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ABSTRACT

This thesis presents a framework for modeling and developing temporal in-
formation systems. The framework defines a model driven development
process which automatically transforms temporal system models into ex-
ecutable systems.

Temporal applications have semantics not represented in conventional
modeling languages, and the main contribution in this case is a temporal
extension to an existing UML profile. The UML profile is extended with
temporal concepts and constructs to provide a temporal conceptual model-
ing language. Temporal features are introduced by model elements defined
with valid time semantics, that is, the information model captures earlier and
possible future states as well as the current state of entities. The approach is
based on timestamping entities with valid time intervals to represent when
states of an entity were valid in the modeled reality.

Based on the semantically extended models designed using the temporal
profile the framework allows automatic code generation of temporal inform-
ation systems . Thus, we provide model driven tool support for developing
temporal valid time applications.
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Chapter 1

Introduction

History is an illusion caused by the passage of time and time is
an illusion caused by the passage of history.

— Douglas Adams

In this chapter we state the purpose of this thesis. A brief introduction to
the problem domain is provided and a statement of the primary goals is
presented.

1.1 The Domain of Interest

During the last decade the software industry has evolved significantly. Al-
though the advances in technology have made information management
easier, there is still room for improvement. Many systems handle informa-
tion with more complex semantics than simple, single state business objects.
One example is systems with management of geographically referenced data,
that is, typically systems with GIS components [83]. Geographically refer-
enced in this context concerns data entities consisting of both temporal and
spatial values. A variety of applications manages objects like estates, roads,
buildings etc., which have properties related to time and space together with
conventional attributes. All these properties combine to form a complete
view and specification of a real world object. Conventional development
techniques and modeling languages lack concepts to handle information of
this type. As a mean to overcome the above deficiency, this thesis introduces
a model driven approach to the design and development of information sys-
tems capturing the temporal aspects of such objects.

1.1.1 Temporal Data Management

Realizing that time is an inherent feature of all real world objects, it is not
difficult to imagine the occurrence of time in applications. Temporal data
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management is an area which has received wide attention by researchers
the last two decades. Both research and practice have proved that captur-
ing the time varying nature of data is a complex matter. No commercial
temporal database, i.e. a database that supports some built-in aspect of
time semantics1, is available. Database application developers are forced to
manage temporal information in an ad-hoc manner, building the temporal
information logic into the application.

Most research has been concerned with the formal logic or the DBMS
level of temporal databases. Focus has been on understanding the semantics
of time varying information, a goal which is now fairly well understood [64].
Unfortunately, most users and developers are unaware of the results. Simi-
larly, the outcome of research have had little or no impact on the availability
of temporal database support. Developers could largely benefit from a tem-
poral modeling and development framework, a topic which has received less
concern [75].

1.1.2 Conceptual Modeling

Conceptual modeling is the art of representing the real world, often referred
to as the universe of discourse or mini-world. The UML modeling language is
one such technique defined by the OMG (Object Management Group) [50].
As an industry standard and a language with a high degree of flexibility,
UML is a good choice for conceptual modeling. Traditionally, conceptual
models were mainly used to represent the artifacts of computer systems,
that is, to document the system at hand as inspiration for the application
developers. The UML and its associated technologies have changed this,
a new paradigm has emerged where the bridge between programming lan-
guages and conceptual models fades away. Model driven development is
a methodology where all vital parts and aspects of the system under con-
sideration are described with semi-formal models [46]. A formal model in
this context is a model with specified semantics, structure, behavior and
designed with a language having a well-formed definition, e.g. some UML
profile. The shift to a model driven approach for application development
has gained wide acceptance and is now also the focus of OMG in the form
of the Model Driven Architecture (MDA) [67]. The COMDEF, which is a
flexible framework for component development developed at SINTEF [66],
supports a model driven development process using UML.

By taking advantage of this trend and exploiting the conceptual model of
COMDEF, accurate models can be designed capturing the temporal aspects
of the real world. If sufficient temporal semantics are present in a model, we
can substantially help to simplify the development of temporal applications,
e.g. by code generation as focused by this thesis. The UML, OMG, model

1Use of time related datatypes, such as e.g. Date, does not qualify as an aspect of time
in this context
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driven development and the COMDEF are presented more thoroughly in
chapter 2.

1.2 Goal

Current modeling languages are too inaccurate in their expression of se-
mantics to lead to an automatic generation of code in a software devel-
opment process. A conceptual model should capture all vital aspects of
the real world of interest, that is, properties as temporal aspects of objects
should be represented in an expressive and meaningful way. Based on the
lack of temporal concepts in existing modeling languages, we aim at extend-
ing the information modeling capabilities of the COMDEF framework with
temporal semantics and notation for modeling persistent temporal objects.
We have chosen valid time as the temporal aspect because the concept of
valid time is the most referenced aspect in the modeled reality and manages
past, present and future times. Valid time captures the real evolution of
data managed by an information system, being more specific, valid time is
defined as the time some piece of information, i.e. a fact, was true in the
modeled reality [30].

Introducing valid time to COMDEF requires the design of a temporal
data model. A temporal data model is constituted of the following parts:

• An ontology of time.

• Temporal concepts.

• A data model associated with the above.

The time and temporal model have significant impact on the expressiveness
of the data model, similarly, the introduction of temporal concepts to a
data model may take various forms. The COMDEF data model is defined
as a UML Profile, which is a collection of extended and well-defined UML
model elements for a specific domain. By extending the COMDEF UML
Profile with temporal concepts and notation we propose a temporal UML
profile. A variety of temporal data models have been proposed in literature,
but few have examined the definition of a temporal data model to be used
in a model driven setting. We have thus designed a valid time temporal
data model represented by a Temporal UML Profile along the following
guidelines.

• Extension conforming to the UML standard.

• Profile capturing well-accepted temporal aspects of valid time.

• Precise definition of temporal concepts.

• Expressive and rational temporal support.
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• Simple and user friendly.

Aiming at these goals we establish a temporal UML profile in alignment
with the requirements of the Model Driven Architecture. We advocate a
general temporal data model where the main aim is to support the modeling
of temporal information systems using the relational model. Utilizing the
COMDEF we can design models having explicit temporal semantics and
help the development of temporal applications.

1.3 Thesis Context

The thesis is written in context of different projects at Sintef. Main projects
the thesis is related to are described below.

Geoman

Geoman was a project defined within the Dynamap project. The identi-
fication of a growing need for new technology capable of handling the large
amounts of existing and future geographical data was the basis for Dynamap.
As a subproject, the Geoman project had the task to find and introduce
new ways of accessing and managing spatial, temporal and geographical
features of information. In this context two main tasks was identified, new
data structures and representational models has to be designed to more
effectively represent spatio-temporal data and new mechanisms has to be
defined to extract data from the new structures.

OBOE and COMDEF

Open Business Object Environment (OBOE) was an EU project as a co-
operation between SINTEF and others where the main aim was to develop
a framework and methodology for Business Object Modeling and deploy-
ment [47]. Sintef’s role in the project resulted in the development of the
COMDEF framework. Lately a new project called COMBINE introduces
new concepts and develops a new framework bringing the base researched in
OBOE further. Aim of COMBINE is to support model driven development
in enterprises using components [15].

ST-tools

ST-tools was an internal project at SINTEF closely related to Geoman and
the COMDEF framework. Using COMDEF as a conceptual modeling frame-
work with strong code-generation facilities was the basis when the ST-tools
project focused on extending modeling languages with spatio-temporal fea-
tures. The aim was to model spatio-temporal data types at the conceptual
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level and keep the data types down through the parsing layers so the imple-
mented application will have conforming types with the conceptual model.
To accomplish the aim, additional requirements in context of languages and
models were needed.

1.4 Thesis Structure

The following describes the structure of this thesis.

Chapter 2 Background Introduces background information on concepts
and technologies used in the thesis.

Chapter 3 Case A case model of a land information system (LIS) is presen-
ted. The aim is to identify shortcomings of conventional development tech-
niques and modeling languages. Results of the chapter are the recognition
of a requirement specification.

Chapter 4 Requirements Temporal requirements identified in chapter 3
are presented closer. Additional requirements for temporal data models and
modeling are added and described.

Chapter 5 The Time Model and the Temporal Model The time and
temporal model which the temporal data model is based on are presented.

Chapter 6 The Temporal Data Model The extensions to the COM-
DEF framework are described. The Temporal UML Profile which defines
the temporal data model is presented.

Chapter 7 Case revisited The LIS from chapter 3 is presented again,
this time using the new concepts introduced in chapter 6. A case appli-
cation based on the revised case model is described .

Chapter 8 Evaluation and Discussion This chapter evaluates the tem-
poral data model against the requirements defined in chapter 4. Discussion
of results are presented.

Chapter 9 Conclusion and Further Work The fulfillments are evalu-
ated and discussion is concluded, contributions are presented and further
work proposed.
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Chapter 2

Background

The main aim of this chapter is to give the reader insight into the domain
in question. Technology, models, languages, tools and methods available
are described along with the work done by others. The chapter is divided
into two main parts. First we will introduce what we have defined as a
modeling paradigm which is a general description of the recently emerged
software development methodology. The second part introduces temporal
data management and temporal modeling in special. At the end we present
a few issues concerning Database Management Systems (DBMSs).

2.1 A Modeling Paradigm

During the last decade the process of developing software systems has changed
significantly. New technologies have emerged and one common trend is the
shift of focus from system implementation to system modeling. As new
technologies and standards have been defined, much to the gratitude of
organizations like the OMG (Object Management Group), are we looking
forward to a new and better future world of software development. OMG
is an international organization supported by hundreds of vendors, software
developers and users. The aim is to establish guidelines and specifications
to provide a common framework for application development [49]. In the
next sections we introduce the modeling standards and technologies defined
by the OMG and related work conducted by SINTEF.

2.1.1 UML

In the early nineties, a number of object-oriented modeling languages star-
ted to appear. The technique of modeling was invented as a result of the
seeking for new and alternative ways of software analysis and design. When
software systems became more complex, modeling languages gave developers
the opportunity to model their problems using a visual view of the problem
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domain. Models proved to be a helpful tool to simplify reality and under-
stand the system being developed [8].

The different modeling languages had their features and shortcomings.
An effort to construct one single language that converged the best practices
in object modeling so far resulted in the UML (Unified Modeling Language).
OMG officially adopted UML 1.1 as its object modeling standard in Nov-
ember 1997. Soon after users recognized the benefits of a common modeling
language and today the UML is the dominant industry standard when it
comes to modeling software applications [50]. As the de facto standard, UML
has gone through several refinement processes. OMG performs continuous
evaluation, each version is a collaboration between software groups. Partners
are focusing on improving the language at each stage, at the moment of
writing, the UML is on its way to version 2.0 [39]. The following quote is
the definition of UML found in [50].

The Unified Modeling Language (UML) is a language for visual-
izing, specifying, constructing and documenting the artifacts of
software systems.

More rigorously, UML is defined by an abstract syntax, i.e., diagrams
with associated well-formedness rules using a formal language and a de-
scription of the semantics in natural language [12]. All these components
comprise the UML metamodel, which defines the language used to realize
the visions of the quote above.

The UML has proved itself as a powerful modeling language applicable
to many domains, but one single language can hardly address every domain
perfectly. This introduced the notion of profiles. A UML profile is a package
of UML related extended elements that capture domain specific features [50].
A set of extension mechanisms exists in UML to facilitate the construction
of domain specific model elements. As the shortcomings of UML have been
important for our work, especially the extension mechanism, the topic is
described closer in section 2.1.3.

2.1.2 Model Driven Development

The last years have shown an even greater degree of complexity in software
systems, the different requirements systems in enterprises are to fulfill are
rising. Current modeling techniques are to general in their expressive power
to fully support the complexity at hand. The result is more focus on system
implementation instead of concentrating on system model design. Without
a complete view of the system model being developed, the risk for mismatch
between intended system model and implemented system is high.

Model driven application development is an answer to solve the above
problem. A shift of focus to modeling of complete systems so that the whole
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system structure is reflected at model level is necessary. The view is some-
what holistic; all concepts related should be expressed in the model. In
this way software systems may automatically be generated from the model
designed, and an implemented system corresponding to the intention is
achieved [44].

This approach has several advantages. The result is not only more cor-
rect systems, but it also simplifies and reduces development time. By ab-
stracting models away from platforms and languages, mappings to a variety
of technologies are feasible. This is possible if all vital concepts of the re-
lated domain are represented in the model. Results are a stable information
model that can be mapped to a variety of platforms [61].

COMDEF

COMDEF is a generic framework which facilitates modeling and develop-
ment of component-based distributed systems. A definition of a reference
architecture and tools used by the framework was developed to support a
model driven form of development. Main parts of the framework are:

A reference architecture Concepts defined to support modeling of dis-
tributed systems.

A metamodel/UML profile A UML profile consisting of the concepts
defined in the reference architecture.

A lexical language CML is a lexical language representing a one-to-one
representation of the models modeled by the above UML profile.

Mapping facility Code generation tools based on the CML representation
of models.

COMDEF was designed for developing distributed applications. Fa-
cilities for modeling distribution was introduced by the concepts Service,
UserService, Event and Entity. These concepts are the main modeling ele-
ments defined in the framework. A set of dependencies was also defined to
describe the different relationships between the concepts. In short, when
developing systems with COMDEF, Service and UserService represents the
server side and the client side distributed objects respectively. Event hand-
ling is defined by the Event concept. The Entity is used to model the real
world objects in the system, i.e. the server side encapsulation of the inform-
ation model. Typical usage is a client accessing a service component through
a userservice which returns a reference to an entity object. As Entity ob-
jects are independent of Service components, the Entity allows us to model
entities suitable for conceptual modeling in general. An important part of
COMDEF is the code generation tools based on the CML representation
of models. Mappings developed from COMDEF includes EJB and Corba,
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another project has extended COMDEF for automatic GUI (Graphical User
Interface) development [41].

Model Driven Architecture

Sintef has researched model driven application development during the last
few years, e.g. in the OBOE project which resulted in the COMDEF [47],
but it is just lately that this view has adopted global acceptance. Earlier
the focus of OMG was CORBA, but as a result of the constant change in
middleware and other technologies the OMG have decided to take a step
up to solve the problem of technology integration [67]. The result is the
MDA (Model Driven Architecture) which brings the ideology behind the
COMDEF framework even further.

The MDA ties the different technology standards together, gives guidelines
on how to use them and thereby stating how to construct, maintain and
develop standardized models. MDA specifies an architecture where system
functionality is separated from platform technology and implementation [44].
In this way, the architecture will be language, platform, vendor and middle-
ware neutral. Platform independent models can the be mapped to a variety
of platform specific models. OMG has already defined the standards that
makes the MDA possible, that is, the UML which we have described and
the MOF and XMI defined later in this chapter [67].

Metamodeling and the MOF

Modeling languages such as the UML provides modelers with defined con-
cepts and notation to design models. The origin of the concepts and notation
is defined in the metamodel, which defines usage of these in a model, i.e.
metamodels are models of models, they define the information that can be
expressed in other models [24].

Defining metamodels has proved to be a useful technique for a variety
of reasons. Offering a higher level of abstraction provides a basis for under-
standing and describing the problem domain, thereby managing complexity.
Metamodeling is an efficient method to express characteristics of different
model elements, means are to provide common understanding of the modeled
domain. Metamodels help users perceive the complex relationships of the
various modeling elements and have proved to be the right way to express
the abstract syntax of e.g. UML [12].

Meta Object Facility (MOF) is the standard for metamodeling and
metadata repositories defined by the OMG [49]. The MOF have been used
to define the UML metamodel and is consequently fully integrated with the
UML. A small but expressive subset of UML is used by the MOF to define
metamodels for various domains. MOF formally introduced the four-layered
metamodeling architecture shown in table 2.1 [49]. Metamodels defined us-
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ing the MOF, such as the UML metamodel, sits at the metamodel (M2)
layer.

Layer Model Instance Example

M3 Metameta model MOF metametaclass “Metaclass“
M2 Meta model UML metamodel metaclass “class“

M1 Model User model class “Owner“
M0 System User objects Object “Sam“

Table 2.1: Four layer meta-data architecture

Standards for metamodels and modeling languages are important when
it comes to handling the complexity of software development. If data is to
be interchanged between tools, applications, middleware and repositories,
defined standards are necessary. Integration of metamodels across domains
is required for integrating tools and applications during the software life
cycle [42]. When extending the UML, metamodeling is helpful and import-
ant. Precise definitions of the extended model elements are vital. This way
of using metamodeling is a great tool when describing for example UML
profiles, where profiles are metamodels for models in a specific domain.

