
UNIVERSITY OF OSLO
Department of Informatics

Trajectory Learning
for Highly Aerobatic
Unmanned Aerial
Vehicle

Master Thesis

Maja Celine
Sevaldson

August 14, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30827048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The dynamics of fixed wing planes are well understood within the conven-
tional flight envelope. The situation is different in the case of aerobatic
maneuvers with a large angle of attack, such as perching and vertical hover.
In such maneuvers the airflows around the plane are unpredictable mak-
ing it difficult to create accurate dynamic models, which would normally be
needed for the design of conventional controllers. Yet human RC pilots are
able to fly these maneuvers with fixed wing planes.
Apprenticeship learning provides a promising solution to the problem

of automating highly aerobatic maneuvers. It allows the maneuver to be
learned from demonstration flights done by a human RC pilot rather than
relying on an accurate dynamics model.
The focus of this thesis is on a specific issue in apprenticeship learning,

namely how to infer the trajectory the pilot intended to fly from a set of
suboptimal demonstration trajectories. Such a trajectory can be used as
a target trajectory for an autonomous controller. A trajectory learning
algorithm that has shown promising results in automation of aerobatic
helicopter flight is applied to a fixed wing UAV platform.
The algorithm is tested on two different maneuvers; A straight line of

level flight, and a vertical hover maneuver. In the case of both maneuvers
the algorithm learned the intended trajectory without prior knowledge
about the trajectory.
In order to collect training data for the trajectory learning task, an

appropriate platform and data acquisition system are needed. This thesis
therefore also presents the development of a fixed wing UAV platform for
research on automation of aerobatic flight.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Thesis overview . 1

1.2.1 Supporting contributions 2
1.2.2 Thesis outline . 2

1.3 Related work . 3
1.3.1 Stanford Autonomous Helicopter 3
1.3.2 Aerobatic maneuvers . 4

2 Background 7

2.1 Hidden Markov Models . 7
2.1.1 Discrete Markov Processes 7
2.1.2 Hidden Markov Model . 8

2.2 Expectation-Maximization . 10
2.2.1 Maximum Likelihood Estimation 11
2.2.2 EM . 11

2.3 Extended Kalman Smoother . 12
2.3.1 Discrete Kalman filter . 12
2.3.2 Extended Kalman filter 13
2.3.3 Kalman smoother . 13

2.4 Dynamic Time Warping . 14

3 Trajectory Learning 17

3.1 State modelling . 17
3.1.1 Time alignment . 18

3.2 The trajectory learning algorithm 19
3.2.1 E-step for hidden trajectory 20
3.2.2 M-step for hidden trajectory 20
3.2.3 Time alignment . 21

3.3 Dynamic Model . 22
3.3.1 Equations of motion . 22

3.4 Improvements of the model . 23

4 Experimental platform 25

4.1 Plane . 26
4.1.1 Dynamical properties of the plane 27
4.1.2 Modifications to the airframe 29

v

4.1.3 Motor . 29
4.1.4 Radio Control System . 30

4.2 Microcontrollers, Sensors and Data Acquisition 31
4.2.1 ArduPilot Mega . 32
4.2.2 Inertial Measurement Unit 32
4.2.3 GPS . 33
4.2.4 Barometric pressure sensor 34
4.2.5 Sonar . 36
4.2.6 Pilot Inputs . 36
4.2.7 Data Acquisition and Storage 37

4.3 Test environment . 37
4.4 Alternative Positioning Systems 39
4.5 Simulator . 41

5 Experiments and Results 43

5.1 Preliminary tests . 43
5.1.1 GPS accuracy . 43
5.1.2 Outdoor flight tests . 44

5.2 Collecting training data . 45
5.2.1 Linear flight and banked turns 46
5.2.2 Hovering with transitions 47

5.3 Pre-processing . 47
5.3.1 Selecting good demonstrations 49
5.3.2 BPM filtering and calibration 49
5.3.3 Localization of Position Data 51
5.3.4 IMU data . 52
5.3.5 Pilot control inputs . 55

5.4 Results . 57
5.4.1 Time alignment . 57
5.4.2 Straight line of level flight 59
5.4.3 Vertical hover . 62
5.4.4 Model Prediction Error 64

6 Conclusion 67

6.1 Discussion . 67
6.1.1 Platform . 67
6.1.2 Time alignment . 68
6.1.3 Trajectory learning . 68

6.2 Future work . 69
6.3 Conclusion . 70

vi

List of Figures

2.1 Three state Markov model of the weather 9
2.2 Hidden Markov Model of crazy soda dispenser 9
2.3 Dynamic time warping. The figure is adapted from [31]. 14
2.4 Dynamic time warping distance matrix. The figure is

borrowed from [40]. 15

3.1 Model of the relation between the hidden trajectory and one
of the demonstrations. The coloured nodes are unobserved. . 19

3.2 Model of the state when τk
j
is fixed. Coloured nodes are

unobserved. 19

4.1 Expert pilot flying the plane in vertical hover. 25
4.2 Electrifly Yak 54 3D . 26
4.3 Reinforcement of the motor mount 30
4.4 Measured thrust as a function of control input. 30
4.5 7 channel Futaba RC system . 31
4.6 Diagram of DAQ system . 32
4.7 Electronics mounted on the plane 33
4.8 ArduPilot Mega board . 34
4.9 MicroStrain 3DM-GX3 IMU . 34
4.10 MediaTek 3329 GPS . 35
4.11 Bosch Sensortech BMP085 digital pressure sensor inside

plastic enclosure . 35
4.12 Maxbotix ultrasonic rangefinder sonar 36
4.13 Outdoor test space. 37
4.14 Indoor flight in the CEPSUM gym. 38
4.15 The Stinger Dome of Concordia University in Montreal 38
4.16 Principle of stereo computer vision 39
4.17 2D tracking based on colour tresholding 40

5.1 On ground GPS test at McGill downtown campus. The red
line marks the actual path travelled, while the yellow line
shows the logged GPS data. 43

5.2 Comparison of GPS and BPM altitude data 44
5.3 In air tests of DAQ system and GPS logging. 45
5.4 Hand launch of the plane for a training data collection flight

in the Stinger Dome. 46
5.5 Mark-up of the Stinger Dome field for collecting training data. 47

vii

5.6 Vertical hover in the Stinger Dome. 48
5.7 Vertical hover. 48
5.8 East - North plot of a good linear flight demonstration. 49
5.9 Position plot and pitch angle from a good hover demonstration 50
5.10 BPM data is filtered using a 3rd order Butterworth low-pass

filter with 1 Hz cut-off frequency. 50
5.11 Uncalibrated BPM data and Sonar reference signal 51
5.12 Uncalibrated BPM data and Sonar reference at the two

regions where calibration points were selected. 51
5.13 Calibrated BPM data and Sonar reference signal 52
5.14 Zoomed in view of the two calibration regions after calibration 52
5.15 IMU frame and body frame of the plane. 53
5.16 Aileron deflection as a function of input pulse width 55
5.17 Elevator deflection as a function of input pulse width 56
5.18 Rudder deflection as a function of input pulse width 56
5.19 Thrust in Newtons vs PWM command 57
5.20 Linear velocities (ṅėḋ) from the linear flight. 58
5.21 Angular Velocities around the plane z-axis (r). 58
5.22 East-North position of level flight (meters) 59
5.23 Position and linear velocity of the plane during a straight line

of level flight. 60
5.24 Orientation during level flight (Euler Angles). 60
5.25 Angular velocities pqr (rad/sec), level flight. 61
5.26 Control inputs, level flight. 61
5.27 Hover maneuver. 62
5.28 Hover maneuver - Linear velocities and position. 63
5.29 Angular Velocities, hover flight (rad/sec). 63
5.30 Orientation during hover (Euler angles). 63
5.31 Control inputs, hover maneuver. 64
5.32 Model prediction error in linear accelerations (u̇v̇ ẇ) during

straight flight. 65
5.33 Model prediction error in angular accelerations (ṗ q̇ ṙ) during

straight flight. 65
5.34 Model prediction error in linear accelerations (u̇v̇ ẇ) during

the hover maneuver. 65
5.35 Model prediction error in angular accelerations (ṗ q̇ ṙ) during

the hover maneuver. 65

viii

List of Tables

4.1 Detailed weight breakdown of the experimental platform . . . 27
4.2 Moments and products of inertia of Yak54 with Data Acqui-

sition system. 28
4.3 Parameters used in calculation of rotational damping mo-

ments. 29

ix

x

Acknowledgements

All thanks to God, the Exalted, the Most High. Without His mercy and
blessings I could never have finished this thesis. Then thanks to my family,
especially my husband Moustafa, who provides me with tremendous
amounts of love and support. Thanks to my main supervisor Prof. Meyer
Nahon who took me on as his student even though I am not a Mechanical
Engineer. I learned a lot from working in his lab at McGill University, and
the experience of studying in Montreal literally changed my life. Thanks to
Kyrre Glette who agreed to co-supervise me from across the ocean. A great
thanks is due to Patrick Thompson from theUdisco hobby-shop, for lending
us his expertise in RC-planes. He piloted our plane in all the flight tests,
some of which were conducted during rather unfriendly Montreal winter
temperatures. And last but not least, thanks to allmy friends and colleagues
at McGill for an excellent working environment as well as countless cups of
ice-cream and coffee.

xi

xii

Chapter 1

Introduction

1.1 Motivation

Many automation tasks requires a robot to follow a specified trajectory.
Hand crafting such a trajectory is a non-trivial task formost robotic systems
operating in a real world environment. The trajectory needs to adhere to
the dynamics of the system, as well as correspond to the desired maneuver.
The latter can be difficult for complex maneuvers, and the former requires
accurate dynamics models that are valid for the entire trajectory. However,
when humans learns a task we do not necessarily require someone to
write down an accurate task description including any of the dynamics
equations involved. Rather it is easier for us to learn the task if an expert
demonstrates it to us. This is the principle of apprenticeship learning;
Learning by demonstration.
Fixed wing unmanned aerial vehicles (UAVs) are interesting platforms

for apprenticeship learning. Some UAVs are capable of highly aerobatic
maneuvers such as perching and vertical hover. While the dynamics of
fixed wing aircrafts within the conventional flight envelope are fairly well
understood, the situation changes drastically at angles of attack closer to
90◦. In such maneuvers the wings loose their lift, and the airflows around
the plane are complex and unpredictable [45]. Because of the complexity
of the dynamics, hand crafting trajectories for such maneuvers is difficult,
if not impossible. Nevertheless experienced RC pilots are able to fly them.
Thus it makes for an interesting apprenticeship learning problem to have a
fixed wing UAV automate a trajectory demonstrated by a human RC pilot.

1.2 Thesis overview

This thesis focuses on a specific issue in apprenticeship learning. Given
a set of suboptimal demonstration trajectories, what is the trajectory the
human expert intended to demonstrate? If this trajectory is found it
can be used as a target trajectory for an autonomous controller, possibly
surpassing the human expert in performance of the demonstrated task.
This is the first step towards an ultimate goal of automating highly aerobatic
maneuvers with a fixed wing UAV.

1

Promising results have been presented by Abbeel et al. [2] using this
approach to automate air-shows for an autonomous helicopter. The work
of this thesis aims to apply techniques presented by Abbeel et al. to a highly
aerobatic fixed wing UAV platform. While fully automating maneuvers is
outside the scope of the thesis, the focus is set on inferring an intended
target trajectory from a set of expert demonstrations. This trajectory can
later be used as a target trajectory in an autonomous controller.
In order to collect training data for the trajectory learning, a fixed

wing platform capable of recording the state of the plane as well as the
pilot control inputs is needed. Such a platform could later be used for
automating the maneuver as well. A large part of the work in this thesis
has been devoted to developing a suitable platform.
The goals of the thesis can be summarized as:

• Apply trajectory learning techniques to highly aerobatic maneuvers
with a fixed wing platform.

• Develop a suitable fixed wing platform for apprenticeship learning of
highly aerobatic maneuvers.

1.2.1 Supporting contributions

The research was conducted in the lab of Professor Meyer Nahon, which
is part of the Center for Intelligent Machines at McGill University. Other
students in the research group has made supporting contributions to the
work. Dimitri Poliderakis and Karen Bodie did preliminary research for
development of the platform as well as some investigation of potentially
suitable flight simulators as parts of their undergraduate honours thesis.
Jean Froundjian developed a prototype of the ground based vision system
described in section 4.4 as part of his Masters project. Ryan Caverly helped
with practical work on experiments for characterizing the relationship
between control inputs and actuator response during a summer internship.
Waqas Khan is currently working on his PhD thesis developing a dynamics
model of the fixed wing platform, that is accurate outside the conventional
flight envelope. There is no overlap between this thesis and the work of
Khan other than a shared platform.

1.2.2 Thesis outline

The remainder of this chapter will present related work. Chapter 2
gives an overview of background theory related to the trajectory learning
algorithm. Chapter 3 presents the trajectory learning algorithm and the
dynamic model of our fixed wing platform. Chapter 4 gives a detailed
description of the platform. Chapter 5 presents the results of the trajectory
learning and describes the preliminary testing and preprocessing, and
chapter 6 provides a discussion of the results as well as the conclusion and
suggestions for future work.

2

1.3 Related work

There has been much research in the field of apprenticeship learning, also
known as imitation learning, learning by demonstration, or programming
by demonstration.
Atkeson and Schaal used a form of apprenticeship learning to make

a robotic arm learn tasks by watching a human demonstrate them [3].
Tidemann and Öztürk presented a modular connectionist architecture
for apprenticeship learning [47], and used the architecture to enable a
simulated robot to learn dance moves from demonstrations by a human
dancer. Tedrake et al. implemented a different form of apprenticeship
learning where a robot does not learn from a human, rather it learns
dynamic walking from demonstrations by a passive dynamic walker [46].
Calinon et al. presents apprenticeship learning for learning trajectories of
robotic tasks, and use time alignment of demonstrations, but they do not
incorporate the dynamics of the system.
The work in this thesis is highly based on the work in autonomous

helicopter aerobatics by Abbeel et al. [2]. Their helicopter autonomously
performs full air-shows including maneuvers that only excellent human
pilots are able to perform. This research is very similar to what we are trying
to achieve on a fixed wing platform, as the helicopter learns trajectories
from a set of demonstration trajectories from flights by a human RC pilot.
These trajectories are then used as a target trajectory for the autonomous
controller. The following section will describe the work of Abbeel et al. in
more detail, as it has been central for this thesis.

