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Summary

Originally, beamforming meant forming the transmit beam for some purpose. To-
day, we use the word beamforming both for the transmit – and the receive beam. The
beam is simply the mainlobe of the array’s radiation – or response pattern. Changing
this pattern, either by weighting the array elements or by steering its direction, is
what beamforming is all about.

In most signal processing applications, there is a tradeoff between different needs.
The tradeoff in bathymetric sonars is between cross-track coverage, accuracy and
resolution. The goal of this thesis, is to improve the resolution of a bathymet-
ric sonar, working only with the output of the array – after the tradeoff is done.
To achieve this, the Fourier transform method for beamforming and some high-
resolution, also called adaptive, methods have been studied.

In this thesis, the performance of several high-resolution beamformers are stud-
ied: Minimum-Variance, Eigen-Vector, MUSIC, Minimum-Norm, root-MUSIC and
ESPRIT. The conventional Fourier transform, used for beamforming in many array
systems today, suffers from low resolution. It has low ability of resolving closely
spaced sources. For bathymetric sonars, this may lead to incorrect mapping of the
sea-floor.

Different ways of estimating the spatial covariance matrix are investigated, and a
method aimed to reduce structured noise in this matrix is developed.

Some quantitative measures are developed and used as part of the evaluation of the
high-resolution beamformers. The measures show that estimation of the spatial co-
variance matrix has a large impact on the performance of the beamformers, and that
most methods perform better when the structured noise in this matrix is reduced.

An alternative approach for a high-resolution beamformer (root-MUSIC) is also de-
veloped, and is found to perform better than the one given in literature.

It is found that among the high-resolution beamformers studied here, MUSIC and
ESPRIT perform best with regard to the quantitative measures used for evaluation.
These results are supported by visual examination of different spectra for the beam-
formers.

Finally, some interesting research areas based on the observations in the thesis are
proposed, and a new way of obtaining bathymetric measures is suggested.





Chapter 1

Introduction

Throughout history, mapping of the sea floor has been important for all coastal
regions. At first only for safe navigation, it is now important for navigation as well
as for positioning of offshore installations such as oil platforms or oil and gas pipes.
The mapping is done through bathymetry, the measurement of depths of water in
oceans, seas, and lakes. Historically, depths were measured by using a lead-line, later
on single beam echo-sounders were used and presently multibeam echo-sounders
are used. Echo-sounders are also known as sonars - SOund NAvigation Ranging.

Sonars use different beamforming methods to obtain the bathymetric measures.
Originally, beamforming meant forming the transmit beam for some purpose. To-
day, we use the word beamforming both for the transmit – and the receive beam. The
beam is simply the mainlobe of the array’s radiation – or response pattern. Changing
this pattern, either by weighting the array elements or by steering its direction, is
what beamforming is all about [7, 8, 28].

The main problem in bathymetric mapping is to achieve a good resolution while
maintaining the positional accuracy of the bottom, preferably obtaining the bathy-
metric measures in real time. In addition, it is important to keep the costs as low as
possible, which means mapping a widest possible cross track [18]. As in most signal
processing applications, there is a tradeoff between different needs. The tradeoff in
bathymetric sonars is between cross-track coverage, accuracy and resolution. Cur-
rently, the most important bathymetric sonars are of two types: sidescan sonars and
multibeam sonars.

Sidescan sonars can map very broad sectors of the sea floor. This property together
with their low price make them economic in use, but they are not as accurate in
determining the origin of the echoes as multibeam sonars [3, 9]. For rough sea
floors a sidescan sonar will fail to give accurate bathymetric positions [3, 9]. The
failure is due to the low number of sensors in the sidescan sonar. A typical sidescan
sonar only measures the incoming waves at two positions. This restricts it from
computing the origin of more than one echo at each time instant.
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Multibeam sonars often have less spatial resolution capability1, map smaller (but
still wide) sectors, but have a higher positional accuracy than sidescan sonars [3, 9].
Multibeam sonars are preferred when the sea floor is rough, such as when navigating
along an underwater canyon, a pipe or a cable [6]. Under such conditions only the
multibeam sonar is capable of computing reliable positions of all bottom features
yielding echoes at each time instant.

Since multibeam sonars have less resolution capability than sidescan sonars, it is
important to improve the resolution of the former sonars. Note that we are actually
talking about two different definitions of resolution. The measurements of a side-
scan sonar will always be corrupted in the event of multiple scatters [9], while where
bottom conditions are simple the attainable resolution is only limited by the pulse
length. A short pulse insonifies2 a small area of the bottom, giving a high spatial
resolution [3]. The resolution of the sidescan sonar is thus defined as the ability to
determine a single plane wave’s direction of propagation.

The measurements of a multibeam sonar will only be corrupted in the event where
two scatters are too closely spaced to be resolved. The multibeam sonar’s ability to
resolve closely spaced sources is what we mean by its resolution. A high resolution
is essential, since one can then resolve closely spaced objects or bottom features
whose echoes impinge on the sonar simultaneously.

The most commonly used method for multibeam beamforming, is the Fourier trans-
form method. This method can be efficiently implemented as the Fast Fourier trans-
form, but is inadequate in resolving closely spaced synchronous echoes [19]. The
goal of this thesis, is to improve the resolution of a bathymetric sonar, working only
with the output of the array – after the tradeoff between cross-track coverage, ac-
curacy and resolution is done. That is, we want to improve the resolution without
changing the physical properties of the sonar.

To improve the bathymetric results of the multibeam sonars, several high-resolution
beamforming methods have been proposed [4, 11, 18, 19, 26, 27, 28, 29]. Among
these are both spectral based and parametric methods as denoted by Krim and
Viberg [11]. This distinction will also be used in the thesis, since it immediately tells
us what different approaches have been used to compute the bathymetric positions
(directions of arrival).

Spectral based methods are based on a spectrum computed over all possible angles
(the parameters of interest for bathymetric sonars) of incoming waves, and pick the
angles in the spectrum with largest magnitude as the Directions Of Arrival (DOA) of
the propagating waves [11]. The spectral based methods tested here are: Minimum
Variance [11, 7], Eigen Vector [7], MUSIC [11, 13, 18, 22, 24, 27] and Minimum Norm
[11, 13, 24, 27, 31]. Minimum-Variance was chosen since it, as the oldest adaptive
method, serves as a gateway to modern high-resolution methods. From it, subspace
based methods such as Eigen-Vector, MUSIC and Minimum-Norm evolved. Eigen-
Vector is little used. But, when the number of signals is chosen too low, it only

1Applying a beamwidth based resolution.
2This word, resembling illuminate, was introduced in literature by de Moustier [3].
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degrades to the Minimum-Variance algorithm, whereas MUSIC will degrade in a much
wider sense (Sec. 5.2). MUSIC will “whiten” some signals, and regard them as noise.
Eigen-Vector will also regard some signals as noise, but they will not be “whitened”
and should still be seen after beamforming. Minimum-Norm was chosen because it
should exhibit a lower bias and better resolution than MUSIC [11, 13].

These methods have the potential of higher resolution than the Fourier Transform
method, but may still not exhibit more than one peak in the spectrum although there
are two distinct, but closely spaced, sources [22].

Parametric methods require a simultaneous search for all parameters of interest (ie
the directions of arrival), at the expense of an increased computational complexity.
However, for Uniform Linear Arrays the increased computational complexity can be
avoided without loss of performance [11].

The parametric methods studied in this thesis are Root-MUSIC [4, 11, 13, 22, 27]
and ESPRIT [11, 13, 23, 26]. Root-MUSIC is used to compare the difference in perfor-
mance between spectral and parametric methods. In small samples root-MUSIC has
empirically been found to perform better than the spectral form [11]. Since root-
MUSIC is superior to root-Minimum-Norm [10, 27], only root-MUSIC is studied here.
ESPRIT was chosen to see if this computational efficient algorithm performs equally
well as root-MUSIC. Maximum Likelihood techniques are not studied since they re-
quire accurate initial estimates. Such estimates are often achieved by first applying
spectral based methods. Thus, the computational load would be significant.

For the parametric methods, Krim stated that: “coherent signals impose no concep-
tual difficulties for parametric methods” c.f. [11]. Rao and Hari [22] are not quite as
bombastic, but find that some parametric methods have the potential of resolving
closely spaced sources where spectral based methods fail. “Spectral methods always
have less resolution compared to Root forms”, c.f. [22]. It is unclear whether Rao also
think of ESPRIT as a Root form, but I interpret him as if he does. The difference in
resolution is due to signals being assumed to have distinct z-plane roots in the root
approaches, while in the spectral based methods a stronger assumption of distinct
peaks in the spatial spectrum is assumed [22]. It is easy to distinguish roots that
are close to each other, but in the spectral approaches one might just experience a
single “blurred” peak.

Now, let us do a quick review of what has been found for some of the different
methods. We will consider both general results for the high-resolution methods,
and results indicating how to estimate the spatial covariance matrix to get the best
results. All results have been based only on simulated data.

Minimum Variance’s accuracy improves with the signal to noise ratio (SNR), and
its resolution characteristics can not be known other than by simulations when the
number of snapshots (samples in time) is not much larger than the amount of sen-
sors [7]. The resolution of Eigen Vector, MUSIC and Minimum Norm and their po-
sitional accuracy are limited by the amount of available data and the background
noise characteristics [7].
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Rao and Hari [23, 24] found that forward/backward smoothing was always prefer-
able to forward-only smoothing3. It was also found that MUSIC should be smoothed
with as few subarrays as possible, while Minimum-Norm and ESPRIT performed bet-
ter for different numbers of subarrays, depending on whether the SNR was low or
high and how many signals were present. That is, the L element sensor array should
be split into different subarray sizes for different signal characteristics. One signal
case: (L+ 1)/4 subarrays for low SNR and (L+ 1)/3 for high SNR. Two signal case:
(L+ 1)/8 subarrays for low SNR and (L+ 1)/5 for high SNR.

Srinivas and Reddy [27] found that “root-MUSIC performs better than root-min norm
when the number of sensors exceeds two. . . . the MSE with root-MUSIC is less than
that of root-min norm. . . . MUSIC is less sensitive than the min norm method when
the number of sensors exceeds 2. . . . MUSIC is more robust to errors. Finally, the
performance of both the methods improves when the source spacing increases”.

Li and Lu [13] summarizes their results like this:

• “At low SNR, MUSIC has large bias which is comparable to the root mean-
squared error (RMSE) while Min-Norm and ESPRIT have negligible bias com-
pared to RMSE”.

• “When the number of sensors is small, MUSIC has the largest bias which is again
comparable to RMSE, and bias of MUSIC decreases fastest with increase of num-
ber of sensors”.

• “The bias is not monotonically decreasing for MUSIC and Min-Norm with in-
crease of number of sensors”.

• “Compared to RMSE, bias of MUSIC is very large at small number of snapshots
while bias of Min-Norm and ESPRIT are always small enough to be neglected”.

Earlier research on high-resolution beamforming has been based on simulations with
several snapshots [4, 10, 27, 31]. It is important to see if spectral and parametric
methods are applicable also in a real world bathymetric sonar scenario. This is the
central topic of this thesis. In real world scenarios, generally, only one snapshot is
available for estimating the directions of propagating signals.

The rest of the thesis is organized as follows :

Chapter 2 will help the reader understand the remaining chapters.

• Basic wave theory is presented.

• The model which the beamforming methods are based on is given.

Chapter 3 Knowledge of sonars, especially multibeam sonars, motivates for further
improvements of the current methods used for bathymetric mapping. The
sidescanning sonar and the multibeam sonar will be further explained.

3These smoothing approaches are discussed in chapter 4.
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Chapter 4 treats different ways of dealing with noise and correlated signals.

• Noise is always present, thus it is important to gain some insight about
noise to avoid drawing the wrong conclusions when processing any signal.

• Correlated signals may also corrupt our insight if the right precautions
are not taken.

Chapter 5 tells the reader about the similarities and differences among the treated
methods. It explains both conventional and high-resolution methods.

Chapter 6 presents data sets, implementation issues and evaluation methods. It
explains how the methods are evaluated in a meaningful way, even though
there is no knowledge of the true values we wish to compare against.

Chapter 7 presents the experimental results of the different methods.

• The best way of estimating the covariance matrix is found for each beam-
forming method.

• Then the beamformers are compared for these special choices of covari-
ance matrices.

• The beamformers are also compared visually, for the same covariance ma-
trices.

• According to these evaluations, MUSIC and ESPRIT perform best.

Chapter 8 The discussion suggests some future research areas. Further, a new
method for obtaining bathymetric measures is proposed.





Chapter 2

Wave Theory

This chapter gives the basic theory needed to understand the remaining chapters.
An introduction to propagation of waves is given, followed by an explanation of the
signal processing restrictions this propagation leads to.

2.1 Wave Propagation

Any wave propagating through a medium must obey the physical laws associated
with that particular medium, and a set of boundary conditions. Acoustic waves in
inviscid fluids are longitudinal. The particles move back and forth in the direction of
propagation of the wave. The acoustic waves can be regarded as a series of compres-
sions and rarefactions, caused by pressure changes in the fluid as it is compressed
or expanded.

The law of conservation of mass relates density ρ and particle velocity v.

∂ρ
∂t
= −∇ · (ρv) (2.1)

Here ∇ is the Laplace operator.

∇ = ∂
∂x
+ ∂
∂y
+ ∂
∂z

(2.2)

Equation (2.1) states that the net influx of mass in a small volume equals the rate
which the mass increases.

Sound propagating through a fluid causes only small adiabatic compressions and
expansions of the fluid about its equilibrium density ρ0. Thus, the density can be
expressed by a small perturbation ρ′ about the equilibrium ρ = ρ0 + ρ′. For the
pressure we have p = p0 + p′. The adiabatic equation of state, which says that the
pressure is a function of ρ, p(ρ), can be expressed through a Taylor expansion

p = p0 + (ρ − ρ0)
(
∂p
∂ρ

)
ρ0

+ 1
2
(ρ − ρ0)2

(
∂2p
∂ρ2

)
ρ0

+ · · · (2.3)
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We only keep the lowest order term, since the fluctuations ρ′ are small, ρ′ � ρ0. By
defining s = (ρ−ρ0

ρ0
), (2.3) can be written as

p′ = ρ0s
(
∂p
∂ρ

)
ρ0

(2.4)

This allows us to express the nonlinear (2.1) as a linearized equation.

∂s
∂t
= −∇ · v (2.5)

Further, the particle velocity v, caused by the pressure and density perturbations, is
much smaller than the speed of sound.

By using Newton’s second law, we can express the acceleration a, caused by a small
force df acting on a small volume dV with small mass dm in the fluid as df = adm.
If we consider a fluid, the mass dm equals ρdV, while df = −∇pdV. Thus, df = adm
can be expressed as

∂v
∂t
+ v · ∇v = −1

ρ
∇p(ρ) , (2.6)

where the left part is an expression for the acceleration a. This can be further simpli-
fied by using ρ′ � ρ0, and in addition require |v · ∇v| �

∣∣∣ ∂v∂t ∣∣∣. We can then replace
ρ with ρ0, and drop v · ∇v in (2.6). Using the fact that p0 is a constant, we can also
replace ∇p with ∇p′ in (2.6).

ρ0
∂v
∂t
= −∇p′ (2.7)

Now, combine the divergence of (2.7) with the time derivative of (2.5) to obtain

∇2p′ = ρ0
∂2s
∂t2

(2.8)

Equation (2.4) enables us to eliminate s

∇2p′ = 1
c2

∂2p′

∂t2
, (2.9)

where c2 is defined as
(
∂p
∂ρ

)
ρ0

.

Equation (2.9) is the spatial wave equation, for the three spatial dimensions and time.
It is the basic equation for propagating waves.

Let s(x, t), with spatial coordinates x =
[
x y z

]T and time t, represent the pressure
of sound at some point in space and time instead of p′. Then, a more familiar form
of (2.9) is

∂2s
∂x2

+ ∂
2s
∂y2

+ ∂
2s
∂z2

= 1
c2

∂2s
∂t2

(2.10)
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Equation (2.10) also governs how signals pass through a medium from a radiating
source to some sensoring device. Thus, combining information from the wave equa-
tion at several points in space, we may gain insight about source-position given
knowledge about the waveform – and vice versa.

Assume the solution of the wave equation to be separable in all coordinates, ie

s(x,y, z, t) = f (x)g(y)h(z)p(t)

and that s(x, t) has a complex exponential form

s(x, y, z, t) = Aexp{j(ωt − kxx− kyy − kzz)} (2.11)

with A some complex constant and kx, ky , kz andω real constants (ω ≥ 0).

The wave equation now becomes

k2
xs(x, y, z, t)+ k2

ys(x, y, z, t)+ k2
zs(x,y, z, t) =

ω2s(x, y, z, t)
c2

Cancelling s(x, y, z, t) gives us one constraint on the real constants of the complex
form.

k2
x + k2

y + k2
z =

ω2

c2

With this constraint, signals of the form as in (2.11) satisfy the wave equation (2.10).
By super-positioning complex exponentials any signal satisfy the wave equation [7].

k =
[
kx ky kz

]T is the wavenumber vector. Its magnitude is the wavenumber, k =
|k| = 2π/λ, where λ = 2πc/ω is the wave length. The wavenumber tells us how
many cycles in radians the propagating wave goes through per meter in the direction
of propagation. The wave propagates one wavelength λ during one temporal period.

Sometimes, waves propagate through inhomogeneous media, such is the case in
underwater acoustics. In the ocean, the sound velocity depends on pressure, and
temperature, which changes with depth. This means that the waves will not propa-
gate in a straight line, rather they will bend and follow the fastest way of propagation
through the medium, following Snell’s law. This phenomenon is known as ray bend-
ing.

2.2 Spatial Resolution

Spatial resolution is the question at stake in this thesis. It is one of the most impor-
tant issues when trying to improve the bathymetric sonars. The resolution defines
an array’s ability to determine a plane wave’s direction of propagation [7], but also
the ability to separate two plane waves impinging synchronously on the array from
slightly different directions [7, 11, 19]. These are fundamentally different measures.
The first definition tells us how exact the direction of a wave is estimated, the other
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gives the ability to distinguish between two sources. Both definitions are meaning-
ful, but for different kinds of sonars. The resolution of the sidescan (Sec. 3.1) sonar
is defined as the ability to determine a plane wave’s direction of propagation. The
multibeam (Sec. 3.2) sonar’s ability to resolve closely spaced sources is what we
mean by its resolution. The latter is the kind of resolution we want to measure in
this thesis, even though the former is also measured.

Unfortunately, resolution is not necessarily easy to measure. The ability to deter-
mine a plane wave’s direction of propagation is fairly straight forward to measure, it
equals measuring the width of the array pattern’s mainlobe. But, different measures
of the array pattern apply at different times. We have both wavenumber resolution
and angular resolution [7]. The ability to distinguish between two sources is not
quite as easy to assess. Not only does this ability depend on the two wave numbers,
or directions, the relative phases of the propagating waves are also important. This
means that the resolution depends upon the signal characteristics, and these may
vary from one sample in time to the other.

“Resolution generally refers to the ability to distinguish closely spaced signal sources.
One typically refers to some spectral-like measure, which would exhibit peaks at the
locations of the sources. Whenever there are two peaks near two actual emitters, the
latter are said to be resolved. However, for parametric techniques, the intuitive notion
of resolution is non-trivial to define in precise terms. The subspace-based approach
relies on certain geometrical properties of the assumed data model, resulting in a
resolution capability which (in theory) is not limited by the array aperture, provided
that the data collection time and/or SNR are sufficiently large and assuming the data
model accurately reflects the experimental scenario.” c.f. [11]. Therefore, real world
data are needed to figure out how good the resolution of different beamformers
actually are (Chap. 5). An acceptable measure of this resolution has to be devel-
oped to enable a qualified meaning of different beamformers’ application to sonar
bathymetry. Such a measure is developed in chapter 6.

2.3 Transition between Nearfield and Farfield

In the following all sources are assumed to radiate energy in a spherical manner.

In sonars we want to find the source of the radiating energy, for bathymetric sonars
the source is some point on the sea floor. We need some sensoring device. A collec-
tion of sensors is usually denoted an array, and may be for instance a cable (passive
sonars), a 2D grid or even a 3D grid. A specific structure called the Uniform Linear
Array (ULA) is a collection of sensors, laid out along one dimension, where all sen-
sors have the same intersensor spacing. The distance between each of the L sensors
is d.

For spherical waves, planar wave fronts can be assumed when the sensoring device
is far enough from the source (Fig. 2.1). “Far enough” needs to be defined. We
want the waves impinging on the device of length D = Ld to add constructively.



2.3 Transition between Nearfield and Farfield 11

Source

Near field Far fieldWave fronts

Sensors Sensors

Figure 2.1: Sensors in the near and farfield.

This means that the wavefronts have to be fairly planar. The more planar, the more
constructively they add. Define the maximum acceptable error to be λ/8, at the end
of the device [30]. For a wave propagating from distance R, the formula for an error
4 at the point y on the array (y ∈ [−D/2,D/2]) becomes:

4=
√
R2 + y2 − R

= R
√

1+ (y
R
)2
− R

� y
2

2R

(2.12)

By increasing R, we can reduce the error across the array. The largest error will occur
at the end of the array, y = D/2. We want 4≤ λ/8, thus

y2

2R
≤ λ/8 , let y = D/2

D2

8R
≤ λ/8

R ≥ D2/λ

(2.13)

If the wave propagates from a point closer to the array than D2/λ, the error at the
end of the array is larger than λ/8 and the waves will not add up constructively.
Thus, we get a crossover from the nearfield to the farfield at a distance equal to
D2/λ. All waves with origin further away than this distance will add constructively
in the device. SinceD2/λ = L2λ/4, this means that for the EM30001, with λ ≈ 0.005m
and L = 80 elements, the farfield begins at a range of approximately 8 meters. By
using fewer sensors, the range to the farfield can efficiently be made smaller, since
it is defined by the square of the number of sensors.

1EM3000 is a 300kHz bathymetric multibeam Simrad sonar, used for the experiments in this thesis.
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2.4 Sampling

In temporal sampling, the Nyquist theorem specifies [16]: For a signal with energy in
the frequency area |Ω| < Ω0, the sampling frequency Ωs has to be more than twice
the upper band frequency Ω0. Let Ts be the sampling period, and T0 the period of
the analog signal

Ωs = 2π
TS
> 2Ω0

Ts < T0/2

Unless we sample the signal more often than at half its period, some of the informa-
tion needed to reconstruct the analog signal is lost – this is known as aliasing.

In the same manner as in temporal sampling, aliasing also occurs in spatial sampling.
Therefore, we have to ensure that the distance d between neighboring sensors is
small enough to avoid spatial aliasing. Consider a signal with spatial frequencies
below k0, |k| ≤ k0. For the spatial sampling frequency, ks , we must have

ks = 2π
d
≥ 2k0

d ≤ 2π
2k0

= π
2π/λ0

= λ0

2

(2.14)

to ensure that spatial aliasing is avoided. The signal can be reconstructed without
loss of information if we sample at positions spaced less than half the wave length
apart [7].

Spatial aliasing may lead to collection of signal energy in other directions than the
one of interest. This means that if a signal is propagating from a direction that we
unwillingly and perhaps unknowingly collect energy in, the energy collected here
will appear as if it is collected in the specified direction. This leads us to observe
that there are signals present in the direction of look2, even though no signals are
actually present in that direction.

2.5 Array and Signal Model

An array is a collection of sensors used to sample signals in space. Each sensor, l,
has a directional sensitivity determined by the physical form (aperture) of the sensor
element. In the case of a linear aperture 3 extended along the x-axis from −D/2 til
D/2 and with response equal to 1 over the entire aperture, the aperture function or
directional sensitivity of the sensor is of the form:

gl(~k) = sin(kxD/2)
kxD/2

(2.15)

2see (2.17) and (2.18)
3a sensor/element that gathers energy over a finite one dimensional area
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Figure 2.2: A receive array in its coordinate system, transmit array centered along
the x-axis.

Such a directional sensitivity ensures that the response of the sensor is at its largest
for signals emanating from the y-z plane normal to and running through the sensor.
Thus, the collected energy is mainly from the y-z plane (Fig. 2.2).

In this thesis, φ is defined as the angle between the x-axis and the z-axis. Further, θ
is the angle between the z and y-axis, with θ = 0 when lying on the z-axis (Fig. 2.2).

The output, yl(t), of sensor l placed on the y-axis, but oriented alongside the x-axis,
can now be modeled as:

yl(t) = gl(φ) e−jkyl sinθ s(t) = al(φ,θ) s(t) , (2.16)

where s(t) is the acoustic signal, gl(φ) is the directional sensitivity (assuming that
the sensitivity is equal for all θ) and e−jkyl sinθ is the delay of s(t) from the array’s
origin to yl . Thereby, the amplitude part of al(φ,θ) depends on gl(φ), while the
delay depends on θ. The output is thus a weighting and delay of the emitted signal
s(t), where the weight is a function of the angle φ and the delay of θ.

