
UNIVERSITY OF OSLO
Department of Informatics

Mapping
Fingerprints to
Unique Numbers

Ian Michael Trotter

iant@ifi.uio.no

29th October 2007

Abstract

As automated fingerprint recognition systems gain popularity, the pro­

liferation of information about unchangeable biometric characteristics

causes serious privacy and security concerns. This information may en­

able an impostor to create a matching fingerprint, and the stored inform­

ation should therefore be considered extremely sensitive.

This thesis explores a novel method for generating cancellable finger­

print templates that will impede the reproduction of a fingerprint from

the stored template, and at the same time allow the same fingerprint to

be reused in the case of a compromise.

During enrollment, the proposed method aligns the minutiae points

of a fingerprint to a reference coordinate system using the core and prin­

cipal direction, and creates a hash value based on the set of minutiae

points. It then generates Reed­Solomon error correction codes which

enable the reproduction of the full set of minutiae points if a certain

number of minutiae points are known. It then performs an irreversible

Cartesian block transformation on the minutiae points.

During the matching process, the minutiae points of the candidate

print are similarly aligned, and transformed using the same Cartesian

transformation. A standard matching algorithm is performed on the

minutiae sets in the transformed space, which allows the Cartesian trans­

formation to be reversed for the matching minutiae points in the en­

rolled template. Using the Reed­Solomon error­correction codes gener­

ated during enrollment, the entire minutiae point set of the enrolled

print can be recreated, provided enough minutiae points could be cor­

rectly reversed.

Thus, a matching candidate fingerprint allows an otherwise irrevers­

ible transformation on the enrolled print to be reversed. The same

hash value created for the fingerprint during enrollment can thus be

re­generated when a matching fingerprint is presented.

A proof­of­concept implementation of the method is presented and

tested. Although the recognition accuracy of the proposed method was

found to be inferior to comparable traditional fingerprint recognition

methods, the method nonetheless shows promise as it allows for im­

proved security and privacy of the enrolled data.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 3

1.3 Method . 3

1.4 Organisation of the Thesis . 5

2 Background and Related Work 7

2.1 Person Authentication . 7

2.2 Biometrics . 8

2.3 Fingerprints . 10

2.4 Biometric System Design . 12

2.5 Automatic Fingerprint Recognition Systems 12

2.6 Fingerprint Recognition System Security 18

2.7 Cancellable Biometrics . 21

2.8 New Method for Generating Cancellable Fingerprint Tem­

plates . 24

3 Method 25

3.1 Overview . 25

3.2 Fingerprint Image Enhancement 26

3.3 Minutiae Detection . 35

3.4 Core Detection . 37

3.5 Minutiae Alignment . 40

3.6 Hashing . 40

3.7 Reed­Solomon Error Correction 41

3.8 Cartesian Transformation of the Feature Set 42

3.9 The Fingerprint Template . 44

3.10 Matching . 45

4 Implementation 47

4.1 Overview . 47

4.2 Enrollment . 47

4.3 Matching . 52

4.4 Run­time Parameters . 55

i

5 Testing Procedures 57

5.1 System Accuracy Testing . 57

5.2 Evaluation Criteria . 58

5.3 Shortcomings of the Testing Procedure 60

6 Results and Analysis 61

6.1 Experimental Results . 61

6.2 Irreversability of the Transformation 65

6.3 Notes on Feature Extraction 66

7 Conclusion 69

ii

Chapter 1

Introduction

1.1 Background

Biometrics is the study of methods for uniquely recognising humans

based on one or more intrinsic physical or behavioural characteristics.

A wide variety of systems, business processes, services and applications

require a positive verification of the identity of the persons involved, for

instance financial transactions, physical access to buildings and areas,

and secure access to computer systems. By using biometrics, it is pos­

sible to identify a person based on intrinsic traits of the person, rather

than by what is in their possession, such as a key or an access card,

or some knowledge that is assumed to be exclusive to the person, for

instance a password or his mother’s maiden name.

There are many biometrics that have been proposed for identifica­

tion and verification purposes, with varying degrees of success. These

include fingerprints, voice, iris, retina, signature, face, gait, hand geo­

metry, ear shape, keystroke patterns, skin reflectance, lip motion, body

odor and DNA.

Particularly, the use of fingerprints for biometric identification has

attracted a significant amount of interest. The inside surfaces of the

hands and feet of humans contain small ridges of skin which facilitate

perspiration, enhance the sense of touch, and provide a gripping sur­

face. Fingerprints are part of an individual’s phenotype, and are only

weakly determined by genetics [15]. Fingerprints are considered to be

distinctive to a person, and remain largely unchanged throughout adult

life [57].

Fingerprints have been used systematically in forensic science since

the early 20th century [15], although there is evidence that the Chinese

were aware of the individuality of fingerprints well over 5,000 years ago

[15]. The advent of several ink­less fingerprint scanning technologies

coupled with the recent increase in processor performance has taken

1

fingerprint recognition beyond criminal identification applications, and

into the realm of non­criminal civilian applications such as access con­

trol, time and attendance tracking and computer user login.

An automatic biometric recognition system usually consists of four

distinct parts: sensor, feature extraction, database, and matcher. The

sensor acquires a sample of the biometric, information about certain

distinguishing features is extracted from the sample during the feature

extraction phase, and the features are then either enrolled in a data­

base for future reference, or matched with a previously stored biometric

sample from the database.

Figure 1.1: A biometric authentication system

The analysis of fingerprints for identification and verification pur­

poses generally requires the comparison of several central features of

the print pattern. Matching algorithms are used to compare previously

acquired samples of fingerprints against candidate fingerprints for au­

thentication or identification. In order to do this, either the original

image must be directly compared to the candidate image [12, 64], or cer­

tain features must be extracted and compared [43, 33, 13, 28, 47, 76, 72].

Most of the automatic fingerprint matching systems rely on matching

minutiae points across fingerprint images [57]. Minutiae points are the

points where there are local discontinuities in the ridge­valley structure

of the fingerprint, of which the most commonly used ones are ridge bi­

furcations and ridge endings. During enrollment, the locations of these

points, as well as their orientation and type, are normally extracted and

2

the resulting fingerprint template is stored in a form of database [60].

This information is assumed to represent the fingerprint uniquely, and

during verification or identification, the stored template is compared

against a newly acquired sample.

1.2 Problem statement

Due to the permanence of the fingerprint, the fingerprint template con­

taining information about central, distinguishing features of the finger­

print should be considered highly sensitive. This information may allow

an attacker to reconstruct a matching fingerprint [17, 26], and allow for

database cross­referencing. Storing fingerprint templates in a manner

that mitigates such illicit use is thus of great importance.

This thesis explores a novel approach to the issue of secure digital

storage of fingerprint data. The approach attempts to ensure that a

fingerprint template may be revoked and reissued in the case of a com­

promise, and that the stored fingerprint template will be effectively use­

less for fingerprint reconstruction and for database cross­referencing,

whilst still enabling matching.

1.3 Method

Applying a one­way function to the fingerprint data before storing it

in a database could make the details of the fingerprint unrecoverable

from the stored representation. Such functions are familiar in the field

of cryptography, where they are used as cryptographic hash functions

[55, 63]. These functions turn input data into a relatively small number

that may serve as a relatively unique identifier for the input data, and

are designed with the intent that there should be no practical way of

reproducing the input data from the output value of the function. This

is often used for password storage, to ensure that passwords cannot be

guessed even when given access to the password database.

This idea cannot, however, be directly transferred to fingerprint re­

cognition systems. The image of a fingerprint will look different every

time it is scanned due to changes in the reading conditions. The factors

that will affect the fingerprint image include residue on the scanner,

finger placement (which may introduce rotation and translation), skin

elasticity (causing non­linear deformation of the image), skin condition

(cuts and scrapes), and humidity (dilating or eroding the fingerprint

ridges). This causes different sets of features to be extracted by the

algorithms for different scans of the same finger, and processing the

extracted features with a regular cryptographic hash function will natur­

3

ally yield different results. Nonetheless, a vauable lesson can be learned

from the field of cryptography.

The proposed method starts by subjecting the fingerprint image to

a standard feature extraction process: the locations and orientations of

the ridge endings and bifurcations are found.

Despite the reading conditions, there are certain features of a finger­

print that can be located quite reliably across acquisitions, for instance

the cores and deltas of the fingerprint [38, 19, 40, 46]. Using a stable ref­

erence point and a principal direction, it is possible to define a coordin­

ate system for the fingerprint that will be relatively stable across acquis­

itions, somewhat offsetting the effects of finger rotation and translation.

During enrollment, a cryptographic hash value is calculated based on

the locations and orientations of the minutiae points relative to this co­

ordinate system. This value will be unique for the particular acquisition

of the fingerprint due to the differing reading conditions.

In addition, Reed­Solomon error correction codes are calculated, so

that the entire set of minutiae points may be recreated if only a given

number are known exactly.

The minutiae points that were detected are then transformed with a

Cartesian transformation: the coordinate system is divided into blocks

which are randomly shuffled, so that the original location of a single

minutiae point cannot be guessed by looking at the location of it in the

transformed space [59, 58]. This step is analogous to the applying a

cryptographic hash function, in the respect that it cannot be easily re­

versed.

The transformed minutiae points and the Reed­Solomon error cor­

rection codes can safely be stored, since they do not reveal the original

whereabouts of the minutiae points in the fingerprint, in much the same

way that a cryptographic hash of a password does not reveal the actual

password.

In the matching process, the same feature extraction is performed,

the same coordinate system is generated, and the same Cartesian trans­

formation is performed on the minutiae points. By looking at which

minutiae points from the two acquisitions are close in the transformed

space, it is possible to deduce which block the minutiae point from the

stored template originated from, as it is likely to be the same block from

which the minutiae point from the candidate image came.

The matching process thereby provides partial reversibility of the

Cartesian transformation performed on the enrolled fingerprint. Com­

bining the subset of reversed minutiae points with the Reed­Solomon

error correction codes generated during enrollment, the entire set of

minutiae points found during enrollment can be recreated. Having re­

trieved the entire set of minutiae points that were detected during en­

rollment, it is now trivial to regenerate the cryptographic hash value that

4

was created for the minutiae set during enrollment.

If the cryptographic hash value generated during the matching pro­

cess is the same as the one created during enrollment, the fingerprints

can be considered mates.

The method is implemented using well­known image enhancement

and minutiae detection techniques [30], as well as the famous Poincare

index method for detecting stable points [38]. The Cartesian transform­

ation performed on the features is one of many known methods for

creating cancellable templates [58].

The novel concept in this thesis, however, is that of using information

from matching in the transformed feature space to partially reverse the

Cartesian transformation, and combining the reversed information with

Reed­Solomon error correction codes in order to obtain the full original

feature set of the enrolled print. From the entire original feature set,

a key can be generated. For a given enrolled print, this key will be the

same each time a matching fingerprint is presented.

The outlined algorithm is subjected to the rigorous testing proced­

ures used in the Fingerprint Verification Competition (FVC) [44], using

the fingerprint image databases used in the competition in 2000. This

makes it easy to compare the accuracy of the outlined algorithm and

state­of­the­art fingerprint recognition algorithms. Although this par­

ticular testing procedure only measures recognition accuracy, and not

security per se, it will nevertheless be interesting to compare the results

obtained by this algorithms with other algorithms that participated in

the FVC in 2000.

Using the same test methodology and databases, the method presen­

ted above is compared to a reduced version of the method which only in­

volves feature extraction, alignment and matching ­ skipping the Cartesian

transformation and Reed­Solomon error correction coding phases. If

those stages are skipped, the entire algorithm is reduced to a fairly

standard fingerprint recognition algorithm, using the same foundation

of feature extraction and matching algorithms as the proposed algorithm.

Comparing the results of these will provide valuable insight into how

the transformation and error correction phases, which are the most in­

novative and particular features of this approach, affect the fingerprint

recognition accuracy.

1.4 Organisation of the Thesis

Chapter 2 sums up background and related work.

Chapter 3 presents the details of the proposed algorithm.

5

Chapter 4 discusses the proof­of­concept implementation of the method,

along with the chosen run­time parameters.

Chapter 5 presents the testing framework and the criteria the proposed

method will be evaluated against.

Chapter 6 presents the results from the testing and discusses the im­

plications of these.

Chapter 7 summarises the findings of this thesis, presents ideas for fur­

ther improvement, and outlines related work that may provide ad­

ditional insight into the proposed approach.

6

Chapter 2

Background and Related Work

2.1 Person Authentication

Being able to recognise and tell apart individuals is fundamental to mod­

ern society. Gaining access to your home, picking up the right child from

kindergarten and performing financial transactions with a credit card are

ordinary everyday occurrences that all require some sort of reliable veri­

fication of ones identity; in these cases either proven by exclusive pos­

session (house keys and credit card), exclusive knowledge (PIN number

of the credit card), biometric recognition (a childs intuitive recognition

of its parent) or a combination thereof.

The applications for recognition and identity verification can be coarsely

divided into three categories [15]:

Physical access control For instance controlling access to office build­

ings and controlled areas such as airports.

Logical access control For instance the right to manage a bank account,

or the right to use computer resources.

Ensuring uniqueness For instance ensuring that a person is only en­

rolled once into the social security system.

The purpose of each of these is to ensure that a given application or

service is used solely by legitimate users.

In general, there are considered to be three different ways to determ­

ine the identity of an individual [49]:

Exclusive possession The subject possesses a physical object that is

assumed to be exclusive to authorised users that can be used as

a token for identification or verification of the user’s permissions.

Examples of such an object include an access card, a key, or a pass­

port.

7

Exclusive knowledge The subject knows or has access to information

which is exclusive to that user. Upon request, the user can present

the information as evidence for a claimed identity. This could in­

clude passwords and passphrases, PIN numbers or ones mother’s

maiden name.

Biometrics This is an attribute that is considered intrinsic and insep­

arable from the subject. The subject can present the attribute for

identification purposes, or as evidence for a claimed identity. Such

an attribute may for example be DNA, a fingerprint, a birthmark or

simply the appearance of ones face.

Many applications combine several of these in order to deliver a

higher level of authentication assurance ­ for example an ATM card

with an associated PIN number combines both possession and exclusive

knowledge. When more than one of these methods is used, it is usually

termed multifactor authentication in order to reflect the use of multiple

authentication factors.

In short, each restricted application follows a strict protocol, using

one or more authentication factors in order to determine whether a sub­

ject should be granted access to the application or not. The authen­

tication protocol describes the interaction between the system and the

subject that is necessary for the system to grant the subject access to

the application.

2.2 Biometrics

Biometrics is the study of using intrinsic biological traits to uniquely

identify individuals. For humans, identifying individuals is an appar­

ently simple intuitive process that engages the entirety of the perceptory

system, and applies mental processes which are not fully understood.

However, creating systematic approaches that can be performed reliably

by automated systems has proven a venerable challenge. Within com­

puter science, automated biometrics is often considered to be within the

field of pattern recognition.