XMI

XMI is a key tool in a model driven environment. The XMI (XML metadata
interchange) was adopted to the list of OMG technologies in February 1999
as XMI 1.0 [51]. The first intention with XMI was to provide a textual
format and exchange of UML models, but it is now a general method for
interchanging MOF based data. XMI is based on XML (Extensible Markup
Language) defined by W3C in 1998 [79]. Since XMI is compliant with the
MOF, it supports data at all levels, and interchange of metamodels, models
and data is possible. Because of this, platform independent models can be
interchanged between tools. XMI integrates three key industry standards,
MOF, UML and XML, the best of OMG and W3C modeling technologies
[51].

2.1.3 UML Shortcomings

As UML has become the de facto modeling language, several shortcomings
and side effects of the UML have become evident. Problems discovered
concern different areas. In our work the problems have appeared when
trying to extend UML with new constructs. Introducing new features to
UML is not an easy task, as the expressiveness of the extension mechanism
is limited [11]. Three basic extension mechanism are defined in UML:
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• Stereotypes: Singular properties that can be used to classify any UML
model element. A stereotype can be either graphical (icon) or textual.
Stereotypes are used to define specialized model elements based on a
UML metamodel element. The problem with stereotypes is that they
are singular only, i.e. a model element can only be stereotyped once,
complex semantics are therefore hard to express.

• Constraints: Expressed in some textual notation, preferably formal
as e.g. OCL [82], are static expressions regarding the behavior of
model elements. OCL can be used to define constraints on any model
element at any metalevel, the constraint applies to instances of the
model element. E.g., specialized behavior of stereotyped elements are
expressed using OCL.

• Tagged Values: Properties that can be applied to any model element.
The tagged value consists of a name-value pair of textual strings. Dif-
ferent from attributes, tagged values can be viewed as metadata val-
ues denoting arbitrary intrinsic properties applied to a model element.
Tagged values are user or tool interpreted.

Stereotyped elements inherit structural and behavioral features from its
base UML metamodel element where constraints and tagged values are used
to express difference from the base element. Use of stereotypes is a light-
weight extension mechanism, the only problem is the singular usage restric-
tion. The singular property is seen by us and others as a problem that
seriously restricts the applicability of stereotypes. Another issue is that the
UML metamodel is somewhat vague regarding the definition of stereotypes.
Precision in models is important, ambiguous models lead to personal inter-
pretations of a language.Modelers are given too much freedom, a stereotype
must have well defined semantics which is a difficult task since the UML
is not formally defined itself [3]. Use of the MOF to define a new UML
metaclass is another solution, but this classifies as a heavyweight extension
not desirable.

Support for a better extension mechanism should be a topic for the
next revision of UML. The concern is also related to the possible growth
of profiles, a view of future UML is as a family of UML profiled languages,
each which its own domain specific features, e.g. platform specific models.
As the family of languages evolve, we will end up with too many profiles
and no infrastructure to handle changes and mappings between languages
[12].

2.2 Temporal Modeling

During the last two decades, temporal data management has benefited from
substantial research and a wide range of papers on the domain have been
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written [31]. However, most research has been on defining a specific tem-
poral model and its incorporation to existing databases. That is, the main
issues of research have been at the logical or the implementation level. The
introduction of temporal aspects into conceptual models have received less
concern [54]. This section will introduce the domain of temporal data man-
agement in general with an emphasis on temporal modeling.

2.2.1 Temporal Applications

Time is an inherent concept in everyday human life. Experiences, facts,
objects or events are all related to some kind of time. Software systems
representing parts of our world are no exception, as most applications found
are temporal in nature. Traditional databases contain only information of
the current state in the modeled reality. Modifications by applications result
in changes in the current state and usually the past state is deleted and lost.
Retaining past states as a history would for many applications be of great
benefit. Obviously, the business logic of an application may state that only
current data needs to be stored, but again keeping historical states may be
a critical feature for other applications [6]. Some applications even require
access to possible future states [76].

The amount of areas and applications where time-varying information
is present is vast. In general, every domain incorporates some kind of time
in the handling of information. Temporal data management can be incor-
porated into every application. Needs are found in areas such as banking,
finance, insurance, personnel recording and medicine. Another example is
a land information application which may want to store and retrieve in-
formation about changes in land, variation of ownership or possible planned
changes. Actually, to identify applications that do not handle time varying
data is rather difficult [65].

Using conventional databases to develop temporal applications rely on
time related data types in the database. Data may be timestamped using
date attributes to represent a duration of time when the data had some
property. Unfortunately, all temporal semantics of the application must
be tailored at hand by application developer. The database provides no
temporal support whatsoever. Often the process of defining temporal func-
tionality is not handled properly due to the difficulty of managing temporal
data. No standardized way of implementing temporal database applica-
tions is present. Another issue is the reinvention of time representation and
structures for their manipulation which must be developed each time. Tem-
poral functionality is hard to implement, difficult to maintain and can be
performance demanding in certain cases [32].

The response from the research community regarding the above problem
have resulted in a variety of temporal data models where the model has
built-in support for capturing time varying information. Such models are
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the topic of the next sections, we start with a brief description of some basic
time concepts.

2.2.2 Time Basics

Time is a topic for philosophical discussion not to be elaborated over herein.
The characteristics described below are simple properties and basic termin-
ology for representing time in computers.

Humans see time as a stretching line from the infinite past to the infinite
future. For databases the context is often the same, but time is naturally
bounded by fixed sized data structures [65]. Mainly two structural models
of time has been proposed in temporal logic [53]. In the linear model time
advances from the past to the future totally ordered, while in the branching
model time advances ordered until the present time and then divides into
several possible future time lines. The linear model is common for general
temporal applications, but when the outcome of evolution may have different
alternatives, e.g. in planning, a branching time model is necessary. Ancient
views conceived time as a cyclic structure [60]. A circular model of time
may benefit application modeling recurring events [45].

Using the linear model, there are three different interpretations of the
timeline. The discrete model of time is isomorphic to the natural numbers,
dense models are isomorphic to the rationals, continuous models are iso-
morphic to the reals and contain no gaps [53]. One may argue which model
fits reality the best, a topic scientists and philosophers have discussed for
ages [55].

Another topic for discussion is the notion of points in time. Single points
in time on an underlying time axis are termed instants, which have no
duration [30]. But how should instants be represented in a database? An
important term in this context is a chronon, defined to be the smallest unit
of time in a computer system [30].

2.2.3 Temporal Models

Our main concern related to time is that of facts. Unlike events which
can be said to occur at an instant, a fact is something that is valid over a
duration of time [62]. To represent the duration of time when a fact has
some property the fact must be associated with a value from a time domain.
We say the fact is timestamped, a timestamp is a time value associated with
some object, e.g. an attribute value, tuple or object [30].

A temporal model describe the time domains used, the temporal primit-
ives available to be associated with facts, and possible operations on those.
Main differences between temporal models are listed below.

• Dimensions supported
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• Timestamp types

• Past or future time values

Time is dimensional, different temporal aspects may be associated with a
fact. Two fundamental dimensions are the valid time and the transaction
time of a fact. The valid time of a fact represents points in time when a given
fact was, is or will be true in the modeled reality [31]. Timestamping facts
with time values drawn from what we call the valid time dimensions denote
when the facts were valid in the modeled world. The semantics imposed by
the above states that all facts have a valid time by definition. Transaction
time on the other hand, represents the time when a fact actually was/is
resident in the database [33]. If a fact is associated with values from both
dimensions, we have a bitemporal association between facts and time. A
bitemporal relation inherits the advantages of both dimensions. It has the
power to record both time varying data and retain earlier database states
[53].

User defined time is sometimes also referred to as a temporal dimension.
The term refers to facts associated with time values which are interpreted
by the user only, in a temporal database the time values have no semantics
except for the user [30]. A typical example is date of birth registered for a
person. User defined time is represented in a database using time related
data types.

Three different types of temporal primitives are used as timestamps in
literature. A timestamp may be composed of a single instant, i.e. a point
in time [30]. Intervals represent the time between two instants and is a
pair of a starting and ending instant [35]. As a third alternative, temporal
elements are finite unions of intervals [22]. Comparison operators on the
temporal primitives in a temporal model may be defined, an example is the
interval predicates defined by Allen [1], useful for reasoning over interval
timestamped facts.

A valid time line is depicted in figure 2.1 recording owner history for a
house entity. From time t1 until t2 Geoff is the registered owner, a change

-Valid Time
forever

Geoff Tomt1 t2 now

Figure 2.1: Owner facts and valid times

in ownership occurred at time t2 and Tom was registered as the new owner.
The noun now is depicted as a value on the valid time line with the mean-
ing that Tom owns the house until the current time. Now is simulating
the current time as a moving target. Instead of updating currently valid
timestamped facts at every instant or clock tick, now is used a constantly
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varying variable equal to the current time value. The notion of now has re-
ceived wide attention from philosophers for many years and its semantics are
far more complicated than e.g. its counterpart in space here [14]. Such val-
ues classify as temporal variables and have been proposed in several temporal
models [78]. Models which support future time values may use Forever as
a valid time value, forever, equal to ∞, follows the last instant on the valid
time domain [30]. Other variables are beginning and UC (until changed)
[62]. Temporal variables are convenient, but also introduce some subtleties
demanding careful consideration. The semantics of temporal variables and
especially now has been extensively studied in [14].

Another topic is whether timestamped facts have values associated to
exact points on the timeline or the values are relative to some other time
or, e.g., Now. This introduces the distinction between absolute and relative
time respectively [30].

2.2.4 Temporal Modeling Techniques

Above we introduced temporal concepts to be associated with facts in a data-
base. In data models the representation of facts may take various forms. The
lack of temporal support in databases has resulted in a variety of temporal
data models. Early work was mainly based on using the relational model to
support time. As the object-oriented paradigm emerged, temporal object
models also started to appear [4].

We have described the non-adequate approach of using date attribute
values to support time where all temporal semantics are left to the applica-
tion developer. This led to the approach where a non temporal data model
is extended to a temporal data model. Such models have built-in support
to store, manipulate and query time varying information [76]. In the form
of extensions to the relational model, data in schemas are timestamped and
changes are made both to query language and relational algebra [62]. This
extension approach is the main method to define temporal data models.
Another option is to define a generic object model where all model con-
cepts are given temporal semantics. An example of such a generalization
approach of an object model is found in [69]. If a database supports ADTs
(Abstract Data Types), a feature of object-oriented and object-relational
databases, time can be implemented as an ADT having operations which
can help building temporal semantics into applications. This approach is
based on the extensible nature of object oriented systems, example models
are found in [84, 70], and cannot be applied to relational databases.

Having described the approaches of defining temporal data models briefly,
we turn to how time is associated with facts in the models.
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Object/Tuple or Attribute Timestamping

In a valid time temporal model, facts are associated with temporal values
denoted by timestamps. We now consider how facts are represented in a
temporal data model and on what level the timestamps are applied.

Using the relational model, the main difference is the choice of attribute
or tuple timestamping. The two different approaches have their pros and
cons, models based on tuple timestamping retain the simplicity of the re-
lational model and is the most common approach. Attribute timestamping
on the other hand, is effective and space preserving since all information
about an entity is stored in one single tuple [65]. In contrast, attribute
timestamping does not obey the first normal form (1NF) and is therefore
hard to implement in conventional databases [33].

We use the two tables in table 2.2 to illustrate the two approaches. The

House Owner Valid

31 John 1952 - 1975
31 Peter 1975 - 1991
31 Mary 1991 - now

(a) tuple timestamped

House Owner

[1952-now] 31 [1952-1975] John
[1975-1991] Peter
[1991-now] Mary

(b) attribute timestamped

Table 2.2: Two Valid Time State Tables

two tables both contain the same information. A tuplestamped relation,
as it appears in the model defined in [63] by Snodgrass is illustrated in the
left table 2.2(a). Note, Snodgrass’s model is actually bitemporal, supporting
both valid and transaction time, for brevity the transaction time timestamps
are not shown in table 2.2(a). Table 2.2(b) is an example of an attribute
timestamped relation based on the model defined by Gadia and Nair in [23].
Table 2.2(b) introduces the concept of lifespan, a term so far not described,
where the interval 1952-now represents the time house number 31 has existed
in the modeled world. Lifespan represents the time an object is defined [30].

The main disadvantage of tuple timestamping is that an object is rep-
resented by one or more tuples in a database instance. Tuples belonging to
an object must be identified by the same value at all times, if not, no mech-
anism is present to evaluate that two tuples are states of the same object.
This introduces the notion of a time-invariant identifier.

Above we assumed a temporal relational database as the storage of
facts. The same concepts apply for object oriented systems, although the
approaches used to support temporal aspects vary due to the inherent ex-
tensibility of such systems [69]. An object model allows a more natural
incorporation of time and temporal aspects than the relational model [25].
For example, attributes are not restricted to atomic values which allows
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a simple extension to support attribute timestamping. Examples where a
time value is associated with whole objects are found in [34, 72, 20]. In these
models, the object timestamping takes a similar form to tuple timestamping.
Models where a timestamp is associated to each attribute usually have built-
in support for capturing the lifespan of objects, examples of such models are
found in [4, 54]. Three recent temporal data models are briefly presented in
the next section.

Example Models

A review of a few temporal models are appropriate. Three models are presen-
ted, in forthcoming chapters these will be used as a reference and comparison
to our work. Two of the models are based on UML, the third is a temporal
extension based on the ER (Entity-Relationship) model. We are aware of
a spatio-temporal visual modeling tool based on UML called Perceptory
[58]. Main objective in Perceptory is the modeling of spatial databases,
the temporal part is somewhat undocumented. Perceptory allows modeling
of spatio-temporal objects using a variety of combinations of spatial and
temporal symbols, using stereotypes, which can be applied at object and
attribute level. Interestingly, the Perceptory tool allows generation of data-
base schemas through a user interactive process. Due to the lack of temporal
documentation and the specialized use of UML, Perceptory is not discussed
any further.

A survey of temporal extensions to ER models exists in [27]. Based on
deficiencies of current models found in the survey the authors proposed a
new temporal ER model called TimeER [26]. TimeER is an extension to the
EER model [19] and supports lifespan and transaction time of objects, valid
and transaction time of attributes and relationships. An example figure of
a TimeER diagram can be depicted in figure 2.2(a). In the diagram, LS is

House LS �
�
��

@
@
@@

�
�
�
�

�
�
�
�

Owner VT

Built date

(a) TimeER

House
{granularity=’year’} �

��
VT

owner:string{vt type=’P’,
granularity=’date’}

built:date

���VT

(b) TUML

Figure 2.2: A house modeled in TimeER and TUML.

used to denote that lifespan of the entity house is to be captured. Similarly,
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valid time of the owner attribute is described by VT. Mapping algorithms
of TimeER to the relational model are described in [28].

An approach using UML is found in the figure to the right 2.2(b), which
is an example model using TUML [75]. TUML is a temporal extension to
UML based on the TAU object model [36]. The TAU object model again
is a compatible extension to the ODMG object model [9]. The Tau model
supports the definition of valid, transaction and bitemporal object types.
Attributes and relationships can be time timestamped according to the same
dimensions. A history type is used to record the evolution of e.g. attributes
over time. Each temporal object is associated with a lifespan. As depicted
in the figure 2.2(b), the icon VT, which is a stereotype, is used to denote
valid time lifespan of the House and valid time of the attribute owner.

TUML use stereotypes extensively to allow the incorporation of temporal
support in UML. Similarly, the other known temporal extensions to the
UML use a notion of stereotypes to establish their concepts. As described
in section 2.1.3 the use of stereotypes are functional applied at class level,
but its use on attributes are limited. The stereotype solution adopted by
TUML is an approach we have ruled out.

The conceptual modeling language for spatio-temporal applications defined
by Price et al. have also seen the limitations of stereotypes [56]. They have
defined the Extended spatio-temporal UML by using new “stereotypes“ that
represent spatial and temporal properties by applying symbols. The sym-
bols may be composite to denote different combinations of spatial, temporal
and static values, and may be applied to object types, attributes and associ-
ations. Existence time of objects is introduced, a concept similar to lifespan
but where attributes dependent on the existence time are grouped, while
non-grouped attributes can have values independent of the existence time
of the object. Such a grouping mechanism qualifies as an artificial UML
construct. Detailed spatio-temporal semantics are defined in another spe-
cial construct called the specification box. The specification box includes
information on the time and temporal model to be associated with each
temporal symbol.