1.3.1 Stanford Autonomous Helicopter

In the research of Abbeel et al. [2] aggressive aerobatic maneuvers are
learned from demonstration flights by a human expert. The authors
combine apprenticeship learning with a form of model predicative control
for non-linear systems. The apprenticeship learning comprises inferring an
intended target trajectory from a set of demonstrations.
A dynamic programming algorithm called Dynamic Time Warping

(DTW), known from the field of speech recognition, is applied to align
the demonstrations in time. The demonstrations are modelled as noisy
subsampled observations of the hidden intended trajectory, in the form
of a hidden Markov model (HMM). Parameters of the HMM, such as
distributions of the hidden trajectory are computed using the Expectation
Maximization algorithm. An extended kalman smoother is used for state
estimation together with a basic dynamicmodel of the helicopter. The basic
model is a parametric model where the parameters are learned from flight
data that is not specific to the maneuver that is to be learned. The model
is improved by incorporating model prediction errors as bias terms, and by
applying locally weighted regression along the trajectory tomore accurately
represent the dynamics of the helicopter for the specific manuever.
After inferring the intended trajectory from the demonstrations the

trajectory is used as a target trajectory for an autonomous controller. The

3

controller consists of an off-line base controller and an on-line adaptive
controller. First a limited horizon Linear Quadratic Regulator (LQR)
is run offline to compute the optimal control policy for flights under
ideal conditions. To account for external disturbances such as wind, an
adaptive receding horizon LQR controls the helicopter online during the
autonomous flight. If the online LQR fails to converge to a solution in time,
the computed offline LQR policy is used.
Abbeel et al. presents promising results where the autonomous

helicopter demonstrates entire air-shows consisting of aggressive aerobatic
maneuvers such as rolls, flips, tic-tocs and auto-rotation landing. Their
algorithm is capable of incorporating flight data from autonomous flights
as training data for further training, resulting in a performance better than
the human expert that initially demonstrated the maneuvers. Furthermore
the algorithm can also incorporate expert advice as prior knowledge about
the trajectory.
This thesis relies heavily on the work of Abbeel et al., applying the

trajectory learning algorithm presented in [2] to a fixed wing platform
rather than a helicopter. While Abbeel et al. incorporate expert advice for
the target trajectory, the work presented here does not assume any prior
knowledge of the trajectory other than the given demonstrations.

1.3.2 Aerobatic maneuvers

A considerable amount of research has been done on automation of
aerobatic maneuvers with fixed wing UAVs. Much of this research is
on controllers capable of controlling the plane in the nonlinear dynamics
regime at high angles of attack. This section presents research done on
automation of perching and hover maneuvers.

Perching Interesting work on perching includes that of Cory and
Tedrake [10, 45, 11] who exploits nonlinear dynamics in development of
a perching controller for their fixed wing glider that can land on a wire.
Desbiens and Cutosky [25] demonstrates perching and landing on vertical
surfaces such as a brick wall. While Cory andTedrake uses amotion capture
system to track the pitching trajectory, Desbiens and Cutosky found that for
their purpose it was enough to measure the distance to the wall and by this
trigger the perching maneuver at the exact right time. The maneuver itself
is achieved open-loop.
Hurst et al. [18] offers a different solution to the problem of modelling

the non-linear dynamics related to the perching maneuver. They divide
the non-linear trajectory into windows of nearly linear behaviour and
combined these models to approximate the full non-linear model. In this
work the authors use a morphing plane that can change its airframe to
maintain controllability during maneuvers that could otherwise result in
a stall. The use of a morphing plane has advantages in controllability, it
comes with the cost of higher complexity. In the work of this thesis a choice
was made to use a regular off-the-shelf airframe because these planes are
already capable of highly aerobatic maneuvers.

4

Hovering A fixed wing UAV can be made to hover like a helicopter by
pitching up into a vertical position. While pitching up, the plane reaches a
stall where the wings no longer contribute to the lift. The aircraft needs
a large amount of thrust to break out of the stall, and UAVs capable
of hovering typically have a large thrust to weight ratio. Green and Oh
[15, 14, 16] developed a controller for autonomous hovering capable of
transitioning from level flight to hover and maintaining a stable hover
for several minutes. Myrand-Lapierre et al. [32] also describe strategies
to transition between these two flight modes. Johnson et al. [21, 22]
developed an adaptive controller using dynamic inversion adapted by
neural networks for the same maneuver.
While the trajectory learning algorithm used in this thesis is tested

using the vertical hover maneuver, the focus is on the trajectory learning
itself rather than control, which sets apart this work from the previously
mentioned research on autonomous hover.

5

6

Chapter 2

Background

HiddenMarkovModels (HMMs), ExpectationMaximization (EM), Kalman
smoothing and Dynamic Time Warping (DTW) are central elements used
in the trajectory learning algorithm. This chapter aims to give a brief
introduction to the theory behind these techniques, while the next chapter
will focus on how the techniques are applied in the specific case of trajectory
learning for a fixed wing UAV.

2.1 Hidden Markov Models

The theory behind Markov processes were first presented by Andrei A.
Markov for the use of modelling letter sequences in Russian literature [27],
while Hidden Markov Models (HMMs) were introduced by Baum et al.
around 1970 [5]. A hidden Markov model is a probabilistic function of a
Markov process. The trajectory learning algorithm described in chapter 3
models the state of the plane along the trajectory using Hidden Markov
Models (HMMs).

2.1.1 Discrete Markov Processes

Markov models can be used to model systems which at any time is in one of
N states s1, s2, ..., sN [37]. The system transitions from one state to the other
(or to the same state) at a regularly spaced time interval, and according to
a given set of state transition probabilities. The time instances between the
state transitions is denoted as t = [1 : T], and the state at time t is denoted
qt . In the case of discrete Markov processes we assume the probability
that the current state of the system is state sn , n ∈ [1 : N] only depends
on the previous state, not on al l the earlier states. We also assume that this
probability is independent of time. The state transition probabilities can be
written as [37]:

ai j =P(qt = S j |qt−1 = Si), 1≤ i , j ≤ N (2.1)

The state transition probabilities obey standard stochastic constraints, and
thus have the properties

7

ai j ≥ 0,
N
∑

j=1

ai j = 1 (2.2)

Consider an example from [37], on modelling weather using a Markov
model: Once a day the weather is observed as being in one of three states:
sun, cloudy or rain/snow. The transition probabilities between the states
are shown in figure 2.1. And can be written in matrix form as follows:

A = ai j =





0.8 0.1 0.1

0.2 0.6 0.2

0.3 0.3 0.4



 (2.3)

Given this weather model, we can now calculate the probability that the
weather next week is for instance "sun-sun-rain-rain-cloudy-sun-cloudy",
if we know the weather is sunny on Monday. Stating the problem more
formally we can say s1 = sun, s2 = cloudy and s3 = rain/snow and the
observation sequence O = {s1, s1, s2, s2, s3, s1, s3}, with initial condition π= s1.
The probability of O given the model is

P(O|Model)= P(s1, s1, s2, s2, s3, s1, s3|Model)

= P(s1)∗P(s1|s1)∗P(s2|s1)∗P(s2|s2)

∗P(s3|s2)∗P(s1|s3)∗P(s3|s1)

= π∗a11 ∗a12 ∗∗a22 ∗a23 ∗a31 ∗a13

= 1∗0.8∗0.1∗0.6∗0.2∗0.3∗0.1

= 2.88∗10−4

(2.4)

2.1.2 Hidden Markov Model

The Hidden Markov Model (HMM) is an extension of Discrete Markov
Model where the states are not directly observable. Rather the result of
the states can be observed, but not the process that generated this result.
[26] gives the example of a crazy soda machine that switches randomly

between a tendency to dispense coke and a tendency to dispense ice tea.
If the machine would dispense coke every time a coin is inserted in the
coke tendency state, and ice tea in the ice tea tendency state, then the
state would be directly observable and we could model it as a regular
Markov model. But in the case of the crazy machine we can not observe
the states directly. In either state the machine will dispense coke, ice tea
or lemonade. The different kinds of soda are the observable results of the

8

Figure 2.1: Three state Markov model of the weather

Figure 2.2: Hidden Markov Model of crazy soda dispenser

hidden states. Figure 2.2 shows the state transition probabilities and the
output probabilities of the crazy machine.

The probability of a certain sequence of outputs is the sum of the
probabilities for each possible state sequence that produces the output. As
an example, given the model shown in figure 2.2 calculate the probability
of observing the output sequence O = {Coke,Lemonade}when the machine
always starts in the coke preferring state.

P(O|Model)= 0.6∗0.7∗0.3+0.6∗0.3∗0.2 = 0.162 (2.5)

The general form of HMM can be written as follows [26]:

9

Set of states S = {s1, s2, ..., sN } = {1,2, ..., N }

Set of possible outputs K = {k1,k2, ...,kM }

Initial state probabilities Π= {πi }, i ∈ S

State transition probabilities A = {ai j } = P(qt = S j |qt−1 = Si), i , j ,∈ S

Output emission probabilities B = {bi k }, i ∈ S,k ∈ K

State sequence X = (x1, x2, ..., xT+1)

Output sequence O = (o1,o2, ...,oT)

In the above example the set of states consist of the coke preferring state
(s1), and the ice tea preferring state (s2). K = {coke, I ce Tea,Lemonade}.
Π= {1,0}, because we know the machine always starts in state s1.

A =

[

0.7 0.3

0.5 0.5

]

and B =

[

0.6 0.1 0.3

0.1 0.2 0.7

]

.

There are three basic problems for HMMs that need to be solved for the
HMM to be useful in real world applications [37]:

1. Given the observation sequence O = (o1,o2, ...,oT) and the model λ =

(A,B ,π), how can we compute the probability P(O|λ)?

2. Given the observation sequence O and the model λ, how can we
find the state sequence Q = (q1, q2, ..., qT) that best explains the
observations?

3. How do we adjust the model parameters λ = (A,B ,π) to maximize
P(O|λ)?

Problem 1 is the problem of evaluating how well the model fits the
observed sequence. It is useful as a scoring measure when a model is to
be selected from a set of models. This is the problem that was solved in the
above example of a crazy soda machine.
Problem 2 is the problem of uncovering the hidden states of the model.

Several different optimality criteria can be imposed depending on the
application, since there is no "correct" state sequence to be found.
Problem 3 is the problem of "training" the HMM; i.e. optimizing the

model parameters to best describe how a given observation sequence is
generated. This is the problem of the HMM that models the states in the
trajectory learning algorithm, and the problem can be solved using The
Expectation-Maximization algorithm described next.

2.2 Expectation-Maximization

The Expectation-Maximization (EM) algorithm was first presented in 1977
[12]. It is used in a wide range of applications and has been described in
several books and papers over the years, see for instance [29, 6, 49]. EM
iteratively computes the Maximum Likelihood (ML) when the observations
can be described as incomplete data. The trajectory learning algorithm uses

10

a form of nested EM where both parameters for the HMM modelling the
state is trained, and the time alignment indices that maps the states of the
demonstrations to the intended trajectory are estimated. This section first
provides a brief introduction to Maximum Likelihood Estimation (MLE),
before describing the EM algorithm.

2.2.1 Maximum Likelihood Estimation

MLE is commonly used to estimate parameters of statistical models [33].
The probability density function (PDF) p(x|Θ) specifies the probability

distribution of the data x given the parameters Θ. p could be a set of
gaussian distributions and Θ could be the means and variances of the
distributions.
If we have a data set X = {x1, x2, ..., xN } that is sampled from a distribution

p(X |Θ), then the likelihood of the parameters given the data is [6]:

L(Θ|X) =
N
∏

i=1

p(xi |Θ) (2.6)

In MLE we seek to find the parameters Θ′ that maximizes the likelihood
function L(Θ|X) i.e.:

Θ
′
= argmax

Θ

L(Θ|X) (2.7)

Often the logarithm l og (L(Θ|X)) is maximized instead because it is
analytically easier.

2.2.2 EM

Maximum likelihood assumes that all the data is observable. This is
not always an applicable assumption, as in the case of HMMs where the
observed data is a probabilistic function of a hidden state sequence. EM is
an algorithm for estimating maximum likelihood of incomplete data sets.
However the algorithm is also used in cases where the data set is in fact
complete, by assuming there are hidden parameters. When working with
incomplete data sets we need to adjust the likelihood function to account
for the joint probability density of the observable and the hidden data.
Formally, the data set X is assumed to be incomplete, and a complete

data set Z = (X ,Y) is assumed to exist. Furthermore a joint density function
is specified [6]:

p(Z |Θ)= p(X ,Y |Θ) = p(Y |X ,Θ)p(X |Θ) (2.8)

The complete data likelihood function is given by equation 2.9. Y can be
considered as a random variable, while X and Θ are constant.

L(Θ|Z) = L(Θ|X ,Y) = p(X ,Y |Θ) (2.9)

The EM algorithm consists of two steps, an expectation step (E-step)
where model parameters are estimated, and a maximization step (M-
step) where L(Θ|Z) is maximized using the current estimate of model

11

parameters. These two steps are iterated until convergence at a (possibly
local) maximum.
The form of the estimation in the E-step depends on the application.

In the case of this thesis the estimation is done using an extended kalman
smoother. The maximization step estimates Θ

′ by maximum likelihood
(see section 2.2.1) as though the estimated complete data Z provided by
the kalman smoother is the real complete data. This maximization can be
described as follows:

Θ
′
= argmax

Θ

L(Θ|Z) (2.10)

2.3 Extended Kalman Smoother

The kalman filter was first presented by R.E. Kalman in 1960 [23]. It is
a predictor-corrector type estimator that minimizes the estimated error
covariance. The conditions for the filter to work optimally rarely exist,
nevertheless it works well in many applications and is widely used in
tracking, motion prediction and fusion of data from multiple sensors. [7]
provides a gentle introduction to kalman filters, other references include
[28, 42, 13]. Welch and Bishop maintains a website [17] with useful
tutorials, references and research related to the Kalman filter.
An extended kalman smoother is used as a state estimator in the E-step

of the EM used by the trajectory learning algorithm. It estimates the mode
and distribution of the hidden states of the HMM, namely the intended
trajectory.