It is common to distinguish between the use of biometrics for iden­

tification and the use of biometrics for verification [15]. When using

biometrics to perform identification, the biometric measurement is used

to select an individual from a list of individuals. The identity of the

individual is thus determined solely by matching the presented biomet­

ric against a number of samples of known origin. However, when per­

forming verification, the subject presents both a biometric sample and

a claimed identity. The biometric sample is then compared against a

single sample known to belong to the claimed identity in order to verify

8

Static Biometrics

DNA

Fingerprint

Face

Iris

Retina

Hand geometry

Ear shape

Behavioural Biometrics

Signature

Voice

Gait

Table 2.1: List of Biometrics

that the presented biometric sample matches that of the claimed iden­

tity. The former process is naturally more demanding, but establishes

the identity of the individual regardless of the subject’s claimed identity,

whereas the latter process simply confirms or refutes a single identity

claim.

Many different biometric characteristics have been suggested for re­

cognition purposes, some of which are listed in table 2.1. The table

distinguishes between static biometrics, where the acquisition of the

sample is performed at one instant, and behavioural biometrics, where

the characteristics are measured over time. Some of the biometrics in

the table have been researched more thoroughly than others, but most

of them have not yet reached a level of maturity where wide application

is feasible [15].

Evaluation of a Biometric

Not every biometric would be suitable for every application. An import­

ant question that arises is how to evaluate a biometric, and how to select

the most appropriate biometric for a particular application. There are

four basic properties that must be taken into account, and are exhibited

to a different degree by each biometric [32]:

Universal It is desirable that the biological characteristic is exhibited by

the entire population, so the biometric system does not categoric­

ally exclude any significant group of users.

Unique The biological characteristic must exhibit enough unique fea­

tures so that each individual in the entire population may be dif­

ferentiated by it.

9

Permanent The characteristic should not change significantly through­

out the lifetime of the individuals ­ it should allow for recognition

regardless of how long ago the reference sample was obtained.

Collectable The acquisition of the biometric sample should not be too

cumbersome or intrusive, and should not unreasonably inconveni­

ence the subject.

These represent some of the most important properties that can be used

to evaluate the suitability of a biometric for a specific application. Al­

though most biometrics fulfill the criteria to a certain extent, there is no

biometric that perfectly fulfills all of these criteria ­ it is necessary to

compromise and select which considerations are most important for a

particular application.

2.3 Fingerprints

A Short History of Fingerprints

The skin on the inside of the hands contains structures whose purpose

appear to be to improve grip, increase sensitivity in the hands and allow

for easier perspiration [15]. More specifically, the tips of the fingers

contain skin structures consisting of ridges and valleys, each of which

displays a distinctively unique pattern [57].

There is evidence that the Chinese were aware of the individuality

of fingerprints already 5,000 years ago [60]. However, in more recent

times, the systematic use of the fingerprint for identification purposes

was pioneered by forensic science and law enforcement in the 19th cen­

tury. Elaborate and advanced manual classification schemes gradually

evolved, such as the Henry system [15], which was adopted by the Fed­

eral Bureau of Investigaion in the United States of America, and the

Vucetich system [27], for efficiently determining the identity of individu­

als, mainly criminals, by using fingerprints.

Fuelled by these developments, the use of fingerprints for identifica­

tion purposes gained traction. By the early 1960s, the use had increased

to such an extent that the labour associated with the manual systems

had become impractical, and automated systems were commissioned

[15]. The proliferation of advanced digital technology ushered yet fur­

ther developments in the area; cheaper sensors and more advanced re­

cognition algorithms has caused widespread use of fingerprints both for

identification and verification in applications outside law enforcement,

such as physical access control, computer login, and attendance tracking

[7, 1, 6].

10

Evaluation of Fingerprints as a Biometric

The universality of fingerprints is often taken for granted. All primates

with fingers are assumed to have fingerprints [15], although there have

been a small number of documented cases where persons have no ridge­

valley pattern on the tip of their fingers [25].

Although the individuality of fingerprints has been contested in legal

processes [3], a number of studies present credible estimations support­

ing their uniqueness [57]. The fingerprint pattern is part of an indi­

vidual’s phenotype, and thus determined by a complex interaction of

genetic and environmental factors. This means that identical twins can

be told apart by their fingerprint pattern, although they share the same

DNA [66].

A person’s fingerprint remains largely unchanged throughout adult

life [51]. Even though scratches and small scars may appear on the fin­

gerprint, the pattern usually remains in a recognisable condition, such

as shown in figure 2.1. Should the fingerprint disappear entirely, such

as in a burn, the original pattern will normally grow back [15, 60].

Figure 2.1: Fingerprint image with scratches

Fingerprints are easily collectable and can be gathered in a very non­

intrusive manner ­ a visible imprint may be collected using only some ink

and a piece of paper. Indeed, such a collection technique has persisted

for many years, and is to this day still used in a number of systems,

for instance by Brazilian immigration control. Many applications these

days are utilising inkless sensors [69, 11, 24, 39], which are becoming

increasingly affordble and reliable. There are a number of competing

technologies to select from: optical, CMOS capacitance, thermal and ul­

trasound. However, sensing introduces distortion to the fingerprint im­

age, as the skin deforms under pressure. Another downside of this easy

collectability, is that we inadvertently leave our fingerprints all over the

place.

All in all, the fingerprint scores fairly high on all four of the biometric

assessment criteria presented earlier.

11

2.4 Biometric System Design

Although a wide variety of biometrics have been proposed, each suitable

for different applications, any biometric system can be viewed as essen­

tially a pattern recognition system. As such, it is usually considered to

consist of four distinct loosely­coupled parts, each performing an essen­

tial and well­defined function [32, 15]:

Sensor The sensor acquires a sample of the presented biometric. For

instance, a tissue sample, a photography of the face, an image of

a fingerprint, an image of a signature, a thermogram of a face, an

image of an iris or an image of a retina.

Feature Extractor The feature extractor extracts the data from the raw

biometric signal from the sensor that will be necessary in order to

compare it to other acquired samples. The result of the feature

extraction phase is a biometric template, assumed to include all

the key information necessary to uniquely identify the individual.

Database When the relevant information has first been extracted, it must

be stored for future reference. The biometric template is thus

stored in some sort of database. Examples of such a database

are the archives of ten­print fingerprint cards used by the Henry

system, or passports, which normally contain a photo and the sig­

nature of the holder. Automated biometric recognition systems

may for example store a digital representation of a fingerprint on

a smart­card [50, 54, 77] or in a central database [33].

Matcher The matcher component compares two biometric templates,

and attempts to determine whether the templates represent the

same individual. In some cases, this process may be performed by

a human examiner, for instance by a fingerprint expert or a shop­

keeper comparing the signature just provided with a signature on a

credit card. Yet in other cases, computer­implemented algorithms

may perform the matching, such as in automatic fingerprint recog­

nition systems [60].

Each biometric recognition system consists of these four loosely con­

nected components. A general such system is illustrated in figure 2.2.

2.5 Automatic Fingerprint Recognition Systems

Automatic fingerprint recognition systems have been in large­scale oper­

ation since the 1960s [60], and has been a popular research topic since.

12

Figure 2.2: A biometric authentication system

Although such automatic systems were originally used in forensic sci­

ence and law enforcement, recent advances in technology has stimulated

a number civilian applications of the technology. Some countries have

discussed the use of digital representations of fingerprints in passports

[7], laptop computers are increasingly delivered with embedded finger­

print sensors for login [6], and immigration control in several countries,

such as the United States of America, require that aliens enroll their fin­

gerprint into a central database.

Being a particular kind of biometric recognition system, an automatic

fingerprint recognition system also consists of four distinct parts, as

discussed earlier; a sensor, a feature extractor, a database and a matcher.

Sensors

In the first part of the 20th century, fingerprint systems were usually

based on ten­print ink cards, and the acquisition process entailed dip­

ping each finger in ink and rolling the finger from one side of the nail to

the other onto the fingerprint card. Through the last few decades, how­

ever, reliable and affordable inkless sensors have surfaced, based on a

number of different technologies:

Optical This sensor type usually uses a CCD or CMOS camera to acquire

a digital image of the fingertip, which is rested on a prism [15, 11].

This technology has been in use for many decades ­ it was, for

13

example, used in medical studies as early as 1966 [9].

Thermal Thermal sensors measure the changes in temperature due to

the ridge­valley structure of the fingerprint as the finger is drawn

across a thin sheet of pyroelectric material [39].

Capacitance Capacitance sensors use the difference in charge between

the ridges and the valleys of the fingerprint as the finger is drawn

across a CMOS grid chip in order to acquire a fingerprint image

[69].

Ultrasound Ultrasound sensors scan the tip of the finger by the reflec­

tion of an ultrasonic beam, thereby creating an accurate depth­map

of the finger [24].

Figure 2.3: A capacitance swipe sensor and an optical sensor

Increasingly affordable sensors will facilitate the proliferation of fin­

gerprint technology. Lately, a large number of laptop computers have

been produced with integrated capacitance sensors intended for user

login [6], and border control in the USA enrolls aliens using optical

sensors.

The output from this stage of the process is usually a greyscale im­

age, from which the feature extraction module can extract the distin­

guishing features.

Feature Extraction

The feature extraction process is concerned with processing the image

from the sensor and extracting features which can be used to uniquely

identify the subject. A fingerprint contains many distinctive features,

and many different features have been exploited for automatic recogni­

tion purposes.

Local discontinuities in the fingerprint ridge structure, which have

been designated minutiae points, are used in a large number of algorithms

[43, 33, 13, 28, 47, 76, 72]. Although there are many different types of

minutiae, the most commonly used minutiae types are ridge endings,

where a single ridge line abruptly ends, and ridge bifurcations, where a

14

single ridge line divides into two lines. Some of these minutiae types are

illustrated in figure 2.4. The overwhelming majority of biometric sys­

tems extract these minutia points, and ISO has even created a standard

format for fingerprint templates in order to facilitate interoperability

between systems [56].

Figure 2.4: Examples of various minutiae types

Many algorithms also detect singularities in the fingerprint image,

such as the core and the delta [34, 18, 19], which are global features

of the fingerprint. The core is normally defined as the point with the

highest ridge curvature, and the delta is normally the area where there

is a triangulation or a dividing of the ridges. Some examples of these

singularities in different fingerprint types are shown in figure 2.5.

Figure 2.5: Location of core and delta in fingerprints

15

Although these are the most common features that are extracted

in the feature extraction process, they only represent a fraction of the

uniquely identifiable information contained in a fingerprint. There are

a number of other features that could be extracted for recognition pur­

poses, such as the location of sweat pores on the ridges [31], entire ridge

lines [47], or simply the entire image so that an image correlation oper­

ation may be performed during the matching phase [12, 64].

The feature extraction process usually combines general image pro­

cessing methods and more specialised fingerprint image processing meth­

ods in order to extract the necessary data. Minutiae detection algorithms

often enhance the image and binarise it, before thinning the ridges and

detecting the minutiae points [29], although there are some minutiae de­

tection algorithms that work directly on the greyscale fingerprint image

[45]. The precursors of a basic minutiae extraction process, composed

of enhancement, binarisation and thinning is illustrated in figure 2.6.

Detecting ridge endings and ridge bifurcations in the thinned represent­

ation is a simple matter of traversing the image and looking for locations

where the one pixel wide ridge either ends or forks.

Figure 2.6: Image enhancement overview

Database

When a fingerprint is first enrolled into the system, the fingerprint tem­

plate is usually associated with an individual and stored in some kind

of database as a reference template. Fingerprint templates from sub­

sequent acquisitions may be compared to the reference template, and

16

the identity of the subject can be determined by considering the similar­

ity of the templates.

Manual systems have traditionally used filing cabinets with ten­print

fingerprint cards [15, 60]. Modern systems, however, often store the

templates in a central database, such as a server on a network [33], al­

though various types of distributed databases have also been suggested.

For instance, smart­cards [50, 54, 77] and passports containing biomet­

ric data [7] represent some examples of distributed databases for finger­

print template storage.

The chosen database type also affects the requirements to the fin­

gerprint template. A smart­card or passport, for instance, may have a

very limited storage space, meaning a very compact representation of

the fingerprint must be chosen. Central databases may impose yet other

restrictions on the fingerprint template, for instance regarding the se­

curity and privacy of data retainment and transmission.

Matcher

The matching process compares two fingerprint templates and decides

whether or not they represent the same individual. Since it uses the

templates from the feature extraction process to determine this, the

matching process is closely connected to the feature extraction process

­ essentially, the matcher must operate on the data extracted during the

feature extraction phase, be it minutiae points [72], ridge lines [47] or

filterbank responses [34].

Matching of fingerprints is a fairly demanding process ­ the matcher

must take into account a number of effects during the acquisition that

may produce large differences in the samples and attempt to consolidate

them. These effects may include rotation and translation of the finger

with respect to the sensor, humidity and other environmental factors

that can cause dilution or erosion of the ridge lines, scars and bruises

on the finger and non­uniform distortion of the elastic finger skin as it

makes contact with the sensor. Some of these effects are illustrated in

figure 2.7. The output from the feature extraction process may therefore

be very different for each collected sample, even for the same finger, and

must be taken into account when performing the matching.

A very common algorithm used during the matching process is the

Hough transform [23]. A number of minutiae matching algorithms and

ridge line matchers are based on this transform.

The output of a matcher is usually a score indicating the similarity of

the samples, which is then compared to a threshold value to determine

whether the subject should be accepted or rejected.

17

Figure 2.7: Acqutitions emphasising various effects

2.6 Fingerprint Recognition System Security

Many automatic fingerprint recognition systems have been demonstrated

to be easily subvertible. One particularly popular television program has

foiled some of the allegedly most advanced fingerprint recognition sys­

tems commercially available with a simple photocopy of a finger [8], and

several other similar demostrations exist [48, 26].

The four general criteria for a biometric discussed earlier; universal­

ity, uniqueness, permanence and collectability, can be used to evaluate

the suitability of a biometric for a particular application, but do not guar­

antee the security of a system based on the biometric per se. A system

based on the chosen biometric has additional requirements, such as se­

curity of the entire system and privacy of the information used by the

system.

Thus the question arises of how to evaluate the security of a finger­

print recognition system.

A commonly accepted approach is to attempt to estimate the accur­

acy of the system by running the system on a large number of fingerprint

images, and check that it accepts and rejects the fingerprints correctly

[20]. A fingerprint image that should be accepted, but is wrongfully re­

jected by the system is called a False Reject. A fingerprint that is wrong­

18

fully accepted by the system when it should be rejected, is called a False

Accept. It is common for a system to report the rate at which these oc­

cur, giving rise to the accuracy figures termed False Reject Rate (FRR)

or False Non­Match Rate (FNMR), and False Accept Rate (FAR) or False

Match Rate (FMR).

In essence, these figures are only representative of the security when

considering zero­effort attacks; where the impostor makes no effort

to subvert the system except presenting his own biometric on the off

chance that he may be mistaken by the system as a legitimate user. Al­

though the FRR and FAR are useful and necessary figures, they are not

representative for the security of the system as such, and really only

reflect the accuracy of the recognition system.

