [18].

In this paper a two-step method is proposed. The first step is to gradually de-
compose a complex problem using incremental evolution. The second step is to
gradually make the tasks more challenging and general. The method is tested in
a digital circuit domain and compared to direct evolution. The results from the
experiments made, show that bidirectional incremental evolution performs signi-
ficantly better than direct evolution. The process of evolution also changes when
different types of decomposition are allowed. Kalganova also concludes that this
approach should be applicable to many real world applications that consist of a
natural hierarchy of behaviors from simple to complex.

B.1.2 Evolving both Hardware Subsystems and the Selection of Variants
of Such into an Assembled System

By:Jim Terresen [41].

I this paper, an EHW architecture for pattern classification with elements of in-
cremental evolution has been introduced. Experiments with simple GA are tested
to find the best possible combination of sub-circuits for a prosthetic hand controller
circuit. There are six different motions in this prosthesis, a subsystem is evolved
for each of the six motions. In the first step each of the motions are evolved separ-
ately. In the second step of the incremental approach the six motions are evolved
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B.1. SUCCESSFUL INCREMENTAL APPROACHES

simultaneously. A feed-forward neural network was trained and tested with the
same data sets. In 59.4 % the average performance of the EHW-architecture did
better than the best case of the neural network. The author concludes that this is a
promising approach for evolving systems for a complex real world application.

B.1.3 Cooperative Co-evolution: n Architecture for Evolving Co-adapted
Subcomponents

By:Mitchell A. Potter and Kenneth A. De Jong [42]

To successfully apply evolutionary algorithms to the solution of increasingly
complex problems, one must develop effective techniques in the form of co-
evolution and co-adaptation. This paper describes an architecture for cooperative
evolution of subcomponents, tested with a simple string-matching problem. The
authors state that the results are quite positive in a number of ways. The first way
is the architecture’s ability to evolve useful decompositions as the emergence of co-
operative species. Second, the cooperative co-evolutionary architecture has shown
to be a general extension for any standard EC paradigm, not only for approaches
like GA, and the architecture allows the authors to scale up to more complex prob-
lems than possible with standard EA. The authors also mention several other minor
improvements to a current system they are exploring.

B.1.4 Exploring Knowledge Schemes for Efficient Evolution of Hard-
ware

By: Jim Torresen [44]

In this paper various experiments with different multipliers are presented. The
multipliers used were of size 2x4-bit, 3x4-bit and 4x4-bit. They are evolved both
with a traditional gate array, and with the GA-data bus architecture. For all the
multipliers tested the results were up to 5-7 % better with the GA-data bus archi-
tecture. The minimum value for the GA-data bus architecture is always larger than
the maximum value for the gate array architecture. The results of the multipliers
didn’t come out correctly. Two reasons explaining this are mentioned, the first is
that the problem was quite complex, the other is that the number of experiments
ran were limited. The results are concluded as an important step in the right dir-
ection. The results indicate an improvement compared to evolving with gates as
building blocks. "A priori knowledge" is also an important part of this paper.

B.1.5 A Scalable Approach to Evolvable Hardware

By:Jim Terresen [45].

In this paper various aspects of the increased complexity evolution method are
investigated through a number of experiments in evolvable hardware. The scheme,
called increased complexity, which contains principles from biology are applied to
improve the power of evolution. The results of a character classification system
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B.1. SUCCESSFUL INCREMENTAL APPROACHES

show that the total number of generations is substantially reduced by evolving
subsystems. The results of a prosthetic hand controller by the use of subsystems
shows that although the number of gates used increased, the total number of gen-
erations was reduced. The performance was considerably better with the method
proposed.

B.1.6 Evolving Multiplier Circuits by Training Set and Training Vector
Partitioning

By: Jim Torresen [46].

In this paper experiments to evolve multiplier circuits by the use of simple GA
are presented. The training sets and the vectors from the truth table are partitioned
into 32 training set partitions or subsystems. The results are good, for every parti-
tion it is possible to find a correctly working subsystem in a single run. The num-
ber of generations needed to provide sufficient results with the partitions vary. The
"difficult" parts of the truth table become harder to evolve with a smaller number
of training set partitions. To illustrate this, an experiment with 16 training set parti-
tions was conducted. While testing it, the results came out wrong and the number
of generations needed increased a lot. Because of this Terresen concluded that the
need for small partitioning sizes was crucial to find a correctly working circuit.

B.1.7 Possibilities and Limitations of Applying Evolvable Hardware to
Real-World Applications

By:Jim Torresen [47]

This paper contains a schematic view of the important names and classifica-
tions within evolvable hardware. Terresen also explains the different approaches
and classifications. Further many publications on different real-world applications
are classified and some results are discussed. To summarize, the directions for
promising use of evolvable hardware when applied in online adaptable systems re-
quiring special hardware implementations to run the application successfully, are
presented. And the paper further mentions applications where an evolved circuit
performs better than a traditionally designed system. Several methods for com-
pressing the chromosome string is mentioned, one being to divide the application.
This principle is based on the divide-and-conquer algorithm, it was proposed for
EHW as a way of incremental evolution of the application. Further the future of
EHW is outlined by mentioning the two directions where EHW will be further
developed. The first is to use evolution to tune the parameters of a circuit. The
second direction is to use evolution in online adaptable real-time systems. Tor-
resen concludes by mentioning the difficulties by using evolution in digital based
applications.
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B.1.8 Evolvable Reasoning Hardware: It's Application to the Genome
Informatics

By:Moritoshi Yasunaga, Takahiro Tsuzuku, Kentaro Ushiyama, Ikuo Yoshihara and
Jung H. Kim [48]

This article proposes a new design method called "LoDETT" (Logic Design us-
ing Evolved Truth Table). This method is used on evolvable reasoning hardware.
Each task’s case is transformed into truth tables. The truth tables are evolved with
genetic algorithms. Circuits are synthesized from the evolved truth tables and em-
bedded directly in the hardware. The tested hardware consists of 7 prototype Xil-
inx FPGA circuits. The authors conclude that the circuits perform by an accuracy of
90.5 % and are 1000 times faster than using a standard PC, Pentium 800MHz. The
circuits are also quite small using few gates.

B.1.9 Evolvable Reasoning Hardware: Its Prototyping and Performance
Evaluation

By:Moritoshi Yasunaga, Jung H. Kim and Ikuo Yoshihara [49]

This paper, like the previous, present the "LoDETT" design methodology, where
case databases of each reasoning task are transformed into truth tables. In this pa-
per however, the focus is to recognize unknown cases by extracting rules behind
the past cases through genetic algorithms. The evolved tables are then synthesized
into logic gates. Reconfigurable chips like FPGAs and CPLDs are well suited for
LoDETT, because they are reconfigurable for each different task. The prototype in
this matter is a Xilinx Virtex FPGA chip which is applied to the English Pronun-
ciation Reasoning (EPR) problem. 2000 English words and pronunciations have
been transformed to truth tables. The tables have been evolved with GA. The au-
thors conclude that the average reasoning accuracy is of 82.1% and of only 270 K
gates. The learning time for LoODETT using GA is a lot longer than NETTalk which
finishes in 3 minutes using MY-Neupower. But, the hardware volume spent with
Evolvable Reasoning Hardware (ERHW) is less than 1/50 of what MY-Neupower.

B.1.10 An Evolutionary Kernel-Based Reasoning System Using Recon-
figurable VLSI: It's Hardware Prototyping and Application to the
Aplicing Boundary Problem

By:Moritoshi Yasunaga, Kentaro Ushiyama, Noriyuki Aibe, Hidetoshi Fujiwara,
Ikuo Yoshiyara and Jung H. Kim [50].

This paper presents a novel reasoning algorithm called Symbolical Kernel-Bases
Reasoning (SKBR) The SKBR is an extension of the conventional pattern recognition
algorithm Kernal-Based to the symbolical recognition and reasoning. In this paper
the SKBR is applied to splicing boundary prediction problem in human DNA data
in the genome informatics field. The author also shows an extracted new rule that
was hidden in the consensus around the splice site boundaries. Simple GA is used
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to decide where to place the "don’t care-values" into the data appropriately to make
kernels. The fitness evaluation is i.e how well the symbolic kernel matches the
sample symbolic data. This is tested and implemented in an FPGA. Results show a
short reasoning time of less than 100 micro-sec/query. The accuracy is of 95.3% for
human splice site.

B.1.11 A Polygenetic, Ontogenetic and Epigenetic View of Bio-Inspired
Hardware Systems

By:Morse Sipper, Eduardo Sanchez, Daniel Mange, Marco Tomassini, Andrés
Perez-Uribe and Andre Stauffer [51].

This paper presents the three levels of organizing life on earth. First the Poly-
genetic level, which concerns the temporal evolution of genetic programs like indi-
viduals and species. The second is the ontogenetic level which concerns the devel-
opment process of a single multi cellular organism. The last level is the epigenetic
level, which concerns the learning process during an individual organism’s life-
time. This is called the POE model. The POE model can be divided into a three
dimensional space where the three dimensions are partitioned into the polygenetic
axis, the ontogenetic axis and the epigenetic axis. Along the polygenetic axis of bio
inspired systems, also called evolvable hardware, one can find artificial evolution,
LSPC’s (large scale programmable circuits) and evolvable hardware. In the area of
the ontogenetic axis the focus is to replicate and regenerate hardware. The main fo-
cus is following the development of a single individual, following the growth and
the construction. The last axis is the epigenetic, where the learning hardware is the
main subject. Learning through environmental interaction is the focus. There exist
three major epigenetic systems in the living multi cellular organism, the nervous
system, the immune system and the endorcine system. By presenting this POE
model the authors give rise to novel systems endowed with evolutionary, repro-
ductive, regenerative and learning capabilities.