In the following, we will assume that gl(φ) in (2.15) ensures that all sensors on the
y-axis mainly collect energy from the y-z plane. Further, all elements are placed on
the y-axis and have the same directional sensitivity g1(φ) = · · · = gL(φ) = g(φ),
l = 1 · · ·L. Suppose the inter element distance is d, we then have a Uniform Linear
Array (ULA). For a single narrow band signal sm, emanating from direction θm, we
now have:

aULA(θm) = g(φ)
[
1 e−jkd sinθm · · · e−j(L−1)kd sinθm

]T (2.17)

The vector a is called the steering vector of received signal number m, denoted sm,
where θm is the direction of signal sm and k is the wavenumber. The vector a defines
the signal’s delay from one sensor to the other over the entire array – it steers the
direction of the signal with regard to the array. The exponents of a express the
phase difference of the signal between the different elements. It depends on the
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direction of propagation and the frequency of the signal. Assume that all signals
arrive, roughly, from the direction of interest φ, g(φ) models g in the y-z plane of
interest. Further, if each sensor’s directional sensitivity is independent of θ, we get:

aULA(θm) = g
[
1 e−jkd sinθm · · · e−j(L−1)kd sinθm

]T (2.18)

Dropping the ULA subscript for convenience, the output vector ym(t) of the Uniform
Linear Array for a single signal sm(t) is:

ym(t) = a(θm)sm(t) (2.19)

Equation (2.19) states that a signal coming from the farfield has linear phase shifts in
the different sensor elements. These phase shifts are exactly what (2.18) expresses.
In the following, g will be dropped for simplicity.

Further, if M signals impinge on the array at one time instant, the output of the ULA
will be:

y(t) =
M∑
m=1

a(θm)sm(t) (2.20)

This can also be written as:

y(t) = A(θ)s(t) (2.21)

where A(θ) = [a(θ1), · · · , a(θM)
]

is a steering matrix and s(t) = [s1(t) · · · sM(t)]T
is a vector of waveforms/signals.

At a given moment of time t, the signals sampled at the array are contaminated by
noise and erroneous measurements (also a kind of noise). The samples over the
array are collected in a vector y(t), containing both the impinging signals and the
noise. The vector y now holds all available information about the signals impinging
on the array, and the Directions Of Arrival (DOA) for the impinging signals can be
computed by using the phase information of the different elements in the vector.

Adding noise to equation (2.21) yields our model of the system:

y(t) = A(θ) s(t)+ n(t) (2.22)

where A(θ) is denoted the steering matrix and n(t) is additive noise present at time
t.

If the array consists of sensors spaced in accordance with (2.14), the array is said to
be unambiguous. This ensures that incoherent signals have unique steering vectors,
the columns in A(θ) are linearly independent. This fact is exploited in section 5.2,
but is first discussed somewhat more detailed in chapter 4.



Chapter 3

Bathymetric Sonars

Bathymetric sonars are devices for mapping of the sea floor. The mapping is done by
estimating the range from the vessel to several points on the bottom. By computing
the range r , from the vessel to each of these points, together with the angle θ,
between a line from each point to the vessel and the line perpendicular to the sea
surface (Fig. 3.1), we get a polar coordinate positioning of each point.

In reality we do not have the exact distances, angles and points. The bathymetric
sonar works by estimating the distances through the knowledge that sound prop-
agates a given distance at a given time. The sonar sends out a pulse of sound, a
ping, and observes the echoes. Angles are estimated for each received echo through
beamforming algorithms, and angle together with distance (time) gives us the polar
coordinates we seek. Our points on the sea floor are found. This is somewhat sim-
plified. In practice, a layered sea model is used. The sound velocity in each layer is
estimated, and the ray path is determined.

By following the above procedure, maps of large areas on the sea floor can be made.
This is done by putting the information from many such succeeding pings together.
If a vessel sends several pings while going forth (x direction), these pings will when
put together make out a stripe of depth-measured area (z values) where the vessel
is running. Several such stripes lying side by side will then constitute an entire
bathymetric map. To get more correct bathymetric maps, it is possible to let the
stripes overlap each other, or run a second survey with stripes crossing the first
surveys’ stripes.

Today, two kinds of bathymetric sonars are the most important: sidescanning sonars
and multibeam sonars. These two sonars work in slightly different ways, the side-
scanning sonar sends and listens to the side (hence the name), while the multibeam
sonar sends downwards and listens in several directions. In fact, today multibeam
sonars are often tilted slightly to the side, enabling them to map broader sectors
than what is achieved by no tilting. The sidescanning sonar is only capable of receiv-
ing one signal at a time, whereas the multibeam sonar can receive many signals at
each time instant.
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Figure 3.1: A bathymetric sonar at work. Ship viewed from behind.

3.1 The Sidescanning Sonar

A sidescanning sonar is a sonar that sends a pulse to its side, and analyses the
receiving echoes (Fig. 3.2). The array configuration in the sidescanning sonar actually
consists of two identical parallel arrays, mounted side by side, parallel to the moving
direction. By such a geometry, the array transmits sound which is more powerful
in a “plane” orthogonal to the direction of movement than in the other directions.
This way it will only receive strong echoes directly from the side. The directional
sensitivity, see (2.15), of the receive sensors will only strengthen this effect.

Modern sidescanning sonars estimate the direction of the echoes by interferometry
[3]. Interferometry is a technique that works by finding the difference in phase of an
incoming signal sampled at two or more places in space. The phase difference gives
information about the direction of the signal – and hence its origin, assuming one
knows the signal’s frequency and propagation velocity.

Since a typical sidescanning sonar only receives signals at two places in the beam
plane it can not resolve more than one signal at a time [3, 11, 12]. This means that if
more than one echo is present at a time, these signals will “counterbalance” and the
result is that one does not know from which direction either signal came. Thereby,
the bathymetric mapping can be poor when the bottom is rough [3, 9]. This leads to
the fact that the sidescanning sonar is mainly used where the bottom to be mapped
is fairly smoothly curved. Under such conditions it can achieve high resolution,
depending on the pulse length, resulting in a very good mapping. Mapped sectors 7
times broader than the tow altitude can be achieved in these cases [3]. The resolution
of the sidescan sonar is defined as the ability to determine a plane wave’s direction
of propagation.
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Figure 3.2: The beam plane of a sidescanning sonar.

Another problem with the sidescanning sonar is that by sending the pulse-signal to
the side, part of the beam may hit the sea surface and reflect back from it. This
might lead to ambiguity in the phase measurements [3]. Such is not the case when
the sonar is towed at large depths.

Sidescanning sonars are also used for sea bed imaging, which again can be used for
classification. This can either be done by: (1) Measuring the backscatter strength of
the sea floor and its angular variations, which are known to be strongly dependent on
the sea-bed type [14]. Or: (2) Analysis of the spectral features of the backscattered
time signals, since the backscatter signal spectrum should reproduce the spatial sea
floor spectrum and therefore be representative of the sea-bed [14]. Lurton et al.
[14] discuss these methods with respect to multibeam sonars, but the methods have
previously been shown to be a useful tool for classification by sidescan sonars [14].

Both methods tell us something about the bottom’s consistence (sea-bed type), and
combined with bathymetric maps we gain knowledge about what sort of sea-bed
type we have at different places and depths.

3.2 The Multibeam Sonar

The multibeam sonar also transmits signals in a plane orthogonal to the direction
of movement. It uses, as the sidescanning sonar, a transmit array mounted parallel
to the moving direction. To receive the signal, the multibeam sonar uses a receive
array orthogonal to the transmit array. The two arrays are mounted in a T or L
configuration (Fig. 3.3).
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Figure 3.3: Geometry of the arrays and their beamform for a multibeam sonar.

By picking up signals in an array mounted orthogonal to the ship’s direction the
multibeam sonar can, as opposed to the sidescanning sonar, compute the Directions
of Arrival (DOA) of several signals at the same time – one signal less than the num-
ber of sensors [11, 12]. The multibeam sonar will only be corrupted in the event
where two scatters are too closely spaced to be resolved. This means that multi-
beam sonars are more suitable for complex bottom surfaces than the sidescanning
sonar [6]. In such environments the multibeam sonar yields higher accuracy of the
bottom estimates than the sidescanning sonar [3].

In addition, multibeam sonars can be used for sea-bed imaging [1, 14]. The same
methods for sea-bed type identification apply for the multibeam sonars [14] as for
the sidescan sonars. In fact the multibeam sonars may reduce some of the ambi-
guities of the observed backscattering strength in wide non-flat sea floor areas, as
opposed to the classical sidescan sonars [1].

The multibeam sonar’s ability to resolve closely spaced sources is what we mean
by its resolution. A high resolution is essential, since one can then resolve closely
spaced objects or bottom features. Since the multibeam sonar determines several
bottom points broadside while moving ahead, it can map broad sectors of the bottom
by just one passage [6, 19, 29].

Many different multibeam sonar systems exist: Sea Beam (series), Hydrosweep, Bot-
tom Chart, Echos XD, EM (series), Benigraph, MBSS and SARAS [3, 6, 9, 21, 29]. Their
physical sizes vary with which frequencies are used, which again vary with what the
sonar is to be used for. Absorption of sound in the ocean increases proportional to
the square of the acoustic frequency. Thus, absorption will condition the range capa-
bilities of any sonar [3]. Sonars for large depths require lower frequency, otherwise
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too much signal power is lost when the large amounts of water are penetrated. With
intersensor spacing, d, approximately equal to half the wavelength, see (2.14), the
spacing becomes large due to the low frequency. To retain a satisfactory resolution,
a narrow mainlobe is needed both for the transmit and receive array. Hence, these
arrays become large. Shallow water sonars can use higher frequencies, which results
in smaller, more convenient, arrays.

Multibeam sonars may also be pointed to the side, to give a wider swath or mapping
sector. This way, some of the advantages of sidescanning sonars are adapted, while
the more robust bathymetric mapping is kept since multibeam sonars can handle
multiple scatters.

Current multibeam echo sounders use a conventional method, usually implemented
as the Fast Fourier transform, to form receiving beams. The beamwidth is normally
1.5 to 5 degrees athwart ship. This spatial resolution is unsatisfactory, especially for
beams of oblique incidence angles. Whereas the aperture of the array is of size Ld
for normal incidence signals, its effective aperture reduces to Ld cosθ for oblique
angles θ. Thus, since the resolution (beamwidth) of the conventional method is de-
fined through the reciprocal of the aperture, the resolution degrades as θ increases.
For oblique beams, the cross-track length of the receive beam footprints are large,
and bottom echo detection based on the beam amplitude values is inaccurate. The
bottom detection accuracy and the mapping resolution can be improved by using
subarray interferometry [32], since for an oblique beam, the pulse length is much
shorter than the cross-track length of the footprint. However, the method assumes
a single scatterer within each beam footprint. It works well when the bottom curve
is smooth within a footprint, but fails for complex bottom curves with multiple scat-
ters.





Chapter 4

Estimation of Covariances

The key to understanding most, if not all, beamforming algorithms is the spatial
covariance matrix R. Before introducing this quantity, we need some idea of how
the sampling in the array is done. Beamforming algorithms are based upon the
assumption that the propagation characteristics of the wave field do not change
with time, at least not over the time the beamforming is done.

4.1 The Covariance Matrix

In Chap. 2, the output of the array was outlined. The assumption was that a given
signal had a planar wave front and a narrow band frequency. If each sensor, yl , sam-
ples the signal for a period of time T , the output of the short-time Fourier transform
for a sensor will be

Yl(t,ω)ejωt =
∫ T

0
w̃(τ)yl(t + τ)e−jωτ dτ (4.1)

This is an approximation of sensor yl ’s spectrum output at time t and frequencyω,
and is often called a snapshot. The connection to photography is obvious, except
from w̃ which is a window that may change with time. Actually, a camera also has a
window that changes with time – think of the aperture. This is not suddenly open,
the mechanical device uses some time to open and close – and can be viewed as a
window in time.

As for cameras, the wave field should not change during the sampling period, or else
the short-time Fourier transform becomes a “blurred” approximation.

We want to cancel the phase shifts in (2.19), due to the propagation direction across
the array. This equals delay and sum in the time domain. Thus,

aULA(θm) =
[
1 e−jkd sinθm · · · e−j(L−1)kd sinθm

]T
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models the signal’s propagation characteristics in the frequency domain. Multiplying
Yl(t,ω) with ejkdl sinθm cancels the phase shift in al(θm) = e−jkdl sinθm . If this is done
for each sensor, the phase of the signal is ideally equal at all sensors.

The Fourier transform output of the beamformer is now

Z(t,ω)e−jωt =
L−1∑
l=0

w̃lYl(t,ω)ejkdl sinθm

= aH(θ)Y(t,ω)

(4.2)

where aH is the transposed and conjugated of a. This in turn, will lead to the sig-
nal sm(t) in the array being added (or stacked) constructively. The power of the
beamformer for a given signal direction θ is then

P(θ) =
∫∞
−∞

aH(θ)YYHa(θ) dω (4.3)

For narrow band signals the integrand is skipped. We are now ready to define the
covariance matrix

R = YYH , ideally E {YYH
}

(4.4)

This matrix is conjugate symmetric, it equals its own conjugate transpose, and is
known as a Hermitian matrix. In addition, it would have a Toeplitz structure if it
was truly the expectation of YYH. That is, all elements along any diagonal would
equal each other [7].

For notational convenience, Y(t,ω) = y(t) in the following. Y, or y, is the raw data
available for this thesis. Sinceω is a narrow band frequency, it is skipped.

The covariance matrix consists of two parts, one part constitutes the signal covari-
ance matrix, while the other is the noise covariance matrix. By using (2.22), this can
be written

R = E {y(t)yH(t)
}

= A E {s(t)sH(t)
}

AH + 2AE {s(t)}E {nH(t)
}+E {n(t)nH(t)

}
= APAH + σ 2I since E {n} = 0

= VsΛΛΛsVH
s + σ 2VnVH

n ,

(4.5)

where it is assumed that the noise is additive, spatial white and Gaussian with zero
mean and variance σ 2. This means that in the ideal situation, we can find a source
covariance matrix P and its matrix of eigenvectors Vs , with the corresponding eigen-
valuesΛΛΛs . This may seem somewhat magical, but will be explained a bit later. Unfor-
tunately, since the eigenvectors of Hermitian matrices are orthogonal, these eigen-
vectors do not equal the steering vectors in A (unless only one signal is present).
Signals seldom arrive from “orthogonal directions”.

All is not lost, however, Vs forms a basis for the steering vectors, with rank equal to
the number of signals M. We can relate Vs and A by

VsT = A (4.6)
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where T is an invertible square matrix. Since the steering vectors are linearly inde-
pendent, this basis can only represent the steering vectors [7]. Each steering vector
can be expressed as a linear combination of these eigenvectors.

From linear algebra, a matrix C = AAH is positive semidefinite. In the case of no
noise, this means that the eigenvalues in ΛΛΛs are greater or equal to 0. In the white-
noise case, the noise portion contributes σ 2 to the eigenvalues. Thus, the eigenval-
ues belonging to Vs must exceed or equal σ 2.

Two cases occur: (1) In the case of incoherent or partial coherent signals, we can find
the signal+noise eigenvectors by picking those that have eigenvalues larger than σ 2

[7]. Thus, R can be split into its final parts as was done in (4.5). (2) When signals are
perfectly coherent, one or more of the signal eigenvalues equal σ 2 [7].

For instance, when two signals are perfectly coherent, the signal term in (4.5) resem-
ble a single outer product – not composed of an ideal steering vector. We might
actually have an eigenvector that equals the difference between the two signals, and
since steering vectors are linearly independent, this linear combination of signals
can not be a signal. The largest eigenvector is related to both steering vectors, but
neither steering vector can be obtained from it without knowing the other – T does
not exist [7].

Remember that, ideally, Vs and thus APAH, had rank equal to the number of signals
M. This means that APAH also has a null space VH

na = 0 of dimension L-M, where
Vn are the noise-only eigenvectors with eigenvalues σ 2. It is this null space that is
exploited in the high-resolution methods in section 5.2.

The covariance matrix R is of size L × L, and since one of the eigenvectors must
belong to the noise subspace – at most L-1 eigenvectors can be used to span the
signal+noise1 subspace Vs . This means that an array of L sensors can not distinguish
more than L-1 signals. From now on, we will talk of Vs as the signal subspace.

If we wish to weight the sensors, either to suppress the data recorded at the ends
of the array – or simply to reduce the sidelobes, this can be done by multiplying
R with a diagonal matrix W. Each diagonal element, wl, of W will then weight its
corresponding yl , since WyyH WH =WRWH.

4.2 Noise and Artifacts

The array of a multibeam bathymetric sonar will always have thermal noise in its
electronics, an artifact. A noise component will also be typical background radiation,
consisting of random waves propagating toward the array from all directions with
equal probability. This constitutes an isotropic noise field. Given a large amount
of such noise sources, superposition of them will according to the Central Limit
Theorem be roughly Gaussian.

1the noise portion of this subspace contributes σ 2 to the eigenvalues, the corresponding eigenvec-
tors are not affected in the white-noise situation
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If the isotropic noise is temporally filtered to be monochromatic with temporal fre-
quency ω0, the correlation function has the form of a spatial sinc function [7, Sec.
2.6]. Such is the case for the EM3000, and spatial sampling at locations separated by
λ/2 will then yield uncorrelated noise components.

Yet another problem than noise are coherent signals, see discussion following (4.6).
To achieve better estimates when coherent signals are present, we have to apply
some operations on R. These operations will be explained in the next few sections.

4.3 Time Averaging

Ideally R = E {yyH}, and the signal covariance matrix has full rank. The expectation
can only be found when the signals are stationary for an infinite amount of time.
Needless to say, in a bathymetric sonar scenario, the signals are not stationary for
an infinite amount of time. In practice R is estimated as

R̂N
f =

1
N

N∑
t=1

y(t)yH(t) (4.7)

an average over time. This is the same procedure that Rao and Hari call the Forward-
only approach in [24], hence the subscript. The size of N depends upon how long
time one can assume the signal to be stationary. In narrow band multibeam sonars,
the sampling frequency is determined by the bandwidth, a signal pulse is often sam-
pled only once or twice by the L elements. The EM3000 has pulse length 150 µs,
and samples at 14293 Hz, thereby the pulse is sampled 2.1 times. The received sig-
nal is therefore not assumed stationary in time, and N is assumed to equal 1. This
strategy is also used by Pantzartzis [18], where a multibeam sonar with pulse length
0.2ms and sample frequency 10kHz is simulated. Since N = 1 for our sonar model,
R̂ is greatly affected by noise. Still, it is the best we can do unless more stationary
samples are made available by more extensive oversampling in time. In other situa-
tions, signals are stationary for several snapshots, eg [11], and large amount of data
are available for estimating R̂. In these cases, a smaller variance of the estimated
quantities is achieved by time averaging. Still, time averaging will not help when it
comes to coherent signals, other methods must be used for this. Stationary signals
that are truly coherent will stay coherent, no matter how long the stationary period
is – even though the variance gets smaller by time averaging.

The notation R̂f will be used throughout the thesis, while N is dropped since it
equals 1 in the following. We keep R̂f so that the notation is consistent with that
from [24].

4.4 Spatial Smoothing

Spatial smoothing with subarrays, also known as Forward-only Smoothing (FS ap-
proach) [24], may help in difficult scenarios where coherent signals are present.
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0 L-1

subarray K

subarray 1

sensor elements

Figure 4.1: Array split into several subarrays. The subarrays are then summarized
to obtain a spatial smoothing.

Coherent signals impose difficulties on the beamforming, since the rank of Vs (dis-
cussed in Sec. 4.1) becomes deficient for such signals. The idea is to split the array in
several equal and overlapping subarrays (Fig. 4.1), which are assumed to have iden-
tical steering vectors, except for their phase factor [11]. The subarrays are of size
LK, where LK = L−K+1 and K is the number of subarrays. The resulting covariance
matrix is

R̂K
f s =

1
K

K∑
k=1

R̂fk (4.8)

where each R̂fk is of size LK × LK and is part of R̂f , centered along its diagonal. Here,
the superscript K in R̂Kfs tells us how many subarrays are used. From now on, L will
be used for both L and LK.

“The spatial smoothing induces a random phase modulation which in turn tends to
decorrelate the signals that caused the rank deficiency”, c.f. [11]. This citation will
become more clear after having read the next section. In short, the M signals are
simulated as impinging on the array at K different times, but from the same angles.
Actually, the phases are not random – they depend on the directions of the amount
of subarrays and the intersensor spacing. In the next section, there is also a phase
modulation – except, only one new phase is introduced for each of the signals.

Regarding spatial smoothing, some theory for optimal number of subarrays for dif-
ferent methods is developed by Rao and Hari in [23, 24]. This will be deferred until
section 5.2, where the high-resolution methods are presented.

4.5 Forward Backward Smoothing

Forward-backward smoothing (FBS approach) [23, 24] works by left and right multi-
plying R̂∗f s with the matrix J, where J is an exchange matrix consisting of an identity
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matrix of size L× L flipped left/right. The new estimate is

R̂Kfbs =
R̂Kfs + R̂Kbs

2
, where R̂Kbs = JR̂∗f sJ (4.9)

R̂∗f s is actually the conjugate of R̂Kfs , but K had to be skipped in order to make room
for the conjugate symbol ∗. For K = 1 this approach is known as forward/backward
averaging. The K = 1 strategy only works for two coherent signals, but will then
restore the rank of the signal covariance matrix [11].

The effect of multiplying R̂∗f s with J is more easily understood if we only look at its
effect on a∗(θm). We have

Ja∗(θm) = ej(L−1)kd sinθma(θm) (4.10)

which means that a signal coming from direction θm is simulated as impinging twice
(Fig. 4.2), but at slightly different times and with only half the power (we divide
(4.9) by 2). Say we have two coherent signals, impinging from direction θ1 and
θ2. Generally, a(θ1) will not be coherent with Ja∗(θ2) and a(θ2) not with Ja∗(θ1).
The coherent signals are now “decorrelated”, and since there are now four signals
impinging on the array, instead of two, no power is lost.

e0 e−jkd sinθm e−j2kd sinθm

ej2kd sinθm ejkd sinθm e0

Ja∗

Figure 4.2: Visualizing the effect on the sensor delays when multiplying a∗ with the
exchange matrix J.

In [24, Theorem 3], it is found that “For a given number of subarrays K, R̂Kfbs is better

conditioned than R̂Kfs . . . The smaller condition number along with a larger λM , which
plays an important role in low-SNR and high-resolution cases, indicates that the FBS
approach is preferable to the FS approach.” Further, [24, Property 4] states that for
MUSIC (one of the high-resolution methods): “For the case of uncorrelated sources,
the FS and FBS estimates have the same properties.”

4.6 Noise Subtraction

An additional strategy for improving R̂ is used. The idea is to estimate the struc-
tured noise present in the array. This noise is estimated from the samples taken
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before the first bottom echo returns, and is later subtracted from R̂ at each snap-
shot. This can be done if the noise is additive. If no structured noise is present,
the effect of this procedure will be none. But, if the array in some way produces a
systematically incorrect output, this output will be corrected. It can be viewed as
calibrating the array. In any case, subtracting this noise should ideally get rid of the
2AE {s(t)}E {nH(t)} term in (4.5) if E {n(t)} 6= 0.

The structured noise is estimated as

N̂ = 1
Nn

Nn∑
t=1

y(t)yH(t) , (4.11)

where Nn is the number of snapshots used to estimate the noise. When applied, this
noise removal is done before the operations given by (4.8) and (4.9).

Note that since finding the eigenvectors of R̂ is an iterative procedure one might
expect the procedure to converge faster when having removed the noise covariance.





Chapter 5

Beamforming

Beamforming can be used to (1) Focus an array at a particular point in space, as in
medical ultrasound. (2) Steer an array to a certain direction (or angle), and thereby
pick up signals arriving mostly from that direction (radar, sonar). (3) Search for
propagation directions – as we do in bathymetric sonars. In addition, we get an
enhancement of the Signal to Noise Ratio (SNR) [3, 7, 17]. Noise is randomly dis-
tributed, while the signals have a systematic phase shift from sensor to sensor. If
one cancels these phase shifts, the signals can be added constructively, while the
noise will stay at approximately the same level.

The propagation direction of a signal, or other signal parameters, have to be de-
rived from the spatial samples, of the reflected signals, collected by the array. Such
derivations are often called beamforming.

Originally, beamforming meant forming the transmit beam for some purpose. To-
day, we use the word beamforming both for the transmit – and the receive beam. The
beam is simply the mainlobe of the array’s radiation – or response pattern. Changing
this pattern, either by weighting the array elements or by steering its direction, is
what beamforming is all about [7, 8, 28].

As in most signal processing applications, there is a tradeoff between different
needs. The tradeoff in bathymetric sonars is between cross-track coverage, accu-
racy and resolution [19]. The goal of this thesis, is to improve the resolution of a
bathymetric sonar, working only with the output of the array – after the tradeoff
is done. To achieve this, the Fourier transform method for beamforming and some
high-resolution, also called adaptive, methods have been studied.

