
University of Oslo
Department of Informatics

Building real-time
audio applications
with component
technology

Eivind Mork

Cand. Scient. Thesis

6th May 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preface

This thesis is presented for the degree of Cand. Scient. at the Depart-
ment of Informatics, University of Oslo. The context of this work is the
QuA project at the Simula Research Laboratory (in partnership with the
University of Tromsø and SINTEF).

At the end of this work, I realized that the thesis could have profited on
moving some of the focus from the implementation work, and to a more
thorough discussion about QoS issues. Time constraints prevented this
shift of focus.

I would like to thank my supervisors, Richard Staehli and professor
Frank Eliassen at the Simula Research Laboratory, for all their help and
support during this work.

A special thanks to Heidi, my wife, who also helped with proofreading.
You are always there!

Oslo, May 2005

Eivind Mork

iii

A chapter overview

1. Introduction . 1

2. Related work . 7

3. Component technology . 11

4. Real-time Audio Streaming . 15

5. Identifying Common Components . 21

6. Java 2 Enterprise Edition and EJB . 37

7. Designs following the EJB specification. 53

8. Design and implementation without EJB . 63

9. A design using restricted functionality . 79

10. Extensions to the EJB specification . 89

11. Conclusions and further work . 95

v

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Components . 1
1.1.2 Extra functional concerns 2
1.1.3 Real-time audio applications 2

1.2 Definition of problem area 3
1.3 Research method . 4
1.4 The structure of this paper 5

2 Related work 7
2.1 QuA . 7
2.2 OpenORB 2 . 8
2.3 TOAST . 8
2.4 Adding QoS support for EJB 9

3 Component technology 11
3.1 What is a component? . 11
3.2 Component frameworks, containers and servers 12
3.3 Benefits from using component technology 13

4 Real-time Audio Streaming 15
4.1 What is real-time audio? . 15
4.2 End-to-end delay . 16
4.3 Jitter . 17
4.4 Packet dropping . 18
4.5 Handling bandwidth limitations 19

5 Identifying Common Components 21
5.1 Investigating existing architectures 22

5.1.1 Free Phone . 22
5.1.2 Speak Freely . 25
5.1.3 H.323 . 25
5.1.4 SIP . 27

vii

5.1.5 Infopipes . 27
5.2 The common components 28
5.3 Requirements of the Common Components 31

5.3.1 The information flow 31
5.3.2 Investigating each component 32
5.3.3 Summary of requirements 35

6 Java 2 Enterprise Edition and EJB 37
6.1 Java and J2EE . 37
6.2 Remote Method Invocation (RMI) 39
6.3 Enterprise Java Beans (EJB) 39

6.3.1 Session beans . 40
6.3.2 Entity Beans . 41
6.3.3 Message driven beans 41
6.3.4 The Remote and Home interfaces 42
6.3.5 Deployment . 43

6.4 Java Message Service (JMS) 43
6.5 An introduction to JBoss . 44

6.5.1 The JBoss core . 44
6.5.2 Deployment . 45
6.5.3 Creating a JMS topic in JBoss 46

6.6 EJB support for the requirements 46
6.6.1 Creating threads . 46
6.6.2 CPU power . 48
6.6.3 Creating and receiving network connections 48
6.6.4 Supported protocols 49
6.6.5 QoS requirements for network services 50
6.6.6 Race conditions . 50
6.6.7 Accessing hardware and lower level services 51

7 Designs following the EJB specification 53
7.1 Implementing all components as enterprise beans 53
7.2 A design partially made using EJB 54

7.2.1 Which components can be made as enterprise beans? 55
7.2.2 Discussion about the solution 57

7.3 Splitting the identified components 58
7.3.1 The design principle 58
7.3.2 Splitting the audio and GUI components 59
7.3.3 Discussion about split components 61

7.4 Summary . 62

8 Design and implementation without EJB 63
8.1 The design of the client . 64

8.1.1 The PhoneManager 64

ix

8.1.2 The SoundPlayer . 66
8.1.3 The SoundRecorder 66
8.1.4 The GUI . 67

8.2 The conference/distribution server 67
8.3 An example of a session . 69
8.4 Microphone simulator . 71
8.5 Measurements . 72

8.5.1 How the Round Trip Time (RTT) was measured . . . 74
8.5.2 Sources of error . 74
8.5.3 The test setup . 75
8.5.4 The results of the RTT measurements 75

9 A design using restricted functionality 79
9.1 Using restricted functionality 79
9.2 The design of the application 81

9.2.1 Instantiation of the components 84
9.3 RTT measurements . 84
9.4 A version without MDBs . 84

10 Extensions to the EJB specification 89
10.1 Discussion of required functionality 89

10.1.1 Creating applications following the EJB standard . . 90
10.1.2 Violating the EJB standard 90

10.2 General extensions . 92
10.3 Extensions for QoS support 93

11 Conclusions and further work 95
11.1 Conclusions . 95
11.2 Further work . 97

x

Chapter 1

Introduction

Contents

1.1 Background . 1

1.2 Definition of problem area 3

1.3 Research method . 4

1.4 The structure of this paper 5

Component Based Software Engeneering (CBSE) is a common way of
creating software, and there are now several different component mid-
dleware architectures and implementations available. This thesis invest-
igates the benefits of creating real-time audio applications with compon-
ents, and the limitations of current component technologies.

1.1 Background

1.1.1 Components

Component architectures are designed to make it possible to create dis-
tributed applications by composing it from reusable components. The
components should function correctly regardless of the underlying hard-
ware and software layers [1].

Szyperski among others, argues that CBSE can reduce the cost of soft-
ware development [2]. The time of development can sometimes be re-
duced, the quality can be better and the maintenance easier.

1

2 CHAPTER 1. INTRODUCTION

1.1.2 Extra functional concerns

In addition to the functional aspects of a component, there are extra
functional aspects. These extra functional aspects are often called Qual-
ity of Service (QoS) and describe the other characteristics of a service• quality of

service (QoS)
than the functional, such as performance and security. The term QoS
is both used when describing what a component can offer (in an extra
functional aspect), and likewise which extra functional requirements a
component requires from other components in order to fulfill its QoS
offer.

An application that tolerates some amount of error or imprecision, but
cannot tolerate unbounded error, is referred to as a QoS Sensitive Ap-
plication (QSA) [3]. A QSA should not need to specify physical require-• QSA

ments, but can instead specify logical (i.e. platform independent) QoS
requirements. The hardware independence will simplify the design of
QSAs that are supposed to be deployed in different hardware environ-
ments. The mapping from hardware independent to hardware dependent
requirements will need a service within the platform.

The handling of the QoS, could either be left to the application itself, the
component architecture, or both.

1.1.3 Real-time audio applications

Since the early nineties the interest in continuous media concerns has
been considerable, and especially for video on demand [4]. This thesis
investigates real-time audio as it is representative of the very large class
of continuous media applications that can benefit from component tech-
nology, and yet, real-time audio is relatively simple to understand. Even
though real-time audio applications are much less resource demanding
than for example real-time video, many of the mechanisms and problems
are the same.

There are many types of real-time audio applications available, such as
Internet phones and conferences, radio broadcasting and applications
with more complex data compositions (i.e. audio synchronized with
real-time video). The applications could be quite complex, but many
strategies and mechanisms are shared by these applications. For ex-
ample, many of the applications use an audio recorder and an audio
player, and most of them would use some kind of compression.

Some of the common mechanisms deal with QoS issues, and they have to
be implemented either by the application itself, or by the underlying soft-
ware or hardware layers. For instance, the audio packets sent through

1.2. DEFINITION OF PROBLEM AREA 3

the network have some delay constraints as the audio may not be delayed
beyond a certain limit. Mechanisms for avoiding and/or handling packet
dropping may also be present to avoid “gaps” in the audio play-out.

As many of the mechanisms in real-time audio applications are common,
we believe that also this group of applications could benefit from being
made using components.

1.2 Definition of problem area

Component Based Software Engeneering (CBSE) has successfully been
used to implement business logic (the code that implements the func-
tionality of an application [5]). It is believed that software in general
could benefit from using CBSE [2]. The assumption of this thesis is that
QSAs are no exception, even though modern component technology is
not used for QSAs. This thesis looks into why this is so, and will suggest
a list of issues that needs to be resolved in order to implement QSAs with
this technology.

To identify the limitations of existing technology, the characteristics of
the components would have to be known. The range of QSAs are huge,
and to narrow down to a more manageable scope, this thesis looks at
only one type of QSAs; real-time audio applications. There are two reas-
ons for this choice: Real-time audio applications are relative simple to
understand and create, and; they share interesting aspects with many
QSAs such as real-time requirements of continuous media.

Just as there are many types of QSAs, there are also many existing com-
ponent architectures. They share many of the same ideas, but they are
also developed for different purposes and software and hardware archi-
tectures, and hence, they have many differences. There is more than one
architecture that would be interesting to investigate in the setting of im-
plementing QSAs. This thesis considers Enterprise Java Beans (EJB) - a
technology within the Java 2 Enterprise Edition (J2EE) programming en-
vironment from Sun Microsystems1 - as it has been here for some years,
is widely used with success in many companies and government offices,
and can be run on many different computer architectures (due to the
nature of Java).

This thesis will answer the following questions:

• How can an Internet phone and similar real-time audio applica-
tions be built from components?

1http://www.sun.com

4 CHAPTER 1. INTRODUCTION

• What limitations of the EJB standard will cause problems imple-
menting real-time audio applications?

• In what way can the EJB standard be changed or extended to elim-
inate the identified limitations of the current standard?

1.3 Research method

At the time of this work, there were several different EJB implementa-
tions available. We decided to perform the evaluation of just one EJB
implementation, due to time limitations for the work. JBoss, an EJB
implementation made by the JBoss Group2, became the chosen imple-
mentation. This decision was based on the following reasons:

• We consider JBoss to be a well respected, reliable implementation.
There are many examples of critical systems using JBoss, like the
Dow Jones indexes, the German Parliament (election system) and
the Norway Post. The use of JBoss has been increasing over time,
and in 2002 it was downloaded more than 2 million times [6].

• JBoss is open source, which could be helpful in the evaluation pro-
cess.

To identity requirements that real-time audio applications may have to
JBoss, an identification of common components among audio applica-
tions must be done first. To be able to do that, the design of the applic-
ations will have to be known. Since there are an unlimited number of
possible designs, the method is to inspect several existing applications to
identify commonly used mechanisms and strategies, and to discuss their
possible reuse.

The identified components will then be inspected to find their require-
ments. The requirements will be compared to the limitations of the EJB
standard and JBoss to find out which components can be implemented
in JBoss, and which can not. With the EJB architecture, the programmer
has some limitations of what can be done within an enterprise bean. Two
cases will therefore be investigated: The first case will look at possible
implementations following the EJB 2.1 specification. Both the scenario
where all components are made as enterprise beans, and the scenario
where some components are made as enterprise beans will be discussed.
In the second case there will be used non standard EJB features. Finally
there will be discussed how the EJB standard can be extended to support
this type of applications and what the consequences of this will be. This

2http://www.jboss.org

1.4. THE STRUCTURE OF THIS PAPER 5

discussion is based on the requirements found in the investigation of the
common components compared to the restrictions of the EJB standard,
as well as the experience obtained during the implementation work.

The process of implementing fully functional Internet phone applications
is made to help reveal the requirements that are not supported by the EJB
standard: Some of the issues can possibly be overlooked in a theoretic
discussion if the design of the application and the EJB standard are not
investigated adequately. A working implementation can also contribute
as a proof of concept. Even though it can not prove that the concept
will work in any scenario, it will prove that it is working in the current
setting. There are made two sets of applications: One does not imple-
ment any of the identified components as enterprise beans, and the other
implements all the components as enterprise beans. The one without
enterprise beans works as an reference application to form a basis for
evaluation of the other applications using EJB.

The goal of this work is to learn about the common mechanisms in ex-
isting real-time audio applications and the requirements they have for
a component framework. A second goal is to discuss in what way the
EJB standard can be changed/extended to support the identified require-
ments and how the extensions will effect the standard.

1.4 The structure of this paper

This paper is organized into 11 chapters. After this introduction, re-
lated work is presented in chapter 2 before some background informa-
tion about CBSE and real-time audio is presented in chapter 3 and 4.

Chapter 5 presents the identification of common components in real-
time audio applications, and their requirements are discussed. Chapter
6 then presents information about the J2EE standard and the JBoss im-
plementation. Finally in this chapter, there is a discussion of in which
degree EJB supports the requirements identified in chapter 5.

Possible designs and implementations of an Internet phone application
following the EJB standard is discussed in chapter 7. Chapter 8 presents
a design and implementation of an application without the use of EJB.
Designs and implementations using EJB and restricted functionality is
presented in chapter 9. Both chapter 8 and 9 present some measurements
of the performance of the applications.

In chapter 10 possible changes and extensions to the EJB standard are
discussed. Finally, chapter 11 presents the conclusions and further work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

Contents

2.1 QuA . 7
2.2 OpenORB 2 . 8
2.3 TOAST . 8
2.4 Adding QoS support for EJB 9

This chapter will have a brief look at related work concerning support of
real-time multimedia systems and adaptive applications in general, using
component middleware platforms. The work presented in the first sec-
tion is creating a completely new component middleware platform. The
work in the two next sections are based on the Microsoft COM/DCOM
and CORBA frameworks respectively, and are thus more similar to this
thesis work since their platforms are made with changes and extensions
to existent platforms. The project in the last section is extending the EJB
framework with QoS support for RMI, and is thus quite related to this
thesis work.

2.1 QuA

There are several research projects designing new component architec-
tures that are made to better support QoS. One of them is the QoS-Aware
Component Architecture (QuA) project at the Simula Research Laborat-
ory [7]. QuA is an adaptive component platform that supports real-time
and multimedia systems. It seeks to separate the application require-
ments and environment dependent implementation decisions, to better

7

8 CHAPTER 2. RELATED WORK

exploit the adaptive components and to make reuse possible for different
environments. This is made possible by letting the platform manage the
deployment, configuration and dynamic adaptation of an application.

QuA uses service planners to discover possible implementations and se-
lecting the best according to a quality specification. The service planner
is a deployable component that is connected to dedicated hooks in the
platform. An implementation plan can be divided recursively into finer
grained implementation plans, and thus also the service planners can be
called recursively to find the best sub-implementation plans that finally
will form a complete implementation.

QuA is platform (i.e. OS and programming language) independent.
Working prototypes are made in Java and Squeak (Smalltalk).

2.2 OpenORB 2

The OpenORB 2 component platform is somewhat older than QuA. Like
the QuA project, it aims to offer better support for applications with spe-
cial requirements that may also change in different domains [8]. Ex-
amples of such applications are safety-critical, embedded, and real-time
systems. Traditional middleware platforms can not meet the require-
ments of such applications because of the limitations of the black-box
philosophy where the components can not observe any state within the
platform.

Open ORB 2’s solution to this problem is to offer reflection where the
components can use a meta-interface to observe the internal observation
and structure of the middleware platform. The components can also
perform changes to the platform through the meta-interface. The Open
ORB 2 architecture itself consists of components as well. Instances of
the platform can be made of a selection of components at build-time,
and they can be reconfigured at run-time using reflection.

The Open ORB 2 component model is based on Microsoft’s COM plat-
form, and the implementation is based on the Open COM implementa-
tion.

2.3 TOAST

The Toolkit for Open Adaptive Streaming Technologies (TOAST) [9] is
a CORBA-based multimedia middleware platform that aims to imple-

2.4. ADDING QOS SUPPORT FOR EJB 9

ment multimedia support in CORBA using plug-and-play mechanisms
for components.

Components exchange data through flow- and stream interfaces. A flow
interface can be either input or output. Stream interfaces are two or
more flow interfaces bundled together to one single interface. They are
meant to make connection establishing less complex. Flow and stream
interfaces are defined using CORBA Interface Definition Language (IDL)
which makes it language and platform independent. Distributed binding
objects are used to bind objects over a network.

Adaptation is made possible through reflection: The bindings offer meta
interfaces that makes it possible to inspect a component graph that mod-
els the TOAST components and their bindings. This graph can be altered
to make changes in the application.

2.4 Adding QoS support for EJB

One project has extended the EJB standard with QoS support for RMI
[10]. The current main standards provide support for e-commerce and
general purpose business applications, and hence, they provide services
like persistence, transactions, events and security. QoS support for real-
time applications are not supported.

[10] have made a prototype with a new component type called a QoS-
Bean to support QoS, although the project do not address multi-media
streaming applications like real-time audio. The QoSBean supports busi-
ness components with QoS IP requirements like jitter and latency. The
QoSBean has new semantics and configuration attributes for the QoS,
just like session beans and entity beans have attributes for e.g. persist-
ence and security.

The introduction of a new type of bean also requires a new container
that can handle resource reservations. Clients can request and negoti-
ate with a component the number of times each second it will invoke
each of the component’s methods. The component will then negotiate
the resource reservations with the container on its client’s behalf. If the
component needs to invoke methods of other components to serve its
client’s invocations, it must negotiate with these components as well.

10 CHAPTER 2. RELATED WORK

Chapter 3

Component technology

Contents

3.1 What is a component? 11

3.2 Component frameworks, containers and servers . . . 12

3.3 Benefits from using component technology 13

This chapter gives a short introduction to components and Component
Based Software Engeneering (CBSE)

3.1 What is a component?

There have been given many different definitions of a component. For • component

this thesis it would be suitable to say that “(...) software components are
executable units of independent production, acquisition and deployment
that can be composed into a functioning system. To enable composition,
a software component adheres to a particular component model and tar-
gets a particular component platform” [2]. Software made of such com-
ponents, are thus called component software, and the act of making
such software is called component based software engineering.

• component-
based software
engineering

Szyperski lists three characteristic properties of a component [2]:

• It is a unit of independent deployment

• It is a unit of third-party composition

• It has no (externally) observable state

11

12 CHAPTER 3. COMPONENT TECHNOLOGY

A component should not be dependent on other components in order to
be deployed. It could be dependent on other components to execute and
perform as described, but not to be deployed. In the deployment process
it can never be partially deployed, that is, in the deployment perspective,
a component is a single atomic unit.

