
UNIVERSITY OF OSLO
Department of Informatics

Optimizing spatial
cache performance
for mobile
applications

Cand Scient thesis

Henrik Solgaard

2nd May 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30826926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2



Contents

1 Introduction 7

2 Problem description 9
2.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related work 11
3.1 Database caching . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Web based map services . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Caching spatial data . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Advanced map client . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Map rendering library . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Theory 15
4.1 Basic GIS terminology . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Simple features . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Topologic features . . . . . . . . . . . . . . . . . . . . . 16

4.2 Geometry types . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Universal Transverse Mercator . . . . . . . . . . . . . . . 17
4.4 Vector map formats . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4.1 ESRI Shapefile . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.2 Open Geospatial Consortium formats . . . . . . . . . . . 18
4.4.3 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Spatial data retrieval . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5.2 Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6.1 Cache replacement algorithms . . . . . . . . . . . . . . . 22
4.6.2 Cache consistency algorithms . . . . . . . . . . . . . . . 22
4.6.3 Pre-fetching . . . . . . . . . . . . . . . . . . . . . . . . . 23

3



4 CONTENTS

5 Architecture 25
5.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Centralized cache . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Distributed cache at the edge of the network . . . . . . . . 27
5.1.3 Distributed cache in the mobile terminal . . . . . . . . . . 28

5.2 Constraining the problem . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1 System architecture . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Single table . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.3 Single projection . . . . . . . . . . . . . . . . . . . . . . 29
5.2.4 Geometry types . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.5 Direct database access . . . . . . . . . . . . . . . . . . . 29

5.3 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Implementation 31
6.1 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.2 Existing formats . . . . . . . . . . . . . . . . . . . . . . 33
6.2.3 New format . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Cache design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.1 Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.2 2D tile index . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.3 Sorted tile index . . . . . . . . . . . . . . . . . . . . . . 36
6.3.4 Per-request tile table . . . . . . . . . . . . . . . . . . . . 37
6.3.5 Per-request geometry index . . . . . . . . . . . . . . . . 37

6.4 Cache algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4.1 Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4.2 Merging tiles . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4.3 Bypassing the cache . . . . . . . . . . . . . . . . . . . . 38
6.4.4 Cache replacement . . . . . . . . . . . . . . . . . . . . . 39
6.4.5 Cache consistency . . . . . . . . . . . . . . . . . . . . . 40

6.5 Tile size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 Database connection . . . . . . . . . . . . . . . . . . . . . . . . 40

6.6.1 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6.2 Compression . . . . . . . . . . . . . . . . . . . . . . . . 42

6.7 Cache interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.7.1 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.8 Viewer application . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.8.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



CONTENTS 5

6.8.2 Implementation details . . . . . . . . . . . . . . . . . . . 48
6.9 Performance tests . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.9.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Method 51
7.1 Test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1.2 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.2 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.4 Traffic analysis . . . . . . . . . . . . . . . . . . . . . . . 58

7.4 Test plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.4.1 A: Clipping on/off . . . . . . . . . . . . . . . . . . . . . 58
7.4.2 B: Vary cache size . . . . . . . . . . . . . . . . . . . . . 58
7.4.3 C: Vary tile size . . . . . . . . . . . . . . . . . . . . . . . 59
7.4.4 D: Cache size revisited . . . . . . . . . . . . . . . . . . . 59

8 Analysis 61
8.1 A: Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2 B: Varying cache size . . . . . . . . . . . . . . . . . . . . . . . . 62
8.3 C: Varying tile size . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.4 D: Revisiting cache size . . . . . . . . . . . . . . . . . . . . . . . 62
8.5 Traffic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9 Discussion 69
9.1 Cache replacement . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.2 Cache consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.3 Data compression . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.4 Reducing network traffic . . . . . . . . . . . . . . . . . . . . . . 70
9.5 Alternative architectures . . . . . . . . . . . . . . . . . . . . . . 70

9.5.1 Server side caching . . . . . . . . . . . . . . . . . . . . . 70
9.5.2 Subnet caching . . . . . . . . . . . . . . . . . . . . . . . 71

9.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.6.1 Object id conflicts . . . . . . . . . . . . . . . . . . . . . 71
9.6.2 Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.7 Possible improvements . . . . . . . . . . . . . . . . . . . . . . . 72
9.7.1 Pre-fetching . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.7.2 Parallelizing queries . . . . . . . . . . . . . . . . . . . . 72



6 CONTENTS

9.7.3 Alternatives to the 2D tile index . . . . . . . . . . . . . . 72

10 Conclusion and future work 75
10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

10.1.1 Test data . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.1.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.1.3 Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.1.4 Cache size . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.1.5 Tile size . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.1.6 Alternative architectures . . . . . . . . . . . . . . . . . . 76

10.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Data format 79



Chapter 1

Introduction

Maps have for a long time been an important part of many websites. The pro-
cessing power of a modern computer makes it possible to provide advanced map
functionality even inside a web browser.

Maps are even more useful when they can be accessed anywhere. Most exist-
ing map systems for mobile devices are based on simple static raster maps with
limited possibilities for interaction. With recent developments in mobile com-
puting technology, more advanced map functionality can also be implemented on
mobile devices.

Map data are large and usually stored in databases to provide fast access to
many users simultaneously. Mobile devices have limited bandwidth and the mo-
bile data traffic may be expensive. The combination of low bandwidth and high
latency in mobile networks can impair the user experience. It is necessary to min-
imize the network traffic and maximize the response time.

A common way to reduce the effects of network limitations is to use a cache
to store previously fetched content to make it quickly accessible the next time it
is needed. Caching spatial data is special because the data are two-dimensional.
In this thesis, I will explore alternative implementations and study how param-
eters such as cache size, tile size and placement of the clipping function affect
performance of a spatial cache used for a map application on a mobile device.

7



8 CHAPTER 1. INTRODUCTION



Chapter 2

Problem description

In this chapter, I will give a more detailed presentation of the subject for this
thesis.

The term Geographic Information System (GIS) is frequently applied to geo-
graphically oriented computer technology [7]. It is also commonly used to refer
to tools for analyzing geographic data, but in this thesis it will only refer to the
technology in general.

The terms geographic data and spatial data are often mixed. To be precise,
geographic refers to the Earth’s surface, while spatial refers to any space [14]. In
this thesis, I will mostly use spatial, but in some cases when I mention concrete
data from the Earth, I will use geographic.

The subject for this thesis is related to search in spatial databases. More theory
related to GIS and spatial data will be presented in chapter 4.

I define a mobile terminal to be a portable device with a screen, support for
some kind of user interaction and a wireless network connection of any kind,
which is not necessarily online at all times. Laptops, PDAs and smartphones are
examples of mobile terminals.

2.1 The problem
In use-cases where spatial data is needed in a mobile environment, access to the
spatial database is often a bottleneck. The amount of data required can be large,
and mobile networking technologies are still slow compared to wired networks.

Caching is well known from web applications, where static images and text
objects are stored by the web browser and sometimes also by a proxy server be-
tween the client machine and the web server.

However, for spatial data, these simple cache mechanisms do not work since
the number of objects (points, lines etc.) prevent caching of single objects and

9



10 CHAPTER 2. PROBLEM DESCRIPTION

Cache

DB
Map

application

Figure 2.1: System overview

an aggregate structure such as a tile is needed. Caching is further complicated
because the data domain is two-dimensional.

Thus, there is a need for a specialized spatial cache somewhere between the
client application and the server as illustrated in figure 2.1.

2.2 The goal
To explore the problem area, I will develop a cache for use between a map client
and a map database and explore how different parameters affect performance. I
will study the effect of caching on the overall response time for the map client. In
order to visually inspect the result of caching, and verify the result of the spatial
search, I will also implement a map client, instrumented to find exact application
performance. The map client will display maps with multiple layers and used for
evaluation of how a cache improves responsiveness.

I want to find a reasonable size for the cache with a high probability that
frequently accessed data are cached. The goal is not to create a perfect cache, but
to observe the general effect of caching spatial data and have some background
for discussion of how a cache can be useful in different situations.



Chapter 3

Related work

In this chapter, I will present some existing work related to caching in databases
and caching of spatial data in particular. I will not cover the general concept of
caching, used in processors, memory systems, disk systems and for web clients
and proxies, but focus on caching spatial data.

3.1 Database caching
Standard database systems such as Oracle Database and the open source alterna-
tive PostgreSQL perform internal caching to speed up repeated search operations.
They can also take advantage of the underlying operating system’s disk caching.
However, the database is usually centrally located and central caching does only
speed up the query until a certain level. Local caching is needed in order to miti-
gate transmission delays and leverage local terminal capabilities (memory, cpu).

3.2 Web based map services
Existing map services are mostly raster based with pre-generation of raster tiles
from vector or raster data on the server side. Examples include popular services
such as Google Maps and Microsoft Local Live. Open Geospatial Consortium’s
Web Map Service (WMS) Implementation Specification [19] defines a standard
format for requsts and responses to/from web based map services.

3.3 Caching spatial data
The client side of web map services implent caching of varying degree. Some
clients fetch new data every time the view changes, while others keep previously

11



12 CHAPTER 3. RELATED WORK

fetched data in memory to speed up repeated access to the same areas.
The WMS Tiling Client Recommendation (WMS-C) 1 from the Open Source

Geospatial Foundation (OSGeo) is a Non-binding recommendation paper for the
authors of WMS clients. It is based on the WMS 1.1.1 specification, but provides
extensions and constraints to make the clients use the WMS servers in a way that
better supports caching. The key is to divide the map into regular tiles. Standard-
ization of parameters, parameter order, bounding box, etc. is used to increase the
probability of repeating identical requests. This can improve the effect of caching
both in the browser, in the web server and in proxy servers.

A WMS-C compliant client will improve cacheability with any WMS server,
but for full effect, the extensions must also be implemented on the server side.
TileCache 2 from MetaCarta Labs is WMS-C compliant server-side cache. It can
be used with GeoServer 3 and MapServer 4, two major open source map servers.