B.1.12 Speciation as Automatic Categorical Modularization

By:Paul J. Darwen and Xin Yao [52].

In this paper an evolutionary learning system is presented. Also presented is
a second approach to automatically create a repertoire of specialist strategies for a
game-playing system. This relieves the human effort of deciding how to divide and
specialize. The genetic algorithm speciation method used in this matter, is based
on fitness sharing. It will go through a process of learning during a "Tit-for-Tat"
strategy against unseen test opponents. While learning, the process automatically
designs a modular system. The novelty is to use GA speciation as a modularizing
mechanism. The algorithm decomposes the problem into different parts without
human oversight. The tests are done by using a black box simulation with minimal
prior knowledge of the learning task.
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Appendix C
Media

C.1 TV performances

¢ NRK1 "Schredingers katt" January 9. 2005
"Robotkyllingen Henriette"

¢ TV2 "Klisterhjerne" October 1. 2005

¢ TV Follo October 5. 2005.
"Robotkyllingen Henriette" - fra forskingstorget 2005

C.2 Radio performances

¢ NRK P2 "Vok" December 9. 2004.
"Robotkyllingen Henriette"

¢ Kanal 24 "Superstreng" October 29. 2005
"Superstreng - med robotforsker Lena Garder"

* NRK Ostlandssendingen September 22. 2004
"Knall og fall for robot-baby"

C.3 Newspaper articles

* Verdens Gang December 9. 2004
"Se! En robot som leerer"

¢ Aftenposten December 7. 2004
"Hjernen styrer handprotese"
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C.3. NEWSPAPER ARTICLES

¢ Computerworld August 16. 2004
"Vil jobbe med robotikk"

e Drammens Tidene October 4. 2004
"Leerer roboter a huske"

¢ Universitas February 11. 2004
"Norske kvinner velger bort realfag"

¢ Tidens Krav December 29. 2004
"Robotene kommer!"

¢ Dagsavisen October 27. 2004
"Robotene kommer!"

¢ www.forskning.no 28. Dec. 2004
"Lager selvleerende roboter.

¢ Ny teknikk December 16. 2004
"Intelligente roboter"

* Uniforum May 11. 2006
"Mikroelektronikk fikk megapris"

e www.siste.no December 8. 2004
"Robotene kommer!"

e www.firda.no - "Firda" October 26. 2004
"Robotene kommer!"

¢ www.forskningsradet.no "Forskning og samfunn" September 26. 2005
"Torgsuksess i Oslo " - fra forskningstorget 2005

e www.demokraten.no - "Demokraten" October 26. 2004
"Robotene kommer!"

e www.hadeland.net - "Hadeland" October 26. 2004
"Robotene kommer!"

e www.rb.no - "Romerikes Blad" October 26. 2004
"Robotene kommer!"

* www.sognavis.no - "Sogn Avis" October 26. 2004
"Robotene kommer!"

e www.tvedestrandsposten.no - "Tvedestrandsposten" October 26. 2004.
"Robotene kommer!"

¢ www.lofotposten.no - "Lofotposten" October 26. 2004
"Robotene kommer!"
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C4. MAGAZINE ARTICLES

C.4 Magazine articles

* Apollon (science magazine) December 6. 2004
"Lager selvleerende roboter"

¢ Elektronikk August 7. 2005
"Dagens roboter prover ut genetiske sekealgoritmer".

C.5 Invited Talk

¢ Invited talk Intervensjonssenteret - Rikshospitalet February 11. 2005
"Robotkyllingen Henriette / Humanoide roboter, status for 2004"
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Appendix D

Dictionary

This appendix of definitions is not written in a scientific matter, there are no refer-
ences of these explanations. The majority of words are explained within the thesis,
with references. This dictionary is meant for quick and easy consulting.

Algorithm / Routine
Part of a computer program performing a certain task

A priori Knowledge
Knowledge or instincts given to the robot prior to evaluation, to avoid certain
behavior.

Binary Hillclimbing
A search method that always chooses the steepest direction in a search space,
i.e. the best solution seen from the situated point.

Chromosome
Solution, represented by a bit string containing the information to control the
robot.

Crossover
Genetic operator taking two parent chromosomes, divides them and put them
together making two new (children) chromosomes.

Cyclic Evolution
Chromosomes are repeated in cycles, inspired by actual gaits.

Cylinder bits
Parts of the chromosome that controls the cylinders.

E.g.

"For instance".

Elitism

The two best chromosomes in a population that are directly transferred to the
next generation. Also called clone.
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Evolutionary Strategy

The population is ranked and the best chromosome is copied up into 40 per-
cent of the next generation, 30 percent of the next best chromosome, 20 per-
cent of the third best chromosome and 10 percent of the fourth best chromo-
some are also chosen to proceed to the next generation.

Fitness-based selection
Chooses the chromosomes in a generation that have the highest fitness score
to perform in the next generation.

Fitness Landscape
See search space, can be of different shapes and structures.

Fitness measure
Feedback from the robot/simulator that is handled by the fitness routine. Fit-
ness score, see fitness routine.

Fitness Routine
A routine that receives feedback from the robot/simulator and translates the
feedback into a measure or score telling how well the robot behaved.

GABH algorithm

The novel algorithm described in chapter 5. Starting with cylinder bit eval-
uation, with fixed pauses, for 10 generations. Then the optimal sequence of
pause bits are found by using a binary hill climb type of search.

Gait
Walking pattern, way to move legs to go forward.

Generation
One collection of solutions/chromosomes tested in the search space.

Generational GA
GA where the entire population is updated every generation.

Genetic Operators
Rules making diversity of chromosomes in a population, E.g. crossover,
mutation and selection.

Le.
"That means".

Incremental GA
Divide the search space into several parts that evolve separately.

Incremental Pause Tree
An algorithm evaluating the cylinder bits prior to the pause bits. After a
certain generation the pauses are evaluated and the pause lengths are chosen
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from a tree structure. There are variations within the pause tree methods,
some have cylinder evaluation inside the pause tree evaluation as well.

Mutation
Genetic operator that takes one bit and changes the value to the opposite.

Online Learning
Machine Learning performed on real robots, not simulation, and without hu-
man interaction within the evolution.

Pause bits
The parts of the chromosome that control the pause lengths.

Population
Collection of solutions/chromosomes.

Rank-based selection
All the chromosomes are ranked and given a new fitness value according to
their rank. Still they have to be chosen by another selection method.

Roulette wheel Selection

Each chromosome in a generation is given a certain amount of a roulette
wheel according to it’s fitness value. The chromosomes chosen to proceed to
the next generation are selected by spinning the wheel and randomly choos-
ing chromosomes.

Search Space
Room/space full of solutions, some are better than others.

Selection schemes

Different ways of reproduction of chromosomes, E.g. fitness based selec-
tion, Roulette wheel selection, Rank based selection, Tournament selection
and Evolutionary strategy.

Simulator
Computer program that behaves like the robot and gives feedback like the
robot.

Steady-state GA
GA where only parts of the population are updated every generation.

Tournament selection
Chooses two chromosomes randomly and the chromosome with the highest
fitness score is chosen to proceed to the next generation.
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Appendix E

Source Code

This appendix includes the source code of the program running on the MES Robotic
Chicken.

#include "stdio.h"
#include <stdlib.h>
#include "windows.h"
#include <time.h>
#include <math.h>
#include <iostream:

#define 1DV 10 s individ

#define GEN 3 S gen

#define BIT & s+ antall hit (4 sylinder-bit og 4 pause-bit)

#define SMUT 25 /# antall muteringer skjer per populasjon

#define ELLI 2 7 ELLI '0': ingen ellitisme || '2': Ellitisme

#define COX n] < Bntall individ som skal krysses (rundes ned ved oddetall)

#define SM 2 #+ 1 = Roulette wheel 2 = Evolutionary Strategie 3 = Tournament

sogdeline PAUSE O s/ 0 = fast pause, mad settes. 1 = Pausen som en del av GA, 2 = Fausetre 3 = ellers
#define REFP 3 < antall repetisjoner av chromosomet fer fitness leses av

#define GNR 50 e
#define POPS 100 e

antall generasjoner
antall kjeringer som midles

RN

#define TYPE 1 /# 1 = stokastisk smk, 2 = Pausetre, 3 = GA, 4 = TEST-position, 5 = Fast Pause 6 = GABH
#define GB 2 /s 2 = pausstre-funksjon (MA STA pa 3 UNDER GR)
#define PI 3.14152
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s*xxx% Pre deklarering av funksjoner. w*xwx/

double L2, double L3,

int binZint(int[12]):

wold confPort_0_12_in(void):

vaid confPort_0_7_out (void);

int ellitisme(int);

int getBit(int, int);

int grayzhin (int]:

int *int2hin(int]):

woid kjoriint);

woid kryss (void);

int maxi (void);

wvoid muter():;

int random(int):

int rettVerdi{int);

int rulett (void);

int rank(void);

wvoid pre();

wvoid print2file(int);

woid read4file);

int snitt (void);

int matti{void):

int hinZgrayGenerell (int):

int es (void):

int tournament (void);

int gabh (void);

int runC(double pau, int C1l, int C2, int C3, int C4, int Res, int SkrivUt, FILE* filPek):
double cyll lng(int C, double incr):

double cyl2 lng({int C, double iner):

double eyl3_lng(int C, double iner):

double cyld_Ing(int C, double iner):

int likeBevegelser (double L1_old,double L2 old,double L3_old,double L4 _old,int Cl,int CZ,int C3,int C4);
woid fotlengder(double®* X1, double* Y1, double* 32, double* YZ, double S8x, double Sy, double L1,
S

s« runC @ kjerer ut ett gen [(en posisjon med tilherende pause)

/¢ returnerer chick posisjon 1 millimster etter utfert gen (statisk int wvariabel),