The beamforming methods can be divided into different groups, (1) conventional
methods and (2) adaptive (or high-resolution) methods. The high-resolution meth-
ods can be further split (Tab. 5.1), into spectral based and parametric methods.
These methods, again, are often referred to as eigenanalysis methods [7, 22] (or sub-
space methods [11, 22]), while in more recent papers, Rao [23] denote some subspace
methods as state space methods. In the following I will only talk of conventional or
high-resolution methods, just mentioning if they belong to the spectral or paramet-
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Type Conventional High Resolution
Spectral Based Sum and Delay Minimum Variance

Fourier Transform MUSIC
Eigen Vector
Minimum Norm

Parametric root-MUSIC
ESPRIT

Table 5.1: Beamforming methods
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(a) Spatial spectrum when using an angular
increment of 2.8 degrees.
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(b) Spatial spectrum when using an angular
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Figure 5.1: Effect of angular increments when trying to resolve two closely spaced
sources. Waves propagating from DOA 34 and 36 degrees.

ric methods.

Spectral based methods are those that need to scan all possible directions of imping-
ing signals. For each set of samples taken at time t, one computes a spectrum over
all directions. The largest peaks in the spectrum are taken to be the DOAs. These
methods can not yield a better resolution than the size of the angular increments
we use for computing the spectrum (Fig. 5.1), which means that higher resolution
needs more computing. In addition, they need post processing of the spectrum. The
post processing is crucial for obtaining correct bottom estimates.

Parametric methods require a simultaneous search for all parameters of interest
(here the DOAs), at the expense of an increased computational complexity [11]. The
parametric methods have the potential of resolving closely spaced sources where
spectral based methods fail [22]. “Spectral methods always have less resolution
compared to Root forms” c.f. [22].



5.1 Conventional Beamformer 31

5.1 Conventional Beamformer

Two important issues in developing multibeam systems are the mapping resolution
and the bottom detection accuracy. Current multibeam echo sounders use a conven-
tional method, usually the Fast Fourier transform, to form receiving beams.

The conventional method is based on stacking (or summing) the elements in the
array. For a signal of normal incidence, this will result in a improvement of the
SNR. Ideally, it improves with a multiplicity equal to the amount of sensors L. The
reason is that the signal will be equal in all sensors, and adds constructively, while
the noise is different from element to element, and will therefore not add up in
the same way. If the signal comes from another direction, we can simply delay the
output of the elements in accordance with the signal’s direction before we sum the
elements. Delaying the output of the elements in the array is exactly what was done
in (4.2) and (4.3).

Now, let us do this more formally. We want to maximize the power output of the
array, in all directions, by multiplying the signal vector y(t) by a weight vector w.
The signal model (2.22) was stated as

y(t) = A(θ) s(t)+ n(t)

To keep things simple, assume that only one signal is present – such that A(θ) =
a(θ). Maximizing the power is done by

max
w

E
{

wH y(t)yH(t) w
}
=max

w
wH E

{
y(t)yH(t)

}
w

=max
w

{
E∣∣s(t)∣∣2∣∣wHa(θ)

∣∣2 +σ 2
∣∣w
∣∣2
} (5.1)

if we assume the noise is spatially white. A non-trivial solution with norm equal to
1 is then

wFT = a(θ)√
aH(θ)a(θ)

(5.2)

Putting (5.2) back into (5.1) yields the spatial spectrum

PFT(θ) = wH
FT E

{
y(t)yH(t)

}
wFT

≈ wHR̂w

= a(θ)√
aH(θ)a(θ)

R̂
a(θ)√

aH(θ)a(θ)

= aH(θ)R̂a(θ)
aH(θ)a(θ)

(5.3)

of the conventional beamformer. The signal’s direction is found by scanning (5.3)
for all possible θ’s, the one (or ones) giving the highest power is the DOA.
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The conventional beamformer suffers from rather limited resolution capabilities. Its
resolution is bounded by the size of the spatial sampling array, and is defined to be
the reciprocal of the main lobe width. As evident from the formula, this spectrum
has to be scanned for all possible θ values.

Much could be said about the conventional beamformer, but this is not the goal
of this thesis. To learn more about use of windows, sidelobe level, mainlobe width,
Fourier transform and Fast Fourier transform see any good textbook, such as [5, 7, 8].

Realizing that the traditional or conventional Fourier transform method for beam-
forming is inadequate in resolving closely spaced synchronous echoes [19], one has
to seek for other, better, methods. The spatial resolution is unsatisfactory, especially
for beams of oblique incidence angles. For oblique beams, the cross-track length of
the receive beam footprints is large, and bottom echo detection based on the beam
amplitude values is inaccurate. Thus, it is interesting to examine how modern high-
resolution beamformers work for multibeam echo sounders. A high resolution is
essential, since one can then resolve closely spaced objects or bottom features. The
ability of resolving closely spaced objects is of essence, since one can then get a
more thorough and correct mapping of the sea floor. Promising methods have been
proposed, and based on early research [4, 6, 10, 11, 12, 13, 18, 19, 22, 23, 24, 26, 27,
28, 29, 31] some methods were selected for further study.

5.2 High Resolution Beamformers

Several high-resolution beamformers exist, a few of them are presented here.

Minimum-Variance serves as a gateway to the modern high-resolution beamform-
ers; some of the subspace based high-resolution beamformers can be said to have
evolved from Minimum-Variance. These include Eigen-Vector, MUSIC, Minimum-
Norm and to some extent root-MUSIC. ESPRIT is also based on the subspace ap-
proach, although it uses another subspace and is based on other parts of linear
algebra.

Since the conventional beamformer has limited resolution capabilities, several new
beamforming methods have been developed. One of the most easily understandable
is the Minimum-Variance or Capon’s beamformer.

Minimum-Variance is the result of a constrained optimization problem. Such prob-
lems often apply a weight vector w, on the observations y, to minimize the mean-
squared value of E{∣∣wHy(t)

∣∣2} subject to a constraint Cw = c.

Minimum-Variance [7, 11] The optimization problem of Minimum-Variance is to
minimize the power of noise and signals coming from other directions than θ, the
current direction of look. This can be presented as

min
w
E
{∣∣wHy(t)

∣∣2
}
=min

w
wHR̂w subject to aH(θ)w = 1 , (5.4)
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and the constraint says that we want to keep a fixed gain in the θ direction. By using
Lagrange multipliers

L(w, λ) = wHR̂w+ λ(aH(θ)w− 1) (5.5)

we now try to minimize the new problem posed by (5.5)

∇wL(w, λ) = 2R̂w+ λa(θ) (5.6)

The minimum of (5.5) is found when its gradient (5.6) equals 0. This yields

w = −λR̂−1 a(θ)
2

(5.7)

Remember the constraint aH(θ)w = 1. Thus, by replacing w in the constraint with
the expression from (5.7) we have

−λaH(θ)R̂−1 a(θ)
2

= 1 (5.8)

and consequently

λ = −2

aH(θ)R̂−1 a(θ)
(5.9)

This, in combination with (5.7), yields in turn the weight vector of Minimum-Variance

wMV = R̂−1a(θ)
aH(θ)R̂−1 a(θ)

(5.10)

Finally, an expression for the Minimum-Variance beamformer is found

PMV(θ) = wH
MVR̂wMV

= 1

aH(θ)R̂−1 a(θ)
(5.11)

Thus, Minimum-Variance does not maximize the power, as the conventional beam-
former did, but rather tries to minimize it in all directions except for the one we
look in. This is done by nulling out the power in other directions than the one we
are interested in, keeping a fixed gain in the direction of look.

Since we here make use of the inverse of the correlation matrix R̂, this method is
obviously more time consuming than the conventional beamformer. More worrying
though, is the fact that R̂−1 may not even exist. When few samples are used, we
risk that R̂ is singular. Here the number of snapshots is lower than the number of
sensors, N < L, and R̂ is generally not invertible [11]. This means that we have to
use the pseudo-inverse, R̂†, instead of the real inverse of R̂ in this algorithm. This
was also done in [11]. It is difficult to measure the degradation in performance due
to the applied pseudo-inverse, since there is no real inverse to compare to.
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Eigen Analysis Methods If one rewrites (5.11), further improvements can be made.
A hermitian matrix A of size n×n can be rewritten as A =∑ni=1 λiviv

H
i , and its inverse

is described by A−1 = ∑n
i=1

1
λi viv

H
i . If there were infinitely many samples available

for a stationary signal, the covariance matrix would be both Hermitian and Toeplitz.
In our scenario fewer samples are available, N < L, thus R̂ may not have a Toeplitz
structure. Still, R̂ is hermitian. Thus, (5.11) can be written

P(θ) = 1

aH(θ)R̂−1 a(θ)

= 1

aH(θ)(
∑n
i=1 λ̂−1

i v̂iv̂H
i ) a(θ)

= 1∑n
i=1 λ̂−1

i |aH(θ)v̂i|2

= 1∑M
i=1 λ̂−1

i |aH(θ)v̂i|2 +
∑L
i=M+1 λ̂−1

i |aH(θ)v̂i|2
,

(5.12)

where, by convention, the eigenvalues are in descending order [7, Sec. 7.3]. Investi-
gating the denominator in this last expression, we see that the sum that is contribut-
ing the most to the spectrum in the signal directions is in fact the last one. This last
sum is the expression for the noise subspace. The reason for this being the main
contributor is that when we look in a signal direction, the expression |aH(θ)v̂i|2 for
i > M is small, while for i ≤M it is large. Hence, the spectrum (5.12) takes on larger
values if we skip the signal subspace (the first sum in the denominator).

Now then, what we have is a new spectrum denoted by:

P(θ) = 1∑L
i=M+1 λ̂−1

i |aH(θ)v̂i|2

Equivalently, by replacing the vector multiplications with matrix forms, and lettingΛ̂ΛΛn express a diagonal matrix containing λ̂M+1 to λ̂L, we obtain the notation of Krim
and Viberg [11]:

P(θ) = 1

aH(θ)V̂nΛ̂ΛΛ−1

n V̂H
n a(θ)

(5.13)

Equation (5.13) gives us both the MUSIC and the Eigen-Vector spectrum, outlined
below.

Eigen Vector The spectrum of the Eigen Vector method [7] is simply the expression
(5.13),

PEV(θ) = 1

aH(θ)V̂nΛ̂ΛΛ−1

n V̂H
n a(θ)

, (5.14)

and therefore makes use only of the eigenvalues, Λ̂ΛΛn, belonging to the noisy part
of the correlation matrix R̂. The need to compute the eigenvalues and vectors slows
the algorithm even further down than Minimum-Variance. Further, R̂ may be singular
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since N < L. Consequently, some λ’s may equal 0. Therefore, the pseudo-inverse
once more has to be used.

When the number of signals M is chosen too low, Eigen-Vector will degrade towards
the Minimum-Variance algorithm. This is easily seen from (5.12) by letting M equal
0.

MUSIC [11, 18, 22, 24, 27] also relies on computing the eigenvalues and eigenvec-
tors, as in the Eigen Vector method. But, in this algorithm, we avoid the problem
of inverting the matrix Λ̂ΛΛn. In the MUSIC algorithm, the eigenvalues are taken to be
of size 1. The fact that the noise eigenvalues are now set to 1, can be viewed as
whitening the noise subspace [7, p 384]. Thus Λ̂ΛΛn = I, hence – we only need the
eigenvectors.

PMU(θ) = 1

aH(θ)V̂nV̂H
n a(θ)

(5.15)

Albeit we no longer need to invert Λ̂ΛΛn, we still have to compute the eigenvectors.

The above mentioned whitening of the noise subspace is all well if M is chosen
correctly. What if M is erroneously set to some number lower than its real value?
MUSIC will then whiten some of the eigenvectors corresponding to signals (5.12),
with the effect that a degraded spectrum is computed.

Krim and Viberg [11] write that for coherent signals a signal eigenvector diverges
into the noise subspace. Krim uses u for the eigenvectors, and denotes the noise
subspace as Un. “Therefore, in general UH

na(θ) 6= 0 for any θ and the MUSIC ‘spec-
trum’ may fail to produce peaks at the DOA locations. In particular, the ability to
resolve closely spaced sources is dramatically reduced for highly correlated signals”
c.f. [11].

Other problems with MUSIC are discussed in [26], where Roy states that: “in low
SNR scenarios and in situations where even small sensor array errors are present,
the ability of the conventional MUSIC spectrum to resolve closely spaced sources (i.e.,
observe multiple peaks in the measure) is severely degraded. Nevertheless, it should
be emphasized that in spite of these drawbacks, MUSIC has been shown to outperform
previous techniques.”

In [19] Pantzartzis et al. claim that: “if narrow peaks in the power spectrum means a
potential for high resolution, MUSIC has a even higher potential than the parametric
methods, but depends on a good estimate of the number of incoming signals M at
time t”.

Pantzartzis et al. [19] also find that for 100 simulated pings, the standard deviation
of MUSIC is less than that of the Fast Fourier Transform. “The smaller deviation of
the bathymetric error from the MUSIC estimator implies that the bottom features are
estimated more accurately from the sharp peaks of the MUSIC spectrum than from
those of the FFT beamformer. Therefore, the high-resolution performance does not
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come at the expense of lower accuracy, but actually the accuracy is slightly improved.”
c.f. [19].

In yet another article by Pantzartzis et al. [18], the MUSIC algorithm is shown to lead
to reliable bathymetric estimates also for more chaotic surfaces. Unfortunately, no
quantitative comparison is given – only figures showing the original surface and the
surface estimated by the MUSIC algorithm. These estimates seem to be acceptable.

Rao and Hari [24], find that for MUSIC “minimal smoothing appears to be desirable to
obtain reliable DOA estimates”. However, smoothing can not be completely avoided,
since it is necessary in a completely coherent environment.

Minimum-Norm [2, 11, 12, 13, 27, 31] was developed by Kumaresan and Tufts [12].
The basic idea was that if a weight vector w = [w0 · · ·wL−1]T has the property
aH(θm)w = 0, for m = 1, . . . , M, one can find a polynomial D(z) with zeros at
e−jkd sinθm (the z’s)

D(z) =
L−1∑
k=0

wkz−k (5.16)

and thus find the θ’s. Since the noise subspace ideally is orthogonal to the signals,
it seems plausible that w should span the entire noise subspace to get the best
estimate of D(z). This will ensure aH(θ)w = 0 when θ is a signal’s direction. The
effect of letting w span the whole noise subspace of R̂, is that “the estimates of
e−jkd sinθm are more accurate even at relatively low SNR values” [12]. Further, if w0 is
constrained to be equal to 1 and the Euclidean length of w is required to be minimum
(hence the name), “the L-M extraneous zeros of D(z) tend to be uniformly distributed
within the unit circle and have less tendency for “false sources” or spurious estimates”
[12].

In [2], Buckley has a fine expression of Minimum-Norm as a constrained optimization
procedure

min
w

wHw subject to

[
1 0 · · ·0

V̂H
s

]
w =


1
01
...

0M

 (5.17)

The left part of (5.17) ensures a minimum norm of w, while the right part constrains
w0 to equal 1 and further that w is orthogonal to the signal subspace. Again, w is
best chosen as a linear combination of the eigenvectors in the noise subspace.

Now, how do we find w? Let

V̂n =
[

cT

Ṽn

]
(5.18)
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that is, cT consists of the first elements of the noise subspace eigenvectors, while Ṽn
equals V̂n, only that the first row is deleted. Then w can be found as

w =
[

1
Ṽnc∗/cHc

]
(5.19)

which minimizes the norm of w [12, 13]. Other estimates of w are also possible, and
can be found in [12, 27, 31].

A spectrum in accordance with (5.16) can now be formed as

PMN(θ) = 1
aH(θ)wwH a(θ)

(5.20)

or as in [11]

PMN(θ) = 1

aH(θ)V̂nV̂H
n W V̂nV̂H

n a(θ)
(5.21)

where W is a matrix consisting of zeros only, except from the upper left element
which equals 1. Such spectra will take on large values when θ equals a signal direc-
tion, since aH(θ)w ≈ 0 in these cases. Remember that w ideally is orthogonal to all
signals.

Since (5.19) and (5.21) use more eigenvectors to find the w orthogonal to the signal
subspace than those defined by [12, 27, 31], the weights given by (5.19) and (5.21)
are intuitively more appealing. The two latter expressions use the entire noise sub-
space to define the weights. The others [12, 27, 31] use the signal subspace and the
assumption that VnVH

n = I, which might be erroneous.

Rao and Hari [24] have developed some theory for the optimal number of subarrays,
K, that should be used for spatial smoothing with the Minimum-Norm method. The
best choice of K depends on how many signals that are present. For one signal, K is
best chosen as (L + 1)/4 for low SNR – while for high SNR, K should be (L + 1)/3.
When two signals are present, these choices change to (L + 1)/8 and (L + 1)/5.
The same choices of K are valid when the signals are coherent, which is the more
interesting case. Rao does not explicitly say where he draws the line between high
and low SNR. But, from the examples he gives it is clear that 10dB is regarded as a
high SNR.

Root-MUSIC For the MUSIC algorithm there is a polynomial-rooting version avail-
able, known as root-MUSIC. This has been studied in [4, 10, 11, 22, 27].

In MUSIC, the spectrum (5.15) took on large values because aH(θ)V̂n ≈ 0, as for
Minimum-Norm. This means that also MUSIC should be possible to define as a poly-
nomial of the eigenvectors that span the noise subspace (V̂n). Let z = e−jkd sinθ.
Define the vector p(z) = [

1 z · · · zL−1
]T

, we can then define polynomials pl(z) of
the l’th eigenvector of R̂ like this

pl(z) = vH
l p(z) l = M+1, . . . , L (5.22)
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Each pl(z) now has M of its zeros at e−jkd sinθm , for m = 1, . . . , M. What we really
want, is to use the information in all noise eigenvectors simultaneously – much like
we did for Minimum-Norm. This is achieved by using pH(z) instead of aH(θ) in the
denominator of (5.15), such that

PRM(z) = pH(z)V̂nV̂H
n p(z)

=
L−1∑

k=−(L−1)
ckzk

(5.23)

where ck is the sum of the elements on the k’th diagonal of V̂nV̂H
n [27] . Here k < 0

gives the k’th sub diagonals, the ones below the actual diagonal, while k > 0 yields
the k’th super diagonals, those above.

Since z = e−jkd sinθ, this polynomial is evaluated on the unit circle. Consequently, the
roots of the 2(L− 1) degree polynomial (5.23) lie as mirrored pairs around the unit
circle. Ideally, only the M signals have the right characteristics (kd sinθ) to actually
be placed on the unit circle. Therefore, in root-MUSIC, theM largest roots, ẑ1, . . . , ẑM,
that lie inside or on the unit circle are taken as the DOA estimates (one could also
use the M smallest outside). The angles of the M signals are then computed as

θ̂m = arccos
(

1
kd

arg {ẑm}
)
, m = 1, 2, . . . , M (5.24)

As for MUSIC, Rao and Hari [24] find that for root-MUSIC, “minimal smoothing ap-
pears to be desirable to obtain reliable DOA estimates”. However, smoothing can not
be completely avoided, since it is necessary in a completely coherent environment.

Alternative root-MUSIC In all papers I have read, root-MUSIC’s DOAs are estimated
by computing a polynomial giving roots inside and outside the unit circle. Still, all
the authors say that the only interesting part is theM roots inside and closest to the
unit circle [4, 10, 11, 22, 27].

Why not exploit the fact that R̂ is Hermitian? Why not simply compute the part of
the polynomial that has roots inside the unit circle? This would lead to a smaller
polynomial to solve. It can be achieved by replacing (5.23) with

PRM(z) =
0∑

k=−(L−1)
ckzk (5.25)

Here, only the sum (ck) of the elements on the sub diagonals and main diagonal of
V̂nV̂H

n are used.

Besides the lower computational load, there is one more thing to gain from this
strategy. In general, the problem of finding multiple roots of a polynomial is an
ill-conditioned mathematical problem [15]. In root-MUSIC, computed via (5.23), we
try to find 2(L − 1) roots. Since, ideally, the M roots belonging to the signals lie on
the unit circle – these M roots are actually very close to be double (multiple) roots.
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Consequently, the results may be quite inaccurate for the M signal roots we are
interested in. By computing root-MUSIC via (5.25), no double roots would exist, the
new mathematical problem would be well-conditioned. Hence, more accurate DOA
estimates should be achieved.

ESPRIT The idea behind ESPRIT [11, 23, 26], is to split the array in two subarrays,
separated by a known displacement vector∆∆∆ of magnitude∆. The DOA estimates are
then angles of arrival with respect to the direction of the vector ∆∆∆. For the Uniform
Linear Array (ULA) we can split the array into two subarrays separated by distance
d. Both subarrays are placed along the y-axis. The subarrays will be denoted Y ′ and
Y ′′. The signals received at sensor i in each of the subarrays, can be expressed as:

y ′i (t) =
M∑
m=1

sm(t)ai(θm)+ ny′i (t), (5.26)

y ′′i (t) =
M∑
m=1

sm(t)ejω0d sinθm/cai(θm)+ ny′′i (t), (5.27)

Note that for the ULA y ′1(t) = y1(t), y ′2(t) = y ′′1 (t) = y2(t), · · · , y ′L(t) = y ′′L−1(t) =
yL−1(t) and y ′′L (t) = yL(t). Here L = L− 1. The only sensors that are not shared by
the two subarrays are sensor y′1(t) and sensor y ′′L (t), that is y1(t) and yL(t). If we
combine the sensor outputs in each subarray into vectors, we can write (5.26) as

y′(t) = A′s(t)+ ny′(t), (5.28)

y′′(t) = A′ΦΦΦs(t)+ ny′′(t) (5.29)

Here A′ is the upper (L−1)×M part of the steering matrix A (confer (2.21) page 14),
such that A′ is actually taken from

A =
[

A′

last row

]
=
[

first row
A′′

]
(5.30)

A′′ = A′ΦΦΦ (5.31)

Further, s(t) is the M × 1 vector of signals, and the matrix ΦΦΦ is a diagonal M ×M
matrix containing the phase delays between the subarrays for the M signals

ΦΦΦ = diag{ejφ1 , · · · , ejφM} (5.32)

φm = kd sinθm. The problem of estimating the DOAs is then to find these phase
delays, hence finding ΦΦΦ. The unitary1 matrix ΦΦΦ relates the measurements from sub-
array Y ′ to those from subarray Y ′′. Let

ȳ(t) =
[

y′(t)
y′′(t)

]
= Ās(t)+ ny(t) (5.33)

Ā =
[

A′

A′ΦΦΦ
]
, ny(t) =

[
ny′(t)
ny′′(t)

]
(5.34)

1square matrix, with orthonormal columns
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The structure of Ā is then exploited to obtain estimates of the diagonal elements ofΦΦΦ.

In a perfect world, where no noise exists, an amount of samples sufficient to find
M linearly independent vectors would span the signal subspace. That is, the M
dimensional subspace of the L dimensional complex space, CI L, spanned by Ā. Since
the sensor arrays’ translational invariance has induced a rotational invariance of
these subspaces, we can use the information in this rotational invariance to findΦΦΦ. By knowledge of the covariance, R, of the measurements, we can find the signal
subspace. The eigenvectors corresponding to the M largest eigenvalues of R give us
Vs =

[
v1

∣∣· · ·∣∣vM

]
, where the signal subspace <{Vs} = <{Ā}.

Now, since <{Vs} = <{Ā} and M < L, there exists a unique nonsingular T fulfilling

Vs = ĀT (5.35)

Because of the invariance of the array, Vs can be decomposed into VY ′ ∈ CI L×M and
VY ′′ ∈ CI L×M in the following way

Vs =
[

VY ′
VY ′′

]
=
[

AT
AΦΦΦT

]
(5.36)

and then

<{VY ′ } = <{VY ′′} = <{A}

VY ′ and VY ′′ share column space, thus the rank of

VY ′Y ′′
def=

[
VY ′

∣∣VY ′′
]

(5.37)

is M. This implies that there exists a unique rank M matrix F ∈ CI 2MxM such that

0 =
[
VY ′

∣∣VY ′′
]
F = VY ′FY ′ +VY ′′FY ′′

= ATFY ′ +AΦΦΦTFY ′′
(5.38)

F spans the null-space of
[
VY ′

∣∣VY ′′]. We can now rearrange (5.38), by defining the
matrix ΨΨΨ .

ΨΨΨ def= −FY ′
[
FY ′′

]−1 (5.39)

Then (5.38) becomes,

ATΨΨΨ = AΦΦΦT⇒ ATΨΨΨT−1 = AΦΦΦ (5.40)

With A of full rank, this implies

TΨΨΨT−1 = ΦΦΦ (5.41)

and thus, the eigenvalues of ΨΨΨ equal the diagonal elements of ΦΦΦ (ΨΨΨ and ΦΦΦ are related
through a similarity transformation). The columns of T are the eigenvectors of ΨΨΨ .
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Now, expressing ΦΦΦ in (5.36) as (5.41) we obtain the following relation between VY ′
and VY ′′

VY ′′ = VY ′ΨΨΨ (5.42)

We can now compute the eigenvalues of ΨΨΨ using either a least-square or a total-
least-square criterion. The least squares problem is easily solved by applying the
pseudo-inverse of VY ′

ΨΨΨ = V†Y ′VY ′′ (5.43)

The diagonal elements in ΦΦΦ will equal the eigenvalues of ΨΨΨ , and by applying (5.24) to
these, the DOA estimates are found.