3.4 Advanced map client
Simple raster based solutions are not always sufficient. When more dynamic maps
are required, vector maps may be necessary. Brinkhoff [1] suggests a web based
solution with a Java applet running in a web browser. However, browsers on
some mobile terminals have limited functionality. On these platforms, a dedicated
application may be the only alternative for displaying advanced maps.

3.5 Map rendering library
In order to experiment with caching of spatial systems, I have access to a compre-
hensive map rendering library called SmartMap developed by the company Faster
Imaging. SmartMap can be used to render maps from raster and vector data. For
this thesis, only the vector functionality will be used.

Capabilities of the SmartMap library include:

• Rendering lines with different colors, line widths, line styles and with or
without anti-aliasing.

• Rendering poygons with different colors and fill styles.

• Rendering text positioned by points or lines.

1http://wiki.osgeo.org/index.php/WMS_Tiling_Client_Recommendation
2http://www.tilecache.org/
3http://www.refractions.net/geoserver/
4http://mapserver.gis.umn.edu/



3.5. MAP RENDERING LIBRARY 13

• Zooming and panning within a dataset.

• Transforming vector data in memory between different projections.

The MapBrowser application developed for this thesis uses the SmartMap li-
brary to render maps from vector data. Zooming and panning is not needed be-
cause the application fetches a new set of vector data every time the position or
size of the view is changed. Coordinate transformation is not used.



14 CHAPTER 3. RELATED WORK



Chapter 4

Theory

In this chapter, I will detail key aspects of spatial data such as features, geometry
types, storage formats, database interfaces and how spatial data can be retrieved.

4.1 Basic GIS terminology
Many types of data models are used in GIS systems [14]. This thesis will focus
on a vector model because of its storage efficiency and its ability to render high
quality maps at arbitrary scales.

A geographic entity encoded using the vector data model is called a feature
[14]. There are two main categories of feature representations: simple features
and topologic features. Both types are illustrated in figure 4.1.

4.1.1 Simple features

A simple feature is represented by a geometric object. I will refer to the geometric
part of a feature as a geometry. In a simple feature data model, every geometry
belongs to only one feature.

Advantages

• Easy to create and store.

• Easy and fast to read and render.

Disadvantages

• Lack of connectivity relationships.

15



16 CHAPTER 4. THEORY

Properties

Geometry list

Properties

Geometry

Geometry

Common geometries

Geometry
Geometry

Simple feature Topologic feature

Figure 4.1: Simple and topologic features

• Limited possibilities for spatial analysis.

• When features are adjacent, their edges are duplicated.

4.1.2 Topologic features
In a topologic data model, there is a common set of geometries. Each feature
contains a list of references to geometries which together form the geometric rep-
resentation of the feature.

Advantages

• No duplication of geometries.

• Enables various kinds of spatial analysis.

Disadvantages

• Complicated to read.

• Even more complicated to create.



4.2. GEOMETRY TYPES 17

4.2 Geometry types
Three categories of geometry types are usually used in maps, Pnoint, Curve and
Surface. ISO 19107 [10] developed by the Open Geospatial Consortium provides
the following abstract definitions. A geometric primitve is defined as “a geometric
object representing a single, connected, homogenous element of space”.

Point 0-dimensional geometric primitive representing a position.

Curve 1-dimensional geometric primitive, representing the continuous image of
a line.

Surface 2-dimensional geometric primitive, locally representing a continuous
image of a region of a plane.

In the following, I will refer to these categories of types as point types, line
types and polygon types respectively.

Some concrete implementations of these types will be presented in section 4.4.

4.3 Coordinate systems
Because the earth is round and maps on screen or paper are flat, coordinates on
the surface of the earth must be transformed to a Cartesian coordinate system [14].
This mapping is called a projection. All projections necessarily distorts the real
world, so each type of projection must make tradeoffs on what kind of properties
it preserves and what it distorts.

In addition to Cartesian coordinates, map coordinates sometimes include a
third and/or a fourth dimension. In this case, the third dimension is elevation
above a reference height (usually sea level) and the fourth dimension (or third if
there is no elevation) is a measured value for the point.

4.3.1 Universal Transverse Mercator
The Universal Transverse Mercator (UTM) system is a projection created by
wrapping a cylinder around the poles and projecting each point on the Earth’s
surface onto the cylinder [14]. There are 60 zones in the system, and each zone
corresponds to a half cylinder wrapped along a particular line of longitude, each
zone being 6 degrees wide. Norway is covered by zones 32-36. For datasets that
cover the whole country, zone 33 is usually used. The dataset used in this thesis
was delivered in UTM zone 33, but was converted to UTM 32 because almost all
features are within this zone.



18 CHAPTER 4. THEORY

4.4 Vector map formats
Many formats exist. Common simple feature formats include ESRI Shapefile and
OpenGIS Consortium’s Well Known Binary (WKB), Well Known Text (WKT)
and Geography Markup Language (GML). Topologic formats are less common
because they are more complicated to create and use and because the topology
information in many cases is not needed. An example of a topologic format is
the Vector Product Format (VPF) developed by National Geospatial-Intelligence
Agency (NGA).

Some of these formats are described in more detail below.

4.4.1 ESRI Shapefile
Shapefile is a format defined by Environmental Systems Research Institute (ESRI)
[3]. It is frequently used for distribution of map data, and most GIS tools can
import and/or export Shapefiles. I will use Shape or Shapefile depending on the
context to refer to the Shapefile standard and a file in the Shapefile format. A
Shapefile (.shp) consists of a number of records, each containing a geometry. It is
always accompanied by an index file (.shx) which points to the start of each record
in the shapefile, and a dBASE database file (.dbf) which contains non-spatial data
for the geometries in the Shapefile. The index file is not necessary when reading
a Shapefile sequentially, but it speeds up random access.

A Shapefile can also be accompanied by a file with projection information
(.prj) and two spatial index files, (.sbn) and (.sbx) in a proprietary format which
can only be read by ESRI’s own GIS products.

The Shapefile specification contains 14 geometry types. The two-dimensional
types are listed in table 4.1. There are additional types for three-dimensional
points and points with an extra measured value which can have a special “no
data” value. Each Shapefile contains geometries of only one type with one excep-
tion: There is a special Null type with no geometric data. This can be present in
Shapefiles of all types and is primarily used as a temporary placeholder.

4.4.2 Open Geospatial Consortium formats
The Open Geospatial Consortium has published a number of GIS-related specifi-
cations. The Abstract Specifications, consisting of a number of topics, provides a
conceptual foundation for the other specification. ISO standard 19107 [10], which
was mentioned above, is identical to one of the topics in the Abstract Specifica-
tion.

The Simple Feature Access specification [17] defines the Well Known Binary
(WKB) format. It is a binary geometry format which includes all geometry types



4.4. VECTOR MAP FORMATS 19

Type Description
Point Consists of a pair of double-precision coordinates in the or-

der X,Y.
MultiPoint Represents a set of points.
PolyLine An ordered set of vertices that consists of one or more parts.

A part is a connected sequence of two or more points. Parts
may or may not be connected to one another. Parts may or
may not intersect one another.

Polygon Consists of one or more rings. A ring is a connected se-
quence of four or more points that form a closed, non-self-
intersecting loop. A polygon may contain multiple outer
rings. The order of vertices or orientation for a ring in-
dicates which side of the ring is the interior of the poly-
gon. The neighborhood to the right of an observer walking
along the ring in vertex order is the neighborhood inside the
polygon. Vertices of rings defining holes in polygons are in
a counterclockwise direction. Vertices for a single, ringed
polygon are, therefore, always in clockwise order. The rings
of a polygon are referred to as its parts.

Table 4.1: Geometry types in the Shapefile format



20 CHAPTER 4. THEORY

Type Description
Point A 0-dimensional geometric object. It represents a single

location in coordinate space. A Point has an x-coordinate
value, a y-coordinate value. If called for by the associated
Spatial Reference System, it may also have coordinate val-
ues for z and m.

LineString A 1-dimensional geometric object usually stored as a se-
quence of Points with linear interpolation between the
Points. Each consecutive pair of Points defines a Line seg-
ment.

Polygon A 2-dimensional geometric object defined by 1 exterior
boundary and 0 or more interior boundaries. Each interior
boundary defines a hole in the Polygon. Each boundary is a
closed (starts and ends in the same point) and simple (does
not intersect itself) LineString.

MultiPoint A collection of Points. The Points are not connected or or-
dered in any semantically important way.

MultiLineString A collection of LineStrings.
MultiPolygon A collection of Polygons. The interiors of any two Polygons

in a MultiPolygon may not intersect. A MultiSurface whose
elements are Polygons.

GeometryCollection A collection of geometric objects of any of the types listed
in this table. The geometry objects in a GeometryCollection
doesn’t have to be of the same type.

Table 4.2: Geometry types in the WKB format

commonly used in maps and some types that are only used as part of the defini-
tions of the other types. All instantiable types are listed in table 4.2.

4.4.3 Compatibility

In this thesis, I will use “Shape PolyLine” and “Shape Polygon” when talking
about Shape geometries and “WKB LineString” and “WKB Polygon” when talk-
ing about WKB geometries to avoid confusion.

The definitions above shows that different implementations of the same ab-
stract types can have slightly different semantics. This can cause problems when
when converting from one format to another. The map data used in this the-
sis were delivered as Shapefiles and were converted to WKB with the PostGIS



4.5. SPATIAL DATA RETRIEVAL 21

database import tools.
A point consists of a single coordinate pair in both Shape and WKB, so this

conversion is trivial. A Shape PolyLine can contain multiple disjoint sequences
of line segments. A WKB LineString can only contain one continuous sequence
of line segments. This can be handled by storing all Shape PolyLines as WKB
MultiLineStrings. A Shape Polygon can similarly contain multiple outer rings
which is not allowed in a WKB Polygon. This can be handled by storing all
Shape Polygons as WKB MultiPolygons.

Another difference between different geometry formats is how points are or-
dered in the rings of a polygon. In a Shape Polygon, the points in an outer ring
must be listed in clockwise order. Points in an inner ring must be listed in counter-
clockwise order. In the WKB specification, the order is unspecified. This means
that rings can be converted directly from Shape to WKB without worrying about
the order of the points.