#7 distansen mker helt til simulatoren blir resatt (chick gar ikke 1 ring)

<7 pau = pausetid (sek), Cn er 01 (cylinder nr.n inn- ut)

7+ Res = simulatoren blir resatt (md gjeres fer ferste kjering)

7+ Res = 0O ordingr simulering uten resett

< Bkrivlt 0 : skriver ikke kroppsposisjoner til fil under simulering

<7 Bkrivlt 1 : skriver fotposisjoner til fil under simulering format (int'sr) (millimeter)
<7 Bkrivlt 2 : skriver kropsposisjoner til fil under simulering format (int'er) (millimeter)
S

sxxxxx GFlobale deklareringer. =xexx/

int hovedarray [IDV] [GEN] ;

int temparray [IDV][GEN]:

int konstarray [IDV] [GEN]

int fitness [IDV]: 7 Fitnessarray

int fit2 [IDV]:

int binl [12], < Array for de binzre tallene som skal "kjere"
int gray [& /7 Array for &4 hente inn gray-kodingen.
int elli [GEN* 1:

int q [256]:

int Vo= 0;

int MTALL = 0O;

int MEAN = 0:

int biz = 0:

int ra = 0;

wvold main()

int
double
int
int
ool

7 readdfi

a, al, a2, a3, b, ¢, e, 1=0, £, g, =, pil, =*=p, =p2,

tid = 0.05, psum = 0.0;
sjekk=0, fart=0, teller = 0:
cc[GEN];

le(); /7 kommando som kjeres etterpd for 4 lese inn filene og ta mean av de 5 * 100 kjeringens.

sxxs

far

{

(bix=0; bixz<5; bix++){ printf("~n

MTALL = 0; MEAN = 0;
for(c=0; c<IDV: c++)fitness[c] = 0;
pre();

for(xz=0; =<GHR: x++)
far(c=0; c<IDV; c++){ fitness[c]
for{a=0; a<IDV; a++)
1

fitness[a] = 0O;
tid = 0.05; b = runC({tid, O,

o, 0, 0, 1 .0, 0); » setter vinkelen til en fast standard
if [TYPE == 1)
{ ~ STOEASTISK S0K
1F(BB == 1){ ~/ tester pd om randomtallet har vert brukt tidligere

t = TRUE;

while(t == TRUE){
¢ = random(255);
if(gle] == 0){

pos
pos
pos

0; gle] = 0:}

tre=0, to=0, div

*x BIX: %2d »x ~p~n", bix); for(i=0; i<

nullstiller
nullstiller
initializing routine
generasjoner

7 nullstiller

roboten

= 0, tes:

POPS; i++) / #grafer ~ midlinger
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gqle] = 1;

sshovedarray[a] (k] = ;s

cc[0] = random{255); cc[l] = random({255); cc[2] = random(255):
t = FALSE;

<« and if

1 7+ end while
telse if(GB == 2){ -~ gjenbhruk er lov
co[0] = randem(255); cc[l] = random{255); cc[2] = random(255);
psum = 0.0;
T ## and if-alse
for{e=0; =¢(GEN;: st+t)
{
tid = 0.05;
p = intZbinf{cc[0]):

1f(p[4] tid=tid+0.0375;
if(p[5] tid-tid+0.075;
if(p[6] tid=tid+0.15;

1E(p[7]

runC(tid, p[0]., p[1]. p[2]). p[3]. O, O, O):
psum = psum + tid; tid = 0.05;
p = intZbinfce[1]):

tid=tid+0.30:

tid=tid+0.0375;:
tid=tid+0.075;
tid=tid+0.15;
tid=tid+0.30:

runC(tid, p[0]., p[1]. p[2]). p[3]. O, O, O):
psum = psum + tid; tid = 0.05;
p = intZbinfce[2]):

if(p[4] == 1) tid=tid+0.0375:
if(p[5] 1) tid=tid+0.075;
if(p[A] 1) tid=tid+0.15;
TE(p[7] == 1) tid=tid+0.30;

fitness[a] = fitness[a] + runC(tid. p[0]. p[1l]. p[2]. p[3]. 0. O, O):
psum = psum + tid;

¥ #~end for
fart = fitness[a] - psum;

fart = fart = (fart>0);
fitness[a] = fart:

Jeles if(TYPE ==
{ 7~ PAUSETRE-FUNKSJONEN

psum = 0.0:
for(b=0; b<{GEN; b++)
{

x==9)konstarray[a] [b]=hovedarray[a]
29 konstarray[a] [b] =hovedarray[a
0.05;

/# dersom du sr i generasjon Y9, spar denns generasjonen i kans

[b
11

1:
hl:

p = int2bin(hovedarray[a][0]):
if(xcl0){  tid ; +
if(x>20){ if(p tid=tid+0.0375; i3
if(z>15){ if(p tid=tid+0.075; 3
if(x>10){ if(p tid=tid+0.15;
if (p tid=tid+0.30; }

PF((x>10 &8 ®<19) || (2229 && =<33))div = runC(tid, p[0], p[1]. p[2]. p[3]. 0. O, 07;
slee{

p = intZbin(konstarray[a][0]);

div = runC(tid, p[0]. p[1]. p[2]. p[3]. 0. 0. 0):
i

psum = psum + tid; tid = 0.
p = intZbin(hovedarray[a][1

i (GNR<10){ tid = 0.1; }
if (ONR»20){ if (p[4] == 1) tid=tid+0.0375; T
if(GNR>15){ if(p[5] 1) tid=tid+0.075; }
if (GNR>10){ if (p[6] == 1) tid=tid+0.15:
if(p[7] == 1) tid=tid+0.30: }
if((x>10 BB %<19) || (x»29 &5 =<39))div = runC(tid, p[0]. p[1]. p[2]. p[3]. 0. O, O):
else{

p = intZbin({kanstarray[a][1]):
div = runC(tid, p[0]. p[1]. p[2]. p[3]., 0. O, O):
1)

psum = psum + tid; tid = 0.05:
p = int2bin(hovedarray[a][2]):

iF(@NR<10Y{ tid = 0.1: 1
PF(GNR>20){ if(p[4] == 1) tid=tid+0.0375; }
iF(@NR> 15 if (p[5] 1) tid=tid+0.075; i
PF(GNR>10){ if(p[6)] 1) tid=tid+0.15;
if{p[7] == 1) tid=tid+0.30: 1
PE((x>10 && x<19) || (2209 && 2¢39))div = runC(tid, p[0], p[1]. p[2]. p[3]. 0. 0. O):

else{
p = intZbin(konstarrayv[a][2]):
div = runC(tid, p[0]. p[1]. p[2]. p[3]. O, 0, O):
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fitness[a] = fitness[a] + div:
psum = psum + tid;

1 Z¥ignd for

fart = fitness[a] ~ psum;
fart = fart = (fart>0):
fitness[a] = fart:

telse if(TYPE == 3)
{/7 GA-KJORING

psum = 0.0:
for(b=0; L<GEM: b++)

tid = 0.05;
p = intZbin(hovedarray[a][0]);

) tid=tid+0.0375:
j tid=tid+0.075;
) tid=tid+0.15;

§ tid=tid+0.30;

e e e

div = runCitid, p[0], p[1]. ®[2]. p[3]. O. O, O):
psum = psum + tid; tid = 0.05;
p = intZbin(hovedarray[a]l[1]):

tid=tid+0.0375;
tid=tid+0.075;
tid=tid+0.15;
tid=tid+0.30;

div = runC{tid, p[0], p[1]. p[2]. p[3]. O. O, O):
psum = psum + tid: tid = 0.05;
p = int2bin(hevedarray[al[2]):

tid=tid+0.0375;
tid=tid+0.075;
tid=tid+0.15;
tid=tid+0.30;

div = runC{tid, p[0], p[1], B[2], p[3]. O, O, O):
Fitness[a] = fitness[a] + div:
psum = psum + tid;

} #/ end for

fart = fitness[a] ~ psum;
fart = fart * (fart>0):
fitness[a] = fart;
<« end GA-kjering
lelse if (TYPE == 4)
tid = 0.1:
b = runC(tid. 1, 0, 0, 1, 0 .0, 0): printf("Run: X%d ~n", a):
b = runC(tid, 1, 1, 0, 0, 0 .0, 0}; printf{"Run: %d ~n". a):

}else if(TYPE == 3)
{ </ Fast pause

tid = 0.1; psum = 0.0;

for(b=0; B<GEN: h++)

{

0]): div
11): div
2175 div
div:

intZbin(hovedarray([a]
int2bin(hovedarray[a]

int2kin(hovedarray[a]
fitness[a] = +
T < end for

runCitid, p[0]. p[l
runCitid, p[0]. p[l
runCitid, p[0]., B[

1. pl2]. p[3]. 0. 0. 0): psum
1. p{2]. p[3]. 0. 0, 0): psum
1. p[2]. p[3], 0, O, 0); psum

psum + tid:
psum + tid:
psum + tid;

[
[
[

B
P
13
fitness[a]

fart = fitness[a] ~ psum:
fart = fart = (fart>0);

fitness[a] = fart;
telse if (TYPE == 6){ ~~ GABH-algoritmen
psum = 0.0:
1F(xC10) ]
tid 1; »/ Optimalt = 0.1

= 0.
for(b=0; B<GEN: h++)
1
p = int2bin(hovedarray[a][0]);
div = runC(tid, p[0], p[1]. p[2]. p[3]. O, O, D}:
psum = psum + tid;

p = intZbin(hovedarray[al[1]):
div = runC({tid, p[0]., p[1]. ®[2], p[3]. O, O, O):
psum = psum + tid;

p = intZhin(hovedarray[a][2]):
div = runC({tid, p[0]. p[1l]. p[2]. p[3]. O, O, O):
psum = psum + tid;

fitness[a] = fitness[a] + div:
1 s end for
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fart = fitness[a] ~ psum;
fart = fart = (fart>0):
fitness[a] = fart;

lelse if(x>9){ -~ KOMNSTARRAY S0M SKAL BRUKES

p2 = intZbin(a):
al = p2[0]; a2 = p2[1l]; &3 = p2[2]:

for(b=0; L<GEMN; b++) ~~ gjentagelsens (3 rep)
{
tid = 0.05;
p=intZbin (konstarray[a][0]):
1