To deal with other threats, it is necessary to focus on other measures

than increasing system accuracy.

A scenario commonly portrayed in mass media is where an impostor

has access to a latent fingerprint present on an object that a legitimate

user has touched ­ this fingerprint is lifted and presented to the system

[8]. Fingerprints are particularly vulnerable to this kind of attack, as lat­

ent fingerprints are difficult to avoid, and fairly easy to lift and employ.

A threat of similar nature, although more macabre, is that of somehow

separating the fingerprint from the legitimate owner, and subsequently

presenting it to the system.

Numerous measures have been suggested to prevent the success of

such attacks, mainly reading vital signs during acquisition, such as heat,

heartbeat and exudiation of perspiration [68], to ensure that the finger­

print is presented by the legitimate possessor. Other solutions suggest

that the system be augmented by other authentication factors, such as

possession or knowledge [70, 50].

Such attacks, however, are difficult to model, and, similarly, the res­

istance to such attacks is difficult to quantify, which is why the bio­

metrics community often only reports accuracy figures for fingerprint

systems.

With the proliferation of digital fingerprint systems, another variant

of the threat that an illegitimate user may present a legitimate finger­

print has recently surfaced. By gaining access to the database com­

ponent of a fingerprint recognition system, or to the communications

channel linking the database with the rest of the system, an impostor

may potentially have access to all the fingerprint templates contained

therein. For a long time, researchers assumed that the feature extraction

processes which generate the fingerprint templates were largely one­way

functions. It has recently been demonstrated, however, that it is possible

to recreate a fingerprint based on a standard fingerprint template [17].

The potential damage of an attacker gaining access to a database of

fingerprint templates is much larger than that of an attacker gaining ac­

19

cess to a latent fingerprint, since the digital template does not gradually

erode, such as a latent fingerprint, or require the physical presence of

the attacker. Furthermore, a single compromised database may give the

attacker access to a large number of fingerprint templates at once. This

is analogous to a threat faced in the more general computer security field

where an attacker gaining access to a cleartext password database is con­

sidered more serious than an attacker looking over someones shoulder

while a password is typed. The compromise of a fingerprint database,

however, is even slightly more serious than the compromise of a pass­

word database: passwords may easily be revoked and reissued, whereas

fingerprints are immutable and any compromise is permanent.

Thus, the database component of a fingerprint system must be thor­

oughly secured in order to ensure the security and privacy of the system.

A collection of approaches have been suggested to deal with this issue.

The first type of solution implements various means of securing the

information, physically or logically. A large number of suggested solu­

tions are based on tamper­resistant smart cards [50, 54, 77]. The finger­

print template can be stored on the card, and the matching process may

be performed by the card itself, such that no fingerprint information

must be exchanged with the rest of the system ­ only the decision of the

authentication process. The use of a physical token ­ the smart card ­ im­

plies that this effectively constitutes a two­factor authentication process,

where the card physically protects the sensitive data. There are also ex­

amples of systems that use traditional encryption methods to conceal

the fingerprint template [41].

The second type of solution combines a lesson from password man­

agement in the more general computer security field, where one­way

functions have already been employed for password storage for many

decades [55], with the concern that biometrics are irrevocable. It was

stipulated that by processing each password in a password list with a

one­way function before storing it, an intruder would be unable to obtain

the actual passwords even though he may have access to the password

list. Similarly, performing a one­way function on a fingerprint template

may transform the data so that the original fingerprint cannot be recre­

ated from the stored representation. Furthermore, if the one­way func­

tion is somehow parametrised, a fingerprint template may be changed

by modifying the parameters, and thus a compromised template can be

revoked and a different template issued by simply changing the para­

meters of the one­way function. As opposed to the first type of solution,

which involved physically or logically implementing means of protection

for the template, these kinds of approaches involve actually modifying

the template until it is unusable for any potential attackers, yet still us­

able for the system. This idea has spawned the field of cancellable bio­

metrics.

20

2.7 Cancellable Biometrics

Cancellable Biometrics is a relatively young field that has arisen as a

response to privacy and security concerns within biometrics [14, 61].

Essentially, this field deals with the issue that a biometric is tradition­

ally not revokable and any compromise is permanent. Similar to how

passwords often are treated [55], the biometric can be processed with

a potentially parametrised one­way function in order to create a rep­

resentation of the biometric which is changeable, since one can change

the parameters, and which cannot be used to reconstruct a copy of the

original biometric.

There are four basic requirements for such a cancellable template

[46]:

Irreversibility As pointed out earlier, it should be impossible, or at least

infeasible, to recover the original biometric from the cancellable

template.

Reusability Different cancellable templates can easily be generated, both

in order to use different templates for different applications, and

in the event of revocation and reissue.

Diversity Separately generated cancellable templates should not match

each other, or the original template.

Unaffected performance The cancellable template should be as unique

as the fingerprint itself, and should not deteriorate the entropy

of the fingerprints. If it does, the performance of the matching

process will suffer, returning more false matches simply because

distinguishing features have been removed from the original tem­

plate.

Furthermore, the cancellable template must be as tolerant as the

original template to intrauser variability, or the matching process

will reject a larger number of genuine matches because templates

that should match have been transformed such that they no longer

match.

For fingerprints in particular, a plethora of different methods have

been proposed, which can be loosely divided into four categories [58]:

Biometric Salting

In the wider computer security field, passwords are often "salted": the

password is combined with a pseudorandom string before being hashed

and stored in the database. The use of a pseudorandom string increases

21

the entropy of the stored value, and thus impedes dictionary attacks.

Similarly, biometric salting combines the biometric template with user­

specific pseudorandom information to increase the entropy of the result.

A particularly well­known example of this technique is BioHashing

[71]. BioHashing uses iterated inner­products between tokenised ran­

dom data and a rotation­ and offset­invariant representation of the fin­

gerprint generated using the wavelet Fourier­Mellin transform on the

fingerprint image. When subjected to this process, two imprints of the

same finger will generate highly correlated bitstrings, whereas two dif­

ferent fingerprints will generate very different bitstrings. A fingerprint

can be revoked by simply changing the random data, and the features of

the fingerprint are not evident from the bitstring stored during enroll­

ment, as the inner­products are one­way functions.

This approach, however, does not operate solely on the biometric ­

it also requires tokenised random data ­ and thus effectively constitutes

a multifactor authentication protocol. Comparing this method with tra­

ditional biometric recognition systems that operate exclusively on the

biometric is therefore not entirely trivial.

Biometric Key Generation

Solutions in this category attempt to generate a key directly from the

biometric signal. During verification, it is simply checked if the newly

generated key matches the stored key. However, computing a robust

binary representation from a noisy signal without additional information

is a venerable challenge.

One particularly interesting such solution, based on the iris biomet­

ric, uses a complex interactive process in order to obtain as pure an

acquisition as possible. A short 256­byte code is computed from the

sample. This code is close to other acquisitions of the same iris, when

measuring the Hamming distance. Using a large number of samples dur­

ing enrollment, a canonical biometric is created by a voting mechanism,

along with error correction codes that allow reconstruction of the ca­

nonical biometric from an imperfect sample, provided it matches closely

enough [21].

Many aspects of this solution are intriguing, particularly the use of

error correction codes, yet it is not entirely clear how to accomplish the

same feat using other biometrics than the iris, especially those which are

by nature more volatile and exhibit larger intrauser variation.

Solutions based on other biometrics, such as typing pattern, voice

and signature, have also been proposed [53, 52, 75].

22

Fuzzy Schemes

Another approach in early development, so­called fuzzy schemes, gen­

erates a public string and a private string at the time of enrollment.

During verification the public string is combined with the new biometric

measurement in a manner that will reproduce the private string if the

measurements match each other closely enough.

Fuzzy schemes have a robust general framework [22, 36, 35, 42, 73],

which is subsequently specialised for different biometrics. In such a

scheme, the private string need never be stored, as it can be generated by

combining the public string and a matching biometric. The public string

reveals no information about the features of the biometric, and often

contains error correction codes which provide adequate error tolerance

during the matching phase.

A particular fuzzy scheme devised for fingerprints encodes a secret

into the stored minutiae data that can only be retrieved when a matching

print is presented [74]. This type of scheme has many advantages, and

has been validated in early prototype.

Noninvertible Transforms

This class of techniques involves performing an irreversible transforma­

tion on the biometric signal or features prior to storage. The transform­

ation is often constructed such that traditional feature extraction and

matching algorithms can continue to work unaffected, so as to provide

backwards compatibility with existing recognition methodologies.

Since the transformation is noninvertible, information about the ori­

ginal features about the biometric remain secret even if the transformed

features are known.

A number of such functions have been suggested and investigated

[10, 67].

One of the earliest examples of such a transformation is the Cartesian

transformation [59], which simply splits the two­dimensional Cartesian

feature space into regular, rectangular blocks and shuffles them. The

minutiae points are thus effectively shuffled around based on which

block they are in. If several blocks in the input are mapped to the same

block in the output, there is no telling where a given minutiae point ori­

ginally came from, even if the transformation parameters are known.

Although others exist, this particular transformation is one of the most

rudimentary transformations that have been suggested, and is known to

disrupt the recognition accuracy slightly.

23

2.8 New Method for Generating Cancellable Finger­

print Templates

In this thesis, I explore a novel approach to generating cancellable fin­

gerprint templates which combines elements of these four categories

and error correction codes. In short, a key is generated at enroll time,

error­correction codes are generated, and a noninvertible transform is

performed on the fingerprint features. During the matching process,

pieces of information gleaned from matching the candidate template

with the master template in the transformed feature space provides par­

tial reversibility of the noninvertible transform ­ information which, in

the case of a match, recreates the original features when combined with

the error­correction codes. Having recreated the original features of the

master fingerprint again, the same key that was created at enroll­time

can be regenerated.

Effectively, the method described herein gives each fingerprint a unique

number at the time of enrollment, and recreates this number when sub­

sequently presented with a matching fingerprint. At each enrollment

this number will naturally be different due to differing reading condi­

tions, and, furthermore, no sensitive biometric information is stored

in plain text at enrollment, thus impeding fake fingerprint generation,

providing revocability, and prohibiting database cross­referencing.

24

Chapter 3

Method

The method presented in this thesis uses information gleaned from the

candidate image during matching to partially reverse an otherwise irre­

versible transformation that was performed on the minutiae points at

the time of enrollment. The information gathered through the partial re­

versal is used in conjunction with Reed­Solomon error­correction codes

to provide a full reversal of the transformation performed on the minu­

tiae points during enrollment, and thus a foundation for generating the

same key in the matching process that could be generated in the enroll­

ment process. A match can then easily be evaluated by simply checking

whether or not the same key was generated during matching as during

enrollment.

3.1 Overview

Upon enrollment, the fingerprint image is first enhanced, and the loca­

tions of ridge endings and bifurcations are detected. The core of the fin­

gerprint, together with an estimated principal direction, is used to align

the minutiae points to a reference coordinate system. Reed­Solomon er­

ror correction codes are generated for the minutiae points such that the

entire set can be reproduced if the exact information of only a certain

amount of the minutiae points is available. A key, or rather a cryp­

tographic hash value, is generated based on the entire set of minutiae

points. Subsequently, the space in which the minutiae points reside is

subjected to a Cartesian block transformation, which shuffles the minu­

tiae points around such that the original location of any minutiae cannot

be known. The template that is stored contains the list of transformed

minutiae points, the checksums from the Reed­Solomon coding, and the

information required to perform the same Cartesian transformation on

a candidate fingerprint during the matching process.

During the matching stage, the same image enhancement and minu­

25

tiae detection algorithms are used, and the resulting minutiae points

are transformed using the same Cartesian transformation that was per­

formed during enrollment. A matching algorithm matches the minutiae

points of the candidate fingerprint with those of the master fingerprint

in the transformed feature space. The matching process will reveal the

original location of the matched minutiae points in the master finger­

print, and thus allows the Cartesian block transformation to be reversed

for these minutiae. If the number of minutiae points for which the trans­

formation can be reversed by this procedure is sufficient, the recovered

minutiae points can be combined with the Reed­Solomon codes gener­

ated during enrollment in order to reproduce the entire original set of

minutiae points that were found in the master fingerprint. Having gen­

erated the same set of minutiae points as during enrollment, we can now

use these to generate the very same key, or hash value, as was done dur­

ing enrollment. If this newly generated key matches the one that was

produced during enrollment, the fingerprints can be considered mates,

as it indicates that enough minutiae points matched between the finger­

prints to entirely reverse the Cartesian block transformation in conjunc­

tion with the Reed­Solomon error correction codes.

The enrollment and the matching processes are illustrated in figures

3.1 and 3.2, respectively.

The image enhancement and minutiae detection is based on a well­

known and common approaches [29, 30]. The core detection is based

on the Poincare index method [38], and the Cartesian transformation

performed on the features has also been thoroughly investigated [58].

The concept pioneered in this thesis, however, is using information

from matching in the transformed feature space to partially reverse the

Cartesian transformation, and combining the reversed information with

Reed­Solomon error correction codes in order to obtain the full original

feature set of the enrolled print. From the entire original feature set,

a key can be generated. For a given enrolled print, this key will be the

same each time a matching fingerprint is presented.

3.2 Fingerprint Image Enhancement

The fingerprint images acquired by the sensors are often prone to noise,

scratches and various other artifacts and effects due to changing acquisi­

tion conditions. By using image processing methods specifically tailored

for fingerprint image enhancement, it is usually possible to improve the

quality of the image by filtering out some of the noise and compensat­

ing for certain acquisition effects. The end result of such a fingerprint

image enhancement technique is a binary image that emphasises the

ridge­valley structure of the fingerprint, and as accurately as possible

26

Figure 3.1: Overview of the enrollment process

reflects the actual ridge structure.

There has been much discussion on fingerprint image enhancement,

and a lot of effort has been devoted to the challenge of discovering en­

hancement algorithms that provide useful enhancements, even with lim­

ited computing resources [29, 65]. The image enhancement stage used

here is based on a fairly common approach [30], which in essence fil­

ters each pixel of the fingerprint image using a Gabor filter based on

estimates of the local ridge flow direction and frequency.

The image enhancement is performed in several stages. The prepro­

cessing stage prepares the image for further analysis, before the direc­

tion of the ridge flow and the frequency of the ridge lines normal to the

ridge flow direction are estimated for every pixel on the image. A mask is

then created that excludes the unrecoverable regions of the fingerprint

image.

The enhanced image is generated by applying a Gabor­filter, specific

to the local ridge direction and frequency, to each pixel in the image. The

enhanced image is subsequently binarised with a simple thresholding al­

gorithm and thinned by elementary morphological operations until each

ridge line is a single pixel wide. The resulting image, called a fingerprint

skeleton, appears highly stylised, and ridge endings and bifurcations can

easily be detected by traversing it looking for ridge pixels with only one

neighbouring ridge pixel (ridge ending) or more than two neighbouring

27

Figure 3.2: Overview of the matching process

Figure 3.3: Better and worse acquisitions of a fingerprint

28

ridge pixels (ridge bifurcation).