Also for ESPRIT, Rao and Hari [23] have come up with an optimal choice of K, still
dependent upon SNR and how many signals that are present. For ESPRIT, these
choices of K are L/3 (high SNR) and L/4 (low SNR) in the one signal case, while in
the two signal case K should equal (L+ 1)/5 (high to moderate SNR) and (L+ 1)/8
(low SNR). Again, these choices are valid also for the coherent signal cases.





Chapter 6

Data and Evaluation Methods

This chapter presents the data that were available for this thesis. Further, a short
description of how the algorithms were implemented is given. Finally, different ways
of evaluating the performance of the various high-resolution methods are outlined.

6.1 Data Sets

The data available for this thesis were recorded by the Simrad EM3000 sonar, ob-
tained as raw output of the array after bandpass filtering acoustic signals arriving at
each sensor yl , for l = 1, . . . , 80. The received signals were separated into in-phase
and quadrature components, demodulated and then sampled at 14293 Hz. For each
ping, these in-phase and quadrature data were written to file, represented as two
bytes signed integers.

The transmit signal of EM3000 is a rectangular pulse of a sinusoidal wave with pulse
length 150 µs and center frequency 300158 Hz. The receive array is a Uniform
Linear Array of 80 elements. The distance between two neighboring elements is 2.55
mm. As λ = c/f , with c fixed at 1500 m/s, the intersensor spacing d is slightly
larger than λ/2. Therefore, sidelobes alias into the mainlobe [7]. However, the array
has to be steered to look for signals further to the side than approximately ±86◦

before aliasing becomes a real problem. In this work, such high steering angles
are not used. Consequently, the spatial sampling avoids aliasing and the array can
be assumed unambiguous (Sec. 2.5). If aliasing had become a problem for lower
steering angles, weighting of the sensoring elements (Sec. 4.1) had to be applied to
avoid the negative effects of the aliasing.

As mentioned in section 4.3, the sample frequency (14293 Hz) and pulse length (150
µs) of EM3000 excludes time averaging. Thus, the estimated covariance matrix R̂ is
significantly affected by any noise present. This can, to some extent, be improved by
the other methods given in chapter 4.

The low number of stationary samples affects the resolution, the mean-square error
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and the bias of the methods in unpredictable ways [7, 13, 27]. Ideally, the resolution
of adaptive beamformers should be measured asymptotically, because: “Direct ana-
lytic derivation of an adaptive technique’s resolution has defied all attempts to date”,
c.f. [7, Sec. 7]. The low number of stationary samples obtained by the EM3000 effec-
tively restricts us from doing this. Further, since R̂ is estimated from noisy samples,
the steered response of any beamformer will differ from its ideal form. Thereby, the
accuracy of the location of signals may be affected by the resolution – if resolution
is defined through the steered response [7]. Research has been done in order to gain
some insight about these effects. In [27], Srinivas and Reddy analyze the finite data
performance of MUSIC and Minimum-Norm, and derive expressions for the mean
square error of the DOA. While Li and Lu [13], look at the bias of subspace-based
methods – and try to say something about their performance for different SNRs,
number of sensors in the array and various amounts of snapshots. These topics
were mentioned in chapter 1.

In this study, 1760 snapshots are used, half of them containing signals from “normal
incidence” echoes and half of them obliquely arriving echoes. These snapshots are
taken from 22 different pings, which again come from 6 different ping series. The
“normal incidence” signals are defined as signals arriving from θ values between
−25◦ and 25◦ (Fig. 6.1). This wide area is used to obtain enough snapshots contain-
ing “normal incidence” signals for the evaluation in section 7.1. The definition of the
obliquely arriving signals is stronger, these signals arrive from θ values above 40◦

to either side.

6.2 Implementation Issues

The data were processed sequentially, one time sample (snapshot) at a time. For
each snapshot, a “power” spectrum is computed (Fig. 6.4).

For one ping, many succeeding power spectra (one for each snapshot) constitute a
spectrum for the entire bottom scene viewed by one ping. Such spectra are visual-
ized by letting different “powers” or amplitudes map to different colors (Fig. 6.2(a)).
This final spectrum composes a polar coordinate picture of the bottom. A problem
with this picture, is that secondary bottom echos may be present – in addition to
other noise. By post processing this picture in some intelligent way, we are hopefully
able to distinguish between actual bottom returns and noise or extraneous echoes.
This is called bottom detection. We can then do a simple scanconvertion from polar
coordinates to the true bottom map, which is given as x, y and z coordinates.

Bottom Detection One way of doing the bottom detection, is to run through every
vertical line in the spectrum and find the snapshot with the largest amplitude (Fig.
6.2). This may be done together with thresholding the spectrum, in order to get
rid of the least significant parts of it. All vertical lines do not necessarily contain
bottom returns, this will depend on how many snapshots we take of a ping and the
geometry of the bottom. This procedure is a simple bottom detection algorithm,
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Figure 6.1: Definition of the echo incidence areas used for the quantitative evalua-
tion. The sea floor coverage of the pulse is also shown (exaggerated pulse length).
Ship viewed from behind.

            

(a) Polar coordinate spectrum of a quite
complex bottom.

            

(b) Polar coordinate picture after bottom
detection.

Figure 6.2: Spectrum in polar coordinates. Vertical axis time, horizontal axis angle.
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which is based on the knowledge that not more than one signal can impinge on
the array from a given direction. If two signals arrive from the same direction, the
one with lowest amplitude (hopefully the second) is considered to be a secondary
echo. This must be discarded to give correct bottom estimates. The result of such
a bottom detection algorithm can be seen in figure 6.2(b). Other more sophisticated
approaches must be used in more difficult scenarios.

Estimation of M At each snapshot, the high-resolution methods (except Minimum-
Variance) depend on an estimate of the number of signals M currently received by
the array. In this work, M is estimated through simple combinations of the first few
eigenvalues of R̂, after any smoothing or noise subtraction operations are applied
to it (Sec. 4.3 through 4.6) . This means that M may vary with what operations we
apply to R̂.

For the data sets used, the following computation of M seems to give reasonable re-
sults. For each of the first four eigenvalues that are larger than 0.95µ(λλλ)−0.38std(λλλ),
M is increased by one. Here λλλ is a vector of the six largest eigenvalues, µ is its mean
value and std its standard deviation. This means that not more than four signals will
be accepted at any discrete time step. This strategy was found by examining several
snapshot’s power spectra and eigenvalues, and should by no means be regarded as
optimal or statistically founded – it is plain engineering and a fast procedure.

In time periods where no signals are present, this strategy will result in four accepted
signals. The six largest eigenvalues roughly equal the mean. To avoid this one
can restrict the number of signals when the standard deviation is less than some
predefined value. When the standard deviation is very low, it is quite likely that the
variation seen in the eigenvalues is simply due to the the one snapshot case (N = 1).
It is highly unlikely that we have six signals, with the same SNR, impinging at the
same time.

The spectra may be computed via any of the methods from chapter 5. Each of these
methods are based on the covariance matrix R̂, which in turn may be computed by
any combination of the methods in chapter 4. In addition, we might apply weighting
of the sensors before computing R̂. Consequently, many algorithm combinations
have to be run in order to find the best way of estimating R̂ for any high-resolution
method.

6.3 Evaluation Methods

In this section, the methods for evaluating the performance of the high-resolution
methods will be explained. The performance can to some extent be evaluated by
quantitative measures, but we also compare the different methods by a visual exam-
ination of the spectra.
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(a) The Full Width is computed at the Half
Maximum height, even though there are
no points corresponding to this level.
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(b) FWHM when two peaks have no values
lower than HM between them.

Figure 6.3: Explanation of different FWHM approaches.

6.3.1 Quantitative Evaluation

If we define the resolution to reflect the width of the steered response about the
direction of propagation, the Full Width Half Maximum (FWHM) of the signal peaks
is an acceptable measure of a method’s resolution (Fig. 6.3(a)). Unfortunately, it says
nothing about how accurate the method computes the directions of arrival (DOA).

If one considers the highest peaks in two different spectra, for the same snapshot, it
is not enough to have a smaller FWHM (better resolution) to be regarded as the best
method. The best method must also have its peak at the source’s location.

Since we do not really know the true bottom in these experiments, we assume that
the Fourier transform spectrum “tells” us what is reasonably close to the truth. Now,
if a method’s peak-width is smaller than that of the FT spectrum, and in addition has
its peak-width within the area covered by the FT spectrum’s peak-width; this method
will be considered better than the Fourier transform. The area covered by the peak-
width, for instance 33–37 degrees, will be called the width-location (WL). The best
would be a method that was capable of resolving two sources in an area where the
FT spectrum is only capable of finding one source, hence one peak.

The FWHM is computed for a given peak (Fig. 6.3). First one finds the Half Maximum
(HM) of the peak, computed as half way between the minimum value and the mag-
nitude of the given peak in the spatial spectrum at time t. When the HM has been
found, one has to compute the Full Width (FW) of the peak at this level. Comput-
ing the width is done by defining a linear function ,l(·), running through the first
point (θ value) yielding a value lower than HM, and the point yielding a value higher
than HM. The slope of the linear function is computed, and from this function a
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Figure 6.4: Power spectrum (dashdot) with two peaks inside one peak of another
power spectrum (solid). The dash dotted power spectrum resolving two sources is
computed for an ULA with 80 elements. Solid power spectrum resolving only one
source – ULA with 30 elements. Sources propagating from 34 and 37 degrees.

point corresponding to the exact HM is found even though this point may not exist
since only angular increments of length h in degrees defines the corresponding axis.
This is done both to the left and right of the given peak location, as with l1 and l2
in figure 6.3(a). Given these two points, one knows the distance between them and
hence the FW. A special case occurs when two peaks have no values lower than HM
between them. Then, one of the FW points belonging to a peak is defined as where
the spectrum is no longer declining, but begins to increase towards the next peak
(Fig. 6.3(b)).

Now, “measures of goodness” are FWHMs along with the amount of an arbitrary
method’s width-location overlapped by the FT spectrum’s width-location. 100% of a
method’s width-location within the FT spectrum’s width-location is excellent, the two
methods are then performing equally well. 200% would be even better. This occurs
when a method has resolved two distinct peaks totally within the area enveloped
by only one peak in the FT spectrum. In figure 6.4 one can see that one spectrum
resolves two sources, while the other spectrum only finds one source. This event
would lead to a percentage of width-location overlap equal to 184.4 %, which is quite
good. The measure that quantifies the amount of close peaks enveloped by only one
peak in the Fourier spectrum is explained on page 52.

Peak-Width Ratio

All the ratios, for all snapshots, of the FWHM of the FT spectrum’s highest peak to
an arbitrary method’s highest peak’s FWHM have been measured. All the snapshot’s
ratios are time-averaged and a final value is computed (Fig. 6.5(a)). If this value is
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(a) Average FWHM ratio (PWR) for the
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lap (WLO) between the methods is 68.3%.
FT spectrum solid. Three snapshots.
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(b) The PWR(M) for one snapshot is 0.5.
The average of the M FWHM’s of the
FT (top), is divided by the average of
the FWHM’s of a high-resolution method
(bottom) The ratios for several snap-
shots will be time-averaged, as in the
left figure.The total amount of overlap,
WLO(M), is also computed.

Figure 6.5: Different averages of FWHM and width-location overlap. Approaches for
highest peak, and for “all” peaks.
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larger than one, the method we are studying has a better resolution than the FT. This
value is denoted Peak-Width-Ratio, PWR. The PWR is the expression (6.1), only that
M is set to one – no matter what M’s actual size is (Fig. 6.6).

Next, for each snapshot, an average of the FWHM of all significant peaks (assuming
one knows how many sources, M, there are) of the FT spectrum has been compared
to the FWHM average of “all” the peaks in the spectrum of another method (Fig.
6.6). Then, a time averaged ratio as PWR is computed from these ratios, it is the
mean Peak-Width Ratio PWR(M). This means that there are actually two different
PWR measures. Fortunately, both of them can be defined by the same formula if one
uses a parameter M – the number of signals. The measure between the FT and a
high-resolution beamformer (HR) is given by

PWR(M) = 1
N

N∑
n=1

∑M
m=1 FWHMFT(n,m)∑M
m=1 FWHMHR(n,m)

(6.1)

where n is an index for a snapshot andm an index for a peak. For each snapshot, the
FWHM of the M highest peaks obtained by the FT are compared to those obtained
by a high-resolution beamformer (Fig. 6.5(b)). The ratio is then averaged for all N
snapshots used for measuring the performance.

If the PWR is larger than one, the high-resolution method has a better resolution
than the FT – when only considering the highest peak at each snapshot. Given a
PWR(M) larger than one, roughly all peaks of the high-resolution method have a
smaller FWHM than those of the FT.

Width-Location Overlap

A percentage of the overlap between the mainlobes of two methods will be computed
as mentioned earlier. For each snapshot’s highest peak, we compute how much
of a method’s peak’s width-location is covered by the FT spectrum’s peak’s width-
location (Fig. 6.5(a)). It is thus denoted the Width-Location Overlap, WLO. As for the
PWR, the WLO is defined by lettingM in (6.2) equal one – regardless of M’s size (Fig.
6.6). Finally, results for all snapshots are averaged.

A percentage of the total amount of overlap between theM peak’s width-locations is
also computed, by comparing the width-locations of the M signals for one snapshot
in the FT spectrum with all of the M width-locations in a high-resolution method’s
spectrum. This is done for each snapshot, and then time-averaged. See figure 6.5(b).
For this comparison, 100% is the best possible and means that all peaks in the spec-
tra are at the same places in both methods (or perhaps several of the peaks in a
method’s spectrum within one of the FT spectrum’s peaks). The measure is denoted
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Figure 6.6: Flowchart for quantitative evaluation. This is performed at each snap-
shot, and later averaged over all snapshots.
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the mean Width-Location Overlap, WLO(M).

WLO(M) = 1
NM

N∑
n=1

M∑
j=1

M∑
i=1

WLHR(n, i)∩WLFT(n, j)
FWHMHR(n, i)

(6.2)

It gives the percentage of the high-resolution method’s peaks which are located
within the FT peaks. This value is also averaged for all N samples and all M peaks
in each sample. The WLO, or WLO(1), gives us the overlap between the highest peaks,
while WLO(M) gives us the averaged overlap between the M highest peaks – where
M is the number of signals for the current snapshot (Fig. 6.6).

Closely spaced but resolved sources

The total number of closely spaced sources (dash dotted spectrum Fig. 6.4) a method
has resolved is added up. This is achieved by, for every snapshot, counting how
many closely spaced sources or close pairs there are (Fig 6.6). Sources are defined
as closely spaced when the locations of the peaks are less than 2.5 degrees apart.
It is simply assumed that when two closely spaced peaks are observed in the spec-
trum, these two peaks are closely spaced sources that are resolved. This measure
is averaged over all snapshots, and will tell us something about a method’s capabil-
ity of resolving closely spaced sources. The measure is denoted Total of Close but
Resolved sources, TCR.

Overlap for the close sources

A measure similar to WLO is also computed for the methods that resolve closely
spaced sources. This is done by first examining the spectrum of the high-resolution
methods, to see if close sources are present (Fig 6.6). Possible close sources are then
compared to the peak of the Fourier spectrum that is both highest and widest. The
idea is that wide peaks in the Fourier spectrum are the ones most likely of not having
resolved closely spaced sources.

However, the widest peak may also be a random wide peak consisting of noise only.
This thought is based on M being chosen properly. If M is correct, and a high-
resolution method resolves closely spaced sources, one of the peaks in the Fourier
spectrum will actually be noise – given that the Fourier method does not resolve the
close sources. Therefore, the comparison is restrained to only the highest peak, if
this is also the widest (Fig 6.6). Unfortunately, it was not thought of comparing them
with the peak of the Fourier spectrum that is closest to these sources.

Thus, the WLO is computed by keeping j in (6.2) fixed such that it equals the highest
and widest peak of the FT, while i is the index corresponding to the close peaks of
the high-resolution beamformer. We do not divide by M in this measure.
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This measure is somewhat dangerous, errors may well be present since several as-
sumptions are made. Still, this way of measuring the WLO might be as good as com-
paring the width-location of the closely spaced sources to the peak in the Fourier
spectrum that is closest to these sources. Because, from the conventional point of
view the highest peaks of the Fourier spectra are the most important. In the Fourier
approach M is not measured at all, usually a threshold is applied to the spectrum,
and the bottom is fond by some bottom detection strategy.

This measure of overlap will only be averaged over the snapshots where closely
spaced sources are present. Thus,N in (6.2) is replaced by the sum of all snapshots’
TCR.

Computation Time

Finally, the execution time was computed for all methods – using an angular in-
crement of a half degree, h = 0.5. The execution time for each method has been
computed by using the floating point operation counter (flops) in MATLAB. The
average amount of Mega-flops per snapshot was measured.

Computation time is an important issue for bathymetric sonars. We need fast al-
gorithms. In addition to the differences between the methods, this measure will
depend upon what operations we apply to R̂.

Comments to the measures

Before the evaluation in chapter 7 is started, a few comments about some of the
above measures might be of interest.

The conventional Fourier transform suffers from a decreasing resolution for signals
arriving from increasingly oblique angles. Therefore, the evaluation should be per-
formed in such a way that one is able to say something about the performance of
the methods for “normal” incidence, as well as obliquely incoming signals. This is
achieved by inspecting the Fourier spectra before doing the quantitative evaluation.
By this inspection, one is capable of deciding which snapshots that yield what sort of
DOA (normal or oblique) for all pings. One can then evaluate different snapshots for
different pings, such that measures are done for both normal incident and obliquely
incoming signals.

The PWR measure is not applicable for root-MUSIC and ESPRIT. Since these methods
estimate the DOA via zeroes in the z-plane (not quite true for ESPRIT), the width of
the M peaks can be defined to be of any size. Still, the PWR measure can be used in
a fruitful way.

The PWR of ESPRIT and root-MUSIC tells us something about the peak-width of the
Fourier method. Having defined the peak-width of ESPRIT and root-MUSIC in the
exact same way for all snapshots, one is able to tell how the width of the Fourier
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Covariance Estimation Methods

Forwd. /Backwd. Noise
Averaging Subtracted Denoted

NO NO R̂K
fs (plain)

NO YES R̂K
fs − N̂

YES NO R̂K
fbs (plain)

YES YES R̂K
fbs − N̂

Table 6.1: These parameters were combined with 0, 2, 5, . . . , 26 and 29 subarrays
for beamforming.

spectra’s peaks change for different types of signals. As stated above, measures
are done for signals of normal incidence, as well as for obliquely incoming signals.
Therefore, the PWR of either ESPRIT or root-MUSIC give us information about the
Fourier method’s difference in resolution capabilities for signals arriving from these
directions.

Since the number of signals,M, is not found in an optimal way, the quantitative part
of the evaluation is not necessarily an acceptable measure of how “good” bathymet-
ric pictures one gets. Yet, it is a reasonable comparison of one and one snapshot.
Where there are large peaks in the FT spectra, composed by signals or noise, one
should also find peaks with the high-resolution methods. Because of this, it is not
necessary to look at several independent data sets in the quantitative part, it is suf-
ficient to look at several snapshots.

As mentioned in the beginning of section 6.3.1, it is not enough for a method to have
the narrowest peaks to be regarded as the most promising high-resolution method.
Thus, the WLO of a method will be considered as more important than the PWR.
Also, a high-resolution method should be able to resolve closely spaced sources –
therefore, the TCR measure will be of some essence too. But, we have to bear in
mind that this measure is somewhat dangerous. It is based on the assumption that
when two peaks are observed close to each other in the spatial spectrum, these two
peaks are actually two closely spaced but resolved sources. This need not be the
case! Nevertheless, the WLO of the assumed close sources is computed. We need fast
methods in bathymetric sonars. Thus, the amount of M-flops is also of importance.

The above mentioned quantitative results have been computed for various data sets.
All data sets have been processed with the same parameter combinations, as out-
lined in table 6.1.

6.3.2 Qualitative Comparison

As stated earlier, the quantitative part of the evaluation is not necessarily an ac-
ceptable measure of how good bathymetric spectra the high-resolution methods are
able to compute. To complicate things further, methods yielding what appears to be
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acceptable spectra may not necessarily be the same methods that give good results
after bottom detection. Thus, in addition to evaluating the methods on a sample to
sample basis, as in the quantitative part, we have to view the resulting pictures to
get a qualified impression of which methods to prefer. The high-resolution methods
that have a high WLO should give bathymetric spectra “equal” to the Fourier method,
but the quantitative measures say nothing about the level of the background noise.





Chapter 7

Experimental Results

In this chapter, the results of the different high-resolution methods are given.

For each of the high-resolution methods (Sec. 5.2), the most prominent trends of
each measure defined in section 6.3 are summed up. When all measures for a high-
resolution method are done, a conclusion of how to estimate the covariance matrix,
R̂, for this particular method is drawn. That is, the parameter choices for estimation
of R̂ that gave the best results on an overall basis are found for each method. Finally,
the results of the methods are compared for these specific parameter combinations
in table 7.8.

Having done the quantitative comparison, we are ready to compare the methods
visually in section 7.4.

7.1 Quantitative Observations

First the results of each method are given, and the best way of estimating R̂ is found
for the current method. The Width-Location Overlap (WLO p. 52) of a method is
considered to be more important than the Peak-Width Ratio (PWR p. 50). The Total of
Close but Resolved sources (TCR p. 52) measure will also be of some essence, and the
WLO of these assumed close sources (p. 52) has to be high. The computational load
(measured in M-flops) is also important, fast algorithms are needed for bathymetric
sonars.

In this study, 1760 snapshots are used, half of them containing signals from “normal
incidence” echoes (−25◦ to 25◦) and half of them obliquely arriving echoes (above
40◦ to either side). These snapshots are taken from 22 different pings, which again
come from 6 different ping series. Thus,N in the quantitative measures (Sec. 6.3.1)
equals 880, both for normal and oblique incidence signals.

In the second section the best results for each method are compared. This will give
us insight about what results to expect for each method, point out the differences
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between the methods and also give us an idea of what the spectra will look like, both
before and after bottom detection.

For most methods the PWR and PWR(M) are highly correlated. Therefore, only the
PWR will be discussed for these methods. This also applies to the WLO and the
WLO(M).

7.1.1 Minimum-Variance

Peak-Width Ratio To ensure the highest PWR for most subarray sizes, R̂ should be
estimated by forward/backward smoothing in combination with noise removal (Fig.
7.1(a)/Tab. 7.1).

For less than 17 subarrays, quite similar results were obtained for the PWR whether
plain forward-only smoothing, plain forward/backward smoothing or forward/back-
ward smoothing in combination with noise removal was applied (Fig. 7.1(a)). For-
ward-only smoothing in combination with noise removal gave a lower PWR than the
other estimation techniques (Fig. 7.1(a)).

When 17, or more, subarrays were applied, a higher PWR was obtained for forward/-
backward smoothing by removal of the estimated noise (Fig. 7.1(a)). Forward/back-
ward smoothing was preferable to forward-only smoothing, whether the estimated
noise was removed or not.

The same trends were apparent for both the normal incidence and obliquely incom-
ing signals (Fig. 7.1(a)). The PWR was somewhat higher for signals arriving from
oblique angles.

Similar results as those for the PWR were obtained for the PWR(M), but with a larger
difference between forward/backward smoothing with or without removal of the
noise estimate.

Width-Location Overlap Plain forward/backward smoothing lead to a higher WLO
than what was achieved by using plain forward-only smoothing (Fig. 7.1(b)). When
more than 14 subarrays were used, the WLO achieved by plain forward/backward
smoothing was mostly higher than what was obtained by the other methods (Fig.
7.1(b)). For 17 subarrays or more, the WLO was mostly above 60%. This is the
suggested way to estimate R̂ in order to get the highest WLO for Minimum-Variance
(Tab. 7.1).

Plain forward-only smoothing showed an increase in WLO as more subarrays were
applied (Fig. 7.1(b)), although it was roughly 0 until about 8 subarrays were applied.
The increase was most significant when more than 17 subarrays were applied, and
resulted in a WLO of above 60% of the FT when 26 or 29 subarrays were used.

With few subarrays, neither method for estimating R̂ gave high WLO values – even
though removing the estimated noise gave somewhat higher values than not remov-
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ing it. This was clear both for forward/backward averaging and forward/backward
smoothing (Fig. 7.1(b)).
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Figure 7.1: PWR and WLO results for Minimum-Variance. Upper part, normal inci-
dence signals. Lower part, obliquely arriving signals. Plain forward-only smoothing
◦. Forward-only smoothing with noise removal ×. Plain forward/backward smooth-
ing �. Forward/backward smoothing with noise removal 4.

The WLO and WLO(M) gave similar results, except that the WLO was highest for
signals arriving from oblique angles, while the WLO(M) was highest for signals of
normal incidence. The difference was small though.