4.5 Spatial data retrieval

4.5.1 Indexing

Spatial data requires a different kind of indexing than normal relational data be-
cause it is two-dimensional. Many types of spatial indexing techniques have been
developed. Research has shown that even a basic spatial index is enough to cause
very significant improvements in spatial data access [14]. There are three main
categories of spatial indexes: grid indexes, quadtrees and R-trees. The most com-
mon type of spatial index in spatial databases is the R-tree [8].

A spatial search selects from a table all features that are in a specified spatial
relationship with a query geometry. This can be done in two steps. They are called
primary and secondary filtering [20] or filter step and refinement step [21].

Primary filtering

Primary filtering uses only the spatial index to select candidates. This makes it
inaccurate and can cause it to return too many hits, but never too few.

Secondary filtering

Secondary filtering is typically used in combination with primary filtering, but can
also be used alone, but with much lower performance because the spatial index
is not used. Each geometry is compared to the query geometry with a function
checking the spatial relationship between the two geometries.



22 CHAPTER 4. THEORY

4.5.2 Clipping
Many operations can be applied to the result of a spatial query. One of them is
the Intersection function which returns a geometry that represents the point set
intersection with another geometry [17]. If a rectangle has been used for spatial
selection, the same rectangle can be used with the intersection function to remove
all parts of all geometries that are outside the rectange. I will refer to this as
clipping. This will reduce the size of the returned data without affecting the data
inside the requested rectangle.

4.6 Caching
A cache is a collection of data duplicating original values stored elsewhere or
computed earlier, where the original data is expensive to fetch or compute relative
to reading the cache 1. When a requested data item is found in the cache, it is
referred to as a cache hit. If it is not found, the cache has to fetch it from the
original location. This is referred to as a cache miss. The cache hit ratio is the
total number of cache hits divided by the total number of cache requests.

4.6.1 Cache replacement algorithms
When there is not enough space to insert more data in a cache, some old data
must be deleted. This is called cache replacement. Cache replacement algorithms
usually try to maximize the cache hit ratio by attempting to keep the data items
which are most likely to be referenced in the future in the cache [23]. A simple
and common strategy is to delete the least recently used (LRU) items until there
is enough space.

More sophisticated cache replacement algorithms may also try to minimize
the cost of cache misses. They will try to keep data items which took a long time
to fetch.

Special replacement algorithms for spatial data have been developed. Brinkhoff
[2] demonstrates that a spatial page-replacement algorithm outperforms LRU for
some distributions, but not for all investigated query sets.

4.6.2 Cache consistency algorithms
Cache consistency algorithms enforce appropriate guarantees about the staleness
of cached data items [23]. The consistency requirements can be very different
for different types of caches. Cache consistency algorithms for database systems

1http://en.wikipedia.org/wiki/Cache



4.6. CACHING 23

usually enforce strong consistency (i.e. no stale data returned to clients) while
web servers can have more relaxed consistency requirements.

4.6.3 Pre-fetching
A common way to speed up the response time of a cache, is to try to predict which
data items will be requested in the future and fetch them before they are needed.
Kang [12] proposes a tile-based combined pre-fetching and cache replacement
algorithm. It uses the global access pattern of all users to find probable future
tile transitions. Tiles likely to be accessed in the future are pre-fetched. Tiles
unlikely to be accessed in the future can be replaced when the cache is full because
transition probabilities are already calculated.



24 CHAPTER 4. THEORY



Chapter 5

Architecture

In this chapter, I give an overview of the architecture consisting of a map database,
a map application and a cache.

This is a client/server architecture where the map application is the client and
the map database is the server. The problem I wanted to solve was that bandwidth
on a mobile terminal is limited and sometimes expensive. I wanted to introduce
a cache between the client and the server to reduce the amount of network traffic
between them.

The map database is an ordinary spatially enabled database system with no
custom functionality, accessed through a standard database API. The client and
the cache was developed specifically for this thesis.

5.1 System overview

One of the choices I had to make was where to insert the cache. It could be lo-
cated anywhere between the client and the server. The possible locations can be
divided into three groups. The cache can be part of the central system along with
the database, it can be placed at the edge of the network the client is connected to,
or it can be included in the mobile terminal. The following sections will describe
each of these alternatives in more detail. One of them was selected for implemen-
tation. Based on the testing and analysis of this implementation, the two others
are discussed in chapter 9.

5.1.1 Centralized cache

This architecture is illustrated in figure 5.1. The cache is located on the same
server as the database. The client will connect via the internet either directly to

25



26 CHAPTER 5. ARCHITECTURE

Cache ClientDB

Figure 5.1: Centralized cache

the cache or to a frontend service. With this architecture, it is even possible to
systematically cache all data before making the cache available to clients.

Advantages

• Spatial searches can be computationally intensive. A cache will reduce the
CPU load.

• Doesn’t use memory resources in the clients.

• Powerful hardware can be used for the cache.

• Storage is less expensive on a server.

Disadvantages

• Databases already have built-in caching, so the added effect may be small.

• The cache may compete with the operating system’s caching of disk pages
if the memory is limited.

• Response time will be higher than with a local cache.



5.1. SYSTEM OVERVIEW 27

Cache

Client

Client

Client
DB

Figure 5.2: Distributed cache at the edge of the network

5.1.2 Distributed cache at the edge of the network

This architecture is illustrated in figure 5.2. It is typical for applications where
a number of potential users are located at the same place such as in a train or
on a ship with a wireless network, and we want to leverage spatial search with
minimal access to the central database due to limited or expensive bandwith (e.g.
satellite connection). I will call this a subnet cache because it serves users in a
single subnet. If the client has too little memory to allow caching, this is a good
solution.

Advantages

• Doesn’t use memory resources in the clients.

• Powerful hardware can be used for the cache.

• Cached data can be available when the connection to the remote server is
down.

• The users in a subnet may be interested in the same content which may be
different from the users in other subnets.

• Response time will be lower than with a centralized cache due to lower
network latency.



28 CHAPTER 5. ARCHITECTURE

Cache ClientDB

Figure 5.3: Distributed cache in the mobile terminal

Disadvantages

• Response time will be higher than with local cache.

• Requires the client to communicate with the local network. Not all terminals
may have this capability.

5.1.3 Distributed cache in the mobile terminal
This architecture is illustrated in figure 5.3. The cache is installed locally in the
mobile terminal and uses only the terminal’s memory. As mobile terminals are
becoming more and more powerful, this may be an attractive solution.

The network connection to the database is the bottleneck in this architecture.
It is important to minimize the size of the data sent over the network.

Advantages

• Very quick response when requested data are in the cache.

• Cached data can be available offline.

Disadvantages

• Cache capacity is limited by device resources.

• More expensive memory in the mobile terminal.



5.2. CONSTRAINING THE PROBLEM 29

5.2 Constraining the problem

I have decided to concentrate on the distributed cache in the mobile terminal since
this is the most interesting of the architectures due to the popularity of mobile
terminals such as laptops, SmartPhones and PDA devices with significant local
resources. In order to focus on the cache performance, I have decided to use a
standard laptop as the target mobile teminal used in the performance tests.

5.2.1 System architecture

Because the cache is local, it was developed as a static library and linked into
the clients. The clients control the initialization of the cache and specifies which
database to connect to, and which database table to fetch data from.

5.2.2 Single table

A cache can only contain data from one table. The map application will create
multiple caches in order to display multiple map layers.

5.2.3 Single projection

The test dataset is in UTM 32. The cache does not support projection transforma-
tion on the fly. If the system should cover a larger geographic area like Europe,
the UTM projection could not be used because of too much distortion.

5.2.4 Geometry types

I only test with lines and polygons because the rendering library has no point
primitives. Text can be positioned by a point layer, but because the rendering
library is intended for a slightly different use, text is not rendered in a readable
way.

5.2.5 Direct database access

In a real scenario, the client application would most likely not communicate di-
rectly with the database because of security issues and other technical considera-
tions. A web service or some other frontend would handle the requests from the
application and perform the appropriate database query. For simplicity, this extra
layer has been omitted in this architecture.



30 CHAPTER 5. ARCHITECTURE

5.3 Database
The database is an essential part of the architecture. The choice of a database
system was limited by the requirement of spatial support. The database system
had to support geometric data types, spatial indexing and search, and clipping.
The most common commercial option is Oracle Database. Except for clipping, all
required spatial functionality is part of the standard database system. An optional
extension called Oracle Spatial includes clipping support.

The cost of a commercial database system like Oracle Database forced me to
find an alternative. There are two major open source database systems available:
MySQL 1 and PostgreSQL 2. MySQL has support for geometric types and spatial
indexing and search, but not clipping. PostgreSQL in itself has no spatial sup-
port, but the third-party PostGIS 3 extension adds all the functionality I needed.
Because it is also free to use, this was the obvious choice.

5.3.1 Interface
I used the Open Database Connectivity (ODBC) API to communicate with the
database. This is a standard API for database access developed by Microsoft and
supported by most database systems. I made my own abstraction layer which in
theory should make it easy to add support for other spatial database interfaces
such as Oracle Spatial4 or ArcSDE5.

5.3.2 Indexing
PostGIS has two spatial index implementations. Both are based on R-trees. The
index used in this thesis, is an R-tree implementation on top of a GiST [13] index.

PostGIS has no way way to do only primary filtering. It has the “&&” op-
erator which uses the spatial index for a primary filtering, but also eliminates
geometries whose bounding box is disjoint from the query’s bounding box. For
secondary filtering, it supports all the spatial relationship functions specified by
Open Geospatial Consortium’s specification of an SQL interface for simple fea-
tures [18].

1http://www.mysql.com/
2http://www.postgresql.org/
3http://postgis.refractions.net/
4http://www.oracle.com/technology/products/
5http://www.esri.com/software/arcgis/arcsde/



Chapter 6

Implementation

In this chapter, I will describe the design and implementation of the cache, the
client application and the test framework. Figure 6.1 illustrates how the different
parts of the system are related to each other. The grey parts were already available.
The white parts were impemented as part of the work with this thesis.

6.1 Development tools
The cache, the MapBrowser application and the test framework was developed in
C++ on Microsoft Windows XP Service Pack 2 with Microsoft Visual Studio 6.0
and Microsoft Platform SDK for Windows Server 2003 Service Pack 1. The test
executables were built in Release mode with default optimizations.