A rough step­by­step overview of the fingerprint enhancement al­

gorithm is shown in figure 3.4.

Figure 3.4: Image enhancement overview

Preprocessing

Prior to the image enhancement process, the fingerprint image is blurred

slightly using a 3 × 3 mean filter in order to reduce the effect of rough

edges, artifacts and noise. Given that Pi(x,y) represents the pixel value

at location (x,y) in the image, the value of the pixel at location (x,y)

in the blurred image, Pf (x,y), can be expressed as

Pf (x,y) =
1

9

1∑

m=−1

1∑

n=−1

Pi(x +m,y +n) (3.1)

The result of this blurring stage is hardly noticeable, as shown in

figure 3.5.

Local Ridge Orientation Estimation

The local ridge orientation is loosely defined as the direction of the ridge

flow pattern of a fingerprint at one particular point. In order to determ­

ine the parameters for the Gabor filter to process a given pixel with, it is

necessary to take into consideration the orientation of the ridge flow at

that particular pixel.

29

Figure 3.5: Before and after preprocessing

Estimating the local ridge orientation at each pixel is a computation­

ally demanding task, and many different algorithms have been devised

to estimate the local ridge orientation across the image. The algorithm

used in this paper is largely based on a fairly common approach [33], and

appears to generate quite pleasing results in a relatively modest amount

of time.

The input fingerprint image is first divided into blocks of size W ×W .

Then the gradients Gx and Gy are calculated for each pixel in the block

in a simple way:

Gx(i, j) = B(i, j)− B(i− 1, j) (3.2)

Gy(i, j) = B(i, j)− B(i, j − 1) (3.3)

where B(i, j) represents the value of the pixel at (i, j) in the block.

Using these gradients, the local orientation of each block is estim­

ated using the following operations, essentially based on elementary

geometry:

θ =
1

2
arctan




∑W
i=1

∑W
j=1 2Gx(i, j)Gy(i, j)

∑W
i=1

∑W
j=1Gx(i, j)

2 +Gy(i, j)2


 (3.4)

where θ is estimate of the local ridge orientation of the block.

Noise, artifacts, high curvature, singular points and minutiae points

in the image may cause this estimate to be inaccurate. Since local ridge

orientation ordinarily varies slowly in a local neighbourhood, except

close to singular points, a low pass filter can be used to smoothen the

estimate of the local ridge orientation. In order to perform the low­pass

filtering, the orientation image needs to be converted into a continuous

vector field:

φx(i, j) = cos(2× θ(i, j)) (3.5)

φy(i, j) = sin(2 × θ(i, j)) (3.6)

30

A low­pass filter can then be applied by simply convoluting φx and

φy with a regular low­pass kernel, H. Re­calculating the angle gives the

final ridge orientation image, O:

O(i, j) =
1

2
arctan

(
H ∗φy(i, j)

H ∗φx(i, j)

)
, (3.7)

with ∗ denoting the convolution operator.

Using this algorithm, a fairly smooth orientation field estimate, such

as that shown in figure 3.6, can be created in a reasonable amount of

time.

Figure 3.6: Local Ridge Orientation estimate

Local Ridge Frequency Estimation

The local ridge frequency describes the frequency of ridge lines along

the direction normal to the ridge line flow, in a small neighbourhood

around a given pixel. In order to create suitable Gabor filters for use

on the fingerprint image, as described earlier, the local ridge frequency

must be estimated for every pixel in the image.

In the local neighbourhood of a pixel, the pixel intensities along the

direction normal to the local ridge orientation can be expected to exhibit

a wave­like pattern, as illustrated in figure 3.7. The following procedure

attempts to estimate the frequency component of that wave. The pres­

ence of, for instance, singularities and minutiae points may disrupt this

pattern, so the frequency for certain blocks may have to be interpolated

using the frequencies of neighbouring blocks.

First, the image, P is divided into blocks of sizeW×W . For each block,

an oriented window of size w × l is defined with the x­direction normal

to the local ridge flow direction, and the y­direction along the local ridge

flow direction. The signature along the x­axis of this window is then

computed by summing up the intensity values of the pixels along the y­

axis. If no minutiae or singular points appear in the oriented window, the

31

Figure 3.7: Local ridge structure exhibiting sinusoidal shape

calculated x­signature of the block should form a sinusoidal­like wave,

which has the same frequency as that of the ridges and valleys in the

oriented window. Therefore the signature can be used to estimate the

local frequency of the ridges and valleys in the block. This process is

illustrated in figure 3.8.

Figure 3.8: Oriented window with signature

The peaks of the signature are those values which are larger than

both the left and right neighbours. The average number of pixels between

consecutive peaks in the signature can be viewed as an approximation

to the wavelength, λ, from which an estimate of the frequency may be

easily obtained; f = 1
λ .

However, if no consecutive peaks can be detected from the x­signature,

then the frequency cannot be estimated with this method. The blocks

may contain singular points, minutiae points, or other artifacts that res­

ult in difficulties for estimating the local ridge frequency. The frequen­

cies of the concerned pixels are then found by interpolation, using those

of the neighbouring estimates that were meaningful and well­defined.

32

Since inter­ridge distances can be expected to change slowly in a local

neighbourhood, a low­pass filter can finally be used to remove potential

outliers.

The result of the local frequency estimation is shown in figure 3.9,

where lighter tone indicates higher frequency and darker tone indicates

lower frequency.

Figure 3.9: Local frequency estimates of a fingerprint

Region Masking

Fingerprint images are subject to various acquisition effects that may

result in certain regions of the image being useless for recognition pur­

poses. Some of these effects may be amended during the image en­

hancement process, for instance where some humidity has caused slight

dilation of a ridge line, whilst other areas of the image may be entirely

unrecoverable, for instance when large portions of the finger have been

placed outside the sensor. The purpose of the masking process is to

distinguish between the regions of the image which are good enough for

using in the recognition process, and those which are not.

The image is masked using a very simple algorithm. The frequency

of the ridges and valleys in a fingerprint ordinarily lies within a certain

range. Therefore, if the estimated frequency is outside the expected

range, the region can be considered unrecoverable. This algorithm is

simple, fast, and appears quite reliable, although the actual perform­

ance may be debatable since it relies heavily on the local ridge frequency

estimate. The effect of the masking process on a fingerprint image is

illustrated in figure 3.10.

Bandpass and Directional Filtering

The image is then filtered using the direction and frequency fields estim­

ated earlier in conjunction with Gabor filters, in order to obtain a greatly

33

Figure 3.10: Mask of unrecoverable regions

enhanced fingerprint image. A Gabor filter combines both frequency and

directional filtering, so that only effects that exhibit a certain frequency

and direction will be preserved.

The Gabor filter used for a pixel (x,y) has the form

h(x,y ;φ,f) = exp

(
−

1

2
|
x′2 +y ′2

r2
|

)
cos(2πfx′) (3.8)

where φ is the local ridge orientation, f is the local ridge frequency, r is

the radius parameter for the filter, and

x′ = x cos(φ)+y sin(φ) (3.9)

y ′ = −x sin(φ)+y cos(φ). (3.10)

Some examples of such a filters with different orientations are shown

in figure 3.11. The neighbourhood of a given pixel is convolved with a

q × q representation of this filter, with the local value of φ and f , to

determine the resulting intensity of the pixel.

Figure 3.11: Gabor filters for three different directions

If a pixel is beneath the mask, the convolution is not performed for

that pixel, and if the filter response exceeds a given threshold, the value

can be clamped to a more reasonable value.

34

Binarisation

The resulting image is then binarised by simply comparing each pixel in

the filtered image with a preselected threshold value, shown in 3.12.

Figure 3.12: Before and after binarisation by thresholding with a value

of 128

Thinning

The binarised image is then thinned using a hit and miss transform with

the 3× 3 structuring elements shown in 3.13. The result of the thinning

process is illustrated in 3.14, where the ridge pixels are white and the

ridge is only a single pixel wide.

Figure 3.13: Structure elements for thinning by hit and miss transform

3.3 Minutiae Detection

The reliability of the minutiae detection phase relies heaviliy on the

quality of the image, and the performance of the image enhancement

algorithms.

35

Figure 3.14: Before and after thinning by a hit and miss transform

The binarised and thinned fingerprint image, the skeleton, is tra­

versed top­to­bottom and left­to­right to detect the minutiae points. At

each pixel a collection of very simple operations are performed in order

to determine whether that pixel represents a minutiae point. If the pixel

is not on a ridge, it apparently cannot represent a minutiae point. If it

is on a ridge, however, the number of pixels in the eight­neighbourhood

which also lie on the ridge are counted. If the number of such neigh­

bours is three or more, there is a bifurcation occurring at this pixel, and

if the number of such neighbours is one, the ridge ends at this pixel.

Otherwise, if the examined ridge pixel has two neighbours on the ridge,

it is not considered a minutiae point. Examples of minutiae points de­

tected by this procedure are shown in figure 3.15, with a birds­eye view

shown in figure 3.16.

Figure 3.15: Minutiae detection by counting neighbours

36

Figure 3.16: Fingerprint with the detected minutiae points marked

3.4 Core Detection

The core of the fingerprint is "the north most point of the innermost

ridge line" [46]. Some examples of cores are shown in figure 3.17. If

it can be detected reliably, the core can be used as a landmark for pre­

aligning the fingerprint images.

Figure 3.17: Location of core and delta in fingerprints

There have been many methods devised to detect the core [38, 19,

16], and one of the most common and elegant solutions involve using

the Poincare index computed over a closed curve in the direction field,

the local ridge orientation estimate, of the fingerprint [38].

The Poincare index of the pixel (i, j) is found by summing the differ­

ence between the local ridge orientation estimate for adjacent pixels in

the eight­neighbourhood of (i, j). If the ridge orientation estimates of

each pixel in the eight­neighbourhood of (i, j) are numbered from zero

to seven in a clockwise manner, starting from the bottom left pixel, as

shown in 3.18, the Poincare index can be computed as

χ(i, j) =

7∑

k=0

d(k+1)mod8 − dk, (3.11)

37

where dk represents the local ridge orientation estimate in neighbour k

of the pixel (i, j). Furthermore, since angles are periodic, the value of

the angle dk+1 is taken as the interpretation which is closest to dk.

Figure 3.18: Numbering of neighbours for Poincare index method

The Poincare index calculated over a closed curve in the direction

field can only give a few discrete values, {0, π,−π,±2π}, which mean

that (i, j) represents a non­singular region, a loop, a delta, and a whorl,

respectively. A case of some of these are illustrated in 3.19.

Figure 3.19: LRO in the eight­neighbourhood of (from left to right) a

whorl, loop and delta

In this method, the image is traversed in a left­to­right and top­to­

bottom manner, and the first detected singularity point is used as the

core of the fingerprint.

Arch­type fingerprints, such as the one shown in 3.20, do not have

a distinct core, and the Poincare index method may be unable to locate

a stable reference point for these prints. There are, however, methods

that can identify stable reference points also on this type of fingerprint

[16].

In addition to a single stable reference point, such as the core found

here by the Poincare index method, it is also necessary to extract a stable

direction in order to align two fingerprint images. This stable direction

is computed by simply averaging the local ridge orientation estimates

for a block of pixels around the core.

The cores and principal directions found by this method for some

fingerprints of different types is illustrated in figure 3.21.

38

Figure 3.20: Typical arch­type fingerprint

Figure 3.21: Cores and principal directions of fingerprints of types

whorl, loop and tented arch

39

3.5 Minutiae Alignment

Having found the position of a stable reference point and a stable direc­

tion, it is possible to align two fingerprint images with each other. More

interestingly, though, it is possible to align a fingerprint image to an

absolute position if the reference point is taken as the origin and the

principal direction is taken as the x­axis.

Rather than aligning the entire fingerprint image, however, it is bene­

ficial for this purpose to only align the set of minutiae points given after

the image enhancement and minutiae detection phase ­ a minutiae point

at (i, j) is aligned as if the core, (cx, cy), was the origin and principal

direction, α, was along the x­axis by

(
i′

j′

)
=

[
cosα − sinα

sinα cosα

](
i− cx
j − cy

)
(3.12)

After this operation, assuming that the core and principal direction

could be estimated accurately by the process described earlier, the minu­

tiae points that were detected in both images should be translated and

rotated to roughly the same coordinates, disregarding skin elasticity ef­

fects. This process is illustrated in figure 3.22.

Figure 3.22: Alignment of minutiae points

3.6 Hashing

Upon enrollment, a hash value is calculated for the set of detected and

aligned minutiae points, using the Message­Digest algorithm 5 [63] on

the position, the angle and the type of each minutiae point. The hash

value is intended to represent the set of minutiae points uniquely, and

40

should be prohibitively difficult to reproduce if the exact specifications

of the minutiae points are unknown.

Taking into account all the effects that affect the acquisition and

minutiae extraction processes ­ rotation, translation, nonlinear deform­

ation, noise, scratches, humidity, etc. ­ the probability of the hash value

for the template being the same for two different acquisitions, even of

the same fingerprint, is negligible. The hash value for the entire template

is stored in the template file during enrollment, for reference during the

matching process.

3.7 Reed­Solomon Error Correction

Reed­Solomon error correction is an error correction code that works by

oversampling a polynomial constructed from the data, in this case the

set of minutiae points. Since the polynomial is oversampled, and hence

overdetermined, it is possible to recreate the entire data set even if some

of the values are missing or corrupt. If there is so much data missing

that the polynomial is undetermined, the original data set cannot be

recovered [62].

The set of aligned minutiae points are processed using Reed­Solomon

coding, so that the entire set of minutiae points may be recovered if only

a given number of minutiae points are known exactly. The reason for

this is that the matching process may only recover a subset of the given

minutiae points that were enrolled, and in order to generate the hash

value for the entire set of minutiae points, as was done during enroll­

ment, the whole set of minutiae points are required. Once the entire

original set of minutiae points from the master fingerprint is recovered,

it is possible to re­calculate the hash value, which, in the case of a match,

should be the same as that stored in the template file during enrollment.

By engineering the Reed­Solomon coding process on the set of aligned

minutiae points, it is possible to guarantee that the entire set of minu­

tiae points can be recovered if we know only m of them ­ in addition to

the checksums generated during the Reed­Solomon coding process.

A Reed­Solomon code is determined by two parameters, n and k,

where n is the total number of symbols in a block, and k is the number

of data points. The entire set of minutiae points are encoded as one

such a block, with each minutiae point being considered one symbol or

data point.

Each minutiae point is represented by three floating point numbers,

(x,y) coordinate and an orientation θ, and an integer, t denoting the

minutiae point type. For simplicity, all these members are assumed to

be of 32 bit length, and a single minutiae point is thus represented by

4×32bits = 128bits. Hence the length of a symbol used in this instance

41

of Reed­Solomon error correction codes should be 128 bits.