2.3.1 Discrete Kalman filter

The discrete Kalman filter is the Kalman filter in its original form as
presented in [23]. In this form both measurements and estimates are
discrete in time.
Consider a linear system governed by the following equation:

xk = Axk−1+Buk +wk −1 (2.11)

And the measurements z ∈Rm of the form

zk = H xk +vk (2.12)

where wk is the process noise, and vk is the measurement noise. A in
equation 2.11 is a n x n matrix that relates the state x at the previous time
step to the state at the current time step. B is a n x l matrix that relates a
control input u ∈R to the state. H in equation 2.12 is a m x n matrix that
relates the state to the measurement z.
The kalman filter can be thought of as a form of feedback control. It

iterates two steps; A time update step and a measurement update step
(feedback step). In the time update step a priori state estimate and error
covariance is obtained as shown in equation 2.13 . In the measurement

12

update step (equation 2.14) the Kalman gain is first calculated, then the
state estimate is updated with the measurements zk , and finally the error
covariance is updated. The steps are iterated, recursively conditioning the
estimates on all previous measurements. In the following equations x̂−

k

denotes the a priori state estimate at step k, while x̂k is the posteriori state
estimate. Similarly P−

k
represents the a priori estimate error covariance,

and Pk is the a posteriori estimate error covariance [7].

x̂−
k = Ax̂k−1 +Buk

P−
k = APk−1 AT

+Q
(2.13)

Kk =
P−

k
H T

HP−
k

H T +R

x̂k = x̂−
k +Kk (zk −H x̂−

k)

Pk = (I −Kk H)P−
k

(2.14)

2.3.2 Extended Kalman filter

The discrete kalman filter described in the previous section is only
applicable to linear systems. The extended Kalman filter (EKF) extends
the theory to non-linear systems by linearizing about the current mean and
covariance. The estimation is linearized using partial derivatives of the
process and measurement functions. The time update and measurement
update equations are modified as shown in equation 2.15 and 2.16. Ak and
Wk in equation 2.15 are the process Jacobians at time step k , and Qk is
the process noise covariance at time step k. f and h in the measurement
update equations (2.16) are both non linear functions. f relates the state at
the previous time-step k −1 to the state at the current time-step k , while h

relates the state xk to the measurement zk . Hk and Vk are measurement
Jacobians at time step k, and Rk is the measurement noise covariance
equation [7].

x̂−
k = f (x̂k−1,uk)

P−
k = Ak Pk−1 AT

k +WkQk−1W T
k

(2.15)

Kk =
P−

k
H T

k

Hk P−
k

H T
k
+Vk RkV T

k

x̂k = x̂−
k +Kk (zk −h(x̂−

k))

Pk = (I −Kk Hk)P−
k

(2.16)

2.3.3 Kalman smoother

The Kalman smoother differs from the Kalman filter in that it conditions
the smoothed distributions with respect to all the measurement data,

13

whereas the Kalman filter only uses the measurements up until the current
time-step. The Kalman smoother equations (equation 2.17) are recursively
applied to the results of the Kalman filter [41]. The subscript k |K denotes
a value conditioned on all the measurements z1:K , while k |k denotes values
only conditioned on measurements until and including the current time
step k . The smoothed distributions are calculated recursively starting from
the last time step k = K .

x̂k |K = x̂k |k +Lk (xk+1|K − x̂k+1|K)

Pk |K = Pk |k +Lk (Pk+1|K −Pk+1|k)LT
k

Lk =
Pk |k AT

Pk+1|k

(2.17)

2.4 Dynamic TimeWarping

Dynamic Time Warping (DTW) is used to compare time dependent
sequences. It has been used extensively in speech recognition, where words
need to be recognized regardless of the speed of the speech, and the speed
of the speech of one person may vary non-linearly over time. However the
technique is general and can be applied to any pair of sequences that require
alignment in time.
The training data used to train the trajectory learning algorithm consist

of a set of demonstration flight trajectories. In order to compare the
demonstrations they need to be aligned in time similar to how speech
patterns are aligned in speech recognition. DTW is applied to find the time
mapping between the demonstration trajectories and the hidden intended
trajectory as described in section 3.1.1.
Consider the two time dependent sequences A = [a1, a2, ..., aI] and B =

[b1,b2, ...,b J], where both sequences are sampled at the same constant
sample rate. The goal is to align A and B in time by mapping the features ai

to the most similar features b j where i ∈ [1 : I] and j ∈ [1 : J] [40]. Figure 2.3
illustrates the principle.

Figure 2.3: Dynamic time warping. The figure is adapted from [31].

In order to compare the features we need a distance function d (a,b)

that measures the similarity between two features. The distance measure
function varies with the application. d (a,b) should give a low value if a and
b are similar to each other, and a high value if they differ much.
By evaluating the distance of every pair ai ,b j we obtain the distance

matrix D ∈ RI x J , where D(i , j) = d (ai ,b j). The matrix D can be viewed as

14

in figure 2.4, where sequence A is developed along the i-axis and sequence
B along the j-axis. We want to find the alignment that maps features of
sequence A to the most similar features of sequence B; i.e. an alignment
that minimizes the distance measure between the two sequences. This is
the sequence C = [c1,c2, ...,cK], which in [40] is called the warp path.

Figure 2.4: Dynamic time warping distance matrix. The figure is borrowed
from [40].

The more the warp path deviates from the diagonal of matrix D, the
more changes have been done in the time alignment. If the warp path
equals the diagonal of D then there are no changes. Certain conditions
are placed on the warp path C . These conditions include monotonicity,
continuity, boarder conditions and windowing. Equation 2.18 defines the
monotonicity condition.

ik−1 ≤ ik

jk−1 ≤ jk

(2.18)

The continuity condition is written as follows:

ik − ik−1 ≤ 1

jk − jk−1 ≤ 1
(2.19)

Equation 2.18 and 2.19 gives us the following relation between two
consecutive points:

ck−1 =







(ik , jk −1)

(ik −1, jk −1)

or (ik −1, jk)

(2.20)

The boundary conditions are given by

c1 = (1,1)

cK = (I , J)
(2.21)

15

An adjustment window of length r is chosen to limit the time warping as
shown in figure 2.4. The window condition is formally written:

|ik − jk | ≤ r (2.22)

[40] defines the time normalized difference between A and B as follows:

D(A,B) =
1

∑K
k=1

wk min
F

[

K
∑

k=1

d (ck)∗wk

]

(2.23)

This equation can be efficiently solved by dynamic programming by
recursing backwards from the last time step until the beginning of the time
series.

wk in equation 2.23 is a weighting coefficient. The form of wk depends
on the manner which A and B are aligned to each-other. Equation 2.24
gives the weighting coefficient for the case where B is aligned to the time
axis of A, while equation 2.25 is valid if A and B are both aligned to an
imaginary axis l .

wk = ik − ik−1 (2.24)

wk = (ik − ik−1)+ (jk − jk−1) (2.25)

16

Chapter 3

Trajectory Learning

The goal of the trajectory learning algorithm is to infer the trajectory that
the pilot most likely intended to fly, by examining trajectories from real
demonstration flights repeatedly demonstrating the same maneuver. The
demonstration trajectories are modelled as sub-optimal noisy observations
of the hidden intended trajectory. This follows from the idea that even an
expert pilot will never be able to fly a maneuver perfectly, but the different
demonstrations may be sub-optimal at different sections of the trajectory.
In that case the set of suboptimal demonstrations together can be used
to infer the intended trajectory. The trajectory learning in this thesis is
highly based on the work of Abbeel et al. [2]. The approach is the same,
but a different dynamics model is needed since Abbeel et al. applies the
techniques to a helicopter platform while this thesis aims to apply the same
methods to flight data from a fixed wing UAV.

3.1 State modelling

M demonstration trajectories of length N k , for k = 0,1, ..., M − 1 are given
as input to the algorithm. Abbeel et al. [2] reports M = 5 to be sufficient
for most maneuvers, provided the demonstration trajectories are of good
quality. A trajectory is represented as a sequence of states sk

j
and control

inputs uk
j
. The states and control inputs are combined into a single

observation vector yk
j
=

[

sk
j

uk
j

]

, for j = 0,1, ..., N k −1 and k = 0,1, ..., M −1. The

observations are assumed to be governed by a hidden intended trajectory

zt =

[

st

ut

]

for t = 0,1, ...,T −1, where T is the length of the hidden trajectory.

An initial state distribution z0 ∼ N (µ0,Σ0) for the hidden trajectory is
given, and the state at next time step is estimated as

zt+1 = f (zt)+ω(z)
t , ω(z)

t ∼N (0,Σ(z)) (3.1)

where f (zt) is a basic dynamics model of the plane as described in
section 3.3, and ω(z) is a zero mean gaussian random variable representing
uncertainties of the dynamics model.

17

To allow for variations in time between the hidden intended trajectory
and the demonstrations, the demonstration trajectories are modelled
as subsampled noisy observations of the hidden trajectory. A hidden
trajectory length of twice the average length of the demonstrations gives
sufficient resolution [2].

3.1.1 Time alignment

No human pilot is capable of flying the exact same trajectory with the
exact same timing in repeated demonstrations, even if the conditions
were perfect with no external disturbance. This means the trajectories
are not only suboptimal with respect to the features of the intended
trajectory, but they are also possibly (and most likely) warped along the
time axis. The maneuver might be started at different times in the different
demonstrations, and the duration of features in the maneuver might differ
between demonstrations. In other words there exists a non-linear mapping
between each observed demonstration trajectory and the hidden intended
trajectory, and in order to compare the demonstrations they first need to
be aligned in time. This is done using the dynamic programming algorithm
known as Dynamic TimeWarping (DTW) that was described in section 2.4.
DTW computes time alignment indices τk

j
that maps the observations yk

j
to

the states zt of the hidden trajectory. In other words, the model assumes

yk
j = zτk

j
+ω

(y)

j
, ω

(y)

j
∼N (0,Σ(y)) (3.2)

The noise term ω
(y)

j
models inaccurate sensor readings as well as errors

caused by the human pilot’s imperfect demonstrations.
τk

j
is not directly observable, and is modelled with the following

distribution using parameter d k
i
:

P(τk
j+1|τ

k
j) =























d k
1 i f τk

j+1
−τk

j
= 1

d k
2 i f τk

j+1
−τk

j
= 2

d k
3 i f τk

j+1
−τk

j
= 3

0 ot her wi se

(3.3)

Figure 3.1 illustrates how the relationship between the observations
and the hidden trajectory are modelled when τk

j
is unobserved. As can

be seen from the illustration, the model is quite complicated because the
time alignment indices τk

j
are unknown. In this case each node of the

observed demonstration trajectory yk
j
can be associated with several nodes

of the hidden intended trajectory zt . If however τk
j
was known, the state

model would be significantly less complicated. This case is illustrated by
an example in figure 3.2. Note that the superscript k has been omitted
for simplicity, and the figure illustrates the relationship between one
demonstration yk

j
and the hidden trajectory zt . There areM demonstration

trajectories and M time alignment index sequences that all relate to the
same hidden trajectory in a similar manner to the illustrations.

18

Figure 3.1: Model of the relation between the hidden trajectory and one of
the demonstrations. The coloured nodes are unobserved.

Figure 3.2: Model of the state when τk
j
is fixed. Coloured nodes are

unobserved.

3.2 The trajectory learning algorithm

The trajectory learning algorithm computes the most likely intended
trajectory from a set of demonstration trajectories that are possibly warped
along the time axis. More formally the algorithm approximately solves the
maximization [2]:

max
τ,Σ(·),d

l og P(y,τ;Σ(·),d) (3.4)

Where y is the observations (i.e. demonstration trajectory), τ is the time-
alignment indices, d is the time-index transition probabilities, and Σ

(·) is
the covariance matrices. The intended trajectory z is estimated to be the
mode of the distribution found in the maximization of equation 3.4
If the time alignments τk

j
are fixed, the parameters d k

i
can be estimated

in closed form. Furthermore estimating the covariance matrices Σ(·) be-
comes a standard HMM parameter learning problem, where the parame-
ters can be learned using the EM algorithm. In order to leverage the simpli-
fications made possible by a fixed τk

j
, Abbeel et al. proposes an alternating

optimization procedure [2]. Covariances and the distributions of the hid-
den states are first estimated, assuming fixed time indices τk

j
. In the second

phase τk
j
and transition probability parameters d k

i
are found on the basis of

the current estimates of z. The resulting time indices are then used to re-
estimate the covariances and distributions of z, and the process is repeated
until convergence. The technique can be viewed as a nested EM summa-
rized in the following 5 steps, where step 2-5 are iterated:

1. initialize Σ(·),d k
i

, and τk
j
to hand chosen values. Abbeel et al. reports

19

Σ
(·) = I ,d k

i
=

1
3

, and τk
j
= j T−1

N k−1
as typical choices [2].

2. Hidden trajectory E-step: Find the distributions N (µt |T−1,Σt |T−1) of
the hidden states zt based on the current estimates of Σ(·) and τk

j
, by

running an extended kalman smoother.

3. Hidden trajectoryM-step: Update the covariancesΣ(·) by the standard
EM update.

4. Time alignment E-step: fix z to µt |T−1 obtained by the kalman
smoother, and use dynamic time warping to find the τ that maximizes
P(z, y,τ).

5. Time alignment M-step: estimate d from τ using standard maximum
likelihood estimates.

The following subsections will treat the different steps of the algorithm
in detail.

3.2.1 E-step for hidden trajectory

The E-step for inferring the hidden trajectory uses an extended Kalman
smoother as described in section 2.3 to estimate the states zt . Recall the
a priori estimate x̂−

t in the update equations 2.15 of the extended Kalman
filter. x̂−

t is a function that relates the state at the previous time step and the
control inputs to the state at the current time-step, f (x̂t−1,ut). This is the
dynamics model of the plane, which is described in section 3.3.
First an extended Kalman filter computes Σt |t and µt |t , which is the

covariance and mode of the distribution of zt based on the observations
at time-steps until and including the current time-step. In the process
Σt+1|t and µt+1|t , namely the parameters of the distribution of zt+1 given
only the observations up until the current time-step t , are calculated as
well. Then the results of the Kalman filtering is used in the Kalman
smoother to calculate Σt |T−1 and µt |T−1; i.e. the mode and covariance given
the observations at all time-steps. The algorithm has now estimated the
distribution zt ∼ N (µt |T−1,Σt |T−1), and zt is estimated to be equal to the
mode µt |T−1 for the rest of the EM iteration.

3.2.2 M-step for hidden trajectory

zt+1 and yt+1 are modelled as follows:

zt+1 = f (zt)+ω(z)
t , ω(z)

t ∼N (0,Q) (3.5)

yt+1 = h(zt)+v (z)
t , v (z)

t ∼N (0,R) (3.6)

After the Kalman smoother computes the distribution zt ∼N (µt |T−1,Σt |T−1)

in the E-step, Q and R of equations 3.5 and 3.6 can be updated using the

20

standard update of EM applied to nonlinear systems with Gaussian noise
[2]:

δµt =µt+1|T−1 − f (µt |T−1)

At =D f (µt |T−1)

Lt =
Σt |t AT

t

Σt+1|t

Pt =Σt+1|T−1 −Σt+1|T−1LT
t AT

t − At LtΣt+1|T−1

Q =
1

T

T−1
∑

t=0

δµtδµ
T
t + AtΣt |T−1 AT

t +Pt

(3.7)

δyt = yt −h(µt |T−1)

Ct =Dh(µt |T−1)

R =
1

T

T−1
∑

t=0

δµtδµ
T
t +CtΣt |T−1C T

t

(3.8)

3.2.3 Time alignment

In the E-step for time alignment the demonstrations are aligned in time by
optimizing the time alignment index τ for each demonstration separately
using Dynamic Time Warping (described in section 2.4. The goal is to
compute the τ that maximizes the log likelihood of the current set of
parameters [2]:

τ= argmax
τ

l og P(z, y,τ;Σ(·),d) (3.9)

As discussed earlier, d is assumed to be fixed, and optimized separately
from τ. This assumption simplifies the maximization to:

τ= argmax
τ

l og P(y |z,τ)P(z)P(τ)

= argmax
τ

l og P(y |z,τ)P(τ)
(3.10)

which in turn can be expanded to:

τ= argmax
τ

M−1
∑

k=0

N k−1
∑

j=0

[ℓ(yk
j |zτk

j
+ℓ(τk

j |τ
k
j−1)] (3.11)

z in the above equations was found in the E-step for hidden trajectory
(section 3.2.1) and is the mode of the distribution computed by the kalman
smoother. The summations in equation 3.11 are independent of each other.
In other words the log likelihood of τ can be computed separately for each
of the M demonstrations.
A quantityQ(s, t) is defined as themaximum obtainable value of the first

s +1 terms of the inner summation in equation 3.11, where τs = t [2]:

Q(0, t)= ℓ(y0|zτ0
,τ0 = t)+ℓ(τ0 = t), f or s = 0 (3.12)

21

Q(s, t)= ℓ(y0|zτ0
,τ0 = t)

+ max
τ1,...,τs−1

[ℓ(τs = t |τs−1)

+

s−1
∑

j=0

[ℓ(y j |zτ j
,τ j)+ℓ(τ j |τ j−1)]], f or s > 0

(3.13)

Equation 3.13 can be written recursively as follows:

Q(s, t)= ℓ(y0|zτ0
,τ0 = t)

+max
t ′

[ℓ(τs = t |τs−1 = t ′)+Q(s −1, t ′)]
(3.14)

where t ′ ∈ {t −3, t −2, t −1}. The alignment window condition is enforced by
only computingQ(s, t) if 2s −C ≤ t ≤ 2s +C , where C is fixed.
In the M-step for time alignment the time index transition probability

parameters d are estimated from the new τ using maximum likelihood
estimation.