6.2 Data format
I needed a data format for internal representation of geometries with attributes. I
identified some essential requirements, evaluated some existing formats and even-
tually decided to create a new format specifically for this cache implementation
as explained below.

6.2.1 Requirements

I wanted the data format to meet all or most of the following requirements:

• It must be general enough to support different database backends. Specifi-
cally, it must allow line geometries with multiple disjoint lines and polygon
objects with multiple outer rings, not only because this is allowed in Shape

31



32 CHAPTER 6. IMPLEMENTATION

PostGIS
database

Database interface

ODBC driver

Cache

Test program MapBrowser

Figure 6.1: System overview



6.2. DATA FORMAT 33

which is a common format for distribution of map data, but also because
clipping can split geometries into multiple disjoint parts.

• Orientation of polygon rings must not be significant. This is because ring
orientation is insignificant in WKB which is a common standard for spatial
database interfaces.

• It must support text attributes which can be used as labels in a map.

• It must support at least one non-spatial attribute per geometry in addition
to the text attribute. This can be used to control the style of rendered items
(e.g. color or line width).

• It must be possible to move and copy records fast without having to see in-
side them. This means that the record size must be stored in a fixed location
inside the record.

• Alignment of data items in memory is important for performance and re-
quired on some hardware architectures [15]. All data items must be aligned.

6.2.2 Existing formats
Before I decided a define a new format, I evaluated some existing formats to see
if they could meet the requirements above. Textual formats like Well Known Text
(WKT) [17] and Geography Markup Language (GML) [16] were not considered
because textual representation is less efficient than binary in terms of space and
processing time.

The following formats were evaluated.

Shapefile

The Shapefile format was described in chapter 4.
This format fails to meet the alignment requirement, and the orientation of

rings is significant. It has a complete separation of spatial and non-spatial data.
This makes it less useful as a format for geometries with associated non-spatial
attributes.

Well Known Binary

Well Known Binary (WKB) was described in chapter 4.
This format also fails to meet the alignment requirement. The total record size

for some geometry types is not easily accessible. A more serious shortcoming is



34 CHAPTER 6. IMPLEMENTATION

that it has no support for embedded non-spatial attributes. This makes it unsuitable
for use in the cache.

6.2.3 New format

Because I was unable to find a format that met my requirements, I defined a new
format which I call GeoCache Area (GCA). Appendix A contains a detailed de-
scription and illustrations.

The format contains the following structures:

Feature record Representation of a single map feature. It contains the coordi-
nates of a geometric object, an optional text string and another optional
non-spatial attribute.

Area record A sequence of feature records. It starts with the number of geome-
tries and ends with an end-of-record marker.

Cache line This is an area record with more data and functionality. It contains
the following information:

• Time of creation.

• Time of last update.

• Time spent fetching the data from the database.

• Position in the 2D tile index (described later).

• Request number.

• Pointer to previous and next cache line in the sorted cache line list
(described later).

This format meets all the requirements above at least partially as explained
below.

Multi-types

Like in WKB, there are special types for geometries with multiple disjoint lines
or multiple disjoint outer rings. I will refer to them as multi-types.

Ring orientation

The orientaton of rings is by definition not significant.



6.3. CACHE DESIGN 35

Text attribute

Each geometry can contain a text string which can be used as a label in the map.

Other non-spatial attribute

Each geometry can contain a non-spatial attribute in addition to the text attribute.
The available types are listed in table A.4 .

Fast handling of records

Geometry records have their size stored in a fixed location. This makes it possible
to move and copy records very quickly.

Alignment

The format has been designed to ensure alignment for all data items up to 4 bytes.

• 4-byte alignment of the first feature record in an area record is ensured be-
cause it is only preceded by a 4-byte field. Alignment of the following
feature records is achieved by inserting extra bytes of padding after each
feature record.

• Inside a feature record, all fields before the non-spatial attribute and the
label are either 4 or 8 bytes, thereby preserving 4-byte alignment.

• The non-spatial attribute follows next. It can have any size from 1 to 8 bytes,
which means that nothing is known about the alignment of fields after it.

• The last field is the label. Because it consists of 1-byte characters and a
1-byte length, it has no alignment requirements.

6.3 Cache design
The internal data structures are illustrated in figure 6.2. The following sections
describe their functions and relationships.

6.3.1 Tiles
It is infeasible to cache individual features, so I had to form larger units of features.
A simple method is to logically partition the space of data into rectangles of equal
size. Each rectangle is called a tile [12]. Data are fetched from the database



36 CHAPTER 6. IMPLEMENTATION

2D tile index

Sorted tile index

Per-request tile table

Per-request geometry index

Figure 6.2: Cache internals

in units of one tile. This is efficient because spatial indexes are also based on
partitioning the space into rectangles.

6.3.2 2D tile index

The 2D tile index is a two-dimensional array of cache line pointers. There is one
pointer for each possible tile. This array is used to quickly determine whether a
specific tile is in the cache. If a tile is present in the cache, the corresponding
pointer points to the cache line object representing this tile.

6.3.3 Sorted tile index

All cache line objects are connected in a doubly linked list. This list is ordered
with the most preferred candidate for removal first and the least preferred last.
The ordering is determined by the cache replacement algorithm being used. This
is explained later.



6.4. CACHE ALGORITHM 37

6.3.4 Per-request tile table
This table is specific for each request. Each element in the table contains a pointer
to a cache line which contains a tile covered by the request. It also contains a
pointer to a geometry inside the tile.

6.3.5 Per-request geometry index
This index is specific for each request. Each element in the index points to a
geometry which will be included in the response.

6.4 Cache algorithm
Pseudo code for the cache algorithm is presented in figure 6.3.

6.4.1 Clipping
Clipping can be done in three places:

• By the database.

• By the cache.

• By the application using the cache.

An advantage of doing it in the database is that the amount of data traffic
between the cache and the database is reduced. This is important if the bandwidth
is low or the data traffic cost is high.

6.4.2 Merging tiles
When a request intersects multiple tiles, the geometries from the tiles must be
merged into a common area record.

Duplicate elimination

If clipping is enabled, all geometries will be unique and there is no need for elim-
inating duplicates. However, if clipping is disabled, geometries will be included
in multiple tiles if they cross the tile borders, and duplicates must be eliminated in
the merging process.

The geometries in a tile are sorted by geometry id. This means that the tiles
have a common ordering of geometries. Duplicate elimination is done by a variant



38 CHAPTER 6. IMPLEMENTATION

of phase two of the Two-Phase, Multiway Merge-Sort algorithm [6]. It uses the
per-request tile table (see figure 6.2) to store a pointer into each tile. The pointers
are initialized to point to the first geometry in each tile. In each iteration, the
target of each pointer is checked, and the geometry with the lowest geometry id
is remembered. If any other geometries are found with the same id, the pointers
for these tiles are advanced to the next geometry in the tile. At the end of each
iteration, a pointer to the geometry with the lowest id is added to the per-request
geometry index (see figure 6.2), and the size of the geometry is added to the total
geometry size.

When all pointers have reached the end of its tile, a buffer with space for all
the geometries is allocated, and all geometries in the per-request geometry index
are copied into the buffer.

Filtering

Geometries that don’t intersect the request rectangle are excluded from the re-
sponse. For points, this is simply a matter of checking if the point is inside the
request rectangle. For lines, the bounding box of the line is calculated and tested
for intersection with the request rectangle. For polygons, it is enough to calculate
the bounding box of the outer ring(s) because this is guaranteed to contain all the
inner rings. For multi-types, a common bounding box is calculated for all the
parts.

A potential optimization has been discovered but not tested. It is possible
check in advance which tiles are fully contained in the request rectangle. All
geometries from these tiles are guaranteed to intersect the request rectangle and
don’t need to be tested.

6.4.3 Bypassing the cache

If a request covers a large area and thus intersects many tiles, the cache overhead
can be so high that it is more efficient to query the database directly, depending
on how many of the tiles that are already cached. More importantly, the total data
size of the tiles intersected by a request rectangle must not exceed the maximum
data size for the cache.

This could be solved by setting a maximum size for requests handled by the
cache, and bypass the cache if a request is larger. However, in a real system, a
cache will usually be used only for a limited range of scales, and another cache
with less detailed data and a larger tile size will be used for larger requests.

In this cache implementation, the cache will never be bypassed. The request
rectangles in the tests are assumed to be within an acceptable range.



6.4. CACHE ALGORITHM 39

6.4.4 Cache replacement
When the cache is full and another tile is about to be inserted into the cache, one
or more exisiting tiles must be dropped. This is called cache replacement. The
selection of candidates for replacement is an important topic, because the choices
made here can have a great impact on the cache’s performance.

Replacement is triggered by the function which is used to allocate space in the
cache for a new cache line. If the available space is less than the requested size,
existing tiles are dropped until there is at least 10% of the total data size available.
This value is chosen somewhat arbitrarily. More experimentation is necessary to
find an optimal value.

Priority

The cache lines are sorted according to a replacement priority. When the cache
is full, cache lines are removed from the start of the list until there is enough free
space. The replacement priority can be based on a number of available values:

• Time of last access.

• Data size.

• Time spent fetching the tile from the database.

• Number of accesses. (Not available, but easy to implement.)

• A combination of the above, either in a specified order or the sum of the
attributes, each multiplied by a weight.

The sorting order is implemented by an overridable comparison method in
the cache class. A subclass of the cache class can override this method to get a
different ordering. The cache lines are sorted in a doubly linked list based on this
comparison function.

Currently, cache lines are sorted by time of last access. Cache line insertion is
optimized for this sorting order. With another order, cache line insertion may be
less efficient.

Locking cache objects

When the cache is full, some old cache lines must be dropped. But it is important
that the cache doesn’t drop a cache line which is needed by a request in progress
as this will cause unnecessary delays and possibly even deadlocks. Because this
is a single-user cache where only one request will be processed at a time, the
solution is simple. At the start of each request, the cache tags all cache lines that



40 CHAPTER 6. IMPLEMENTATION

are cached and that will be used by this request with a number which is unique
for each request. All cache lines created for this request are tagged with the same
number. The cache will not drop cache lines whose tag is identical to the current
request number. The tag is simply a number which is set to 0 when the cache is
initialized and incremented for each request. When it wraps around, it is highly
unlikely that any cache lines with low numbers still exists.