The second characteristic property is its possibility to be part of a com-
position made by a third-party composer. Before a composer can use
a component, he would need to know how to access it. This means
that the component’s interface must be well-defined and specify which• component

interfaces
methods and public variables the component does offer, and what the
method’s signatures are. In addition to the interface, the composer needs
a broader understanding of what the component can do, in order to clas-
sify a component as usable or not. This is defined in a contract. The• contract

contract specifies what the clients need to provide, and what the com-
ponent then can offer (as long as the client fulfills its part of the con-
tract). The contract can cover functional and extra functional aspects
(QoS guarantees). The composer should not need an insight to the com-
ponent’s implementation in order to use it. It should be of no interest as
long as the component’s interface and contract offer are well defined. By
analyzing and comparing the properties of the component candidates,
the composer can choose the best component for the current scenario.

Finally, a component has no (externally) observable state. This means
that a component can not be distinguished from copies of itself. Szyper-
ski gives an example with a database and a database server [2]. The data-
base server could be a made as a component. This component would be
the same in any installation independent of the database(s) it serves. The
database would be an instance. If the component should also contain the
database as well as the database server, replacement and maintenance of
the component would be very difficult.

3.2 Component frameworks, containers and servers

A component framework can be described as the “glue” that ties com-• component
framework

ponents together. More accurately it is a set of interfaces and rules
for how components that are plugged into the framework can interact
[2]. The standardized rules and interfaces for interaction between com-
ponents simplifies component development and assembly, and makes it
easier for developers to understand the design of an application [11].

A container can in general be described as objects that contains other
objects [2]. A component container is thus an object that contains in-• component

container

3.3. BENEFITS FROM USING COMPONENT TECHNOLOGY 13

stances of components. Features of the components can be container
managed. An example of this is life-cycle management where the con- • container

management
tainer takes the responsibility for creating and destroying components
when it finds it appropriate. Its clients do not have to worry whether a
component is instantiated or not, as the container will take care of this
when required.

A component container runs on a component server. The server can host
one or more (possibly different) containers.

3.3 Benefits from using component technology

Szypersky [2] gives several reasons why the use of components is less
expensive than production from scratch. Below, it is presented a list
extracted from Szypersky’s discussion. The arguments underlying these
reasons are discussed in the following paragraphs.

1. Production from scratch is very expensive.

2. Except for the local areas of expertise, the implementation from
scratch will likely be suboptimal.

3. In a world of rapidly changing business requirements, custom made
software will often be too late to be productive before it is obsolete.

4. It is likely that components with different qualities will be available
at different prices. You get what you pay for.

5. Using standard software the burden of maintenance, product evol-
ution and interoperability is left to the vendor of the standard pack-
age.

6. With components, massive upgrade cycles will be put to an end.

1) Creating complex component from scratch, could be very expensive.
If it is a common problem, there could be a market for selling compon-
ents solving the problem, and thus suitable components could be avail-
able. The price would depend on factors like how big the market is,
the complexity and quality of the component, and the price/availability
of components from other companies. Even though a problem could be
common, there is no guarantee for the component solution being simple.
In some cases it could be quite the opposite, and a standard component
should then be considered.

2) A component created and tested by experts, would also release more
time to concentrate on local problems where the local expertise most

14 CHAPTER 3. COMPONENT TECHNOLOGY

likely would be. To make sure that all parts are well made, each part
should be created by experts in this field. It is very rare for a company
or a project to have experts in all required fields, and thus, the parts
where the expertise is missing could be of better quality if left to external
professionals.

3) With the increased complexity of a problem, the time spent creating a
component solving the problem would also increase. Delays in a project
could be very expensive, and if a component is too late for the product to
be successful, the result is fatal. A bought common-off-the-shelf (COTS)
component which is known to work, will shorten the time from planning
to finish, as the implementation is already done, and hence unexpected
delays are less likely to occur.

4) Another unwelcome surprise to a project is a component that performs
worse than expected. A component’s performance could be difficult to
predict before it is made and tested. Thus, critical parts of the application
could therefore be a source for delays in a project if the quality of the
component is inadequate. COTS components are tested components,
and they could be advertised with known quality, requirements and price
attributes. When a quality requirement is specified, the selection of a
COTS component with a sufficient quality would give a solution with
both a known price and a known performance.

5,6) The larger an application is, the greater is the amount of time likely
to be spent on maintenance. Again, using a third party’s components
should leave more time for maintaining in-house components. Any up-
grades should be a matter of independently upgrading components, not
a matter of upgrading the whole system. It could be easier to find a bug
if the changes to the system is smaller. If an error occurs after upgrading
one single component, the maintainer can conclude that the upgraded
component has something to do with the error in some way or another.
A simultaneous upgrade of several components could make bug tracking
more complex.

Chapter 4

Real-time Audio Streaming

Contents

4.1 What is real-time audio? 15
4.2 End-to-end delay . 16
4.3 Jitter . 17
4.4 Packet dropping . 18

4.5 Handling bandwidth limitations 19

This chapter will present some basic characteristics of real-time audio. It
will also address common problems in real-time audio applications, with
corresponding strategies for dealing with those problems.

4.1 What is real-time audio?

Before describing the real-time aspect of audio, the term audio itself
needs to be defined. To define audio, one need to know what sound is:

Sound is rapid pressure variations in the air, and the magnitude of • sound

the pressure variations creates the sensation of loudness. Sound move
through the air according to the rules of wave propagation, and therefore
sound pressure variations are often called sound waves. The sound
waves are analog as the air pressure is continuous [12].

Electronic sound is called audio [12]. To transform the analog audio • audio

signal to digital audio, it have to be sampled . We define sampling as • sampling

“the process of making a series of values equally spaced in time out of

15

16 CHAPTER 4. REAL-TIME AUDIO STREAMING

a continuously varying analog signal. Each sample is the instantaneous
value of the analog signal at the time of sampling” [12].

When the human ear is the destination of the sound that is played, audio
quality is best defined as the subjective evaluation of the audio. Thus,• audio quality

the best way to determine the audio quality of audio clips, are subjective
listening tests [13]. But even though the quality evaluation of the audio
is subjective, it is safe to say that in general, the quality of the sound
depends on attributes such as the sample frequency, the resolution of
each sample, and the encoding schemes (if the audio data is compressed).

Internet phones transports audio data from the sender to the receiver via
an audio stream. A stream is an entity representing an ordered, finite• audio stream

sequence of entities or values called elements of the stream [14]. Hence
an audio stream is an entity representing an ordered finite sequence of
audio samples.

It is important that the end-to-end delay (the difference between the time• end-to-end
delay

an audio sample is recorded, and the time it is received and played back
at the listener’s computer) is low, since a long end-to-end delay can cause
confusion in the conversation. This can be experienced when speaking
in a satellite transmitted phone call which have longer delays than most
regular phone calls. In a system where we have short delay constraints,
we say we have a real-time system. Thus, real-time audio is audio in a• real-time

audio
setting where the end-to-end delay should be low.

With common QoS requirements such as short delays, low packet drop-
ping and low jitter, a real-time audio application would be an example of
a QSA.

4.2 End-to-end delay

The end-to-end delay is caused by the network, the operating system, the
hardware, and the software itself. Figure 4.1 illustrates the delay from the
recording of an audio clip on one computer (A) till the playout of the clip
on an other computer (B).

a The start of the recording at computer A.

b The first audio clip is recorded and being sent to computer B

c Computer B starts playing the clip.

d The playing of the clip is done.

4.3. JITTER 17

Figure 4.1: An illustration of the delays before playout

As we can see, what user A said at a (the beginning of the clip) will not
be played back at computer B before c. The end-to-end-delay is thus
defined as c minus a.

If the information flow is one-way only (i.e. a radio transmission), the
end-to-end delay would not be very important. In a phone or conference
scenario the case would be quite different: If the delay is too long, it
conversations get difficult. The end-to-end delay should be kept under
400-600ms to avoid confusion and frustration from the users [15]. If
the delay is larger, it is likely that both the users will eventually start
talking in a silent spot on each side. After the delayed time, they will
find themselves talking simultaneously, and both instantly stop before
starting to talk again, making it possible to create the incident again.

4.3 Jitter

A phenomenon that is often discussed in a real-time and network envir-
onment, is jitter. Jitter is the variation of the delay caused by the network. • jitter

A sudden increase in the delay could cause a silent gap in the stream. A
sudden decrease in the delay could cause the packets to arrive too fast,
forcing the application to discard the packets arriving too early.

To deal with jitter, it is common to buffer the incoming audio stream
for a short while before it is played back. If there occurs a gap in the
stream before arrival, due to network unreliability, there would be some
time to wait for the missing audio packet to arrive and fill the gap. If the
packet is lost, a re-transmission of the lost packet could be required if
the buffer is big enough for the re-transmitted packet to arrive in time. A
programmer have to make a trade-off between dealing with delayed/lost
packets by using a jitter buffer, and a big end-to-end delay, as the jitter-
buffer increases the overall delay.

18 CHAPTER 4. REAL-TIME AUDIO STREAMING

Figure 4.2: An illustration of the delays before playout, in-
cluding the delay caused by buffering

Figure 4.2 shows the end-to-end delay including the delay caused by the
buffering. The end-to-end-delay is here defined as d minus a.

4.4 Packet dropping

An important challenge in a real-time audio application, is to avoid
packet dropping. We define packet dropping as a packet being lost in• packet

dropping
the network transfer, or a packet that is received too late to be played
back and thus discarded.

There are two different approaches to deal with packet dropping: One
could either try to avoid the packet loss and jitter, or one could have a
strategy to compensate for the problem. The former is handled by intro-
ducing a real-time operating system and resource reservation protocols
that can guarantee for the packets to be processed within an agreed time
[14]. The network would have to provide QoS guarantees (with guar-
anteed values for throughput, latency and packet drop). As the “phone
call” could be routed through a heterogeneous network with many net-
work providers which do not necessarily understand or respect the pro-
tocols, this could be a problem. In addition to that, people rarely have a
real-time operating system.

The latter approach is the approach most applications use, as it does not
require special network protocols, and could be used on the Internet as it
is today. It gives no guarantees, but tries to compensate when problems
occur. There are several ways to compensate for lost packets, and of-
ten more than one way is used in an application: One could use layered
encoding (with which a lost packet only reduces the sound quality and
not causing a short silence), or one could use forward error correction
(where parity data is added to later packets to make it possible to recon-

4.5. HANDLING BANDWIDTH LIMITATIONS 19

struct the lost packets) [16]. Both these methods add extra data which is
not always feasible. A third approach is to duplicate the former packet,
playing it twice, which works satisfactory if the packet size is small and
the loss rate is low [15]. A fourth and not so sophisticated approach is to
just play white noise or silence in the place of the dropped packet [16].
Many applications also monitors the packet loss, and if the loss is too big
it could change its strategy (possibly in agreement with the other user(s))
by changing the size of the jitter-buffer, or it could introduce, replace or
reconfigure a compression algorithm.

4.5 Handling bandwidth limitations

The absence of an adequate bandwidth could be a problem for the applic-
ation. If the bandwidth is insufficient, the packet drop would be great.
8000 kHz, 8-bit, mono, is by many considered to be of sufficient quality
for conversations. For uncompressed audio this equals a bandwidth of
8000 bytes per second or 64000 bits per second (bps). Compression co-
decs will reduce the bandwidth requirements, and the compression ratio
will depend on the codec. Speex1, an open source codec, can reduce the
bandwidth down to as low as 2000 bps (a 1:32 ratio) and up to 44000
bps, depending on the quality needed.

To avoid packet dropping, the bandwidth requirements should be adjus-
ted to be within the limits of the bandwidth available. One way to adjust
the bandwidth is to reduce the size, and hence also the quality, of the
data itself. In the case of audio, it is possible to reduce the sampling fre-
quency or the sample size, or switch from stereo to mono to achieve a
reduced bandwidth requirement for the network.

Another approach for dealing with bandwidth problems is the use of
compression. Compression is the act of transforming data to a new entity • compression

of lesser size, but where the new entity still represents the original data.
The compressed data could later be an object of decompression, that is;
being transformed back to data representing the original data, and with
the same size as the original data. The ratio between the original data
and the compressed data is called the compression ratio. • compression

ratio

If the original data is exactly the same as the data produced by decom-
pressing a compressed version of the original, we say we have lossless
compression. If the decompressed data is not the same as the original

• lossless and
lossy
compressiondata (i.e. there has been a quality reduction), we have a lossy compres-

sion. Lossless compression could seem to be the obvious choice as the

1http://www.speex.org

20 CHAPTER 4. REAL-TIME AUDIO STREAMING

goal is to play the audio at the other end as well as possible, but as the
lossy compression usually have a much higher compression ratio and still
offer a tolerable quality, lossy compression is often preferred.

Chapter 5

Identifying Common
Components

Contents

5.1 Investigating existing architectures 22

5.2 The common components 28

5.3 Requirements of the Common Components 31

To evaluate the benefits of implementing a phone application using com-
ponents, the application’s components and their requirements need to be
known. There is an infinite number of existing designs which could be
evaluated, and it would be impossible to evaluate them all. The method
used in this work is therefore limited to investigate several existing In-
ternet phone implementations and an information flow architecture, to
identify all common components and behaviors of the investigated ap-
plications. In addition, experience that helped in the analysis work was
gained through the implementation work in chapter 8.

This chapter will take a closer look at this identification of common com-
ponents. Finally their requirements to the component architecture will
be discussed, both individual and as a whole.

In which degree EJB supports the identified requirements, will be dis-
cussed in chapter 6.

21

22 CHAPTER 5. IDENTIFYING COMMON COMPONENTS

5.1 Investigating existing architectures

In the mid 90’s there were several research projects looking at real-time
audio transmissions on the Internet. In this thesis, two applications from
two of the more well known projects will be investigated. To cover more
of the up to date applications, the H.323 and SIP standards will be in-
vestigated as-well, as they are two often used standards in open source
projects. Finally, the Infopipes architecture will be briefly covered, as it
presents general elements for the building of distributed streaming ap-
plications, and as it is somewhat different from the others.

At the end of the section for each application or architecture, there will
be listed candidate components for a final list of common components.
The criteria for a component being considered as a candidate compon-
ent, is that the component can solve its task in an other application as-
well, and hence is independent of the specific composition or protocol
suite. In section 5.2 the final list of common components will be presen-
ted.

5.1.1 Free Phone

Free Phone [17] is one of the early Internet phone applications. An
overview of its design is depicted in figure 5.1. The design is divided into
two parts; one for the application in the role of a sender, and one in the
role of a receiver. In the further study of Free Phone, the transmission of
a sentence from it is recorded, and till it is played back at the receiver’s
computer will be investigated. This will be done by going through the
components in the design step by step, and inspect the behavior and
responsibilities of the components.

When the user is talking, the audio is recorded by the audio input com-
ponent. Before it reaches the compression component, the audio pack-
ets are filtered through echo cancelation and silence detection. When the
audio is played back with a loud speaker, it could happen that the micro-
phone catches the audio that is played back. If this happens, the other
user will experience an echo of his own voice. The role of the echo can-• echo

cancelation
celation component is to detect and filter out the audio that is recorded
from the loud speaker (and not the user’s speech). To do that, it needs
to analyze and compare the data from the playout buffer and the audio
input.

The silence detection component decides if an audio packet has any in-• silence
detection

formational value, or if it just contains silence or white noise. Silent
audio packets are filtered out and not sent to the receiver. The silence

5.1. INVESTIGATING EXISTING ARCHITECTURES 23

feedback
information

packet
transmission

automatic
gain control

compression
schemes

audio
input

echo
cancellation

silence
detection

congestion
information

audio
reconstruction

playout
buffer

audio
output

packet
reception

decompression
schemes

compression redundancy

mixing resequencingdecompression

receiver

sender

Figure 5.1: The design of Free Phone

24 CHAPTER 5. IDENTIFYING COMMON COMPONENTS

detection component also feeds the automatic gain control component
with data which adjusts the sensitivity of the microphone to normalize
the audio level.

Free Phone is designed to be a robust application, and it aims to handle
the unreliability of the Internet and adapt to changing resources. This is
achieved using two different techniques:

• Adjustment of the size of the data

• Adding of redundancy information

The size of the data that is sent depends of the bandwidth of the record-
ing (sample rate, bits per sample, and stereo/mono) as well as the com-
pression rate. The compression component uses a compression scheme
to compress the audio packets and make them smaller. It could be a
lossless compression scheme, or a lossy compression scheme. The feed-
back information component receives data from the receiver about how
well the data is received. If the network is congested and much data is
lost, the feed back information component can tell the compression com-
ponent to change its compression to one with a lower bit rate, and thus
reducing the size of the data in each packet.

The other technique that makes the architecture more robust, is covered
by the redundancy component. It adds extra data, called parity data,
to the audio packets making it possible for the receiver to reconstruct
lost data by looking at previous audio packets as well as the parity data.
The redundancy data is “piggy-backed”, to a later packet. Piggy backing• piggy backing

is a technique where separate (and often small) data is not sent in its
own packet, but added to a packet that is sent through the network and
primarily carrying other data.

At the receiver, the data is arriving at the packet reception compon-
ent. Information about the received audio packets is fed to the con-
gestion information component, which reports back to the sender about
the congestion. The audio packets are put back in the right order by the
resequence component (as the UDP packets may not arrive in the right
order). The compressed audio data is then decompressed by the decom-
pression component, and lost data recovered by the audio reconstruction
component. The two streams are then put together to one continuous
stream by the mixing component. The audio is stored in a playout buffer
before it is played back at the audio output.

Free Phone also uses the Real-time protocol (RTP), and to each audio
packet it is added a timestamp (used to measure end-to-end delays) and
a sequence number (used to rearrange the packets and to detect packet
loss).

5.1. INVESTIGATING EXISTING ARCHITECTURES 25

Free Phone supports conferences with multiple participants. It can either
send and receive data using several unicast connections, or it can use
multicast. Thus, no central server is needed.

The composition of Free Phone (shown in figure 5.1) consists of compon-
ents implementing common strategies and techniques in Internet phone
applications. All of the components can be found in other applications
as well. Thus, for Free Phone all components in figure 5.1 are included
as candidates for the list of common components.