1=1:}
1=1:}
1=1:}
if (z==13){p[7]=1:}
telse]
if(x==10){p[4]=0:}
if(x==11){p[S]=0:}
if (z==12){p[6]=0:}
if(x==13){p[7]=0:}
+
5]=0; p[6]=0; p[7]=0:; }
pl6l=0: p[7]=0: }
else if(x==12){ pl7]1=0: }

konstarray[a][0] = binZint(p);

if(p[7]==1)tid = tid + 0.0375:
if(p[B]==1)tid = tid + 0.075:
if(p[5]==1)tid = tid + 0.15;
ifip[4]==1)tid = tid + 0.3;

div = runC(tid., p[0]. p[1]. p[2]. p[3]. 0O. 0. O):
psum = psum + tid;

tid = @05
p=intZbin(konstarray[a][1]):
1f(a2==1){
if(x==10){p[4]=1;
if (x==11){p[5]=1:
if (x==12){p[6]=1:
if(x==13){p[7]=1:
lelse{
i (x==10){p[4]
1f(2==11){p[5]
if(x==12){p[6]
if(x==13){p[7]

Newe we ae

if(x==10
else if(x==11
else if(x==12

J{ p[5]1=0; p[6]
I p[6]
H

konstarray[a][1] = binZint(p):

., 3T S
+ 0.075;
A, T
4. 3

div = runC(tid, p[0]. p[1]. p[2]. p[3]. O, O, 0O);
psum = psum + tid:

tid = 0.05;
p=intZbin(konstarray[al[2]):
if (a3==1){
1f(x==10){p[4
1f(x==11){p[5
if(z==12){p[6
if(x==13){p[7
lelse{
1f(x==10){p[4
1£(x==11){p[5
if(x==12){p[6
1f(x==13)1{p[7

}

if(x--10){ p[5]-0; p[6]-0; B[7]-0; }
else if(x==11){ pl6]=0: p[7]=0: }
else 1f(x==12){ pl7]=0; }

konstarray[a][2] = binZint(p):

if(p[7]==1)tid = tid + 0.0375;

if(p[A]==1)tid = tid + 0.075:

if(p[5]==1jtid = tid + 0.15;

if (p[4]==1)tid = tid + 0.3;

div = runC({tid. p[0]. p[1]. p[2]. p[3]. O, O, O):

psum = psum + tid;
fitness[a] = fitness[a] + div:

i #7 end for
fart = fitness[a] ~ psum:
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fart = fart = (fart>0);
fitness[a] = fart:
<< end gnr-greia

i q

1 ~7 end TYPE
print2file(2);
} 7 end IDV

printZfile(3); ## skriver til statistikk-filens
if(TYPE == || T¥PE == || TY¥PE == || (TYPE == G)){ ~~ GR
if (TYPE == 6 && x>=9){ - KUN GAHE
ra = rank(); ~~ ra vil inneholde index'en til den heste

#7 seleksjonen: Legger inn det beste individet i hele pop'en
for{a=0; a<IDV; a++){
1f(x>9){
konstarray[a] [0]
konstarray[a][1l]
konstarray[a][2]
FLE(2=29){
konstarray[a][0]
konstarrayv[a][1l]
kanstarray[a][2] oredarrs ]
Yoo end if
T <« end for
}else{ ~~ end GABH-behandling

konstarray[ra] [0]:
konstarrayv([ra] [1]:
konstarray([ral[2]:

= hovedarray[ra] [0]:
hovedarray([ral[1]:
2

ellitisme(1); <« kopierer de 2 beste individenes inn i elli-arrayene.
/7 Alt ligger nd i hovedarray

s/ Beleksjons-modeller:

ra = ranki]: /7 rangerer of gir ny fitness basert pd rank
if (8M == 1) pil = rulett(): -~ Alt ligger nd i temp-arrayet
if (SM 2) es():
if (BM == 3) tournament():
kryss(): s« krysser (med innebygget muteringsfunksjon
s alt ligger nd i hovedarravet
muter();
ellitisme(2): s/ Legger de to heste individene overskrive 2 ferste i hovedarray

¥
< end if
T < end GNR
print2file(4):
+ -/ end POPS
T <7 end hix

sxx s
std:cout<< '“n'<{{"Programmet avsluttes..."<<{ '“n':

} #~ end main

void pre() - fyller opp utgangspunkt arrayvet med tall opp til 16 (pga 4 bit).
! int a, b, d=0:
forfa=0: a<IDV: a++)
gor(b:D; LAGEN: b++)

hovedarray[a][b] = random(255):

T ~7 end function

P PRINTE FUMKZ.JONER
void printZfileiint <)
FILE *fpl, *fp2, *fp3, *fpd:
int sjekk = 0, snittall=0, maxtall=0, s=0;
if(g==1){ »~ apner for kyllingfila
#7 fpl = fopen("../..~..7. ./, . METLABGpl-work-chicki.m", "w');
s 1f(fpl == NULL) printf({"Feil under apning aw fil A~n"):
telse if(o==2)1{
fp2 = fopen("../.. ../ ... . /MATLABGpl work-GOD1.m", "a"):
1f(fp2 == NULL)printf("Feil 1 fildpning.n");

snittall = snitt(): if(snittall > MEAN) MEAN = snittall:
maxtall = maxi(); if(maxtall > MTALL) MTALL = maxtall; -~ passer pd & hele tiden ha de sterste max- og mean-tallene

Fprintf (fp2, "%d %d", MTALL, MEAN):

sjekk = foclose(fp2):
if(sjekk != 0) std::cout<<"Fitness filen bhle ikke lukket crdentlig."<<'~n';
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telse if(c==3) {

if(biz == 0){
fp3 = fopen(".. ..”..7..~. . /MRTLABGpl-work -POPmazl.m", "a"):
fpd = fopen("../../.. ../ . . /MATLABGpl-work -POPmeanl.m", "a"i;
lelse if(bix == 1){
fp3 = fopen("..~.. ..~ .. .. MATLABGpl-work -POPmazZ.m", "a"):
fpd = fopen(".. .. /.. ../ . . /MATLABGpl-work -POPmeanZ.m", "a"i;
lelse if(bix == 2){
fp3 = fopen("..”.. .. .. /. . MATLABGpl-work -POPmax3.m", "a"):
fpd = fopen(".. .. /.. ../, . /MATLABGpl-work -POPmeand.m", "a"i;
lelse if(bix == 3){
fp3 = fopen("..”.. ..7..7/. . /MATLABGplswork -POPmazd.m", "a"):
fpd = fopen(".. .. /.. . .~. . /MATLABGpl-work- -POPmeand.m", "a"ji;
lelse if(bix == 4){
fp3d = fopen(".. .. ..7. ./ /MATLABGpl work -POPmazS.m", "a"):
fpd = fopen(".. .. .. . .~. . /MATLABGpl-work- -POPmeanS.m", "a"i;

i

if (fp3 == NULL || fp4 == MULL) printf(">~nFEIL i fildpning 3 og 4 [~n");

Fprintf (£p3, "%d ", MIALL); fprintf(fpd, "%d ", MEAM):

sjekk = felose(fp3) + fclose(fpd):;
if(=jekk != 0) std::coutd<"Filene ble ikke lukket ordentlig."<{{'-n':

telse if(c==4) {

if(bix == 0){
fp3 = fopen(".. .. .. ../ . . MATLABGEp l-work -POPmazl.m", "a")
fpd4 = fopen("../.. ..~ .. /. . /MATLABbpl-work -POPmeanl.m", "a"):
lelse if(bix == 1){
fp3 = fopen(".. ..”..7..~. . /MARTLABGpl-work -POPmaz2.m", "a"):
fpd = fopen(".. ../../. ./ . . /MATLABGpl-work -POPmeanz.m", "a"i;
lelse if(bix == 2){
fp3 = fopen("..~.. ..~ .. .. MATLABGpl-work -POPmaz3.m", "a"):
fpd = fopen(".. .. /.. ../ . . /MATLABGpl-work -POPmeand.m", "a"i;
lelse if(bix == 3){
fp3 = fopen("..”.. ..~ .. /.. MATLABGpl-work -POPmax4.m", "a"):
fpd = fopen(".. .. /.. ../, . /MATLABGpl-work -POPmeand.m", "a"i;
lelse if(bix == 4){
fp3 = fopen("..”.. ..7..7/. . /MATLABGpl work -POPmazS.m", "a"):
fpd = fopen(".. .. .. . .~. . /MATLABGpl-work- -POPmeanS.m", "a"i;

i

if (fp3 == NULL || fp4 == MULL)printf("feil under apning av £il & ~n"});

fprintf (fp3, "~n"); fprintf(fp4, "~n");
sjekk = feolose(fp3) + fclose(fpd):
if{sjekk I= 0) std::cout{{"Filene ble ikke lukket ordentlig."<{'~n':

MTALL = 0: MEAN = 0:
snittall=0; maxtall=0:

s end if-else

1 s end function

vald readd4file() <~ leser fra filen og plotter grafer av filene produsert i writeZfile()

{ » 50

array fordi det er & # antall ganger.