Conceptual models must follow defined standards, in a model driven en-
vironment this is a key feature. In the case of extensions to the UML, all the
models above use non-standard extension mechanisms not in alignment with
the UML. Problems arise when using software tools that support the UML
metamodel, tools will not be able to handle the non-standardized models.
Users can benefit substantially of a conceptual modeling framework hiding
complexity and at the same time provide the user with powerful concepts.
In this way a user is able to correctly design a stable model corresponding
to the real world, without being concerned with difficult modeling concepts
and notation.
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2.3 DBMS Technologies

Databases are the foundation for data management and provide applications
with mechanisms for storage and retrieval of data. Main features of a DBMS
are transaction handling, administration and security issues, constraints, re-
covery and concurrency control [19]. Traditionally, the relational database
has been the commonly used architecture. Promises of relational databases
are maturity and defined standards based on theoretical principles. Object-
oriented databases on the other hand, lack tools, query languages and stand-
ards, but are better off for complex and user defined objects not supported in
relational databases [37]. Examples of such objects are found in multimedia
applications, Computer Aided Design (CAD) and GIS applications.

A variety of DBMSs are available. After the introduction of the relational
model a range of databases where developed in the next decades. Commer-
cial relational databases available today include products like Ingres, DB2,
Informix, Sybase and Oracle [19]. Oracle is a large vendor product consist-
ing of many features, for instance, a spatial module is developed to make
spatial data management easy and natural for GIS applications [52].

The simple structure of the relational model and the lack of extensibility
have led the major database vendors to extend their products. Informix
is an example of a hybrid object-relational database where plugins from
users or third party vendors can extend the functionality of the database.
E.g. a temporal extension to Informix are described in [85] where a set
of datatypes and routines enable temporal query support. A similar hybrid
object-relational approach is the spatial module by Oracle mentioned above.
Oracle Spatial supports two models to represent spatial extents; relational
and object-relational.

As we have pointed out, no temporal database is available. A few proto-
types have been implemented, among them a front end to the Oracle DBMS
called Tiger. Tiger implements ATSQL which is a temporal query language
based on SQL-92. An important feature of ATSQL is support for migration
of time into existing applications [6].

2.4 Summary

We have described the advantages of model driven development compared
to traditional software development techniques. The COMDEF has been
presented as a framework supporting such a development methodology. Fur-
ther, we have given an introduction to the domain of temporal modeling and
its difficulties. In forthcoming chapter we present how we combine model
driven development and temporal datamanagement to form a temporal con-
ceptual model using COMDEF.
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CASE

The purpose of this chapter is to describe an application area within the
domain of temporal data management. A case model is presented to identify
shortcomings of current modeling languages and modeling techniques. The
model should be able to describe these shortcomings, and be complex enough
to show a necessary range of different applications. At the same time, the
model should be easy to understand. Identified problems function as a
base for defining requirements for a temporal extension to the COMDEF
framework. The case model also serves as an example when introducing
concepts throughout the thesis.

3.1 A Land Information System

A pure fictional but sufficient case model is presented, it is designed solely
for the purpose of this chapter and does not represent existing systems or
models. Land Information Systems (LIS) are important for many services
such as land planning, and infrastructure development, resource manage-
ment and a variety of other services [83]. The LIS case model is shown in
figure 3.1. We briefly describe the entities depicted in the model.

A municipality represent a notably large piece of land that often repres-
ents authority and administration. A municipality has roads and parcels.
Parcels again can have buildings of different types. For simplicity the cat-
egory of buildings is divided into houses and commercial buildings. Both
buildings and parcels can have owners, the owner may be a company or a
single person. We devote our main discussion to the owner entity, since an
important part of land information systems relates to changes in ownership.
Ownership is subject to a variety of issues like contracts, inheritance, death,
legal proceedings and accidents like fire or flood [83]. A requirement for a
LIS is the capability to record variation in ownership over time.

The intended use of the system model is to provide a basis for a range
of applications, which is completely genuine for a system model like this.
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Figure 3.1: A snapshot casemodel

3.2 Application Areas Not Supported

The model is presented using conventional UML notation. All characteristics
of the model elements are commonly available atomic data types. We have
equipped the owner entity with a start and end attribute of type date.
This is the simplest form of denoting time varying support for an entity, an
example of a common ad-hoc solution, solely managed under user-control.
The date attributes can be utilized to denote temporal semantics of some
kind. However, built-in support for interpreting the information of the two
date timestamps is not present. The model designer would probably know
the intention, but different and ambigous user interpretations are easily
described.

Imagine a database instance given by the case model, a variety of facts
can be deduced, but they will all be facts based on snapshot semantics. No
history of the changes in e.g. ownership are recorded in a practical way. For
a user it would be convenient if one could query entities with respect to their
temporal properties, i.e. view entity data at different points in time. Below
are a few examples of temporal application queries we may want to execute,
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but cannot easily be accomplished because of the lack of concepts in the
model. An extract of a municipality and its variation over two decades is
illustrated in figure 3.2 as a reference to the queries. We imagine that a

Figure 3.2: Variation of land and ownership

municipal council wants to keep record of the owners of a given building.

• Get all owners of building number 3 at all times?

• Who owned building number 3 before 1970?

• When was a commercial building first built on parcel 23?

A real estate company can have a variety of queries about the houses.

• When and how many times has a given building changed owner?

• When did John own house number 2?

• Which houses has Mary owned during her lifetime?

An insurance company may have the following question.

• Who owned house number 3 before Peter?

• Who owned house number 2 when Peter bought house number 3?

It is evident that the case model has to be extended with additional inform-
ation to fulfill the requirements of such queries. Temporal aspects need to
be expressed in a meaningful to make an implemented database instance
capable of returning answers to queries as the ones above.

3.3 Limitations and Requirements Identified

The case model has no capability of representing properties related to the
requirements of a LIS, i.e. objects varying in time and the representation
of spatial extents. A complete model of a LIS should express all desired
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properties and semantics in a visible and understandable way. At the same
time the model should be complete in respect to the implementation of the
system. Users should have the opportunity to concentrate on modeling the
information model and not on designing sophisticated constructs hard to
comprehend. What we need are new concepts to denote new constructs
with defined semantics and behavior in the model. The following sections
describe requirements found necessary for extending the case model to a
more specific model aimed at developing a LIS.

3.3.1 Database Support

We need a notion to define that an entity in the model is by definition
persistent and reflects the characteristics of common database entities. This
means that a new concept which introduces database specific constructs
must be defined. Below are the constructs we define as vital characteristics
of entities which are to be mapped to relational database schemas.

Primary Key

In a relational database a primary key is used to uniquely identify tuples
in a relation [19]. UML has no notion of key attributes. For generality we
state that each database entity is required to have a primary key defined
where the key’s attribute is user defined.

Index

Efficiency of queries on large relations are greatly improved by attribute
indexing [19]. Indexing time varying relations are important since they tend
to grow large due to their historical nature [40].

3.3.2 Valid Time of Entities

An important feature of e.g. a LIS is the capability to record changes in
land and ownership over time, because entities are subject to change. The
history of an entity is therefore required to be stored in the system. What we
need are new concepts to define temporal entities which have the necessary
constructs to support changes over time. The opportunity to store both
historical and future states of entities are important. It must be possible to
denote a timestamp value recording the time when the properties of an entity
in the model was true in the modeled reality. More specific requirements for
valid time support for entities and how this is formed in a data model are
presented in chapter 4.
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3.3.3 Domain Specific Data Types

A new set of data types aimed at representing temporal and spatial values
are necessary. Often we want to register some information related to time,
like date of birth of an owner. Such temporal information is what we usually
call user defined time, that is, the semantics have no further meaning than
the one interpreted by the user [30]. Similarly, spatially referenced objects
need data types representing types of spatial values such as points, curves
and regions [59]. Research done in [81] has proved that data types are
sufficient to represent spatial extents.

3.4 Summary

This chapter introduced a fictional case model. Its purpose was to outline
shortcomings of current modeling techniques for spatio-temporal domains
and thereof identify requirements for a modeling language. We recognized a
need for database specific properties, valid time support for entities and new
datatypes. Our main concern is the temporal aspect of the domain, that
is, the requirement of built-in valid time support for entities. This topic is
elaborated on in chapter 4 where we present requirements for temporal data
models in a model driven setting.
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Chapter 4

Requirements

The case model in the previous chapter identified shortcomings of conven-
tional modeling languages and the necessity of new modeling concepts was
stated. From a temporal perspective the main requirement was valid time
support for entities. Based on the modeling paradigm and the temporal
modeling techniques defined in chapter 2, we recognize the need to define
a temporal data model supporting the concepts of model driven develop-
ment. These two topics form, in this chapter, a requirement specification
for a temporal modeling language. These requirements serve a guiding and
evaluative purpose for our work.

The underlying foundations of temporal data models, that is the time
model and the temporal model used, have a great impact on the express-
ive power and usability of a model. This is the topic of the first section of
this chapter where we introduce basic temporal requirements regarding time
and temporal models. The second section continues with temporal model-
ing requirements, which are divided into two categories; requirements for
temporal data models in general and requirements for a modeling language
in a model driven environment.

4.1 Basic Temporal Requirements

A temporal data model requires a precise and complete foundation. Below
we present general criteria found in literature regarding time and temporal
aspects required by temporal applications.

4.1.1 Models of Time

To be able to represent and reason over time varying information in a given
context, a definition of time itself is necessary. The ontology of real world
time itself has many facets, but for computer environments this diversity
of time must have a precise definition. Requirements set by applications
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vary, the choice of time model do have restrictions on the semantics to be
represented in applications. Requirements for different models of time are
listed in table 4.1.

R Time Model Requirement

RT1 Linear
RT2 Branching
RT3 Discrete
RT4 Continuous
RT5 Infinite
RT6 Circular

Table 4.1: Time model requirements

Linear (RT1)
A linear model of time is the most common approach in literature, it is also
a view of the time line in alignment with the general perception of real world
time [26, 35].

Branching (RT2)
In contrast to linear time, a branching view of time may be of benefit to
some applications. A branching time line appears when there is a need to
reason over possible alternative futures, a topic for prediction applications
such as forecasting [76, 25].

Discrete (RT3)
For most applications a discrete view of the timeline is adequate [65]. Real
world time may be perceived as continuous, but for general database applic-
ations a discrete line is sufficient and implementation wise necessary [63].

Continuous (RT4)
Compared to a discrete view of time, some domains may benefit from a con-
tinuous model of time, e.g. real-time monitoring systems, hybrid systems
and in maths or physics [10]. A continuous model of time is used to model
moving spatial objects in a database in [21].

Infinite (RT5)
Some models explicitly define time boundaries, e.g. the TUML [75]. A
bounded timeline is often a pragmatic choice since time values must be
stored in data structures which are limited in size [65].



4.1 Basic Temporal Requirements 29

Circular (RT6)
A circular or periodic time is of benefit to some applications, e.g. in office
automation or scheduling environments data may refer to periodic time, i.e.
recurring events that happen every week, month or year [56, 45, 76].

4.1.2 Temporal Models

Based on the underlying time model a temporal model defines concepts
identified to be useful when associating time with facts. The most common
requirements found in literature regarding temporal models are listed below
in table 4.2.

R Temporal Model Requirement

RTM1 Valid Time
RTM2 Transaction Time
RTM3 User Defined Time
RTM4 Beginning
RTM5 Now
RTM6 Forever
RTM7 Until Changed
RTM8 Instant TimeStamp
RTM9 Interval TimeStamp
RTM10 Temporal Element TimeStamp
RTM11 Absolute
RTM12 Relative
RTM13 Interval operators

Table 4.2: Temporal model requirements

Valid time (RTM1)
Capturing the information history or the evolution of facts in a system is
important for many applications. Valid time is defined for most of the tem-
poral models found in literature, e.g. [65, 26, 75].

Transaction Time (RTM2)
Transaction time is supported in many models, usually a model supporting
transaction time also supports valid time [75, 26, 76]. Transaction time is
required by applications when it is crucial to retain past database states [32].

User Defined Time (RTM3)
In order to support user defined time a set of date times is required, i.e. time
related data types must be available the user. Support for such types in a
model is usually a simple requirement to fulfill since the implementation is
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external and the semantics independent of the data model itself [27].

Beginning (RTM4)
Beginning is a special time value denoting the first point in the valid time
domain [30]. The value is used by a variety of temporal models, e.g. the
temporal extension to UML TUML defined in [75].

Now (RTM5)
Instead of updating the current time for a timestamp for every point in
time, a task unpleasantly hard in a database, the current time is conveni-
ently represented by a temporal variable. The special value now is used as
a function always returning the current time and has been extensively used
in temporal models [14, 65].

Forever (RTM6)
Forever and equivalent values as∞ represents the value following the largest
value of time for the valid time dimension [30]. Forever used by the tem-
poral data model TUML to define the upper boundary of time [75].

Until Changed (RTM7)
Until Changed is a third type of special value. One option is to use Until
Changed as a substitute for now where the intention is that a fact is valid
until we know more. Other models use the variable as a special transaction
time marker to denote end times of timestamps in transaction time models,
e.g. in [26].

Instant TimeStamp (RTM8)
Instants or single points in time are one of three main temporal structures
that can be associated with facts. Facts timestamped with an instant is
usually assumed to be valid at the given point in time which represents an
event based model [75]. A timestamp representation based on instants is
used to represent the valid time of facts in e.g. [26].

Interval TimeStamp (RTM9)
Associated with facts, intervals represent a duration of time when a fact has
some property. Most temporal models use intervals to denote the times a
given fact was e.g. valid in the modeled world [57, 75, 76].

Temporal Element TimeStamp (RTM10)
Facts may be associated with temporal elements, i.e. finite unions of time
intervals [22]. The TimeER model defined in [26] use this approach. Simil-
arly, a temporal element is used to represent lifespan in many data models
[20, 56].
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Absolute (RTM11)
Absolute time refers to whether time values of facts are referenced to exact
points on the time line, i.e. anchored points in time [53]. Conventional tem-
poral models all support absolute time values, most applications requiring
a historical dimension wants to associate facts to exact time points [38].

Relative (RTM12)
In models supporting relative time, time values associated with facts may
not reference exact time points on an underlying timeline [53]. Relative
models of time have been popular in the domain of artificial intelligence
where the modeled world often contains relative temporal knowledge, an
example is found in [38].

Interval Operators (RTM13)
Reasoning over the temporal primitives, the relationships between them may
take various forms. Widely recognized are the temporal comparison operat-
ors defined by Allen [1]. Most temporal models provide interval comparison
operators, either as functions operating on the datatypes or most preferably
as built in operations in a query language [65].

4.2 Temporal Modeling Requirements

In the case chapter we identified a need for temporal concepts and con-
structs in the model. A temporal data model must be defined to allow the
incorporation of such concepts. The requirements in this section are divided
into two parts, first topic is temporal data models in general while the latter
concerns requirements for such models in a model driven environment.

4.2.1 Temporal Data Models

Designing a temporal data model is not an easy task and defining a single
model capturing all desired features has proved to be difficult, if not im-
possible [31]. This section presents different requirements for temporal data
models described in literature. Timestamps below are assumed to be valid
time timestamps, although the same requirements apply to transaction time
data models.

Lifespan of Entities (RDM1)
The lifespan of an entity is the time the entity exists in the modeled reality.
If lifespan for an entity is supported then a model has built-in support for
capturing the times when entities exist. This feature is supported in e.g.
TimeER, which is a temporal extension to the ER model [26].
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R Data Model Requirement

RDM1 Lifespan of entities
RDM2 Timestamped Entities
RDM3 Timestamped Attributes
RDM4 Timestamped Associations
RDM5 Time-Invariant Identifiers
RDM6 Granularity

Table 4.3: Temporal data model requirements

Timestamped Entities (RDM2)
Some models timestamp whole entities while other models consider the time
varying nature of each attribute separately [4, 71]. The two approaches has
it pros and cons, a topic we described in chapter 2. Example entity time-
stamped temporal data models are found in [72, 34].

Timestamped Attributes (RDM3)
Advantages of attribute timestamping are that changes in a single attrib-
ute only does not imply a change for the complete state of an object [75].
However, the approach is harder to implement than timestamping entities
only, especially if the relational model is the underlying architecture. Ex-
ample models supporting attribute timestamping is the TUML [75] and a
spatiotemporal conceptual model called MADS [54].

Timestamped Associations (RDM4)
Semantics of associations between temporal entities may take various forms.
Static associations may depend on the timestamps of the participating en-
tities. Another solution is to timestamp the association itself, assigning
the association time varying behavior independent of the entities. Mod-
els that explicitly capture temporal aspects of associations are found in
[75, 54, 26, 56]. Note, associations in this case are structural relationships,
specifying that e.g. an entity is connected to another.