5.1.2 Speak Freely

Speak Freely1 was originally written by John Walker in 1991, and is
therefore quite an old Internet Phone application. It has many of the
same features as Free Phone, such as silence detection, jitter buffer (play-
out buffer), RTP and compression. In addition it includes security by
supporting encryption standards (like Advanced Encryption Standard
(AES), Data Encryption Standard (DES) and Blowfish), and MD5 hash-
ing (for signatures).

Speak Freely does not add any component candidates to the list of com-
mon components that Free Phone has not already added. Although en-
cryption could be interesting in itself, it is in fact just an interceptor in
the flow path of the audio data, that transforms data. Encryption re-
quires normally only CPU time to perform its task, and is therefore sim-
ilar to other interceptors like the silence detection component. Encryp-
tion components are not added to the list since they do not introduce
any new aspects not covered by the other components.

5.1.3 H.323

More recent applications include GnomeMeeting2, CPhone3 and
ohphone (the first two found at www.freshmeat.net). Common for
these applications, are that they use the H.323 protocol standard, which
is made by the International Telecommunication Union (ITU)4. All
three applications were using the libraries from the OpenH323 project 5.
ohphone is a simple application made by the OpenH323 project. There
are also other well known (and mostly proprietary) applications that use

1www.speakfreely.org
2www.gnomemeeting.org
3cphone.sourceforge.net
4www.itu.int
5www.openh323.org

26 CHAPTER 5. IDENTIFYING COMMON COMPONENTS

H.323, like the Windows NetMeeting from Microsoft 6, which were not
investigated.

H.323 is an audio/video conferencing standard, but it is in fact a collec-
tion of several standards. That includes the H.261 and H.263 video com-
pression standards, and many audio compression standards (prefixed G.)
[18]. The audio and video data is sent using RTP/Real-time control pro-
tocol (RTCP) over UDP.

The call signaling (like connection requests connection establishing) is• call signaling

covered by the Q.931 standard (used in Integrated Services Digital Net-
work (ISDN)) and the H.225 standard. The user terminals use the call
control standard H.245 to negotiate master/slave issues, and for capabil-
ity exchange (as for example which compression protocols they support).
All three protocols are using TCP.

H.323 also covers features to adapt to resources changes. Methods for
maintaining the QoS should be handled by the end-points (H.323 ter-
minals and H.323 gateways). For example, bitrate changes should be
signaled via the H.245 FlowControl commands. Echo control should be
handled at the terminals as well.

As mentioned, all the investigated H.323 applications used OpenH323.
There are many parameters in the OpenH323 library that can be
set to change the behavior of the application. Many of them in the
H323EndPoint class:

• Silence detection can be set with the SetSilenceDetectionMode
method

• The jitter buffer delay is set with SetAudioJitterDelay method

• SetAEC sets the Acoustic Echo Cancelation level.

One can also define a priority list of which compression schemes that are
preferred.

H.323 supports conferences with multiple participants through its Mul-
tipoint Control Unit (MCU) [19]. In the MCU there is a Multipoint Con-
troller (MC) which handles call signaling and conference control. There
are two ways the audio data can be exchanged between the participants:
The first option is to use multicast to send the audio data to the other
participants. The second and centralized option, is to use the optional
Multipoint Processor (MP). The MP mixes the incoming audio streams
and uses unicast to send the data to all the participants. Some MPs
can also convert the audio (i.e. change sampling frequency, audio com-
pression etc) in real-time, and give the audio to each participant in their

6www.microsoft.com

5.1. INVESTIGATING EXISTING ARCHITECTURES 27

preferred format. A conference server is added to the list of component
candidates.

5.1.4 SIP

The Session Initiation Protocol (SIP) [20], made by the Internet Engen-
eering Task Force (IETF), is somewhat newer than the H.323 protocol.
It has less logical components and is thus simpler [21], but it is still used
as a basis for many of the same type of applications H.323 is used for.

Alone, SIP will only initiate, modify and terminate sessions. Thus, to
form functional telephony systems, it has to be used together with other
protocols, such as the rest of the overall IETF multimedia architectures.
Examples are RTP (used for transporting the media streams), Session
Announcement Protocol (SAP) (used for announcing multicast sessions)
and Session Description Protocol (SDP) [22].

Most implementations of SIP are using SDP to describe the multimedia
sessions [22]. SDP describes in a simple textual format which kinds of
media streams a client can handle and which it prefers. SDP descriptions
are carried as messages within SIP.

As mentioned, SIP is a quite small architecture, and do not offer mechan-
isms like echo cancelation, compression schemes or any other compon-
ents actively involved in the audio stream handling. Such components
have to be put on top of SIP. Thus, there are no additional component
candidates from this architecture.

5.1.5 Infopipes

The Infopipes project seeks to simplify the building of distributed stream-
ing applications by defining a set of building block components called
Infopipes [23]. An application is built by connecting these Infopipes to-
gether. They have a common data interface that either pushes data or is
available for being pulled.

Some of the Infopipes are:

• Sources which provide information to be transfered. A microphone
would be an example of a source.

• Sinks are the destinations for the stream.

• Pipes transmit data. A network connection may be wrapped as a
pipe.

28 CHAPTER 5. IDENTIFYING COMMON COMPONENTS

• Filters perform changes on the data. Compression and encryption
are two examples of filters.

• Buffers, such as jitter buffers

• Pumps are used to solve “push and pull”-incompatibility problems
between interfaces. If we have connected a source that expects to
be pulled, and a sink that expect to be pushed, nothing will hap-
pen. With a pump between them, the pump will pull data from the
source, and push it to the sink.

• We also have Split tees and Merge tees to split and merge data
streams.

There are also interfaces to control the behavior of the Infopipes, such
as a slower/faster interface for the pumps, and fillLevel for a buffer.
With these, we can build control mechanisms to adapt to changes in the
system.

Pumps are not mentioned in the other architectures, and could have
its mission, but as other components include the functionality found in
pumps, they are not included in the list of component candidates. A
further analysis of the need of pumps is present in the next section.

5.2 The common components

This section will present a list of selected components. The selected
components contain behavior that is common in all or most of the in-
vestigated applications. The purpose of making this list, is to investigate
the components to find their requirements for a component architec-
ture. The combined set of these requirements will be considered as the
requirements for a component platform in order for it to support com-
mon Internet phone applications. From the list of common components,
there will be made an abstract design of an Internet phone application.
This design is shown in figure 5.2.

The simplest design of an application would be to have a main data flow
that uses either pushing or pulling in the same direction all the way, al-
though it is also possible to introduce pumps (as in Infopipes) to combine
pull and push interfaces. The advantage of not using pumps is that there
is only one type of interface for all the components doing the same task.
In a real world, pumps could be needed, but as pumps in fact add no new
requirements compared to any of the active components, pumps will be
left out in the list of common components to keep it simpler.

5.2. THE COMMON COMPONENTS 29

Figure 5.2: The overall abstract architecture

audio input and audio output
All Internet phones would need an audio input to function. The output
would be a stream of audio clips. Audio output is equally needed, as it
receives audio clips for playout.

echo cancelation
As long as a loudspeaker is used, echo cancelation would be needed in a
phone application.

silence detection
To avoid streaming data when nobody is talking, silence detection would
also be needed.

compression, decompression and redundancy
Compression is necessary unless the bandwidth is very large. Substitu-
tion of compression schemes is a common way of adapting to a network
congestion situation. In an unreliable network, many packets could be
lost, and if there is no time for re-transmitting the lost packets, the use of
redundancy would be a possible solution to avoid gaps in the playout. To
make use of the redundancy information, an audio reconstruction com-
ponent and an audio mixer component would also be needed. As all
these components are common and often required for the applications
to perform satisfactory, these components are included in the list.

outbound communication and inbound communication
The sender needs to send its packets to the receiver. The communication
can be implemented in several ways including the use of a direct connec-
tion and publish/subscribe mechanisms. As the identified components
should not be tied into only one type of communication, two general
components are made for communication; an outbound communication

30 CHAPTER 5. IDENTIFYING COMMON COMPONENTS

component and an inbound communication component. All mechanisms
that can be part of the communication, such as network congestion de-
tection etc, are included into these two components. The outbound com-
munication and inbound communication components combined would
have the behavior of an Infopipe pipe.

jitter buffer
A jitter buffer is needed in all real-time audio applications to cope with
network jitter. The size of the buffer will depend on how big the jitter is,
and the maximum acceptable overall delay in the system.

The jitter buffer would also work as a playout buffer for the audio output.

GUI
A GUI component would also be needed in an application, and even
though it is not mentioned earlier as a candidate component, it is in-
cluded in this list. The user interface, would usually vary from applica-
tion to application, and hence it could be hard to reuse. In a very simple
form it could be reused, although its properties would have to be quite
limited.

interceptors
With a common stream format, it should be possible to introduce in-
tercepting components such as filters and monitors between two other
components in the flow path. A resequencing component which assures
that the audio clips are played back in the right order, is one example
of an interceptor. An audio resampler is another example of an inter-
ceptor. The requirements of the interceptors would be very similar to the
requirements of already listed components such as the silence detection
component. To keep this list simpler, they are not included in this list.

conferencing
For support of conferencing, some additional mechanisms will be
needed: As seen, multicast was used by most of the architectures to
support conferencing. The use of multicast requires the inbound com-
munication and outbound communication to handle multicast streams.
In addition, somewhere in the flow path, the different streams need to
be merged. A natural place to do this, would be close to or in the audio
output component. All the logic before the audio stream merging should
be able to treat multiple parallel audio streams independently.

Some communication systems like H.323 use a conference server for
conferencing. The conference server listens to all the clients, and merges
the incoming streams into one single stream. The client’s inbound
communication components receive the single (merged) stream from the
server, just as they would from an other client.

5.3. REQUIREMENTS OF THE COMMON COMPONENTS 31

5.3 Requirements of the Common Components

In this section, each identified component will be investigated to reveal
its requirements. Some overall issues, like the information flow between
the components, will be discussed as well. The identification of require-
ments will also be based on the gained experience from the implementa-
tion work in chapter 8.

5.3.1 The information flow

In the phone application composition, there would be two flow paths for
the audio data. The flow path will be a chain of components sending data
between each other. The first part of the flow path starts with the audio
input component, and ends with the outbound communication compon-
ent. The second part starts with the inbound communication, and ends
with the audio output.

Active or passive components

The components can be designed to be either passive or active. The act-
ive components form pressure to the information flow that drives the au-
dio packets through the system. In an active mode, a component would
have to run in its own thread. That is; it should run continuously, only
being put to sleep by performing blocking calls. A blocking situation
would typically appear when the caller tries to retrieve data that is not
yet ready. The method call then blocks (i.e. sleeps) as long as the data it
asks for is not ready. When the data finally gets ready, the caller of the
method will wake up and get the data.

An example of a method that could cause the caller to block, is a (buffer)
read method from the audio API. If the thread is asking for audio data,
and the audio data is not yet ready, it blocks until the audio card has
sampled enough audio data to deliver the amount of data the caller is
asking for. When the audio data is received, the active component would
perform some action with the data before it possibly once again would
invoke the read method to get more audio data. Thus, the thread would
be constantly running in a loop:

1. Invoke an audio read method (and block if the data is not yet avail-
able)

2. Sleep until the method unblocks, if it blocked in point 1.

3. Perform action on/with the audio data.

32 CHAPTER 5. IDENTIFYING COMMON COMPONENTS

4. Go back to 1.

In a passive mode, the component would depend on getting one of its
methods invocated by an external object. When the component has been
activated by a method invocation, it could perform any action until it re-
turns from the method. It would then once again depend on a method
invocation by an external object to become active. If the component has
a deadline for a job to be done, the external object would thus be re-
sponsible for the component to be activated in time to respect the dead-
line.

Both active and passive components could be used, but the flow path
need some pressure to work, that is, some action to move the data
through the flow. This could be provided by at least one component
such as an active audio input component that could “push” data through
the system, or an active outbound network communication component
that could “pull” the data to itself. It could also be just a pump (which
we left out in the list of common components). Either way, at least one
component would need to run actively in a thread.

Delays

As there is an overall end-to-end delay limit, any component can at most
spend the time equal to the maximum delay. As this leaves no time for
the other components to perform their actions, the delay should ideally
be considerably less. If the end-to-end delay exceeds the maximum limit,
audio clips will arrive too late, and the user will experience “gaps” in the
playout.

5.3.2 Investigating each component

The audio input and the audio output components

First of all, an audio input component would require access to the audio
card. There are a couple of ways this could be done: The first approach
is to let the component access the audio card directly. The second ap-
proach is to let the component access the audio card indirectly through
an audio service within the component framework, if one such exists.
Both ways would be sufficient.

From the audio card or the audio service, the audio input component
gets sampled audio data. In the audio input, it should also be possible to
set the audio format, that is; set the audio frequency and the sample data

5.3. REQUIREMENTS OF THE COMMON COMPONENTS 33

size, and choose between mono and stereo. The audio input would also
require enough CPU to perform its tasks in time.

The audio output component would have many of the same requirements
as the audio input component: Just as the audio input, it requires access
to the audio card, directly or indirectly through a service.

The echo cancelation component

The echo cancelation component is a filter in the path of the audio
stream. If an echo is detected, the clips containing echo are filtered out,
abd not sent to the next component in the path.

The component would require access to the playout buffer of the au-
dio output, either directly, or through an interface, in order to detect the
echo: It should be able to access the audio clip currently played and pos-
sibly one or more clips played before the currently played clip. The only
requirement to the component framework would be to let the two com-
ponents involved have access to each other’s data in one way or another.
This should not be a problem as the composition would be impossible
to implement at all if the framework did not offer inter-component com-
munication. Thus, this requirement should be assumed provided by all
component frameworks.

This filter, as all the other filters, should also have enough CPU time
to perform its action within the time limit (of the maximum end-to-end
delay).

The silence detection component

The component should get enough CPU time to, within the given time
limit, decide whether the audio clips contain valuable information to
hand over to the next component in the path, or just silence, which
should be stopped.

The compression and decompression components

The compression and decompression components have the same require-
ments as the silence detection component, but could possibly require
more CPU time to avoid exceeding the delay limit.

34 CHAPTER 5. IDENTIFYING COMMON COMPONENTS

The inbound and outbound communication components

The requirements of the communication components will depend on the
type of communication used. One possible communication model (used
by all the investigated applications in 5.1) uses direct communication, i.e.
the application establishes a connection to its counter part, and receives
connections itself. In that case the application acts as a server for incom-
ing audio packets, and the inbound communication component will need
to create network sockets (or access the equivalent functionality offered
by the current OS). The component should be able to handle connection
requests, establish connections, and receive packets from the network.
Thus, the component should always be or become active when a con-
nection request arrives.

In the same case, the outbound communication component will need to
establish connections to its counter part. Depending on the communic-
ation protocols of the application, it could require the availability of one
or more of the UDP, TCP and RTP/RTCP protocols.

An other possible communication model introduces the use of commu-
nication services. This means that the application do not send and re-
ceive data itself. Instead it will submit data to a service which sends it
to one or more receivers on the application’s behalf. In that case, the
requirements of the components will be the presence of such services,
and the possibility to be called back by the service when incoming data
arrives.

A configuration of an application will also have QoS requirements for the
communication components like maximum end-to-end delay, minimum
bandwidth and maximum jitter. If these requirements can not be fulfilled,
the application would have to be reconfigured to adapt to the current
network performance.

The jitter buffer and resequencing components

The jitter buffer is basically a simple first in - first out (FIFO) queue.
Since it only stores the audio clips in advance to even out the variable
time difference between the arriving audio clips, the only important re-
quirements would be some mechanisms to avoid race conditions (flaws• race

condition
occurring when parallel processes are simultaneously accessing and up-
dating the same data, causing the result of the operations to depend on
the timing of the events).

The resequencing component would be equal to the jitter buffer, except
that it will not be a FIFO queue as it sorts the incoming audio clips by its
time stamp set by the sender.

5.3. REQUIREMENTS OF THE COMMON COMPONENTS 35

The GUI component

The GUI component would require some kind of access to the graphic
API. It could be done directly, through a graphic server running in the
OS (such as the X server in Unix), or via a service within the component
server.

The component would also have to run actively to handle user inputs
such as button clicks, mouse movements etc., or alternatively; become
active when a user input takes place.

5.3.3 Summary of requirements

After investigating each component, this short list of requirements to the
component platform could be made:

• Creation of threads should be possible. Alternatively the compon-
ents should get activated by a timer often enough to perform as
necessary.

• Enough CPU time should be given to the components to avoid
breaking the maximum delay limit.

• Depending on the communication model, the components could
need to create connections and send network packets.

• The components could also need to act as servers, receiving con-
nection requests and incoming network packets.

• One or more of the following network protocols could be needed;
UDP, TCP and RTP/RTCP protocols

• The network communication services must offer enough band-
width, and satisfying values for jitter and end-to-end delay, or
else the application must be notified so a reconfiguration of the
application can take place

• Access to hardware and lower level services (directly or indirectly)
is necessary, such as for the audio card and the desktop (user inter-
action).

• Data that is accessed by more than one component, should have
mechanisms to avoid race conditions.

An analysis of how well EJB supports these requirements will be dis-
cussed in the end of chapter 6.

36 CHAPTER 5. IDENTIFYING COMMON COMPONENTS

Chapter 6

Java 2 Enterprise Edition and
EJB

Contents

6.1 Java and J2EE . 37

6.2 Remote Method Invocation (RMI) 39

6.3 Enterprise Java Beans (EJB) 39

6.4 Java Message Service (JMS) 43

6.5 An introduction to JBoss 44

6.6 EJB support for the requirements 46

First in this chapter, an overview of J2EE and its technologies, including
Enterprise Java Beans (EJB), will be presented. There will then be an
introduction to JBoss, the EJB implementation used in this work. Finally,
the possibility of implementing the common components identified in
chapter 5 using EJB, will be discussed. This will be done by investigating
the identified requirements as well as the EJB standard [24].

6.1 Java and J2EE

Sun Microsystems1 is the owner of the Java technology. Java seeks to of-
fer a cross-platform programming environment, where the programmer
is not dependent of certain Operating Systems or special hardware. A

1http://www.sun.com

37

38 CHAPTER 6. JAVA 2 ENTERPRISE EDITION AND EJB

program written in Java can be compiled to Java Byte Code. The byte
code can then be executed in a Java Virtual Machine (JVM). Such JVMs
are available for many OSes and hardware systems, and make the OS
and hardware differences invisible to the application. Thus, it is possible
to run the same compiled program on different platforms without recom-
piling. In other words, Java is both a programming language and a virtual
machine.