FILE *fpS, =fph, *fp7:
gl[POPZ], g2[POPS]. g3[POPE). g4[POPS], gS[PUPS]. gb[POPS]. g7 [POPS], g&G[POPS], g9[POPS]. glO[POPS]:

int
int
int
int
int
int

gll[POPS], glz[POPS]., gl3[POPS], gl4[POPS], glS[POPS]. gl6[PUOPS],
g21[POPS], g22[POPS], gZ3[POPS], g24[POPS], gzS[POPS]. gZ6[PUOPS],
g31[POPS], g32[POPS], g33[POPS], g34[POPS], g3S[POPS]. g36[PUPS],
q41[POPS], g4Z[POPS]. g43[POPS]. g44[POPS]. g45[POPS]. g46[PUPS]
a=0, tall=0., i, s, sjekk = 0. sjekk2 = O0:

for(s=1; s<{=10; s++){

printf ("~n>n");

if(===1){
fpe = fopen(".. ..”/../. ./ . MATLABGp lywork -GrafMazl.m", "w"):
fps = fopen("..”/..”/../../. . MATLABGp lYwork-POPmaxl.m", "r"):
1f(fp5 == MULL || HULL)printf ("selvmord! Zdsn", s):

lelse 1f(s==2){
fpE = fopen(" oS /MATLABER 1 work-GrafMaz2.m", "w');
Fps = fopen{".. /. #MATLABER 1 /work /POPmazZ.m", "r");:
iF(fp5 == MULL || NULL}printf {"selvmord! %d“n", =):

lelse if(s==3){
Fph = fopen(" /. oMATLABGp 1 /work /GrafMazd.m", "w");
fps = fopsn(".. A MATLABER L wark -POPmax3d.m", "r");
1f (fp5 == MULL || NULL)printf ("selvmord! Zdwn", s):

lelse if(s==4)]
fp& = fopen(" LA MATLABER L work-CrafMazd.m", "w');
fps = fopsn(".. Ao A L MATLABER L wark -POPmaxd.m", "r");
1f (fp5 == MULL || NULL)printf ("selvmord! Zdwn", s):

lelse if(s==5){
fp& = fopen(" LA MATLABER L work-CrafMazs.m", "w');
fps = fopsn(".. LS A L MATLABER L wark -POPmaxs.m", "r');
1f (Fp5 == MULL || NULL)printf("selvmord! Zd-n", s):

lelse if(s==8){
fpb = fopen(".. .. ../, . /. . /MATLABEp l-work-Grafdeanl.m", "w");
fps = fopen(".. ../..7../. ./ METLABGEp l-work-FPOPmeanl.m", "r");
if (fp5S == MULL || fpb == NULL)printf("selvmord! Zd-n", s):

gl7
q27
g37
g47

POPZ], gl8[POPS], ld[POPS]. gz0[POPE]:
POPE], g28[POPS], 529[POPS]. g30[POPE]:
POPS], g38[POPS], 539[POPS]. g40[POPE]:
POPS], g48[POPS], 543[POPS]. gSO[POPE]:
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I
} SO e

void readdfile() -~ leser fra filen og plotter grafer av filene produsert i writeZfile()

sjekk = fclose(fp3) +

felose(fpd):

if{sjekk != 0) std::cout<<{"Filene hle ikke lukket ordentlig."<<'=n';
MTALL = 0; MEAM = O;
snittall=0: maxtall=0:

s end if-else
nd function

{ #- 50 array fordi det er 5 * antall ganger.

FILE
int
int
int
int
int
int

for(

*#fp5, *=fpb,
g1[POPE],

*fp7;

g2 [POPE],

g3[POPS] .

g4[POPS], g5[POPS]. g6[POPS], g7[POPE], yB[POPS],

g9[POPS ],

g10[POPS]:

gli[POPE], g12[POPS], w13[POPS], g14[POPR], giS[POPS], gl1A[RDPS], gi7[POPS], gl18[PORS], g19[ROPS]. g20[POPS

g21[POPS].

[ g22[FOPS],
g31[POPE], g32[POPR],
[

g27 [FOPS],

g37[FORS],

g2B[POPS
g38[P0PS

1.
1.
]

g29[FOPS], g3l
g39[PORS], g4l

[
[
[
[

FOFZ
FOPZ

g41[POPE]. g42[POPE]. g43[POPS], g44[POPS]. g45[POPS]. g46[P0PS]. g47[POPE]. g48[POPS], g49[POPE]. g50[POPE

a=0,

s=1; s<=10; s++){
printf{"~n~n");
if{s==1){
fph '
fps '
if(fpS
telse ifis
fph = fopen("
fps = fopen("
if(fpS == MULL
lelse ifis {
fph ("
fp5s ("
if(fps
lelse ifis {
fpe = fopen("
fps = fopen("
if (fp5 == MULL
telse ifis==5){
fph = fopen(".
fph = fopen(".
if (fp5 == MULL ||
lelse ifis==6){
fph = fopen("
fps = fopen(".
if(fpS == MULL ||
fscanf (Fp5," Zd", &i):

JLF(GNR > 30){

fescanf (Fp3." Zd", &1);
fscanf (fpS." xd", &1):
fscanf (£pS," 2d", &i);
fscanf (fp5," Zd", &1):
facanf (fp5," Zd", &1):
fscanf (FpS." d", &1):
fscanf (fpS." xd", &1):
fscanf (£pS," 2d", &i);
fscanf (fp5," Zd", &1):
facanf (fp5," Zd", &1):
TLE(GHR > 40){
fscanf (fpS." xd", &1):
fscanf (fp5," Zd", &i):
fscanf (FpS," #d", &i1);
faeanf (FpS," xd", &i);
fscanf (fp3." 2d", &i):
fscanf (fpS." xd", &1):
fscanf (fp5," Zd", &i):
fscanf (FpS," #d", &i1);
fegeanf (FpS." 2d", &1):
fscanf (fp3." 2d", &i):
+
for(a=1; a<POP3;: a++){
Ssprinte(t. ")
fecanf (fp5." Hd",
focanf (£p5," =d",
fscanf (Fp5." zd",
fecanf (Fps." xd",
fscanf (fps." =d",
fecanf (fp5." Hd",
focanf (£p5," =d",
fscanf (Fp5." zd",
fecanf (Fps,." zd",
fscanf (fps." =d",
if(GNR > 10){
focanf (£p5." =d",

fscanf (fp5," 2d",
fecanf (fp5,." #d",
Tif(GWR » 1314

fscanf (fp5." xd".
fscanf (fps," xd",
fscanf (fp5," 2d",
fecanf (fp&,." xd",
fecanf (fp5." Zd",
fecanf (fpS." Hd".

fscanf (fpS," xd",
Vif (GHR > 20){

tall=0, 1, =, sjskk

g23[POPS], g24[POPS], g25[POPS], g26[FOPS].
g33[POPS], g34[POPZ], g3S[POP3], g36[FOP3].
[ ] ]
=0, sjekk? = 0:
eSS METLABGp Lrwork /BrafMaxl.m", "w')
eSS METLEBGp Lwork ~POPmaxl.m", "r"i;
fph == NULL)printf("selvmord! %d~n"., s):
eSS s L MATLABGp Lrwork ~GrafMax2 . m", "w' )
eSS s METLEBRp Lrwork ~POPmaxz2 .m", "r"i;
fph == NULL)printf("selvmord! %d~n", s):
e MBTLABGR Lrwork ~CrafMax3.m", "w'):
eSS s MATLEBGp Lrwork ~-POPmax3.m", "r"i;
fp NULL)printf ("selvmord! Xd~n", s):
WA S MBTLABGR lwork~GrafMaz4.m", "w'):
S MATLEBGp Lrwork ~POPmaxd . .m", "r"i;
fph == NULL)printf ("selvmord! Zd-n", s);
A A s /METLABGp l/work ~GrafMaxS.m", "w'):
eSS s MBTLABER Lrwork ~POPmaxzs.m', "'
fp HULL)printf ("selvmord! Xd-n", s):
eSS METLABGp Lwork #GrafMeanl.m”, "w')
AR S /MATLAEBpl/work/POPmeanl m", "r")]
fph == NULL)printf("selvmeord! %d~n', s);
g30[a] = i:; ~/printfi" =d ", i
g3l[a] = 1i; ~printf{" zd ",
g32[a] = i:; ~/printfi" xd ",
g33[a] = i; Asprintf(" d U,
g34[a] = i; Asprintf(" zd ",
g35[a] = i: Asprintf(" zd ",
g36[a] = 1: A/printf(" =d ",
g37[a] = i:; </printfi" xd ",
g38[a] = i; Asprintf(" d ",
g39[a] = i: Asprintf(" zd U,
g40[a] = i: A7printf(" zd ",
g4l[a] = i; < printfi" xd ",
g42[a] = i; Asprintfi" xd ",
g43[a] = i: Asprintf(" Zd ",
gd44[a] = i: Asprintf(" zd ",
g45[a] = i: ~/printf{" d ",
g46[a] = i; ~sprintfi(" xd ",
g47[a] = i; Asprintfi" xd ",
g48[a] = i:; Asprintf(" Zd ",
g49[a] = i; Asprintf(" zd ",
g50[a] = 1i: ~/printf{" xd ",
&i): glfal = gl[a-1] + i:
&i): g2la] = gZla-1] + i:
Ei): g3fa] = g3[a-1] + i:
E1i): g4[a] = gd4[a-1] + 1i;
&1)s g5[a] = g5[a-1] + 1i;
&i): gGlal = g6fa-1]1 + 1i:
&i): g7la]l = gFla-1] + i:
Ei): gBla] = gB[a-1] + i:
Ei): g9[a] = g9[a-1] + 1i;
&i); glOfa] = glO[a-1] + i
Ei): gllfa] = gll[a-1] + i;
Ei): glZ2[a] = gl2[a-1] + 1i;
Ei): gl3[a] = g13[a-1] + 1i;
&i): gld4fal]l = gld4[a-1] + i:
Ei): gl5[a] = gl5[a-1] + i;
Ei): glela] = gl6[a-1] + i
&1} gl7[a]l = gl7[a-1] + i:
&1); gl8la] = gld[a-1] + i
&i): gl9[a] = gl8[a-1] + i:
Ei): g20[a] = g20[a-1] + 1i;