Time-Invariant Identifiers (RDM5)
The concept of primary keys serve well as unique identifiers for snapshot
databases. When entities vary in time, the notion of identifiers must be
revisited. Two options are present, an identifier can uniquely identify an
entity at all points in time, or an identifier can represent different entities at
different points in time [54, 76]. E.g., a primary key value of an owner may
be associated with different owners at different times or at all times identify
a single owner. The most common assumption is the latter, a time invariant
key is necessary to identify entities in a database [55]. Applications exist
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where reuse of identifiers is convenient though, similarly, it is not always the
case that an identifier value is constant over time [13].

Granularity (RDM6)
The granularity of timestamps associated with facts denotes the size of the
time unit used, i.e. the chronon. The granularity of timestamps may differ
from application to application, e.g. seconds, days, months or years. Some
models allow the modeler to explicitly specify the timestamp granularity
[75, 27].

4.2.2 Model Driven Development

Our aim is to design a temporal data model in a model driven framework
within the frame of the Model Driven Architecture. Additional requirements
to the temporal data model and its notation are therefore necessary. Table
4.4 below presents requirements for a temporal data model to be used in a
model driven environment.

R Model Driven Requirement

RMD1 Methodology Support
RMD2 UML Profile
RMD3 Interpretale Mapping from Graphical Notation
RMD4 Platform Independent
RMD5 Metamodel of Time and Temporal Concepts
RMD6 Simple and Expressive

Table 4.4: Model Driven Development requirements

Methodology Support (RMD1)
Methodology support refers to whether a standard modeling notation is
used. Conforming to the standards is important for communication, in-
terchange and integration of models. An example model not fulfilling the
requirement is the MADS model [54] which uses a non-standardized nota-
tion based on a hybrid ER/OO model.

UML Profile (RMD2)
A UML Profile is a collection of enhancements of UML model elements for a
specific domain. It is important that the extended elements have a consist-
ent definition and are compliant with their reference metamodel, that is the
UML or another profile. This is only achieved by a well defined metamodel
with associated constraints and well formedness rules. Models based on
metamodels not in alignment with the UML will not be applicable in an
MDA environment [46]. A profile should also express guidelines on usage
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and specify transformation rules of models.

Interpretable Mapping From Graphical Notation (RMD3)
The model should be interpretable from a graphical notation. Concepts
defined in the model must be recognized by tools to maximize the code gen-
eration abilities. The usability of a temporal modeling language is greatly
improved if a user can concentrate on modeling the problem domain with
simple concepts and not have to be bothered with developing complex code
and schema definitions. One of the goals of a mature MDA environment is
generation of complete systems [67].

Platform Independent (RMD4)
A Platform independent model (PIM) is a language and technology neutral
UML model. Some aspects of domain specific features can be present, i.e.
profile concepts, examples are notion of persistence or ,as in our context,
temporal aspects [61]. A PIM should, as the name specifies, be abstracted
away from all platform-specific details.

Metamodel of Time and Temporal Concepts (RMD5)
In a model driven environment all semantics of a domain should be de-
scribed in a model. This is only possible if all vital parts are expressed using
a defined modeling language. A metamodel of time and temporal aspects
should therefore be modeled to complete the UML profile. A metamodel for
time is used to define temporal primitives in the temporal ER model [77].

Simple and Expressive (RMD6)
A requirement for temporal modeling languages is that models designed
should be simple and expressive. Temporal aspects often clutters the nota-
tional design. Another issue is that some models wants to capture every
concept possible and thereby only confuse users with a load of difficult no-
tions. A temporal modeling language should be simple and user friendly
and at the same time have enough expressive power [68].

4.3 Summary

We have presented requirements for time models, temporal models and for
temporal data models in a model driven environment. Based on these re-
quirements a time model and a temporal model are defined in chapter 5,
and a temporal data model realized by a Temporal UML profile is defined in
chapter 6. The fulfilled requirements are listed in their respective chapters,
and an overall evaluation of our work is presented in chapter 8.



Chapter 5

The Time Model and the
Temporal Model

In this chapter we define the general time concepts that form the basis
of the temporal data model defined in chapter 6. We describe a model
of time and define a temporal model. The definitions herein are based
on the requirements for such models described in chapter 4 and fulfilled
requirements are stated at the end. The aims of the temporal model are to
define the basic concepts related to valid time and the temporal primitives
to be associated with facts. A UML representation of the defined concepts
is modeled as a foundation for the temporal data model to be defined in
chapter 6.

5.1 The Time Model

This section focuses on time itself, the nature of the time domain and its
properties as we present a generic model of time which can be used in an or-
dinary temporal data model. General time aspects are presented in chapter
2, but in order to ensure clarity some of the concepts are repeated. The
time line may be seen as continuous or dense, but a computer system must
necessarily have some sort of discrete encoding of time [18]. In agreement
with the temporal database community, we define the time line to be dis-
crete. We define a single point on the time line to be an instant. Instants
have no duration, different from the concept of a chronon, defined to be
the smallest non-decomposable unit of time in the model [30]. No specific
boundaries on the time line are defined, although the beginning of time is
assumed to start at the ”Big Bang” and end with the possible ”Big Crunch”
following common cosmological arguments. Our definition of the time line
T is therefore an infinite set of instants where each instant is separated by a
single chronon. The following ordering properties for the time line apply, for
two instants ti, tj ∈ T , either ti ≤ tj or ti > tj. Based on the above defini-
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tions, we state that T is equivalent to some subset of the integers. Intervals
are used to represent durations of time, a time interval is defined to be the
time between two instants [30]. To help understand the different concepts
the relationship between instants, chronons and intervals are shown in figure
5.1.

T
Instants -

0 1 2 3 4 5 6 7 8

Chronons
1 2 3 4 5 6 7 8

Interval[1,6]

Figure 5.1: The relationship between instants, chronons and intervals

A closer definition of intervals are found in the next section when we
introduce the temporal primitives to be associated with facts.

5.2 The Temporal Model

The former section described a general model of time. On this basis we
define the temporal dimensions and type of timestamps to be used in the
temporal data model. For temporal models there are two main aspects of
time, the valid time and the transaction time of facts. Our main concern
has been valid time and is therefore the only dimension supported in this
model. We continue with a definition of valid time intervals and describe a
set of operators.

5.2.1 The Valid Time Dimension

To store time varying information we introduce the concept of valid time to
represent when a given fact is, was or will be valid in the modeled world.
The valid time of a fact is denoted by associated time values from the valid
time dimension. We define the time domain for valid time as follows:

VT = {t0, . . . , ti . . . , now, . . . } ∪ {forever} , t0 ≤ ti < forever. Character-
istics to that of T apply, that is, according to the ordering and discreteness
of the valid time domain VT :

tk = t0 + k and tk = tk−1 + 1, k ≥ 1 and t ∈ VT
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Two special values appeared, the value now is a special temporal variable
always denoting the current time [14], and forever is defined as the instant
following the last valid time instant on the valid time domain [30]. Semantics
is that some valid times, i.e. valid time instants, are expected to be in the
past and some may be in the future.

5.2.2 Valid Time Intervals

Facts in a temporal data model are timestamped with values from a tem-
poral domain. A timestamp can be represented with a timepoint, interval
or a temporal element. Points in time or instants cannot represent dur-
ations and it is e.g. difficult to decide the relationships between instant
timestamped facts [1]. Temporal elements are on the other hand hard to
represent in underlying architectures restricted to atomic data values such
as the relational model. Intervals were thus chosen as the timestamp type
for facts.

Above we introduced intervals as the time between two instants. Inter-
vals are an encoding of a set of contiguous instants in time and is represen-
ted by the starting and ending instant. A valid time interval is an interval
defined over the valid time domain, representing the time between two valid
time instants. We define a valid time interval to be a VTInterval = [ti, tj ],
in a closed-closed fashion, where ti ≤ tj, 0 ≤ i ≤ j and ti, tj ∈ VT . A
VTInterval of type [ti, ti] defines the single instant ti ∈ V T . The represent-
ation of intervals may have some pragmatic differences regarding whether a
closed-closed or e.g. closed-open are used, but since the time line is discrete
this is of no significance. Further we define the set of all valid time intervals
by I(VT ) = {[ti, tj ] | ti, tj ∈ VT ∧ ti ≤ tj ∧ 0 ≤ i ≤ j}.

A fact may be a single value, a tuple or an object. E.g. in a relational
database, facts are recorded by tuples and each tuple may be associated with
a timestamp. In our model facts are timestamped with valid time intervals.
A duration of time represented by a valid time interval denotes when the
fact was valid in the modeled reality.

5.2.3 Interval Operators

To fully exploit the promise of temporal reasoning, operators that can effi-
ciently compare intervals of time in different ways are necessary [1]. Tem-
poral analysis is important, many applications aim to analyze time varying
data for different purposes. E.g. in a LIS, changes in urban structure over a
period of time can be recorded and analyzed. The knowledge extracted may
be used for different planning or prediction purposes [29]. We define a set
of comparison operators on the valid time intervals. A pair of intervals can
have one of 13 relations between them. The temporal comparison operators
defined by Allen captures these relationships [1]. The relationships between
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two intervals, a and b, are shown in figure 5.2.3. Only the seven basic operat-

a before b

a meets b

a overlaps b

a equals b

a starts b

a finishes b

a during b

a b

a b

a
b

a
b

a
b

a
b

a
b

Figure 5.2: The possible relationships between two intervals

ors are shown, the remaining six are the inverse of the others. The operation
equals has naturally no inverse operation. The description of each operator
should be easily understood by the names and the figure. In chapter 6 the
operators are defined explicitly when we introduce the temporal data model.

5.2.4 User Defined Time

User defined time is an uninterpreted temporal domain, usually supported
by date and time attributes, where the semantics are known to the user only.
In a temporal model user defined time is supported by a set of time related
data types. The available data types in COMDEF are sparse, an extension
to COMDEF to support new data types for user defined time are presented
in chapter 6.

5.3 Time and Temporal Concepts Realized in UML

The former sections described a model of time and a temporal model. This
section describes the realization of these concepts using UML. UML itself
has no notion of such concepts, neither has the COMDEF. To introduce
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temporal concepts to COMDEF we define a metamodel of time and temporal
concepts using UML to be used as a part of the forthcoming Temporal
Profile. The UML metamodel is simple and general, but defines concepts
helpful for designing the COMDEF temporal data model. A conceptual
model of the temporal model defined above is shown in figure 5.3. All
concepts are described in the model, where the most important aspects are
the valid time dimension and the valid time interval. The elements in the

Figure 5.3: Temporal model Realized in UML

model are used as concepts for deriving the metaclasses for the Temporal
Profile. Note that these concepts are abstract, they are not specifications of
actual modeling elements in the forthcoming Temporal profile. Each element
in the model is described in more detail below.

Instant

Instants, or single points in time, are represented by the Instant model
element and can be depicted in the model. Instant is an equivalent concept
to the instant defined in the time model.

Instants

Instants denote a set of Instant elements and is equivalent to the time line T .
The Instants model element is defined by an infinite ordered set of Instant
elements, denoted in the model by a relationship to Instant having infinite
cardinality. The constraint ordered on the association states that Instants
are an explicitly ordered set of Instant elements. Note, from the definition
of T defined in section 5.1, we state that the set of instants, i.e. Instants in
this case, is isomorphic to some subset of the integers.
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VT

This is the notion of the valid time dimension VT , in the figure VT is a
subtype of Instants. That is, similar to Instants, VT represents an infinite
set of ordered instants, termed valid time instants for VT. Differing from
Instants, VT have the two special temporal values of Now and Forever as
associated elements. Note the singular properties of the associations, In-
stants have only one Now and one Forever. Now always denotes the current
instant, while Forever represents the last instant on the valid time timeline.

• now = t in the sense that t = systemclock current time, t ∈ V T .

• forever = t′ such that ∀t ∈ V T | t′ > t.

Using OCL we constrain VT to be an ordered set of valid time instants.

Context VT INV OrderedDiscrete
Sequence {0..{now..forever}}

VTInterval

VTInterval represents a valid time interval as defined above and represents
the time between two valid time instants. VTInterval is realized by two as-
sociations to VT, denoted start and end as depicted in the model. Namely,
a VTInterval consists of a start and an end valid time instant from VT.
A constraint expressed using OCL for VTInterval follow. The start must
precede the end, at the same time start cannot be equal to Now and must
be less than Forever.

Context VTInterval INV intervalconstraint
self.start <=self.end and
self.start <> Now and
self.start < Forever

5.4 Summary

In this chapter we have defined a general model of time and a temporal
model. The main topic has been the definition of the valid time dimension
and its related properties. A metamodel of time and temporal concepts
have been modeled, in chapter 6 the model is combined with COMDEF to
form the temporal data model. Requirements from chapter 4 fulfilled in this
chapter are described briefly below.
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RT1 Linear
A total ordering of the time line is defined, time advances from the past to
the future in a linear fashion.

RT3 Discrete
The timeline is isomorphic to some subset of the integers, thus discrete.

RT5 Infinite
An infinite time line has been defined.

RTM1 Valid Time
The temporal model supports valid time.

RTM4 Now
Now is introduced as a current time temporal variable.

RTM5 Forever
The temporal model defines the value Forever as a special valid time instant.

RTM8 Interval
Valid time intervals are the chosen timestamp representation.

RTM10 Absolute
All temporal primitives defined are anchored values on the time line.

RMD5 Metamodel of Time and Temporal Concepts A metamodel
for time and temporal concepts has been defined.

We mentioned the interval operators as special for intervals, the VTInterval
itself is an abstract concept in COMDEF and cannot have operations. The
interval operators are therefore not explicitly defined for the VTInterval.
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Chapter 6

The Temporal Data Model

The main topic of this chapter is the definition of a temporal data model.
The data model is defined by extending the COMDEF framework to form
a new UML profile called COMDEF Temporal. Since the extensions rely
heavily on the COMDEF metamodel, a closer description of the COMDEF
metamodel and a brief example of its usage are provided for the reader
in section 6.1. In chapter 3 we recognized the lack of database concepts.
Section 6.2 is devoted to the introduction of database specific properties to
COMDEF which represents the COMDEF DB profile. The temporal data
model is based on COMDEF DB and is described in section 6.3. At the end
we present the temporal modeling requirements from chapter 4 which are
fulfilled in this chapter.

6.1 The COMDEF Metamodel

The intention with the COMDEF framework was to develop component
based distributed systems using a model driven development process [66].
As the framework has a UML profile and strong facilities for mapping models
to systems, it is also suitable for general conceptual modeling. However, the
framework architecture was not expressive enough to capture the domain
specific features we wanted to define. Extensions to the framework was
necessary in order to introduce the required concepts, such as database and
temporal constructs. In chapter 2 we introduced COMDEF and described
the main parts of the framework. In the following, the metamodel used to
model the concepts of the architecture is described in more detail. Since the
first version of COMDEF, UML has gone through several revisions. One
topic for revision has been the identification of several problems with the
extension mechanism [39]. Changes and results of the revisions regarding
the extension mechanism of UML is not discussed here, we only describe the
COMDEF metamodel and its relation to UML as it was first defined.

The COMDEF is a UML profile which extends the UML metamodel.



44 The Temporal Data Model

COMDEF concepts are introduced as new metaclasses in the UML metamodel
using the stereotype extension mechanism. Each new metaclass correspond-
ing to a COMDEF concept is defined according to a base class in the UML
metamodel. The new metaclass adopts the characteristics of its base class,
but will necessarily have specialized structure and behavior. Specialization
of the new metaclasses must be specified using OCL to constrain the model
elements instantiated from the metaclass. Hence, modeling with the COM-
DEF, instances of the metaclasses are instantiated as stereotyped model
elements.

Figure 6.1: Comdef MetaModel

Figure 6.1 shows the COMDEF metamodel/UML profile, and how the
new metaclasses relate to the UML metamodel. New metaclasses introduced
by COMDEF are the ones within the shaded gray area. As indicated by the
figure the metamodel contains two parts. The top model describes the meta-
classes that inherit from Classifier or subclasses of Classifier in UML core
and are instantiated as stereotyped classes. The bottom model illustrates
metaclasses that are extended from Dependency in UML core, these meta-
classes differ from the former in that they are instantiated as stereotyped
dependencies. Semantics of the dependency metaclasses are not important
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here, an example below will point to direction of use.
The concepts in COMDEF was divided into three areas separating the

concerns of a distributed information system.