The current major version of Java is Java2. Java2 is delivered in three
different versions: Java 2 Standard Edition (J2SE), Java 2 Micro Edi-
tion (J2ME) suited for a mobile/wireless environment, and finally Java
2 Enterprise Edition (J2EE). J2EE is J2SE with an added collection of
technologies which is commonly needed in an enterprise environment.
These technologies are also standardized by Sun Microsystems.

Some of the added technologies are:

• Java Database Connectivity (JDBC) - JDBC performs SQL quer-
ies on a relational database, through a standardized API. JDBC
supports DBMSes (Database Management Systems) from different
vendors, but seeks to hide the differences of the systems to the cli-
ent.

• Java Naming and Directory Interface (JNDI) - JNDI supports dif-
ferent naming and directory providers, such as DNS, and in the
same way as JDBC, it seeks to offer the client a standardized way
of performing a request on the services, hiding their differences.

• Java Transaction API (JTA) - JTA offers local and distributed trans-
action services for the client.

• Java Messaging Service (JMS) - JMS is a standardized interface
for access to Message Oriented Middleware servers which supports
reliable asynchronous message transfers through publish/subscribe
and point-to-point models. We will look more into JMS in section
6.4.

• Remote Method invocation (RMI) - RMI provides transparent ac-
cess to remote objects. RMI is further explained in 6.2.

• Java Server Pages (JSP) and servlets - These are standards for
providing an environment for container managed components,
most commonly used for creating dynamic web pages through
HTTP(S).

• Enterprise Java Beans (EJB) - EJB components, called enterprise
beans, are run in a container which manages the components. We
will look more into EJB in section 6.3.

6.2. REMOTE METHOD INVOCATION (RMI) 39

• Java Management Extensions (JMX) - With JMX, Sun seeks to
offer a standard way of managing resources such as applications,
devices, and services [25]. Read more about JMX in 6.5.1 on
page 44.

6.2 Remote Method Invocation (RMI)

The intension of Java RMI is to make the introduction of distribution
easier. RMI enables local objects to perform method invocations on re-
mote objects as if they were local. The distribution is transparent for both
the caller object and the remote object.

RMI can communicate using two different protocols: Java Remote
Method Protocol (JRMP) is RMI’s native protocol. RMI can also
use Internet Inter-Orb Protocol (IIOP) which makes it possible
to access objects running on the Common Object Request Broker
Architecture (CORBA) platform.

CORBA is defined by the Object Management Group (OMG)2. The basic
version does support distribution but not components. For the use of
components, OMG defined the CORBA Component Model (CCM) [26].

6.3 Enterprise Java Beans (EJB)

EJB is Java’s distributed component model. The components are called
Enterprise Java Beans (not to be compared to Java Beans which have no
support for distribution).

In EJB the beans are run in a container, which manages components and
performs method invocations on behalf of its clients (see figure 6.1). The
container has the responsibility for extra functional aspects of its beans,
such as the life cycle: When a new bean is needed, the container creates
and launches it. In the same way it can destroy the bean, or temporarily
cache it to disk to be activated when needed. The container also makes
the location of the caller transparent, and the bean does not need to
know if the calling object is a local object or a remote object using RMI.

The goal of EJB is to enable the programmer to focus on the compon-
ent’s functional aspects alone, as the business logic is separated from the
underlying technologies. Using the technologies listed in section 6.1,
Sun claims that the maintainer should be able to replace a resource, e.g.

2http://www.omg.org

40 CHAPTER 6. JAVA 2 ENTERPRISE EDITION AND EJB

Client Object

Stub Skeleton EJB

Client

Container

J2EE Application Server

Figure 6.1: An example of a method call on an enterprise bean
(EJB)

the computer architecture or a Database Management System (DBMS),
without reprogramming the components. Such separation of concerns
can be useful as the need for changes in the business logic and changes
in underlying software resources not necessarily occur at the same time.

There are four types of enterprise beans:

• Stateless Session Beans

• Stateful Session Beans

• Entity Beans

• Message Driven Beans

6.3.1 Session beans

Session beans are used to implement business logic. They are stored in
memory, and thus will not survive a server crash or server shutdown,
but for the same reason they are faster to execute than entity beans (see
6.3.2). There are two types of session beans; Stateful session beans and
stateless session beans.

Stateful session beans

When a client calls on a stateful session bean, it gets its own copy of
that bean. The values of the variables in the bean is persistent between
method calls, and thus a stateful session bean can be used to store data
for a short while. As the data is stored in memory, it will be lost in a
server shutdown or server crash.

6.3. ENTERPRISE JAVA BEANS (EJB) 41

An example of a situation where a stateful session bean is useful is a
shopping cart in a web shop; The bean stores all items in the cart until
the user submits the order or aborts.

Stateless session beans

Stateless session beans do not store any data between calls, and thus a
client does not “own” a particular bean. The server has a pool of stateless
beans, and offers any of them to a client that wants to invoke a method
on a bean. A method call on a stateless bean can therefore be faster than
a call on a stateful bean, as the server has to find a particular (or create a
new) bean for an invocation on a stateful bean.

6.3.2 Entity Beans

The entity beans are designed to store persistent data. The server has the
responsibility for their persistence, and thus a bean will survive a server
shutdown or a server crash. An entity bean can map to any persistent
store such as a file, but a relational database through JDBC is probably
most common. The client does not have to invoke any methods to store
the data on the persistent store, as this is managed by the server.

The persistence can be managed either by the container, Container Man-
aged Persistence (CMP), or the bean itself, Bean Managed Persistence
(BMP). In the case of using CMP, the container has the full responsibil-
ity of storing the bean in a persistent store. The bean developer do not
have to know which kind of store the container uses. The developer can
also make his own methods to preserve persistence using BMP. In that
case the developer creates the code for retrieving and storing data to the
persistent store, but the server still has the responsibility of calling those
methods (the user cannot call them himself).

An entity bean can be found by calling a finder method in the Home
interface (see 6.3.4). The identity of the bean is represented by a (unique)
primary key.

6.3.3 Message driven beans

A Message Driven Bean (MDB) is a bean that “listens” to a Java Mes-
saging Service (JMS) topic. When a message is published in the topic,
the MDB reads the message, and performs an action (as for example in-
voking method calls on other enterprise beans). MDB’s were added to

42 CHAPTER 6. JAVA 2 ENTERPRISE EDITION AND EJB

the EJB standard in version 2.0. One of the implementations described
in chapter 9 will use an MDB.

6.3.4 The Remote and Home interfaces

When a client asks for a bean, or performs a method invocation on a
bean, this is done by calling on methods defined in the Home interface
and the Remote interface.

The Remote Interface

The remote interface declares the methods in the bean on which the cli-
ent can perform method invocations. The interface is a Java interface,
so the methods are not implemented, and the interface contains only the
signatures of the methods. The EJB server uses the remote interface to
create the remote skeleton.

The Home Interface

The Home interface is a Java interface declaring the remotely invoked
methods for life cycle management, such as create. It also declares the
finder methods for entity beans. As with the Remote interface, the server
creates an implementation of these methods.

Introduction of Local interfaces in EJB 2.0

As method invocations on beans running locally were quite slow using
the remote methods, EJB 2.0 introduced interfaces for locally invoked
methods. Thus the prior Home interface was renamed Remote Home
interface and a Local Home interface was introduced. The Local Home
interface is, as the name indicates, used for local method calls from ob-
jects within the same JVM, and it is more efficient. In the same way
the Remote interface got a local equivalent called Local interface for
method calls from local objects.

Even though local invocations are executed more effectively, there is a
drawback using this approach: If a component is made using the local
interface of an other component, it cannot be reused in a setting where
the other component is a remote component. In other words, this un-
dermines some of Sun’s goals with the architecture.

6.4. JAVA MESSAGE SERVICE (JMS) 43

6.3.5 Deployment

An enterprise bean ready for deployment is stored in a .JAR file. A JAR
file is actually a ZIP file (a commonly used archive file type storing com-
pressed files). The “JAR” file extension indicates that the zip file contains
Java class files, and is a native Java archive file type for bundling files.

The JAR file used for deploying an enterprise bean contains the class
files for the bean itself, and class files for the remote interface, the home
interface and (possibly) the local interfaces. In addition to the class files,
the JAR file contains a directory named META-INF which contains the
Extensible Markup Language (XML) deployment descriptor file named
ejb-jar.xml. The ejb-jar.xml is part of the EJB standard and has to be
present.

In addition to the ejb-jar.xml file, the META-INF directory can contain
server implementation specific deployment information. In the case of
JBoss this file is named jboss.xml. The introduction of server specific
deployment information may reduce portability.

How to actually deploy the JAR file on the server is server specific, and
not a part of the J2EE standard. See chapter 6.5 for information on
deployment of enterprise beans in JBoss.

6.4 Java Message Service (JMS)

JMS (Java Message Service) has been developed by Sun3. In this thesis
work it is used for distribution of audio clips between the Internet phone
clients. JMS provides two messaging models:

• Point-to-point with queues

• Publish/subscribe with topics

A Queue can have several producers and consumers, but a message can-
not be received by more than one receiver. A JMS queue is, in other
words, a first in - first out (FIFO) queue where several producers can
put messages on top of the queue, and several consumers can remove
messages from the bottom of the queue.

A Topic can, just like a queue, have several producers and consumers,
but the messages are received by all the consumers: When a producer
publishes a message to the topic, JMS distributes that message to all the
consumers subscribing to the topic.

3http://java.sun.com/products/jms/

44 CHAPTER 6. JAVA 2 ENTERPRISE EDITION AND EJB

The consumer must implement the interface MessageListener. Its method
onMessage will be invocated with the message as parameter each time a
new message arrives.

6.5 An introduction to JBoss

JBoss is an open source J2EE application server made by the JBoss
Group4. The server consists of containers for enterprise beans and
web servlets, and services like JMS and JNDI (see the next section).
The JBoss Group consists of developers from all over the world, and is
headed by Marc Fleury.

The support of JBoss is handled by JBoss Inc, which is a worldwide or-
ganization, founded by the core developers of JBoss5. They make money
on support, and by selling documentation.

JBoss now supports most of the J2EE standard, and after an agreement
with Sun Microsystems, the JBoss group is currently working on certify-
ing JBoss.

6.5.1 The JBoss core

Many EJB servers are monolithic and have all the services as part of their
core servers. JBoss is different in that respect; One of Sun’s ideas with
J2EE is to make it possible to create applications in a modular way where
replacement of any component in the application should be simple. In
the same way, JBoss is made with a small core (a so-called micro kernel),
and the rest of the services are implemented as components connected
to the core (see figure 6.2). The core is named the JBoss server spine [27]
and is built around an implementation of the Java Management Exten-
sions (JMX) standard.

Sun’s goal with JMX was to provide a simple, standard way of man-
aging resources, such as applications, devices, and services [25]. A re-
source is managed by a Managed Bean (MBean) which is registered in
a MBean server. The MBean server acts as a management agent, and
thus completely controls the MBeans. As it supports distribution, the
resources can be discovered and controlled by remote objects through
the MBean server. In JBoss, the MBeans that are registered at the JMX

4http://www.jboss.org
5http://www.jboss.com

6.5. AN INTRODUCTION TO JBOSS 45

JBossTX (JTA) EJB container JBossNS (JNDI)

JBoss server spine (JMX)

JBossMQ (JMS) JBoss CMP Web container

Figure 6.2: JBoss server spine with some services

server can be seen by looking up the web page http://localhost:
8080/jmx-console

All the services in JBoss (such as JMS, JNDI and the EJB container) is
made as MBeans which is managed by the JBoss JMX server. Any ser-
vice can supposedly be replaced by an equal service from another vendor
by replacing the MBean. This design also makes it possible to add new
services to the JBoss server and is thus relevant for the analysis and sug-
gested changes to the J2EE standard in chapter 10.

6.5.2 Deployment

To deploy a component, the file (i.e. the JAR file) must be copied to the
directory server/default/deploy in the JBoss root directory, and JBoss
should discover the new file within few seconds. As JBoss deploys the
component, it prints system information about the deployment. The res-
ult of the deployment (if it was successful or not) will also be printed to
the console. Any component or service can be deployed while the ap-
plications are running, and without re-starting the server. JBoss will keep
track of the dependencies between services [27].

46 CHAPTER 6. JAVA 2 ENTERPRISE EDITION AND EJB

6.5.3 Creating a JMS topic in JBoss

To create a new JMS topic in JBoss, the name of the topic and its at-
tributes must be defined in the file jbossmq-destinations-service.xml in
the server/default/deploy/jms directory. This is how the topic conferen-
ceTopic used in the implementations in chapter 8 and 9 is made. When
the XML file is saved, JBoss detects the file’s changed time stamp, and
deploys the file, and thus creates and activates the new topic.

6.6 EJB support for the requirements

In this section, the possibility of implementing the common components
identified in chapter 5 using EJB will be discussed. This will be done by
investigating the requirements identified in the same chapter, as well as
investigating the EJB specification [24].

The following sections will address each requirement separately. The
requirements will be repeated in the beginning of each section.

6.6.1 Creating threads

Creation of threads should be possible. Alternatively the
components should get activated by a timer often enough
to perform as necessary.

The EJB 2.0 specification [24] (hereby called the specification) forbids
the use of threads:

The enterprise bean must not attempt to manage threads.
The enterprise bean must not attempt to start, stop, sus-
pend, or resume a thread, or to change a thread’s priority
or name. The enterprise bean must not attempt to manage
thread groups.

The reason given for this restriction is that if an enterprise bean was
allowed to spawn a thread, the container would no longer be in full con-
trol of the resources within the JVM, and it can no longer manage the life
cycle of its beans properly. In the following sections, the different kinds
of requirements for continuous execution will be identified. Finally, there
will be discussed if alternative functionality can be used in the place of
threads.

6.6. EJB SUPPORT FOR THE REQUIREMENTS 47

There are different needs for continuous execution of the audio applica-
tion components, and the components can be defined into two different
groups: The first type requires the component to give immediate response
when a given situation occurs. The only component that have such re-
quirements is the GUI which manages this without threads in Java. The
GUI is implemented using the Advanced Windowing Toolkit (AWT) API
which uses events for handling the response from the user. Every time
a user moves his mouse, pushes a button or writes some text, an event
is produced. Other objects can “subscribe” to those events by extending
an event interface and implement an event handler. Each time the user
pushes a button or does anything else that the subscribing object needs
to know about, the event handler is executed. Thus, no components in
this category in the application needs threads.

The other type of component has to perform certain tasks periodically
and cannot be delayed. Examples of this would be the audio output or the
audio input components. When a new buffer is ready and full of sampled
audio for the audio input, the data would have to be handled very quickly
and within a certain time. When a component is running in its own
thread, the solution is rather trivial (and discussed in section 5.3.1). The
component does not have to run continuously though, but it does have
to be running regularly to perform its task. Thus if the component got
activated (that is, put in a running state) by another object when needed,
the component could still perform as required.

There are two ways a component could get activated (except for running
in its own thread and set in a running state by the CPU scheduler):

1. The activation could be done by an other object performing a
method call on the component.

2. The component could get activated by a timer

The first option requires that the object activating the component is not
running in the EJB container. If it was running in the container, it would
also have the same requirement for running actively in a thread as the
component it should activate. Thus, the component would have to de-
pend on an object running outside the container, which means that the
whole application cannot be made in EJB.

The EJB container offers a service called the EJB Timer Service. The
Timer Service can be used to perform callbacks to the enterprise beans.
This can be scheduled for a given time, or at specified intervals. The
timers can be used for entity beans, stateless session beans and message-
driven beans through the EJBContext interface. Note that stateful session
beans can not make use of this service. When the specified time occurs,

48 CHAPTER 6. JAVA 2 ENTERPRISE EDITION AND EJB

the timer performs a method call on the ejbTimeout method defined by
the javax.ejb.TimedObject.

The intended use of the EJB Timer Service is not real-time use, though.
The time delays for this service should be measured in hours or even days
according to the specification. Using the EJB Timer Service to activate
the audio input would hence be quite risky, since the required maximum
deviation to the specified callback time should not be more than a dozen
of milliseconds. There is absolutely no guarantee that the ejbTimeout
method will be invoked within the given deviation limit. A one second
deviation to the specified callback time for a “once per day” event is
negligible. A one second deviation for a “once every 250 milliseconds”
event is crucial.

6.6.2 CPU power

Enough CPU time should be given to the components to
avoid breaking the maximum delay limit.

Managing threads is, as previously stated, not allowed. Hence, changing
a thread’s priority is prohibited. Since the EJB API does not offer any
other way of giving priority to certain tasks, there will be no way to make
certain that the required CPU priority will be offered.

A real-time client (i.e. a client running in a real-time environment) could
guarantee that a method invocation takes place within a given time.
The enterprise bean might still run in a non real-time container, though.
Since the underlying OS and VM are responsible for the scheduling of
the VM and the container respectively, the response time cannot be guar-
anteed unless the OS and the VM give real-time guarantees. In addition,
the container is free to manage all the threads running inside it. The con-
tainer may therefore offer guarantees as well, otherwise the enterprise
bean cannot offer any. During the work of this thesis, neither the OS,
VM nor the container gave such guarantees.

6.6.3 Creating and receiving network connections

Depending on the communication model, the components
could need to create connections and send network packets.
The components could also need to act as servers, receiving
connection requests and incoming network packets.

6.6. EJB SUPPORT FOR THE REQUIREMENTS 49

Creating network socket connections is allowed by the specification.
This means that a client can use any supported protocol to send inform-
ation to a receiver. Receiving network connections on the other hand, is
not allowed. The specification states:

An enterprise bean must not attempt to listen on a socket,
accept connections on a socket, or use a socket for multic-
ast.

The specification prohibits this since the idea of EJB is to serve EJB cli-
ents. This means that there are two possible ways of receiving the audio
packets if a communication model with direct communication (i.e. not
using communication services) is used:

1. The enterprise bean can get the audio packets by receiving regular
method calls through the remote interface (using Remote Method
invocation (RMI) over the network).