1:
1:
1:
1:



fscanf (Fp5," zd", &i
Jif (GNR > 30){

focanf (fp5.,

fscanf (£p5," %d", &1
Jif (GNR > 40){
fscanf (fp5." Zd", &i

fscanf (fp5,"

focanf (fp5." xd", &i
fscanf (fp5," %d", &i
fscanf (fp5." 2d", &1

focanf (fp5." 2xd", &1
fscanf (fp5." 2d", &1
fscanf (Fp5,." Z2d", &1
focanf (fp5." xd", &i

I

if(s ==

tall
tall
tall
tall
tall
tall
tall
tall
tall
tall
if (GNR
tall
tall
tall =

L
!
E
fscanf (£p5," Zd", &1
!
!
L
l

2){felose(fpb):

HEGBHR > 13){

tall
tall
tall
tall
tall
tall
tall =

}1f(GNR > 2004

tall =
tall
tall
tall
tall
tall
tall
tall
tall
tall =

}1f(GNR > 3094

tall =
tall
tall
tall
tall
tall
tall
tall
tall =
tall

iE (AR > 40]{

tall
tall
tall
tall
tall
tall
tall =
tall
tall
tall

sjekk =
if(sjek
sjekk =
sjekk =
if(sjek

T </ end
<7 end rout

g1[POPS-1]#POPS; fprintf(fp6,"%d ", tall): printf("#d ", tall);
g2 [POPS-1]/POPS; fprintf(fp6."%d ", tall):
g3[POPE-1]/POPS: fprintf(fp6."%d ", tall):
94[POPS 11/POPS; fprintf (fpé,"%d ", tall);
S[POPS-1]-POPS; Fprintf(fp6,"zd ", tall);
gG[POPS 1]/POPE:  fprintf(fp6."%d ", tall):
g7 [POPS-1]1-POPS: fprintf(fpé."xd ", tall):
gB[POPS-1]-POPS; fprintf(fph,"%d ", tall):
g9[POPS-1]/POPS; fprintf(fp6,"%d ", tall):
gl0[POPE-11-POPE: fprintf(fp6."%d ", talll:
310y 4
g11[POPS-1]/POPS; fprintf(fp6,"zd ", tall):
gl2[POPS-11-POPE: fprintf(fp6."%d ", talll:
gl3[POPS-11-POP3; fprintf(fp6."%d ", talll;
gl4[POPS-1]-F0P3; fprintf(fpb."%d ", tall):
glS[POPE-1]-F0P3; fprintf(fpb,"%d ", tall):
glE[POPS-1]-P0PS; fprintf(fpb,"xd ", tall):
gl7 [POPS-1]-P0P3;  fprintf(fpb,"%d ", tall):
g1B[POPS-1]/POPS; fprintf (fph,"%d ", tall):
g13[POPS-1]/POPS;: fprintf (fp6,"Zd ", tall):
g20[POPS-1]/POPS; fprintf (fph,"#d ", tall):
q21[POPS-1]-POPS; fprintf (fp6,"xd ", tall);
q22[POPE-1]-POPS: fprintf (fp6."%d ", tall):
q23[POPZ-1]/POPS: fprintf (fp6."%d ", tall):
q24[POPS-1]-POPS: fprintf (fp6."%d ", tall):
q25[POPS-1]-/POPS; fprintf (fp6,"%d ", tall):
q26[POPS-1]/POPS; fprintf (fph,"%d ", tall):
927 [POPE-1]/POPS: fprintf (fph,"Zd ", tall):
g2B[POPS-1]/POPS; fprintf (fp6,"%d ", tall):
g29[POPS-1]/POPS; fprintf (fph,"%d ", tall):
g30[PORS-1]/POPS; fprintf (fph,"%d ", tall):
g31[POPE-1]-POPS: fprintf (fp6."%d ", tall):
g32[POPZ-1]-POPS: fprintf (fp6."%d ", tall):
g33[POPS-1]-POPS: fprintf (fp6."%d ", tall):
934 [POPS-1]-POPS; fprintf (fp6,"%d ", tall):
g35[POPE-1]/POPS; fprintf (fph,"%d ", tall):
g36[POPE-1]/POPS: fprintf (fph,"Zd ", tall):
937 [POPS-1]/POPS; fprintf (fph,"%d ", tall):
g3B[POPS-1]/POPS; fprintf (fph,"=d ", tall):
g33[POPS-1]-POPE; fprintf (fp6,"xd ", tall):
= g40[POPE-1]-POPS: fprintf (fp6."%d ", tall):
g41[POPS-1]-P0P3; fprintf(fpb,"xd ", tall):
g4Z [POPS-1]-P0P3;  fprintf(fpb,"%d ", tall);
g43[POPS-1]/POPS; fprintf (fph,"%d ", tall):
g44[POPS-1]/POPS;:  fprintf (fp6,"Zd ", tall):
g45[POPS-1]/POPS; fprintf (fp6,"#d ", tall):
946 [POPS-1]/POPS; fprintf (fp6,"#d ", tall):
g47 [POPS-1]1-FP0P3; fprintf(fp6,"%d ", tall);
g48[POPS-1]1-F0P3; fprintf(fpb."%d ", tall):
g49[POPE-1]-F0P3; fprintf(fpb,"%d ", tall):
gSO0[POPS-1]-P0PS;  fprintf(fpb.,"%d ", tall):
felose (fpS5)
k != 0) printf("Filene ble ikke lukket ordentlig.>n");:

o;
felose (fph);

k |= 0) printf("problems wved lukking av fill"):

for
ine

fpe = fopen("

> og2lfal = g2l[a
> g2zlal = g22(a
:og23fal = g23[a-
;og24[a] = g2dla-
> g25[al = g25[a-
: g26[al = g2bla-
pog2ilal = g2ila-
> g2B8[al = g28la-
> g29[al = g29[a-
: g3l[a] = g30[a-
: g3illa] = g3lla-
: g3Z[a] = g32[a-
; g3dfa] = g3d[a-
: g3d4fa]l = g3dla-
; g35[a]l = g35[a-
; g3bfa] = g3bla-
: g3fla] = g37[a-
> g3iGlal = g3bla-
: g39[a]l = g3dla-
; og40[a] = g40[a-
1: g4l[a] = g4lf[a-
1 g42[a] = g42[a-
1 g43[al = g43[a-
Vs g44[al = g44[a-
1: g45[a] = g45[a-
1: gd6[a] = gdb[a-
1: g47[a]l = g47[a-
1: g48[a] = g4B8[a-
1 g49[a] = g49[a-
1: g50[al g50[a-

O T i T Ik Tk T S S A
- -

s
.

s s s U MATLABBp LrworkABrafMaxn2 ",

gy
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seexxe FITHES

int snitt()
int mean

for(a=0;

for{a=0: a<IDV: a++){ if(fitness[a]lrbig) big

mean = me
if (mean >
return me

}

int maxi()

1
int hig =
return bi

}

T T )

int getBit(in

S-FUNESJONER #%%%%

0, a:

alIDV; a++){ mean
an/TDV;
MEAN) MEAN

mean:

an ;

0, a:

g

EHANDLINGE RUTINER

t numb, int index)

mean + fitness[a];

ERRRKKKKKER

returni {numb & (int) pow({Z.index))>0):

int rank()

int a.
int n[IDV

1:

b=1, &, e=0, num=0,t=0, s=0;

¥

<4 legger sammen alle fitnessens
A7 deler pd # fitness
4 sjekker om den er sterre enn tidl.

fitness[a]: } -~ finner den sterste 1 fitness-arrayvet.

for{a=0: a<IDV¥: a++)nla]l=0: -~ nullstiling av n-array

for(e=0;
num =
for(a

i

T
} 7.
nlec]
fitez[
fitne
A2 En

i

for{e=0; e<IDV; e++){ if(fitness[e]==10)t

return t:

tournamen

int a, b,
for(a=0;
=
d

I
I

aCIDV: e++)

o;

=0: a<IDV;: a++){

fin[a]
o
num fitness[a]
4 end 1f

< end for

1:

ar

e]
Rl
d for

fitness(c];
IDV-e;

o

c, d, e;
a<IDV: a++){
andom (IDV)
andom (IDV)

== 0 && fitness[a]

»= num){

E

if (fitness([c]>fitness[d]) =e=c;

else

for(b=0;b<GEN;h++)temparray[a] [b]

return 1;

es(){ /7

int a,b:
if (ra ==

for{a=0:
for(h

if

if

i

}
if

e=d;

utvelgelse istedenfor ruletten.

0) rank():

a<IDV: a++){
=0; h<GEM; h++){

(fitness[a]
temparray
temparray
temparray
temparray

[

(fitness[a]
temparray |
temparray |
temparray |

f(fitness[a]
temparray |
temparray |

(fitness[a]
temparray |

hovedarray [
hovedarray[
hovedarray [
hovedarray[

oo

hovedarray[a] [b]
hovedarray[a] [b]
hovedarray[a] [b]

hovedarray([a] [b]
hovedarray[a] [b]

hovedarray[a][b]:

hovedarray[e] [b]:
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i

return 1;

int rulett() - Roulette Selection

int a, b, @, ny, dell=0, del?, talll, tall2;
long int sum = 0, tall = 0O:

for{a=0; a<IDV; a++)

{
sum = sum + fitness[a]:
} < Bccumulates all the fitnessess100 (maxz 15 bit, 32¥67)

if(sum > 32000){ dell = sum<2; del? = sum~2; } - in case 1t is too hig for the random, make ? partiticons
for{a=0; a<IDV: a++)
if(dell 1= 0)
{ /v if total fitness was too big, each partition is treated separately
talll = randem(dell);
tall? = randem(del2);
tall = talll + tallZ:
Jelse{ tall = randemisum): }  Finner random tall fra 0 til ay med summen av fitnessens.