• UserService Represents the client side interface to the system.

• Service Represents the server side distributed object.

• Entity Represents the server side encapsulation of persistent storage,
i.e. used to model the information model.

Event is not mentioned above, but represents the event handling between
Service and Entity components. Figure 6.2 illustrates the use of the COM-
DEF UML profile. The example is part of a developed case implementation
from the OBOE project [47]. Main features of the COMDEF metamodel
are illustrated, where the above described concepts appear in the model as
stereotyped model elements. COMDEF uses the UML association model to
represent relationships. Constraints for the associations are set to realize
the desired COMDEF relationships. The example model shows a report

Figure 6.2: A COMDEF metamodel instance

subscription system.
The focus of our work is the data elements being modeled in a system,

which in this context is the Entity concept. The distributed part, i.e. Service
and UserService, is not within the scope of this thesis. We therefore continue
with a closer description of the Entity.
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6.1.1 Entity

The concept of an Entity is used to model the information model, that is,
entities defined according to Entity are representations of the information
objects of interest, e.g. stored in a database. Entity inherits from classifier
in UML CORE as can be seen in figure 6.1. Classifier is an abstract su-
perclass for class, interface and datatypes in the UML metamodel [50]. A
class diagram stereotyped with the Entity stereotype obtains the character-
istics of Entity. An Entity instance has independent existence, is defined to
be persistent and is characterized by a set of attributes and a set of meth-
ods. Figure 6.3 shows the metamodel which defines the properties of Entity.
Similar metamodels of existing and new concepts are used throughout the
chapter. These metamodels serve as a basis for describing and understand-
ing the meaning of the modeling concepts and constructs.

Figure 6.3: Entity metamodel

Relationships are allowed between Entity instances. As mentioned above,
the UML association model is utilized. Use of the UML associations are
restricted by OCL constraints and the following constraint is imposed at
metamodel level using OCL for Entity.

context Entity INV associations
self.allOppositeAssocationEnds→ forall (a |

a.type.OclIsTypeOf(Entity))

Entities stereotyped Entity are only simple structures representing inform-
ation objects without any further semantic. This works well for objects
without complex structure, but when modeling more advanced systems the
Entity concept is not adequate. Extensions to the Entity concept are there-
fore the main topic of the forthcoming sections.
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6.2 Database Extension

Although the Entity concept is sufficient for modeling e.g. simple static
business objects or similar applications without further complexity, certain
shortcomings were discovered when trying to use COMDEF to model inform-
ation models with different and more advanced features, such as database
specific properties. A new concept had to be introduced to represent char-
acteristics of database entities and domain specific types more accurately.

The solution was to extend the Entity concept to become a relational
database entity, obtaining the properties common to a relational database
object. Introduced as a generalization of Entity, we named the database ver-
sion of Entity RDBEntity. The RDBEntity inherits all features from Entity
besides introducing new database specific characteristics. The inheritance
hierarchy between Entity and RDBEntity is described in figure 6.4. As can

Figure 6.4: RDBEntity inherits from Entity.

be seen from the generalization arrow, RDBEntity is defined to be a subtype
of Entity and inherits the structural characteristics of attributes and meth-
ods from Entity. We now move on to describe the properties of RDBEntity
itself. The model in figure 6.5 shows the metamodel for RDBEntity, which
defines the COMDEF DB profile and describes the characteristics of RD-
BEntity stereotyped entities. Features inherited from Entity are expanded
and shown together with the new constructs. RDBEntity strengthens the
notion of persistence compared to Entity, for which the only notion of per-
sistence was stated using natural language. As illustrated in the metamodel
figure, two new constructs are associated with the RDBEntity, a PrimaryKey
and an Index. The meaning and use of these are described in their respective
sections below.
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Figure 6.5: RDBEntity metamodel

Primarykey

Depicted in the RDBEntity metamodel the RDBEntity has an associated
Primarykey, shown by a composite association from RDBEntity to Primarykey.
By the composite association and a multiplicity of one, an RDBEntity
defines a single Primarykey by definition. Primarykey again defines pk,
which references a single Attribute denoted by the composite association
to Attribute with role name pk. The multiplicity of pk is set to one for
simplicity, a restriction emphasized by the invariant PrimaryKey stated in
OCL below. Summing up, RDBEntity defines a single Primarykey which
has an associated pk referencing a single Attribute. Since pk references an
Attribute, RDBEntity must at least define one Attribute, expressed by a
multiplicity of one or more on the association between RDBEntity and At-
tribute. Actually, a dependency relationship exists between the mentioned
association and pk, but no notion of such visual constraints are found in
UML.

For a modeled entity stereotyped RDBEntity, i.e an rdb entity, the above
characteristics apply. Semantics of the primarykey for an rdb entity are
that the selected attribute are to serve as a unique identifier. The following
OCL expression states that each RDBEntity entity is required to have a
primarykey defined and the attribute referenced by the primary key must
exist.

context RDBEntity INV PrimaryKey
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self.allinstances->forall( r | select q (r.allattributes()) |
q = r.primarykey.pk and
r.allattributes->forall(p | p = q or
( p <> q and p <> r.primarykey.pk)))

Note, the OCL expression allattributes() returns all attributes of an
entity, both local and inherited. We have defined the expression in order
to simplify the OCL expression and thereby the readability. A primary key
cannot be redefined through inheritance. All entities with an RDBEntity
stereotyped parent inherits the primarykey definition of its parent, and is
maintained by the following OCL expression of the RDBEntity.

context RDBEntity PrimaryKeyInherited
self.allinstances-> forall( r | r.allSupertypes->forall(

s | r.primarykey.pk = s.primarykey.pk))

Index

The database entities can define indexes. Indexes are used to optimize re-
trieval from persistent storage. The metamodel in figure 6.5 shows Index
as an association from RDBEntity. By the multiplicity we see that zero or
more Index definitions are possible. Index itself has a name and an associ-
ation named idx which references Attribute. The association idx referencing
Attribute have a zero or more multiplicity, that is, the idx can reference
zero or more elements of Attribute. To be perfectly precise, a dependency
restriction is existent between the associations idx to Attribute and from
RDBEntity to Attribute. No index can have a reference to an attribute that
is not defined for an RDBEntity instance. Similar as for the primary key
above, a restriction hard to express visually using UML.

General Constraints on RDBEntity

A general constraint inherited from UML Core is that only leaf nodes of
RDBEntity instances are instantiable, that is, abstract instances are not
implemented.

The next OCL expression constrains the relationships of RDBEntity.
Database entities are used to model the information model only, and rela-
tionships to other kinds of model elements are therefore not allowed. Below
we state that rdb entities are only allowed to have relationships to other rdb
entities.

context RDBEntity INV associations
self.allOppositeAssocationEnds -> forall (a |

a.type.OclIsTypeOf(RDBEntity))
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6.3 The Temporal Profile

This section presents the temporal extension to the framework and the se-
mantics and usage of the concepts in the Temporal profile. A profile is a set
of extensions to referencing UML profiles, these extensions take the form of
metamodels representing a specific domain. The former section described
the COMDEF database profile which the temporal profile is based on.

Main features of the temporal profile is introduced in the next sec-
tion. We describe the temporal metamodel which defines the temporal data
model. Requirements for such models was defined in chapter 4, requirements
fulfilled by the temporal data model defined below are described at the end
of this chapter. We have striven to define a simple and general temporal
data model having the essential features to capture the time varying nature
of information. A combination of precise metamodeling using UML and
refinement of extended model elements using OCL are used to achieve this
goal. A general requirement for the Temporal profile is that it should be
a proper UML metamodel extension conforming to the restrictions set by
UML.

6.3.1 Temporal Metamodel

In order to extend the existing framework with temporal concepts, a few
different approaches where considered. Using UML to represent domain
specific aspects is not straightforward. Introducing temporal concepts to
existing models are no exception, as mentioned in section 2.2.4 a variety
of different approaches are possible. Above we extended COMDEF with
database specific properties to form the database profile. The COMDEF
DB defines a snapshot data model, that is, the RDBEntity supports only
current states of entities. Extensions to the COMDEF DB were therefore
necessary to support the time varying nature of entities. We extend the
COMDEF DB to define a temporal data model where the temporal support
is defined within the data model. That is, according to the approaches
described in chapter 2 we use the extension approach to define the temporal
data model. This led to the introduction of a new concept orthogonal to
the RDBEntity, namely the ValidTimeEntity. Separation of concerns are
important for conceptual models, in general, orthogonality is the key to
solve dimensionality [68].

The ValidTimeEntity

Temporal constructs are introduced to the COMDEF framework by the
new concept ValidTimeEntity. Our aim is to model temporal variation of
real world objects using the relational model as the underlying architec-
ture. Thus, database specific characteristics are equally important for the
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ValidTimeEntity as for the RDBEntity. The natural solution was to let
the ValidTimeEntity inherit all characteristics of the RDBEntity. In figure
6.6 the ValidTimeEntity concept is defined as a subtype of the RDBEntity.
Hence, the ValidTimeEntity inherits all characteristics defined in the RD-

Figure 6.6: ValidTimeEntity as subtype of RDBEntity

BEntity. This implies that the ValidTimeEntity defines a set of attributes,
a set of methods, a single primarykey definition and a set of indexes. The
semantics of these are described in section 6.2. Figure 6.7 describes the
inherited characteristics of the ValidTimeEntity, note the implicit general-
ization relationship to the RDBEntity.

Timestamping the ValidTimeEntity

In order to capture the time varying properties of an entity, it must have an
associated timestamp. Past, present and future states of a real world entity
are to be captured by the ValidTimeEntity. The level of timestamping
may take the form of entity timestamping, associating a timestamp to the
entity as a whole, or timestamping each attribute of an entity separately.
We chose the approach of timestamping complete entities. The decision
was based on the underlying architecture, attribute timestamping using the
relational model is technical and difficult to implement. A requirement
was to provide simple platform independent support for modeling temporal
entities for persistence. Although we model real world entities in UML, that
is, in an object model, by extending the RDBEntity our main target is the
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Figure 6.7: Inherited Characteristics of ValidTimeEntity

relational model as underlying data model. Entity timestamping was chosen
as a simple and viable solution when using the relational model.

Entity timestamping associates a value of time with each entity, in our
case valid time was the chosen aspect of temporal support, hence facts rep-
resented by an entity are timestamped by values from the valid time dimen-
sion. The timestamping of the ValidTimeEntity is realized by the following.
The ValidTimeEntity is associated with a new timestamp construct. The
new construct of the temporal entity is, as shown in figure 6.8, construc-
ted of a ValidTimeEntity and its associated VTTimestamp referencing a
VTInterval.

Figure 6.8: ValidTimeEntity with VTTimestamp referencing VTInterval

In the figure the association is composite and of single multiplicity, se-
mantics is that ValidTimeEntity has by definition one and only one associ-
ated VTTimestamp of type VTInterval. VTInterval was defined in chapter
5 as a valid time interval. To get an overview of the different parts we
introduce the temporal concepts again, this time together with the Valid-
TimeEntity to complete the model. In figure 6.9 a complete view of the
ValidTimeEntity and the associated time and temporal concepts are shown.
In the figure all characteristics of the ValidTimeEntity are described. A
ValidTimeEntity has an associated VTTimestamp, the VTTimestamp ref-
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Figure 6.9: Relationship between ValidTimeEntity and the temporal model

erences a VTInterval. VTInterval is a valid time interval representing the
time between two valid time instants from the valid time domain VT. This
means that the ValidTimeEntity has an associated set of valid time instants
from the valid time dimension.

All modeled entities stereotyped ValidTimeEntity adopts the character-
istics defined for ValidTimeEntity above. When classifying an entity with
the ValidTimeEntity stereotype, the valid time constructs are instantiated.
Semantics denoted by VTTimestamp is interpreted as the duration of time
when facts, that is, the different states of an entity, were valid in the modeled
world. A closer description of the semantics of the ValidTimeEntity is found
in section 6.3.2.

Constraints on ValidTimeEntity

Behavior of valid time entities must be constrained, the next OCL expres-
sions define restrictions on the ValidTimeEntity. A valid time entity do have
a timestamp. The OCL expression below states the required definition of a
VTTimestamp of type VTInterval for each valid time entity.

context ValidTimeEntity INV VTTimestampDefined
self.allInstances -> forall(r |

exist (r.vttimestamp) and
r.vttimestamp.OclIsTypeOf(vtinterval))

Primary keys serve as unique identifiers. Because the states of entities vary
in time, objects having identical keys will exist. The following OCL expres-
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sion states that two instances of a valid time entity having identical primary
keys cannot have identical VTTimestamp values.

context ValidTimeEntity INV timeinvariantprimarykey
self.allInstances -> forall ( E | E.allInstances->

forall(e1,e2 |
e1.primarykey.pk = e2.primarykey.pk implies
e1.vttimestamp <> e2.vttimestamp))

From the definition of VTInterval the constraint below is defined, but not
in the context of ValidTimeEntity. Each timestamp associated with a Val-
idTimeEntity must be a valid VTInterval.

context ValidTimeEntity INV VTTimeStampCorrect
self.allInstances -> forall (E | E.allinstances->

forall( e | e.vttimestamp.start < e.vttimestamp.end))

COMDEF Temporal utilize the relationship model originally defined in
COMDEF, the model and issues regarding temporal relationships are de-
scribed in more detail in section 6.3.3. The following OCL expression states
that entities stereotyped ValidTimeEntity are only allowed to have relation-
ships to other temporal or database entities.

context ValidTimeEntity INV associations
self.allOppositeAssocationEnds -> forall (a |

a.type.OclIsTypeOf(ValidTimeEntity) or
a.type.OclIsTypeOf(RDBEntity))

Operators

The interval comparison operators described in section 5.2.1 are now defined.
In figure 6.10 all characteristics of the ValidTimeEntity are illustrated, the
implicit interval operators can be viewed as operations of the entity. Note,
the operators are defined for operations on the valid time intervals only,
and have no other function than comparing valid time intervals of temporal
entity states.

ValidTimeEntity introduces the comparison operators as implicit binary
operations for a temporal entity. Each operator returns a boolean deciding
the result.
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Figure 6.10: All characteristics of ValidTimeEntity

6.3.2 Properties of Valid Time Entities

Above, abstract syntax and notation for the valid time entities was de-
scribed. Semantics are hard to express using UML, and other mechanisms
provide a more natural explanation of the time varying entity. The disad-
vantage of using an entity timestamping approach is that a real world entity
is represented by several tuples in the database. A representation awkward
for an entity as a single unit. Another is the issue of redundancy, frequent
changes in single attributes of an entity lead to a high level of data repetition.
Below we elaborate on some issues regarding the valid time entity.

Let E be a modeled entity defined according to ValidTimeEntity, that is,
E is stereotyped with the ValidTimeEntity stereotype. Then E = {E1, . . . , En},
1 ≤ n, which defines E as a set of valid time entity instances, i.e., each entity
instance is a representation of a real world object. As real world objects vary
in time, so do the entity instances and the information history regarding an
entity is composed of a set of states. For an instance Ei ∈ E , 1 ≤ i ≤ n, the
set of states is denoted by E = {e1, . . . , en},1 ≤ n. Each ei ∈ E, 1 ≤ i ≤ n,
contains a set of values representing the facts of the respective state of E.

One value acts as the unique identifier of E, for each ei ∈ E, 1 ≤ i ≤ n,
this value is denoted by ei.primarykey. Moreover, each e ∈ E has an
associated valid time timestamp V TInterval ∈ I(V T ), where I(V T ) is the
set of all valid time intervals as defined in section 5.2.1.

Lifespan of an entity is a concept not discussed, as we do not explicitly
capture lifespan of entities. The lifespan encompasses the valid time of any
state, i.e., data instance of the entity object. Some data models explicitly
support lifespan of entities, in our model lifespan of an entity is implicit and
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deduced by computing the union of valid time intervals for each state of the
entity.

Since the set E represents states of the entity instance, the states will
have identical primary key values. This implies that further restrictions on
the set E have to be defined. Each entity instance in the set must be unique,
which is enforced by stating that each primary key is time-invariant. The
primary key constraint on states of valid time entity instances set that none
of the valid time timestamps of entities with identical primary keys can be
equal. The constraint is defined as follows.

Definition 6.3.1 time-invariant primarykey constraint
∀ei, ej ∈ E (ei.primarykey = ej .primarykey ⇒

ei.vttimestamp 6= ej .vttimestamp)

The definition is important for satisfying the set restriction and fulfill the
responsibility of the primary key as a unique identifier. The primary key is
the only time-invariant attribute in a valid time entity instance, all other
attributes are allowed to vary in time. This constraint is also expressed in
OCL above.