2. The enterprise bean can be polling the sender. If both the sender
and receiver are enterprise beans, neither the sender can receive
network connections. That means that polling is only an option if
the sender is not an enterprise bean.

Using regular method calls for this task means that the programmer can-
not choose which network protocol to use. He has to be satisfied with
the underlying protocols of RMI.

If the application, instead of managing its own communication, relies on
a service to perform the communication on its behalf, there would be no
such restriction problems. The JMS could be such a service. A client can
post audio packets (or actually audio messages using JMS terminology)
on a JMS topic, and subscribe to the same topic to receive all messages
posted on the topic.

6.6.4 Supported protocols

One or more of the following network protocols could be
needed: UDP, TCP and RTP/RTCP protocols

All the protocols to be used must either be bundled with Java, or if any
protocols are not a part of standard Java, they must be made in pure Java
code, i.e. not using a native library. Method calls to native libraries are
not allowed by the specification as they would cause a huge security risk.

The package java.net, which is a part of standard Java, supports TCP,
UDP and multicast, but there are also other protocols available that do

50 CHAPTER 6. JAVA 2 ENTERPRISE EDITION AND EJB

not use native libraries. An example is an RTP implementation made by
Columbia University, New York [28].

6.6.5 QoS requirements for network services

The network communication services must offer enough
bandwidth, and satisfying values for jitter and end-to-
end delay, or else the application must be notified so a
reconfiguration of the application can take place

A configuration of the application would need a certain (defined) quality
of the communication (network) service in order to function adequately.
This could be supported in two ways: Network protocols with guarantees
like DiffServ and Intserv could be used for the all network communic-
ation, like e.g. RMI and JMS in the case of EJB. This is what is done
in [10]. Alternatively, the application would have to be re-configured to
adapt to changes in the network performance when the quality drops un-
der the given limit. A monitoring service of the QoS status would thus
be required.

6.6.6 Race conditions

Data that is accessed by more than one component, should
have mechanisms to avoid race conditions.

Both the audio output and the packet reception (possibly with some com-
ponents like decompression and resequencing in between) will access
the buffer with the audio clips. When two or more components are work-
ing on the same data, race conditions could occur.

In a non EJB setting, it would be natural to store the audio buffer as a
local array in a component. In EJB this cannot be done, as only state-
ful session beans can store data, and there is supposed to be a one-to-
one mapping between a component and an instance of a stateful session
bean. Thus, data that has to be accessed by more than one component,
has to be stored elsewhere. In an EJB setting, entity beans would be
the solution. As the EJB server has the responsibility to avoid concur-
rent access by two components, the requirement for this application is
thus satisfied. The only question is whether this solution will be quick
enough, or not. The entity beans are often stored in a SQL database
through Container Managed Persistence (CMP) (see 6.3.2). This could

6.6. EJB SUPPORT FOR THE REQUIREMENTS 51

be too slow for an real-time audio application. The use of Bean Man-
aged Persistence (BMP) with empty persistence methods can possibly
solve this time consumption problem.

6.6.7 Accessing hardware and lower level services

Access to hardware and lower level services (directly or in-
directly) is necessary, such as for the audio card and the
desktop (user interaction).

As stated in chapter 5, there are two categories of hardware / lower level
services that have to be accessed (that is, in addition to the network
card), namely the audio card and the services for user interaction.

Graphics display, keyboard and mouse

In Linux and other Unix flavors, the user interaction is usually commu-
nicated through the X server. The software connects to the X server as a
client, and the X server displays all the graphic on behalf of the clients
using the graphic card. X also forwards information from the keyboard
and the mouse back to the client software.

In Java, software with a Graphical User Interface (GUI) creates its win-
dows and other sub elements in the GUI using AWT, or AWT’s successor,
Swing. But the EJB specification do not allow this:

An enterprise bean must not use the AWT functionality to
attempt to output information to a display, or to input in-
formation from a keyboard.

The specification explains this restriction by saying that most servers do
not allow user interaction to happen using the server’s keyboard or dis-
play.

As accessing the AWT (or Swing) API is not allowed, and as there are
no service within the container offering access to the hardware, the user
interaction has to be managed and take place outside the EJB container.

Audio card

Access to the audio card is not mentioned in the EJB specification at all.
The reason is probably that the intended type of applications to be made
in EJB is distributed business applications, as proclaimed at the first page
of the EJB specification.

52 CHAPTER 6. JAVA 2 ENTERPRISE EDITION AND EJB

Actually, the specification do not mention hardware access or access to
lower level services in general anywhere in its list of restrictions. Only
specific restrictions as creating network sockets are mentioned. Another
such example of a specific restriction for access to a lower level service is
the use of the java.io API.

An enterprise bean must not use the java.io package to at-
tempt to access files and directories in the file system.

The reason is rather obvious: Storing data using files in a multi container
environment could cause race conditions and might also be inefficient.
The use of JDBC or other similar resource managers is necessary.

Direct access to hardware or lower level services would make it im-
possible to replace one server with a server cluster. If audio sampling
is done in a cluster, one cannot be sure of which audio card on which
computer will be used for the sampling. One EJB container could also
run on more than one JVM which could also produce some race condi-
tion problems when accessing the hardware/service.

EJB is designed for scalability and the hardware/service access in a scal-
able environment would require the presence of a resource manager for
the hardware/service. Thus, for access to an audio card, an audio card
manager would have to be present so all components regardless of its
location can access that specific audio card.

Even though the EJB specification does not mention hardware or lower
level service access as a whole or audio card access in specific, it is reas-
onable to believe that such access is not meant to be legal and would be
stated illegal if the designers had an impression that many programmers
would try this.

Chapter 7

Designs following the EJB
specification

Contents

7.1 Implementing all components as enterprise beans . . 53

7.2 A design partially made using EJB 54

7.3 Splitting the identified components 58

7.4 Summary . 62

This chapter will look at possible designs of an Internet phone system.
The designs should follow the EJB specification and not violate any of
the programmer’s restrictions. The possibility of implementing only some
of the identified components as enterprise beans, and the possibility of
splitting a component to make only parts of it as an enterprise bean, will
be investigated. The motivation for this work is to learn more about the
limitations of EJB, and to what extent it is possible to utilize EJB for an
Internet phone application without violating the standard.

7.1 Implementing all components as enterprise
beans

The discoveries in section 6.6, shows that implementing all parts of the
client using EJB components would be impossible.

53

54 CHAPTER 7. DESIGNS FOLLOWING THE EJB SPECIFICATION

• The GUI can not be implemented in EJB, as using AWT is not al-
lowed.

• The audio output and audio input that want to access the audio API
in the OS are not supposed to do so.

• The inbound network communication is not allowed to create and
listen to sockets, so its only option is to receive packets through
method calls and JMS

• Many of the components, such as the audio output and the audio
input require either to be able to create threads (which is not al-
lowed) or being made active by a timer or an other object. The
container’s EJB Timer Service is not intended for real time use, and
being called periodically by a client violates with the thought of
implementing all parts using EJB.

In addition, EJB do not have any resource management for CPU schedul-
ing and network communication. The lack of resource management in
general will not make it impossible to create an Internet phone applica-
tion, but the application could experience performance problems.

In other words, an implementation of the client using enterprise beans
would be practically impossible, but there are still possibilities for imple-
menting components that are not affected by the restrictions. An applica-
tion using enterprise beans for parts of its design would thus be possible.
This approach will be discussed in the next section.

7.2 A design partially made using EJB

In a design that is partially using EJB, the design is divided into two parts:
One part is running within an EJB container as one or more enterprise
beans. The other part runs as a “regular application”, that is; an applica-
tion that runs outside the EJB container. These two parts communicate
with each other, and together they form a fully functioning application

All the components with requirements that are not in conflict with the
EJB specification, are placed in the EJB container as enterprise beans.
The ones that are in conflict with the specification are implemented as
objects within the part outside the container. This part running outside
the container will from here on be referred to as the main element. The
main element will have the responsibility of initializing the application
and establish connections to the enterprise beans.

This separation of the design makes it possible to utilize the advantages

7.2. A DESIGN PARTIALLY MADE USING EJB 55

of EJB for the components running within the container. The ones run-
ning in the main element are run outside the container, and thus the EJB
specification is not violated.

This section will look at this design solution and discuss its pros and
cons.

7.2.1 Which components can be made as enterprise beans?

As seen in figure 7.1, the audio input, the audio output, and the GUI
can not be made as enterprise beans without violating the EJB standard.
Whether the network communication components can be made as an
enterprise bean, depends on which techniques that are used for the com-
munication. The identified components that can not be implemented as
enterprise beans must therefore be implemented in the main element.

The rest of the components are considered possible to implement as en-
terprise beans in this scenario (the discussion of why this is so follows
below):

• silence detection

• echo cancelation

• compression

• redundancy

• jitter buffer

• outbound network communication (depending on its design)

• inbound network communication (depending on its design)

The silence detection determines whether one or more audio clips con-
tain audio or just silence. This is done as a calculation on the audio data,
which then is sent as a parameter to the method that is invoked. The en-
terprise bean does not require access to other resources to perform this
job.

The echo cancelation component has similar functionality as the silence
detection component, but it needs access to previously played audio clips
as well as the present audio clips. This can be solved in many ways: The
main element can send the previously played audio clips as a second
parameter. The enterprise bean could also access the audio output buffer
(this can be done if the buffer is implemented using entity beans; see
below). A third solution would be to implement the echo cancelation as
a stateful session bean and let the audio output invoke a method in the

56 CHAPTER 7. DESIGNS FOLLOWING THE EJB SPECIFICATION

Figure 7.1: An overview of the application. The lines rep-
resent communication between the enterprise beans and the
main element

bean each time it receives a new audio clip. All three methods would
work, but the design of the main element must be compatible with the
method used.

The compression component reads audio clips as input and returns com-
pressed audio clips. Depending on the compression scheme in use, it
could compress each audio clip independently, or it could need to work
on several clips together. Its design will thus be similar to the designs of
the silence detection and echo cancelation components.

The design of the redundancy component would be similar to the designs
of the other components (above). However, in contrast to the other com-
ponents, the redundancy component will always need to access several
audio clips simultaneously; because additional information is added to
an audio clip to make it possible to recreate information about other lost
audio clips.

The jitter buffer could either be implemented as a stateful session bean,
or as an entity bean. As previously mentioned, stateful session beans
have a one-to-one mapping with their clients, which makes it impossible
for multiple clients to access data in the same instance of a session bean.
This means that if the jitter buffer is made as a session bean, only the main
element should access the bean; all other parts, i.e. the other enterprise
beans, should get access to the buffer through the main element.

The jitter buffer could also be made as an entity bean. With entity beans,
it is possible for multiple clients to access the buffer, and hence, in ad-
dition to the main element, also the other enterprise beans could access

7.2. A DESIGN PARTIALLY MADE USING EJB 57

the buffer directly. The entity bean could either be made with Container
Managed Persistence (CMP), or Bean Managed Persistence (BMP). In
the case of CMP, the performance would depend on the way the con-
tainer handles the persistence. It is thus unknown to the designer how ef-
ficient this would be as it would vary between different container setups.
In the case of BMP, the programmer could take care of the persistence
himself. It would be possible to create empty BMP methods that would
cause the enterprise bean to not survive a server shutdown or its removal
from memory (which happens if the bean is not used for some time). This
could thus make entity beans faster.

The outbound network communication can be made without concerns
for restrictions, as long as it only sends data. Depending on the com-
munication type, the component could also include congestion feedback
logic, which would involve logic for receiving data as well. The enterprise
beans are not allowed to create sockets and act as servers, so receiving
data can only be done if they use regular EJB method calls, or if a bean
uses services like JMS to receive data.

Whether the inbound network communication can be made as an enter-
prise bean or not, depends on the mechanisms used for the communic-
ation. As with the congestion feedback logic in the outbound network
communication component, discussed above, this component can only
be made as an enterprise bean if it does not have to create sockets and
to act as a server. This means that the incoming data must be received
using regular EJB method calls, or by using services like JMS.

7.2.2 Discussion about the solution

An important disadvantage of this design would be the inflexibility com-
pared to a design where all the components are running on a component
server. The identified components implemented as enterprise beans can
be replaced, either by a reconfiguration of the application, or by a phys-
ical replacement of the bean. The other identified components are imple-
mented as objects in the main element and can not be replaced without
altering the source code, and hence the main element would have to be
recompiled. This makes it hard to reuse different parts of the application.

Another problem is that the enterprise beans can not access the main
element in the same way as they access other enterprise beans, unless
the main element is extended with RMI (see the next paragraph). They
are all invoked by the main element, and the data they need from the
objects within the main element will have to be provided as a parameter
to the invoked method.

58 CHAPTER 7. DESIGNS FOLLOWING THE EJB SPECIFICATION

Access to the main element could be made possible though, if the main
element is implemented with RMI. If the main element also registers itself
using JNDI, the enterprise beans can then look up the main element
more or less in the same way as they look up other enterprise beans. This
is possible without breaking any restrictions since acting as a network
client is allowed by the EJB specification.

A third concern is the network traffic the method invocations cause. In
the interaction between enterprise beans running in the same container,
local interfaces can be used, which removes the network protocol over-
head. Between a client outside the EJB container and an enterprise bean,
RMI has to be used, and even though the client and the EJB container
run on the same computer, the communication is going through the pro-
tocol stack, which gives an overhead compared to the use of local inter-
faces. The reduction of performance using RMI was the reason why Sun
introduced the local interfaces in the EJB 2.0 specification.

7.3 Splitting the identified components

The previous section investigated whether the identified components
could be entirely implemented as enterprise beans or not, and divided
them thereafter. A second way of designing an application partially
made of enterprise beans, is to split an identified component into two
parts: The logic that is not in conflict with the EJB standard can be
made as enterprise beans. The rest of the logic will be placed in the main
element. This is interesting since it makes it possible to create larger
parts of the application as enterprise beans. This section will investigate
this design alternative and how it can be implemented. Finally the
solution will be discussed.

7.3.1 The design principle

When a component is split, the two new elements will work in a pair,
that is, the two new elements will together perform the task of the old
component. One part is implemented as an enterprise bean running in
an EJB container. The other part can be created inside the main element
as an object. An example with a split inbound network communication
component is shown in figure 7.2.

In this example the inbound network communication will use a protocol
that makes it necessary to create network sockets. This will be done in

7.3. SPLITTING THE IDENTIFIED COMPONENTS 59

Figure 7.2: An overview of the application where the inbound
network communication component is split

the main element since creating sockets can not be done within an enter-
prise bean. A second task of the component is to resequence the audio
packets after the packet receptions. This requires only access to the jitter
buffer, and could thus be done by an enterprise bean if the jitter buffer
can be accessed from within the container. If the jitter buffer is created
using entity beans, it is will be reachable from within the EJB container.
The jitter buffer can also be implemented as an object within the main
element, but it can still be accessed by the enterprise bean if the main
element has an RMI interface for the jitter buffer. A third task for the in-
bound network communication component is to detect network conges-
tion and to inform the sender about this. This can also be done within
an enterprise bean. The inbound network component is thus divided into
two parts (see figure 7.3):

The first part is implemented within the main element and will receive
the audio packets. The second part is implemented as an enterprise bean
and will resequence the packets and detect network congestion. The two
new elements of the old component must work together to solve the task
of the old component.

7.3.2 Splitting the audio and GUI components

The audio input and audio output components have two requirements
that are in conflict with the EJB restrictions: They access lower level
services (the audio API), and they requires threads or other mechanisms

60 CHAPTER 7. DESIGNS FOLLOWING THE EJB SPECIFICATION

Figure 7.3: The inbound network communication component is
split, and the tasks of the two parts are shown in each part

to execute code regularly. Also the GUI requires access to a lower level
service.

The use of threads in the enterprise bean can be avoided by letting the
main element invoke a method in the enterprise bean regularly. The re-
sponsibility for the enterprise beans timeliness would thus be in the main
element. The enterprise bean could either be invoked by a correspond-
ing component running in its own thread in the main element (i.e. by
splitting the identified component as previously described), or by a ded-
icated EJB method invoker. Such an EJB invoker could be created with
a list of stubs to all the enterprise beans to be invoked, and in a round
robin fashion it can invoke each enterprise bean (see figure 7.4). When
all the enterprise beans in the list have been invoked, the first enterprise
bean in the list is once again invoked.

The timeliness of an enterprise bean method invoker will depend on the
enterprise bean’s time usage. The enterprise bean should thus not ex-
ceed a defined maximum time frame, and it would hence be unwise to
perform blocking method calls in the enterprise bean, unless it is known
that the method would unblock within the tolerated time frame. The en-
terprise bean is also depending on the EJB method invoker to invoke it
in time to fulfill its guarantees. There would thus be necessary to define a
minimum invocation rate and a maximum invocation time frame for each
enterprise bean. In that sense, there could be a need for other scheduling
algorithms than the round robin algorithm.

7.3. SPLITTING THE IDENTIFIED COMPONENTS 61

Figure 7.4: Enterprise beans invoked by an EJB invoker in
the main element. The arrows represents the invocations
(numbered from i1 to in)

Accessing hardware / lower level services is not allowed within enter-
prise beans either, so all hardware/service access should be moved into
the main element. If the GUI component is split, and all hardware access
moved to the main element, it will not be much left for the enterprise
bean if anything at all. This will also be the case for the audio com-
ponents: Both the thread (or the equal functionality) and the access to
the audio API must be moved into the main element. Unless there is
performed some other action on the audio clips in the audio compon-
ents as well (like up-/downsampling or some calculations on the audio
clips), there will not be any functionality left to implement as an enter-
prise bean.

7.3.3 Discussion about split components

By splitting components, more of the logic is created as enterprise beans.
This again results in more logic that utilize the advantages of EJB and
component technology in general. But the design after a split could be
more complicated to understand. If the functionality of the two split
parts are weaved into each other to such a degree that the two parts still
have to be inspected as one unit to understand their tasks, the design
can be harder to read. If the splitting is more a matter of separating
(independent) concerns, the design would not become much less com-
prehensible. A part of a component with simpler dependencies to its
counterpart could also be more relevant for reuse than one with a com-
plex dependency.