The number of errors that can be corrected in a block is given by
n−k

2 . The number of data points is the total number of minutiae points

in the set. This determines the parameter k for the Reed­Solomon coding

process. Since the entire data set should be reconstructable from m

minutiae points, the number of erroneous data points the code must be

able to correct is k−m. This enables us to calculate the total number of

symbols required in the block. Setting n = 2(k−m)+ k, where k is the

number of minutiae points in the entire original set andm is the number

of minutiae points that must be known in order to recreate the set by

Reed­Solomon decoding, allows the error correction code to recreate the

entire set of minutiae points if only m are known.

The block contains n = 2(k −m) + k = 3k − 2m symbols in total,

where k is the number of minutiae points in the set, andm is the number

of minutiae points required to regenerate the entire set. If each minutiae

point is represented by 128 bits, the total length of the block becomes

(3k− 2m)× 128bits.

The error correction codes for the set of minutiae points is generated

in an encoding phase during enrollment, and are then stored in the tem­

plate file so they may be used during the matching process. The original

set of minutiae points, however, are subjected to a Cartesian transform­

ation before being stored, so only the part of the block containing the

error correction codes are stored from this stage.

3.8 Cartesian Transformation of the Feature Set

After Reed­Solomon error correction codes have been created for the

entire aligned minutiae set, the set of minutiae points will undergo a

particular transformation before being stored. The intent of this trans­

formation is primarily to conceal the original locations of the minutiae

points. However, the transformation is required to still allow reliable

fingerprint comparison to take place in the transformed space, and the

matching process must provide enough information to reverse the trans­

formation for the matched minutiae.

Characteristics of the Transformation

The anatomy of this transformation is crucial to the security of the

method. One way to conceal the original locations of the minutiae points,

is to ensure that the transformation is non­injective. Furthermore, given

both the transformation and a transformed minutiae point, the original

location of the minutiae point should still not be obvious. The larger

42

number of possible original locations for a minutiae point under a spe­

cific transformation, the more difficult it will be for an attacker to actu­

ally guess the original location of the minutiae point, and hence the tem­

plate will be more secure. So not only is it a requirement that the trans­

formation is non­injective, it is required that each transformed minutiae

point may have originated in a large number of possible original minu­

tiae locations.

The next requirement for this transformation is that it must allow fin­

gerprint comparison in the transformed feature space. This entails that

fingerprints that are close matches in the untransformed space, should

also be close matches in the transformed space. Features from the two

prints which are close together before the transformation, should also

be close after the transformation. By performing the comparison in the

transformed feature space, the matching feature should enable the pro­

gram to select the original minutiae point from the list of possible minu­

tiae points whence it came.

A simple example will highlight the desired characteristics of this

transformation.

Imagine that a fingerprint feature, λ1, is transformed by such a trans­

formation, f : f(λ1) = Λ.

The first requirement for the transformation is that there are other

features which also map to the same output location: f(λi) = Λ, i =
2, ..., n, so that someone who knows Λ and f will still not know which of

the λi, i = 1, ..., n represents the original feature.

Now imagine that feature matching is represented by an equivalence

relation ∼, and that the corresponding feature from a matching print,

γ1 ∼ λ1, is also transformed by the same transformation: f(γ1) = Γ .
The second requirement concerns matching in the transformed space:

the transformation f behaves such that if λ ∼ γ, then f(λ) ∼ f(γ).

Knowing that Λ ∼ Γ , f(γ1) = Γ and λ1 ∼ γ1 makes it possible to

select λ1 as the original feature from the set λi, i = 1, ..., n.

Thus a transformation with these characteristics is hardly reversible,

unless presented with a matching fingerprint.

Cartesian Block Transformation

A Cartesian block transformation of the space of the fingerprint fea­

ture set is a relatively simple and straight­forward operation [58]: the

Cartesian coordinate system in which the aligned minutiae points reside

is divided into blocks of regular size, whose locations are then shuffled

­ thus shuffling all the minutiae points around. If several blocks in the

input can be mapped to a single block in the output, each output block

is the result of a many­to­one transformation, and the original locations

43

of the minutiae points cannot be known, in principle, even if the trans­

formation itself is known. A simple illustration of this is shown in figure

3.23.

Figure 3.23: A Cartesian transformation shuffles the blocks

This transformation does not entirely fulfill the requirements dis­

cussed earlier. It is indeed non­injective, but it does not ensure that all

transformed minutiae points have several possible origins. The trans­

formation also only to a certain degree ensures that points close to one

another will be transformed in a similar manner. Points that are close

to the edge of a block may fall into different blocks for different acquis­

itions, and thus points that may have matched in the untransformed

space may conceivably be transformed so that they do not.

Despite these shortcomings, however, this transformation is a well­

known method for generating cancellable fingerprint templates, and dis­

plays a certain degree of the desired qualities. Although it is far from

perfect for this application, it is conceptually simple and it may still

serve well for illustrative purposes. It may be swapped for a more ap­

propriate transformation in the future, adhering more strongly to the

discussed principles, but will suffice at the present time.

During enrollment, the transformed minutiae points are stored in

the template, along with the parameters used for the transformation.

This should keep the original positions of the minutiae points hidden,

whilst enabling minutiae sets from subsequent acquisitions to undergo

the same transformation during the matching process.

3.9 The Fingerprint Template

At the end of fingerprint enrollment, the template includes the following

data:

• Transformed minutiae points: (x,y, θ) and type.

• Cartesian block transformation parameters

44

• Hash value of the pre­transform aligned minutiae set

• Reed­Solomon error correction codes

This template does not reveal the actual whereabouts of the minu­

tiae points in the fingerprint, and each enrollment will, due to minute

changes in the set of minutiae points, generate an entirely different tem­

plate. Revoking and reissuing a template is thus simply a matter of ac­

quiring another fingerprint image and generating a new template using

the same process, though alternatively also changing the transformation

parameters.

3.10 Matching

The matching process loads the template stored during enrollment and

a candidate fingerprint image, and attempts to determine whether or not

they represent the same fingerprint.

The candidate fingerprint image is first enhanced, and the minutiae

points are extracted and aligned to the reference coordinate system, as

explained earlier. The Cartesian transformation that was performed on

the minutiae points of the enrolled fingerprint, is repeated on the minu­

tiae points of the candidate print. Having stored the transformation

parameters in the template file, this process is trivial.

A standard matching algorithm, essentially checking whether minu­

tiae points from each of the sets are closer to each other than a given

threshold, is performed in the transformed feature space. If two minu­

tiae points match, the source block of the minutiae point in the stored

template, i.e. the block it was in before the Cartesian block transform­

ation, is assumed to be the same as that of the minutiae point from

the candidate fingerprint. This means that the Cartesian transform that

was performed on the minutiae points of the enrolled fingerprint can be

reversed for the matching minutiae points.

When at least m such minutiae points have been matched correctly

and the Cartesian block transformation on these has been reversed, they

can be combined with the Reed­Solomon error correction codes, so that

the entire set of minutiae points from the enrolled fingerprint prior to

transformation can be obtained. The entire pre­transformed set of minu­

tiae points from the enrolled image can then be used to calculate a hash

value, as during enrollment, which should be exactly the same as the one

stored in the template.

If the hash value generated by this process matches the hash value

that was stored in the template during enrollment, the fingerprints are

considered mates. An overview of the matching process is given in figure

3.24.

45

Figure 3.24: Overview of the matching process

46

Chapter 4

Implementation

4.1 Overview

A sample implementation of the method was created in order to verify

and explore the concepts presented in this thesis. The implementation

is intended only as a proof­of­concept.

Two separate programs were created: one for enrolling fingerprint

images and one for matching the enrolled fingerprint images with im­

ages of candidate fingerprints.

The method was implemented using a combination of the program­

ming languages C and Python. The C programming language is known

to perform well for computationally demanding tasks, and the Python

programming language is largely known for its convenience and ease of

use. C was used for computationally demanding tasks, such as image

enhancement, and Python was used for control and flexibility where the

inferior computational speed of Python was not found prohibiting.

After the feature extraction stage, the aligned minutiae set is stored

in a file for future reference, since this is a very time­consuming process.

This process really only needs to be performed once for every image, and

since the testing process will encounter an image several times during

testing, this simple technique was used to reduce the time spent on test­

ing.

Although the description of the implementation given here is fairly

complete, it only covers the most crucial parts, and some details have

knowingly been omitted in the name of brevity.

4.2 Enrollment

The enrollment program accepts a fingerprint image as input and out­

puts a fingerprint template of the type described in this thesis ­ contain­

ing minutiae points that have been transformed with a Cartesian block

47

transformation, the transformation parameteres used, a hash value cal­

culated from the untransformed minutiae set and Reed­Solomon error

correction codes.

The different stages of the enrollment program are, in order:

• Image enhancement and feature extraction

• Core detection and principal direction estimation

• Minutiae alignment

• Minutiae set hashing

• Reed­Solomon error correction coding

• Cartesian block transformation of minutiae points

Image Enhancement and Feature Detection

The implementation used the Fingerprint Verification System (FVS) soft­

ware libraries for performing image enhancement and minutiae detec­

tion [2]. This library implements the image enhancement methods presen­

ted in this thesis, which are largely based on the approaches in [29] and

[30]. It also provides necessary data structures for manipulating images

and fingerprint data.

The FVS libraries are written in C, and using them for the enhance­

ment and minutiae detection algorithms presented in this paper, assum­

ing the variables used are already defined, requires only a few essential

lines of code:

/* Preprocessing ­ apply blur filter */

ImageSoftenMean(image, 3);

/* Estimate local ridge orientation */

FingerprintGetDirection(image, direction, 5, 8);

/* Estimate local ridge frequency */

FingerprintGetFrequency(image, direction, frequency);

/* Create mask of unrecoverable regions */

FingerprintGetMask(image, direction, frequency, mask);

/* Gabor filter each pixel */

ImageEnhanceGabor(image, direction, frequency, mask, 4.0);

/* Binarise by thresholding */

ImageBinarize(image, (FvsByte_t)0x80);

/* Perform thinning */

ImageThinHitMiss(image);

/* Find minutiae points */

MinutiaSetExtract(minutia, image, direction, mask);

This code extracts all the minutiae points detected in the fingerprint

image into a specialised data structure for minutiae points, and may be

used further in the program.

48

Core Detection and Principal Direction Estimation

Using the local ridge orientation estimtate created in the image enhance­
ment phase, detecting the core with the Poincare index method is a
simple matter of traversing the direction field looking for locations where
the sum of the differences of the direction estimates in the eight­neighbourhood
is close to π :

for(i = 1; i < height; i++) {

for(j = 1; j < width; j++) {

d0 = GetFFVal(direction, i+1, j­1,0);

d1 = GetFFVal(direction, i, j­1, d0);

d2 = GetFFVal(direction, i­1, j­1, d1);

d3 = GetFFVal(direction, i­1, j, d2);

d4 = GetFFVal(direction, i­1, j+1, d3);

d5 = GetFFVal(direction, i, j+1, d4);

d6 = GetFFVal(direction, i+1, j+1, d5);

d7 = GetFFVal(direction, i+1, j, d6);

d8 = GetFFVal(direction, i+1, j­1, d7);

pind =

(d1­d0)+(d2­d1)+(d3­d2)+(d4­d5)+(d6­d5)+(d7­d6)+(d8­d1);

if (abs(PI ­ pind) < eps) {

corey = i; corex = j;

}

}

}

where the GetFFVal(dirfield, i, j, dir) function returns the

angle at point (i,j) of the direction field dirfield, taken as the inter­

pretation which is closest to the angle dir.
The principal direction is then estimated by averaging the angles in

a small neighbourhood around the located core:

float dir = 0.0;

for(m = corex ­ 2; m < corex ­ 3; m++)

for(n = corey ­ 3; n < corey ­ 1; n++)

dir += FloatFieldGetValue(direction, m, n);

dir /= 20.0;

Minutiae Alignment

Alignment of the minutiae points is performed by iterating through each
minutiae point that was found during feature extraction and performing
the rotation and translation according to the detected core, as follows:

for(i = 0; i < numminutiaes; i++) {

x = minutia[i].x ­ corex;

y = minutia[i].y ­ corex;

minutia[i].x = x*cos(dir) ­ y*sin(dir)

49

minutia[i].y = x*sin(dir) + y*cos(dir)

}

After this operation, the minutiae points have been aligned with the

core as origin and with the estimated principal direction along the x­axis.

The list of minutiae points is then written to a temporary file, ready to be

used by the Python part of the enrollment program, which will process

the data further.

Minutiae Set Hashing

The file with the aligned minutiae set is then read into the Python pro­

gram, where it is trivial to calculate an MD5 hash value for the string

from the file using the built­in md5 module:

import md5

minutiae_set_hash = md5.new(filecontents).hexdigest()

Using the hexadecimal representation, given by the hexdigest func­

tion, makes the calculated MD5 hash value a little easier on the eyes

during inspection.

Reed­Solomon Error Correction Coding

The Reed­Solomon Python Extension Module is used for the Reed­Solomon

coding [4], and is based on Phil Karn’s DSP and FEC Library [37].
If minutiaelist is a list containing one entry for each of the 128­bit

representations of the minutiae points, using the extension module to
create the Reed­Solomon error correction codes is fairly trivial:

import reedsolomon as rs

Setting the RS coding parameters

k = len(minutiaelist)

n = 3*k ­ 2*m

c = rs.Codec(n, k)

encoded = c.encodechunks(minutiaelist)

checksums = encoded[k:]

The list checksums will now contain only the Reed­Solomon check­

sums, which subsequently will be stored in the template file. The value

for m, the number of minutiae points required to regenerate the entire

list at the time of matching, was chosen to be eight, as eight matching

minutiae points represents a reasonable match.

50

Cartesian Block Transformation of Minutiae Points

The implementation of the Cartesian transformation first finds a bound­

ing box for the set of minutiae points. The bounding box is then divided

into a 10× 10 regular grid.

In this implementation, the Cartesian block transformation was sim­

plified to a one­to­one transformation rather than a many­to­one trans­

formation. This was done for simplicity, as this allows the implement­

ation to create a list of block numbers and simply shuffle that list. Al­

though this allows a potential attacker to easily reverse the transforma­

tion, and is thus a transgression of one the core principles in the presen­

ted method, this is simply a proof­of­concept implementation, and this

transgression will be permitted. The implementation will still suffice to

illuminate the key principles of the method, even with this deficiency.
Next, the position of each minutiae point is translated to its new

block. Subsequently, the list of transformed minutiae points will be
ready for saving to the template file, along with the transformation para­
meteres ­ namely blocks and the bounding box, which describes the
mapping in its entirety.