In a multi-user cache, this method will not work because multiple requests
with different request numbers can be in progress simultaneously.

6.4.5 Cache consistency
Cache consistency is usually not an issue in map systems because the data are
static.

Expiration

When a cache line is created, the time of creation is stored in the cache line struc-
ture. This makes it possible to force cache lines to be discarded at a certain age.
In this cache implementation, no expiration mechanism has been implemented.

6.5 Tile size
Selecting a tile size involves making a tradeoff between data redundancy in the
database communication and overhead in tile retrieval and administration. A small
tile size reduces the amount of data redundancy because the tile borders will better
match the request rectangle, but it also increases the number of database queries
and the tile administration overhead. If clipping is disabled, a small tile size will
also increase the amount of duplication of lines and polygons across tiles. A large
tile size on the other hand, increases the amount of redundancy, but reduces the
number of database queries and the tile administration overhead. If clipping is
disabled, it reduces the amount of duplication of lines and polygons across tiles.

6.6 Database connection

6.6.1 Queries
The contents of a layer is defined by an SQL query. This query is required when
initializing the data source which will be used when initializing the layer’s cache.
If clipping is enabled, the query must contain the appropriate clipping statement.
When the cache fetches a tile from the database, it appends the tile’s bounding box



6.6. DATABASE CONNECTION 41

Client requests an area from cache.
If caching is enabled:

Translate the area coordinates to tile index values.
Create an array to hold tile pointers, one for each intersecting tile.
For each intersecting tile:

If already in cache:
Update the tile’s last-used value.
Tag the tile with request number.
Move to sorted position in sorted tile index.

For each intersecting tile:
If not in cache:

Delete some existing tiles if the cache is full.
Create a new tile.
Tag the tile with request number.
Insert the tile into the 2D tile index.
Fetch data into the tile.
Update the tile’s last-used value.
Insert the tile into the sorted tile index.

Insert the tile into the array of intersecting tiles.
Create an index of unique geometries from the intersecting tiles,
excluding geometries that don’t intersect the request rectangle.
Copy all selected geometries to the output buffer.

Else:
Fetch the whole area directly from the database.
Convert the data to output format.

Figure 6.3: Pseudo code for the cache algorithm



42 CHAPTER 6. IMPLEMENTATION

Decoding
buffer

Base64
decoding

Geometry buffer

Default
encoding

With base64
encoding

Figure 6.4: Database response with and without Base64 encoding

to the query, using the “&&” operator. As explained in chapter 5, this operator
takes advantage of the spatial index. An “ORDER BY” clause sorting the result
by geometry id is also appended to the query because the duplicate elimination
algorithm requires that geometries are sorted.

6.6.2 Compression

Base64 encoding [11] of the data was implemented for reasons explained later in
chapter 8. It was implemented by creating a new buffer and reading data into this
instead of the geometry buffer when compression is turned on. Then the encoded
data are decoded into the geometry buffer as illustrated in figure 6.4. This required
a minimum of code changes. The compression can be enabled and disabled with
a parameter to the initialization function.

The term compression needs some clarification. Base64 is not a compression
algorithm, but a textual encoding of binary data which takes more space than
the binary representation. But if the data is not encoded explicitly, the database
protocol will automatically encode the data in an even less efficient way. The
exact figures will be presented in chapter 8.



6.7. CACHE INTERFACE 43

Name Type Description
szDSN string Database connect string.
szQuery string SQL query.
fClip boolean Clipping on/off. If this is true, the

database clips the geometries along the
area boundaries.

labelColumn unsigned int Number of the label column in the query
if a text column is included.

attrColumn unsigned int Number of the non-spatial attribute col-
umn in the query if there is any.

fCompress boolean Compression on/off. If this is true, the
geometries will be encoded in Base64
to avoid hex-encoding, which takes more
space.

Table 6.1: GEO_DATASOURCE_POSTGIS::FInit

6.7 Cache interface

6.7.1 API

The cache API consists of two classes. GEO_DATASOURCE_POSTGIS repre-
sents a layer from a PostGIS database, and GEO_CACHE represents the cache.
The most important methods of these classes are described below. In the following
tables, all parameters to these methods are listed with name, type and description.
The type GEO_GEOMTYPE is an enum type containing all supported geometry
types.

GEO_DATASOURCE_POSTGIS

This class inherits from the abstract class GEO_DATASOURCE. It acts as a wrap-
per around a database connection and contains all the information necesssary to
create a query for the layer it represensts. The following methods are important.

FInit Initialize the data source. This is specific for PostGIS. The parameters are
listed in table 6.1.

GetArea Get feature data in GCA format for a specified area. The parameters are
listed in table 6.2 This method is used by the cache to get data for a tile.



44 CHAPTER 6. IMPLEMENTATION

Name Type Description
x1 double Lower left x-coordinate
y1 double Lower left y-coordinate
x2 double Upper right x-coordinate
y2 double Upper right y-coordinate
type GEO_GEOMTYPE Geometry type (This is necessary in case

clipping has created multiple geometries
of different type. Then the data source
needs to know which geometries to re-
turn. Why isn’t this an initialization pa-
rameter?)

pLine pointer Pointer to an area record which will be
filled with data.

pCache pointer Pointer to the cache which uses this data
source.

Table 6.2: GEO_DATASOURCE_POSTGIS::GetArea

Cache GEO_CACHE

This class contains the cache implementation. The following methods are impor-
tant.

FInit Initialize the cache. The parameters are listed in table 6.3

GetArea Get feature data in GCA format for a specified area. The parameters are
listed in table 6.4

6.8 Viewer application
In order to test the usability of the cache, I developed a map application called
MapBrowser. It had a number of purposes. First of all, I needed a tool to test and
debug the cache while I developed it. Second, I needed a visual verification of
the response from the cache. Third, I needed to get an initial feel for the response
times and the effects of caching. Finally, I wanted to demonstrate the use of
multiple caches, each contributing to one layer in a map.

6.8.1 Features

MapBrowser has the following features.



6.8. VIEWER APPLICATION 45

Name Type Description
pDataSource pointer pointer to a data source object.
x1 double Lower left corner of world.
y1 double Lower left corner of world.
x2 double Upper right corner of world.
y2 double Upper right corner of world.
geomType GEO_GEOMTYPE Type of geometry in this cache.
numTilesX unsigned integer Number of tiles we divide the world

into horizontally. This is only used if
tileWidth and tileHeight are 0.

numTilesY unsigned integer Number of tiles we divide the world into
vertically. This is only used if tileWidth
and tileHeight are 0.

maxSize integer Max space to use for cache data. 0: no
limits, <0: no caching.

tileWidth double Optional horizontal tile size.
tileHeight double Optional vertical tile size.

Table 6.3: GEO_CACHE::FInit

Name Type Description
x1 double Lower left corner of area.
y1 double Lower left corner of area.
x2 double Upper right corner of area.
y2 double Upper right corner of area.
pDataSize pointer Pointer to variable where data size will be

returned.
ppData pointer Pointer to pointer to data.
pInfo pointer The cache can return info in this struct.

Table 6.4: GEO_CACHE::GetArea



46 CHAPTER 6. IMPLEMENTATION

Zoom in/out

There are two toolbar buttons for zooming, one for zooming in and one for zoom-
ing out. When one of them is depressed, a click in the map will recenter on that
point and zoom in or out. The SmartMap API makes it possible to zoom and pan
within the already fetched data, but because the purpose of the application is to
test the cache, I always fetch new data from the cache when the view coordinates
are changed.

Pan

There is a toolbar button for panning. When it is depressed, a click in the map
will move the map view in the direction of the click. The map is divided into
nine invisible zones in a three by three grid. A click in the center zone has no
effect. A click in the left middle or right middle zone will move the map view
horizontally. A click in the upper middle or lower middle zone will move the map
view vertically. A click in any of the corner zones will move the map diagonally.
The step size is one half of the map view size.

Resize

The window can be resized. When this happens, the existing map data will be
redrawn, but the application will not fetch more data from the cache to fill any
new areas that may come into view. There is a refresh button that can be used to
fetch new data and refresh the display after resizing.

Multiple layers

The first implementation of the MapBrowser application supported only one layer
of either line, polygon or text data, and the display was only black and white.
This was enough to test the performance, but it wasn’t a very useful application.
It was extended to support multiple layers. Color and style can be set individually
for each layer. See figure 6.5. An information window (see figure 6.6) was added
because the existing interface was unable to display timing and other info for more
than one layer.

Results

The status bar in the application window displays the following information for
the last map update:

• Lower left and upper right coordinates of the current view.



6.8. VIEWER APPLICATION 47

Figure 6.5: MapBrowser application window

Figure 6.6: MapBrowser information window



48 CHAPTER 6. IMPLEMENTATION

• Current scale.

• Total time spent fetching data from the caches in milliseconds.

• Time spent rendering the map in milliseconds.

The information window shows the following information per layer:

• The indexes of the lower left tile and the number of tiles, in each direction,
covered by the query. These values are 0 if the cache is disabled.

• Time spent fetching data from the layer’s cache in milliseconds.

• Data size in bytes.

• The amount of duplication across tiles relative to the size of the data after
duplicate elimination. This value is 0 if clipping is enabled.

• The amount of data outside the request rectangle but inside the intersecting
tiles relative to the total amount of data in the intersecting tiles.

• Whether the cache was used.

• How much of the memory reserved for the cache is in use.

6.8.2 Implementation details
MapBrowser was created with Microsoft Foundation Classes (MFC). It is based
on the Document/View framework which is Microsoft’s implementation of the
Model-View-Controller pattern [5]. The Document object handles the initializa-
tion and use of the caches. The View object renders the data from the cache using
the SmartMap library.

Due to the general-purpose nature of the SmartMap library, it has a rather
complex interface. I created an object-oriented wrapper that hides the details and
provides a much simpler rendering interface for use by the MapBrowser applica-
tion.