The success of a component splitting will depend on the enterprise bean
candidate and not the candidate for the main element. Is the enterprise

62 CHAPTER 7. DESIGNS FOLLOWING THE EJB SPECIFICATION

bean candidate likely to be reused? Is it likely to be upgraded independ-
ently of its counterpart? Are there already existing enterprise beans that
can be used? These are important questions that must be considered
during the evaluation of this design method.

7.4 Summary

By introducing the possibility of moving parts of an application outside
the component framework, applications with requirements that can not
be offered by the EJB specification can still utilize the advantages of EJB
for some of its elements. This is not in any way a new method, though,
and e.g in the Windows platform many applications make use of Mi-
crosoft COM and DCOM components for some of its functionality. The
performance of the communication between the enterprise beans and the
main element will have to be considered, since the communication (us-
ing RMI) would have to pass through the network layers which is slower
than using local bindings.

Splitting of components can be a useful method for moving more of the
design to the EJB container, and thus increase the utilization of the ad-
vantages of EJB. The success of a split will depend on factors like how
complex the dependency between the split parts will be, and thus how
likely the EJB part is to be reused and independently replaced. It will
also depend on how likely it is to find a ready component from other
vendors. Splitting should be considered when it is possible to separate
two quite independent concerns.

Chapter 8

Design and implementation
without EJB

Contents

8.1 The design of the client 64

8.2 The conference/distribution server 67

8.3 An example of a session 69

8.4 Microphone simulator 71

8.5 Measurements . 72

Chapter 7 discussed whether all the identified components in the gen-
eric design can be implemented as enterprise beans without violating the
restrictions of the EJB specification. The discussion revealed that some
of the components have requirements that the EJB platform can not sat-
isfy. In chapter 9 the design and implementation of an application using
restricted functionality will be presented.

This chapter will present the design and implementation of a client ap-
plication, called SimulaPhone, where EJB is not used. Only an audio
distribution server will be implemented using EJB and JMS. The pro-
cess of designing and implementing this application was meant to aid
the identification of requirements of the common components (presen-
ted in 5.3). In addition, this application works as a reference for the
performance testing of the implementations using restricted functional-
ity.

63

64 CHAPTER 8. DESIGN AND IMPLEMENTATION WITHOUT EJB

8.1 The design of the client

The design of the client, called SimulaPhone, is based on the abstract
design made in chapter 5 (see figure 5.2 on page 29). To simplify the
application, the redundancy, compression and echo cancelation compon-
ents are left out of the implementation, and the application has no adap-
tion mechanisms to handle resource changes. In addition, some of the
components are included into others: The jitter buffer is implemented
into the audio output, and the silence detection is considered as a part of
the audio input. As the SimulaPhone was designed at a very early stage
of this work, some of the component’s names are slightly different.

SimulaPhone consists of six main classes (see figure 8.1):

• The PhoneManager is the core class, and it coordinates the network
communication and the incoming audio clips from the server and
from the local SoundRecorder.

• EJBManager is used by PhoneManager to manage the communica-
tion to the conference server, such as sending data using RMI, and
to establish a subscription to the JMS topic (used to send the audio
data from the server). Thus, the EJBManager includes the func-
tionality of the outbound communication component. It also im-
plements the communication setup of the inbound communication
component, while PhoneManager implements the actual packet re-
ception mechanisms of the inbound communication.

• The SoundPlayer queues (that is, incorporates the audio/jitter buf-
fer) and plays audio clips.

• The SoundRecorder samples audio and sends it to the remote phone
through the PhoneManager.

• The GUI presents the textual data to the user and handles all user
interaction.

• Finally, the StarterClass (within SimulaPhone.java) initializes the
GUI and the PhoneManager. It also handles the events produced
by the GUI and the PhoneManager. As a part of that, it sends data
between the GUI and the PhoneManager (and hence, the GUI and
the PhoneManager are invisible to each other).

8.1.1 The PhoneManager

The PhoneManager has the responsibility for communication between
the application and the conference server. It uses the EJBManager to

8.1. THE DESIGN OF THE CLIENT 65

Figure 8.1: The figure shows the design of SimulaPhone. The
lines represent communication between the objects. conf-
Server is not a part of the client, but is included to show the
communication with the server.

send data to the server. The EJBManager also subscribes to the JMS topic
on behalf of the PhoneManager using a reference to the PhoneManager
object.

To receive data, the PhoneManager implements the MessageListener in-
terface, and its onMessage method is invoked every time data is received.

All data sent through the network is wrapped in an object of the Phone-
Packet class. The marshalling is done with Java’s serialization interface.
The interface converts any object of the serializable class from the in-
ternal data representation to a byte array. This makes the marshalling
issue easier. All the different packet types are made as subclasses of the
PhonePacket class. When a packet arrives, the PhoneManager sends it
to the proper method according to its subclass type. Extending the pro-
tocol is thus done by creating a new subclass of the PhonePacket or by
extending an existing subclass.

The subclasses of PhonePacket are:

• MessagePacket - Contains a written message from the user.

• SoundClipPacket - Contains an audio clip (part of an audio stream).

66 CHAPTER 8. DESIGN AND IMPLEMENTATION WITHOUT EJB

• EndOfClipSeriesPacket - Tells the remote phones that this was the
last clip in the series (where a series is defined as a continuous• audio clip

series
sequence of non-silent audio clips).

The PhoneManager has the responsibility for feeding arriving audio clips
from the distribution server to the SoundPlayer for playing. When a text
message arrives or a connection is established, a PhoneEvent (an event
for notification to the GUI) is produced so the StarterClass object can
make the proper feedback to the user.

The PhoneManager also handles the output from the SoundRecorder, and
sends all audio clips to the distribution server (through EJBManager).

8.1.2 The SoundPlayer

The SoundPlayer uses Java’s standard audio player features by importing
the modules javax.sound.sampled.*. To play audio, a data line has to be
opened. A parameter defines the audio properties; sample rate, bits per
sample and mono/stereo.

To play audio, the audio data must be written to the data line. The
SoundPlayer has its own thread that manages the buffer of audio clips,
and writes them to the data line.

8.1.3 The SoundRecorder

For the audio access, SimulaPhone uses Java’s built in audio classes. The
SoundRecorder continuously records audio clips, as long as the micro-
phone is switched on in the GUI, and it uses the SoundFilter (a silence
detector) to classify whether each clip contains “audio” or just “silence”.
Series of audio clips are sent to the receiver through PhoneManager.

For SimulaPhone, a sample rate of 8 kHz (mono) with 8 bit per sample
was initially chosen. This is by many considered to be of sufficient quality
for speech. Some of the computers that were used for the implementa-
tion and for the performance measurements, did not support other audio
formats than CD quality (44100 Hz, 16-bit, stereo) for sampling. The
solution was to down-sample the audio with software to get a suitable
format. A simple conversion with low CPU requirements down-sampled
the audio to 11025 Hz, 8-bit, mono using shift, and and or operators.
Still, for the performance measurements that were executed, a micro-
phone emulator was used with a sample rate of 8000 Hz (see 8.4).

8.2. THE CONFERENCE/DISTRIBUTION SERVER 67

The programmer can define how large Java’s internal recording buffer
should be. When the buffer is filled with data, the recording library just
re-starts from the beginning of the buffer again in a “round robin” fash-
ion. To copy/read the samples from the internal recording buffer, the
read method of the recorder’s data line is called, with the destination
buffer as a parameter. It is a good idea to read fewer bytes than the size
of Java’s internal recording buffer. If the destination buffer has the same
size as the internal record buffer, Java will have to record over again what
is about to be copied. If, on the other hand, fewer bytes are copied than
the number of bytes in the internal buffer, Java will have enough time
to copy the data before the recorder needs to use that part of the buffer
again. In SimulaPhone, the size of Java’s internal recording buffer is set
to twice the size of a sampled audio clip.

The audio from each interval is classified as either audio or silence by the
silence detector (that is, the SoundFilter). This is done with a method that
finds the percentage of samples with an absolute value that is over a cer-
tain limit. If audio is detected, the audio clip is sent to the server through
the PhoneManager. To allow short pauses in the speaking without “cut-
ting off” the stream, a certain amount of silent clips is allowed before
the SoundPlayer judges the speaking as over. This is set with the variable
numMinClipSeries in the SoundRecorder.

When the talking has ended (that is there have been some audio clips
with silence), the SoundRecorder tells the PhoneManager to send the en-
dOfSoundClipSeries packet, which tells the receiver that there is no more
audio clips in this series to wait for.

8.1.4 The GUI

The GUI (figure 8.2) is made using Swing, which has been the default
GUI API in Java since version 1.3.

The GUI produces an event each time a button is clicked. The only sub-
scriber to these events is the object StarterClass, which also presents all
textual information to the user through the GUI.

8.2 The conference/distribution server

The application’s server is called a conference server, but is in fact only
a distribution server as it does not support merging of simultaneous
streams. This means that only one user can talk at each time to avoid
mixing of audio clips.

68 CHAPTER 8. DESIGN AND IMPLEMENTATION WITHOUT EJB

Figure 8.2: A screenshot of SimulaPhone

8.3. AN EXAMPLE OF A SESSION 69

In this implementation the server is represented by a session bean called
confServer which provides the following methods:

• public void joinConference(String nickName)

• public void publishTextMessage(String name, String msg)

• public void publishBytesMessage(String name, byte[] arr)

The clients connect to the conference by invoking the joinConference
method. They also subscribe to the topic topic/conferenceTopic.

All data for the clients is sent through JMS. The clients do not publish
messages directly to the topic, but call on the confServer’s methods pub-
lishTextMessage (for text messages) and publishBytesMessage (for binary
data). confServer then publishes messages to the topic on the sending
client’s behalf. All the clients (including the sender) then receive the
messages from the topic.

Figure 8.3 on the following page shows an overview of the application
model.

In the choice between stateful and stateless session beans, stateful was
chosen since data had to be stored in the bean. The application uses
JMS, and with the stateful bean, the connection to the JMS service could
be kept open. With the stateless bean, the bean would have to recreate
the connection at each invocation. Establishing a connection to JMS
takes too much time to be done each time.

8.3 An example of a session

This section will discuss an example of a session to ease the understand-
ing of how the application works. In the example there are two users,
user A and user B, who want to talk to each other. At this stage both
users have started SimulaPhone which is up and running.

First, both users enter the host name and port number of the conference
server in the Server’s address and Port fields respectively. Next, each
user selects his nickname in the Nickname field and presses the Con-
nect button which produces an event. The event is then consumed by
the StarterClass object which invokes the PhoneManager’s connectToHost
method.

The connectToHost method then creates a new EJBManager object which
connects to the JBoss server in its constructor method and creates a stub
for the confServer enterprise bean. Finally, the PhoneManager invokes

70 CHAPTER 8. DESIGN AND IMPLEMENTATION WITHOUT EJB

Figure 8.3: Sending audio with JBoss and JMS

8.4. MICROPHONE SIMULATOR 71

EJBManager’s initJMS method that subscribes to the conference topic.
When this has happened at both client’s SimulaPhone, the system is
ready for communication.

User A now turns his microphone on (via the radio button switch), which
causes the SoundRecorder thread to run. He waits a few seconds before
he says something, thus all the starting audio clips are classified as silence
by the SoundFilter and thus thrown away. User A then decides to say
“Hello, B”, which causes the next few audio clips to be classified as audio
(that is; not silence).

The SoundRecorder sends each audio clip to the PhoneManager, which
wraps the clip in a SoundClipPacket object, serializes the audio clip and
sends it to the conference server using EJBManager’s sendBytesArray. The
conference bean, confServer, publishes the incoming audio clip to the
JMS topic.

The JMS then sends the audio clip data to all participants at the topic.
This results in the onMessage method being invoked at each client.

When the PhoneManager at each client receives the message, it recog-
nizes the PhonePacket as a SoundClipPacket, takes the audio clip out of
the SoundClipPacket, and passes it to the SoundPlayer. The SoundPlayer
will then continue to play until the queue is empty. Note that the audio
clip will be played at both user A’s and user B’s loudspeakers. If the au-
dio packets had been tagged with the sender’s ID, it would be possible to
avoid the playback at A’s computer. But in a scenario where the server
merges the streams, it would be impossible to leave out one’s own audio
anyway.

Note that the SoundPlayer starts to play as soon as the first audio clip
arrives. The whole series of audio clips making the “Hello, B” sequence
does not have to be present for the SoundPlayer to start playing. For the
same reason, user A’s SoundRecorder will send the first audio clip in the
“Hello, B” series as soon as it is classified as audio, and not wait for
the rest of the clips to be recorded before sending. This ensures that the
audio clip will play at user B’s loud speaker as soon as possible.

8.4 Microphone simulator

During the work of this thesis, the need for a microphone simulator star-
ted to reveal, and there were two reasons for this: First, it is inconvenient
to talki loud into the microphone at a computer lab. And second, it is
important to be able to test the exact same recording scenario in different

72 CHAPTER 8. DESIGN AND IMPLEMENTATION WITHOUT EJB

application scenarios. Talking in the exact same way twice is difficult, if
not impossible. In the SimulaPhone application the microphone simu-
lator is activated by pressing the Send Squeek button.

If a simulator was to be used, it would have to be certain that the sim-
ulator would produce data in the same way as the real audio recorder
would, and that the simulated recording situation would be as close to
a real recording situation as possible. The microphone simulator uses a
sample rate of 8kHz in mono 8-bit, and sends audio clips with data from
an audio file. The microphone simulator was used with audio clip sizes
of 2000 bytes, which is equal to 250 ms of audio in this audio format.

A test application was made to measure how accurately the microphone
simulator produced data. A similar test application was also made to test
the real audio recorder. Although the hardware might be quite accurate,
it could be small delays caused by the audio drivers etc. in the OS. For
an audio clip size of 2000 bytes, both the real audio recorder and the
microphone simulator should produce data every 250th ms.

To test the real recorder, 50 audio clips were sampled. This was done
by calling the read method in the recorder’s data line 50 times. After
each invocation of the read method, the current time was stored. For
each sample (except the first) it was then possible to calculate the time
difference between the current time and the time for the previous sample.

In the same way, the simulator should “produce data” every 250th ms for
50 clips. Also for the microphone simulator the delay between every clip
was measured. Instead of waiting (and blocking) for the data, the thread
sleeps for a calculated equal time.

Ideally there should be exactly 250 milliseconds between all audio clip
“productions” for both the simulator and the real recorder, but there are
some small variations. For the real recorder, the largest deviation was 16
ms. The simulator’s largest deviation was 11 ms. The complete result of
the test is shown in figure 8.4 on the next page.

8.5 Measurements

To determine whether the JBoss server and the JMS service were effi-
cient and reliable enough to handle the distribution of real-time audio, it
was necessary to measure what the end-to-end network delay would be.
The variation in delay (jitter) and possible packet loss would be looked
into in this test. JBoss does not offer any real-time guarantees, and it is
important to notice that all results from this test only apply to the cur-

8.5. MEASUREMENTS 73

rent version of JBoss (4.0.0 RC1). It is still believed that the results can
provide some idea of JBoss’s timeliness for such tasks. It is important
to notice that the server only works as a relay, and if it had worked as
a conference server where the concurrent streams were merged, the pro-
cessing time of the merging would have to be added to the end-to-end
delay.

To measure the end-to-end network delay, the time when the audio clip
leaves the sender and the time when the receiver(s) receives the audio
clip would have to be recorded. For the calculated end-to-end network
delay to be exact, the internal clocks on the different computers would
have to run synchronously. There are tools available to synchronize com-
puter clocks so they can run with tolerable differences, but since public
computers where used for this experiment and regular users do not have
permission to run such system tool, they could not be used. The solution
was to utilize a side effect of the conference server’s design: Since the
server distributes any arriving packet to all the subscribers of its topic,
also the sender will receive its own packets (see figure 8.3 on page 70).
The time used for this “loop” (from the sender, to the server and back
again) is called the Round Trip Time (RTT). Since the sender is a sub- • round trip

time

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45 50

D
e
l
a
y

b
e
t
w
e
e
n

s
a
m
p
l
e
s

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Sample number

Simulated samples
Real samples

Figure 8.4: Time variations during sampling: The real recorder
vs. the simulator

74 CHAPTER 8. DESIGN AND IMPLEMENTATION WITHOUT EJB

scriber and thus also a client, this RTT to the server would be represent-
ative for the end-to-end sending delays to the other clients.

8.5.1 How the Round Trip Time (RTT) was measured

To measure the RTTs, a new subclass of SoundClipPacket called RTTMeas-
urePacket was made. This class contains a variable long stamp where a
time stamp with the time of departure from the sender is stored.

A class named MeasureRTT was made to perform the actual audio clip
sending. It is an extended version of the microphone simulator and it
sends packets with real audio samples of 250 at 8 kHz mono 8-bit. The
only difference is that the microphone simulator creates SoundClipPack-
ets, and the MeasureRTT creates RTTMeasurePackets. Real audio data had
to be used for the RTT measurements (and not “empty data”), as com-
pression could be used on the packets on their way through the network,
and hence “empty data” could have changed the network speed. Be-
fore sending the RTTMeasurePackets through PhoneManager, MeasureRTT
saves the time stamp in the packets.

In PhoneManager a new method named handleRTTMeasurePacket was
made to handle all incoming RTTMeasurePackets. It calculates the time
difference between the current time and the packet’s time stamp, and logs
the result.

8.5.2 Sources of error

Since the application is not running in a real-time environment, it is pos-
sible that it could be delayed by the system. If it is delayed when it is
supposed to receive a returning packet, this will affect the result of that
RTT. There was one known big source of errors for this test setup: The
Networking File System (NFS) dæmon could sometimes block the com-
puter for up to several seconds. This can be experienced by the user by
the lack of smoothness when moving the mouse. The process of mov-
ing the mouse pointer can sometimes get so little time that the pointer
completely freezes for some seconds. One way to manually cause this
situation to happen, is to copy a large file to a local drive. For the ini-
tial measurements, the results of the RTTs were stored in a file on a NFS
mounted drive. There were then several RTTs with a value of more than
1000 ms. When this log file was stored on a local disk instead, almost all
of the high valued RTTs were gone. When performing the test presented
next in this chapter, the applications were run on a computer where as
few as possible other applications were run, and all records were stored

8.5. MEASUREMENTS 75

to a local disk. It is still possible though that system processes could read
or write to files stored on NFS and thus cause extreme values for some
of the RTT samples..