The following is an example valid time entity Property defined in CML.

validtimeentity Property {
attribute string id;
attribute string tenant;
vttimestamp vtinterval;
primarykey id;

};

Table 6.3.2 is an example of entity instances in a database of the valid
time entity Property shown in CML above. Let us imagine that a real estate
company keeps a record of the properties they manage and their tenant’s
history over time. Sam hired property 12 from 1982 until 1991, represented
at that time by an insertion of an entity E with the fact e =(12, Sam
| 1982 -now). This was the first registered tenant for house number 12
and thereby the first time the house was instantiated as an entity in the
system. In 1991, the property was scheduled for renovation and his period
as a tenant was ended by setting the vttimestamp.End timestamp to 1991.
In 1993, Sam was registered as tenant for property twelve again. From the
vttimestamp.End value of Now in the second tuple we can see that Sam still
is the current tenant of property twelve. We can also deduce that Liv, Sam’s
girlfriend, is also a registered tenant of the house from 1997. In 1994, Paul
hired property number 23 with a contract lasting 5 years, as the complete
tenancy period was known at the moment of registration, the vttimestamp
was set to [1994,1999]. When Paul’s contract ended, he decided to renew
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id tenant vttimestamp

12 Sam 1982 - 1991
12 Sam 1993 - now
12 Liv 1997 - now
23 Paul 1994 - 1999
23 Paul 2000 - now

Table 6.1: A table showing tenant history

the contract and rent the property for an unknown time. This resulted in
an insertion of a new entity stating that Paul rents property 23 from 2000
until the current time.

If we look closer at the table 6.3.2, a few interesting properties of the set
of entities can be discussed. Remember that the attribute values of a state
denote a fact, and the timestamps define the valid time of the state.

A concept commonly used in temporal database terminology is value-
equivalence.

Definition 6.3.2 Value Equivalence [30] Two entity states ei, ej ∈ E are
value equivalent if they have identical (non-timestamp) attributes values.

In our example the two entity states associated with property 23 is value
equivalent. Value equivalence is usually a term used in conjunction with the
concept of coalescing. Coalescing is an operation that, in this case, merges
value equivalent entity states with consecutive valid time intervals, thereby
replacing two states with a single state having an enlarged valid time interval
[7]. Paul has two periods of tenancy which are adjacent in time and could be
coalesced. In this case, coalescing will be space preserving, but we will lose
the information that Paul once renewed his contract. No coalesce operation
is defined in our model, such an operation defines point based behavior of a
model.

Whether a data model is point or interval based is often found to be con-
fusing. The question is how the intervals are preserved, when timestamping
facts with intervals the intervals only serve as a shorthand notation for a
set of instants. Informally a data model is defined to be interval based if
all facts are interval timestamped over the time point domain, and all the
operators in the model are interval based, i.e. the intervals are preserved
during the operation. The same applies for a point based model, only vice-
versa [5]. Our model is defined as interval based, the intervals are respected
in all operations defined as of now. Each valid time interval is treated as an
atomic value.
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6.3.3 Relationships in COMDEF

Modeling the relationships between entities are important in an information
system. COMDEF has a relationship model similar to that of the notion
defined by the ODMG [9]. By utilizing the already existing association
model defined in the UML metamodel and defining some behavioral rules,
the desired COMDEF relationships such as single and list relationships are
defined. Bag, set and dictionary relationships are also supported.

Managing relationships between entities with valid time semantics is
somewhat more problematic. A general assumption is that relationships
between valid time entities are valid only during the intersection of the
lifespan of the participating entities. A similar problem is present regard-
ing relationships between general database entities and temporal entities.
Another issue is the intended meaning of the relationship, situations may
occur where the above assumption is inappropriate. One option is to design
a temporal extension to the relationship model in COMDEF, but this was
not investigated closer due to technical complexity and time constraints.
The COMDEF DB and Temporal profiles utilize the relationship model as
it is. Management of relationships involving temporal entities are left to the
application.

6.4 Data Type Extension

COMDEF supports only Corba IDL atomic data type definitions. Based on
the CORBA IDL type hierarchy, models mapped to different architectures
utilize the IDL mappings only. In order to use COMDEF for different do-
mains we need to allow definitions of domain specific data types. New data
types could have been added by extension to the CML grammar, but this
would violate the original design and misuse might have caused inconsisten-
cies in existing COMDEF models. COMDEF as a model driven framework
should be language neutral and domain specific types should therefore not
be a static part of the architecture.

The solution was to extend the framework to support inclusion of ex-
ternally implemented data types. Domain specific data types not recognized
by the original framework can then be included in models. Extension was
done by introducing a new Datatype concept to COMDEF. The metamodel
is quite simple, a Datatype is a sort of classifier and its only characteristic is
a set of possible operations. In figure 6.11 the definition of the Datatype in
UML is represented. Instances of data types are primitive values or objects
without identity. All operations owned by a data type must be queries, i.e.
they are pure functions and can only return values, not modify values. The
constraint is maintained by the following OCL expression.

context Datatype INV OperationsAreQueries
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Figure 6.11: The data type extension

self.ownedOperations->forall(f | f.isQuery)

The COMDEF DB and COMDEF Temporal profiles have a “uses“ rela-
tionship to the external type library. The new data types must of course be
recognized by their respective domain specific mappings, that is, the imple-
mentation of the types are external to COMDEF. Since the data types are
external and only represent an interface to the implemented types, associ-
ations and attributes of Datatype are not supported.

Two data type libraries are defined for the COMDEF DB and COMDEF
Temporal profiles. A time related data type library and a spatial data type
library is available.

6.4.1 Temporal Types

User defined time is supported by a set of time related data types in COM-
DEF. The data type library of temporal types in COMDEF Temporal is
depicted in figure 6.12. Datetimes are a common notion for data types
representing dates and times. Datetimes included in the model are in con-
formance with the SQL-92 standard as defined in [43]. Semantics of the

Figure 6.12: Time related data type library

included datetimes are defined below.
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Date Stores year, month and day of a point on the time line.
E.g. 25/11/2001.

Time Stores hour, minute and second. Can be used to store
recurring points of time, or a point on the time line where
date is implicit. E.g. 13:20:53.

TimeStamp Stores year, month, day, hour, minute and second of a
point on the time line.

6.4.2 Spatial Types

The spatial type library defines the available spatial types. Work on spatial
types in the COMDEF framework has been done in [81] and is not elaborated
over herein. In figure 6.13 the spatial types are described using UML. The

Figure 6.13: Spatial type library

supertype Geometry defines binary spatial operations for the spatial extents.

6.5 CML Grammar Extensions

So far the lexical language CML (Component Modeling Language) has re-
ceived little concern. The intention with the lexical language is to provide
a textual notation complete with respect to the graphical representation
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of models. Mismatch between graphical notation and lexical notation is
a general problem in software development frameworks. CML is based on
extensions to the existing lexical notations of IDL (Interface Description
Language) [48] and ODL (Object Definition Language) [9]. To provide a
textual representation of COMDEF models the concepts in the profile are
defined in CML. The next sections present the grammar additions to CML
used to define the DB and Temporal profile concepts. As the grammar is
not a key topic, the descriptions are brief.

RDBEntity

CML grammar for RDBEntity is defined in figure 6.14. Two main grammar
productions are added compared to the Entity grammar; primarykey dcl
and index dcl. Characteristics of Entity are obtained by the grammar

rdbentity dcl ::= <rdbentity> indentifier
(inheritance spec)?
( “ ( “ rdbentitybody dcl “ ) “ )?

rdbentitybody dcl ::= (export rdbentity)∗
export rdbentity ::= export entity

| primarykey dcl “;“
| index dcl “;“

primarykey dcl ::= <PRIMARYKEY> key dcls
index dcl ::= <INDEX> key dcls
key dcls ::= key dcl ( “,“ key dcl )*
key dcl ::= identifier

Figure 6.14: RDBEntity CML grammar

production export entity.

ValidTimeEntity

Figure 6.15 shows the CML grammar definition of ValidTimeEntity. The
grammar production timestamp dcl defines the timestamp and vttype dcl
states the timestamp type. All other characteristics of ValidTimeEntity are
obtained from RDBEntity by the production rule export rdbentity.

Datatype

The CML grammar definition of the Datatype extension is depicted in fig-
ure 6.16. A data type consists of a Datatype declaration and an identifier,
the grammar production datatypebody dcl defines one or more operation
declarations, that is the op dcl.



62 The Temporal Data Model

validtimeentity dcl ::= <VALIDTIMEENTITY> indentifier
(inheritance spec)?
( “ ( “ validtimeentitybody dcl “ ) “ )?

validtimeentitybody dcl ::= (export validtimeentity)∗
export validtimeentity ::= export rdbentity

| timestamp dcl “;“
timestamp dcl ::= < VTTimestamp > vttype dcl
vttype dcl ::= <VTInterval>

Figure 6.15: ValidTimeEntity CML grammar

datatype dcl ::= <DATATYPE> identifier (inheritance spec)?
( “ ( “ datatypebody dcl “ ) “ )?

datatypebody dcl ::= (export datatype)∗
export datatype ::= op dcl “;“

Figure 6.16: Datatype CML grammar

6.6 COMDEF Profile Architecture

The Comdef DB and Temporal profile have been defined above. We now
present an overview of the relationships between the profiles, a typical
scenery for a complete use of COMDEF. Illustrated in figure 6.17, the COM-
DEF profiles are described using packages stereotyped with the profile ste-
reotype. Packages in this context are synonyms for profiles and serve as a
mechanism useful for structuring profiles. In the figure, the arrows denote
dependency or uses relationships between packages.

The DB profile uses the COMDEF profile and the Temporal profile uses
the DB profile. Data type libraries are available both to the DB and Temp-
oral profiles, for readability the DB profile relationships to the data type
libraries are left out. Two packages are stereotyped DataTypeLibrary, the
TemporalTypes and the SpatialTypes. The COMDEF DB and Temporal
employs the types defined in the data type packages as an included data
type library.

Two model packages are included in the figure. They are used to illust-
rate the use of the different COMDEF profiles. A model designed using
one of the profiles is modeled in a module, stereotyped with the Module
type in the figure. Two different modules are shown, the DBSchema module
and the Application module. Models using the Temporal profile consti-
tute the persistent system information model and are modeled in the DB-
Schema package. Applications using the information model are designed
in the Application package, these models may utilize the original COM-
DEF stereotyped concepts of Service and UserService. A GUI profile, not
described in the figure, has also been developed, which provides modeling
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Figure 6.17: Complete COMDEF Temporal profile architecture

concepts for the purpose of designing graphical user interfaces based on the
application model.

6.7 Summary

In this chapter we have presented a temporal UML profile. The COMDEF
Temporal defines a temporal data model based on timestamping entities.
The UML profile provide modelers with a simple and expressive modeling
language sufficient to design information models having valid time support.
A data type extension to COMDEF have been described, allowing the frame-
work to be extended with data types for a specific domain.

The temporal data model defined fulfills the following requirements for
temporal data models and model driven development defined in chapter 4.

RTM3 User Defined Time
User defined time is supported by the inclusion of a set of time related data
types.

RTM12 Interval Operators
Allen’s comparison operators are defined for each entity to compare intervals.
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RDM2 Timestamped Entities
A valid time timestamp of type valid time interval is associated with each
temporal entity.

RDM5 Time-invariant Identifiers
Primary keys serve as unique identifiers, constraints on valid time entities
ensure that the key is time-invariant.

RMD1 Methodology Support
The temporal data model is defined using the UML and methodology sup-
port is ensured.

RMD2 UML Profile
The COMDEF Temporal is a proper extension to UML and thus a UML
profile.

RMD3 Interpretable Mapping from Graphical Notation
Models are mapped via the XMI. Since COMDEF Temporal is a UML pro-
file and thus conforms to the UML metamodel, models can be interchanged
using the XMI format. In section 7.4 the mapping process in COMDEF is
described closer.

RMD4 Platform Independent
The COMDEF Temporal is language neutral and can be mapped to any
underlying architecture. Temporal and database concepts are profile spe-
cific specializations only.

RMD6 Simple and Expressive
The COMDEF Temporal is a simple temporal model, concepts provided
are few and easy to comprehend. The model provides a clean view of the
modeled elements and is at the same time sufficiently expressive.

An example of usage of the temporal profile is described in chapter 7 where
the profile is used to implement a case application.



Chapter 7

Case Revisited

In this chapter the land information system model from chapter 3 is reintro-
duced, now using COMDEF Temporal. We describe the usage of the new
modeling constructs and their properties. Further we present an implemen-
ted case application based on a mapping from the model.

7.1 The System Model

Figure 7.1 shows a model of the LIS system modeled using the COMDEF
Temporal profile. All new concepts are included in the model. In the follow-
ing we describe the concepts and relate them to the requirements presented
in the case model in chapter 3. When modeling with COMDEF, the specific
concepts and constructs are instantiated by using the COMDEF Temporal
profile. The profile also instantiates the data type library, which gives the
modeler access to a set of temporal and spatial data types. For demonstra-
tion purposes all entities are stereotyped by the ValidTimeEntity stereotype,
i.e. all entities are temporal. COMDEF is flexible; both temporal and non
temporal entities can be mixed, providing optional temporal support. The
model presents a clear and visible view of the system, it retains simplicity
and understandability even when the modeled entities have temporal as-
pects. Unfortunately, the representation of the domain specific constructs
cannot be expressed using conventional UML, a topic to be discussed in
chapter 7.3. In COMDEF however, the constructs are defined and we will
describe the definitions as we discuss the new concepts.

7.1.1 Database Support

In the original case model we had no notation to define persistent entities and
their properties. The ValidTimeEntity stereotype introduces persistence to
the model elements. By definition all valid time entities are relational data-
base entities. In the case model each entity is stereotyped ValidTimeEntity
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Figure 7.1: A revised case model

which identifies the entity as a persistent database entity.

Primary keys

Each valid time entity has a primary key defined. The primary key is instan-
tiated when stereotyping an entity with the ValidTimeEntity stereotype, an
attribute must be designated as the primary key attribute by the modeler.
The primary key is defined by primarykey keyword. For entity owner the
following CML is defined to state id as a primarykey.

primarykey id;

The primary key is defined as inline CML of the entity in a model.

Index

Index is an optional property of database entities. A user is allowed to
define an attribute of an entity as an index. Similar to the primary key,
indexes cannot be seen in the model itself. To denote name as index for
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entity owner the following CML must be defined using the index keyword
in CML.

index idx name;

One or more attributes of an entity can be indexed, the idx denotes the
index name.

7.1.2 Valid Time of Entities

All entities in the case model are temporal. The valid time entity allows us
to model entities that vary in valid time, i.e. the states of the entity at dif-
ferent times are captured, denoting when the facts represented by the entity
was valid in the modeled reality. When modeling using the temporal profile,
the system modeler has to decide if valid time of an entity is to be supported.
Entities chosen to be temporal must be classified with the ValidTimeEntity
stereotype. The stereotype instantiates the valid time timestamp construct
described below.

Valid Time Timestamp

All entities stereotyped by ValidTimeEntity have by definition a valid time
timestamp, denoted vttimestamp of type vtinterval. The timestamp is ap-
plied to each entity when an entity is classified with the ValidTimeEntity
stereotype. In CML the statement below is mandatory for each valid time
entity.

vttimestamp vtinterval;

7.1.3 Domain Specific Types

The COMDEF temporal profile has a uses dependency relationship to the
data type libraries. When modeling with the profile, these types are instan-
tiated as if they were regular data types in COMDEF. This allows modelers
to use them in a flexible way; both general database entities, i.e. rdb entit-
ies, and valid time entities can use the data types freely. This is shown in
the model. The attribute area which has a type of Region or SimpleRegion,
found on the municipality and the building entity respectively are examples
of spatial types. User defined time is present in entity Person; where an at-
tribute date of birth (dob) of the type Date is defined. To COMDEF itself,
the data types are external. Their implementation is known to the mapping
facilities only.
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7.2 Example CML Definition from the Model

We show the resulting CML notation of the owner entity and its subtypes
to fully describe the meaning of the case model. All features introduced
in the previous sections are shown. For brevity, relationship definitions are
not included. Also, the module keyword denotes the package structure in
COMDEF. All database entities are modeled in a separate package, in this
case DBSchema.

module DBSchema{
abstract validtimeentity Owner {

attribute string id;
attribute string name;
vttimestamp vtinterval;
index idx name;
primarykey id;

};

validtimeentity Company : DBSchema::Owner {
attribute string branch;

};

validtimeentity Person : DBSchema::Owner {
attribute string sex;
attribute Date dob;

};
}

The CML representation and the model map one-to-one, even if the
domain specific constructs cannot be depicted in the model diagrams.