Scale limitation

The MapBrowser application can display multiple layers. Each layer can have a
lower and upper scale limit. When the map scale is outside this range, the layer
will not be visible. This makes it possible to ignore very dense layers when the
query rectangle is large, thus avoiding very long response times.



6.9. PERFORMANCE TESTS 49

6.9 Performance tests
The performance tests are implemented as a single executable. It can run a number
of different tests described in chapter 7. Which test to run must be specified at
runtime. It reads test cases in the form of coordinates of request rectangles from
a file and runs the specified test once for each test case. The results are written to
stdout, and more detailed information is written to stderr. It is possible to specify
an output file for the results and a log file for the details.

6.9.1 Parameters
The test program has the following configurable parameters:

• File with test cases

• Which test to run

• ODBC data source name.

• Database table name.

• Type of geometry.

• Enable/disable clipping.

• Output file name.

• Log file name.

In addition the different tests have the following parameters:

Clipping test

• Output directory for rendered maps

Cache size test

• Maximum cache size

• Minimum cache size

• Cache size step

• Tile size



50 CHAPTER 6. IMPLEMENTATION

Tile size test

• Minimum tile size

• Maximum tile size

• Tile size step

• Cache size



Chapter 7

Method

In this chapter, I will present the methods and test data used in the analysis.

7.1 Test data

7.1.1 Dataset
Most of the geographic data used in this thesis are from the MultiNet product
sold by Tele Atlas 1. MultiNet contains a wide range of vector data and covers
64 countries as of this writing. The data used here covers the southern part of
Norway. It covers 12 of the 19 Norwegian counties and contains 8 of the 10
largest cities in Norway by population. Figure 7.1 illustrates the coverage of the
MultiNet data. The data covers the dark gray area in the map. Note that it shows
administrative boundaries, not physical boundaries.

A separate layer of buildings provided by the Norwegian Map Authority was
used because buildings are not included in the MultiNet product. This layer covers
only the city of Oslo.

All data were provided in UTM 33. They were converted to UTM 32 after
import because most of the data are within this zone. The first row of table 7.1
contains the coordinates of the bounding box of all the layers.

The layers used in MapBrowser are listed in table 7.2. The road layers were all
extracted from the same road layer in the Tele Atlas data. A road class attribute
was used to separate the roads into three levels. In the original data, the road
layers are divided into very small parts because they contain a lot of attributes.
Every time the value of one of the attributes changes, a new line geometry must
be started. This creates a lot of unnecessary overhead when using the data. A
Shapefile manipulation program called ShapeTool developed by Faster Imaging

1http://www.teleatlas.com/

51



52 CHAPTER 7. METHOD

x1 y1 x2 y2
Entire dataset, UTM 32 259000 6424000 706000 6954000
Oslo UTM 32 576833 6626705 614112 6658192

Table 7.1: Bounding boxes of the whole dataset and the area used for testing

Name Type Source
ta_lc Land cover Tele Atlas
ta_wa Water Tele Atlas
buildings_oslo Large buildings Norwegian Map Authority
roads78_m Small roads Tele Atlas
roads3456_m_2 Medium roads Tele Atlas
roads012_m_5 Large roads Tele Atlas

Table 7.2: Layers used in MapBrowser and the performance tests

was used to combine adjacent roads with the same road name into a common
geometry.

For the performance tests, the largest line layer (roads78_m) and the largest
polygon layer (lc) were used.

7.1.2 Test cases

The performance tests were run with a set of random test cases. A test case rep-
resents a request from a client and is defined by the coordinates of the lower left
and upper right corner of the request rectangle.

It would have been better to have a set of test cases representing a real usage
pattern. For a cache to be efficient, it depends on some kind of predictability in
the requests. In a typical map system, some urban areas will be visited frequently,
while other rural areas will never or very seldom be visited. With a random set of
test cases, this predictability is absent. However, a realistic test of test cases was
not available and is hard to create.

If I had used random test cases for the entire area covered by data, cache hits
would have been very rare. Instead, I restricted the test area to a rectangular area
of about 1174 square kilometers around the city of Oslo. The coordinates of the
area are listed in the second row of table 7.1

I decided to use only square request rectangles, based on the assumption that
when a user centers the map around a point of interest, he would be equally inter-
ested in context is all directions.



7.1. TEST DATA 53

Figure 7.1: Coverage of the MultiNet data



54 CHAPTER 7. METHOD

The size of the test cases are between 300x300 meters and 3000x3000 meters.
I chose these limtits by using MapBrowser to find a reasonable minimum and
maximum size of a map at the innermost zoom level. See figure 7.3 and figure 7.4
for examples of the lower and upper size limit. Because of large zoom steps in
MapBrowser, it was not possible to get maps of exactly 300x300 and 3000x3000
meters. The former is close to 300x300, but the latter is about 2300x2300.

Generating random test cases

The test cases were generated with a perl script. It generates a number of squares
of random size between a specified minimum and maximum size at a random
position within the specified bounding box. The squares will always be fully
inside the bounding box. The coordinates of the lower left and upper right corners
of the query rectangles are written to a file which will be read by the performance
tests.

I also developed a small program that can create a shape file containing all
query rectangles from a file as polylines. This makes it easy to get an impression
of the amount of overlap between the requests and verify the randomness of the
test cases. Figure 7.2 shows the 1000 test cases used in the performance test.

Ignoring requests with empty results

It can be argued that requests with empty results should be ignored in the perfor-
mance tests because areas with no data will rarely be viewed by a real user of a
real map application. However, because each layer has its own cache, an empty
response for one layer doesn’t mean that the same area will get an empty response
for all layers. For this reason, I decided to not ignore requests with empty results.
The clipping test is an exception. Because the rendering library will not render an
empty dataset, I had to ignore requests with empty results in the clipping tests.

7.2 Timing
All time measurements in MapBrowser and the performance tests are in clock
time, because the actual elapsed time is what a user of a map application sees.
I used QueryPerformanceCounter and related functions, which is part of a high-
resolution timing API built into Windows. Anti-virus software was disabled to
prevent it from interfering with the test results. All tests were run at least twice and
the results compared to verify that the tests were not disturbed by any temporary
performance drops on any of the machines involved or on the network, and the
confidence interval was sufficiently small.



7.2. TIMING 55

Figure 7.2: Random test data with 1000 cases



56 CHAPTER 7. METHOD

Figure 7.3: Example map of size 300 x 300

Figure 7.4: Example map of size 2300 x 2300



7.3. INFRASTRUCTURE 57

Name Operating system Processor Memory
Machine A Windows XP Professional Intel Pentium M 1.8GHz 1.5 GB
Machine B Linux (Fedora Core 4) Intel P4/Xeon 2.80GHz 2 GB

Table 7.3: Specifications of test machines

The resolution of the timing API is approimately 0.28 microseconds (µs). The
function call overhead is about 1.7 (µs). In MapBrowser and the performance
tests, I record the time in milliseconds (ms) with two decimals which is well
within the accuracy of the timing API.

All performance tests measure average response time over a number of itera-
tions. The timer is “started” immediately before calling GEO_CACHE::GetArea()
and “stopped” immediately after. The times are accumulated, and at the end, the
total time is divided by the number of iterations to get the average response time.
A manual check was performed to ensure that the confidence interval was small
enough for the measurements to be valid for repeated measurements using the
same data set.

7.3 Infrastructure

7.3.1 Hardware
I used two computers to test the cache. Initial testing was done on a laptop (ma-
chine A) with the clients and database on the same computer. When testing with a
remote database, I used a server (machine B) for the database. The specifications
of the two machines are listed in table 7.3.

7.3.2 Network
The bandwidth was about 5600 kilobits per second (kbps) from the server to the
client and about 610 kbps from the client to the server.

7.3.3 Software
I used different software versions during development, but all tests were finally
run on PostgreSQL 8.1.5 with PostGIS 1.1.3. PostGIS was built with the GEOS
library 2 which provides geometric operations and the PROJ4 library 3 which pro-

2http://geos.refractions.net/
3http://proj.maptools.org/



58 CHAPTER 7. METHOD

vides coordinate transformations.

7.3.4 Traffic analysis

In the early phases of development, the database traffic was monitored to detect
possible bottlenecks. NetLimiter 2 Lite 4 displays bandwidth usage per applica-
tion in realtime. This was used to monitor the bandwidth used by MapBrowser.

After a problem was detected, Ethereal 0.10.6 5 was used for examining the
data packets.

MapBrowser displays response size and response time for each request. This
can be used to calculate the effective transfer rate.

7.4 Test plan

The following tests are executed with the client on Machine A and the server on
Machine B.

7.4.1 A: Clipping on/off

The first test uses fixed cache size and tile size and runs all test cases with and
without clipping in the database. Both average cache response time and average
rendering time is recorded. This is interesting as a preliminary analysis. The
results from this test will decide if clipping will be used in the rest of the tests.

Clipping tests ignore test cases with empty response because SmartMap skips
rendering if there is no data. The rendered maps are saved to file for visual in-
spection. Maps rendered with and without database clipping should be visually
identical. They are not byte for byte identical, so automatic comparison does not
work.

7.4.2 B: Vary cache size

This test uses a fixed tile size. It runs all test cases with different cache sizes and
records the average response time for each cache size. The purpose of this test is
to study the effect of varying the cache size.

4http://www.netlimiter.com/
5http://www.ethereal.com/



7.4. TEST PLAN 59

7.4.3 C: Vary tile size
This test uses a fixed cache size which may be different for each layer. It runs all
test cases with different tile sizes and records the average response time for each
tile size. The purpose of this test is to find an optimal tile size for each layer.

For each layer, the cache size will be set to the lowest cache size from test C
which gives better performance than without a cache.

7.4.4 D: Cache size revisited
A new tile size is selected for each layer based on the results of test C. Test B is
repeated with these tile sizes to see if performance can be improved by careful
selection of tile size.



60 CHAPTER 7. METHOD



Chapter 8

Analysis

In this chapter, I will present the test reults.

8.1 A: Clipping

The clipping in the SmartMap library is very fast. I wanted to see if it was better
to do a query without clipping and let the SmartMap library do the clipping than
to let the database do the clipping. If clipping is not done by the database, the
transmitted data are obviously larger and there may be duplicates when the request
covers multiple tiles. This means that duplicates must be eliminated by the cache
when merging the tiles.