Find extremities of bounding box

xmax = max(minutiaexpositions)

ymax = max(minutiaeypositions)

xmin = min(minutiaexpositions)

ymin = min(minutiaeypositions)

Find the step lengths for the grid

dx = (xmax­xmin)/10

dy = (ymax­ymin)/10

Create the transformation by shuffling numbered blocks

blocks = range(0,10*10)

random.shuffle(blocks)

for i in range(minutiaexpositions):

Find which block this minutiae point is in

x = minutiaexpositions[i]

y = minutiaeypositions[i]

blocknum = int((x­xmin)/dx)+10*int((y­ymin)/dy)

Find which block to transport it to, and do it

newblock = blocks[blocknum]

minutiaexpositions[i] = x+dx*(newblock%10­int((x­xmin)/dx))

minutiaeypositions[i] = y+dy*(newblock/10­int((y­ymin)/dy))

At the end of this stage, the transformed minutiae points and the

transformation parameters are ready to be stored in the template file.

The transformation parameters that are stored are the extremities of

the bounding box, and the list of block locations.

51

Template File

After these stages have been performed, the fingerprint template is stored

in a file. The template includes the following data:

• Transformed minutiae points: (x,y, θ) and type.

• Cartesian block transformation parameters, specifically the shuffled

list of blocks and the corners of the bounding box.

• Hash value of the pre­transform aligned minutiae set.

• Reed­Solomon error correction codes.

4.3 Matching

The matching program accepts a fingerprint template, of the format out­

put by the enrollment program, and a fingerprint image as input. The

output from the program is either a zero, indicating that the template

and image do not represent the same fingerprint, or a one, indicating

that the template and image do represent the same fingerprint.

The different stages of the matching program are, in order:

• Image enhancement and feature extraction

• Core detection and principal direction estimation

• Minutiae alignment

• Cartesian block transformation of minutiae points

• Minutiae matching

• Cartesian block transformation reversal

• Reed­Solomon decoding

• Minutiae set hashing

The image enhancement, feature extraction, core detection, principal

direction estimation, minutiae alignement and Cartesian blocks trans­

formation of the minutiae points are performed exactly as during en­

rollment, except that the array blocks and the bounding box used for

Cartesian block transformation is read from the template file instead of

randomly generated, as during enrollment.

52

Minutiae Matching

When the minutiae points of the candidate fingerprint have been ex­

tracted, aligned and transformed, they are matched against the set of

minutiae points stored in the template file. As the minutiae sets are

both pre­aligned using a common reference point and direction, then

subsequently transformed with the same transformation, the minutiae

points which match each other in the sets should presumably be spa­

tially close to each other.

In this implementation, two minutiae points are considered a match

if they are closer than 15 pixels. This constraint appears to be quite

relaxed ­ it will cause many matches, a portion of which will be true

and a portion of which will be false. However, as long as the number of

correct matches is great enough to perform the Reed­Solomon decoding,

it makes no difference how many false matches there are. Therefore

even a potentially high ratio of falsely matched minutiae points causes

little concern for this method and can be tolerated. A similarly relaxed

constraint applies to the angles of the minutiae points.
The matching is performed by simply comparing the position and

angle each minutiae point from the template to the positions and angles
of the minutiae points from the candidate image:

matches = []

for p in minutiaelist1:

for q in minutiaelist2:

if abs(p.x ­ q.x) < 15:

if abs(p.y ­ q.y) < 15:

if abs(p.angle ­ q.angle) < 0.3:

p.destinationblock =

q.sourceblock

matches.append(p)

break

After this procedure, the list matches will contain a list of the minu­

tiae points from the template that matched minutiae points from the

candidate image. In addition, the block whence the minutiae point in

the candidate image came is set as a destination block for the matched

minutiae point, so that the Cartesian block transformation may easily be

reversed for it. This assumes that the variable q.sourceblock was set

for the minutiae points in the candidate image when the transformation

was performed.

Cartesian Transformation Reversal

Having a list of transformed minutiae points with their original block
attached to each one, as created in the last step, reversing the Cartesian

53

transformation is relatively simple. For each matching minutiae point,
m, the following procedure reverses the Cartesian block transform:

m.x = xmin + dx*(m.destinationblock%10)

m.y = ymin + dy*(m.destinationblock/10)

xmin, ymin, dx and dy are all easily available, as the extremities of

the bounding box was stored during enrollment.

After performing this procedure on each matching minutiae point

from the fingerprint template, the matching minutiae points should all

have recovered their original location from before the transformation

was performed during enrollment.

Reed­Solomon Decoding

Having regained the data of some of the original minutiae points from

the enrolled template, it is now possible to recreate the entire pre­transform

enrolled minutiae set using the Reed­Solomon error correction codes,

provided enough minutiae points were reversed correctly.
Using the same Python extension module for the decoding as was

used for the encoding, the decoding is very simple:

k = len(templateminutiaelist)

n = 3*k ­ 2*m

c = rs.Codec(n,k)

originalminutiaelist = c.decodechunks(matchedlist + checksums)[0]

This piece of code assumes that templateminutiaelist is the list

of minutiae points read from the template file, that matchedlist con­

tains the set of minutiae points that matched and whose transformation

was reversed, and that checksums is the list of Reed­Solomon error cor­

rection codes that were generated during enrollment and stored in the

template file. The variable m contains the same number as during the

error correction coding at enrollment, namely eight.

At the end of this phase, the list originalminutiaelist contains

the entire set of aligned minutiae points that were located in the enrolled

fingerprint.

Minutiae set hashing

Having recreated the entire set of aligned minutiae points, it is now pos­

sible to calculate the hash value for it in exactly the same manner as

during enrollment.

If the hash value that was saved in the template file during enroll­

ment is the same as the hash value generated by this process during

matching, the fingerprints can be considered mates. The hash value thus

created is therefore a unique number for this fingerprint template, and

54

the same number can be created during matching as was created during

enrollment.

4.4 Run­time Parameters

Since a lot of the complexity of the implementation is hidden due to the

use of pre­built software libraries, certain settings and parameters may

not be entirely obvious from the discussion earlier, and deserve a small

remark.

The region masking process removes areas where the local ridge fre­

quency is lower than 1
25 or higher than 1

3 , based on empirical estimates

for 500dpi fingerprint images.

Binarisation of the enhanced image is performed by a simple threshold­

ing process, and the value used as a threshold in this process was 128.

Eight minutiae points are used as the limit for the Reed­Solomon pro­

cess, since eight correctly matching minutiae points can be considered a

reasonable threshold for a match.

Although the description of the implementation given here is fairly

complete, some details have knowingly been omitted in the name of

brevity.

55

56

Chapter 5

Testing Procedures

5.1 System Accuracy Testing

The accuracy of the devised recognition system will be estimated by

running the implemented program on the fingerprint databases used

in the Fingerprint Verification Competition (FVC) 2000 [44]. The FVC

is a bi­annual event where contestants ­ industrial, academic and inde­

pendent ­ submit fingerprint recognition systems, whose accuracies are

thoroughly tested, and the systems with the best recognition accuracies

are awarded.

The FVC constructs four databases for each competition. Each data­

base consists of 100 fingers, with eight impressions of each finger, res­

ulting in a total of 800 fingerprint images per database. Three of the

databases are collected using different types of sensors, and one of the

databases is synthetically generated [5].

The figures that will be reported from this testing process follow the

same testing protocol as in the FVC, such that a meaningful foundation

for comparison of system performance with the participants of the com­

petitions will be immediately available.

Performance evaluation of the fingerprint systems is performed by

first matching each fingerprint image against the remaining images of

the same finger, avoiding symmetric matches ­ if print a has already

been matched against print b, then b is not matched against a ­ in order

to avoid correlation. The rate at which the matching process rejects

these fingerprints, which should match, provides an estimate of the False

Reject Rate (FRR), or the False Non­Match Rate (FNMR).

For a database containing 100 fingers with 8 impressions of each

finger, the number of false reject tests performed using this testing pro­

cedure is
8×7

2 × 100 = 2800. Having four such databases altogether, the

number of false reject tests reaches a total of 4× 2800 = 11200, which

is a reasonable amount of tests from which to estimate the FRR.

57

Secondly, the first fingerprint image of each finger is matched against

the first fingerprint image of every other finger in the database, still

avoiding symmetric matches. The rate at which these fingerprints, which

should not match, are accepted by the recognition system provides an

estimate of the False Accept Rate (FAR), or the False Match Rate (FMR).

For a database containing 100 fingerprints with 8 impressions of

each finger, the number of false accept tests performed using this test­

ing procedure is 100×99
2 = 4950. With four such databases, the total

number of false accept tests reaches 4 × 4950 = 19800, which provides

a reasonable amount of tests from which to estimate the FAR.

5.2 Evaluation Criteria

Does it work at all?

The first point of consideration is whether or not the algorithm presen­

ted here is at all able to distinguish between matching and non­matching

fingerprints.

In order to establish the validity of the method, the Genuine Accept

Rate (GAR) is compared to the False Accept Rate. A Genuine Accept

is when the algorithm correctly decides that two fingerprint imprints

come from the same finger. The rate at which this occurs is termed the

Genuine Accept Rate, and is easily calculated using the False Reject Rate:

GAR = 1− FRR.

If the algorithm indeed does work, the GAR should turn out to be

higher than the FAR. If the FAR and GAR are equal, it indicates that the

system would be equally likely to accept an impostor as a genuine user.

If the GAR is higher than the FAR, the system is more likely to accept a

genuine user than an impostor, and the system is thus validated.

Performing the two­sample t­test with the null hypothesis stating

that the GAR and FAR are equal will give an indication of whether the

differences found in the GAR and FAR are statistically significant. If

this null hypothesis can be rejected, the GAR and FAR are likely to be

unequal, thus in principle validating the algorithm.

What causes the system errors?

The second point of consideration is what portion of the error rate can

be attributed to which part of the system. Specifically, it is of great

interest how the novelties of this method, namely the Cartesian block

transformation, the inversion of it, and the Reed­Solomon coding, affect

the performance of the more traditional algorithm that is used as a basis

­ the feature extraction and matching algorithm.

58

Therefore, the method presented here is not only compared to other

recognition algorithms that have participated in the FVC, but is also com­

pared to a reduced version of itself with all the novelties stripped out.

This simplified version uses the same image enhancement, feature ex­

traction and matching algorithm as the full method, but does not per­

form the Cartesian block transformation or the Reed­Solomon coding.

Comparing the performance of the full algorithm with this simpli­

fied algorithm will give an idea of how the novelties of the procedure in

this thesis affect recognition accuracy, and what part of the errors can

be attributed to deficiencies in the underlying feature extraction and

matching algorithms, and what portion of the errors must be attributed

to, primarily, the Cartesian transformation.

How does it compare to state­of­the­art recognition methods?

The third point of consideration is how the method compares to other

modern recognition algorithms. Luckily, since the fingerprint databases

and testing protocol from the FVC 2000 are used for performance es­

timation, the results are in a format which can be easily compared to

fingerprint recognition algorithms that participated in the FVC 2000.

Special care must be taken during this comparison, because whereas

the output from conventional recognition procedures is usually a score

between zero and one indicating the strength of the match, the output

from the algorithm presented herein is strictly binary; either the finger­

prints match, or they do not. The Receiver Operator Curve (ROC) is a

curve showing the FAR on the vertical axis and the FRR on the hori­

zontal axis as a threshold t for considering two subjects a match varies,

and is the de facto method of reporting recognition performance for

fingerprint recognition systems. Although a similar parametrisation to

the t­threshold of traditional matchers is conceivable, constructing an

ROC for the particular method presented here is currently meaningless.

This algorithm can therefore be compared to traditional thresholded al­

gorithms only at specific operating points.

The operating point that will be used for comparison is the Equal

Error Rate ­ the point at which the FAR and FRR are equal.

Since the FVC is a fairly prestigious competition, there is no reason

to believe that the algorithm presented here will offer much competition

when it comes to recognition performance. This, however, was never

the intention of the algorithm either ­ first of all, recognition perform­

ance is only a secondary concern of this algorithm, and, secondly, the

implementation that is tested can only be considered a crude proof­

of­concept. Thus, the performance degradation due to supplementing

a standard recognition method with the particular additional steps de­

scribed here is a much more interesting measure.

59

5.3 Shortcomings of the Testing Procedure

The testing procedure used here, and indeed in most studies of finger­

print recognition systems, effectively simulate a zero­effort attack: the

impostor is making no effort whatsoever to circumvent the system, ex­

cept presenting his own fingerprint and hoping the software will fail to

reject his fingerprint. As such, the testing procedure only estimates re­

cognition accuracy, not system security per se. Other types of attacks

are complicated to simulate, and are beyond the scope of this thesis.

However, a simple model estimating the feasibility of regaining the

original minutiae set from the stored template is presented and dis­

cussed. This will provide some insight into the characteristics that arise

when combining Reed­Solomon error correction coding and the Cartesian

block transformation.

Nor does the testing procedure reflect the increased privacy and se­

curity, which are the main concern of this algorithm. Although the per­

formance figures may turn out to be sub­par, the method may still be

useful because it adds a different dimension of security and privacy that

is not normally, or easily, evaluated quantitatively for fingerprint recog­

nition algorithms.

60

Chapter 6

Results and Analysis

6.1 Experimental Results

Table 6.1 summarises the results from the experiments. In the table, the

caption New refers to the method explored in this thesis, Simpl refers

to the simplified method on which the new method is based ­ with the

Reed­Solomon coding and Cartesian block transformation left out ­ and

FVCM and FVCW refer to the median entry and winning entry of the

Fingerprint Verification Competition, respectively. The False Reject Rate

(FRR) and False Accept Rate (FAR), measuring the recognition accuracy,

are given for each of the recognition algorithms. For the entries in the

FVC, a specific operating point has been chosen, namely the point of

Equal Error Rate (EER), since recognition algorithms generally output a

number between zero and one indicating the strength of the match, and

not a binary result, as the algorithm discussed in this paper does.

Does it work at all?

Considering the new method separately, it appears to exhibit an alarm­

ingly high False Reject Rate for all the four databases, and a relatively

modest False Accept Rate. With an average False Reject Rate over the

New Simpl FVCM FVCW

FRR FAR FRR FAR FRR FAR FRR FAR

DB1 94% 5.5% 41% 52% 10.66% 10.66% 0.67% 0.67%

DB2 96% 3.7% 19% 77% 8.83% 8.83% 0.61% 0.61%

DB3 100% 0% 3.3% 92% 12.20% 12.20% 3.64% 3.64%

DB4 74% 17% 31% 50% 12.08% 12.08% 1.99% 1.99%

Avg. 91% 6.5% 24% 68% 10.94% 10.94% 1.73% 1.73%

Table 6.1: Results from testing on the FVC2000 datasets

61

four databases of 91%, the current implementation is useless for any

practical application as is. The False Accept Rate appears more reason­

able, though still higher than can be accepted for most practical applic­

ations, with an average over the four databases of 6.5%.

Looking closer at the results, all the images in the third test database,

DB3, appear to have been rejected by the new algorithm. This may indic­

ate that there might be a problem with the format of the images in the

database or the parameters used in the image enhancement stage that

causes the algorithm to categorically reject images of this format.