Resolution (TCR) Minimum-Variance was not very capable of resolving sources
that were closely spaced. Minimum-Variance resolved between 0 and 0.5 closely
spaced sources per snapshot, depending on how R̂ was estimated.

Forward/backward smoothing had to be used in order to resolve the highest amount
of close sources. By applying plain forward/backward smoothing, there was a clear
increase in ability of resolving closely spaced sources when using 17 subarrays or
more (Tab. 7.1). Removing the estimated noise reduced the performance of for-
ward/backward smoothing.

WLO of closely spaced sources To achieve a high WLO for the closely spaced
sources, forward/backward smoothing had to be applied. To get WLO values higher
than 100%, both for signals of normal incidence and oblique angles, 20 or more sub-
arrays had to be used (Tab. 7.1). For this high number of subarrays, there was little
difference in WLO whether the noise estimate was removed or not. For less than 17
subarrays, noise removal was preferable.
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Minimum-Variance
when R̂ was

Measure Resulted in for K ∈ estimated as
PWR > 2.4 [0,29] R̂K

fbs − N̂
WLO > 60% [17,29] R̂K

fbs (plain)
TCR > 0.21 [17,29] R̂K

fbs (plain)
WLOTCR > 106% [20,29] R̂K

fbs (plain)
M-flops 19.8→ 13.8 [20,29] R̂K

fs (plain)

Table 7.1: The best results for the Minimum-Variance algorithm, based on the aver-
age between signals of normal incidence and oblique angles.

Computation Time The floating point operations measured by flops in MATLAB
showed that the computational load was greatly reduced by applying subarrays in
the estimation of R̂. The amount of Mega-flops decreased from about 50 until
roughly 17 by increasing the amount of subarrays from 0 to 29 (Fig. 7.2(a)). The
other methods for estimating R̂ were not as important, even though the compu-
tational burden was increased both by forward/backward smoothing and noise re-
moval. The difference between plain forward-only smoothing (fastest) and forward/-
backward smoothing in combination with noise removal (slowest), was 14 M-flops
for no subarrays and 4 M-flops for 29 subarrays.

Conclusion For Minimum-Variance, the PWR was quite high for all subarrays when
applying forward/backward smoothing. When many subarrays were applied, it be-
came higher by removing the estimated noise. The WLO declined when noise was
removed. From Tab. 7.1 it is seen that more than 17 subarrays should be applied
– not only for the WLO, but for the TCR as well. For the WLO of the closely spaced
sources, it was advantageous to use many subarrays – 20 or more. Only with regard
to the M-flops it seemed that forward-only smoothing was better than forward/-
backward smoothing. Since many subarrays should be applied, the difference is
small.

Thus, for Minimum-Variance, we conclude that R̂ should be estimated by applying
plain forward/backward smoothing while smoothing with between 20 and 29 subar-
rays. Since Minimum-Variance had a WLO of 66% for 17 subarrays, 70% for 20, 66%
for 23 and 70% for 29 subarrays, it is safest to use 20 subarrays (Tab. 7.8).

7.1.2 Eigen-Vector

The results for the Eigen-Vector algorithm were much similar to those of Minimum-
Variance. This was expected since the Eigen-Vector algorithm is the same as the
Minimum-Variance algorithm, except that it only uses the L-M smallest eigenvalues
of R̂ and their associated eigenvectors, whereas Minimum-Variance uses the entire
R̂.
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Peak-Width Ratio For the PWR measure, the only noticeable difference was that
when R̂ was estimated without noise removal – the PWR was lower for Eigen-Vector
than for Minimum-Variance when applying few subarrays. Similar results were ob-
served for the PWR(M) measure.

Width-Location Overlap Also the WLO of the Eigen-Vector and Minimum-Variance
algorithms was quite similar (Tab. 7.2). Only for few subarrays and noise removal
a small difference occurred. The WLO increased from 0% for Minimum-Variance,
until 5 to 10% for Eigen-Vector, when 0, 2 or 5 subarrays and no noise removal was
applied. The same was observed for the WLO(M).

Resolution (TCR) The ability to resolve closely spaced sources was quite similar
for the Minimum-Variance and Eigen-Vector algorithms.

WLO of closely spaced sources The WLO for the close sources showed a different
trend for the Eigen-Vector algorithm than for the Minimum-Variance algorithm.

For less than 17 subarrays the Eigen-Vector algorithm showed little difference be-
tween forward/backward smoothing with and without removal of the estimated
noise, as opposed to Minimum-Variance – where noise removal improved the WLO
of the closely spaced sources. The results when removing the estimated noise were
fairly similar for Minimum-Variance and Eigen-Vector. When noise was not removed,
and few subarrays were applied, the Eigen-Vector algorithm gave a few percentages
higher WLO values for the close sources than the Minimum-Variance algorithm did.
This was clear for both forward/backward smoothing and forward-only smoothing.

When forward/backward smoothing with more than 17 subarrays was applied, the
Eigen-Vector algorithm (Tab. 7.2) performed quite similar to the Minimum-Variance
algorithm.

Eigen-Vector
when R̂ was

Measure Resulted in for K ∈ estimated as
PWR > 2.4 [0,29] R̂K

fbs − N̂
WLO > 56% [14,29] R̂K

fbs (plain)
TCR > 0.20 [14,29] R̂K

fbs (plain)
WLOTCR > 108% [17,29] R̂K

fbs (plain)
M-flops 50→ 33 [20,29] R̂K

fs (plain)

Table 7.2: The best results for the Eigen-Vector algorithm, based on the average
between signals of normal incidence and oblique angles.
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(a) M-flops for Minimum-Variance.
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(b) M-flops for Eigen-Vector.

Figure 7.2: M-flops for Minimum-Variance and Eigen-Vector. Upper part, normal in-
cidence signals. Lower part, obliquely arriving signals. Plain forward-only smoothing
◦. Forward-only smoothing with noise removal ×. Plain forward/backward smooth-
ing �. Forward/backward smoothing with noise removal 4.

Computation Time The need to compute the eigenvectors and values led to an
increase in computational load for Eigen-Vector compared to Minimum-Variance (Fig.
7.2). Even though a decrease in M-flops was observed when increasing the number
of subarrays, it is clear that Minimum-Variance is a faster method. Eigen-Vector used
approximately 112 M-flops (Minimum-Variance 47) for no subarrays, this decreased
to roughly 36 M-flops (Minimum-Variance 16) for 29 subarrays (Tab. 7.2).

For Eigen-Vector (Fig. 7.2(b)), another trend for the different approaches for estimat-
ing R̂ became clear than for Minimum-Variance (Fig. 7.2(a)). When Eigen-Vector used
less than 11 subarrays, the two methods applying noise removal were faster than
the same methods without noise removal. Forward/backward smoothing together
with noise removal was not only faster than plain forward/backward smoothing, it
was actually faster than plain forward-only smoothing as well. This observation is
due to the estimation of the eigenvectors. The iterative procedure of computing the
eigenvectors can be expected to converge faster if a good estimate of the noise is
removed from R̂ before the eigenvectors are computed.

Conclusion Eigen-Vector achieved the best results for the same amount of subar-
rays and smoothing approach as Minimum-Variance (Tab. 7.8).

7.1.3 MUSIC

The MUSIC algorithm is basically the same as the Eigen-Vector algorithm, but MUSIC
assumes all noise eigenvalues to equal each other. This difference lead to other
results for MUSIC than Eigen-Vector.
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Figure 7.3: PWR and WLO results for MUSIC. Upper part, normal incidence signals.
Lower part, obliquely arriving signals. Plain forward-only smoothing ◦. Forward-only
smoothing with noise removal ×. Plain forward/backward smoothing �. Forward/-
backward smoothing with noise removal4.

Peak-Width Ratio MUSIC’s PWR showed a steady increase along with increasing
the number of subarrays (Fig. 7.3(a)). Plain forward/backward smoothing and for-
ward/backward smoothing with noise removal gave a higher PWR than forward-only
smoothing for all subarray sizes (Tab. 7.3). For 14 subarrays, or less, removing the
estimated noise led to a higher PWR than no noise removal.

The difference between normal incidence and obliquely incoming signals was small,
at least for few subarrays. When many subarrays were used, the obliquely incoming
signals resulted in a PWR roughly 0.4 higher than for normal incidence signals.

The results for PWR(M) were somewhat lower for all subarray sizes than the PWR
results, but showed the same trend.

The observed increase in PWR is quite opposite from what would be the case for the
Fourier method, but can be explained by the fact that MUSIC’s resolution increases
with the amount of available data. For the MUSIC algorithm, use of subarrays seem
to simulate an increase in available data.

Width-Location Overlap The subarray sizes that gave a high PWR for MUSIC were
not the same that gave the highest WLO (Fig. 7.3(b)).

The highest WLO, for both normal and oblique incidence signals, was obtained for
forward/backward smoothing with removal of the noise estimate (Tab. 7.3). The
WLO was also higher for forward-only smoothing and noise removal than for plain
forward/backward smoothing (Fig. 7.3(b)).

For the signals of normal incidence, forward-only smoothing and forward/backward
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smoothing, both with noise removal, gave the highest WLO for no subarrays. The
WLO dropped as the number of subarrays was increased (Fig. 7.3(b)).

Plain forward-only smoothing and forward/backward smoothing gave a lower WLO
than the noise removal approaches. The difference in WLO as more subarrays were
applied was small.

The WLO results for obliquely incoming signals were slightly different. Not only was
the WLO higher for all subarray sizes, the trend for different amounts of subarrays
also changed. For normal incidence signals, a drop off in WLO was observed from
0 until 5 subarrays, this changed to an increase of WLO for the obliquely arriving
signals!

MUSIC’s WLO(M) was not entirely similar to the WLO.

For the normal incidence signals, only small differences in WLO(M) could be seen
for forward/backward smoothing together with noise removal as different subarray
sizes were applied. Plain forward/backward smoothing now resulted in an increase
of WLO(M) as more subarrays were applied. Forward-only smoothing and removal
of the estimated noise resulted in a drop of the WLO(M) for around 5 subarrays.
Plain forward-only smoothing had a drop in WLO(M) for 2 subarrays.

The WLO(M) trend for obliquely arriving signals was almost identical, although
somewhat lower for all subarray sizes.

Resolution (TCR) MUSIC resolved more closely spaced sources by applying for-
ward/backward smoothing than forward-only smoothing, both for the normal in-
cidence and obliquely arriving signals. Noise removal in addition to forward/back-
ward smoothing or forward-only smoothing, resulted in more resolved close sources
than what was achieved by plain forward/backward smoothing or plain forward-only
smoothing – even though the difference was small (Tab. 7.3).

For the signals of normal incidence, applying forward/backward smoothing instead
of forward-only smoothing gave approximately 0.2 to 0.3 more resolved sources per
snapshot. The ability of resolving closely spaced sources was highest for between 5
and 20 subarrays, roughly 0.4 resolved sources per snapshot.

For obliquely incoming signals, the difference between forward-only smoothing and
forward/backward smoothing was smaller. The amount of resolved closely spaced
sources was highest for forward/backward smoothing with 2 subarrays and noise
removal. This approach resulted in only 0.25 resolved sources per snapshot.

WLO of closely spaced sources The WLO of the closely spaced sources was highest
when forward/backward smoothing (with or without noise removal) was applied. For
5 or less subarrays, it seemed advantageous to remove the estimated noise. When
more than 5 subarrays were used, it appeared to be almost no difference between
forward/backward smoothing with and without removing the estimated noise (Tab.
7.3).



7.1 Quantitative Observations 65

MUSIC
when R̂ was

Measure Resulted in for K ∈ estimated as
PWR 1.4→ 2.6 [0,29] R̂K

fbs − N̂
WLO > 76% [0,8] R̂K

fbs − N̂
TCR ≈ 0.3 [2,14] R̂K

fbs − N̂
WLOTCR > 105% [0,2]∪ [14,29] R̂K

fbs − N̂
M-flops 37→ 24 [20,29] R̂K

fs (plain)

Table 7.3: The best results for the MUSIC algorithm, based on the average between
signals of normal incidence and oblique angles.

Computation Time The differences between MUSIC and Eigen-Vector led to a less
computational burden for MUSIC. Again, it was seen that applying noise removal re-
sulted in faster computations of the spectra than not removing the estimated noise.

Forward/backward smoothing needed 97 M-flops for no subarrays, whereas apply-
ing noise removal in addition led to a use of 82 M-flops. For the forward-only
smoothing approach the numbers were 86 M-flops for no noise removal, and 74
M-flops when the estimated noise was subtracted. The difference between not re-
moving the estimated noise and removing it became less evident when increasing
the amount of subarrays. When using more than 14-17 subarrays, it was actually
faster not to remove the estimated noise (but the difference was now only about 2
M-flops). By applying 29 subarrays, the use of M-flops decreased to roughly 26 –
depending on what strategy for estimating R̂ that was used (Tab. 7.3).

Conclusion From the quantitative observations about MUSIC, the PWR was found
to increase as more subarrays were applied. This was not the case for the WLO,
which decreased when more than two subarrays were used for smoothing. In either
case, forward/backward smoothing improved the results compared to forward-only
smoothing – further, removing the noise gave better results than not removing it.

MUSIC resolved more close sources for forward/backward smoothing with noise re-
moval with between 2 and 14 subarrays, the WLO for these sources was highest when
0, 2 or 14 to 29 subarrays were applied.

As I regard the WLO to be of greater importance than the PWR, few subarrays should
be used for MUSIC in my opinion. To both get a high TCR and WLO, 2 subarrays
should be applied. This might lead to a slightly lower WLO of the closely spaced
sources, and surely more M-flops will be used. Still, R̂ should be estimated by for-
ward/backward smoothing with two subarrays and noise removal (Tab. 7.8).
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7.1.4 Minimum-Norm

Peak-Width Ratio Minimum-Norm accomplished a quite high PWR for all subarray
sizes (Fig. 7.4(a)). A somewhat higher PWR was achieved when the estimated noise
was not removed (Tab. 7.4).

For less than 20 subarrays, plain forward-only smoothing and plain forward/back-
ward smoothing performed equally well. When more than 20 subarrays were used,
the PWR of the forward/backward smoothing approach started to drop, while it
stayed the same for forward-only smoothing.

When the estimated noise was removed, it was preferable to use forward/backward
smoothing and not forward-only smoothing, both for the signals of normal and
oblique incidence. Noise removal led to roughly 0.5 lower PWR for all subarray sizes
than what was achieved for the two methods above.

The PWR(M) measures were almost identical to the PWR measures.

Width-Location Overlap For the WLO, quite unexpected results appeared. The two
methods for estimating R̂ that removed the estimated noise were much better than
those not applying the noise removal (Fig. 7.4(b)).

Forward-only smoothing and forward/backward smoothing with noise removal gave
a WLO of approximately 40% for the normal incidence signals and 50-60% for the
signals arriving from oblique angles, for all subarrays (Fig. 7.4(b)). Plain forward-
only smoothing and forward/backward smoothing resulted in a WLO of not more
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Figure 7.4: PWR and WLO results for Minimum-Norm. Upper part, normal incidence
signals. Lower part, obliquely arriving signals. Plain forward-only smoothing ◦. For-
ward-only smoothing with noise removal ×. Plain forward/backward smoothing �.
Forward/backward smoothing with noise removal4.
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than 10-20% for 0 to 20 subarrays. Smoothing with more than 20 subarrays led to an
increase in WLO for the plain forward/backward smoothing approach, whereas no
significant increase was observed for the plain forward-only smoothing approach.
For 26 and 29 subarrays, plain forward/backward smoothing performed similar to
forward-only smoothing and forward/backward smoothing with noise removal.

Thus, removing the estimated noise can significantly improve the WLO for Minimum-
Norm, at least when few subarrays are used (Tab. 7.4).

For Minimum-Norm, there was a noticeable difference between WLO and WLO(M).
The WLO(M) was higher than the WLO (Tab. 7.4). The WLO(M) of forward-only
smoothing and forward/backward smoothing, both with noise removal, raised as
the amount of subarrays was increased. Whereas the WLO was steady for forward-
only smoothing and forward/backward smoothing with noise removal. The WLO(M)
started with values roughly equal to the WLO (Fig. 7.4(b)), both for signals of normal
and oblique incidence.

Resolution (TCR) Minimum-Norm’s ability of resolving closely spaced sources was
quite high, but depended upon how R̂ was estimated. It is clear that Minimum-
Norm resolved more than twice as many close sources when the estimated noise
was removed than it did without the noise removal (Tab. 7.4).

For noise removal, even though forward/backward smoothing always resolved more
close sources than forward-only smoothing, forward-only smoothing and forward/-
backward smoothing showed the same trend (between 2 to 5 and 23 to 26 subarrays
were preferable).

Plain forward/backward smoothing gave poor results when applying less than 23
subarrays. Plain forward-only smoothing always performed poorly, it resolved below
0.1 sources per snapshot.

The same trends appeared for both normal and oblique incidence signals, even
though the results for obliquely arriving signals were lower for all subarray sizes.

WLO of closely spaced sources The WLO of the closely spaced sources was highest
for forward/backward smoothing in combination with noise removal (Tab. 7.4). The
WLO was only below 100% when less than 5 subarrays were applied for signals of
oblique incidence. In any case the WLO increased as more subarrays were used.

Plain forward/backward smoothing only achieved the same WLO as obtained by
noise removal when 26 or 29 subarrays were applied.

Plain forward-only smoothing was never capable of achieving a WLO of more than
roughly 25%. For less than 17 subarrays, forward-only smoothing and noise removal
gave better results than plain forward/backward smoothing.
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Minimum-Norm
when R̂ was

Measure Resulted in for K ∈ estimated as
PWR > 3.4 [0,29] R̂K

fs (plain)
WLO 50% ± 2 [0,29] R̂K

fbs − N̂
WLO(M) > 76% [17,29] R̂K

fbs − N̂
TCR > 0.4 [5,26] R̂K

fbs − N̂
WLOTCR > 110% [14,29] R̂K

fbs − N̂
M-flops 68.5→ 46.5 [20,29] R̂K

fs (plain)

Table 7.4: The best results for the Minimum-Norm algorithm, based on the average
between signals of normal incidence and oblique angles.

Computation Time As for the other methods that compute the eigenvectors, noise
removal was advantageous for Minimum-Norm when it came to the amount of M-
flops. Forward-only smoothing was faster than forward/backward smoothing.

For no subarrays, plain forward/backward smoothing required 151 M-flops, remov-
ing the noise restricted the use of M-flops to 137. For 29 subarrays both methods
used 51 M-flops.

Plain forward-only smoothing used 141 M-flops for no subarrays, this decreased
to 128 when the noise estimate was removed. For 29 subarrays, not removing the
noise was slightly less computationally demanding than removing it, 47 M-flops
were used (Tab. 7.4). Removal of the noise needed 48 M-flops.

Conclusion Minimum-Norm always had a high PWR. The WLO laid steady around
50% for all subarray choices, but the WLO(M) behaved differently.

If the number of sources, M, was chosen correctly, the WLO(M) should be high.
Therefore, to be able to figure out how many subarrays to use for Minimum-Norm,
the WLO(M) should be regarded instead of the WLO. This means that forward/-
backward smoothing with 17 or more subarrays should be used for Minimum-Norm.
Also, the estimated noise should be removed to get the best results.

To make Minimum-Norm as fast as possible, 29 subarrays should be used. But, this
leads to slightly fewer resolved sources, and a lower WLO for these sources.

Thus, to achieve the best results for the most important measures, 26 subarrays are
suggested used for Minimum-Norm, together with noise removal and forward/back-
ward smoothing.

The reason for choosing 26 subarrays, is that with fewer subarrays Minimum-Norm
was totally dependent upon noise removal. In cases where this noise is difficult to
estimate, one can expect the WLO to behave as if the noise was not removed at all.
Thus, it is safest to use 26 subarrays (Tab. 7.8).
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7.1.5 Root-MUSIC

Peak-Width Ratio The PWR measure is not applicable for root-MUSIC. The reason
is that the ”’peaks” of root-MUSIC are not real peaks, they are δ-pulses. However, the
PWR can still be measured by defining every such δ-pulse to have a certain width. In
this work, the width is defined to equal h (0.5) – the angular increment size that is
used for the spectral based methods.

For root-MUSIC, this leads to a PWR of 3.5 for the normal incidence signals, while for
the obliquely arriving signals it equals 4.1. Thus, the Fourier method’s resolution
is better for normal incidence signals than for oblique. That is, the FWHM of the
Fourier method equals approximately 1.75 degrees for signals of normal incidence,
while for obliquely arriving signals the FWHM is roughly 2 degrees.

Width-Location Overlap Having defined the width of a peak for root-MUSIC, we are
now able to find the WLO. If the width of the peaks in the root-MUSIC spectrum were
defined as for δ-pulses, the WLO would simply tell us if the highest root-MUSIC peak
was covered by the highest Fourier peak, or not. It would either be 0, or 100%. By
defining the peak-width as the spatial area from −h/2 below the δ-pulse’s θ value
to h/2 above, one is capable of telling where the δ-pulse is placed compared to the
peak of the Fourier method.

The WLO of root-MUSIC was not very high (Fig. 7.5(a)). At its highest, it was 28%.
This occurred for signals of normal incidence, for obliquely arriving signals it did
not exceed 20%.

The highest WLO was achieved by using forward/backward smoothing. Applying
noise removal in addition led to a higher WLO when less than 14 subarrays were
used, use of more subarrays gave similar results for forward/backward smoothing
either noise removal was applied or not (Tab. 7.5).

For the normal incidence signals it was advantageous to use between 14 and 26
subarrays, while it for signals of oblique angles seemed better to apply between 8
and 20 subarrays.

The WLO(M) of root-MUSIC was much higher than the WLO, roughly twice as high
(Fig. 7.5(b)). The difference in WLO(M) observed when applying noise removal or not
was even larger for few subarrays than for the WLO. Forward/backward smoothing
with noise removal always performed best (Tab. 7.5).

For signals of normal incidence, forward/backward smoothing and noise removal
gave the highest WLO(M) for about 14 subarrays. Obliquely arriving signals had the
highest WLO(M) for about 8 subarrays.

Resolution (TCR) Root-MUSIC’s ability of resolving closely spaced sources was at
its best for signals of normal incidence. The best results were achieved when noise
was removed, and forward/backward smoothing applied (Tab. 7.5). Forward-only
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Figure 7.5: WLO and WLO(M) results for root-MUSIC. Upper part, normal incidence
signals. Lower part, obliquely arriving signals. Plain forward-only smoothing ◦. For-
ward-only smoothing with noise removal ×. Plain forward/backward smoothing �.
Forward/backward smoothing with noise removal4.

smoothing with noise removal showed the exact same trend, but resolved fewer
sources per snapshot. When the estimated noise was not removed, both forward-
only smoothing and forward/backward smoothing degraded.

For signals arriving from oblique angles, the trend for the different subarray sizes
was somewhat different. Still, forward/backward smoothing with noise removal al-
ways performed best (Tab. 7.5).

WLO of closely spaced sources The WLO of the closely spaced sources was not
above 100% for any way of estimating R̂. For few subarrays it was advantageous to
apply noise removal. The differences between noise removal or no noise removal
became smaller as more subarrays were applied (Tab. 7.5).

For the normal incidence signals, forward/backward smoothing together with noise
removal performed better than plain forward/backward smoothing when less than
17 subarrays were applied. With more subarrays they performed roughly equal,
and obtained WLO values close to 100%. Forward/backward smoothing and noise re-
moval always performed better than forward-only smoothing. Forward-only smooth-
ing with noise removal performed better than plain forward-only smoothing for less
than 26 subarrays.

Obliquely arriving signals resulted in WLO values roughly half as high as for the
normal incidence signals. For less than 20 subarrays, forward/backward smoothing
with noise removal gave higher WLO values for the close sources than all other ways
of estimating R̂. Plain forward/backward smoothing gave equally high WLO values
as forward/backward smoothing with noise removal, when more than 20 subarrays
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were applied. For less than 26 subarrays, forward-only smoothing with noise re-
moval performed better than plain forward-only smoothing, as for signals of normal
incidence.

root-MUSIC (5.23)
when R̂ was

Measure Resulted in for K ∈ estimated as
WLO 21% ± 2 [5,29] R̂K

fbs − N̂
WLO(M) 48% ± 1.4 [5,26] R̂K

fbs − N̂
TCR > 0.45 [2,14] R̂K

fbs − N̂
WLOTCR > 75% 5∪ [14,23] R̂K

fbs − N̂
M-flops 134 → 83 [20,29] R̂K

fs (plain)

Table 7.5: The best results for the root-MUSIC algorithm, based on the average be-
tween signals of normal incidence and oblique angles.

Computation Time The polynomial rooting in root-MUSIC was very time demand-
ing. When no subarrays were applied, more than 300 M-flops were needed to com-
pute the spectrum no matter how R̂ was estimated. By increasing the amount of sub-
arrays to 29, this was reduced to 88 M-flops for the two forward/backward smooth-
ing approaches. The forward-only smoothing approaches needed 83 M-flops for no
noise removal and 85 M-flops when the noise was removed (Tab. 7.5).