3.3 Dynamic Model

The dynamic model is the function f (zt) in equation 3.1, and is used for
state estimation by the EM algorithm as described in section 3.2.1 and
3.2.2. Only an approximate dynamic model is needed [2]. This model
can be learned from data as in the work of Abbeel et al. [2], or it can be
modelled in a more traditional way as is done in this thesis. This section
provides details on the dynamics model used with the learning algorithm
for the fixed wing UAV described in chapter 4. The dynamics model
predicts angular accelerations (ṗ , q̇, ṙ) and linear accelerations (u̇, v̇ , ẇ)
based on the current state and control input. Angular and linear velocities,
position, and orientation are obtained through simple Euler integration of
the accelerations.

3.3.1 Equations of motion

The dynamic model assumes the equations of motion given in equation
3.15. These equations are based on the model used by Abbeel et al. [2],
but have been modified to account for the differences between a helicopter
and a fixed wing platform.

u̇ = vr −w q −dx /m + gx /m +F /m

v̇ = w p −ur −dy /m + gy /m

ẇ =uq −v p −dz /m + gz /m − l

ṗ = qr (IY Y − IZ Z)/IX X −BX |p|p/IX X +Ma /IX X

q̇ = pr (IZ Z − IX X)/IY Y −BY |q |q/IY Y +Me /IY Y

ṙ = pq(IX X − IY Y)/IZ Z −BZ |r |r /IZ Z +Mr /IZ Z

(3.15)

where p, q,r are the angular velocities around the x,y and z-axis respec-
tively. u, v, w are the linear velocities in body frame of the aircraft. dx ,dy

and dz are the drag forces. l is the lift and F is the thrust. −BX |p|p,−BY |q |q

22

and −BZ |r |r are the rotational damping moments in roll, pitch and yaw.
Note that rather than squaring the angular velocities they are multiplied
with their absolute value, in order to keep the signs intact. Ma , Me and Mr

are the rotationalmoments governed by aileron, elevator and rudder deflec-
tions. m is the mass of the plane, and Ixx , Iy y , Izz are the inertial moments
of the x, y and z-axis of the plane. The products of inertia Ix y , Ixz and Iy z

are assumed to be 0. The moments are divided by m for the linear accel-
erations and Ixx , Iy y or Izz for the angular accelerations in order to convert
the moments into forces. qr (IY Y − IZ Z), pr (IZ Z − IX X) and pq(IX X − IY Y) are
the inertial coupling terms. gx , gy and gz are the gravity force in body frame
of the plane. The transformation of gravity from inertial to body frame is
given by the following equation, where θ represents the pitch angle of the
plane and ψ denotes the yaw angle.

g = 9.81

gx =−mg sinθ

gy =mg cosθ sinψ

gz = mg cosθcosψ

(3.16)

The specific values of the parameters with respect to the fixed wing
platform used in this thesis are given in section 4.1.1 on page 27.

3.4 Improvements of the model

The Kalman smoother calculates the model prediction error (MPE) of the
dynamics model at each time-step. The dynamic model can be improved
for a specific trajectory by incorporating the MPE as bias terms. Denoting
the bias terms as β= {βu ,βv ,βw ,βp ,βq ,βr }, equation 3.1 becomes:

zt+1 = f (zt)+βt +ω(z)
t , ω(z)

t ∼N (0,Σ(z)) (3.17)

23

24

Chapter 4

Experimental platform

The goal of the trajectory learning algorithm is to learn a trajectory for a
specific maneuver from demonstration flights controlled by a human pilot.
To achieve this we need an experimental platform that is familiar to the
pilot, that is capable of highly aerobatic maneuvers as well as capable of
recording the state of the plane during the demonstration flights. Figure
4.1 shows the pilot flying the plane inside a gymnasium.

Figure 4.1: Expert pilot flying the plane in vertical hover.

Much of the research done on automating aerobatic maneuvers makes
use of custom build airframes [10, 11, 44, 18, 45] sometimes with added
degrees of freedom, as in the work of Hurst et al. in [18]. We chose an off-
the-shelf fixed wing RC plane because these planes are already capable of
highly aerobatic maneuvers. They are naturally intuitive to an experienced
RC pilot, and development time is saved as the plane is designed by the
manufacturer.
We represent the state of the plane by position, orientation, linear

acceleration and angular velocity. The plane was fitted with a custom
data acquisition (DAQ) system in order to collect and record this data.
Included in the DAQ system is a sensor suite consisting of an Inertial
Measurement Unit (IMU), a Global Positioning System (GPS) module, a

25

barometric pressure sensor, and a sonar.
The data was collected indoors to avoid the effects of wind. One

challenge when conducting indoor testing is that most indoor test spaces
lack GPS visibility. We eventually solved this problem by conducting our
test flights in the Stinger Dome at Concordia University. This is a temporary
inflatable dome where GPS visibility is comparable to outside. We also
looked into the possibility of using an alternative positioning method,
and started development of a ground based vision system as described in
section 4.4.
The trajectory learning algorithm finds a trajectory that can be used as

a target for a controller in an autonomous scenario. An accurate simulator
is valuable in development of such a controller. It is useful to develop
the controller in simulation before testing it on a real flight, as repeated
test-runs under predictable conditions can be performed without the time
and monetary costs of rebuilding the plane after every crash. Section
4.5 provides an overview of flight simulators that could be used for this
purpose.

4.1 Plane

The plane used in our experiments is the Electrifly by Great Planes Yak54
3D RC plane shown in figure 4.2. It is made of styrofoam with carbon fiber
control surface push-rods and landing gear. The weight of the airframe
without servos, motor or any electronics is 130 grams. Its length is 0.95
meters and it has a wingspan of 0.94 meters. The small size and low weight
makes it ideal for indoor flight. This is an off-the-shelf airframe designed
for RC aerobatics. It is easy to build and relatively cheap which is of benefit
as crashes are inevitable, even for an experienced RC pilot. Table 4.1 gives
a detailed weight breakdown of all the components on the plane.

Figure 4.2: Electrifly Yak 54 3D

A RC plane is normally operated by transmitting control inputs as radio
signals from a transmitter. These signals are received by the radio receiver
aboard the plane. The servos and the motor controller are connected
directly to the receiver.

26

Component Mass
Airframe 130g
Motor 54g
Electronic Speed Controller 31g
Propeller 13g
Servos 3 x 11g = 33g
RC receiver 9g
ArduPilot Mega 16g
Inertial Measurement Unit 12g
GPS 7g
SD-module 13g
Sonar 5g
Pressure Sensor 1g
Battery 73g
Cables, extra glue and reinforcements 21g
Total 418g

Table 4.1: Detailed weight breakdown of the experimental platform

Our plane uses three servos which actuate the deflection of the control
surfaces by pushing or pulling thin carbon fiber rods. One servo actuates
both ailerons by the use of a differential arm. The other two servos operate
the rudder and the elevator. A motor controller controls the speed of the
motor. The motor controller and the servos take their inputs in the form of
pulse width modulated (pwm) signals.

4.1.1 Dynamical properties of the plane

The dynamical properties of the plane depends on the shape, size and
weight of the plane. This section describes the properties specific to the
Yak54 with fitted electronics and gives specific values for the parameters of
the dynamic model presented in section 3.3.

The total mass of the plane is 0.418kg as shown in table 4.1.

The moments of inertia is the resistance of the plane to angular
accelerations, similar to how mass can be seen as an object’s resistance
to linear accelerations. They were calculated using CAD-software and are
given in table 4.2. The products of inerta IX Y , IX Z and I

Y Z , are small and
thus assumed to be zero in the dynamic model of the plane.

Rotational moments. The aileron, elevator and rudder deflections
cause roll, pitch and yaw moments respectively. The following sign
convention was used when calculating the moments[39]:

27

• A positive aileron deflection angle is given when the right aileron is
pointing down, and leads to a negative roll moment Ma that makes
the right wing go up.

• Positive elevator deflectionmeans the elevator points down, and leads
to a negative pitch moment Me that pitches the nose of the plane
down.

• Positive rudder deflection means rudder moved to the left. It leads to
a negative yaw moment Mr which moves the nose left.

Ma , Me and Mr were calculated as:

Ma = (−0.03554δ2
a +0.04795δa)u2

Me = (−0.02698δ2
e +0.03641δe)u2

Mr = 0.05490δr u2

(4.1)

Where δa , δe , and δr are the deflections of aileron, elevator and rudder in
radians, and u is the linear velocity along the x-axis of the plane.

IX X 0.00222k g m2

IY Y 0.01676k g m2

IZ Z 0.01815k g m2

IX Y −0.00012k g m2

IX Z −0.00015k g m2

IY Z 0.00001k g m2

Table 4.2: Moments and products of inertia of Yak54 with Data Acquisition
system.

Rotational damping moments. The damping moments are calcu-
lated assuming the surfaces of the plane are plain flat plates. In the case of
the Yak54 foam plane this is an accurate assumption. Equation 4.2 shows
the calculation of the rotational damping moments, and table 4.3 explains
the parameters used in the calculation. Bx dampens the roll moment and
is assumed to be affected by the wings, tail and the body of the fuselage.
By dampens the pitch moment, and is mostly affected by the wing and the
tail. Bz dampens the yawmoment and is assumed to only be affected by the
body of the fuselage.

Bx = ρCD l2 ∗0.0064+ρCD l3 ∗0.0004+ρCD R1 ∗0.000016402

By = ρCD R2 ∗0.0001233+ρCD R3 ∗0.020042

Bz =
1
2
ρCD l1 ∗0.0528678

(4.2)

28

Parameter Value Physical explanation
ρ 1.2041 Density of air at 20 degrees
CD 1.28 Drag coefficient of a flat plate
l1 0.18 Height of fuselage in meters
l2 0.21 Chord at the midpoint of each wing
l3 0.14 Chord at the midpoint of each tail
R1 0.9 Length of the body
R2 0.4 Half the length of the wing
R3 0.2 Half the length of the tail

Table 4.3: Parameters used in calculation of rotational damping moments.

The drag forces along the x, y and z-axis of the plane are

dx = 0.03852u2

dy = 0.114v 2

dz = 0.199w 2

(4.3)

where u, v and w are the linear velocities in the body frame of the plane.

4.1.2 Modifications to the airframe

Some modifications had to be done for the plane to be able to fly aerobatic
maneuvers with the added weight of the electronics.
These include reinforcement of the motor mount, reinforcement of the

airframe structure, as well as reinforcement and lengthening of the landing
gear.
The motor mount was reinforced by steel epoxy to be able to hold the

strong motor, as shown in figure 4.3. The landing gear was extended to
make room for a 11-inch propeller, and reinforced by carbon fiber rods. The
fuselage and the wings of the plane also needed reinforcement in the area
where the landing gear is attached. The added mass increases the pressure
at this point during landing.

4.1.3 Motor

When collecting training data we were primarily interested in high Angle-
of-Attack (AoA) maneuvers such as vertical hover. This maneuver requires
a thrust-to-weight ratio greater than one. Since all the lift will be generated
by the propeller in the vertical flight regime [15]. With the added electronics
the total weight of the plane is 418g. We chose the Rimfire 400 brushless
motor, which according to our tests produces maximum 10N (with control
input pw = 2100µs). This gives us a maximum thrust-to-weight ratio
of 10N

0.418kg∗9.81m/s2 = 2.44 : 1. Our plane requires a thrust of more than

0.418k g ∗9.81m/s2 = 4N to successfully perform the hover maneuver. The
thrust produced by the motor at different speeds (i.e. at different control
input pulse widths) wasmeasured in the lab, and the resulting plot is shown
in figure 4.4.

29

Figure 4.3: Reinforcement of the motor mount

To give the pilot some operating room it is beneficial if the required
thrust can be achieved with the control-stick actuated half-way or less
("mid-stick"), this is equivalent to a control input pulse width of 1500µs

or less. From figure 4.4 we can see that the RimFire 400 produces 6.54N
thrust mid-stick (pw = 1500µs). This gives a thrust-to-weight ratio of

6.54N
0.418kg∗9.81m/s2 = 1.60 : 1 which is sufficient for vertical hover.

The speed of the motor is controlled by an Electrifly SS-25 Electronic
Speed Controller (ESC).

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
0

1

2

3

4

5

6

7

8

9

10

X: 1500
Y: 6.54

PWM input (pulse width in µs)

T
hr

us
t (

N
)

Figure 4.4: Measured thrust as a function of control input.

4.1.4 Radio Control System

The Futaba T7C Transmitter and R617FS Receiver is used for radio control
of the plane. This is a 7 channel Digital Proportional RC System that
operates at 2.4GHz. While only four channels are strictly needed for

30

controlling the plane (Elevator, Rudder, Ailerons and Thrust), the extra
channels give us the flexibility to add more features such as turning on
and off on board data logging using a switch on the transmitter. This RC
system also complies with standards of the RC hobbyist community, and
ensures that an experienced RC pilot will achieve the expected response
when controlling the plane.
The control inputs from the transmitter are received by the radio

receiver aboard the plane. Y-connectors simultaneously channel the
received signal to the actuators and to the DAQ-board for logging. Figure
4.5 shows the transmitter and receiver.

(a) Transmitter (b) Receiver

Figure 4.5: 7 channel Futaba RC system

4.2 Microcontrollers, Sensors and Data Acqui-

sition

The Data Acquisition (DAQ) system was implemented on an ArduPilot
Mega board. It is responsible for collecting and logging sensor-data and
control inputs. The sensor suite consists of an Inertial Measurement
Unit (IMU) that provides orientation and angular velocity, a downward-
pointing sonar that provides a reference altitude, a barometric pressure
module (BPM) measuring altitude and a Global Positioning System (GPS)
module that provides latitude/longitude position. Linear accelerations can
be calculated based on the GPS and BPM data. A SD-Card module is used
to enable on-board logging of data. The diagram in figure 4.6 gives an
overview of the DAQ system.
The servos controlling ailerons, elevator and rudder, as well as the

motor controller receive their signals directly from the R/C receiver to
ensure no noise disturbance from the data acquisition electronics. Y-
connectors are used to feed the input signals simultaneously to the
data acquisition board and the actuators. The electronics were carefully
distributed and mounted on the fuselage of the plane in order to balance
the center of gravity, as shown in figure 4.7.

31

Figure 4.6: Diagram of DAQ system

4.2.1 ArduPilot Mega

The ArduPilot Mega is an Arduino compatible autopilot board developed
by DIY Drones. It is based on a 16MHz Atmega1280 processor. A separate
circuit (multiplexer chip and ATMega328 processor) can be used to transfer
control from the RC system to the autopilot and back again. This setup
allows for themain controller to restart without interrupting the RC-signals
from the transmitter. The ATMega1280 features 128kB Flash memory, 8kB
SRAM and 4kB EEPROM. It has a 8 bit AVR RISC-based microcontroller,
and operates at maximum 16MHz. The ArduPilot board comes with a 6-
pin GPS connector, 16 analog inputs (with a 10 bit AD converter for each
input), and 40 digital input/outputs. It includes 4 serial ports and an SPI
interface. Timers are used to enable inputs and outputs of PWMs. Figure
4.8 shows a picture of the ArduPilot Mega board.
The microcontrollers on the ArduPilot Mega are compatible with the

Arduino programming environment. The Arduino programming language
is a simple open source language for programming microcontrollers. It
is based on C++, and C++ libraries can be used directly in Arduino code.
Arduino simplifies the programming of the microcontroller by providing a
high level programming API hiding low level register manipulations.