The tile size used in this test was 1000x1000 meters, and the cache size was
unlimited.

The results are presented in figure 8.1 and figure 8.2. Figure 8.1 shows the
response time from the database, and figure 8.2 shows the rendering time in the
client.

For each pair of columns, the first column is with clipping in the rendering
library and the second is with clipping in the database. We see that in all cases,
clipping in the database gives the best results. We also see that data size is very
significant, because in the first part of figure 8.1, the database is doing less pro-
cessing in the case without database clipping, but the response time for this case
is much higher than in the case with database clipping since more data must be
sent to the client.

Because this test shows that clipping is the database is clearly preferable, this
was done in the remaining tests.

61



62 CHAPTER 8. ANALYSIS

8.2 B: Varying cache size

I expected to see that the performance increased with increasing cache sizes. At
some point the cache will be large enough to contain everything, and the perfor-
mance will stop increasing.

For this test, a tile size of 1000x1000 meters was used.
The results are presented in figure 8.3 and figure 8.4. We see that larger cache

gives better performance up to a point where the cache contains all the data. For
small cache sizes, the performance is worse with the cache than without.

A too small cache slows down the system because of a lot of cache replace-
ments and few cache hits. Then it is better without a cache.

8.3 C: Varying tile size

I expected to see that the performance is low with small tiles because of much
overhead, and that large tiles are slow because each query will return a lot of data.
Somewhere between the smallest and largest tile size, I expected to find an optimal
tile size.

For the lc layer, a cache size of 0.6 megabytes was used, and for the road78_m
layer, the cache size was 4.8 megabytes.

If tiles are not too small, we expect that using a cache is better than not using a
cache. In addition, we expect that the tile size will be significant. A large number
of queries caused by smaller tile sizes will slow down the cache.

We see from figure 8.5 and figure 8.6 that for the line layer, one particular
tile size is best but the polygon layer, all tile sizes above a certain limit give a
good result. The geometry type is not the only difference between the tables. The
polygons are very large compared to the lines. Without testing more tables, it is
hard to tell the reason for the different behavior.

8.4 D: Revisiting cache size

Using an optimal tile size found in test C, I expected to see a higher performance
than in test B.

For the lc layer, a tile size of 2000x2000 meters was used, and for the road78_m
layer, the tile size was 1500x1500 meters.

The results are presented in figure 8.7 and figure 8.8. We see that for both
layers, the performace increases with a careful choice of tile size. We also see that
the cache can now be smaller and still perform better than not using a cache.



8.4. D: REVISITING CACHE SIZE 63

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

lc roads78_m

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
[m

s]

Dataset

noclip
clip

Figure 8.1: Database time with and without clipping

 0

 5

 10

 15

 20

 25

 30

lc roads78_m

A
ve

ra
ge

 r
en

de
rin

g 
tim

e 
[m

s]

Dataset

noclip
clip

Figure 8.2: Rendering time with and without clipping



64 CHAPTER 8. ANALYSIS

 0

 50

 100

 150

 200

 250

 300

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
[m

s]

Cache size [bytes]

lc
without cache

Figure 8.3: Cache size with dataset lc

 0

 50

 100

 150

 200

 250

 300

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
[m

s]

Cache size [bytes]

roads78_m
without cache

Figure 8.4: Cache size with dataset roads78_m



8.4. D: REVISITING CACHE SIZE 65

 0

 50

 100

 150

 200

 250

 300

 350

 400

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
[m

s]

Tile size [meters]

lc

Figure 8.5: Tile size with dataset lc

 0

 50

 100

 150

 200

 250

 300

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
[m

s]

Tile size [meters]

roads78_m

Figure 8.6: Tile size with dataset roads78_m



66 CHAPTER 8. ANALYSIS

 0

 50

 100

 150

 200

 250

 300

 350

 400

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
[m

s]

Cache size [bytes]

lc, tile size 2000 meters
lc, tile size 1000 meters

without cache

Figure 8.7: Cache size with dataset lc and adjusted tile size

 0

 50

 100

 150

 200

 250

 300

 350

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
[m

s]

Cache size [bytes]

roads78_m, tile size 1500 meters
roads78_m, tile size 1000 meters

without cache

Figure 8.8: Cache size with dataset roads78_m and adjusted tile size



8.5. TRAFFIC ANALYSIS 67

Expression Encoding Size
the_geom Hexadecimal 200%
AsBinary(the_geom) Octal 400%
encode(AsBinary(the_geom), ’base64’) Base64 133%
encode(AsBinary(the_geom), ’hex’) Hexadecimal 200%

Table 8.1: Database response encodings

8.5 Traffic analysis
In an early phase of the development, the effective transfer rate calculated from
data size and response time displayed in MapBrowser’s information window was
surprisingly low compared to the actual bandwidth usage reported by NetLimiter.
I found that the geometries were encoded as octal ASCII numbers in a way that
increased the size by 300%.

Table 8.1 lists the possible encodings of binary data in the response from a
PostgreSQL database and how they affect the data size.

When I enabled Base64 encoding in the query and implemented a Base64
decoder in the cache, the size of the transmitted data was reduced, and the response
time reported by MapBrowser improved by more than 50%.

I have later discovered that the encoding is done by the ODBC interface. By
using PostgreSQL libraries directly, it is possible to get binary data. This means
that if the network is the bottleneck, further improvement can be achieved by
rewriting the database interface layer to use the PostgreSQL libraries.



68 CHAPTER 8. ANALYSIS



Chapter 9

Discussion

In this chapter, I will discuss the results from the analysis.

9.1 Cache replacement
LRU is inefficient as a selection criterion when the tests cases are random because
it is based on the assumption that recently requested tiles are more likely to be
requested again in the near future. A replacement algorithm considering the cost
of cache misses would probably work better with random test cases because the
cost is independent of the usage pattern. All cache lines in the cache already
contain the time spent fetching them, so extending the replacement algorithm to
include this factor is possible. But this doesn’t change the fact that random test
cases cannot tell the whole truth about the efficiency of a cache.

9.2 Cache consistency
The map data used in this thesis are very static. The MultiNet datasets are updated
a few times a year. The lifetime of the cache is short because it is an in-memory
cache which is destroyed when the application terminates. Because if this, it is
highly unlikely that map updates on the server side will cause problems in the
client. Therefore, cache consistency has been ignored in this cache implementa-
tion.

9.3 Data compression
As explained in chapter 6, a reduction in data size on the network was achieved
by encoding the data with the Base64 encoding. It was also mentioned that the

69



70 CHAPTER 9. DISCUSSION

size could have been reduced further by using the PostgreSQL libraries directly,
making it possible to transmit raw binary data.

Using a lossless compression algorithm such as Lempel-Ziv-Welch (LZW)
[22] may further reduce the size, but it is uncertain if the effect will be significant
because a dictionary-based algorithm like LZW depends on repetition in the data.

Another issue with compression is the added processing required to decom-
press the data in the client. The question is whether the increase in power con-
sumption because of decompression is higher than the reduction in power con-
sumption because of reduced network traffic.

One way to reduce the network traffic without a compression algorithm is to
use single-precision instead of double-precision floating point numbers for the
coordinates. This would reduce the size of coordinates by 50%. The precision
would still be much higher than necessary.

9.4 Reducing network traffic
The bandwidth is a bottleneck for the mobile map application, and the communi-
cation between the cache and the database could be optimized. This would require
a two part system as illustrated in figure 9.1. There are several possible models:

1. The server side component delivers compressed vector data.

2. Put the cache at the server side. The cache would always deliver one pre-
pared “package” of vectors. No duplicates will be sent over the network.
But I would get the same if I did a normal query. Not sure if this would be
useful in any way. Not useful by itself. This is a very different way to use a
cache.

3. Split the cache into two parts, one client side and one server side. Caching
will be done at both sides.

The internals of the cache subsystem can be changed without affecting the inter-
faces to the database and the client.

9.5 Alternative architectures

9.5.1 Server side caching
With a well chosen tile size, the bandwidth is the bottleneck. This means that a
server side cache would not improve performance as long as the database can fill
the bandwith. However, if the number of clients is large, the server’s processing



9.6. PROBLEMS 71

Server
side

component

Client
side

component
ClientDB

Cache subsystem

Figure 9.1: Alternative two-part cache design

power may become a limiting factor because spatial searches are computationally
intensive. In this case, a server side cache could improve performance.

9.5.2 Subnet caching

Compared to a server side cache, a subnet cache may have a significantly faster
connection to the clients than a server side cache. At the same time, this kind
of cache can be much larger than a client side cache because it can use powerful
hardware. This makes a cache very attractive in this kind of architecture.

9.6 Problems

9.6.1 Object id conflicts

Initially, I used an object id of 0 to mark the end of a sequence of geometries.
However, it turned out that the PostGIS data loader creates geometries with object
ids starting at 0. I used the highest possible number instead (0xffffffff). This will
work as long as this number is not used as an object id. This will most likely never
happen.



72 CHAPTER 9. DISCUSSION

9.6.2 Clipping
Clipping introduced a new problem. Sometimes when clipping a polygon, the re-
turn type is GeometryCollection because the result contains both lines and poly-
gons. This was discovered with MapBrowser. The solution was to handle the
response as a special case if the type was GeometryCollection and extract only
the polygons.

9.7 Possible improvements

9.7.1 Pre-fetching
Pre-fetching was mentioned in chapter 4 as a way to increase the probability of
cache hits if it is possible to predict which tiles will be used in the near future. A
disadvantage with prefetching in a mobile setting is that for some mobile/wireless
communication services the price depends on the amount of transferred data. In
this case, the user will be charged for some data he never uses.

An attractive compromise is to implement on-demand prefetching. When the
user knows that his mobile terminal is connected to a network with free traffic, he
can request pre-fetching. Then the cache will fill itself with data that the user is
likely to need in the future according to some pre-fetching algorithm.

Subnet caches open up another possibility of prefetching. If multiple subnet
caches are connected to each other and are able to identify the connected users,
they can learn from each other what the users are likely to need and start prefetch-
ing as soon as the users enter the subnet [9].