Conclusion The PWR of root-MUSIC is of no interest. Only the other measures
are important. It is clear that forward/backward smoothing and noise removal are
preferable also for root-MUSIC. The WLO(M) was higher than the WLO, as it was
for Minimum-Norm. This measure was highest for 11 subarrays, but increasing the
amount of subarrays only led to a small drop off. However, increasing the amount of
subarrays also led to fewer resolved close sources, but the WLO of these sources was
higher for between 14 and 23 subarrays. Since root-MUSIC is very time consuming,
one must use many subarrays. Actually, it uses so many M-flops that one should
use 29 subarrays and accept a degradation of the performance (Tab. 7.8).

7.1.6 Alternative root-MUSIC

In this section, the results for root-MUSIC defined by (5.25) are given.

Peak-Width Ratio gives no meaning for root-MUSIC.
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Figure 7.6: WLO and WLO(M) results for root-MUSIC (5.25). Upper part, normal inci-
dence signals. Lower part, obliquely arriving signals. Plain forward-only smoothing
◦. Forward-only smoothing with noise removal ×. Plain forward/backward smooth-
ing �. Forward/backward smoothing with noise removal 4.

Width-Location Overlap While the WLO of root-MUSIC was not above 28% for the
former root-MUSIC method, it was almost as high as 80% for the signals of oblique
incidence when computed via (5.25).

The best WLO results were obtained by forward-only smoothing with noise removal
(Tab. 7.6), only “beaten” by forward/backward smoothing with noise removal, when
no subarrays were applied. Both forward-only smoothing and forward/backward
smoothing gave higher WLO values for noise removal than the plain approaches,
when few subarrays were applied. As more subarrays were applied, both methods
applying noise removal degraded in performance (Fig. 7.6(a)). Plain forward-only
smoothing and forward/backward smoothing performed better as more subarrays
were applied, but started with much lower WLO values (Fig. 7.6(a)). For 17, or more,
subarrays, plain forward/backward smoothing and forward/backward smoothing
with noise removal performed equal. Forward-only smoothing with noise removal
always had an edge over plain forward-only smoothing.

The WLO(M) for root-MUSIC computed by (5.25), differed from the WLO by the fact
that (Fig. 7.6(b)): (1) The WLO(M) of the two noise subtraction approaches did not
drop significantly by applying more subarrays. (2) The plain forward-only smoothing
and plain forward/backward smoothing approaches increased their WLO(M) to the
same level as those removing the estimated noise when many subarrays were used.
(3) The WLO(M) values, for high numbers of subarrays, were higher.

Resolution (TCR) The trends were pretty much as for the former root-MUSIC ap-
proach, although somewhat more slowly changing for the different subarray sizes.
More close sources were resolved by forward/backward smoothing and noise re-
moval than by the other smoothing approaches (Tab. 7.6).
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root-MUSIC (5.25)
when R̂ was

Measure Resulted in for K ∈ estimated as
WLO > 64% [0,8] R̂K

fs − N̂
TCR > 0.45 [2,11] R̂K

fbs − N̂
WLOTCR > 105% [5.8]∪ 20 R̂K

fbs − N̂
M-flops 34→ 20 [20,29] R̂K

fs (plain)

Table 7.6: The best results for the alternative root-MUSIC algorithm, based on the
average between signals of normal incidence and oblique angles.

WLO of closely spaced sources The trend for the WLO of the closely spaced but
resolved sources was quite equal to what was obtained with the previous root-MUSIC
method, but the results were now higher all over (Tab. 7.6). A larger difference
between forward/backward smoothing and forward-only smoothing, both with noise
removal, was now seen – forward/backward smoothing achieved much higher WLO
values.

Computation Time This new approach for root-MUSIC was very time-efficient com-
pared to the original root-MUSIC. The most time consuming method for estimating
R̂ was now plain forward/backward smoothing, which used 98 M-flops when no
subarrays were applied. The fastest method was forward-only smoothing and noise
removal, it used 75 M-flops. When 29 subarrays were used, all approaches resulted
in approximately the same need of M-flops – ranging from 20 to 24, for plain for-
ward-only smoothing (Tab. 7.6), forward-only smoothing with noise removal, plain
forward/backward smoothing, and slowest forward/backward smoothing with noise
removal.

Conclusion To achieve the highest WLO, few subarrays should be used. This, again,
led to roughly equal WLO whether forward-only smoothing or forward/backward
smoothing was used – when noise was subtracted. The WLO(M) was higher for for-
ward/backward smoothing than for forward-only smoothing, both applying noise
removal.

For few subarrays, roughly twice as many closely spaced sources were resolved by
the forward/backward smoothing and noise removal approach than by the other
approaches. Further, the WLO of these close sources was higher for forward/back-
ward smoothing with noise removal.

Consequently, forward/backward smoothing with noise removal should be applied to
get the best results all over, smoothing with 2 subarrays (Tab. 7.8).
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7.1.7 ESPRIT

Peak-Width Ratio The PWR is computed in the exact same way for ESPRIT as for
root-MUSIC; thus, the PWR measure is not applicable.

Width-Location Overlap The WLO of ESPRIT was always higher for forward/back-
ward smoothing than for forward-only smoothing (Tab. 7.7). Both for signals of
normal incidence and obliquely arriving signals. There was virtually no difference in
WLO whether the estimated noise was removed or not.

Forward/backward smoothing resulted in a prominent increase of WLO as more sub-
arrays were applied, but the gain in WLO was small when more than 5 subarrays were
used (Fig. 7.7(a)).

When applying forward-only smoothing, another trend appeared. As for forward/-
backward smoothing, the increase in WLO was prominent from 0 to about 5 subar-
rays. When more subarrays were applied, a steady, though small, decrease of WLO
was observed.

Almost similar results were observed for the WLO(M) measure, only that the differ-
ences between the various amounts of subarrays were somewhat smoother. In ad-
dition, the WLO(M) achieved by forward-only smoothing did not decrease for more
than 5 subarrays, as the WLO did.
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Figure 7.7: WLO results for ESPRIT. Upper part, normal incidence signals. Lower part,
obliquely arriving signals. Plain forward-only smoothing ◦. Forward-only smoothing
with noise removal ×. Plain forward/backward smoothing �. Forward/backward
smoothing with noise removal4.

Resolution (TCR) ESPRIT’s ability to resolve closely spaced sources was rather
steady for different amounts of subarrays. Applying forward/backward smoothing
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resolved far more closely spaced sources than what was achieved by forward-only
smoothing, even though forward-only smoothing closed in on forward/backward
smoothing when more than 20 subarrays were used. No difference was observed
between noise removal and not removing the estimated noise (Tab. 7.7).

For signals of normal incidence, forward/backward smoothing and more than 5 sub-
arrays ensured that between 0.5 and 0.6 close sources were resolved per snapshot
– slowly increasing as more subarrays were used. Forward-only smoothing resolved
few sources (0.1) when less than 14 subarrays were applied. As more subarrays were
applied, a linear increase was observed – resulting in 0.4 resolved close sources for
29 subarrays.

The signals arriving from oblique angles gave fewer resolved close sources. Forward-
only smoothing never obtained more than 0.1 resolved close sources per snapshot
for these signals. Applying forward/backward smoothing gave somewhat better re-
sults, more than 0.2 close sources were resolved per snapshot when 2 or more sub-
arrays were applied.

WLO of closely spaced sources The WLO of the closely spaced sources was mostly
above 100% for forward/backward smoothing (Tab. 7.7). Forward-only smoothing
gave less attractive results than forward/backward smoothing (Fig. 7.7(b)).

For normal incidence signals, the WLO for the forward/backward smoothing ap-
proach was only below 100% for 2, or less, subarrays. Forward-only smoothing al-
ways resulted in a WLO below 100%. This was also observed for the signals arriving
from oblique angles (Fig. 7.7(b)).

Computation Time For ESPRIT, there was virtually no difference in speed whether
noise was removed or not. Applying forward-only smoothing was faster than for-
ward/backward smoothing, it used roughly 5.5 M-flops for no subarrays and 4.4
M-flops for 29 subarrays (Tab. 7.7). Forward/backward smoothing used 13.8 M-
flops when no subarrays were applied, and 6.9 M-flops when 29 subarrays were
used.

ESPRIT
when R̂ was

Measure Resulted in for K ∈ estimated as
WLO > 65% [11,29] R̂K

fbs (both)
TCR > 0.37 [5,29] R̂K

fbs (both)
WLOTCR > 115% [8,23] R̂K

fbs (both)
M-flops 4.8→ 4.4 [20,29] R̂K

fs (both)

Table 7.7: The best results for the ESPRIT algorithm, based on the average between
signals of normal incidence and oblique angles.
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The reason for ESPRIT using fewer M-flops when not removing the noise, is that
in this thesis ESPRIT is implemented such that it only computes the eigenvectors
belonging to the 6 largest eigenvalues. Only theM eigenvectors corresponding to the
signal subspace are needed in the algorithm. Noise will be found in the eigenvectors
corresponding to the L-M smallest eigenvalues, assuming M is chosen correctly.
Thus, although all eigenvalues are affected by noise, the M first eigenvectors ideally
do not contain any noise. Therefore, one can not expect a faster convergence for
these eigenvectors, or an improvement of the WLO, by removing the noise. The
computational burden of removing the estimated noise is larger than what is gained
by a faster convergence for 6−M of the six largest eigenvectors.

Conclusion As for root-MUSIC, the PWR is not applicable for ESPRIT.

ESPRIT performed equal whether or not the estimated noise was removed, but ap-
plying forward/backward smoothing instead of forward-only smoothing improved
the performance of all measures to a great extent.

The WLO of ESPRIT was highest for 20 subarrays, but was only a few percentages
lower for between 14 and 29 subarrays.

Roughly the same amount of closely spaced sources were resolved for between 5
and 29 subarrays. The WLO of the close sources was best when 17 subarrays were
applied, the difference of this WLO for different subarray sizes was larger than for
the WLO mentioned above.

ESPRIT was a fast method, no matter how R̂ was estimated, but it was advantageous
to use many subarrays – and not remove the estimated noise.

Thus, forward/backward smoothing with 17 subarrays is suggested for ESPRIT (Tab.
7.8).

7.2 General Observations

There is a difference in observed Peak-Width Ratio between the obliquely arriving
and normal incidence signals. The PWR is larger for signals arriving from oblique
angles. This is mainly due to the fact that the Fourier method’s resolution (peak-
width) changes with angle, its mainlobe will be broader the further out to the side
we look. Since the PWR is here the ratio of Fourier’s peak-width to a high-resolution
methods peak-width, the PWR will become larger for oblique angles. This actually
means that the peak-width of the high-resolution methods is less sensitive to what
angle the signal is impinging from, than the peak-width of the Fourier method is.

The results of MUSIC’s WLO coincide well with Rao and Hari’s theory [24]. Thus,
the WLO is indeed a meaningful measure for all methods. Although, according to
Rao and Hari [23], the WLO of ESPRIT should decrease when more than between 10
and 27 subarrays were used, both for the forward-only smoothing approach and the
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forward/backward smoothing approach. This trend was clear solely for the forward-
only smoothing approach in these experiments.

The WLO was generally higher for signals coming from oblique angles than for nor-
mal incidence signals. This was observed for all methods, except root-MUSIC com-
puted via (5.23). The higher WLO is due to the fact that the peaks of the high-
resolution methods are narrower, relative to the Fourier peaks, for signals arriving
from oblique angles (see comment about root-MUSIC’s PWR earlier). Hence, more of
them will be covered by the broad Fourier peaks for oblique angles, if their position
relative to the midpoint of the Fourier peaks are not different for normal incidence
and oblique angles. The results indicate that this is the case!

Minimum-Norm (applying many subarrays), root-MUSIC (5.23) (all subarrays) and
root-MUSIC (5.25) (applying many subarrays) gave a much higher WLO(M) than WLO.
This indicates that they choose the highest peak somewhat randomly for the respec-
tive amounts of subarrays. The peaks appear to be roughly covered by those of
the Fourier spectrum, but the highest peak does not match the highest peak of the
Fourier method.

For flat sea floors, the transmit pulse covers a larger area of the bottom directly
under the vessel than it does to the sides (Fig. 6.1). For simplicity, only flat sea
floors are discussed here. For other sea floors, the pulse may cover larger areas of
the bottom to the sides (eg the lower right corner of Fig. 6.1). The peaks in the
spectrum should be narrower for signals that come from directions where the pulse
covers a small area at one time instant. It appears that the Fourier method is unable
to exploit this fact, while the high-resolution methods, to some degree, do.

The above observation about the pulse-coverage also leads to a higher ability of
resolving closely spaced sources for signals of normal incidence. The reason is that
for obliquely incoming signals the pulse has only covered a small area of the bottom.
Therefore, any closely spaced sources insonified by the pulse to the far side are really
close (Fig. 6.1). Thus, they are not as easy to resolve. Since this is observed for the
TCR, the TCR measure of the resolution is indeed meaningful – although somewhat
dangerous.

Note that since only raw data were used in the evaluation of the methods, only
assumptions could be made regarding closely spaced sources. There was no exact
knowledge of where closely spaced sources were present. Sources were defined as
closely spaced when the locations of the peaks were less than 2.5 degrees apart.
It was simply assumed that when two closely spaced peaks were observed in the
spectrum, these two peaks were closely spaced sources that were resolved. This
means that the Fourier method may also have resolved some of these close sources.
The sources that were resolved by the Fourier method led to wrong WLO measures
for the other methods. Thus, the WLO of the closely spaced sources is perhaps
somewhat lower than it actually should be. A definition demanding less spacing
would lead to few resolved closely spaced sources, and consequently less secure
measures – the standard deviation of the measures would be too high. Thus, this
approach was applied even though it may have lead to some errors of the WLO
measure for the closely spaced sources.
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The noise removal gave better results for few subarrays than for many, this may be
due to the drastic smoothing effect of using many subarrays. Such “heavy” smooth-
ing flattens the noise quite well, consequently – removing the estimated noise is of
little relevance when many subarrays are used.

The execution time of ESPRIT and root-MUSIC would not be affected by changing
the angular increments, for all other methods it would. Refining the angular search
would lead to a greater computational burden for the spectral based methods, while
a coarser angular search would speed them up. In any event, the time needed to
compute the subspaces would not change. Unfortunately, computation of the sub-
spaces is the greatest computational burden for the subspace based high-resolution
methods, while for Minimum-Variance, it is computing the inverse of R̂.

7.3 Comparing the Best Results

In section 7.1, measures for each of the high-resolution methods were given. A
conclusion of how to estimate the covariance matrix, R̂, for each method was drawn.
That is, the parameter choices for estimation of R̂ that gave the best results on an
overall basis were found for each method. In this section, the results of the methods
are compared for these specific parameter combinations in table 7.8.

From table 7.8, we can see that Minimum-Variance and Eigen-Vector perform almost
equal. Eigen-Vector has a higher PWR, TCR and WLO of the close sources (WLOTCR),
but the WLO is lower and it uses more M-flops than Minimum-Variance. Thus,
Minimum-Variance is so far regarded as most promising of the two.

MUSIC has a higher WLO than Minimum-Variance, all though the PWR is lower. Also
the TCR of MUSIC is lower, but the WLO of the close sources is slightly higher. Even
though MUSIC uses many M-flops, its WLO makes it a strong candidate for high-
resolution beamforming. We will have to see in section 7.4 if the difference in WLO
compared to Minimum-Variance is significant for the quality of the different spectra.

Minimum-Norm has a high PWR. The WLO is lower than for both Minimum-Variance
and MUSIC, but the WLO(M) is equally high as MUSIC’s WLO. The TCR is high, and
so is the WLO of the close sources. Minimum-Norm uses less M-flops than MUSIC,
but more than Minimum-Variance. The spectra in section 7.4 will be conclusive for
whether Minimum-Norm is better than Minimum-Variance and MUSIC.

The WLO and WLO(M) of root-MUSIC computed via (5.23) excludes it as a candidate
for bathymetric measures.

The alternative root-MUSIC, given by (5.25), has a higher WLO than the former root-
MUSIC, comparable to that of Minimum-Variance. The TCR is among the highest
observed, but the WLO of the close sources is not among the highest. Root-MUSIC
uses approximately the same amount of M-flops as MUSIC, therefore we have to
view the different spectra in section 7.4 to see if the WLO difference is of any impor-
tance.
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ESPRIT is the fastest method. It has one of the highest observed TCRs, and the
WLO of the close sources is the highest achieved. The actual WLO is comparable to
Minimum-Variance’s and that of the alternative root-MUSIC. This makes ESPRIT one
of the most promising methods, the effect of the WLO on the spectra will become
clear when we compare the different methods in the following sections.

7.4 Qualitative Observations

We are now ready to compare the different methods visually. It is interesting to see
if the results found in the previous section enable us to get good spectra, also after
bottom detection. First a few spectra are shown (Sec. 7.4.1), followed by the results
of the simple bottom detection algorithm (Sec. 7.4.2). A few comments about the
visual results for the covariance matrices that gave the worst quantitative results are
also given (Sec. 7.4.3).

7.4.1 Spectra

The spectra of three different pings are shown here. First a ping with a slowly varying
bottom and low background noise is shown (Fig. 7.8/7.9). Next, we show a more
complicated bottom with high background noise (Fig. 7.10/7.11). Finally, another
complicated bottom with secondary echoes is shown (Fig. 7.12/7.13).

From the spectra in figures 7.8, 7.10 and 7.12, it is seen that the mainlobe of both
Minimum-Variance, Eigen-Vector and MUSIC is narrower than that of the Fourier
method. This was also found for the quantitative measures (Sec. 7.1). It can be seen
from the different methods’ PWR values. We can also see that the noise whitening
effect of setting MUSIC’s eigenvalues to 1 does indeed work, there is less background
noise in the MUSIC spectra than the others.

Now, let us look at Minimum-Norm and the parametric methods root-MUSIC and
ESPRIT (Fig. 7.9, 7.11 and 7.13).

The Minimum-Norm spectra also have a narrower mainlobe than the Fourier spectra.
As for MUSIC, there appears to have been a whitening of the background noise. It
does not seem as if the low WLO of Minimum-Norm degrades the spectra severely.
For root-MUSIC, computed by (5.23), the low WLO has a large effect. The “spectra”
have very low quality. The “spectrum” quality of the alternative root-MUSIC, com-
puted via (5.25), is much better, as anticipated by the WLO results (Tab. 7.8). The
bottom curves are less “blurred” than for the former root-MUSIC. The “spectra” com-
puted by ESPRIT appear to be even better. Less noise is seen than for root-MUSIC,
and for figure 7.9 the bottom curve of ESPRIT is less “blurred”.

It might seem as if MUSIC, Minimum-Norm, root-MUSIC and ESPRIT have more prob-
lems with their spectra for the complicated bottoms than the other methods. This
is not clear! We might just be deceived by our eyes. Since the background noise is
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whitened (actually there is no background noise for the parametric methods), it is
much easier to see the problematic parts of the spectra. These problematic parts
seem less severe for the Fourier method, Minimum-Variance and Eigen-Vector, since
they are buried in noise – it becomes difficult to distinguish visually between inter-
esting peaks and noise. Thus, we need to see how the results of the bottom detection
algorithm turn out.

            

(a) Fourier Transform.

            

(b) Minimum-Variance.

            

(c) Eigen-Vector.

            

(d) MUSIC.

Figure 7.8: Spectra after a log transform. Ping shot the 17th April. Vertical axis: time
(800 snapshots). Horizontal axis: -70 to 70 degrees (280 beams).
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(a) Minimum-Norm after a log transform.

            

(b) root-MUSIC, computed via (5.23).

            

(c) root-MUSIC, computed via (5.25).

            

(d) ESPRIT.

Figure 7.9: Spectra shown for the same ping as in Fig. 7.8. Vertical axis: time (800
snapshots). Horizontal axis: -70 to 70 degrees (280 beams).
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(a) Fourier Transform.

            

(b) Minimum-Variance.

            

(c) Eigen-Vector.

            

(d) MUSIC.

Figure 7.10: Spectra after a log transform. Ping shot the 28th May. Vertical axis:
time (900 snapshots). Horizontal axis: -70 to 70 degrees (280 beams).
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(a) Minimum-Norm after a log transform.

            

(b) root-MUSIC, computed via (5.23).

            

(c) root-MUSIC, computed via (5.25).

            

(d) ESPRIT.

Figure 7.11: Spectra shown for the same ping as in Fig. 7.10. Vertical axis: time (900
snapshots). Horizontal axis: -70 to 70 degrees (280 beams).
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(a) Fourier Transform.

            

(b) Minimum-Variance.

            

(c) Eigen-Vector.

            

(d) MUSIC.

Figure 7.12: Spectra after a log transform. Another ping shot the 28th May. Vertical
axis: time (1000 snapshots). Horizontal axis: -70 to 70 degrees (280 beams).
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(a) Minimum-Norm after a log transform.

            

(b) root-MUSIC, computed via (5.23).

            

(c) root-MUSIC, computed via (5.25).

            

(d) ESPRIT.

Figure 7.13: Spectra shown for the same ping as in in Fig. 7.12. Vertical axis: time
(1000 snapshots). Horizontal axis: -70 to 70 degrees (280 beams).
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7.4.2 After bottom detection

Can the observations in previous section be transferred to the results after applying
the simple bottom detection algorithm given in section 6.2? Let us look at some
pictures resulting from this bottom detection algorithm.

Note that it may appear as if bottom is detected for the same angle for several
snapshots. This is not the case! It appears so, since every point in the spectra that is
detected as bottom gives its value to its 8 neighboring “pixels”. This is done in order
to make it easier to see all bottom points after detection. If only a single “pixel”
was given color for each bottom point, we would hardly see the bottom at all after
detection.

            

(a) Fourier Transform.

            

(b) Minimum-Variance.

            

(c) Eigen-Vector.

            

(d) MUSIC.

Figure 7.14: Spectra after a simple bottom detection algorithm. Same ping as in Fig.
7.8/7.9. Vertical axis: time. Horizontal axis: -70 to 70 degrees.

First we look at the results of applying the bottom detection algorithm on the spectra
in figure 7.8 and 7.9. This is a very slow varying bottom with a low background
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(a) Minimum-Norm.

            

(b) root-MUSIC, computed via (5.23).

            

(c) root-MUSIC, computed via (5.25).

            

(d) ESPRIT.

Figure 7.15: Spectra after a simple bottom detection algorithm. Same ping as in Fig.
7.8/7.9. Vertical axis: time. Horizontal axis: -70 to 70 degrees.
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noise in the Fourier spectrum (Fig. 7.8(a)). Hence, one can expect the simple bottom
detection algorithm to give fairly good results.

In section 7.4.1, it was found that MUSIC whitened the noise. Still, even though there
is somewhat less noise to be seen for MUSIC (Fig. 7.14(d)) compared to Minimum-
Variance and Eigen-Vector, the result of the bottom detection is better for the Fourier
method (Fig. 7.14(a)) than for MUSIC with regard to erroneous bottom detections.
Nevertheless, the bottom curve seems to be better connected for MUSIC than for the
Fourier method, at least for late incoming signals.

Minimum-Norm (Fig. 7.15(a)) has a bottom curve that after bottom detection ap-
pears to be more crooked in some areas than that of MUSIC (Fig. 7.14(d)), but the
noise level is acceptable. For root-MUSIC, computed by (5.23), it is difficult to distin-
guish between the bottom curve and the background noise (Fig. 7.15(b)). Computing
the “spectrum” for root-MUSIC via the alternative (5.25), enables us to pick out the
bottom curve. Still, there is more noise for root-MUSIC (Fig. 7.15(c)) after bottom
detection than for MUSIC (Fig. 7.14(d)). ESPRIT has a well connected bottom curve
after bottom detection, although some noise is still present (Fig. 7.15(d)).

Now, let us look at a more complicated bottom (Fig. 7.10(a)). The more complicated
bottom yields no clear secondary echo. Rather, it gives several different reflections
observed as a high background noise level at late times. This has little effect on the
bottom detection of the Fourier spectrum (Fig. 7.16(a)), but what about the other
methods?

For this bottom, it is clear that Minimum-Variance (Fig. 7.16(b)) and Eigen-Vector
(Fig. 7.16(c)) have difficulties with distinguishing between noise and actual bottom
returns. MUSIC (Fig. 7.16(d)) gives a better bottom curve, although some noise is still
seen after bottom detection, especially to the far left. Minimum-Norm (Fig. 7.17(a))
has large problems with noise, and gives an almost identical bottom detection as
root-MUSIC (Fig. 7.17(b)). The results of the alternative root-MUSIC are better (Fig.
7.17(c)), almost equal to what is achieved by ESPRIT (Fig. 7.17(d)), but somewhat
more noisy. ESPRIT experiences the same problems as MUSIC to the far left.

Maybe we were not deceived by our eyes during the visual examination of the spectra
in last section after all? At least not for the bottom returns to the far left.

For some sea floors, there might be cases where no (or very weak) echoes are re-
turned for some time periods. This is the case for the bottom observed in figures
7.18 and 7.19. In the Fourier spectrum of this bottom, several secondary echoes are
observed (Fig. 7.12(a)).