4.2.2 Inertial Measurement Unit

The orientation of the plane as well as the linear accelerations and angular
velocities are acquired using the MicroStrain 3DM-GX3 25 OEM Inertial
Measurement Unit (IMU) shown in figure 4.9. This IMU is a 6 DOF
orientation sensor which features an integrated 32-bit low power processor,
17-bit resolution Gyroscopes, Accelerometers, and Magnetometers. The
Measurement range of the accelerometers is reported to be ±5g , while the

32

Figure 4.7: Electronics mounted on the plane

gyroscopes have a range of ±300◦/sec and the built in magnetometers have
a range of ±2.5G auss. The maximum output data rate of the IMU is 1kHz.
The IMU is connected to the ArduPilot board through a serial port,

and the DAQ software communicates with it using a simple and well
documented protocol. Details on the 3DM-GX3 communications protocol
can be found in [30].

4.2.3 GPS

We use the MediaTek 3329 Patch-On-Top (POT) GPS module pictured in
figure 4.10. This is a small and light weight GPS. The dimensions of the
GPS including the breakout board it is mounted on are 30mm x 16mm
x 6mm and it weighs 7 grams including the connector cable. This GPS
module is compatible with the ArduPilot board, and Arduino libraries for
communicating with the module is available. The maximum output data
rate is 10Hz.
The GPS guarantees an 2D accuracy of 3m in single GPS mode. This

appears too coarse for our application, but it is worth mentioning that
the measure is a worst case scenario of absolute accuracy. Our tests with
the GPS show that relative accuracy is much better, usually within one
meter. It is possible to achieve higher accuracy using a Dual GPS (DGPS),
where an additional GPS antenna is placed in a known location on the
ground. The MediaTek 3329 data sheet reports 2D accuracy of 2.5m in
this configuration. We chose to use the single GPS solution. The increase
of accuracy with DGPS of only 0.5 meters does not justify the added
complexity to the system.
A problem with GPS 3D positioning is that accuracy of altitude

measurements is worse than accuracy in the horizontal plane, generally by
a factor of 10. In our case this implies an accuracy of 30m which is not
useful. Tests with the GPS showed satisfactory 2D position sensing, while

33

Figure 4.8: ArduPilot Mega board

Figure 4.9: MicroStrain 3DM-GX3 IMU

altitude was unreliable. In order to get more accurate altitude readings we
incorporated a Barometric Pressure sensor as described next.

4.2.4 Barometric pressure sensor

The Bosch Sensortech BMP085 digital pressure sensor was incorporated
to compensate for the poor accuracy of GPS altitude measurements. The
sensor module (including breakout board) measures 15.2mm x 15.2mm.
The pressure range of the sensor is reported to be 300 - 1100hPa, which
corresponds to 9000m above sea level to 500m below sea level [8].

The BPM085 has an incorporated temperature sensor to allow for
temperature compensation of the pressure measurement. The altitude in
meters above sea level can be calculated using the international barometric

34

Figure 4.10: MediaTek 3329 GPS

formula:
h = 44330(1− (

p

p0

)
1

5.255) (4.4)

Where p is the measured pressure after temperature compensation, and
p0 is pressure at sea level. The pressure at sea level can be obtained by a
local weather forecast, but the standard atmospheric pressure, 1013.25hPa
is commonly used as an approximation.
Adafruit Industries has developed an open source C++ library specifi-

cally to the BMP085 sensor [19]. This library can be used to read pressure
and temperature, as well as calculate the altitude according to equation 4.4.
A plastic enclosure is mounted around the sensor to protect it from

variations in pressure due to prop-wash as shown in figure 4.11.

Figure 4.11: Bosch Sensortech BMP085 digital pressure sensor inside
plastic enclosure

While the relative accuracy of the BPM sensor is good, ±0.2m, the

35

absolute accuracy is only ±3m. In order to get a more accurate absolute
altitude we calibrate the BPM data using the on-board sonar.

4.2.5 Sonar

The Maxbotix ultrasonic rangefinder sonar is included in the sensor suite.
While we are not relying on the sonar directly in the current configuration
it is used as a means of calibrating the BPM altitude. In the current
configuration the sonar is mounted underneath the plane, pointing down.
This setup allows us to measure distance to ground at low altitudes in near
level flight. Figure 4.12 shows a picture of the rangefinder sonar.

Figure 4.12: Maxbotix ultrasonic rangefinder sonar

The sonar has a maximum range of 6m, while the plane often flies at
altitudes higher than this. The orientation of the plane also changes rapidly
during flight making it difficult to determine which direction the sonar is
actually pointing. These factors make the sonar unreliable as a stand-alone
means of altitude measurement, but it can be used to calibrate the BPM
altitude as described in section 5.3.2.
In autonomous flight, a sonar could also be used as a means of obstacle

detection. A sonar pointing forward could detect obstacles and trigger
vertical hover or other obstacle avoiding behaviour. Desbiens and Cutowski
successfully used a forward-pointing sonar to detect walls in [25].

4.2.6 Pilot Inputs

Control inputs from the pilot are received by the radio-receiver on the
plane. From the receiver the signal is connected directly both to the
actuators and to the ArduPilot board by the means of y-connectors. The
control input pulse width is measured in micro seconds by the DAQ system
on the ArduPilot board, and recorded in the flight log together with the
sensor data.

36

4.2.7 Data Acquisition and Storage

The DAQ software is written entirely in the Arduino programming lan-
guage. The software reads input from all the sensors and the RC receiver,
and logs the data to a SD-Card at approximately 10Hz. The logged data in-
cludes a timestamp from themicrocontroller (inmilliseconds since the start
of the program), control input pulse widths, sonar distance, IMU orienta-
tion in the form of a rotation matrix, IMU linear accelerations and angular
velocity, IMU magnetometer vector, GPS latitude, longitude and altitude,
GPS ground speed, ground corse and timestamp, as well as BPM tempera-
ture, pressure and altitude.
A DF Robot SD-Cardmodule is used to log data from the demonstration

flights. In an autonomous configuration the SD-Card module could be used
to log the flight for analysis purposes or load configuration scripts. The
SD-Card module is connected to the ArduPilot board using the SPI port.

4.3 Test environment

Figure 4.13: Outdoor test space.

Preliminary tests were performed outdoors on the fields of École Royale
Vale in Montreal. A satellite photo of the test space is shown in figure 4.13.
During outdoor testing it was found that even small wind gusts have a large
impact on the control of the plane. If training data is collected under such
conditions the recorded pilot inputs will mainly reflect the pilot’s effort to
compensate for the wind. To avoid collecting data that is affected by wind,
it is desirable to conduct the demonstration flights indoors.
Early indoor tests were done in the CEPSUM gym of University of

Montreal. Figure 4.14 shows a photo from one of the flights in this gym. The
gym we used is a basketball field the size of 15 x 30 meters. This is smaller

37

than ideal, but sufficient to perform the hovermaneuver provided the plane
is small and capable of slow flight. The greatest downside of collecting
training data in the cepsum gym is lack of GPS visibility. This is true for
most indoor test spaces. Position information is critical to determining the
trajectory of the plane, and other means of recording the plane’s position
was investigated as described in section 4.4 on the next page.

Figure 4.14: Indoor flight in the CEPSUM gym.

Figure 4.15 shows the Stinger Dome of Concordia University in Mon-
treal. This is a temporary dome that cover four soccer fields of size 55 x 30
meters. The walls and roof of the dome are inflatable and does not block
GPS visibility. This was the ideal test space for our project with windless
conditions, GPS visibility and enough space to perform aerobatic maneu-
vers.

Figure 4.15: The Stinger Dome of Concordia University in Montreal

38

4.4 Alternative Positioning Systems

As we need to log the position of the plane, some research was also done on
developing a ground based vision system. The idea was to use two or more
cameras on the ground to track the plane inside the gym. To achieve this
some distinguishable feature of the plane such as colour, needs to be located
in each of the camera images. Once a feature is recognized the coordinates
in the vertical plane can be tracked by simply translating the x,y coordinates
of the feature in the image to real world coordinates. The depth D can be
calculated according to equation 4.5 where f = fL = fR is the focal length of
the camera lens, b is the distance between the two cameras (known as the
baseline), while VL and VR are the distance from the center of the image to
the point in each image, as shown in figure 4.16 [9] .

D =
b f

VL −VR
(4.5)

Figure 4.16: Principle of stereo computer vision

The vision system was based on the OpenCV open source library for
image processing. A foundation for the vision systemwas developed in C++
and basic colour tracking was implemented. We were not able to achieve
the desired accuracy in 3D tracking within the time frame of the project,
but 2D tracking functionality was successfully implemented and might be
useful in future work on this or a similar project. Figure 4.17 shows 2D
tracking based on colour tresholding using the ground based vision system.
One of the challenges with a ground based vision system is that the

tracking data needs to by synchronized with the sensor data collected
with the onboard DAQ system. Synchronizing the data manually is time
demanding, and it would be useful to find a way to automate this task in
the future.

39

Figure 4.17: 2D tracking based on colour tresholding

As alternatives to the ground based vision system we also investigated
commercially available solutions. The OptiTrack and ViConmotion capture
systems, Ubisense indoor positioning system and the cricket positioning
system developed at MiT were evaluated with respect to price, accuracy and
ease of setup.

OptiTrack from Natural Point [35] makes use of motion capture
cameras to track objects in three dimensions. this systems offersmillimetre
precision at a frame rate of 100FPS, and tracks orientation and velocities as
well as position. OptiTrack covers a maximum of 6 x 6 meters, which is too
small for tracking a motorized plane. Furthermore these cameras would
need to be calibrated, and the system is more suitable for a permanent
setup. Because of the lack of a permanent test space to fly in we needed a
system that would be easy to set up. This is also themost expensive solution
we investigated.

The Ubisense Real Time Location System (RTLS) [48] uses receiver
stations placed in the corners of the test-space and calculates position using
Time Difference of Arrival (TDoA) and Angle of Arrival (AoA) of ultra-
wideband (UWB) pulses from a transmitter tag on the target. This system
can cover large areas, only limited by the amount of receivers installed.
Ubisense is typically used to track people inside large buildings such as
hospitals. The accuracy is reported to be 15 cm for stationary objects, and
depends on the number and placement of receiver stations. For objects
moving at speeds faster than walking the accuracy drops to 1 meter, and
the faster the speed the worse the accuracy. The same issues of installation
and calibration applies as with the OptiTrack motion capture system.

Finally we considered the Cricket system developed at MiT [36]. Cricket
is a low cost, small size and high accuracy indoor positioning system that
uses a combination of RF and ultrasound to track an object. Each cricket
works both as a transmitter and a receiver. Several crickets are placed
at known locations covering the test space and one cricket is placed on
the object that is to be tracked. Even though this system is more light
weight and might be easier to set up than the others, it still requires us
to calibrate the system before every test. While the other systems are off-
the-shelf solutions, cricket is open source software and hardware, and some
development would be needed on our part to make it work with our project.

40

4.5 Simulator

While we did not use a simulator for this project It could be useful for
future work, for instance when developing a controller. Some research
was done on potential flight simulators for this use, and this section
provides a brief overview of the flight simulators Flight Gear, X-Plane
and Charles River RC-simulator (crrcsim) for simulating a radio controlled
plane. Requirements for a good simulator include the ability to model
RC-planes with sufficient realism, logging of state variables, possibility to
modify or create controllers and customize planemodels and transparency.
Charles River is the only simulator in this comparison that is specifically

designed for RC-planes. However, the dynamics model the simulator is
based upon, the LARCSim, was developed by NASA as a model for full size
airplanes [20]. Charles River does not model torque or prop-wash effects,
which are essential for realistic simulation of highly aerobatic maneuvers.
FlightGear implements several flight dynamicsmodels. It was originally

based upon LARCsim, later JSBsim was implemented and gives support to
rockets and lighter than air airplanes. UIUC is a dynamics model based
on LARCSim but includes effects of icing. Yasim is the most current flight
dynamics model used with FlightGear using different calculation methods
than LARCsim and JSBsim. [34]
X-Plane is a flight simulator developed by Laminar Research. It

offers realistic simulation of the flight model of a large range of aircraft.
The dynamics model of X-plane is based on blade element analysis.
Controllers and plane models are easily customized and the simulators can
be interfaced with Matlab and Simulink [38].
FlightGear and X-Plane are not designed to show the point of view of

an RC pilot (on the ground, tracking the plane). This seems to be the major
reason these two programs are not used more frequently for RC training.
Out of the simulators reviewed X-plane seems like the most suitable

for the purpose of developing a controller to automate a RC plane. This
simulator offers advanced physics modelling, it is easily customized and
offers out of the box logging as well as interface to Matlab and Simulink.

41

42

Chapter 5

Experiments and Results

This chapter describes the experiments that were conducted as well as their
results. Preliminary tests of the experimental platform are first presented
before describing the flights for collecting training data for the trajectory
learning algorithm. The raw data require pre-processing as described in
section 5.3. Finally the results of the trajectory learning are presented.

5.1 Preliminary tests

The preliminary tests served to verify sensor accuracy and improve the
experimental platform as described next.

5.1.1 GPS accuracy

Figure 5.1: On ground GPS test at McGill downtown campus. The red line
marks the actual path travelled, while the yellow line shows the logged GPS
data.

Ground tests were conducted to determine whether the accuracy of the
on-board GPS was adequate for our needs. The data sheet of the MediaTek
3329 GPSmodule reports a horizontal accuracy of 3m [1]. This is too coarse

43

for our application, however it is a worst case measure of absolute position.
The relative position accuracy is potentially better. In other words a GPS
plot of a flight may have an offset with respect to global position, but still
reflect the flown trajectory accurately in a local frame. Out-door tests were
conducted to test the horizontal accuracy of the GPS as well as the overall
functionality of the custom build DAQ system. Figure 5.1 shows a Google
earth plot of an early GPS ground test. In this test the plane was carried by
a person walking along the red line in the plot. The yellow line shows the
logged GPS data. While the logged data was off by a few meters in absolute
accuracy, the relative accuracy seems adequate. It is worth mentioning
that the surrounding buildings at the test space could affect the accuracy
of the location data negatively, and that better absolute accuracy might be
achieved in a large open space.
The data sheet does not report vertical accuracy of the GPS, and this

is generally much worse than horizontal accuracy. According to [4] GPS
vertical accuracy is 27.7 meters, which is inadequate for our use. The bad
accuracy was confirmed by analyzing the GPS data collected on our indoor
flights. Figure 5.2 shows a plot of the GPS altitude and BPM altitude from
a hover demonstration flight in the Stinger Dome of Concordia University.
The roof of the Stinger Dome is approximately 13meters at its highest point,
while the GPS reports altitudes of nearly 50 meters. Similar observations
were made for all flights. BPM altitude was preferred over GPS altitude
based on these observations.