8.5.3 The test setup

Two tests were performed; one with two clients (the sender and one ad-
ditional receiver) and a second with four clients (the sender and three
additional receivers).

The tests were run on a local 100 Mbit network. The ping time to the
server from the clients was about 0.2 ms. Five computers were involved
during the tests; one for the conference server, and one for each client.
They all had the same configuration:

• CPU: Intel Pentium 4, 2.8 GHz, 512 KB Cache, Hyper Threading

• RAM: 1 GB

• OS: Red Hat Enterprise Linux WS, release 3 (Taroon Update 4)

8.5.4 The results of the RTT measurements

The results of the tests are presented in figure 8.5. Each value in the graph
represents the mean value of the RTTs in one sending. One sending con-
sists of 35 audio clips (of 250 ms) from a recorded spoken sentence. In
each test there were 50 sendings. There was a five seconds delay between
each sending in the tests.

As stated in 4.2, the end to-end-delay should be kept under 400-600 ms.
The RTTs to the server (which represents the end-to-end network delay
shown as the time between b and c in figure 4.2 on page 18) together
with the sample length and the jitter buffer should thus be kept under
400-600 ms. Even for the highest mean RTTs in the two tests, which are
around 40 ms, this leaves a time for additional delay in a jitter buffer for
up to 300 ms. This means that one audio clip can be delayed, but not
two before the jitter buffer runs empty.

There were no packet loss for both the tests. When it comes to variations
in delay, most audio clips arrived within 5 milliseconds. Figure 8.6 on
page 77 shows histograms with the delays of the two tests. Each bar
represents the number of audio clips arriving within its five millisecond
interval. For the test with two clients, almost all but 14 packets arrived
within 20 ms, and about one third of those within 6-10, and two thirds
within 1-5 ms. For the test with four clients, all but 28 audio clips arrived

76 CHAPTER 8. DESIGN AND IMPLEMENTATION WITHOUT EJB

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50M
e
a
n

R
T
T

t
o

s
e
r
v
e
r

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Sendings

four clients
two clients

Figure 8.5: Mean RTTs to the server for two and four clients

within 40 ms. Still most audio clips arrived within 10 ms, but there were
about 300 that arrived between 36 and 40 ms. This is considered as a
satisfying low variation in delay.

The tests showed that the JBoss server performed satisfactory for those
two tests. Again, this can only apply directly to the current version of
JBoss, although it can provide some idea of JBoss’s timeliness for such
tasks in general.

It can be discussed though, how representative this test is for other QoS
sensitive applications. Audio is not in a very bandwidth demanding do-
main, and the conference server did not perform any action on the data.
It only tests one remote method invocation on a session bean, and one
distribution through JMS for each audio clip. It is thus fair to say that
the results is representative for this small domain of applications only.

8.5. MEASUREMENTS 77

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120

n
u
m
b
e
r

o
f

a
u
d
i
o

c
l
i
p
s

RTT to the server

two clients

(a) Two clients

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120

n
u
m
b
e
r

o
f

a
u
d
i
o

c
l
i
p
s

RTT to the server

four clients

(b) Four clients

Figure 8.6: Histogram with the RTTs distributed on 5 ms in-
tervals. RTTs beyond 100 is stored in the 96-100 interval

78 CHAPTER 8. DESIGN AND IMPLEMENTATION WITHOUT EJB

Chapter 9

A design using restricted
functionality

Contents

9.1 Using restricted functionality 79

9.2 The design of the application 81
9.3 RTT measurements . 84

9.4 A version without MDBs 84

Chapter 8 discussed an implementation of an Internet phone where only
the conference (distribution) server was implemented using EJB. This
chapter will investigate cases where the restrictions of the EJB standard
are not respected. The design and implementation of a working applic-
ation made with EJB and restricted functionality will be discussed. The
purpose of this work was to get experience and ideas for extensions to
the EJB platform to improve the support of real-time audio applications
in EJB.

9.1 Using restricted functionality

Before designing the new application, there was a need to know in ad-
vance if the restricted functionality would work or not in the planned
scenario. The easiest way to investigate this was to create some simple
test beans, to see if it was possible to use these methods or not. It is
important to notice that the results of the tests only can tell if the use of

79

80 CHAPTER 9. A DESIGN USING RESTRICTED FUNCTIONALITY

restricted functionality will work for this version of JBoss (4.0.0 RC1).
The tests do not say if other versions of JBoss or other platforms would
give the same results.

The result of the test for the use of threads, which are used in the au-
dio output and the audio input, showed that they could be created and
activated within the EJB server. This means that the container will lose
control of the resources, since an enterprise bean running in a user made
thread will continue to run even though the container might want to
passivate it. The user could implement functionality in the ejbPassivate
method within the enterprise bean to passivate the bean, though.

The tests also showed that it was possible to create a GUI with
AWT/Swing, and its event listener worked as-well. Both the audio input
and audio output could access the audio cards through Java’s audio
interfaces as needed.

The need to share data between enterprise beans could have been solved
using entity beans with BMP and empty persistence methods, but since
the purpose of this implementation was to test if the restricted (but
wanted) functionality worked, an other solution was chosen: Since
stateful session beans have an one-to-one mapping between bean and
client, two components can not access the same instance of a third
component. They would get one instance each of that third component,
and thus they could not share any data using stateful session beans. By
creating a new class that could be instantiated as a singleton (an object• singleton

that is the only instantiation of its class) this functionality could be
obtained.

A singleton in EJB can be created by defining a variable of a class as
static, inside the stateful session bean. The first instance of the bean that
is initialized, creates this singleton, and then they can all access the same
data. Figure 9.1 shows an example of this. The enterprise beans A and
B want to access the data in a stateful session bean C. When they look
up bean C, they get an instance of C each. But as both the instances of C
access the singleton, both A and B can access the same data through C.

The use of static variables is restricted, unless they are defined as finals
(constants). Since the value of the singleton might change during run-
time, the static variable can not be defined as final, and hence, this is
restricted functionality.

These tests indicated that it was possible to create the application by us-
ing the restricted functionality in JBoss version 4.0.0 RC1. As the func-
tionality is restricted, it is hard to say how well it will work on other EJB
server impllementations.

9.2. THE DESIGN OF THE APPLICATION 81

Figure 9.1: Two components access the same data in a
singleton. They do this through their respective instances of a
third component

9.2 The design of the application

The design of the application is very similar to the one made without
enterprise beans in chapter 8 on page 63 (see figure 9.2 on page 83), but
there is a couple of important differences:

• All the components must be looked up using JNDI before any con-
nection and access can be made to the components.

• All components (except the packet reception) are made as an en-
terprise beans with corresponding singletons. In the case of the
PhoneManagerSingleton this is the only way to do it, since both
StarterClass and PacketReceptionComp have to look up PhoneM-
anagerComp and access the same data. The other singletons are
created to make a more flexible design, where all the singletons can
handle multiple access in a different composition later.

In addition, some new interfaces had to be made to avoid circular de-
pendencies between the components. For example, when compiling the
PhoneManagerSingleton, the compiler (javac) needs access to the com-
piled classes of the SoundRecorderComp. This means that the SoundRe-
corderComp must be compiled before the PhoneManagerSingleton. The
problem with the old model occurs when the SoundRecorder also needs
the definition of the PhoneManager classes which causes a circular de-
pendency. A circular dependency is not a problem when all the classes
are compiled together, but causes a problem when classes are compiled
separately, and this is the case in a component setting. To avoid this
problem, an interface of an audio packet receiver was created in the
SoundRecorder. When the SoundRecorderSingleton is created, it saves a

82 CHAPTER 9. A DESIGN USING RESTRICTED FUNCTIONALITY

reference to such an audio packet receiver. If the PhoneManagerSingleton
implements this interface and passes its own reference to the SoundRe-
corderSingleton, the problem with circular dependencies is solved.

All the components are made as session beans with one exception. The
packetReceptionComp is a Message Driven Bean (MDB). Its onMessage
method gets invoked by the JBoss server each time a message is sent in
the topic the MDB is subscribing. The MDB’s variables are not preserved
between the invocations, so the PacketReceptionComp has to look up the
PhoneManagerComp through the JNDI server each time a packet arrives.

9.2. THE DESIGN OF THE APPLICATION 83

Fi
gu

re
9.

2:
T

h
e

d
es

ig
n

of
th

e
ap

pl
ic

at
io

n
m

ad
e

w
it

h
E

JB
(M

D
B

ve
rs

io
n

)

84 CHAPTER 9. A DESIGN USING RESTRICTED FUNCTIONALITY

9.2.1 Instantiation of the components

To start the application, a client has to look up the enterprise bean
SimulaPhoneComp, and invoke its startSimulaPhone method. Simu-
laPhoneComp then creates a StarterClass object, which again looks up
and gets instances of the GUIComp and PhoneManagerComp enterprise
beans. The StarterClass is registered as an event listener at both the
MainGUI and the PhoneManagerSingleton objects.

In the PhoneManagerComp’s init method, the PhoneManagerSingleton
is created, which again looks up and the SoundPlayerComp, SoundRe-
corderComp and PacketTransmissionComp enterprise beans, and invokes
their init methods. They again creates their respective singletons.

The SoundRecorderSingleton gets a reference to the PhoneMangerSingleton
as a parameter to its constructor.

When all this is done, the application is up and running.

9.3 RTT measurements

The test setup for this version of the application was the same as for the
version without EJB in chapter 8. The tests were performed with two
clients. It was expected that this version would have approximately the
same performance as the EJB-less version, since the use of local inter-
faces basically sets up direct object references without the use of stubs
and skeletons.

The mean values of the RTTs (figure 9.3) shows about the same results as
for the version without EJB, except for one extreme mean value where
one of the underlying RTTs was over 2000 ms. The histogram in figure
9.4 shows that all but 45 packets arrived within the 6-10 ms interval. In
the version without EJB, about two thirds of the packets arrived within
the 0-5 ms interval. The relative difference is therefore significant, but in
a matter of milliseconds, the difference is small.

9.4 A version without MDBs

Except for the initialization of the EJB version of the application, the
differences are small between the old and the new version. When the
applications are up and running, they should be working fairly the same,
since the local home interface, and not the remote home interface, was

9.4. A VERSION WITHOUT MDBS 85

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50M
e
a
n

R
T
T

t
o

s
e
r
v
e
r

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Sendings

two clients

Figure 9.3: Mean RTTs to the server with two clients (with
MDB) for 50 sendings

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100 110

n
u
m
b
e
r

o
f

a
u
d
i
o

c
l
i
p
s

RTT to the server

two clients

Figure 9.4: Histogram with the RTTs distributed on 5 ms in-
tervals. RTTs beyond 100 is stored in the 96-100 interval

86 CHAPTER 9. A DESIGN USING RESTRICTED FUNCTIONALITY

used for the new version. There is one exception, though: The PacketRe-
ceptionComp in the EJB version has to make a JNDI lookup for the Phon-
eMangerComp each time a packet arrives through the JMS topic. This is
because MDBs can not store any variables (including the result of a JNDI
lookup) between invocations. It was not known how effective this was,
and therefore a third version of the application was made. In this ver-
sion, the PacketReceptionComp (that so far had been made as a MDB)
was substituted with a session bean with a corresponding singleton. The
singleton establishes a connection to the JMS service and subscribes for
the current topic. It also has a reference to the PhoneManagerSingleton,
so no JNDI lookup is needed each time a packet arrives.

The results of this test is shown in figure 9.5 and 9.6. It is a little sur-
prising that this version performs a bit worse than the version without
a MDB for packet reception. Except for the elimination of the repeated
JNDI lookups (used in the MDB in the previous version), the two EJB
implementations should be about the same. In the MDB-less version,
more of the packets arrived in the 36-40 ms interval. No good explan-
ation for this was found, but it is possible that the drop in performance
could have been caused by, or at least been under the influence of, lar-
ger CPU consumption of other background services. It is still fair to say,
though, that the current version of JBoss performed satisfactory for all
three versions of the Internet phone application.

9.4. A VERSION WITHOUT MDBS 87

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50M
e
a
n

R
T
T

t
o

s
e
r
v
e
r

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Sendings

two clients

Figure 9.5: Mean RTTs to the server with two clients (without
MDB) for 50 sendings

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120

n
u
m
b
e
r

o
f

a
u
d
i
o

c
l
i
p
s

RTT to the server

two clients

Figure 9.6: Histogram with the RTTs distributed on 5 ms in-
tervals. RTTs beyond 100 is stored in the 96-100 interval

88 CHAPTER 9. A DESIGN USING RESTRICTED FUNCTIONALITY

Chapter 10

Extensions to the EJB
specification

Contents

10.1 Discussion of required functionality 89
10.2 General extensions . 92
10.3 Extensions for QoS support 93

First in this chapter, there will be a discussion about the required
functionality that is missing in the current EJB specification. Next,
and based on the results from the previous discussion, there will be
suggested changes and extensions to the specification that will improve
the support of QSAs. The suggestions are divided into two sections:
The first section will discuss general extensions that are needed in order
to create QSAs using EJB. These are basic extensions that are required
for an Internet phone application to run at all. The next section will
discuss QoS functionality that will improve the performance of such
applications.

10.1 Discussion of required functionality

The discussion is separated into two parts: First the results from the dis-
cussion about creating applications without violating the EJB specifica-
tion will be addressed. Next, the results from the implementations using
restricted functionality will be discussed.

89

90 CHAPTER 10. EXTENSIONS TO THE EJB SPECIFICATION

10.1.1 Creating applications following the EJB standard

The discoveries in 6.6 and the discussion in 7.1 show that an Internet
phone application can not be entirely built using enterprise beans. Some
simple components that do not run actively nor are accessing hardware
or lower level services can be built (like the silence detection component,
and components for compression), but there are others that can not.

The missing ability to create and manage threads makes it difficult to
create components like the audio output and the audio input. The EJB
Timer Service could in some cases replace the need for threads in an
application, but since the service is not supposed to work with small
intervals (rather minutes, hours, or even days), it is not suitable to replace
the use of threads in a real-time audio application.

Accessing hardware or lower level services from an enterprise bean is a
second and major problem. Some types of access to hardware / lower
level service are made possible through dedicated services within the
J2EE framework. This is for example the case for databases (using JDBC)
and some kinds of network access (using RMI/IIOP and JMS). Other
types of hardware/service access such as the ones needed for user inter-
action, like keyboard and mouse and GUI, can not be accessed. Neither
file access nor the creation of network sockets is allowed by the EJB
standard. There are no dedicated services that could compensate for
this missing functionality either, and hence; components with user in-
teraction or components accessing files can not be created as enterprise
beans. Other types of hardware/service access is not mentioned directly,
but since the arguments against GUI and file access are valid for most
types of hardware/service access, it is reasonable to believe that other
kinds of hardware/service access would not be allowed if Sun Microsys-
tems knew that developers planned to do so. Hence, access to hardware
and lower level services in general could be considered illegal.

10.1.2 Violating the EJB standard

The implementation using restricted functionality (in chapter 9) shows
that it is possible to create an Internet phone application with the current
version of JBoss (4.4.0 RC1), when the restrictions are not respected.
All components that could not be made following the specification were
implemented using restricted functionality, and the application worked
as a whole. Violating the specification could have negative effects for the
server, and the application could fail, though. This will be discussed for
each used restriction in the next paragraphs.

10.1. DISCUSSION OF REQUIRED FUNCTIONALITY 91

In the application, two enterprise beans had to access data in the same
instance of an other enterprise bean. The EJB standard does not support
this, since stateful session beans have a one-to-one relationship to their
clients. The use of singletons that were accessed using a static variable
in the session beans (another restricted functionality) solved this prob-
lem. Proper use of the synchronized statement would eliminate race
conditions in the singletons. Use of static variables in a multi JVM (i.e.
cluster) environment could cause the application to fail, though. The
result of an access to a static variable would depend on which JVM the
enterprise bean was executed in. There would be one static variable for
each JVM, not one for all JVMs, which would be needed in order for the
application to run safely.

Access to hardware and lower level services (like the audio card) was
also needed. Like the static variables, this would be a problem in a multi
JVM environment where it would not be known in advance which com-
puter the enterprise bean was executed in. The use of a cluster is not a
probable environment for an Internet phone application, though, and in
a scenario where all enterprise beans run in a single JVM, both access to
static variables and hardware / lower level services should be safe. With
the introduction of local interfaces, Sun Microsystems has made it pos-
sible to create applications following the EJB specification that can not
run in a cluster environment. The arguments for that e.g. static variables
will not work in a multi JVM environment, would also apply for the use
of local interfaces. As long as there is a premise that all enterprise beans
should run in the same JVM, the use of static variables and access to
hardware / lower level services should not be a problem.

Application level management of threads makes it impossible for the EJB
server to be in control of the CPU resources. It can no longer set the
priority to all threads and decide how many that should run at a given
time. This can affect the response time of its services. The server can
neither manage load balancing between the JVMs properly in a multi
JVM environment if user-made threads were spawned.

If applications that needs functionality like threads should be made using
enterprise beans, the lost control of CPU resources by the server would
have to be accepted. If not, alternative functionality that could solve this
problem would have to be made. An example of such functionality is a
timer service in the container that is calling registered methods periodic-
ally. But in which degree the server can control the CPU resources in any
case can be discussed, though. The JVM runs as a regular application in
the OS and shares the CPU time with other processes. Unless both the
OS and the JVM have real-time functionality, the EJB server can never
offer any hard guarantees anyway, with or without control of the threads

92 CHAPTER 10. EXTENSIONS TO THE EJB SPECIFICATION

within the JVM.

10.2 General extensions

Application level management of threads makes it impossible for the EJB
server to be in control of the resources. If an Internet phone application
should be made using EJB, this would have to be accepted, unless suffi-
cient alternative functionality is added to the standard. A timer service
could be such an alternative. The EJB standard has a timer service; the
EJB Timer Service, but it does not offer a service with small intervals and
high precision, and can therefore not be used. By changing the quality
of this service so it can offer short intervals with better precision, and
access to the CPU as needed by the clients, it could eliminate the need
for threads.