<7 trekker fitnessene fra det random-tallet og wvelger nytt individ til temparray den fitnessen som "bruker opp" tall.
ny = 0;
for(c=0; c<IDV; c++)
i 77 Roulette
tall = tall - fitness(c]:
if{tall <= 0){ ny=c; c=IDV;} ~ Checking if the roulette have stopped.
¥ 77 end for

for(bk=0; bB<GEMN; b++) temparrav([a][h] = hovedarrav[nv][bh]:; ~ hvis ellitisme vil de to ferste hll overskrevet seners
} # end for

return sum;
T < end function

int ellitisme(int =sjekk)
int nbl=0, nh2=0, fitl=0, £it2=0, fit3=0, a. c. d, e=0, f=1:
if (ELLI == 0) return 0:
else if[(ELLI == 2]

if(sjekk == 1) {7 **x==sxxxxx* Finne de 2 sterste fitnessverdienes Individnummer.s®ssssessees
for(a=0; a<IDV; a++){ fit3 = fitness[a]: -~ fitness starrelsen blir lagt i fit3 for sjekking

% fitvariablene er sterrelsen pi fitnessene, nb inneholder IDVtallet */

if(fit3 »>= fitl) A dersom ny fitness er sterre enn gammel
fit2 = fitl; -~ dytter farsteplass ned pd andre
fitl = fit3; -~ ny fitness inn pd fersteplass
nb2 = nbl; -~ plasseringen blir ogsid gjort om
nhl = a; </ ny plassering inn pad farsteplass
Jelse if(Fit3 » FitZ && F1t3 < £Fitl){
fitz = fit3:
nk2 = a;

T <7 end for

S wxxxxxxxxxxxxxxxx [ese inn GEN-strengene inn i elli-arravet
d = nbl: /7 for 4 starte med den starste

for(c=0; c<(GEN*2): c++)

{

elli[c] = hovedarrav[d][e]; e++:
if (g==0EN &% d==nhl){ d = nbhZ; & = 0; } ~ end if
1 <7 end for

if (sjeklk==2) [ rxxxxxxxx Logge [itnessverdiens inn i hovedarray fra elli-arrgy xxxxxxxxxex

1 - end if

hovedarray[f][e] = elli[e]:
e+t
1 < end for
T <7 end if
} 4 end if
return 1:
} 7 end function

woid kryss()
{

int a, b, ¢, d, j, k., 1;
int brukt [IDV]:

o = COXs2; /7 trenger bare halvparten fordi den krysser med den under
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for(j=0; j<IDV; j++) brukt[j] = 0; ~~ nullstiller brukt-arravet

For (k=0; k<c; k++){ ~~fvller opp brukt arravet med kryvsningspunkter ~ krysser med den under. COX = antall krysninger 1 en p
1 = random(IDV-1):
1f (brukt[1l] == 1) k-—-; /7 P& denne maten maz et krysningspunkt per Individ!!
else brukt[l]=1;

}

d= IDV-1;

for(a=0; a<d; a++) -~ den gar bare til den nest siste for & kunne krysse med den under
{

if(brukt[a]==1) -~ Da skal den krysse
for{h=0: b<GEN: h++)

if (temparrav[a][k] » 255)printf ("FEIL far krysslwn"); /7 feil fordi intZhin ikke takler det.

ifib==1)
{
hovedarray([a] [h] = temparray[a+1][h]:
hovedarray([a+1][b] = temparray([a]l[h]: < hvis feil bytt med n = a+l
glse
{

hovedarrav([a][h] = temparrav[al[k]; ssgkal krysses med den under
hovedarray[a+1][b] = temparray[a+l]([b]; ~~ disse blir nd kun krysset 1 "skjstens" mellom gen' ens /posisjone
T A end if-else
1 77 end for
lelse {

for{h=0: b{GEN: h++){
if (temparrav[a][k] » 255) printf("FEIL fer kryssZ-n");:
hovedarray[a][b] = temparrav(a](b]:
T s end if-else
B #7 end for
1 s end function
voild muter()
int a, b, o, d, =p, tall=0;
for(a=0; a<EMUT; a++)
{
b = random(IDV); c = random(GEN);
if (hovedarray[b] [c]>255) {printf ("**alternativ mutasjonx**="): hovedarray[b][c] = randem(255):}

= int2bin(hovedarray([b][c]):

B
d = random(BIT); -~ muterer néd pa pauser og alt.

iE(p[d] == 0y p[d] = 1:

else p[d] = 0:

hovedarray[b] [¢] = binZint(p):
h <7 and for

¥ s« end functicn

int random{int spenn) /< metode som returnerer et tilfeldig tall mellom 0 og parameteren
{
static int seed = -1;
int tall:
if [seed==-1) < ar denne if-testen nedvendiy, ja, pga sesd er static?

gseed = GetTickCount(): ~~ for at seed ikke skal bli den samme som forrige, teller den med klokka
srand (seed) : /# henter inn en ny seed velger random av den

} /< end if

tall = rand() #spenn:

return tall;

s KONVERTERINGS -FUNESJONER

int grayZbini{int g)

int Flip=0;
int result=0;

for (int n=12; n>=0; n--)
1

result = result + (flip ~ getBit(g.n)) * pow(Z.n):
flip = getBit({g.n)] "~ flip;
+
return result;
} s« end grayzbin

int hinZgrayGenersll{int k)

s« funker for b < 2729
int g=0;
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for (int i=0; 1<30; 1++)

g=9+

return g

int

int =,

tall=0:

l

{(b&(intipow(2,1))>0) ~

for{z=(BIT-1): =»=0; 2--){

i

iffarr[z] == 1)
tall =

<« and for-loop

return tall:
T s/ end function

int

int tall =i, k:

int =jekk =

4096;

7 nuller ut

for(k

}
if
{

binl[k] = 0:

(tall »= sjekk)

0: k < 12; k++)

tall + ((int)pow(2,x]);

printf ("~nTALLET: %d". tall):

printf ("Ditt tall er for stort!

return NULL:

else

i

for(k=11; k»=0; k--)
{

sjekk =

sjekks2;

if(tall = sjekk)

binl[k] =

tall =

}## end if

T <7 end for
return binl:

<< end if-else

B <7 end Function

SERERREREEERERAERERER

int runC(double pau, int C1, int CZ,

const
canst
canst

static
static
static
static
static
static
static
static
static
static
static
static
static

double
double
double
double
double
double
double
double
double

int
int

double g
double Tinc
double cylOkn

double
double
double
double
double
double
double
double
double
double
double
int

int

Svi
S=x0
Vel
vzl

Ll old;
L2 _old;
L3_old;
L4 _old;

S=:
Sy
4
Yy
kropsH;
fotl ¥
fot2_¥;
fot1_X;

fot2 ¥;

fotl_iBakken:
fotZ_iBakken:

if (Res==1)

1;

fotl ¥ ald;
fot2 ¥ _old:

kropsH_old;
fotl_iBakken_old;
fot2_iBakken_old:

simulator

-9.8;
.ooa;
L0o01;

.20;
=+
L20;

<7 halverer sjekk

tall - sjekk:

((b&(int)pow(2,1+1)1>0) )

<410

binZint(int arr[BIT]) ¢ gjer om et hinsrt-array til en int.

*intZbin{int i) ~ Det minst signifikante bitet havner pa bin[0]

Fan ikke oversettes til binaert.~n"):

<7 MIE*s
Ean-1-1'4

/7 meter

s/koordinat til larfeste
sskoordinat til larfeste

i

L1 old
L2 ald
L3_old
L4_old

fotlengder(&fotl ¥ old, &fotl ¥, &fotZ ¥ old, &fot2 Y,

eyll 1ng(C1,10):
eyl2_log(C2.10);
eyl3_lng(C3.10):
oyld lng(C4,10);

<+ eylinder inkrement

int C3, int C4, int Res, int Skrivlt, FILE= filPsk)

Sx0.8v0, Ll old,L2 old,L3_old,L4_old, Skrivlt, filPek):
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if ( Fotl ¥ < Fot2 ¥ )
kropsH old = -fotl ¥;
else
kropsH_old = -fot2_¥;

Bv0 = kropsH old;
3x0 =0.1:

W0 = 0;

Vxz0 = 0;

fotl iBakken = (-fotl ¥) > (3y0 - 0.00001):;
fotZ_iRakken = (-fotZ_¥) > [Sy0 - 0.00001);

return (int) (Sx0=1000):

for (double t=0; t<pau; t=t+Tinc)

{
int lik = likeBevegelser(Ll_ old,.LZ_old.L3_old.L4 old, C1,C2,C3.C4);

double L1 = eyll_Ing(Cl,eylOkn*lik);
double L2 = eyl2_lng(C2,eylOkn*lik):
double L3 = cyl3_lng(C3,cylOkn*lik);
double L4 = oyld Ing(C4,eylOkn*lik);

fotlengder (&fotl ¥, &fotl ¥, &fot2 X, &fot2 ¥, 3x0,3y0, L1,L2,L3.L4, Skrivlt, filPek):

if ( Fotl ¥ < Fot2 ¥ )
kropsH = -fotl ¥;
else
kropsH = -fot2_¥;

fotl_iBakken = (-fotl ¥) > (2v0 - 0.00001);
fotZ_iBakken = (-fot2Z_¥) > (3y0 - 0.00001):

if (fotl_iBakken || fotZ_iBakken)
{ <7 HWIS I BAEEEN MED MY EROPP
if (fotl_iBakken)