The Genuine Accept Rate (GAR), GAR = 1 − FRR, for the four data­

bases are 6%, 4%, 0% and 26%, respectively. For all but the last database,

these figures are very close to the FAR, which implies that the algorithm

is having difficulties distinguishing between matching and non­matching

images, since it is accepting those that it shouldn’t at approximately the

same rate it is accepting those that it should. At the same time, it ap­

pears to be having more success, although still limited, on the fourth

database, giving reason to believe that the method can achieve lower

error rates if thoroughly tweaked.

Using the two­sample t­test, it is possible to determine whether the

differences between the GAR and FAR are statistically significant, and

thus determine the confidence with which the algorithm can be said to

be working.

The null hypothesis, H0, is taken to be that the FAR and GAR are

equal:

H0 : FAR = GAR. (6.1)

The alternative hypothesis, Ha, is that the FAR is less than the GAR:

Ha : FAR < GAR. (6.2)

In total, the entire testing procedure ran n1 = 10,913 false reject

tests and n2 = 19,701 false accept tests, a little below the numbers

estimated in last chapter due to some failed enrollments. The number of

genuine accepts in the false reject tests were X1 = 989 and the number

of false accepts in the false accept tests were X2 = 1,317. Considering

that these are actually binomial distributions, we can estimate the mean

and standard deviation of the sample proportions:

GAR = µ1 =
X1

n1
=

989

10913
= 0.0906258590672 (6.3)

FAR = µ2 =
X2

n2
=

1317

19701
= 0.0668493985077 (6.4)

σ1 =

√
µ1(1− µ1)

n1
= 0.00278405417919 (6.5)

62

σ2 =

√
µ2(1− µ2)

n2
= 0.00177942827272 (6.6)

Using this, it is now possible to compute the two­sample t statistic

t =
µ1 − µ2√
σ2

1
n1
+
σ2

2
n2

= 814.223407604. (6.7)

The degrees of freedom k is conservatively estimated as the smaller

of the n1 − 1 and n2 − 1:

k =min(n1 − 1, n2 − 1) = 10912. (6.8)

Checking any t­table, it can be seen that P[t(10912) > 814] is a really

tiny number. Indeed, for all practical purposes, it is reasonable to say

P[t(10912) > 814] ≈ 0. The large sample size has ensured that it is

possible to reject the null hypothesis, FAR = GAR, with well over 99.99%

confidence.

Having rejected the null hypothesis with such confidence, it can be

confidently asserted that the method presented here is successful at dis­

criminating between matching and non­matching fingerprints, despite

the large false accept rate and false reject rate reported from the testing

procedure. Although the GAR is only slightly larger than the FAR, ap­

proximately 2.5%, the large sample size ensures the difference between

the FAR and the GAR is statistically significant.

Comparison with a simplified method

When comparing the newly conceived method to the more traditional

method on which it is based ­ one which uses the same image enhance­

ment, alignment and matching algorithms with similar parameters, but

avoids Reed­Solomon coding and Cartesian block transformation ­ the

most notable differences are a great decrease in the False Reject Rate,

averaging at 24% rather than 91%, and a great increase in the False Ac­

cept Rate, averaging at 68% rather than 6.5%.

The same of number of matching minutiae were required for the sim­

plified algorithm to consider two fingerprints mates as was necessary to

reproduce the entire minutiae set with the Reed­Solomon codes in the

full algorithm. The high FAR and low FRR suggest that it is easier to

match the minutiae points in the untransformed space than the trans­

formed space. The Cartesian block transformation thus appears to be

adversely affecting the recognition performance, and minutiae points

that would have matched in the untransformed space do not necessarily

match in the transformed space.

63

The genuine accept rates for the four databases are 59%, 81%, 96.7%

and 69% respectively. As with the full algorithm, the GARs are in the vi­

cinity of the FARs, also indicating that this simplified algorithm is doing

only slightly better than blind guessing. However, the difference between

the GARs and FARs do indeed show that this simplified algorithm is do­

ing considerably better than the full algorithm in this respect.

Therefore, there is reason to believe that although a part of the er­

ror rate exhibited by the full algorithm can be blamed on the founda­

tion of feature extraction and minutiae alignment algorithms on which

it was built, the stages of Cartesian transformation and error­correction

coding, and their inversions, do indeed adversely affect the recognition

accuracy.

Since the Reed­Solomon error correction codes are only instrumental

in recovering the full original minutiae set after matching, and are not

actually involved in the minutiae matching process, the Cartesian trans­

formation can likely be blamed for the majority of the error rate differ­

ences between the new method and the simplified method.

The Cartesian transformation shuffles minutiae points around based

on which block they are in in a rectangular grid. One possible source

of error is that the block a given minutiae point resides in varies across

acquisitions, and therefore is transformed differently each time. If the

grid is very fine, even small disturbances in the minutiae point may cause

it to change the block it is in, and thus it is transformed to an entirely

different place in two acquisitions. Two minutiae points that would have

matched in the untransformed space can reside in different blocks, and

their transformed locations therefore could be further apart, so that they

will not match in the transformed space.

These small disturbances may be caused by a number of factors,

from inaccuracies in the estimation of the core location and principal

direction, to skin deformation and environmental effects in the acquisi­

tion process.

Making the blocks larger may counteract some of these effects, mak­

ing the matching in the transformed space more resistant to small vari­

ations in the minutiae positions. However, this will affect the difficulty

of inverting the transformation: fewer and larger blocks make it much

easier to guess the original minutiae locations. Evidently, a balance must

be chosen for how fine to make the grid of blocks for the Cartesian trans­

formation, balancing the concerns of matching performance and nonin­

vertibility.

In order to decrease the error­rate of the method presented here,

it therefore appears to be necessary to enhance the feature extraction

algorithm, as well as take a closer look at the Cartesian transformation

that is performed on the aligned minutiae points.

64

Comparison with FVC median and winner entries

Comparing the accuracy of the recognition algorithm presented here

with the median entry and winning entry of the FVC, the recognition

accuracy of the algorithm presented here is clearly inferior to either by

a large margin.

6.2 Irreversability of the Transformation

Since the fingerprint template in the end contains a reasonable amount

of information, a question of great importance is whether it would be

feasible for a potential attacker to use the information to reverse the

transformation and recreate the original minutiae map. A simple model

is considered here, which will illuminate certain aspects of the trans­

formation, and a few numbers will be calculated to estimate the irrevers­

ibility of the transformation, both when using data from the template in

the implementation presented in this thesis, and when considering re­

quirements for other potential transformations.

Since the Reed­Solomon error­correction codes are in the template,

the attacker needs only to reverse the transformation for a subset of the

minutiae points. Imagine that each transformed minutiae point has on

average n possible original positions ­ so given the transformed location

of a minutiae point, it could possibly come from any of those n locations.

Assume that the location of m minutiae points are needed for the Reed­

Solomon decoding.

Considering an average transformed minutiae point, Λ, its original

configuration may be any of the λi, i = 1, ..., n. So the probability of

guessing the original location of the minutiae point correctly is there­

fore
1
n . Assume, for the sake of the argument, that the locations of the

minutiae points are independent, such that guessing the original loc­

ation for each minutiae point is, similarly,
1
n . An attacker must then

make m correct such guesses simultaneously to be able to perform the

Reed­Solomon decoding. The probability of independently guessing m

minutiae locations correctly thus becomes
(

1
n

)m
=

1
nm .

In the implementation tested in this thesis, a simple permutation,

a one­to­one transformation, was used as the transformation for the

sake of simplicity. Being only a permutation, the original location of

each transformed minutiae may easily be found since the transforma­

tion parameters are given.

When not simplified to a permutation, the Cartesian transformation

discussed here shows a bit more resistance, yet it is still fairly weak. For

example, assuming that each transformed minutiae point has two pos­

sible origins on average, and that eight minutiae points are required to

65

reverse the Reed­Solomon coding, it only requires 28 = 256 guesses to

deplete the entire search space and guarantee a reversal of the trans­

formation.

However, an interesting question is what multiplicity the transforma­

tion must provide for a minutiae point in order to be considered secure.

Given a transformed minutiae point, how many options for the original

minutiae point is needed in order to create a secure solution, and how

many such reversed minutiae points should be required to reverse the

Reed­Solomon coding? Answering these questions should shed more

light on the required qualities of the transformation.

If the requirement is, for instance, that it should take at least one

year of CPU time to reverse the transformation, it is possible to estimate

the parameters n and m required in order to accomplish this. One year

consists of approximately 3.2×107 seconds, and a generous assumption

is that a CPU can make 107 guesses each second. The CPU thus makes

3.2× 1014 guesses in a year. On average, an attacker could be expected

to succeed after guessing through half the search space, so the entire

search space should be twice as large: 6.4× 1015. So one must therefore

choose n and m such that nm > 6.4× 1015.

Fortunately, nm grows very fast, both in n and m. By setting n = 10

and m = 16 the expected CPU time to invert the transformation would

exceed one year. This would mean that each transformed minutiae

point would have ten possible origins, and that sixteen minutiae points

were required for the Reed­Solomon decoding. Although the current

transformation does not provide the required accuracy to match sixteen

minutiae points in the transformed space nor the required number of

possible original locations for a transformed minutiae point, there is a

great possibility that such a transformation may be designed.

6.3 Notes on Feature Extraction

Recognition accuracy relies very heavily on the performance of the fea­

ture extraction phase. Although feature extraction constitutes an es­

sential part of this algorithm, the method used herein is by no means

unique, and can easily be replaced with other image enhancement, minu­

tiae detection and core detection algorithms without changing the es­

sence of the method presented herein ­ the combination of Cartesian

block transformation and Reed­Solomon coding.

Since the performance of the matching process is so sensitive to the

performance of the feature extraction algorithms, a critical look at the

feature extraction algorithm used in the implementation can be useful.

Several strange effects appear during the feature extraction process

that should be amended. The local ridge frequency estimates, for in­

66

stance, appear correct at some places yet unreliable at others. The local

ridge frequency estimate in figure 3.9 can be seen to contain low fre­

quencies in the upper right part of the image, although it is clear from

the image that there is indeed no ridge­valley structure present. This

also taints the calculation of the mask of unrecoverable regions, as in

figure 3.10.

During minutiae detection on the fingerprint skeleton, many minu­

tiae points are detected at the edge of the fingerprint. These are false

minutiae points, as they are not actually ridge endings ­ they only rep­

resent the border of the fingerprint, and should be excluded from the

minutiae set. However, the algorithm used here detects an overwhelm­

ing amount of minutiae points in these unreliable areas, which could

explain some of the poor performance of this algorithm. This effect is

clearly present in figure 3.16, where an overwhelming majority of the

minutiae points detected in the image are along the edge of the finger­

print, and hence do not represent real minutiae points.

The Poincare index method that is used to locate the core of the fin­

gerprint image is unable to locate stable reference points in arch­type

fingerprints, which excludes a whole class of fingerprints from the cur­

rent procedure. This could also help explain the high error rate, as this

is a very essential part of the algorithm. There are other algorithms that

are able to detect stable reference points even in arch­type fingerprints,

which perhaps may be used in this algorithm with more success.

Considering the number and severity of adverse feature extraction

effects in the algorithms used here, there is reason to believe that a

significant portion of the high error rate can be explained by the faults of

the feature extraction algorithms used, and can similarly be eliminated

by choosing a more optimal set of algorithms.

67

68

Chapter 7

Conclusion

The method for generating cancellable templates presented in this thesis

is showing a certain degree of success, although it is severely hampered

by the limited recognition accuracy shown in the test scenarios. The

accuracy of the method is clearly not competitive with the state­of­the­

art methods tested in the Fingerprint Verification Competition 2000.

However, results from testing a comparable method with the Reed­

Solomon coding and Cartesian transformation left out suggests that

quite a large portion of the error rates are caused by deficiencies in the

underlying feature extraction and matching algorithms, and further in­

vestigation has supported this. Furthermore, the Cartesian transforma­

tion is also suspected to deteriorate the matching accuracy considerably.

Although the accuracy of this particular implementation is much too

low for any practical applications, the results do suggest that the gen­

eral concept actually does work, as the difference between the Genuine

Accept Rate and the False Accept Rate is statistically significant, with

the Genuine Accept Rate being consistently higher than the False Accept

Rate.

The general framework of performing the matching in a transformed

feature space in order to reverse an otherwise irreversible transforma­

tion, and subsequently applying error correction codes to fully reverse

the transformation, can conceivably be used with other feature extrac­

tion algorithms and with other transformations than those presented

here.

Further work should therefore concentrate on improving the feature

extraction algorithm in order to improve recognition accuracy, as this

appears to be a large source of error. Specific changes that should be

made to the feature extraction algorithms are changing the algorithm

used for estimating the local ridge frequency, removing the false minu­

tiae points that appear at the edge of the fingerprint and replace the core

detection algorithm with one that can detect a stable reference point and

69

principal direction in all fingerprint types.

Theoretical estimates suggest that the irreversibility of the Cartesian

block transformation chosen here is weak, and should be exchanged for

a much more appropriate transformation for improved security and pri­

vacy. In addition, the difference between the results when the transform­

ation was and was not included suggests that the chosen transformation

currently interferes with the matching process to a great extent.

Overall, the proof­of­concept implementation tested here shows that

the proposed method is promising and represents a fingerprint match­

ing methodology that impedes fake fingerprint generation, provides re­

vocability, and prohibits database cross­referencing, although the high

error­rates are prohibitive of practical use, as is. A lot of work remains to

be done with regards to choosing optimal feature extraction algorithms

and more appropriate transformations before more definite conclusions

about the success of the proposed method can be drawn.

70

Bibliography

[1] Bioenable: Identify, automate, track,

http://www.bioenabletech.com/, accessed: 23rd of october,

2007.

[2] Fingerprint verification system: http://fvs.sourceforge.net/, ac­

cessed: 23rd of october, 2007.

[3] Forensic evidence.com: Identification evidence/court excludes

fingerprint critic’s testimony as junk science, http://forensic­

evidence.com/site/id/cole_junksci.html, accessed: 23rd of october,

2007.

[4] Reed­solomon python extension module:

http://hathawaymix.org/software/reedsolomon, accessed: 23rd of

october, 2007.

[5] Sfinge: Synthetic fingerprint generator. biometric system labor­

atory, university of bologna, http://biolab.csr.unibo.it/, accessed:

23rd of october, 2007.

[6] Pc world ­ laptop to offer fingerprint id,

http://www.pcworld.com/article/id,35415­page,1/article.html,

accessed: 23rd of october, 2007, 2000.

[7] Eu passport will contain two biometrics. In Biometric Technology

Today, volume 13, page 12. Elsevier B.V., January 2005.

[8] Mythbusters, season 4 ­ episode 16: Crimes and myth­demeanors

2, 2006.

[9] R. Achs, R.G. Harper, and N.J. Harrick. Unusual dermatoglyph­

ics associated with major congenital malformations. New England

Journal of Medicine, pages 275:1273–1278, 1966.

[10] Russell Ang, Rei Safavi­Naini, and Luke McAven. Cancelable key­

based fingerprint templates. In Information Security and Privacy,

volume 3574, pages 242–252. 2005.