As we can easily observe from the Fourier method, Minimum-Variance and Eigen-
Vector (Fig. 7.18(a), 7.18(b) and 7.18(c)), there is a small period in time where no
echoes are detected as bottom.

When the noise eigenvalues are weighted, or not used at all, the information about
the strength of the noise is lost. The result of this is seen after bottom detection
for MUSIC (Fig. 7.18(d)). MUSIC sets the L-M smallest eigenvalues to unity. For
MUSIC, it seems as if the weak echoes discarded as noise (the gap in time) in the



90 Experimental Results

            

(a) Fourier Transform.

            

(b) Minimum-Variance.

            

(c) Eigen-Vector.

            

(d) MUSIC.

Figure 7.16: Spectra after a simple bottom detection algorithm. Same ping as in Fig.
7.10/7.11. Vertical axis: time. Horizontal axis: -70 to 70 degrees.
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(a) Minimum-Norm.

            

(b) root-MUSIC, computed via (5.23).

            

(c) root-MUSIC, computed via (5.25).

            

(d) ESPRIT.

Figure 7.17: Spectra after a simple bottom detection algorithm. Same ping as in Fig.
7.10/7.11. Vertical axis: time. Horizontal axis: -70 to 70 degrees.
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bottom detection of the Fourier method have a higher strength than the echoes
for the snapshots previous of the time gap, interpreted as bottom for the Fourier
method. This is also observed for Minimum-Norm (Fig. 7.19(a)), which combines
the noise eigenvectors without using the eigenvalues. For Minimum-Norm, more
noise is seen after bottom detection, as for root-MUSIC (Fig. 7.19(b)) computed via
(5.23). Both methods are unable to give a well defined bottom curve, but detect
echoes in the time period where a gap is observed after bottom detection for the
Fourier method. The alternative root-MUSIC, given by (5.25), also experiences some
problems for the earliest received echoes (Fig. 7.19(c)), the bottom curve is not well
defined here. ESPRIT has a better connected bottom curve for the earliest echoes
(Fig. 7.19(d)), though not quite good. Also ESPRIT detects echoes in the time gap of
Fourier.

            

(a) Fourier Transform.

            

(b) Minimum-Variance.

            

(c) Eigen-Vector.

            

(d) MUSIC.

Figure 7.18: Spectra after a simple bottom detection algorithm. Same ping as in Fig.
7.12/7.13. Vertical axis: time. Horizontal axis: -70 to 70 degrees.
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(a) Minimum-Norm.

            

(b) root-MUSIC, computed via (5.23).

            

(c) root-MUSIC, computed via (5.25).

            

(d) ESPRIT.

Figure 7.19: Spectra after a simple bottom detection algorithm. Same ping as in Fig.
7.18. Vertical axis: time. Horizontal axis: -70 to 70 degrees.
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Noise after bottom detection

From the figures we have shown so far, it is clear that some of the high-resolution
methods suffer from noise after bottom detection. This means that some noise is
interpreted as bottom, and hence some of the real bottom may be lost by applying
this simple bottom detection algorithm . A good example of this is figure 7.16(c),
where noise at late times is interpreted as bottom, leading to a badly connected
bottom curve at earlier times. A second example is figure 7.18(d). Although little
noise is observed, echoes are found in a time period where a gap is observed for the
Fourier method (Fig. 7.18 and 7.20). This example is less clear, it might be that the
results of the Fourier method are wrong.

First, we discuss the gap in time (Fig. 7.20). Like MUSIC, Minimum-Norm and root-
MUSIC, ESPRIT finds echoes in an area where the Fourier method has a clear gap.
What does this mean? Is the bottom detection of the Fourier method (Fig. 7.20(b))
correct? Or, does the bottom detected for the Fourier method contain some noise? Is
it possible that the three most modern high-resolution methods studied here (MUSIC,
Minimum-Norm and ESPRIT) all interpret noise as bottom in the same manner, and
that this noise happens to coincide so well with the rest of the bottom curve? Close
inspection of figure 7.20(a) indicates that there are peaks in the Fourier spectrum
in the same area that bottom is detected for MUSIC (Fig. 7.20(d)) and ESPRIT (Fig.
7.20(f)).

Is the bottom detection of the conventional Fourier method in error? Or, is it simply
that since the information about the strength of the noise is not used for these
high-resolution beamformers, some of the peaks of the high-resolution methods are
given too much weight? Especially the results of ESPRIT are somewhat strange (Fig.
7.20(f)). The only physical explanation of these results is that the pulse has been
“trapped” in the bottom for a few snapshots, and that the high resolution of ESPRIT
enables it to detect these echoes when they return from a seemingly impossible
direction/place. Close inspection of the alternative root-MUSIC (Fig. 7.19(c)) actually
shows that it too detects echoes from this strange direction in the shadow of the
former incoming echoes. If this physical explanation is correct, it seems that MUSIC’s
lower resolution as a spectral method [22] has some advantages over the parametric
methods, it still has higher resolution than the Fourier method.

The number of signals, M, is probably chosen too high at the times where noise is
observed. In the end of section 6.2, another strategy for choosingM was mentioned.
M was suggested restricted when the standard deviation among the 6 largest eigen-
values was low. When this deviation is low, it is likely that few signals are present.

Let us look at some pictures where this new strategy for estimatingM was used (Fig.
7.21 and 7.22). Here M is set to zero when the standard deviation among the six
largest eigenvalues is lower than 1.3 × 105, a quite high standard deviation is thus
accepted. The number had to be set this high in order to obtain the gap in time for
the other beamformers too.

For Eigen-Vector (Fig. 7.21(a)), a better defined bottom curve is observed after bot-
tom detection for this choice of M, even though a new problem emerges. A stripe is
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(a) A small portion of the original Fourier
spectrum.

(b) The portion of the Fourier spectrum
after bottom detection.

(c) The same portion of the original MU-
SIC spectrum.

(d) The result for MUSIC after bottom de-
tection of the same portion.

(e) Identical portion of the ESPRIT “spec-
trum”.

(f) The result for ESPRIT after bottom de-
tection. Same portion.

Figure 7.20: A small area covering the time gap for the Fourier method (Fig. 7.18(a))
is selected to compare the bottom detection results of the Fourier method, MUSIC
and ESPRIT. Vertical axis: time. Horizontal axis: angle.
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present after bottom detection. Part of this stripe was also observed for the former
way of estimating M (Fig. 7.16(c)), and part of it is seen after bottom detection for
the Fourier method (Fig. 7.16(a)).

Part of the noise also disappears for MUSIC after bottom detection (Fig. 7.21(b)). Still,
few differences are observed for the actual bottom curve compared to the former
estimation technique for M (Fig. 7.16(d)). It may actually seem as if there is a larger
gap in the bottom curve for the earliest echoes.

For Minimum-Norm (Fig. 7.21(c)/7.17(a)), the differences are significant. The new
way of estimating M has a large impact on the bottom detection, almost all noise
disappears and the bottom curve is well defined. Though the results in the left part
are not quite good.

Root-MUSIC, defined by (5.23), manages to discard almost all noise after bottom
detection for the new way of estimating M (Fig. 7.21(d)/7.17(b)). Nevertheless, the
bottom curve is not well defined.

The bottom curve of the alternative root-MUSIC is better defined than that of the
former root-MUSIC, but not as well connected. As for MUSIC, some of the bottom at
early times is now discarded (Fig. 7.21(e)/7.17(c)) and replaced by noise at late times.
The negative effect on the bottom curve is larger for the alternative root-MUSIC than
for MUSIC, even though R̂ was computed in the same way.

For ESPRIT (Fig. 7.21(f)/7.17(d)), it is clear that less noise is accepted as bottom
returns after bottom detection for the new estimation technique of M. Although,
also here some of the bottom curve is lost, and the results in the left part of the
figure are not quite satisfactory.

The effect of the new estimation technique of M for the bottom in figure 7.22, is
mainly that now all the high-resolution methods result in a bottom with a gap in time
– as the Fourier method (Fig. 7.18(a)). Since some of what was obviously bottom was
lost by this new strategy in the former example, it is not clear that the new bottom
detection results are correct. It might just be that some of the actual bottom is
discarded compared to what was observed in figure 7.18 and 7.19. If we estimate
the expected standard deviation for snapshots that are known to have no signals in
them, it is found that M should be set to zero when the standard deviation is lower
than 2.2 × 103. This might indicate that M was too hard restricted in figures 7.21
and 7.22, where M was set to zero when the standard deviation was 1.3 × 105 – an
order of 100 higher.
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(a) Eigen-Vector

            

(b) MUSIC

            

(c) Minimum-Norm

            

(d) root-MUSIC, computed via (5.23).

            

(e) root-MUSIC, computed via (5.25).

            

(f) ESPRIT

Figure 7.21: Effect on the simple bottom detection algorithm when trying to esti-
mate M in a smarter way. Same ping as in Fig. 7.16 and 7.17. Vertical axis: time.
Horizontal axis: -70 to 70 degrees.
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(a) Eigen-Vector

            

(b) MUSIC

            

(c) Minimum-Norm

            

(d) root-MUSIC, computed via (5.23).

            

(e) root-MUSIC, computed via (5.25).

            

(f) ESPRIT

Figure 7.22: Effect on the simple bottom detection algorithm when trying to esti-
mate M in a smarter way. Same ping as in Fig. 7.18 and 7.19. Vertical axis: time.
Horizontal axis: -70 to 70 degrees.
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7.4.3 Summary of the Observations

From the observations in section 7.4.1 and 7.4.2, we gather that largely there is
less noise in the DOA estimates of MUSIC than for Minimum-Variance, Eigen-Vector
and Minimum-Norm. The alternative root-MUSIC also has slightly more noise than
MUSIC, while ESPRIT performs roughly equal to MUSIC.

From the discussions of figures 7.21 and 7.22, it is clear that MUSIC is more robust
than Eigen-Vector and Minimum-Norm with regard to estimation ofM. MUSIC is also
somewhat more stable than the alternative root-MUSIC. ESPRIT is also stable, but its
high resolution may actually cause problems.

Spectra and bottom detection results were also computed when R̂ was estimated
in the “worst possible” way for each method. These results indicated that neither
Minimum-Variance nor Eigen-Vector were robust regarding estimation of R̂. MUSIC
was quite robust, even though some noise was seen. Also ESPRIT had problems with
noise, but was almost as robust as MUSIC. Both root-MUSIC approaches suffered
from noise, but were not as “hopeless” as Minimum-Norm. This observation is also
supported by the quantitative measures in section 7.1.

Thus, we conclude that MUSIC and ESPRIT are the two most promising beamformers
for high-resolution bathymetric mapping of the sea-floor.





Chapter 8

Discussion

An important issue in developing next generation high-performance multibeam echo
sounders is to increase the mapping resolution. Research has been done to improve
the along-track resolution using synthetic aperture methods (eg [20]). At the same
time, modern high-resolution beamforming methods are interesting for improve-
ment of the cross-track resolution.

Using raw data from Simrad EM3000 multibeam echo sounders, we tested several
high-resolution beamformers. Estimation of the spatial covariance matrix, R̂, plays
an important role in high-resolution beamforming. In addition to forward/backward
averaging and subarray smoothing, a noise covariance subtraction aimed to reduce
structured noise was applied. For most of the high-resolution methods, this noise
subtraction improved the performance. Quantitative measures were developed and
used as part of the evaluation. MUSIC and ESPRIT gave the best results according to
the evaluation. This was supported by visual examination of different spectra and
results of a simple bottom detection algorithm for these spectra.

All the high-resolution beamformers reduced the beamwidth and improved the res-
olution. This can be seen from the PWR (p. 50) values which were all higher than 1
(Tab. 7.8), and the figures in section 7.4, where all high-resolution beamformers gave
narrower spectrum peaks than the Fourier method. The bias of the methods was
not easy to estimate. We compared the location of peaks in spectra of the Fourier
method with those in spectra of high-resolution beamformers. MUSIC and ESPRIT
had the highest WLO (p. 52) values and are considered as the most reliable (Tab.
7.8). ESPRIT is computationally efficient, while MUSIC is much more time demanding
than the Fourier method. MUSIC has to compute the L − M smallest eigenvectors,
while ESPRIT only need the M largest ones. In our case, L, the number of sensors
is 80, and M, the number of signals is typically 2 to 3. The simple bottom detec-
tion algorithm included more noise peaks for MUSIC and ESPRIT than for the Fourier
transform.
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8.1 Stationarity Problems: Causes and Cures

The sonar scenario studied in this thesis is quite different from other scenarios
where high-resolution beamforming methods are used (eg [11]). In a bathymetric
sonar application, the number of stationary snapshots can be very low compared to
those for, say, a passive sonar. Typically one can only assume the scene to be sta-
tionary for a few snapshots, depending upon the sample rate and the pulse length.
For the EM3000 this means that averaging in time is not available for enhancing the
signal to noise ratio (SNR). This problem could be reduced by sampling at a higher
rate, and thereafter claiming stationarity for a few snapshots. By that approach, one
could improve the estimation of the covariance matrix and enhance the SNR. The
beamformers would perform better.

Such an approach is perhaps best suited in a deep ocean echo sounder, as the signals
could be claimed to be stationary for a longer period of time there compared to in a
shallow water application. For instance is the pulse of the Simrad EM12 sampled 3
times, to some extent enabling us to perform time averaging.

The ultimate solution would of course be to sample at such a high rate that one could
assume the signals to be stationary for quite a few snapshots. By using a simple
update of some ring-buffer containing the R̂’s to be averaged, we could compute the
DOA of the snapshot in the middle each time a new snapshot was taken. In addition,
this would give a higher temporal resolution.

8.1.1 Violating the Stationarity Criterion

The effect of applying the forward-only approach, given by (4.7), for improving the
estimated covariance matrix may not be as severe for the Fourier method as for the
high-resolution beamformers. Since the Fourier method has a rather low resolution,
a slight difference in source direction for say N = 3 may not be noticed at all. High-
resolution methods, at least the parametric, might experience more problems with
this approach. For N = 3 one could then stand the risk of finding 3 closely spaced
peaks, depending upon how high the resolution actually was, and whether the 3
echoes were coherent. The forward/backward smoothing, defined by (4.9), would
only make things worse, since this would decorrelate the 3 signals.

8.1.2 Along-track Resolution

Another problem is the assumption that the signals arrive only from the y-z plane
(Fig. 3.3). This assumption is violated when the along-track resolution is low. It
seems that the cross-track resolution and the along-track resolution should be in-
creased simultaneously. Unfortunately, this would exclude another possibility for
improvement of the estimation of R̂ – averaging of succeeding pings. If the vessel
did not move too quick, the beam along-track would overlap for a few pings, actually
ensuring stationarity.
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Such averaging of succeeding pings could naturally be combined with averaging of
snapshots, giving an even lower variance of the DOA estimates. It is not easy to
say which is the more expensive approach. (1) Slow mapping, allowing overlap of
succeeding pings. (2) Several receive arrays in parallel (used for stacking), enabling
higher along-track resolution. In addition, this approach should give better estimates
of R̂. The estimates should perhaps be further improved by a higher sampling rate
and averaging of succeeding snapshots.

8.2 Sea-bed Imaging

Some of the high-resolution beamformers are incapable of sea-bed imaging. Root-
MUSIC and ESPRIT define the “power” to equal 1 in the signal direction, while MUSIC,
Minimum-Norm and Eigen-Vector measure the “distance” from the noise subspace
to the signal subspace. To come about this, one could (beware of the bias) first find
the DOA by any of the high-resolution beamformers (preferably MUSIC or ESPRIT),
and then compute the spatial spectrum for only the signal direction via the Fourier
method. This would not lead to a significant extra computational load, relative to
the load of the high-resolution beamformer, as we now avoid searching through all
angles with the Fourier method.

Minimum-Variance, on the other hand, tries to minimize the effect of signals arriv-
ing from other directions than the current direction of look. Although Minimum-
Variance does not measure the true power of the echoes, this might indicate that
Minimum-Variance is even more suited for sea-bed imaging (ignoring its bias) than
the Fourier method. After all, the Fourier method simply maximizes the entire
power, not only from the interesting direction as Minimum-Variance.

8.3 Bottom Detection

Generally, the high-resolution methods that gave well connected bottom curves after
bottom detection also had fewer gaps in time than the Fourier method. That is to
say, they were better connected than the Fourier method in areas where there is only
a slight difference in DOA from one snapshot to the next. This is due to the broad
mainlobe of the Fourier method, which also covers some of the area of the mainlobe
of the succeeding snapshot. Thus, some of the peaks of the Fourier method will not
be chosen by the simple bottom detection algorithm applied here, since they may lay
in the “shadow” of the peak of the previous snapshot. Hopefully, more sophisticated
bottom detection algorithms are applied in real bathymetric sonars!

On the other hand, in areas where several echoes impinge on the array simulta-
neously, from approximately the same DOAs, the Fourier method gave better con-
nected bottom curves than the sub-space based methods. This is due to the estima-
tion ofM. As an example: If the sonar was applied in an area where the sea-floor was
shaped as a perfect half-pipe, all echoes would impinge on the array simultaneously.
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The number of signals had to be set as high as the number of beams used in the
Fourier transform to obtain the same estimate of the sea-floor. This is impossible,
M can not even be as high as the number of sensors (Sec. 3.2).

Since Minimum-Norm and the original root-MUSIC pick the highest peak somewhat
randomly, these methods must be considered less suited for bathymetric mapping.
The M peaks are roughly covered by those of the Fourier spectrum, but the highest
peaks in the spectra produced by the original root-MUSIC and Minimum-Norm do not
match the highest peaks of the FT (Sec. 7.2). Consider the simple bottom detection
algorithm from section 6.2, what will the effect of a random choice of the highest
peak result in for this bottom detection method? The answer is that when running
through all snapshots for each angle value, one might very well get a degraded pic-
ture of the bottom. Peaks that should have been accepted may be excluded, while
erroneous peaks might be approved as bottom points.

8.4 Where do we go?

More research has to be done in order to apply high-resolution beamforming in a
multibeam sonar product. The discussion about estimation of M, at the end of
section 7.4, points out one of the major problems with high-resolution beamformers.
These beamformers are very dependent upon the assumptions that are made. If the
assumptions are erroneous, it is not necessarily easy to come about the problems
caused, or mistakes made, by these assumptions. Thus, until more research is done
on high-resolution beamformers, it is safest to combine them with the conventional
beamformer applied today. For this purpose, beamspace processing [11] is probably
best suited. Although beamspace processing depends on an estimate of the signal
directions, it reduces the dimensionality of the problem, and can also improve the
resolution of spectral-based methods [11].

Today, high-resolution beamformers are probably more suited for passive sonars.
For instance, if a submarine tried to find a vessel far away, this vessel would move
slow relative to its distance. Thus, it would be possible to apply time averaging
without a drastic loss of resolution. Searches for submarines, by sub-surface explo-
sions, also enable us to perform time averaging. I assume the signal from such an
explosion is fairly long, and could be sampled several times and then summed. This
would give a good estimate of the whereabouts of the submarine.

Research Before developing a new system for bathymetric measures, at least three
topics should be looked into:

• Estimation ofM. If the mainlobe of the Fourier method was wider than expected
for some angle, one could assume that M was higher than 1 in this area. We
could also apply the so far estimated slope of the sea-floor, and combine the
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height of the peak with this information. If we had a “database” containing in-
formation about typical numbers of M for different peak-widths, peak-heights
and bottom slopes, it could enable us to obtain a “qualified guess” of M’s size.

• Performance analysis of different beamspace methods. This analysis should
preferably be applied to raw data, where more ground truth about the bottom
depth was available (eg a basin, in which different objects could be placed). This
would enable a better analysis of the performance than what was achieved by
the different assumptions that had to be taken in this thesis.

• Compare the beamspace methods with the subarray interferometry suggested
in [32], since the interferometry approach assumes a single scatter. The beam-
space approaches should apply the estimated M to find all signals within the
area enveloped by the Fourier mainlobe.

Having performed this research, the question of implementation enters the scene. Is
it possible, in an on-line system of today, to perform time averaging, obtain a Fourier
spectrum for sea-bed imaging, estimateM and finally apply a high-resolution/beam-
space method for bottom detection within the peaks of the Fourier spectrum? This
is unclear, but as the computing power is becoming cheaper we might some day be
able to. The beamspace root-MUSIC proposed in [33] allows for a reduced polyno-
mial, which combined with the alternative root-MUSIC proposed in this thesis might
outperform ESPRIT regarding computational efficiency. If a beamspace ESPRIT algo-
rithm is available, this can be expected to be even more efficient.





Appendix A

Notation and Abbreviations

This appendix gives a short introduction to the mathematical notation that is used in
this thesis. It also contains a table with the abbreviations that are used throughout
the thesis (Tab. A.1).

Throughout the thesis different letters, boldface letters, capital letters and boldface
capital letters are encountered. Small letters, like a, are mathematical sizes. Boldface
letters, such as a, are vectors and boldface capital letters are matrices. Otherwise,
capital letters are only used for the Fourier transform and as abbreviations.

The symbol ∗ in a∗ means the complex conjugate of the vector a. It is also possible
to take the transpose of a vector or matrix, while conjugating it. For instance AH,
where H is the Hermitian (conjugate transpose). The symbol † is used to denote the
pseudoinverse of a matrix, as in A†.
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Notation Meaning

Signal Related
ω Frequency (ω = 2πf )
f0 Center frequency (300158 Hz)
c Speed (1500 m/s)
θ Incidence angle on the array
k Wavenumber (|k|)
M Number of signals

Array Related
d Intersensor spacing
L Number of sensors
K Number of subarrays
fs Sampling frequency (14293 Hz)

Abbreviations
E Expectation
R̂ Spatial covariance matrix

SNR Signal to Noise Ratio
DOA Direction Of Arrival

Evaluation Abbreviations
PWR Peak-Width Ratio

PWR(M) Peak-Width Ratio between M peaks
WLO Width Location Overlap

WLO(M) Width Location Overlap of M peaks
TCR Total of Close but Resolved sources

WLOTCR WLO of the closely spaced sources
M-flops Mega floating point operations

Table A.1: Abbreviations and the most important quantities in the thesis.
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Abstract — This paper deals with high-resolution

beamforming for multibeam echo sounders with a lin-

ear receive-array. A fundamental limitation of the con-

ventional beamformer is that the angular resolution

depends upon the size of the receive-array. The use

of subarray interferometry may increase the mapping

resolution for oblique beams, but this method is not

valid in the case of multiple scatterers. Therefore, it

is interesting to examine how modern high-resolution

beamformers work for multibeam echo sounders. Early

research for this purpose, based on data simulation,

showed promising results. In this work, we apply high-

resolution beamformers to raw sonar data recorded at

the receiver elements of Simrad EM3000 multibeam

echo sounders. The estimation of spatial covariances

plays an important role in high-resolution beamform-

ing. A method to improve the estimation by sub-

tracting noise covariances is applied. Among several

beamformers we tested, MUSIC and ESPRIT gave the

best results. Compared to the Fourier transform beam-

former, high-resolution beamformers clearly improved

the resolution. However, the noise level might also

increase. It seems that a combined use of conven-

tional and high-resolution beamforming may improve

the sonar performance.

I. INTRODUCTION

Multibeam echo sounding is currently one of the most im-
portant technologies for seafloor mapping and imaging.
It involves sending narrow band pulsed acoustic signals
towards the seafloor, and analyzing the echo signals for
bathymetry and image formation. The configuration of the
transducer arrays and the resulting beam patterns for these
types of sonars are shown in Fig. 1. The transmitting ar-
ray is mounted parallel to the motion direction of the sonar
platform. It transmits a fan-shaped beam which is narrow
in fore-aft direction and wide athwartships. The receive-
array is mounted perpendicular to the transmit-array. A
number of receive beams are formed at different angles. For
each receive beam, the bottom echo from the intersection
of the transmit and the receive beam footprint is detected.
The echo arrival time and the angle of the receive beam
provide information for bathymetry, and the backscatter-

z

y

receiving array

transmitting array

ship direction

received beam

transmitted beam

Fig. 1: T configuration of linear transducer arrays and the
resulting beam patterns of a multibeam echo sounder sys-
tem.

ing strength is used for seabed imaging. A transmission
and receiving circle is called a ping. Sea-bottom maps and
images are formed by combining data from many consecu-
tive pings. De Moustier [1] explained the principles of the
multibeam echo sounders and analyzed several commercial
systems.