9.7.2 Parallelizing queries
If the bandwidth hadn’t been the limitation, parallelizing the requests for the tiles
covered by a request could have improved performance because a database can be
better utilized when it processes multiple requests in parallel. Parallelizing may
even an advantage when the bandwidth is limited, because without it, the network
will not be used while a query is being processed on the server.

9.7.3 Alternatives to the 2D tile index
As explained in chapter 6, a two-dimensional array is used as a tile index. This
makes it extremely quick to look up a tile. However, this tile index uses four bytes
per possible tile, and with a large area it can become quite large. The size of the
tile index used in this thesis is about 413 kilobytes. This is not much for a modern
laptop computer, but for a PDA or SmartPhone, this amount of memory may be



9.7. POSSIBLE IMPROVEMENTS 73

too large. For these platforms, another data structure must be used which requires
less memory at the expense of slightly slower lookups.



74 CHAPTER 9. DISCUSSION



Chapter 10

Conclusion and future work

In this chapter, I will draw conclusions based on the work in the previous chapters.
I will also point to some areas where further work is necessary.

10.1 Conclusions

10.1.1 Test data

Testing a cache with random tests has limited value. Real test cases representing
a typical usage pattern are necessary to get an exact figure of the expected perfor-
mance improvement of a cache. There will always be clustering of popular hits,
and this will have a positive effect by introducing the cache.

10.1.2 Encoding

The experiments have revealed that a database often uses far from optimal encod-
ing of data results. Using a standard ODBC driver, 300% overhead was measured.
Thus, binary access directly to the database is a preferred method. If the data can
be represented by single precision instead of double precision floating point num-
bers, up to 50% can be saved.

10.1.3 Clipping

Clipping features on the server side is clearly important for tables containing large
geometries when the bandwidth is limited.

75



76 CHAPTER 10. CONCLUSION AND FUTURE WORK

10.1.4 Cache size
The performance of the cache depends on the cache’s maximum data size. Larger
cache size results in better performance up to the point where the cache is large
enough to contan all data. This is exactly as expected.

10.1.5 Tile size
Tile sizes also have great impact on the performance of a query. The experiments
revealed that for some tables, the choice of tile size is particularly important be-
cause the performance decreases significantly both above and below the optimal
tile size. For other tables, a range of tile sizes around the optimal tile size gives
almost as good performance. This probably depends on the size of the features in
the table.

The significance of tile sizes is important to keep in mind when designing map
systems with multiple zoom levels with different tile sizes.

The tile size can also affect power consumption. According to Forman [4],
sending consumes much more power than receiving. This means that even if the
total amount of transmitted data is the same, minimizing the number of queries is
preferable.

10.1.6 Alternative architectures
A centralized cache will not have an effect unless the number of clients is large,
because with a limited number of clients, the bandwidth of the clients will be the
limiting factor.

A subnet cache seems to be a more attractive alternative because it may pro-
vide faster connections to the clients and because it brings powerful hardware
closer to the clients. It has also the benefit over a centralized cache that the usage
pattern of the users on a subnet may be more predictable than the one for a large
number of users using a centralized server because users of a subnet are located
close to each other and may be particularly interested in maps of their surround-
ings.

10.2 Further work
I have implemented only one of three alternative cache architectures. I have tried
to make some conclusions about the alternatives based on the experiments with
this implementation, but facts can only be established by implementing these al-
ternatives. Both require a more advanced cache design because they must support



10.2. FURTHER WORK 77

multiple simultaneous users.
The cache replacement algorithm used in this implementation is based only

on LRU. Many other cache replacment algorithms are described in the literature.
Some of them should be tried and compared with the LRU algorithm to see how
much improvement a more advanced algorithm can make.



78 CHAPTER 10. CONCLUSION AND FUTURE WORK



Appendix A

Data format

This appendix contains a description of the data format used in the cache imple-
mentation. The cache converts data from the spatial database into this format for
internal storage. The output from the cache is also in this format.

Each tile is represented by an area record. An area record consists of a number
of feature records. The format of area records and feature records is illustrated in
figure A.1. The fields of the feature records are described in table A.1. Table A.2
shows the format of the record header. Table A.3 lists the supported geometry
types, and table A.4 lists the supported attribute types. The format of the geometry
records is described in table A.5 The orientation of rings is not significant. A point
is a pair of x,y coordinates. The coordinates are double-precision floating point
numbers. The byte order is platform dependent.

Field Description Size in bytes Comment
AOF Attribute offset 4
ATR Attribute Type dependent
EOB End-of-buffer 4
HDR Header 4
LBL Label Number of characters No terminator
LOF Label offset 4 Rel. to start of feature record
LSZ Label size 1
NOR Number of records 4

Table A.1: Record fields

79



80 APPENDIX A. DATA FORMAT

Feature recordsNOR EOB

Area record

Feature record

HDR AOF GEO ATR

HDR LOF GEO LSZ LBL

HDR AOF LOF GEO ATR LSZ LBL

HDR GEO

Figure A.1: Record format

Bits Field Contents
0-2 GTY Geometry type
3 BLB Has label, 0 - no, 1 - yes
4 BAT Has non-spatial attribute, 0 - no, 1 - yes
5-7 ATY Type of non-spatial attribute
8-31 RSZ Record size in bytes incl. header

Table A.2: Header format

1 POINT
2 LINE
3 POLYGON
4 MULTIPOINT
5 MULTILINE
6 MULTIPOLYGON

Table A.3: Geometry types



81

Value in ATY Attribute type
0 8-bit signed integer
1 8-bit unsigned integer
2 16-bit signed integer
3 16-bit unsigned integer
4 32-bit signed integer
5 32-bit unsigned integer
6 Float (32 bits)
7 Double (64 bits)

Table A.4: Non-spatial attribute types



82 APPENDIX A. DATA FORMAT

Point
Offset Contents Size
0 point 16

Line
Offset Contents Size
0 numpoints 4
4 points numpoints ∗ 16

Polygon
Offset Contents Size
0 numrings 4
4 numpoints numrings ∗ 4

Variable points (
∑numrings−1

i=0 numpoints[i]) ∗ 16

MultiPoint
Offset Contents Size
0 numpoints 4
4 points numpoints ∗ 16

MultiLine
Offset Contents Size
0 numparts 4
4 numpoints numparts ∗ 4

Variable points (
∑numparts−1

i=0 numpoints[i]) ∗ 16

MultiPolygon
Offset Contents Size
0 coordinate offset 4
4 numparts 4
8 numrings numparts ∗ 4

Variable numpoints (
∑numparts−1

i=0 numrings[i]) ∗ 4

Variable points (
∑numparts−1

i=0 (
∑numrings[i]

k=0 numpoints[k])) ∗ 16

Table A.5: Geometry format



Bibliography

[1] Thomas Brinkhoff. The impacts of map-oriented internet applications on
internet clients, map servers and spatial database systems. In Proceedings of
the 9th International Symposium on Spatial Data Handling, Beijing, China,
2000.

[2] Thomas Brinkhoff. A robust and self-tuning page-replacement strategy for
spatial database systems. In Extending Database Technology, pages 533–
552, 2002.

[3] Environmental Systems Research Institute, Inc. ESRI Shapefile Technical
Description, July 1998.

[4] G. H. Forman and J. Zahorjan. The challenges of mobile computing. Tech-
nical Report TR-93-11-03, 1993.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley Professional, January 1995.

[6] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
Systems: The Complete Book. Pearson Education International, 2002.

[7] Michael F. Goodchild, David J. Maguire, and David W. Rhind. Geographical
Information Systems: Principles and applications. Harlow, UK: Longman,
1991.

[8] Antonin Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international con-
ference on Management of data, pages 47–57, New York, NY, USA, 1984.
ACM Press.

[9] Tomasz Imielinski and B. R. Badrinath. Data management for mobile com-
puting. SIGMOD Record, 22(1):34–39, 1993.

[10] International Organization for Standardization. ISO 19107. ISO/TC 211 Ge-
ographical information - spatial schema, May 2003.

83



84 BIBLIOGRAPHY

[11] Simon Josefsson. The base16, base32, and base64 data encodings. RFC
4648 (Proposed Standard), October 2006.

[12] Yong-Kyoon Kang, Ki-Chang Kim, and Yoo-Sung Kim. Probability-based
tile pre-fetching and cache replacement algorithms for web geographical in-
formation systems. In ADBIS ’01: Proceedings of the 5th East European
Conference on Advances in Databases and Information Systems, pages 127–
140, London, UK, 2001. Springer-Verlag.

[13] Marcel Kornacker. High-performance extensible indexing. In The VLDB
Journal, pages 699–708, 1999.

[14] Paul A. Longley, Michael F. Goodchild, David J. Maguire, and David W.
Rhind. Geographic Information Systems and Science. John Wiley & Sons,
August 2001.

[15] David Loshin. Efficient Memory Programming. McGraw-Hill, 1998.

[16] Open Geospatial Consortium, Inc. OpenGIS Geography Markup Language
(GML) Implementation Specification, February 2004.

[17] Open Geospatial Consortium, Inc. OpenGIS Implementation Specification
for Geographic information - Simple feature access - Part 1: Common ar-
chitecture, October 2006.

[18] Open Geospatial Consortium, Inc. OpenGIS Implementation Specification
for Geographic information - Simple feature access - Part 2: SQL option,
October 2006.

[19] Open GIS Consortium, Inc. Web Map Service Implementation Specification,
Version 1.1.1, January 2002.

[20] Oracle Corporation. Oracle Spatial User’s Guide and Reference, 10g Re-
lease 1, December 2003.

[21] J. A. Orenstein. Redundancy in spatial databases. In SIGMOD ’89: Proceed-
ings of the 1989 ACM SIGMOD international conference on Management of
data, pages 295–305, New York, NY, USA, 1989. ACM Press.

[22] David Salomon. Data Compression: The Complete Reference. Springer-
Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1998.

[23] Junho Shim, Peter Scheuermann, and Radek Vingralek. Proxy cache de-
sign: Algorithms, implementation, and performance. Knowledge and Data
Engineering, 11(4):549–562, 1999.