0 50 100 150 200 250
−10

0

10

20

30

40

50

Time (sec)

A
lti

tu
de

 (
m

)

GPS
BPM

Figure 5.2: Comparison of GPS and BPM altitude data

5.1.2 Outdoor flight tests

A set of outdoor flight-tests was conducted to test the flyability of the plane
with the mounted electronics, and to test the onboard DAQ system during
real flight. Themodifications to the airframe is a result of these early tests as
weak points of the airframe was discovered. It also became clear that tests
were best preformed indoors after our pilot reported that large corrections

44

in the control inputs were needed for relatively calm wind gusts. Figure
5.3 shows a google earth plot of the GPS data from one of the outdoor
flights. The plot closely resembles the actual flight path and indicates that
the absolute accuracy is good in open areas.

Figure 5.3: In air tests of DAQ system and GPS logging.

5.2 Collecting training data

Training data for the trajectory learning algorithm was collected in the
Stinger Dome of Concordia University in Montreal. The goal was to have
the algorithm learn an intended trajectory from a set of demonstration
flights done by a human RC pilot. Such a trajectory can later be used
as a target trajectory for a high level controller automating aerobatic
maneuvers. Abbeel et al [2] recommends that at least 10 demonstrations
should be performed, from which the 5 most successful repetitions can be
selected by hand.
To define the state of the plane along the trajectory the learning

algorithm assumes we have:

• The input commands from the RC receiver in the form of pulse width
modulations (PWM).

• Linear velocities in inertial frame.

• Angular rates in body frame of the aircraft.

• North, East, Down (NED) position.

• Orientation in the form of quaternions.

The on-board data acquisition system of the YAK54 logs the timestamp
of the samples from the micro-controller and from the GPS, input com-
mands from the radio receiver in the form of PWM values for throttle, ele-
vator, ailerons and rudder, linear accelerations, angular rates, magnetome-
ter vector, and rotation matrix from the IMU, distance in centimetres from

45

the sonar, latitude, longitude, altitude, ground speed, and ground course
from the GPS, and temperature, pressure and altitude from the BPM.
Two sets of training data were collected. The first maneuver was linear

flight with banked turns, and is used as a simple training problem. The
second maneuver is the more challenging vertical hover. Both maneuvers
are described in more detail next. Videos were recorded of all the flights to
allow for visual comparison with the logged data. Videos of bothmaneuvers
are available for viewing at http://ifi.uio.no/majacs/masters.

Figure 5.4: Hand launch of the plane for a training data collection flight in
the Stinger Dome.

5.2.1 Linear flight and banked turns

The first demonstration performed was simple linear flight with banked
turns. Before the flight the plane was placed on the ground at the pre-
defined start point, where the logging was switched on to create an initial
reference log. This ensures that we get an updated initial reading of the
sensors at zero position. The recorded initial inputs from the radio receiver
shows any trimming done by the pilot on field. Altitude readings from
the BPM and sonar sensors determines a zero reference point for altitude
calculations. Latitude and longitude information from the GPS are used
as a zero point in the local NED coordinate system. And the initial GPS
coordinates are used in the transformation from global to local coordinates
in the pre-processing of the data as described in section 5.3.
After the reference log was recorded the plane was picked up and hand

launched as shown in figure 5.4. Once the plane reached a stable altitude
the pilot flew along the oval path marked up in figure 5.5. A total of
10 circuits were completed before the pilot landed the plane close to the
starting point. The logging was kept on for the entire flight until the plane
had landed and was stable on the ground. Five sections of linear flight was
chosen from this data as training data for the trajectory learning.
The linear flight with banked turns maneuver was used as an early test

case for the learning algorithm. The plane is within the level flight regime

46

Figure 5.5: Mark-up of the Stinger Dome field for collecting training data.

during the entire flight, and the flight path can be broken down to linear or
curved paths for even simpler learning problems.

5.2.2 Hovering with transitions

The second set of demonstrations consisted of hovering including transi-
tions in and out of the hover. As with the linear flight the plane was first
placed on the ground at the starting position to create an updated reference
log. This was done to account for any changes that might have affected the
sensors or servos due to drift or damage to the plane after crashes.
The plane was again hand launched and the plane followed the same

oval path as in the linear flight. A point on the flight path was defined as the
hover point as shown in figure 5.5. At this point the plane was brought to a
vertical hover, and the hover was maintained for a couple of seconds before
the pilot transitioned back to level flight and continued along the oval flight
path. Figure 5.6 shows a picture of the plane in vertical hover, and the full
maneuver is illustrated in figure 5.7.
The hover maneuver provides a more interesting learning problem for

the learning algorithm, as the plane maneuvers outside of the level flight
regime. While in hover the plane is pitched up 90 degrees, and the air-flows
during the transition in and out of the maneuver is highly unpredictable
[45]. For this reason it is difficult to hand-craft a flyable trajectory, and
learning the trajectory from demonstration flights provides a promising
solution.
The hover was performed 10 times, and the five best demonstrations

were selected during pre-processing.

5.3 Pre-processing

The raw data collected from the demonstration flights needs pre-processing
before it can be used as training data. The trajectory learning algorithm ex-
pects state input of the following format:

47

Figure 5.6: Vertical hover in the Stinger Dome.

Figure 5.7: Vertical hover.

< ṅėḋ >< N ED >< pqr >< quat er ni on>< cont r ol i nput s >

The BPM data was first filtered and calibrated as shown in section 5.3.2.
Then local N ED cooridinates are calculated from GPS and calibrated BPM
data as described in section 5.3.3. Differentiating the NED position data
gives the linear velocities in inertial frame (ṅėḋ). The orientation requires
transformation from the rotation matrix representation in the raw data to
the quaternion representation expected by the trajectory algorithm. The
transformation from rotation matrix to quaternion is given in section 5.3.4.
The control inputs from the pilot was recorded in the form of pulse widths,
and need conversion to deflection angles as described in section 5.3.5.
An important part of the pre-processing is to select good demonstra-

tions from the set of collected training data. This process is done manually

48

as described next.

5.3.1 Selecting good demonstrations

In the initial flights, a new log was created for each demonstration, but this
approach proved not ideal and was abandoned. The logging is controlled
by the pilot, and the continous log switching provides a distraction. As a
result the start and stop point of the log files will vary in the best case, in
the worst case the pilot may forget to switch on the logging at all.
Based on the experience with log switching a decision was made to keep

the logging running for the entire flight. Because the demonstrations are all
combined into one file, the different demonstrations need to be identified
in the raw log-file. Once the demonstration regions are located, the best five
are selected for further processing. This was done manually by examining
the position and orientation data and comparing with videos of the flight.
From the demonstrations of linear flight with banked turns, we looked

for regions of the log where the plane is flying as close to a straight line as
possible. A position plot of one such demonstration is shown in figure 5.8.

0 2 4 6 8 10 12
−8

−7

−6

−5

−4

−3

−2

−1

0

East (m)

N
or

th
 (

m
)

Figure 5.8: East - North plot of a good linear flight demonstration.

In good hover demonstrations the plane does smooth transitions
between level flight and hover, it keeps a pitch angle close to 90 degrees for
4 or more seconds, and stays close to a steady position during the hover.
Figure 5.9 shows the position and pitch angle of the plane during a good
hover demonstration.

5.3.2 BPM filtering and calibration

The raw data from the barometric pressure sensor is subject to noise, and
needs filtering before further use. We applied a 3rd order Butterworth low-
pass filter with a cut-off frequency of 1Hz. Figure 5.10 shows the BPM signal
before and after filtering.

49

0 5 10 15 20 25
−16

−14

−12

−10

−8

−6

−4

−2

0

East (m)

N
or

th
 (

m
)

(a) East-North Position

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

60

70

80

90

Time(seconds)

P
itc

h
(d

eg
re

es
)

(b) Pitch angle

Figure 5.9: Position plot and pitch angle from a good hover demonstration

0 50 100 150 200 250
−6

−4

−2

0

2

4

6

8

Time (sec)

A
lti

tu
de

 (
m

)

(a) Raw BPM data

0 50 100 150 200 250
−6

−4

−2

0

2

4

6

Time (sec)

A
lti

tu
de

 (
m

)

(b) Filtered BPM data

Figure 5.10: BPM data is filtered using a 3rd order Butterworth low-pass
filter with 1 Hz cut-off frequency.

The BPM data is calculated based on the standard sea level pressure and
gives an inaccurate absolute altitude. Furthermore the sensor is subject to
drift over time. Figure 5.11 shows the uncalibrated BPM data and the Sonar
reference readings from the hover demonstrations described in section
5.2.2.
At first glance the sonar data looks unusable. That is due to the fact that

for most of the flight the plane flew at an altitude greater than 6 meters,
which is beyond the range of the sonar. There are however regions where
the sonar data is reliable; i.e., when the altitude is in the range 0.17m - 6m
and the orientation of the plane is near level.
The sonar data points from reliable regions were used as references to

calibrate the BPM height. Two points along the trajectory were selected
manually, and BPM offset was calculated by subtracting the BPM reading
from the sonar reading at the calibration points. The offset was added to
the BPM data within the region of each calibration point.
Calibration points were found manually by closely inspecting the sonar

data as well as the orientation of the plane. Figure 5.12 gives a zoomed in
view of the graph in figure 5.11. The two graphs show the regions where
suitable calibration points were located. For the hover demonstrations

50

0 200 400 600 800 1000 1200 1400
−6

−4

−2

0

2

4

6

8

Samples

A
lti

tu
de

 (
m

)

 BPM data
Sonar data

Figure 5.11: Uncalibrated BPM data and Sonar reference signal

calibration points were chosen at samples 19 and 1243. The offset
calculated at sample 19 was added to the BPM signal from sample 1 to 1132.
The offset at sample 1243 was added to the BPM signal from sample 1133
to the end.
The same procedure was used to calibrate BPM data from the linear

flight.

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

5

6

7

X: 19
Y: 1.108

Samples

A
lti

tu
de

 (
m

)

BPM data
Sonar data

(a) Calibration point a, sample 19

1160 1180 1200 1220 1240 1260 1280
−6

−4

−2

0

2

4

6

8

X: 1243
Y: 0.1824

Samples

A
lti

tu
de

 (
m

)

BPM data
Sonar data

(b) Calibration point b, sample 1243

Figure 5.12: Uncalibrated BPM data and Sonar reference at the two regions
where calibration points were selected.

The calibrated BPM data is shown in figure 5.13 and 5.14. The data
corresponds better to the sonar data at reliable data points after calibration.

5.3.3 Localization of Position Data

The GPS data is recorded in global Latitude North and Longitude East
degrees and needs to be converted to a localized NED frame. The
transformation is simplified using the flat earth assumption. This will not

51

0 200 400 600 800 1000 1200 1400
−2

0

2

4

6

8

10

Samples

A
lti

tu
de

 (
m

)

BPM data
Sonar data

Figure 5.13: Calibrated BPM data and Sonar reference signal

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

Samples

A
lti

tu
de

 (
m

)

BPM data
Sonar data

(a) Region of calibration point at sample 19

1160 1180 1200 1220 1240 1260 1280
−1

0

1

2

3

4

5

6

7

Samples

A
lti

tu
de

 (
m

)

BPM data
Sonar data

(b) Region of calibration point at sample 1243

Figure 5.14: Zoomed in view of the two calibration regions after calibration

introduce large errors due to the small area normally covered by an RC-
plane. NED coordinates are calculated as shown in equation 5.1, where r is
the mean radius of the earth in meters, φ and λ are latitude and longitude
in radians, h is altitude in meters and φ′,λ′ and h′ are the respective local
references.

n = r (φ−φ′)

e = r cos(φ)(λ−λ′)

d = −(h −h′)

(5.1)

5.3.4 IMU data

Singularities Euler angles is commonly used to represent orientations
in aerospace research. A limitation of this representation is that singulari-
ties occur at angles of ±90◦ [24]. In the hover maneuver the goal is to keep
the plane pitched up at exactly 90◦, and the limitations of the Euler angle

52

representation could introduce significant errors. To avoid the problem of
singularities we log the entire direct cosine matrix (dcm) representing the
orientation of the IMU with respect to inertial frame.

Figure 5.15: IMU frame and body frame of the plane.

IMU offset The IMU is placed on the side of the fuselage of the plane
as shown in figure 5.15. The orientation calculated by the IMU assumes a
reference frame where the Z-axis points down, the X-axis points forward
and the Y-axis points to the side from the IMU. This would correspond
to the body frame of the plane only if the IMU was mounted horizontally
with the correct side up. Because the IMU is placed vertically, there is
an offset between the IMU frame and the body frame of the plane. The
offset corresponds to a rotation of 90◦ around the X-axis of the plane, and
is accounted for by the following rotation matrix [43]

R i mu
p =





1 0 0

0 0 −1

0 1 0



 (5.2)

The orientation is logged as a rotation matrix that represents a
rotational transformation from IMU frame to Inertial frame, R i

i mu
. We

can view the IMU offset as a rotational transformation from the plane body
frame to the IMU frame about the plane x-axis, R i mu

p . We want a rotation
matrix R i

p , representing a rotational transformation from the body frame
of the plane to inertial frame. R i

p can be composed from the rotations
represented by R i

i mu
and R i mu

p as follows [43]:

R =R i
p = R i

i mu ∗R i mu
p (5.3)

The angular velocities are transformed from IMU Frame (pqri mu) to the
body frame of the plane (pqrp) by multiplying with the offset matrix R i mu

p

[43].





p

q

r



= R i mu
p ∗





p

q

r





i mu

(5.4)

53

Quaternion representation While the rotation matrix representation
avoids the problems of singularities it is memory intensive from a computer
programming perspective. While Euler angle representation require 3
elements to be stored, the rotation matrix requires 3x3 elements. A more
compact representation that avoids singularities would be ideal.
The quaternion is an example of such representation. It consist of a 3

element vector component [qX , qY , qZ]T and a scalar component qW . The
scalar component represents the rotation while the vector component gives
the direction of the rotation axis. There are two common conventions when
representing quaternions, with the scalar component as the first or as the
last element. We use the latter representation,Q = [qx , qy , qz , qw]T .
Our IMU does not output quaternions directly (current versions of

the MicroStrain 3DM-GX3 IMU has an updated firmware that offer this
feature, but this was not yet available at the time of purchase of our
IMU). And a transformation from matrix to quaternion representation is
necessary. The relationship between matrix and quaternion is given in [24]
as :

R =





r11 r12 r12

r21 r22 r22

r31 r32 r33



=































2q2
w −1

+2q2
x

2qx qy

+2qw qz

2qx qz

−2qw qy

2qx qy

−2qw qz

2q2
w −1

+2q2
y

2qy qz

+2qw qx

2qx qz

+2qw qy

2qy qz

−2qw qx

2q2
w −1

+2q2
z































(5.5)

From equation 5.5, assuming R is orthogonal we get:

4qw qx = r23 − r32

4qw qy = r31 − r13

4qw qz = r12 − r21

4q2
w −1 = t r (R)

(5.6)

qw can then be calculated as follows:

qw = (1/2)
√

m11 +m22 +m33 +1 (5.7)

Once we have qw the vector component of the quaternion can easily be
calculated based on the relationships in equation 5.6

qx = (m23 −m32)/4qw

qy = (m31 −m13)/4qw

qz = (m12 −m21)/4qw

(5.8)

54

5.3.5 Pilot control inputs

The control inputs are given in the form of PWM commands that are fed
directly to the servos. In order to simulate the effect of the control inputs
on the state, these commands need to be converted to deflection angles. The
control input ranges from pulse widths of 900µs to 2100µs, but the mapping
between control input and deflection angle is not necessarily linear, and
it can be different for the different control surfaces. A control surface
deflection model for each control surface is thereby necessary.
In order to map the control inputs to corresponding deflection angles

an experiment was conducted where different control inputs were given to
the plane and the resulting deflection angle was measured.