7.3 Representing Domain Specific Constructs

Stereotypes served as a functional extension to denote domain specific con-
cepts at entity level, but we discovered problems when trying to express the
extensions at property, i.e. attribute level. The question was how the new
domain specific constructs should be introduced in a model. This was a
result of the singular property of stereotypes as described in section 2.1.3.

In a situation the modeler may want to define an index using the same
attribute as the designated primary key attribute. If the primarykey was
defined using a stereotype, a new index stereotype cannot be used on top.
Note, a primarykey is actually an index, the above is just an example to
point out the problem. One solution, which is allowed, is to construct com-
posite stereotypes of other stereotypes, any stereotype may be constructed
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as specializations of numerous other stereotypes. A solution which results
in a complex hierarchy of artificial stereotypes not desirable. Because we
ruled out stereotypes use at attribute level in our research, we had to find
another way of representing the domain specific constructs.

The valid time timestamp construct is instantiated by the ValidTimeEntity
stereotype. Primary keys and indexes are different in that the attribute for
specification is user defined. The primary keys and indexes of COMDEF
profiled entities are therefore specified externally to the model element using
inline CML. This was only due to our restriction on the use of stereotypes,
primary key and indexed attributes can easily be specified by stereotypes.

7.4 From Model to Generated Code

Mapping the case model in COMDEF Temporal to generated code requires
a few steps. The following describes the technologies used to accomplish
them.

System Model to XMI

In section 2.1.2 we described XMI as a textual MOF based interchange
format. XMI export facilities in current modeling tools are used to map the
designed model using COMDEF Temporal to XMI. The result is a textual
description in XML format of the model. It is a one to one mapping between
the model and the XMI generated. By mapping the model via XMI, we avoid
tool dependency and provide interchange of models across platforms.

XMI Mapping to CML

The XMI representation of the model is mapped to the lexical language CML
using XSLT (Extensible Stylesheet Language Transformations). XSLT is an
XML transformation language defined by W3C in 1999 [80]. To be more
specific, XSLT transforms an XML document into a different presentation
format after an XSL (Extensible Stylesheet Language) stylesheet specific-
ation. Redundant information is removed during the transformation, but
there is an one to one mapping between the information model in UML and
the CML representation.

Code Generation from CML

The code generation facilities are among the strongest features of COMDEF.
The CML textual representation is used by the code generation tools in
COMDEF to develop the system. A mapping developed from COMDEF
Temporal is described briefly in the next section, where generated code
based on a subset of the case model is used by an implemented application.
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7.5 Implemented Case Application

We decided to create a map application to be viewed in an Internet browser.
A client was developed to show a map of a larger region, e.g. a municipality,
and have the ability to show time-varying information of thematic values,
in this case building owners. A subset of the case model was used to de-
velop the system. The new modeling constructs are utilized by the code
generation tools in COMDEF to minimize difficult manual implementation.
Minimizing manual implementation, in this case, consist of handling domain
specific functionality, e.g. the generation of code to ease the management
of temporal data and access code for spatial objects. Together with more
simple features as database schema generation, the functionality gives us
the capability of efficiently developing system code to be used by a LIS
application.

7.5.1 Implemented Application Architecture

The following describes the architecture of the implemented map applic-
ation. To support a distributed environment Enterprise Java Beans was
chosen as an architecture to be used as a wrapping on the generated code.
Enterprise Java Beans is a component architecture for development and de-
ployment of component-based distributed applications. EJB provides trans-
actional, secure and scalable services to applications [16]. The EJB architec-
ture is powerful in the sense that neither the bean developer nor the client
application programmer needs to be concerned with complicated and error-
prone server side issues. EJBs run in a container which provides support for
the issues described. In our case the container is the Oracle9i Application
Server. Oracle9i Application Server provides a complete Java2 Platform,
Enterprise Edition container which includes a servlet engine and an EJB
container. Java2 Platform, Enterprise Edition (J2EE) specifies a standard
architecture for developing multitier services for enterprises [73].

An illustration of the complete architecture can be seen in figure 7.5.1.
We have developed a multitier architecture with loose coupling in both ends
of the middletier. The two end tiers consist of a database and a thin client
application, while the middletier contains all the information logic. Actually,
the figure describes all the application components required in a proper J2EE
application.

The Database Tier

The Oracle database is used for persistent storage in the system. The case
model is mapped to relational schemas in the database. Oracle provides a
spatial module to store geographically referenced data conveniently. The
database was populated with owner histories and spatial extents.
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The Application Server

The illustration in figure 7.5.1 gives a logical view of the different elements
in the application server. Two containers are depicted inside the J2EE con-
tainer, a web container and an EJB container. Typical web components such
as servlets and e.g. Java Server Pages (JSP) execute in the web container.
Servlets receive requests from a client and dynamically generate a computed
response. A web listener, in this case Oracle HTTP Server Apache, directs
client request to servlets. A servlet residing in the web container serves as
the first tier in the application server architecture. Second tier is the EJB
coupled with a generated Java access layer from COMDEF Temporal and
deployed to the EJB container. These components are actually two separate
tiers, but are both deployed to the EJB container.

Figure 7.2: The demo architecture

Main application logic is found in EJB which uses a simple interface in
the access layer to retrieve objects from the database. Communication with
the database is provided with JDBC, which is a Java API for connectivity to
database systems. The access layer contains a caching mechanism to avoid
unnecessary transfer of objects from the database. Once the objects are
loaded they reside in the application server, database access is only necessary
to retrieve updated data. Based on the data retrieved, operations in the
EJB generates a map of the spatial data and XML documents representing
ownership history.

The servlet has a direct connection to the EJB and receives request
from the client. That is, the servlet acts solely as a communication channel
between the client and the EJB container.
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The Map Client

The client accessing the application server is an applet. Applets are simple
components running inside the environment of an Internet browser. The
client applet was developed to access data from the application server and
visualize it to the user. Main functionality of the client applet is:

• Display the generated map

• List ownership history for a given building

• Panning

The applet serves as a thin client and consists of a minimal amount of
application logic. All complex information logic is found on the server-side.
Using HTTP as communication to the application server a loose coupling
between the application itself and the application logic is achieved. Loose
coupling together with a thin client is favorable as almost any client easily
can connect and utilize the application. This feature is strengthened since
XML is used as interchange format. Loose couplings provide flexibility and
portability for server and client connections since each tier is an autonomous
unit.

7.6 Summary

The revised case model provides application developers with a clear and
simple view of the modeled reality. The concept of valid time is intro-
duced with well defined constructs, time related types and spatial extents
are simply introduced by a set of data types. Constructs defined in the
model are sufficient to generate difficult and complex code which in other
cases must be done manually. In a software development purpose such gen-
eration will be of great help to the application developer. The developer
can concentrate on designing the system model itself using fairly simple and
defined concepts. Valuable time spent on modeling complex structures with
ambiguous meaning is saved. Not to mention the time consumed by im-
plementing the system model manually. The implemented case application
has proved the above. Although the application architecture used is rather
complex itself, the generated code provided us with a simple interface to
complex functionality.



Chapter 8

Evaluation and Discussion

Our aim was to introduce temporal aspects as built in constructs to define
a temporal profile for COMDEF. To simplify the process we narrowed the
research area to an investigation of valid time as the temporal aspect. In
this chapter we review COMDEF Temporal against the requirements from
chapter 4 and compare with results of others. The comparison is discussed
and we elaborate on the results.

8.1 Evaluation of Requirements

We compare COMDEF Temporal with three other temporal conceptual
models. In section 2.2.4 we introduced TUML [75], TimeER [26] and the
Extended Spatio-temporal UML, from now on ESTUML [56], as other tem-
poral extensions to existing conceptual models. All the models represent
different approaches. TUML is based on the Tau object model [36], while
ESTUML has no such underlying model. TimeER is an extension of the
EER model defined in [19] and has a defined mapping algorithm to the
relational model [28]. Note, the following is not a complete evaluation of
the three models, in the sense that the models are only used to point out
differences and hence evaluate COMDEF.

8.1.1 The Time Model

In chapter 5 we discussed the diversity of time and defined a time model for
COMDEF Temporal. Below is the COMDEF time model evaluated against
the proposed requirements and compared with the other models. Table 8.1
shows the requirements we proposed for time models in chapter 4.

Linear (RT1)
All models support a linear model of time.
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Time Model COMDEF TUML ESTUML TimeER

RT1
√ √ √ √

RT2 - - - -
RT3

√ √ √ √

RT4 - - √ -
RT5

√ - √ -
RT6 - - √ -

Table 8.1: Time model requirements revisited

Branching (RT2)
COMDEF does not support a branching model of time. A branching time
line would imply significant changes to the model and support from under-
lying architecture. ESTUML allows a user defined time model, but does
not explicitly state support for branching time. None of the last two models
support branching time.

Discrete (RT3)
COMDEF adopts a discrete view of time. In general databases time has
a discrete definition, a discrete view of time is therefore sufficient for most
applications. All the other models define a discrete view of the timeline.

Continuous (RT4)
The diversity of ESTUML allow the modeler to chose between a continuous
time line and a discrete time line. None of the other models support RT4.

Infinite (RT5)
In COMDEF the time line is infinite, and at the conceptual level, bound-
aries are set by the application. TUML and TimeER have both a bounded
timeline by definition. In ESTUML, boundaries can be set explicitly in the
model.

Circular (RT6)
Only ESTUML supports the notion of circular or periodic time, i.e. regular
time using their notation.

Evaluation Summary
COMDEF defines a general model of time similar to temporal models found
in literature, i.e. a linear, discrete and infinite time line. COMDEF, TUML
and TimeER all have a fixed notion of time. ESTUML allows the definition
of different time models using a specification box. Although COMDEF lacks
a few concepts, the requirements fulfilled allows us to model the temporal
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aspects of most discrete entities of real world domains.

8.1.2 The Temporal Model

We defined a temporal model in chapter 5 supporting the most common
concepts related to valid time. Table 8.2 shows requirements for temporal
models evaluated against COMDEF and compared with the three other
models.

Temporal Model COMDEF TUML ESTUML TimeER

RTM1
√ √ √ √

RTM2 - √ √ √

RDM3
√ √ √ √

RTM4 - √ - -
RTM5

√ √ - √

RTM6
√ √ - -

RTM7 - - - √

RTM8 - √ √ √

RTM9
√ √ √ -

RTM10 - √ √ √

RTM11
√ √ √ √

RTM12 - - - -
RTM13

√ √ - -

Table 8.2: Temporal model requirements evaluated

Valid Time (RTM1)
All models support valid time.

Transaction Time (RTM2)
All models but COMDEF support transaction time.

User Defined Time (RTM3)
This feature is supported by all the surveyed models. COMDEF have defined
the datetimes as described in the SQL standard to support user defined time.

Beginning (RTM4)
Only TUML has defined an explicit value denoting the first value on the
time domain. COMDEF and ESTUML view this time value as in the infin-
ite past without any further meaning to the model.

Now (RTM5)
COMDEF, TUML and TimeER support now as a current time variable.
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Temporal variables are not included in ESTUML.

Forever (RTM6)
Only COMDEF and TUML include the variable forever as a concept. Both
models support the notion of future valid time values.

Until Changed (RTM7)
TimeER supports Until Changed as a transaction time marker. COMDEF
does not support transaction time.

Instant TimeStamp (RTM8)
TUML, TimeER and ESTUML use instant timestamps to denote event
based semantics of attributes. TimeER defines interpolation functions for
deriving values at points in time where no values are recorded when timestamp-
ing for valid time using instants. COMDEF does not define instant timestamps.

Interval TimeStamp (RTM9)
COMDEF, TUML and ESTUML support intervals as temporal primitives
for timestamping facts. TimeER does not define interval timestamps for
valid time.

Temporal Element TimeStamp (RTM10)
All except COMDEF support timestamping properties with temporal ele-
ments. Allowing COMDEF to timestamp with temporal elements implies
significant changes to the model, also, the relational model does not support
non-atomic attribute values.

Absolute Time (RTM11)
All the models associate facts with absolute time values. To be accurate,
models recording absolute time values but involve now-relative data do in a
sense support relative time. That is, facts are relative to the current time.
Both COMDEF and TUML are defined within this group.

Relative Time (RTM12)
None of the models support relative time. Temporal reasoning mechanisms
beyond those supported by conventional databases are necessary to support
relative time. Knowledge based systems used by artificial intelligence ap-
plications are an example of systems supporting relative time [38].

Interval Operators (RTM13)
COMDEF has explicit operators defined in the model, each valid time
entity have Allen’s interval operators defined to compare the valid time
timestamps. Similar operations for the timestamp types are defined in
TUML.
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Evaluation Summary
The evaluation above has proved the fact that designing a temporal model
capturing all aspects is difficult. COMDEF use a simple approach, we define
valid time and timestamps of type valid time intervals. Common tem-
poral variables are defined and we support the interval comparison operators
defined by Allen [1]. Although COMDEF does not support all the proposed
requirements, most features common to temporal models are defined. The
temporal model provides concepts necessary to define a temporal data model
capturing the information history of entities.

8.1.3 The Temporal Data Model

Temporal concepts were introduced as an orthogonal extension to the ex-
isting framework in chapter 6. The result was a temporal data model sup-
porting entity timestamping with intervals. Table 8.3 compares COMDEF
Temporal with TUML, ESTUML and TimeER against the temporal data
model requirements.

Data Model COMDEF TUML ESTUML TimeER

RDM1 - √ √ √

RDM2
√ - - -

RDM3 - √ √ √

RDM4 - √ √ √

RDM5
√ √ √ -

RDM6 - √ √ √

Table 8.3: Comparison of temporal data model requirements

Lifespan of Entities (RDM1)
COMDEF does not explicitly capture lifespan of an entity. Lifespan in
COMDEF is implicit and deduced by the union of state timestamps for an
entity. TUML, ESTUML and TimeER all have built in support for lifespan
of modeled objects, i.e. the time an entity exists. ESTUML define existence
time instead of lifespan, claiming a more exact definition as described in
section 2.2.3.

Timestamped Entities (RDM2)
COMDEF timestamps entities as whole. We chose an entity timestamped
approach due to the simplicity of representing such in a relational database.
Although entity timestamping has drawbacks, such as the spreading of an
entity into tuples and redundancy issues, the approach makes it simple to
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model temporal entities for persistence in a model driven environment.

Timestamped Attributes (RDM3)
TUML, TimeER and ESTUML timestamp attributes. Both TUML and
ESTUML are based on object models which have better support for an
attribute timestamping scheme. TimeER though, is faced with the prob-
lem of representing multi-valued attributes in a database. Even if attribute
timestamping represents a more natural approach when timestamping en-
tities, it is difficult to implement using the relational model. Due to the re-
striction of atomic attribute values, a single entity must be split into several
relations where each relation records e.g. the history of a single attribute. If
a model supports multi-valued attributes, attribute timestamping allows the
whole entity history to be stored in one single tuple. Such representational
models are obtainable when using nested relations in the relational model,
that is, where the first normal form (1NF) restriction is removed [19]. They
can also be represented using complex objects in an object oriented database
as defined in [2].

Timestamped Associations (RDM4)
COMDEF does not support timestamping of associations. All the other
models support valid time for relationships between the objects. COMDEF
leaves the treatment of relationships between temporal entities to the ap-
plication.

Time-Invariant Identifiers (RDM5)
Each temporal entity in COMDEF has a primary key by definition. Con-
straints expressed in OCL are defined to ensure that the primary keys
are time-invariant. Identifiers in ESTUML and TUML are general system
provided object-identifiers, e.g. oid’s which are independent of the time
varying nature of a object. TUML has no notation for keys in the UML
notation, although the Tau object model TUML is based on states that
defined keys must be time-invariant. Keys in TimeER are time-varying, an
entity is uniquely identified over time by a surrogate identifier.

Granularity (RDM6)
COMDEF does not support the specification of timestamp granularity in
the models. The database determines the smallest granule available and the
size to be used is determined by the application. In TimeER, TUML and
ESTUML the modeler may select an appropriate granularity for the given
temporal primitive.