As seen in 10.1.1, hardware access or access to lower level services is
another problem. As with local interfaces, a solution could be to accept
direct access to hardware or lower level services in a single JVM envir-
onment. The alternative would be to create new services. Just as JDBC
gives access to databases, there new services could be made for access
to other kinds of services, like the audio card interface, the network in-
terface (to create sockets) and the X server (or equivalent display access
interfaces). In JBoss, new services can be made using JMX, and the ser-
vice could be made as a MBean and get plugged into the MBean server
in JBoss. Such a service can be deployed into any JBoss installation.

During the design phase of this thesis work, the need for two or more
enterprise beans being able to access the same (third) enterprise bean
was revealed. This was solved using a static variable in the session beans
to create a singleton. Although this would work in many cases, it would
be a better solution to make it possible to create the enterprise beans
themselves as singletons. A third (and probably the best) solution would
be to make it possible to look up one particular instance of an enterprise
bean, so it can be accessed by more than one client. The enterprise bean
could be given a name as a parameter upon its creation, which later could
be looked up by others, using JNDI. This solution would also work in a
cluster scenario, even though the server no longer could manage load
balancing in the same degree.

The lookup of a component is performed using JNDI. The parameter for
this lookup is the name of the component. In the implementations in this
thesis, the name and code for this lookup have to be decided at compile
time. A much better approach would be if the EJB specification suppor-

10.3. EXTENSIONS FOR QOS SUPPORT 93

ted attribute-based programming, where the composer of an application
could define the name of the wanted component at deployment time and
not compile time. This will greatly improve the portability of a compon-
ent [10]. In EJB, such attributes could be defined in an XML file like the
ejb-jar.xml.

10.3 Extensions for QoS support

As stated in the previous section, some components require periodic ex-
ecution. This could be solved using application level managed threads
or an EJB Timer service. But with both these solutions, the component
can not be certain that it will get enough CPU time, and that it will get
it in time, since the JVM also serves other services, and the resource is
limited. In other words, there should be a way for the component to re-
serve execution time, with assurance of getting it within a defined time
frame. A natural place to negotiate for CPU reservation would be at the
container since the container, controls the component.

An implementation/configuration of an Internet phone application
would have requirements for the network communication, like end-to-
end delay, jitter and bandwidth. If underlying network services with
QoS support (like Diffserv and Intserv) are used, the network commu-
nication components would have to negotiate resource reservation with
these services. In different environments, the underlying services (and
resource negotiation services) may be different, and this can make the
portability of the components difficult and complex. If the container, on
the other hand, can act as a resource reservation broker on behalf of its
components, the process of creating portable components will be much
simpler [10]. In other words, in addition to offering resource reservation
to server controlled mechanisms (like CPU reservation), the EJB server
should offer a standardized reservation mechanism for external services
as well, like in the case of network related reservations.

In the case where there are no underlying network services with QoS
support, a configuration of an application can cease to function ad-
equately, as a response to sudden drops in network performance. In this
case, the application would have to reconfigure to perform as required.
Examples of such reconfigurations would be a replacement of the audio
compression codec, or changes to the audio format. Since monitoring of
network performance is a regular task for QSAs, it would be natural to
include this functionality into the EJB server.

Reconfiguration of an application as a response to an under-performing

94 CHAPTER 10. EXTENSIONS TO THE EJB SPECIFICATION

situation could be managed by the application itself (after notification of
the QoS monitor), or by the component framework. A framework man-
aged reconfiguration would simplify the programming of QSAs, but this
is a very demanding task since different types of applications can have
very different requirements. The QuA project solves this by introducing
service planners that can be custom built for each type of application
[7]. The task of assembling the application and adapting to changes in
the present resources, will be executed by the service planner. The in-
troduction of service planners to the EJB specification could greatly im-
prove the support for QSAs, but would require a major re-write of the
specification.

To summarize the discussion in this section: In order to support QSAs,
EJB needs to support resource management. That is; reservation and
access control must be present for resources like CPU, memory and net-
work. A fine granulated timer service will not solve the CPU access prob-
lem alone, since it can not guarantee access to the CPU when the com-
ponent actually needs it. In order to offer a timer service with guarantees,
services for CPU reservation and CPU access control must be offered as
well.

Chapter 11

Conclusions and further work

Contents

11.1 Conclusions . 95
11.2 Further work . 97

11.1 Conclusions

This thesis work has looked at how QSAs, with an Internet phone as a
case, can be implemented using EJB. Common components for an ab-
stract architecture of an Internet phone application have been identi-
fied by inspecting existing applications. The result of the inspection of
these common components shows that this type of application can not
be fully implemented using enterprise beans, if the restrictions of the EJB
specification are to be respected. Only some of the components can be
made as enterprise beans without violating the specification.

In particular, three things were causing problems:

• The need for access to hardware and lower level services

• The need for threads or a reliable timer service

• The need for several clients to access one instance of an enterprise
bean

In the case where the restrictions of the standard were not respected,
a fully functional Internet phone application was made. To enable the
general use of the EJB platform for such applications, the restrictions

95

96 CHAPTER 11. CONCLUSIONS AND FURTHER WORK

made to avoid problems in a multi JVM environment should not be valid
in a single JVM environment, just as local interfaces only work in a single
JVM.

Some issues could also have been solved if new services were introduced.
Services for access to audio cards and the X server (or equivalent dis-
play access interfaces) would eliminate most of the hardware and low
level service issues for this application. An EJB Timer Service with better
guarantees for quality of its service could have eliminated most needs for
using threads.

The possibility to lookup particular instances of an enterprise bean
would eliminate the need for static variables in enterprise beans and
singletons. This solution would also work in a multi JVM environment,
but would cause the task of load balancing between the JVMs to become
more difficult.

In general, the developers of the EJB architecture seem very focused on
ensuring that the server will always work in a cluster environment. A
cluster is not in the present time the most likely runtime environment
for an Internet phone application. If the restrictions were differentiated
depending on whether the enterprise bean was meant to run on a cluster
or not, many of the problems would have been solved.

In addition to lack basic mechanisms as described in this section, the
common components had QoS requirements like CPU time and network
qualities (like bandwidth, end-to-end delays and jitter). The EJB server
would better support QSAs if general mechanisms for resource reserva-
tions (that hide the underlying protocols or mechanisms), and perform-
ance monitoring were supported. This would also make the applications
more portable. It would be beneficial for the programmer to have ad-
vanced QoS handling and re-configuration mechanisms like the service
planner in the QuA project, but this would require a major re-write of
the EJB specification.

The performance of the JBoss server was tested with three different im-
plementations by measuring the round trip times of the audio packets.
The first implementation where only the server was made using EJB,
showed that the server and the JMS service were fast enough to work
as a relay, and the jitter was low. This was hardly surprising, though,
since audio data processing should be an easy match to a modern com-
puter. But the results were interesting for comparison with the results of
the other implementations of the application.

The two implementations where all parts of the client was made of enter-
prise beans, performed a little worse than the client without enterprise
beans. In a matter of milliseconds the difference is not very big, but the

11.2. FURTHER WORK 97

relative difference was significant. A little surprising, the removal of the
MDB (used for packet reception), and thus also the elimination of re-
peated JNDI lookups, caused a big (percentual) drop in performance.
Since the system was not a real-time system, and the increase in number
of milliseconds was not very big, it is possible that the drop in perform-
ance could have been caused by, or at least been under the influence of,
larger CPU consumption of other background services.

All three of the applications performed well enough to work as an Inter-
net phone. Since audio normally should be an easy match to a modern
computer, it is still hard to conclude that the performance of JBoss is
satisfactory for all real-time multimedia applications. But the test do not
show that JBoss fails either. A test with more demanding requirements
would be necessary to make any firmer conclusions about JBoss’s per-
formance.

11.2 Further work

Chapter 10 suggests changes to the EJB specification and the creation of
new services. The design and implementation of the new services and
changes to the EJB standard was beyond the scope of this work, but
would better answer if it is possible and beneficial to add these changes
and additions.

This thesis work has not looked very thoroughly at resource reserva-
tions, QoS monitoring and run-time re-configuration. These mechan-
isms are central for applications where the resources are changing during
the runtime. A more thorough investigation of these subjects would thus
be a valuable contribution to the evaluation of EJB’s future as a platform
for QSAs.

98 APPENDIX

List of Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

AWT Advanced Windowing Toolkit

BMP Bean Managed Persistence

CBSE Component Based Software Engeneering

CCM CORBA Component Model

CMP Container Managed Persistence

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS common-off-the-shelf

DBMS Database Management System

DCOM Distributed Component Object Model

DES Data Encryption Standard

DNS Domain Name System

EJB Enterprise Java Beans

FIFO first in - first out

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol with SSL

IDL Interface Definition Language

IEEE Institute of Electrical & Electronics Engineers

IETF Internet Engeneering Task Force

99

100 APPENDIX

IIOP Internet Inter-Orb Protocol

IP Internet Protocol

ISDN Integrated Services Digital Network

ITU International Telecommunication Union

J2EE Java 2 Enterprise Edition

J2ME Java 2 Micro Edition

J2SE Java 2 Standard Edition

JAR Java Archive

JDBC Java Database Connectivity

JMS Java Messaging Service

JMX Java Management Extensions

JNDI Java Naming and Directory Interface

JRMP Java Remote Method Protocol

JSP Java Server Pages

JTA Java Transaction API

JVM Java Virtual Machine

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

MBean Managed Bean

MC Multipoint Controller

MCU Multipoint Control Unit

MDB Message Driven Beans

MOS Mean Opinion Score

MP Multipoint Processor

NFS Networking File System

OMG Object Management Group

ORB Object Request Broker

PCM Pulse-Code Modulation

QSA QoS Sensitive Application

101

QoS Quality of Service

QuA QoS-Aware Component Architecture

RMI Remote Method invocation

RTCP Real-time control protocol

RTP Real-time protocol

RTT Round Trip Time

SAP Session Announcement Protocol

SDP Session Description Protocol

SIP Session Initiation Protocol

SQL Structured Query Language (database query lanquage)

SSL Secure Socket Layer

TCP Transmission Control Protocol

TOAST Toolkit for Open Adaptive Streaming Technologies

UDP User Datagram Protocol

XML Extensible Markup Language

102 APPENDIX

List of Definitions

quality of service (QoS) . 1
QSA . 2
component . 11
component-based software engineering . 11
component interfaces . 12
contract . 12
component framework . 12
component container . 12
container management . 12
sound . 15
audio . 15
sampling . 15
audio quality . 16
audio stream . 16
end-to-end delay . 16
real-time audio . 16
jitter . 17
packet dropping. 18
compression. .19
compression ratio . 19
lossless and lossy compression . 19
echo cancelation . 22
silence detection . 22
piggy backing . 24
call signaling . 26
race condition. .34
audio clip series . 65
round trip time . 73
singleton . 80

103

104 APPENDIX

List of Figures

4.1 An illustration of the delays before playout 17
4.2 An illustration of the delays before playout, including the

delay caused by buffering . 18

5.1 The design of Free Phone . 23
5.2 The overall abstract architecture 29

6.1 An example of a method call on an enterprise bean (EJB) . 40
6.2 JBoss server spine with some services 45

7.1 An overview of the application. The lines represent com-
munication between the enterprise beans and the main ele-
ment . 56

7.2 An overview of the application where the inbound network
communication component is split 59

7.3 The inbound network communication component is split,
and the tasks of the two parts are shown in each part 60

7.4 Enterprise beans invoked by an EJB invoker in the main
element. The arrows represents the invocations (numbered
from i1 to in) . 61

8.1 The figure shows the design of SimulaPhone. The lines
represent communication between the objects. confServer
is not a part of the client, but is included to show the com-
munication with the server. 65

8.2 A screenshot of SimulaPhone 68
8.3 Sending audio with JBoss and JMS 70
8.4 Time variations during sampling: The real recorder vs. the

simulator . 73
8.5 Mean RTTs to the server for two and four clients 76
8.6 Histogram with the RTTs distributed on 5 ms intervals.

RTTs beyond 100 is stored in the 96-100 interval 77

105

106 APPENDIX

9.1 Two components access the same data in a singleton. They
do this through their respective instances of a third com-
ponent . 81

9.2 The design of the application made with EJB (MDB version) 83
9.3 Mean RTTs to the server with two clients (with MDB) for

50 sendings . 85
9.4 Histogram with the RTTs distributed on 5 ms intervals.

RTTs beyond 100 is stored in the 96-100 interval 85
9.5 Mean RTTs to the server with two clients (without MDB)

for 50 sendings . 87
9.6 Histogram with the RTTs distributed on 5 ms intervals.

RTTs beyond 100 is stored in the 96-100 interval 87

Bibliography

[1] Richard Staehli, Frank Eliassen. QuA: A QoS-Aware Component
Architecture. Technical Report Simula 2002-12, Simula Research
Laboratory, 2002.

[2] C. Szyperski. Component Software, Beyond Object-Oriented Pro-
gramming. ACM Press/Addison-Wesley, Reading, Mass., 1998.

[3] Richard Staehli, Frank Eliassen, Gordon Blair, Jan Øyvind Aagedal.
QoS-Driven Service Planning in an Open Component Architecture.
Work in Progress paper submitted to Middleware 2003, 2003.

[4] J. Tárraga, V. Messerli, O. Figueiredo, B. Gennart, and R. D. Her-
sch. Computer-aided parallelization of continuous media applic-
ations: the 4d beating heart slice server. In Proceedings of the
seventh ACM international conference on Multimedia (Part 1),
pages 431–441. ACM Press, 1999.

[5] J2ee v1.3 glossary. http://java.sun.com/j2ee/1.3/docs/
glossary.html (Last accessed 2005.05.04).

[6] Jboss faq. http://www.jboss.org/modules/html/faq.pdf
(Accessed november 2004).

[7] Frank Eliassen and Richard Staehli and Gordon Blair and Jan
Oyvind Aagedal. QuA: Building with Reusable QoS-Aware Com-
ponents. In OOPSLA ’04 Conference Companion, 2004.

[8] G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, f. Costa,
h. Duran-Limon, T. Fitzpatrick, L. Johnson, R. Moreira, N. Parlav-
antzas, and K. Saikoski. The design and implemenetation of open
orb 2. IEEE distributed systems online, 2(6), 2001.

[9] Tom Fitzpatrick, Julian J. Gallop, Gordon S. Blair, Christopher
Cooper, Geoff Coulson, David A. Duce, and Ian J. Johnson. Design
and application of toast: An adaptive distributed multimedia mid-
dleware platform. In IDMS ’01: Proceedings of the 8th Interna-

107

108 APPENDIX

tional Workshop on Interactive Distributed Multimedia Systems,
pages 111–123, London, UK, 2001. Springer-Verlag.

[10] M.A. de Miguel., J.F. Ruiz, and M. Garcia. Qos-aware component
frameworks. In Proceedings of the Tenth IEEE/IFIP International
Workshop on Quality of Service, (IWQoS 2002), pages 161 – 169,
2002.

[11] Geoff Coulson, Gordon S. Blair, Michael Clarke, and Nikos Parlav-
antzas. The design of a configurable and reconfigurable middleware
platform. Distributed Computing, 15:109–126, 2002.

[12] Arch C. Luther. Principles of Digital Audio and Video. Artech
House, Boston, London, 1997.

[13] H. Afifi S. Mohamed, F. Cervantes-Perez. Audio quality assessment
in packet networks: an "inter-subjective" neural network model. In
Proceedings. 15th International Conference on Information Net-
working, pages p. 579–586. INRIA/IRISA, Instituto Tecnologico
Autonomo de Mexico (ITAM), 2001.

[14] Nashwa Abdel-Baki, Bernd Aumann, and Hans Petter Gross-
mann. Analyzing multimedia streaming in a dsitributed environ-
ment. Universal Multiservice Networks, 2002. ECUMN 2002. 2nd
European Conference, 2002.

[15] Vicky Hardman Martina Sasse Mark Handley Anna Watson. Reli-
able audio for use over the internet. Proceedings of the INET’95,
1995.

[16] Randy H. Katz Chen-Nee Chuah. Characterizing packet audio
streams from internet multimedia applications. Communications,
2002. ICC 2002. IEEE International Conference, 2002.

[17] Andres Vega-Garcia Jean-Chrysostome Bolot. Control mechanisms
for packet audio in the internet. Proceedings of the IEEE Infocom
’96, San Fransisco, CA, pages pp. 232–239, 1996.

[18] Fred Halsall. Multimedia Communications, pages 256–262.
Addison-Wesley, 2001.

[19] C. Schlatter. Basic architecture of h.323, the swiss education
& research network. http://www.switch.ch/vconf/ws2003/
h323_basics_handout.pdf (Last accessed 2005.05.04), 2003.

[20] M. Handley et al. Sip: Session initiation protocol. RFC 2543, 1999.

[21] H.L. Goh K.K. Tan. Session initiation protocol. In Industrial Tech-
nology, 2002. IEEE ICIT ’02, pages p1310 – 1314 vol.2, 2002.

109

[22] J. Rosenberg H. Schulzrinne. The session initiation protocol:
Internet-centric signaling. Communications Magazine, IEEE,
(Volume 38, Issue 10):p134 – 141, 2000.

[23] J. Huang A. P. Black J. Walpole and C. Pu. Infopipes – an ab-
straction for information flow. In ECOOP 2001 Workshop on The
Next 700 Distributed Object Systems, June 2001. Also available
as OGI technical report CSE-01-007.

[24] http://java.sun.com/products/ejb/2.0.html (Last ac-
cessed 2005.05.04).

[25] Java management extensions (jmx) technology overview.
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/
overview/JMXoverviewTOC.html (Last accessed 2005.05.04).

[26] http://www.omg.org/cgi-bin/apps/doc?formal/
02-06-65.pdf (Last accessed 2005.05.04).

[27] Bill Burke and Sacha Labourey. Jboss 3.2 workbook for enterprise
javabeans, 3rd. edition. http://www.oreilly.com/catalog/
entjbeans3/workbooks/ (Last accessed 2005.05.04).

[28] Akhil Nigam Waqar Ali. java.net.rtp. http://www.cs.
columbia.edu/~hgs/teaching/ais/1998/projects/java_
rtp/report.html (Last accessed 2005.05.04).