Aileron deflection. The aileron deflection is a quadratic function of the
input pulse width. Figure 5.16 shows a plot of the aileron deflection data
together with a 2nd order polynomial fit given by:

δa = (9.1945∗10−07)u2
a −0.0048ua +5.2353 (5.9)

where δa is the deflection angle in radians and ua is the aileron input

800 1000 1200 1400 1600 1800 2000 2200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Pulse width in µs

D
ef

le
ct

io
n

an
gl

e
(r

ad
ia

ns
)

Aileron input
Fitted 2nd order polynomial

Figure 5.16: Aileron deflection as a function of input pulse width

pulse width in µs. In the experiment the aileron deflection angle reached
its maximum value at a pulse width of 1150µs and its minimum angle at
2100µs, in the servomodel we therefore constrain the aileron inputs to these
limits.

Elevator deflection. The elevator deflection is a linear function of the
input pulse width. Figure 5.17 shows a plot of the elevator deflection data
together with a fitted linear function given by:

δe =
ue −900

1200
∗ (1.2387+1.2051)−1.2387 (5.10)

55

800 1000 1200 1400 1600 1800 2000 2200
−1.5

−1

−0.5

0

0.5

1

1.5

Pulse width in µs

D
ef

le
ct

io
n

an
gl

e
(r

ad
ia

ns
)

Elevator input
Fitted linear function

Figure 5.17: Elevator deflection as a function of input pulse width

where δe is the deflection angle in radians and ue is the elevator input pulse
width in µs. The elevator commands are limited to the pulse width range
900µs to 2100µs, which is equal to the total range of the control inputs.

Rudder deflection. The rudder deflection is a linear function of the
input pulse width. Figure 5.18 shows a plot of the rudder deflection and
the fitted linear function given by:

δr =
ue −1000

1000
∗ (1.344+1.2564)−1.344 (5.11)

where δr is the deflection angle in radians and ur is the rudder input pulse

800 1000 1200 1400 1600 1800 2000 2200
−1.5

−1

−0.5

0

0.5

1

1.5

Pulse width in µs

D
ef

le
ct

io
n

an
gl

e
(r

ad
ia

ns
)

Rudder input
Fitted linear function

Figure 5.18: Rudder deflection as a function of input pulse width

width in µs. The rudder inputs are limited to the range 1000µs to 2000µs.

56

1000 1200 1400 1600 1800 2000 2200
0

2

4

6

8

10

PWM Input

T
hr

us
t (

N
)

Test data
2nd order polynomial fit

Figure 5.19: Thrust in Newtons vs PWM command

Thrust. The throttle commands are also given as PWM signals, and
need to be converted to Newtons. Another experiment was conducted
to measure the thrust at different throttle commands. The thrust was
measured while the motor was mounted on a stable surface. Figure 5.19
shows the measured relationship between thrust and PWM input, together
with a second order polynomial fit given by the following equation:

F = 6.2628∗10−6u2
+0.0287u −22.6335 (5.12)

5.4 Results

The trajectory learning algorithm was tested on two maneuvers, a straight
line of level flight and a vertical hover. The training data for the straight
line was collected in the "linear flight with banked turns" demonstrations
described in section 5.2.1, and the vertical hover data was collected as
described in section 5.2.2. First the results of the time alignment of
demonstrations are presented, then the learned trajectories for the level
flight and the hover flight, and finally the model prediction errors.

5.4.1 Time alignment

The demonstration trajectories are aligned in time using DTW as described
in section 3.1.1. Figure 5.20 shows the linear velocities from the level
flight before and after alignment. After the alignment all demonstration
trajectories have the same length in time, and similar features of the
demonstration trajectories are aligned. The latter is more obvious in the
example in figure 5.21 which shows the angular velocity around the z-axis
(i.e. the yaw-rate, r) of the hover flight.

57

0 0.5 1 1.5 2 2.5
−15

−10

−5

0

5

10

15

20

Li
ne

ar
 V

el
oc

ity
 (

m
/s

ec
)

Time (seconds)

North
East
Down

(a) Before alignment

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−15

−10

−5

0

5

10

15

20

Li
ne

ar
 V

el
oc

ity
 (

m
/s

ec
)

Time (seconds)

North
East
Down

(b) After alignment

Figure 5.20: Linear velocities (ṅėḋ) from the linear flight.

0 1 2 3 4 5 6 7 8 9 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

A
ng

ul
ar

 v
el

oc
ity

 a
ro

un
d

z−
ax

is
 (

m
/s

ec
)

Time (seconds)

(a) Before alignment

0 1 2 3 4 5 6 7 8 9
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

A
ng

ul
ar

 V
el

oc
ity

 a
ro

un
d

z−
ax

is
(r

ad
/s

ec
)

Time (seconds)

(b) After alignment

Figure 5.21: Angular Velocities around the plane z-axis (r).

58

5.4.2 Straight line of level flight

The first maneuver used to test the trajectory learning algorithm was a
straight line of level flight. Training data for this manuever are regions
of linear flight in the "linear flight with banked turns" demonstration set.
Figure 5.22 shows an East-North plot of the position of the plane during
the maneuver. The learned trajectory is closer to a straight line than any of
the demonstrations, and is achieved without supplying previous knowledge
about the trajectory to the algorithm.

0 2 4 6 8 10 12 14 16
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

East (m)

N
or

th
 (

m
)

Demonstrations
Learned trajectory

Figure 5.22: East-North position of level flight (meters)

As shown in figure 5.23, the altitude is fairly constant and the altitude
velocity is close to zero. This is consistent with a straight line flight flown
at constant height. Note that the altitude and altitude velocity is here
represented as height above ground for convenience. In reality the North
East Down convention is used in the flight logs, and thus the altitude would
appear to be negative.
The Euler angles plotted in figure 5.24 shows that the orientation of the

learned trajectory together with the aligned demonstrations. The shifting
roll and turning yaw angles of the demonstrations reflect that the line is
flown in a constricted space. After flying the straight line the plane entered
into a left turn, thus the plane rolled right wing up and started turning
its nose left. The pitch angle is also increased towards the end of the
demonstrations, which slows down the speed of the plane before the turn.
Since this is a consistent pattern in all the demonstrations the learning
algorithm interprets it as part of the maneuver. Note that the yaw angle is
kept more stable in the learned trajectory than in any of the demonstration
trajectories before preparing for the turn.
As can be seen from figure 5.25, the angular velocities correspond to the

changes of orientation in figure 5.24.
A pattern corresponding to the Euler angle changes can be seen in

the control surface deflections as well. Figure 5.26(a) shows a positive
aileron deflection towards the end of the trajectory which by convention

59

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−15

−10

−5

0

5

10

15

20

North
East

(a) North and East velocity (meters/sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−10

−5

0

5

10

15

20

P
os

iti
on

 (
m

)

Time (seconds)

North
East

(b) North and East position (meters)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1

1.5

Li
ne

ar
 V

el
oc

ity
 (

m
/s

ec
)

Time (seconds)

Demonstrations
Learned Trajectory

(c) Altitude velocity (meters/sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
3

3.5

4

4.5

5

5.5

6

6.5

7

A
lti

tu
de

 (
m

)
Time (seconds)

Demonstrations
Learned Trajectory

(d) Altitude (meters)

Figure 5.23: Position and linear velocity of the plane during a straight line
of level flight.

corresponds to right aileron down, and leads to a right wing up roll moment
[39]. The rudder deflection is slowly increased as shown in figure 5.26(d),
which means the rudder is moved to the left, turning the nose of the plane
left as well. Figure 5.26(b) and (c) shows the elevator is moved down
(pitching the nose of the plane up) and the thrust is decreased, to slow down
before the turn.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1.5

−1

−0.5

0

0.5

1

Time (seconds)

ro
ll

(r
ad

ia
ns

)

Demonstrations
Learned Trajectory

(a) Roll (radians)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (seconds)

pi
tc

h
(r

ad
ia

ns
)

Demonstrations
Learned Trajectory

(b) Pitch (radians)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Time (seconds)

ya
w

 (
ra

di
an

s)

Demonstrations
Learned Trajectory

(c) Yaw (radians)

Figure 5.24: Orientation during level flight (Euler Angles).

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−4

−3

−2

−1

0

1

2

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
se

c)

Time (seconds)

p
q
r

Figure 5.25: Angular velocities pqr (rad/sec), level flight.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

A
ile

ro
n

de
fle

ct
io

n
(r

ad
)

Time (seconds)

Demonstrations
Learned Trajectory

(a) Aileron deflection (radians)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

E
le

va
to

r
de

fle
ct

io
n

(r
ad

)

Time (seconds)

Demonstrations
Learned Trajectory

(b) Elevator deflection (radians)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

T
hr

us
t (

N
)

Time (seconds)

Demonstrations
Learned Trajectory

(c) Thrust in Newton

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

R
ud

de
r

de
fle

ct
io

n
(r

ad
)

Time (seconds)

Demonstrations
Learned Trajectory

(d) Rudder deflection (radians)

Figure 5.26: Control inputs, level flight.

61

5.4.3 Vertical hover

The vertical hover maneuver gives a more challenging learning problem
as the trajectory is more complex and longer in time. It is also more
challenging to the human pilot, which means we are less likely to have
repeatedly good demonstrations. Still, the algorithm successfully inferred
the intended hover trajectory.
Figure 5.27 gives a plot of the pitch angle and position of the plane

during the hover maneuver. The blue thick line shows the learned
trajectory, while the thin lines show the demonstrations. As can be seen
from the plot, the learned trajectory makes the plane pitch up to 83 degrees
and maintains a pitch angle between 55 and 89 degrees for 5.5 seconds
before pitching down to resume level flight.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Time (seconds)

pi
tc

h
(d

eg
re

es
)

 Demonstrations
Learned Trajectory

(a) Pitch (degrees)

0 5 10 15 20 25
−25

−20

−15

−10

−5

0

East (m)

N
or

th
 (

m
)

Demonstrations
Learned trajectory

(b) East-North position (meters))

Figure 5.27: Hover maneuver.

The plane moves further south in the learned trajectory than in any of
the demonstration trajectories. This is because the position must not only
be the most likely position considering the demonstration trajectories, it
must also adhere to the dynamics of the plane, and thus the position also
depends on the most likely linear velocities. The learned linear velocity in
North direction explains the deviating North position. As shown in figure
5.28 the change in position corresponds to the learned linear velocities.
Figure 5.4.3 and (d) shows that the plane looses altitude during the hover,
which is consistent with visual observations of the maneuver.
Figure 5.29 shows the angular velocities during the hover maneuver,

and figure 5.30 shows the orientation in radians. It is a consistent pattern
that the plane rolls right wing up as the pilot is establishing control in the
hover, this can be seen in the peak at around 3 seconds in figure 5.30(a).
The yaw is affected as well, as can be seen in figure 5.30(c).

62

0 1 2 3 4 5 6 7 8 9
−15

−10

−5

0

5

10

15

North
East

(a) North and East velocities (m/sec)

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5

10

15

20

25

P
os

iti
on

 (
m

)

Time (seconds)

North
East

(b) North and East position (meters)

0 1 2 3 4 5 6 7 8 9
−1.5

−1

−0.5

0

0.5

1

1.5

2

Li
ne

ar
 V

el
oc

ity
 (

m
/s

ec
)

Time (seconds)

Demonstrations
Learned Trajectory

(c) Altitude velocity (m/sec)

0 1 2 3 4 5 6 7 8 9
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

A
lti

tu
de

 (
m

)

Time (seconds)

Demonstrations
Learned Trajectory

(d) Altitude (meters)

Figure 5.28: Hover maneuver - Linear velocities and position.

0 1 2 3 4 5 6 7 8 9
−4

−3

−2

−1

0

1

2

3

4

A
ng

ul
ar

 V
el

oc
ity

 a
ro

un
d

x−
ax

is
(r

ad
/s

ec
)

Time (seconds)

Demonstrations
Learned Trajectory

(a) p

0 1 2 3 4 5 6 7 8 9
−3

−2

−1

0

1

2

3

A
ng

ul
ar

 V
el

oc
ity

 a
ro

un
d

y−
ax

is
(r

ad
/s

ec
)

Time (seconds)

Demonstrations
Learned Trajectory

(b) q

0 1 2 3 4 5 6 7 8 9
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (seconds)

A
ng

ul
ar

 V
el

oc
ity

 a
ro

un
d

z−
ax

is
 (

ra
d/

se
c)

 Demonstrations
Learned Trajectory

(c) r

Figure 5.29: Angular Velocities, hover flight (rad/sec).

0 1 2 3 4 5 6 7 8 9
−4

−3

−2

−1

0

1

2

3

4

Time (seconds)

ro
ll

(r
ad

ia
ns

)

Demonstrations
Learned Trajectory

(a) Roll

0 1 2 3 4 5 6 7 8 9
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (seconds)

pi
tc

h
(r

ad
ia

ns
)

 Demonstrations
Learned Trajectory

(b) Pitch

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

Time (seconds)

ya
w

 (
ra

di
an

s)

Demonstrations
Learned Trajectory

(c) Yaw

Figure 5.30: Orientation during hover (Euler angles).

63

Figure 5.31(c) shows a great increase in thrust during the hover
maneuver. This is needed because the wings have no lift at such a high pitch
angle, and the entire lift of the plane must be generated by the propeller.
The aileron and rudder deflections in figure 5.31(a) and 5.31(d) shows the
compensations done by the pilot to establish control over the plane in the
vertical hover. The elevator deflection in figure 5.31(b) shows the control
of the pitch angle to make the plane maintain a near vertical position
during the hover. In general the deflection angles are greater for the hover
maneuver than for the level flight, this is due to the fact that the plane flies
at a slower speed.

0 1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

A
ile

ro
n

de
fle

ct
io

n
(r

ad
)

Time (seconds)

Demonstrations
Learned Trajectory

(a) Aileron deflection (radians)

0 1 2 3 4 5 6 7 8 9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

E
le

va
to

r
de

fle
ct

io
n

(r
ad

)
Time (seconds)

Demonstrations
Learned Trajectory

(b) Elevator deflection (radians)

0 1 2 3 4 5 6 7 8 9
4.5

5

5.5

6

6.5

7

7.5

T
hr

us
t (

N
)

Time (seconds)

Demonstrations
Learned Trajectory

(c) Thrust (Newton)

0 1 2 3 4 5 6 7 8 9
−1

−0.5

0

0.5

1

1.5

R
ud

de
r

de
fle

ct
io

n
(r

ad
)

Time (seconds)

Demonstrations
Learned Trajectory

(d) Rudder deflection (radians)

Figure 5.31: Control inputs, hover maneuver.

5.4.4 Model Prediction Error

The learning algorithm calculates model prediction error along the trajec-
tory, for the simple dynamics model. The model is then adapted by using
the prediction error as bias terms. Figure 5.32 and 5.33 shows the predic-
tion error in linear and angular accelerations for the straight line level flight
trajectory. Figure 5.34 and 5.35 shows the errors in u̇v̇ ẇ and ṗ q̇ ṙ along the
hover trajectory.