Two important issues in developing multibeam systems
are the mapping resolution and the bottom detection accu-
racy. Current multibeam echo sounders use a conventional
method, usually the Fast Fourier Transform, to form re-
ceiving beams. The beamwidth is normally 1.5 to 5 degrees
athwartships. The spatial resolution is unsatisfactory, es-
pecially for beams of oblique incidence angles. For oblique
beams, the cross-track length of the receive beam foot-
prints are large, and bottom echo detection based on the
beam amplitude values is inaccurate. The bottom detec-
tion accuracy and the mapping resolution can be improved
by using subarray interferometry [2], since for an oblique
beam, the pulse length is much shorter than the cross-track
length of the footprint. However, the method assumes
a single scatterer within each beam footprint. It works
well when the bottom curve is smooth within a footprint,
but fails for complex bottom curves with multiple scatter-
ers. Thus, it is interesting to examine how modern high-
resolution beamformers work for multibeam echo sounders.
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A review of high-resolution beamforming is given in [3].
Some research work has been done to apply high-

resolution beamforming to multibeam echo sounders.
Pantzartzis et al. [4] evaluated the performance of four
methods, i.e. the Yule-Walker method for AR model,
the unconstrained least square method for AR model,
Minimum-Variance, and MUSIC. Their work was based
on simulated data, generated by a sonar simulation soft-
ware. The simulator creates synthetic reverberation by
randomly distributing ideal point scatterers in the volume
and at the boundaries of the ocean, and coherently com-
bining the individual echoes at the receivers. The bottom
was modeled as a flat, fine, sand surface. The MUSIC
method produced narrower spectrum peaks than the other
methods, and therefore showed higher resolution poten-
tial. Compared to the conventional Fourier beamforming,
it also provided a reduction of root mean squared error
in bottom echo detection. MUSIC was later evaluated by
using a sea floor model for a rough surface [5], and gave
reliable bathymetric estimates. Talukdar [6] examined the
application feasibility of AR spectrum estimation in the
Sea Beam 2100 multibeam system design. Simulation re-
sults indicated potential for improving bottom detection
accuracy.

The above studies were based on data simulation. In
this work, we apply high-resolution beamforming to raw
Simrad EM3000 sonar data and examine the beamform-
ing performance for high frequency shallow water sonars.
The methods tested so far are Minimum-Variance, Eigen-
Vector, MUSIC, Minimum-Norm, root-MUSIC and ES-
PRIT.

II. SIGNAL MODEL

The following signal model is assumed: The receive-array
of the multibeam echo sounder is a uniform linear array.
The array consists of sensors with the same directional
sensitivity, equally spaced along the y-axis. The ship runs
in the x direction and the depth is measured along the z-
axis. The directional sensitivity of each sensor, g, is such
that the array mainly collects energy from the y-z plane.
Also, g is assumed independent of the signal’s direction
θ. Let sm(t) be a signal coming from direction θm. Its
steering vector is then

a(θm) = g
[
1 e−jkd sin θm · · · e−j(L−1)kd sin θm

]T
(1)

Here, k is the wavenumber, d is the interelement distance
and L is the number of sensors. The output vector of the
array for signal sm(t) is

ym(t) = a(θm)sm(t) (2)

which says that a far-field signal has linear phase shifts
over the array.

Further, if M signals impinge on the array at one time
instant, the output of the array will be

y(t) =
M∑
m=1

a(θm)sm(t) (3)

This can be written as

y(t) = A(θ)s(t) (4)

where A(θ) =
[
a(θ1)

∣∣ · · · ∣∣a(θM )
]

is a steering matrix and

s(t) =
[
s1(t) · · · sM(t)

]T
is a vector of signals. Adding

noise to (4) yields

y(t) = A(θ)s(t) + n(t) (5)

This vector is the “actual” output of the array, and from
it we estimate the covariance matrix R̂.

R̂ =
1

N

N∑
t=1

y(t)yH(t) (6)

Here, yH(t) is the Hermitian of y(t). N is the number of
samples taken over a period in time that is assumed to give
stationary results for the signals. In narrow band multi-
beam echo sounders, the sampling frequency is determined
by the bandwidth, a signal pulse is often sampled only once
or twice. The received signal is therefore not stationary in
time, and we assume that N = 1.

III. ESTIMATION OF COVARIANCES

High-resolution beamformers are often used in applications
where signals are stationary over several samples (e.g. [3]).
In these cases, large amount of data are available for esti-
mating the covariance matrix R̂. In our case N = 1, and
thus the estimated covariance matrix must be improved in
some way.

The matrix R̂ can be decomposed into eigenvalues and
eigenvectors. In matrix form, the eigenvalues are Λ̂ΛΛ and
the eigenvectors are V̂. Further, some of these eigenvec-
tors ideally span the signal subspace, while the others span
the noise subspace. In reality, we split the matrix V̂ into
V̂s and V̂n. Here, V̂s spans the signal+noise subspace
and V̂n spans the noise subspace. Methods that work with
these subspaces are often called subspace methods.

We need to improve R̂ in the cases where coherent sig-
nals are present. The reason is that the high-resolution
methods may fail to produce peaks at the directions of
arrival (DOA), since one or more of the eigenvectors in
the signal subspace will diverge into the noise subspace
in coherent cases [3]. We may also want to achieve a
smaller variance in the estimates, this can be done using
the same operations on R̂, even though no coherent signals
are present.

To improve R̂, different approaches are available.
Among them are forward/backward averaging and spatial
smoothing. The forward/backward averaging [7, 8] works

by left and right multiplying R̂∗ with the matrix J, where
J is an exchange matrix consisting of an identity matrix of
size L× L flipped left/right. The new estimate is

R̂FB =
1

2

(
R̂ + JR̂∗J

)
(7)
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This strategy only works for two coherent signals, but will
then restore the rank of the signal covariance matrix [3].
When there are more than two coherent signals, we use
a spatial smoothing of R̂. The idea is to split the array
in several equal and overlapping subarrays, which are as-
sumed to have identical steering vectors, except for their
phase factor [3]. The subarrays are of size LK , where
LK = L−K + 1 and K is the number of subarrays. The
resulting covariance matrix is

R̂SS =
1

K

K∑
k=1

R̂k (8)

where each R̂k is of size LK×LK and is part of R̂, centered
along its diagonal.

It is also possible to combine the two strategies above,
by first applying (8) and then (7). This generally results in
better estimates for the subspace methods except for the
MUSIC algorithm [7]. For state space methods/ESPRIT,
Rao and Hari [8] have found that such a combination is
preferable to only applying spatial smoothing.

Rao and Hari have also developed some theory for op-
timal number of subarrays in [7, 8]. Here they find that
for two sources the optimal choice of K is (L + 1)/5 for
high to moderate SNR. While for lower signal-to-noise ra-
tio (SNR), K is best chosen as (L + 1)/8. These choices
are valid for the ESPRIT and Minimum-Norm algorithms.
When it comes to MUSIC, minimal smoothing appears to
be desirable to obtain reliable DOA estimates [7].

An additional strategy for improving R̂ is used. The
idea is to estimate the structured noise present in the array.
This noise is estimated from the samples taken before the
first bottom echo returns, and is later subtracted from R̂ at
each sample. If no structured noise is present, the effect of
this will be none. But, if the array in some way produces a
systematically wrong output, this output will be corrected.
It can be viewed as calibrating the array. The noise is
estimated as

N̂ =
1

Nn

Nn∑
t=1

y(t)yH(t) (9)

where Nn is the number of samples used to estimate the
noise. When applied, this noise removal is done before the
operations given by (7) and (8). Note that since finding

the eigenvectors of R̂ is an iterative procedure one might
expect the procedure to converge faster when having re-
moved the noise covariance.

IV. HIGH-RESOLUTION

BEAMFORMING

Beamforming is a spatial filtering which separates signals
coming from different propagation directions. Methods
such as delay-and-sum and Fourier transform (FT) are
called conventional methods, as they have a relatively long
history. These methods are well understood and common
in array signal processing. However, they suffer from a

fundamental limitation: their performance is directly de-
pendent on the physical size of the array. Modern high-
resolution beamforming methods are designed to overcome
this limitation, to some extent. These methods make
assumptions on signal and noise characteristics, and are
aimed at resolving closely spaced signal sources. However,
the results of these methods are sensitive to the assump-
tions made.

Minimum-Variance proposed by Capon [9] tries to op-
timize the beamforming process according to the time-
varying covariance matrix. Its spectrum is given by

PMV(θ) =
1

aH(θ)R̂−1 a(θ)
(10)

The method minimizes the power contributed by noise and
signals originating from other directions than the current
steering direction, while maintaining a fixed gain at the
steering direction. Its performance is therefore dependent
upon the SNR [3]. Since we only use one sample for esti-

mating R̂, R̂−1 may not exist. The pseudoinverse is there-
fore used instead.

The Eigen-Vector and MUSIC algorithms are based on
rewriting the Minimum-Variance algorithm [10].

Eigen-Vector uses only the noise subspace in the co-
variance matrix. The spectrum is

PEV(θ) =
1

aH(θ)V̂nΛ̂ΛΛ
−1

n V̂H
na(θ)

(11)

The modification of the covariance matrix will lift the sig-

nal peaks out of the noise in the spectrum. Here, Λ̂ΛΛ
−1

n may
not exist, and again the pseudoinverse is used.

MUSIC In the MUSIC algorithm, the eigenvalues are
set to unity. The spectrum becomes

PMU(θ) =
1

aH(θ)V̂nV̂H
n a(θ)

(12)

Setting the eigenvalues to one can be viewed as whitening
the noise subspace [10].

Minimum-Norm introduces a weight matrix [3] in the
MUSIC spectrum (12)

PMN(θ) =
1

aH(θ)V̂nV̂H
nWV̂nV̂H

n a(θ)
(13)

Here, W = e1e
T
1 where e1 equals the first column of an

L×L identity matrix. Weighting the MUSIC algorithm in
this way should yield a lower bias and a better resolution
than the original MUSIC algorithm (e.g. [3]).
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Root-MUSIC For the MUSIC algorithm there is a
polynomial-rooting version available, known as root-
MUSIC [11]. The polynomial of z = ejkd sin θ can be ex-
pressed as

p(z) =
L−1∑

k=−(L−1)

ckz
k (14)

where ck is the sum of the elements on the k’th diagonal of
V̂nV̂H

n. Here k < 0 gives the k’th subdiagonal, while k > 0
yields the k’th superdiagonal. The roots of the 2(L − 1)
degree polynomial p(z) lie as mirrored pairs around the
unit circle. In root-MUSIC, the M largest roots, ẑ1, . . . , ẑM,
that lie inside or on the unit circle are taken as the DOA
estimates. The angles of the M signals are then computed
as

θ̂m = arccos

(
1

kd
arg {ẑm}

)
, m = 1, 2, . . . ,M (15)

ESPRIT The idea behind ESPRIT is to split the ar-
ray in two subarrays, separated by a known displacement
vector ∆∆∆ of magnitude ∆ [12]. The DOA estimates are
then angles of arrival with respect to the direction of ∆∆∆.
For the uniform linear array we can split the array into
two subarrays separated by distance d. Both subarrays
are placed along the y-axis. The subarrays will be denoted
Y ′ and Y ′′. The signals received at sensor i in each of the
subarrays, can be expressed as:

y′i(t) =
M∑
m=1

sm(t)ai(θm) + ny′i(t),

y′′i (t) =
M∑
m=1

sm(t)ejkd sin θmai(θm) + ny′′i (t),

(16)

If we combine the sensor outputs in each subarray into
vectors, we can write (16) as

y′(t) = A′s(t) + ny′(t),

y′′(t) = A′ΦΦΦs(t) + ny′′(t)
(17)

Here A′ is the upper (L−1)×M part of the steering matrix
A given in (4). Let

A =

[
A′

last row

]
=

[
first row

A′′

]
(18)

This gives

A′′ = A′ΦΦΦ (19)

Further, s(t) is the M×1 vector of signals, and the matrix
ΦΦΦ is a diagonal M×M matrix containing the phase delays
between the subarrays for the M signals

ΦΦΦ = diag{ejφ1 , · · · , ejφM} (20)

where φm = kd sin θm. The problem of estimating the
DOAs is then to find these phase delays, hence finding

ΦΦΦ. The unitary matrix ΦΦΦ relates the measurements from
subarray Y ′ to those from subarray Y ′′. Let

ȳ(t) =

[
y′(t)
y′′(t)

]
= Ās(t) + ny(t)

Ā =

[
A′

A′ΦΦΦ

]
, ny(t) =

[
ny′(t)
ny′′(t)

] (21)

The structure of Ā is then exploited to obtain estimates
of the diagonal elements of ΦΦΦ.

We now decompose the signal subspace, Vs, in the fol-
lowing way

Vs =

[
VY ′

VY ′′

]
=

[
A′T

A′ΦΦΦT

]
(22)

Here T is a unique nonsingular matrix such that Vs = ĀT.
Define the rank M matrix

VY ′Y ′′
def
=
[
VY ′

∣∣VY ′′
]

(23)

This implies that there exists a unique rank M matrix
F ∈ CCCI 2M×M such that

0 =
[
VY ′

∣∣VY ′′
]
F = VY ′FY ′ + VY ′′FY ′′

= A′TFY ′ + A′ΦΦΦTFY ′′
(24)

F spans the null-space of
[
VY ′

∣∣VY ′′
]
. We can now rear-

range (24), by defining the matrix ΨΨΨ.

ΨΨΨ
def
= −FY ′

[
FY ′′

]
−1 (25)

Eq. (24) now becomes,

A′TΨΨΨ = A′ΦΦΦT⇒ A′TΨΨΨT−1 = A′ΦΦΦ (26)

With A of full rank, this implies

TΨΨΨT−1 = ΦΦΦ (27)

Thus, the eigenvalues of ΨΨΨ equal the diagonal elements of ΦΦΦ
(ΨΨΨ and ΦΦΦ are related through a similarity transformation).
The columns of T are the eigenvectors of ΨΨΨ.

Now, expressing ΦΦΦ in (22) as (27) we obtain the follow-
ing relation between VY ′ and VY ′′

VY ′′ = VY ′ΨΨΨ (28)

We can now compute the eigenvalues of ΨΨΨ using either a
least-square or a total-least-square criterion. The diagonal
elements in ΦΦΦ will equal the eigenvalues, and by applying
(15) to these, the DOAs are estimated.

V. EXPERIMENTS

A. Data

The methods were tested by using raw sonar data recorded
at the array receive elements of Simrad EM3000 echo
sounders. The transmit signal of this sonar is a rectan-
gular pulse of a sinusoidal wave with pulse length 150 µs
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and center frequency 300158 Hz. The receive array is a
uniform linear array of 80 elements. The distance between
two neighboring elements is 2.55 mm. The received signals
are demodulated and separated into in-phase and quadra-
ture components, and then sampled at 14293 Hz. The
sampled data are represented as two bytes signed integers.

To evaluate the high-resolution beamformers, 7 ping
series were recorded in shallow water near Horten, Norway.
The sea bottom varies from flat to quite rough. The sonar
head was tilted 45 degrees to the side for some ping series.
The bottom depth was between 2 to 20 meters.

B. Evaluation Methods

The performance of a beamformer can be described by pa-
rameters such as beamwidth, bias, and variance. However,
these parameters are usually difficult to measure when the
bottom truth is unknown. The Full Width Half Maximum
(FWHM) is commonly used to measure the beamwidth,
but it says nothing about how accurate a beamformer es-
timates the DOA. If one considers the highest peaks in two
different spectra, for the same sample, it is not enough to
have a smaller FWHM (better resolution) to be regarded
as the best result. The best result must also have its peak
at the source’s direction. Since we do not really know the
true bottom in these experiments, we assume that the FT
spectrum “tells” us what is reasonably close to the truth.
Assume that the FWHM of a peak defines a beam. If a
high-resolution method has a beam which is narrower than
that of the FT beam, and in addition has its peak located
within the area covered by the FT beam, this method will
be considered as better than the FT. The following quan-
titative measures for assessing the performance of a beam-
former have been developed.

Peak-Width Ratio (PWR) between the FT and a
high-resolution beamformer (HR) is given by

PWR(M) =
1

N

N∑
n=1

∑M
m=1 FWHMFT(n,m)∑M
m=1 FWHMHR(n,m)

(29)

where n is an index for a sample and m an index for a
peak. For each sample, the FWHM of the M highest peaks
obtained by the FT are compared to those obtained by the
high-resolution beamformer. The ratio is then averaged
for all N samples used for measuring the performance. If
PWR is larger than one, the high-resolution method has a
better resolution than the FT.

Width-Location Overlap (WLO) gives the percent-
age of the high-resolution method’s beams which are lo-
cated within the FT beams. It is given by

WLO(M) =
1

NM

N∑
n=1

M∑
j=1

M∑
i=1

BEAMHR(n, i) ∩ BEAMFT(n, j)

BEAMHR(n, i)

(30)

This value is also averaged for all N samples and all M
beams in each sample.

PWR tells us how narrow the beams are, and WLO de-
scribes the localization of the peaks. Both of the measures
have a parameter M which is the number of the peaks to
be considered for each sample. The value of M should
equal the number of signals. We computed PWR(M)
and WLO(M) for estimated number of signals, and found
that PWR(M) and WLO(M) were highly correlated to
PWR(1) and WLO(1), respectively. (Only Minimum-
Norm and root-MUSIC had much higher WLO(M) than
WLO(1). It seems that the two methods choose the high-
est peak at random.) Therefore, the highest peak (M = 1)
is used in our evaluation. In the rest of the paper, the
parameter is omitted when M = 1. The two measures can
be computed separately for early received samples consist-
ing of specularly reflected signals and later received sam-
ples consisting of obliquely reflected signals. The values
of these two time intervals were also highly correlated and
are therefore averaged.

Computing time MATLAB was used to implement the
algorithms and the computing time was measured by the
floating point operation counter (flops). The average
amount of Mega-flops per sample was measured.

C. Results

For each high-resolution beamformer, we tested different
covariance estimation methods, i.e. forward/backward av-
eraging, spatial smoothing with subarrays, and noise co-
variance subtraction. The experiments showed that for-
ward/backward averaging always improved the results,
more or less, and should therefore always be applied. For
spatial smoothing, different beamformers required different
number of subarrays. Noise covariance subtraction gener-
ally improved the results, but not always.

The quantitative measures were computed and aver-
aged over 22 pings randomly chosen from the 7 available
ping series.

Eigen-Vector generally gave high PWR values (2 to
3.5). The largest WLO was obtained for about 20 sub-
arrays. The use of noise covariance subtraction slightly
reduced the WLO values. The amount of Mega-flops
dropped from 124 to 38 with increasing numbers of sub-
arrays. For this method, we suggest to use 20 subarrays
without noise covariance subtraction.

Minimum-Variance gave results which were very sim-
ilar to those of Eigen-Vector. This is not surprising, since
the Eigen-Vector algorithm is the same as the Minimum-
Variance algorithm except using fewer eigenvectors.

MUSIC was not capable of achieving equally high PWR
values as Eigen-Vector. Higher PWR values were obtained
by increasing the number of subarrays. The PWR went



115

from 1.5 for no subarray to almost 3 for 29 subarrays. This
is quite opposite from what would be the case for the FT,
but can be explained by the fact that MUSIC’s resolu-
tion increases with the amount of available data. For the
MUSIC algorithm, use of subarrays seems to simulate an
increase in available data. The WLO values were highest
when using few subarrays. This supports Rao’s statement
in [7] “minimal smoothing appears to be desirable to ob-
tain reliable DOA estimates”. The WLO dropped from
85% to 71% when going from no subarray to 8 subarrays.
Results generally improved when subtracting the noise co-
variance. Computing time was reduced by increasing the
number of subarrays, from 80 Mega-flops for 2 subarrays,
to 28 Mega-flops for 29 subarrays. Considering WLO as
the most important measure, we suggest to use 2 subarrays
with noise covariance subtraction for this beamformer.

Minimum-Norm had a high PWR (between 2.5 and
3.5), independent of the number of subarrays. WLO, how-
ever, depended upon the number of subarrays and the use
of noise covariance subtraction. This value was normally
very low when noise subtraction was not used. For few sub-
arrays Minimum-Norm used about 137 Mega-flops, drop-
ping to 51 for 29 subarrays. The best results were obtained
by using 26 subarrays and noise subtraction. This is the
suggested way of estimating the covariance matrix. The
high number of subarrays is somewhat larger than what
was stated for Minimum-Norm in [7].

Root-MUSIC gave poor results. The PWR measure is
not applicable for this beamformer, since in a root-MUSIC
spectrum, the peaks are just delta pulses with no width.
Our test showed that the WLO values were low and the
computing time was large. For this beamformer, we sug-
gest to use 29 subarrays and a noise covariance subtraction.

ESPRIT was less dependent on the covariance estima-
tion methods than the other beamformers. Still, for-
ward/backward averaging and spatial smoothing improved
the performance. The results were almost equal whether
one applied the noise subtraction or not. Just as for the
root-MUSIC beamformer, the PWR measure is not appli-
cable to ESPRIT. The WLO values were highest for 11 to
29 subarrays. According to Rao [8], one can expect a de-
crease of WLO when using more than (L+1)/5 subarrays,
which means 16 subarrays for the Simrad EM3000 sonar.
This decrease was, however, only observed for specularly
reflected signals when using more than 20 subarrays. ES-
PRIT was very efficient regarding computation. It used 14
Mega-flops for no subarray. The Mega-flops dropped to 7
for 29 subarrays. For this beamformer, we suggest to use
17 subarrays without any noise covariance subtraction.

The beamformers are compared for the suggested co-
variance matrix estimation methods in Table 1.

In addition to the quantitative measures, we present
some spectra in Fig. 2, and examine the results visually.

Table 1: A comparison of beamforming methods.

Method PWR WLO Mega-flops
FT 1.0 100% 19

Eigen-Vector 2.4 65% 52
MUSIC 1.6 84% 80

Minimum-Norm 3.1 51% 58
root-MUSIC “∞” 22% 88

ESPRIT “∞” 71% 9

We also apply a simple bottom detection algorithm to in-
vestigate if the spectra provide information for accurate
bottom detection. For each direction, this bottom de-
tection algorithm simply finds the time sample where the
spectrum power is largest.

VI. DISCUSSION

An important issue in developing next generation high-
performance multibeam echo sounders is to increase the
mapping resolution. Much research has been done to
improve the along-track resolution using synthetic aper-
ture method (e.g. [13]). At the same time, modern high-
resolution beamforming methods are interesting for im-
proving the cross-track resolution.

Using raw data from Simrad EM3000 multibeam echo
sounders, we tested several high-resolution beamformers.
Estimation of spatial covariance matrix plays an impor-
tant role in high-resolution beamforming. In addition to
forward/backward averaging and subarray smoothing, a
noise covariance subtraction aimed to reduce structured
noise was applied. For most of the high-resolution meth-
ods, this noise subtraction did improve the performance.
Quantitative measures were developed and used as part of
the evaluation. MUSIC and ESPRIT gave the best results
according to the evaluation.

All the high-resolution beamformers reduced the
beamwidth and improved the resolution. This can be seen
from the PWR measures which were all larger than 1, and
from Fig. 2 where MUSIC and ESPRIT gave narrower
spectrum peaks than FT. The bias of the methods are not
easy to estimate. We compared the location of peaks of
FT spectra with those of the spectra of high-resolution
beamformers. MUSIC and ESPRIT had the highest WLO
values and are considered as the most reliable. ESPRIT
is computationally efficient, while MUSIC is much more
time demanding than FT. MUSIC has to compute the
L−M smallest eigenvectors, while ESPRIT only need the
M largest ones. In our case, L, the number of sensors is
80, and M , the number of signals is typically 2 to 3. Fig. 2
shows that the high-resolution spectra have a higher noise
level than the FT spectra. The simple bottom detection
algorithm included more noise peaks for MUSIC and ES-
PRIT than for FT.

One problem when using high-resolution beamforming
is that the signals are not stationary in time. Data avail-
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(a) FT spectrum of a ping.

            

(b) Bottom detected from the FT spectrum.

            

(c) MUSIC spectrum. Forward/backward averaging applied.
Smoothed with 2 subarrays. Noise covariances subtracted.

            

(d) Bottom detected from the MUSIC spectrum.

            

(e) ESPRIT spectrum. Forward/backward averaging applied.
Smoothed with 17 subarrays.

            

(f) Bottom detected from the ESPRIT spectrum.

Fig. 2: Spectra for different beamformers (left) and the results of a simple bottom detection algorithm (right). The horizontal
axis is the direction, from -70 to 70 degrees (angular increments: 0.5 degrees). The vertical axis is the sample number, from
250 on the top until 750 on the bottom. The sonar is tilted 45 degrees to the side.
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able for estimating the covariance matrix is limited to only
one sample. Increasing the sampling rate may provide a
few stationary samples and thus improve the estimation
of the covariance matrix. Another problem is the assump-
tion that the signals arrive only from the y-z plane. This
assumption is violated when the along-track resolution is
low. It seems that the cross-track resolution and the along-
track resolution should be increased simultaneously.

More research has to be done in order to apply
high-resolution beamforming in a multibeam sonar prod-
uct. Unlike conventional beamforming methods, high-
resolution methods do not try to provide a “good spec-
trum shape”. Instead, they try to give narrow spectrum
peaks for the signals to be detected. These spectra may be
good for bottom detection but not necessarily for seabed
imaging. Therefore, high-resolution beamformers should
be used together with a conventional beamformer such as
the FT beamformer. This is possible as the computing
power is becoming cheaper. A rough bottom detection may
then first be applied based on the FT spectrum and after-
wards small objects can be detected using a high-resolution
beamformer.
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