71

[11] R. D. Bahuguna and T. Corboline. Prism fingerprint sensor that uses

a holographic optical element. Applied Optics, 35:5242–5245, 1996.

[12] A. M. Bazen, G. T. B. Verwaaijen, S. H. Gerez, L. P. J. Veelenturf,

and B. J. van der Zwaag. A correlation­based fingerprint verification

system. In Proceedings of the ProRISC Workshop on Circuits, Systems

and Signal Processing, Veldhoven, the Netherlands, pages 205–213,

Netherlands, November 2000. STW Technology Foundation.

[13] Asker M. Bazen and Sabih H. Gerez. Elastic minutiae matching

by means of thin­plate spline models. In International Confer­

ence on Pattern Recognition, volume 2, pages 985–988. University

of Twente, Dept. of Electrical Engineering, 2002.

[14] Ruud Bolle, J. H. Connell, and N. K. Ratha. Biometric perils and

patches. Pattern Recognition, 35(12):2727–2738, 2002.

[15] Ruud Bolle, Jonathan Connell, Sharath Pankanti, Nalini Ratha, and

Andrew Senior. Guide to Biometrics. Springer­Verlag New York, Inc.,

2004.

[16] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni. Fingerprint classi­

fication by directional image partitioning. In IEEE Transactions on

Pattern Analysis and Machine Intelligence, volume 21, pages 401–

421, 1999.

[17] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni. Can fingerprint

be reconstructed from iso templates? In International Conference

on Control, Automation, Robotics and Vision, pages 1–6, December

2006.

[18] K.C. Chan, Y.S. Moon, and P.S. Cheng. Fast fingerprint verification

using subregions of fingerprint images. In IEEE Transactions on

Circuits and Systems for Video Technology, volume 14, pages 95–

101, January 2004.

[19] Byoung­Ho Cho, Jeung­Seop Kim, Jae­Hyung Bae, In­Gu Bae, and

Kee­Young Yoo. Core­based fingerprint image classification. In In­

ternation Conference on Pattern Recognition, volume 2, pages 859–

862. Dept. of Computer Engineering, Kyoungpook National Univer­

sity, 2000.

[20] Sarat C. Dass, Yongfang Zho, and Anil K. Jain. Validating a biometric

authentication system: Sample size requirements. In IEEE Transac­

tions on Pattern Analysis and Machine Intelligence, volume 28, pages

1902–1913, December 2006.

72

[21] G.I. Davida, Y. Frankel, and B.J. Matt. On enabling secure applic­

ations through off­line biometricidentification. In Proceedings to

the 1998 IEEE Symposium on Security and Privacy, pages 148–157,

1998.

[22] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors:

How to generate strong keys from biometrics and other noisy data.

In Advances in Cryptology ­ EUROCRYPT 2004, volume 3027, pages

523–540. Springer Berlin / Heidelberg, 2004.

[23] Richard O. Duda and Peter E. Hart. Use of the hough transformation

to detect lines and curves in pictures. Commun. ACM, 15(1):11–15,

1972.

[24] B. Wicz et. al. Fingerprint structure imaging based on an ultra­

sound camera. Instrumentation science and technology, 27(4):295–

303, 1999.

[25] Jennie Lugassy et. al. Biohashing: two factor authentication featur­

ing fingerprint data and tokenised random number. The American

Journal of Human Genetics, 79(4):724–730, October 2006.

[26] J. Galbally­Herrero, J. Fierrez­Aguilar, J.D. Rodriguez­Gonzalez,

F. Alonso­Fernandex, Javier Ortega­Garcia, and M. Tapiador. On the

vulnerability of fingerprint verification systems to fake fingerprints

attacks. In Proceedings 2006 40th Annual IEEE International Car­

nahan Conferences Security Technology, pages 130–136, October

2006.

[27] Mary Hanson. Fingerprint­based forensics identify argentina’s desa­

parecidos. In IEEE Computer Graphics and Applications, volume 20,

pages 7–10, 2000.

[28] Ying Hao, Tienio Tan, and Yunhong Wang. An effective algorithm

for fingerprint matching. In TENCON 02. Proceedings. 2002 IEEE

Region 10 Conference on Computers, Communications, Control and

Power Engineering, volume 1, pages 519–522. National Lab of Pat­

tern Recognition, CAS, Institute of Automation, Beijing, October

2002.

[29] Lin Hong, Anil K. Jain, Sharath Pankanti, and Ruud Bolle. Fingerprint

enhancement. pages 202–207. Department of Computer Science,

Michigan State University, Exploratory Computer Vision Group, IBM

T.J. Watson Research Center, 1996.

[30] Lin Hong, Yifei Wan, and Anil Jain. Fingerprint image enhancement:

Algorithm and performance evaluation. IEEE Transactions on Pat­

tern Analysis and Machine Intelligence, 20(8):777–789, 1998.

73

[31] Anil Jain, Yi Chen, and Meltem Demirkus. Pores and ridges: Finger­

print matching using level 3 features. icpr, 4:477–480, 2006.

[32] Anil K. Jain. Biometric recognition: How do i know who you are?

3540/2005:1–5, June 2005.

[33] Anil K. Jain, Lin Hong, and Ruud Bolle. On­line fingerprint verifica­

tion. In IEEE Transactions on Pattern Analysis and Machine Intelli­

gence, volume 19, pages 302–314, April 1997.

[34] Anil K. Jain, Salil Prabhakar, Lin Hong, and Sharath Pankanti. Finger­

code: A filterbank for fingerprint representation and matching. In

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, volume 2, pages 187–193, 1999.

[35] Ari Juels and Madhu Sudan. A fuzzy vault scheme. Des. Codes

Cryptography, 38(2):237–257, 2006.

[36] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In

CCS ’99: Proceedings of the 6th ACM conference on Computer and

communications security, pages 28–36, New York, NY, USA, 1999.

ACM Press.

[37] Phil Karn. Dsp and fec library: http://www.ka9q.net/code/fec/, ac­

cessed: 23rd of october, 2007.

[38] Masahiro Kawagoe and Akio Tojo. Fingerprint pattern classification.

Pattern Recogn., 17(3):295–303, 1984.

[39] J. Klett. Thermal imaging fingerprint technology. In Proceedings of

Biometric Consortium 9th Meeting, April 1997.

[40] C. Klimanee and D.T. Nguyen. Classification of fingerprints using

singular points and their principal axes. In International Conference

on Image Processing, volume 2, pages 849–852. School of Engineer­

ing, University of Tasmania, October 2004.

[41] J.K. Lee, S.R. Ryu, and K.Y. Yoo. Fingerprint­based remote user

authentication scheme using smartcards. In Electronics Letters,

volume 38, pages 554–555, June 2002.

[42] Jean­Paul Linnartz and Pim Tuyls. New shielding functions to

enhance privacy and prevent misuse of biometric templates. In

Audio­ and Video­Based Biometric Person Authentication, volume

2688, page 1059. Springer Berlin / Heidelberg, 2003.

[43] Xiping Luo, Jie Tian, and Yan Wu. A minutia matching algorithm

in fingerprint verification. In International Conference on Pattern

74

Recognition, volume 4, pages 833–836. AILAB, Institute of Automa­

tion, The Chinese Academy of Sciences, 2000.

[44] D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman, and A.K. Jain. Fvc2002:

Second fingerprint verification competition.

[45] Dario Maio and Davide Maltoni. Direct gray­scale minutiae detection

in fingerprints. IEEE Trans. Pattern Anal. Mach. Intell., 19(1):27–40,

1997.

[46] Davide Maltoni, Dario Maio, Anil K. Jain, and Salil Prabhakar. Hand­

book of Fingerprint Recognition. Springer Science+Business Media,

Inc., 2003.

[47] Aparecido Nilceu Marana and Anil K. Jain. Ridge­based fingerprint

matching using hough transform. In IEEE Proceedings of the XVIII

Brazilian Symposium on Computer Graphics and Image Processing,

pages 112–119, 2005.

[48] T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino. Impact

of artificial gummy fingers on fingerprint systems. In Proc. of SPIE,

volume 4677, pages 275–289, 2002.

[49] B. Miller. Vital signs of identity. In IEEE Spectrum, volume 31, pages

22–30, 1994.

[50] M. Mimura, S. Ishida, and Y. Seto. Fingerprint verification system

on smart card. In International Conference on Consumer Electron­

ics, 2002. ICCE. 2002 Digest of Technical Papers., volume 1 of All

IEEE Conferences, pages 182–183. Syst. Dev. Lab., Hitachi Ltd., Yoko­

hama, 2002.

[51] Shimon K. Modi, Stephen J. Elliott, Jeff Whetsone, and Hakil Kim. In

IEEE Workshop on Automatic Identification Advanced Technologies,

pages 19–23. Industrial Technology, College of Technology Purdue

University, INHA University, June 2007.

[52] Fabian Monrose, Michael K. Reiter, Qi Li, and Susanne Wetzel. Cryp­

tographic key generation from voice. sp, 00:0202, 2001.

[53] Fabian Monrose, Michael K. Reiter, and Susanne Wetzel. Password

hardening based on keystroke dynamics. In CCS ’99: Proceedings of

the 6th ACM conference on Computer and communications security,

pages 73–82, New York, NY, USA, 1999. ACM Press.

[54] Y. S. Moon, K. L. Ng, S. F. Wan, and S. T. Wong. Collaborative finger­

print authentication by smart card and atrusted host. In 2000 Cana­

dian Conference on Electrical and Computer Engineering, volume 1

75

of All IEEE Conferences, pages 108–112. Dept. of Comput. Sci. and

Eng., Chinese Univ. of Hong Kong, Shatin, 2000.

[55] Roger M. Needham and Michael D. Schroeder. Using encryption

for authentication in large networks of computers. Commun. ACM,

21(12):993–999, 1978.

[56] International Organization of Standardization. ISO/IEC 19794­2: In­

formation technology – Biometric data interchange formats – Part 2:

Finger minutiae data.

[57] Sharath Pankanti, Salil Prabhakar, and Anil K. Jain. On the individu­

ality of fingerprints. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, volume 24, pages 1010–1025. IBM T.J. Watson

Research Center, DigitalPersona Inc., Dept. of Comp. Sci. and Eng.

Michigan State University, August 2002.

[58] Nalini Ratha, Sharat Chikkerur, Jonathan Connell, and Ruud M.

Bolle. Generating cancelable fingerprint templates. In IEEE Transac­

tions on Pattern Analysis and Machine Intelligence, volume 29, pages

561–572, April 2007.

[59] Nalini Ratha, Jonathan Connell, Ruud M. Bolle, and Sharat Chik­

kerur. Cancelable biometrics: A case study in fingerprints. In The

18th International Conference on Pattern Recognition, pages 370–

373, 2006.

[60] Nalini Ratha and Ruud Bolle et. al. Automatic Fingerprint Recogni­

tion Systems. Springer­Verlag New York, Inc., 2004.

[61] N.K. Ratha, J.H. Connell, and R.M. Bolle. Enhancing security and

privacy in biometrics­based authentication systems. IBM Systems

Journal, 40(3):614–634, 2001.

[62] I.S. Reed and G. Solomon. Polynomial codes over certain finite

fields. Journal of the Society for Industrial and Applied Mathematics,

8(2):300–304, June 1960.

[63] R. Rivest. The MD5 Message­Digest Algorithm. RFC 1321 (Informa­

tional), April 1992.

[64] Danny Roberge, Colin Soutar, and Bhagavatula Vijaya Kumar. Op­

timal correlation filter for fingerprint verification. volume 3386,

pages 123–133. SPIE, 1998.

[65] B.G. Sherlock, D.M. Monro, and K. Millard. Fingerprint enhancement

by directional fourier filtering. In IEEE Proceedings ­ Vision, Image

and Signal Processing, volume 141, pages 87–94, 1994.

76

[66] Sargur N. Srihari, Harish Srinivasan, Gang Fang, and Arvindakshan

Ravichandran. Discriminability of fingerprints of twins.

[67] Yagiz Sutcu, Husrev Taha Sencar, and Nasir Memon. A secure bio­

metric authentication scheme based on robust hashing. In MM&Sec

’05: Proceedings of the 7th workshop on Multimedia and security,

pages 111–116, New York, NY, USA, 2005. ACM Press.

[68] Kiyoaki Takiguchi. Uspto app. no 20070116330: Living­tissue pat­

tern detecting method, living­tissue pattern detecting device, bio­

metric authentication method, and biometric authentication device,

2005.

[69] M. Tartagni and R. Guerrieri. A fingerprint sensor based on the

feedback capacitive sensingscheme. In IEEE Journal of Solid State

Circuits, volume 33, pages 133–142, January 1998.

[70] Andrew BJ Teoh and David CL Ngo. Biophasor: Token supplmented

cancellable biometrics. In Control, Automation, Robotics and Vision,

2006. ICARCV ’06. 9th International Conference on, All IEEE Confer­

ences, pages 1–5. Faculty of Information Science and Technology,

Multimedia University, December 2006.

[71] Andrew BJ Teoh, David CL Ngo, and Alwyn Goh. Biohashing: two

factor authentication featuring fingerprint data and tokenised ran­

dom number. Pattern Recognition, 37(11):2245–2255, November

2004.

[72] Yu Tong, Hui Wang, Daoying Pi, and Qili Zhang. Fast algorithm

of hough transform­based approaches for fingerprint matching. In

IEEE Proceedings of the 6th World Congress on Intelligent Control

and Automation, volume 2, pages 10425–10429, June 2006.

[73] Pim Tuyls, Anton H.M. Akkermans, Tom A.M. Kevenaar, Geert­Jan

Schrijen, Asker M. Bazen, and Raimond N.J. Veldhuis. Practical

biometric authentication with template protection. In Audio­ and

Video­Based Biometric Person Authentication, volume 3546, pages

436–446. Springer Berlin / Heidelberg, 2005.

[74] Umut Uludag, Sharath Pankanti, and Anil K. Jain. Fuzzy vault for fin­

gerprints. Lecture notes in computer science, 3546:310–319, 2005.

[75] C. Vielhauer, R. Steinmetz, and A. Mayerhofer. Biometric hash based

on statistical features of online signatures. In Proceedings. 16th

International Conference on Pattern Recognition, volume 1, pages

123–126, 2002.

77

[76] Chengfeng Wang, Marina Gavrilova, Yuan Luo, and Jon Rokne. An

efficient algorithm for fingerprint matching. In IEEE Proceedings

of the 18th International Conference on Pattern Recognition, pages

1034–1037. University of Calgary, Canada, 2006.

[77] Shenglin Wang and Ingrid M. Verbauwhede. A secure fingerprint

matching technique. In Proceedings of the 2003 ACM SIGMM work­

shop on Biometrics methods and applications, volume 1 of Inter­

national Multimedia Conference, pages 108–112. SIGMULTIMEDIA:

ACM Special Interest Group on Multimedia, 2003.

78