Evaluation Summary
COMDEF differ from the other models with respect to timestamping, it is
the only model timestamping objects, i.e. entities. The approach has its pros
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and cons. The advantage is simple mapping to the conventional relational
model. The main disadvantage is that an entity is spread into states, i.e.
tuples in a database, which is a somewhat unnatural representation for an
entity. However, in a model driven framework it is easy to provide uniform
access to data using reasonable interfaces. The redundancy issue is harder to
cope with, although a similar issue is present using an attribute timestamped
scheme where keys are replicated for each time varying attribute.

The other surveyed models have a broader specter than COMDEF, and
hence are more powerful. But power comes at a cost. We chose a simple
model to support a range of applications which at the same time should be
fairly easy to use. Providing a wide range of features, such as the ESTUML
does, complicates the model. The temporal data model supports the re-
quirements set by most applications and proves itself viable to model real
world objects varying in valid time.

8.1.4 Model Driven Development

We have designed a temporal data model capable of modeling the time vary-
ing nature of information using UML. As discussed, a variety of temporal
data models are present in literature, but none has ever been presented
in a model driven environment. Our aim of research was to examine the
modeling of temporal systems using a model driven approach. Below, the
Temporal Profile is evaluated against the three other models with respect
to requirements for temporal conceptual models in a model driven develop-
ment setting.

MDD COMDEF TUML ESTUML TimeER

RMD1
√ √ √ √

RMD2
√ - - N.A.

RMD3
√ √ - -

RMD4
√ - √ √

RMD5
√ - - -

RMD6
√ √ - √

Table 8.4: Comparison of Model Driven environment requirements

Methodology Support (RMD1)
COMDEF is compliant with the UML which is the industry standard, meth-
odology support is therefore ensured. TUML and ESTUML have also re-
cognized the benefits of a common modeling language and use UML. The
TimeER is an extension to the EER model as defined in [19] and is thus a
familiar notation to database modelers.
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UML Profile (RMD2)
COMDEF has a defined metamodel which is an extension to the UML
metamodel and thus is a UML Profile. COMDEF is superior to the other
models in this respect. TimeER is not based on the UML, hence the
requirement is not applicable (N.A). Neither TUML nor ESTUML expli-
citly define a UML profile. Both approaches use stereotypes to define the
temporal data model, but especially ESTUML introduce constructs not in
alignment with the UML. E.g. the artificial group symbol stereotype and
the specification-box construct have no reference in the UML metamodel.
Lifespan, timestamp type and granularity are expressed using tagged values
in TUML, as depicted in the figure 2.2(b) in section 2.2.4. Tagged values
are metadata regarding a model element only, and cannot contain values.
The extension mechanism in UML is defined to refine reference metamodels
and not add arbitrary modeling extensions. Such extensions lead to UML
dialects hardly supported by tools and cannot be used in a model driven
architecture.

Interpretable Mapping from Graphical Notation (RMD3)
COMDEF supports mapping and code generation from graphical notation.
The graphical notation is mapped via XMI to CML and then used with the
code generation tools in COMDEF. None of the other models supports this
feature. Since COMDEF Temporal is a UML profile, the model conforms
to the UML, and a mapping is therefore provided through the XMI format.

Platform Independent (RMD4)
COMDEF is not based on any particular platform or underlying architec-
ture. The temporal profile is language neutral. The model is, however,
designed for a mapping to the relational model, but this is not a require-
ment. TUML on the other hand is an extension to the ODMG object model
and is therefore dependent on an ODMG compliant ODBMS [36]. ESTUML
has no notion of an underlying platform and is a language neutral concep-
tual model. TimeER can be mapped to any implementation platform, a
mapping algorithm to two non temporal relational models is described in
[28].

Metamodel of Time and Temporal Concepts (RMD5)
COMDEF Temporal defines a metamodel of time and the temporal model.
This adds additional power to the temporal profile, since all concepts are
defined in the metamodel. Of the surveyed models COMDEF is the only
model having this feature.

Simple and Expressive (RMD6)
As it is difficult to evaluate the simplicity and expressiveness of a model
objectively, we consider this requirement to be vague and not well-defined.
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However, we try to express our informal view. COMDEF introduces a simple
temporal data model, which features are limited in respect to other models,
but the model is expressive enough. Modeling temporal entities for per-
sistence is easy using the profile. Modeling is clean, the concepts are fairly
simple to understand and the temporal support is well defined. In the case of
ESTUML, the modeler needs comprehensive insight into temporal concepts
and the notation to design meaningful models. Although the ESTUML is
expressive and supports a wide specter of features, we regard the notation
to be too complicated. Past experience has shown that models having high
levels of expressive power lead to rejection by users due to complexity [54].

Evaluation Summary
The comparison of the models has proved that COMDEF supports model
driven development. COMDEF defines a temporal UML profile conforming
to the UML metamodel. Temporal semantics are introduced as well defined
concepts in the COMDEF metamodel. To the degree possible, all temporal
concepts are present in the metamodel and OCL expressions are used to
define restrictions on the model elements. Compared to the other mod-
els, COMDEF is the only model having a complete metamodel for time and
temporal concepts. Mappings are provided through the XMI format captur-
ing all constructs in the model. In this way models designed by COMDEF
Temporal is interpretable and can be used with code generation tools.

A common problem regarding temporal conceptual models is the non
standardized extensions used to define the temporal data model. Even if
the UML is a flexible language, we have seen that especially ESTUML have
constructed artificial notations not in alignment with the UML to express
temporal properties of model elements. In a model driven architecture such
extensions out of alignment with the UML are not applicable. COMDEF
Temporal is a UML profile and thus conforms to the standard, and from
a Model Driven Development perspective with automatic code generation
COMDEF is superior to all the others.

8.2 Summary

This chapter has evaluated the Temporal profile against the requirements
from chapter 4. A comparison between the COMDEF and three other tem-
poral data models have been performed. We have recognized COMDEF
Temporal as a simple, but at the same time sufficiently expressive temporal
data model, having the necessary concepts to model temporal persistent en-
tities. COMDEF Temporal lacks temporal features represented in the other
models, but the model has a great advantage in the support for model driven
development. As we saw above, COMDEF fulfilled all the requirements for
model driven development. This reflects the fact that COMDEF Temporal
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was designed to support the Model Driven Architecture. As far as we are
aware of, no other temporal data model supports the platform independent
MDA.



Chapter 9

Conclusion and Further
Work

In the following an overall summary and contributions of the thesis are
presented before we conclude with areas for further work.

9.1 Concluding Remarks

At present, alternative ways of supporting temporal applications are the
practice, tools supporting the modeling and implementation of temporal
systems are valuable, but are lacking in the industry. It is within this domain
this thesis contributes.

Our task has been to support a model based development process for
temporal information systems by introducing temporal concepts with well
defined temporal semantics to the models. In this way models with tem-
poral concepts and semantics capable of representing a view as complete as
possible of the modeled world can be designed. Such models can be utilized
by tools and hence the semantics defined can by code generation substan-
tially help to simplify the implementation process of temporal information
systems. In a domain like temporal data management where the systems
are complex and difficult to manage, this is of great benefit to application
developers. Development time is reduced and system quality improved since
systems are developed according to the intended design.

9.2 Contributions

This thesis has presented a temporal extension to a model driven develop-
ment framework. In the introduction we described guidelines and goals we
have tried to achieve for a temporal data model in a model driven envir-
onment. The main goal has been to design a temporal modeling language
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having concepts with sufficient semantics to provide tools for code gene-
ration of systems capturing the semantics of temporal data. Contributions
meeting or partly meeting the goal are listed below.

The Temporal profile - COMDEF Temporal is a temporal UML pro-
file.
Metamodel capturing all concepts - All concepts are defined in the
metamodel.
Precise definition of model elements - Precise metamodeling and OCL
are used to define the profile.
Platform Independent Tool Support - Models designed with COMDEF
Temporal are platform independent and code generation to a variety of plat-
forms is possible.
Simple and User Friendly - The profile is easy to comprehend and simple
to use.
Modeling for Persistence - Using COMDEF Temporal it is easy to model
persistent database entities.

The Temporal Profile

We have introduced orthogonal valid time constructs to an existing UML
profile and designed a temporal data model supporting entity timestamping
for valid time with intervals. The result is a temporal UML Profile captur-
ing the time varying nature of entities in a model. COMDEF Temporal is a
well designed profile which conforms to the UML metamodel. The extension
mechanisms used are stereotypes and constraints to specify the new model
elements. Mapping rules to the lexical language CML are defined which
allow code generation of models. A well defined profile for a specific domain
has many advantages in a model driven environment, in the following we
point out more specific contributions.

Metamodel capturing all concepts
By leaving as much semantics as possible in the model, we have proved some
of the ideology behind the MDA. We have managed to express the temporal
concepts of entities using UML. The model of time and the temporal model
defined in the metamodel give a clear and intuitive view of the temporal
aspect of the model. For a modeler it is important to know exactly how a
modeling element is defined. For temporal conceptual models this is often
omitted and usually described using natural language. Our approach shows
a clearer definition than other temporal modeling languages. The semantics
of the timestamp is described using modeling notation and constraints. This
feature strengthens the profile. In a model driven architecture small nuances
and supported features in the metamodel have large impacts on the gene-
rated code.
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Precise definition of model elements
Precise definitions of modeling elements are vital in a model driven architec-
ture. Unfortunately, the precision of UML is not very strong, the language
is not precisely defined itself. We have striven to define the temporal profile
as exactly as possible, using precise metamodeling and OCL to constrain
the model elements. We consider the goal only partly fulfilled, both due to
the lack of precision of UML, and the further investigation of temporal con-
straints using OCL. The UML itself is not explicit enough to define precise
models, extensive use of OCL and in some cases more formal notations like
first order logic are necessary to express the semantics.

Platform Independent Tool Support
When developing systems, abstraction should be lead away from platforms
and language issues. Solving the problem should be of main concern. Model-
ing frameworks should therefore be language, platform and product inde-
pendent. A problem with specialized domains such as temporal and e.g.
spatial data is that they are usually managed by dedicated and monolithic
systems. CASE tools used for design and implementation of such systems
are bound to specific design tools and architectures. Or, as we saw in our
evaluation, models use non-standard extensions to standardized languages
creating dialects not interchangeable.

The COMDEF Temporal solves this problem by conforming to the Model
Driven Architecture. UML compliance is assured which means that the pro-
file can be used in any modeling tool supporting the UML. The profile is
platform independent and hence models can be mapped to any architecture.
For a domain like temporal data management this is a great achievement.
Temporal database application developers can benefit substantially from the
Temporal Profile in a mature MDA environment.

Simple and User Friendly
The problem with temporal conceptual models, in the same way as with
temporal models, is the amount of criteria defined. Models are loaded with
features making it hard for users to comprehend and learn the language.
Models fail to visualize a correct view of the modeled world. We have
defined a simple model with few requirements which are well defined, our
view is that expressive simplicity is necessary to develop a temporal data
model. The resulting temporal extension captures more conveniently tem-
poral aspects of information systems than the regular UML does. Modeling
is expressive and clean, no properties are linked to objects by artificial con-
structs which tend to obscure diagrams. The model concepts are simple,
but still retain enough expressive power and semantics. Using COMDEF
temporal it is simple to model persistent entities with valid time support.
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Modeling for Persistence
COMDEF Temporal allows the modeling of persistent entities using UML.
Many companies and organizations have sought for a UML profile for per-
sistent relational database modeling. The COMDEF DB contributes with
persistent modeling capabilities for the UML.

9.3 Further Work

This section presents topics for further work. A variety of areas are dis-
covered that should receive closer attention. Topics refer both to temporal
modeling and model driven development issues.

Continue work on temporal data model

Due to the time constraints of a master thesis a variety of topics are not
fully explored. Structural properties of the temporal data model have been
the main topic, that is, the design of the temporal metamodel. Operations
on the data model have not been defined and would contribute to a more
complete temporal data model. E.g. time slice operations returning entity
states based on an instant or interval.

An unambiguous UML

We have discussed shortcomings of the UML, in special the extension mecha-
nism. A variety of other problems have also been recognized, among them
the lack of formal definition of the language. The Perfect UML (PUML)
group is a collection of researchers working on the topic of rearchitectur-
ing UML for the future. In [11] they define a new UML infrastructure
based on formal definitions of all modeling constructs. In short they intro-
duce patterns encoded as templates to handle the definition of languages.
The approach, based on the encoding of template packages and template
package generalization, allows package merging and renaming. Construct-
ing new metamodels will be easier and less complicated using this method.
Instantiation of templates allows factoring of language components with ex-
act specification, complete metamodels can be constructed quickly with a
precise, unambiguous meaning. Research concerning the use of this method
for defining the Temporal Profile has been done, and the method proves as a
flexible and precise way to define metamodels. This topic should be further
examined, as mentioned above, a precise UML results in more semantically
correct metamodels which again lead to a greater degree of code generation.

Consistency of a model

Developers make mistakes. It is therefore important that the believed mini-
world modeled actually conforms to the semantics of the constructs used
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to build it. Consistency of a model regarding a given domain specific
metamodel is important in a model driven context. Having a tool that
checks the consistency of a model against the metamodel along with the
correctness of OCL expressions would be a great achievement. Code gene-
ration tools from the parsing of OCL expressions should also be a common
part of a UML modeling tool. In this way constraints defined using OCL can
be evaluated at runtime by the generated code. COMDEF can be extended
to support such tools by including a model checker and an OCL compiler as
a front-end to the code generation tools. OCL compilers have been designed,
one example is the Dresden OCL Toolkit [17].

Transaction Time Support

Transaction time is not defined for COMDEF Temporal. Some work on
transaction time support for entities have been examined, e.g. the generation
of audit-trails for entities is an example mapping which is available. This
work should be continued and further investigated to add transaction time
support for the temporal profile. Combining the two dimensions to define
bitemporal support for entities is another interesting topic.

Associations between temporal entities

The semantics of associations in a temporal modeling language needs careful
attention. Two options to consider are whether the associations should be
timestamped explicitly or if the time an association is valid in the modeled
reality is deduced from the lifespan of the participating objects. An ex-
tension to the COMDEF relationship model to support timestamping of
associations requires a considerable amount of work.
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[7] Michael H. Böhlen, Richard T. Snodgrass, and Michael D. Soo. Coales-
cing in Temporal Databases. In Proceedings of the 22nd International
Conference on Very Large Databases, pages 180–191, Bombay, India,
September 1996.

[8] Grady Booch, James Rumbaugh, and Ivar Jacobsen. The Unified Mod-
eling Language User Guide. Addison-Wesley Longman, Inc., 1999.



90 BIBLIOGRAPHY

[9] R. G. G. Cattell et al., editors. Object DataBase Standard: ODMG 2.0.
Morgan KaufMann Publishers, Inc, San Francisco, 1997.

[10] Jan Chomicki. Temporal Query Languages: a survey. In D. M. Gabbay
and H. J. Ohlbach, editors, Temporal Logic: ICTL’94, volume 827,
pages 506–534. Springer-Verlag, 1994.

[11] Tony Clark, Andy Evans, Robert France, Stuart Kent, and Bern-
ard Rumpe. pUML response to UML2.0 RFI, 1999. Available at
http://www.puml.org.

[12] Tony Clark, Andy Evans, Stuart Kent, Steve Brodsky, and Steve
Cook. A Feasibility Study in ReArchitecting UML as a Family of Lan-
guages using a Precise OO Meta-Modeling Approach. Available from
http://www.puml.org, September 2000.

[13] J. Clifford, A. Croker, and A. Tuzhilin. On Completeness of Historical
Relational Query Languages. ACM Transactions on Database Systems,
19(1):64–116, March 1994.

[14] James Clifford, Curtis Dyreson, Tomas Isakowitz, Christian S. Jensen,
and Richard T. Snodgrass. On the Semantics of ”Now” in Databases.
ACM Transactions on Database Systems, 22(2):171–214, June 1997.

[15] COMBINE. Project website. http://www.opengroup.org/combine,
1/2/02.

[16] Linda G. DeMichiel, L. Ümit Yalçinalp, and Sanjeev Krishnan. Sun
Microsystems: Enterprise Javabeans Specification Version 2.0, October
2000. Available at http://java.sun.com/products/ejb.

[17] The Dresden OCL Toolkit. Project website. http://dresden-
ocl.sourceforge.net/,13/3/02.

[18] Curtis E. Dyreson, Michael D. Soo, and Richard T. Snodgrass. The
Data Model for Time. In Snodgrass [65], chapter 6.

[19] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems. The Benjamin/Cummings Publishing Company, Inc, 1994.

[20] Ramez Elmasri, Gene T. J. Wuu, and Vram Kouramajian. A Temporal
Model and Query Language for EER Databases. In Tansel et al. [74],
chapter 9.
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