64

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(a) u̇

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(b) v̇

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(c) ẇ

Figure 5.32: Model prediction error in linear accelerations (u̇v̇ ẇ) during
straight flight.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(a) ṗ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(b) q̇

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(c) ṙ

Figure 5.33: Model prediction error in angular accelerations (ṗ q̇ ṙ) during
straight flight.

0 1 2 3 4 5 6 7 8 9
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(a) u̇

0 1 2 3 4 5 6 7 8 9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(b) v̇

0 1 2 3 4 5 6 7 8 9
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(c) ẇ

Figure 5.34: Model prediction error in linear accelerations (u̇v̇ ẇ) during
the hover maneuver.

0 1 2 3 4 5 6 7 8 9
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(a) ṗ

0 1 2 3 4 5 6 7 8 9
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(b) q̇

0 1 2 3 4 5 6 7 8 9
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

P
re

di
ct

io
n

er
ro

r

Time (seconds)

(c) ṙ

Figure 5.35: Model prediction error in angular accelerations (ṗ q̇ ṙ) during
the hover maneuver.

65

66

Chapter 6

Conclusion

This chapter provides the conclusion of the thesis. First the results
provided in chapter 5 and the developed UAV platform are discussed, then
suggestions for future work are given as well as the final conclusion.

6.1 Discussion

The focus of this thesis was on development of a fixed wing UAV research
platform as well as the implementation of trajectory learning to infer
the intended trajectory from a set of demonstration trajectories. In the
following the results are discussed, beginning with the development of the
platform.

6.1.1 Platform

A radio-controlled fixed wing UAV platform with a custom built data
acquisition system was developed, as described in chapter 4. This platform
was used to collect training data for the trajectory learning algorithm.

The choice of an airframe made of styrofoam as opposed to more
durablematerials makes the platform fragile, usually requiring repairs after
every flight. However the repairs are fairly simple, and once the most
highly stressed areas of the plane were reinforced, the platform proved
surprisingly durable. The greatest benefit of a foam platform is the light
weight. The hover maneuver requires a high thrust-to-weight ratio as
mentioned in section 4.1.3, at the same time the plane should be flyable
at low speeds in order to be suitable for indoor testing. The light weight
of the styrofoam makes it possible to use a relatively small motor and still
generate a sufficient amount of thrust.

The developed platform is able to collect all the sensor data needed to
describe the state of the plane during demonstration flights, and record it
on-board the plane.

67

6.1.2 Time alignment

The dynamic time warping works well for aligning the demonstration
as shown in section 5.4.1. If we look at the state variables separately
it may seem as though the algorithm sometimes misaligns features at
certain points along the trajectory. Consider for instance the aligned
demonstrations plotted in figure 5.31(a) on page 64 where the large
peak in Aileron deflection intuitively seems misaligned with the other
demonstrations. However, the algorithm finds the time indices that
provides the best alignment considering al l the state variables, and can
not assign separate indices for each variable. In the case of the deviant
aileron deflection peak, a corresponding misalignment is only found in the
roll angle in figure 5.30(a), while the time alignment is good in the majority
of the state variables.

6.1.3 Trajectory learning

The trajectory learning algorithm successfully inferred the intended trajec-
tory in the case of both the demonstrated maneuvers. In this section the
results of the learning are discussed, considering the level flight and the
hover maneuver separately.

Level flight. The plot in figure 5.22 on page 59 shows that the learned
trajectory in the case of the level flight is closer to a straight line than any
of the demonstration trajectories. This is achieved without incorporating
prior knowledge about the trajectory. As can be seen from the plot of
the orientation in figure 5.24 the learned trajectory also maintains a more
stable orientation than any of the demonstrations.
Features that are seen consistently in a majority of the demonstrations

are interpreted as part of the maneuver. In the level flight maneuver this
led to the algorithm learning the preparation for the left turn following the
linear flight. This can be prevented either by considering a smaller part
of the trajectory (i.e. only the part that is not affected by the following
turn), performing the demonstrations in a larger space, or incorporating
prior knowledge of the orientation.

Hover. Figure 5.27 on page 62 shows the pitch angle and the position
of the plane during the hover maneuver. The intended trajectory is
successfully learned by the trajectory learning algorithm. Intuitively the
pitch angle should be as close to 90 degrees as possible for the duration of
the hover, and the plane should maintain stable roll and yaw angles. The
orientation plot in figure 5.30 shows the fluctuations in roll and yaw is a
consistent pattern of the demonstrations, and thus they are learned by the
trajectory learning algorithm.
While the human pilot needs these adjustments in oder to establish

control of the plane, it could be possible for an autonomous controller to
minimize the fluctuations. Prior knowledge in the form of constraints on

68

the orientation during the hover could be incorporated to possibly achieve
a more stable target trajectory for such a controller.

Model prediction error The model prediction error shown in section
5.4.4 is the prediction errors of the basic dynamic model along the
trajectory. The prediction errors are used as bias terms to improve the
calculation of the accelerations in the dynamic model along the trajectory.
Without providing the bias terms the learning algorithm was unable to
learn the intended trajectory.

Trajectory. As a controller is not yet implemented at this stage it is not
possible to guarantee the flyability of the trajectory. However, analyzing the
data shows that the trajectory is promising as it adheres to the dynamics of
the plane, and is similar to the demonstrated maneuvers. Furthermore it
succeeded in capturing the intended trajectory in both maneuvers without
prior knowledge of the trajectory.

6.2 Future work

The implementation of the trajectory learning algorithm and the develop-
ment of a suitable platform are the first steps towards automating highly
aerobatic maneuvers with a fixed wing UAV through apprenticeship learn-
ing. The next step would be to develop an autonomous controller that can
follow the learned target trajectory. Abbeel et al. use a combination of
a finite and receding horizon linear quadratic regulator for this purpose,
but other controllers may be suitable as well. An accurate flight simulator
would be useful in the controller development to reduce the time and cost
of re-building the plane after crashes.
Prior knowledge can be incorporated in order to learn target trajectories

that are superior to the trajectories demonstrated by a human pilot. Such
prior knowledge can for instance be in the form of constraints on the
position or orientation of the plane.
For the case of autonomous flight the platform needs a few adjustments.

These adjustments include receiving the control inputs from the ArduPilot
board rather than the RC receiver and implementation of switching
between manual RC control and autonomous control. More sensors may
be added as well, such as sonars for obstacle detection.
As described in section 5.3.1 the switching of the logging provides a

distraction to the RC pilot, as it is controlled from the radio transmitter.
Our solution was to keep the logging on for the entire flight. Another
solution could be to separate the log switching from the control of the plane,
so that it can be controlled separately. Depending on the implementation
this solution may require more hardware mounted to the plane to allow
wireless communication other than the radio control.
The problem of an alternative solution to GPS position measurements

for indoor flights where GPS is unavailable remain unsolved, and should be
researched further.

69

6.3 Conclusion

This thesis presents the implementation of apprenticeship learning of
trajectories for highly aerobatic maneuvers using an off the shelf radio-
controlled fixed wing aircraft, and shows that the trajectory learning
algorithm presented in [2] can be applied to fixed wing UAVs by providing
a suitable dynamic model.
Secondly an experimental platform for research on apprenticeship

learning for fixed wing UAVs was developed, including a custom designed
data acquisition system that logs the state variables of the plane as well
as the control inputs from the pilot during demonstration flights. The
platform is easily extendable for use in fully autonomous flights.
These contributions are the first steps towards automating highly

aerobatic maneuvers with a fixed wing aircraft through the means of
apprenticeship learning.

70

Bibliography

[1] MEDIATEK - 3329 Datasheet, rev.a03 edition, 2003.

[2] P. Abbeel, A. Coates, and A.Y. Ng. Autonomous helicopter aerobatics
through apprenticeship learning. International Journal of Robotics
Research, 29(13):1608–1639, 2010.

[3] C.G. Atkeson and S. Schaal. Robot learning from demonstration.
In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN
CONFERENCE-, pages 12–20. MORGAN KAUFMANN PUBLISH-
ERS, INC., 1997.

[4] Y. Bar-Shalom, X.R. Li, T. Kirubarajan, and J. Wiley. Estimation with
applications to tracking and navigation. Wiley Online Library, 2001.

[5] L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization tech-
nique occurring in the statistical analysis of probabilistic functions of
markov chains. The annals of mathematical statistics, 41(1):164–171,
1970.

[6] J.A. Bilmes. A gentle tutorial of the em algorithm and its application
to parameter estimation for gaussian mixture and hidden markov
models. International Computer Science Institute, 4:126, 1998.

[7] G. Bishop and G. Welch. An introduction to the kalman filter. Proc of
SIGGRAPH, Course, 8:27599–3175, 2001.

[8] Bosch Sensortec. BMP085 Digital Pressure Sensor, datasheet, rev.
1.0 edition, July 2008.

[9] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, 2008.

[10] R. Cory and R. Tedrake. Experiments in fixed-wing uav perching.
In Proceedings of the AIAA Guidance, Navigation, and Control
Conference, 2008.

[11] R.E. Cory. Supermaneuverable perching. 2010.

[12] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal
Statistical Society. Series B (Methodological), pages 1–38, 1977.

71

[13] A. Gelb. Applied optimal estimation. MIT press, 1979.

[14] W.E. Green and P.Y. Oh. Autonomous hovering of a fixed-wing
micro air vehicle. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pages 2164–
2169. IEEE, 2006.

[15] W.E. Green and P.Y. Oh. A fixed-wing aircraft for hovering in caves,
tunnels, and buildings. In American Control Conference, 2006,
page 6. IEEE, 2006.

[16] W.E. Green and P.Y. Oh. A hybrid mav for ingress and egress of
urban environments. Robotics, IEEE Transactions on, 25(2):253–
263, 2009.

[17] Gary Bishop Greg Welch. The kalman filter,
http://www.cs.unc.edu/ welch/kalman/.

[18] A. Hurst, A. Wickenheiser, and E. Garcia. Localization and perching
maneuver tracking for a morphing uav. In Position, Location and
Navigation Symposium, 2008 IEEE/ION, pages 1238–1245. IEEE,
2008.

[19] Adafruit Industries. C++ library for the bmp085 sensor,
https://github.com/adafruit/adafruit-bmp085-library.

[20] E.B. Jackson. Manual for a workstation-based generic flight simula-
tion program (larcsim) version 1.4. 1995.

[21] E.N. Johnson and S.K. Kannan. Adaptive trajectory control for au-
tonomous helicopters. Journal of Guidance Control and Dynamics,
28(3):524–538, 2005.

[22] E.N. Johnson, M.A. Turbe, A.D. Wu, S.K. Kannan, and J.C. Neidhoe-
fer. Flight test results of autonomous fixed-wing uav transitions to and
from stationary hover. In Proceedings of the AIAA Guidance, Navi-
gation, and Control Conference Exhibit, Monterey, CO, 2006.

[23] R.E. Kalman et al. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45, 1960.

[24] J.B. Kuipers. Quaternions and rotation sequences. Princeton
university press Princeton, NJ, USA:, 1999.

[25] A. Lussier Desbiens and M.R. Cutkosky. Landing and perching on
vertical surfaces with microspines for small unmanned air vehicles.
Journal of Intelligent and Robotic Systems, 57(1):313–327, 2010.

[26] C.D. Manning, H. Schütze, and MITCogNet. Foundations of statisti-
cal natural language processing, volume 999. MIT Press, 1999.

[27] AA Markov. An example of statistical analysis of the text of" evgenii
onegin" illustrating the linking of events into a chain. Izv. Imp. Akad.
Nauk, Ser, 6:153–162, 1913.

72

[28] P.S. Maybeck. Stochastic models, estimation and control, volume 141
ofMathematics in Science and Engineering. Academic Pr, 1979.

[29] G.J. McLachlan and T. Krishnan. The EM algorithm and extensions,
volume 274. Wiley New York, 1997.

[30] MicroStrain, Inc., 459 Hurricane Lane Williston, VT 05495 United
States of America. 3DM-GX3® Data Communications Protocol,
2010.

[31] M. Müller and Ltd MyiLibrary. Information retrieval for music and
motion, volume 6. Springer Berlin, 2007.

[32] V. Myrand-Lapierre, A. Desbiens, E. Gagnon, F. Wong, and E. Poulin.
Transitions between level flight and hovering for a fixed-wing mini
aerial vehicle. In American Control Conference (ACC), 2010, pages
530–535. IEEE, 2010.

[33] I.J. Myung. Tutorial on maximum likelihood estimation. Journal of
Mathematical Psychology, 47(1):90–100, 2003.

[34] A.R. Perry. The flightgear flight simulator. In 2004 USENIX Annual
Technical Conference, Boston, MA, 2004.

[35] Natural Point. Optitrack motion capture system,
http://www.naturalpoint.com/optitrack.

[36] N.B. Priyantha. The cricket indoor location system. PhD thesis,
Massachusetts Institute of Technology, 2005.

[37] L.R. Rabiner. A tutorial on hidden markov models and selected ap-
plications in speech recognition. Proceedings of the IEEE, 77(2):257–
286, 1989.

[38] Laminar Research. X-plane 10 desktop manual, http://www.x-
plane.com/support/manuals/desktop/.

[39] JB Russell. Performance and stability of aircraft. Butterworth-
Heinemann, 1996.

[40] H. Sakoe and S. Chiba. Dynamic programming algorithm optimiza-
tion for spoken word recognition. Acoustics, Speech and Signal Pro-
cessing, IEEE Transactions on, 26(1):43–49, 1978.

[41] S. Sarkka, A. Vehtari, and J. Lampinen. Time series prediction by
kalman smoother with cross-validated noise density. In Neural Net-
works, 2004. Proceedings. 2004 IEEE International Joint Confer-

ence on, volume 2, pages 1653–1657. IEEE, 2004.

[42] H.W. Sorenson. Least-squares estimation: from gauss to kalman.
Spectrum, IEEE, 7(7):63–68, 1970.

[43] M.W. Spong, S. Hutchinson, andM. Vidyasagar. Robot modeling and
control. John Wiley & Sons New York, NY, USA:, 2006.

73

[44] RH Stone and G. Clarke. Optimization of transition manoeuvres for
a tail-sitter unmanned air vehicle (uav). In Australian Aerospace In-
ternational Congress [online paper], http://www. aeromech. usyd.

edu. au/uav/twing/pdfs/AIAC_paper_final. pdf, Paper, volume 105,
2001.

[45] R. Tedrake, Z. Jackowski, R. Cory, J.W. Roberts, and W. Hoburg.
Learning to fly like a bird. Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Lab, pages 1–7, 2009.

[46] R. Tedrake, T.W. Zhang, and H.S. Seung. Stochastic policy gradient
reinforcement learning on a simple 3d biped. In Intelligent Robots
and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ

International Conference on, volume 3, pages 2849–2854. IEEE,
2004.

[47] A. Tidemann and P. Öztürk. Learning dance movements by imitation:
A multiple model approach. KI 2008: Advances in Artificial

Intelligence, pages 380–388, 2008.

[48] Ubisense. Real time location system, http://www.ubisense.net/.

[49] CF Wu. On the convergence properties of the em algorithm. The
Annals of Statistics, 11(1):95–103, 1983.

74