{
if (fotl X I= fotl ¥ old) <~ HVWIS FOT 1 SPAREER BORTOVER
Wzl = -(fotl ¥ - fotl ¥_old)- Tinc:~~ 31 INITEIELL V0 fart
else if (| (¥y0xD) ) </ HVIZ EROPP INITSIELLT IKKE BEVEGER SEG OPPOVER OG
VzO = 0; 77 FOT IEEE SPARKER BORTOVER :: SETT INITISIELL ¥xz0O fart til O
I
if (fotZ_iBakken)
{
if (fot2 X = fotZ ¥ old) s/ HVIS FOT 2 SPAREER BORTOVER
Wzl = -(fotZ_ ¥ - fotZ2 ¥ old) Tinc:~” GI INITEIELL V=0 fart
else if (| (Vy0>D) ) < HVIZ EROPP INITSIELLT IKKE BEVEGER SEG OPPOVER OG
Vz0 = O; <7 FOT IEEE SPARKER BORTOVER :: SETT INITISIELL ¥x0 fart til O
}

if  (kropsH » kropsH_old)

I </ HVIS SPARKER OPPOVER
Wyl = (kropsH - kropsH old)~Tinc: <« 31 INITSIELL Wyl fart
}
1
S B
Sy = Tinc*Tinc*g-2 + Vy0*Tinc + Sy0: < FINN NY ¥ POSISJON
Vy = Tinc*g + Vy0: <7 FINN MY ¥ FART
if [ {8y + 0.00001) < kropsH ) <7 HVIS KLEMT WED I BAEEEN
Sy = kropsH; ~+ REIZ OFF
A e pesssvssreesrerev s CREE R R R R e
Sz = WzO*Tinc + 3x0; <7 FINW MY ¥ POSISJON
Vz = WVzl: <7 FINW MY ¥ FART
e

fotl ¥ _old = fotl _¥:

fot?z ¥ ald = fot2_¥:
fatl_iBakken_old = fotl_iBakken:
fot?_iBakken old = fotZ_iBakken:
Ll old = L1;

L2 old = LZ;

L3_old = L3;
L4_old = L4:

kropsH old = kropsH:

Syl = Sy

Sxl = 3=

Yyl = Viyr

Vzl = Vx:

1

return (int) (Sx0=1000);

S

inline int likeBevegelser(double L1 old,double L2 old,double L3 _old,double L4_old,int Cl,int C2,int C3,int C4)

1

int lik;

if [ (Ll eld == L3_ald) &k (LZ_ald == L4_ald) && (C1==C3) && (C2==C4) )
lik = 2

else
lik = 1;

return lik:

107



s

inline int likeBevegelser(double L1_old.,double L2_old,double L3_old,double L4_cld,int Cl,int CZ,int C3,int C4)

{

int lik:

if ( (Ll_old == L3_old) & [LZ_old == L4_old) &&
lik = 2;

else
lik = 1;

return lik:

s
s

inline void fotlengder(doublex X1, double* Y1, double* X2, doublex ¥2, double Sz,

{

## L1 - lengde pa larsyld

47 L2 - lengde pad leggsyld

/< L3 - lengde pad larsylB

## L4 - lengde pd leggsylB

44 %1, ¥1 hel relativ til larfeste fot & (origo)

[C1==C3) && (C2==C4)

4/ X2, ¥2 hel relativ til larfeste fot B (samme origs)

const double TVE lng = 0.03:
const double TVE_BAK lng = 0.01;

const double LAA lng = 0.081:
const double LAA lngl = 0.01;

const double LEGE lng =
const double LEGG_lngl

)

double Sy, double L1, double L2, double L3, do

double Vind = acos((TVE_lng*TWE_lng + L1*L1 - LAA Ing*LAA lng) ~ (2*L1 * TVE_lng)):

double CyHoyl = L1 *sin( Vin& )
double CyBakoverl = L1 *cos( Vind ):
double VinC = atan(CyHoy 1/ (CyBakoverl-TVE Ing));

double LarBak = cos(VinC)* (LAZ_lng+LAb_lngl);
double LarHoy = sin(VinC)=[LAE lng+LEA 1ngN);

double LarX
double Lar¥

- LarBak:
- LarHaoy;

double m = sgrt{larHoy*LarHoy + (LarBak-TVE_BAK lng)#* (LarBak-TVE_BAE lng)):

double VinE = acos((m*m + L2*LZ - LEGG IngN=LEGG lngH) ~ (2%m * L2)):

double VinF = acos(LarHoy./m):
double VinD = PI - VinF - VinE - PI-2;

double CyBx2 = - TVE_BAE_lng - cos(VinD)*L2Z:
double CyBy2 = - sin(VinD)=L2;

VinC = asin((LarX-CyBx2)-LEGG lngN);

X1
*Y1

= Lar¥ + =in(VinC)*LEGG_lng:
= Lar¥ - cos(VinC)#*LEGG lng;

if (Skrivits0)
{

fprintf(filPek, "d %d %d
fprintf(filPek., "Zd %d %d

Fadrag
oA

if (Skrivllt==2)

{
fprintf (filPel, "Zd xd
fprintf (filPek, "Zd Zd
fprintf (filPek, "%d >
}

PR
o3 o =)
&

VinA = acos((TVE_Ing*TVE_lng + L3*L3 - LAB_lng*LAE_lng) ~ (2%L3 * TVE_lng)):

CyHoyl = L3 =sin( Vina ):
CyBakoverl = L3 #cos( VinA )

VinC = atan(CyHoy1l-(CyBakoverl-TVE lng)):;

LarBak = cos(VinC)#* (LAR lng+LAA 1lngH):
LarHoy = sin(VinC)#*(LAA Ilng+LAA_lngh);
Lar¥ = - LarBak:
Lar¥ = - LarHoy:

sn", (int)((CyBx2+5=z)=1000),

dan', (int) ((Sz-TVE_BAK_lng)*1000),
d~n", (int) ((Sz+TVE_lng-CyBakowverl)=1000) ,
dan', (int) ((CyBx2+5x)*1000).

m = sqgrt(LarHoy*LarHoy + (LarBak-TVE_BAE_lng)* (LarBak-TVE_BAK 1lng)):

WinE = acosi(m*m + L4*L4 - LEGG_lngl*LEGGE_lngMN) ~ (2%m * L4));

VinF = acos(LarHeoy.-m):

VinD = PI - ¥inF - VinE - PI~Z;

“n", (int)((Lard+Sz)*1000), (int)(Sx*1000), (int)((Lar¥+Sy)*1000), (int)(Sy*1000) }; /~ LAR
(int) ( (*X1+Sx)*1000), (int)((CyBy2+5Sy)=1000), (int)((*Y1+Sy)*10

(int) ( (Sx+TVE_lng)*1000), (int) (Sy+*1000). (int) (Sy=*10

(int) ( [(Sx+TVE_lng)*1000), (int) [ (Sy-CyHoyl]*10

tint){(Sx-TVE_BAE Ing)*1000), (int){(CyBy2+2y)*1000), (int)
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CyBx2 - TWE_BRE_lng - cos(VinD)=L4;

CyBy2 - sin(VinD)*L4;
VinC = asin( (Lari-CyBz2)-LEGG_lngh):
*#32 Lar¥ + sin(VinC)*LEGG _lng:

*i2 Lar¥ - cos(VinC)*LEGG lng:

if (SkrivUt>0)

fprintf (FilPek, "%d %d %d %d
fprintf (FilPek, "%d %d %d %d~a".

if (Bkrivlt==2)

1
fprintf(filPek, "%d %d Zd Zd~n'".
"d d d Zds

fprintf (filPek,
i

inline double cyll lng(int C, double incr)
{

const double CYL_lng max =
const double CYL_lng min =

0.103;
0.091;

static double L = CYL_lng min;

=L + incr:
f (L > CYL_lng_max)
E CYL_lng_max;

return L:

if (C==0)
{
L =i = iners
if (L < CYL_lng_min)
L = CYL_lng_min:

return L:

return 0:

inline double cyl? lng(int C, double incr)
{

const double CYL_lng_max =
const double CYL_lng_min =

0.o8z:;
0.076:

static double L = CYL_lng_min:

+ incr;
» CYL_lng_max)

L
F (L
L = CYL_lng_max;

return L

L - incr;
if (L ¢ CYL_lng_min)
L = CYL_lng_min;

return L
return 0;

inline double cyl3_lng(int C, double incr)

const double CYL_lng_max
const double CYL_lng_min

0.103;
0.091;

static double L = CYL_lng min:

D R
if (C==1)
{
L =L + incr:
if (L » CYL_lng_max)
L = CYL_lng_max:

(int) [ (Sz+TVE_lng-CyBakoverl)=1000) .,

(int) [ (CyBz2+5x)*1000) .,

(int) [ (*X2+5z)*1000),

{int) [ (Sz-TVE_BAK Ing)*1000),

(int) ( (CyBy2+5y)*1000),

(int) ( (Sz+TVE_lng)=1000),

(int) ( (CyBy2+5y)*1000) ,
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(int) { (CyBx2+5z)*1000), {int) ( (*Y2+5y)*10

(int) ( (Sy-CyHoy1l)*10

(int)



return L;

i
if (C==0)
i
L=1L incr;

if (L < CYL_lng_min)
L = CYL_lng min;

return L;

i

return 0;

inline double cyl4 Ing(int C, double incr)

const double CYL_lng_max
const double CYL_lng_min

0.08z2:
0.076;

static double L = CYL_lng min;

e e
if (C==1)
i
L =L + inecr;
if (L > CYL_lng_maz)
L = CYL_lng_max;
return L;
}
if (C==0)
1
L =1L incr;

if (L < CYL_lng_min)
L = CYL_lng min;

return L;

i

return 0;

}
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